Brage IMR Havforskningsinstituttets institusjonelle arkiv

Dette er forfatters siste versjon av den fagfellevurderte artikkelen, vanligvis omtalt som postprint. I Brage IMR er denne artikkelen ikke publisert med forlagets layout fordi forlaget ikke tillater dette. Du finner lenke til forlagets versjon i Brage-posten. Det anbefales at referanser til artikkelen hentes fra forlagets side.
Ved lenking til artikkelen skal det lenkes til post i Brage IMR, ikke direkte til pdf-fil.

Brage IMR -
 Institutional repository of the Institute of Marine Research

This is the author's last version of the article after peer review and is not the publisher's version, usually referred to as postprint. You will find a link to the publisher's version in Brage IMR. It is recommended that you obtain the references from the publisher's site.
Linking to the article should be to the Brage-record, not directly to the pdf-file.

For Can. J. Fish. Aquat. Sci. (submitted: 16 November 2009)

Trophic interactions affecting a key ecosystem component: a multi-stage analysis of the recruitment of the Barents Sea capelin

Dag Øystein Hjermann ${ }^{1}$, Bjarte Bogstad ${ }^{2}$, Gjert Endre Dingsør ${ }^{1,2}$, Harald Gjøsæter ${ }^{2}$, Geir Ottersen ${ }^{1,3}$, Anne Maria Eikeset ${ }^{1}$ \& Nils Christian Stenseth ${ }^{1,4 *}$
${ }^{1}$ Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo; P.O. Box 1066 Blindern, N-0316 Oslo, Norway
${ }^{2}$ Institute of Marine Research, P.O. Box 1870 Nordnes, N-5817 Bergen, Norway
${ }^{3}$ Institute of Marine Research, Gaustadalléen 21, N-0349 Oslo, Norway
${ }^{4}$ Institute of Marine Research, Flødevigen Marine Research Station, N-4817 His, Norway
E-mail adresses:
Dag Hjermann d.o.hjermann@bio.uio.no
Bjarte Bogstad bjarte.bogstad@imr.no
Gjert E. Dingsør gjert.endre.dingsoer@imr.no
Harald Gjøsæter harald.gjoesaeter@imr.no
Geir Ottersen geir.ottersen@imr.no
Anne Maria Eikeset a.m.eikeset@bio.uio.no
Nils Chr. Stenseth n.c.stenseth@bio.uio.no
Corresponding author: Nils Chr. Stenseth (n.c.stenseth@bio.uio.no), telephone +472285 4400, fax +4722854001

Abstract

The Barents Sea stock of capelin (Mallotus villosus) has suffered three major collapses of the stock ($>90 \%$ reduction) since 1985, due to recruitment failures. As capelin is a key species in the area, these population collapses had major ecosystem consequences. By analysing data on spawner biomass and three recruitment stages (larvae, zero-group and 1-year-olds), we demonstrate that much of the recruitment failures are caused by predation from herring (Clupea harengus), zero-group cod (Gadus morhua) and adult cod. Recruitment is furthermore positively correlated with the sea temperature in winter and spring. Harvesting of maturing capelin on the way to the spawning grounds reduced the abundance of larvae significantly, but this reduction is to a large extent compensated later in life, as mortality is strongly density-dependent between the larval stage and age 1 . Altogether, our study indicates a very high importance of trophic interactions, consistent with similar findings in other high-latitude marine ecosystems.

Keywords: Capelin, herring, cod, Barents Sea, General Additive Models (GAM), bottom-up, top-down

Introduction

It is well recognized that in addition to fishing, fish stocks are affected by interactions with other species (predators, prey and competitors) and climate, which should therefore ideally be taken into account when managing fish stocks (Botsford et al. 1997, Collie and Gislason 2001). However, the management of most fish stocks mainly considers the effect of fisheries due to lack of estimates of other effects. In particular, fishing relies on the natural ability of the fish population to replace itself, and a crucial question is to which degree fisheries on the spawning stock reduces recruitment (Needle 2001). However, the potentially large number of interacting factors (prey availability, predator abundance and the abiotic environment) affecting recruitment conspire to make development of predictive recruitment models difficult (Fogarty et al. 1991, Myers 1998). Also, traditional recruitment studies analyse the transition from spawning stock biomass to recruits, the two endpoints of a very diverse process which encompass several stages where different mechanisms may operate (Bjorkstedt 2000, Brooks and Powers 2007). By using data from several stages during the recruitment process, the chance of uncovering the mechanisms behind recruitment variations should increase, and also some spurious correlations could be avoided (as one often can a priori rule out some mechanisms for a specific stage). Also, while the classic spawner-recruitment relationships (such as Beverton-Holt and Ricker) all imply some form of density-dependence (compensation), Brooks and Powers (2007) have pointed out the importance of whether compensation occurs early or late during the recruitment process.

The approach of viewing recruitment as a step-wise process, using abundance at one stage as a function of abundance at the previous stage, is well recognized in
theoretical studies (Paulik 1973, Bjorkstedt 2000, Brooks and Powers 2007) but has been less common in empirical studies (exceptions include Ciannelli et al. 2005 and Dingsør et al. 2007). First, there are often lack of data for such studies; second, the studies utilizing indices of abundance during several phases of recruitment have focused on different questions, e.g., searching for the "stage of year-class determination" by correlating the abundance at each pre-recruitment phase with the abundance at the age of recruitment to the fishery (e.g., Helle et al. 2000).

In this paper, we analyse the recruitment of Barents Sea capelin (Mallotus villosus) during three phases of recruitment. Capelin is a key species in several ecosystems in the North Atlantic (e.g., Carscadden et al. 2001). In the Barents Sea ecosystem, it is a critical food source for some of the largest populations of predators, such as North-East Arctic cod (Gadus morhua) (Marshall et al. 1999, Hjermann et al. 2007, Bogetveit et al. 2008) and the common guillemot (Uria aalge) (Barrett and Krasnov 1996, Bogstad et al. 2000). Also, it is the most effective grazer on zooplankton in the central and northern parts of the Barents Sea (Gjøsæter 1998, Hassel et al. 1991). As huge numbers of mature capelin migrate southwards to the coast to spawn in the spring, large amounts of energy are effectively transported southwards, making the energy produced in the open northern Barents Sea accessible for species confined to southern and coastal areas (Fig. 1).

The Barents Sea capelin stock has gone through strong fluctuations during the last couple of decades, including three collapses of $>90 \%$ reduction of stock size (ICES 2006a). The first of these collapses had large ecosystem effects (Gjøsæter et al. 2009), including decreased growth (Mehl and Sunnanå 1991) and increased cannibalism (ICES

2006b, Fig. 3.10) among cod, invasions of harp seal (Phoca groenlandica) along the Norwegian coast (Haug et al. 1991), and a loss of $85-90 \%$ (more than 200000 pairs) of the common guillemot breeding colony at Bear Island (Vader et al. 1990, Strøm 2005). Through the effects on cod, the collapses have also had substantial economic effects (Hamre 1994).

The first of the three recorded collapses came as a surprise both for scientists and managers, and Hamre (1994) suggested that the main mechanism was massive mortality of capelin larvae during summer due to predation from 1-2 year old Norwegian SpringSpawning (NSS) herring (Clupea harengus). NSS herring spends most of its life cycle in the Norwegian Sea and along the Norwegian west coast, but partly uses the Barents Sea as a nursery area (mainly for 0-2 year olds). The hypothesis proposed by Hamre (1994) has later been supported by statistical analyses of the stock-recruitment relationship of capelin (Gjøsæter and Bogstad 1998, Hjermann et al. 2004a, Mikkelsen and Pedersen 2004) as well as by field studies (Godiksen et al. 2006, Hallfredsson 2006). On the other hand, Dingsør et al. (2007) analyzed recruitment to the zero-group stage as a function of spawner biomass and covariates, and found no effect of herring abundance. Moreover, predation on larvae by zero-group cod (Hallfredsson and Pedersen 2007), as well as climate and climate-related changes in prey abundance (Gjøsæter 1998), can be of importance. The role of capelin fisheries has been a matter of discussion. During the 1970s, capelin landings were high (up to 3.0 million tonnes) but capelin recruitment was nevertheless good, and Gjøsæter (1995), analysing data on larval production, concluded that there was no substantial effect of the capelin fishery on the collapses of the 1980s and 1990s. In contrast, others have claimed that the capelin fishery was an important
cause of the 1980s collapse (Hopkins and Nilssen 1991, Ushakov and Prozorkevich 2002, Hjermann et al. 2004a).

Data on capelin abundance exists for several early stages: early larval (in June, spawning takes place around April $1^{\text {st }}$), zero-group (in September; i.e., right after the presumptive period of herring predation), and as 1-year olds (in September-October the year after spawning). This paper reports the results of a comprehensive analysis of these data, making us able to pinpoint the effect of different factors at different stages. The only previous analysis of these data is by Gundersen and Gjøsæter (1998), who did not explicitly analyse the effect of covariates and whose data only included capelin year classes 1981-1994. Using four different transition models, we clarify the importance of different stages and factors for recruitment. Specifically, we evaluate the role of predation and to what extent harvesting of mature capelin contributed to the recruitment failure during the mentioned three collapses. We also evaluate whether mechanisms may have changed over time. Through a systematic evaluation of the recruitment process on the different life stages of the capelin, we show how the dynamics of this keystone species is affected by predation from other species, fishing, and indirectly and directly by climate.

Materials and Methods

Data on four stages (Fig. 2, Fig. 3) for year-classes 1981-2006 were used in our analysis:
(1) Abundance index of the parental generation of capelin, given as maturing stock biomass (MSB, measured in 1000 t) approximately half a year before spawning,

Fig. 2

Fig. 3
(2) The abundance of capelin larvae (10^{12} individuals) in June year t (Larvae) (ICES 2006a). In some years there were restrictions on entering the Russian Exclusive Economic Zone (EEZ), which have lead to incomplete coverage to a smaller or larger degree (depending on the distribution of larvae that year). Based on larvae distribution maps, the abundance might potentially have been significantly underestimated in the years 1996-1999, 2001-2002 and 2004. While a correction of the data may be possible using spatial analyses, it is quite difficult because there is large between-year variation in both the capelin's spatial extent as well as in the spatial pattern of density within the capelin distribution. We have considered such an analysis to be outside the scope of this paper.
(3) Abundance indices (unit: 10^{9} individuals) of zero-group capelin calculated using the stratified sample mean of pelagic trawl data from the international zero-group survey in September year t (Zero; see Dingsør 2005 and ICES 2007).
(4) Estimates of the number of one-year old capelin (unit: 10^{9} individuals) in September year $t+1$ (Agel), based on the same acoustic survey as in (1). For the years prior to 1981, we use back-calculated values of survey abundance at age 2 the following year, since survey coverage of 1-year-old fish was poor during this period (Gjøsæter et al. 1998).

We used regression analyses to analyse stage-to-stage survival, investigating the effects of a number of covariates on survival (Tab. 1, 2) based on the following (see also Fig. 2):

Tab. 1

Tab. 2
(1) During the winter (after MSB is estimated, and before spawning), maturing capelin on their spawning migration are subject to predation by several fish,
mammal and bird species. Of these, especially cod is of importance (Bogstad and Gjøsæter 2001); because of its large biomass, it is the dominant predator of capelin of this ocean (Bogstad et al. 2000, Dolgov 2002). The cod's predation is mainly due to subadult (3-6 year old) cod (CodSubad; Dolgov 2002). Adult cod (ca. age 7 and up) are on their annual spawning migration west and south of the capelin's distribution (Bogstad and Gjøsæter 2001), and younger cod (age 1-2) are less piscivorous. Moreover, capelin is also targeted by fisheries during this stage, which here is taken into account using the log-transformed biomass of the catch (LogCatch).
(2) Between the larval and zero-group stage (i.e., in summer), capelin is eaten by several planktivorous predators. In years when 1-2 year-old herring (Herr12) are abundant, this is the dominant planktivorous fish in the coastal areas in summer. Analyses of these time series (Gjøsæter and Bogstad 1998) together with stomach samples of herring, (Hallfredsson and Pedersen 2009) have indicated a significant impact on the capelin. Also the density of zero-group cod (CodZero) may be high, and they can eat a significant amount of capelin according to field studies (Hallfredsson and Pedersen 2007).
(3) Between the zero-group and one-year stage, capelin might be affected by predation by cod in winter/spring (mostly subadult cod, CodSubad) as well as in summer (in this case, all piscivorous cod, Cod). Although capelin overlaps with young herring only to a small degree during this stage, there is a possibility for a competition effect by herring depleting advecting plankton resources.
(4) During all stages, food availability (plankton abundance) may be an important
factor. Russian plankton data during spring and summer (May-July) is available but exists only until 1990. For the stagewise analyses we used sea temperature as a proxy, which affects in situ biological productivity positively. In addition, high temperatures indicate a high inflow of Atlantic, zooplankton-rich water to the Barents Sea (Wassmann et al. 2006). We use Kola section temperatures, depth 0200 m (Tereshchenko 1996) which have been shown to be a good indicator of the climate of the Barents Sea as a whole (e.g., Ottersen and Sundby 1995, Wassmann et al. 2006).

We did not try to include the predation by birds and mammals. Minke whales (Balaenoptera acutorostrata) and harp seals (Phoca groenlandica) are important predators. Based on diet samples, it has been estimated that average annual consumption of capelin is 140000 metric tons and 260-410 000 metric tons for minke whales and harp seals, respectively (Bogstad et al. 2000). There is, however, not enough data on neither diet or abundance of mammals to estimate the consumption for each specific year . However, cod clearly consumes even more capelin than mammals do (up to 3 million metric tons annually; ICES 2007). Also, mammal populations can be considered to be changing relatively slowly compared to the fast fluctuations of capelin population. The same applies to birds, which are less important as predators (annual consumption of capelin: around 100000 metric tons; Barrett et al. 2002). Although the total annual removal of capelin caused by these predators may change little from year to year, the removal relative to the total stock, and thereby the predatory impact, may change considerably.

We used Generalized Additive Models (GAM) models on the form
eq. $1 \quad \log \left(\right.$ Stage $\left._{i, j}\right)=\mathrm{a}+\mathrm{G}\left(\log \left(\right.\right.$ Stage $\left.\left._{i-1, j}\right)\right)+\mathrm{H}\left(X_{j}\right)+\ldots+\varepsilon_{j}$
where Stage $_{i, j}$ is the abundance at stage $\mathrm{i}(\mathrm{i}=2,3,4)$ in cohort $j(j=1981,1982, \ldots, 2006)$ and X is a covariate. The functions G and H may be linear (i.e., $\mathrm{b} \cdot \log _{\log }^{t-1}$), or nonlinear (e.g., a spline function), and there may be several covariate terms (see below). Note that if mortality is density-independent, we expect G to be linear with a slope of 1 . If G has a slope of 0 , mortality is highly density-dependent, exactly compensating for changes in density (abundance of one stage is independent of abundance at the previous stage). We used the package mgcv (Wood 2006) of R, where the degrees of freedom of the smooth function is chosen automatically based on the General Cross-Validation (GCV) score, including d.f. $=1$ (i.e., a linear effect). We used thin plate regression splines (Wood 2006) and specified the maximum dimension of the smooth term to $3(k=3)$ to avoid overly "wiggly" regression lines.

We searched for the optimal model by searching through combinations of biologically plausible explanatory variables for each stage (Tab. 2) using GCV score (Wood 2006) as a guide. Young herring abundance was log-transformed to reduce the influence of outliers. Due to a relatively high ratio between numbers of potential variables and sample size we did not check for interaction effects. The exception was that we tested for interaction between herring and zero-group cod in the stage 2-3 transition, based on inspection of the plotted residuals of a model with additive effect of herring and zero-group cod. For the models involving larvae (transitions 1-2 and 2-3), we tried to include a dummy variable for the years when larval abundance might have been
significantly underestimated owing to restrictions on entering the Russian EEZ (see above). We checked whether the residuals were autocorrelated by plotting the partial autocorrelations of the residuals.

The flexibility of GAM increases the probability of achieving spurious results. To reduce this problem, we considered non-monotonous relationships explaining an unrealistically high fraction of deviance, likely to be spurious results. When a GAM model produced such a relationship, we replaced it with a monotonous relationship using "hockey stick GAM" (HSGAM), the GAM equivalent of hockey stick regression (e.g., Maceina 2007). That is, we restricted the relationship to be flat (slope zero) below or above some threshold (chosen by minimizing residual variance). For instance, a HSGAM model with the restriction that Y has no effect below the threshold $Y_{t h}$ may look like this:

$$
\begin{array}{lll}
\text { eq. 2a } & \log \left(\text { Stage }_{i, j}\right)=\mathrm{a}_{1}+\mathrm{G}\left(\log \left(\text { Stage }_{i-1, j}\right)\right)+\mathrm{H}\left(X_{j}\right)+\ldots+\varepsilon_{j} & \text { for } Y_{j}<=Y_{t h} \\
\text { eq. 2b } & \log \left(\text { Stage }_{i, j}\right)=\mathrm{a}_{2}+\mathrm{G}\left(\log \left(\text { Stage }_{i-1, j, j}\right)\right)+\mathrm{H}\left(X_{j}\right)+\mathrm{H}\left(Y_{j}\right)+\ldots+\varepsilon_{j} & \text { for } Y_{j}>Y_{\text {th }}
\end{array}
$$

where coefficients a_{1} and a_{2} are set so that the function is continuous. The threshold $Y_{t h}$ is found using a routine to search for the global minimum of the deviance. Because of this approach, GCV values are not representative; we therefore also give Akaike's Information Criterion (AIC) adjusted for small sample size (Burnham and Anderson 2002), as this criterion can correctly take the extra threshold variable into account.

We wanted to evaluate the effect of plankton abundance during spring and summer during the larval stage, but this could not be done within the stagewise analyses since the data were available only for 1959-1990. In order to obtain a long enough time
series, we made a simple model for recruitment at age 1 (stage 4) as a function of MSB (stage 1) for a different period than the rest of the analysis, the cohorts 1974-1990. As covariates we used those found to be important in the stagewise analyses. We then added plankton abundance to evaluate the additional effect of this variable. We used data either from only the western ("North Cape") transect closest to main spawning areas (ZooNCSouth ${ }_{t}$) or both transects (including ZooSouth ${ }_{t}$). In any case we used data from the southern part of the covered area in order to restrict to the area covered by capelin larvae (Tab. 1).

Finally, the robustness of the models was tested using k-fold cross-validation (Fielding and Bell 1997): the time series (length N) is divided in k (more or less) equally long parts. For each part of the time series, the model parameters are estimated excluding this part from the data. Then these parameters are used to predict the response for the other part. We used $\mathrm{k}=5$ or 6 (for time series starting in 1981 or 1974 , respectively).

Results

For all transitions, we found models that were able to explain over half of the variation Tab. 3 (56-80\% of the deviance explained, Tab. 3). Model residuals were not significantly autocorrelated at lag 1 and 2 years; overall, there were not more autocorrelations with $\mathrm{p}<0.05$ than expected by chance (Suppl. Fig. 1). The k-fold cross-validation tests (Suppl. Fig. 2) showed that the models were quite robust, i.e. returned quite good out-of data predictions in most cases, except for the stage 2 to 3 (larvae to zero-group) transition (commented further below).

Stage 1 (maturing biomass) to 2 (larvae)

The best GAM models for larval abundance as a function of $M S B$ (Tab. 3) had a positive
Tab. 4

Fig. 4
effect of $M S B(\mathrm{p}<0.001)$ as well as negative effects of cod age 3-6 biomass (CodSubad, $\mathrm{p}<0.001)$ and the proportion of capelin caught in the fisheries between survey time and spawning (LogCatch, $\mathrm{p}=0.007$), and a weaker positive effect of temperature in the winter and spring (TempWintspr, $\mathrm{p}=0.05$). A model with these four explanatory variables explained a large part (72\%) of the deviation in larvae abundance (Tab. 3a, Fig. 4a-d). The effect of $\log (\mathrm{MSB})$ was weakly non-linear; if it was forced to be linear, the estimated slope was 1.33 (SE 0.30), i.e., not significantly different from a straight line with a slope of 1 . Thus, there was no evidence of density-dependent mortality at this stage (Tab. 4a). The effect of harvesting is mostly due to the high harvest in the years 1982-1986, when 68-87 \% of the mature biomass was harvested. After 1986, the harvest has been maximum 44% of the biomass. A dummy variable for coverage of the larval distribution (complete/incomplete) was on the border of significance $(p=0.10)$ and reduced the GCV value somewhat (1.5 units). However, the effect of the dummy variable was opposite of what was expected (positive effect of incomplete coverage), and we concluded this was a spurious effect.

Stage 2 (larvae) to 3 (zero-group)

Surprisingly (in view of existing literature), the effect of young herring biomass (Herr_{12}) alone on survival through this stage was not very strong $(p=0.062)$. In fact, the abundance of zero-group cod (CodZero) had a much more consistent negative effect on survival $(p=0.002)$. However, there was a significant interaction between Herr ${ }_{12}$ and CodZero ($p=0.006$; Tab. 3b). A model including this interaction (Fig. 5) indicates that high abundance of one predator increases the negative effect of the other. Fig. 5b also shows that the abundance of the two predators is correlated, which makes it difficult to
separate the effects of the two. The slope of \log (Larvae) was significantly lower than 1 (Tab. 4b), indicating strong density-dependent mortality. A dummy variable for years with incomplete coverage of the larval distribution did not improve the model $(p=0.23)$. Compared to the other transitions, this model showed poor results for the k-fold crossvalidation test (Suppl. Fig. 2b): the second collapse (start of the 1990s) is not well predicted based on the data of the other periods. The cross-validation results were not much affected if zero-group cod was deleted from the model, but worse in some periods (the late 1990s) if we deleted herring from the model (Suppl. Fig. 2b)

Stage 3 (zero-group) to 4 (age 1)

For this stage, we found two alternative sets of covariates (denoted model 1 and model 2) that could explain the variation in survival (Tab. 3c): (1) abundance of herring (Herr ${ }_{12}$) and temperature during winter and spring (TempWintspr), and (2) abundance of subadult cod (CodSubad). The effects of the covariates were also non-linear in both cases; we used HSGAM models (Fig. 6). In any case, the slope of $\log ($ Zero $)$ indicated strong densitydependent survival, especially at low abundance (see Tab. 4c and Fig. 6; for model 1, slope varies from approx. 0.25 to 0.5).

Effects of zooplankton abundance and other covariates on recruitment

We made a baseline model where stage 4 abundance (age 1 , year $t+1$) was modeled as a function of stage $1(M S B$, year $t-1) \operatorname{Herr}_{12}$ (in year t), CodSubad (year t or $t+1$) and TempWintspr (year t or $t+1$) based on model fit. The explanatory variables were selected on basis of the stagewise regression results (see above), but the model was fitted to the longest time series covering stage 1 , stage 4 and zooplankton data, i.e., cohorts 1974-1990. The best fit (explaining 72% of the deviance) was obtained by using

TempWintspr for year $t+1$ and CodSubad for year t. Herr ${ }_{12}$ (with a threshold effect) and TempWintspr were statistically significant $(\mathrm{P}=0.003$ and $\mathrm{P}=0.006$, respectively), while the effect of $\operatorname{MSB}(\mathrm{P}=0.26)$ and $\operatorname{CodSubad}(\mathrm{P}=0.19)$ was not. When zooplankton was added to this baseline model, there was no improvement in model fit, neither for zooplankton in the western transect $(\mathrm{P}=0.41)$ or for both transects $(\mathrm{P}=0.99)$. See suppl. Fig 3 for graphs of showing the covariate effects.

Discussion

This study supports that capelin, a key species in the food-web of the Barents Sea, is heavily affected by predation (i.e., top-down control) on every stage of recruitment. However, mortality also appears to be density-and climate-dependent, which may indicate bottom-up effects. While the results of model selection based on retrospective analyses of time series data always has some uncertainty (i.e., the possibility of spurious relationships), we tried to keep the number of potential variables relatively low (Tab. 2), and as the results are in line with field studies (e.g., Hallfredsson 2006, Hallfredsson and Pedersen 2007, Fossheim et al. 2006) we have quite high confidence in the results. The high impact of predation is consistent with studies from other northerly ecosystems (e.g., Frank et al. 2005, Savenkoff et al. 2007). Petrie et al. (2009) suggest that the tendency for strong top-down effects stem from the lower diversity and higher species specificity of predation in northerly ecosystems, a view that is supported by the highly species-specific predation effects found in the present study.

From stage 1 to 2, subadult (3-6 year old) cod has the largest impact. Stage 1 marks the end of the feeding season of the matures (i.e. before the maturing capelin separates from the rest of the stock in the central Barents Sea and start the spawning
migration towards the coast). During this migration, they are followed by large amounts of predatory fish, as well as birds, seals and whales, which by these results have a substantial impact on the biomass that survives until spawning and thereby on the abundance of larvae. This impact is substantially larger than the impact of fishing, at least since 1990 , when fisheries have been relatively small compared to the stock abundance (22-31 \% of the mature biomass in all years when fishing has been allowed except one). It is likely that the variations in cod abundance has had a larger effect on this stage transition. According to the model estimates, a 3-fold increase in the biomass of subadult cod - similar to the increase from 1990 to 1993 - is associated with a reduction in \log (Larvae) of 3.23 , i.e., a reduction in larval abundance of 96%. Although this is likely to be an overestimate of the effect, it clearly is an indication that cod predation can be highly influential.

During the next relatively short phase over the summer, the capelin larvae are strongly affected by the abundance of young herring as well as zero-group cod. The effect of young herring was first suggested by Hamre (1994) and later supported by the stockrecruitment analysis of Gjøsæter and Bogstad (1998) as well as field data (Hallfredsson and Pedersen 2009). However, we found a less clear-cut effect of herring than expected. What the data tell us is that survival during summer is likely to be high if there is low abundance of both predators, and low if there is a high abundance of both. If there is much young herring but little zero-group cod, the outcome is highly variable; survival can be good (as in 2006) or bad (as in 1998). Statistically, the best model indicates that mortality is affected by an interaction between the two types of predators, herring and zero-group cod. However, the interaction effect is uncertain as it depends on quite few
data points and especially as we lack the combination of little herring and much zerogroup cod. The apparent interaction effect may also be an artefact resulting from leaving out confounding parameters, such as climate (affecting spatial distribution of the predators) and abundance of alternative prey for the herring and zero-group cod. Godiksen et al. (2006) found that individual herring switches between selectively eating either copepods or krill and capelin larvae, which indicates that krill and capelin larvae occur together in the same patches. Therefore, the effect of the two predators also depends on the abundance of copepods. Time series on copepod abundance at this time of the year are unfortunately not available. Since copepod abundance is also related to predator abundance (both are linked to climate), this may disturb the apparent effects of predators.

Capelin larvae are rapidly digested in herring stomachs (Huse and Toresen 2000), but by using the anterior part of the stomach and using the presence of larval eyes (Godiksen et al. 2006) it has been made possible to estimate predation rates based on predator stomachs. Hallfredsson and Pedersen $(2007,2009)$ tried to estimate mortality rates of capelin due to herring and zero-group cod predation. For herring, they found a predation mortality of 7 and 10% per day (in 2001 and 2003, respectively) at the stations where herring was found (Hallfredsson and Pedersen 2009). Averaged over all stations, the daily mortality rates were 2.6% (2001) and 0.004% (2003); the latter estimate is extremely uncertain as the herring was highly aggregated that year, being difficult to sample using a regular sampling grid. For cod, the daily mortality rate, averaged over all stations was 1.7% in 2002 and 1.5% in 2003 (Hallfredsson and Pedersen 2007). For comparison, the mortality rate of capelin larvae in predator-free bag experiments was 1%
per day (Fossheim 2006).
Finally, this analysis indicates that either cod or herring abundance affects survival in the one-year period following the zero-group stage. Of these two alternative models, we believe, based on the size and spatial distribution of the capelin at this stage, that the model with cod has most credibility. During summer the year after spawning, cod and capelin often overlap substantially in the capelin's feeding grounds; hence cod predation in this area may have a substantial impact. (The same conclusion was drawn by Dingsør et al. 2007, using the same data). These feeding grounds are situated far north of the herring's northern limit, and also the capelin at this stage is too large to be a preferred prey of herring. The shape of the density-dependent survival may also be linked to predation: as capelin becomes scarce, cod may switch to other prey and thereby capelin survival increases. This is of course speculation; also note that the shape of this curve depends a lot on two years with low capelin abundance and high survival.

While reproduction and mortality until the larval stage is not significantly densitydependent, mortality is strongly density-dependent from the larval stage onwards. Eq. 1 contains measurement error in the abundance estimates of both stages, which leads to a downward bias in the slope of abundance at the previous stage (G in eq. 1) (Carroll et al. 1995) and thereby an upward bias in the strength of density-dependence (1-slope). This bias is quite small when variation in abundance is large (Suppl. Fig. 4), which it is in capelin: the ratio between the largest and smallest abundance is $154,366,762$, and 350 for stage 1-4, respectively. For stage 1 and 4, Tjelmeland (2002) modelled the uncertainty for the abundance estimates of age 2-3 capelin 1972-2000, the coefficient of variation (CV) was mostly below 20%; it exceeded 20% in 1 and 5 years in the case of 2 -year and

3-year olds, respectively (maximum CV was ca. 60\%). In accordance with this, Løland et al. (2007) found the CV to be 20% in most years for NSS herring, another large stock measured acoustically. For zero-group abundance (stage 3), measurement error CV was 32% on average over all years (range $10 \%-64 \%$; Dingsør 2005). The uncertainty of the stage 2 (larval capelin) abundance estimates have not been estimated. The uncertainty of larval (ichthyoplankton) abnundance estimates is generally difficult to estimate. In a comparable oceanic larval survey, Pepin and Anderson (1997) indicated that the CV was around 15%. Using a simulation approach, Voss and Hinrichsen (2003) found that the mean error was $10 \%-20 \%$ (depending on wind stress) without accounting for transport losses out of the surveyed area, which in their case reached up to $>10 \%$ when winds were strong. As shown in Suppl. Fig. 4c, if we assume that our estimates have a CV of 30%, the bias of the slope of G is 0.05 , i.e. quite small compared to the slope values.

The strong density-dependence diminishes the effect of processes occurring on early stages, especially before the larval stage. Therefore, although spawner abundance and harvesting mature capelin was found to affect recruitment at the larval stage (stage 1 to 2), it has a very small effect on overall recruitment (stage 1 to 4). Density-dependence from the larval stage onwards strongly reduces the effect of spawner abundance. From the larval to the zero-group stage, the slope of G in eq. 1 is estimated to be 0.45 (Tab. 4). For example, if harvest reduces larval abundance by 25%, the change in \log (Zero) is $0.45 * \log (1-0.25)=-0.13$. To get the reduction at the zero-group stage, we backtransform: $1-\exp (-0.13)=0.12$. Thus, a 25% reduction at the larval stage is reduced to 12% at the zero-group stage, and (by a similar calculation) to only $3-7 \%$ at the age of one year.

The conclusion is that harvesting probably played only a minor role in the collapses, including the first one in the 1980s, a result which is consistent with Gjøsæter's (1995) conclusions based on larval and zero-group abundance prior to the collapse. This contradicts the conclusion of Hjermann et al. (2004a), who, based on a data set consisting of age 1-4 capelin only, suggested that harvest was an important reason for the 1980s collapse. However, the harvest during autumn 1985 and spring 1986 reduced spawner biomass to extremely low levels, which might have delayed the stock's recovery (Gjøsæter 1995). The minor role of harvesting in stock collapses corresponds well with anecdotal information going as far back as to the 16th century, which describes that capelin "disappeared" at irregular intervals. From the recent history, it is known that such periods of capelin disappearance are associated with strong year classes of herring (Gjøsæter 1995).

We also found capelin recruitment to be positively related to sea temperatures both in the case of the spawner-larvae transition and the zero-group-age 1 transition. In this area, high sea temperatures are associated with higher primary production as well as higher influx of zooplankton from the Norwegian Sea (Dalpadado et al. 2003, Wassmann et al. 2006). Being a planktivore, this could suggest that capelin to some degree also is limited by food abundance (bottom-up control). In the case of adult capelin, they are able to deplete local zooplankton stocks in a few days (Haug et al. 1991). However, we found no effect of zooplankton biomass in spring and early summer on recruitment. The reason may be that zooplankton biomass for a large part is determined by the abundance of Calanus finmarchicus. In contrast to herring and cod, whose larvae appear to be tightly coordinated in space and time to C. finmarchicus, capelin larvae mainly eat other kinds of
zooplankton (Fossheim 2006). Indeed, the relationship between temperature and capelin recruitment may instead be linked to oceanographic features such as eddies and coastal jets: Fossheim et al. (2006) suggested that an important factor for capelin recruitment can be the number and timing of short-lived springtime eddies, which carries warm, oceanic and plankton-rich water on to the shelf. However, compared to the beach-spawning capelin populations in Canada (Leggett and Deblois 1994), the effects of climate on the recruitment of this capelin stock seem to be relatively small. However, climate has a strong indirect, lagged effect on this capelin stock by affecting the recruitment of the capelin predators cod and herring (Hjermann et al. 2004b).

While this study is largely based on survey data, the data of age 3 and older cod and herring age 1 and 2 are based on VPA estimates. In particular the herring estimates are uncertain, since they are based on assuming a natural mortality for ages 1 and 2 which is constant through time and high (instantaneous mortality $\mathrm{M}=0.9$). Also, one source of error is that some cohorts of young herring stay largely in the fjords of Northern Norway or in the Norwegian Sea instead of in the Barents Sea, and therefore do not overlap with larval capelin. This is not conveyed by VPA estimates (since they are back-calculated from catches of the entire herring stock, after the cohorts have migrated to the Norwegian Sea). In addition, some cohorts are mainly found in the Barents Sea also at age 3 (ICES 2006a). Acoustic survey estimates of herring in the Barents Sea (ICES 2006a) exist for most, but not all, of the years 1984 and onwards. However, in addition to the holes in the survey data series, the survey estimates from before 1990 are not compatible with later data due to a change in echosounder equipment (Røttingen and Tjelmeland 2003). Also, the young herring has not always been surveyed at the same time of the year, and they are
generally difficult to survey since they are often located near the surface. Thus we decided that using the VPA estimates was the best choice.

Some additional information can, however, be derived from the survey data. In some years with large overall abundance of 1-2 year old herring (according to VPA estimates), the survey indicated a relatively low herring density in the Barents Sea (probably because much of the herring was in the fjords). This is the case for one of the years where the survival of larvae was unexpectedly high (2003). However, in two other years with high capelin survival (1999 and 2006), both VPA estimates and survey data show that the Barents Sea contained much young herring. The good survival of capelin in this period may have been due to little spatial overlap between capelin larval drift routes from the spawning grounds (which varies strongly from year to year) and young herring. For instance, in 2006, the capelin had an extreme westerly spawning, and the larvae probably overlapped to a limited degree with herring while drifting north- and eastwards.

Direct measurements of the capelin spawning stock are not available and could not be included in the present analysis. Such estimation has been attempted by acoustic surveys in spring, but such surveys have been discontinued since they were not able to cover the capelin stock properly during the capelin migration to the coast. Therefore, the spawning stock estimates used for instance for management purposes are modelled based on the MSB (Gjøsæter et al. 2002).

After the disastrous collapse of the capelin stock in the mid-1980s, and the second collapse in the early 1990s, the leading hypothesis has been that a high abundance of young herring causes massive larval mortality, recruitment failure and stock collapse. Our analysis supports that herring is an important cause, as herring abundance alone explains

21-23 \% of the deviance in the abundance of age 1 capelin. All observed capelin collapses have happened in connection with high abundance of young herring; however, there have also been some years with high herring abundance but good recruitment of capelin. This indicates that a high abundance of young herring is necessary but not a sufficient condition for capelin collapse. The present results point out the importance of cod predation (both from zero-group and older cod), as well as a certain influence of climate. These results could be incorporated in the management advice of capelin, e.g. by indicating the probability of major changes in stock size in the medium term (3-4 years). Erroneous conclusions due to spurious correlations is always a hazard when investigating environment- recruitment relationships, and the flip side of the versatility of GAMs non-linear functions is that it makes GAM even more prone to such errors (Megrey et al. 2005). By analysing intermediate stages of recruitment, and by using HSGAM when this appears more adequate, we are better able to pinpoint which factors that affect which stages. Through careful assessment of our statistically derived results, we can conclude that not only herring but also cod at various stages, as well as climate, appear to play a key role in determining the population dynamics of the capelin living in the Barents Sea.

Acknowledgements

PINRO, Murmansk, Russia, are thanked for kindly providing us with the sea temperature data from the Kola section. The Vista program (under the Norwegian Academy of Science and Letters) and the Research Council of Norway (through the LEO project) have provided valuable financial support to the work reported in this paper. We thank

Geir O. Storvik for advice on the statistical analysis, and two anonymous reviewers for valuable comments and suggestions.

References

Barrett, R.T., and Krasnov, Y.V. 1996. Recent responses to changes in stocks of prey species by seabirds breeding in the southern Barents Sea. ICES J. Mar. Sci. 53(4): 713-722.

Barrett, R.T., Anker-Nilssen, T., Gabrielsen, G.W., and Chapdelaine, G. 2002. Food consumption by seabirds in Norwegian waters. ICES J. Mar. Sci. 59(1): 43-57. Bjorkstedt, E.P. 2000. Stock-recruitment relationships for life cycles that exhibit concurrent density dependence. Can. J. Fish. Aquat. Sci. 57(2): 459-467.

Bogetveit, F.R., Slotte, A., and Johannessen, A. 2008. The ability of gadoids to take advantage of a short-term high availability of forage fish: the example of spawning aggregations in Barents Sea capelin. J. Fish Biol. 72(6): 1427-1449.

Bogstad, B., and Gjøsæter, H. 2001. Predation by cod (Gadus morhua) on capelin (Mallotus villosus) in the Barents Sea: implications for capelin stock assessment. Fish Res. 53(2): 197-209.

Bogstad, B., Haug, T., and Mehl, S. 2000. Who eats whom in the Barents Sea? In Minke whales, harp and hooded seals: Major predators in the North Atlantic ecosystem. Edited by G.A. Víkingsson. The North Atlantic Marine Mammal Commission, Tromsø, Norway. pp. 98-119.

Botsford, L.W., Castilla, J.C., and Peterson, C.H. 1997. The management of fisheries and marine ecosystems. Science 277(5325): 509-515.

Brooks, E.N., and Powers, J.E. 2007. Generalized compensation in stock-recruit functions: properties and implications for management. ICES J. Mar. Sci. 64(3):

413-424.
Burnham, K. P., and Anderson, D. R. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Second edition. Springer-Verlag, New York, USA.

Carroll, R.J., Ruppert, D., and Stefanski, L.A. 1995. Measurement error in non-linear models. Chapman and Hall, London.

Carscadden, J.E., Frank, K.T., and Leggett, W.C. 2001. Ecosystem changes and the effects on capelin (Mallotus villosus), a major forage species. Can. J. Fish. Aquat. Sci. 58(1): 73-85.

Ciannelli, L., Bailey, K.M., Chan, K.S., Belgrano, A., and Stenseth, N.C. 2005. Climate change causing phase transitions of walleye pollock (Theragra chalcogramma) recruitment dynamics. Proc. R. Soc. Lond., B 272(1573): 1735-1743.

Collie, J.S., and Gislason, H. 2001. Biological reference points for fish stocks in a multispecies context. Can. J. Fish. Aquat. Sci. 58(11): 2167-2176.

Dalpadado, P., Ingvaldsen, R., and Hassel, A. 2003. Zooplankton biomass variation in relation to climatic conditions in the Barents Sea. Polar Biol. 26(4): 233-241.

Dingsør, G.E. 2005. Estimating abundance indices from the international 0-group fish survey in the Barents Sea. Fish Res. 72(2-3): 205-218.

Dingsør, G.E., Ciannelli, L., Chan, K.S., Ottersen, G., and Stenseth, N.C. 2007. Density dependence and density independence during the early life stages of four marine fish stocks. Ecology 88: 625-634.

Dolgov, A.V. 2002. The role of capelin (Mallotus villosus) in the foodweb of the Barents Sea. ICES J. Mar. Sci. 59(5): 1034-1045.

Fielding, A.H., and Bell, J.F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24(1): 38-49.

Fogarty, M.J., Sissenwine, M.P., and Cohen, E.B. 1991. Recruitment Variability and the Dynamics of Exploited Marine Populations. Trends Ecol. Evol. 6(8): 241-246.

Fossheim, M. 2006. Spatial structure of capelin larvae and zooplankton off the coast of northern Norway. Doctor scientiarum thesis, The Norwegian College of Fisheries Science, University of Tromsø, Norway.

Fossheim, M., Tande, K.S., Semenova, T., and Timonin, A. 2006. Capelin larvae (Mallotus villosus) and community structure of zooplankton off the coast of northern Norway. J. Plankton Res. 28(6): 585-595.

Frank, K.T., Petrie, B., Choi, J.S., and Leggett, W.C. 2005. Trophic cascades in a formerly cod-dominated ecosystem. Science 308(5728): 1621-1623.

Gjøsæter, H. 1995. Pelagic fish and the ecological impact of the modern fishing industry in the Barents Sea. Arctic 48(3): 267-278.

Gjøsæter, H. 1998. The population biology and exploitation of capelin (Mallotus villosus) in the Barents Sea. Sarsia 83(6): 453-496.

Gjøsæter, H., and Bogstad, B. 1998. Effects of the presence of herring (Clupea harengus) on the stock-recruitment relationship of Barents Sea capelin (Mallotus villosus). Fish Res. 38(1): 57-71.

Gjøsæter, H., Dommasnes, A., and Røttingen, B. 1998. The Barents Sea capelin stock 1972-1997. A synthesis of results from acoustic surveys. Sarsia 83(6): 497-510.

Gjøsæter, H., Bogstad, B., and Tjelmeland, S. 2002. Assessment methodology for Barents Sea capelin, Mallotus villosus (Müller). ICES J. Mar. Sci. 59(5): 1086-
1095.

Gjøsæter, H., Bogstad, B., and Tjelmeland, S. 2009. Ecosystem effects of three capelin stock collapses in the Barents Sea. Marine Biology Research 5(1): 40-53.

Godiksen, J.A., Hallfredsson, E.H., and Pedersen, T. 2006. Effects of alternative prey on predation intensity from herring Clupea harengus and sandeel Ammodytes marinus on capelin Mallotus villosus larvae in the Barents Sea. J. Fish Biol. 69(6): 18071823.

Gundersen, A.C., and Gjøsæter, H. 1998. A comparison between abundance estimates of the Barents Sea capelin (Mallotus villosus Müller) at the larval, 0-group and 1group stage, for the year classes 1981-1994. ICES J. Mar. Sci. 55(1): 95-101.

Hallfredsson, E.H. 2006. Fish predation on capelin larvae Mallotus villosus in the Barents Sea, in relation to recruitment. Doctor scientiarum thesis, The Norwegian College of Fisheries Science, University of Tromsø, Norway.

Hallfredsson, E.H., and Pedersen, T. 2007. Effects of predation from pelagic 0-group cod (Gadus morhua) on mortality rates of capelin (Mallotus villosus) larvae in the Barents Sea. Can. J. Fish. Aquat. Sci. 64: 1710-1722.

Hallfredsson E.H. and Pedersen, T. 2009. Effects of predation from juvenile herring (Clupea harengus) on mortality rates of capelin (Mallotus villosus) larvae. Can. J. Fish. Aquat. Sci. 66: 1693-1706.

Hamre, J. 1994. Biodiversity and Exploitation of the Main Fish Stocks in the Norwegian Barents Sea Ecosystem. Biodiversity Conserv. 3(6): 473-492.

Hassel, A., Skjoldal, H.R., Gjøsæter, H., Loeng, H., and Omli, L. 1991. Impact of grazing from capelin (Mallotus villosus) on zooplankton - a case-study in the northern

Barents Sea in August 1985. Polar Res. 10(2): 371-388.
Haug, T., Krøyer, A.B., Nilssen, K.T., Ugland, K.I., and Aspholm, P.E. 1991. Harp seal (Phoca groenlandica) invasions in Norwegian coastal waters - age composition and feeding habits. ICES J. Mar. Sci. 48(3): 363-371.

Helle, K., Bogstad, B., Marshall, C.T., Michalsen, K., Ottersen, G., and Pennington, M. 2000. An evaluation of recruitment indices for Arcto-Norwegian cod (Gadus morhua L.). Fish. Res. 48(1): 55-67.

Hjermann, D.Ø., Ottersen, G., and Stenseth, N.C. 2004a. Competition among fishermen and fish causes the collapse of Barents Sea capelin. Proc. Natl. Acad. Sci. 101: 11679-11684.

Hjermann, D.Ø., Stenseth, N.C., and Ottersen, G. 2004b. Indirect climatic forcing of the Barents Sea capelin: a cohort-effect. Mar. Ecol. Prog. Ser. 273: 229-238.

Hjermann, D.Ø., Bogstad, B., Eikeset, A.M., Ottersen, G., Gjøsæter, H., and Stenseth, N.C. 2007. Food web dynamics affect Northeast Arctic cod recruitment. Proc. R. Soc. Lond., B 274(1610): 661-669.

Hopkins, C.C.E., and Nilssen, E.M. 1991. The rise and fall of the Barents Sea capelin (Mallotus villosus) - a multivariate scenario. Polar Res. 10(2): 535-546.

Huse, G., and Toresen, R. 2000. Juvenile herring prey on Barents Sea capelin larvae. Sarsia 85(5-6): 385-391.

ICES. 2006a. Report of the Northern Pelagic and Blue Whiting Fisheries Working Group. ICES C.M. 2006/ACFM:34, Copenhagen.

ICES. 2006b. Report of the Arctic Fisheries Working Group. ICES C.M. 2006/ACFM:25, Copenhagen.

ICES. 2007. Report of the Arctic Fisheries Working Group. ICES C.M. 2007/ACFM:16, Copenhagen.

Leggett, W.C., and Deblois, E. 1994. Recruitment in Marine Fishes - Is It Regulated by Starvation and Predation in the Egg and Larval Stages. Neth. J. Sea Res. 32(2): 119134.

Løland, A., Aldrin, M., Ona, E., Hjellvik, V., and Holst, J.C. 2007. Estimating and decomposing total uncertainty for survey-based abundance estimates of Norwegian spring-spawning herring. ICES J. Mar. Sci. 64 (7): 1302-1312.

Maceina, M.J. 2007. Use of piecewise nonlinear models to estimate variable size-related mortality rates. North American Journal of Fisheries Management 27(3): 971-977.

Marshall, C.T., Yaragina, N.A., Lambert, Y., and Kjesbu, O.S. 1999. Total lipid energy as a proxy for total egg production by fish stocks. Nature 402(6759): 288-290.

Megrey, B.A., Lee, Y.W., and Macklin, S.A. 2005. Comparative analysis of statistical tools to identify recruitment-environment relationships and forecast recruitment strength. ICES J. Mar. Sci. 62(7): 1256-1269.

Mehl, S., and Sunnanå, K. 1991. Changes in growth of Northeast Arctic cod in relation to food consumption in 1984-1988. ICES Mar. Sci. Symp. 193: 109-112.

Mikkelsen, N., and Pedersen, T. 2004. How can the stock recruitment relationship of the Barents Sea capelin (Mallotus villosus) be improved by incorporating biotic and abiotic factors? Polar Res. 23(1): 19-26.

Myers, R.A. 1998. When do environment-recruitment correlations work? Rev. Fish. Biol. Fish. 8(3): 285-305.

Needle, C.L. 2001. Recruitment models: diagnosis and prognosis. Rev. Fish. Biol. Fish.

11(2): 95-111.
Nesterova, V.N. 1990. Plankton biomass along the drift route of cod larvae (reference material) [in Russian]. PINRO, Murmansk.

Ottersen, G., and Sundby, S. 1995. Effects of temperature, wind and spawning stock biomass on recruitment of Arcto-Norwegian cod. Fish Oceanogr. 4(4): 278-292.

Paulik, G.J. 1973. Studies of the possible form of the stock and recruitment curve. Rapports et Procès-verbaux des Réunions Conseil international pour l'Exploration de la Mer 164: 302-315.

Pepin, P. and Anderson, J.T. 1997. Scale-dependent variations in the precision of larval fish abundance estimates: a study of Sebastes sp. on Flemish Cap. Can. J. Fish. Aquat. Sci. 54: 1111-1120.

Petrie, B., Frank, K.T., Shackell, N.L., and Leggett, W.C. 2009. Structure and stability in exploited marine fish communities: quantifying critical transitions. Fish Oceanogr. 18(2): 83-101.

Røttingen, I., and Tjelmeland, S. 2003. Evaluation of the absolute levels of acoustic estimates of the 1983 year class of Norwegian spring-spawning herring. ICES J. Mar. Sci. 60: 480-485.

Savenkoff, C., Swain, D.P., Hanson, J.M., Castonguay, M., Hammill, M.O., Bourdages, H., Morissette, L., and Chabot, D. 2007. Effects of fishing and predation in a heavily exploited ecosystem: Comparing periods before and after the collapse of groundfish in the southern Gulf of St. Lawrence (Canada). Ecological Modelling 204(1-2): 115-128.

Strøm, H. 2005. Lomvi [in Norwegian]. Available from
http://npweb.npolar.no/tema/Arter/lomvi [accessed 17 June 2009]
Tereshchenko, E.S. 1996. Seasonal and Year-to-Year Variations of Temperature and Salinity Along the Kola Meridian Transect. ICES C.M. 1996/C:11, Copenhagen.

Tjelmeland S. 2002. A model for the uncertainty around the yearly trawl-acoustic estimate of biomass of Barents Sea capelin, Mallotus villosus (Müller). ICES J. Mar. Sci. 59(5): 1072-1080.

Ushakov, N.G., and Prozorkevich, D.V. 2002. The Barents Sea capelin - a review of trophic interrelations and fisheries. ICES J. Mar. Sci. 59(5): 1046-1052.

Vader, W., Barrett, R.T., Erikstad, K.E., and Strann, K.B. 1990. Differential responses of common and thick-billed murres to a crash in the capelin stock in the southern Barents Sea. Stud Avian Biol 14: 175-180.

Voss, R. and Hinrichsen, H.H. 2003. Sources of uncertainty in ichthyoplankton surveys: modeling the influence of wind forcing and survey strategy on abundance estimates. J. Mar. Syst. 43: 87-103.

Wassmann, P., Reigstad, M., Haug, T., Rudels, B., Carroll, M.L., Hop, H., Gabrielsen, G.W., Falk-Petersen, S., Denisenko, S.G., Arashkevich, E., Slagstad, D., and Pavlova, O. 2006. Food webs and carbon flux in the Barents Sea. Prog. Oceanogr. 71(2-4): 232-287.

Wood, S.N. 2006. Generalized Additive Models: An Introduction with R. Chapman and Hall, London.

712 Table 1. Overview of explanatory variables used in this paper. The data series marked with $\left(^{*}\right)$, were only available for the period 1981-2006 and therefore not used for the stage 1 -stage 4 transition. The data series marked with (\nvdash) were only used for the stage 1stage 4 transition.

Covariate

LogCatch ${ }_{t}$
Log-transformed harvested biomass (tons $\cdot 10^{3}$) of maturing ($>14 \mathrm{~cm}$) capelin, based on the catch between the September survey in year $t-1$ and spawning in year t. Because many years had zero catch, LogCatch $=$ $\log ($ Harvest + constant $)$ where constant was quite arbitrarily set to 39 (half the minimum non-zero value of Harvest).
$\operatorname{Herr} 12_{t} \quad$ Biomass (tons 10^{6}) of young (age 1-2) herring based on the SeaStar assessment (ICES 2006b), estimated for 1 January year t. SeaStar is based on several sources of data including age-specific catch statistics and survey data.

CodSubad $_{t} \quad$ Biomass (tons 10^{6}) of cod age 3-6 (i.e., subadult piscivorous cod, expected to overlap with capelin in the winter months) assessed by VPA/XSA (ICES 2006a), estimated for 1 January year t. The assessment is primarily based on age-specific catch statistics with additional input from survey data.

CodAll $_{t} \quad$ Biomass (tons• 10^{6}) of cod age 3-13 (i.e., all piscivorous cod) assessed by VPA/XSA (ICES 2006a), estimated for 1 January year t
${ }^{*}$ CodZero $_{t} \quad$ Abundance index of zero-group cod (unit: 10^{9} individuals) based on the stratified sample mean from the international zero-group survey in

September year t (Dingsør 2005, revised values given by ICES 2007). The survey is performed using pelagic trawling.

TempWintspr ${ }_{t} \quad$ Average sea temperature $\left({ }^{\circ} \mathrm{C}\right)$ at $0-200 \mathrm{~m}$ depth in the Kola section in winter/spring (December year $t-1$ to June year t). The Kola section goes from $70^{\circ} 30^{\prime} \mathrm{N}$ to $72^{\circ} 30^{\prime} \mathrm{N}$ along $33^{\circ} 30^{\prime} \mathrm{E}$; See Tereshchenko (1996). Data from recent years were kindly provided by PINRO, Murmansk.

TempSummer $_{t}$ Average sea temperature $\left({ }^{\circ} \mathrm{C}\right)$ at $0-200 \mathrm{~m}$ depth in the Kola section in summer (June-August year t)
\dagger ZooSouth $_{t} \quad$ Average biomass of zooplankton in the six innermost stations of both transects of Nesterova (1990) (i.e., the North Cape transect and the Kola transect). Positions are $25^{\circ} 29^{\prime}-23^{\circ} 12^{\prime} \mathrm{E}, 71^{\circ} 26^{\prime}-72^{\circ} 27^{\prime} \mathrm{N}$ and $33^{\circ} 30^{\prime} \mathrm{E}$, $69^{\circ} 30^{\prime}-70^{\circ} 45^{\prime} \mathrm{N}$ for the two sets of stations.
\dagger ZooNCSouth h_{t} Average biomass of zooplankton in the six innermost stations of the North Cape transect $\left(25^{\circ} 29^{\prime}-23^{\circ} 12^{\prime} \mathrm{E}, 71^{\circ} 26^{\prime}-72^{\circ} 27^{\prime} \mathrm{N}\right)$. In most years, this transect is most representative for capelin larval distribution, as there is little spawning as far east as the Kola transect.

Covariate	Transition between stages					
	1-2 (MSB to larvae)		2-3 (larvae to zero)		3-4 (zero to age 1)	
	A priori	$\mathrm{P}<0.05$	A priori	$\mathrm{P}<0.05$	A priori	$\mathbf{P}<0.05$
LogCatch ${ }_{\text {t }}$	-	7/12				
Herrl2 ${ }_{\text {t }}$			-	0/12	-	6/18
CodSubad $_{t}$	-	8/8			-	3/12
CodAllt	-	7/8			-	0/12
$\mathrm{CodZero}_{t}$			-	8/12	-	4/18
Herr $12{ }_{t}^{*} \mathrm{CodZero}_{t}$			+/-	4/4		
TempWintspr ${ }_{t}$	+/-	8/12			+/-	5/12
TempSummer $_{t}$			+/-	0/10	+/-	5/12
ZooSouth $_{t}$						
ZooNCSouth ${ }_{t}$						
Incomplete	-	4/12	+	0/10		
Number of models	23		19		34	

Table 2. Potential explanatory variables tested for each transition. For each transition, the left column gives the a priori expectation of the sign of the relationship; e.g., predators are expected to have negative effects (an empty cell indicates that the variable was not considered). The second column gives the number of times the coefficient was statistically significant ($\mathrm{P}<0.05$, regardless of sign) and the number of times it was tested during model selection. We never considered CodSubad and CodAll together in the same model, nor TempWintspr and TempSummer. Incomplete $=1$ for years with incomplete coverage of the larval distribution, and 0 for years with complete coverage. The bottom line gives the total number of models tested in each case.

Table 3. Model selection using GAM, showing the three best models for each procedure as measured by the general cross-validation criterion (GCV). Only models where all covariates had a $\mathrm{p}<0.15$ are shown. The table shows the proportion of deviance explained by the model (Dev. expl.), approximate number of degrees of freedom (d.f), GCV, and Akaike's Information criterion adjusted for small sample size ($\triangle \mathrm{AICc}$) relative to the top model. For some GAM models (marked with footnotes in the GCV column), some of the effects were non-monotonic, and these were re-estimated using HSGAM (see footnotes). Differences in AICc can be considered significant when they exceed 2. The models shown in Table 4 and Figure 4-6 are marked by an asterisk in the left column.

		Dev. expl.	d.f.	GCV	$\Delta \mathrm{AICc}$
(a) Stage 1 (spawners) to stage 2 (larvae)					
*	$\log \left(\mathrm{MSB}_{\mathrm{t}-1}\right)+$ CodSubad $_{t}+$ LogCatch $_{\text {t-1 }}+$	0.72	4.07	1.147	0
	TempWintspr ${ }_{t}$				
	$\log \left(\mathrm{MSB}_{\mathrm{t}-1}\right)+$ CodSubad $_{\mathrm{t}}+$ LogCatch $_{\text {t-1 }}$	0.68	3.43	1.260	2.73
	$\log \left(\mathrm{MSB}_{\mathrm{t}-1}\right)+$ CodAll $_{+}+$LogCatch $_{\text {t-1 }}+$	0.67	4.05	1.373	4.69
	TempWintspr ${ }_{t}$				
(b) Stage 2 (larvae) to stage 3 (zero-group)					
*	$\log \left(\right.$ Larvae $\left._{t}\right)+$ CodZero $_{t}+\log \left(\operatorname{Herr1}^{\text {t }}{ }_{t}\right)+$	0.64	4.66	1.725	0
	$\text { CodZero* } \log \left(\text { Herr } 12_{\mathrm{t}}\right)$				
	$\log \left(\right.$ Larvae $\left._{t}\right)+$ CodZero $_{t}$	0.54	2.84	1.861	3.63
	$\log \left(\right.$ Larvae $\left._{\text {t }}\right)+\log \left(\right.$ Herrl $\left.^{\text {t }}{ }_{\mathrm{t}}\right)$	0.42	2.00	2.197	3.70
(c)	Stage 3 (zero-group) to stage 4 (one-year olds)				
	$\log \left(\right.$ Zeror $\left._{t}\right)+$ CodZero $_{t}+$ TempSummer $_{\text {t+1 }}$	0.70	4.48	$1.020^{\text {1) }}$	4.26
*		0.72	4.97	$1.027^{\text {2) }}$	0
*	$\log \left(\right.$ Eero $\left._{t}\right)+$ CodSubad $_{\text {t+1 }}$	0.66	3.25	$1.029{ }^{3)}$	2.93
${ }^{11}$ The effect of CodZero ${ }_{t}$ was strongly non-monotonic; with HSGAM, $\mathrm{p}>0.20$ for CodZero or					
TempSummer					
${ }^{2)}$ The effects of $\log \left(\mathrm{Herrr}_{12}\right)_{\mathrm{t}}+$ TempWintspr $\mathrm{r}_{\mathrm{t}+1}$ were non-monotonic; with HSGAM, $\mathrm{p}<0.001$ for					
$\log (\text { Herr12 })_{\mathrm{t}}$ and $\mathrm{p}=0.016$ for TempWintspr ${ }_{\mathrm{t}+1}, 0.75$ of the deviance explained, $\mathrm{GCV}>0.782$					
	${ }^{3)}$ The effect of $\log \left(\right.$ Zero $\left._{t}\right)$ was non-monotonic; with HSGAM, $\mathrm{p}=0.010$ for $\log \left(\right.$ Zero $\left._{\mathrm{t}}\right)$,				

Table 4. Model estimates for the selected models (marked with an asterisk in Table 2).
Estimated degrees of freedom (edf) equal 1 indicates a linear term, for which the estimate and standard error (SE) of the slope is given. F and p values are approximate in the case of non-linear terms. The importance of each term is indicated by $\Delta \mathrm{Dev}$, the decrease in proportion of deviance explained when the term is deleted from the model (when the term was involved in an interaction term, this term was deleted too). The intercept is only included when it includes meaningful information, i.e. in models without non-linear (and non-parametric) terms. Also see Figures 4-6.
(a) Stage 1 (spawners) to stage 2 (larvae)

	edf	Estimate	SE	F	\boldsymbol{p}	$\boldsymbol{\Delta D e v}$	
$\log \left(M S B_{t-1}\right)$	1.07			10.39	<0.001	0.26	
CodSubad $_{t}$	1	-2.94	0.60	23.90	<0.001	0.32	
LogCatch $_{t-1}$	1	-0.81	0.28	8.65	0.007	0.11	
TempWintspr $_{t}$	1	0.84	0.40	4.49	0.046	0.05	

(b) Stage 2 (larvae) to stage 3 (zero-group)

	edf	Estimate	SE	F	\boldsymbol{p}	
$\log \left(\right.$ Larvae $\left._{t}\right)$	1	0.45	0.15	9.09	0.007	0.13
$\log \left(\right.$ Herr $\left._{t}\right)$	1.66			1.54	0.238	0.22
CodZero $_{t}$	1	-0.039	0.013	9.33	0.006	0.22
$\left.\log \left(\text { Herr }_{t}\right)_{t}\right)$ CodZero $_{t}$	1	-0.049	0.016	9.47	0.006	0.17

(c) Stage 3 (zero-group) to stage 4 (one-year olds)

	edf	Estimate	SE	F	\boldsymbol{p}	
$\underline{\text { Model 1 }}$						
$\log \left(\right.$ Zero $\left._{t}\right)$	1.52			6.86	0.005	0.12
$\log \left(\right.$ Herr $\left.12_{t}\right)($ when $<-0.24)$		0				
$\log \left(\right.$ Herr $\left.12 ~_{t}\right)($ when $\geq-0.24)$	1	-1.41	0.31	20.60	0.000	0.21
TempWintspr $_{t+1}($ when $<3.79)$		0				
TempWintspr $_{t+1}($ when $\geq 3.79)$	1.09			5.05	0.016	0.09
$\underline{\text { Model 2 }}$						
$\operatorname{Intercept}$	1	5.19	1.01	26.40	0.000	
$\log \left(\right.$ Zero $\left._{t}\right)($ when $<1.81)$		0				
$\log \left(\right.$ Zero $\left._{t}\right)($ when $\geq 1.81)$	1	0.61	0.22	7.94	0.010	0.12
CodSubad $_{t+1}$	1	-1.92	0.74	6.69	0.017	0.10

Figure captions

Fig. 1. Simplified map showing the migrations of the capelin (dark grey) as well as the distribution of North-East Arctic cod in winter (dotted) and young herring in summer (hatched). In winter, the capelin distribution is split; immatures overwinter in the central Barents Sea, while matures migrate towards the coast and spawn there in early spring (April). Distributions vary greatly between years depending on, for instance, climate. The red line shows the position of the Kola transect (temperature data).

Fig. 2. The capelin recruitment process and the capelin survey data used in this paper. In the acoustic surveys (in September), capelin abundance is estimated by both age and length. Capelin larger than 14 cm at the time of the acoustic survey (maturing stock biomass, $M S B$) are assumed to mature during the winter and to spawn the following spring, and thereafter die. Abundance is furthermore estimated at the larval stage, the 0 group stage and in the September acoustic survey as 1-year olds.

Fig. 3. Abundance of capelin cohorts 1974-2006 (year of spawning) on stages 1-4. Note logarithmic y-axes of capelin estimates. Parent generations are represented by biomass of maturing fish in September ($M S B_{t-1}$, filled circles). The two bar plots on the bottom show the annual biomass of the capelin predators cod (3-6: black; age 7-13: grey) and young herring.

Fig. 4. Stage 1 (maturing biomass) to stage 2 (larvae). Significant and non-significant effects of maturing biomass $\left(M S B_{t-1}\right)$ and covariates on the abundance of larvae given the models in Tab. 4a. Spawning stock biomass is represented by $\mathrm{MSB}_{\mathrm{t}-1}$. In this figure and in Figures 5-7, the vertical axis shows the abundance of $\log \left(\operatorname{Stage}_{i, j}\right)$ adjusted for the effect of the other explanatory variables (letting all other variables be equal to the mean value). In these figures, the dotted lines indicate the confidence interval (CI; here defined as standard error times two).

Fig. 5. Stage 2 (larvae) to stage 3 (zero-group); effects given the model in Tab. 4b. a) Vertical axis shows the abundance of $\log \left(\right.$ Stage $\left._{i, j}\right)$ adjusted for the effect of the other explanatory variables (letting all other variables be equal to their respective mean value). Dotted lines indicate the confidence interval (CI; here defined as standard error times two). b) Effects of predation by herring and cod, showing the interaction between these two predatory species (change in abundance of one of them has a high impact on the effect of the other). The contour lines indicate the predicted abundance of zero-group capelin $\left(\log \left(\right.\right.$ Zero $\left.\left._{t}\right)\right)$ assuming $\log \left(\operatorname{Larvae}_{t}\right)$ to be equal to mean $\left(\log \left(\operatorname{Larvae}_{t}\right)\right)$. Abundance of zero-group is high in the upper right corner, i.e., when both herring and zero-group cod abundance is high. The symbols show the observed values of $\log \left(\mathrm{Zero}_{t}\right)$ adjusted for variation in larval abundance, i.e., adjusted by the deviance of $\log \left(\operatorname{Larvae}_{t}\right)$ from mean $\left(\log \left(\right.\right.$ Larvae $\left.\left._{t}\right)\right)$. Symbols denote low survival $\left(\right.$ crosses; $\log \left(\right.$ Zeroro $\left.\left._{t}\right)<2\right)$, average survival (open circles; $\log \left(\mathrm{Zero}_{\mathrm{t}}\right)$ between 2 and 3), and high survival (closed circles; $\log \left(\right.$ Zero $\left.\left._{t}\right)>3\right)$.

Fig. 6. Stage 3 (zero-group) to stage 4 (one-year olds). Effects of zero-group abundance and explanatory variables on the abundance of one-year old capelin, as given by the
models in Tab. 4c. Panel a-c and d-e represent the two alternative models (denoted Model 1 and 2 in Tab. 4c). For further explanation, see Fig. 4. Vertical axis is abundance of $\log \left(\right.$ Stage $\left._{i, j}\right)$ adjusted for the effect of the other explanatory variables (letting all other variables be equal to the mean value). Dotted lines indicate the confidence interval (CI; here defined as standard error times two).

811 Fig. 1

Fig. 2

Fig. 3

825
826

Fig. 4

(a)
(b)

(c)

(d)

Fig. 5

835

Fig. 6
(a)

(d)

(b)

(e)

FOR ELECTRONIC SUPPLEMENT

Supplementary Fig. 1. Partial autocorrelations (denoted "Partial ACF" in figures) of residuals from the models. The dotted line represents the critical correlation level ($\mathrm{p}=0.05$). (a) Stage 1 (spawners) to stage 2 (larvae); (b) Stage 2 (larvae) to stage 3 (zerogroup); (c) Stage 3 (zero-group) to stage 4 (one-year olds); (d) Overall recruitment (stage 1 to 4). In figure (c), autocorrelations are shown for both model 1 (open circles; covariates are herring and temperature) and model 2 (filled circles; subadult cod is the covariate)
(a)

(b)

(c)

(d)

Lag (years)

Supplementary Figure 2. Results from k-fold cross-validation. The figures show crossvalidation predictions (black line) with 95% confidence interval (grey area) as well as observations (red line). Row 1-4 shows models for stage 1-2 (a), 2-3 (b-d), 3-4 (e-f) and 1-4 (g), respectively. For the stage 2-3 transition (larvae to zero-group), the graphs shows results from the "best" model (b), a model with only herring as covariate (c) and a model with only zero-group cod as covariate (d). For the stage 3-4 transition, model 1 (e) and 2 (f) are shown (see text).
(a)

(b)

(e)

(c)

(f)

Cohort (year-class)

Supplementary Figure 3. Recruitment models: age 1 (stage 4) as a function of maturing stock biomass (stage 1) and covariates that were found to be significant in the stagewise analyses. Each row represents one model: the best models without zooplankton (top row), the best model with zooplankton in the North Cape transect as a covariate (middle row), the best model with zooplankton in the both transects as a covariate (bottom row). Models were fitted to data for the cohorts 1974-1990. Tests for the factors used in the models are shown on next page (Supplementary Table 1).

Supplementary Table 1. the recruitment models shown in Supplementary Figure 3 (previous page).

a. Recruitment without zooplankton as covariate:

	edf Ref.df	F p-value			
s (log.ms.b)	1	1.5	1.491	0.259	
s(log.herr12)	1	1.5	10.808	0.003	
s(cod.subad1)	1	1.5	1.920	0.192	
s(temp.wintspr2)	1	1.5	8.971	0.006	
Dev. expl. $=0.722$		GCV $=1.082$			

b. Recruitment with zooplankton abundance in western transect as covariate:

| | edf | Ref.df | F p-value | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| s(log.msb) | 1 | 1.5 | 1.349 | 0.289 |
| s(var.thresh) | 1 | 1.5 | 6.813 | 0.016 |
| s(cod.subad1) | 1 | 1.5 | 1.618 | 0.239 |
| s(temp.wintspr2) | 1 | 1.5 | 5.992 | 0.023 |
| s(zoopl.nc.south) | 1 | 1.5 | 0.002 | 0.991 |
| Dev. expl. $=0.722$ | | $G C V=1.287$ | $n=17$ | |

c. Recruitment with zooplankton abundance in both transects as covariate:

	edf Ref.df	F		p-value
s(log.msb)	1	1.5	0.632	0.506
s(var.thresh)	1	1.5	10.595	0.004
s(cod.subad1)	1	1.5	1.806	0.210
s(temp.wintspr2)	1	1.5	5.029	0.035
s(zoopl.south)	1	1.5	0.881	0.412
Dev. expl. $=0.742$		$G C V=1.194$	$n=17$	

Supplementary Figure 4. The effect of observation error on estimates of density dependence: results of simulation. Let the abundance at two stages be X and Y , respectively. We simulated that Y depend on X by the following formula: $\log (\mathrm{Y})=\mathrm{b}^{*} \log (\mathrm{X})+\varepsilon$ (where ε represents random variation in survival; ε is normally distributed around zero). Then we simulated a measurement error in X, so we observe not X but $\mathrm{X}^{\prime}=\mathrm{X}+\gamma(\gamma$ is measurement error), and estimated b using linear regression between Y and X^{\prime}. We let the standard deviation of $\log (X)$, the real value of b, and the degree of measurement (observation) error γ vary. The figures show the estimated values of b (ordinate axis) compared to the real values (abscissa axis); unbiased estimates should lie on the dashed line (indicating ordinate=abcissa). In panel a-c, we show the result when three levels of measurement error (γ) are used, given as the coefficient of variation (CV; standard deviation in γ as percentage of X; i.e., a coefficient of variation of 30% means that 95% of the measured X values are within $+/-60 \%$ of the real X values). It is clear that as long as the variation of X is modest, b is underestimated when there is measurement error (and density dependence, given as 1-b, is overestimated). However, if the variation in X is large (standard deviation of $\log (\mathrm{X}) \geq 1$), bias is small even when measurement error is considerable. Panel (d) shows that due to the inclusion of measurement error, the variation in measured X, i.e., $\operatorname{sd}\left(\log \left(X^{\prime}\right)\right)$, is slightly higher than the variation in the real X. Horizontal lines indicate $s d\left(\log \left(\mathrm{X}^{\prime}\right)\right)$ for the capelin data, which is $1.38,1.67$ and 1.75 for the transitions between stages 1-2, 2-3 and 3-4, respectively. For these values, $\operatorname{sd}(\log (X)) \approx \operatorname{sd}\left(\log \left(X^{\prime}\right)\right)$ even if measurement error is large ($\mathrm{CV}=30 \%$). Therefore, the bias in b (panel $\mathrm{a}-\mathrm{c}$) can also be expected to be small.

