REPORT OF THE

Arctic Fisheries Working Group

San Sebastian, Spain
23 April-2 May 2003

PARTS 1 AND 2

This report is not to be quoted without prior consultation with the General Secretary. The document is a report of an expert group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.

International Council for the Exploration of the Sea
Conseil International pour l'Exploration de la Mer
Palægade 2-4 DK-1261 Copenhagen K Denmark

TECHNICAL MINUTES

Arctic Fisheries Working Group (AFWG)

ACFM May 2003

ACFM Sub-group Chair: Carl O'Brien, RMC
WG Chair and Presenter to ACFM Sub-group: Sigbjörn Mehl, Norway
ACFM Rapporteur and Reviewer: Gary Shepherd, USA
ACFM Reviewer: Phil Kunzlik, UK

General Comments:

The AFWG was commended for addressing the comments provided in the Technical Minutes of the 2002 reviews by ACFM. However, if conclusions were made by the WG about a particular issue, there should be more documented information in the stock assessment report, including figures and tables if appropriate to justify a conclusion rather than the WG simply referring to WDs. References to the quality handbook would be helpful.

A recommendation of the ACFM review panel that pertains to all stocks is that it would be timely to review the age groups used in calculating the average F by stock. Inclusion of age groups experiencing only partial fishing mortality whilst excluding older, mature fish, may increase the risk of a reduction in SSB.

Norwegian Coastal cod:

Following the recommendations of the 2002 ACFM review, age 9 tuning indices were removed and the status quo forecast was provided.

In general, the values in tables of input data should be checked for errors. The maturity-at-age summary table needs to be reviewed to evaluate the 0% maturity at older age groups. Also, sums in the table of survey spawning biomass weights should be checked.

Overall, more detailed explanations should be provided regarding diagnostics (e.g. for XSA), the model inputs (e.g. RCT3 and XSA) and associated justifications for input values (e.g. use of 2002 recruit values in predicting 2003). The XSA model shows a strong year effect in 2003 F estimates which should be further examined. A retrospective analysis should be included as part of future analyses. It is also recommended that the WG provide more details on the sources of uncertainty in the assessment. A case in point is a justification for the heavy reliance on the survey data for tuning the XSA model.

The reviewers concluded that there was no technical basis for the rejection of this assessment.

Northeast Arctic Cod:

Values used in catch tables should be in agreement with input values in VPA (e.g. 1965 catch weight). It was recommended that the AFWG provide more information/justification for new methods of calculating weights used in predictions as compared to last years methods. Also recommended that the age groups included in tables are consistent with the ages in the analysis. Questions arose concerning the consistency within each survey data series and whether the results represent population trends. After evaluation of survey trends by cohort and correlation within cohorts, inconsistencies were identified in results of the Russian trawl survey (fleet 17). A re-run of the XSA model without fleet 17 did not result in any significant changes in residual patterns, estimates of F or stock size. It is recommended that the WG evaluate the surveys included in the analysis and the influence on the results. In addition, the WG report would benefit from additional figures of the survey indices by cohort.

The following figures are NE Arctic cod tuning indices by cohort and fleet (presented on a log scale):

NE Arctic Cod - FLT 15

NE Arctic Cod - FLT16

Correlation between successive ages along cohorts in the NE Arctic Cod tuning series

It was noted that the use of SOP corrected biomass estimates would be inappropriate for this stock since such values account for cannibalism effects rather than weight differences.

Biological Reference Points for NE Arctic Cod:

The ACFM reviewers recommended adoption of the proposed revised BRPs for annual management advice, although with reservation about the advantages of the alternative approach. However, this approach may be inappropriate for management plans that apply to multiple years. Given the uncertainty, multi-year management would require reestimating the BRPs to determine appropriate precautionary reference values within any proposed (new) harvesting strategy.

Northeast Arctic Saithe:

The WG addressed the issues identified in last year's review.

The review committee recommended that the commercial CPUE series be examined using generalized linear models to remove possible seasonal and vessel effects.

Use of RCT3 for recruitment predictions may be no better then a geometric mean since RCT3 uses VPA estimates that have not converged. The reviewers suggested that the working group should justify use of the RCT3 model for projections. Also recommended that the number of years used in GM estimate should be consistent.

Greenland Halibut:

See general comments regarding justification of conclusions in the General Comments section above.

The assessment was rejected for the same reasons as last year (aging error, incomplete survey coverage, and unreported landings). Therefore, the assessment results are only appropriate as an indication of trends rather than absolute estimates of fishing mortality and population abundance.

Sebastes mentella (deep-sea redfish):

The WG has provided XSA results but this approach was hampered by methodological difficulties in dealing with the plus group. It is recommended that use of this model for redfish should be discontinued and other analytical methods involving survey and/or length data explored. The WG recommended a re-evaluation of the algorithm used in the XSA model for handling plus groups and the ACFM reviewers agreed with this proposal.

Sebastes marinus (golden redfish):

The ACFM review group recommends that the WG consider analytical models other than XSA. Alternative methods may be found in assessments of Sebastes stocks in the eastern North Pacific (e.g Methot). Additional effort should be made to consider survey and length-based models, and explore alternative methods for estimating uncertainty around CPUE and survey time-series (e.g. jack-knife or bootstrap methods).

Shrimp (Pandalus borealis):

No comments.

Arctic Haddock:

The ACFM review group appreciated that the WG addressed the issues raised in the technical minutes from last year.

Catch weights and stock weights-at-age should be re-examined to account for the abrupt change in ages 9 and 10 during the 1980s. The WG should consider modelling natural mortality related to cannibalism to determine a method of predicting an alternative to $\mathrm{M}=0.2$ for years prior to 1984 . The report should clearly identify which recruitment estimates are results of XSA versus those from the RCT3 model.

Medium-term projections for 2006-2010 were made using the same input parameters (F, M, maturity, and weights-atage) as 2005 (see Table 4.19 in ICES CM 2003/ACFM:22). A constant recruitment input of 185629 (thousands) was the average of VPA age 3 values from 1950-2002.

Table 1. Northeast Arctic haddock. Inputs to short-term catch forecast, assuming status quo fishing mortality in 2003, and fishing at F_{pa} during 2004-2006.

MFDP version 1a
Run: afwg03
Time and date: 15:11 31.05.2003
Fbar age range: 4-7

2005				Maturity	\% female	\% male	Stock Weight		Selectivity	Catch Weight
Age	N	M								
	3	422000	0.423	0		0	0	0.216	$2.65 \mathrm{E}-02$	0.618
	4		0.255	0.021		0	0	0.435	0.202867	0.83
	5		0.227	0.184		0	0	0.808	0.4497	1.13
	6		0.207	0.45		0	0	1.302	0.651033	1.495
	7		0.2	0.844		0	0	1.801	0.622567	1.865
	8		0.2	0.92		0	0	2.574	0.7667	2.205
	9		0.2	1		0	0	2.835	0.601467	2.435
	10		0.2	1		0	0	3.078	0.6831	2.733
	11.		0.2	1		0	0	3.613	0.6831	2.878

2006				Maturity	\% Female	\% male	Stock Weight		$\begin{array}{ll} & \text { Catch } \\ \text { Selectivity } & \text { Weight }\end{array}$	
Age	N	M								
	3	185000	0.423	0		0	0	0.216	$2.65 \mathrm{E}-02$	0.618
	4		0.255	0.021		0	0	0.435	0.202867	0.83
	5		0.227	0.184		0	0	0.808	0.4497	1.13
	6		0.207	0.45		0	0	1.302	0.651033	1.495
	7		0.2	0.844		0	0	1.801	0.622567	1.865
	8		0.2	0.92		0	0	2.574	0.7667	2.205
	9		0.2	1		0	0	2.835	0.601467	2.435
	10		0.2	1		0	0	3.078	0.6831	2.733
	11.		0.2	1		0	0	3.613	0.6831	2.878

Table 2. Northeast Arctic haddock. Forecast results, assuming status quo fishing mortality in 2003, and fishing at F_{pa} during 2004-2006.

MFDP version 1a
Run: afwg03
Time and date: 15:11 31.05.2003
Fbar age range: 4-7

Table 3. Northeast Arctic haddock catch options for 2004 based on two interpretations of the Joint NorwegianRussian Fisheries Commission harvest law.

Catch forecast for 2004:

Basis: $\mathrm{F}(2003)=\mathbf{F}_{\mathrm{sq}}=\mathrm{F}(00-02)=0.48 ;$ landings $=140000 \mathrm{t} ; \mathrm{SSB}(2004)=133000 \mathrm{t}$.

$\mathrm{F}(2004)$	Basis	Catch (2004)	Landings (2004)	SSB (2005)
0.37	Catch rule2 ($=0.77 * \mathrm{Fsq}): 1.25 * 2003 \mathrm{TAC}$		126	146
0.38	Catch rule1 $(=0.795 * \mathrm{Fsq})$		130	144

Weights in ' 000 t .
Shaded scenarios considered inconsistent with the precautionary approach.
Catch rule 1 corresponds to ICES's interpretation of the new harvesting strategy in the first year of its operation.
Catch rule 2 corresponds to an application of the $\pm 25 \%$ constraint in the first year of the new harvesting strategy.

TABLE OF CONTENTS

PART 1

INTRODUCTION i
1 ECOSYSTEM INFLUENCES ON BARENTS SEA FISH STOCKS 1
1.1 Climate considerations in the Barents Sea 1
1.1.1 Hydrography and ice conditions 1
1.1.2 $\quad \mathrm{InF}_{\text {low }}$ of Atlantic water 1
1.1.3 Predicting Barents Sea temperature 2
1.2 Zooplankton 2
1.3 Trophic interactions 3
1.3.1 Predicting capelin biomass 3
1.3.2 Predation by cod 3
1.3.3 Predation by other fish species 4
1.3.4 Predation by mammals. 4
1.4 Applications to population models 5
1.4.1 Recruitment 5
1.4.1.1 Recruitment models 5
1.4.1.2 UV-radiation and other climatic effects on cod and Calanus 5
1.4.2 Growth 6
1.4.2.1 Prediction of NEA cod growth rate 6
1.4.2.2 Predicting condition of NEA cod 7
1.4.3 Cannibalism mortality 7
Tables 1.1-1.8 8
Figures 1.1-1.9 14
2 NORWEGIAN COASTAL COD IN SUBAREAS I AND II 21
2.1 Status of the Fisheries 21
2.1.1 Landings prior to 2002 (Table 2.9, Figure 2.2) 21
2.1.2 Expected landings in 2003 21
2.2 Status of Research. 21
2.2.1 Survey results (Tables 2.1.B, 2.2, 2.3, 2.4, 2.7) 21
2.2.2 Age reading and stock separation 22
2.2.3 Weight-at-age (Table 2.11). 22
2.2.4 Maturity-at-age (Table 2.12) 22
2.3 Data Used in the Assessment 22
2.3.1 Catch-at-age (Table 2.9) 22
2.3.2 Weight-at-age (Table 2.10, 2.11) 22
2.3.3 Natural mortality 22
2.3.4 Maturity-at-age (Table 2.12) 23
2.3.5 Tuning data (Table 2.7) 23
2.3.6 Prediction data (Tables 2.20, 2.21, 2.22) 23
2.4 Methods Used in the Assessment. 23
2.4.1 VPA and tuning (Table 2.8) 23
2.5 Results of the Assessment 23
2.5.1 Fishing mortality and VPA (Tables 2.13-2.19, Figure 2.2) 23
2.5.2 Recruitment (Tables 2.7, 2.15, 2.19, 2.20) 24
2.6 Reference Points and Safe Biological Limits 24
2.7 Catch Options for 2004 and Management Scenarios (Tables 2.22-2.23, Figure 2.2) 24
2.8 Comments to the Assessment 24
2.8.1 General comments 24
2.8.2 A comparison of the assessment results and the survey results (Figure 2.1) 24
2.8.3 Comparison of this years assessment with last years assessment. 24
Tables 2.1a-2.23 25
Figures 2.1-2.2 40
3 NORTHEAST ARCTIC COD (SUBAREAS I AND II) 42
3.1 Status of the fisheries 42
3.1.1 Historical development of the fisheries (Table 3.1). 42
3.1.2 Landings prior to 2003 (Tables 3.1-3.3, Figure 3.1) 42
3.1.3 Expected landings in 2003 42
3.2 Status of research 42
3.2.1 Fishing effort and CPUE (Table A1) 42
3.2.2 Survey results (Tables A2-A5, A10-A11, A14-A15) 42
3.2.3 Age reading 43
3.2.4 Length and Weight-at-age (Tables A6-A9, A12-A13) 43
3.2.5 Maturity-at-age (Table 3.5, Figure 3.2-3.7) 44
3.2.5.1 Timing of Russian surveys in relation to gonadal development 44
3.2.5.2 Combination of Norwegian winter and Lofoten surveys 45
3.2.5.3 Gender-dependent maturity ogives 45
3.2.5.3.1 Norwegian female-only maturity 45
3.2.5.3.2 Russian female-only maturity 45
3.2.5.3.3 Female-only SSB 46
3.2.5.3.4 Temporal trends in female-only SSB 46
3.2.5.3.5 Status of research on reproductive potential of NA cod 46
3.2.5.4 Potential causes of interannual variation in maturity ogives 47
3.3 Data used in the assessment 47
3.3.1 Catch-at-age (Tables 3.8, 3.9 and 3.10) 47
3.3.2 Weight-at-age (Tables 3.4 and 3.11-3.12) 47
3.3.3 Natural mortality. 48
3.3.4 Maturity-at-age (Tables 3.5 and 3.13) 48
3.3.5 Tuning data (Tables 3.14 and 3.15) 48
3.3.6 Recruitment indices (Tables 3.6 and 3.7) 49
3.3.7 Cannibalism 49
3.3.8 Prediction data (Tables 3.23 and 3.28, Figure 3.9) 49
3.4 Methods used in the assessment 50
3.4.1 VPA and tuning 50
3.4.2 Including cannibalism in the VPA (Tables 3.16-3.20, 3.22). 50
3.5 Results of the assessment 51
3.5.1 Fishing mortalities and VPA (Tables 3.21-3.26, Figures 3.1) 51
3.5.2 Recruitment (Table 3.6-3.7) 51
3.6 Reference points. 51
3.6.1 Biomass reference points (Figure 3.1) 51
3.6.2 Fishing mortality reference points 51
3.7 Catch options (Tables 3.29-3.30) 51
3.8 Medium-term forecasts and management scenarios 52
3.8.1 Input data (Table 3.28) 52
3.8.2 Methods 52
3.8.3 New harvesting strategy adopted 52
3.8.4 Comments to the new harvesting strategy 52
3.8.5 Results (Figure 3.11) 53
3.8.6 Management considerations 54
3.9 Comments to the assessment (Figures 3.10-3.16, Table 3.31). 54
3.9.1 Comparison of this year's assessment with last year's assessment. 54
3.10 Alternative assessment methods (Fleksibest) 55
3.10.1 Introduction 55
3.10.2 Stock assessment using Fleksibest. 55
3.10.2.1 Model structure. 55
3.10.2.2 Data used 55
3.10.2.3 Model assumptions 56
3.10.2.4 Optimization algorithm 57
3.10.2.5 Estimates of parameters outside the model. 57
3.10.3 Results from the assessment (Tables 3.32-3.33, Figures 3.17-3.18) 58
3.10.4 Retrospective analysis (Figure 3.19). 59
3.10.5 Use of Fleksibest for predictions (Tables 3.34-3.35, Figure 3.20a-f) 59
3.10.5.1 Comments to the prognosis 59
3.10.6 Reference points related to Fleksibest 59
3.11 Comparison of results from XSA and Fleksibest. 59
3.11.1 Comparison of the assessments 59
3.11.2 Comparison of the predictions (Figure 3.21) 60
Section Page
Tables 3.1-3.35 61
Figures 3.1-3.21 132
Tables A1-A16 161
4 NORTHEAST ARCTIC HADDOCK (SUBAREAS I AND II) 173
4.1 Status of the Fisheries 173
4.1.1 Historical development of the fisheries 173
4.1.2 Landings prior to 2003 (Tables 4.1-4.3, Figure 4.1A) 174
4.1.3 Expected landings in 2003 174
4.2 Status of Research 174
4.2.1 Fishing effort and CPUE 174
4.2.2 Survey results (Tables B1-B6) 174
4.2.3 Weight-at-age (Table B6) 174
4.3 Data Used in the Assessment 175
4.3.1 Catch-at-age (Table 4.7) 175
4.3.2 Weight-at-age (Tables 4.8-4.9) 175
4.3.3 Natural mortality (Table 4.10) 175
4.3.4 Maturity-at-age (Table 4.4 and 4.11) 175
4.3.5 Data for tuning (Table 4.12) 175
4.3.6 Recruitment indices (Table 4.5) 175
4.3.7 Prediction data (Table 4.19) 175
4.4 Methods Used in the Assessment. 176
4.4.1 VPA and tuning 176
4.4.2 Recruitment (Tables 4.6) 177
4.5 Results of the Assessment 177
4.5.1 Fishing mortality and VPA (Tables 4.13-4.18 and Figures 4.1A-B, 4.1D, 4.5-4.7) 177
4.5.2 Recruitment (Tables 4.6A, 4.6B, 4.15 and Figure 4.1C) 177
4.5.3 Yield-per-recruit (Table 4.20, Figure 4.3) 178
4.5.4 Catch options for 2004 (Table 4.21) 178
4.6 Biological reference points 178
4.6.1 Biomass reference points (Figures 4.2 and 4.4) 178
4.6.2 Fishing mortality reference points (Figure 4.4) 178
4.7 Comments to the assessment and forecasts 178
4.7.1 Changes from last year 178
4.8 Technical minutes from ACFM 179
Tables 4.1-4.22 180
Figures 4.1a-4.10 220
Tables B1-B6 227
PART 2
5 NORTHEAST ARCTIC SAITHE (SUBAREAS I AND II) 233
5.1 Status of the Fishery 233
5.1.1 Landings prior to 2003 (Tables 5.1-5.2, Figure 5.6) 233
5.1.2 Expected landings in 2003 233
5.2 Status of Research. 233
5.2.1 Fishing Effort and Catch-per-unit-effort (Tables C1-C2) 233
5.2.2 Survey results (Tables C3-C4) 234
5.3 Data used in the Assessment 234
5.3.1 Catch numbers-at-age (Table 5.3) 234
5.3.2 Weight-at-age (Table 5.4) 234
5.3.3 Natural mortality 234
5.3.4 Maturity-at-age (Table 5.14) 234
5.3.5 Tuning data (Table 5.5) 234
5.3.6 Recruitment indices 234
5.3.7 Prediction data (Table 5.14). 234
5.4 Methods used in the Assessment 235
5.4.1 XSA and tuning (Table 5.6, Figures 5.2A-C, 5.3) 235
5.4.2 Recruitment (Tables 5.12-5.13, C. 3 and 5.3, Figures 5.2A-C) 235
5.5 Results of the Assessment 235
5.5.1 Fishing mortalities and VPA (Tables 5.7-5.11, Figures 5.1, 5.5,5.6) 235
5.5.2 Recruitment (Tables 5.12-5.13) 235
5.6 Reference points. 235
5.6.1 Biomass reference points 235
5.6.2 Fishing mortality reference points (Tables 5.14, 5.15, Figures 5.1A, 5.4) 236
5.7 Catch options for 2004 (short-term predictions) (Table 5.16) 236
5.8 Medium-term forecasts and management scenarios (Table 5.17A,B, Figures 5.1B, 5.4A,B) 236
5.9 Comparison of this year's assessment with last year's assessment. 236
5.10 Comments on the assessment and the forecast 236
Tables 5.1-5.17b 237
Figures 5.1ab-5.6 264
Tables C1-C4 272
6 SEBASTES MENTELLA (DEEP-SEA REDFISH) IN SUBAREAS I AND II 275
6.1 Status of the Fisheries 275
6.1.1 Historical development of the fishery 275
6.1.2 Landings prior to 2003 (Tables 6.1-6.4, D1-D2) 275
6.1.3 Expected landings in 2003 275
6.2 Data used in the Assessment 275
6.2.1 Fishing effort and catch-per-unit-effort (Table D3, Figure 6.8) 275
6.2.2 Catch-at-age (Table 6.5) 276
6.2.3 Weight-at-age (Table 6.6) 276
6.2.4 Maturity-at-age (Tables 6.7 and D9) 276
6.2.5 Survey results (Tables A14, D4-D8, Figures 6.1-6.7) 276
6.3 Results of the Assessment (Tables 6.8-6.14 , Figures 6.9-6.11) 277
6.4 Comments to the assessment 278
6.5 Biological reference points 278
6.6 Management advice 278
Tables 6.1-6.14 279
Figures 6.1-6.11 294
Tables D1-D9 307
7 SEBASTES MARINUS (GOLDEN REDFISH) IN SUBAREAS I AND II 314
7.1 Status of the Fisheries 314
7.1.1 Historical development of the fishery 314
7.1.2 Landings prior to 2003 (Tables 7.1-7.5, D1 and D2) 314
7.1.3 Expected landings in 2003 314
7.2 Data Used in the Assessment 314
7.2.1 Fishing effort and catch-per-unit-effort (Tables D10, Figure 7.1) 314
7.2.2 Catch-at-age (Table 7.8). 315
7.2.3 Weight-at-age (Table 7.9) 315
7.2.4 Maturity-at-age 315
7.2.5 Survey results (Tables 7.6, 7.7, D11a,b-D12a,b, Figures 7.2a,b-7.3a,b). 315
7.3 Results of the Assessment 315
7.4 Biological reference points 316
7.5 Management advice 316
Tables 7.1-7.9 317
Figures 7.1-7.3b 324
Tables D10-D12b 329
8 GREENLAND HALIBUT IN SUBAREAS I AND II 332
8.1 Status of the fisheries 332
8.1.1 Landings prior to 2002 (Tables 8.1-8.5, E10) 332
8.1.2 Expected landings in 2003 332
8.2 Status of research 333
8.2.1 Survey results (Tables A14, E1-E8) 333
8.2.2 Commercial catch-per-unit-effort (Table 8.6 and E9) 334
8.2.3 Age readings 334
8.3 Data used in the assessment 334
8.3.1 Catch-at-age (Table 8.7 - 8.8) 334
8.3.2 Weight-at-age (Table 8.7, 8.8) 334
8.3.3 Natural mortality 334
8.3.4 Maturity-at-age (Tables 8.9) 334
8.3.5 Tuning data 334
8.3.6 Recruitment indices (Tables A14, E1-E9) 335
8.4 Methods used in the assessment 335
8.4.1 VPA and tuning 335
8.5 Results of the Assessment 335
8.5.1 Results of the VPA (Figures 8.3-8.4, Tables 8.11-8.15) 335
8.5.2 Biological reference points 336
8.5.3 Catch options for 2004 336
8.6 Comparison of this years assessment with last years assessment 336
8.7 Comments to the assessment 336
Tables 8.1-8.17 337
Figures 8.1-8.4 358
Tables E1-E10 362
9 SHRIMP (PANDALUS BOREALIS) (SUBAREAS I AND II) 369
9.1 Status of the Fisheries 369
9.1.1 Historical development of the fisheries (Table 9.1, Figure 9.1) 369
9.1.2 Regulation 369
9.1.3 Landings (Table 9.1, Figure 9.1) 369
9.2 Status of Research 369
9.2.1 Surveys (Tables 9.3, 9.4) 369
9.2.2 Samples from commercial catches. 370
9.2.3 Fishing effort and CPUE (Table 9.2, Figure 9.3) 370
9.2.4 Survey results (Tables 9.3-9.5, Figures 9.2-9.5) 370
9.2.5 Population structure 370
9.2.6 Age determination 370
9.2.7 Maturity-at-age 371
9.2.8 Recruitment (Table 9.5) 371
9.2.9 Natural mortality and predation (Figure 9.5) 371
9.3 Evaluation of the Stock (Table 9.6) 371
9.3.1 Assessment methods under progress. 371
9.4 Status of the Stock (Table 9.2-9.4, Figures 9.3, 9.5) 372
9.5 Recommendations for further work 373
9.6 Organising the assessment work of shrimp in ICES Subareas I and II. 373
Tables 9.1-9.6 374
Figures 9.19 .5 382
10 WORKING DOCUMENTS 386
11 REFERENCES 388
ANNEX 1 - Participants List 394
ANNEX 2 - Quality Handbook - Cod Coastal 397
ANNEX 3 - Quality Handbook - Northeast Arctic Cod 409
ANNEX 5 - Quality Handbook - Northeast Arctic Saithe 422
ANNEX 6 - Quality Handbook - Sebastes Mentella 430
ANNEX 7 - Quality Handbook - Sebastes Marinus 437
ANNEX 8 - Quality Handbook - Northeast Arctic Greenland Halibut 442

INTRODUCTION

Participants

Asgeir Aglen	Norway
Ole Thomas Albert	Norway
Carolina Alonso	Spain
Boris Berenboim	Russia
Erik Berg	Norway
Bjarte Bogstad	Norway
Vladimir Borisov	Russia
Ray Bowering	Canada
Tatiana Bulgakova	Russia
Jose Miguel Casas	Spain
Konstantin V. Drevetnyak	Russia
Anatoly Filin	Russia
Åge Fotland	Norway
Age Høines	Norway
Knut Korsbrekke	Norway
Yuri Kovalev	Russia
Yu. M. Lepesevich	Russia
Tara Marshall	Norway
Sigbjørn Mehl (Chair)	Norway
Lorenzo Motos	Spain
Hilario Murua	Spain
Kjell H. Nedreaas	Norway
Rüdiger Schöne	Germany
Mikhail Shevelev	Russia
Oleg Smirnov	Russia
Jan Erik Stiansen	Norway
Knut Sunnana	Norway
Ekaterina Volkovinskaya (translater)	Russia
Natalia Yaragina	Russia
Morten Åsnes	Norway

Terms of Reference

At its October 2002 meeting ACFM decided the following:

The Arctic Fisheries Working Group [AFWG] (Chair: S. Mehl, Norway) will meet in Pasaia, Spain from 23 April-2 May 2003 to:
a) assess the status of and provide catch options for the year 2004 for the stocks of cod, haddock, saithe, Greenland halibut, and redfish in Subareas I and II, taking into account interactions with other species and attempting alternative assessment methods where applicable;
b) evaluate the agreed management strategy for cod, with special attention to the reference points for spawning stock biomass and fishing mortality;
c) assess the status of the shrimp stock in the Barents Sea, taking predation by cod into account;
d) provide specific information on possible deficiencies in the assessments including at least: Major inadequacies in the data on catches, effort or discards; major inadequacies if any in research vessel surveys data and major difficulties if any in model formulation; including inadequacies in available software. The Group should clarify the consequences from these deficiencies for a) assessment of the status of the stocks and b) for the projection;
e) for stocks for which a full analytical assessment is presented, comment on this meeting's assessments compared to the last assessment of the same stock;
f) comment on the PA reference points proposed by the Study Group on Precautionary Reference Points for Advice on Fishery Management;
g) structure the assessment report following the guidelines as adopted by ACFM in October 2002 with special attention to the quality issues.

AFWG will report by 5 May 2003 for the attention of ACFM.

General Comments

The host (AZTI, Pasaia, Spain) provided excellent facilities, assistance and transportation, which allowed the meeting to proceed effectively and efficiently. An excursion to Rioja with an unforgettable visit and lunch at a bodega, stimulated people to work hard for long hours, 1 of May included.

Management strategy for NEA cod and haddock

At the $31^{\text {st }}$ session of The Joint Norwegian-Russian Fishery Commission the Parties agreed on a new harvesting strategy for Northeast Arctic cod and haddock. At the present meeting there was neither software nor time available to do an evaluation of the new harvesting strategy, but some comments and projections for NEA cod based on the rule are given in Section 3.8.

Comments on the PA reference points proposed by SGPRP

The Study Group on Biological Reference Points for Northeast Arctic Cod (SGBRP) met at Svanhovd, Norway, 13-17 January 2003 to determine the most appropriate time period for estimating biomass and fishing mortality reference points, specify the technical basis for the reference point calculations and establish reference points based on this. The study group agreed on the use of the full time-series and the numbers-at-age 5 as the recruitment index until more accurate estimates of the number-at-age 3 may become available. The framework implemented for establishing new reference points was mainly the one proposed by SGPA at its December 2002 meeting (ICES CM 2003/ACFM:??). Further details and the calculation of new reference points are given in the SGBRP report (ICES CM 2003/ACFM:11). SGBRP considered the estimated reference points to be provisional since the group expected AFWG to revise them on the basis of the latest assessment with possible incorporation of discarding mortalities.

The Study Group on Precautionary Reference Points for Advice on Fishery Management (SGPRP) met at ICES Headquarters 24-26 February 2003 to review a proposal prepared by the ICES Secretariat on reference points for the stocks dealt with by HAWG, WGBFAS, AFWG, NWWG, WGNPBW WGNSSK, WGHMM, WGNSDS, WGSSDS, WGMHSA. The proposal was built on the framework developed and agreed by SGPA in December 2002 and the outcome of SGBRP. SGPRP should further propose revisions of the reference points used by ACFM in formulating advice on fishery management for consideration by the assessment working groups and with a view for adoption and use by ACFM in its May and October 2003 meetings. SGPRP (ICES CM 2003/ACFM:15) recommended that the revised LIMIT reference points proposed by SGBRP be adopted for NEA cod, while the appropriate PA-reference points be adopted upon clarification of the acceptable method for calculation.

However, AFWG did not have the data available to revise the proposed reference points. The proposed new values were recommended to be adopted by ACFM, with the PA-reference points based on status quo F in the intermediate year.

For most other species, included those dealt with by AFWG, SGPRP did not propose any revisions of the existing reference points, but just gave some comments and recommendations to be followed up by the different Working Groups, e.g. to look more carefully at the need for any revision and the best methods to be applied for the different stocks. A new SGPRP meeting will than look at the result of this work with a view for adoption and use by ACFM in its May and October 2004 meetings. Some of the comments and recommendations given by SGPRP are contained in the respective stock sections of the present report.

Inadequacies in the data and possible deficiencies in the assessments

The working group also this year met quite early, with Easter just prior to the meeting. This continues to cause some problems and concerns. The work on compiling national and international catch data were not ready before the meeting and the Norwegian survey covering spawning Northeast Arctic cod ended just before Easter. This affects the quality checking of important input data, the possibility to make exploratory runs ready prior to the meeting and the time available during the meeting to discuss e.g. inadequacies in the data and available software, resulting deficiencies in the assessments and how to improve these shortcomings.

While the area coverage of the winter surveys was incomplete in 1997 and 1998, the coverage was normal for these surveys in 1999-2002. In the autumn 2002 and winter 2003, however, surveys have again been incomplete due to lack of access to both the Norwegian and Russian Economic Zones. This affects the reliability of some of the most important survey time-series for cod and haddock and consequently also the quality of the assessments. There is no acceptable way around this problem except asking the Norwegian and Russian authorities to give each other's research vessels full access to the respective economical zones when assessing the joint resources.

At recent AFWG meetings it has been recognized that there is growing evidence of both substantial discarding and mis-/un-reporting of catches throughout the Barents Sea for most groundfish stocks in recent years (ICES CM 2002/ACFM:18, ICES CM 2001/ACFM:02, ICES CM 2001/ACFM:19, Dingsør WD 132002 WG, Hareide and Garnes WD 142002 WG, Nakken WD 102001 WG, Nakken WD8 2000 WG, Schöne WD4 1999 WG). During the present meeting a working document (Sokolov, WD 9) comparing results obtained using two methods to estimate cod discard in the Barents Sea in 1993-2002 was presented. The discard was found to be highly variable over time and affected mainly age groups 3 and 4 . There were some differences in the results obtained by the two methods. Ajiad and Nedreaas (WD 10) presents preliminary results on the total cod by-catch in the Norwegian shrimp fishery during a trial year (2000) based on data from the Norwegian commercial shrimp landing statistics, data from the Norwegian fishery surveillance agency and the scientific shrimp surveys. The results show clear evidence that the shrimp fishery encounter a different composition of by-catch of cod depending on season. During the fourth quarter, the shrimp fishery caught mainly 0 -group cod while in the rest of the year the cod by-catch was one year olds.

The total effect of the discarding is still very unclear and requires a lot more work before it can be included in the assessments. This and other inaccuracies in the catch statistics continue to represent one of the most serious errors in stock assessments and generally results in underestimating fishing mortality and overestimating stock size. Therefore, additional precaution is advised when considering total allowable catches (TACs).

In 1992 PINRO, Murmansk and IMR, Bergen began a routine exchange program of cod otoliths in order to validate age readings and ensure consistency in age interpretations (Nedreaas and Yaragina, WD 11). Later, a similar exchange program was established for haddock otoliths. Once a year the age readers come together and evaluate discrepancies which are seldom more than 1 year, and the results show an improvement over the time period from 30% to 15% discrepancies for cod. The discrepancies are discussed and a final agreement is at present achieved for all otoliths except ca. 2%. A similar positive development is also seen for haddock age readings.

Use of age- and length structured models in assessment (Fleksibest)

The development of a new assessment model for Northeast Arctic cod - Fleksibest - started at IMR, Bergen, in 1997. A description of the model is given in Frøysa et al. (2002). The model is age- and length-structured, and the biological processes growth, maturation, mortality, fishing and cannibalism are modelled as length-structured processes. Fleksibest is a forward simulation model based on the Gadget (formerly BORMICON, Stefánsson and Pálsson 1997, 1998, Anon., 2001, 2002a) framework within which different formulations of biological processes can be tested and compared. Fleksibest is an extension of the type of age-structured assessment models where catches are modelled, sometimes termed CAGEAN or 'statistical catch-at-age analysis' (Fournier and Archibald, 1982, Deriso et al., 1985).

For NEA cod, Fleksibest has been used as a supplementary model to XSA for some years. Fleksibest is now a complete assessment model which provides the same kind of output (assessment, retrospective analysis, prognosis, diagnostics) as e.g. XSA. Earlier problems with finding the optimum solution now seem to be solved, as seen from the sensitivity analysis given in Section 3. Although questions concerning choice of likelihood functions and appropriate aggregation level for model/data comparisons need further study, it may be time to give the results from Fleksibest more weight.

Fleksibest has not been approved by ACFM, but there are other ICES assessment WGs, e.g. WGNPBW, which use models (e.g. SeaStar, ISVPA) which have not been approved by ACFM. Use of several assessment models for the same stock is also common in several assessment working groups.

Adding length structure makes it easier to include biological realism by modelling growth, maturity, fecundity, recruitment, fishing mortality and natural mortality (e.g. cannibalism) as processes depending on fish length/weight, temperature, prey abundance and other factors. For Northeast Arctic cod, there is ongoing work on modelling these processes in a way that could be utilised in Fleksibest as well as in the StockAn/RecAn/MedAn suite (Needle and Marshall, WD2; Marshall and Needle, WD3). The advantage of Fleksibest vs. the StockAn/RecAn/MedAn suite is that Fleksibest models the stock abundance by length and age directly without involving transformations from numbers-atage to numbers-at-length and vice versa using age-length keys.

For NEA cod, it is planned to extend Fleksibest to include six sub-stocks (0-group, ages 1-2, immature females, immature males, mature females, mature males) in order to model the stock abundance from age 0 upwards as well as taking sex differences in maturity into account. This will also make it easier to include fecundity/length/weight relationships.

It has been found that a precise mathematical formulation of population dynamics models with age-length-area-multispecies-multifleet-structure (e.g. BORMICON; Stefánsson and Pálsson 1997, 1998) is needed. Such a description is provided by Frøysa et al. (2002) for Fleksibest, which is a single-species, single-area, age-length structured multi-
fleet model where the catches are modelled. A description in detailed mathematical terms of models with age-length-area-multispecies-multifleet-structure will be available as a WD to SGASAM in June 2003. This WD will also describe the difference between the mortality formulation used in Fleksibest and in Gadget.

There are also other applications of Fleksibest/BORMICON/Gadget. At present this includes the assessment of Sebastes marinus in Icelandic waters (Björnsson and Sigurdsson, 2003) and West of Scotland anglerfish (cooperation with Helen Dobby, FRS, Aberdeen). In the future such models may be applied to all species assessed by AFWG, but it would be of greatest interest to apply it to stocks where the age data are less reliable or non-existent, such as Sebastes mentella and shrimp. A model for shrimp should include predation by cod.

It is planned to use set up a multispecies (cod, capelin, herring, minke whale, harp seal) and multi-area model for the Barents Sea using the Gadget modelling framework. This model will be similar to the MULTSPEC model (Bogstad et al., 1997). This work is dependent on the funding of a new EU project.

Kvamme and Frøysa (2003) used Fleksibest to study the effect of using different selectivity curves in the fishery for NEA cod. Age-length structured models are particularly well suited for such studies.

Age-length structured models such as Fleksibest will be studied at the ICES Study Group on Age-Length Structured Assessment Models (SGASAM) in Bergen in June 2003. The ToRs of that meeting are as follows:
a) investigate process model formulations, goodness of fit and model sensitivity in age-length based models;
b) evaluate the usefulness of such tools in specific case studies on stocks with differing life-histories, data availability and quality, such as sprat, anglerfish, blue whiting, Nephrops, Greenland halibut and deepwater species

ICES Quality Handbook

Following the guidelines as adopted by ACFM in October 2002, a stock specific template was filled out for most AFWG stocks, describing how the annual assessment calculations and projections are performed, as well as the biological stock dynamic, ecosystem aspect, and the fisheries relevant for fisheries management. These templates are presented as appendices to the working group report, and the report has been re-structured accordingly.

Since shrimp most probably will be dealt with by a joint NAFO-ICES pandalus working group in the future, no appendix was filled out for this stock. For NEA haddock a lot of time was spent on improving the input data and the stock assessment, and the time available did not permit the preparation of a quality handbook appendix.

Scientific Presentations

WD 1 (presented by J.E. Stiansen) describes the present oceanographic conditions, the role of zooplankton and some relations between climate and fish population parameters. A forecast for sea temperature in the Barents Sea is given.

WD 2 and 3 (presented by C.T. Marshall) presents software being developed for ICES use. The software is divided into three different modules: StockAN, RecAN, and MedAN. StockAN uses the output of the assessment to estimate alternative indices of stock reproductive potential. RecAN fits a wide variety of stock/recruitment relationships to either the conventional stock/recruit relationship which uses SSB as the index of reproductive potential or alternative parameterisations (e.g., using total egg production). MedAN is an updated version of the medium-term stock projection software. When completed, these modules will produce medium-term stock projections that incorporate a higher degree of biological realism than is presently the case. As part of this initiative, growth models are being developed for Northeast Arctic cod. For each cohort a robust parameterization of the von Bertalanffy model was used to describe length-at-age and the model coefficients were determined using non-linear regression. In general the growth of Northeast Arctic cod is quite linear up to age 8 or 9 when a reduction in growth in length occurs.

WD4 (presented by A. Filin) describes results of monitoring of abundance and distribution of krill (euphausiids) in the Barents Sea, conducted by PINRO since 1952. By the data from monitoring, the abundance of euphausiids, as well as the peculiarities of their distribution and specific composition are characterized by significant year-to-year dynamics, that influence the conditions of fish feeding. Therefore, the data on euphausiids stock and distribution of concentrations may serve as a predictor of fishing forecasting. According to the data from the survey conducted in October-December 2002, mean indices of krill abundance in the Barents Sea exceeded the mean long-term index in two times. The decrease in the percentage of warm-water species M.norvegica in euphausiid concentrations as compared to the previous years and the increase in abundance of euphausiid arctic boreal species Th.inermis and Th.raschii were recorded.

WD7 (presented by T. Bulgakova) proposed a simulation model of NEA cod stock dynamics since 1980 up to 2005 with the same input parameters as used in the recent AFWG-2002 run with cannibalism. This model incorporates the algorithm of PA management scheme proposed at SGBPA-2003 and simultaneously two additional indices for the stock-recruitment relationship: index equal to population fecundity divided by SSB and index of steady Atlantic water inflow which is equal to number of months in the year of a year class birth with positive temperature anomalies. The model simulates and then compares various scenarios of management scheme and as result arrives at different population dynamics. The performed simulations using various F_{pa} values sent a challenge in a practicability of the choice so low value for F_{pa} as 0.4 .

WD 8 (presented by J.E. Stiansen) presents an alternative recruitment model for three-year-old NEA cod, with the possibility of a three-year prediction. The multiple regression model is a result of the wish to include climatic effects into the assessment. The variables used are the Kola temperature, the one-year-old bottom survey index and the capelin biomass. The model explains 83% of the variation in the recruitment data (number of 3 year olds) from the 2002 assessment. Retrospective analysis of the errors in both this model and the error given by earlier assessments show that the errors of the regression model are within the same range as those from earlier assessments.

WD 9 (presented by K.V. Drevetnyak) presents a method aimed at estimation of the Northeast cod discards during bottom trawl fishery. The method based on a logistic curve is proposed to describe the discarding process. An attempt is made to estimate discards during Russian bottom trawl fishery for cod in 1993-2002. General results of the calculations suggest that the cod discards depend on abundance of fish at age 3 and 4 and proportion of total catch taken in different areas of the Barents Sea. This method can be a useful tool for retrospective estimation of discards. Some differences between the existing methods to calculate discards are also discussed.

WD 10 (presented by K. Nedreaas) provides preliminary results of the total cod by-catch in the Norwegian shrimp fishery during the example year 2000 based on data from the Norwegian commercial shrimp landing statistics, data from the Norwegian fishery surveillance agency and the scientific shrimp surveys. During the fourth quarter of the year, the shrimp fishery had impact on 0 -group cod while in the rest of the year the main impact was on one year old cod. Before the sorting grid was introduced in the shrimp trawl, the by-catch of cod was much larger, also incl. bigger fish. The plan is to use this method, incl. by-catch data from other countries, to make a database of by-catch of different species in the shrimp fishery for every year back to the mid-1980s. The data should be presented on lengthand age-groups.

WD 11 (presented by K. Nedreaas) gives a status report of the PINRO-IMR otolith exchange program for NEA cod that started in 1992. Later, a similar exchange program was established for haddock otoliths. Once a year the age readers themselves come together and discuss the discrepancies within the previous two most recent exchanged samples. The discrepancies are seldom more than 1 year. Most often PINRO reads one year more than IMR, and this seems to be area/season related. The results show an improvement over the time period, i.e., the number of age readings showing different result has decreased from about 30% in 1992 to about 15% today. During an annual exchange of age readers the discrepancies are discussed and a final agreement is at present achieved for all otoliths except ca. 2%. A similar positive development is also seen for haddock age readings where about 10% of the fish are aged different. Differences in age reading may also cause different mean-weight-at-age. Based on the comparative age readings in 2002, consequences for mean-weight-at-age are shown.

WD12 (presented by A. Filin) describes a results of cod growth rate in the Barents Sea, performed by the STOCOBAR model. Model parameters were estimated by historical data for 1984-2000. The prognosis of cod growth rate is done for a five-year period, from 2001 to 2005. In the prognosis the forecasts of mean annual temperature in the Kola Section for 2002-2004 was used as input data, together with the prognosis of capelin biomass. According to the prognosis mean weight of 3-4 year old cod in the beginning of 2004-2005 is expected to be below the long-term mean. For the 6-7 year old cod the mean weight s expected to exceed the long-term mean, while age 5 and age 8 years and older are expected to be close to the long-term mean.

WD 14 (presented by S. Mehl) presents results of retrospective XSA-analysis for NEA saithe with all and one and one tuning fleet. All runs show similar retrospective trends, i.e. a tendency to overestimate fishing mortality and underestimate stock size in the assessment year. Analysis was also done without age group 2 in the acoustic survey fleet due to the high value of the S.E. $(\log q)$. The estimates of survivors from age 2 and 3 in the terminal year were reduced, but the numbers-at-age 2 and 3 in the last assessment year are normally estimated by the RCT3 routine. The numbers-at-age 2 and older in the more converged part of the XSA are not influenced to any extent by the 2 -group in the acoustic survey fleet. A new survey where younger age groups of saithe may be better covered is planed. Until we have at least five measurements from this survey it is probably best to exclude age group two from the tuning.

WD 19 (presented by A. Aglen) reports the joint Norwegian Russian demersal fish survey in the Barents Sea, February 2003. Compared to the previous couple of years the area distribution of cod and haddock appeared more patchy in the 2003-survey, both in the acoustic observations and in the bottom trawl catches. It is observed that the CVs in the swept area estimates are higher in this year's survey. For several cohorts the survey results of cod are high compared to the results in the 2002 survey. This is in particular the case for the year classes 1997-2001 in the acoustic estimates. Some dense acoustic recordings close to the cost of Finnmark might have lead to over-estimation due to lack of acoustic transects perpendicular to the coast.

Oral presentation (by Carolina Alonso):

The eggs and larvae of NEA cod and Calanus finmarchicus are sensitive to solar ultraviolet (280-400 nm) doses in the Lofoten Islands (Norway). When they were incubated at a fixed depth of 15 cm during their embryonic period, mortality and failure to hatch increased in eggs and larvae exposed to full sunlight compared to those that were protected from UVB and/or UVA. Similarly, buoyancy of developing eggs and viability of hatched larvae decreased. However, this impact was dramatically reduced when incubations were performed at 50 cm , suggesting that the vertical circulation due to turbulent forces that are typical in the upper layer might diminish the impact of UVR upon these organisms. In addition, the strongest effects were observed late in the season (late May), when solar irradiance is higher, at a time when most spawning events have already taken place for both cod and Calanus finmarchicus.

Oral presentation:

Some environmental variables influencing cod recruitment and Calanus spp. abundance in the Lofoten area (Norway) Ángel Borja
AZTI Foundation, Pasaia (Spain)The impact of climate phenomena (North Atlantic Oscillation (NAO)/Arctic Oscillation (AO)) on oceanographic factors (Gulf Stream Index (GSI), Ekman transport, turbulence, etc.) is investigated; these, in turn, might govern recruitment success of Northeast Arctic cod, one of the world's commercially most important fish stocks, and the abundance of Calanus finmarchicus and C. hyperboreus. The study is based on a 32 -year record (1967-1998) of data, from 10 locations off the Norwegian coasts. NAO and AO show a significant correlation with 0 -group index for cod 2 years later (explaining 33.5% of the variability), while GSI has a significant correlation with the recruitment in the same year (explaining 30.8% of the variability). There is a significant relationship between recruitment and Ekman transport eastwards, explaining 25% of the variability. The correlation between recruitment and the summation of the turbulence, on each of the locations studied, is highly significant; explaining 40.1% of the variability in the recruitment. Applying a multiple linear regression model with two independent variables, GSI (or NAO) and turbulence, on cod recruitment explains about 53% of the variability. In years with a large positive NAO index a strong GSI transport northwards with a two year-lag is induced, increasing the heat transport by the North Atlantic current, up to the Barents Sea. In the case of Calanus we have demonstrated that several local and global factors affect the abundance in the Lofoten area. These factors are favourable for the zooplankton production and the survival of cod larvae, being advected from the spawning areas (in the Lofoten area) to the recruitment areas (in the Barents Sea); while the turbulence generated by moderate to strong winds increases the encounter rate between cod larvae and its prey, increasing the survival of cod.

Nomination for New Chair

The Working Group was pleased to unanimously endorse the nomination of Yuri Kovalev, Russia as the new chairman of the Arctic Fisheries Working Group.

Time of Next Meeting

The Working Group proposes the dates of April $20-29,2004$ for it's next meeting.

The population dynamics of all commercial fish stocks are determined by fisheries effects and by environmental effects on growth, recruitment and natural mortality. The goal of this chapter is to describe the implications of interannual variation in the climate and trophic interactions for fish stocks in the Barents Sea ecosystem. Forecasts for the upcoming year are made for several variables. The consequences for growth, recruitment and natural mortality are also discussed.

1.1 Climate considerations in the Barents Sea

1.1.1 Hydrography and ice conditions

The Barents Sea is characterised by large year-to-year fluctuations in heat content and ice coverage caused by variations in the influx of Atlantic water from the Norwegian Sea. Temperatures in the Barents Sea have been relatively high during most of the 1990s, and with a continuous warm period from 1989-1995. During 1996-1997, the temperature was just below the long-term average before it turned warm again at the end of the decade. Even though the whole decade was warm; it was only the third warmest decade in the $20^{\text {th }}$ century (Ingvaldsen et al. 2002).

In January 2002 the temperature was just above the long-term average in the whole Barents Sea (Figure 1.1), but from April the temperature increased rapidly. In the Fugløya-Bjørnøya section the temperature in June was $1^{\circ} \mathrm{C}$ above average, which is the highest observed value since the start of the measurements in 1977. In the Kola section the maximum temperature was in August/September with $0.8^{\circ} \mathrm{C}$ above average, which was $0.1-0.2^{\circ} \mathrm{C}$ below the maximum for the period 1921-1999. The temperature decreased slightly until October, followed by a rapid decrease towards the average in December. In January 2003, the temperature was exactly at the long-term average (Asplin and Dahl, 2003, Stiansen et al., WD1). The situation was similar in the whole Barents Sea.

The variability in the ice coverage is closely linked to the temperature of the inflowing Atlantic water. The ice has a relatively short response time on temperature changes in the ocean, but usually the sea ice distribution in the eastern Barents Sea responds a bit later than in the western part. 2001 had the highest ice index recorded since 1970, which means very little ice. 2002 had the second highest ice index. During the winter of 2002 there was about the same ice conditions as the year before, but the ice melt during summer was quite high. The winter of 2003 will have more ice than 2002, but the ice index is still expected to be higher than average for the whole year.

1.1.2 Inflow of Atlantic water

Transport of Atlantic water to the Barents Sea has been measured since August 1997. The flow of Atlantic water is very variable. Most of the time there is a net inflow of Atlantic water to the Barents Sea, but in some periods large outflows are observed. Large outflows occurred in April both in 1998 and 1999, and in 2000 there were two periods with strong outflow, one in January and a second one in June. In January and March 2002 there were two peaks of high inflow into the Barents Sea. The intensity of the flow was reduced during spring and summer. In October 2002 there was a peak of weak outflow. Results from a wind driven model shows similar results. The inflow from the model during the first two months were stronger than average. The rest of the year the model showed average inflow, except for the last two months when the flow was reduced.

1.1.3 Predicting Barents Sea temperature

Prediction of Barents Sea temperature is complicated since the variation is governed by processes of both external and local origin that operate on different time scales (Stiansen et al, WD1). The volume flux and temperature of inflowing Atlantic water masses, as well as heat exchange with the atmosphere, is important in determining the temperature of the Barents Sea. Thus, both slowly moving advective propagation and rapid barotropic responses due to large-scale changes in air pressure must be considered. The major changes in Barents Sea climate take place during the winter months. The variability in the amount of heat flowing in with Atlantic water masses from the south is particularly high during this season. Furthermore, variability in low-pressure passages and cloud cover has a strong influence on the winter atmosphere-ocean heat exchange.

This seasonal difference is reflected in the merit of simple six-month forecasts of Kola-section temperature based on linear regression models. The tendency is that persistence across the spring and summer months is higher than for other seasons, allowing for reasonably reliable forecasts from spring until autumn. Data available until February 2003 allow for a six-month forecast for August 2003. The value for February 2003 of $3.3^{\circ} \mathrm{C}$ is inserted into the equation $\mathrm{T}_{\text {August }}=$ $2.37+0.67 * \mathrm{~T}_{\text {February }}$, statistically derived from data for the years 1921-1997 (Stiansen et al, WD1). This gives an
objective temperature forecast for August 2003 of $4.58^{\circ} \mathrm{C}$. This will be slightly below the 1921-1999 mean of $4.67^{\circ} \mathrm{C}$. We conclude that summer sea temperatures in the southern Barents Sea are expected to lie around the long-term mean.

Assuming that temperatures in the Barents Sea fluctuate periodically, it is possible to forecast by means of statistical methods. The results of Asplin and Dahl (2003, Stiansen et al., WD1) indicate a decrease in Barents Sea temperatures towards a minimum in 2003, followed by a local maximum above average in 2005 (Figure 1.2). However, for the last four years this model has persistently been below the observed values. A Russian prognosis (Figure 1.3, Filin, WD12) to 2006 shows much the same development, but with a minimum in 2004, a year later than that of Asplin and Dahl (2003). However, the statistical precision of such forecasts is low. Ottersen et al. (2000) showed that historically only about 25% of the variability in the time-series was explained by forecasts as those given by Asplin and Dahl (2003). With this in mind these predictions should be treated with caution.

Conclusions section 1.1:

- 2002 was warmer than average. The temperature in the beginning of the year was just above average, followed by an extremely hot summer, while the temperature decreased against the average at the end of the year.
- The inflow of Atlantic water was normal for most of 2002, except for a higher inflow in the beginning of the year.
- The temperature in 2003 is expected to be lower than in 2002, and will be close to the long-term mean in most of the Barents Sea.
- A Norwegian long-term prediction indicates that the temperature will decrease to a local minimum in 2003 before reaching a local maximum in 2005. A similar Russian model shows that the same minimum will appear one year later.

1.2 Zooplankton

The standing stock of zooplankton has been monitored by IMR in the Barents Sea from the early 1980s in connection with the joint Norwegian/Russian 0-group and capelin surveys during August-October. At this time of the year most of the production has taken place and the zooplankton biomass can be expressed as the overwintering population of zooplankton. Plankton samples were obtained by using WP2 and the MOCNESS (Multiple Opening Closing Net and Environmental Sensing System) plankton net. In 2002 PINRO also joined to the collection of sample of zooplankton during August/October. Plankton samples in Russian surveys are collected using the Juday net.

The mean biomass $\left(\mathrm{gm}^{-2}\right)$ values from 1988 to present are estimated for the 7 different areas in the Barents Sea. There was a marked increase in zooplankton biomass during the period 1991-1994. The highest biomass values were observed in 1994 when the capelin stock was at an extremely low level. Though the biomass has decreased from 1994 to present, the average biomass values during 1995 to 2002 are still higher than in the 1988-1992 period. In 2002 the zooplankton biomass was at an average level, with a slight increase from 2001 to 2002.

Figure 1.4 shows the total biomass of zooplankton together with capelin stock size (million tonnes). A commonly observed inverse relationship between capelin stock size and zooplankton biomass can be seen from Figure 1.4 indicating capelin to exercise strong feedback control on the system through its predation pressure on zooplankton.

Since 1952, PINRO have conducted annual monitoring of distribution and abundance of krill (euphausiids) in the Barents Sea (Drobysheva et al., WD4). Collection of macrozooplankton samples were carried out during a Russian trawl-acoustic survey for demersal fishes in autumn-winter. Net attached on top of the trawl collected macrozooplankton in a layer $6-10 \mathrm{~m}$ from the ground. The number of individuals caught by the net during an hour of research hauls serves as the index of euphausiids abundance. Annually, 200-300 samples of macrozooplankton are collected during these surveys.

The abundance of krill, as well as the distribution and specific composition, is characterized by significant year-to-year dynamics (Figure1.5), which influences the conditions of feeding fish. Therefore, it may serve as a predictor of fish stock condition and recruitment. It was shown that winter feeding of cod juveniles on euphausiids influenced their survival rate.

In 2002 the abundance index of euphausiid was twice as high as the long-term average (Drobysheva et al, WD4), with a smaller percentage of warm water species Meganyctiphanes norvegica compared to previous years. In 2003 the abundance of euphausiid is expected to be moderately high in the Barents Sea.

Conclusion section 1.2:

- An overwintering zooplankton biomass in 2002 moderately above the average will create the basis for average zooplankton production in 2003 and feeding conditions for capelin, as well as for other pelagic fish and juvenile demersal species in the Barents Sea.

1.3 Trophic interactions

1.3.1 Predicting capelin biomass

Capelin is the most important prey species for Northeast Arctic cod, and the development of the capelin stock may have a strong effect on growth and maturation of cod, as well as cod cannibalism.

The biomass of capelin (1+) decreased from 3.6 million tonnes in 2001 to 2.2 million tonnes in 2002 (Anon., 2002b). This is lower than the prediction for 2002 made by AFWG last year (3.4 million tonnes). The prediction method used in Anon. (2002b), which is essentially the same as previously used, predicts the biomass of $2+$ capelin in October 2003 to be 1.40 million tonnes and the biomass of 1 year old capelin at the same time to be 0.59 million tonnes, giving a total of 1.99 million tonnes. Of this 1.17 million tonnes are predicted to be mature capelin. The stock history for capelin from 1984 onwards is given in Table 1.1 together with the estimated biomass of capelin removed from the stock by natural mortality.

A 1-year prognosis has been presented to AFWG since 1999. A review of the prognoses made during this period is given in Table 1.2. The prognoses seem to be overestimates in most cases. The prediction methodology is still under development. AFWG requests WGNPBW to provide a review of how the present prognosis method would have performed when run on historical data. Also, the prediction should be given with uncertainty.

1.3.2 Predation by cod

The consumption by cod of various prey species for the period 1984-2002 is given in Table 1.3, using the same method as described by Bogstad and Mehl (1997).

As usual, capelin was the most important prey for cod. However, the consumption of capelin by cod decreased markedly from 2001 to 2002. This may be related to the decrease in the capelin stock. The consumption by cod of other fish species (herring, polar cod, cod, haddock and blue whiting) increased from 2001 to 2002. The consumption of blue whiting increased to 277000 tonnes, the highest value in the 19 -year time-series. The consumption of shrimp, krill and amphipods decreased from 2001 to 2002. The calculation of consumption of cod and haddock by cod using this method are used in the assessment of cod and haddock (Sections 3 and 4).

Dolgov (WD 6, Table 1.4) also calculated the consumption by cod based on the same data, using a somewhat different methodology. The consumption by prey species from the two calculation methods for 2002 is similar. The main difference is that the calculations in Table 1.3 give a decrease in the consumption of capelin from 2001 to 2002, while the calculations in Table 1.4 show an increase. Also, there are notable differences in the number-at-age of cod and haddock consumed by cod. It should be noted that the calculations in Table 1.3 are based on the number-at-age of cod from the VPA given in this year's report, while the calculations in Table 1.4 are based on the VPA from the 2002 AFWG meeting.

The annual consumption for each age group of cod ($\mathrm{kg} /$ year), based on the consumption calculations shown in Tables 1.3 and 1.4 are given in Tables 1.5 and 1.6, respectively. Table 1.5 shows that the consumption per cod decreased from 2001 to 2002 for age 3 and older fish. The consumption per cod in 2002 was close to the 1998 level, but lower than in the period 1999-2001. Such a trend in the consumption per cod is not found in Table 1.6. The calculations by Dolgov generally give a lower consumption per cod for age 1-4 and a higher consumption per cod for age $6+$ compared to the calculations using the method described by Bogstad and Mehl. The discrepancies in consumption per cod by age group are much larger than the discrepancies in total consumption by the cod stock.

The consumption estimates in Tables 1.3 and 1.4 do not include the consumption by mature cod in the period when it is outside the Barents Sea (assumed to be 3 months during the first half of the year). During this period it may consume significant amounts of adult herring (Bogstad and Mehl 1997).

Johansen et al. (2002) describe a new method for calculating the consumption by cod, and applies this to calculate the consumption of herring by cod in the period 1992-1997. Their consumption estimates are comparable to the estimates given in Table 1.3, except for 1994, when they obtained a much higher estimate (494 vs. 147 thousand tonnes).

As in previous years, the consumption of cod and haddock by cod (Section 3 and 4), which is taken into account in the assessment of these species, was calculated using the method described by Bogstad and Mehl (1997). It is important to agree on a joint methodology for consumption calculations.

1.3.3 Predation by other fish species

Dolgov et al. (WD 11, AFWG 2002) investigated the diet of blue whiting in the Barents Sea in the period 1998-2001. They concluded that predation by blue whiting will not have a significant impact on the recruitment of cod, haddock and redfish. However, food competition between blue whiting and juveniles of other commercial fish stocks due to blue whiting grazing zooplankton in the areas of larval drift may occur. The diet of saithe in the period 1998-2001 was investigated by Dolgov (WD12, AFWG 2002). The diet of saithe $>40 \mathrm{~cm}$ is dominated by capelin, with herring and euphausiids being next in order of importance. In some areas there are significant amounts of blue whiting and haddock juveniles. For saithe $<40 \mathrm{~cm}$, the diet is dominated by euphausiids.

1.3.4 Predation by mammals

The consumption by minke whale (Folkow et al. 2000) and by harp seal (Nilssen et al. 2000) is given in Table 1.7. These consumption estimates are based on stock size estimates of 85000 minke whales in the Barents Sea and Norwegian coastal waters (Schweder et al., 1997) and of 2223000 harp seals in the Barents Sea (ICES 1999/ACFM:7). The consumption by harp seal is calculated both for situations with high and low capelin stock, while the consumption by minke whale is calculated for a situation with a high herring stock and a low capelin stock. It is worth noting that the abundance estimate of harp seals was revised considerably upwards in 1998 (ICES 1999/ACFM:7), which also increased estimates of the consumption by harp seals correspondingly. Food consumption by harp seals and minke whales combined is at about the same level as the food consumption by cod, and the predation by these two species needs to be considered when calculating the mortality of capelin and young herring in the Barents Sea.

In the period 1992-1999, the mean annual consumption of immature herring by minke whales in the southern Barents Sea varied considerably ($640 \mathrm{t}-118000 \mathrm{t}$) (Lindstrøm et al. 2002). The major part of the consumed herring belonged to the strong 1991 and 1992 year classes and there was a substantial reduction in the dietary importance of herring to whales after 1995, when a major part of both the 1991 and 1992 year classes migrated out of the Barents Sea. In 19921997, minke whales may have consumed 230000 t and 74000 t , corresponding to 14.6 billion and 2.8 billion individuals of the herring year classes of 1991 and 1992, respectively. The dietary importance of herring to whales appeared to increase in a non-linear relation with herring abundance.

Conclusions section 1.3:

- The capelin biomass in 2003 is expected to be approximately at the same level as in 2002, which suggests that the decline observed in recent years has been halted.
- The consumption of capelin by cod decreased from 2001 and 2002, according to Norwegian consumption calculations, but increased according to the Russian calculations.
- The consumption of other fish species by cod increased from 2001 to 2002, while the consumption of shrimp, amphipods and krill decreased from 2001 to 2002
- The consumption per cod decreased from 2001 to 2002 according to Norwegian calculations, while Russian calculations showed a stable consumption by cod

1.4 Applications to population models

1.4.1 Recruitment

1.4.1.1 Recruitment models

Predictions of the recruitment in fish stocks are essential for future harvesting of the fish stocks. Traditionally prediction methods have not included effects of climate variability. Multiple linear regression models can be used to incorporate both climate and fish parameters. Especially interesting are the cases where there exists a time lag between the predictor and response variables since this gives the opportunity to make a prediction.

Models (Stiansen et al., WD1 and WD8), based on climate and fish parameters, for prediction of recruitment have been given for the 0 -group index (with 2-year prognoses) and the number of three-year-old fish for North East Arctic Cod (with 3-year prognoses), for the number of one-year-old fish for Barents Sea capelin (with 1-year prognoses) and for the number of three-year old fish for Norwegian spring spawning herring (with 3-year prognoses) (Table 1.8).

The models are novice, and are still under evaluation in search for better fit and input variables. However, the fit of the models are encouraging, and the models might at present prove useful as background information for stock assessment, and may in the future be incorporated as recruitment models in the assessments.

Borisov and Bulgakova (WD7) give another approach. A new stock-recruitment model are developed, which includes an index of Atlantic inflow. This model together with a new management scheme, are incorporated in a simulation model for NEA cod. This simulation model allows for a three-year prediction of recruits of age 3 (Table 1.8).

The recruitment estimates from $\mathrm{XSA} / \mathrm{RCT} 3$ and from Fleksibest are also given in Table 1.8. There is good agreement between the different methods concerning the cod recruitment at age 3 in 2003 and 2005, while for 2004; RCT3 gives a much lower value than two other methods. It was decided to use the 'traditional' RCT3 estimates in the predictions of cod recruitment.

1.4.1.2 UV-radiation and other climatic effects on cod and Calanus

During the springtime of 2000 and 2001, a series of in situ experiments were performed in order to study whether solar ultraviolet (UV) radiation ($280-400 \mathrm{~nm}$) can affect early life stages of NEA cod and Calanus finmarchicus, and therefore their recruitment (see http://phaeocystis.nfh.uit.no/uvac/ for annual reports and additional information). The experiments took place in the Vestfjord area (Lofoten Islands, Norway), one of the main spawning sites of northeast arctic cod.

It was found that, when incubated at fixed depths of 15 and 50 cm , up to 40% of eggs died or did not hatch after 7-10 days as a result of the negative influence of UV for both cod and Calanus finmarchicus. Buoyancy of cod eggs and fitness of yolk-sac larvae was also affected. However, this deleterious impact was mainly observed when incubations were run late in the springtime or in experimental conditions of extremely transparent waters. Since the peak of spawning lies around late March for Calanus finmarchicus and mid April for cod, it seems reasonable to think that most of the egg population is not therefore exposed to lethal UV doses. Additionally, seawater in the fjords is typically loaded with organic matter from snow melting, a process most remarkable late in the springtime, which partially blocks the penetration of UV light into surface waters. Finally, planktonic organisms with low mobility such as eggs and larvae are subject to the turbulent forces operating in the mixed layer and consequently they do not stay at fixed depths for prolonged periods. This can provide them with extra protection regarding UV exposure.

However, given the predictions of further ozone depletion and presumably higher UVB values, we can not rule out the possibility that episodes of low stratospheric ozone thickness, clear skies and low wind speed might provoke high mortalities in the egg and larval population.

The statistical analysis of long-term data series of UVB doses and Calanus finmarchicus recruitment indicates a negative correlation between these two variables, whereas the correlation is positive for cod recruitment. This implies a contradiction between short and long-term effects so that the impact of solar UV light on cod is not a straightforward one, but rather acting indirectly. The mechanisms involved in this process are yet a matter of speculation.

Regarding the influences of other physical parameters on Calanus abundance, Principal Component Analysis (PCA) of the historical data shows that C. hyperboreus seems to be related more closely to variables acting "locally" such as temperature and turbulence while C. finmarchicus is more influenced by "global" processes such as NAO and AO
index. This trend was consistent both for two different periods (abundance in February and October) and for two fjords (Mistfjord and Saltfjord).

In the case of cod, oceanographic-meteorological factors appear to influence recruitment (considered as 0 -group abundance) strongly, with $50-73 \%$ of the variability being explained by Gulf Stream Index (GSI), turbulence and the NAO index (two years earlier).

As a conclusion, this indicates a connection between environmental forcing and zooplankton response acting at different levels of the biological production process and which can determine the success of cod recruitment.

Conclusions sections 1.4.1:

- The 0 -group index of NEA cod is expected to decrease in 2003, before increasing in 2004 to approximately the same medium level as in 2002.
- All recruitment models show that the number of recruits (age 3) of NEA cod in 2003 and 2005 is expected to be above average. The models that include climatic variables indicate the recruitment at age 3 in 2004 to be slightly above average, while the RCT3 method, which is based only on survey indices indicate a recruitment of about 50% of the average level in this year. The assessment used the 'traditional' RCT3 method to predict recruitment also in this year's assessment.
- The number of recruits (age 1) of Barents Sea capelin is expected to be at a medium level in 2003.
- The number of recruits (age 3) of Norwegian spring spawning herring is expected to be at a medium level in 2003 and 2004, and increase moderately in 2005.
- Exposure to solar UV radiation significantly affects the survival of Calanus finmarchicus and NEA cod eggs (up to 40% mortality) when incubated at fixed depths. However, only periods of $7-10$ days of low wind speed, clear skies and low ozone thickness would provoke such high mortalities.
- Investigations on historical climatic and oceanic data series indicate that their fluctuations account for 53-73\% of the observed variability of 0-group abundance of NEA cod.

1.4.2 Growth

1.4.2.1 Prediction of NEA cod growth rate

The prognosis of cod growth in the Barents Sea was performed by the STOCOBAR model. The model is used to calculate mean weight of fish at age 2-10 years in the beginning of the year on the basis of feeding conditions in the previous year (Filin, AFWG 2002, WD6). Model parameters were estimated by historical data for 1984-2000 using stomach data from the Russian-Norwegian database, mean annual temperature data in the Kola Section, estimated biomass of capelin and data on abundance and mean weight-at-age from the AFWG 2002 assessment.

The prognosis of cod growth rate is done for a five-year period, from 2001 to 2005 (Filin, WD12). In the prognosis the forecasts of mean annual temperature in the Kola Section for 2002-2004 was used as input data (Figure1.3), together with the prognosis of capelin biomass (Table 1.2) and mean weight-at-age of cod of age one in 2003 and 2004. The simulated growth rates for cod at age 3-8 years are presented in Figure 1.6.

According to the prognosis, cod growth rate in 2002 will not differ notably from that observed in 2001. Consequently, mean weight of cod at the beginning of 2003 is expected to be close to the corresponding data for 2002. This is in agreement with the observations of weight-at-age in late 2002/early 2003 (Table A7 and A13). Simulations showed that in the beginning of 2004-2005, mean weight of cod at age 3-5 is expected to decrease, which can be explained by the forecasted colder water and capelin stock decline in the Barents Sea. In older fish, no significant reduction in growth rates is expected in 2003-2004 as compared to 2002. This appears to be the result of a rather high growth rate in the preceding years. The predictions used in the assessment, which assume growth increments for each cohort to be equal to the mean for the recent 8 years (Section 3.3.8), give stable values for weight-at-age for all age groups.

1.4.2.2 Predicting condition of NEA cod

For many ICES stocks weight-at-age $\left(\mathrm{W}_{\mathrm{a}}\right)$ is the only metric of body size that is routinely reported. However, W_{a} combines two distinct components of body size, namely length-at-age (L_{a}) and condition (i.e., W_{1}), into a single value. Thus, it is not possible to assess the degree of interannual variation in condition from a time-series of W_{a}. Provided that the W_{a} values are based on observed values (and not derived using a fixed weight/length relationship) then it is possible to disaggregate the W_{a} time-series into its two constituent parts as described below for Northeast Arctic cod.

Estimates of L_{a} were obtained from both Norwegian and Russian age/length keys compiled for each year (see Marshall and Needle, WD3). These were then paired with the corresponding Norwegian and Russian estimates of W_{a} (ICES 2001/ACFM:19) to construct the bivariate weight/length relationship for each year (Figure 1.7). The fitted weight/length relationships were used to generate a time-series of \hat{W}_{1} for standard lengths of 30 to 120 cm (Figure 1.8). These show that there are differences in the long-term trends exhibited by small cod ($<60 \mathrm{~cm}$) compared to larger cod ($>70 \mathrm{~cm}$). For the smaller length-classes, current values of \hat{W}_{1} are not significantly different from the post-war values, suggesting that there has been no long-term change in condition (Figure 1.8). However, for cod 70 cm and larger the current values of \hat{W}_{1} are significantly higher than the post-war values (Figure 1.8). The magnitude of the differences in \hat{W}_{1} is considerable (i.e, current values of \hat{W}_{1} are approximately 25% higher than post-war values). In addition to the obvious implications for higher yields, fish that are heavier for their length will mature earlier and be more fecund.

The time-series for \hat{W}_{1} for a 70 cm cod (Figure 1.8) and the annual mean liver condition index for cod in the $61-70 \mathrm{~cm}$ length class $\left(\overline{\mathrm{LCI}}_{61-70}\right.$; see Yaragina and Marshall 2000) were multiplied to derive estimates of the liver weight at 70 cm . A bivariate plot of the \hat{W}_{70} versus capelin stock biomass shows that there is no significant correlation ($n=50, p=0.66$, $\mathrm{r}^{2}<0.01$) between these two variables (Figure 1.9a). However, there is a significant, positive correlation between $\overline{\mathrm{LCI}}_{61-70}$ and capelin stock biomass $\left(\mathrm{n}=54, \mathrm{p}<0.001, \mathrm{r}^{2}=0.44\right.$; Figure 1.9 b$)$. Because of this correlation, there is also a significant, positive correlation between liver weight of a 70 cm cod and capelin stock biomass ($\mathrm{n}=50, \mathrm{p}<0.001, \mathrm{r}^{2}=$ 0.24 ; Figure 1.9 c). This implies that $\hat{\mathrm{W}}_{1}$ may be an insensitive index of condition compared to liver weight observations.

In principle, the empirical relationships shown in Figures 1.9 b and 1.9 c could be used to forecast liver condition (on either absolute or relative scales) in the upcoming year using projected values of capelin stock biomass that are currently being provided to the AFWG (see Section 1.3.1). The lack of a significant correlation between \hat{W}_{1} and capelin stock biomass suggests that it may not be possible to forecast \hat{W}_{1} from capelin stock biomass alone.

Conclusions section 1.4.2:

- Mean weight of 3-4-year-old cod in the beginning of 2004-2005 is expected to be below the long-term mean. For the 6-7-year-old cod the mean weight is expected to exceed the long-term mean, while age 8 years and older are expected to be close to the long-term mean. The predictions used in the assessment assume stable weights-at-age for this period.
- Large $\operatorname{cod}(>70 \mathrm{~cm})$ show a long-term increase in weight-at-length, whereas, smaller cod have shown no overall long-term trend.
- Weight-at-length is uncorrelated with capelin stock biomass, whereas, liver weights show a positive correlation. Thus, assessing the degree of interannual variation in condition requires routine monitoring of liver weights, such as has been done by Russia since 1927.

1.4.3 Cannibalism mortality

The estimates of consumption by cod provided in Section 1.3.2, together with the prediction of capelin biomass given in Section 1.3.1, provide the necessary background for predicting the mortality of young cod and haddock resulting from predation by cod. The mortality due to cod cannibalism seems to be inversely related to capelin abundance (Figure 3.2a), and attempts have been made to model this relationship (ICES 2001/ACFM:19). Such modeling work should be continued. Since the capelin stock in 2003 is predicted to be at approximately the same level as in 2002, the mortality due to cod cannibalism is assumed to be the same in 2003 and later years as in 2002 (Section 3.3.8).

Table 1.1
Capelin stock history from 1984, and prognosis for capelin biomass in 2003. M output biomass is the estimated biomass of the capelin removed from the stock by natural mortality.

Year	Total stock number, billions (Oct. 1)	Total stock biomass in 1000 tonnes (Oct. 1)	M output biomass (MOB) during year (1000 tonnes)
1984	393	2964	3151
1985	109	860	1975
1986	14	120	681
1987	39	101	200
1988	50	428	80
1989	209	864	537
1990	894	5831	415
1991	1016	7287	3307
1992	678	5150	7745
1993	75	796	4631
1994	28	199	982
1995	17	194	163
1996	96	503	261
1997	140	909	828
1998	263	2056	915
1999	285	2775	2070
2000	595	4373	2464
2001	364	3630	3906
2002	201	2210	2666
$2003 *$	240	1990	

* Estimate, includes the 2002 year class, which size is estimated from a regression on an 0-group index

Table 1.2 Capelin one-year prognoses compared with survey estimates (in million tonnes).

Year	Prognosis (1+ capelin biomass) Available at AFWG in this year	Survey estimate (1+ capelin biomass)
1999	4.0	2.8
2000	3.8	4.3
2001	4.1	3.6
2002	3.4	2.2

Table 1.3 The Northeast arctic COD stock's consumption of various prey species in 1984-2002 (1000 tonnes), based on Norwegian consumption calculations.

Year	Other	Amphipods	Krill	Shrimp	Capelin	Herring	Polar cod	Cod	Haddock	Redfish	G. halibut	$\begin{array}{r} \text { Blue } \\ \text { whiting } \end{array}$	Total
1984	506	27	112	436	722	78	15	22	50	364	0	0	2332
1985	1157	169	57	155	1619	183	3	32	47	225	0	1	3649
1986	665	1223	108	142	835	133	141	83	110	313	0	0	3754
1987	680	1084	67	191	229	32	205	25	4	324	1	0	2843
1988	407	1236	317	129	339	8	92	9	3	223	0	4	2767
1989	725	800	241	132	580	3	32	8	10	232	0	0	2765
1990	1447	136	83	194	1593	7	6	19	15	243	0	85	3829
1991	1076	65	75	188	2902	8	12	26	20	312	7	10	4702
1992	1014	102	157	373	2455	331	97	54	106	189	20	2	4900
1993	782	252	713	315	3041	164	278	285	71	100	2	2	6004
1994	668	561	702	516	1084	147	581	225	49	79	0	1	4613
1995	854	980	514	362	627	115	253	392	116	194	1	0	4408
1996	640	633	1160	341	536	47	104	534	68	96	0	10	4171
1997	438	391	529	311	906	5	112	340	41	36	0	55	3164
1998	428	365	466	325	714	88	151	153	32	9	0	13	2743
1999	387	148	275	256	1747	133	226	62	26	16	1	31	3308
2000	409	170	463	459	1767	54	198	76	52	7	0	38	3693
2001	733	178	377	283	1744	71	256	63	50	6	1	154	3916
2002	452	101	367	186	1184	141	323	106	183	0	0	277	3322

Table 1.4
The Northeast arctic COD stock's consumption of various prey species in 1984-2002 (1000 tonnes), based on Russian consumption calculations.

Year	Other	Amphipods	Krill	Shrimp	Capelin	Herring	Polar cod	Cod	Haddock	Redfish	G. halibut Blue whiting	Total
1984	536	14	44	277	546	22	8	13	45	130	$0 \quad 4$	1639
1985	701	238	18	172	922	22	0	103	25	69	$0 \quad 17$	2287
1986	602	489	40	114	760	39	88	32	109	115	15	2393
1987	539	295	44	179	160	7	67	33	2	95	$0 \quad 12$	1433
1988	585	99	137	100	251	14	0	16	100	96	0	1397
1989	518	188	118	84	663	3	21	21	2	117	0	1735
1990	412	17	53	194	1150	52	5	20	15	162	$0 \quad 36$	2117
1991	370	52	33	210	3475	30	33	53	23	112	$4 \quad 7$	4401
1992	940	19	146	206	1698	428	89	66	42	100	10	3734
1993	807	100	83	162	2496	190	104	139	165	32	6	4288
1994	604	145	291	309	1265	96	247	305	74	47	$0 \quad 2$	3384
1995	875	271	301	371	611	212	111	436	132	98	0	3421
1996	656	235	734	163	499	99	53	447	71	66	$0 \quad 7$	3030
1997	515	85	386	207	527	56	83	409	33	37	3 3	2343
1998	493	115	379	206	657	67	80	148	23	18	$0 \quad 25$	2211
1999	275	43	263	192	1264	64	82	56	13	13	26	2291
2000	334	69	248	269	1437	46	85	60	24	4	$0 \quad 22$	2600
2001	486	47	246	246	1393	85	89	60	46	3	3120	2822
2002	356	12	233	157	1687	39	167	114	146	4	$0 \quad 122$	3037

Table 1.5
Consumption per cod by cod age group (kg/year), based on Norwegian consumption calculations.

Year/Age	1	2	3	4	5	6	7	8	9	$11+$	
1984	0.247	0.814	1.686	2.527	3.953	5.213	8.037	8.554	9.213	9.947	10.019
1985	0.304	0.761	1.833	3.111	4.678	7.364	11.305	12.033	12.562	13.822	13.936
1986	0.161	0.489	1.349	3.168	5.628	6.834	11.062	11.978	12.787	13.553	13.785
1987	0.219	0.601	1.275	2.055	3.538	5.466	7.044	8.112	8.923	9.344	9.296
1988	0.164	0.703	1.149	2.149	3.745	5.880	10.103	11.226	12.579	13.131	13.355
1989	0.223	0.716	1.611	2.720	3.987	5.621	7.706	8.527	9.630	10.231	10.678
1990	0.397	1.058	2.072	3.697	4.954	5.837	8.572	9.516	10.538	10.802	11.399
1991	0.293	0.974	2.185	3.565	5.346	7.113	9.531	10.303	11.364	12.417	12.059
1992	0.216	0.662	2.103	3.137	4.142	5.094	7.898	9.071	9.440	9.943	10.212
1993	0.112	0.526	1.544	3.045	4.810	6.289	9.424	11.287	11.814	12.303	11.957
1994	0.130	0.407	0.922	2.520	3.512	4.540	6.412	8.923	9.731	10.038	10.236
1995	0.103	0.297	0.922	1.802	3.362	5.272	7.734	10.459	12.411	12.816	13.260
1996	0.108	0.355	0.931	1.849	3.055	4.437	7.426	11.255	15.010	15.207	15.590
1997	0.138	0.311	0.935	1.768	2.694	3.539	5.242	8.222	12.757	13.667	13.282
1998	0.117	0.398	0.985	1.940	2.924	4.189	5.749	8.078	11.573	12.099	12.157
1999	0.163	0.505	1.093	2.717	3.721	5.162	6.987	9.125	11.234	12.079	12.135
2000	0.157	0.501	1.238	2.467	4.262	5.651	7.711	9.391	12.695	13.683	13.839
2001	0.171	0.460	1.230	2.426	3.722	5.227	7.298	10.910	13.480	14.531	14.700
2002	0.176	0.549	1.032	2.027	3.012	4.219	5.528	7.916	9.923	10.660	10.747

Table 1.6 Consumption per cod by cod age group (kg/year), based on Russian consumption calculations.

| Year/Age | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 11 | $13+$ | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1984 | 0.143 | 0.631 | 1.111 | 2.666 | 3.863 | 6.056 | 8.070 | 10.449 | 14.301 | 17.847 | 21.440 | 25.148 | 30.208 |
| 1985 | 0.127 | 0.573 | 1.192 | 2.336 | 4.036 | 7.181 | 9.895 | 13.839 | 18.254 | 24.072 | 33.991 | 25.809 | 31.905 |
| 1986 | 0.084 | 0.393 | 0.938 | 2.710 | 4.445 | 6.490 | 7.982 | 11.816 | 13.445 | 13.956 | 22.323 | 22.019 | 27.573 |
| 1987 | 0.065 | 0.246 | 0.469 | 1.182 | 2.890 | 4.467 | 8.730 | 12.496 | 15.760 | 22.749 | 31.785 | 26.061 | 33.419 |
| 1988 | 0.108 | 0.454 | 0.676 | 1.222 | 2.125 | 4.946 | 9.113 | 12.933 | 17.699 | 31.666 | 29.716 | 28.873 | 22.496 |
| 1989 | 0.100 | 0.621 | 0.971 | 1.672 | 2.767 | 4.734 | 7.570 | 12.092 | 18.200 | 29.092 | 27.509 | 31.944 | 24.690 |
| 1990 | 0.158 | 0.639 | 1.223 | 2.077 | 2.931 | 3.915 | 6.320 | 8.751 | 11.536 | 19.307 | 22.170 | 26.846 | 33.213 |
| 1991 | 0.117 | 0.641 | 2.084 | 4.363 | 6.510 | 9.194 | 12.131 | 15.742 | 21.272 | 33.258 | 29.318 | 33.661 | 43.774 |
| 1992 | 0.096 | 0.615 | 1.591 | 2.829 | 4.147 | 6.326 | 8.979 | 11.379 | 13.063 | 20.539 | 26.593 | 23.213 | 29.229 |
| 1993 | 0.061 | 0.292 | 1.077 | 2.921 | 4.249 | 6.169 | 9.823 | 12.664 | 15.049 | 19.050 | 20.561 | 24.118 | 28.646 |
| 1994 | 0.083 | 0.315 | 0.675 | 1.903 | 3.403 | 6.115 | 9.786 | 13.058 | 15.973 | 18.383 | 19.539 | 26.140 | 30.728 |
| 1995 | 0.089 | 0.306 | 0.588 | 1.475 | 3.598 | 6.895 | 11.199 | 15.596 | 20.948 | 26.682 | 29.550 | 31.744 | 37.235 |
| 1996 | 0.087 | 0.326 | 0.663 | 1.517 | 2.965 | 5.326 | 9.318 | 15.851 | 20.723 | 26.787 | 28.132 | 28.606 | 33.310 |
| 1997 | 0.066 | 0.266 | 0.737 | 1.728 | 2.873 | 4.383 | 7.567 | 13.674 | 26.353 | 40.331 | 36.182 | 36.016 | 44.404 |
| 1998 | 0.107 | 0.404 | 0.735 | 1.805 | 3.213 | 5.219 | 7.837 | 11.560 | 17.608 | 26.501 | 30.002 | 27.728 | 35.512 |
| 1999 | 0.111 | 0.335 | 0.702 | 2.080 | 4.183 | 7.058 | 9.923 | 13.588 | 17.179 | 29.047 | 30.772 | 30.687 | 38.739 |
| 2000 | 0.083 | 0.406 | 0.806 | 2.016 | 4.678 | 7.809 | 11.889 | 16.042 | 18.698 | 26.431 | 31.089 | 34.377 | 44.041 |
| 2001 | 0.080 | 0.360 | 0.917 | 1.872 | 3.897 | 7.820 | 10.508 | 18.214 | 20.210 | 29.856 | 36.909 | 35.597 | 47.083 |
| 2002 | 0.112 | 0.397 | 0.911 | 1.791 | 3.650 | 6.981 | 11.114 | 17.672 | 19.670 | 29.058 | 35.923 | 34.646 | 45.825 |

Table 1.7. Consumption by minke whale and harp seal (thousand tonnes). The figures for minke whales are based on data from 1992-1995, while the figures for harp seals are based on data for 1990-1996.

Prey	Minke whale consumption	Harp seal consumption (low capelin stock)	Harp seal consumption (high capelin stock)
Capelin	142	23	812
Herring	633	394	213
Cod	256	298	101
Haddock	128	47	1
Krill	602	550	605
Amphipods	0	304	313^{2}
Shrimp	0	1	1
Polar cod	1	880	608
Other fish	55	622	406
Other crustaceans	0	356	312
Total	1817	3491	3371

${ }^{1}$ the prey species is included in the relevant 'other' group for this predator.
${ }^{2}$ only Parathemisto

Table 1.8 Overview of recruitment models prognoses together with the 2003 assessment estimates. Models A-C is from WD1, model D from WD8 and model E from WD7. The model F is similar to model D, with the exception that for the survey index two year olds are used instead of one year olds. The two last rows are the NEA cod recruitment estimates from the 2003 assessments by XSA and Fleksibest (Section 3.5.2 and 3.10.4). The given month in the fifth column indicate when the prognoses can be extended for another year.

	Species	Variable	Prognoses year	Prognoses available	$\begin{aligned} & \hline 2003 \\ & \text { Prognoses } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2004 \\ & \text { Prognoses } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2005 \\ & \text { Prognoses } \\ & \hline \end{aligned}$
A	NEA cod	$\begin{aligned} & \text { 0-group, } \\ & \text { log (age 0) } \end{aligned}$	2	November	0.57	1.32	X
B	Barents Sea capelin	Recruits (age 1)	1	November	$1.7 * 10^{11}$	X	X
C	Norwegian spring spawning herring	Recruits (age 3)	3	November	$3.5 * 10^{9}$	$3.3 * 10^{9}$	$9.2 * 10^{9}$
D	NEA cod	Recruits (age 3)	$2\left(3^{1}\right)$	November (March ${ }^{1}$)	$789 * 10^{6}$	$678 * 10^{6}$	$827 * 10^{6}$
E	NEA cod	Recruits (age 3)	3	Before assessment	$774 * 10^{6}$	$784 * 10^{6}$	$811 * 10^{6}$
F	NEA cod	Recruits (age 3)			$816^{*} 10^{6}$	$595 * 10^{6}$	X
XSA/RCT3 Assessment 2003	NEA cod	Recruits (age 3)	3	At assessment	$681 * 10^{6}$	$308 * 10^{6}$	$664 * 10^{6}$
Fleksibest Assessment 2003	NEA cod	Recruits (age 3)	1	At assessment	$908 * 10^{6}$	X	X

${ }^{1}$ For the prognosis of NEA cod recruitment (model D) in 2005 a prognosis of mature capelin biomass (1.17 mill tonnes) is used (Section 1.3.1), thereby allowing for a three-year prognosis.

Figure 1.1 Temperature anomalies (upper panel) and salinity anomalies (lower panel) in the section Fugløya Bear Island (Asplin and Dahl, 2003).

Figure 1.2. Observed (thin blue line) and modeled (thick red line) development of the temperature in the Kolasection and temperature prognosis to 2010 (Asplin and Dahl, 2003)

Figure 1.3 Forecast of water temperature in the 0-200 m layer of the Kola Section for 2001-2006 made by A.Korsakov (PINRO) on the basis of analyses of frequency structure of the time-series.

Figure 1.4. Average zooplankton biomass $\left(\mathrm{g} \mathrm{m}^{-2}\right)$ together with biomass of one year old and older capelin (million tonnes) during 1984-2002, in the Barents Sea (from Dalpadado et al. 2002, updated with data for 2001-2002).

Figure 1.5 Dynamics of index of euphausiids abundance (ind./1000 m ${ }^{3}$) in 1952-2002

Figure 1.6. Prognoses of mean weight of cod as for the beginning of the year (starting year 2000). Blue bars (1) are modeled, red bars (2) are long-term means (1984-2001) and white dotted bars (3) are observed.

Figure 1.7. A scatterplot matrix showing the relationship between length and weight of cod (all ages combined) for Norwegian (N) and Russian (R) data for the years 1946 to 2001.

Figure 1.8. Predicted weight-at-length values for a cod of standard lengths ranging (10 cm intervals) from 30 to 120 cm (length given in upper left corner of the plot). The LOESS smoother (solid line) and approximate 95% confidence intervals (dotted lines) are also indicated.

Figure 1.9. Bivariate relationships between capelin stock biomass (thousand t) and a) predicted weight of cod at $70 \mathrm{~cm}(\mathrm{~g}) ;$ b) liver condition index of the $61-70 \mathrm{~cm}$ length class of $\operatorname{cod}(\%)$; and c$)$ estimated liver weight of cod at $70 \mathrm{~cm}(\mathrm{~g})$. Observations are denoted by year. Solid line indicates the least squares model fit and dashed lines indicate approximate 95% confidence intervals for the estimate.

$2.1 \quad$ Status of the Fisheries

2.1.1 Landings prior to 2003 (Table 2.9, Figure 2.2)

The catches of Norwegian Coastal cod (NCC) have been calculated back to 1984. During this period the catches have been between 25,000 and $75,000 \mathrm{t}$. The estimated landings of NCC in 2001 reported to the Working Group is $29,699 \mathrm{t}$ and the provisional figure for 2002 is $40,994 \mathrm{t}$ (Table 2.9, Figure 2.2).

The landings in 2002 increased compared with 2001 despite a reduction in the stock. Vessels smaller than 15 meters over fished their total cod quotas by approximately 18,000 tonnes. This fleet therefore had a substantial increase in the fishing effort in 2002. Since these vessels take a major part of their cod quotas in fjords and near the coast, the increased landings in 2002 were therefore located to the fjords. In this area the proportion of NCC is high and might explain the increased landings of coastal cod. The cod catches inside the 12 n.mile zone was separated to type of cod by the structure of the otoliths. A total of 12,204 otoliths were collected from the commercial catches (Table 2.1.A) and separated into quarter of catch and fishing gear. Approximately 21% of the otoliths were classified as coastal cod.

2.1.2 Expected landings in 2003

During winter/spring the amount of Northeast Arctic cod at spawning migration at the Norwegian coast was large (Mehl et al., WD 21) and hence the accessibility for the fishermen, and most of the vessels quotas were therefore taken. However, new regulations in 2003 in Norway instructs the vessels to fish at least 25% of their quotas in the autumn. Most of the cod caught in the autumn is supposed to be Norwegian coastal cod. This makes it difficult to estimate the landings in 2003. The working group therefore assume a status quo fishing mortality in 2003, which will result in landings of 27,269 tonnes using the same exploitation pattern as in the period 2000-2002, scaled to the 2002 level.

2.2 Status of Research

2.2.1 Survey results (Tables 2.1.B, 2.2, 2.3, 2.4, 2.7)

A Norwegian trawl-acoustic survey was conducted along the coast from Varanger to Stad in October-November 2002 using RV Jan Mayen. In 2002 the survey covered the same areas as the coastal surveys in 1995-2001.

The trawl-acoustic coastal survey in 2002 estimated a total survey biomass of NCC of about $41,000 \mathrm{t}$ (26 million fish) for the coastal area from Varanger to Stad at $62^{\circ} \mathrm{N}$ (Tables 2.1.B, 2.2, 2.7). The spawning biomass accounted for $26,000 \mathrm{t}$ (9 million fish) of the total (Tables 2.3, 2.4). More than seventy percent of the total coastal biomass was distributed from the Russian border to $67^{\circ} \mathrm{N}$ and 25% south of $67^{\circ} \mathrm{N}$ (Norwegian statistical areas 06 and 07). The bulk of the biomass was comprised of ages 3-7 (Table 2.2).

The data indicated a higher proportion of NCC in the fjords and to the south compared with the northern and outer areas. In the Norwegian statistical areas 06 and 07 (south of $67^{\circ} \mathrm{N}$) nearly all otoliths collected were of the NCC type, which is similar to the results of the 1995-2001 surveys.

The numbers of NCC per age groups from all the coastal surveys is given in Table 2.7. The total numbers decreased in 2002 compared with the 2001 survey. For age groups below 6 year the biomass and numbers decreased considerably from 2001 to 2002.

The Norwegian 2003 coastal survey (October-November) will be conducted in a similar way as the previous ones to further extend the time-series for NCC over its distribution area.

2.2.2 Age reading and stock separation

Age readings of the cod both from the surveys and from the catches, are done the same way as for the NEAC. A total of 2086 cod otoliths were sampled during the 2002 survey. These were separated into NCC type (1175) and NEAC (911). As in previous years, NCC was found throughout the survey area. The 2002 survey data shows the same pattern as the 1995-2001 surveys. The proportion of the NCC increases going from north to south along the Norwegian coast. The NCC type otoliths dominate south of $67^{\circ} \mathrm{N}$ (Norwegian statistical areas 06 and 07). Although the proportion is lower, there is significant biomass of NCC north of $67^{\circ} \mathrm{N}$. It must be emphasised that the Norwegian coastal surveys have
been conducted in August-November, and therefore there may be more NEAC in the southern area at other times of the year, especially during the spawning season in the winter time.

2.2.3 Weight-at-age (Table 2.11)

The weight-at-age (weighted average) from the trawl-acoustic survey in 2002 was at the same level as in 2001 for ages younger than 5 years. The difference in weight-at-age between 2001 and 2002 are mixed for cod older than 5 years. However, these weights are uncertain due to limited number of age samples. Weight-at-age for NCC is well above the present level for NEAC. There is a general tendency for cod to be heavier when caught further south along the coast (Table 2.11). The same tendency was found for the surveys in 1995-2001.

2.2.4 Maturity-at-age (Table 2.12)

The maturity-at-age is estimated from the data collected at the Norwegian coastal survey. The age at 50% maturity $\left(\mathrm{M}_{50}\right)$ for the NCC was estimated to be between 5 and 6 year on average for the surveyed area in 2002 (Table 2.12). There are some variations between the different areas. The 2002 data show that the average M_{50} is at the same level as that found in the 2001 survey. In addition, the average M_{50} for the NEAC in 2001 is close to 7 years.

2.3 Data Used in the Assessment

2.3.1 Catch-at-age (Table 2.9)

The catch-at-age $(0-10+$) for the period 1984-2002 is given in Table 2.9. The exploitation pattern in 2002 shifted towards older cod.

2.3.2 Weight-at-age (Table 2.10, 2.11)

The weight-at-age in the stock, used in the assessment, is obtained from the Norwegian coastal survey (Table 2.11). The weight-at-age in 2002 was slightly higher for cod at age 5 and younger and slightly lower for age 6 and older compared with 2001. The weight-at-age in the catch is given in Table 2.10.

2.3.3 Natural mortality

A fixed natural mortality of 0.2 was used.

2.3.4 Maturity-at-age (Table 2.12)

The maturity ogive data in 2002 is obtained from the Norwegian coastal survey and the values are at the same level as in 2001. The proportion mature-at-age is given in Table 2.12.

2.3.5 Tuning data (Table 2.7)

In previous assessments the acoustic indices (age 2-10+) from the Norwegian coastal survey conducted late autumn (1995-2001) have been used in the tuning (Table 2.7). ACFM proposed to exclude age group 9 from the tuning fleet due to high S.E. $(\log q)$ for this age group. The S.E. $(\log q)$ was slightly lower for several ages when excluding age 9 , and the WG therefore decided to exclude it in the tuning in this years assessment.

2.3.6 Prediction data (Tables 2.20, 2.21, 2.22)

The input data to the short-term prediction with management option table (2003-2005) are given in Table 2.21. For 2003-2005 the weight in stock, weight in catch and maturity-at-age were set to an average of 2000-2002. The recruitment in 2003 was estimated using RCT3 and set to the same level in 2004 and 2005 (6.1 million, Table 2.20). This might be an overestimation since the SSB has steadily decreased in this period and is presently at a lower level. The exploitation pattern is calculated using the average fishing mortality (age 4-7) from 2000 to 2002 scaled to the fishing mortality (age 4-7) in 2002. The scaling was used since there has been a trend towards fishing at older ages in recent years.

2.4.1 VPA and tuning (Table 2.8)

Tuning of the VPA was carried out using Extended Survival Analysis (XSA), using the default settings for the XSA with the following exceptions: (1) catchability was set to be stock size independent for all ages, and age independent for ages 8 and older. (2) The survivors estimate was shrunk towards the mean F of the final 2 years or the 4 oldest ages. (3) The standard error of the mean to which the survivor estimates are shrunk was set to 1.0 (Table 2.8). The standard error of the mean to which the survivor estimates are shrunk was set above the default level because the coastal survey has shown a steadily decline in the latest years. The WG assumes the survey is reflecting the development of the stock and more weight is therefore assigned to the survey. The value is set to the same level as for NEAC (1.0).

2.5 Results of the Assessment

2.5.1 Fishing mortality and VPA (Tables 2.13-2.19, Figure 2.2)

As a result of excluding age 9 in the tuning the historical F_{4-7} values decreased and the historical SSB increased. The F_{4-} ${ }_{7}$ in 2002 decreased and the SSB in 2002 increased using this new setting (see below).

Ages in the tuning	F_{4-7} in 2002	SSB in 2002	Stock biomass in 2002	Historical F_{4-7}	Recruits (age 2) in 2002
$2-9$	0.65	63,470	107,083	0.40	5,883
$2-8$	0.60	76,443	121,818	0.38	6,055

The average ages $4-7$ fishing mortality in 2002 were estimated to be 0.60 (Table 2.13). This is the highest observed level and well above the level in 2001 (0.37). In 1990 and 1991 the lowest F-values was estimated (0.18 and 0.16). The fishing mortality was stable in the period 1996-2001 at a level of about 0.35 . The total biomass of the stock in the period from 1984-2002 has been between $122,000 \mathrm{t}$ and $328,000 \mathrm{t}$ (Tables $2.17,2.19$). In 2002 the biomass was estimated to be the lowest observed and about half the biomass estimated five years ago in 1997. The spawning stock biomass has been between $76,000 \mathrm{t}$ and 207,000 t (Tables 2.18, 2.19, Figure 2.2). As for the total stock biomass, the lowest observed SSB was estimated in 2002. The SSB has declined steadily from 1994 to present. The SSB in 2002 was only about half of the average in the period 1984-2002.

A summary of landings, fishing mortality, stock biomass, spawning stock biomass and recruitment since 1984 is given in Table 2.19 and Figure 2.2.

2.5.2 Recruitment (Tables 2.7, 2.15, 2.19, 2.20)

Both the survey estimates of abundance in 2002 (age 1-4, Table 2.7), the XSA-estimate (age 2 and 3, Tables 2.15, 2.19) and result from the RCT3 (Table 2.20) indicate lower than average year classes from 1996-2000. The 2000 year class is the lowest observed in the time-series. Since 2000 the SSB has decreased further and the probability of weak year classes after 2000 is assumed to be high.

2.6 Reference Points and Safe Biological Limits

Candidates for reference points for Norwegian coastal cod were calculated by the WG last year. However, they were not adopted by ACFM.

The SSB is present the lowest observed in the time-series extending back to 1984. The year classes 1997-2000 are well below average. The XSA estimates of the recruiting year classes (age 2) are stable from one assessment to the next, and the recruitment from SSB below 100.000 t is clearly impaired. The SSB is at present well below this level and will at the beginning of 2004 be $50,000 \mathrm{t}$ assuming F status quo in 2003. In that sense, SSB will in 2004 be below any $\mathbf{B}_{\mathrm{lim}}$ candidate, and the probability of further recruitment failure is assumed to be high. A rebuilding plan for this stock is therefore required.

2.7 Catch Options for 2004 and Management Scenarios (Tables 2.22-2.23, Figure 2.2)

The total stock biomass and the SSB were further reduced during 2002 (respectively 25% and close to 15%). The management option table (2.22) shows that the expected catch of $27,269 \mathrm{t}$ in 2003 (assuming F status quo) will give an
unchanged fishing mortality $\left(\mathrm{F}_{2003}=0.60\right)$. The total stock biomass and the SSB will however be further reduced (more than 20%). The status quo catch in 2004 is $18,832 \mathrm{t}$, and leads to a further decrease of the total stock biomass. In 2005 the total stock biomass and the SSB will be $53,000 \mathrm{t}$ and the $37,000 \mathrm{t}$., which is less than half of the level in 2002. The SSB will not be rebuilt to the 2003 level even if the fishing mortality in 2004 is set to zero (Table 2.22). A catch of $6,500 \mathrm{t}(\mathrm{F}=0.18)$ brings the SSB up to the level in 2004 (Table 2.22, Figure 2.2).

2.8 Comments to the Assessment

2.8.1
 General comments

There is no explicit management of this stock. In accordance with the precautionary approach and the state of the stock, management objectives should be defined.

2.8.2 A comparison of the assessment results and the survey results (Figure 2.1)

Both the assessment and the surveys from 1995-2002 show a steeply declining stock. For ages 2-8 the survey indices and the XSA estimates are well correlated (Figure 2.1). It therefore seems like the survey and the XSA assessment reflect the changes in the stock number quite well. There is a general trend towards decreasing catchability with increasing age, except for cod older than 8 years.

2.8.3 Comparison of this years assessment with last years assessment.

The calculated fishing mortality F_{4-7} and SSB in 2001 is lower (23%) and SSB higher (40%) in this years assessment compared with last years assessment (see below). The recruitment in 2001 (1999 year class) is exactly the same in this year's assessment. Excluding age 9 in the tuning causes most of the observed reduction in F and increase in SSB and total stock biomass.

Assessment year	F_{4-7} year 2001	SSB year 2001	Total stock biomass 2001	Recruits age 2 year 2000
2001	0.48	56,584	102,214	9,536
2002	0.37	78,957	130,557	9,769

Table 2.1.a Number of otoliths sampled from commercial catches inside the 12 n.mile zone in the period 1985-2002. CC=coastal cod, NEAC=Northeast Arctic cod.

Year	Quarter 1		Quarter 2		Quarter 3		Quarter 4		Total		
	CC	NEAC	\% CC								
1985	1451	3852	777	1540	1277	1767	1966	730	5471	7889	41
1986	940	1594	1656	2579	0	0	669	966	3265	5139	39
1987	1195	2322	937	3051	638	1108	1122	1137	3892	7618	34
1988	257	546	160	619	87	135	55	44	559	1344	29
1989	556	1387	72	374	65	501	97	663	790	2925	21
1990	731	2974	61	689	252	97	265	674	1309	4434	23
1991	285	1168	92	561	77	96	279	718	733	2543	22
1992	152	619	281	788	79	82	272	672	784	2161	27
1993	314	1098	172	1046	0	0	310	541	796	2685	23
1994	317	1605	179	923	21	31	126	674	643	3233	17
1995	188	1591	232	1682	2095	1057	752	1330	3267	5660	37
1996	861	5486	591	1958	1784	1076	958	2256	4194	10776	28
1997	106	5429	367	2494	1940	894	1690	1755	5103	10572	33
1998	608	4930	552	1342	489	1094	2999	2217	4648	9583	33
1999	1277	4702	493	2379	202	717	961	1987	2933	9785	23
2000	1283	4918	365	2112	386	1295	472	1668	2506	9993	20
2001	102	5091	352	2295	126	786	432	983	2012	9155	18
2002	823	5818	321	1656	503	831	897	1355	2544	9660	21

Table 2.1.b Estimated survey number (x1000) of Norwegian Coastal cod at age from the Norwegian coastal survey during the autumn 2002.

Area	Age											Total
	0	1	2	3	4	5	6	7	8	9	10+	
03 East Finnmark	1206	125	212	490	462	303	177	69	28	0	6	3078
04 West Finnmark/Tromsø	3131	565	1046	1480	1568	1618	522	438	151	6	61	10586
05 Lofoten/Vesterålen	261	358	1309	1155	1702	949	1456	650	149	0	3	7992
00 Vestfjord	0	108	188	118	232	270	93	93	0	23	19	1144
06 Nordland	0	155	194	703	729	310	48	148	39	0	39	2365
07 Møre	0	18	41	157	247	167	297	72	41	0	0	1040
Total	4598	1329	2990	4103	4940	3617	2593	1470	408	29	128	26205

Table 2.2 Estimated survey biomass (tonnes) of Norwegian Coastal cod at age from the Norwegian coastal survey during the autumn 2002.

	Age										$\mathbf{9}$	
	Area	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}+$
Total												
$\mathbf{0 3}$ East Finnmark	9	9	60	359	775	736	551	142	97	0	81	2819
$\mathbf{0 4}$ West Finnmark/Troms	31	53	449	1226	2449	4260	1576	1888	564	39	930	13465
$\mathbf{0 5}$ Lofoten/Vesterålen	2	32	609	1050	2625	1768	3736	2411	782	0	22	13037
00 Vestfjord	0	21	83	105	455	781	699	690	0	186	306	3326
06 Nordland	0	14	39	715	1617	595	96	646	137	0	324	4183
$\mathbf{0 7}$ Møre	0	8	39	217	679	661	1466	505	214	0	0	3789
Total	42	137	1279	3672	8600	8801	8124	6282	1794	225	1663	40619

Table 2.3 Estimated survey spawning stock number (x1000) of Norwegian Coastal cod at age from the Norwegian coastal survey during the autumn 2002.

Area	Age											Total
	0	1	2	3	4	5	6	7	8	9	10+	
03 East Finnmark	0	0	0	10	154	231	177	69	28	0	6	674
04 West Finnmark/Troms	0	0	9	87	344	1405	522	438	140	6	61	3012
05 Lofoten/Vesterålen	0	0	37	0	495	844	1290	650	149	0	3	3468
00 Vestfjord	0	0	0	0	23	240	93	93	0	23	19	491
06 Nordland	0	0	0	0	182	310	48	0	39	0	39	618
07 Møre	0	0	0	0	88	137	281	72	41	0	0	618
Total	0	0	46	97	1287	3165	2410	1322	397	29	128	8881

Table 2.4 Estimated survey spawning stock biomass (tonnes) of Norwegian Coastal cod at age from the Norwegian coastal survey during the autumn 2002.

Table 2.5 Weight (gram)-at-age (year) for Norwegian Coastal cod from the
Norwegian coastal survey during the autumn 2002.

Area	Age										
	0	1	2	3	4	5	6	7	8	9	10+
03 East Finnmark	7	72	283	733	1677	2429	3113	2058	3464		13500
04 West Finnmark/Troms	10	94	429	828	1562	2633	3019	4311	3735	6500	15246
05 Lofoten/Vesterålen	8	89	465	909	1542	1863	2566	3709	5248		7333
00 Vestfjord		194	441	890	1961	2893	7516	7419		8087	16105
06 Nordland		90	201	1017	2218	1919	2000	4365	3513		8308
07 Møre		444	951	1382	2749	3958	4936	7014	5220		
Weighted average	9	103	428	895	1741	2433	3133	4273	4397	7759	12992

Table 2.6 Percent mature at age for Norwegian Coastal cod at age from the Norwegian coastal survey during the autumn 2002.

Area	Age										
	0	1	2	3	4	5	6	7	8	9	10+
03 East Finnmark	0	0	0	2	33	76	100	100	100	100	100
04 West Finnmark/Troms	0	0	1	6	22	87	100	100	93	100	100
05 Lofoten/Vesterålen	0	0	3	0	29	89	89	100	100	100	100
00 Vestfjord	0	0	0	0	10	89	100	100	100	100	100
06 Nordland	0	0	0	0	25	100	100	0	100	100	100
07 Møre	0	0	0	0	36	82	94	100	100	100	100
Weighted average	0	0	2	2	26	88	93	90	97	100	100

Table 2.7
Estimated survey numbers-at-age (x1000) of Norwegian Coastal cod from the coastal surveys from 1995-2002.

YEAR	Age											
	0	1	2	3	4	5	6	7	8	9	10+	TOTAL
1995	2157	28707	20191	13633	15636	16219	9550	3174	1158	781	579	111785
1996	-	1756	17378	22815	12382	12514	6817	3180	754	242	5	77843
1997	5632	30694	18827	28913	17334	12379	10612	3928	1515	26	663	130523
1998	35098	14455	13659	15003	13239	7415	3137	1578	315	169	128	104197
1999	34	6850	11309	12171	10123	7197	3052	850	242	112	54	51994
2000	17620	9587	11528	11612	8974	7984	5451	1365	488	85	97	74791
2001	9292	8366	6729	7994	7578	4751	2567	1493	487	189	116	49562
2002	4598	1329	2990	4103	4940	3617	2593	1470	408	29	128	26205

Table 2.8

```
Lowestoft VPA Version 3.1
```

```
24/04/2003 14:17
```

Extended Survivors Analysis
Norwegian Coastal Cod,COMBSEX, PLUSGROUP
CPUE data from file c:\VPA\DATA\2003age9\NOR-COAS.TUN
Catch data for 19 years. 1984 to 2002. Ages 2 to 10 .
Fleet, First, Last, First, Last, Alpha, Beta
year, year, age , age,
Norw. Coast. survey, 1995, 2002, 0, 8, .750, . 850
Time-series weights :
Tapered time weighting applied
Power $=3$ over 20 years
Catchability analysis :
Catchability independent of stock size for all ages
Catchability independent of age for ages $>=8$
Terminal population estimation :
Survivor estimates shrunk towards the mean F
of the final 2 years or the 4 oldest ages.
S.E. of the mean to which the estimates are shrunk $=1.000$
Minimum standard error for population
estimates derived from each fleet $=\quad .300$
Prior weighting not applied
Tuning converged after 114 iterations
Regression weights
, .877, .921, .954, .976, .990, .997, 1.000, 1.000
Fishing mortalities
Age, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002

2,	.026,	.032,	.048,	.024,	.015,	.011,	.005,	.036
3,	.046,	.098,	.123,	.137,	.074,	.075,	.045,	.132
4,	.131,	.173,	.182,	.253,	.161,	.299,	.198,	.300
5,	.252,	.447,	.236,	.373,	.375,	.425,	.424,	.528
6,	.305,	.377,	.427,	.397,	.479,	.429,	.415,	.905
7,	.436,	.396,	.642,	.518,	.544,	.355,	.423,	.660
8,	.306,	.554,	.638,	.715,	.515,	.198,	.295,	.540
9,	.327,	.314,	.538,	.387,	.777,	.156,	.167,	.289

Table 2.8 (continued)

XSA population numbers (Thousands)

				AGE					
YEAR	,	2,	3 ,	4,	5,	6,	7 ,	8 ,	9 ,
1995	,	3.53E+04,	2.20E+04,	2.11E+04,	2.57E+04,	2.33E+04,	1.02E+04,	6.11E+03,	2.21E+03,
1996	,	4.13E+04,	2.82E+04,	1.72E+04,	1.51E+04,	1.63E+04,	1.41E+04,	5.41E+03,	3.68E+03,
1997	,	3.13E+04,	$3.27 \mathrm{E}+04$,	2.09E+04,	$1.19 \mathrm{E}+04$,	7.92E+03,	9.18E+03,	7.76E+03,	2.55E+03,
1998	,	2.58E+04,	$2.44 \mathrm{E}+04$,	2.37E+04,	1.43E+04,	7.66E+03,	4.23E+03,	3.95E+03,	3.35E+03,
1999	,	1.85E+04,	$2.06 \mathrm{E}+04$,	1.74E+04,	1.51E+04,	8.06E+03,	4.22E+03,	2.06E+03,	1.58E+03,
2000	,	1.57E+04,	1.49E+04,	1.57E+04,	1.22E+04,	8.47E+03,	4.09E+03,	2.00E+03,	1.01E+03,
2001		9.77E+03,	1.27E+04,	1.13E+04,	9.50E+03,	6.50E+03,	4.52E+03,	2.35E+03,	1.35E+03,
2002	,	$6.06 \mathrm{E}+03$,	7.96E+03,	9.93E+03,	7.60E+03,	5.09E+03,	3.52E+03,	2.42E+03,	1.43E+03,

Estimated population abundance at 1st Jan 2003
$, \quad 0.00 \mathrm{E}+00,4.78 \mathrm{E}+03,5.71 \mathrm{E}+03,6.02 \mathrm{E}+03,3.67 \mathrm{E}+03,1.69 \mathrm{E}+03,1.49 \mathrm{E}+03,1.16 \mathrm{E}+03$,

Taper weighted geometric mean of the VPA populations:

```
, 2.51E+04, 2.38E+04, 2.09E+04, 1.60E+04, 1.07E+04, 6.65E+03, 3.52E+03, 1.79E+03,
``` Standard error of the weighted Log(VPA populations) :
, .6747, .5297, .4378, .4398, .4606, .4743, .5110, .6130,

Log catchability residuals.

Fleet : Norw. Coast. survey
\begin{tabular}{rrrrrrrrr}
Age, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002 \\
2, & -.01, & -.31, & .06, & -.08, & .05, & .23, & .16, & -.14 \\
3, & -.11, & .20, & .31, & -.05, & -.13, & .14, & -.09, & -.25 \\
4, & .09, & .09, & .24, & -.10, & -.13, & -.04, & .04, & -.16 \\
5, & -.07, & .36, & .42, & -.17, & -.25, & .11, & -.16, & -.22 \\
6 & -.30, & -.22, & .98, & -.23, & -.24, & .25, & -.25, & -.02 \\
7, & -.01, & -.36, & .48, & .24, & -.35, & .00, & .04, & -.05 \\
8, & .08, & -.03, & .38, & -.46, & -.23, & .24, & .16, & -.13
\end{tabular}

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Age & 2, & 3, & 4, & 5, & 6, & 7, & 8 \\
\hline Mean Log \(q\), & -. 3722, & -.1718, & -. 1202, & -.0315, & -.1897, & -. 6532, & \\
\hline S.E(Log q) , & . 1731, & .1920, & .1349, & . 2641, & . 4366 , & . 2786, & \\
\hline
\end{tabular}

Regression statistics :

Ages with \(q\) independent of year class strength and constant w.r.t. time.

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q
\begin{tabular}{rrrrrrrr}
2, & 1.08, & -.679, & -.35, & .93, & 8, & .19, & -.37, \\
3, & .78, & 2.229, & 2.27, & .95, & 8, & .12, & -.17, \\
4, & .86, & .920, & 1.42, & .89, & 8, & .12, & -.12, \\
5, & .91, & .317, & .87, & .69, & 8, & .26, & -.03, \\
6, & 1.28, & -.612, & -2.34, & .45, & 8, & .59, & -.19, \\
7, & 1.02, & -.088, & .49, & .77, & 8, & .31, & -.65, \\
8, & .90, & .563, & 2.05, & .84, & 8, & .26, & -1.34,
\end{tabular}

\section*{Table 2.8 (continued)}

Terminal year survivor and \(F\) summaries :
Age 2 Catchability constant w.r.t. time and dependent on age Year class \(=2000\)

Weighted prediction :
\begin{tabular}{cccccc}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & S.e, & , & Ratio, & \\
\(4784 .\), & .29, & .48, & 2, & 1.671, & .036
\end{tabular}

Age 3 Catchability constant w.r.t. time and dependent on age Year class \(=1999\)

Weighted prediction :
\begin{tabular}{cccccc}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & s.e, & Ratio, & \\
\(5708 .\), & .21, & .20, & 3, & .947, & .132
\end{tabular}

Age 4 Catchability constant w.r.t. time and dependent on age Year class = 1998
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, Survivors, & \[
\begin{aligned}
& \text { Int, } \\
& \text { s.e, }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ext, } \\
& \text { s.e, }
\end{aligned}
\] & \begin{tabular}{l}
Var, \\
Ratio,
\end{tabular} & & Scaled, Weights, & \[
\begin{gathered}
\text { Estimated } \\
\mathrm{F}
\end{gathered}
\] \\
\hline Norw. Coast. survey & 5972., & . 173, & . 120, & .69, & 3, & . 960 , & 302 \\
\hline F shrinkage mean & 7433., & 1.00, & & & & . 040 , & 250 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{cccccc}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & S.e, & S.e, & Ratio, & \\
\(6025 .\), & .17, & .10, & 4, & .582, & .300
\end{tabular}

Age 5 Catchability constant w.r.t. time and dependent on age Year class \(=1997\)

Weighted prediction :
\begin{tabular}{cccccc}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & S.e, & , & Ratio, & \\
\(3669 .\), & .15, & .08, & 5, & .497, & .528
\end{tabular}

\section*{Table 2.8 (continued)}

Age 6 Catchability constant w.r.t. time and dependent on age Year class = 1996
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, & Int, & Ext, & Var, & & Scaled, & Estimated \\
\hline , & Survivors, & s.e, & s.e, & Ratio, & & Weights, & F \\
\hline Norw. Coast. survey & 1536., & . 150 , & . 028, & . 19, & 5, & . 916, & 961 \\
\hline F shrinkage mean & \(4689 .\), & 1.00, & & & & . 084 , & . 425 \\
\hline
\end{tabular}
\begin{tabular}{llllll}
Weighted prediction : \\
Survivors, & & & & \\
at end of year, & Int, & Ext, & N, & Var, & F \\
1686., & .16, & s.e, & , & Ratio, & \\
& & & 6, & .912, & .905
\end{tabular}

Age 7 Catchability constant w.r.t. time and dependent on age Year class \(=1995\)

Weighted prediction :
\begin{tabular}{cccccc}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & S.e, & Ratio, & \\
\(1488 .\), & .15, & .08, & 7, & .551, & .660
\end{tabular}

Age 8 Catchability constant w.r.t. time and dependent on age Year class \(=1994\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, & Int, & Ext, & Var, & & Scaled, & Estimated \\
\hline , & Survivors, & s.e, & s.e, & Ratio, & , & Weights, & F \\
\hline Norw. Coast. survey & 1096., & .145, & . 068 , & . 47 , & 7, & . 946 , & 563 \\
\hline F shrinkage mean & 2946., & 1.00, & & & & . 054 , & 248 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{cccccc}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & s.e, & Ratio, & \\
\(1156 .\), & .15, & .11, & 8, & .723, & .540
\end{tabular}

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 8 Year class = 1993

Weighted prediction :
Survivors, Int, Ext, N, Var, F
\begin{tabular}{ccccc}
at end of year, s.e, & s.e, & Ratio, & \\
\(877 .\), & .15, & .11, & 8, & .750,
\end{tabular}

Table 2.9
Run title : Norwegian Coastal Cod,COMBSEX, PLUSGROUP
At 24/04/2003 14:17

Table 2.9 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 1 & Catch & numbe & t-age & \multicolumn{2}{|l|}{Numbers*10**-3} & \multirow[b]{2}{*}{1998,} & \multirow[b]{2}{*}{1999,} & \multirow[b]{2}{*}{2000,} & \multirow[b]{2}{*}{2001,} & \multirow[b]{2}{*}{2002,} \\
\hline YEAR, & 1993, & 1994, & 1995, & 1996, & 1997, & & & & & \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 2, & 4, & 332, & 810, & 1193, & 1326, & 554, & 252, & 156, & 44, & 192, \\
\hline 3, & 369, & 573, & 896, & 2376, & 3438, & 2819, & 1322, & 971, & 505, & 893, \\
\hline 4, & 1706, & 1693, & 2345, & 2480, & 3150, & 4786, & 2346, & 3664, & 1837, & 2331, \\
\hline 5, & 2343, & 4302, & 5188, & 4930, & 2258, & 4023, & 4263, & 3807, & 2974, & 2822, \\
\hline 6, & 2684, & 2467, & 5546, & 4647, & 2490, & 2272, & 2773, & 2671, & 1998, & 2742, \\
\hline 7, & 3072, & 3337, & 3270, & 4160, & 3935, & 1546, & 1602, & 1104, & 1409, & 1538, \\
\hline 8, & 1871, & 1514, & 1455, & 2082, & 3312, & 1826, & 751, & 326, & 542, & 915, \\
\hline 9, & 627, & 777, & 557, & 898, & 959, & 975, & 774, & 132, & 187, & 325, \\
\hline +gp, & 690, & 798, & 433, & 543, & 684, & 343, & 320, & 152, & 119, & 377, \\
\hline TOTALNUM, & 13366, & 15793, & 20500, & 23309, & 21552, & 19144, & 14403, & 12983, & 9615, & 12135, \\
\hline TONSLAND, & 52557, & 54562, & 57207, & 61776, & 63319, & 51572, & 40732, & 36715, & 29699, & 40994, \\
\hline SOPCOF \%, & 100, & 100, & 100, & 100, & 100, & 99, & 100, & 100, & 100, & 102, \\
\hline
\end{tabular}

\section*{Table 2.10}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Table 2 & C & weight & -at-age & (kg) & & & & & \\
\hline YEAR, & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & 1991, & 1992, \\
\hline \multicolumn{10}{|l|}{AGE} \\
\hline 2, & . 2480 , & . 2140, & . 2270, & . 3310, & . 2460 , & . 3000 , & . 3450 , & . 1640 , & 1680, \\
\hline 3, & .6190, & . 7120, & . 5250, & . 6730, & .6340, & .6610, & 1.1740, & . 9220, & 5560, \\
\hline 4, & 1.1490, & 1.4150, & 1.0800, & 1.1200, & 1.1700, & 1.8360, & 1.5150, & 1.6080, & 1.3590, \\
\hline 5, & 1.7340, & 2.0360, & 1.7060, & 1.6930, & 1.7270, & 2.1700, & 1.6780, & 2.1080, & 2.2670, \\
\hline 6, & 2.3250, & 2.7370, & 2.2560, & 2.3590, & 2.3280, & 2.4480, & 2.7080, & 2.5070, & 2.9570, \\
\hline 7, & 3.4860, & 4.0120, & 3.3530, & 3.7430, & 3.2560, & 4.3910, & 3.8980, & 3.4690, & 3.9030, \\
\hline 8, & 4.8450, & 6.1160, & 4.8380, & 5.3260, & 4.7000, & 4.8990, & 6.5150, & 4.9760, & 5.3170, \\
\hline 9, & 5.6080, & 6.4600, & 5.8380, & 6.1290, & 5.4500, & 6.6610, & 7.2990, & 5.7340, & 4.5580, \\
\hline +gp, & 8.8400,1 & 0.7550, & 7.0530, & 11.6230, & 8.2020, & 1.6080, & 3.9240 , & 1.0590, & 7.0320, \\
\hline SOPCOFAC & 0002, & 0000 & 1.0001 & 0 & 1.000 & 000 & 1.0002, & 1.0003, & 1.0001 \\
\hline
\end{tabular}

\section*{Table 2.10 (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 2 & Catch & weigh & at-age & (kg) & & & & & & \\
\hline YEAR, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002, \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 2, & . 2410, & . 2540 , & . 3020, & . 2740 , & . 2770, & . 3760 , & . 4670, & . 5150, & . 1640 , & .4910, \\
\hline 3, & . 6450, & . 8050 , & . 7100 , & . 9210, & . 9700, & . 9780 , & 1.1550, & 1.3050, & . 9520, & 1.1790, \\
\hline 4, & 1.7100, & 1.4760, & 1.3350, & 1.4640, & 1.5540, & 1.5180, & 1.6330, & 2.2720, & 1.6370, & 1.8000, \\
\hline 5, & 2.5910, & 2.0970, & 1.8420, & 1.9790, & 1.9700, & 2.2810, & 2.1710, & 2.5550, & 2.8810, & 2.4850, \\
\hline 6, & 3.5880, & 3.2870, & 2.4670, & 2.5160, & 2.8970, & 3.1250, & 3.2490, & 3.2830, & 3.4240, & 3.8600, \\
\hline 7, & 4.3660, & 4.0950, & 4.1910, & 3.4610, & 3.7160, & 3.9000, & 4.0950, & 4.5040, & 4.0380, & 4.7600, \\
\hline 8 , & 5.8990, & 5.5920, & 5.7780, & 4.8660, & 4.8290, & 5.5200, & 5.0130, & 5.4000, & 5.3970, & 5.1950, \\
\hline 9, & 6.4940, & 7.2170, & 6.3760, & 5.3910, & 6.3490, & 6.3330, & 6.0180, & 6.3790, & 7.2080, & 5.5070, \\
\hline +gp, & 7.5090, & 8.3310, & 9.9030, & 8.8540, & 9.2670, & 9.3370, & 6.2550, & 6.4200, & 6.8810, & 9.1830, \\
\hline SOPCOFAC, & 1.0000, & 1.0000, & 1.0001, & 1.0001, & 1.0003, & . 9919, & 1.0002, & . 9999 , & 1.0004, & 1.0181, \\
\hline
\end{tabular}

Table 2.11
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 左 & 3 & , & - & (kg) & & & & & \\
\hline YEAR, & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & 1991, & 1992, \\
\hline \multicolumn{10}{|l|}{AGE} \\
\hline 2, & . 3210, & . 3210, & . 3210, & . 3210, & . 3210 , & . 3210, & . 3210, & . 3210, & . 3210, \\
\hline 3, & . 7580 , & . 7580 , & . 7580 , & . 7580 , & . 7580 , & . 7580 , & . 7580 , & . 7580 , & . 7580 , \\
\hline 4, & 1.4790, & 1.4790, & 1.4790, & 1.4790, & 1.4790, & 1.4790, & 1.4790, & 1.4790, & 1.4790, \\
\hline 5, & 2.1370, & 2.1370, & 2.1370, & 2.1370, & 2.1370, & 2.1370 & 2.1370, & 2.1370, & 2.1370, \\
\hline 6, & 2.8140, & 2.8140, & 2.8140, & 2.8140, & 2.8140, & 2.8140, & 2.8140, & 2.8140, & 2.8140, \\
\hline 7, & 4.7220, & 4.7220, & 4.7220, & 4.7220, & 4.7220, & 4.7220, & 4.7220, & 4.7220, & 4.7220, \\
\hline 8, & 6.6850, & 6.6850, & 6.6850, & 6.6850, & 6.6850 , & 6.6850 , & 6.6850, & 6.6850 , & 6.6850 , \\
\hline 9, & 6.9800, & 6.9800, & 6.9800, & 6.9800, & 6.9800, & 6.9800 , & 6.9800, & 6.9800, & 6.9800, \\
\hline +gp, & 9.7230, & 9.7230, & 9.7230, & 9.7230, & 9.7230, & 9.7230, & 9.7230, & 9.7230, & 9.7230, \\
\hline
\end{tabular}

\section*{Table 2.11 (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table & 3 & ck we & ts-at & ge (kg) & & & & & & \\
\hline YEAR, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002, \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 2, & . 3210, & . 3210, & . 3900, & . 2520 , & . 2400 , & . 3720, & . 3230 , & . 3650 , & . 3960 , & . 4280 , \\
\hline 3, & . 7580 , & . 7580 , & . 7910, & . 7240 , & .6830, & . 8830 , & . 8410 , & . 8090 , & . 9660 , & . 8950 , \\
\hline 4, & 1.4790, & 1.4790, & 1.5250, & 1.4330, & 1.3640, & 1.4560, & 1.6750, & 1.5540, & 1.5240, & 1.7410, \\
\hline 5, & 2.1370, & 2.1370, & 2.2220, & 2.0530, & 1.8930, & 2.1070, & 2.1920, & 2.5390, & 2.3140, & 2.4330, \\
\hline 6, & 2.8140, & 2.8140, & 2.8810, & 2.7480, & 2.8160, & 2.9500, & 2.8570, & 3.0490, & 3.3200, & 3.1330, \\
\hline 7, & 4.7220, & 4.7220, & 4.6650, & 4.7220, & 4.4260, & 4.3190, & 4.5400, & 4.3520, & 3.6950, & 4.2730, \\
\hline 8, & 6.6850, & 6.6850, & 6.9790, & 6.6850, & 6.4060, & 5.6250, & 6.5790 , & 6.2030, & 6.1440 , & 4.3970, \\
\hline 9, & 6.9800, & 6.9800, & 6.7590, & 6.9320, & 7.8050, & 8.3230, & 9.4540, & 8.5270 , & 8.7680, & 7.7590, \\
\hline +gp, & 9.7230, & 9.7230, & 9.8970, & 9.7230, & 0.8270, & 8. 4680 & 12.9020, & 12.0660, & 12.4680, & 2.9920, \\
\hline
\end{tabular}

\section*{Table 2.12}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Table & 5 & porti & mature & at age & & & & & \\
\hline YEAR, & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & 1991, & 1992, \\
\hline \multicolumn{10}{|l|}{AGE} \\
\hline 2, & . 0100 , & . 0100 , & . 0100 , & . 0100 , & . 0100 , & . 0100 , & . 0100 , & . 0100 , & . 0100 , \\
\hline 3, & . 0600 , & . 0600 , & . 0600 , & . 0600 , & . 0600 , & . 0600 , & . 0600 , & . 0600 , & . 0600 , \\
\hline 4 , & . 2400 , & . 2400 , & . 2400 , & . 2400 , & . 2400 , & . 2400 , & . 2400 , & . 2400 , & . 2400 , \\
\hline 5, & . 4900, & . 4900, & . 4900 , & . 4900, & . 4900 , & . 4900 , & . 4900, & . 4900 , & . 4900 , \\
\hline 6, & . 7200 , & . 7200 , & . 7200 , & . 7200 , & . 7200 , & . 7200 , & . 7200 , & . 7200 , & . 7200 , \\
\hline 7, & . 8800 , & . 8800 , & . 8800 , & . 8800 , & . 8800 , & . 8800 , & . 8800 , & . 8800 , & . 8800 , \\
\hline 8, & . 9500 , & . 9500 , & . 9500 , & . 9500 , & . 9500 , & . 9500 , & . 9500 , & . 9500 , & . 9500 , \\
\hline 9, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000 , \\
\hline +gp, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, \\
\hline
\end{tabular}

\section*{Table 2.12 (continued)}

Table 2.13

\section*{Table 2.13 (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 8 & \multicolumn{11}{|l|}{Fishing mortality (F) at age} \\
\hline YEAR, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002, & FBAR 84-02 \\
\hline AGE & & & & & & & & & & & \\
\hline 2, & . 0001 , & . 0135, & . 0257 , & . 0325 , & . 0480 , & . 0241 , & . 0152, & .0111, & . 0050 , & . 0357 , & . 0172, \\
\hline 3, & . 0100 , & . 0243 , & . 0460 , & . 0978, & . 1234 , & . 1366 , & . 0736, & . 0748 , & . 0450 , & . 1324 , & . 0841 , \\
\hline 4, & . 0454 , & . 0579, & . 1313 , & .1733, & .1819, & . 2528 , & . 1610 , & . 2992 , & . 1978, & . 3002 , & . 2657 , \\
\hline 5, & . 1304 , & . 1544 , & . 2525 , & . 4470, & . 2363, & . 3729 , & . 3754 , & . 4251, & . 4244, & . 5282, & . 4592 , \\
\hline 6, & . 1971, & . 1975, & . 3050 , & . 3772 , & . 4272 , & . 3969 , & . 4787 , & . 4286 , & . 4148, & . 9048 , & . 5827, \\
\hline 7, & . 4923, & . 4018 , & . 4361 , & . 3956 , & . 6423, & . 5178, & . 5441, & . 3547 , & . 4228, & . 6604 , & . 4793 , \\
\hline 8, & . 4232 , & . 4826 , & . 3057 , & . 5536, & . 6384 , & . 7146 , & . 5149, & . 1981, & . 2947, & . 5403, & . 3444 , \\
\hline 9, & . 3126 , & . 3109 , & . 3268 , & . 3141, & . 5379 , & . 3875 , & . 7769 , & . 1562, & . 1666, & . 2891, & . 2039 , \\
\hline +gp, & . 3126 , & . 3109 , & . 3268 , & . 3141, & . 5379, & . 3875 , & . 7769 , & . 1562, & . 1666 , & 2891, & \\
\hline , & 2163 & 2029 & 2812 & & & & 3898 & & & & \\
\hline
\end{tabular}

\section*{Table 2.14}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline e & & Eive F & a & & & & & & \\
\hline YEAR, & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & 1991, & 1992, \\
\hline \multicolumn{10}{|l|}{AGE} \\
\hline 2, & . 0168, & . 0110 , & . 2293, & . 0101 , & . 0048 , & . 0025 , & . 0010 , & . 0132, & . 0041 , \\
\hline 3, & . 1195, & . 2459 , & .1319, & . 0831, & . 1153, & . 1061, & . 0552 , & .1143, & 0646 , \\
\hline 4, & . 3486 , & . 4224, & . 5493, & . 4438 , & . 3241 , & . 1884, & . 3007 , & . 3142 , & 5821, \\
\hline 5, & . 5363, & . 8760 , & . 7923 & 2200, & . 4305 , & . 5564, & . 4801 & 1329, & . 9936 , \\
\hline 6, & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{1.0100,1.2069,1.1076,}} & \multicolumn{2}{|l|}{.8926,1.2369,} & . 9613, & \multicolumn{2}{|l|}{. 8291,1.0154,} & 1.2410, \\
\hline 7, & & & & \multicolumn{3}{|l|}{1.4436,2.0085,2} & \multicolumn{2}{|l|}{2.3901,1.5375,} & 1.1833, \\
\hline 8, & \multicolumn{3}{|l|}{\[
\begin{aligned}
& 2.1051,1.4946,1.5507, \\
& 1.7239,1.2004,1.6087,
\end{aligned}
\]} & \multicolumn{2}{|l|}{1.4930,} & 4983 & . 4821 & . 0866 , & 1.2577, \\
\hline 9, & \multicolumn{3}{|l|}{\[
\begin{aligned}
& 1.7239,1.2004,1.6087, \\
& 1.3579,1.2052,1.2772,
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
1.2735,1.4132
\]} & 5910 & . 8060 & 1984, & 1.1750, \\
\hline +gp, & \multicolumn{3}{|l|}{\[
\begin{aligned}
& 1.3579,1.2052,1.2772, \\
& 1.3579,1.2052,1.2772,
\end{aligned}
\]} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{1.2735,1.4132,}} & 5910 & 8060 & 1984, & 1.1750, \\
\hline & & & & & & & & & \\
\hline
\end{tabular}

\section*{Table 2.14 (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table & & ive & at age & & & & & & & & \\
\hline YEAR, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002, & MEAN \\
\hline \multicolumn{12}{|l|}{AGE} \\
\hline 2, & . 0006 , & . 0668 , & . 0913, & . 0932 , & . 1290 , & . 0625 , & . 0390 , & . 0293 , & . 0137 , & . 0596 , & . 0342 , \\
\hline 3, & . 0462 , & .1199, & .1636, & 2808, & . 3319 , & . 3546 , & .1889, & .1984, & . 1232, & . 2213, & .1810, \\
\hline 4, & . 2099, & . 2854 , & . 4671, & . 4977, & . 4891 , & . 6565, & . 4131, & . 7940 , & . 5420, & . 5016, & .6125, \\
\hline 5, & .6030, & . 7609 , & . 8978, & . 2834 , & . 6354, & . 9682 , & . 9630, & 1.1278, & 1.1629, & . 8828 , & 1.0578, \\
\hline 6 , & . 9113, & . 9732 & . 0845 & .0831,1 & 1485, & . 0307 , & 1.2282, & 1.1372, & 1.1366, & 1.5120, & 1.2619, \\
\hline 7, & 2.2757, & 1.9805, & .5507, & . 1358 , & . 7270 , & . 3445 , & 1.3958, & . 9410, & 1.1585, & 1.1036, & 1.0677, \\
\hline 8, & 1.9563,2 & 2.3788, & . 0869, & . 5895 , & . 7163, & . 8556, & 1.3209, & . 5256, & . 8076 , & . 9029, & . 7453 , \\
\hline 9, & 1.4451, & 1.5323, & 1.1620, & . 9018, & . 4461 , & 1.0062, & 1.9930, & . 4143 , & . 4566 , & . 4831 , & . 4513, \\
\hline +gp, & 1.4451, & 1.5323, & 1.1620, & . 9018, & .4461, & . 00062, & 1.9930, & . 4143, & . 4566 , & . 4831, & \\
\hline REFMEAN, & . 2163, & . 2029, & .2812, & . 3483, & . 3719, & . 3851 , & . 3898 , & . 3769 , & . 3650 , & . 5984, & \\
\hline
\end{tabular}

Table 2.15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline ble 10 & Stock & \multicolumn{4}{|c|}{(start of year)} & \multicolumn{4}{|c|}{Numbers*10**-3} \\
\hline YEAR, & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & 1991, & 1992, \\
\hline AGE & & & & & & & & & \\
\hline 2, & 88072 , & 75530, & 36372, & 38171, & 41088, & 48712, & 44618 , & 64406, & 50154, \\
\hline 3, & 53664, & 71357, & 61481, & 26073, & 31098, & 33541, & 39845, & 36523, & 52618, \\
\hline 4, & 39439, & 40790, & 51321, & 46631, & 20497, & 23722, & 26412, & 32307, & 29354, \\
\hline 5, & 28363, & 25998, & 26730, & 30561 , & 30726, & 13756, & 18125, & 20509, & 25137, \\
\hline 6, & 14227, & 16636, & 13414, & 13826, & 13774, & 19319, & 9182, & 13636, & 13973, \\
\hline 7, & 7516, & 6216, & 7210, & 5779, & 7314, & 5282, & 11115, & 6496, & 9469, \\
\hline 8, & 3631, & 1662, & 2315, & 2403, & 2335, & 1747, & 1863, & 5973, & 4145, \\
\hline 9, & 1587, & 1018, & 723, & 746, & 948, & 590, & 572, & 826, & 4100, \\
\hline +gp, & 1191, & 613, & 848, & 351, & 625, & 212, & 294 , & 585, & 1359, \\
\hline TOTAL, & 237690, & 239819, & 200412, & 164541, & 148404, & 146882, & 152026, & 181261, & 190309, \\
\hline
\end{tabular}

\section*{Table 2.15 (continued)}
```

Table 10 Stock number-at-age (start of year) Numbers*10**-3
YEAR, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, GMST,
AGE
2, 32188, 27269, 35325, 41281, 31278, 25755, 18466, 15675, 9769, 6055, 0, 38228,
3, 41027, 26350, 22026, 28189, 32718, 24409, 20585, 14891, 12692, 7958, 4784, 33411,
4, 42478, 33256, 21055, 17223, 20929, 23677, 17433, 15657, 11313, 9935, 5708, 27661,
5, 21173, 33235, 25696, 15117, 11857, 14285, 15054, 12151, 9504, 7600, 6025, 20512,
6, 16579, 15215, 23318, 16344, 7916, 7664, 8056, 8468, 6503, 5090, 3669, 12953,
7, 8733, 11145, 10225, 14073, 9176, 4228, 4219, 4086, 4516, 3517, 1686, 7306,
8, 5993, 4370, 6105, 5413, 7758, 3952, 2062, 2005, 2347, 2423, 1488, 3312,
9, 2581, 3214, 2208, 3682, 2548, 3354, 1584, 1009, 1346, 1431, 1156, 1489,
+gp, 2821, 3278, 1705, 2211, 1798, 1171, 645, 1157, 853, 1649, 1889,
TOTN 173574,157332,147663,143531,125978, 108495, 88105, 75099, 58843,45657,26403,

```

\section*{Table 2.16}

\section*{Table 2.16 (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table & \multicolumn{6}{|r|}{Spawning stock number-at-age (spawning time)} & \multicolumn{3}{|c|}{Numbers*10**-3} & \\
\hline YEAR, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002, \\
\hline AGE & & & & & & & & & & \\
\hline 2, & 322, & 273, & 0 , & 0, & 0, & 0, & 185, & 157, & 0 , & 0, \\
\hline 3, & 2462, & 1581, & 220, & 846, & 1963, & 1465, & 618, & 893, & 0, & 159, \\
\hline 4, & 10195, & 7981, & 4211, & 4133, & 6070, & 5919, & 3661, & 3758, & 792, & 199, \\
\hline 5, & 10375, & 16285, & 12077, & 8465 , & 5336, & 7571, & 6624, & 5954, & 3516, & 1976, \\
\hline 6 , & 11937, & 10955, & 15623, & 13075, & 6016, & 5672, & 5236, & 6097, & 5138, & 4479, \\
\hline 7, & 7685, & 9808, & 8691, & 12947, & 8901, & 3678, & 3249, & 3596, & 4381, & 3270, \\
\hline 8, & 5693, & 4152, & 5251, & 5359, & 7758, & 3518, & 2062, & 1905, & 2300, & 2180, \\
\hline 9, & 2581, & 3214, & 2208, & 3682, & 2548, & 3354, & 1584, & 1009, & 1320, & 1388, \\
\hline +gp, & 2821, & 3278, & 1705, & 2211, & 1798, & 1171, & 645, & 1157, & 853, & 1649, \\
\hline
\end{tabular}

Table 2.17
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Table 14 & St & biomass & at age & with SOP & (5 & of year) & & nnes & \\
\hline YEAR, & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & 1991, & 1992, \\
\hline \multicolumn{10}{|l|}{AGE} \\
\hline 2, & 28276, & 24246, & 11676, & 12254, & 13190, & 15637, & 14325, & 20680, & 16101, \\
\hline 3, & 40684, & 54090 , & 46605, & 19765, & 23574, & 25424, & 30208, & 27693, & 39888, \\
\hline 4, & 58340, & 60330, & 75908, & 68971, & 30316, & 35085, & 39070, & 47796, & 43418, \\
\hline 5, & 60621, & 55558, & 57125, & 65313, & 65666, & 29397, & 38739, & 43840, & 53722, \\
\hline 6 , & 40042 , & 46815 , & 37749, & 38909, & 38763, & 54364 , & 25844, & 38383, & 39325, \\
\hline 7, & 35496, & 29351, & 34046, & 27292, & 34539, & 24941, & 52492 , & 30685, & 44718, \\
\hline 8 , & 24280, & 11110, & 15474, & 16064, & 15610, & 11680, & 12458, & 39940, & 27714 \\
\hline 9, & 11082, & 7104, & 5045, & 5207, & 6615, & 4116, & 3992, & 5768, & 28622, \\
\hline +gp, & 11581, & 5961, & 8248, & 3412, & 6076, & 2066, & 2859, & 5693, & 13212, \\
\hline TOTALBIO, & 310401, & 294565, & 291876, & 257187, & 234349, & 202709, & 219986, & 260478, & 306721, \\
\hline
\end{tabular}

\section*{Table 2.17 (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline le 14 & Stoc & biomass & at age & ith SOP & (start & of year) & & nnes & & \\
\hline YEAR, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002, \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 2, & 10332, & 8754, & 13778, & 10403, & 7509, & 9503, & 5966, & 5721, & 3870, & 2638, \\
\hline 3, & 31097, & 19973, & 17424, & 20410, & 22352, & 21378, & 17315, & 12046, & 12266, & 7251, \\
\hline 4, & 62822, & 49185, & 32113, & 24682, & 28555, & 34194, & 29206, & 24329, & 17249, & 17609, \\
\hline 5, & 45246 , & 71022, & 57102, & 31036, & 22451, & 29855, & 33005, & 30847 , & 22001, & 18826, \\
\hline 6, & 46651 , & 42816, & 67185, & 44915, & 22296, & 22427, & 23019, & 25817, & 21601, & 16235, \\
\hline 7, & 41236, & 52627, & 47705, & 66455, & 40624 , & 18111, & 19159, & 17782, & 16695, & 15298, \\
\hline 8, & 40061 , & 29217, & 42614 , & 36186 , & 49708, & 22051, & 13571, & 12435, & 14424, & 10845, \\
\hline 9, & 18017, & 22431, & 14928, & 25526, & 19890, & 27693, & 14974, & 8603, & 11811, & 11303, \\
\hline +gp, & 27430, & 31872, & 16872, & 21501, & 19472, & 14477, & 8328, & 13959, & 10640, & 21812, \\
\hline TOTALBIO, & 322891, & 327898, & 309722, & 281116, & 232857, & 199690, & 164543, & 151538, & 130557, & 121818, \\
\hline
\end{tabular}

Table 2.18
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Table 15 & \multicolumn{2}{|l|}{Spawning stoc} & bioma & with & \multicolumn{5}{|c|}{time) Tonnes} \\
\hline YEAR, & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & 1991, & 1992, \\
\hline \multicolumn{10}{|l|}{AGE} \\
\hline 2, & 283, & 242, & 117, & 123, & 132, & 156, & 143, & 207, & 161, \\
\hline 3, & 2441, & 3245, & 2796, & 1186, & 1414, & 1525, & 1812, & 1662, & 2393, \\
\hline 4, & 14002, & 14479, & 18218, & 16553, & 7276, & 8420, & 9377, & 11471, & 10420, \\
\hline 5, & 29704, & 27224, & 27991, & 32003, & 32176, & 14405, & 18982, & 21482, & 26324 \\
\hline 6, & 28830, & 33707 , & 27179, & 28014, & 27909, & 39142, & 18607, & 27635, & 2831 \\
\hline 7, & 31236, & 25829, & 29961, & 24017, & 30394 , & 21948, & 46193, & 27003, & 39352 \\
\hline 8, & 23066 , & 10554, & 14701, & 15261, & 14829, & 11096, & 11835, & 37943, & 26328, \\
\hline 9, & 11082, & 7104, & 5045 , & 5207 , & 6615, & 4116, & 3992, & 5768, & 28622, \\
\hline + gp, & 11581, & 5961, & 8248, & 3412, & 6076, & 2066, & 2859, & 5693, & 1321 \\
\hline TOTSPBIO & 52225, & 128346, & 34255 , & 25776 & 126823 & 02875, & 13801 & 38864 & 7512 \\
\hline
\end{tabular}

Table 2.18 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 15 & Spaw & ng sto & bioma & with & SOP (spa & ing t & & nnes & & \\
\hline YEAR, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002, \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 2, & 103, & 88, & 0, & 0, & 0, & 0, & 60, & 57, & 0 , & 0, \\
\hline 3, & 1866, & 1198, & 174, & 612, & 1341, & 1283, & 519, & 723, & 0 , & 145, \\
\hline 4, & 15077, & 11805, & 6423, & 5924, & 8281, & 8549, & 6133, & 5839, & 1207, & 352, \\
\hline 5, & 22170, & 34801, & 26838 & 17380, & 10103, & 15823, & 14522, & 15115, & 8141, & 4895, \\
\hline 6, & 33589, & 30828, & 45014, & 35932, & 16945, & 16596, & 14962, & 18588, & 17065, & 14287, \\
\hline 7 , & 36288, & 46312 , & 40549, & 61139, & 39406, & 15757, & 14752, & 15648, & 16194, & 14227, \\
\hline 8, & 38058, & 27756, & 36648, & 35825, & 49708, & 19626, & 13571, & 11813, & 14136, & 9761, \\
\hline 9, & 18017, & 22431, & 14928, & 25526, & 19890, & 27693, & 14974, & 8603, & 11575, & 10963, \\
\hline +gp, & 27430, & 31872, & 16872 & 21501, & 19472, & 14477, & 8328, & 13959, & 10640, & 21812, \\
\hline TOTSPB & 192597, & 207090, & 187446, & 203840, & 165145, & 119803, & 87823, & 90345, & 78957, & 76443, \\
\hline
\end{tabular}

\section*{Table 2.19}

Run title : Norwegian Coastal Cod,COMBSEX, PLUSGROUP At 24/04/2003 14:17

Table 17 Summary (with SOP correction)

\section*{Table 2.20}

Analysis by RCT3 ver3.1 of data from file : ncc-inn1.txt
```

NORWEGIAN COASTAL COD: recruits as 2 year-olds
Data for 1 surveys over 8 years : 1993-2000
Regression type = C
Tapered time weighting applied
power = 3 over 20 years
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . }2
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Year class = 1999
I------------Regression----------I I------------Prediction-----------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP
Series cept Error Pts Value Value Error Weights
Norweg 1.66 -5.75 .20 . 818 6 8.81 8.85 .442 .423
VPA Mean = 10.18 . 379 . 577

```
Year class = 2000

Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP
Series cept Error Pts Value Value Error Weights
Norweg \(1.39-3.22 \quad .17 \quad .915 \quad 7 \quad 8.00 \quad 7.94 \quad .394 \quad .628\)
 VPA Mean \(=10.03 .512 .372\)
\begin{tabular}{lccccccc}
Year & Weighted & Log & Int & Ext & Var & VPA & Log \\
Class & Average & WAP & Std & Std & Ratio & & VPA \\
& Prediction & & Error & Error & & &
\end{tabular}
\begin{tabular}{llllllll}
1999 & 14985 & 9.61 & .29 & .66 & 5.23 & 9770 & 9.19 \\
2000 & 6124 & 8.72 & .31 & 1.01 & 10.43 & 6056 & 8.71
\end{tabular}

Table 2.21 Prediction with management option table: Input data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Year: 2003} \\
\hline Age & \[
\begin{aligned}
& \text { Stock } \\
& \text { size } \\
& \hline
\end{aligned}
\] & Natural mortality & \[
\begin{aligned}
& \text { Maturity } \\
& \text { ogive } \\
& \hline
\end{aligned}
\] & \[
\begin{array}{ll}
\hline \text { Prop.of } & \text { F } \\
\text { and M } \\
\text { bef.spaw. }
\end{array}
\] & Prop.of M bef.spaw. & Weight
in stock & \begin{tabular}{|l|}
\hline Exploit. \\
pattern
\end{tabular} & Weight
in catch \\
\hline 2 & 6124 & 0.2 & 0.00 & 0 & 0 & 0.396 & 0.0231 & 0.390 \\
\hline 3 & 4784 & 0.2 & 0.03 & 0 & 0 & 0.890 & 0.1126 & 1.145 \\
\hline 4 & 5708 & 0.2 & 0.11 & 0 & 0 & 1.606 & 0.3559 & 1.903 \\
\hline 5 & 6025 & 0.2 & 0.37 & 0 & 0 & 2.429 & 0.6151 & 2.640 \\
\hline 6 & 3669 & 0.2 & 0.80 & 0 & 0 & 3.167 & 0.7805 & 3.522 \\
\hline 7 & 1686 & 0.2 & 0.93 & 0 & 0 & 4.107 & 0.6420 & 4.434 \\
\hline 8 & 1488 & 0.2 & 0.94 & 0 & 0 & 5.581 & 0.4613 & 5.331 \\
\hline 9 & 1156 & 0.2 & 0.98 & 0 & 0 & 8.351 & 0.2732 & 6.365 \\
\hline 10+ & 1889 & 0.2 & 1.00 & 0 & 0 & 12.509 & 0.2732 & 7.495 \\
\hline Unit & Thousands & - & - & - & - & Grams & - & Grams \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Year: 2004} \\
\hline Age & Stock size & Natural mortality & Maturity ogive & Prop.of F bef.spaw. & Prop.of M bef.spaw. & Weight in stock & Exploit. pattern & Weight in catch \\
\hline 2 & 6124 & 0.2 & 0.00 & 0 & 0 & 0.396 & 0.0231 & 0.390 \\
\hline 3 & . & 0.2 & 0.03 & 0 & 0 & 0.890 & 0.1126 & 1.145 \\
\hline 4 & . & 0.2 & 0.11 & 0 & 0 & 1.606 & 0.3559 & 1.903 \\
\hline 5 & . & 0.2 & 0.37 & 0 & 0 & 2.429 & 0.6151 & 2.640 \\
\hline 6 & . & 0.2 & 0.80 & 0 & 0 & 3.167 & 0.7805 & 3.522 \\
\hline 7 & . & 0.2 & 0.93 & 0 & 0 & 4.107 & 0.6420 & 4.434 \\
\hline 8 & . & 0.2 & 0.94 & 0 & 0 & 5.581 & 0.4613 & 5.331 \\
\hline 9 & . & 0.2 & 0.98 & 0 & 0 & 8.351 & 0.2732 & 6.365 \\
\hline 10+ & . & 0.2 & 1.00 & 0 & - & 12.509 & 0.2732 & 7.495 \\
\hline Unit & Thousands & - & - & - & - & Grams & - & Grams \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Year: 2005} \\
\hline Age & Stock size & Natural mortality & Maturity ogive & Prop.of F bef.spaw. & Prop.of M bef.spaw. & Weight in stock & Exploit. pattern & Weight in catch \\
\hline 2 & 6124 & 0.2 & 0.00 & 0 & 0 & 0.396 & 0.0231 & 0.390 \\
\hline 3 & . & 0.2 & 0.03 & 0 & 0 & 0.890 & 0.1126 & 1.145 \\
\hline 4 & . & 0.2 & 0.11 & 0 & 0 & 1.606 & 0.3559 & 1.903 \\
\hline 5 & . & 0.2 & 0.37 & 0 & 0 & 2.429 & 0.6151 & 2.640 \\
\hline 6 & . & 0.2 & 0.80 & 0 & 0 & 3.167 & 0.7805 & 3.522 \\
\hline 7 & . & 0.2 & 0.93 & 0 & 0 & 4.107 & 0.6420 & 4.434 \\
\hline 8 & . & 0.2 & 0.94 & 0 & 0 & 5.581 & 0.4613 & 5.331 \\
\hline 9 & . & 0.2 & 0.98 & 0 & 0 & 8.351 & 0.2732 & 6.365 \\
\hline 10+ & . & 0.2 & 1.00 & 0 & 0 & 12.509 & 0.2732 & 7.495 \\
\hline Unit & Thousands & - & - & - & - & Grams & - & Grams \\
\hline
\end{tabular}

Basis; Weight in catch 2003-2005 - average 2000-2002
Weight in stock 2003-2005 - average 2000-2002
Maturity ogive 2003-2005 - average 2000-2002
Exploit. Pattern 2003-2005 average 2000-2002 scaled to 2002

Table 2.22
Prediction with management option table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Year: 2003} & \multicolumn{5}{|l|}{Year: 2004} & \multicolumn{2}{|l|}{Year: 2005} \\
\hline \begin{tabular}{|l|}
\hline F \\
Factor \\
\hline
\end{tabular} & Reference F & Stock biomass & Sp.stock biomass & Catch in weight & \begin{tabular}{l}
F \\
Factor
\end{tabular} & Reference F & Stock biomass & Sp.stock biomass & Catch in weight & Stock biomass & Sp.stock Biomass \\
\hline 1 & 0.5984 & 90619 & 63224 & 27269 & 0 & 0 & 68656 & 49539 & 0 & 76297 & 56616 \\
\hline & & & & & 0.1 & 0.0598 & 68656 & 49539 & 2351 & 73441 & 54165 \\
\hline & & & & & 0.2 & 0.1197 & 68656 & 49539 & 4580 & 70729 & 51841 \\
\hline & & & & & 0.3 & 0.1795 & 68656 & 49539 & 6696 & 68154 & 49636 \\
\hline & & & & & 0.4 & 0.2394 & 68656 & 49539 & 8705 & 65706 & 47544 \\
\hline & & & & & 0.5 & 0.2992 & 68656 & 49539 & 10613 & 63379 & 45557 \\
\hline & & & & & 0.6 & 0.359 & 68656 & 49539 & 12425 & 61166 & 43671 \\
\hline & & & & & 0.7 & 0.4189 & 68656 & 49539 & 14149 & 59060 & 41878 \\
\hline & & & & & 0.8 & 0.4787 & 68656 & 49539 & 15788 & 57055 & 40173 \\
\hline & & & & & 0.9 & 0.5386 & 68656 & 49539 & 17348 & 55146 & 38553 \\
\hline & & & & & 1 & 0.5984 & 68656 & 49539 & 18832 & 53327 & 37011 \\
\hline & & & & & 1.1 & 0.6582 & 68656 & 49539 & 20246 & 51593 & 35543 \\
\hline & & & & & 1.2 & 0.7181 & 68656 & 49539 & 21594 & 49939 & 34146 \\
\hline & & & & & 1.3 & 0.7779 & 68656 & 49539 & 22878 & 48362 & 32815 \\
\hline & & & & & 1.4 & 0.8378 & 68656 & 49539 & 24103 & 46856 & 31546 \\
\hline & & & & & 1.5 & 0.8976 & 68656 & 49539 & 25272 & 45419 & 30337 \\
\hline & & & & & 1.6 & 0.9574 & 68656 & 49539 & 26387 & 44045 & 29183 \\
\hline & & & & & 1.7 & 1.0173 & 68656 & 49539 & 27453 & 42733 & 28083 \\
\hline & & & & & 1.8 & 1.0771 & 68656 & 49539 & 28471 & 41478 & 27033 \\
\hline & & & & & 1.9 & 1.137 & 68656 & 49539 & 29444 & 40278 & 26029 \\
\hline & & & & & 2 & 1.1968 & 68656 & 49539 & 30374 & 39130 & 25071 \\
\hline - & - & Tonnes & Tonnes & Tonnes & - & - & Tonnes & Tonnes & Tonnes & Tonnes & Tonnes \\
\hline
\end{tabular}

Basis for 2003 : Status quo fishing mortality

Table 2.23 Catch options for 2004 with corresponding total stock biomasses and spawning stock biomasses in 2005.

Basis: \(\mathrm{F}(2003)=\mathbf{F}_{\mathrm{sq}}=0.60 ; \operatorname{Landings}(2003)=27,000 \mathrm{t}, \mathrm{SSB}(2004)=49,500 \mathrm{t}\).
\begin{tabular}{|r|r|r|r|r|}
\hline \(\mathbf{F}(\mathbf{2 0 0 4})\) & Basis & Catch 2004 (t) & Total stock biomass 2005 (t) & SSB 2005 (t) \\
\hline 0 & \(0^{*} \mathbf{F}_{\mathrm{sq}}\) & 0 & 76,297 & 56,616 \\
\hline 0.06 & \(0.1^{*} \mathbf{F}_{\mathrm{sq}}\) & 2,351 & 73,441 & 54,165 \\
\hline 0.12 & \(0.2^{*} \mathbf{F}_{\mathrm{sq}}\) & 4,580 & 70,729 & 51,841 \\
\hline 0.24 & \(0.4^{*} \mathbf{F}_{\mathrm{sq}}\) & 8,705 & 65,706 & 47,544 \\
\hline 0.36 & \(0.6^{*} \mathbf{F}_{\mathrm{sq}}\) & 12,425 & 61,166 & 43,671 \\
\hline 0.48 & \(0.8^{*} \mathbf{F}_{\mathrm{sq}}\) & 15,788 & 57,055 & 40,173 \\
\hline 0.60 & \(1.0^{*} \mathbf{F}_{\mathrm{sq}}\) & 18,832 & 53,327 & 37,011 \\
\hline
\end{tabular}

Figure 2.1 Norwegian Coastal cod - Coastal acoustic survey vs XSA. Age (n) in survey \(=\) age \((\mathrm{n}+1)\) from XSA the year after because the surveys are conducted late autumn (1995-2002).

Figure 2.2 Norwegian Coastal cod: Historical landings, recruitment, fishing mortality and spawning stock biomass. Long-term yield pr recruit and spawning stock biomass per recruit. Short-term yield and spawning stock biomass.

\subsection*{3.1 Status of the fisheries}

\subsection*{3.1.1 Historical development of the fisheries (Table 3.1)}

From a level of about \(900,000 \mathrm{t}\) in the mid-1970s, landings declined steadily to around \(300,000 \mathrm{t}\) in 1983-1985 (Table 3.1). Landings increased to above \(500,000 \mathrm{t}\) in 1987 before dropping to \(212,000 \mathrm{t}\) in 1990, the lowest level recorded in the post-war period. The catches increased rapidly from 1991 onwards, stabilised around 750,000 t in 1994-1997 but decreased to about \(414,000 \mathrm{t}\) in 2000. The catch in 2002 was 445,000 tonnes. The fishery is conducted both with an international trawler fleet and with coastal vessels using traditional fishing gears. Quotas were introduced in 1978 for the trawler fleets and in 1989 for the coastal fleets. In addition to quotas, the fishery is regulated by a minimum catch size, a minimum mesh size in trawls and Danish seines, a maximum by-catch of undersized fish, closure of areas having high densities of juveniles and by seasonal and area restrictions.

\subsection*{3.1.2 Landings prior to 2003 (Tables 3.1-3.3, Figure 3.1)}

\section*{Total landings of cod in Subarea I and Divisions IIa and IIb:}

Final reported landings for 2001 amount to \(440,745 \mathrm{t}\). Provisional landings for 2002 are \(464,271 \mathrm{t}\), which is nearly \(30,000 \mathrm{t}\) above the agreed quota.

\section*{Landing figures used for the assessment of Northeast Arctic cod:}

The historical practise (considering catches between 62 and 67 deg. North for the whole year and catches between 67 and 69 deg. North for the second half of the year to be Norwegian coastal cod) lead to landings of Northeast Arctic cod at \(426,471 \mathrm{t}\) in 2001 and \(445,060 \mathrm{t}\) in 2002 (Table 3.1). The landings by area, split into trawl and other gears, is given in Table 3.2 and the nominal landings by country is given in Table 3.3. Compared to 2001, the landings in 2002 decreased in Division IIb and increased in Subarea I (Table 3.1).

\subsection*{3.1.3 Expected landings in 2003}

The mixed Norwegian-Russian fisheries commission agreed on a TAC of \(435,000 \mathrm{t}\) for 2003, including 40,000 t Norwegian coastal cod. Since this quota is equal to the 2002 quota, it is reasonable to assume a similar catch \((445,000 \mathrm{t})\) in 2003 as in 2002.

The Working Group has no information on the size of expected unreported landings in 2003 but believes this could continue to be a problem.

\subsection*{3.2 Status of research}

\subsection*{3.2.1 Fishing effort and CPUE (Table A1)}

CPUE series of the Norwegian, Russian and Spanish trawl fisheries are given in Table A1. The data reflect the total trawl effort, both for Norway and Russia. The Norwegian series is given as a total for all areas (Table A1).

\subsection*{3.2.2 Survey results (Tables A2-A5, A10-A11, A14-A15)}
a) With respect to year class strength, the overall picture seen in the surveys is summarized as follows: the 1999, 2000, and 2002 year classes are close to average and the 2001 year class is weak. Most age groups in the fishable stock, have increased in the last surveys compared to the year before.

\section*{Joint Barents Sea winter survey (bottom trawl and acoustics(WD 19)}

The preliminary swept area estimates and acoustic estimates from the Joint winter survey on demersal fish in the Barents Sea in winter 2003 are given in Tables A2 and A3.

Before 2000 this survey was made without participation from Russian vessels, while in the three latest surveys Russian vessels have covered important parts of the Russian zone. The indices for 1997 and 1998, when the Russian EEZ was not covered, have been adjusted as reported previously (Mehl, 1999). The number of fish (age group by age group) in the Russian EEZ in 1997 and 1998 was interpolated assuming a linear development in the proportion found in the Russian EEZ from 1996 to 1999. These estimates were then added to the numbers of fish found in the Norwegian EEZ and the Svalbard area in 1997 and 1998.

It should be noted that the survey conducted in 1993 and later years covered a larger area compared to previous years (Jakobsen et al. 1997). In 1991 and 1992, the number of young cod (particularly 1- and 2-year old fish) was probably underestimated, as cod of these ages were distributed at the edge of the old survey area. Other changes in the survey methodology through time are described by Jakobsen et al. (1997). Note that the change from 35 to 22 mm mesh size in the codend in 1994 is not corrected for in the time-series. This mainly affects the age 1 indices.

\section*{Lofoten acoustic survey on spawners (WD 21)}

The estimated abundance indices from the Norwegian acoustic survey off Lofoten and Vesterålen (the main spawning area for this stock) in March/April are given in Table A4. A description of the survey, sampling effort and details of the estimation procedure can be found in Korsbrekke (1997). There was a high proportion of first time spawners in the survey.

Norwegian summer/autumn survey (WD 23)

Table A5 gives the results of the Norwegian bottom trawl survey in the Svalbard and Barents Sea area in August/September (Høines, WD 23). The results for the Svalbard area (Division IIb) have been used earlier in the XSA tuning but have been left out in the three latest assessments. The series given for the Barents Sea covers ICES Division IIa and IIb and the north-western part of subarea I, and thus includes the Svalbard area estimates.

Russian autumn survey (WD 24)
Abundance estimates from the Russian autumn survey (November-December) are given in Table A10 (acoustic estimates) and Table A11 (bottom trawl estimates). The Russian autumn survey did not cover the Norwegian economical zone in 2002. Indices obtained were adjusted assuming area distribution as 1998-2001 average.

\section*{International 0-group survey}

Abundance indices of 0-group cod from the International 0-group survey are provided in Tables A14 and A15. It should be noted that in 1985 some gear changes were made, and the earlier part of the time-series is now adjusted to take account of these changes (Nakken and Raknes 1996). The abundance of 0-group cod was low in the years 1999-2001, and average in 2002. The same pattern is observed for age 1 of the same year classes in the groundfish surveys. The 0 group abundance in the years 1992-1997 is rather outstanding in the time-series. Among those year classes only 1994 and 1995 appear to be above average at age 3 in other surveys.

\subsection*{3.2.3 Age reading}

The joint Norwegian-Russian work on cod otolith reading has continued, with regular exchanges of otoliths and age readers (Introduction chapter). Within laboratory (IMR) and between laboratories (IMR-PINRO) differences in age reading are presented in WD 11.

\subsection*{3.2.4 Length and Weight-at-age (Tables A6-A9, A12-A13)}

Length-at-age is shown in Table A6 for the Norwegian survey in the Barents Sea in winter, in Table A8 for the Lofoten survey and in Table A12 for the Russian survey in October-December. Weight-at-age is shown in Table A7 for the Norwegian survey in the Barents Sea in winter, in Table A9 for the Lofoten survey and in Table A13 for the Russian survey in October-December.

Both the joint winter survey in 2003 and the Russian autumn survey in 2002 show little change in weights for most ages (Table A7 and A13).

\subsection*{3.2.5}

Historical (pre 1982) Norwegian and Russian time-series on maturity ogives were reconstructed by the 2001 AFWG meeting (ICES 2001/ACFM:02). The Norwegian maturity ogives were constructed using the Gulland method for individual cohorts, based on information on age at first spawning from otoliths. For the time period 1946-1958 only the Norwegian data were available. The Russian proportions mature at age, based on visual examinations of gonads, were available from 1959.

Since 1982 Russian and Norwegian survey data have been used (Table 3.5). For the years 1985-2003, Norwegian maturity-at-age ogives have been obtained by combining the Barents Sea and Lofoten surveys according to the method described in Marshall et al. (1998). Russian maturity ogives from the autumn survey are available from 1984 until present. The Norwegian maturity ogives tend to give a higher percent mature at age compared to the Russian ogives, which is consistent with the generally higher growth rates observed in cod sampled by the Norwegian surveys. The approach used is consistent with the approach used to estimate the weight-at-age in the stock (described in Section 3.3.2). The percent mature at age for the Russian and Norwegian surveys have been arithmetically averaged for all years, except 1982-1983 when only Norwegian observations were used and 1984 when only Russian observations were used.

At this years WG meeting several investigations into cod maturity were undertaken to address the following issues:
- the ACFM technical minutes regarding timing of the Russian survey with respect to evaluating maturity stage (Section 3.2.5.1);
- the combination of the Barents Sea Winter survey and Lofoten survey in estimating the Norwegian maturity ogive (Section 3.2.5.2);
- differences between maturity ogives for males and females combined versus females-only (Section 3.2.5.3);
- causes of interannual variation in proportions mature at age and the implications for stock projection (Section 3.2.5.4).

\subsection*{3.2.5.1 Timing of Russian surveys in relation to gonadal development}

The technical minutes from ACFM (ICES Copenhagen, 21-30 May 2002, p.2) stated: "It was noted that estimation of maturity stages during autumn might be difficult. The AFWG should further investigate maturity-at-age, especially how reliable autumn values reflect the true maturity and how methods to combine maturity estimates from autumn and spring surveys can be refined".

Cod have group synchronous development of oocytes and are batch spawners. Usually, the development of gametes begins 4-6 months before the spawning and occurs more or less synchronously. Spawning occurs from late February to early May, peaking in late March or early April (Ellertsen 1981; Pedersen 1984).

The Russian maturity ogives for NEA cod are based on both autumn survey data and from data collected by observers onboard commercial vessels (November-February). Cod maturity stage is determined by visual examination of the gonads. Cod having gonads that are not at maturity stage 3 (developing oocytes, visible with naked eye) are classified as immature.

The Russian surveys have the advantage of sampling stock in the period when immature and mature parts of cod stock are distributed at the same area and therefore of equal availability to the survey. Moreover, the gonads of maturing fish can be clearly distinguished from immature specimens during this time period. Thus, the Russian maturity data are considered to be representative of the portion of the stock sampled by Russia.

To evaluate the potential for errors and biases in maturity ogives it is useful to compare the Norwegian and Russian maturity ogives (Figure 3.2). The Norwegian maturity ogives tend to give a higher percent mature at age compared to the Russian ogives. This is consistent with the generally higher growth rates observed in the cod sampled by the Norwegian surveys. Despite the differences in survey timing (approximately 3 months lag between surveys) and methodology (e.g., maturity scales), the Norwegian and Russian maturity ogives show the same temporal trends in maturity for all age classes (Figure 3.2).

Possible intersessional work on refining the maturity ogives includes:
- review the comparability between the Norwegian and Russian maturity stages with particular reference to the procedures used to exclude fish with uncertain maturity stages or identify individuals that may have skipped spawning;
- fill in gaps in the data (by regions and months) by smoothing data using appropriate weighting factors (Lepesevich, WD 8, 2002).

\subsection*{3.2.5.2 Combination of Norwegian winter and Lofoten surveys}

In winter the mature and immature parts of the NEA cod stock are in a large degree spatially separated from each other. The Norwegian maturity ogives are estimated by combining data from two surveys (Barents Sea Winter survey and Lofoten survey). For each survey the total number of mature and immature cod is determined using the acoustic abundance estimates of total abundance and these values are then combined for the two surveys. It is not known the degree to which the two surveys double count cod or miss counting certain components of the stock due to the migration of the stock at this time of year. This source of error might possibly explain the discrepancy between Norwegian and Russian proportions mature for age 6 cod (Figure 3.2). The difference between Norwegian and Russian values is greatest when the proportions are high. One possible explanation of this tendency is that mature age 6 cod are being over-sampled by the Winter and Lofoten surveys over-represented in the combined survey results.

It may be possible to make improvements to the methods used for combining the Winter and Lofoten surveys. This issue should be reviewed in the coming year. However, the high degree of consistency between the Norwegian and Russian values of maturity-at-age (Figure 3.2) suggests that the magnitude of the error is small.

Possible intersessional work on estimating the Norwegian maturity ogives includes:
- review the procedures used to combine the Barents Sea Winter survey and Lofoten survey.

\subsection*{3.2.5.3 Gender-dependent maturity ogives}

Currently, maturity-at-age ogives are estimated for males and females combined. However, female cod grow more slowly and therefore mature later than male cod. As a consequence of this dimorphic growth, both length- and agebased maturity-ogives for females differ from those for males (Ajiad et al. 1999). Changes in the age and size composition of the stock will impact the proportional contribution of females to the spawning stock and contribute to a lack of proportionality between SSB and reproductive potential (Tomkiewicz et al. 1997). For Baltic cod, estimates of female-only SSB give an improved stock/recruit relationship compared to the conventional (males and females combined) estimate of SSB used by management (Köster et al. 2001).

To investigate the degree of bias introduced to estimates of SSB from using combined maturity ogives for NEA cod Norwegian and Russian databases were used to estimate female-only SSB. The proportional contribution of females to the SSB was compared to a reference value of 0.5 that assumes a \(1: 1\) sex ratio in the spawning stock.

\subsection*{3.2.5.3.1 Norwegian female-only maturity}

Differences in maturity ogives between combined (males and females) and female-only cod were investigated using data from 1985 to 2001. Observations for individual cod were selected for the \(1^{\text {st }}\) quarter with observations for coastal cod being excluded. Cod in maturity stages greater than 1 were classified as being mature. In constructing the ogives it was noted that the database reverses the coding for sex for 1988.

The differences between the combined ogive and the female-only ogive are highest for ages 5 and 6 and decrease to negligible values for older age-classes (Fig. 3.3a). The magnitude of differences for ages 5 and 6 generally falls between 0.05 and 0.15 . The female-only maturity ogives for the stock (1985-2001) were then estimated by subtracting these differences from the ogives used in the assessment (Table 3.13). For the youngest age-classes this frequently resulted in negative values. In such cases the proportion mature was set to 0 .

\subsection*{3.2.5.3.2 Russian female-only maturity}

The Russian data are expressed as the proportion of mature individuals that are female. These values extend back to the beginning of standardized sampling for maturity in 1959. To be comparable to both the Norwegian data and the assessment, the proportions have been shifted forward by one year and age-class. The proportion of mature individuals that are female increases with increasing age (Fig. 3.4). The proportions are negligible for age 3 and quite variable for ages 4-6 and for the older age classes.

\subsection*{3.2.5.3.3 Female-only SSB}

As noted above, the Norwegian data is expressed as the proportion of females that are mature, whereas, the Russian data is expressed as the proportion of mature fish that are female. Because of the difference in how the maturity data were formulated the procedures used for estimating female-only SSB differed between the two countries, as is described below.

For the Norwegian data female-only SSB was estimated as:
\[
\text { Female-only SSB }=\Sigma \mathrm{n}_{\mathrm{a}} \times \mathrm{s}_{\mathrm{a}} \times \mathrm{m}_{\mathrm{a}} \times \mathrm{w}_{\mathrm{a}}
\]
where \(\mathrm{n}_{\mathrm{a}}\) and \(\mathrm{w}_{\mathrm{a}}\) are number- and weight-at-age, respectively. Both terms are identical to values used in estimating SSB. The sex ratio at age (\(s_{a}\)) expresses the proportion of females and was determined from the same Norwegian databases that were used to estimate the maturity ogives. The \(m_{a}\) represents the proportion of females that are mature for a given age.

Sex ratios of \(1: 1\) were assumed for cod younger than age 8 . For cod age 8 and older modelled values were used (Fig. 3.3 b). These show the proportions of females to increase with increasing age. The proportion of females is often lower than 0.5 for age classes younger than 8 (Ajiad and Aglen, unpublished Working Document to SGPA December 2002). However, this tendency is likely an artefact resulting from the differential catchability and availability of males.

The Russian female-only SSB differed in its formulation of female-only SSB because maturity data was expressed as the proportion of mature individuals who were female \(\left(p_{a}\right)\) rather than the proportion of females who were mature. Consequently, female-only SSB for the Russian data was estimated as:
\[
\text { Female-only SSB }=\Sigma \mathrm{n}_{\mathrm{a}} \times \mathrm{m}_{\mathrm{a}} \times \mathrm{p}_{\mathrm{a}} \times \mathrm{w}_{\mathrm{a}}
\]
where \(\mathrm{n}_{\mathrm{a}}, \mathrm{m}_{\mathrm{a}}\), and \(\mathrm{w}_{\mathrm{a}}\) are number-, maturity- and weight-at-age, respectively. These terms are identical to values used in estimating SSB.

\subsection*{3.2.5.3.4 Temporal trends in female-only SSB}

If both sexes contribute equally to the SSB then contribution of females to the SSB should fluctuate randomly about a value of 0.5 . However, both the Norwegian and Russian estimates show a strong tendency for the proportion of femaleonly SSB to be less than 0.5 (Fig. 3.5). The time trends in the Norwegian and Russian estimates are reasonably synchronous despite differences in their formulation. Females made an especially low (approx. 25\%) contribution to SSB in the years 1987-1989. Thus, SSB overestimates the reproductive potential of the stock in those years by a considerable margin. Low ratios were also observed in 1994, 1995, 2000 and 2001.

The temporal trends in female-only SSB are driven by the trends in the age composition of the spawning stock (Figure 3.5). Lower mean age of the spawning stock reduces the contribution of females to the spawning stock. This is not accounted for using SSB as an index of reproductive potential. Thus, SSB contains a systematic source of error that is related to the variable size and age composition of the stock. The WG should consider alternative formulations of reproductive potential that include information on sex ratios and gender-specific proportions mature. These alternative formulations should be compared to SSB as well as to recruitment to see if improvements to the stock/recruit relationship are possible, such as has been observed for Baltic cod.

Future work on estimating reproductive potential includes:
- to develop a full time-series of female-only maturity ogives that can be used to estimate female-only SSB.

\subsection*{3.2.5.3.5 Status of research on reproductive potential of NA cod}

Research is ongoing into developing alternative indices of reproductive potential for NEA cod (Marshall et al. 1998). This research is benefiting from the improved accessibility of both Norwegian and Russian databases.

Preliminary estimates of total egg production were presented to the WG (Needle and Marshall WD\#2). These estimates require further refinements before being considered as final. These refinements include: a) developing female-only maturity ogives for the full time period (1946-2001); b) refinements to the method of hindcasting fecundity and c)
developing a model to incorporate maternal effects on egg viability. Female-only SSB will also be estimated for the full time period. Time-series for female-only SSB and total egg production should be available by next years WG meeting. Additionally, software tools are being developed to estimate alternative indices of reproductive potential from standard assessment output and link this information to both recruitment and medium-term stock projections (Needle and Marshall WD\#2).

\subsection*{3.2.5.4 Potential causes of interannual variation in maturity ogives}

The maturity ogives used for the medium-term stock projections have a considerable impact on the forecasted SSB values. Average values are used, however, it would be advantageous to identify factors contributing to variation in maturity ogives. Ongoing research into the growth dynamics of Northeast Arctic cod has shown that there is a positive relationship between weight-at-length and maturity-at-length (ICES CM 2003/D:01). Similarly, there is a positive relationship between weight-at-age and maturity-at-age for age-classes 4 to 7 (Fig. 3.6). Liver weight estimates (g) for a \(70 \mathrm{~cm} \operatorname{cod}\) (derived from the Russian liver condition index and age/length keys described in Marshall and Needle WD\#3) show a significant, positive relationship with the proportion of mature age 7 cod for the time period 1984 to 2001 (Figure 3.7). During this time period liver weight varies from a historical low in \(1988(108 \mathrm{~g})\) to a historical high in 1991 (260 g). Both Figures 3.6 and 3.7 results are consistent with bioenergetic studies showing that maturation rates of cod reflect their growth history.

The 2003 maturity-at-age values for age classes 6 and 7 are slightly lower than those for 2002. The decreasing trend may continue in the short-term particularly given the high levels of biomass. Short-term projections of maturity-at-age should therefore be consistent with forecasts for weight-at-age, liver condition and potentially capelin stock biomass.

Possible future work on projecting maturity ogives includes:
- model the link between liver weights and maturity using available data resources and establish a method for predicting liver weights in the upcoming year. This research can take advantage of the links between capelin stock biomass and liver condition.

\subsection*{3.3 Data used in the assessment}

\subsection*{3.3.1 Catch-at-age (Tables 3.8, 3.9 and 3.10)}

For 2001 final total landings for all countries only differed by 31 tons to those used in last year's assessment. Some Norwegian trawl catches were moved from area IIa to IIb and some Icelandic catches were moved from area I to IIa. This lead to very minor adjustments of the number-at-age in the 2001 landings. For 2002, age compositions for all areas were available from Norway (by gears) Russia and Spain. German catches were sampled for some areas and quarters. For the unsampled areas and quarters German catches were distributed on ages by use of Russian or Norwegian trawl samples. Age compositions of the total landings were calculated separately in Subarea I and Division IIa and IIb by using the age compositions that were available and raising the landings from other countries by Russian trawl (Subarea I and Division IIa), and by Norwegian trawl (Division IIb).

Table 3.8 show available catch-at-age data for all ages 1-15+. The catch numbers shown in Table 3.10 together with cannibalism figures (Tables 3.9) were used in the XSA tuning.

\subsection*{3.3.2 Weight-at-age (Tables 3.4 and 3.11-3.12)}

The weights-at-age in stock and catches for the age group 13+ was calculated by the IFAP system when ages 13,14 and \(15+\) were merged.

\section*{Catch weights}

For 2001, the mean weight-at-age in the catch (Table 3.11) was calculated as a weighted average of the weight-at-age in the catch for Norway, Russia, Germany and Spain. The weight-at-age in the catch for these countries is given in Table 3.4 .

\section*{Stock weights}

The technical minutes from ACFM May 2001 raise the question about weight-at-age for ages 12 and 13+. Since these ages are scarce in the survey samples, fixed values for ages 12 to \(15+\) has been used (set equal to typical weights for these ages observed in catches). The IFAP data base has been updated for all ages \(1-15+\) with these fixed values for ages \(12-15+\). When the assessment applies 13 as plus group, the \(13+\) weights is calculated year by year as a weighted mean of the fixed values by older ages.

For ages 1-11 stock weights-at-age a \(\left(\mathrm{W}_{\mathrm{a}}\right)\) at the start of year y for 1983-2002 (Table 3.12) were calculated as follows:
\(W_{a}=0.5\left(W_{r u s, a-1}+\left(\frac{N_{\text {nbar }, a} W_{\text {nbar }, a}+N_{\text {lof }, a} W_{l o f, a}}{N_{n b a r, a}+N_{l o f, a}}\right)\right)\)
where
\(W_{r u s, a-1}\) : Weight-at-age a-1 in the Russian survey in year y-1 (Table A13)
\(N_{n b a r, a}\) : Abundance at age a in the Norwegian Barents Sea acoustic survey in year y (Table A2)
\(W_{n b a r, a}\) : Weight-at-age a in the Norwegian Barents Sea acoustic survey in year y (Table A7)
\(N_{l o f, a}\) : Abundance at age a in the Lofoten survey in year y (Table A4)
\(W_{l o f, a}\) : Weight-at-age a in the Lofoten survey in year y (Table A9)

\subsection*{3.3.3 Natural mortality}

A natural mortality of 0.2 was used. In addition, cannibalism was taken into account as described in Section 3.4.2. The proportion of F and M before spawning was set to zero.

\subsection*{3.3.4 Maturity-at-age (Tables 3.5 and 3.13)}

As noted in Section 3.2.5, arithmetic averages of the Russian and Norwegian maturity-at-age values were used for 1985-2002.

\subsection*{3.3.5 Tuning data (Tables 3.14 and 3.15)}

The following surveys and commercial CPUE data series was used for initial tuning runs by single fleets:
\begin{tabular}{llllll}
\hline & Name & Place & Season & Age & Years \\
\hline Fleet 17 & Russian bottom trawl surv. & Total area & Autumn & \(3-8\) & \(1982-2002\) \\
Fleet 09 & Russian trawl CPUE & Total area & All year & \(9-12\) & \(1985-2002\) \\
Fleet 15 & Joint bottom trawl survey & Barents Sea & Winter & \(3-8\) & 1981-2003 \\
Fleet 16 & Joint acoustic survey & Barents Sea + Lofoten & Winter & 3-11 & 1985-2003 (Table A16) \\
\hline
\end{tabular}

Table 3.15 and Figure 3.8 shows a comparison between the fleets. The table show some differences between fleets, and concerns were raised regarding increased uncertainty in fleet 16 and 17. Table 3.15 show the effect of removing the latest observations in these fleets. It also show the effect of increasing the weight on shrinkage (reducing the minimum SE for shrinkage), and the effect of changing ages for stock size dependent catchabilities. The conclusion was to keep the tuning settings used in previous assessments. Plots of log-catcability residuals are shown in Figures 3.12-3.14.

The output tables from the tuning include ages 1 and 2 , just to show the year class abundance at age 1 and 2 created by the cannibalism numbers used in the tuning.

As in earlier assessments the surveys that were conducted during winter were allocated to the end of the previous year. This was done so that data from the surveys in 2003 could be included in the assessment. Some of the survey indices
have been multiplied by a factor 10 . This was done to keep the dynamics of the surveys even for very low indices, because XSA adds 1.0 to the indices before the logarithm is taken.

Tuning of the VPA was carried out with XSA using default settings with the following exceptions:
1. Tapered time weighting power 3 over 10 years
2. Catchability dependent of stock size for ages less than 6
3. F of the 2 oldest age groups used in F shrinkage
4. Standard error of the mean to which estimates are shrunk set to 1.0

These settings are identical to those used by last years Working Group.

\subsection*{3.3.6 Recruitment indices (Tables 3.6 and 3.7)}

The survey data on ages 0,1 and 2 in the autumn survey and ages 1,2 and 3 in the joint winter survey are not used in the XSA, and are instead used to estimate the year class strength at age 3 by making regressions with VPA estimates of recruitment at age 3 (the RCT3-program in the ICES software). The input is shown in Table 3.6, and the output is shown in Table 3.7.

\subsection*{3.3.7 Cannibalism}

The method used for calculation of the consumption is described by Bogstad and Mehl (1997). It should be noted that the temperature is used in these calculations. The estimates were obtained as follows:

The cod stomach content data were taken from the joint PINRO-IMR stomach content database (methods described in Mehl and Yaragina 1992). On average 7,500 cod stomachs from the Barents Sea have been analysed annually. The stomachs are sampled throughout the year, although sampling is less frequent in the second quarter of the year. The consumption calculations have been updated by data for 2002 as well as additional data for 2001. The Barents Sea was divided into three areas (west, east and north) and the consumption by cod was calculated from the average stomach content of each prey group by area, half-year and cod age group.

The number of cod predators at age is taken from the VPA, and thus an iterative procedure has to be applied (Section 3.4.2). It was assumed that the mature part of the cod stock is found outside the Barents Sea for three months during the first half of the year. There were very few samples of the stomach contents of cod in the spawning areas. Thus, consumption by cod in the spawning period was omitted from the calculations. It is believed that the cod generally eats very little during spawning, although some predation by cod on herring has been observed close to the spawning areas. The geographical distribution of the cod stock by season is based on Norwegian survey data. The total number of cod ages \(0-6\) (million) consumed is given in Table 3.9. Alternative calculations of the number of cod consumed by cod, giving somewhat different results, were presented in WD 6.

\subsection*{3.3.8 Prediction data (Tables 3.23 and 3.28, Figure 3.9)}

The input data to the short-term prediction with management option table (2003-2005) are given in Table 3.28. For 2003 stock weights and maturity were taken from surveys as described in Sections 3.3.2 and 3.3.4.

Catch weights in 2003 onwards and Stock weights in 2004 onwards are predicted by the method described by Brander (2002), where the latest observation of weights by cohort are used together with average annual increments to predict the weight of the cohort the following year.

For Catch Weights average annual increments by age were calculated for the period 1994-2001 (based on weights for the period 1994-2002), and for Stock Weights average annual increments by age were calculated for the period 19952002 (based on weights for the period 1995-2003).

A preliminary prediction indicated further increase of stock size to levels which in earlier years have been associated with reduced maturation, and the observed maturity in 2003 is slightly lower than in 2002 (see section 3.2.5.4). It was therefore decided to assume a reduced maturation for 2004 and later years. It was decided to use last 20-year average
(1984-2003). The exploitation pattern in 2003 and later years was set equal to the 2000-2002 average. The reference F were set equal to the 2002 value (no 3 year averaging) since the two latest assessments have indicated a recent declining trend in reference \(F\).

The stock number-at-age in 2003 was taken from the final VPA (Table 3.23) for ages 4 and older. The recruitment at age 3 in year 2003 and later was estimated from surveys (section 3.3.6). Fig. 3.9A shows the development in natural mortality due to cannibalism for cod (prey) age groups 1-3 together with the abundance of capelin in the period 19842002. It is seen that the level of cannibalism is inversely related to the capelin abundance. Because the capelin abundance is expected to change rather little from 2002 to 2003, the natural mortality due to cannibalism (M2) in 2003 and later years was set equal to the 2002 values.

\subsection*{3.4 Methods used in the assessment}

\subsection*{3.4.1 VPA and tuning}

For several years each new assessment of this stock has shown a considerable downward revision in population size. This has been clearly shown both in the Quality Control Diagrams and in the retrospective analysis presented by earlier Working Groups. In the assessments in August 2000, several changes in model settings and data choices were made, and since then the retrospective analysis has considerably improved, and the Quality Control Diagrams now indicate rather consistent assessments since 1999.

There were no changes in the present assessment method compared to last year.

\subsection*{3.4.2 Including cannibalism in the VPA (Tables 3.16-3.20, 3.22)}

As a starting point the number of cod consumed by cod were estimated from the stock estimates in the last assessment. Then the number consumed was added to the catches used for tuning. The resulting stock then lead to new estimates of consumption. This procedure was repeated until the revision of consumed numbers for the latest year (2002) differed less than \(1 \%\) from the previous iteration.

The tuning diagnostics from VPA with cannibalism are given in Table 3.16 and the total fishing mortalities (true fishing mortality plus mortality from cannibalism) and population numbers in Tables 3.17 and 3.18.

In order to build a matrix of natural mortality which includes predation, the fishing mortality estimated in the final XSA analyses was split into the mortality caused by the fishing fleet (true F) and the mortality caused by cod cannibalism (M2 in MSVPA terminology) by using the number caught by fishing and by cannibalism. The new natural mortality data matrix was prepared by adding 0.2 (M1) to the M2. This new M matrix (Table 3.19) was used together with the new true Fs to run the final VPA on ages 3-13+. M2 and F values for ages 1-6 in 1984-2002 are given in Tables 3.20 and 3.22. The values for the 2000 and 2001 year classes (age 1 in 2001 and ages 1 and 2 in 2002) are removed because they depend on the RCT3 estimates of these year classes.

Cannibalism on cod age 3 and older may of course also have occurred before 1984. Thus, there is an inconsistency in the recruitment time-series. For comparison with the historic time-series an additional VPA with the same terminal Fs and fixed natural mortality (0.2) is presented (Table 3.27).

Figure 3.9B shows the survey mortality for age 1-2 and 2-3 from the Norwegian bottom trawl survey (Table A3), compared to the mortality calculated for age 1 and 2 by the XSA with cannibalism (Table 3.20 and 3.22). It is seen that the variation over time and also the absolute level of survey mortality and the mortality calculated from the XSA are in good correspondence with each other, particularly for age 2 . As the survey estimates for ages 1-3 are not used in the tuning, these values of calculating mortality should be independent.

\subsection*{3.5 Results of the assessment}

\subsection*{3.5.1 Fishing mortalities and VPA (Tables 3.21-3.26, Figures 3.1)}

The estimated \(\mathrm{F}_{5-10}\) in 2002 is higher than predicted with TAC constraint last year (0.70 vs. 0.65), while the spawning stock biomass in 2002 is estimated to be \(505,000 \mathrm{t}\), which is well above last year's assessment \((430,000 \mathrm{t})\). The SSB in 2003 is \(653,000 \mathrm{t}\), compared to \(430,000 \mathrm{t}\) in the prediction made last year.

Figure 3.10 shows the results of a retrospective analysis when cannibalism is taken into account. The number of cod consumed by cod was not recalculated year by year in the retrospective analysis, however. The fishing mortalities and stock numbers are given in Tables \(3.21-3.23\), while the stock biomass at age and the spawning stock biomass at age are given in Tables 3.24-3.25. A summary of landings, fishing mortality, stock biomass, spawning stock biomass and recruitment since 1946 is given in Table 3.26 and Figures 3.1A and 3.1B.

\subsection*{3.5.2 Recruitment (Table 3.6-3.7)}

From the RCT3 calculations the estimated number (millions) of recruits at age 3 is 681 millions for the 2000 year class, 308 millions for the 2001 year class and 664 millions for the 2002 year class. A comparison of these results with the results of other recruitment models is given in Section 1.4.1.1.

\subsection*{3.6 Reference points}

During the 2001 WG considerable revisions of maturity-at-age and weights-at-age were introduced. As a consequence. the PA reference points for Northeast Arctic cod have to be revised. They have been debated for several years and the AFWG 2002 agreed that a special meeting devoted to a full discussion of the PRP for Northeast Arctic cod needed to resolve the matters. In accordance with framework proposed by ICES and developed further at the December 2002 meeting of SGPA the revision of PA reference points for NEA cod was done during the special meeting SGBRP (see Introduction). AFWG proposes these values to be adopted by ACFM

\subsection*{3.6.1 Biomass reference points (Figure 3.1)}

The values in current use are \(\mathbf{B}_{\mathrm{lim}}=112,000 \mathrm{t}\) (lowest observed in the 1997 assessment) and \(\mathbf{B}_{\mathrm{pa}}=500,000 \mathrm{t}\) (former MBAL).

The new values are \(\mathbf{B}_{\lim }=220,000 \mathrm{t}, \mathbf{B}_{\mathrm{pa}}=460,000 \mathrm{t}\). (ICES 2003/ACFM:11).

\subsection*{3.6.2 Fishing mortality reference points}

The SGPAFM (ICES 1998/ACFM:10) suggested the limit reference point \(\mathbf{F}_{\text {lim }}=\mathbf{F}_{\text {med }}\) for Northeast Arctic cod, haddock, and saithe. A precautionary fishing mortality \(\left(\mathbf{F}_{\mathrm{pa}}\right)\) is then defined as \(\mathbf{F}_{\mathrm{pa}}=\mathrm{F}_{\mathrm{lim}} \mathrm{e}^{-1.645 \sigma}(\sigma=0.2-0.3)\). The 1998 WG , however, found that setting \(\mathbf{F}_{\text {lim }}=\mathbf{F}_{\text {med }}\) did not correspond very well with the exploitation history for cod. The median value for \(\mathbf{F}_{\text {loss }}\) was estimated at 0.70 , and the \(5^{\text {th }}\) percentile of this value was adopted as a precautionary reference fishing mortality (\(\mathbf{F}_{\mathrm{pa}}=0.42\)) by the WG in 1998. Since 1998 ACFM has used \(\mathbf{F}_{\text {lim }}=\mathbf{F}_{\text {loss }}=0.70\) and \(\mathbf{F}_{\mathrm{pa}}=0.42\). This value of \(\mathbf{F}_{\mathrm{pa}}\) corresponded both to the upper 5 percentile of \(\mathbf{F}_{\text {loss }}\) and to \(\sigma=0.3\) in the equation above.

With the revisions of the time-series made at the 2001 WG meeting, the F reference points relating to the stock-recruitment-plot needed to be reconsidered. The new values estimated by SGBRP are \(\mathbf{F}_{\text {lim }}=0.74\) and \(\mathbf{F}_{\text {pa }}=0.40\) (ICES 2003/ACFM:11).

\subsection*{3.7 Catch options (Tables 3.29-3.30)}

Catch options are presented in Table 3.29. The detailed outputs corresponding to \(\mathbf{F}_{\mathrm{sq}}\) in 2003 and \(\mathbf{F}_{\mathrm{pa}}\) in 2004 and 2005 is given in Table 3.30.

In Figure 3.1 the catch level in 2004 and spawning stock biomass level in 2005 are plotted against the fishing mortality in 2004.

\subsection*{3.8 Medium-term forecasts and management scenarios}

\subsection*{3.8.1 Input data (Table 3.28)}

The simulation period was 2003-2007. The input data were the same as used for the short-term predictions, using the same data for the years after 2005 as for 2005 (Table 3.28). The abundance of the 2003 and 2004 year classes at age 3 was set equal to the long-term average of 600 million individuals.

It was decided to limit the risk analysis for Northeast Arctic cod to a single-species analysis, where only uncertainty in the initial stock estimate and the recruitment is taken into account. The uncertainty of the stock estimate in 2003 and later years was modeled using a lognormal distribution with a standard error on \(\log\) scale of 0.3 for all ages. This value is somewhat above the external standard error from the XSA, in recognition of the risk of bias in the assessment, which has been observed in previous years. The errors in numbers-at-age are assumed to be uncorrelated. A modified version of the general-purpose @RISK simulation spreadsheet previously used for studying harvest control rules for Norwegian Spring-spawning herring by the WGNPBW (see e.g. ICES C. M. 1997/Assess:14) was used in the simulations. 2000 simulations were performed for each harvest control rule.

\subsection*{3.8.3 New harvesting strategy adopted}

At the \(31^{\text {st }}\) session of The Joint Norwegian-Russian Fishery Commission in autumn 2002, the Parties agreed that the new harvesting strategy for Northeast Arctic cod and haddock should incorporate the following considerations:
- to prepare the basis for a long-term high yield of the stocks
- the desirability to obtain a high degree of stability in the TAC from year to year
- full utilization, at all times, of the most recent information available on the stock development

On this basis, the Parties determined the following decision rule for setting the annual fishing quota for Northeast Arctic cod from 2004 onwards:
- \(\quad\) estimate the average TAC level for the coming 3 years based on \(\mathbf{F}_{\mathrm{pa}}\). TAC for next year will be set to this level as a starting value for the 3 years period
- the year after, the TAC calculation for the next 3 years is repeated based on updated information about the stock development, though such that the TAC should not be changed by more than \(+/-10 \%\) compared with the previous year's TAC.
- if the spawning stock falls below \(\mathbf{B}_{\mathrm{pa}}\), the Parties should consider a lower TAC than according to the decision rule above.

\subsection*{3.8.4 Comments to the new harvesting strategy}

First, a clarification concerning the constraint on the change in quota from one year to the next is needed. It is not entirely clear whether the constraint of a maximum change of \(10 \%\) from year to year also applies to the setting of the TAC for 2004. In the following, applying this constraint to the 2004 TAC (less than \(10 \%\) different from the 2003 TAC) is denoted as catch rule 1 , while not applying this constraint to the 2004 TAC is denoted as catch rule 2.

The appropriateness of the maximum percentage change will be evaluated by a dedicated working group appointed by the Joint Norwegian-Russian Fisheries Commission before a final decision is made. However, the AFWG notice that the stock fluctuations from year to year may exceed \(+/-10 \%\). An attempt to retain catch variations within the \(10 \%\) may entail both underfishing and overfishing of the stock. It is necessary to test the decision rule with simulation models in order to consider various scenarios of SSB dynamics (both for an increasing and decreasing stock situation). This work needs to be done before the rule is adopted.

A "multi-annual" rule as described above for setting the TAC for Northeast Arctic cod has not previously been considered by ICES Working and Study Groups. Some general points relating to such rules were noted:

According to the ACFM form of Advice any target F should be below \(\mathbf{F}_{\mathrm{pa}}\) to be in accordance with the Precautionary Approach .The medium-term prognosis shows that the new strategy will not always keep F at below \(\mathbf{F}_{\mathrm{pa}}\). The reason is that when \(\mathrm{F}=\mathbf{F}_{\mathrm{pa}}\) is applied for a three-year period, the stock will in many cases increase, so that the catch corresponding to \(\mathrm{F}=\mathbf{F}_{\mathrm{pa}}\) will also increase during the period. When applying the 3-year averaging method to find the TAC in the first year, this will thus be higher than the TAC corresponding to \(\mathrm{F}=\mathbf{F}_{\mathrm{pa}}\) in the first year.

Involving the medium-term prognosis (three years into future) in the setting of quotas for next year also introduces additional uncertainty due to uncertainty in the prognosis of growth, maturation, recruitment and mortality. Thus, the fishing mortality associated with a multi-annual TAC rule may have to be set lower than \(\mathbf{F}_{\mathrm{pa}}\) in order to ensure the same probability of avoiding limit values. The ICES should provide guidelines on how to evaluate the effect on multi-annual TAC rules on reference points.

The Working Group did not have available software which could perform a risk analysis applying the agreed harvest control rule.

\subsection*{3.8.5 Results (Figure 3.11)}

In all runs F status quo was used in 2003, with various options for 2004 and later years. The text table below shows the average catch in the period 2004-2006 and the probability of SSB to be below \(\mathrm{B}_{\mathrm{pa}}=460000\) tonnes in 2007 for the various catch options. Risk profiles for the total stock biomass, spawning stock biomass and catch are shown in Figs \(3.11 \mathrm{a}-\mathrm{c}\).

Basis 2003: F status quo \(=0.70\)
\begin{tabular}{|l|l|l|l|}
\hline F & Basis, 2004-2006 & \begin{tabular}{l}
Average catch \\
\(2004-2006 \quad\) (annual catches in \\
brackets)
\end{tabular} & \begin{tabular}{l}
\(\mathrm{P}\left(\mathrm{SSB}<\mathbf{B}_{\mathrm{pa}}\right)\) \\
in 2007
\end{tabular} \\
\hline 0.00 & 0 & 0 & \(<5 \%\) \\
\hline 0.25 & \(0.36 * \mathbf{F}_{\mathrm{sq}}\) & \(361(265-366-452)\) & \(<5 \%\) \\
\hline 0.40 & \(\mathbf{F}_{\mathrm{pa}}\left(=0.57 * \mathbf{F}_{\mathrm{sq}}\right)\) & \(486(400-498-560)\) & \(<5 \%\) \\
\hline & Catch rule1: \(10 \%>03 \mathrm{TAC}\) & \(480(435-479-527)\) & \(\mathrm{N} / \mathrm{A}\) \\
\hline & Catch rule 2 & \(528(486-529-569)\) & N \(/ \mathrm{A}\) \\
\hline 0.70 & \(1.0 * \mathbf{F}_{\mathrm{sq}}\) & \(634(629-646-627)\) & \(14 \%\) \\
\hline
\end{tabular}

Short-term catch forecast based on status quo fishing mortality in 2003:
Basis 2003: \(\mathrm{F}=\mathbf{F}_{\mathrm{sq}}=0.70\), Catch \(=578000 \mathrm{t}\), leads to \(\mathrm{SSB} 2004=652000 \mathrm{t}\)
\begin{tabular}{|l|l|l|l|l|}
\hline F & Basis & Landings 2004 & SSB 2005 & \(\mathrm{P}\left(\mathrm{SSB}<\mathbf{B}_{\mathrm{pa}}\right)\) in 2007 \\
\hline 0.00 & 0 & 0 & 1189 & \(<5 \%\) \\
\hline 0.25 & \(0.36 * \mathbf{F}_{\mathrm{sq}}\) & 265 & 967 & \(<5 \%\) \\
\hline 0.40 & \(\mathbf{F}_{\mathrm{pa}}\left(=0.57 * \mathbf{F}_{\mathrm{sq}}\right)\) & 400 & 856 & \(<5 \%\) \\
\hline 0.44 & Catch rule1 \(\left(=0.63 * \mathbf{F}_{\mathrm{sq}}\right): 10 \%>03 \mathrm{TAC}\) & 435 & 829 & \(\mathrm{~N} / \mathrm{A}\) \\
\hline 0.50 & Catch rule \(2\left(=0.73 * \mathbf{F}_{\mathrm{sq}}\right)\) & 486 & 788 & \(\mathrm{~N} / \mathrm{A}\) \\
\hline 0.70 & \(1.0 * \mathbf{F}_{\mathrm{sq}}\) & 629 & 677 & \(14 \%\) \\
\hline
\end{tabular}

It should be noted that for catch rule2, the constraint of maximum \(10 \%\) change from year to year does not affect the catch in 2005 and 2006, while for catch rule 1, the constraint of maximum \(10 \%\) change from year to year limit the catch both in 2004, 2005 and 2006.

\subsection*{3.8.6 Management considerations}

The spawning stock in 2003 is above \(\mathbf{B}_{\mathrm{pa}}\), and is predicted to grow further in 2004. The fishing mortality has decreased somewhat, but is still close to \(\mathbf{F}_{\text {lim }}\).

The forecasts indicate that fishing at \(\mathbf{F}_{\mathrm{pa}}\) in \(2004(400,000 \mathrm{t})\) allows for further stock increase in 2005, and the mediumterm projections indicate that there is high probability that the stock will remain above \(\mathbf{B}_{\mathrm{pa}}\) the following two years.

The catch rule in its present form (Section 3.8.3) is not sufficiently specified to be in agreement with the precautionary approach. It does not clearly specify the actions to be taken to ensure that the stock rebuilds in case it falls below \(\mathbf{B}_{\mathrm{pa}}\), and the rule could allow the F to be above \(\mathbf{F}_{\mathrm{pa}}\) for long periods. The rule might be considered to be in agreement with the precautionary approach if sufficient action for a quick rebuilding above \(\mathbf{B}_{\mathrm{pa}}\) is specified.

The main criteria to be fulfilled for satisfying the precautionary approach is that the probability for \(\operatorname{SSB}>\mathbf{B}_{\text {lim }}\) is kept high (\(90-95 \%\)). Comprehensive simulations would give information on the additional specifications needed for the rule to meet this criterion.

It is therefore advised that the F in 2004 should be below \(\mathbf{F}_{\mathrm{pa}}\), corresponding to landings less than 400,000 tonnes. If the catch rule is adjusted and proved to be in agreement with the precautionary approach, the landings could be set by the rule.

It should be noted that the current assessment might be over-optimistic (see below). Compared to the prediction above, an assessment based on the Joint bottom trawl survey index alone (Fleet 15 in Table 3.15) gives a prediction with \(30 \%\) lower spawning stock and \(21 \%\) lower \(\mathbf{F}_{\mathrm{pa}}\)-catch in 2004. These values for 2004 are within the \(10 \%-90 \%\) percentile range shown in the probabilistic projections shown in Figure 3.11.

\subsection*{3.9 Comments to the assessment (Figures 3.10-3.16, Table 3.31).}

There are indications of reduced precision of the latest surveys compared to those in the previous 2-3 years. The Russian autumn survey was not allowed to cover the Norwegian Zone, and at the Joint winter survey, the fish appeared to be more patchy distributed than in recent years. Concerns were raised that at least some of the surveys might have over-estimated the stock.

Previous Working Groups have been concerned about possible discarding and under-reporting (Introduction, and ACFM CM 2001/ACFM:02). The Working Group expresses serious concerns that mis-reporting and discarding of similar magnitude still continues (Sokolov, WD9). This creates uncertainties in the catch statistics and undermines the basis for the assessment and catch predictions. This is a strong reason for additional precaution when setting quotas. It also calls for an evaluation of the current management and catch control systems.

A time-series of discard estimates for cod was presented at the 2002 WG (Dingsør, 2001). Some results are shown in Table 3.31. The later part of this time-series overlaps with the period reported in WD 9. The results in the overlapping years differ considerably. The discrepancies should be analysed before these time-series are used in the assessment.

\subsection*{3.9.1 Comparison of this year's assessment with last year's assessment.}

Retrospective plots of F, SSB and recruitment are shown in Figure 3.10.
The text table compares this years estimates with last years estimate for the year 2002 for number-at-age, total biomass, spawning biomass and reference F-values, as well as reference F for the year 2001.
\begin{tabular}{ll|llllllllllll}
\hline & & \multicolumn{3}{|c|}{2002} & & & & & & \(\mathrm{~F}(2002)\) \\
\hline & \(\mathrm{F}(2001)\) & age3 & age4 & age5 & age6 & age7 & age8 & age9 & age10 & TSB & SSB & \(\mathrm{C} . \mathrm{cons} / \mathbf{F}_{\text {sq }}\) \\
\hline 2002ass & 0.84 & 278 & 361 & 315 & 157 & 73 & 16 & 2.1 & 1.00 & 1343 & 430 & \(0.65 / 0.84\) \\
2003 ass & 0.83 & 498 & 385 & 360 & 193 & 83 & 20 & 2.8 & 0.74 & 1593 & 505 & 0.7 \\
\hline ratio & 0.99 & 1.79 & 1.07 & 1.14 & 1.23 & 1.14 & 1.25 & 1.33 & 0.74 & 1.19 & 1.17 & \(1.08 / 0.83\) \\
\hline
\end{tabular}

The reference F in 2001 is nearly unchanged, and the F in 2002 is near the F corresponding to the catch constraint and somewhat below the assumed \(\mathbf{F}_{\text {sq }}\). The upward revision of stock numbers and biomass in 2002 seems contradictory to the agreements among Fs. A further shift in exploitation pattern towards older fish seem to be the main reason why the increased stock numbers have not lead to decreased reference F. Compared to the catch constrained prediction from the 2002 assessment the new Fs at age for 2002 are lower for ages 5-6 and higher for ages 9-10.

For comparison the retrospective pattern for \(\mathrm{F}(4-8)\) is also shown (Fig. 3.10B). This show considerably less between year revision than the \(\mathrm{F}(5-10)\), particularly some years back in time. This is most likely caused by some sampling noise associated with the age groups 9 and 10 , which in some years are rather scarce in some fishing fleets and survey fleets. It could be considered to change the age range for the reference \(F\) for this stock.

\subsection*{3.10}

\section*{Alternative assessment methods (Fleksibest)}

\subsection*{3.10.1 Introduction}

A complete description of the mathematical formulations used in Fleksibest is given in Frøysa et al. (2002). Fleksibest is a length-structured extension of the type of age structured assessment models sometimes termed 'statistical catch-atage analysis' (Fournier and Archibald, 1982; Deriso et al., 1985). As last year, a complete assessment including a medium-term prediction is presented for comparison with the XSA assessment. An outline of the plans for future work on Fleksibest is given in the Introduction section.

\subsection*{3.10.2 Stock assessment using Fleksibest}

\subsection*{3.10.2.1 Model structure}

A quarterly time step is used. The model is run for the period 1.quarter 1985-1.quarter 2003. The cod stock is divided into an immature (ages 3-10, lengths \(15-105 \mathrm{~cm}\)) and a mature part (ages 4-12+, lengths \(55-135 \mathrm{~cm}\)). Maturation takes part in the fourth quarter each year. 1 cm wide length groups are used in the model, and 5 cm wide length groups in the survey and catch data files.

\subsection*{3.10.2.2 Data used}

\section*{Survey data}

The Norwegian summer bottom trawl survey was not included in the Fleksibest assessment this year, in order to be consistent with the XSA assessment. Otherwise, the same surveys as in last year's assessment were used. Some age and length groups with few or very noisy observations are deleted from some surveys. The table below shows the year, age and length range for the surveys used.
\begin{tabular}{|l|l|l|l|l|l|}
\hline Survey & Quarter & Year range & Age range & \begin{tabular}{l}
Length \\
range
\end{tabular} & Stock covered \\
\hline \begin{tabular}{l}
Norwegian winter bottom \\
trawl
\end{tabular} & 1 & \(1985-1993\) & \(3-9\) & \(20-90 \mathrm{~cm}\) & Immature \\
\hline \begin{tabular}{l}
Norwegian winter bottom \\
trawl
\end{tabular} & 1 & \(1994-2003\) & \(3-9\) & \(20-90 \mathrm{~cm}\) & Immature \\
\hline Norwegian winter acoustic & 1 & \(1985-1993\) & \(3-9\) & \(20-90 \mathrm{~cm}\) & Immature \\
\hline Norwegian winter acoustic & 1 & \(1994-2003\) & \(3-9\) & \(20-90 \mathrm{~cm}\) & Immature \\
\hline Lofoten acoustic & 1 & \(1985-1989\) & \(5-12+\) & \(55-110 \mathrm{~cm}\) & Mature \\
\hline Lofoten acoustic & 1 & \(1990-2003\) and 1995- & \(3-8\) & \(21-106 \mathrm{~cm}\) & \begin{tabular}{l}
Mature \\
\hline Russian bottom trawl \\
Rature and \\
\hline
\end{tabular} \\
\hline
\end{tabular}

The Norwegian winter survey in the Barents Sea (bottom trawl and acoustic indices) was split into two time periods because of the change of gear and increase in area coverage in 1994 (Jakobsen et al., 1997). The Lofoten acoustic survey was split into two periods because of the change of echosounder in 1990 (Korsbrekke, 1997). The 1994 data from the Russian bottom trawl survey gave extremely high residuals and were removed. The XSA also indicates a bad fit for this survey in 1994.

\section*{Catch data}

As last year, it was decided to treat the gillnet fishery separately from the other fleets, as this fleet is fishing on much larger fish than the other fleets. It was also attempted to treat the Russian trawl fleet separately, but in the final run, this fleet was combined with the non-gillnet Norwegian fleets, just like last year. This is further discussed in Section 3.10.3. Thus, we use catch in numbers-at-age and length by quarter from the following two fleets:
- Combined fleet: All Norwegian fleets except gillnet (Danish seine, handline, longline, Norwegian trawl)+ Russian trawl
- Gillnet

Data for 1985-2002 are used, for length groups 15-135 cm and ages 3-12+.
In addition, two fleets contribute to the fishing mortality in the model, with assumed mortality parameters.
Third countries. The ratio between partial F for this fleet and of the combined fleet is the same as the ratio between the catch in tonnes for these fleets, for each year.

Overfishing. In 1990-1994, the Working Group included estimates of unreported landings (assumed to have the same age distribution as the total reported landings) in the assessment. To account for this we have introduced an 'overfishing' fleet which fishes (with the same selection as the combined fleet) in these years. The partial F for this fleet is estimated for each of the years 1990-1994 is estimated.

\section*{Consumption data}

Data on the consumption (kg/time step) of cod by cod for the period 1985-2002 calculated in the same way as in Bogstad and Mehl (1997). The data are given by predator age group and prey length group.

\section*{Differences between data used in XSA and in Fleksibest}

It should be noted that there is some difference between the tuning series used is XSA and in Fleksibest. The older part of all the survey time-series are downweighted in XSA. In Fleksibest, all years are given the same weight, but the Norwegian winter bottom trawl survey, the Norwegian winter acoustic survey and the Lofoten survey are split into two time periods. Also, the Norwegian winter acoustic survey and the Lofoten survey are combined in XSA, but not in Fleksibest.

\subsection*{3.10.2.3 Model assumptions}

The Pearson function, which is scale dependent, was used as an objective function.
The length selectivity was assumed to be a linear function of length for all surveys except for the Lofoten survey. The slope of this function is close to zero for all the surveys. For the Lofoten survey and for the commercial fleets a logistic length selection curve was assumed.

Linear mean growth in length, variable by year, was assumed. The ratio between the growth rate of mature and immature fish was assumed to be the same for all years.

The maturation parameters were set to values giving slightly lower values for maturity-at-age than in the input to the XSA. However, as the mean weight of mature fish is higher than that of immature fish, the proportion of the biomass, which is mature, is quite similar. A large discrepancy is observed for 1987, when the condition factor was very low. This could possibly be accounted for by also including the condition factor in the maturation function.

The values of the contribution to the objective function from catches were upweighted with a factor of 20 compared to the surveys in order to get approximately the same contribution to the total value of the objective function for both groups of data sources. Also, consumption data were downweighted in the estimations, for the same reasons as given in the 2001 AFWG report. The effect of changing the weighting of the different data sources was investigated during the 2001 AFWG meeting and was not studied this year.

\subsection*{3.10.2.4 Optimization algorithm}

A combination of the Simulated Annealing and Hooke \& Jeeves algorithms was used. Repeated searches with the combination of these algorithms were performed, starting at the optimum found during the previous search. Sensitivity tests indicate that a minimum was found for the key run.

Changes from last year:
- \(\quad 1 \mathrm{~cm}\) length classes
- Beta-binomial distribution used to model distribution of length growth
- Different handling of Russian length distributions
- Norwegian summer survey excluded

\section*{1 cm length classes}

The model has been altered to use 1 cm length classes rather than the previous 2.5 cm ones. This allows for a more accurate modelling of the length distribution of modelled fish, in particular it allows for more accurate modelling of the actual distribution of growth in each time step. The previous 2.5 cm length classes were too large to capture this distribution accurately (with almost all fish growing by 0,1 or 22.5 cm classes each time step). It should be noted that this is a change to the internal model dynamics, and does not directly affect the comparison with the data.

\section*{Beta-binomial distribution describing distribution of length growth}

The look-up table for determining how many length groups the fish will grow when the mean growth is given, has now been replaced with a fully modelled distribution, controlled by an optimizable parameter. The distribution is controlled using the beta-binomial distribution, with a single optimized parameter, in the same way as described by Björnsson and Sigurdsson (2003). Separate parameters are used for the mature and immature population groups in order to capture the different dynamics of the two stocks.

\section*{Handling of Russian length distributions}

The Russian catch and survey data have always been given on length classes which are shifted 1 cm compared with the Norwegian data (\(21-25 \mathrm{~cm}\) instead of 20-24 cm etc.). Previously, this has been ignored, and the Russian data have been assumed to be given on the same length groups as the Norwegian data. With 1 cm wide model length classes, the correct length distribution can be used for the Russian data. This was done for the Russian survey data, but not for the Russian catch data (see below).

\section*{Catch in tonnes likelihood}

In order to compare the observed and modeled catch in tonnes, a new likelihood function has been included in Fleksibest. This is simply the sum of squares of the difference between the observed (\(\mathrm{C}_{\mathrm{y}, \mathrm{q}, \mathrm{f}}\)) and modeled \(\left(\hat{\mathrm{C}}_{\mathrm{y}, \mathrm{q}, \mathrm{f}}\right)\) catch in tonnes, for each year \(y\), quarter \(q\) and fleet \(f\) :
\[
\left(C_{y, q, f}-\hat{C}_{y, q, f}\right)^{2}
\]

The observations available for a given fleet are, in addition to the catch in tonnes, length distributions and age distributions for given length. Such proportions at length and age should be used when comparing model results and observations, as done by Björnsson and Sigurdsson (2003). They should be supplemented by the catch in tonnes likelihood described above. This year the catch in tonnes likelihood was only used to determine the fishing mortality for the 'overfishing' fleet in the years 1990-1994 by comparing the modeled to the 'observed' overfishing in tonnes for these years.

\subsection*{3.10.2.5 Estimates of parameters outside the model}

The mean length-at-age and the standard deviation of the mean length-at-age for all age groups of immature and mature fish in the first year and for age 3 in all years were taken from survey data. The SD of mean length of mature in the first year was not available, and was set to values obtained during previous estimations. The number of fish in the first year in age groups with low abundance was fixed. The residual natural mortality was set to 0.2 . The maturation function was given values consistent with the work by Ajiad et al., (1999). The weight-length relationship used is the same as for Norwegian commercial catch data. This relationship is variable by quarter and year. The parameters governing size selectivity in cod cannibalism were set to the values given by Bogstad (WD 15, AFWG 2001).

\subsection*{3.10.3 Results from the assessment (Tables 3.32-3.33, Figures 3.17-3.18)}

\section*{Choice of key run}

In order to take into account the 1 cm shift between length classes in Norwegian and Russian catch data, the Russian trawl fleet would need to be split from the 'combined' fleet. Thus, selectivity parameters need to be estimated also for the Russian trawl fleet. The ratio between the fishing mortality of Russian trawl and the combined fleet is then assumed
to be the same as the ratio between the catch in weight of those two fleets for each quarter. This may cause some error if the selectivity of the two fleets is different.

This approach was attempted, but led to each of the fleets (Norwegian except gillnet and Russian) giving about the same likelihood score as the combined fleet. The reasons for this are unknown. Thus, it was decided to combine the Norwegian non-gillnet fleets and the Russian trawl fleet into one fleet, as in last years' assessment.

No other changes from last year's key run than those listed in Section 3.10.2.5 were attempted.

\section*{Effect of excluding Russian survey data for 2002.}

As for XSA, the effect of excluding the Russian survey for 2002, where the area coverage by this survey was incomplete, was tested. This caused no change in F for 2002, but a slightly lower F in years with high F. SSB in 2002 decreased from 436 to 434 thousand tonnes, while the SSB decreased in years with a high SSB. The effect on the 2002 values is less than seen when the same exercise was done by XSA (Table 3.15).

\section*{Parameter sensitivity}

Likelihood components, input data and parameter estimates for the key run are given in Table 3.32a-c. The parameter values obtained during the two previous year's assessments are given for comparison. Also, the effect on the total likelihood score of changing each parameter with \(+/-5 \%\) is given. Sensitivity tests show that the estimation procedure has found a well-defined optimum, and that the likelihood function is quadratic around the optimum with respect to each parameter.

It is seen that the total likelihood score is most sensitive to \(\mathrm{L}_{50}\) (length at \(50 \%\) selection) in the commercial fleets. It is also quite sensitive to the growth parameters and the length of a cohort at age 3. Due to the formulation of the catch in tonnes likelihood component and the parameter correlations in the model, the sensitivities for parameters relevant to the stock abundance in the period 1990-1994 were high. Another run was performed where the partial F values for overfishing for these years were fixed, and this run showed sensitivities similar to those presented in last year's report. This run gave small changes in parameter values and stock development.

\section*{Model results}

The model values of natural mortality, maturity, stock weight, catch weights and catch in numbers by age group derived from these parameters are given in Table 3.33. This table also presents the fishing mortalities, stock numbers, stock biomass and spawning stock biomass. Results (total stock biomass, SSB, F, catches, recruitment, total stock number) of the key run are shown in Fig. 3.17a-f. The total annual catch in weight as estimated by the model is somewhat higher than the reported catches in almost all years, but in general there is good agreement with the reported catches in tonnes. The maximum discrepancy is about 168000 tonnes in 1995. In general, the trends given by XSA and Fleksibest are very similar for the recruitment, the stock numbers and stock biomass. Fleksibest shows the same overall trends for \(\mathrm{F}_{5-10}\) as XSA, but the curve given by Fleksibest is smoother. One reason for this may be that Fleksibest is less vulnerable to noise in the catch data of the oldest ages due to the fixed selectivity pattern by length. Fleksibest gives high spawning biomass in the years 1992-1995, with significantly higher SSB than in the XSA assessment for the years 1993-1995. Else the SSB trends are very similar.

Compared to the stock weights used in the XSA, the mean weight-at-age in Fleksibest is higher for age 3 and lower for age 7 and older. The discrepancy is higher for weight-at-age in the stock than for weight-at-age in the catch. The maturity-at-age is lower in Fleksibest than in XSA for ages 6 and older, except in the period 1986-1988, when Fleksibest give higher maturity ogives than XSA for all ages.

Figure 3.18a-f shows the fit between modeled and observed survey indices and between modeled and observed catch in number. The plots show the sum over age and length groups year by year.

Compared to last year's Fleksibest results, the results obtained this year give a more optimistic view of the stock. The fishing mortality (\(\mathrm{F}_{5-10}\)) in 2001 decreased from 0.68 in last year's assessment to 0.58 in this year' assessment, while the SSB in 2002 increased from 376 thousand tonnes to 436 thousand tonnes. This change is partly due to the exclusion of the Norwegian summer survey in this year's assessment. As mentioned in last year's report, excluding this survey led to increasing SSB and decreasing F.

\subsection*{3.10.4 Retrospective analysis (Figure 3.19)}

Results (total stock biomass, SSB, F, catches, recruitment, total stock number) of a retrospective analysis with the same settings as in the key run are shown in Figure 3.19a-f. The runs stops in first quarter, and are labeled after the year that contains the last time step. The shortest run stops in first quarter in 1998, and is thus labeled 1998. The retrospective pattern seems to be fairly consistent back to 1999 .

\subsection*{3.10.5 Use of Fleksibest for predictions (Tables 3.34-3.35, Figure 3.20a-f)}

Fleksibest is well suited for prognosis, because the length-dependence of population dynamics processes makes it easy to get consistency between the values of weight, maturity and mortality-at-age. In the prognosis runs with Fleksibest for the period 2003-2007, the same values as in the key run were used for most parameters. For the parameters that are variable by year, the values for 2002 were used for all years in the prognosis, except for recruitment and fishing mortality.

The recruitment at age 3 in 2004 and 2005 is set to the values obtained from the RCT3 analysis. The recruitment at age 3 in 2006 and later is assumed to be equal to the average recruitment (600 million individuals). This is consistent with the assumptions made in the medium-term prognosis based on the XSA run (see Section 3.3.8). Runs were made with \(\mathrm{F}=0.25, \mathrm{~F}_{\mathrm{pa}}=0.40, \mathrm{~F}_{\text {status quo }}=0.47\) and \(\mathrm{F}=0.70\) for the period 2003-2007. In all runs \(\mathrm{F}_{\text {status quo }}\) was assumed for 2003. In addition a run with a constant catch of 500000 tonnes for the period 2003-2007 was made. The values of recruitment, catch weight, stock weight, maturity, natural mortality and fishing mortality-at-age for the \(\mathbf{F}_{\mathrm{pa}}\) run are given in Table 3.34. This is comparable to the usual prediction input table (Table 3.28). The management option table for the Fleksibest prediction is given in Table 3.35, and results of medium-term projections with these different fishing mortalities are shown in Figure 3.20a-f.

\subsection*{3.10.5.1 Comments to the prognosis}

From Figures 3.20a-f it is seen that the four alternatives give large differences in the development of the spawning stock biomass and significant differences in the development of the stock biomass. It should be noted that fishing mortalities of 0.40 and 0.47.throughout the period gives a higher catch in 2007 than fishing at 0.70 .

\subsection*{3.10.6 Reference points related to Fleksibest}

In order to use Fleksibest for providing management advice for NEA cod, reference points would need to be calculated. It needs to be outlined how reference points could be calculated using Fleksibest. It should be noted that it is somewhat difficult to extend Fleksibest to the time period when survey data are not available (before 1981). Such an extension will require assumptions about the selection pattern of the various fishing fleets backwards in time.

\subsection*{3.11 Comparison of results from XSA and Fleksibest}

\subsection*{3.11.1 Comparison of the assessments}

The abundance at age in 2002 in the Fleksibest assessment is lower for ages 3-6 and higher for ages 7 and older compared to the XSA assessment (Table 3.15). The reference F in 2002 estimated by Fleksibest is lower (0.47 vs .0 .70), the reason for this is higher fishing mortalities in XSA compared to Fleksibest for age 7 and older fish. The reason for this discrepancy in fishing pattern should be investigated. The spawning stock biomass in 2002 is somewhat lower in Fleksibest than in XSA, 436 vs. 507 thousand tonnes. The declining trend in fishing mortality from 1999 to 2002 is stronger in Fleksibest than in XSA.

\subsection*{3.11.2 Comparison of the predictions (Figure 3.21)}

The standard and Fleksibest predictions differ in a fundamental way because all input values to the standard prediction (Table 3.28) are independent and can be determined separately. This may lead to internal inconsistencies in the prediction input to the standard prediction. Also, effects of different exploitation levels on weight, maturity and selection at age cannot be accounted for using standard predictions. This may be important for medium-term predictions.

The population parameters at age in the Fleksibest prediction (Table 3.34) are determined by the values of growth, recruitment and fishing mortality chosen, as mentioned in Section 3.10.5. With this method, the values of weight, maturity and fishing mortality-at-age will be consistent with each other.

Although F status quo is quite different between the XSA run and the Fleksibest run, the catch resulting from applying F status quo in 2003 is not very different (506 thousand tonnes with Fleksibest and 583 thousand tonnes with XSA). The development of fishing mortality, total stock biomass and spawning stock biomass in Fleksibest and XSA for a constant catch of 500000 tonnes in the period 2003-2007 is compared in Fig. 3.21. The Fleksibest predictions show a less optimistic development of the stock than the XSA predictions.

Table 3.1 North-East Arctic COD. Total catch (t) by fishing areas and unreported catch. (Data provided by Working Group members.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & Sub-area I & Division Ila & Division IIb & Unreported catches & Total catch \\
\hline 1961 & 409,694 & 153,019 & 220,508 & & 783,221 \\
\hline 1962 & 548,621 & 139,848 & 220,797 & & 909,266 \\
\hline 1963 & 547,469 & 117,100 & 111,768 & & 776,337 \\
\hline 1964 & 206,883 & 104,698 & 126,114 & & 437,695 \\
\hline 1965 & 241,489 & 100,011 & 103,430 & & 444,983 \\
\hline 1966 & 292,253 & 134,805 & 56,653 & & 483,711 \\
\hline 1967 & 322,798 & 128,747 & 121,060 & & 572,605 \\
\hline 1968 & 642,452 & 162,472 & 269,254 & & 1,074,084 \\
\hline 1969 & 679,373 & 255,599 & 262,254 & & 1,197,226 \\
\hline 1970 & 603,855 & 243,835 & 85,556 & & 933,246 \\
\hline 1971 & 312,505 & 319,623 & 56,920 & & 689,048 \\
\hline 1972 & 197,015 & 335,257 & 32,982 & & 565,254 \\
\hline 1973 & 492,716 & 211,762 & 88,207 & & 792,685 \\
\hline 1974 & 723,489 & 124,214 & 254,730 & & 1,102,433 \\
\hline 1975 & 561,701 & 120,276 & 147,400 & & 829,377 \\
\hline 1976 & 526,685 & 237,245 & 103,533 & & 867,463 \\
\hline 1977 & 538,231 & 257,073 & 109,997 & & 905,301 \\
\hline 1978 & 418,265 & 263,157 & 17,293 & & 698,715 \\
\hline 1979 & 195,166 & 235,449 & 9,923 & & 440,538 \\
\hline 1980 & 168,671 & 199,313 & 12,450 & & 380,434 \\
\hline 1981 & 137,033 & 245,167 & 16,837 & & 399,037 \\
\hline 1982 & 96,576 & 236,125 & 31,029 & & 363,730 \\
\hline 1983 & 64,803 & 200,279 & 24,910 & & 289,992 \\
\hline 1984 & 54,317 & 197,573 & 25,761 & & 277,651 \\
\hline 1985 & 112,605 & 173,559 & 21,756 & & 307,920 \\
\hline 1986 & 157,631 & 202,688 & 69,794 & & 430,113 \\
\hline 1987 & 146,106 & 245,387 & 131,578 & & 523,071 \\
\hline 1988 & 166,649 & 209,930 & 58,360 & & 434,939 \\
\hline 1989 & 164,512 & 149,360 & 18,609 & & 332,481 \\
\hline 1990 & 62,272 & 99,465 & 25,263 & 25,000 & 212,000 \\
\hline 1991 & 70,970 & 156,966 & 41,222 & 50,000 & 319,158 \\
\hline 1992 & 124,219 & 172,532 & 86,483 & 130,000 & 513,234 \\
\hline 1993 & 195,771 & 269,383 & 66,457 & 50,000 & 581,611 \\
\hline 1994 & 353,425 & 306,417 & 86,244 & 25,000 & 771,086 \\
\hline 1995 & 251,448 & 317,585 & 170,966 & & 739,999 \\
\hline 1996 & 278,364 & 297,237 & 156,627 & & 732,228 \\
\hline 1997 & 273,376 & 326,689 & 162,338 & & 762,403 \\
\hline 1998 & 250,815 & 257,398 & 84,411 & & 592,624 \\
\hline 1999 & 159,021 & 216,898 & 108,991 & & 484,910 \\
\hline 2000 & 137,197 & 204,167 & 73,506 & & 414,870 \\
\hline 2001 & 142,628 & 185,890 & 97,953 & & 426,471 \\
\hline \(2002{ }^{1}\) & 184,795 & 188,935 & 71,239 & & 445,060 \\
\hline 1 Provisi & ional figures. & & & & \\
\hline
\end{tabular}

Table 3.2 North-East Arctic COD. Total nominal catch ('OOO t) by trawl and other gear for each area, data provided by Working Group members.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Sub-area I} & \multicolumn{2}{|l|}{Division Ila} & \multicolumn{2}{|l|}{Division IIb} \\
\hline Year & Trawl & Others & Trawl & Others & Trawl & Others \\
\hline 1967 & 238.0 & 84.8 & 38.7 & 90.0 & 121.1 & - \\
\hline 1968 & 588.1 & 54.4 & 44.2 & 118.3 & 269.2 & - \\
\hline 1969 & 633.5 & 45.9 & 119.7 & 135.9 & 262.3 & - \\
\hline 1970 & 524.5 & 79.4 & 90.5 & 153.3 & 85.6 & - \\
\hline 1971 & 253.1 & 59.4 & 74.5 & 245.1 & 56.9 & - \\
\hline 1972 & 158.1 & 38.9 & 49.9 & 285.4 & 33.0 & - \\
\hline 1973 & 459.0 & 33.7 & 39.4 & 172.4 & 88.2 & - \\
\hline 1974 & 677.0 & 46.5 & 41.0 & 83.2 & 254.7 & - \\
\hline 1975 & 526.3 & 35.4 & 33.7 & 86.6 & 147.4 & - \\
\hline 1976 & 466.5 & 60.2 & 112.3 & 124.9 & 103.5 & - \\
\hline 1977 & 471.5 & 66.7 & 100.9 & 156.2 & 110.0 & - \\
\hline 1978 & 360.4 & 57.9 & 117.0 & 146.2 & 17.3 & - \\
\hline 1979 & 161.5 & 33.7 & 114.9 & 120.5 & 8.1 & - \\
\hline 1980 & 133.3 & 35.4 & 83.7 & 115.6 & 12.5 & - \\
\hline 1981 & 91.5 & 45.1 & 77.2 & 167.9 & 17.2 & - \\
\hline 1982 & 44.8 & 51.8 & 65.1 & 171.0 & 21.0 & - \\
\hline 1983 & 36.6 & 28.2 & 56.6 & 143.7 & 24.9 & - \\
\hline 1984 & 24.5 & 29.8 & 46.9 & 150.7 & 25.6 & - \\
\hline 1985 & 72.4 & 40.2 & 60.7 & 112.8 & 21.5 & - \\
\hline 1986 & 109.5 & 48.1 & 116.3 & 86.4 & 69.8 & - \\
\hline 1987 & 126.3 & 19.8 & 167.9 & 77.5 & 129.9 & 1.7 \\
\hline 1988 & 149.1 & 17.6 & 122.0 & 88.0 & 58.2 & 0.2 \\
\hline 1989 & 144.4 & 19.5 & 68.9 & 81.2 & 19.1 & 0.1 \\
\hline 1990 & 51.4 & 10.9 & 47.4 & 52.1 & 24.5 & 0.8 \\
\hline 1991 & 58.9 & 12.1 & 73.0 & 84.0 & 40.0 & 1.2 \\
\hline 1992 & 103.7 & 20.5 & 79.7 & 92.8 & 85.6 & 0.9 \\
\hline 1993 & 165.1 & 30.7 & 155.5 & 113.9 & 66.3 & 0.2 \\
\hline 1994 & 312.1 & 41.3 & 165.8 & 140.6 & 84.3 & 1.9 \\
\hline 1995 & 218.1 & 33.3 & 174.3 & 143.3 & 160.3 & 10.7 \\
\hline 1996 & 248.9 & 32.7 & 137.1 & 159.0 & 147.7 & 6.8 \\
\hline 1997 & 235.6 & 37.7 & 150.5 & 176.2 & 154.7 & 7.6 \\
\hline 1998 & 219.8 & 31.0 & 127.0 & 130.4 & 82.7 & 1.7 \\
\hline 1999 & 133.3 & 25.7 & 101.9 & 115.0 & 107.2 & 1.8 \\
\hline 2000 & 111.7 & 25.5 & 105.4 & 98.8 & 72.2 & 1.3 \\
\hline 2001 & 119.1 & 23.5 & 83.1 & 102.8 & 95.4 & 2.5 \\
\hline \(2002{ }^{1}\) & 147.4 & 37.4 & 83.4 & 105.6 & 70.1 & 1.3 \\
\hline \({ }^{1}\) Provis & onal figu & res. & & & & \\
\hline
\end{tabular}

Table 3.3 North-East Arctic COD. Nominal catch (t) by countries (Sub-area I and Divisions Ila and Ilb combined, data provided by Working Group members.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Faroe Islands & France & German Dem.Rep. & Fed.Rep. Germany & Norway & Poland & United Kingdom & Russia \({ }^{2}\) & & Others & Total all countries \\
\hline 1961 & 3,934 & 13,755 & 3,921 & 8,129 & 268,377 & - & 158,113 & 325,780 & & 1,212 & 783,221 \\
\hline 1962 & 3,109 & 20,482 & 1,532 & 6,503 & 225,615 & - & 175,020 & 476,760 & & 245 & 909,266 \\
\hline 1963 & & 18,318 & 129 & 4,223 & 205,056 & 108 & 129,779 & 417,964 & & & 775,577 \\
\hline 1964 & & 8,634 & 297 & 3,202 & 149,878 & & 94,549 & 180,550 & & 585 & 437,695 \\
\hline 1965 & & 526 & 91 & 3,670 & 197,085 & & 89,962 & 152,780 & & 816 & 444,930 \\
\hline 1966 & & 2,967 & 228 & 4,284 & 203,792 & - & 103,012 & 169,300 & & 121 & 483,704 \\
\hline 1967 & & 664 & 45 & 3,632 & 218,910 & & 87,008 & 262,340 & & 6 & 572,605 \\
\hline 1968 & - & & 225 & 1,073 & 255,611 & - & 140,387 & 676,758 & & - & 1,074,084 \\
\hline 1969 & 29,374 & & 5,907 & 5,543 & 305,241 & 7,856 & 231,066 & 612,215 & & 133 & 1,197,226 \\
\hline 1970 & 26,265 & 44,245 & 12,413 & 9,451 & 377,606 & 5,153 & 181,481 & 276,632 & & - & 933,246 \\
\hline 1971 & 5,877 & 34,772 & 4,998 & 9,726 & 407,044 & 1,512 & 80,102 & 144,802 & & 215 & 689,048 \\
\hline 1972 & 1,393 & 8,915 & 1,300 & 3,405 & 394,181 & 892 & 58,382 & 96,653 & & 166 & 565,287 \\
\hline 1973 & 1,916 & 17,028 & 4,684 & 16,751 & 285,184 & 843 & 78,808 & 387,196 & & 276 & 792,686 \\
\hline 1974 & 5,717 & 46,028 & 4,860 & 78,507 & 287,276 & 9,898 & 90,894 & 540,801 & & 38,453 & 1,102,434 \\
\hline 1975 & 11,309 & 28,734 & 9,981 & 30,037 & 277,099 & 7,435 & 101,843 & 343,580 & & 19,368 & 829,377 \\
\hline 1976 & 11,511 & 20,941 & 8,946 & 24,369 & 344,502 & 6,986 & 89,061 & 343,057 & & 18,090 & 867,463 \\
\hline 1977 & 9,167 & 15,414 & 3,463 & 12,763 & 388,982 & 1,084 & 86,781 & 369,876 & & 17,771 & 905,301 \\
\hline 1978 & 9,092 & 9,394 & 3,029 & 5,434 & 363,088 & 566 & 35,449 & 267,138 & & 5,525 & 698,715 \\
\hline 1979 & 6,320 & 3,046 & 547 & 2,513 & 294,821 & 15 & 17,991 & 105,846 & & 9,439 & 440,538 \\
\hline 1980 & 9,981 & 1,705 & 233 & 1,921 & 232,242 & 3 & 10,366 & 115,194 & & 8,789 & 380,434 \\
\hline & & & & & & Spain & & & & & \\
\hline 1981 & 12,825 & 3,106 & 298 & 2,228 & 277,818 & 14,500 & 5,262 & 83,000 & & - & 399,037 \\
\hline 1982 & 11,998 & 761 & 302 & 1,717 & 287,525 & 14,515 & 6,601 & 40,311 & & & 363,730 \\
\hline 1983 & 11,106 & 126 & 473 & 1,243 & 234,000 & 14,229 & 5,840 & 22,975 & & - & 289,992 \\
\hline 1984 & 10,674 & 11 & 686 & 1,010 & 230,743 & 8,608 & 3,663 & 22,256 & & - & 277,651 \\
\hline 1985 & 13,418 & 23 & 1,019 & 4,395 & 211,065 & 7,846 & 3,335 & 62,489 & & 4,330 & 307,920 \\
\hline 1986 & 18,667 & 591 & 1,543 & 10,092 & 232,096 & 5,497 & 7,581 & 150,541 & & 3,505 & 430,113 \\
\hline 1987 & 15,036 & , & 986 & 7,035 & 268,004 & 16,223 & 10,957 & 202,314 & & 2,515 & 523,071 \\
\hline 1988 & 15,329 & 2,551 & 605 & 2,803 & 223,412 & 10,905 & 8,107 & 169,365 & & 1,862 & 434,939 \\
\hline 1989 & 15,625 & 3,231 & 326 & 3,291 & 158,684 & 7,802 & 7,056 & 134,593 & & 1,273 & 332,481 \\
\hline 1990 & 9,584 & 592 & 169 & 1,437 & 88,737 & 7,950 & 3,412 & 74,609 & & 510 & 187,000 \\
\hline 1991 & 8,981 & 975 & Greenland & 2,613 & 126,226 & 3,677 & 3,981 & 119,427 & & 3,278 & 269,158 \\
\hline 1992 & 11,663 & 2 & 3,337 & 3,911 & 168,460 & 6,217 & 6,120 & 182,315 & Iceland & 1,209 & 383,234 \\
\hline 1993 & 17,435 & 3,572 & 5,389 & 5,887 & 221,051 & 8,800 & 11,336 & 244,860 & 9,374 & 3,907 & 531,611 \\
\hline 1994 & 22,826 & 1,962 & 6,882 & 8,283 & 318,395 & 14,929 & 15,579 & 291,925 & 36,737 & 28,568 & 746,086 \\
\hline 1995 & 22,262 & 4,912 & 7,462 & 7,428 & 319,987 & 15,505 & 16,329 & 296,158 & 34,214 & 15,742 & 739,999 \\
\hline 1996 & 17,758 & 5,352 & 6,529 & 8,326 & 319,158 & 15,871 & 16,061 & 305,317 & 23,005 & 14,851 & 732,228 \\
\hline 1997 & 20,076 & 5,353 & 6,426 & 6,680 & 357,825 & 17,130 & 18,066 & 313,344 & 4,200 & 13,303 & 762,403 \\
\hline 1998 & 14,290 & 1,197 & 6,388 & 3,841 & 284,647 & 14,212 & 14,294 & 244,115 & 1,423 & 8,217 & 592,624 \\
\hline 1999 & 13,700 & 2,137 & 4,093 & 3,019 & 223,390 & 8,994 & 11,315 & 210,379 & 1,985 & 5,898 & 484,910 \\
\hline 2000 & 13,350 & 2,621 & 5,787 & 3,513 & 192,860 & 8,695 & 9,165 & 166,202 & 7,562 & 5,115 & 414,870 \\
\hline 2001 & 12,500 & 2,681 & 5,727 & 4,524 & 188,431 & 9,196 & 8,698 & 183,572 & 5,917 & 5,225 & 426,471 \\
\hline \(2002{ }^{1}\) & 15,693 & 2,936 & 6,419 & 4,517 & 202,559 & 8,414 & 8,977 & 184,058 & 6,003 & 5,484 & 445,060 \\
\hline 1 Provisi
\({ }_{2}\) USSR
\({ }^{3}\) Include & ional figur & es.
991.
countries. & & & & & & & & & \\
\hline
\end{tabular}

Table 3.4 North-east Arctic COD. Weights at age (kg) in landings from various countries
Norway
 Russia (trawl only)
Year
\begin{tabular}{lrrrrrrrrrrrrrl}
Year & \multicolumn{4}{c}{ Age } & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
& 2 & 3 & 4 & 13 & 14 & \(15+\) \\
1983 & 0.65 & 1.05 & 1.58 & 2.31 & 3.39 & 4.87 & 6.86 & 8.72 & 10.40 & 12.07 & 14.43 & & & \\
1984 & 0.53 & 0.88 & 1.45 & 2.22 & 3.21 & 4.73 & 6.05 & 8.43 & 10.34 & 12.61 & 14.95 & & & \\
1985 & 0.33 & 0.77 & 1.31 & 1.84 & 2.96 & 4.17 & 5.94 & 6.38 & 8.58 & 10.28 & & & & \\
1986 & 0.29 & 0.61 & 1.14 & 1.75 & 2.45 & 4.17 & 6.18 & 8.04 & 9.48 & 11.33 & 12.35 & 14.13 & & \\
1987 & 0.24 & 0.5 & 0.88 & 1.42 & 2.07 & 2.96 & 5.07 & 7.56 & 8.93 & 10.80 & 13.05 & 18.16 & & \\
1988 & 0.27 & 0.49 & 0.88 & 1.32 & 2.06 & 3.02 & 4.40 & 6.91 & 9.15 & 11.65 & 12.53 & 14.68 & & \\
1989 & 0.50 & 0.73 & 1.00 & 1.39 & 1.88 & 2.67 & 4.06 & 6.09 & 7.76 & 9.88 & & & & \\
1990 & 0.45 & 0.83 & 1.21 & 1.70 & 2.27 & 3.16 & 4.35 & 6.25 & 8.73 & 10.85 & 13.52 & & & \\
1991 & 0.36 & 0.64 & 1.05 & 2.03 & 2.85 & 3.77 & 4.92 & 6.13 & 8.36 & 10.44 & 15.84 & 19.33 & & \\
1992 & 0.55 & 1.20 & 1.44 & 2.07 & 3.04 & 4.24 & 5.14 & 5.97 & 7.25 & 9.28 & 11.36 & & & \\
1993 & 0.48 & 0.78 & 1.39 & 2.06 & 2.62 & 4.07 & 5.72 & 6.79 & 7.59 & 11.26 & 14.79 & 17.71 & & \\
1994 & 0.41 & 0.81 & 1.24 & 1.80 & 2.55 & 2.88 & 4.96 & 6.91 & 8.12 & 10.28 & 12.42 & 16.93 & & \\
1995 & 0.37 & 0.77 & 1.21 & 1.74 & 2.37 & 3.40 & 4.71 & 6.73 & 8.47 & 9.58 & 12.03 & 16.99 & & \\
1996 & 0.30 & 0.64 & 1.09 & 1.60 & 2.37 & 3.42 & 5.30 & 7.86 & 8.86 & 10.87 & 11.80 & & & \\
1997 & 0.30 & 0.57 & 1.00 & 1.52 & 2.18 & 3.30 & 4.94 & 7.15 & 10.08 & 11.87 & 13.54 & & & \\
1998 & 0.33 & 0.68 & 1.06 & 1.60 & 2.34 & 3.39 & 5.03 & 6.89 & 10.76 & 12.39 & 13.61 & 14.72 & & \\
1999 & 0.24 & 0.58 & 0.98 & 1.41 & 2.17 & 3.26 & 4.42 & 5.70 & 7.27 & 10.24 & 14.12 & & & \\
2000 & 0.18 & 0.48 & 0.85 & 1.44 & 2.16 & 3.12 & 4.44 & 5.79 & 7.49 & 9.66 & 10.36 & & & \\
2001 & 0.12 & 0.31 & 0.62 & 1.00 & 1.53 & 2.30 & 3.31 & 4.57 & 6.55 & 8.11 & 9.52 & 11.99 & & \\
2002 & 0.05 & 0.20 & 0.60 & 1.05 & 1.46 & 2.14 & 3.27 & 4.47 & 6.23 & 8.37 & 10.06 & 12.37 & & \\
Germany (Division Ila and Ilb) & & & & & & & & & & & \\
Year & & & Age & & & & & & & & & & &
\end{tabular}

Year

Spain (Division llb)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & & Age & & & & & & & & & & & \\
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15+ \\
\hline 1994 & 0.43 & 1.08 & 1.38 & 2.32 & 2.47 & 2.68 & 3.46 & 5.20 & 7.04 & 6.79 & 7.20 & 8.04 & 10.46 & 15.35 \\
\hline 1995 & 0.42 & 0.51 & 0.98 & 1.99 & 3.41 & 4.95 & 5.52 & 8.62 & 9.21 & 11.42 & 9.78 & 8.08 & & \\
\hline 1996 & & 0.66 & 1.12 & 1.57 & 2.43 & 3.17 & 3.59 & 4.44 & 5.48 & 6.79 & 8.10 & & & \\
\hline \(1997{ }^{1}\) & 0.51 & 0.65 & 1.22 & 1.68 & 2.60 & 3.39 & 4.27 & 6.67 & 7.88 & 11.34 & 13.33 & 10.03 & 8.69 & \\
\hline 1998 & 0.47 & 0.74 & 1.15 & 1.82 & 2.44 & 3.32 & 3.71 & 5.00 & 7.26 & & & & & \\
\hline \(1999{ }^{1}\) & 0.21 & 0.69 & 1.06 & 1.69 & 2.50 & 3.32 & 4.72 & 5.76 & 6.77 & 7.24 & 7.63 & & & \\
\hline \(2000{ }^{1}\) & 0.23 & 0.61 & 1.24 & 1.75 & 2.47 & 3.12 & 4.65 & 6.06 & 7.66 & 10.94 & 11.40 & 7.20 & & \\
\hline 2001 & 0.23 & 0.64 & 1.25 & 1.95 & 2.86 & 3.55 & 4.95 & 6.46 & 8.50 & 11.07 & 13.09 & & & \\
\hline 2002 & 0.16 & 0.55 & 1.00 & 1.48 & 2.17 & 3.29 & 4.47 & 5.35 & 8.29 & 12.23 & 9.01 & 12.16 & 15.2 & \\
\hline & la and & lb com & mbined & & & & & & & & & & & \\
\hline Iceland & area I) & & & & & & & & & & & & & \\
\hline 1994 & 0.42 & 0.85 & 1.44 & 2.77 & 3.54 & 4.08 & 5.84 & 6.37 & 7.02 & 7.48 & 7.37 & & & \\
\hline 1995 & & 1.17 & 0.91 & 1.60 & 2.28 & 3.61 & 4.73 & 6.27 & & & 6.26 & & & \\
\hline 1996 & & 0.36 & 0.99 & 1.55 & 2.83 & 3.79 & 4.81 & 5.34 & 7.25 & 7.68 & 9.08 & 8.98 & 10.52 & \\
\hline 1997 & 0.42 & 0.43 & 0.76 & 1.60 & 2.40 & 3.45 & 4.40 & 5.74 & 6.15 & & 8.28 & 10.52 & 9.89 & \\
\hline UK (Eng & \& Wale & & & & & & & & & & & & & \\
\hline \(1995{ }^{1}\) & & & 1.47 & 2.11 & 3.47 & 5.57 & 6.43 & 7.17 & 8.12 & 8.05 & 10.2 & 10.1 & & \\
\hline \(1996{ }^{2}\) & & & 1.55 & 1.81 & 2.42 & 3.61 & 6.3 & 6.47 & 7.83 & 7.91 & 8.93 & 9.38 & 10.9 & \\
\hline \(1997{ }^{2}\) & & & 1.93 & 2.17 & 3.07 & 4.17 & 4.89 & 6.46 & & 12.3 & 8.44 & & & \\
\hline
\end{tabular}

Table 3.5 North-East Arctic COD. Basis for maturity ogives (percent) used in the assessment. Norwegian and Russian data.

Russia
\begin{tabular}{rrrrrrrrr}
\hline \multicolumn{10}{c}{ Percentage mature } \\
Year & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline & & & & & & & & \\
1984 & - & 5 & 18 & 31 & 56 & 90 & 99 & 100 \\
1985 & - & 1 & 10 & 33 & 59 & 85 & 92 & 100 \\
1986 & - & 2 & 9 & 19 & 56 & 76 & 89 & 100 \\
1987 & - & 1 & 9 & 23 & 27 & 61 & 81 & 80 \\
1988 & - & 1 & 3 & 25 & 53 & 79 & 100 & 100 \\
1989 & - & - & 2 & 15 & 39 & 59 & 83 & 100 \\
1990 & - & 2 & 6 & 20 & 47 & 62 & 81 & 95 \\
1991 & - & 3 & 1 & 23 & 66 & 82 & 96 & 100 \\
1992 & - & 1 & 8 & 31 & 73 & 92 & 95 & 100 \\
1993 & - & 3 & 7 & 21 & 56 & 89 & 95 & 99 \\
1994 & - & 1 & 8 & 30 & 55 & 84 & 95 & 98 \\
1995 & - & - & 4 & 23 & 61 & 75 & 94 & 97 \\
1996 & - & - & 1 & 22 & 56 & 82 & 95 & 100 \\
1997 & - & - & 1 & 10 & 48 & 73 & 90 & 100 \\
1998 & - & - & 2 & 15 & 47 & 87 & 97 & 96 \\
1999 & - & - & 1 & 10 & 38 & 75 & 94 & 100 \\
2000 & - & - & 6 & 19 & 51 & 84 & 96 & 100 \\
2001 & - & - & 4 & 28 & 62 & 89 & 96 & 100 \\
2002 & & 2 & 11 & 34 & 68 & 83 & 98 & 100 \\
2003 & 0 & 0 & 11 & 29 & 66 & 90 & 95 & 100 \\
Norway & & & & & & & & \\
\hline
\end{tabular}

Norway Percentage mature
\begin{tabular}{rrrrrrrrr}
\multicolumn{9}{c}{ Age } \\
Year & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 1985 & - & 1 & 9 & 38 & 51 & 85 & 100 & 79 \\
1986 & 3 & 7 & 8 & 19 & 50 & 67 & 36 & 80 \\
1987 & - & 0 & 4 & 12 & 16 & 31 & 19 & - \\
1988 & - & 2 & 6 & 41 & 54 & 45 & 100 & 100 \\
1989 & - & 1 & 8 & 21 & 43 & 79 & 87 & 100 \\
1990 & - & 1 & 4 & 22 & 68 & 93 & 91 & 100 \\
1991 & - & 5 & 12 & 34 & 65 & 84 & 99 & 100 \\
1992 & - & 1 & 16 & 55 & 77 & 94 & 100 & 100 \\
1993 & - & 3 & 12 & 40 & 66 & 94 & 98 & 99 \\
1994 & - & 1 & 14 & 36 & 64 & 79 & 98 & 100 \\
1995 & - & 1 & 9 & 43 & 63 & 73 & 96 & 98 \\
1996 & - & - & 2 & 30 & 70 & 84 & 100 & 100 \\
1997 & - & - & 2 & 17 & 64 & 92 & 100 & 89 \\
1998 & - & 1 & 6 & 23 & 40 & 77 & 90 & 100 \\
1999 & - & - & - & 11 & 52 & 83 & 83 & 100 \\
2000 & - & - & 6 & 26 & 76 & 83 & 99 & 100 \\
2001 & - & 1 & 7 & 39 & 53 & 64 & 100 & 100 \\
2002 & - & 1 & 5 & 46 & 71 & 89 & 97 & 100 \\
2003 & 0 & 0 & 9 & 44 & 60 & 86 & 90 & 100
\end{tabular}

Table 3.6 Recruitment indicies for NEA cod. Input for the RCT- analysis.

Table 3.7. Recruitment predictions based on survey indicies shrunk towards the vpa mean.
Analysis by RCT3 ver3.1 of data from file :
rec2003.rct
NORTHEAST ARCTIC COD : recruits as 3 year-olds (inc. data for ages 0,1),,, ,
Data for 9 surveys over 18 years : 1985-2002
Regression type = C
Tapered time weighting applied
power \(=3\) over 20 years
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.

Year class \(=1995\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Survey/ \\
Series
\end{tabular} & Slope & Intercept & \[
\begin{aligned}
& \text { Std } \\
& \text { Error }
\end{aligned}
\] & Rsquare & \[
\begin{aligned}
& \text { No. } \\
& \text { Pts }
\end{aligned}
\] & Index Value & Predicted Value & \[
\begin{aligned}
& \text { Std } \\
& \text { Error }
\end{aligned}
\] & \begin{tabular}{l}
WAP \\
Weights
\end{tabular} \\
\hline R-0 & 1.55 & 3.74 & 1.45 & . 157 & 10 & 3.43 & 9.07 & 2.055 & . 006 \\
\hline R-1 & 1.36 & 4.28 & . 54 & . 574 & 10 & 2.64 & 7.86 & . 792 & . 042 \\
\hline R-2 & . 81 & 4.42 & . 41 & . 697 & 10 & 3.30 & 7.10 & . 536 & . 091 \\
\hline \multicolumn{10}{|l|}{N-BST1} \\
\hline \multicolumn{10}{|l|}{N-BSA1} \\
\hline N-BST2 & 2.77 & -11.32 & . 49 & . 368 & 3 & 6.95 & 7.96 & 2.399 & . 005 \\
\hline N-BSA2 & 1.37 & -1.81 & . 58 & . 293 & 3 & 6.07 & 6.53 & 1.185 & . 019 \\
\hline N-BST3 & 1.17 & . 04 & . 13 & . 870 & 4 & 5.98 & 7.04 & . 293 & . 305 \\
\hline N-BSA3 & . 53 & 3.73 & . 12 & . 889 & 4 & 6.06 & 6.92 & . 239 & . 457 \\
\hline & & & & & VPA & Mean \(=\) & 6.17 & . 589 & . 075 \\
\hline
\end{tabular}

Year class \(=1996\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Survey/ \\
Series
\end{tabular} & Slope & Intercept & \[
\begin{aligned}
& \text { Std } \\
& \text { Error }
\end{aligned}
\] & Rsquare & \[
\begin{aligned}
& \text { No. } \\
& \text { Pts }
\end{aligned}
\] & \begin{tabular}{l}
Index \\
Value
\end{tabular} & Predicted Value & \[
\begin{aligned}
& \text { Std } \\
& \text { Error }
\end{aligned}
\] & \begin{tabular}{l}
WAP \\
Weights
\end{tabular} \\
\hline R-0 & 1.10 & 4.29 & 1.10 & . 234 & 11 & 2.40 & 6.93 & 1.319 & . 006 \\
\hline R-1 & 1.13 & 4.51 & . 52 & . 580 & 11 & 2.08 & 6.86 & . 632 & . 025 \\
\hline R-2 & . 76 & 4.50 & . 38 & . 725 & 11 & 3.33 & 7.04 & . 472 & . 045 \\
\hline N-BST1 & . 36 & 3.55 & . 09 & . 964 & 3 & 8.48 & 6.61 & . 194 & . 252 \\
\hline N-BSA1 & . 58 & 2.13 & . 16 & . 906 & 3 & 7.39 & 6.42 & . 313 & . 103 \\
\hline N-BST2 & 1.16 & -1.08 & . 28 & . 596 & 4 & 6.47 & 6.40 & . 450 & . 050 \\
\hline N-BSA2 & 1.79 & -4.26 & . 55 & . 280 & 4 & 6.45 & 7.31 & 1.128 & . 008 \\
\hline N-BST3 & . 94 & 1.29 & . 14 & . 824 & 5 & 5.36 & 6.30 & . 210 & . 229 \\
\hline N-BSA3 & . 46 & 4.05 & . 11 & . 885 & 5 & 5.02 & 6.35 & . 161 & . 252 \\
\hline & & & & & VPA & Mean = & 6.24 & . 576 & . 030 \\
\hline
\end{tabular}

Year class \(=1997\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Survey/ \\
Series
\end{tabular} & Slope & Intercept & \[
\begin{aligned}
& \text { Std } \\
& \text { Error }
\end{aligned}
\] & Rsquare & \[
\begin{aligned}
& \text { No. } \\
& \text { Pts }
\end{aligned}
\] & Index Value & Predicted Value & \[
\begin{gathered}
\text { Std } \\
\text { Error }
\end{gathered}
\] & \begin{tabular}{l}
WAP \\
Weights
\end{tabular} \\
\hline R-0 & 1.05 & 4.33 & 1.01 & . 240 & 12 & 2.83 & 7.30 & 1.224 & . 007 \\
\hline R-1 & 1.10 & 4.52 & . 50 & . 561 & 12 & 1.95 & 6.65 & . 591 & . 029 \\
\hline R-2 & . 73 & 4.51 & . 40 & . 670 & 12 & 2.94 & 6.67 & . 471 & . 046 \\
\hline N-BST1 & . 39 & 3.27 & . 17 & . 800 & 4 & 7.79 & 6.29 & . 282 & . 127 \\
\hline N-BSA1 & . 59 & 2.06 & . 12 & . 900 & 4 & 8.13 & 6.84 & . 222 & . 205 \\
\hline N-BST2 & 1.17 & -1.15 & . 23 & . 600 & 5 & 5.83 & 5.65 & . 503 & . 040 \\
\hline N-BSA2 & 2.58 & -9.20 & . 94 & . 084 & 5 & 5.72 & 5.53 & 1.491 & . 005 \\
\hline \(\mathrm{N}-\mathrm{BST} 3\) & . 91 & 1.44 & . 12 & . 832 & 6 & 5.46 & 6.42 & . 163 & . 253 \\
\hline N-BSA3 & . 46 & 4.07 & . 09 & . 891 & 6 & 5.51 & 6.58 & . 127 & . 253 \\
\hline & & & & & VPA & Mean = & 6.27 & . 537 & . 035 \\
\hline
\end{tabular}

\section*{Table 3.7 (Cont'd)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{Year class \(=1998\)} \\
\hline Survey/ & Slope & Inter- & Std & Rsquare & No. & Index & Predicted & Std & WAP \\
\hline Series & & cept & Error & & Pts & Value & Value & Error & Weights \\
\hline R-0 & . 96 & 4.41 & . 92 & . 248 & 13 & 1.10 & 5.47 & 1.090 & . 011 \\
\hline R-1 & 1.07 & 4.54 & . 47 & . 559 & 13 & 1.61 & 6.26 & . 540 & . 045 \\
\hline R-2 & . 71 & 4.54 & . 37 & . 667 & 13 & 2.56 & 6.37 & . 430 & . 071 \\
\hline N-BST1 & . 39 & 3.26 & . 17 & . 737 & 5 & 6.19 & 5.69 & . 376 & . 093 \\
\hline N-BSA1 & . 57 & 2.10 & . 21 & . 642 & 5 & 5.88 & 5.47 & . 532 & . 046 \\
\hline N-BST2 & 1.21 & -1.28 & . 44 & . 240 & 6 & 5.52 & 5.39 & . 821 & . 019 \\
\hline N-BSA2 & 2.73 & -9.96 & . 98 & . 060 & 6 & 5.40 & 4.78 & 1.642 & . 005 \\
\hline N-BST3 & . 90 & 1.48 & . 11 & . 828 & 7 & 5.26 & 6.24 & . 151 & . 328 \\
\hline N-BSA3 & . 46 & 4.03 & . 10 & . 858 & 7 & 4.94 & 6.30 & . 131 & . 328 \\
\hline & & & & & VPA & Mean \(=\) & 6.30 & . 499 & . 053 \\
\hline
\end{tabular}

Year class \(=1999\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Survey/ \\
Series
\end{tabular} & Slope & \[
\begin{aligned}
& \text { Inter- } \\
& \text { cept }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Std } \\
& \text { Error }
\end{aligned}
\] & Rsquare & \[
\begin{aligned}
& \text { No. } \\
& \text { Pts }
\end{aligned}
\] & Index Value & Predicted Value & \begin{tabular}{l}
Std \\
Error
\end{tabular} & \begin{tabular}{l}
WAP \\
Weights
\end{tabular} \\
\hline R-0 & . 90 & 4.58 & . 84 & . 249 & 14 & . 69 & 5.21 & 1.023 & . 013 \\
\hline R-1 & 1.05 & 4.56 & . 44 & . 549 & 14 & . 69 & 5.28 & . 560 & . 043 \\
\hline R-2 & . 71 & 4.54 & . 35 & . 653 & 14 & 2.64 & 6.40 & . 405 & . 082 \\
\hline N-BST1 & . 29 & 4.15 & . 19 & . 654 & 6 & 4.87 & 5.56 & . 401 & . 083 \\
\hline N-BSA1 & . 38 & 3.65 & . 24 & . 553 & 6 & 5.04 & 5.55 & . 477 & . 059 \\
\hline N-BST2 & . 75 & 1.69 & . 32 & . 371 & 7 & 4.35 & 4.97 & . 739 & . 024 \\
\hline N-BSA2 & 1.35 & -1.58 & . 51 & . 184 & 7 & 4.17 & 4.05 & 1.327 & . 008 \\
\hline N-BST3 & . 92 & 1.41 & . 10 & . 851 & 8 & 4.49 & 5.53 & . 214 & . 291 \\
\hline N-BSA3 & . 49 & 3.86 & . 10 & . 853 & 8 & 4.25 & 5.95 & . 157 & . 334 \\
\hline & & & & & VPA & Mean = & 6.32 & . 459 & . 064 \\
\hline
\end{tabular}

Year class \(=2000\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Survey/ \\
Series
\end{tabular} & Slope & Intercept & \[
\begin{aligned}
& \text { Std } \\
& \text { Error }
\end{aligned}
\] & Rsquare & \[
\begin{aligned}
& \text { No. } \\
& \text { Pts }
\end{aligned}
\] & Index Value & Predicted Value & \[
\begin{aligned}
& \text { Std } \\
& \text { Error }
\end{aligned}
\] & \begin{tabular}{l}
WAP \\
Weights
\end{tabular} \\
\hline R-0 & . 80 & 4.84 & . 76 & . 248 & 15 & 1.95 & 6.40 & . 872 & . 015 \\
\hline R-1 & . 97 & 4.75 & . 47 & . 469 & 15 & 2.08 & 6.78 & . 546 & . 037 \\
\hline R-2 & . 70 & 4.52 & . 34 & . 630 & 15 & 3.04 & 6.67 & . 391 & . 073 \\
\hline N-BST1 & . 21 & 4.81 & . 23 & . 546 & 7 & 6.49 & 6.20 & . 299 & . 124 \\
\hline N-BSA1 & . 28 & 4.45 & . 25 & . 506 & 7 & 6.45 & 6.23 & . 321 & . 108 \\
\hline N-BST2 & . 44 & 3.74 & . 31 & . 358 & 8 & 6.10 & 6.43 & . 388 & . 074 \\
\hline N-BSA2 & . 61 & 2.94 & . 41 & . 244 & 8 & 5.38 & 6.20 & . 517 & . 042 \\
\hline N-BST3 & . 67 & 2.83 & . 18 & . 633 & 9 & 5.93 & 6.79 & . 244 & . 186 \\
\hline N-BSA3 & . 43 & 4.21 & . 12 & . 816 & 9 & 5.72 & 6.66 & . 146 & . 278 \\
\hline & & & & & VPA & Mean = & 6.33 & . 417 & . 064 \\
\hline
\end{tabular}

Year class \(=2001\)

\section*{Table 3.7 (Cont'd)}

Table 3.8
NE Arctic cod. International catch (thousands) at age for ages 1-15+

Table 3.9 Total number (million) of cod consumed by cod, by year and prey age group.
\begin{tabular}{lrrrrrrl}
\hline & \multicolumn{6}{c}{ Ag e } \\
\cline { 2 - 7 } Year & 0 & 1 & 2 & 3 & 4 & 5 & 0 \\
\hline 1984 & 0 & 417 & 21 & 0 & 0 & 0 & 0 \\
1985 & 1497 & 376 & 67 & 0 & 0 & 0 & 0 \\
1986 & 53 & 413 & 392 & 99 & 0 & 0 & 0 \\
1987 & 681 & 182 & 281 & 14 & 0 & 0 & 0 \\
1988 & 29 & 411 & 22 & 2 & 0 & 0 & 0 \\
1989 & 916 & 144 & 0 & 0 & 0 & 0 & 0 \\
1990 & 0 & 62 & 28 & 0 & 0 & 0 & 0 \\
1991 & 123 & 153 & 215 & 2 & 0 & 0 & 0 \\
199 & 4304 & 1028 & 155 & 4 & 0 & 0 & 0 \\
1993 & 3802 & 20264 & 512 & 52 & 1 & 0 & 0 \\
1994 & 8311 & 6926 & 645 & 133 & 54 & 8 & 0 \\
1995 & 8343 & 15411 & 756 & 251 & 86 & 3 & 0 \\
1996 & 10010 & 21902 & 1499 & 142 & 56 & 20 & 1 \\
1997 & 2942 & 16834 & 1923 & 176 & 17 & 1 & 0 \\
1998 & 79 & 4925 & 585 & 207 & 25 & 2 & 1 \\
1999 & 579 & 1848 & 296 & 53 & 4 & 0 & 0 \\
2000 & 1711 & 2323 & 171 & 35 & 13 & 4 & 0 \\
2001 & 95 & 2257 & 111 & 21 & 9 & 1 & 1 \\
2002 & 6258 & 2404 & 456 & 34 & 6 & 0 & 0 \\
\hline
\end{tabular}

Run title : Arctic Cod (run: SVPASA15/V15)
At 30/04/2003 23:56
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Table & Catch & nu & age & & Number & 10**-3 & \\
\hline YEAR, & 1946, & 1947, & 1948, & 1949, & 1950, & 1951, & 1952, \\
\hline AGE & & & & & & & \\
\hline 3 , & 4008, & 710, & 140, & 991, & 1281, & 24687, & 24099, \\
\hline 4, & 10387, & 13192, & 3872, & 6808, & 10954, & 77924, & 120704, \\
\hline 5 , & 18906, & 43890, & 31054, & 35214, & 29045, & 64013, & 113203, \\
\hline 6 , & 16596, & 52017, & 55983, & 100497, & 45233, & 46867, & 73827, \\
\hline 7, & 13843, & 45501, & 77375, & 83283, & 62579, & 37535, & 49389, \\
\hline 8, & 15370, & 13075, & 21482, & 29727, & 30037, & 33673, & 20562, \\
\hline 9, & 59845, & 19718, & 15237, & 13207, & 19481, & 23510, & 24367, \\
\hline 10, & 22618, & 47678, & 9815, & 5606, & 9172, & 10589, & 15651, \\
\hline 11, & 10093, & 31392, & 30041, & 8617, & 6019, & 4221, & 8327, \\
\hline 12, & 9573, & 9348, & 7945, & 13154, & 4133, & 1288, & 3565, \\
\hline +gp, & 8137, & 18055, & 12595, & 7719, & 9862, & 4935, & 2158, \\
\hline TOTALNUM, & 189376, & 294576, & 265539, & 304823, & 227796, & 329242, & 455852, \\
\hline TONSLAND, & 706000, & 882017, & 774295, & 800122, & 731982, & 827180, & 876795, \\
\hline SOPCOF \%, & 103, & 91, & 89, & 99, & 109, & 115, & 93, \\
\hline
\end{tabular}

Run title : Arctic Cod (run: SVPASA15/V15)
At 30/04/2003 23:56
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 1 & Catch & , & -age & & & & bers* & -3 & & \\
\hline YEAR, & 1953, & 1954, & 1955, & 1956, & 1957, & 1958, & 1959, & 1960, & 1961, & 1962, \\
\hline AGE & & & & & & & & & & \\
\hline 3 , & 47413, & 11473, & 3902, & 10614, & 17321, & 31219, & 32308, & 37882, & 45478, & 42416, \\
\hline 4, & 107659, & 155171, & 37652, & 24172, & 33931, & 133576, & 77942, & 97865, & 132655, & 170566, \\
\hline 5, & 112040, & 146395, & 201834, & 129803, & 27182, & 71051, & 148285, & 64222, & 123458, & 167241, \\
\hline 6, & 55500, & 100751, & 161336, & 250472, & 70702, & 40737, & 53480 , & 67425, & 51167, & 89460 , \\
\hline 7, & 22742, & 40635, & 84031, & 86784, & 87033, & 38380, & 18498, & 23117, & 38740, & 28297 , \\
\hline 8, & 16863, & 10713, & 30451 , & 51091, & 39213, & 35786 , & 17735, & 8429, & 17376, & 21996, \\
\hline 9, & 10559, & 11791, & 13713, & 14987, & 17747, & 13338, & 23118, & 7240, & 5791, & 7956, \\
\hline 10, & 10553, & 8557, & 9481, & 7465, & 6219, & 10475 , & 9483, & 11675, & 6778, & 2728, \\
\hline 11, & 5637, & 6751, & 4140, & 3952, & 3232, & 3289, & 3748, & 4504, & 5560 , & 2603, \\
\hline 12, & 1752, & 2370, & 2406, & 1655, & 1220, & 1070, & 997, & 1843, & 1682, & 1647, \\
\hline +gp, & 797, & 1287, & 1350, & 1906, & 819, & 433, & 513, & 682 , & 1298, & 775, \\
\hline TOTALNUM, & 391515, & 495894, & 550296, & 582901, & 304619 , & 379354, & 386107 , & 324884 , & 429983, & 535685, \\
\hline TONSLAND, & 695546, & 826021, & 1147841, & 1343068, & 792557, & 769313, & 744607 , & 622042, & 783221, & 909266, \\
\hline SOPCOF \%, & 105, & 93, & 106, & 105, & 100, & 112, & 93, & 104, & 110, & 124, \\
\hline
\end{tabular}

Run title : Arctic Cod (run: SVPASA15/V15)
At 30/04/2003 23:56
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 1 & Catch & umbers & age & & & & Jumbers* & ** 3 & & \\
\hline YEAR, & 1963, & 1964, & 1965, & 1966, & 1967, & 1968, & 1969, & 1970, & 1971, & 1972, \\
\hline AGE & & & & & & & & & & \\
\hline 3 , & 13196, & 5298, & 15725, & 55937, & 34467 , & 3709, & 2307, & 7164, & 7754 , & 35536, \\
\hline 4, & 106984, & 45912, & 25999, & 55644, & 160048, & 174585, & 24545, & 10792, & 13739, & 45431, \\
\hline 5, & 205549, & 97950, & 78299, & 34676, & 69235, & 267961, & 238511, & 25813, & 11831, & 26832, \\
\hline 6, & 95498, & 58575, & 68511, & 42539, & 22061, & 107051, & 181239, & 137829, & 9527, & 12089, \\
\hline 7, & 35518 , & 19642, & 25444, & 37169, & 26295, & 26701, & 79363, & 96420, & 59290, & 7918, \\
\hline 8 , & 16221, & 9162, & 8438, & 18500, & 25139, & 16399, & 26989, & 31920, & 52003, & 34885, \\
\hline 9, & 11894, & 6196, & 3569, & 5077, & 11323, & 11597, & 13463, & 8933, & 12093, & 22315, \\
\hline 10, & 3884, & 3553, & 1467, & 1495, & 2329, & 3657, & 5092, & 3249, & 2434, & 4572, \\
\hline 11, & 1021, & 783, & 1161, & 380, & 687 , & 657, & 1913, & 1232, & 762, & 1215, \\
\hline 12, & 1025, & 172, & 131, & 403, & 316, & 122, & 414, & 260, & 418, & 353, \\
\hline +gp, & 784, & 782, & 337, & 156, & 279, & 240, & 190, & 180, & 216, & 476, \\
\hline TOTALNUM, & 491574 & 248025, & 229081, & 251976, & 352179, & 612679, & 574026, & 323792, & 170067, & 191622, \\
\hline TONSLAND, & 776337, & 437695, & 444930 , & 483711, & 572605, & 1074084, & 1197226, & 933246, & 689048, & 565254, \\
\hline SOPCOF \%, & 102, & 103, & 129, & 123, & 109, & 108, & 105, & 112, & 124, & 118, \\
\hline
\end{tabular}

\section*{Table 3.10 (continued)}

Run title : Arctic Cod (run: SVPASA15/V15)
At 30/04/2003 23:56
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 1 & Catch & numbers- & age & & & & mbers*1 & *-3 & & \\
\hline YEAR, & 1973, & 1974, & 1975, & 1976, & 1977, & 1978, & 1979, & 1980, & 1981, & 1982, \\
\hline AGE & & & & & & & & & & \\
\hline 3, & 294262 , & 91855, & 45282, & 85337, & 39594, & 78822, & 8600, & 3911, & 3407, & 8948, \\
\hline 4, & 131493, & 437377 , & 59798, & 114341, & 168609, & 45400, & 77484, & 17086, & 9466, & 20933, \\
\hline 5, & 61000 , & 203772, & 226646, & 79993, & 136335, & 88495, & 43677, & 81986, & 20803, & 19345 , \\
\hline 6, & 20569, & 47006, & 118567, & 118236, & 52925, & 56823, & 31943, & 40061 , & 63433, & 28084 , \\
\hline 7, & 7248, & 12630, & 29522, & 47872, & 61821, & 25407, & 16815, & 17664, & 21788, & 42496 , \\
\hline 8, & 8328, & 4370, & 9353, & 13962, & 23338, & 31821, & 8274, & 7442, & 9933, & 8395 , \\
\hline 9 , & 19130 , & 2523, & 2617, & 4051, & 5659, & 9408, & 10974, & 3508, & 4267, & 2878, \\
\hline 10, & 4499, & 5607, & 1555, & 936, & 1521, & 1227, & 1785, & 3196, & 1311, & 708, \\
\hline 11, & 677 , & 2127, & 1928, & 558, & 610, & 913, & 427, & 678, & 882, & 271, \\
\hline 12, & 195, & 322, & 575, & 442, & 271, & 446, & 103, & 79, & 109, & 260, \\
\hline +gp, & 195, & 296, & 283, & 218, & 268, & 847 , & 142, & 58, & 41, & 37, \\
\hline TOTALNUM, & 547596 & 807885, & 496126, & 465946, & 490951, & 339609 , & 200224, & 175669, & 135440, & 132355, \\
\hline TONSLAND, & 792685, & 1102433, & 829377, & 867463, & 905301, & 698715, & 440538, & 380434, & 399038, & 363730 , \\
\hline SOPCOF \%, & 130, & 137, & 115, & 127, & 107, & 109, & 121, & 127, & 118, & 125, \\
\hline
\end{tabular}

Run title : Arctic Cod (run: SVPASA15/V15)
At 30/04/2003 23:56
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 1 & Catch & numbers- & -age & \multicolumn{7}{|c|}{Numbers*10**-3} \\
\hline YEAR, & 1983, & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & 1991, & 1992, \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3, & 3108, & 6942, & 24634, & 28968, & 13648, & 9828, & 5085, & 1911, & 4963, & 21835, \\
\hline 4, & 19594, & 14240, & 45769, & 70993, & 137106, & 22774, & 17313, & 7551, & 10933, & 36015, \\
\hline 5, & 20473, & 18807, & 27806, & 78672, & 98210, & 135347, & 32165, & 12999, & 16467 , & 27494, \\
\hline 6, & 17656, & 20086, & 19418, & 25215, & 61407, & 54379, & 81756 , & 17827, & 20342, & 23392, \\
\hline 7, & 17004, & 15145, & 11369, & 11711, & 13707, & 21015, & 27854, & 30007 , & 19479, & 18351, \\
\hline 8, & 18329, & 8287, & 3747, & 4063, & 3866, & 3304 , & 5501, & 6810, & 25193, & 13541, \\
\hline 9, & 2545, & 5988, & 1557, & 976, & 910, & 1236, & 827 , & 828, & 3888, & 18321, \\
\hline 10, & 646, & 783, & 768, & 726, & 455, & 519, & 290, & 179, & 428, & 2529, \\
\hline 11, & 229, & 232, & 137, & 557 , & 187, & 106, & 41, & 59, & 48, & 264, \\
\hline 12, & 74, & 153, & 36, & 136, & 227, & 69, & 13, & 15, & 12, & 82, \\
\hline +gp, & 83, & 69, & 71, & 76, & 100, & 62, & 28, & 13, & 4, & 13, \\
\hline TOTALNUM, & 99741, & 90732, & 135312, & 222093, & 329823, & 248639, & 170873, & 78199, & 101757, & 161837, \\
\hline TONSLAND, & 289992, & 277651, & 307920, & 430113, & 523071, & 434939, & 332481 , & 212000, & 319158, & 513234, \\
\hline SOPCOF \%, & 90, & 95, & 102, & 102, & 102, & 100, & 99, & 101, & 95, & 103, \\
\hline
\end{tabular}

Run title : Arctic Cod (run: SVPASA15/V15)
At 30/04/2003 23:56
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 1 & Catch & \multicolumn{2}{|l|}{numbers-at-age} & \multicolumn{7}{|c|}{Numbers*10**-3} \\
\hline YEAR, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002, \\
\hline AGE & & & & & & & & & & \\
\hline 3, & 10094, & 6531, & 4879, & 7655 & 12827, & 31887, & 7501, & 4701, & 5044, & 1907, \\
\hline 4, & 46182, & 59444, & 42587, & 28782, & 36491 , & 88874 , & 77714 , & 33094 , & 35019 , & 24824, \\
\hline 5, & 63578, & 102548, & 115329, & 80711, & 69633, & 48972, & 92816, & 93044, & 62139, & 60622, \\
\hline 6, & 33623, & 59766, & 98485, & 100509, & 83017, & 40493, & 31139, & 47210, & 62456, & 54709, \\
\hline 7, & 14866, & 32504 , & 32036, & 54590 , & 65768, & 34513, & 15778, & 12671, & 22794, & 35572, \\
\hline 8, & 9449, & 10019, & 7334, & 10545, & 28392, & 26354, & 15851, & 6677, & 5266, & 10053, \\
\hline 9, & 6571, & 6163, & 3014 , & 2023, & 4651 , & 6583, & 8828, & 4787, & 1773, & 1593, \\
\hline 10, & 12593, & 3671, & 1725, & 930, & 1151, & 965, & 1837, & 1647, & 1163, & 482, \\
\hline 11, & 1749, & 7528, & 1174, & 462 , & 373, & 197, & 195, & 321, & 343, & 201, \\
\hline 12, & 377 , & 995, & 1920, & 230, & 213, & 69, & 40 , & 71, & 85, & 113, \\
\hline +gp, & 86, & 144, & 264, & 894, & 383, & 117, & 72, & 26, & 35, & 34, \\
\hline TOTALNUM, & 199168, & 289313, & 308747, & 287331, & 302899, & 279024, & 251771, & 204249, & 196117, & 190110, \\
\hline TONSLAND, & 581611 , & 771086 , & 739999, & 732228, & 762403, & 592624, & 484910 , & 414868, & 426471, & 445060 , \\
\hline SOPCOF \%, & 101, & 101, & 100, & 101, & 100, & 101, & 100, & 100, & 100, & 100, \\
\hline
\end{tabular}

Table 3.11

Run title : Arctic Cod (run: SVPASA15/V15)
At 30/04/2003 23:56
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Table 2 & Catch & ights & age (& & & & \\
\hline YEAR, & 1946, & 1947, & 1948, & 1949, & 1950, & 1951, & 1952, \\
\hline \multicolumn{8}{|l|}{AGE} \\
\hline 3, & . 3500 , & . 3200 , & . 3400 , & . 3700 , & . 3900 , & . 4000 , & . 4400 , \\
\hline 4, & . 5900 , & . 5600, & . 5300 , & . 6700, & . 6400 , & . 8300 , & . 8000 , \\
\hline 5, & 1.1100, & . 9500 , & 1.2600, & 1.1100, & 1.2900, & 1.3900, & 1.3300, \\
\hline 6, & 1.6900, & 1.5000, & 1.9300, & 1.6600, & 1.7000, & 1.8800, & 1.9200, \\
\hline 7, & 2.3700, & 2.1400, & 2.4600, & 2.5000, & 2.3600, & 2.5400, & 2.6400, \\
\hline 8, & 3.1700 , & 2.9200, & 3.3600, & 3.2300 , & 3.4800 , & 3.4600 , & 3.7100 , \\
\hline 9, & 3.9800 , & 3.6500 , & 4.2200, & 4.0700 , & 4.5200, & 4.8800 , & 5.0600 , \\
\hline 10, & 5.0500 , & 4.5600, & 5.3100, & 5.2700 , & 5.6200 , & 5.2000 , & 6.0500 , \\
\hline 11, & 5.9200, & 5.8400, & 5.9200, & 5.9900, & 6.4000 , & 7.1400, & 7.4200, \\
\hline 12, & 7.2000, & 7.4200 , & 7.0900, & 7.0800 , & 7.9600 , & 8.2200 , & 8.4300, \\
\hline +gp, & 8.1460 , & 8.8480, & 8.4300, & 8.2180, & 8.8910 , & 9.3890 , & 10.1850, \\
\hline SOPCOFAC, & 1.0300, & . 9143 , & . 8915 , & . 9920 , & 1.0880 , & 1.1483, & . 9348 , \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 2 & Catch & weights & -age & & & & & & & \\
\hline YEAR, & 1953, & 1954, & 1955, & 1956, & 1957, & 1958, & 1959, & 1960, & 1961, & 1962, \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3, & . 4000 , & . 4400 , & . 3200 , & . 3300 , & . 3300 , & . 3400 , & . 3500 , & . 3400 , & . 3100, & . 3200 , \\
\hline 4, & . 7600 , & . 7700 , & . 5700, & . 5800, & . 5900 , & . 5200, & . 7200 , & . 5100, & . 5500, & . 5500, \\
\hline 5, & 1.2800, & 1.2600, & 1.1300, & 1.0700, & 1.0200, & . 9500 , & 1.4700, & 1.0900, & 1.0500, & . 9300 , \\
\hline 6, & 1.9300, & 1.9700, & 1.7300, & 1.8300, & 1.8200, & 1.9200, & 2.6800, & 2.1300, & 2.2000, & 1.7000, \\
\hline 7, & 2.8100 , & 3.0300 , & 2.7500, & 2.8900, & 2.8900, & 2.9400, & 3.5900 , & 3.3800 , & 3.2300 , & 3.0300 , \\
\hline 8, & 3.7200 , & 4.3300, & 3.9400 , & 4.2500, & 4.2800 , & 4.2100, & 4.3200, & 4.8700 , & 5.1100, & 5.0300, \\
\hline 9, & 5.0600, & 5.4000, & 4.9000, & 5.5500, & 5.4900, & 5.6100, & 5.4500, & 6.1200 , & 6.1500 , & 6.5500, \\
\hline 10, & 6.3400 , & 6.7500 , & 7.0400 , & 7.2800, & 7.5100 , & 7.3500 , & 6.4400 , & 8.4900 , & 8.1500 , & 7.7000 , \\
\hline 11, & 7.4000 , & 7.7900, & 7.2000 , & 8.0000 , & 8.2400 , & 8.6700 , & 7.1700 , & 7.7900 , & 8.6800 , & 9.2700, \\
\hline 12, & 8.6700, & 10.6700, & 8.7800 , & 8.3500 , & 9.2500 , & 9.5800 , & 8.6300 , & 8.3000 , & 9.6000 , & 10.5600, \\
\hline +gp, & 10.2380, & 9.6800, & 10.0770, & 9.9440 , & 10.6050, & 11.6310, & 11.6210, & 11.4220, & 11.9520, & 12.7170, \\
\hline SOPCOFAC, & 1.0485, & . 9294 , & 1.0634, & 1.0455, & 1.0004, & 1.1232, & . 9305 , & 1.0416 , & 1.0970, & 1.2356, \\
\hline
\end{tabular}

Run title : Arctic Cod (run: SVPASA15/V15)

At 30/04/2003 23:56
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 2 & Catch & weights & -age (& & & & & & & \\
\hline YEAR, & 1963, & 1964, & 1965, & 1966, & 1967, & 1968, & 1969, & 1970, & 1971, & 1972, \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3, & . 3200 , & . 3300 , & . 3800 , & . 4400 , & . 2900 , & . 3300 , & . 4400 , & . 3700 , & . 4500 , & 3800, \\
\hline 4, & . 6100, & . 5500, & . 6800, & . 7400 , & . 8100 , & . 7000 , & . 7900 , & . 9100 , & . 8800 , & . 7700 , \\
\hline 5, & . 9600 , & . 9500 , & 1.0300, & 1.1800, & 1.3500, & 1.4800, & 1.2300, & 1.3400, & 1.3800, & 1.4300, \\
\hline 6, & 1.7300, & 1.8600, & 1.4900, & 1.7800, & 2.0400 , & 2.1200, & 2.0300, & 2.0000, & 2.1600, & 2.1200, \\
\hline 7, & 3.0400 , & 3.2500 , & 2.4100, & 2.4600, & 2.8100 , & 3.1400 , & 2.9000 , & 3.0000 , & 3.0700 , & 3.2300 , \\
\hline 8, & 4.9600 , & 4.9700 , & 3.5200 , & 3.8200 , & 3.4800 , & 4.2100 , & 3.8100 , & 4.1500 , & 4.2200 , & 4.3800 , \\
\hline 9, & 6.4400 , & 6.4100 , & 5.7300, & 5.3600 , & 4.8900 , & 5.2700 , & 5.0200 , & 5.5900, & 5.8100 , & 5.8300, \\
\hline 10, & 7.9100 , & 8.0700 , & 7.5400, & 7.2700, & 7.1100 , & 6.6500 , & 6.4300 , & 7.6000 , & 7.1300 , & 7.6200 , \\
\hline 11, & 9.6200, & 9.3400 , & 8.4700 , & 8.6300 , & 9.0300 , & 9.0100 , & 8.3300 , & 8.9700 , & 8.6200 , & 9.5200, \\
\hline 12, & 11.3100, & 10.1600, & 11.1700, & 10.6600, & 10.5900, & 9.6600 , & 10.7100, & 10.9900, & 10.8300, & 12.0900, \\
\hline +gp, & 12.7370, & 12.8860, & 13.7220, & 14.1480, & 13.8290, & 14.8480, & 14.2110, & 14.0740, & 12.9450, & 13.6730, \\
\hline SOPCOFAC, & 1.0226, & 1.0277, & 1.2903, & 1.2327, & 1.0911, & 1.0785, & 1.0520, & 1.1170, & 1.2405, & 1.1822, \\
\hline
\end{tabular}

Table 3.11 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline e 2 & Ca & weights- & t-age (k & & & & & & & \\
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{YEAR, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980, 1981, 1982,
AGE}} \\
\hline & & & & & & & & & & \\
\hline 3, & . 3800 , & . 3200, & . 4100, & . 3500 , & . 4900, & . 4900, & . 3500 , & . 2700, & . 4900, & 3700, \\
\hline 4, & . 9100 , & .6600, & . 6400, & . 7300 , & . 9000 , & .8100, & . 7000 , & . 5600, & . 9800 , & . 6600 , \\
\hline 5, & 1.5400, & 1.1700, & 1.1100, & 1.1900, & 1.4300, & 1.4500, & 1.2400, & 1.0200, & 1.4400, & 1.3500, \\
\hline 6 , & 2.2600, & 2.2200, & 1.9000, & 2.0100, & 2.0500, & 2.1500, & 2.1400, & 1.7200, & 2.0900, & 1.9900, \\
\hline 7, & 3.2900 , & 3.2100 , & 2.9500, & 2.7600, & 3.3000 , & 3.0400 , & 3.1500 , & 3.0200 , & 2.9800 , & 2.9300, \\
\hline 8 , & 4.6100, & 4.3900 , & 4.3700, & 4.2200, & 4.5600, & 4.4600, & 4.2900, & 4.2000, & 4.8500, & 4.2400, \\
\hline 9, & 6.5700, & 5.5200, & 5.7400, & 5.8800, & 6.4600 , & 6.5400, & 6.5800, & 5.8400, & 6.5700, & 6.4600, \\
\hline 10, & 8.3700, & 7.8600, & 8.7700, & 9.3000, & 8.6300, & 7.9800, & 8.6100, & 7.2600, & 9.1600, & 8.5100, \\
\hline 11, & 10.5400, & 9.8200, & 9.9200, & 10.2800, & 9.9300, & 10.1500, & 9.2200, & 8.8400 , & 10.8200, & 12.2400, \\
\hline 12, & 11.6200, & 11.4100, & 11.8100, & 11.8600, & 10.9000, & 10.8500, & 10.8900, & 9.2800, & 10.7700, & 10.7800, \\
\hline +gp, & 13.9040, & 13.2420, & 13.1070, & 13.5440, & 13.6680, & 13.1770, & 14.3440, & 14.4480, & 13.9320, & 14.0410, \\
\hline SOPCOFAC, & 1.3003, & 1.3660, & 1.1520, & 1.2688, & 1.0683, & 1.0890, & 1.2139, & 1.2723, & 1.1809, & 1.2521, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline e 2 & Catch & weights & t-age (kg & & & & & & & \\
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{YEAR, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992,
AGE}} \\
\hline & & & & & & & & & & \\
\hline 3 , & . 8400 , & 1.4200, & . 9400 , & . 6400, & . 4900 , & . 5400 , & . 7400 , & .8100, & 1.0500, & 1.1600, \\
\hline 4, & 1.3700, & 1.9300, & 1.3700, & 1.2700, & . 8800, & . 8500, & . 9600 , & 1.2200, & 1.4500, & 1.5700, \\
\hline 5, & 2.0900 , & 2.4900, & 2.0200, & 1.8800, & 1.5500, & 1.3200, & 1.3100, & 1.6400, & 2.1500, & 2.2100, \\
\hline 6 , & 2.8600 , & 3.1400 , & 3.2200 , & 2.7900, & 2.3300, & 2.2400, & 1.9200, & 2.2200, & 2.8900, & 3.1000, \\
\hline 7, & 3.9900 , & 3.9100, & 4.6300, & 4.4900, & 3.4400, & 3.5200, & 2.9300, & 3.2400 , & 3.7500, & 4.2700, \\
\hline 8 , & 5.5800, & 4.9100, & 6.0400, & 5.8400, & 5.9200, & 5.3500, & 4.6400, & 4.6800, & 4.7100, & 5.1900, \\
\hline 9, & 7.7700, & 6.0200, & 7.6600, & 6.8300, & 8.6000, & 8.0600, & 7.5200, & 7.3000 , & 6.0800, & 6.1400, \\
\hline 10, & 9.2900, & 7.4000, & 9.8100, & 7.6900, & 9.6000, & 9.5100, & 9.1200, & 9.8400, & 8.8200, & 7.7700, \\
\hline 11, & 11.5500, & 8.1300, & 11.8000, & 9.8100, & 12.1700, & 11.3600, & 11.0800, & 13.2500, & 11.8000, & 10.1200, \\
\hline 12, & 16.2000, & 8.5700, & 14.1600, & 10.7100, & 13.7200, & 14.0900, & 11.4700, & 16.8800, & 16.5800, & 11.5400, \\
\hline +gp, & 17.0340, & 8.6090, & 14.0080, & 12.0510, & 13.3800, & 16.7060, & 16.4840, & 11.6170, & 16.6900, & 14.3320, \\
\hline SOPCOFAC, & . 8953 , & .9483, & 1.0182, & 1.0160, & 1.0224, & 1.0001, & . 9879 , & 1.0108, & . 9521, & 1.027 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline able 2 & & , & ge & & & & & & & \\
\hline YEAR, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002, \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3, & . 8100 , & . 8200, & . 7700, & . 7900 , & . 6700, & . 6800 , & . 6300, & . 5720 , & . 6600, & 7400, \\
\hline 4, & 1.5200, & 1.3000, & 1.2000, & 1.1100, & 1.0400, & 1.0500, & 1.0100, & 1.0360, & 1.0500, & 1.1400 , \\
\hline 5, & 2.1600, & 2.0600 , & 1.7800, & 1.6100, & 1.5300, & 1.6200, & 1.5400, & 1.6090, & 1.6200, & 1.5800, \\
\hline 6 , & 2.7900, & 2.8900, & 2.5900, & 2.4600, & 2.2200, & 2.3000, & 2.3400, & 2.3440, & 2.5100, & 2.3300 , \\
\hline 7, & 4.0700, & 3.2100 , & 3.8100 , & 3.8200 , & 3.4200, & 3.3000 , & 3.2100, & 3.3410, & 3.5100 , & 3.5600 , \\
\hline 8 , & 5.5300 , & 5.2000, & 4.9900, & 5.7200, & 5.2000, & 4.8600, & 4.2900, & 4.4760, & 4.7800, & 4.8400 , \\
\hline 9, & 6.4700, & 6.8000, & 6.2300, & 6.7400, & 7.1900, & 6.8700, & 6.0000, & 5.7240, & 6.0400 , & 6.2400 , \\
\hline 10, & 7.1900, & 7.5700, & 8.0500 , & 8.0400 , & 7.7300, & 9.3000, & 6.7300, & 7.5230, & 7.5400, & 7.6600 , \\
\hline 11, & 7.9800, & 8.0100, & 8.7400, & 9.2800, & 8.6100, & 10.3000, & 10.0800, & 8.0210, & 9.0000, & 9.1000 , \\
\hline 12, & 10.1100, & 9.4800, & 9.2200, & 10.4000, & 11.0700, & 15.0500, & 13.8800, & 12.4780, & 10.4800, & 8.1800 , \\
\hline + gp , & 14.1830, & 11.9780, & 12.3190, & 10.9660, & 11.1170, & 14.5240, & 14.0360, & 17.2410, & 16.1800, & 10.9510, \\
\hline SOPCOFAC, & 1.0127, & 1.0090, & 1.0030, & 1.0147, & 1.0004, & 1.0072, & .9967, & 1.0039, & . 9994 , & 1.0001, \\
\hline
\end{tabular}

\section*{Table 3.12}

Run title : Arctic Cod (run: SVPASA15/V15)
At 30/04/2003 23:56
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Table & \multicolumn{7}{|c|}{(kg)} \\
\hline YEAR, & 1946, & 1947, & 1948, & 1949, & 1950, & 1951, & 1952, \\
\hline \multicolumn{8}{|l|}{AGE} \\
\hline 3, & . 3500, & . 3200, & . 3400 , & . 3700 , & . 3900 , & . 4000 , & . 4400 , \\
\hline 4, & . 5900, & . 5600, & . 5300, & . 6700, & . 6400 , & . 8300 , & . 8000 , \\
\hline 5, & 1.1100, & . 9500 , & 1.2600, & 1.1100, & 1.2900, & 1.3900, & 1.3300, \\
\hline 6, & 1.6900, & 1.5000, & 1.9300, & 1.6600, & 1.7000, & 1.8800, & 1.9200, \\
\hline 7, & 2.3700, & 2.1400, & 2.4600, & 2.5000, & 2.3600, & 2.5400, & 2.6400, \\
\hline 8, & 3.1700 , & 2.9200, & 3.3600, & 3.2300 , & 3.4800, & 3.4600 , & 3.7100 , \\
\hline 9, & 3.9800 , & 3.6500, & 4.2200, & 4.0700, & 4.5200, & 4.8800, & 5.0600, \\
\hline 10, & 5.0500, & 4.5600, & 5.3100, & 5.2700, & 5.6200, & 5.2000 , & 6.0500 , \\
\hline 11, & 5.9200, & 5.8400, & 5.9200, & 5.9900, & 6.4000 , & 7.1400 , & 7.4200, \\
\hline 12, & 7.2000 , & 7.4200, & 7.0900 , & 7.0800 , & 7.9600 , & 8.2200, & 8.4300 , \\
\hline +gp, & 8.1460 , & 8.8480, & 8.4300, & 8.2180, & 8.8910, & 9.3890, & 10.1850, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table & 3 & Stock & weights & t-age & & & & & & & \\
\hline YEAR, & & 1953, & 1954, & 1955, & 1956, & 1957, & 1958, & 1959, & 1960, & 1961, & 1962, \\
\hline \multicolumn{12}{|l|}{AGE} \\
\hline 3, & & . 4000 , & . 4400 , & . 3200, & . 3300 , & . 3300 , & . 3400 , & . 3500 , & . 3400 , & . 3100, & . 3200 , \\
\hline 4, & & . 7600 , & . 7700 , & . 5700, & . 5800 , & . 5900 , & . 5200, & . 7200 , & . 5100, & . 5500 , & . 5500, \\
\hline 5, & & 1.2800, & 1.2600, & 1.1300, & 1.0700, & 1.0200, & . 9500 , & 1.4700, & 1.0900, & 1.0500, & . 9300 , \\
\hline 6, & & 1.9300, & 1.9700, & 1.7300, & 1.8300, & 1.8200, & 1.9200, & 2.6800, & 2.1300, & 2.2000, & 1.7000, \\
\hline 7, & & 2.8100, & 3.0300 , & 2.7500, & 2.8900, & 2.8900, & 2.9400, & 3.5900, & 3.3800 , & 3.2300 , & 3.0300 , \\
\hline 8, & & 3.7200 , & 4.3300, & 3.9400, & 4.2500, & 4.2800 , & 4.2100, & 4.3200, & 4.8700 , & 5.1100 , & 5.0300, \\
\hline 9, & & 5.0600, & 5.4000, & 4.9000, & 5.5500, & 5.4900, & 5.6100, & 5.4500, & 6.1200 , & 6.1500 , & 6.5500 , \\
\hline 10, & & 6.3400 , & 6.7500 , & 7.0400 , & 7.2800, & 7.5100, & 7.3500 , & 6.4400 , & 8.4900 , & 8.1500 , & 7.7000 , \\
\hline 11, & & 7.4000 , & 7.7900, & 7.2000 , & 8.0000 , & 8.2400 , & 8.6700 , & 7.1700 , & 7.7900 , & 8.6800 , & 9.2700, \\
\hline 12, & & 8.6700, & 10.6700, & 8.7800 , & 8.3500 , & 9.2500 , & 9.5800 , & 8.6300 , & 8.3000 , & 9.6000 , & 10.5600, \\
\hline +gp, & & 10.2380, & 9.6800, & 10.0770, & 9.9440 , & 10.6050, & 11.6310, & 11.6210, & 11.4220, & 11.9520, & 12.7170, \\
\hline
\end{tabular}

Run title : Arctic Cod (run: SVPASA15/V15)
At 30/04/2003 23:56
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table & Stock & ts & -age & & & & & & & \\
\hline YEAR, & 1963, & 1964, & 1965, & 1966, & 1967, & 1968, & 1969, & 1970, & 1971, & 1972, \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3, & . 3200, & . 3300 , & . 3800 , & . 4400 , & . 2900 , & . 3300 , & . 4400 , & . 3700 , & . 4500 , & 3800, \\
\hline 4, & . 6100, & . 5500, & . 6800 , & . 7400 , & . 8100, & . 7000 , & . 7900 , & . 9100 , & . 8800 , & . 7700 , \\
\hline 5, & . 9600 , & . 9500 , & 1.0300, & 1.1800, & 1.3500, & 1.4800, & 1.2300, & 1.3400, & 1.3800, & 1.4300, \\
\hline 6, & 1.7300, & 1.8600, & 1.4900, & 1.7800, & 2.0400, & 2.1200, & 2.0300, & 2.0000, & 2.1600, & 2.1200 , \\
\hline 7, & 3.0400 , & 3.2500 , & 2.4100, & 2.4600, & 2.8100 , & 3.1400 , & 2.9000 , & 3.0000 , & 3.0700 , & 3.2300 , \\
\hline 8, & 4.9600, & 4.9700, & 3.5200, & 3.8200 , & 3.4800 , & 4.2100, & 3.8100 , & 4.1500, & 4.2200, & 4.3800, \\
\hline 9, & 6.4400 , & 6.4100 , & 5.7300, & 5.3600 , & 4.8900 , & 5.2700 , & 5.0200 , & 5.5900 , & 5.8100 , & 5.8300 , \\
\hline 10, & 7.9100 , & 8.0700 , & 7.5400 , & 7.2700, & 7.1100 , & 6.6500 , & 6.4300 , & 7.6000 , & 7.1300 , & 7.6200 , \\
\hline 11, & 9.6200 , & 9.3400 , & 8.4700, & 8.6300 , & 9.0300 , & 9.0100 , & 8.3300 , & 8.9700 , & 8.6200 , & 9.5200, \\
\hline 12, & 11.3100, & 10.1600, & 11.1700, & 10.6600, & 10.5900, & 9.6600 , & 10.7100, & 10.9900, & 10.8300, & 12.0900, \\
\hline +gp, & 12.7370, & 12.8860, & 13.7220, & 14.1480, & 13.8290, & 14.8480, & 14.2110, & 14.0740, & 12.9450, & 13.6730, \\
\hline
\end{tabular}

Table 3.12 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table & 3 & Stock & weights & t-age (k & & & & & & & \\
\hline YEAR, & & 1973, & 1974, & 1975, & 1976, & 1977, & 1978, & 1979, & 1980, & 1981, & 1982, \\
\hline \multicolumn{12}{|l|}{AGE} \\
\hline 3, & & . 3800, & . 3200, & . 4100 , & . 3500, & . 4900 , & . 4900 , & . 3500, & . 2700 , & . 4900, & . 3700 , \\
\hline 4, & & . 9100 , & . 6600, & . 6400 , & . 7300 , & . 9000 , & . 8100 , & . 7000 , & . 5600, & . 9800 , & . 6600 , \\
\hline 5, & & 1.5400, & 1.1700, & 1.1100, & 1.1900, & 1.4300, & 1.4500, & 1.2400, & 1.0200, & 1.4400, & 1.3500, \\
\hline 6, & & 2.2600, & 2.2200, & 1.9000, & 2.0100, & 2.0500, & 2.1500, & 2.1400, & 1.7200, & 2.0900, & 1.9900, \\
\hline 7, & & 3.2900 , & 3.2100 , & 2.9500, & 2.7600, & 3.3000 , & 3.0400 , & 3.1500 , & 3.0200 , & 2.9800, & 2.9300, \\
\hline 8, & & 4.6100, & 4.3900, & 4.3700 , & 4.2200, & 4.5600, & 4.4600, & 4.2900, & 4.2000, & 4.8500, & 4.2400 , \\
\hline 9, & & 6.5700 , & 5.5200 , & 5.7400 , & 5.8800 , & 6.4600 , & 6.5400 , & 6.5800 , & 5.8400 , & 6.5700 , & 6.4600 , \\
\hline 10, & & 8.3700, & 7.8600 , & 8.7700 , & 9.3000 , & 8.6300 , & 7.9800 , & 8.6100 , & 7.2600 , & 9.1600 , & 8.5100 , \\
\hline 11, & & 10.5400, & 9.8200, & 9.9200 , & 10.2800, & 9.9300, & 10.1500, & 9.2200 , & 8.8400 , & 10.8200, & 12.2400, \\
\hline 12, & & 11.6200, & 11.4100, & 11.8100, & 11.8600, & 10.9000, & 10.8500, & 10.8900, & 9.2800, & 10.7700, & 10.7800, \\
\hline +gp, & & 13.9040, & 13.2420, & 13.1070, & 13.5440, & 13.6680, & 13.1770, & 14.3440, & 14.4480, & 13.9320, & 14.0410, \\
\hline Table & 3 & Stock & weights-a & -age (k) & & & & & & & \\
\hline YEAR, & & 1983, & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & 1991, & 1992, \\
\hline \multicolumn{12}{|l|}{AGE} \\
\hline 3, & & . 3700, & . 4200 , & . 4100 , & . 3100, & . 1900 , & . 2100 , & . 3000 , & . 4000 , & . 5180, & . 4400 , \\
\hline 4, & & . 9200 , & 1.1600, & . 8800 , & . 8800 , & . 5100, & . 4000 , & . 5200, & . 7100 , & 1.1360, & . 9310 , \\
\hline 5, & & 1.6000, & 1.8100 , & 1.6000, & 1.4700, & 1.2800, & . 7900 , & . 8700 , & 1.1800, & 1.7430, & 1.8120, \\
\hline 6, & & 2.4400, & 2.7900, & 2.8100, & 2.4700, & 1.9400 , & 1.9000, & 1.4800, & 1.7200, & 2.4280, & 2.7160, \\
\hline 7, & & 3.8200 , & 3.7800 , & 4.0600 , & 3.9200 , & 3.2800 , & 2.9800, & 2.6900, & 2.4600, & 3.2140 , & 3.8950 , \\
\hline 8, & & 4.7600, & 4.5700, & 5.8300 , & 5.8100 , & 5.1700 , & 4.3900 , & 4.6300, & 3.5700 , & 4.5380 , & 5.1760, \\
\hline 9, & & 6.1700 , & 6.1700 , & 7.6900 , & 6.5800 , & 6.5200 , & 7.8100 , & 7.0500 , & 4.7100, & 6.8800 , & 6.7740 , \\
\hline 10, & & 7.7000 , & 7.7000 , & 10.1200, & 6.8300 , & 9.3000 , & 12.1100, & 9.9800 , & 7.8000 , & 10.7190, & 9.5980, \\
\hline 11, & & 9.2500, & 9.2500, & 14.2900, & 11.0000, & 13.1500, & 13.1100, & 9.2500 , & 8.9600 , & 9.4450 , & 12.4270, \\
\hline 12, & & 10.8500, & 10.8500, & 10.8500, & 10.8500, & 10.8500, & 10.8500, & 10.8500, & 10.8500, & 10.8500, & 10.8500, \\
\hline +gp, & & 12.9880, & 13.0330, & 13.4130, & 13.5870, & 13.8260, & 13.0180, & 14.4790, & 13.4230, & 14.1000, & 13.6620, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table & 3 & Stock & eights & -age (& & & & & & & \\
\hline YEAR, & & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002, \\
\hline \multicolumn{12}{|l|}{AGE} \\
\hline 3, & & . 3440 , & . 2350 , & . 2010 , & . 1950, & . 2020 , & . 2170, & . 2030, & . 1940 , & . 2850 , & 2510, \\
\hline 4, & & 1.1720, & . 7530 , & . 4850 , & . 4870 , & . 5210, & . 5330, & . 5200, & . 4650 , & . 5220, & . 6050 , \\
\hline 5, & & 1.8200, & 1.4200, & 1.1400, & 1.0310, & 1.0790 , & 1.1610 , & 1.1740 , & 1.2080, & 1.1940 , & 1.1860, \\
\hline 6, & & 2.8230, & 2.4130, & 2.1180, & 2.0540, & 1.8780, & 1.9390, & 2.0310, & 1.9720, & 2.2310, & 2.1100, \\
\hline 7, & & 4.0310, & 3.8250 , & 3.4700 , & 3.5250 , & 3.3690 , & 2.9450, & 3.0340 , & 3.0480 , & 3.3060 , & 3.3120, \\
\hline 8, & & 5.4970, & 5.4160, & 4.9380, & 5.5030, & 5.2630, & 4.5740, & 4.4640, & 4.0960, & 5.0500, & 4.7210, \\
\hline 9, & & 6.7650 , & 6.6310, & 7.1600 , & 7.7670, & 8.9270 , & 7.4230, & 6.4820, & 5.7240, & 6.3760 , & 6.8660 , \\
\hline 10, & & 8.5710, & 7.6300 , & 9.1190 , & 10.1590, & 12.1540, & 10.3670, & 10.2690, & 7.4570, & 9.1150, & 9.0830, \\
\hline 11, & & 10.8470, & 8.1120 , & 10.1010, & 10.6690, & 10.8230, & 11.7380, & 10.8820, & 9.5820, & 11.2720, & 10.2060, \\
\hline 12, & & 10.8500, & 10.8500, & 10.8500, & 10.8500, & 10.8500, & 10.8500, & 10.8500, & 10.8500, & 10.8500, & 10.8500, \\
\hline +gp, & & 12.8870, & 12.7540, & 12.7270, & 12.6340, & 13.3770, & 13.8960, & 13.6970, & 13.9000, & 14.3510, & 12.9950, \\
\hline
\end{tabular}

Table 3.13

Run title : Arctic Cod (run: SVPASA15/V15)
At 30/04/2003 23:56
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Table & 5 & \multicolumn{7}{|l|}{Proportion mature at age} \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{YEAR, 1946, 1947, 1948, 1949, 1950, 1951, 1952,
AGE}} \\
\hline & & & & & & & & \\
\hline 3, & & . 0000, & . 0000, & . 0000, & . 0000, & .0000, & .0000, & . 0000, \\
\hline 4 , & & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000, & . 0000, & . 0000 , \\
\hline 5, & & . 0100 , & . 0100 , & . 0100, & . 0100, & . 0100, & . 0100, & . 0100, \\
\hline 6 , & & . 0300 , & . 0300 , & . 0300, & . 0300, & . 0300, & . 0300, & . 0300, \\
\hline 7, & & . 0600 , & . 0600 , & . 0700, & . 0900, & . 0900, & .1000, & . 0800, \\
\hline 8 , & & .1100, & . 1300, & .1300, & .1700, & . 2300, & . 2400, & . 2200, \\
\hline 9 , & & .1800, & . 1600 , & . 2500, & . 2900, & . 3500, & . 4000, & . 4100, \\
\hline 10, & & . 4400 , & . 4200 , & . 4700, & . 5400, & . 5200, & . 5800, & .6300, \\
\hline 11, & & . 6500, & . 7500 , & . 7300 , & . 7900, & . 7900 , & . 7200, & . 8200, \\
\hline 12, & & . 8600 , & . 9100 , & . 9100, & . 8800, & . 9500, & . 8500, & . 9200, \\
\hline +gp, & & . 9600 , & . 9500 , & . 9700, & . 9700 , & . 9700, & . 9600 , & . 9700, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Proportion mature at age} \\
\hline YEAR, & 1953, & 1954, & 1955, & 1956, & 1957, & 1958, & 1959, & 1960, & 1961, & 1962, \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3, & . 0000 , & . 0000, & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 00000 , & 0000, \\
\hline 4, & . 0000 , & . 0000, & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0100 , & . 00000 , & . 0000 , \\
\hline 5, & . 0100, & . 0100, & . 0100, & . 0100, & . 0100, & . 0100, & . 0100, & . 0300, & . 0100, & . 0100 , \\
\hline 6, & . 0300 , & . 0300, & . 0300, & . 0300 , & . 0300 , & . 0300 , & . 0400 , & . 0600 , & . 0600 , & . 0500 , \\
\hline 7, & . 0700 , & . 0800, & . 0700 , & . 0600 , & . 0600 , & . 0600 , & . 1200 , & . 1000 , & . 1200 , & . 1500 , \\
\hline 8, & . 1900 , & . 1600, & . 1300, & . 1200 , & . 0900 , & . 1000, & . 3400 , & . 1900, & . 3100 , & . 3400 , \\
\hline 9, & . 4000 , & . 3700, & . 2600 , & .1400, & . 1200, & . 1000 , & . 4900, & . 4500 , & . 6500, & .6100, \\
\hline 10, & . 6400, & . 6800, & . 5300, & . 4100, & . 2200 , & . 3000 , & . 6700, & . 6900, & . 9100, & . 8100, \\
\hline 11, & . 8400, & . 8700, & . 8300, & . 6700, & . 6000, & . 5000, & . 8400, & . 7700 , & . 9800, & . 9200, \\
\hline 12, & . 9400 , & . 9300, & . 9200, & . 9100 , & . 8200, & . 8200 , & . 8700, & . 8500, & .9800, & . 9700, \\
\hline +gp, & . 9700 , & . 9600 , & . 9700 , & . 9600 , & . 9700 , & . 9700 , & 1.0000, & . 9900 , & 1.0000, & 1.0000, \\
\hline
\end{tabular}

Run title : Arctic Cod (run: SVPASA15/V15)

At 30/04/2003 23:56
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Proportion mature at age} \\
\hline YEAR, & 1963, & 1964, & 1965, & 1966, & 1967, & 1968, & 1969, & 1970, & 1971, & 1972, \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3, & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0100, \\
\hline 4, & . 0100, & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0100, & . 0000 , & . 0200, \\
\hline 5, & . 0100, & . 0000 , & . 0000, & . 0100 , & . 0000 , & . 0300 , & . 0000 , & . 0000 , & . 0100 , & . 0200, \\
\hline 6 , & . 0300, & . 0300 , & . 0100, & . 0200 , & . 0300 , & . 0500 , & . 0200 , & . 0100 , & . 0500 , & . 0100, \\
\hline 7, & . 0700 , & . 1300, & . 0600 , & . 0600 , & . 0700 , & . 0900 , & . 0400 , & . 0700 , & .1100, & . 1000, \\
\hline 8 , & . 2800, & . 3700 , & . 2000, & . 2200 , & . 1400, & . 1900 , & . 1200, & . 2300 , & . 3000 , & . 3400 , \\
\hline 9, & . 4200, & .6600, & . 5500, & . 3500 , & . 3800 , & . 3900 , & . 3400 , & . 5800, & . 5900, & . 6400, \\
\hline 10, & . 8100, & . 8900, & . 7300 , & . 7400 , & . 6400 , & . 5800 , & . 5500, & . 8100, & . 7900 , & . 8100, \\
\hline 11, & . 9800 , & . 9500 , & . 9900 , & . 9400 , & . 8900 , & . 8200, & . 7400 , & . 8900 , & . 8600 , & . 9400 , \\
\hline 12, & . 9800 , & . 9900 , & . 9800 , & . 9400 , & . 9000 , & 1.0000, & . 9500 , & . 9100 , & .8800, & 1.0000 , \\
\hline +gp, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, \\
\hline
\end{tabular}

Table 3.13 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table & Pr & on & e at & & & & & & & \\
\hline \[
\begin{aligned}
& \text { YEAR, } \\
& \text { AGE }
\end{aligned}
\] & 1973, & 1974, & 1975, & 1976, & 1977, & 1978, & 1979, & 1980, & 1981, & 1982, \\
\hline 3 , & .0000, & . 0000 , & . 0000, & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 00000, & . 0000 , & . 0000 , \\
\hline 4, & . 0000, & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 00000, & . 0000 , & . 0500 , \\
\hline 5, & . 0000, & . 0000 , & . 0100, & . 0000 , & . 0200 , & . 0000 , & . 0000 , & . 0000 , & . 0200 , & . 1000, \\
\hline 6 , & . 0200, & . 0100 , & . 0200, & . 0500 , & . 0800 , & . 0200 , & . 0300 , & . 0200 , & . 0700 , & . 3400 , \\
\hline 7, & .1600, & . 0300 , & . 0900 , & . 1200 , & . 2600 , & . 1300, & . 1300 , & . 1300, & . 2000 , & . 6500, \\
\hline 8 , & . 5300, & . 2100, & . 2100 , & . 2900, & . 5400, & . 4400 , & . 3900 , & . 3500 , & .5400, & . 8200 , \\
\hline 9 , & . 8100, & . 5000 , & . 5600 , & . 4500 , & . 7600 , & . 7100 , & . 7700 , & . 6500, & . 8000, & . 9200 , \\
\hline 10, & . 9200, & . 9600 , & . 7800 , & . 8400 , & . 8700 , & . 7700 , & . 8900 , & . 8200 , & . 9700, & 1.0000, \\
\hline 11, & . 9500, & 1.0000, & . 7900 , & . 8300 , & . 9300 , & . 8100 , & . 8300 , & 1.0000, & 1.0000, & 1.0000, \\
\hline 12, & . 9800, & . 9600 , & . 9500 , & 1.0000, & . 9400 , & . 8900 , & . 7800 , & . 9000 , & 1.0000, & 1.0000, \\
\hline +gp, & 1.0000, & 1.0000, & 1.0000, & . 9000 , & . 9000 , & . 8000 , & . 9000 , & . 9000 , & 1.0000, & 1.0000, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table & \multicolumn{10}{|l|}{Proportion mature at age} \\
\hline YEAR, & 1983, & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & 1991, & 1992, \\
\hline AGE & . 0100, & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0100 , \\
\hline 4, & . 0800, & . 0500, & . 0100, & . 0500, & .0100, & . 0200, & . 0000 , & . 0100, & . 0400 , & . 0100, \\
\hline 5, & . 1000, & . 1800, & . 0900 , & . 0800 , & . 0700 , & . 0500 , & . 0500 , & . 0500 , & . 0600 , & . 1200 , \\
\hline 6, & . 3000 , & . 3100 , & . 3600 , & . 1900, & . 1800 , & . 3300 , & .1800, & . 2100, & . 2800 , & . 4300, \\
\hline 7, & . 7300, & . 5600 , & . 5500 , & . 5300 , & . 2200, & . 5300 , & . 4100 , & . 5800, & . 6500, & . 7500 , \\
\hline 8, & . 8800 , & . 9000 , & . 8500 , & . 7100 , & . 4600 , & . 6200, & . 6900, & . 7700 , & . 8300 , & . 9300 , \\
\hline 9, & . 9700 , & . 9900 , & . 9600 , & . 6200, & . 5000 , & 1.0000, & . 8500 , & . 8600 , & . 9700 , & . 9700 , \\
\hline 10, & 1.0000, & 1.0000, & . 9000 , & . 9000 , & . 7500 , & 1.0000, & 1.0000, & .9800, & 1.0000, & 1.0000, \\
\hline 11, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000 , & 1.0000, & 1.0000, & 1.0000, & 1.0000, \\
\hline 12, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, \\
\hline +gp, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, \\
\hline
\end{tabular}

\section*{Table 3.14}

\section*{Table 3.14 (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline FLT16 & NorBar & AcSur & V9 & : & wn) & ort & now & & \\
\hline 1984 & & & & & & & & & \\
\hline 110 & 1.00 & & & & & & & & \\
\hline 311 & & & & & & & & & \\
\hline 1 & 1416 & 203 & 150 & 157 & 33 & 12 & 11 & 5 & 0 \\
\hline 1 & 1343 & 684 & 116 & 77 & 31 & 2 & 0 & 4 & 1 \\
\hline 1 & 2049 & 502 & 174 & 15 & 30 & 7 & 0 & 0 & 0 \\
\hline 1 & 355 & 578 & 109 & 39 & 2 & 0 & 1 & 0 & 0 \\
\hline 1 & 344 & 214 & 670 & 166 & 32 & 5 & 1 & 0 & 1 \\
\hline 1 & 206 & 262 & 269 & 668 & 72 & 6 & 4 & 0 & 0 \\
\hline 1 & 346 & 293 & 339 & 367 & 500 & 36 & 2 & 2 & 0 \\
\hline 1 & 658 & 216 & 185 & 284 & 254 & 824 & 44 & 16 & 2 \\
\hline 1 & 1911 & 1131 & 354 & 255 & 252 & 277 & 443 & 49 & 7 \\
\hline 1 & 4045 & 2174 & 894 & 224 & 120 & 94 & 39 & 179 & 27 \\
\hline 1 & 1598 & 2166 & 1041 & 291 & 43 & 43 & 31 & 26 & 81 \\
\hline 1 & 705 & 872 & 891 & 446 & 64 & 10 & 4 & 9 & 15 \\
\hline 1 & 517 & 497 & 422 & 499 & 205 & 22 & 5 & 0 & 8 \\
\hline 1 & 1826 & 424 & 338 & 340 & 247 & 49 & 8 & 2 & 0 \\
\hline 1 & 964 & 454 & 122 & 112 & 187 & 92 & 11 & 2 & 1 \\
\hline 1 & 1589 & 1457 & 493 & 129 & 69 & 52 & 16 & 4 & 1 \\
\hline 1 & 1716 & 812 & 554 & 190 & 22 & 8 & 5 & 3 & 1 \\
\hline 1 & 1122 & 1035 & 591 & 297 & 73 & 10 & 4 & 3 & 0 \\
\hline 1 & 1144 & 1320 & 1492 & 692 & 231 & 41 & 5 & 1 & 1 \\
\hline
\end{tabular}

Table 3.15. NEAcod. Compared diagnostics and results for xsa tuned by single fleets and combination of fleets.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & FLT 09 Rus trawl CPUE & \[
\begin{array}{r}
\hline \text { FLT } 15 \\
\text { Joint BT } \\
\text { survey } \\
\hline
\end{array}
\] & FLT 16
Joint+Lof
Ac survey & & \[
\begin{array}{r}
\hline \text { Final run } \\
\text { ALL } \\
\text { Fleets }
\end{array}
\] & Fleksibest Final & \begin{tabular}{l}
ALL \\
Fleets
\end{tabular} & \[
\begin{array}{r}
\text { ALL } \\
\text { Fleets }
\end{array}
\] & \[
\begin{array}{r}
\text { ALL } \\
\text { Fleets }
\end{array}
\] & Red.surv. weights ALL Fleets & \[
\begin{array}{r}
\hline 02 \text { deleted } \\
\text { in FL } 17 \\
\text { ALL fleets } \\
\hline
\end{array}
\] & 02,03 deleted in FL16and17 ALL fleets \\
\hline \multicolumn{2}{|l|}{Min. SE for shrinkage} & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & & 1.0 & 1.0 & 1.0 & 0.5 & 1.0 & 1.0 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SS-ind.Q for age> ages with fleet data}} & 6 & 6 & 6 & 6 & 6 & 2 & 4 & 5 & 7 & 6 & 6 & 6 \\
\hline & & 9 to 12 & 3 to 8 & 3 to 11 & 3 to 8 & 3 to 12 \\
\hline \multicolumn{2}{|l|}{\# of iterations to converg} & 23 & 18 & 21 & >30 & 23 & 0 & 25 & 25 & 26 & 21 & 25 & >30 \\
\hline \multirow[t]{2}{*}{age3} & PshrinkW & 0.93 & 0.58 & 0.58 & 0.74 & 0.35 & 0 & 0.30 & 0.33 & 0.38 & 0.40 & 0.43 & 0.58 \\
\hline & FshrinkW & 0.07 & 0.04 & 0.04 & 0.07 & 0.03 & 0 & 0.02 & 0.03 & 0.03 & 0.11 & 0.03 & 0.04 \\
\hline \multirow[t]{2}{*}{age4} & PshrinkW & 0.90 & 0.29 & 0.31 & 0.32 & 0.12 & 0 & * & 0.12 & 0.13 & 0.15 & 0.15 & 0.29 \\
\hline & FshrinkW & 0.10 & 0.04 & 0.04 & 0.05 & 0.02 & 0 & 0.02 & 0.02 & 0.02 & 0.08 & 0.02 & 0.04 \\
\hline \multirow[t]{2}{*}{age5} & PshrinkW & 0.83 & 0.16 & 0.17 & 0.20 & 0.06 & 0 & * & * & 0.06 & 0.07 & 0.07 & 0.14 \\
\hline & FshrinkW & 0.17 & 0.04 & 0.04 & 0.05 & 0.02 & 0 & 0.02 & 0.02 & 0.02 & 0.07 & 0.02 & 0.03 \\
\hline age6 & FshrinkW & 1.00 & 0.05 & 0.04 & 0.08 & 0.02 & 0 & 0.02 & 0.02 & \(0.05 / 0.02\) & 0.08 & 0.02 & 0.04 \\
\hline age7 & FshrinkW & 1.00 & 0.08 & 0.10 & 0.11 & 0.03 & 0 & 0.03 & 0.03 & 0.03 & 0.13 & 0.04 & 0.06 \\
\hline age8 & FshrinkW & 1.00 & 0.10 & 0.17 & 0.21 & 0.05 & 0 & 0.05 & 0.05 & 0.05 & 0.20 & 0.06 & 0.08 \\
\hline age9 & FshrinkW & 0.37 & 0.38 & 0.22 & 0.71 & 0.10 & 0 & 0.10 & 0.10 & 0.10 & 0.39 & 0.10 & 0.19 \\
\hline age10 & FshrinkW & 0.24 & 0.68 & 0.22 & 0.92 & 0.13 & 0 & 0.13 & 0.13 & 0.13 & 0.41 & 0.13 & 0.18 \\
\hline \multirow[t]{2}{*}{age11} & FshrinkW & 0.23 & 0.90 & 0.37 & 0.98 & 0.17 & 0 & 0.17 & 0.17 & 0.17 & 0.50 & 0.17 & 0.22 \\
\hline & FshrinkW & 0.45 & 0.97 & 0.73 & 0.99 & 0.44 & 0 & 0.44 & 0.44 & 0.44 & 0.76 & 0.44 & 0.40 \\
\hline N2002 & age3 & 42870 & 47193 & 50338 & 48587 & 50165 & 33980 & 52047 & 50760 & 49193 & 43687 & 50690 & 47695 \\
\hline \multirow[t]{7}{*}{N*10^-4} & age4 & 28995 & 34727 & 39260 & 33378 & 38589 & 30270 & 41935 & 38966 & 37838 & 33969 & 40861 & 35139 \\
\hline & age5 & 20833 & 29771 & 35213 & 32601 & 36201 & 32884 & 39336 & 38440 & 35303 & 32630 & 35273 & 30670 \\
\hline & age6 & 11926 & 15522 & 20705 & 21241 & 19438 & 17504 & 20088 & 19772 & 17831 & 17721 & 18534 & 15848 \\
\hline & age7 & 7059 & 7361 & 7924 & 12275 & 8401 & 10963 & 8612 & 8490 & 8249 & 7884 & 8052 & 7658 \\
\hline & age8 & 1677 & 1861 & 1892 & 2696 & 2046 & 3042 & 2049 & 2056 & 2039 & 1887 & 1974 & 1908 \\
\hline & age9 & 324 & 234 & 272 & 243 & 284 & 461 & 284 & 284 & 284 & 258 & 286 & 269 \\
\hline & age10 & 88 & 71 & 71 & 71 & 75 & 153 & 75 & 75 & 75 & 73 & 75 & 88 \\
\hline \multirow[t]{7}{*}{F2002} & age 4 & 0.12 & 0.10 & 0.09 & 0.11 & 0.09 & 0.10 & 0.08 & 0.09 & 0.09 & 0.10 & 0.09 & 0.10 \\
\hline & age5 & 0.39 & 0.26 & 0.21 & 0.23 & 0.21 & 0.21 & 0.19 & 0.19 & 0.21 & 0.23 & 0.21 & 0.25 \\
\hline & age6 & 0.71 & 0.49 & 0.35 & 0.34 & 0.37 & 0.35 & 0.36 & 0.37 & 0.41 & 0.42 & 0.39 & 0.48 \\
\hline & age7 & 0.81 & 0.76 & 0.69 & 0.39 & 0.63 & 0.46 & 0.61 & 0.62 & 0.65 & 0.69 & 0.67 & 0.72 \\
\hline & age8 & 1.09 & 0.91 & 0.88 & 0.53 & 0.78 & 0.54 & 0.78 & 0.78 & 0.79 & 0.89 & 0.83 & 0.87 \\
\hline & age9 & 0.78 & 1.39 & 1.04 & 1.28 & 0.97 & 0.60 & 0.97 & 0.97 & 0.96 & 1.14 & 0.96 & 1.07 \\
\hline & age10 & 0.93 & 1.37 & 1.38 & 1.41 & 1.23 & 0.66 & 1.23 & 1.23 & 1.23 & 1.32 & 1.23 & 0.93 \\
\hline \multirow[t]{2}{*}{2002} & \(F(5-10)\) & 0.79 & 0.86 & 0.76 & 0.70 & 0.70 & 0.47 & 0.69 & 0.69 & 0.71 & 0.78 & 0.71 & 0.72 \\
\hline & F(4-8) & 0.62 & 0.50 & 0.44 & 0.32 & 0.42 & 0.33 & 0.40 & 0.41 & 0.43 & 0.47 & 0.44 & 0.48 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { TSB2002 } \\
& \text { SSB2002 }
\end{aligned}
\]} & incl Age1-2 & 1245 & 1489 & 1726 & 1844 & 1730 & 1595 & 1815 & 1771 & 1672 & 1574 & 1700 & 1527 \\
\hline & ('000 T) & 391 & 438 & 504 & 637 & 513 & 436 & 527 & 520 & 494 & 474 & 494 & 454 \\
\hline
\end{tabular}

Table 3.16

Lowestoft VPA Version 3.1
28/04/2003 15:01

Extended Survivors Analysis
Arctic Cod (run: XSAASA27/X27)

CPUE data from file fleet
Catch data for 19 years. 1984 to 2002. Ages 1 to 13.
Fleet, First, Last, First, Last, Alpha, Beta year, year, age, age
FLT09: Russian trawl, \(1985,2002,9,12, .000,1.000\)
FLT15: NorBarTrSur r, 1984, 2002, 3, 8, .990, 1.000
FLT16: NorBarLofAcSu, 1984, 2002, 3, 11, .990, 1.000
FLT17: RusSurCatch/h, 1984, 2002, 3, 8, .900, 1.000

Time-series weights :
Tapered time weighting applied
Power \(=3\) over 10 years

Catchability analysis :
Catchability dependent on stock size for ages < 6
Regression type \(=C\)
Minimum of 5 points used for regression
Survivor estimates shrunk to the population mean for ages < 6

Catchability independent of age for ages \(>=10\)

Terminal population estimation :
Survivor estimates shrunk towards the mean \(F\)
of the final 5 years or the 2 oldest ages.
S.E. of the mean to which the estimates are shrunk \(=1.000\)

Minimum standard error for population
estimates derived from each fleet \(=\quad .300\)
Prior weighting not applied

Tuning converged after 25 iterations
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline , & . 020 , & .116, & . 284 , & . 482, & . 670 , & . 820 , & . 921 , & . 976, & . 997 , & 1.000 \\
\hline \multicolumn{11}{|l|}{Fishing mortalities} \\
\hline Age, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002 \\
\hline 1, & 2.567, & 1.716, & 1.870, & 1.983, & 2.497, & 1.609, & 1.129, & 1.350, & . 973, & 1.103 \\
\hline 2, & . 450, & .631, & . 939 , & 1.058, & 1.116, & . 643, & . 349 , & . 270 , & . 182, & . 522 \\
\hline 3, & . 079 , & . 208, & . 554, & . 472 , & . 341 , & . 373 , & . 120, & . 070 , & . 059 , & . 083 \\
\hline 4, & . 096 , & . 202, & . 302 , & . 354 , & . 304 , & . 355 , & . 210 , & . 128, & . 105 , & . 091 \\
\hline 5, & . 347 , & . 339 , & . 336 , & . 413, & . 574 , & . 531, & . 554, & . 411, & . 259 , & . 206 \\
\hline 6, & . 460 , & . 646 , & . 576 , & . 543 , & . 726 , & . 791 , & . 747 , & .616, & . 518, & . 373 \\
\hline 7, & . 566 , & 1.168, & . 892 , & . 750 , & . 845 , & . 778 , & . 837 , & . 804 , & . 697, & . 631 \\
\hline 8, & . 598, & . 986 , & . 943 , & . 864 , & 1.237, & 1.049, & 1.080, & 1.131, & . 984 , & . 783 \\
\hline 9, & . 665 , & 1.056, & . 962 , & . 752 , & 1.344, & 1.178, & 1.423, & 1.264, & 1.141, & . 966 \\
\hline 10, & . 668, & 1.033, & 1.023, & . 941 , & 1.510, & 1.267, & 1.452, & 1.265, & 1.399, & 1.229 \\
\hline 11, & . 683, & 1.185, & 1.227, & . 875 , & 1.448, & 1.335, & . 994 , & 1.197, & 1.042, & 1.034 \\
\hline 12, & 684, & 1.143 & 1.229 & 861 & 1.551 & 1.32 & 1.187 & 1.41 & 1.375, & 1.341 \\
\hline
\end{tabular}

Table 3.16 (continued)

XSA population numbers (Thousands)

Taper weighted geometric mean of the VPA populations:
\[
, \quad 5.10 \mathrm{E}+02, \quad 1.66 \mathrm{E}+02
\]

Standard error of the weighted Log(VPA populations) :
```

, .6755, .9766,

```

Log catchability residuals.
```

Fleet : FLTO9: Russian trawl
Age , 1984, 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992
3, No data for this fleet at this age
4, No data for this fleet at this age
5 , No data for this fleet at this age
, No data for this fleet at this age
, No data for this fleet at this age
No data for this fleet at this age
99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99
99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99
99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99
99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99

```

Table 3.16 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age & , 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002 \\
\hline 3 & No data & for & is flee & t at & is age & & & & & \\
\hline 4 & , No data & for t & is flee & t at t & his age & & & & & \\
\hline 5 & No data & for t & is flee & t at t & his age & & & & & \\
\hline 6 & , No data & for t & is flee & t at t & his age & & & & & \\
\hline 7 & , No data & for t & is flee & t at th & his age & & & & & \\
\hline 8 & , No data & for t & is flee & t at t & his age & & & & & \\
\hline 9 & . 79, & . 70 , & . 46 , & .03, & -. 22, & -.88, & -.47, & . 26 , & . 20 , & . 60 \\
\hline 10 & . 15, & . 60, & .53, & . 36, & -.17, & -.60, & -.39, & . 07 , & . 04 , & . 46 \\
\hline 11 & -1.12, & -1.25, & . 23 , & -.58, & -.15, & .09, & 99.99, & -.35, & -.02, & -. 06 \\
\hline 12 & , -1.24, & -. 70, & -2.20, & -1.13, & -. 75 , & .17, & 99.99, & -1.90, & . 04 , & -2.11 \\
\hline
\end{tabular}

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\begin{tabular}{crrrr}
Age , & 9, & 10, & 11, & 12 \\
Mean Log q, & -3.3593, & -3.4899, & -3.4899, & -3.4899, \\
S.E (Log q), & .5265, & .4035, & .3497, & 1.5479,
\end{tabular}

Regression statistics :

Ages with \(q\) independent of year class strength and constant w.r.t. time.
Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q
\begin{tabular}{rrrrrrrr}
9, & 2.57, & -2.173, & -5.01, & .31, & 10, & 1.04, & -3.36, \\
10, & 1.21, & -.481, & 2.65, & .55, & 10, & .53, & -3.49, \\
11, & 1.32, & -1.271, & 2.80, & .83, & 9, & .38, & -3.65, \\
12, & 1.41, & -.518, & 4.22, & .32, & 9, & 1.60, & -4.53,
\end{tabular}

Fleet : FLT15: NorBarTrSur r
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Age & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & 1991, & 1992 \\
\hline 3 & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99 \\
\hline 4 & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99 \\
\hline 5 & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99 \\
\hline 6 & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99 \\
\hline 7 & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99 \\
\hline 8 & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99 \\
\hline 9 & , No data & for t & is fle & t at t & is age & & & & \\
\hline 10 & , No data & for \(t\) & is fle & \(t\) at t & is age & & & & \\
\hline 11 & , No data & for t & is fle & \(t\) at t & is age & & & & \\
\hline 12 & , No data & for \(t\) & is fle & t at t & is age & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age & , & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002 \\
\hline 3 & , & . 08 , & . 09 , & . 01 , & -.08, & . 10, & -. 07, & -.09, & . 02, & . 04 , & . 03 \\
\hline 4 & , & . 04 , & . 41, & . 20 , & . 25 , & . 00 , & -. 20, & . 06 , & -.11, & -. 04 , & . 04 \\
\hline 5 & , & . 32 , & . 09 , & . 29 , & . 10 , & . 25, & -. 06 , & -.03, & -.13, & -. 14, & . 04 \\
\hline 6 & , & -. 07, & . 47, & . 09 , & . 14, & . 27 , & . 09 , & -. 13, & -. 08, & -. 07, & -. 14 \\
\hline 7 & , & -. 08, & . 20, & -. 03, & -.14, & . 26, & . 26 , & . 22 , & -. 22, & -. 23, & \(-.10\) \\
\hline 8 & , & . 24 , & . 21, & -. 24 , & . 07 , & -. 24, & -. 25, & . 30 , & . 14, & -. 13, & . 08 \\
\hline 9 & & No dat & for t & s fle & at th & s age & & & & & \\
\hline 10 & & No dat & for \(t\) & s fle & at t & is age & & & & & \\
\hline 11 & & No dat & for t & is fle & at t & is age & & & & & \\
\hline 12 & & No dat & for \(t\) & S fle & at t & s age & & & & & \\
\hline
\end{tabular}

\section*{Table 3.16 (continued)}

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\begin{tabular}{crrr}
Age , & 6, & 7, & 8 \\
Mean \(\log\) q, & -6.2573, & -6.5231, & -6.7288, \\
S.E (Log q), & .1627, & .2261, & .2146,
\end{tabular}

Ages with \(q\) independent of year class strength and constant w.r.t. time.
Age, Slope, t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q
\begin{tabular}{lrrlllll}
6, & .92, & .548, & 6.69, & .92, & 10, & .16, & -6.26, \\
7, & .91, & .551, & 6.92, & .90, & 10, & .22, & -6.52, \\
8, & 1.09, & -.523, & 6.43, & .88, & 10, & .25, & -6.73,
\end{tabular}

1

Fleet : FLT16: NorBarLofAcSu
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Age & 1984, & 19 & 9, & 19 & 1988, & , & 1990, & , & 1992 \\
\hline 3 & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99 \\
\hline 4 & 99.99, & 99.99, & 99.99, & 99.99 & 99.99 & 99.99, & 99.99 & 99.99 & 99.99 \\
\hline 5 & 99.99, & 99.99, & 99.99, & 99.99 & 99.99 & 99.99, & 99.99 & 99.99, & 99.99 \\
\hline 6 & 99.99, & 99.99, & 99.99, & 99.99 & 99.99 & 99.99, & 99.99 & 99.99, & 99.99 \\
\hline 7 & 99.99 & 99.99, & 99.99, & 99.99 & 99.99 & 99.99, & 99.99 & 99.99, & 99.99 \\
\hline 8 & 99.99, & 99.99, & 99.99, & 99.99 & 99.99 & 99.99, & 99.99 & 99.99, & 99.99 \\
\hline 9 & 99.99, & 99.99, & 99.99, & 99.99, & 99.99 & 99.99, & 99.99 & 99.99, & 99.99 \\
\hline 10 & 99.99, & 99.99, & 99.99, & 99.99, & 99.99 & 99.99, & 99.99, & 99.99, & 99.99 \\
\hline 11 & 99.99, & 99 & 99.99 & 99. & 99.99 & 99.99, & 99.99, & 99.99, & 99.99 \\
\hline 12 & , No & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrrrrr}
Age, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001,
\end{tabular} 2002

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\begin{tabular}{crrrrr}
Age , & 6, & 7, & 8, & 9, & 10, \\
Mean Log q, & -5.4371, & -5.3793, & -5.4092, & -5.3985, & -5.0001, \\
S.E(Log q), & .2245, & .4165, & .4140, & .3534, & .2670,
\end{tabular}

Table 3.16 (continued)

Regression statistics :
Ages with \(q\) dependent on year class strength
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Log q
\begin{tabular}{rrrrrrrr}
3, & 1.09, & -.143, & 5.14, & .38, & 10, & .31, & -5.80, \\
4, & .93, & .132, & 6.27, & .45, & 10, & .34, & -5.77, \\
5, & .66, & 1.175, & 7.98, & .74, & 10, & .25, & -5.66,
\end{tabular}

Ages with \(q\) independent of year class strength and constant w.r.t. time. Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q
\begin{tabular}{rrrrrrrr}
6, & .97, & .149, & 5.64, & .84, & 10, & .24, & -5.44, \\
7, & .74, & 1.231, & 6.85, & .84, & 10, & .29, & -5.38, \\
8, & .67, & 2.204, & 6.88, & .91, & 10, & .21, & -5.41, \\
9, & 1.01, & -.027, & 5.37, & .75, & 10, & .40, & -5.40, \\
10, & .80, & 1.137, & 5.49, & .90, & 9, & .21, & -5.00, \\
11, & .72, & 1.253, & 4.90, & .88, & 8, & .35, & -4.38,
\end{tabular}

Fleet : FLT17: RusSurCatch/h
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Age & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & 1991, & 1992 \\
\hline 3 & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99 \\
\hline 4 & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99 \\
\hline 5 & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99 \\
\hline 6 & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99 \\
\hline 7 & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99 \\
\hline 8 & , 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99, & 99.99 \\
\hline 9 & , No data & for t & is fle & t at t & is age & & & & \\
\hline 10 & , No data & for \(t\) & is fle & \(t\) at t & is age & & & & \\
\hline 11 & , No data & for t & is fle & \(t\) at t & is age & & & & \\
\hline 12 & , No data & for t & is fle & t at t & is age & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age & , & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002 \\
\hline 3 & , & . 08, & -. 27 , & -. 29, & -. 24 , & -. 65, & . 36 , & . 15, & . 01, & . 26 , & -. 04 \\
\hline 4 & , & . 05 , & -. 21, & -. 23, & -.11, & . 09 , & . 25 , & . 24 , & -.11, & . 02 , & -. 26 \\
\hline 5 & , & 1.20, & . 65 , & -. 01, & -. 47, & -. 60, & . 22 , & . 35 , & -. 05, & . 05 , & . 03 \\
\hline 6 & , & . 62, & 1.61, & -. 28 , & -. 58, & -. 84 , & -. 02, & . 00 , & -. 05 , & . 13, & . 65 \\
\hline 7 & , & . 89 , & 2.12, & . 07 , & -. 26 , & -. 97, & -. 56, & . 04 , & -. 21 , & . 02 , & 1.11 \\
\hline 8 & , & . 88, & 1.80, & . 25 , & . 01 , & -1.01, & -. 87 , & -. 18, & -. 22 , & -. 20 , & 1.67 \\
\hline 9 & & No dat & for th & s fle & at t & is age & & & & & \\
\hline 10 & & No dat & for t & S fle & at t & is age & & & & & \\
\hline 11 & & No dat & for t & s fle & at t & is age & & & & & \\
\hline 12 & & No dat & for th & fle & at t & s a & & & & & \\
\hline
\end{tabular}

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\begin{tabular}{crrr}
Age, & 6, & 7, & 8 \\
Mean Log q, & -6.7569, & -6.8987, & -6.7119, \\
S.E (Log q), & .5174, & .7213, & .9348,
\end{tabular}

\section*{Table 3.16 (continued)}

Regression statistics :
Ages with q dependent on year class strength
Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Log q
\begin{tabular}{lrrlllll}
3, & .71, & .419, & 9.24, & .32, & 10, & .35, & -7.54, \\
4, & .54, & 1.282, & 9.75, & .65, & 10, & .22, & -7.10, \\
5, & 1.32, & -.762, & 5.07, & .57, & 10, & .37, & -6.88,
\end{tabular}

Ages with \(q\) independent of year class strength and constant w.r.t. time.
Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q
\begin{tabular}{llllllll}
6, & 1.10, & -.172, & 6.27, & .43, & 10, & .63, & -6.76, \\
7, & 1.10, & -.152, & 6.51, & .36, & 10, & .88, & -6.90, \\
8, & 1.78, & -.627, & 4.23, & .13, & 10, & 1.77, & -6.71,
\end{tabular}

Terminal year survivor and \(F\) summaries :
Age 1 Catchability dependent on age and year class strength
Year class \(=2001\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, Survivors, & Int, & Ext, & Var, Ratio & & Scaled, Weights, & Estimated \\
\hline FLT09: Russian trawl, & survivors & .000, & .000, & . 00 , & 0 , & .000, & . 000 \\
\hline FLT15: NorBarTrSur r, & 1. & . 0000, & . 000, & . 00 , & 0 , & . 000, & . 000 \\
\hline FLT16: NorBarLofAcSu, & 1. & . 0000, & .000, & . 00 , & 0 , & . 000, & . 000 \\
\hline FLT17: RusSurCatch/h, & 1 & .000, & .000, & . 00 , & 0 , & . 000, & . 000 \\
\hline P shrinkage mean , & 1252507., & . 50, & & & & . 800, & 1.007 \\
\hline F shrinkage mean , & 599976., & 1.00, & & & & . 200, & 1.532 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{lrrrrr}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & s.e, & Ratio, & \\
\(1081034 .\), & .45, & 13.90, & 2, & 31.071, & 1.103
\end{tabular}

Age 2 Catchability dependent on age and year class strength
Year class \(=2000\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, Survivors, & Int,
s.e, & \[
\begin{aligned}
& \text { Ext, } \\
& \text { s.e, }
\end{aligned}
\] & Var, Ratio, & N, & Scaled, Weights, & Estimated
F \\
\hline FLT09: Russian trawl, & 1., & . 000 , & . 0000, & . 00 , & 0 , & .000, & . 000 \\
\hline FLT15: NorBarTrSur r, & 1., & . 0000 , & .000, & . 00 , & 0 , & . 000 , & . 000 \\
\hline FLT16: NorBarLofAcSu, & 1., & . 0000 , & . 0000 , & . 00 , & 0 , & . 000, & . 000 \\
\hline FLT17: RusSurCatch/h, & 1., & . 000 , & .000, & . 00 , & 0 , & . 000 , & . 000 \\
\hline P shrinkage mean & 601980., & .22, , , & & & & . 954, & . 523 \\
\hline F shrinkage mean & 611614., & 1.00, , , & & & & . 046 , & . 516 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{lrrrrr}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & s.e, & Ratio, & & \\
\(602420 .\), & .21, & 13.31, & \(2^{2}\), & 61.968, & .522
\end{tabular}

\section*{Table 3.16 (continued)}

Weighted prediction :
\begin{tabular}{llllll}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & S.e, & S.e, & Ratio, & \\
\(378034 .\), & .16, & .08, & 5, & .487, & .083
\end{tabular}

Age 4 Catchability dependent on age and year class strength
Year class \(=1998\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, Survivors, & \[
\begin{aligned}
& \text { Int, } \\
& \text { s.e, }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ext, } \\
& \text { s.e, }
\end{aligned}
\] & Var, Ratio, & & Scaled, Weights, & \begin{tabular}{l}
Estimated \\
F
\end{tabular} \\
\hline FLT09: Russian trawl, & 1., & . 000, & . 000, & . 00 , & 0 , & . 000 , & . 000 \\
\hline FLT15: NorBarTrSur r, & 299874., & . 212, & . 004 , & . 02, & 2, & . 345 , & . 088 \\
\hline FLT16: NorBarLofAcSu, & 330959., & . 257, & . 207, & . 80 , & 2, & . 235, & . 080 \\
\hline FLT17: RusSurCatch/h, & 268696., & .236, & . 248 , & 1.05, & 2, & . 281, & . 098 \\
\hline P shrinkage mean , & 267272., & . 38 , & & & & . 122, & . 098 \\
\hline F shrinkage mean & 111161., & 1.00, & & & & . 018, & . 222 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{llllll}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & s.e, & , & Ratio, & \\
\(288372 .\), & .13, & .09, & 8, & .679, & .091
\end{tabular}

Age 5 Catchability dependent on age and year class strength

Year class \(=1997\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, Survivors, & Int,
s.e, & Ext,
s.e, & Var, Ratio, & N, & Scaled, Weights, & \[
\begin{gathered}
\text { Estimated } \\
\mathrm{F}
\end{gathered}
\] \\
\hline FLT09: Russian trawl, & 1., & . 000, & . 000, & . 00, & 0 , & . 000, & . 000 \\
\hline FLT15: NorBarTrSur r, & 243018. & . 174, & . 025 , & . 14 , & 3, & . 368 , & . 204 \\
\hline FLT16: NorBarLofAcSu, & 277853., & . 196, & . 111, & . 56 , & 3, & . 294 , & . 181 \\
\hline FLT17: RusSurCatch/h, & \(246435 .\), & . 206 , & . 006 , & . 03 , & 3 , & . 262 , & . 202 \\
\hline \(P\) shrinkage mean, & 136257., & . 49,1, & & & & . 062 , & .340 \\
\hline F shrinkage mean , & 92047., & 1.00, , , & & & & . 015, & . 469 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{lrrrrr}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & S.e, & Ratio, & \\
\(241302 .\), & .11, & .07, & \(11^{\prime}\), & .663, & .206
\end{tabular}

Table 3.16 (continued)
Age 6 Catchability constant w.r.t. time and dependent on age

Year class \(=1996\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, Survivors, & Int,
s.e, & Ext,
s.e, & Var, Ratio, & N, & Scaled, Weights, & \begin{tabular}{l}
Estimated \\
F
\end{tabular} \\
\hline FLTO9: Russian trawl, & 1. & . 000, & . 000, & . 00, & 0, & . 000, & . 000 \\
\hline FLT15: NorBarTrSur r, & 96840 & . 155, & . 012, & . 08 , & 4, & . 400 , & . 413 \\
\hline FLT16: NorBarLofAcSu, & 122188. & . 167, & .139, & . 83, & 4, & . 353, & . 340 \\
\hline FLT17: RusSurCatch/h, & 122305. & . 197, & . 153, & . 78 , & 4, & . 230 , & . 340 \\
\hline F shrinkage mean , & 50180., & 1.00, & & & & . 017, & . 686 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{lrrrrr}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & s.e, & , & Ratio, & \\
\(109644 .\), & .10, & .07, & 13, & .723, & .373
\end{tabular}

Age 7 Catchability constant w.r.t. time and dependent on age

Year class \(=1995\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, Survivors, & Int, & Ext,
s.e, & Var, Ratio, & N, & Scaled, Weights, & Estimated F \\
\hline FLTO9: Russian trawl, & 1. & . 000, & . 000, & . 00 , & 0, & . 000 , & . 000 \\
\hline FLT15: NorBarTrSur r, & 33966. & . 157 , & . 027, & . 17, & 5, & . 467 , & . 667 \\
\hline FLT16: NorBarLofAcSu, & 35898. & . 177, & . 130, & . 74 , & 5, & . 329, & . 640 \\
\hline FLT17: RusSurCatch/h, & 49462 & . 222 , & . 190, & . 86 , & 5, & . 172 , & . 501 \\
\hline \(F\) shrinkage mean & 26250., & 1.00, & & & & . 032, & . 800 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{cccccc}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & s.e, & , & Ratio, & \\
\(36599 .\), & .11, & .07, & 16, & .648, & .631
\end{tabular}

Age 8 Catchability constant w.r.t. time and dependent on age

Year class = 1994
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, Survivors, & Int, & Ext,
s.e, & Var, Ratio, & N, & Scaled, Weights, & \[
\begin{gathered}
\text { Estimated } \\
\mathrm{F}
\end{gathered}
\] \\
\hline FLT09: Russian trawl, & 1., & . 000, & . 000 , & . 00, & 0 , & . 000 , & . 000 \\
\hline FLT15: NorBarTrSur r, & 7399. & . 171, & . 060 , & . 35, & 6, & . 533, & 802 \\
\hline FLT16: NorBarLofAcSu, & 7634 & . 211, & . 098, & . 46 , & 6, & . 303, & . 785 \\
\hline FLT17: RusSurcatch/h, & 11586., & . 286 , & . 304 , & 1.06, & 6, & . 113, & . 579 \\
\hline F shrinkage mean & 4477. & 1.00, & & & & . 051 , & 1.109 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{cccccc}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & s.e, &, & Ratio, & \\
\(7656 .\), & .13, & .08, & 19, & .622, & .783
\end{tabular}

\section*{Table 3.16 (continued)}

Age 9 Catchability constant w.r.t. time and dependent on age Year class = 1993
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, & Int, & Ext,
s.e, & Var, Ratio, & & Scaled, & \begin{tabular}{l}
Estimated \\
F
\end{tabular} \\
\hline FLT09: Russian trawl, & Survivors,
\(1620 .\), & \[
\begin{aligned}
& \text { s.e, } \\
& .567,
\end{aligned}
\] & \[
\begin{aligned}
& \text { s.e, } \\
& .000,
\end{aligned}
\] & Ratio,
. 00, & 1, & Weights, & \[
\begin{aligned}
& F \\
& .636
\end{aligned}
\] \\
\hline FLT15: NorBarTrSur r, & 768., & . 184 , & .023, & .13, & 6, & . 295, & 1.057 \\
\hline FLT16: NorBarLofAcSu, & 930., & . 256, & .111, & . 43 , & 7, & . 426, & . 936 \\
\hline FLT17: RusSurCatch/h, & 841., & . 337 , & . 074 , & . 22 , & 6, & . 055, & . 999 \\
\hline F shrinkage mean & 551., & 1.00, & & & & 103, & 1.286 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{ccccc}
Survivors, & Int, & Ext, & N, & Var, \\
at end of year, & s.e, & S.e, & Ratio, & \\
\(886 .\), & .17, & .07, & 21, & .428,
\end{tabular} .966

Age 10 Catchability constant w.r.t. time and dependent on age
Year class = 1992
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, & Int, & Ext, & Var, & & Scaled, & Estimat \\
\hline (, Russian & Survivors, & s.e, & s.e, & Ratio, & & Weights, & F \\
\hline FLT09: Russian trawl, & 274., & . 377 , & . 096 , & . 25 , & 2, & . 240 , & 952 \\
\hline FLT15: NorBarTrSur r, & 212., & . 197 , & .020, & .10, & 6, & . 072 , & 1.117 \\
\hline FLT16: NorBarLofAcSu, & 156., & . 241, & .059, & . 24 , & 8, & . 546 , & 1.335 \\
\hline FLT17: RusSurCatch/h, & 155., & .407, & .082, & . 20 , & 6, & .012, & 1.337 \\
\hline F shrinkage mean & 143., & 1.00, & & & & .130, & 1.397 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{cccccc}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & s.e, & Ratio, & \\
\(180 .\), & .21, & .06, & 23, & .292, & 1.229
\end{tabular}

Age 11 Catchability constant w.r.t. time and age (fixed at the value for age) 10 Year class = 1991
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, Survivors, & Int,
s.e, & \[
\begin{aligned}
& \text { Ext, } \\
& \text { s.e, }
\end{aligned}
\] & Var, Ratio, & & Scaled, Weights, & \[
\begin{gathered}
\text { Estimated } \\
F
\end{gathered}
\] \\
\hline FLT09: Russian trawl, & 97., & . 320 , & . 042 , & .13, & 3, & . 519, & 1.055 \\
\hline FLT15: NorBarTrSur r, & 132., & . 206 , & .021, & .10, & 6, & . 025 , & . 864 \\
\hline FLT16: NorBarLofAcSu, & 124. & .297, & . 084, & . 28 , & 9, & . 278, & . 903 \\
\hline FLT17: RusSurCatch/h, & 66., & .416, & .108, & . 26 , & 6, & . 004 , & 1.329 \\
\hline F shrinkage mean & 76., & 1.00, & & & & . 174, & 1.218 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{cccccc}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & S.e, & Ratio, & \\
\(100 .\), & .25, & .05, & 25, & .179, & 1.034
\end{tabular}

Age 12 Catchability constant w.r.t. time and age (fixed at the value for age) 10
Year class = 1990
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, Survivors, & Int, & Ext,
s.e, & Var, Ratio, & N, & Scaled, Weights, & \(\underset{\mathrm{F}}{\text { Estimated }}\) \\
\hline FLT09: Russian trawl, & Survivors, & .s.e, & \[
\begin{aligned}
& \text { s.e, } \\
& .373,
\end{aligned}
\] & \[
1.12
\] & 4, & \[
.390,
\] & 1.521 \\
\hline FLT15: NorBarTrSur r, & 34 & .229, & . 108, & . 47 , & 6, & . 014, & 1.395 \\
\hline FLT16: NorBarLofAcSu, & 30., & . 258, & .085, & . 33, & 8, & . 150, & 1.480 \\
\hline FLT17: RusSurCatch/h, & 19., & . 507, & . 151 , & . 30, & 6 , & . 002 , & 1.872 \\
\hline F shrinkage mean & 48., & 1.00, & & & & . 444 , & 1.145 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{llllrl}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & s.e, & ratio, & Ration & \\
\(36 .\), & .46, & .11, & 25, & .233, & 1.341
\end{tabular}

Table 3.17

Run title : Arctic Cod (run: XSAASA27/X27)

At 28/04/2003 15:03
Terminal Fs derived using XSA (With F shrinkage)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table & 8 & \multicolumn{4}{|l|}{Fishing mortality (F) at age} & & & & & \multirow[b]{2}{*}{1992,} \\
\hline YEAR, & & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & 1991, & \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 1, & & . 2459, & . 3590 , & . 5092, & . 5267, & . 8044 , & . 2166 , & . 0483 , & . 1029, & . 4669 , \\
\hline 2, & & . 0373, & . 0578 , & . 8026 , & . 8029 , & . 1102 , & . 0020 , & . 0594 , & . 2371, & . 1447 , \\
\hline 3, & & . 0199 , & . 0533 , & . 1452 , & . 1136 , & . 0629 , & . 0327 , & . 0086 , & . 0183, & . 0405 , \\
\hline 4, & & . 1235, & . 1702 , & . 2122 , & . 2287 , & . 1269, & . 1284 , & . 0622 , & . 0624 , & . 1265 , \\
\hline 5, & & . 3075 , & . 3763 , & . 4934 , & . 5099, & . 3708 , & . 2658 , & . 1342 , & . 1875 , & . 2205 , \\
\hline 6, & & . 6274, & . 6052 , & . 7053 , & . 9367 , & . 5976, & . 4022 , & . 2309 , & . 3211 , & . 4428 , \\
\hline 7, & & 1.1361, & . 9249 , & . 9481 , & 1.1402, & 1.0456, & . 7167 , & . 2510 , & . 4255 , & . 5398, \\
\hline 8, & & 1.2111, & 1.0189, & 1.0910, & 1.0145, & . 9844 , & . 8914, & . 3752 , & . 3461 , & . 5984 , \\
\hline 9, & & 1.2623, & . 7786 , & . 8282 , & . 7786 , & 1.1598, & . 7183, & . 3072 , & . 3819 , & . 4578 , \\
\hline 10, & & . 9579, & . 5057 , & 1.1121, & 1.3243, & 1.7194, & . 9874 , & . 3255 , & . 2575 , & . 4612 , \\
\hline 11, & & 1.0876, & . 4205 , & . 8746 , & 1.0272, & 1.5382, & . 5835 , & . 5421, & . 1347 , & . 2501 , \\
\hline 12, & & 1.0346 , & . 4666 , & 1.0046, & 1.1901, & 1.6509, & . 7934 , & . 4370 , & . 1970, & . 3579 , \\
\hline +gp, & & 1.0346, & . 4666 , & 1.0046, & 1.1901, & 1.6509, & . 7934 , & . 4370 , & . 1970, & . 3579 , \\
\hline FBAR & 5-10, & , . 9171 , & . 7016 , & . 8630 , & . 9507 , & . 9796 , & . 6636 , & . 2707 , & . 3199 , & . 4534 , \\
\hline
\end{tabular}

Table 3.18

Run title : Arctic Cod (run: XSAASA27/X27)
At 28/04/2003 15:03
Terminal Fs derived using XSA (With F shrinkage)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Table 10
YEAR,} & \multicolumn{5}{|l|}{Stock number-at-age (start of year)} & \multicolumn{4}{|c|}{Numbers*10**-4} \\
\hline & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & 1991, & 1992, \\
\hline AGE & & & & & & & & & \\
\hline 1, & 211582, & 137727, & 114445, & 49253, & 82174, & 81893, & 144715, & 172897, & 304842, \\
\hline 2, & 67018, & 135470, & 78748, & 56313, & 23814, & 30098, & 53992, & 112891, & 127716, \\
\hline 3, & 40278, & 52860, & 104687, & 28896, & 20657, & 17463, & 24593, & 41656, & 72915, \\
\hline 4, & 13542, & 32328, & 41032, & 74125, & 21116, & 15881, & 13837, & 19962, & 33487, \\
\hline 5, & 7852, & 9799, & 22326, & 27170, & 48283, & 15228, & 11436, & 10646, & 15355, \\
\hline 6 , & 4763, & 4727, & 5507, & 11161, & 13359, & 27284, & 9557, & 8186, & 7226, \\
\hline 7, & 2465, & 2082, & 2113, & 2227, & 3581, & 6017, & 14941, & 6212, & 4862, \\
\hline 8, & 1304, & 648, & 676, & 670, & 583, & 1031, & 2406, & 9517, & 3323, \\
\hline 9, & 923, & 318, & 192, & 186, & 199, & 178, & 346, & 1354, & 5512, \\
\hline 10, & 140, & 214, & 120, & 69, & 70, & 51, & 71, & 208, & 756, \\
\hline 11, & 39, & 44, & 106, & 32, & 15, & 10, & 16, & 42, & 132, \\
\hline 12, & 26, & 11, & 24, & 36, & 9, & 3, & 5, & 7, & 30 \\
\hline +gp, & 12, & 21, & 13, & 16, & 8 , & 6, & 4, & 2, & 5, \\
\hline TOTAL, & 349945, & 376248, & 369987, & 250154, & 213869, & 195141, & 275918, & 383580, & 576160 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Sto & 199 & & 1906 & r) & \\
\hline YEAR, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998 \\
\hline \multicolumn{7}{|l|}{AGE} \\
\hline 1, & 2425850, & 933228, & 2013369, & 2806845, & 2027385, & 680474 \\
\hline 2, & 156482, & 152508, & 137333, & 253968, & 316296, & 136684 \\
\hline 3, & 90475, & 81714, & 66466, & 43980, & 72175, & 84832 \\
\hline 4, & 57327, & 68443, & 54316, & 31256, & 22468, & 42013 \\
\hline 5, & 24158, & 42624, & 45793, & 32876, & 17960, & 13574 \\
\hline 6 , & 10083, & 13983, & 24852, & 26797, & 17816, & 8287 \\
\hline 7, & 3800, & 5213, & 6001, & 11434, & 12743, & 7054 \\
\hline 8, & 2320, & 1766, & 1327, & 2015, & 4422, & 4482 \\
\hline 9, & 1496, & 1045, & 539, & 423, & 695, & 1051 \\
\hline 10, & 2855, & 630, & 298, & 169, & 163, & 148 \\
\hline 11, & 390, & 1198, & 184, & 88, & 54, & 30 \\
\hline 12, & 84, & 161, & 300, & 44, & 30, & 10 \\
\hline +gp, & 19, & 23, & 40, & 169, & 52, & 17 \\
\hline
\end{tabular}

Table 3.19

Run title : Arctic Cod (run: SVPASA15/V15)
At 30/04/2003 23:56
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Table & \multicolumn{7}{|l|}{Natural Mortality (M) at age} \\
\hline YEAR, & 1946, & 1947, & 1948, & 1949, & 1950, & 1951, & 1952, \\
\hline \multicolumn{8}{|l|}{AGE} \\
\hline 3 , & . 2000 , & . 2000 , & . 2000, & . 2000 , & . 2000 , & . 2000 , & . 2000 , \\
\hline 4, & . 2000 , & . 2000 , & . 2000, & . 2000 , & . 2000 , & . 2000 , & . 2000 , \\
\hline 5, & . 2000 , & . 2000 , & . 2000, & . 2000, & . 2000, & . 2000, & . 2000, \\
\hline 6, & . 2000 , & . 2000, & . 2000, & . 2000 , & . 2000 , & . 2000 , & . 2000 , \\
\hline 7, & . 2000 , & . 2000, & . 2000, & . 2000 , & . 2000 , & . 2000 , & . 2000, \\
\hline 8 , & . 2000 , & . 2000 , & . 2000, & . 2000, & . 2000 , & . 2000 , & . 2000 , \\
\hline 9, & . 2000 , & . 2000 , & . 2000, & . 2000, & . 2000 , & . 2000 , & . 2000 , \\
\hline 10, & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , \\
\hline 11, & . 2000 , & . 2000 , & . 2000, & . 2000 , & . 2000 , & . 2000 , & . 2000 , \\
\hline 12, & . 2000 , & . 2000, & . 2000, & . 2000, & . 2000 , & . 2000, & . 2000, \\
\hline +gp, & . 2000 , & . 2000, & . 2000, & . 2000, & . 2000 , & . 2000, & . 2000, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table & 4 & \multicolumn{10}{|l|}{Natural Mortality (M) at age} \\
\hline \multicolumn{12}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & & & \\
\hline 3, & & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , \\
\hline 4, & & . 2000 , & . 2000 , & . 2000 , & . 2000, & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , \\
\hline 5, & & . 2000 , & . 2000 , & . 2000 , & . 2000, & . 2000, & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , \\
\hline 6, & & . 2000 , & . 2000 , & . 2000, & . 2000, & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , \\
\hline 7, & & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , \\
\hline 8, & & . 2000 , & . 2000 , & . 2000, & . 2000, & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , \\
\hline 9, & & . 2000 , & . 2000 , & . 2000 , & . 2000, & . 2000, & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , \\
\hline 10, & & . 2000 , & . 2000 , & . 2000 , & . 2000, & . 2000, & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , \\
\hline 11, & & . 2000 , & . 2000, & . 2000 , & . 2000, & . 2000, & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000, \\
\hline 12, & & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , \\
\hline +gp, & & . 2000 , & . 2000 , & . 2000, & . 2000 , & . 2000, & . 2000 , & . 2000 , & . 2000 , & . 2000 , & . 2000 , \\
\hline
\end{tabular}

Run title : Arctic Cod (run: SVPASA15/V15)
At 30/04/2003 23:56

Table 3.19 (continued)

Table 3.20 Natural mortality of \(\operatorname{cod}\) (M2) due to cannibalism.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & M2 age 1 & M2 age 2 & M2 age 3 & M2 age 4 & M2 age 5 & M2 age 6 \\
\hline 1984 & 0.2435 & 0.0351 & 0.0006 & 0.0000 & 0.0000 & 0.0000 \\
\hline 1985 & 0.3583 & 0.0555 & 0.0004 & 0.0000 & 0.0000 & 0.0000 \\
\hline 1986 & 0.5068 & 0.7908 & 0.1108 & 0.0000 & 0.0000 & 0.0000 \\
\hline 1987 & 0.5205 & 0.7947 & 0.0580 & 0.0000 & 0.0000 & 0.0000 \\
\hline 1988 & 0.7998 & 0.1087 & 0.0087 & 0.0000 & 0.0000 & 0.0000 \\
\hline 1989 & 0.2148 & 0.0011 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline 1990 & 0.0480 & 0.0587 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline 1991 & 0.1023 & 0.2356 & 0.0050 & 0.0000 & 0.0000 & 0.0000 \\
\hline 1992 & 0.4666 & 0.1432 & 0.0067 & 0.0000 & 0.0000 & 0.0000 \\
\hline 1993 & 2.5667 & 0.4492 & 0.0662 & 0.0030 & 0.0026 & 0.0000 \\
\hline 1994 & 1.7162 & 0.6302 & 0.1986 & 0.0959 & 0.0259 & 0.0047 \\
\hline 1995 & 1.8704 & 0.9384 & 0.5439 & 0.2017 & 0.0082 & 0.0001 \\
\hline 1996 & 1.9831 & 1.0575 & 0.4475 & 0.2332 & 0.0815 & 0.0060 \\
\hline 1997 & 2.4968 & 1.1153 & 0.3179 & 0.0958 & 0.0105 & 0.0020 \\
\hline 1998 & 1.6093 & 0.6414 & 0.3229 & 0.0770 & 0.0167 & 0.0098 \\
\hline 1999 & 1.1286 & 0.3482 & 0.1050 & 0.0111 & 0.0000 & 0.0000 \\
\hline 2000 & 1.3502 & 0.2697 & 0.0621 & 0.0368 & 0.0157 & 0.0005 \\
\hline 2001 & & 0.1820 & 0.0473 & 0.0224 & 0.0059 & 0.0052 \\
\hline 2002 & & & 0.0786 & 0.0169 & 0.0009 & 0.0000 \\
\hline
\end{tabular}

Table 3.21
Run title : Arctic Cod (run: SVPASA15/V15)
At 30/04/2003 23:56

Traditional vpa using file input for terminal \(F\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Table 8 & Fishing & mortality & (F) at & age & & & \\
\hline YEAR, & 1946, & 1947, & 1948, & 1949, & 1950, & 1951, & 1952, \\
\hline \multicolumn{8}{|l|}{AGE} \\
\hline 3 , & . 0061 , & . 0018 , & . 0003 , & . 0023 , & . 0020 , & . 0254 , & . 0225 , \\
\hline 4, & . 0200, & . 0249 , & . 0124, & . 0209 , & . 0321 , & . 1612 , & . 1667 , \\
\hline 5, & . 0532, & . 1101 , & . 0751 , & . 1484 , & . 1167 , & . 2637 , & . 3700 , \\
\hline 6, & . 0973, & . 2024, & . 1997 , & . 3662 , & . 2882 , & . 2787 , & . 5501 , \\
\hline 7, & . 1781 , & . 4160 , & . 5201, & . 5101 , & . 4096 , & . 4122, & 5311, \\
\hline 8 , & . 1932 , & . 2545 , & . 3536 , & . 3869 , & . 3480 , & . 4046 , & . 4175 , \\
\hline 9, & . 3125 , & . 4047 , & . 5286, & . 3832 , & . 4741 , & . 5057, & . 5790 , \\
\hline 10, & . 2798 , & . 4405 , & . 3617 , & . 3766 , & . 5031, & . 5149, & . 7613, \\
\hline 11, & . 3432 , & . 7827 , & . 5536, & . 6259 , & . 9031, & . 4585 , & 1.0260, \\
\hline 12, & . 3120 , & . 6182, & . 4604 , & . 5039 , & . 7111 , & . 4879 , & . 9056 , \\
\hline +gp, & . 3120 , & . 6182, & . 4604 , & . 5039 , & . 7111 , & . 4879 , & . 9056 , \\
\hline FBAR 5-10, & . 1857, & . 3047 , & . 3398 , & . 3619 , & . 3566 , & . 3966 , & . 5348 , \\
\hline FBAR 4-8, & . 1084 , & . 2016 , & . 2322 , & . 2865 , & . 2389 , & . 3041 , & . 4071 , \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 8 & Fishi & mortal & (F) & & & & & & & \\
\hline YEAR, & 1953, & 1954, & 1955, & 1956, & 1957, & 1958, & 1959, & 1960, & 1961, & 1962, \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3, & . 0334, & . 0199, & . 0159, & . 0270, & . 0240 , & . 0718, & . 0535 , & . 0543 , & . 0562 , & . 0663 , \\
\hline 4, & . 1325 , & . 1457 , & . 0840 , & . 1291, & . 1128 , & . 2589 , & . 2564 , & . 2266 , & . 2717 , & . 3063 , \\
\hline 5, & . 2299 , & . 2676 , & . 2859 , & . 4568 , & . 2094 , & . 3626 , & . 5093, & . 3477 , & . 4944 , & . 6498 , \\
\hline 6, & . 3125 , & . 3333 , & . 5297, & . 6900 , & . 4862 , & . 5517 , & . 5121, & . 4607 , & . 5168, & . 8279, \\
\hline 7, & . 3243 , & . 3969 , & . 5139, & . 6129, & . 5494, & . 5357 , & . 5251, & . 4363 , & . 5279, & . 6094 , \\
\hline 8 , & . 3469 , & . 2494 , & . 5880 , & . 6880 , & . 6287, & . 4593 , & . 5111, & . 4855 , & . 6931, & . 6564 , \\
\hline 9, & . 3932 , & . 4364 , & . 5805 , & . 6551, & . 5463 , & . 4535 , & . 6141, & . 4053 , & . 7389 , & . 8167 , \\
\hline 10, & . 5364 , & . 6441 , & . 7645 , & . 7380 , & . 6333, & . 7388 , & . 6860 , & . 7381 , & . 8379, & . 9855 , \\
\hline 11, & . 6980, & . 8035, & . 7621 , & . 8756 , & . 8584 , & . 8415 , & . 6511, & . 8449 , & 1.0011, & . 9522 , \\
\hline 12, & . 6217, & . 7304 , & . 7704 , & . 8152 , & . 7529 , & . 7990 , & . 6734 , & . 7981 , & . 9284 , & . 9756 , \\
\hline +gp, & .6217, & . 7304 , & . 7704 , & . 8152 , & . 7529 , & . 7990 , & . 6734 , & . 7981 , & . 9284 , & . 9756 \\
\hline FBAR 5-10, & . 3572 , & . 3879 , & . 5437 , & . 6401 , & . 5089 , & . 5169 , & . 5596 , & . 4789 , & . 6348, & . 7576 , \\
\hline FBAR 4-8, & . 2692 , & . 2786 , & . 4003, & . 5154, & . 3973 , & . 4337, & . 4628 , & . 3914 , & . 5008, & . 6100, \\
\hline
\end{tabular}

Run title : Arctic Cod (run: SVPASA15/V15)
At 30/04/2003 23:56
Traditional vpa using file input for terminal \(F\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 8 & Fishi & morta & (F) & & & & & & & \\
\hline YEAR, & 1963, & 1964, & 1965, & 1966, & 1967, & 1968, & 1969, & 1970, & 1971, & 1972, \\
\hline AGE & & & & & & & & & & \\
\hline 3 , & . 0313, & . 0174, & . 0226, & . 0398 , & . 0298, & . 0251 , & . 0230 , & . 0409 , & . 0214, & . 0394 , \\
\hline 4, & . 2366 , & . 1449 , & . 1110, & . 1037 , & . 1525 , & . 2064 , & . 2292, & . 1422, & . 1028 , & 1673, \\
\hline 5, & . 7420 , & . 3537 , & . 3909, & . 2119, & . 1814 , & . 4087 , & . 4792 , & . 4004 , & . 2285, & . 2976 , \\
\hline 6, & 1.0069, & . 4854 , & . 4494 , & . 3818 , & . 2026 , & . 4683, & . 5382, & . 5680, & . 2517 , & . 3849 , \\
\hline 7, & . 9764 , & . 5787, & . 4033, & . 4713, & . 4320 , & . 4019 , & . 7725 , & . 6211, & . 5144, & . 3427 , \\
\hline 8 , & . 8798 , & . 7409 , & . 5303, & . 5797, & . 6844 , & . 5291, & . 9302 , & . 8479 , & . 8330 , & . 6583, \\
\hline 9, & . 9416 , & 1.0674, & . 7389 , & . 7183, & . 8781 , & . 8041 , & 1.1783, & . 9682 , & . 9584 , & 1.1338, \\
\hline 10, & 1.3731, & . 8476 , & . 8074 , & . 8182, & . 8850 , & . 8105 , & 1.0769, & 1.0900, & . 7876 , & 1.3393, \\
\hline 11, & 1.4366, & 1.2968, & . 7617 , & . 5024, & 1.2253, & . 6772 , & 1.5554, & . 8533, & . 8388 , & 1.2904, \\
\hline 12, & 1.4264, & 1.0883, & . 7927, & . 6634, & 1.0696, & . 7458 , & 1.3377, & . 9829 , & . 8179, & 1.3377, \\
\hline +gp, & 1.4264, & 1.0883, & . 7927, & . 6634 , & 1.0696, & . 7458 , & 1.3377, & . 9829 , & . 8179, & 1.3377, \\
\hline FBAR 5-10, & . 9866 , & . 6789 , & . 5533, & . 5302, & . 5439 , & . 5704 , & . 8292 , & . 7493, & . 5956 , & . 6928, \\
\hline FBAR 4-8, & . 7683 , & . 4607 , & . 3770 , & . 3497 , & . 3306 , & . 4029, & . 5899, & . 5159, & . 3861 , & . 3702 , \\
\hline
\end{tabular}

Table 3.21 (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table & \multicolumn{10}{|c|}{(F) at age} \\
\hline YEAR, & 1973, & 1974, & 1975, & 1976, & 1977, & 1978, & 1979, & 1980, & 1981, & 1982, \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3, & . 1959, & . 2141, & . 0837, & . 1660 , & .1338, & . 1460 , & .0489, & . 0318, & . 0252, & . 0672 , \\
\hline 4, & . 1996, & . 4959, & . 2106, & . 3121 , & . 5671, & . 2234, & . 2090, & . 1296 , & . 1003 , & . 2121, \\
\hline 5, & . 3536 , & . 5375, & . 5211, & . 4800 , & . 7544 , & . 6703, & . 3475 , & . 3562 , & . 2300 , & . 3045 , \\
\hline 6, & . 3917 , & . 5078, & . 7021, & . 5715, & .6857, & . 8497 , & . 5478, & . 6225, & . 5163, & . 5518, \\
\hline 7, & . 4210, & . 4451, & . 7050 , & . 6973, & .6763, & . 8581 , & . 6643, & . 6766 , & . 8475, & . 7996 , \\
\hline 8, & . 7375 , & . 4863, & . 7032, & . 8908, & . 9121, & . 9296 , & . 7789 , & . 7123 , & 1.0789, & . 9846 , \\
\hline 9, & . 9698 , & . 5192, & .6109, & . 7746 , & 1.2298, & 1.3057, & 1.0352, & . 9390 , & 1.2765, & 1.1589, \\
\hline 10, & . 7386 , & . 8842, & .7149, & . 4600 , & . 7689 , & 1.0301, & . 9848 , & 1.0380, & 1.2299, & . 7508 , \\
\hline 11, & . 7222 , & . 9905 , & . 9079, & . 6132, & .6231, & 1.8042, & 1.4314, & 1.4798, & . 9557, & . 9516, \\
\hline 12, & . 7358 , & . 9492, & . 8218 , & .5389, & .6958, & 1.4375, & 1.2219, & 1.2775, & 1.1082, & . 8607 , \\
\hline +gp, & . 7358 , & . 9492, & . 8218 , & . 5389 , & .6958, & 1.4375, & 1.2219, & 1.2775, & 1.1082, & . 8607, \\
\hline FBAR 5-10, & . 6020, & . 5633, & . 6595, & . 6457, & .8379, & . 9406 , & . 7264 , & . 7241 , & . 8632, & . 7583 , \\
\hline FBAR 4-8, & . 4207, & . 4945 , & . 5684 , & . 5904 , & .7191, & . 7062 , & . 5095, & . 4994 , & . 5546 , & . 5705 , \\
\hline Table 8 & Fishing & \multicolumn{9}{|l|}{mortality (F) at age} \\
\hline YEAR,
AGE & 1983, & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & 1991, & 1992, \\
\hline 3, & . 0208, & . 0194, & . 0533, & . 0330, & . 0555, & . 0546 , & . 0330, & . 0087 , & . 0134, & . 0341, \\
\hline 4, & . 2050, & . 1247, & . 1717 , & . 2134 , & . 2295, & . 1276 , & . 1292, & . 0627 , & .0631, & . 1276, \\
\hline 5, & . 3308 , & . 3096 , & . 3788 , & . 4961 , & .5107, & . 3714 , & . 2669 , & . 1352 , & .1889, & . 2226 , \\
\hline 6, & . 5033, & . 6301, & . 6078, & . 7079 , & . 9366 , & . 5979, & . 4030, & . 2322 , & . 3228 , & . 4449 , \\
\hline 7, & . 7821, & 1.1350, & . 9264 , & . 9488 , & 1.1367, & 1.0422, & . 7153, & . 2524 , & . 4273, & . 5419, \\
\hline 8, & 1.0295, & 1.2083, & 1.0192, & 1.0911, & 1.0146, & . 9798 , & . 8873, & . 3765 , & . 3481 , & . 6004 , \\
\hline 9, & . 9701 , & 1.2573, & . 7818 , & . 8326 , & . 7843 , & 1.1553, & . 7151, & . 3080 , & . 3838 , & . 4606 , \\
\hline 10, & . 9204 , & . 9564, & . 5088, & 1.1134, & 1.3248, & 1.7042, & . 9809 , & . 3255 , & . 2587 , & . 4640 , \\
\hline 11, & . 5854, & 1.0812 , & . 4237, & . 8774 , & 1.0331, & 1.5293, & . 5824, & . 5398, & . 1352, & . 2516, \\
\hline 12, & . 7590 , & 1.0346, & . 4666 , & 1.0046, & 1.1901, & 1.6509, & . 7934 , & . 4370, & . 1970, & . 3579 , \\
\hline +gp, & . 7590 , & 1.0346, & . 4666 , & 1.0046, & 1.1901, & 1.6509, & . 7934, & . 4370 , & . 1970 , & . 3579 , \\
\hline FBAR 5-10, & . 7560 , & . 9161, & . 7038 , & . 8650 , & . 9513 , & . 9751 , & . 6614, & . 2717, & . 3216, & . 4557, \\
\hline FBAR 4-8, & . 5701, & . 6816, & . 6208, & . 6914 , & . 7656 , & . 6238, & . 4804 , & . 2118, & . 2700 , & . 3875 , \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 8 & F1s & \(g\) mort & ty (F) & t age & & & & & & & \\
\hline YEAR, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002, FBAR & 00-02, \\
\hline AGE & & & & & & & & & & & \\
\hline 3, & .0129, & . 0099 , & . 0106 , & . 0242 , & . 0233, & . 0499 , & . 0150 , & . 0084 , & . 0115 , & . 0044 , & . 0081 , \\
\hline 4, & .0942, & . 1068 , & . 1010, & . 1216 , & . 2094 , & . 2788 , & . 2000 , & . 0915 , & . 0831, & . 0744 , & . 0830 , \\
\hline 5, & . 3464 , & . 3156 , & . 3298 , & . 3331 , & . 5651, & . 5156 , & .5547, & . 3960 , & . 2538, & . 2048 , & . 2849 , \\
\hline 6 , & . 4635 , & . 6436, & . 5791, & . 5402, & . 7263 , & . 7832, & . 7484 , & . 6166, & . 5140, & . 3726 , & . 5011, \\
\hline 7, & . 5694 , & 1.1663, & . 8930, & . 7541 , & . 8477 , & . 7812, & . 8401 , & . 8052 , & . 6978, & . 6310, & . 7113, \\
\hline 8 , & . 6013, & . 9869 , & . 9447 , & . 8679, & 1.2366, & 1.0524, & 1.0820, & 1.1313, & . 9842 , & . 7830 , & . 9661 , \\
\hline 9, & . 6678, & 1.0559, & . 9638 , & . 7577, & 1.3429, & 1.1800, & 1.4210, & 1.2641, & 1.1420, & . 9657 , & 1.1240, \\
\hline 10, & . 6723, & 1.0339, & 1.0248, & . 9450 , & 1.5072, & 1.2662, & 1.4493, & 1.2642, & 1.3952, & 1.2288, & 1.2961, \\
\hline 11, & . 6870, & 1.1855, & 1.2232, & . 8812, & 1.4463, & 1.3338, & .9978, & 1.1989, & 1.0450, & 1.0340, & 1.0926, \\
\hline 12, & .6842, & 1.1439, & 1.2289, & . 8605 , & 1.5513, & 1.3282, & 1.1869, & 1.4132, & 1.3751, & 1.3409, & 1.3764, \\
\hline +gp, & . 6842, & 1.1439, & 1.2289, & . 8605, & 1.5513, & 1.3282, & 1.1869, & 1.4132, & 1.3751, & 1.3409, & \\
\hline FBAR 5-10, & . 5534, & .8670, & . 7892 , & . 6996, & 1.0376, & . 9298, & 1.0159, & . 9129, & . 8312, & . 6977, & \\
\hline FBAR 4-8, & . 4150 , & . 6438, & . 5695 , & . 5233, & . 7170 , & . 6822 , & .6851, & .6081, & . 5066 , & . 4132 , & \\
\hline
\end{tabular}

Table 3.22
Fishing mortality of age 1-6 cod.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & F age 1 & F age 2 & F age 3 & F age 4 & F age 5 & F age 6 \\
\hline 1984 & 0.0000 & 0.0017 & 0.0192 & 0.1235 & 0.3075 & 0.6275 \\
\hline 1985 & 0.0001 & 0.0015 & 0.0529 & 0.1702 & 0.3763 & 0.6052 \\
\hline 1986 & 0.0001 & 0.0017 & 0.0324 & 0.2123 & 0.4934 & 0.7056 \\
\hline 1987 & 0.0000 & 0.0011 & 0.0548 & 0.2287 & 0.5100 & 0.9365 \\
\hline 1988 & 0.0000 & 0.0009 & 0.0542 & 0.1270 & 0.3709 & 0.5977 \\
\hline 1989 & 0.0000 & 0.0009 & 0.0327 & 0.1284 & 0.2661 & 0.4025 \\
\hline 1990 & 0.0000 & 0.0004 & 0.0086 & 0.0622 & 0.1343 & 0.2311 \\
\hline 1991 & 0.0000 & 0.0007 & 0.0133 & 0.0623 & 0.1872 & 0.3210 \\
\hline 1992 & 0.0004 & 0.0011 & 0.0337 & 0.1265 & 0.2205 & 0.4427 \\
\hline 1993 & 0.0000 & 0.0006 & 0.0128 & 0.0934 & 0.3442 & 0.4597 \\
\hline 1994 & 0.0000 & 0.0003 & 0.0098 & 0.1060 & 0.3136 & 0.6412 \\
\hline 1995 & 0.0000 & 0.0003 & 0.0106 & 0.1004 & 0.3277 & 0.5762 \\
\hline 1996 & 0.0000 & 0.0006 & 0.0241 & 0.1208 & 0.3311 & 0.5373 \\
\hline 1997 & 0.0000 & 0.0007 & 0.0018 & 0.0499 & 0.2081 & 0.5630 \\
\hline 1998 & 0.0000 & 0.0004 & 0.0150 & 0.1991 & 0.7245 \\
\hline 1999 & 0.0000 & 0.0000 & & 0.0003 & 0.0084 & 0.0912 \\
\hline 2000 & & 0.0114 & 0.0830 & 0.5138 & 0.7816 \\
\hline 2001 & & & 0.0044 & 0.0744 & 0.3538 & 0.7474 \\
\hline 2002 & & & & 0.2048 & 0.6157 \\
\hline
\end{tabular}

Table 3.23

Run title : Arctic Cod (run: SVPASA15/V15)
At 30/04/2003 23:56
Traditional vpa using file input for terminal F
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Table 10 & \multicolumn{5}{|l|}{Stock number-at-age (start of year)} & \multicolumn{2}{|r|}{Numbers*10**-3} \\
\hline YEAR, & 1946, & 1947, & 1948, & 1949, & 1950, & 1951, & 1952, \\
\hline AGE & & & & & & & \\
\hline 3, & 728139, & 425311, & 442592, & 468348, & 704908, & 1083753, & 1193111, \\
\hline 4, & 577860, & 592530, & 347574, & 362238, & 382556, & 575973, & 865011, \\
\hline 5, & 402060 , & 463732, & 473210, & 281072, & 290427, & 303320, & 401364, \\
\hline 6 , & 197212, & 312115, & 340097, & 359415, & 198391, & 211595, & 190765, \\
\hline 7, & 93323, & 146496, & 208708, & 228044, & 204032, & 121764, & 131099, \\
\hline 8 , & 96213, & 63939, & 79121, & 101579, & 112107, & 110900, & 66016, \\
\hline 9 , & 244722, & 64933, & 40588, & 45487, & 56484, & 64808, & 60583, \\
\hline 10, & 101777, & 146581, & 35470, & 19586, & 25387, & 28785, & 32000, \\
\hline 11, & 38117, & 62991, & 77255, & 20227, & 11003, & 12568, & 14083, \\
\hline 12, & 39205, & 22142, & 23578, & 36361, & 8856, & 3651, & 6506, \\
\hline +gp, & 33324, & 42765, & 37377, & 21337, & 21133, & 13989, & 3938, \\
\hline TOTAL, & 2551952, & 2343535, & 2105569, & 1943694, & 2015284, & 2531108, & 2964476, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline bile 10 & \multicolumn{5}{|l|}{Stock number-at-age (start of year)} & \multicolumn{4}{|c|}{Numbers*10**-3} & \multirow[b]{2}{*}{1962,} \\
\hline YEAR, & 1953, & 1954, & 1955, & 1956, & 1957, & 1958, & 1959, & 1960, & 1961, & \\
\hline AGE & & & & & & & & & & \\
\hline 3, & 1590377, & 641584 , & 272778, & 439602, & 804781, & 496824, & 683690, & 789653, & 916842, & 728338, \\
\hline 4, & 955076, & 1259285, & 514924, & 219807, & 350332, & 643259, & 378598, & 530599, & 612324, & 709603, \\
\hline 5, & 599477, & 684912, & 891184, & 387619, & 158175, & 256234, & 406511, & 239862, & 346346, & 382037, \\
\hline 6, & 226975, & 389987, & 429102, & 548181, & 200984, & 105033, & 145989, & 199996, & 138702, & 172949, \\
\hline 7, & 90099, & 135956, & 228785, & 206850, & 225110, & 101196, & 49529, & 71623, & 103298, & 67732, \\
\hline 8 , & 63110, & 53333, & 74845, & 112048, & 91748, & 106395, & 48488, & 23986, & 37908, & 49883, \\
\hline 9, & 35603, & 36525, & 34028, & 34036, & 46105, & 40060, & 55027, & 23813, & 12084, & 15518, \\
\hline 10, & 27799, & 19673, & 19329, & 15591, & 14474, & 21860, & 20840, & 24380, & 13000, & 4726, \\
\hline 11, & 12237, & 13311, & 8459, & 7368, & 6103, & 6291, & 8550, & 8592, & 9541, & 4605, \\
\hline 12, & 4133, & 4985, & 4880, & 3232, & 2513, & 2118, & 2220, & 3650, & 3022, & 2871, \\
\hline +gp, & 1880, & 2707, & 2738, & 3722, & 1687, & 857, & 1142, & 1351, & 2332, & 1351, \\
\hline TOTAL, & 3606766, & 3242259, & 2481052, & 1978057, & 1902013, & 1780129, & 1800584, & 1917505, & 2195401, & 2139612, \\
\hline
\end{tabular}

Run title : Arctic Cod (run: SVPASA15/V15)
At 30/04/2003 23:56
Traditional vpa using file input for terminal F
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline ble 10 & \multicolumn{5}{|l|}{Stock number-at-age (start of year)} & \multicolumn{3}{|r|}{Numbers*10**-3} & & \\
\hline YEAR, & 1963, & 1964, & 1965, & 1966, & 1967, & 1968, & 1969, & 1970, & 1971, & 1972, \\
\hline AGE & & & & & & & & & & \\
\hline 3, & 472064, & 338678, & 776941, & 1582560, & 1295416, & 164955, & 112039, & 197105, & 404774, & 1015319, \\
\hline 4, & 558039, & 374580, & 272501, & 621906, & 1245195, & 1029477, & 131705, & 89647, & 154909, & 324399, \\
\hline 5, & 427678, & 360621, & 265306, & 199663, & 458995, & 875269, & 685697, & 85743, & 63671, & 114439, \\
\hline 6, & 163321, & 166726, & 207288, & 146941, & 132256, & 313440, & 476187, & 347649, & 47037, & 41482, \\
\hline 7, & 61876, & 48854, & 84015, & 108284, & 82121, & 88421, & 160667, & 227600, & 161288, & 29940, \\
\hline 8, & 30149, & 19083, & 22424, & 45954, & 55340, & 43651, & 48433, & 60756, & 100131, & 78947, \\
\hline 9, & 21185, & 10240, & 7448, & 10803, & 21072, & 22854, & 21054, & 15642, & 21306, & 35642, \\
\hline 10, & 5614, & 6764, & 2883, & 2913, & 4313, & 7170, & 8373, & 5306, & 4863, & 6690, \\
\hline 11, & 1444, & 1164, & 2373, & 1053, & 1052, & 1457, & 2610, & 2335, & 1461, & 1811, \\
\hline 12, & 1455, & 281, & 261, & 907, & 522, & 253, & 606, & 451, & 815, & 517, \\
\hline +gp, & 1113, & 1278, & 670, & 351, & 461, & 498, & 278, & 312, & 421, & 697, \\
\hline TOTAL, & 1743938, & 1328269, & 1642109, & 2721334, & 3296742, & 2547445, & 1647648, & 1032545, & 960676, & 1649883, \\
\hline
\end{tabular}

Table 3.23 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 10 & \multicolumn{5}{|l|}{Stock number-at-age (start of year)} & \multicolumn{5}{|c|}{Numbers*10**-3} \\
\hline YEAR, & 1973, & 1974, & 1975, & 1976, & 1977, & 1978, & 1979, & 1980, & 1981, & 1982, \\
\hline AGE & & & & & & & & & & \\
\hline 3 , & 1818949, & 523916, & 621616, & 613942, & 348054, & 638490, & 198490, & 137735, & 150867, & 151828, \\
\hline 4, & 799193, & 1224278, & 346265 , & 468089, & 425778, & 249276, & 451722, & 154747, & 109237, & 120443, \\
\hline 5, & 224670, & 535936, & 610486, & 229669, & 280485, & 197708, & 163230, & 300088, & 111295, & 80899, \\
\hline 6 , & 69576, & 129164, & 256342, & 296843, & 116349, & 108003, & 82807, & 94414, & 172067, & 72401, \\
\hline 7, & 23112, & 38504, & 63643, & 104000, & 137232, & 47987, & 37806, & 39202, & 41481, & 84063, \\
\hline 8, & 17401, & 12421, & 20199, & 25746, & 42398, & 57130, & 16658, & 15929, & 16316, & 14551, \\
\hline 9, & 33463, & 6815, & 6253, & 8186, & 8650, & 13943, & 18463, & 6259, & 6397, & 4542, \\
\hline 10, & 9391, & 10388, & 3320, & 2779, & 3089, & 2070, & 3093, & 5368, & 2004, & 1461, \\
\hline 11, & 1435, & 3673, & 3513, & 1330, & 1436, & 1172, & 605, & 946, & 1557, & 480, \\
\hline 12, & 408, & 571, & 1117, & 1160, & 590, & 631, & 158, & 118, & 176, & 490, \\
\hline +gp, & 408, & 525, & 550, & 572, & 583, & 1198, & 218, & 87, & 66, & 70, \\
\hline TOTAL, & 2998007, & 2486189, & 1933303, & 1752317, & 1364643, & 1317607, & 973250, & 754892, & 611463, & 531227, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 10 & \multicolumn{5}{|l|}{Stock number-at-age (start of year)} & \multicolumn{5}{|c|}{Numbers*10**-3} \\
\hline YEAR, & 1983, & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & 1991, & 1992, \\
\hline AGE & & & & & & & & & & \\
\hline 3, & 166820, & 397785, & 523524 , & 1036538, & 286341, & 204612, & 172775, & 242749, & 411783, & 720690, \\
\hline 4, & 116232, & 133774, & 319216, & 406226 , & 734960, & 209277, & 157242, & 136866, & 197020, & 330987 , \\
\hline 5, & 79768, & 77523, & 96688, & 220126, & 268686, & 478354, & 150813, & 113133, & 105242, & 151440, \\
\hline 6 , & 48847, & 46916, & 46569, & 54201, & 109738, & 132012, & 270130, & 94548, & 80909, & 71337, \\
\hline 7, & 34138, & 24176, & 20455, & 20761, & 21862, & 35217, & 59442, & 147803, & 61368, & 47966, \\
\hline 8 , & 30937, & 12785, & 6362, & 6631, & 6582, & 5744, & 10169, & 23800, & 94018, & 32772, \\
\hline 9, & 4451, & 9047, & 3127, & 1880, & 1823, & 1954, & 1765, & 3428, & 13373, & 54349, \\
\hline 10, & 1167, & 1381, & 2107, & 1171, & 669, & 681, & 504, & 707, & 2063, & 7459, \\
\hline 11, & 565, & 381, & 435, & 1037, & 315, & 146, & 101, & 155, & 418, & 1304, \\
\hline 12, & 152, & 257, & 106, & 233, & 353, & 92, & 26, & 46 , & 74, & 299, \\
\hline +gp, & 170, & 116, & 208, & 130, & 156, & 82, & 56, & 40, & 25, & 47, \\
\hline TOTAL, & 483247, & 704143, & 1018797, & 1748935, & 431486, & 1068171, & 823024, & 763275, & 966292, & 418649, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table & 10 St & ck numbe & at-age & tart of & year) & & \multicolumn{4}{|l|}{Numbers*10**-3} & & & \\
\hline YEAR, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002, & 2003, GMST & 46-00, AMST & 46-00, \\
\hline AGE & & & & & & & & & & & & & \\
\hline 3, & 894155, & 806823, & 655968, & 434591, & 713845, & 840213, & 584058, & 640598, & 498208, & 497625, & 0, & 498730, & 612877, \\
\hline 4, & 566467, & 676371, & 536273, & 308468 , & 222009, & 415507, & 473856, & 424110, & 488787, & 384609, & 374970, & 376569, & 461705, \\
\hline 5, & 238525, & 420808, & 452178, & 324376, & 177124, & 133962, & 238337, & 314123, & 305409, & 360100, & 287415, & 258196, & 314187, \\
\hline 6 , & 99244, & 137759, & 244858, & 264038, & 175448, & 81553, & 64408, & 112055, & 170394, & 192858, & 240010, & 147532, & 180770, \\
\hline 7, & 37430, & 51114, & 58982, & 112339, & 125200, & 69342, & 30212, & 24948, & 49494, & 83005, & 108783, & 72911, & 92118, \\
\hline 8, & 22842, & 17342, & 13036, & 19772, & 43270, & 43914, & 25993, & 10678, & 9130, & 20167, & 36158, & 33046, & 44762, \\
\hline 9, & 14720, & 10250, & 5292, & 4150, & 6796, & 10287, & 12552, & 7212, & 2821, & 2794, & 7546, & 14296, & 25038, \\
\hline 10, & 28073, & 6181, & 2919, & 1653, & 1593, & 1453, & 2588, & 2481, & 1668, & 737, & 871, & 5633, & 13345, \\
\hline 11, & 3840, & 11734, & 1800, & 858, & 526, & 289, & 335, & 497, & 574, & 338, & 177, & 2129, & 6890, \\
\hline 12, & 830, & 1581, & 2936, & 434, & 291, & 101, & 62, & 101, & 123, & 165, & 99, & 782, & 3516, \\
\hline +gp, & 189, & 229, & 404, & 1685, & 523, & 172, & 112, & 37, & 51, & 50, & 46, & & \\
\hline TOTAL, & 906314, & 2140190, & 1974647, & 1472364, & 1466626, & 1596792, & 1432514, & 1536842, & 526658, & 542448, & 056075, & & \\
\hline
\end{tabular}

\section*{Table 3.24}

Run title : Arctic Cod (run: SVPASA15/V15)
At 30/04/2003 23:56

Traditional vpa using file input for terminal F
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Table 12 & \multicolumn{5}{|l|}{Stock biomass at age (start of year)} & \multicolumn{2}{|r|}{Tonnes} \\
\hline YEAR, & 1946, & 1947, & 1948, & 1949, & 1950, & 1951, & 1952, \\
\hline AGE & & & & & & & \\
\hline 3 , & 254849, & 136099, & 150481, & 173289, & 274914, & 433501, & 524969, \\
\hline 4, & 340937, & 331817, & 184214, & 242699, & 244836, & 478058, & 692009, \\
\hline 5, & 446286, & 440545, & 596245, & 311990, & 374651, & 421615, & 533814, \\
\hline 6 , & 333289, & 468173, & 656387, & 596629, & 337265, & 397799, & 366270, \\
\hline 7, & 221176, & 313502, & 513421, & 570111, & 481515, & 309280, & 34610 \\
\hline 8, & 304996, & 186702, & 265846, & 328099, & 390132, & 383714, & 244919, \\
\hline 9, & 973994, & 237005, & 171279, & 185131, & 255308, & 316264, & 306548, \\
\hline 10, & 513974, & 668411, & 188345, & 103218, & 142673, & 149682, & 193600, \\
\hline 11, & 225651, & 367868, & 457348, & 121160, & 70420, & 89737, & 104495, \\
\hline 12, & 282275, & 164292, & 167165, & 257435, & 70497, & 30013, & 548 \\
\hline +gp, & 271456, & 378386, & 315087, & 175349, & 187892, & 131347, & 4011 \\
\hline TOTALBIO, & 4168882, & 3692801, & 3665819, & 3065111, & 2830103, & 3141009, & 34076 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline le 12 & \multicolumn{5}{|l|}{Stock biomass at age (start of year)} & \multicolumn{3}{|c|}{Tonnes} & & \multirow[b]{2}{*}{1962,} \\
\hline YEAR, & 1953, & 1954, & 1955, & 1956, & 1957, & 1958, & 1959, & 1960, & 1961, & \\
\hline AGE & & & & & & & & & & \\
\hline 3, & 636151, & 282297, & 87289, & 145069, & 265578, & 168920, & 239291, & 268482, & 284221, & 233068, \\
\hline 4, & 725857, & 969649, & 293507, & 127488, & 206696, & 334495, & 272591, & 270606, & 336778, & 390282 \\
\hline 5, & 767331, & 862989, & 1007038, & 414753, & 161338, & 243423, & 597571, & 261449, & 363663, & 355294 \\
\hline 6, & 438062 , & 768275, & 742347, & 1003170, & 365792, & 201664, & 391251, & 425991, & 305145, & 294013 \\
\hline 7, & 253178, & 411947, & 629160, & 597796, & 650567, & 297518, & 177809, & 242086, & 333654 , & 205229, \\
\hline 8, & 234769, & 230934, & 294890, & 476204, & 392683, & 447924, & 209470, & 116810, & 193710, & 250910, \\
\hline 9, & 180151, & 197233, & 166739, & 188902, & 253117, & 224738, & 299899, & 145737, & 74320, & 101645, \\
\hline 10, & 176245, & 132792, & 136079, & 113501, & 108698, & 160673, & 134210, & 206985, & 105953, & 36390, \\
\hline 11, & 90555, & 103693, & 60902, & 58944, & 50286, & 54540, & 61300, & 66934, & 82819, & 42684, \\
\hline 12, & 35831, & 53190, & 42844, & 26988, & 23247, & 20287, & 19159, & 30297, & 29013, & 30314, \\
\hline +gp, & 19247, & 26204, & 27591, & 37015, & 17892, & 9967, & 13275, & 15429, & 27875, & 17178, \\
\hline TOTALBIO & 3557376, & 4039204, & 3488383, & 3189831 & 2495895 & 164149, & 4158 & 2050805, & 137149, & 57006 \\
\hline
\end{tabular}

Run title : Arctic Cod (run: SVPASA15/V15)
At 30/04/2003 23:56
Traditional vpa using file input for terminal \(F\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 12 & \multicolumn{5}{|l|}{Stock biomass at age (start of year)} & \multicolumn{3}{|c|}{Tonnes} & \multirow[b]{2}{*}{1971,} & \multirow[b]{2}{*}{1972,} \\
\hline YEAR, & 1963, & 1964, & 1965, & 1966, & 1967, & 1968, & 1969, & 1970, & & \\
\hline AGE & & & & & & & & & & \\
\hline 3 , & 151061, & 111764, & 295238, & 696327 , & 375671 , & 54435, & 49297, & 72929, & 182148, & 385821, \\
\hline 4, & 340404 , & 206019, & 185301, & 460210 , & 1008608, & 720634 , & 104047 , & 81578, & 136320, & 249787, \\
\hline 5, & 410571 , & 342590 , & 273265, & 235602, & 619644 , & 1295399, & 843407 , & 114895, & 87866, & 163647 , \\
\hline 6, & 282545 , & 310111 , & 308859, & 261555 , & 269803, & 664492 , & 966659 , & 695298, & 101599, & 87943, \\
\hline 7, & 188104, & 158775, & 202475, & 266378 , & 230760 , & 277642, & 465934 , & 682799, & 495154 , & 96707, \\
\hline 8 , & 149537, & 94841, & 78931, & 175545, & 192584, & 183771, & 184531, & 252138, & 422555, & 345787 , \\
\hline 9, & 136428, & 65640 , & 42675, & 57905, & 103040, & 120443, & 105690, & 87437 , & 123791, & 207793, \\
\hline 10, & 44408 , & 54588, & 21740, & 21174, & 30662 , & 47678, & 53839, & 40323, & 34676, & 50977 , \\
\hline 11, & 13894, & 10875, & 20098, & 9087, & 9500, & 13129, & 21742, & 20948, & 12590, & 17245, \\
\hline 12, & 16454, & 2856, & 2911, & 9669, & 5524, & 2444, & 6492 , & 4958, & 8822, & 6248, \\
\hline +gp, & 14173, & 16470, & 9201, & 4967, & 6369, & 7389, & 3953, & 4396, & 5449 , & 9529, \\
\hline TOTALBIO, & 1747579, & 1374529, & 1440693, & 2198418, & 2852164, & 3387455, & 2805591, & 2057698, & 1610969, & 1621485, \\
\hline
\end{tabular}

Table 3.24 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 12 & \multicolumn{5}{|l|}{Stock biomass at age (start of year)} & \multicolumn{3}{|c|}{Tonnes} & \multirow[b]{2}{*}{1981,} & \multirow[b]{2}{*}{1982,} \\
\hline YEAR, & 1973, & 1974, & 1975, & 1976, & 1977, & 1978, & 1979, & 1980, & & \\
\hline AGE & & & & & & & & & & \\
\hline 3 , & 691201 , & 167653, & 254863, & 214880, & 170547, & 312860 , & 69471, & 37188, & 73925, & 56176, \\
\hline 4, & 727266, & 808024, & 221610, & 341705, & 383200, & 201913, & 316205 , & 86658, & 107052, & 79493, \\
\hline 5, & 345992, & 627045, & 677639, & 273307, & 401093, & 286676 , & 202406, & 306090 , & 160265, & 109213, \\
\hline 6, & 157241, & 286743, & 487049 , & 596655 , & 238515, & 232207 , & 177207, & 162392, & 359620 , & 144077, \\
\hline 7, & 76038, & 123596, & 187748, & 287041, & 452865, & 145879, & 119088, & 118389, & 123613, & 246303, \\
\hline 8 , & 80219, & 54527 , & 88269 , & 108649, & 193334, & 254800, & 71461, & 66900, & 79133, & 61698 , \\
\hline 9, & 219854, & 37616 , & 35894, & 48132, & 55876 , & 91184, & 121484, & 36552, & 42028, & 29339, \\
\hline 10, & 78601, & 81651, & 29113, & 25849, & 26656 , & 16521, & 26635, & 38975, & 18354, & 12436, \\
\hline 11, & 15127, & 36074, & 34848, & 13669, & 14264, & 11898, & 5579, & 8362, & 16843, & 5870, \\
\hline 12, & 4742, & 6512, & 13192, & 13760, & 6427, & 6843, & 1720, & 1099, & 1899, & 5283, \\
\hline +gp, & 5674, & 6947, & 7206, & 7750, & 7970, & 15783, & 3124, & 1256, & 924, & 979, \\
\hline TOTBIO, & 2401955, & 2236387, & 2037430, & 1931396, & 950748, & 1576565, & 1114380, & 863861, & 983656, & 750868, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 12 & \multicolumn{5}{|l|}{Stock biomass at age (start of year)} & \multicolumn{3}{|c|}{Tonnes} & \multirow[b]{2}{*}{1991,} & \multirow[b]{2}{*}{1992,} \\
\hline YEAR, & 1983, & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & & \\
\hline AGE & & & & & & & & & & \\
\hline 3, & 61724, & 167070, & 214645 , & 321327 , & 54405 , & 42969 , & 51833, & 97099, & 213304, & 317104 , \\
\hline 4, & 106934, & 155178, & 280911, & 357479, & 374830, & 83711, & 81766 , & 97175, & 223814, & 308149 , \\
\hline 5, & 127629, & 140317, & 154701, & 323585, & 343919, & 377899, & 131207, & 133497, & 183437, & 274410, \\
\hline 6, & 119188, & 130895, & 130858, & 133876, & 212891, & 250822, & 399793, & 162622, & 196448, & 193750, \\
\hline 7, & 130406, & 91385, & 83046 , & 81385, & 71709, & 104948, & 159899, & 363596 , & 197236, & 186826, \\
\hline 8, & 147261, & 58429, & 37091, & 38527, & 34028, & 25215, & 47084, & 84967, & 426654, & 169626, \\
\hline 9 , & 27463, & 55823, & 24044, & 12369, & 11889, & 15259, & 12445, & 16148, & 92003, & 368160 , \\
\hline 10, & 8986, & 10636, & 21322, & 8001 , & 6225, & 8252, & 5028, & 5514, & 22111, & 71588, \\
\hline 11, & 5224, & 3521, & 6210, & 11408, & 4142, & 1910, & 939, & 1386, & 3948, & 16203, \\
\hline 12, & 1645, & 2794, & 1147, & 2527, & 3831, & 996, & 280, & 504, & 801, & 3243, \\
\hline + gp, & 2209, & 1513, & 2796, & 1768, & 2151, & 1074, & 806, & 540, & 347, & 647, \\
\hline TOTBIO, & 738666, & 817561, & 956772, & 1292252, & 1120019, & 913053, & 891080, & 963046, & 560102, & 1909707, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 12 & Stock & biomass & t age (s & t of & & & Tonnes & & & \\
\hline YEAR, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002, \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3, & 307589, & 189603, & 131850, & 84745, & 144197, & 182326, & 118564, & 124276, & 141989, & 124904, \\
\hline 4, & 663899, & 509307, & 260093, & 150224, & 115667, & 221465, & 246405, & 197211, & 255147, & 232688, \\
\hline 5, & 434115, & 597547, & 515483, & 334432, & 191117, & 155530, & 279807, & 379461 , & 364658 , & 427078 , \\
\hline 6, & 280167, & 332412, & 518609, & 542335, & 329492, & 158130, & 130813, & 220972, & 380149 , & 406930 , \\
\hline 7, & 150880, & 195511, & 204669, & 395996, & 421798, & 204212, & 91664, & 76042, & 163628, & 274912, \\
\hline 8, & 125560, & 93923, & 64373, & 108803, & 227732, & 200865, & 116034, & 43737, & 46106 , & 95209, \\
\hline 9, & 99579, & 67967, & 37892, & 32230, & 60671, & 76357, & 81362, & 41284, & 17984, & 19182, \\
\hline 10, & 240613, & 47159, & 26623, & 16791, & 19356, & 15060, & 26574, & 18504, & 15205, & 6695, \\
\hline 11, & 41648, & 95185, & 18177, & 9152, & 5692, & 3390 , & 3649, & 4765, & 6469 , & 3454, \\
\hline 12, & 9006, & 17159, & 31854, & 4705, & 3157, & 1100, & 676, & 1098, & 1332, & 1793, \\
\hline +gp, & 2440 , & 2919, & 5138, & 21294, & 6998, & 2389, & 1536, & 515, & 726, & 646, \\
\hline TOTBIO, & 2355498, & 2148691 & 1814760 & 1700706 & 152587 & 122082 & 109708 & 110786 & 139339 & 1593491 , \\
\hline
\end{tabular}

Table 3.25

Run title : Arctic Cod (run: SVPASA15/V15)

At 30/04/2003 23:56

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 13 & Spawni & stock & mass a & \multicolumn{7}{|c|}{Tonnes} \\
\hline YEAR, & 1953, & 1954, & 1955, & 1956, & 1957, & 1958, & 1959, & 1960, & 1961, & 1962, \\
\hline AGE & & & & & & & & & & \\
\hline 3, & 0, & 0, & 0, & 0, & 0, & 0, & 0, & 0, & 0, & 0, \\
\hline 4, & 0, & 0, & 0, & 0, & 0, & 0, & 0, & 2706, & 0, & 0, \\
\hline 5, & 7673, & 8630 , & 10070, & 4148, & 1613, & 2434, & 5976, & 7843, & 3637, & 3553, \\
\hline 6, & 13142, & 23048, & 22270, & 30095, & 10974, & 6050, & 15650, & 25559, & 18309, & 14701, \\
\hline 7, & 17722, & 32956, & 44041, & 35868, & 39034, & 17851, & 21337, & 24209, & 40038, & 30784, \\
\hline 8, & 44606 , & 36949, & 38336, & 57144, & 35341, & 44792, & 71220, & 22194, & 60050, & 85309, \\
\hline 9, & 72060, & 72976, & 43352, & 26446, & 30374, & 22474, & 146950, & 65582, & 48308, & 62004, \\
\hline 10, & 112796, & 90299, & 72122, & 46535, & 23914, & 48202, & 89921, & 142819, & 96417 , & 29476, \\
\hline 11, & 76066 , & 90213, & 50549, & 39492, & 30172, & 27270, & 51492, & 51539, & 81163, & 39269 , \\
\hline 12, & 33681 , & 49467, & 39416, & 24559, & 19063, & 16635, & 16668, & 25753, & 28433, & 29404, \\
\hline +gp, & 18670, & 25156, & 26763, & 35534, & 17356, & 9668, & 13275, & 15274, & 27875, & 17178, \\
\hline TOTSPBIO, & 396417 , & 429694, & 346919, & 299823, & 207840, & 195377, & 432489, & 383479, & 404228 , & 311678, \\
\hline
\end{tabular}

Run title : Arctic Cod (run: SVPASA15/V15)

At 30/04/2003 23:56

Traditional vpa using file input for terminal F
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Table } 13 \\
& \text { YEAR, }
\end{aligned}
\]} & \multicolumn{6}{|l|}{Spawning stock biomass at age (spawning time)} & \multicolumn{4}{|l|}{Tonnes} \\
\hline & 1963, & 1964, & 1965, & 1966, & 1967, & 1968, & 1969, & 1970, & 1971, & 1972, \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3, & 0, & 0, & 0, & 0, & 0 , & 0, & 0, & 0, & 0 , & 3858, \\
\hline 4, & 3404, & 0 , & 0 , & 0, & 0 , & 0 , & 0 , & 816, & 0, & 4996, \\
\hline 5, & 4106, & 0, & 0, & 2356, & 0, & 38862, & 0, & 0, & 879, & 3273, \\
\hline 6, & 8476, & 9303, & 3089, & 5231, & 8094, & 33225, & 19333, & 6953, & 5080, & 879, \\
\hline 7, & 13167, & 20641, & 12149, & 15983, & 16153, & 24988, & 18637, & 47796, & 54467 , & 9671, \\
\hline 8 , & 41870, & 35091, & 15786, & 38620 , & 26962, & 34917, & 22144, & 57992, & 126766, & 117567, \\
\hline 9, & 57300 , & 43323, & 23471, & 20267, & 39155, & 46973, & 35935, & 50714, & 73036 , & 132988, \\
\hline 10, & 35970 , & 48583, & 15870, & 15669, & 19624, & 27653, & 29611, & 32662, & 27394, & 41292, \\
\hline 11, & 13616, & 10332, & 19897, & 8542, & 8455, & 10766, & 16089, & 18644, & 10827, & 16210, \\
\hline 12, & 16125, & 2828, & 2853, & 9089, & 4972, & 2444, & 6167, & 4512, & 7763, & 6248, \\
\hline +gp, & 14173, & 16470, & 9201, & 4967, & 6369, & 7389, & 3953, & 4396, & 5449 , & 9529, \\
\hline TOTSPBIO, & 208207, & 186570, & 102315, & 120722, & 129784, & 227215, & 151870, & 224482, & 311662, & 346511 , \\
\hline
\end{tabular}

Table 3.25 (continued)

Table 3.26

Run title : Arctic Cod (run: SVPASA15/V15)
At 30/04/2003 23:56

Table 16 Summary (without SOP correction)
Traditional vpa using file input for terminal \(F\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & RECRUITS, Age 3 & TOTALBIO, & TOTSPBIO, & LANDINGS, & YIELD/SSB, & FBAR & 5-10, & FBAR & 4-8, \\
\hline 1946, & 728139, & 4168882, & 1112776, & 706000, & . 6344 , & & . 1857 , & & . 1084, \\
\hline 1947, & 425311, & 3692801 , & 1165059 , & 882017 , & . 7571 , & & . 3047 , & & . 2016 , \\
\hline 1948, & 442592, & 3665819 , & 1019114, & 774295, & . 7598 , & & . 3398 , & & . 2322 , \\
\hline 1949, & 468348, & 3065111, & 729879, & 800122, & 1.0962, & & . 3619 , & & . 2865 , \\
\hline 1950, & 704908 , & 2830103 , & 615339, & 731982, & 1.1896 , & & . 3566 , & & . 2389 , \\
\hline 1951, & 1083753, & 3141009 , & 568705, & 827180, & 1.4545, & & . 3966 , & & . 3041 , \\
\hline 1952, & 1193111, & 3407679 , & 520599, & 876795 , & 1.6842, & & . 5348 , & & . 4071 , \\
\hline 1953, & 1590377, & 3557376 , & 396417 , & 695546 , & 1.7546, & & . 3572 , & & . 2692 , \\
\hline 1954, & 641584, & 4039204 , & 429694, & 826021 , & 1.9223, & & . 3879 , & & . 2786 , \\
\hline 1955, & 272778, & 3488383 , & 346919 , & 1147841, & 3.3087 , & & . 5437 , & & . 4003 , \\
\hline 1956, & 439602 , & 3189831, & 299823, & 1343068, & 4.4795, & & . 6401 , & & . 5154, \\
\hline 1957, & 804781 , & 2495895, & 207840, & 792557 , & 3.8133 , & & . 5089 , & & . 3973 , \\
\hline 1958, & 496824, & 2164149 , & 195377, & 769313, & 3.9376, & & . 5169, & & . 4337, \\
\hline 1959, & 683690, & 2415826 , & 432489 , & 744607 , & 1.7217 , & & . 5596 , & & . 4628 , \\
\hline 1960, & 789653, & 2050805, & 383479 , & 622042, & 1.6221, & & . 4789 , & & . 3914 , \\
\hline 1961, & 916842, & 2137149, & 404228 , & 783221 , & 1.9376, & & . 6348, & & . 5008, \\
\hline 1962, & 728338, & 1957006, & 311678 , & 909266 , & 2.9173, & & . 7576 , & & . 6100, \\
\hline 1963, & 472064 , & 1747579, & 208207, & 776337 , & 3.7287, & & . 9866 , & & . 7683 , \\
\hline 1964, & 338678 , & 1374529, & 186570, & 437695 , & 2.3460, & & . 6789 , & & . 4607 , \\
\hline 1965, & 776941 , & 1440693 , & 102315, & 444930 , & 4.3486 , & & . 5533, & & . 3770 , \\
\hline 1966, & 1582560, & 2198418, & 120722, & 483711 , & 4.0068 , & & . 5302 , & & . 3497 , \\
\hline 1967, & 1295416, & 2852164 , & 129784, & 572605, & 4.4120 , & & . 5439 , & & . 3306 , \\
\hline 1968, & 164955, & 3387455 , & 227215, & 1074084, & 4.7272, & & . 5704 , & & . 4029, \\
\hline 1969, & 112039, & 2805591 , & 151870, & 1197226, & 7.8832, & & . 8292 , & & . 5899, \\
\hline 1970, & 197105 , & 2057698, & 224482, & 933246 , & 4.1573, & & . 7493 , & & . 5159, \\
\hline 1971, & 404774 , & 1610969 , & 311662 , & 689048 , & 2.2109, & & . 5956 , & & . 3861 , \\
\hline 1972, & 1015319, & 1621485 , & 346511, & 565254 , & 1.6313, & & . 6928, & & . 3702 , \\
\hline 1973, & 1818949, & 2401955, & 332913, & 792685, & 2.3811, & & . 6020, & & . 4207, \\
\hline 1974, & 523916 , & 2236387 , & 164491 , & 1102433, & 6.7021 , & & . 5633, & & . 4945 , \\
\hline 1975, & 621616 , & 2037430, & 142028, & 829377, & 5.8395 , & & . 6595, & & . 5684, \\
\hline 1976, & 613942, & 1931396, & 171238, & 867463 , & 5.0658 , & & . 6457 , & & . 5904, \\
\hline 1977, & 348054 , & 1950748, & 341385, & 905301 , & 2.6518, & & . 8379 , & & . 7191 , \\
\hline 1978, & 638490, & 1576565, & 241536, & 698715, & 2.8928, & & . 9406 , & & . 7062 , \\
\hline 1979, & 198490, & 1114380 , & 174699, & 440538, & 2.5217, & & . 7264 , & & . 5095, \\
\hline 1980, & 137735, & 863861 , & 108253, & 380434 , & 3.5143, & & . 7241 , & & . 4994 , \\
\hline 1981, & 150867 , & 983656, & 166925, & 399038, & 2.3905, & & . 8632 , & & . 5546 , \\
\hline 1982, & 151828, & 750868 , & 326132, & 363730 , & 1.1153, & & . 7583 , & & . 5705, \\
\hline 1983, & 166820, & 738666 , & 327179, & 289992, & . 8863 , & & . 7560 , & & . 5701, \\
\hline 1984, & 397785 , & 817561 , & 251084, & 277651 , & 1.1058, & & . 9161 , & & . 6816, \\
\hline 1985, & 523524, & 956772, & 193470, & 307920 , & 1.5916, & & . 7038 , & & . 6208, \\
\hline 1986, & 1036538, & 1292252, & 170258, & 430113, & 2.5262, & & . 8650 , & & . 6914, \\
\hline 1987, & 286341 , & 1120019, & 118309, & 523071 , & 4.4212, & & . 9513, & & . 7656 , \\
\hline 1988, & 204612 , & 913053, & 202086, & 434939 , & 2.1522, & & . 9751 , & & . 6238, \\
\hline 1989, & 172775, & 891080, & 194201, & 332481 , & 1.7120, & & . 6614, & & . 4804 , \\
\hline 1990, & 242749, & 963046 , & 339827 , & 212000, & . 6238, & & . 2717 , & & . 2118, \\
\hline 1991, & 411783, & 1560102, & 673740 , & 319158 , & . 4737 , & & . 3216 , & & . 2700, \\
\hline 1992, & 720690 , & 1909707, & 869164, & 513234, & . 5905, & & . 4557 , & & . 3875 , \\
\hline 1993, & 894155 , & 2355498, & 737227, & 581611 , & . 7889 , & & . 5534, & & . 4150 , \\
\hline 1994, & 806823 , & 2148691, & 600829, & 771086 , & 1.2834, & & . 8670 , & & . 6438 , \\
\hline 1995, & 655968, & 1814760, & 499012, & 739999, & 1.4829, & & . 7892 , & & . 5695, \\
\hline 1996, & 434591 , & 1700706, & 571006, & 732228, & 1.2823, & & . 6996, & & . 5233, \\
\hline 1997, & 713845 , & 1525878, & 564488 , & 762403 , & 1.3506, & & 1.0376, & & . 7170 , \\
\hline 1998, & 840213, & 1220825, & 385694, & 592624, & 1.5365, & & . 9298 , & & . 6822 , \\
\hline 1999, & 584058 , & 1097084, & 252829, & 484910 , & 1.9179, & & 1.0159, & & . 6851 , \\
\hline 2000, & 640598, & 1107866, & 221278, & 414868 , & 1.8749, & & . 9129, & & . 6081 , \\
\hline 2001, & 498208, & 1393393, & 321602, & 426471 , & 1.3261, & & . 8312, & & . 5066 , \\
\hline 2002, & 497625, & 1593491, & 504969, & 445060 , & . 8814 , & & . 6977 , & & . 4132 , \\
\hline Arith. & & & & & & & & & \\
\hline Mean, Units, & \begin{tabular}{l}
608843, \\
housands),
\end{tabular} & \[
\begin{aligned}
& 2026865, \\
& \text { (Tonnes), }
\end{aligned}
\] & \[
\begin{array}{r}
373975 \\
\text { (Tonnes) }
\end{array}
\] & \[
\begin{array}{r}
662764, \\
\text { (Tonnes) }
\end{array}
\] & 2.4443, & & . 6514, & & . 4788 , \\
\hline
\end{tabular}

Table 3.27 Summary, no cannibalism included.
Table 16 Summary (without SOP correction)
Traditional vpa using file input for terminal F
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
RECRUITS \\
Age 3
\end{tabular} & TOTALBIO & TOTSPBIO & LANDINGS & YIELD/SSB & FBAR 5-10 & FBAR 4-8 \\
\hline 1946 & 728139 & 4168882 & 1112776 & 706000 & 0.6344 & 0.1857 & 0.1084 \\
\hline 1947 & 425311 & 3692801 & 1165059 & 882017 & 0.7571 & 0.3047 & 0.2016 \\
\hline 1948 & 442592 & 3665819 & 1019114 & 774295 & 0.7598 & 0.3398 & 0.2322 \\
\hline 1949 & 468348 & 3065111 & 729879 & 800122 & 1.0962 & 0.3619 & 0.2865 \\
\hline 1950 & 704908 & 2830103 & 615339 & 731982 & 1.1896 & 0.3566 & 0.2389 \\
\hline 1951 & 1083753 & 3141009 & 568705 & 827180 & 1.4545 & 0.3966 & 0.3041 \\
\hline 1952 & 1193111 & 3407679 & 520599 & 876795 & 1.6842 & 0.5348 & 0.4071 \\
\hline 1953 & 1590377 & 3557376 & 396417 & 695546 & 1.7546 & 0.3572 & 0.2692 \\
\hline 1954 & 641584 & 4039204 & 429694 & 826021 & 1.9223 & 0.3879 & 0.2786 \\
\hline 1955 & 272778 & 3488383 & 346919 & 1147841 & 3.3087 & 0.5437 & 0.4003 \\
\hline 1956 & 439602 & 3189831 & 299823 & 1343068 & 4.4795 & 0.6401 & 0.5154 \\
\hline 1957 & 804781 & 2495895 & 207840 & 792557 & 3.8133 & 0.5089 & 0.3973 \\
\hline 1958 & 496824 & 2164149 & 195377 & 769313 & 3.9376 & 0.5169 & 0.4337 \\
\hline 1959 & 683690 & 2415826 & 432489 & 744607 & 1.7217 & 0.5596 & 0.4628 \\
\hline 1960 & 789653 & 2050805 & 383479 & 622042 & 1.6221 & 0.4789 & 0.3914 \\
\hline 1961 & 916842 & 2137149 & 404228 & 783221 & 1.9376 & 0.6348 & 0.5008 \\
\hline 1962 & 728338 & 1957006 & 311678 & 909266 & 2.9173 & 0.7576 & 0.61 \\
\hline 1963 & 472064 & 1747579 & 208207 & 776337 & 3.7287 & 0.9866 & 0.7683 \\
\hline 1964 & 338678 & 1374529 & 186570 & 437695 & 2.346 & 0.6789 & 0.4607 \\
\hline 1965 & 776941 & 1440693 & 102315 & 444930 & 4.3486 & 0.5533 & 0.377 \\
\hline 1966 & 1582560 & 2198418 & 120722 & 483711 & 4.0068 & 0.5302 & 0.3497 \\
\hline 1967 & 1295416 & 2852164 & 129784 & 572605 & 4.412 & 0.5439 & 0.3306 \\
\hline 1968 & 164955 & 3387455 & 227215 & 1074084 & 4.7272 & 0.5704 & 0.4029 \\
\hline 1969 & 112039 & 2805591 & 151870 & 1197226 & 7.8832 & 0.8292 & 0.5899 \\
\hline 1970 & 197105 & 2057698 & 224482 & 933246 & 4.1573 & 0.7493 & 0.5159 \\
\hline 1971 & 404774 & 1610969 & 311662 & 689048 & 2.2109 & 0.5956 & 0.3861 \\
\hline 1972 & 1015319 & 1621485 & 346511 & 565254 & 1.6313 & 0.6928 & 0.3702 \\
\hline 1973 & 1818949 & 2401955 & 332913 & 792685 & 2.3811 & 0.602 & 0.4207 \\
\hline 1974 & 523916 & 2236387 & 164491 & 1102433 & 6.7021 & 0.5633 & 0.4945 \\
\hline 1975 & 621616 & 2037430 & 142028 & 829377 & 5.8395 & 0.6595 & 0.5684 \\
\hline 1976 & 613942 & 1931396 & 171238 & 867463 & 5.0658 & 0.6457 & 0.5904 \\
\hline 1977 & 348054 & 1950748 & 341385 & 905301 & 2.6518 & 0.8379 & 0.7191 \\
\hline 1978 & 638490 & 1576565 & 241536 & 698715 & 2.8928 & 0.9406 & 0.7062 \\
\hline 1979 & 198490 & 1114380 & 174699 & 440538 & 2.5217 & 0.7264 & 0.5095 \\
\hline 1980 & 137735 & 863861 & 108253 & 380434 & 3.5143 & 0.7241 & 0.4994 \\
\hline 1981 & 150867 & 983656 & 166925 & 399038 & 2.3905 & 0.8632 & 0.5546 \\
\hline 1982 & 151828 & 750868 & 326132 & 363730 & 1.1153 & 0.7583 & 0.5705 \\
\hline 1983 & 166820 & 738666 & 327179 & 289992 & 0.8863 & 0.756 & 0.5701 \\
\hline 1984 & 397549 & 817461 & 251084 & 277651 & 1.1058 & 0.9161 & 0.6816 \\
\hline 1985 & 523321 & 956688 & 193470 & 307920 & 1.5916 & 0.7038 & 0.6208 \\
\hline 1986 & 929624 & 1259109 & 170258 & 430113 & 2.5262 & 0.865 & 0.6914 \\
\hline 1987 & 270655 & 1117038 & 118309 & 523071 & 4.4212 & 0.9513 & 0.7656 \\
\hline 1988 & 202889 & 912691 & 202086 & 434939 & 2.1522 & 0.9751 & 0.6238 \\
\hline 1989 & 172775 & 891080 & 194201 & 332481 & 1.712 & 0.6614 & 0.4804 \\
\hline 1990 & 242749 & 963046 & 339827 & 212000 & 0.6238 & 0.2717 & 0.2118 \\
\hline 1991 & 408102 & 1558196 & 673740 & 319158 & 0.4737 & 0.3216 & 0.27 \\
\hline 1992 & 700238 & 1899457 & 869061 & 513234 & 0.5906 & 0.4557 & 0.3876 \\
\hline 1993 & 758776 & 2291839 & 736594 & 581611 & 0.7896 & 0.5537 & 0.4157 \\
\hline 1994 & 515805 & 2017694 & 598529 & 771086 & 1.2883 & 0.8679 & 0.6461 \\
\hline 1995 & 305220 & 1680824 & 498631 & 739999 & 1.4841 & 0.7896 & 0.5737 \\
\hline 1996 & 254712 & 1609946 & 569908 & 732228 & 1.2848 & 0.7021 & 0.5296 \\
\hline 1997 & 488820 & 1467101 & 564378 & 762403 & 1.3509 & 1.0386 & 0.7207 \\
\hline 1998 & 600884 & 1151504 & 385269 & 592624 & 1.5382 & 0.9309 & 0.6857 \\
\hline 1999 & 506060 & 1075642 & 252828 & 484910 & 1.9179 & 1.016 & 0.6859 \\
\hline 2000 & 589292 & 1084258 & 220908 & 414868 & 1.878 & 0.9136 & 0.6094 \\
\hline 2001 & 471559 & 1376865 & 320932 & 426471 & 1.3289 & 0.8315 & 0.5072 \\
\hline 2002 & 479211 & 1586824 & 504936 & 445060 & 0.8814 & 0.6977 & 0.4132 \\
\hline \multicolumn{8}{|l|}{Arith.} \\
\hline Mean & 578236 & 2015207 & 373868 & 662764 & 2.4446 & 0.6515 & 0.4792 \\
\hline 0 Units & (Thousands) & (Tonnes) & (Tonnes) & (Tonnes) & & & \\
\hline
\end{tabular}

MFDP version 1a
Run: 84
Time and date: 13:47 01.05.2003
Fbar age range: 5-10

\section*{2004}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Age} & \multicolumn{2}{|c|}{N} & M & & Mat & PF & & PM & \multicolumn{2}{|r|}{SWt} & Sel & \multicolumn{2}{|c|}{CWt} \\
\hline & 3 & \multirow[t]{2}{*}{308000} & & 0.279 & 0 & & 0 & & 0 & 0.232 & & 0.007 & 0.694 \\
\hline & 4 & & & 0.217 & 0.014 & & 0 & & 0 & 0.535 & & 0.071 & 1.121 \\
\hline & 5 & & & 0.201 & 0.07 & & 0 & & 0 & 1.188 & & 0.244 & 1.652 \\
\hline & 6 & & & 0.2 & 0.272 & & 0 & & 0 & 2.194 & & 0.43 & 2.296 \\
\hline & 7 & & & 0.2 & 0.562 & & 0 & & 0 & 3.197 & & 0.61 & 3.37 \\
\hline & 8 & & & 0.2 & 0.791 & & 0 & & 0 & 4.835 & & 0.828 & 5.002 \\
\hline & 9 & & & 0.2 & 0.91 & & 0 & & 0 & 6.553 & & 0.964 & 6.28 \\
\hline & 10 & & & 0.2 & 0.971 & & 0 & & 0 & 8.31 & & 1.111 & 7.68 \\
\hline & 11 & & & 0.2 & 0.993 & & 0 & & 0 & 10.275 & & 0.937 & 9.1 \\
\hline & 12 & & & 0.2 & 1 & & 0 & & 0 & 11.982 & & 1.18 & 10.54 \\
\hline & 13 & & & 0.2 & 1 & & 0 & & 0 & 13.364 & & 1.18 & 9.62 \\
\hline
\end{tabular}

Input units are thousands and kg - output in tonnes

Table 3.29. Management option table

MFDP version 1a
Run: 84
1MFDP Index file 30.04.2003
Time and date: 13:47 01.05.2003
Fbar age range: 5-10

2003
\begin{tabular}{ccccc}
Biomass & SSB & FMult & FBar & Landings \\
\hline 1814674 & 653307 & 1.0000 & 0.6978 & 577934
\end{tabular}
\begin{tabular}{ccccccc}
\begin{tabular}{c}
2004 \\
Biomass
\end{tabular} & SSB & FMult & FBar & Landings & \begin{tabular}{c}
Biomass
\end{tabular} & SSB \\
\hline 1833819 & 651579 & 0.0000 & 0.0000 & 0 & 2631332 & 1189133 \\
. & 651579 & 0.0600 & 0.0419 & 48200 & 2572401 & 1147989 \\
. & 651579 & 0.1200 & 0.0837 & 94777 & 2515533 & 1108485 \\
. & 651579 & 0.1800 & 0.1256 & 139798 & 2460645 & 1070551 \\
. & 651579 & 0.2400 & 0.1675 & 183324 & 2407655 & 1034118 \\
. & 651579 & 0.3000 & 0.2094 & 225416 & 2356488 & 999121 \\
. & 651579 & 0.3600 & 0.2512 & 266130 & 2307069 & 965497 \\
. & 651579 & 0.4200 & 0.2931 & 305522 & 2259328 & 933189 \\
. & 651579 & 0.4800 & 0.3350 & 343643 & 2213199 & 902138 \\
. & 651579 & 0.5400 & 0.3768 & 380544 & 2168617 & 872292 \\
. & 651579 & 0.6000 & 0.4187 & 416271 & 2125520 & 843600 \\
. & 651579 & 0.6600 & 0.4606 & 450871 & 2083851 & 816011 \\
. & 651579 & 0.7200 & 0.5024 & 484388 & 2043552 & 789480 \\
. & 651579 & 0.7800 & 0.5443 & 516862 & 2004571 & 763961 \\
. & 651579 & 0.8400 & 0.5862 & 548335 & 1966856 & 739412 \\
. & 651579 & 0.9000 & 0.6281 & 578844 & 1930357 & 715792 \\
. & 651579 & 0.9600 & 0.6699 & 608426 & 1895029 & 693063 \\
. & 651579 & 1.0200 & 0.7118 & 637117 & 1860825 & 671187 \\
. & 651579 & 1.0800 & 0.7537 & 664949 & 1827703 & 650129 \\
. & 651579 & 1.1400 & 0.7955 & 691954 & 1795621 & 629855 \\
. & 651579 & 1.2000 & 0.8374 & 718165 & 1764541 & 610332 \\
\hline
\end{tabular}

Input units are thousands and kg - output in tonnes

Table 3.30

Single option prediction: Detailed tables
MFDP version 1a
Run: 222
Time and date: 12:16 02.05.2003
Fbar age range: 5-10 version la
Input units are thousands and kg - output in tonnes
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Year:} & 3 & multipli & 1 & Fbar: & 0.6 & & & \\
\hline Age & F Ca & tchNos & Yield & StockNos & Biomass & \[
\begin{aligned}
& \text { SSNOS } \\
& \text { (JAN) }
\end{aligned}
\] & \[
\begin{gathered}
\text { SSB } \\
\text { (JAN) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { SSNos } \\
& (\mathrm{ST})
\end{aligned}
\] & \[
\begin{aligned}
& \text { SSB } \\
& (S T)
\end{aligned}
\] \\
\hline 3 & 0.0070 & 4146 & 2877 & 681000 & 156630 & & , &) & 0 \\
\hline 4 & 0.0710 & 23132 & 25931 & 374970 & 201359 & 0 & 0 & 0 & 0 \\
\hline 5 & 0.2440 & 56604 & 93510 & 287415 & 377088 & 29029 & 38086 & 29029 & 38086 \\
\hline 6 & 0.4300 & 76569 & 175803 & 240010 & 483620 & 87604 & 176521 & 87604 & 176521 \\
\hline 7 & 0.6100 & 45479 & 153264 & 108783 & 354089 & 68316 & 222368 & 68316 & 222368 \\
\hline 8 & 0.8280 & 18705 & 93564 & 36158 & 179850 & 31783 & 158088 & 31783 & 158088 \\
\hline 9 & 0.9640 & 4298 & 26992 & 7546 & 50792 & 6995 & 47084 & 6995 & 47084 \\
\hline 10 & 1.1110 & 539 & 4141 & 871 & 7574 & 871 & 7574 & 871 & 7574 \\
\hline 11 & 0.9370 & 99 & 902 & 177 & 1841 & 169 & 1755 & 169 & 1755 \\
\hline 12 & 1.1800 & 63 & 668 & 99 & 1167 & 99 & 1167 & 99 & 1167 \\
\hline 13 & 1.1800 & 29 & 283 & 46 & 664 & 46 & 664 & 46 & 664 \\
\hline Tota & & 229664 & 577934 & 1737075 & 1814674 & 224911 & 653307 & 224911 & 653307 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Year \\
Age
\end{tabular}} & \multirow[t]{2}{*}{: F} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 2004 \mathrm{~F} \\
& \text { CatchNos }
\end{aligned}
\]} & \multicolumn{2}{|l|}{multiplier:} & 0.5732 & Fbar: & \multicolumn{3}{|l|}{0.4} \\
\hline & & & Yield & StockNos & Biomass & \[
\begin{gathered}
\text { SSNOS } \\
\text { (JAN) }
\end{gathered}
\] & \[
\begin{gathered}
\text { SSB } \\
\text { (JAN) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { SSNOs } \\
& \quad(S T)
\end{aligned}
\] & \[
\begin{aligned}
& \text { SSB } \\
& (S T)
\end{aligned}
\] \\
\hline 3 & 0.0040 & 1076 & 747 & 308000 & 71456 & 0 & 0 & 0 & 0 \\
\hline 4 & 0.0407 & 18355 & 20576 & 511610 & 273711 & 7163 & 3832 & 7163 & 3832 \\
\hline 5 & 0.1399 & 33320 & 55044 & 281138 & 333992 & 19680 & 23379 & 19680 & 23379 \\
\hline 6 & 0.2465 & 36616 & 84071 & 184183 & 404096 & 50098 & 109914 & 50098 & 109914 \\
\hline 7 & 0.3497 & 34384 & 115874 & 127827 & 408664 & 71839 & 229669 & 71839 & 229669 \\
\hline 8 & 0.4746 & 16705 & 83556 & 48393 & 233980 & 38279 & 185078 & 38279 & 185078 \\
\hline 9 & 0.5526 & 5022 & 31541 & 12935 & 84760 & 11770 & 77131 & 11770 & 77131 \\
\hline 10 & 0.6368 & 1016 & 7807 & 2356 & 19579 & 2288 & 19012 & 2288 & 19012 \\
\hline 11 & 0.5371 & 89 & 812 & 235 & 2412 & 233 & 2395 & 233 & 2395 \\
\hline 12 & 0.6764 & 26 & 270 & 57 & 680 & 57 & 680 & 57 & 680 \\
\hline 13 & 0.6764 & 16 & 158 & 36 & 488 & 36 & 488 & 36 & 488 \\
\hline Tota & & 146626 & 400455 & 1476769 & 1833819 & 201442 & 651579 & 201442 & 651579 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Yea & & 2005 F & mu & & 0.5732 & Fbar: & 0.4 & & \\
\hline Age & F C & CatchNos & Yield & StockNos & Biomass & \[
\begin{gathered}
\text { SSNOS } \\
\text { (JAN) }
\end{gathered}
\] & \[
\begin{gathered}
\text { SSB } \\
\text { (JAN) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { SSNOs } \\
& \quad(S T)
\end{aligned}
\] & \[
\begin{aligned}
& \text { SSB } \\
& (S T)
\end{aligned}
\] \\
\hline 3 & 0.0040 & - 2320 & 1610 & 664000 & 154048 & 0 & 0 & 0 & 0 \\
\hline 4 & 0.0407 & 78326 & 9334 & 232081 & 124163 & 3249 & 1738 & 3249 & 1738 \\
\hline 5 & 0.1399 & 946860 & 77413 & 395387 & 469720 & 27677 & 32880 & 27677 & 32880 \\
\hline 6 & 0.2465 & 59748 & 91260 & 199934 & 438654 & 54382 & 119314 & 54382 & 119314 \\
\hline 7 & 0.3497 & 731702 & 106834 & 117855 & 376781 & 66234 & 211751 & 66234 & 211751 \\
\hline 8 & 0.4746 & 6 25466 & 127382 & 73776 & 356705 & 58357 & 282154 & 58357 & 282154 \\
\hline 9 & 0.5526 & 6 9571 & 60108 & 24649 & 161526 & 22431 & 146989 & 22431 & 146989 \\
\hline 10 & 0.6368 & - 2629 & 20192 & 6094 & 50643 & 5917 & 49174 & 5917 & 49174 \\
\hline 11 & 0.5371 & - 388 & 3528 & 1020 & 10485 & 1013 & 10411 & 1013 & 10411 \\
\hline 12 & 0.6764 & 4 51 & 533 & 112 & 1346 & 112 & 1346 & 112 & 1346 \\
\hline 13 & 0.6764 & 47 & 168 & 39 & 519 & 39 & 519 & 39 & 519 \\
\hline Tot & & 167078 & 498363 & 714947 & 2144590 & 239412 & 856276 & 239412 & 56276 \\
\hline
\end{tabular}

North East arctic cod. Stock numbers-at-age (in thousands) estimated by VPA including discard estimates, and \% increase in stock numbers relative to a VPA without discards. From Dingsør (2001).

Table 3.32a
Likelihood components at end of keyrun.
\begin{tabular}{l|rr|r|rr}
\hline Likelihood Component & \multicolumn{2}{|c|}{\begin{tabular}{c}
Unweighted Likelihood \\
Keyrun
\end{tabular}} & \(\mathbf{2 0 0 2} \mathbf{~ w g}\) & & \multicolumn{2}{|c}{ Weight } & \multicolumn{2}{|c}{ Weighted Likelihood } \\
& 16 & & 1 & Keyrun & \(\mathbf{2 0 0 2} \mathbf{~ w g}\) \\
\hline overfish.tons & 374200 & 373863 & 20 & \(\mathbf{7 4 8 4 0 0 0}\) & 7477260 \\
norxgil.catch & 102700 & 96616 & 20 & \(\mathbf{2 0 5 4 0 0 0}\) & 1932320 \\
gillnet.catch & 1540000 & 1610232 & 1 & \(\mathbf{1 5 4 0 0 0 0}\) & 1610232 \\
Wintersur-85-93 & 925800 & 794985 & 1 & \(\mathbf{9 2 5 8 0 0}\) & 794985 \\
Wintersur-94-03 & 100900 & 87933 & 1 & \(\mathbf{1 0 0 9 0 0}\) & 87933 \\
lofotensur-85-89 & 562900 & 555611 & 1 & \(\mathbf{5 6 2 9 0 0}\) & 555611 \\
lofotensur-90-03 & 1296000 & 1282978 & 1 & \(\mathbf{1 2 9 6 0 0 0}\) & 1282978 \\
acousticsur-85-93 & 1441000 & 1189236 & 1 & \(\mathbf{1 4 4 1 0 0 0}\) & 1189236 \\
acousticsur-94-03 & 1428000 & 1243521 & 1 & \(\mathbf{1 4 2 8 0 0 0}\) & 1243521 \\
rustrawlsur-85-02 & 2612 & 1746 & 100 & \(\mathbf{2 6 1 2 0 0}\) & 174600 \\
stomach-85-03 & 0 & & 1 & \(\mathbf{0}\) & \\
Bounds & 7774128 & 7236721 & & \(\mathbf{1 7 0 9 3 8 1 6}\) & 16348676 \\
\hline Total & \multicolumn{5}{|c|}{} \\
\hline
\end{tabular}

Table 3.32b Parameter values and sensitivity (effect of parameter change on likelihood score) in keyrun, and 2001/2002 values
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Value & 2002 wg & 2001 wg & -5\% & +5\% \\
\hline ba1ac.b & 0.104241 & 0.0783 & 0.2469 & 0.01 & 0.01 \\
\hline ba1ac.slope & 0.00470287 & 0.0053 & 0.0014 & 0.02 & 0.02 \\
\hline ba1tr.b & 0.505311 & 0.4065 & 0.4062 & 0.11 & 0.10 \\
\hline baltr.slope & -0.00235214 & 0 & -0.0002 & 0.01 & 0.00 \\
\hline ba2ac.b & 0.18179 & 0.2332 & 0.3993 & 0.02 & 0.02 \\
\hline ba2ac.slope & 0.0064221 & 0.0058 & 0.0016 & 0.03 & 0.03 \\
\hline ba2tr.b & 0.390517 & 0.3758 & 0.4276 & 0.07 & 0.06 \\
\hline ba2tr.slope & 0.00172339 & 0.003 & 0.0014 & 0.00 & 0.00 \\
\hline betabinimm & 44.0124 & & & 0.01 & 0.01 \\
\hline betabinmat & 3.39452 & & & 0.00 & 0.00 \\
\hline cann_alpha & 0.000102867 & & & 0.50 & 0.48 \\
\hline cann_delta & 0.406176 & & & 14.62 & 9.70 \\
\hline gil.f1985 & 0.788735 & 0.6769 & 0.5679 & 0.03 & 0.04 \\
\hline gil.f1986 & 0.456546 & 0.3928 & 0.3032 & 0.02 & 0.02 \\
\hline gil.f1987 & 0.497441 & 0.4278 & 0.2589 & 0.01 & 0.01 \\
\hline gil.f1988 & 0.647429 & 0.5144 & 0.3785 & 0.00 & 0.00 \\
\hline gil.f1989 & 1.15757 & 0.9582 & 0.6628 & 0.06 & 0.05 \\
\hline gil.f1990 & 0.265434 & 0.2082 & 0.1485 & 0.05 & 0.05 \\
\hline gil.f1991 & 0.213375 & 0.1842 & 0.1282 & 0.20 & 0.20 \\
\hline gil.f1992 & 0.156414 & 0.1359 & 0.0967 & 0.26 & 0.26 \\
\hline gil.f1993 & 0.190386 & 0.1679 & 0.1287 & 0.07 & 0.05 \\
\hline gil.f1994 & 0.246661 & 0.2222 & 0.1774 & 0.02 & 0.02 \\
\hline gil.f1995 & 0.494976 & 0.4294 & 0.3106 & 0.01 & 0.01 \\
\hline gil.f1996 & 0.487043 & 0.4368 & 0.3323 & 0.01 & 0.01 \\
\hline gil.f1997 & 0.591147 & 0.5145 & 0.3709 & 0.01 & 0.01 \\
\hline gil.f1998 & 0.653523 & 0.5586 & 0.4538 & 0.01 & 0.01 \\
\hline gil.f1999 & 0.706263 & 0.6272 & 0.4633 & 0.00 & 0.00 \\
\hline gil.f2000 & 0.725594 & 0.626 & 0.4804 & 0.00 & 0.00 \\
\hline gil.f2001 & 0.541593 & 0.5014 & & 0.00 & 0.00 \\
\hline gil.f2002 & 0.374576 & & & 0.00 & 0.00 \\
\hline gil. 150 & 85.3849 & 83.3239 & 80 & 117.49 & 70.00 \\
\hline gil.slope & 0.0359626 & 0.0367 & 0.0387 & 2.88 & 2.23 \\
\hline
\end{tabular}

Table 3.32b (continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline growth. 1985 & 8.1602 & 8.3317 & 8.7728 & 1.23 & 1.22 \\
\hline growth. 1986 & 6.54222 & 6.2809 & 7.3012 & 4.14 & 4.07 \\
\hline growth. 1987 & 6.97071 & 8.3566 & 6.9926 & 3.68 & 3.66 \\
\hline growth. 1988 & 7.66196 & 7.15 & 7.3956 & 1.00 & 1.03 \\
\hline growth. 1989 & 12.2885 & 13.0489 & 13.1577 & 12.83 & 12.68 \\
\hline growth. 1990 & 11.5764 & 10.5856 & 11.8511 & 36.06 & 36.49 \\
\hline growth. 1991 & 11.4681 & 10.5828 & 9.8304 & 83.50 & 86.40 \\
\hline growth. 1992 & 8.13503 & 8.8248 & 8.0952 & 18.18 & 18.67 \\
\hline growth. 1993 & 7.72257 & 6.7464 & 6.6638 & 3.72 & 3.88 \\
\hline growth. 1994 & 9.56092 & 9.561 & 10.258 & 0.97 & 0.96 \\
\hline growth. 1995 & 8.53934 & 8.4603 & 7.5524 & 0.22 & 0.22 \\
\hline growth. 1996 & 10.4876 & 11.1062 & 10.7937 & 0.24 & 0.24 \\
\hline growth. 1997 & 10.3318 & 10.6062 & 9.6489 & 0.27 & 0.27 \\
\hline growth. 1998 & 9.40794 & 8.5245 & 9.726 & 0.22 & 0.22 \\
\hline growth. 1999 & 10.8541 & 11.8582 & 10.5666 & 0.25 & 0.24 \\
\hline growth. 2000 & 12.0504 & 12.0683 & 11.7 & 0.27 & 0.26 \\
\hline growth. 2001 & 10.071 & 10.8442 & & 0.14 & 0.13 \\
\hline growth. 2002 & 9.85303 & & & 0.06 & 0.06 \\
\hline growth.ratio & 0.740864 & 0.7792 & 0.7957 & 3.49 & 3.57 \\
\hline imm.n_age3 & 54.1396 & 55.2526 & 55.6596 & 0.34 & 0.33 \\
\hline imm.n_age4 & 37.7218 & 37.608 & 37.1615 & 0.09 & 0.08 \\
\hline imm.n_age5 & 7.72005 & 10.5822 & 10.7376 & 0.02 & 0.02 \\
\hline imm.n_age6 & 3.76807 & 3.5504 & 3.4023 & 0.02 & 0.02 \\
\hline imm.n_age 7 & 1.26253 & 1.2868 & 1.0011 & 0.01 & 0.01 \\
\hline imm.n_age8 & 0.244392 & 0.2046 & 0.1865 & 0.00 & 0.00 \\
\hline imm.n_age9 & 0.182001 & 0.1365 & 0.1335 & 0.00 & 0.00 \\
\hline l_minage. 1986 & 34.292 & 34.3425 & 34.1084 & 27.60 & 42.49 \\
\hline l_minage. 1987 & 31.9464 & 31.6591 & 32.1017 & 2.35 & 2.52 \\
\hline l_minage. 1988 & 31.9066 & 32.1587 & 32.1236 & 5.19 & 3.73 \\
\hline l_minage. 1989 & 32.5765 & 32.303 & 32.6073 & 8.20 & 7.08 \\
\hline l_minage. 1990 & 33.4169 & 33.5965 & 34.021 & 34.51 & 35.51 \\
\hline l_minage. 1991 & 37.8729 & 37.8337 & 39.7212 & 99.58 & 120.12 \\
\hline l_minage. 1992 & 39.4278 & 38.8367 & 39.7733 & 70.37 & 108.70 \\
\hline l_minage. 1993 & 35.8976 & 36.396 & 36.5644 & 9.75 & 12.88 \\
\hline l_minage. 1994 & 30.6703 & 30.6195 & 30.8819 & 2.31 & 1.88 \\
\hline l_minage. 1995 & 29.1334 & 29.6721 & 30.062 & 0.90 & 0.72 \\
\hline l_minage. 1996 & 29.7007 & 29.3409 & 29.7766 & 0.92 & 0.81 \\
\hline l_minage. 1997 & 30.8486 & 30.3504 & 30.9709 & 2.01 & 1.78 \\
\hline l_minage. 1998 & 31.15 & 31.3425 & 31.0328 & 2.66 & 2.53 \\
\hline l_minage. 1999 & 28.7398 & 28.4458 & 28.9558 & 1.01 & 0.91 \\
\hline l_minage. 2000 & 29.0021 & 28.8552 & 28.7652 & 1.08 & 0.96 \\
\hline l_minage. 2001 & 32.9234 & 32.8703 & 33.2432 & 0.89 & 0.83 \\
\hline l_minage. 2002 & 30.0252 & 31.5538 & & 0.64 & 0.57 \\
\hline 1_minage. 2003 & 29.838 & & & 0.64 & 0.49 \\
\hline
\end{tabular}

Table 3.32b (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline lof1ac.cbt & 0.851288 & 0.7317 & 0.6775 & 0.00 & 0.00 \\
\hline lof1ac. 150 & 66.5567 & 51.2518 & 43.1426 & 0.01 & 0.01 \\
\hline lof1ac.slope & 0.0138748 & 0.0103 & 0.0081 & 0.00 & 0.00 \\
\hline lof2ac.cbt & 2.06362 & 2.01 & 1.01 & 0.02 & 0.02 \\
\hline lof2ac. 150 & 90 & 87.8967 & 64.5238 & 0.12 & 0.13 \\
\hline lof2ac.slope & 0.0119362 & 0.0117 & 0.0219 & 0.01 & 0.01 \\
\hline mat.n_age10 & 0.220849 & & & 0.00 & 0.00 \\
\hline mat.n_age5 & 3.71008 & & & 0.00 & 0.00 \\
\hline mat.n_age6 & 1.64682 & & & 0.00 & 0.00 \\
\hline mat.n_age7 & 1.25175 & & & 0.01 & 0.00 \\
\hline mat.n_age8 & 0.510124 & & & 0.00 & 0.00 \\
\hline mat.n_age9 & 0.166826 & & & 0.00 & 0.00 \\
\hline n_minage. 1986 & 117.512 & 123.5562 & 125.8591 & 16.68 & 16.84 \\
\hline n_minage. 1987 & 36.2056 & 36.8587 & 38.5834 & 5.53 & 5.67 \\
\hline n_minage. 1988 & 29.059 & 28.0084 & 28.7296 & 7.30 & 7.56 \\
\hline n_minage. 1989 & 20.4847 & 19.4994 & 19.8993 & 4.84 & 4.99 \\
\hline n_minage. 1990 & 30.4749 & 30.325 & 30.0839 & 5.96 & 6.13 \\
\hline n_minage. 1991 & 49.0125 & 49.2732 & 50.121 & 8.19 & 8.35 \\
\hline n_minage. 1992 & 76.257 & 79.876 & 81.562 & 2.84 & 2.93 \\
\hline n_minage. 1993 & 97.2025 & 104.5486 & 106.2583 & 0.35 & 0.36 \\
\hline n_minage. 1994 & 89.904 & 88.6541 & 90.1468 & 0.10 & 0.09 \\
\hline n_minage. 1995 & 57.8611 & 56.803 & 57.1602 & 0.06 & 0.06 \\
\hline n_minage. 1996 & 35.8281 & 36.2454 & 36.1087 & 0.05 & 0.05 \\
\hline n_minage. 1997 & 59.9047 & 59.7255 & 61.0898 & 0.10 & 0.08 \\
\hline n_minage. 1998 & 73.4807 & 69.9894 & 72.7707 & 0.11 & 0.10 \\
\hline n_minage. 1999 & 51.6259 & 43.4426 & 42.7957 & 0.06 & 0.06 \\
\hline n_minage. 2000 & 58.5576 & 51.1067 & 54.4713 & 0.05 & 0.04 \\
\hline n_minage. 2001 & 38.6685 & 31.8426 & 37.4844 & 0.02 & 0.02 \\
\hline n_minage. 2002 & 33.9831 & 17.8735 & & 0.01 & 0.01 \\
\hline n_minage. 2003 & 90.6698 & & & 0.01 & 0.01 \\
\hline ovr.f1990 & 0.0288109 & & & 8.98 & 8.99 \\
\hline ovr.f1991 & 0.0405644 & & & 35.58 & 35.46 \\
\hline ovr.f1992 & 0.0852345 & & & 231.23 & 229.48 \\
\hline ovr.f1993 & 0.0333141 & & & 35.57 & 35.68 \\
\hline ovr.f1994 & 0.0180057 & & & 9.03 & 9.00 \\
\hline rustr.b & 0.0734692 & 0.0705 & 0.0836 & 0.01 & 0.01 \\
\hline rustr.slope & 0.000842825 & 0.0009 & 0.0008 & 0.00 & 0.00 \\
\hline
\end{tabular}

Table 3.32b (Continued)
\begin{tabular}{lrrrrr}
\hline tot.f1985 & 0.391033 & 0.3171 & 0.3202 & 0.05 & 0.07 \\
tot.f1986 & 0.592219 & 0.5069 & 0.4952 & 0.05 & 0.05 \\
tot.f1987 & 1.06524 & 0.9153 & 0.8641 & 0.94 & 0.91 \\
tot.f1988 & 0.938983 & 0.7756 & 0.7614 & 4.22 & 4.13 \\
tot.f1989 & 0.629011 & 0.5318 & 0.5163 & 8.58 & 8.32 \\
tot.f1990 & 0.209154 & 0.1805 & 0.1731 & 3.25 & 3.16 \\
tot.f1991 & 0.199448 & 0.1824 & 0.1721 & 5.17 & 5.04 \\
tot.f1992 & 0.230824 & 0.2055 & 0.194 & 3.45 & 3.36 \\
tot.f1993 & 0.336908 & 0.2829 & 0.2743 & 1.27 & 1.23 \\
tot.f1994 & 0.526697 & 0.427 & 0.4139 & 0.50 & 0.51 \\
tot.f1995 & 0.60691 & 0.4866 & 0.467 & 0.07 & 0.07 \\
tot.f1996 & 0.693183 & 0.587 & 0.5655 & 0.07 & 0.06 \\
tot.f1997 & 0.968366 & 0.8436 & 0.8191 & 0.08 & 0.07 \\
tot.f1998 & 1.0644 & 0.9528 & 0.9394 & 0.07 & 0.07 \\
tot.f1999 & 0.969765 & 0.8989 & 0.8454 & 0.05 & 0.06 \\
tot.f2000 & 0.656558 & 0.595 & 0.5622 & 0.04 & 0.04 \\
tot.f2001 & 0.498924 & & & 0.04 & 0.04 \\
tot.f2002 & 53.8298 & 52.9363 & 52.8097 & 0.04 & 0.03 \\
tot.l50 & 0.0474371 & & & 214.34 & 234.69 \\
tot.slope & & & 7.72 & 6.35 \\
\hline
\end{tabular}

Table 3.32c
Fixed parameter values used in keyrun
Constant parameters (not optimized)
\begin{tabular}{|c|c|c|c|}
\hline Name & Value & Name & Value \\
\hline growth.exponent & 0 & mat.n_age4 & 0 \\
\hline cann_p1 & 1.12 & mat.n_age 11 & 0.04 \\
\hline cann_p2 & 0.015 & mat.n_age 12 & 0.03 \\
\hline cann_p3 & 0.228 & mat.l_age4 & 51 \\
\hline imm.mortl & 0.05 & mat.l_age5 & 59.6 \\
\hline imm.mort2 & 0.05 & mat.l_age6 & 71.1 \\
\hline imm.mort3 & 0.05 & mat.l_age7 & 79 \\
\hline imm.n_age10 & 0 & mat.l_age8 & 88.2 \\
\hline imm.l_age3 & 40.6 & mat.l_age9 & 97.3 \\
\hline imm.l_age4 & 48.7 & mat.l_age10 & 105.2 \\
\hline imm.l_age5 & 61.3 & mat.1_age11 & 114 \\
\hline imm.l_age6 & 71.1 & mat.l_age12 & 114 \\
\hline imm.1_age7 & 81.2 & mat.d_age4 & 14.9 \\
\hline imm.l_age8 & 85.7 & mat.d_age5 & 1.1 \\
\hline imm.l_age9 & 90 & mat.d_age6 & 6.7450297 \\
\hline imm.1_age10 & 90 & mat.d_age7 & 3.184107 \\
\hline imm.d_age3 & 5.1 & mat.d_age8 & 5.1070776 \\
\hline imm.d_age4 & 4.1 & mat.d_age9 & 3.0645865 \\
\hline imm.d_age5 & 4.9 & mat.d_age10 & 5.4373194 \\
\hline imm.d_age6 & 5.3 & mat.d_age11 & 10.621258 \\
\hline imm.d_age7 & 5.4 & mat.d_age 12 & 3.2658864 \\
\hline imm.d_age8 & 8.7 & ovr.f1985 & 0 \\
\hline imm.d_age9 & 8.7 & ovr.f1986 & 0 \\
\hline imm.d_age10 & 8.7 & ovr.f1987 & 0 \\
\hline maturation.slope & 0.03 & ovr.f1988 & 0 \\
\hline maturation. 150 & 76 & ovr.f1989 & 0 \\
\hline d_minage. 1986 & 4.4 & ovr.f1995 & 0 \\
\hline d_minage. 1987 & 3.5 & ovr.f1996 & 0 \\
\hline d_minage. 1988 & 3.1 & ovr.f1997 & 0 \\
\hline d_minage. 1989 & 2.9 & ovr.f1998 & 0 \\
\hline d_minage. 1990 & 4.3 & ovr.f1999 & 0 \\
\hline d_minage. 1991 & 5.8 & ovr.f2000 & 0 \\
\hline d_minage. 1992 & 4.8 & ovr.f2001 & 0 \\
\hline d_minage. 1993 & 4.4 & ovr.f2002 & 0 \\
\hline d_minage. 1994 & 5 & baltr.cbt & 1 \\
\hline d_minage. 1995 & 5.9 & baltr.b0 & 1 \\
\hline d_minage. 1996 & 5 & ba2tr.cbt & 1 \\
\hline d_minage. 1997 & 3.9 & ba2tr.b0 & 1 \\
\hline d_minage. 1998 & 4.4 & loflac.b0 & 1 \\
\hline d_minage. 1999 & 4.2 & lof2ac.b0 & 1 \\
\hline d_minage. 2000 & 4.1 & ba1ac.cbt & 1 \\
\hline d_minage. 2001 & 4.1 & balac.b0 & 1 \\
\hline d_minage. 2002 & 4.1 & ba2ac.cbt & 1 \\
\hline d_minage. 2003 & 4.5 & ba2ac.b0 & 1 \\
\hline mat.mort1 & 0.05 & rustr.cbt & 1 \\
\hline mat.mort2 & 0.05 & rustr.b0 & 1 \\
\hline
\end{tabular}
; Gadget version 2.0.02 running on FLEXIDELL Wed Apr 30 15:25:23 2003
stocks cod.imm cod.mat
areas 0
\begin{tabular}{|c|c|c|c|c|}
\hline Year & 1985 & 1986 & 1987 & 1988 \\
\hline \multicolumn{5}{|l|}{Age} \\
\hline 3 & 0.0669 & 0.0345 & 0.0385 & 0.0334 \\
\hline 4 & 0.1647 & 0.2301 & 0.1757 & 0.1169 \\
\hline 5 & 0.3524 & 0.4140 & 0.6202 & 0.3260 \\
\hline 6 & 0.4941 & 0.5997 & 0.9066 & 0.7139 \\
\hline 7 & 0.6632 & 0.7264 & 1.1159 & 0.9219 \\
\hline 8 & 0.8368 & 0.8444 & 1.2670 & 1.0979 \\
\hline 9 & 0.9566 & 0.9208 & 1.3892 & 1.2686 \\
\hline 10 & 1.1295 & 0.9748 & 1.4543 & 1.4074 \\
\hline 11 & 1.1492 & 1.0383 & 1.5014 & 1.4731 \\
\hline 12+ & 1.1688 & 1.0469 & 1.5515 & 1.5352 \\
\hline F 5-10 & 0.7388 & 0.7467 & 1.1255 & 0.9560 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2000-2002 \\
\hline \multicolumn{9}{|l|}{Age} \\
\hline 3 & 0.0287 & 0.0407 & 0.0464 & 0.0296 & 0.0211 & 0.0258 & 0.0139 & 0.0203 \\
\hline 4 & 0.1290 & 0.2025 & 0.2156 & 0.1887 & 0.1145 & 0.0945 & 0.1016 & 0.1035 \\
\hline 5 & 0.3414 & 0.4738 & 0.5339 & 0.4778 & 0.3379 & 0.2563 & 0.2143 & 0.2695 \\
\hline 6 & 0.5886 & 0.7788 & 0.8246 & 0.7566 & 0.5385 & 0.4331 & 0.3531 & 0.4416 \\
\hline 7 & 0.7369 & 1.0059 & 1.0623 & 0.9553 & 0.6819 & 0.5486 & 0.4611 & 0.5639 \\
\hline 8 & 0.8384 & 1.1560 & 1.2523 & 1.1361 & 0.8118 & 0.6458 & 0.5394 & 0.6657 \\
\hline 9 & 0.9147 & 1.2617 & 1.3924 & 1.3117 & 0.9635 & 0.7383 & 0.6032 & 0.7683 \\
\hline 10 & 1.0170 & 1.3375 & 1.4815 & 1.4325 & 1.1066 & 0.8330 & 0.6561 & 0.8652 \\
\hline 11 & 1.0626 & 1.4309 & 1.5458 & 1.5063 & 1.1963 & 0.9113 & 0.7056 & 0.9377 \\
\hline 12+ & 1.1149 & 1.4930 & 1.6493 & 1.5898 & 1.2658 & 0.9645 & 0.7486 & 0.9930 \\
\hline F 5-10 & 0.7395 & 1.0023 & 1.0912 & 1.0117 & 0.7400 & 0.5758 & 0.4712 & \\
\hline
\end{tabular}

\section*{Table 3.33 (Continued)}
; Gadget version 2.0.02 running on FLEXIDELL Wed Apr 30 15:25:23 2003
stocks cod.imm cod.mat
areas 0
\begin{tabular}{lrccr}
Residual & natural & mortality \\
Year \\
Yge & 1985 & 1986 & 1987 & 1988 \\
Age & & & & \\
3 & 0.2000 & 0.2000 & 0.2000 & 0.2000 \\
4 & 0.2000 & 0.2000 & 0.2000 & 0.2000 \\
5 & 0.2000 & 0.2000 & 0.1999 & 0.2000 \\
6 & 0.2000 & 0.2000 & 0.2000 & 0.1999 \\
7 & 0.2000 & 0.2000 & 0.2000 & 0.2000 \\
8 & 0.1999 & 0.2000 & 0.2000 & 0.1999 \\
9 & 0.2000 & 0.2000 & 0.2000 & 0.1999 \\
10 & 0.2000 & 0.2000 & 0.2000 & 0.2000 \\
11 & 0.2000 & 0.2000 & 0.2000 & 0.2000 \\
\(12+\) & 0.2000 & 0.2000 & 0.2000 & 0.2000
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Residual & natural & mortalit & (M1) & & & & & \\
\hline Year & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & \\
\hline \multicolumn{9}{|l|}{Age} \\
\hline 3 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.1998 & 0.1997 & \\
\hline 4 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & \\
\hline 5 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & \\
\hline 6 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & \\
\hline 7 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & \\
\hline 8 & 0.1999 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & \\
\hline 9 & 0.1998 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & \\
\hline 10 & 0.1998 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & \\
\hline 11 & 0.1999 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & \\
\hline \(12+\) & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & \\
\hline Residual & natural & mortalit & y (M1) & & & & & \\
\hline Year & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2000-2002 \\
\hline \multicolumn{9}{|l|}{Age} \\
\hline 3 & 0.1999 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 \\
\hline 4 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 \\
\hline 5 & 0.2000 & 0.1999 & 0.1999 & 0.1999 & 0.2000 & 0.2000 & 0.2000 & 0.2000 \\
\hline 6 & 0.2000 & 0.2000 & 0.1999 & 0.1999 & 0.2000 & 0.2000 & 0.2000 & 0.2000 \\
\hline 7 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 \\
\hline 8 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 \\
\hline 9 & 0.2000 & 0.2000 & 0.1999 & 0.1999 & 0.1999 & 0.2000 & 0.2000 & 0.2000 \\
\hline 10 & 0.2000 & 0.2000 & 0.1999 & 0.1999 & 0.1999 & 0.2000 & 0.2000 & 0.2000 \\
\hline 11 & 0.2000 & 0.2000 & 0.2000 & 0.1999 & 0.1999 & 0.2000 & 0.2000 & 0.2000 \\
\hline 12+ & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 & 0.2000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Predation & mortali & y (M2) & & & & & & \\
\hline Year & 1985 & 1986 & 1987 & 1988 & & & & \\
\hline \multicolumn{9}{|l|}{Age} \\
\hline 3 & 0.0108 & 0.0648 & 0.0731 & 0.0215 & & & & \\
\hline 4 & 0.0006 & 0.0025 & 0.0109 & 0.0037 & & & & \\
\hline Predation & mortali & y (M2) & & & & & & \\
\hline Year & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & \\
\hline \multicolumn{9}{|l|}{Age} \\
\hline 3 & 0.0087 & 0.0155 & 0.0173 & 0.0249 & 0.1256 & 0.4217 & 0.4884 & \\
\hline 4 & 0.0013 & 0.0003 & 0.0015 & 0.0031 & 0.0099 & 0.0357 & 0.0573 & \\
\hline Predation & mortali & y (M2) & & & & & & \\
\hline Year & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2000-2002 \\
\hline \multicolumn{9}{|l|}{Age} \\
\hline 3 & 0.2400 & 0.1088 & 0.0538 & 0.0388 & 0.0298 & 0.0191 & 0.0842 & 0.0444 \\
\hline 4 & 0.0361 & 0.0154 & 0.0055 & 0.0031 & 0.0023 & 0.0025 & 0.0028 & 0.0025 \\
\hline
\end{tabular}

\section*{Table 3.33 (Continued)}
; Gadget version 2.0.02 running on FLEXIDELL Wed Apr 30 15:25:23 2003
stocks cod.imm cod.mat
areas 0
\begin{tabular}{lrrrrrr}
Stock \\
Year & numbers (thousands) & at \begin{tabular}{l}
age by \\
Age
\end{tabular} & 1985 & 1986 & 1987 & 1988
\end{tabular}
\begin{tabular}{lrrrrrrr}
Stock & numbers (thousands) at age by Jan. \\
Year & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 \\
Age & & & & & & & \\
3 & 304746 & 490107 & 762569 & 972024 & 898347 & 574051 & 357749 \\
4 & 160996 & 241430 & 380323 & 581726 & 681355 & 470287 & 281346 \\
5 & 161292 & 119439 & 178637 & 264963 & 401921 & 450480 & 310805 \\
6 & 119923 & 114530 & 82050 & 117071 & 166285 & 228303 & 254193 \\
7 & 179108 & 81215 & 75424 & 49597 & 68859 & 83395 & 107668 \\
8 & 18946 & 115715 & 51728 & 44186 & 27151 & 32248 & 35040 \\
9 & 5158 & 11466 & 71096 & 29513 & 23402 & 11756 & 12459 \\
10 & 595 & 2970 & 6688 & 39498 & 15315 & 9793 & 4028 \\
11 & 120 & 328 & 1669 & 3584 & 19650 & 6159 & 3146 \\
\(12+\) & 33 & 80 & 223 & 1000 & 2221 & 8572 & 4422 \\
& & & & & & & \\
Total & 950921 & 1177284 & 1610412 & 2103166 & 2304509 & 1875049 & 1370860
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 \\
\hline \multicolumn{8}{|l|}{Age} \\
\hline 3 & 599036 & 734733 & 516026 & 585422 & 386683 & 339797 & 906317 \\
\hline 4 & 223895 & 422342 & 544203 & 394554 & 455499 & 302703 & 252196 \\
\hline 5 & 189812 & 143251 & 268869 & 357263 & 279434 & 328842 & 217185 \\
\hline 6 & 177868 & 95176 & 67688 & 134754 & 206740 & 175038 & 214599 \\
\hline 7 & 115401 & 66698 & 34048 & 25937 & 64317 & 109632 & 100499 \\
\hline 8 & 42179 & 34545 & 18868 & 10718 & 10733 & 30417 & 56590 \\
\hline 9 & 12400 & 10866 & 8083 & 4958 & 3894 & 4605 & 14518 \\
\hline 10 & 4088 & 2878 & 2213 & 1783 & 1550 & 1527 & 2066 \\
\hline 11 & 1190 & 874 & 533 & 431 & 481 & 548 & 644 \\
\hline 12+ & 2077 & 615 & 249 & 138 & 138 & 201 & 299 \\
\hline Total & 1367950 & 1511983 & 1460783 & 1515962 & 1409472 & 1293313 & 1764918 \\
\hline
\end{tabular}

\section*{Table 3.33 (Continued)}
; Gadget version 2.0.02 running on FLEXIDELL Wed Apr 30 15:25:23 2003
stocks cod.imm cod.mat
areas 0
\begin{tabular}{lrcr}
Spawning stock biomass (tons) at Jan. & st \\
Year & 1985 & 1986 & 1987 \\
Age & & & \\
4 & 0 & 0 & 0 \\
5 & 65519 & 39543 & 30989 \\
6 & 51564 & 93286 & 75028 \\
7 & 52608 & 77080 & 72394 \\
8 & 30153 & 50976 & 46678 \\
9 & 13208 & 16688 & 23612 \\
10 & 22315 & 8090 & 6864 \\
11 & 5164 & 6380 & 3210 \\
\(12+\) & 3854 & 2419 & 3199 \\
& & & \\
SSB total & 244384 & 294461 & 261973
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 \\
\hline \multicolumn{9}{|l|}{Age} \\
\hline 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 5 & 16112 & 11184 & 9075 & 12060 & 21137 & 19127 & 21119 & 20093 \\
\hline 6 & 124310 & 68878 & 35015 & 22640 & 49592 & 103224 & 82124 & 93376 \\
\hline 7 & 192065 & 182189 & 88494 & 36501 & 31681 & 95116 & 188088 & 152102 \\
\hline 8 & 122554 & 149980 & 117951 & 49271 & 28291 & 31422 & 104153 & 197854 \\
\hline 9 & 61337 & 66270 & 60841 & 38201 & 23145 & 17564 & 23391 & 78268 \\
\hline 10 & 28442 & 27699 & 21045 & 14257 & 12136 & 9766 & 10069 & 14393 \\
\hline 11 & 26388 & 10937 & 7757 & 4205 & 3718 & 3976 & 4619 & 5536 \\
\hline \(12+\) & 47859 & 25897 & 8502 & 2692 & 1545 & 1472 & 2227 & 3409 \\
\hline SSB total & 619066 & 543034 & 348680 & 179827 & 171245 & 281667 & 435791 & 565030 \\
\hline
\end{tabular}

\section*{Table 3.33 (Continued)}
; Gadget version 2.0.02 running on FLEXIDELL Wed Apr 30 15:25:23 2003
stocks cod.imm cod.mat
areas 0
\begin{tabular}{lccc}
Total & stock biomass (tons) & at Jan. 1 \\
Year & 1985 & 1986 & 1987 \\
Age & & & \\
3 & 311554 & 462467 & 114956 \\
4 & 367623 & 395140 & 477690 \\
5 & 216934 & 384548 & 335175 \\
6 & 167718 & 170443 & 269789 \\
7 & 110799 & 106586 & 95021 \\
8 & 43496 & 56299 & 51152 \\
9 & 24490 & 17488 & 23952 \\
10 & 22315 & 8524 & 6939 \\
11 & 5164 & 6380 & 3210 \\
\(12+\) & 3854 & 2419 & 3199 \\
& & & \\
Total & 1273946 & 1610294 & 1381083
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 \\
\hline \multicolumn{9}{|l|}{Age} \\
\hline 3 & 86385 & 71776 & 118176 & 296330 & 473526 & 437021 & 257638 & 149339 \\
\hline 4 & 138716 & 134914 & 142609 & 227306 & 439694 & 594004 & 560127 & 339082 \\
\hline 5 & 529173 & 178010 & 211904 & 204703 & 304671 & 472644 & 629690 & 632147 \\
\hline 6 & 201931 & 493632 & 217921 & 263958 & 235050 & 290404 & 407424 & 519389 \\
\hline 7 & 119631 & 118680 & 452874 & 241881 & 279088 & 193678 & 222545 & 274653 \\
\hline 8 & 31948 & 55838 & 74783 & 450058 & 237280 & 216074 & 127706 & 136261 \\
\hline 9 & 14233 & 11549 & 26952 & 62882 & 403705 & 174617 & 132406 & 70540 \\
\hline 10 & 5830 & 4194 & 4002 & 20241 & 49918 & 283559 & 101568 & 70478 \\
\hline 11 & 1563 & 1492 & 1094 & 2733 & 14950 & 33300 & 154533 & 52358 \\
\hline 12+ & 1320 & 656 & 439 & 928 & 2508 & 11334 & 22682 & 89581 \\
\hline Total & 1130730 & 1070742 & 1250754 & 1771019 & 2440389 & 2706634 & 2616319 & 2333827 \\
\hline \multicolumn{9}{|l|}{Total stock biomass (tons) at Jan. 1} \\
\hline Year & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 \\
\hline \multicolumn{9}{|l|}{Age} \\
\hline 3 & 94709 & 167706 & 216560 & 117358 & 136267 & 134308 & 90331 & 239280 \\
\hline 4 & 178928 & 153932 & 280398 & 334907 & 229028 & 292863 & 225301 & 160720 \\
\hline 5 & 363076 & 224908 & 171029 & 301491 & 420058 & 334439 & 399434 & 295931 \\
\hline 6 & 506023 & 336063 & 174575 & 119470 & 252014 & 417835 & 352979 & 427208 \\
\hline 7 & 333720 & 345656 & 188248 & 86266 & 71340 & 189775 & 350395 & 302302 \\
\hline 8 & 149941 & 184120 & 149792 & 68791 & 40869 & 42652 & 134058 & 249548 \\
\hline 9 & 65993 & 70636 & 64526 & 41251 & 25886 & 19727 & 25669 & 83999 \\
\hline 10 & 28743 & 28200 & 21395 & 14469 & 12358 & 10029 & 10370 & 14715 \\
\hline 11 & 26388 & 10937 & 7757 & 4205 & 3718 & 3976 & 4619 & 5536 \\
\hline 12+ & 47859 & 25897 & 8502 & 2692 & 1545 & 1472 & 2227 & 3409 \\
\hline Total & 1795379 & 1548055 & 1282781 & 1090899 & 1193082 & 1447075 & 1595383 & 1782648 \\
\hline
\end{tabular}

\section*{Table 3.33 (Continued)}
```

; Gadget version 2.0.02 running on FLEXIDELL Wed Apr 30 15:25:23 2003
stocks cod.imm cod.mat
areas 0

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Weight & (kg) in & catch & (Obse & ved) & & & & & \\
\hline Year & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 \\
\hline \multicolumn{10}{|l|}{Age} \\
\hline 1 & - & - & - & - & - & - & - & - & - \\
\hline 2 & - & - & - & - & - & - & - & - & - \\
\hline 3 & 0.91 & 0.62 & 0.49 & 0.53 & 0.74 & 0.83 & 1.03 & 1.15 & 0.76 \\
\hline 4 & 1.30 & 1.25 & 0.87 & 0.83 & 0.92 & 1.22 & 1.43 & 1.56 & 1.44 \\
\hline 5 & 1.96 & 1.87 & 1.53 & 1.29 & 1.26 & 1.61 & 2.11 & 2.22 & 2.07 \\
\hline 6 & 3.19 & 2.80 & 2.34 & 2.22 & 1.86 & 2.13 & 2.80 & 3.14 & 2.71 \\
\hline 7 & 4.63 & 4.46 & 3.55 & 3.52 & 2.86 & 3.15 & 3.58 & 4.31 & 4.05 \\
\hline 8 & 6.04 & 5.78 & 5.97 & 5.28 & 4.58 & 4.57 & 4.61 & 5.24 & 5.44 \\
\hline 9 & 7.67 & 6.76 & 8.60 & 7.92 & 7.51 & 7.26 & 5.99 & 6.16 & 6.40 \\
\hline 10 & 9.81 & 7.60 & 9.61 & 9.01 & 9.09 & 9.85 & 8.78 & 7.89 & 7.13 \\
\hline 11 & 11.83 & 9.76 & 12.26 & 11.21 & 11.40 & 13.54 & 11.82 & 10.32 & 7.99 \\
\hline 12+ & 14.32 & 10.63 & 13.77 & 13.99 & 12.00 & 17.13 & 16.58 & 11.81 & 10.31 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Weight & (kg) in & cat & (Obs & ved) & & & & & & \\
\hline Year & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2000-2002 \\
\hline \multicolumn{11}{|l|}{Age} \\
\hline 1 & - & - & - & - & - & - & - & - & - & - \\
\hline 2 & - & - & - & - & - & - & - & - & - & - \\
\hline 3 & 0.83 & 0.80 & 0.80 & 0.67 & 0.61 & 0.62 & 0.55 & 0.66 & 0.70 & 0.64 \\
\hline 4 & 1.27 & 1.22 & 1.09 & 0.99 & 0.98 & 1.00 & 1.00 & 1.03 & 1.10 & 1.04 \\
\hline 5 & 1.97 & 1.73 & 1.59 & 1.45 & 1.54 & 1.48 & 1.56 & 1.58 & 1.54 & 1.56 \\
\hline 6 & 2.89 & 2.55 & 2.41 & 2.13 & 2.22 & 2.26 & 2.29 & 2.48 & 2.32 & 2.36 \\
\hline 7 & 3.41 & 3.81 & 3.82 & 3.34 & 3.22 & 3.17 & 3.29 & 3.48 & 3.57 & 3.45 \\
\hline 8 & 5.33 & 5.02 & 5.83 & 5.26 & 4.83 & 4.32 & 4.45 & 4.76 & 4.83 & 4.68 \\
\hline 9 & 6.91 & 6.18 & 6.91 & 7.28 & 6.88 & 6.05 & 5.71 & 6.01 & 6.31 & 6.01 \\
\hline 10 & 7.67 & 8.03 & 8.16 & 7.83 & 9.39 & 6.90 & 7.52 & 7.46 & 7.67 & 7.55 \\
\hline 11 & 8.07 & 8.84 & 9.65 & 8.57 & 10.75 & 11.08 & 7.71 & 8.73 & 9.02 & 8.49 \\
\hline 12+ & 9.71 & 9.24 & 10.75 & 11.32 & 15.73 & 14.33 & 12.34 & 10.95 & 7.93 & 10.41 \\
\hline
\end{tabular}

Table 3.33 (Continued)
; Gadget version 2.0.02 running on FLEXIDELL Wed Apr 30 15:25:23 2003
stocks cod.imm cod.mat
areas 0
\begin{tabular}{lrrrrrrrrrr}
Weight & \((\mathrm{kg})\) in & catch & (Model) & & & & & \\
Year & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 \\
Age & & & & & & & & & \\
1 & - & - & - & - & - & - & - & - & - \\
2 & - & - & - & - & - & - & - & - & - \\
3 & 0.94 & 0.59 & 0.46 & 0.52 & 0.62 & 0.83 & 1.10 & 0.97 & 0.73 \\
4 & 1.31 & 1.33 & 0.88 & 0.88 & 0.99 & 1.39 & 1.46 & 1.67 & 1.40 \\
5 & 2.23 & 1.80 & 1.60 & 1.33 & 1.36 & 1.82 & 2.22 & 2.17 & 2.17 \\
6 & 3.58 & 2.87 & 2.18 & 2.17 & 1.87 & 2.31 & 2.85 & 3.31 & 2.79 \\
7 & 4.93 & 4.25 & 3.49 & 2.96 & 2.99 & 3.05 & 3.59 & 4.21 & 4.19 \\
8 & 6.43 & 5.59 & 5.19 & 4.42 & 4.07 & 4.55 & 4.59 & 5.17 & 5.19 \\
9 & 7.79 & 6.79 & 6.98 & 6.23 & 5.63 & 5.81 & 6.29 & 6.32 & 6.22 \\
10 & 10.96 & 7.96 & 8.69 & 8.18 & 7.49 & 7.32 & 7.64 & 8.16 & 7.47 \\
11 & 14.04 & 10.96 & 10.58 & 10.02 & 9.59 & 9.49 & 9.18 & 9.65 & 9.52 \\
\(12+\) & 13.91 & 13.28 & 16.12 & 14.18 & 12.83 & 13.04 & 12.26 & 11.87 & 11.46
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Weight & (kg) in & catch & (Model & & & & & & & \\
\hline Year & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2000-2002 \\
\hline \multicolumn{11}{|l|}{Age} \\
\hline 1 & - & - & - & - & - & - & - & - & - & - \\
\hline 2 & - & - & - & - & - & - & - & - & - & - \\
\hline 3 & 0.63 & 0.61 & 0.60 & 0.56 & 0.58 & 0.51 & 0.53 & 0.61 & 0.52 & 0.55 \\
\hline 4 & 1.20 & 1.08 & 1.07 & 1.08 & 1.03 & 1.05 & 1.02 & 1.04 & 1.13 & 1.06 \\
\hline 5 & 1.89 & 1.73 & 1.60 & 1.59 & 1.59 & 1.56 & 1.63 & 1.63 & 1.61 & 1.62 \\
\hline 6 & 2.77 & 2.67 & 2.45 & 2.29 & 2.21 & 2.22 & 2.32 & 2.46 & 2.37 & 2.38 \\
\hline 7 & 3.56 & 3.87 & 3.69 & 3.45 & 3.18 & 3.07 & 3.25 & 3.47 & 3.57 & 3.43 \\
\hline 8 & 5.19 & 4.89 & 5.06 & 4.91 & 4.70 & 4.40 & 4.39 & 4.65 & 4.87 & 4.64 \\
\hline 9 & 6.29 & 6.76 & 6.23 & 6.32 & 6.32 & 6.18 & 5.91 & 5.89 & 6.15 & 5.98 \\
\hline 10 & 7.42 & 7.99 & 8.38 & 7.57 & 7.82 & 7.99 & 7.77 & 7.48 & 7.49 & 7.58 \\
\hline 11 & 8.86 & 9.29 & 9.85 & 9.92 & 9.23 & 9.72 & 9.65 & 9.49 & 9.26 & 9.47 \\
\hline 12+ & 11.63 & 11.19 & 12.70 & 13.17 & 13.91 & 13.39 & 12.41 & 12.12 & 12.08 & 12.20 \\
\hline
\end{tabular}

\section*{Table 3.33 (Continued)}
```

; Gadget version 2.0.02 running on FLEXIDELL Wed Apr 30 15:25:23 2003
stocks cod.imm cod.mat
areas 0
Weight (kg) in stock at Jan. 1
Year 1985
Age
3 0.58
4 0.97
1.90
3.10
4.41
5.76
7.02
10.10
12.91
12.85

```
\begin{tabular}{lrrrrrrrrrr}
Weight & (kg) in & stock & at Jan. 1 \\
Year & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 \\
Age & & & & & & & & & \\
3 & 0.39 & 0.32 & 0.30 & 0.35 & 0.39 & 0.60 & 0.62 & 0.45 & 0.29 \\
4 & 0.96 & 0.55 & 0.52 & 0.60 & 0.89 & 0.94 & 1.16 & 1.02 & 0.82 \\
5 & 1.50 & 1.29 & 0.92 & 0.95 & 1.31 & 1.71 & 1.71 & 1.78 & 1.57 \\
6 & 2.59 & 1.95 & 1.79 & 1.49 & 1.82 & 2.30 & 2.86 & 2.48 & 2.45 \\
7 & 3.94 & 3.21 & 2.62 & 2.64 & 2.53 & 2.98 & 3.70 & 3.91 & 3.23 \\
8 & 5.31 & 4.78 & 4.03 & 3.76 & 3.95 & 3.89 & 4.59 & 4.89 & 4.70 \\
9 & 6.54 & 6.42 & 5.76 & 5.33 & 5.23 & 5.48 & 5.68 & 5.92 & 5.66 \\
10 & 7.78 & 7.92 & 7.65 & 7.38 & 6.72 & 6.81 & 7.46 & 7.18 & 6.63 \\
11 & 10.92 & 9.59 & 9.36 & 9.77 & 9.10 & 8.32 & 8.96 & 9.29 & 7.86 \\
\(12+\) & 13.43 & 14.47 & 13.28 & 13.45 & 13.23 & 11.58 & 11.20 & 11.33 & 10.21
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & 2001-2003 \\
\hline \multicolumn{11}{|l|}{Age} \\
\hline 3 & 0.26 & 0.26 & 0.28 & 0.29 & 0.23 & 0.23 & 0.35 & 0.27 & 0.26 & 0.29 \\
\hline 4 & 0.72 & 0.64 & 0.69 & 0.66 & 0.62 & 0.58 & 0.64 & 0.74 & 0.64 & 0.67 \\
\hline 5 & 1.40 & 1.17 & 1.18 & 1.19 & 1.12 & 1.18 & 1.20 & 1.21 & 1.36 & 1.26 \\
\hline 6 & 2.27 & 1.99 & 1.89 & 1.83 & 1.76 & 1.87 & 2.02 & 2.02 & 1.99 & 2.01 \\
\hline 7 & 3.29 & 3.10 & 3.00 & 2.82 & 2.53 & 2.75 & 2.95 & 3.20 & 3.01 & 3.05 \\
\hline 8 & 4.23 & 4.28 & 4.37 & 4.34 & 3.65 & 3.81 & 3.97 & 4.41 & 4.41 & 4.26 \\
\hline 9 & 6.00 & 5.30 & 5.70 & 5.94 & 5.10 & 5.22 & 5.06 & 5.57 & 5.79 & 5.47 \\
\hline 10 & 7.20 & 7.13 & 6.90 & 7.43 & 6.54 & 6.93 & 6.47 & 6.79 & 7.12 & 6.79 \\
\hline 11 & 8.50 & 8.39 & 9.19 & 8.87 & 7.89 & 8.63 & 8.26 & 8.42 & 8.60 & 8.43 \\
\hline \(12+\) & 10.45 & 10.82 & 12.46 & 13.82 & 10.79 & 11.16 & 10.62 & 11.05 & 11.37 & 11.01 \\
\hline
\end{tabular}

\section*{Table 3.33 (Continued)}
```

; Gadget version 2.0.02 running on FLEXIDELL Wed Apr 30 15:25:23 2003
stocks cod.imm cod.mat
areas 0
1985

```
Proportion mature at age
Year 1985
Age
 30.000
 \(4 \quad 0.000\)
 \(5 \quad 0.327\)
 \(6 \quad 0.303\)
 \(7 \quad 0.508\)
 80.664
 \(9 \quad 0.445\)
 \(10 \quad 1.000\)
 \(11 \quad 1.000\)
 \(12+1.000\)
\begin{tabular}{lllllllllll}
\begin{tabular}{l}
Proportion mature at \\
Year \\
Age
\end{tabular} & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 \\
Age & & & & & & & & & & \\
3 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
4 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 \\
5 & 0.080 & 0.058 & 0.009 & 0.006 & 0.033 & 0.084 & 0.089 & 0.103 & 0.069 \\
6 & 0.545 & 0.230 & 0.162 & 0.061 & 0.113 & 0.214 & 0.337 & 0.274 & 0.283 \\
7 & 0.700 & 0.747 & 0.430 & 0.332 & 0.275 & 0.389 & 0.541 & 0.621 & 0.512 \\
8 & 0.900 & 0.897 & 0.887 & 0.651 & 0.628 & 0.610 & 0.724 & 0.796 & 0.831 \\
9 & 0.938 & 0.983 & 0.972 & 0.961 & 0.873 & 0.872 & 0.872 & 0.906 & 0.929 \\
10 & 0.926 & 0.982 & 0.997 & 0.994 & 0.993 & 0.974 & 0.973 & 0.967 & 0.966 \\
11 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
\(12+\) & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000
\end{tabular}
\begin{tabular}{llllllllllll}
\begin{tabular}{l}
Proportion mature at \\
Year \\
Year
\end{tabular} & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & \(2001-2003\) \\
Age & & & & & & & & & & & \\
3 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.0000 \\
4 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.0000 \\
5 & 0.050 & 0.026 & 0.028 & 0.031 & 0.023 & 0.029 & 0.035 & 0.031 & 0.044 & 0.0367 \\
6 & 0.252 & 0.191 & 0.153 & 0.142 & 0.135 & 0.146 & 0.189 & 0.174 & 0.164 & 0.1757 \\
7 & 0.535 & 0.499 & 0.455 & 0.388 & 0.340 & 0.359 & 0.428 & 0.460 & 0.426 & 0.4380 \\
8 & 0.753 & 0.753 & 0.760 & 0.729 & 0.644 & 0.611 & 0.669 & 0.722 & 0.735 & 0.7087 \\
9 & 0.948 & 0.901 & 0.908 & 0.919 & 0.899 & 0.854 & 0.851 & 0.880 & 0.906 & 0.8790 \\
10 & 0.979 & 0.985 & 0.973 & 0.974 & 0.978 & 0.974 & 0.963 & 0.959 & 0.968 & 0.9633 \\
11 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.0000 \\
\(12+\) & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.0000
\end{tabular}

\section*{Table 3.33 (Continued)}
; Gadget version 2.0.02 running on FLEXIDELL Wed Apr 30 15:25:23 2003
stocks cod.imm cod.mat
areas 0
fleets rusnorfleet gillnetfleet
Model catch in numbers (thousands) at age
Year 19851986

Age
\begin{tabular}{crr}
1 & 0 & 0 \\
2 & 0 & 0 \\
3 & 26480 & 29926 \\
4 & 43963 & 66614 \\
5 & 26756 & 69478 \\
6 & 17364 & 24157 \\
7 & 10483 & 11679 \\
8 & 3793 & 5175 \\
9 & 1934 & 1396 \\
10 & 1366 & 596 \\
11 & 250 & 333 \\
\(12+\) & 190 & 103 \\
& & \\
Total & 132578 & 209455
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline \multicolumn{9}{|l|}{Age} \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 7469 & 6372 & 17106 & 25061 & 11381 & 8806 & 7310 & 3341 \\
\hline 4 & 39902 & 25049 & 31824 & 64439 & 73771 & 32042 & 31473 & 22336 \\
\hline 5 & 101506 & 68832 & 56882 & 47460 & 82208 & 79693 & 49800 & 49551 \\
\hline 6 & 74116 & 88790 & 77666 & 43355 & 29391 & 44716 & 58732 & 41573 \\
\hline 7 & 31990 & 45162 & 60206 & 35965 & 17398 & 10465 & 22470 & 33145 \\
\hline 8 & 13716 & 16373 & 24277 & 20788 & 10856 & 4987 & 4327 & 10624 \\
\hline 9 & 5684 & 6246 & 7578 & 7005 & 5113 & 2634 & 1757 & 1779 \\
\hline 10 & 4986 & 2192 & 2595 & 1928 & 1478 & 1046 & 769 & 634 \\
\hline 11 & 3256 & 1769 & 788 & 600 & 366 & 266 & 255 & 242 \\
\hline \(12+\) & 4682 & 2573 & 1410 & 438 & 177 & 89 & 77 & 93 \\
\hline Total & 287307 & 263357 & 280330 & 247039 & 232139 & 184742 & 176970 & 163318 \\
\hline
\end{tabular}

\section*{Table 3.33 (Continued)}
; Gadget version 2.0.02 running on FLEXIDELL Wed Apr 30 15:25:23 2003
stocks cod.imm cod.mat
areas 0
fleets rusnorfleet gillnetfleet
Observed catch in numbers (thousands) at age
Year 19851986

Age
\begin{tabular}{crr}
1 & 0 & 0 \\
2 & 0 & 0 \\
3 & 19823 & 24596 \\
4 & 41151 & 59086 \\
5 & 24948 & 71516 \\
6 & 16753 & 23479 \\
7 & 10561 & 10438 \\
8 & 3508 & 3797 \\
9 & 1432 & 888 \\
10 & 713 & 688 \\
11 & 134 & 519 \\
\(12+\) & 38 & 134 \\
& & \\
Total & 119061 & 195140
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{(thousands) at age} \\
\hline Year & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 \\
\hline \multicolumn{9}{|l|}{Age} \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 10450 & 9317 & 4902 & 1315 & 3493 & 14276 & 7680 & 5558 \\
\hline 4 & 117698 & 19548 & 15828 & 5807 & 8514 & 22802 & 37098 & 49632 \\
\hline 5 & 84253 & 117460 & 28904 & 9870 & 12308 & 18685 & 54328 & 79314 \\
\hline 6 & 57239 & 48949 & 66506 & 13786 & 15174 & 17113 & 28245 & 50230 \\
\hline 7 & 13074 & 19899 & 24993 & 23668 & 14189 & 12899 & 11520 & 28770 \\
\hline 8 & 3568 & 3151 & 5186 & 5151 & 18096 & 9543 & 7441 & 7676 \\
\hline 9 & 867 & 1163 & 789 & 605 & 2701 & 12820 & 5183 & 4523 \\
\hline 10 & 449 & 381 & 275 & 125 & 264 & 1761 & 9806 & 2498 \\
\hline 11 & 183 & 107 & 42 & 47 & 37 & 192 & 1296 & 5457 \\
\hline \(12+\) & 204 & 68 & 14 & 12 & 12 & 46 & 249 & 750 \\
\hline Total & 287984 & 220041 & 147438 & 60385 & 74787 & 110135 & 162845 & 234409 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline \multicolumn{9}{|l|}{Age} \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 4741 & 7034 & 10454 & 28160 & 8084 & 4266 & 4348 & 1588 \\
\hline 4 & 35100 & 25574 & 32828 & 78268 & 72593 & 27993 & 30719 & 20863 \\
\hline 5 & 95618 & 70969 & 63737 & 42650 & 81439 & 76991 & 53307 & 50536 \\
\hline 6 & 79441 & 87253 & 75825 & 35602 & 27616 & 40926 & 53506 & 45840 \\
\hline 7 & 28290 & 46081 & 60395 & 29462 & 13875 & 11508 & 20104 & 31170 \\
\hline 8 & 6786 & 8729 & 22648 & 23799 & 14370 & 6318 & 4707 & 9061 \\
\hline 9 & 2495 & 1791 & 3191 & 6133 & 7967 & 4563 & 1622 & 1371 \\
\hline 10 & 1433 & 808 & 814 & 883 & 1812 & 1517 & 1063 & 409 \\
\hline 11 & 808 & 357 & 352 & 174 & 210 & 261 & 275 & 149 \\
\hline 12+ & 1664 & 174 & 146 & 58 & 41 & 41 & 49 & 95 \\
\hline Total & 256374 & 248771 & 270388 & 245188 & 228007 & 174384 & 169700 & 161082 \\
\hline
\end{tabular}

\section*{Table 3.33 (Continued)}
; Gadget version 2.0.02 running on FLEXIDELL Wed Apr 30 15:25:23 2003
stocks cod.imm cod.mat
areas 0
fleets rusnorfleet gillnetfleet
Model catch in biomass (tons) at age
Year 19851986
Age
\begin{tabular}{rrr}
1 & 0 & 0 \\
2 & 0 & 0 \\
3 & 24890 & 17716 \\
4 & 57433 & 88382 \\
5 & 59750 & 124718 \\
6 & 62156 & 69413 \\
7 & 51639 & 49682 \\
8 & 24380 & 28907 \\
9 & 15070 & 9478 \\
10 & 14960 & 4748 \\
11 & 3509 & 3645 \\
\(12+\) & 2636 & 1369
\end{tabular}

Total 316423398057
Total+ 356218449765
(+ Also includes: thirdcountries overfishing)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 \\
\hline \multicolumn{9}{|l|}{Age} \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 4744 & 3815 & 2974 & 2803 & 12255 & 18738 & 13608 & 7594 \\
\hline 4 & 97100 & 20333 & 16424 & 11086 & 17667 & 48859 & 73427 & 77999 \\
\hline 5 & 155422 & 171539 & 40580 & 25306 & 28692 & 45023 & 94502 & 163166 \\
\hline 6 & 147286 & 103192 & 166960 & 32985 & 44239 & 43757 & 67286 & 129820 \\
\hline 7 & 57806 & 68267 & 54462 & 82220 & 46065 & 57249 & 51811 & 77701 \\
\hline 8 & 33960 & 20104 & 29917 & 16968 & 97894 & 52942 & 62059 & 50600 \\
\hline 9 & 16892 & 9733 & 7177 & 6956 & 16079 & 97510 & 53095 & 55915 \\
\hline 10 & 5075 & 4203 & 2865 & 1137 & 5604 & 13045 & 90509 & 45062 \\
\hline 11 & 2406 & 1157 & 1066 & 334 & 793 & 4042 & 11100 & 71663 \\
\hline \(12+\) & 2469 & 998 & 472 & 138 & 280 & 689 & 3840 & 11038 \\
\hline Total & 523160 & 403340 & 322896 & 179932 & 269567 & 381854 & 521236 & 690558 \\
\hline Total+ & 588529 & 451418 & 370953 & 232191 & 347244 & 550387 & 640895 & 860876 \\
\hline (+ Also & ludes & thirdcour & ntries & verfish & ng) & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Model catch in biomass (tons) at age} \\
\hline Year & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline \multicolumn{9}{|l|}{Age} \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 4569 & 3844 & 9607 & 14452 & 5804 & 4660 & 4483 & 1741 \\
\hline 4 & 43219 & 26755 & 34457 & 66612 & 77190 & 32695 & 32780 & 25145 \\
\hline 5 & 175870 & 109868 & 90598 & 75412 & 127910 & 130274 & 80983 & 79607 \\
\hline 6 & 198167 & 217647 & 177606 & 95719 & 65274 & 103607 & 144444 & 98515 \\
\hline 7 & 123762 & 166574 & 207620 & 114405 & 53476 & 34012 & 77990 & 118428 \\
\hline 8 & 67105 & 82828 & 119124 & 97698 & 47721 & 21892 & 20114 & 51717 \\
\hline 9 & 38438 & 38900 & 47897 & 44245 & 31621 & 15564 & 10348 & 10944 \\
\hline 10 & 39821 & 18372 & 19637 & 15069 & 11809 & 8131 & 5750 & 4748 \\
\hline 11 & 30246 & 17430 & 7813 & 5541 & 3561 & 2569 & 2425 & 2242 \\
\hline 12+ & 52410 & 32687 & 18577 & 6090 & 2366 & 1100 & 928 & 1128 \\
\hline Total & 773606 & 714904 & 732937 & 535243 & 426732 & 354502 & 380245 & 394214 \\
\hline Total+ & 910867 & 825742 & 823603 & 597785 & 478257 & 412978 & 436599 & 453243 \\
\hline (+ Also & cludes: & thirdcour & untries & verfis & \(\mathrm{ng})\) & & & \\
\hline
\end{tabular}

\section*{Table 3.33 (Continued)}
; Gadget version 2.0.02 running on FLEXIDELL Wed Apr 30 15:25:23 2003
stocks cod.imm cod.mat
areas 0
fleets rusnorfleet gillnetfleet
Observed catch in biomass (tons) at age
\begin{tabular}{lll}
Year 1985 & 1986
\end{tabular}

Age
\begin{tabular}{rrr}
1 & 0 & 0 \\
2 & 0 & 0 \\
3 & 17946 & 15200 \\
4 & 53607 & 73787 \\
5 & 48920 & 133381 \\
6 & 53388 & 65666 \\
7 & 48902 & 46521 \\
8 & 21186 & 21949 \\
9 & 10978 & 5997 \\
10 & 6995 & 5232 \\
11 & 1581 & 5068 \\
\(12+\) & 547 & 1422
\end{tabular}

Total 264050374222
Total+ 301279424322
(+ Also includes: thirdcountries overfishing)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Observed & catch in & biomass & (tons) & at age & & & & \\
\hline Year & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 \\
\hline \multicolumn{9}{|l|}{Age} \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 5086 & 4968 & 3624 & 1090 & 3597 & 16403 & 5869 & 4605 \\
\hline 4 & 101978 & 16313 & 14598 & 7070 & 12153 & 35478 & 53248 & 62856 \\
\hline 5 & 128842 & 151174 & 36498 & 15879 & 25920 & 41467 & 112199 & 156455 \\
\hline 6 & 133719 & 108829 & 123969 & 29412 & 42533 & 53720 & 76633 & 144955 \\
\hline 7 & 46379 & 69956 & 71372 & 74450 & 50742 & 55633 & 46655 & 98004 \\
\hline 8 & 21314 & 16648 & 23732 & 23544 & 83489 & 49966 & 40484 & 40920 \\
\hline 9 & 7454 & 9215 & 5923 & 4394 & 16170 & 78925 & 33172 & 31231 \\
\hline 10 & 4318 & 3431 & 2496 & 1229 & 2314 & 13899 & 69911 & 19171 \\
\hline 11 & 2247 & 1195 & 477 & 632 & 437 & 1976 & 10359 & 44036 \\
\hline 12+ & 2810 & 947 & 168 & 199 & 192 & 548 & 2563 & 7283 \\
\hline Total & 454146 & 382675 & 282856 & 157898 & 237546 & 348015 & 451093 & 609515 \\
\hline Total+ & 511736 & 428270 & 323683 & 207083 & 312608 & 514345 & 566914 & 770657 \\
\hline (+ Also & cludes: & thirdco & untries & overfish & \(\mathrm{ng})\) & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Observed & catch in & biomass & (tons) & t age & & & & \\
\hline Year & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline \multicolumn{9}{|l|}{Age} \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 3802 & 5644 & 7034 & 17085 & 5037 & 2354 & 2870 & 1105 \\
\hline 4 & 42832 & 27948 & 32452 & 76328 & 72745 & 27998 & 31511 & 22854 \\
\hline 5 & 165865 & 112514 & 92423 & 65520 & 120436 & 120413 & 84376 & 77875 \\
\hline 6 & 202254 & 210237 & 161292 & 79064 & 62387 & 93671 & 132569 & 106462 \\
\hline 7 & 107761 & 175919 & 201478 & 94788 & 44052 & 37826 & 70026 & 111213 \\
\hline 8 & 34062 & 50900 & 119086 & 114831 & 62122 & 28120 & 22413 & 43796 \\
\hline 9 & 15421 & 12384 & 23228 & 42175 & 48170 & 26052 & 9745 & 8650 \\
\hline 10 & 11505 & 6598 & 6372 & 8289 & 12502 & 11409 & 7930 & 3139 \\
\hline 11 & 7145 & 3449 & 3012 & 1869 & 2330 & 2012 & 2400 & 1344 \\
\hline \(12+\) & 15370 & 1874 & 1650 & 914 & 592 & 506 & 537 & 754 \\
\hline Total & 606017 & 607465 & 648026 & 500863 & 430373 & 350362 & 364376 & 377190 \\
\hline Total+ & 730289 & 710383 & 732930 & 561249 & 481619 & 405588 & 418744 & 431731 \\
\hline (+ Also & cludes: & thirdco & ntries & verfis & ng) & & & \\
\hline
\end{tabular}

Table 3.34 Fleksibest equivalent to standard prediction input table (3.28)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Year: 2003} \\
\hline Age & Stock size & Natural Mortality & Maturity ogive & Prop.Of F bef.spaw. & Prop.Of M bef.spaw. & Weight in stock & Exploit pattern & Weight in catch \\
\hline 3 & 906317 & 0.3275 & 0.0000 & 0.0000 & 0.0000 & 0.2600 & 0.0144 & 0.5400 \\
\hline 4 & 252196 & 0.2106 & 0.0000 & 0.0000 & 0.0000 & 0.6400 & 0.0722 & 0.9900 \\
\hline 5 & 217185 & 0.2000 & 0.0440 & 0.0000 & 0.0000 & 1.3600 & 0.2415 & 1.7000 \\
\hline 6 & 214599 & 0.2000 & 0.1640 & 0.0000 & 0.0000 & 1.9900 & 0.3475 & 2.3200 \\
\hline 7 & 100499 & 0.2000 & 0.4260 & 0.0000 & 0.0000 & 3.0100 & 0.4486 & 3.4000 \\
\hline 8 & 56590 & 0.2000 & 0.7340 & 0.0000 & 0.0000 & 4.4100 & 0.5414 & 4.9300 \\
\hline 9 & 14518 & 0.2000 & 0.9060 & 0.0000 & 0.0000 & 5.7900 & 0.6143 & 6.3700 \\
\hline 10 & 2066 & 0.2000 & 0.9680 & 0.0000 & 0.0000 & 7.1200 & 0.6660 & 7.7400 \\
\hline 11 & 644 & 0.2000 & 1.0000 & 0.0000 & 0.0000 & 8.6000 & 0.7062 & 9.2200 \\
\hline 12+ & 299 & 0.2000 & 1.0000 & 0.0000 & 0.0000 & 11.3700 & 0.7479 & 11.9300 \\
\hline Unit & Thousands & - & - & - & - & Kilograms & - & Kilograms \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Year: 2004} \\
\hline Age & Stock size & \begin{tabular}{l}
Natural \\
Mortality
\end{tabular} & Maturity ogive & Prop.Of F bef.spaw. & Prop.Of M bef.spaw. & Weight in stock & Exploit pattern & Weight in catch \\
\hline 3 & 307870 & 0.3485 & 0.0000 & 0.0000 & 0.0000 & 0.2600 & 0.0144 & 0.5400 \\
\hline 4 & 643869 & 0.2165 & 0.0000 & 0.0000 & 0.0000 & 0.6400 & 0.0736 & 1.0100 \\
\hline 5 & 184496 & 0.2000 & 0.0240 & 0.0000 & 0.0000 & 1.1800 & 0.1997 & 1.5400 \\
\hline 6 & 138403 & 0.2000 & 0.2010 & 0.0000 & 0.0000 & 2.1500 & 0.3694 & 2.4700 \\
\hline 7 & 123884 & 0.2000 & 0.4110 & 0.0000 & 0.0000 & 2.9500 & 0.4444 & 3.3400 \\
\hline 8 & 52522 & 0.2000 & 0.7010 & 0.0000 & 0.0000 & 4.2100 & 0.5292 & 4.7100 \\
\hline 9 & 26957 & 0.2000 & 0.9080 & 0.0000 & 0.0000 & 5.8200 & 0.6146 & 6.4100 \\
\hline 10 & 6435 & 0.2000 & 0.9780 & 0.0000 & 0.0000 & 7.3600 & 0.6744 & 7.9800 \\
\hline 11 & 864 & 0.2000 & 1.0000 & 0.0000 & 0.0000 & 8.8800 & 0.7129 & 9.5000 \\
\hline 12+ & 376 & 0.2000 & 1.0000 & 0.0000 & 0.0000 & 11.4500 & 0.7490 & 12.0000 \\
\hline Unit & Thousands & - & - & - & - & Kilograms & - & Kilograms \\
\hline
\end{tabular}
\begin{tabular}{|c|r|r|r|r|r|r|r|r|}
\hline \multicolumn{9}{|c|}{ Year: 2005 } \\
\hline Age & Stock size & \begin{tabular}{l}
Natural \\
Mortality
\end{tabular} & \begin{tabular}{l}
Maturity \\
ogive
\end{tabular} & \begin{tabular}{l}
Prop.Of F \\
bef.spaw.
\end{tabular} & \begin{tabular}{l}
Prop.Of M \\
bef.spaw.
\end{tabular} & \begin{tabular}{l}
Weight in \\
stock
\end{tabular} & \begin{tabular}{l}
Exploit \\
pattern
\end{tabular} & \begin{tabular}{l}
Weight in \\
catch
\end{tabular} \\
\hline 3 & 663720 & 0.3567 & 0.0000 & 0.0000 & 0.0000 & 0.2600 & 0.0144 & 0.5400 \\
\hline 4 & 214179 & 0.2206 & 0.0000 & 0.0000 & 0.0000 & 0.6400 & 0.0741 & 1.0100 \\
\hline 5 & 467842 & 0.2000 & 0.0250 & 0.0000 & 0.0000 & 1.1800 & 0.2005 & 1.5500 \\
\hline 6 & 121850 & 0.2000 & 0.1450 & 0.0000 & 0.0000 & 1.9100 & 0.3370 & 2.2300 \\
\hline 7 & 78235 & 0.2000 & 0.4660 & 0.0000 & 0.0000 & 3.1600 & 0.4609 & 3.5500 \\
\hline 8 & 65021 & 0.2000 & 0.6890 & 0.0000 & 0.0000 & 4.1400 & 0.5252 & 4.6400 \\
\hline 9 & 25327 & 0.2000 & 0.8890 & 0.0000 & 0.0000 & 5.5900 & 0.6034 & 6.1800 \\
\hline 10 & 11945 & 0.2000 & 0.9770 & 0.0000 & 0.0000 & 7.3900 & 0.6740 & 8.0100 \\
\hline 11 & 2675 & 0.2000 & 1.0000 & 0.0000 & 0.0000 & 9.1600 & 0.7189 & 9.7700 \\
\hline \(12+\) & 492 & 0.2000 & 1.0000 & 0.0000 & 0.0000 & 11.6700 & 0.7523 & 12.2100 \\
\hline Unit & Thousands & - & - & - & - & Kilograms & - & Kilograms \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline | & \multicolumn{5}{|c|}{Year: 2003} & 1 & \multicolumn{4}{|c|}{Year: 2004} & \multicolumn{3}{|c|}{Year: 2005} \\
\hline | & F & & Erence | & Stork & 3p.stock & Catoh inl & F | & | Reference | & Stork & sp.stock & Catoh inl & Stook | & Sp.stook| \\
\hline 1 & Factor & & F & biomass & biomass & weight | & Fantor I & 1 F & biomass | & biomass | & tae ight & biomess | & biomess | \\
\hline I & 0.7997 & & 0.476 .51 & 17826481 & 5650301 & 50.5 .53 .51 & 0.00001 & 10.00001 & 18113841 & 6377481 & -1 & 24815431 & 10815471 \\
\hline I & . & 1 & - 1 & I & - & 1 & 0.05001 & 10.02971 & . | & 6377481 & 408971 & 24346751 & 10473281 \\
\hline 1 & . & I & | & I & - 1 & I & 0.10001 & 10.0 .5951 & - I & 6377481 & 80.5451 & 23891961 & 10142711 \\
\hline 1 & . & 1 & I & I & - I & 1 & 0.15001 & 10.08921 & - I & 6377481 & 1189881 & 23450.591 & 9823341 \\
\hline I & - & | & | & I & . 1 & . 1 & 0.20001 & 10.11881 & . 1 & 6377481 & 1562661 & 23022201 & 9514761 \\
\hline 1 & . & 1 & | & I & - 1 & 1 & 0.25001 & | 0.14841 & 1 & 6377481 & 1924191 & 22606331 & 9216601 \\
\hline 1 & . & I & | & I & - 1 & 1 & 0.30001 & 10.17811 & - 1 & 6377481 & 2274841 & 22202591 & 8928481 \\
\hline 1 & - & 1 & | & - I & - 1 & I & 0.35001 & 10.20761 & - I & 6377481 & 2614991 & 21810.561 & 8650041 \\
\hline 1 & . & 1 & | & - I & - 1 & 1 & 0.40001 & 10.2371 & - I & 6377481 & 2944991 & 21429861 & 8380931 \\
\hline 1 & . & 1 & , & - I & - 1 & - & 0.45001 & 10.26661 & - I & 6377481 & 3265191 & 21060121 & 8120841 \\
\hline 1 & . & I & , & - I & - 1 & 1 & 0.50001 & 10.29611 & - I & 6377481 & 3575911 & 207009.51 & 7869431 \\
\hline 1 & . & 1 & | & - I & - 1 & I & 0.55001 & 10.325 .5 & - I & 6377481 & 3877471 & 20352041 & 7626401 \\
\hline 1 & . & 1 & I & - I & - I & 1 & 0.60001 & 10.35481 & - I & 6377481 & 4170191 & 20013041 & 7391461 \\
\hline 1 & - & 1 & | & 1 & - 1 & 1 & 0.65001 & 10.38421 & , & 6377481 & 44.54331 & 19683621 & 7164321 \\
\hline 1 & - & I & I & 1 & - I & 1 & 0.70001 & 10.41351 & , & 6377481 & 4730191 & 19363471 & 6944711 \\
\hline 1 & . & I & - 1 & I & - 1 & I & 0.75001 & 10.44281 & & 6377481 & 4998061 & 19052301 & 6732361 \\
\hline 1 & . & 1 & - 1 & I & . 1 & 1 & 0.80001 & 10.47211 & & 6377481 & 5258201 & 18749801 & 6527011 \\
\hline 1 & . & 1 & - 1 & - I & - 1 & I & 0.85001 & 10.50131 & - 1 & 6377481 & 5.510851 & 18455711 & 6328431 \\
\hline 1 & - & 1 & - 1 & I & - 1 & 1 & 0.90001 & 10.530 .51 & - I & 6377481 & . 57.56281 & 18169741 & 6136371 \\
\hline 1 & . & 1 & - 1 & - I & - 1 & , & 0.95001 & 10.55961 & - I & 6377481 & 5994701 & 17891641 & 5950611 \\
\hline 1 & . & I & - 1 & - I & - 1 & , & 1.00001 & 10.58871 & I & 6377481 & 6226361 & 17621151 & 5770941 \\
\hline 1 & . & 1 & I & I & I & I & 1.05001 & 10.61781 & & 6377481 & 64.51461 & 17358041 & 5.597131 \\
\hline 1 & . & 1 & , & I & I & 1 & 1.10001 & 10.64691 & - I & 6377481 & 6670241 & 17102061 & 5428981 \\
\hline 1 & . & 1 & , & I & I & 1 & 1.15001 & 10.67591 & - I & 6377481 & 6882891 & 16853001 & 5266311 \\
\hline 1 & . & 1 & | & I & | & 1 & 1.20001 & 10.70491 & , & 6377481 & 7089601 & 16610631 & 5108911 \\
\hline 1 & . & 1 & | & I & I & 1 & 1.25001 & 10.73391 & - I & 6377481 & 7290.581 & 16374731 & 4956611 \\
\hline 1 & . & 1 & , & I & I & 1 & 1.30001 & 10.76271 & 1 & 6377481 & 7486001 & 1614512 l & 4809241 \\
\hline 1 & . & I & - 1 & I & I & 1 & 1.35001 & 10.79171 & 1 & 6377481 & 76760.51 & 15921.581 & 4666621 \\
\hline 1 & . & I & - 1 & I & I & 1 & 1.40001 & 10.820 .51 & 1 & 6377481 & 7860901 & 15703931 & 4.528 .591 \\
\hline 1 & . & 1 & I & I & , & 1 & 1.45001 & 10.84931 & 1 & 6377481 & 8040701 & 1.5491991 & 4394991 \\
\hline 1 & . & 1 & I & I & I & 1 & 1.50001 & 10.87811 & I & 6377481 & 821.5631 & 1.5285 .571 & 4265681 \\
\hline
\end{tabular}

Figure 3.1 ICES Standard plots for Northeast Arctic cod (Subareas I and II).

Figure 3.1 Continued ICES Standard plots for Northeast Arctic cod (Subareas I and II).

Figure 3.2 Maturity ogives of cod from Norwegian (squares) and Russian (diamonds) sources for cod age 5 to 10.

Figure 3.3 The difference between the proportion mature at age estimated for males and females combined and the proportion mature at age estimated for female only plotted by age for the years 1985 to 2001; and b) the proportion of females by age for years 1985 to 2001.

Figure 3.4 The percentage of mature cod that are female plotted by age for 1959 to 2000.

Figure 3.5 Temporal trends in the proportion of female-only SSB in the SSB as estimated for Russian (diamonds) and Norwegian (squares) data. The mean age of the mature stock is also shown (line and triangles).

Figure 3.6 Scatterplot matrix showing the relationship between weight-at-age and proportion mature-at-age for years 1980 to 2002 and age-classes 3-12. LOESS smoothers (span=1) are indicated by the solid line.

Figure 3.7 The bivariate relationship between liver weight \((\mathrm{g})\) of a 70 cm cod and the proportion mature at age 7 for the years 1984 to 2001. Mean length of age 7 cod during this time period varied between a minimum of 66.3 cm in 1990 and a maximum of 78.6 cm in 1993 thus including the 70 cm value used to estimate liver weights (from the Russian liver condition database).

Figure 3.8
Single fleet tuning results.

Fig 3.9a. Northeast arctic cod, M2 from cannibalism vs. capelin stock size

\section*{\(\rightarrow-\mathrm{M} 2\) age 2
\(\rightarrow-\mathrm{M}\) 2 age 3
\(\rightarrow-\mathrm{M} 2\) age 1
\(\rightarrow-\) Capelin}

Fig 3.9b. NEA cod. Z from the assessment vs. survey mortality (Norwegian bottom trawl winter survey)

Figure 3.9 Temporal trends in mortality.

Figure 3.10
Retrospective plots.

Figure 3.11a Medium-term projections, assuming \(\mathrm{F}=0.25\).

Figure 3.11b Medium-term projections, assuming \(\mathrm{F}=0.40\).

Figure 3.11c Medium-term projections, assuming \(\mathrm{F}=0.70\).

Figure 3.12 North-East Arctic cod. Residual log catchability by fleet and age from the XSA output in the 2003 assessment.

Figure 3.13 North-East Arctic cod. Residual log catchability by fleet and age from the XSA output in the 2003 assessment.

Figure 3.14 North-East Arctic cod. Residual log catchability by fleet and age from the XSA output in the 2003 assessment.

Figure 3.15 NEA cod. Stock numbers by age relative to the average for the period 1996-2002 for the vpa and the Joint winter bottom trawl survey.

Figure 3.16
NEA cod. Survey mortalities in the Joint winter bottom trawl survey, compared to vpa total mortalities.

Figure 3.17a stock biomass in keyrun, and XSA

Figure 3.17b ssb in keyrun and XSA

Figure 3.17c F5-10 in keyrun and XSA

Figure 3.17d
Catch in biomass in keyrun, and observed catches

Figure 3.17e Recruitment (number of 3 year old) in keyrun and XSA

Figure3.18a Observed and modelled survey indices

Figure3.18b
Unweighted likelihood contribution from surveys

rustraulsur-85-62

Figure3.18c Observed and modelled survey indices

Figure3.18d Unweighted likelihood contribution from surveys

Figure3.18e Observed and modelled catches

Figure3.18f Unweighted likelihood contribution from catches

Figure 3.19a Retrospective pattern for stock biomass in keyrun

Figure 3.19b Retrospective pattern for SSB in keyrun

Figure 3.19c Retrospective pattern for F5-10 in keyrun

Figure 3.19d Retrospective pattern for Catch in biomass in key run

Figure 3.19e Retrospective pattern for recruitment in keyrun

Figure 3.20a Prediction of stock biomass

Figure 3.20b Prediction of SSB

Figure 3.20c F 5-10 in predictions

Figure 3.20d Prediction of catch in biomass

Figure 3.20e Recruitment in prediction

Figure 3.20f Prediction of stock numbers

Figure 3.21 Comparison of F, SSB and TSB for Fleksibest and XSA prediction, both assuming a fixed annual catch \(=500,000 \mathrm{t}\) for the period 2003-2007.

Table A1 North-East Arctic COD. Catch per unit effort.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{3}{|c|}{Sub-area II} & \multicolumn{3}{|c|}{Division IIb} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { Division IIa } \\
& \hline \text { Norway }^{2}
\end{aligned}
\]} & & \multirow[t]{2}{*}{Total Norway} \\
\hline & Norway \({ }^{2}\) & \(\mathrm{UK}^{3}\) & Russia \({ }^{4}\) & Norway \({ }^{2}\) & \(\mathrm{UK}^{3}\) & Russia \({ }^{4}\) & & \(\mathrm{UK}^{3}\) & \\
\hline 1960 & - & 0.075 & 0.42 & - & 0.105 & 0.31 & - & 0.067 & \\
\hline 1961 & - & 0.079 & 0.38 & - & 0.129 & 0.44 & - & 0.058 & \\
\hline 1962 & - & 0.092 & 0.59 & - & 0.133 & 0.74 & - & 0.066 & \\
\hline 1963 & - & 0.085 & 0.60 & - & 0.098 & 0.55 & - & 0.066 & \\
\hline 1964 & - & 0.056 & 0.37 & - & 0.092 & 0.39 & - & 0.070 & \\
\hline 1965 & - & 0.066 & 0.39 & - & 0.109 & 0.49 & - & 0.066 & \\
\hline 1966 & - & 0.074 & 0.42 & - & 0.078 & 0.19 & - & 0.067 & \\
\hline 1967 & - & 0.081 & 0.53 & - & 0.106 & 0.87 & - & 0.052 & \\
\hline 1968 & - & 0.110 & 1.09 & - & 0.173 & 1.21 & - & 0.056 & \\
\hline 1969 & - & 0.113 & 1.00 & - & 0.135 & 1.17 & - & 0.094 & \\
\hline 1970 & - & 0.100 & 0.80 & - & 0.100 & 0.80 & - & 0.066 & \\
\hline 1971 & - & 0.056 & 0.43 & - & 0.071 & 0.16 & - & 0.062 & \\
\hline 1972 & 0.90 & 0.047 & 0.34 & 0.59 & 0.051 & 0.18 & 1.08 & 0.055 & \\
\hline 1973 & 1.05 & 0.057 & 0.56 & 0.43 & 0.054 & 0.57 & 0.71 & 0.043 & \\
\hline 1974 & 1.75 & 0.079 & 0.86 & 1.94 & 0.106 & 0.77 & 0.19 & 0.028 & \\
\hline 1975 & 1.82 & 0.077 & 0.94 & 1.67 & 0.100 & 0.43 & 1.36 & 0.033 & \\
\hline 1976 & 1.69 & 0.060 & 0.84 & 1.20 & 0.081 & 0.30 & 1.69 & 0.035 & \\
\hline 1977 & 1.54 & 0.052 & 0.63 & 0.91 & 0.056 & 0.25 & 1.16 & 0.044 & 1.17 \\
\hline 1978 & 1.37 & 0.062 & 0.52 & 0.56 & 0.044 & 0.08 & 1.12 & 0.037 & 0.94 \\
\hline 1979 & 0.85 & 0.046 & 0.43 & 0.62 & - & 0.06 & 1.06 & 0.042 & 0.85 \\
\hline 1980 & 1.47 & - & 0.49 & 0.41 & & 0.16 & 1.27 & & 1.23 \\
\hline & & & & & Spain \({ }^{5}\) & & & \[
\text { Russia }{ }^{4}
\] & \\
\hline 1981 & 1.42 & - & 0.41 & (0.96) & - & 0.07 & 1.02 & 0.35 & 1.21 \\
\hline 1982 & 1.30 & - & 0.35 & (& 0.86 & 0.26 & 1.01 & 0.34 & 1.09 \\
\hline 1983 & 1.58 & - & 0.31 & (1.31) & 0.92 & 0.36 & 1.05 & 0.38 & 1.11 \\
\hline 1984 & 1.40 & - & 0.45 & 1.20 & 0.78 & 0.35 & 0.73 & 0.27 & 0.96 \\
\hline 1985 & 1.86 & - & 1.04 & 1.51 & 1.37 & 0.50 & 0.90 & 0.39 & 1.29 \\
\hline 1986 & 1.97 & - & 1.00 & 2.39 & 1.73 & 0.84 & 1.36 & 1.14 & 1.70 \\
\hline 1987 & 1.77 & - & 0.97 & 2.00 & 1.82 & 1.05 & 1.73 & 0.67 & 1.77 \\
\hline 1988 & 1.58 & - & 0.66 & 1.61 & (1.36) & 0.54 & 0.97 & 0.55 & 1.03 \\
\hline 1989 & 1.49 & - & 0.71 & 0.41 & 2.70 & 0.45 & 0.78 & 0.43 & 0.76 \\
\hline 1990 & 1.35 & - & 0.70 & 0.39 & 2.69 & 0.80 & 0.38 & 0.60 & 0.49 \\
\hline 1991 & 1.38 & - & 0.67 & 0.29 & 4.96 & 0.76 & 0.50 & 0.90 & 0.44 \\
\hline 1992 & 2.19 & - & 0.79 & 3.06 & 2.47 & 0.23 & 0.98 & 0.65 & 1.29 \\
\hline 1993 & 2.33 & - & 0.85 & 2.98 & 3.38 & 1.00 & 1.74 & 1.03 & 1.87 \\
\hline 1994 & 2.50 & - & 1.01 & 2.82 & 1.44 & 1.14 & 1.27 & 0.86 & 1.59 \\
\hline 1995 & 1.57 & - & 0.59 & 2.73 & 1.65 & 1.10 & 1.00 & 1.01 & 1.92 \\
\hline 1996 & & & 0.74 & & 1.11 & 0.85 & & 0.99 & 1.81 \\
\hline 1997 & & & 0.61 & & & 0.57 & & 0.74 & 1.36 \\
\hline 1998 & & & 0.37 & & & 0.29 & & 0.40 & 0.83 \\
\hline 1999 & & & 0.29 & & & 0.34 & & 0.39 & 0.74 \\
\hline 2000 & & & 0.34 & & & 0.37 & & 0.53 & 0.92 \\
\hline 2001 & & & 0,46 & & & 0,46 & & 0,69 & 1.21 \\
\hline \(2002{ }^{1}\) & & & 0,58 & & & 0,66 & & 0,57 & 1.34 \\
\hline
\end{tabular}
\({ }^{1}\) Preliminary figures.
\({ }^{2}\) Norwegian data - t per 1,000 tonnage*hrs fishing.
\({ }^{3}\) United Kingdom data - t per 100 tonnage*hrs fishing.
\({ }^{4}\) Russian data - t per hr fishing.
5panish data - t per hr fishing.
\begin{tabular}{lcc}
\hline Period & Sub-area I & Divisions IIa and IIb \\
\hline \(1960-1973\) & RT & RT \\
\(1974-1980\) & PST & RT \\
\(1981-\) & PST & PST \\
\hline
\end{tabular}

\section*{Vessel type:}

RT \(=\) side trawlers, \(800-1000 \mathrm{HP}\).
\(\mathrm{PST}=\) stern trawlers, up to 2000 HP .

Table A2. North-east Arctic COD. Abundance indices (millions) from the Norwegian acoustic survey in the Barents Sea in January-March. New TS and rock-hopper gear (1981-1988 back-calculated from bobbins gear). Corrected for length-dependent effective spread of trawl.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{4}{|c|}{Age} & & & & & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{9 10+}} & \multirow[b]{2}{*}{Total} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & & \\
\hline 1981 & 8.0 & 82.0 & 40.0 & 63.0 & 106.0 & 103.0 & 16.0 & 3.0 & 1.0 & 1.0 & 423.0 \\
\hline 1982 & 4.0 & 5.0 & 49.0 & 43.0 & 40.0 & 26.0 & 28.0 & 2.0 & + & 0.0 & 197.0 \\
\hline 1983 & 60.5 & 2.8 & 5.3 & 14.3 & 17.4 & 11.1 & 5.6 & 3.0 & 0.5 & 0.1 & 120.5 \\
\hline 1984 & 745.4 & 146.1 & 39.1 & 13.6 & 11.3 & 7.4 & 2.8 & 0.2 & 0.0 & 0.0 & 966.0 \\
\hline 1985 & 69.1 & 446.3 & 153.0 & 141.6 & 19.7 & 7.6 & 3.3 & 0.2 & 0.1 & 0.0 & 840.9 \\
\hline 1986 & 353.6 & 243.9 & 499.6 & 134.3 & 65.9 & 8.3 & 2.2 & 0.4 & 0.1 & 0.0 & 1308.2 \\
\hline 1987 & 1.6 & 34.1 & 62.8 & 204.9 & 41.4 & 10.4 & 1.2 & 0.2 & 0.7 & 0.0 & 357.3 \\
\hline 1988 & 2.0 & 26.3 & 50.4 & 35.5 & 56.2 & 6.5 & 1.4 & 0.2 & 0.0 & 0.0 & 178.4 \\
\hline 1989 & 7.5 & 8.0 & 17.0 & 34.4 & 21.4 & 53.8 & 6.9 & 1.0 & 0.1 & 0.1 & 150.1 \\
\hline 1990 & 81.1 & 24.9 & 14.8 & 20.6 & 26.1 & 24.3 & 39.8 & 2.4 & 0.1 & 0.0 & 234.1 \\
\hline 1991 & 181.0 & 219.5 & 50.2 & 34.6 & 29.3 & 28.9 & 16.9 & 17.3 & 0.9 & 0.0 & 578.7 \\
\hline 1992 & 241.4 & 562.1 & 176.5 & 65.8 & 18.8 & 13.2 & 7.6 & 4.5 & 2.8 & 0.2 & 1092.9 \\
\hline \(1993{ }^{\text { }}\) & 1074.0 & 494.7 & 357.2 & 191.1 & 108.2 & 20.8 & 8.1 & 5.0 & 2.3 & 2.5 & 2264.0 \\
\hline \(1994{ }^{\text { }}\) & 858.3 & 577.2 & 349.8 & 404.5 & 193.7 & 63.6 & 12.1 & 3.7 & 1.7 & 0.9 & 2465.4 \\
\hline \(1995{ }^{\text { }}\) & 2619.2 & 292.9 & 166.2 & 159.8 & 210.1 & 68.8 & 16.7 & 2.1 & 0.7 & 1.0 & 3537.4 \\
\hline \(1996{ }^{\text { }}\) & 2396.0 & 339.8 & 92.9 & 70.5 & 85.8 & 74.7 & 20.6 & 2.8 & 0.3 & 0.4 & 3083.8 \\
\hline \(1997{ }^{\text {1,2 }}\) & 1623.5 & 430.5 & 188.3 & 51.7 & 49.3 & 37.2 & 22.3 & 4.0 & 0.7 & 0.1 & 2407.5 \\
\hline \(1998{ }^{1,2}\) & 3401.3 & 632.9 & 427.7 & 182.6 & 42.3 & 33.5 & 26.9 & 13.6 & 1.7 & 0.3 & 4762.8 \\
\hline 1999 & 358.3 & 304.3 & 150.0 & 96.4 & 45.1 & 10.3 & 6.4 & 4.1 & 0.8 & 0.3 & 976.1 \\
\hline 2000 & 154.1 & 221.4 & 245.2 & 158.9 & 142.1 & 45.4 & 9.6 & 4.7 & 3.0 & 1.1 & 985.5 \\
\hline 2001 & 629.9 & 63.9 & 138.2 & 171.6 & 77.3 & 39.7 & 11.8 & 1.4 & 0.5 & 0.2 & 1134.5 \\
\hline 2002 & 18.2 & 215.5 & 69.3 & 112.2 & 102.0 & 47.0 & 18.0 & 3.0 & 0.4 & 0.3 & 585.9 \\
\hline 2003 & 1693.9 & 61.5 & 303.4 & 114.4 & 129.0 & 114.9 & 34.3 & 7.7 & 1.9 & 0.5 & 2461.5 \\
\hline \multicolumn{12}{|l|}{\begin{tabular}{l}
\({ }^{1}\) Survey covered a larger area \\
\({ }^{2}\) Adjusted indices
\end{tabular}} \\
\hline
\end{tabular}

Table A3. North-East Arctic COD. Abundance indices (millions) from the Norwegian bottom trawl survey in the Barents Sea in January-March. Rock-hopper gear (1981-1988 back-calculated from bobbins gear). Corrected for length-dependent effective spread of trawl.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Age} \\
\hline Year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & & Total \\
\hline 1981 & 4.6 & 34.3 & 16.4 & 23.3 & 40 & 38.4 & 4.8 & 1 & 0.3 & 0 & 163.1 \\
\hline 1982 & 0.8 & 2.9 & 28.3 & 27.7 & 23.6 & 15.5 & 16 & 1.4 & 0.2 & 0 & 116.4 \\
\hline 1983 & 152.9 & 13.4 & 25.0 & 52.3 & 43.3 & 17.0 & 5.8 & 3.2 & 1.0 & 0.1 & 313.9 \\
\hline 1984 & 2755.0 & 379.1 & 97.5 & 28.3 & 21.4 & 11.7 & 4.1 & 0.4 & 0.1 & 0.1 & 3297.7 \\
\hline 1985 & 49.5 & 660.0 & 166.8 & 126.0 & 19.9 & 7.7 & 3.3 & 0.2 & 0.1 & 0.1 & 1033.6 \\
\hline 1986 & 665.8 & 399.6 & 805.0 & 143.9 & 64.1 & 8.3 & 1.9 & 0.3 & 0.0 & 0.0 & 2089.1 \\
\hline 1987 & 30.7 & 445.0 & 240.4 & 391.1 & 54.3 & 15.7 & 2.0 & 0.5 & 0.0 & 0.0 & 1179.8 \\
\hline 1988 & 3.2 & 72.8 & 148.0 & 80.5 & 173.3 & 20.5 & 3.6 & 0.5 & 0.0 & 0.0 & 502.5 \\
\hline 1989 & 8.2 & 15.6 & 46.4 & 75.9 & 37.8 & 90.2 & 9.8 & 0.9 & 0.1 & 0.1 & 285.0 \\
\hline 1990 & 207.2 & 56.7 & 28.4 & 34.9 & 34.6 & 20.6 & 27.2 & 1.6 & 0.4 & 0.0 & 411.5 \\
\hline 1991 & 460.5 & 220.1 & 45.9 & 33.7 & 25.7 & 21.5 & 12.2 & 12.7 & 0.6 & 0.0 & 832.7 \\
\hline 1992 & 126.6 & 570.9 & 158.3 & 57.7 & 17.8 & 12.8 & 7.7 & 4.3 & 2.7 & 0.2 & 959.0 \\
\hline \(1993{ }^{\text { }}\) & 534.5 & 420.4 & 273.9 & 140.1 & 72.5 & 15.8 & 6.2 & 3.9 & 2.2 & 2.4 & 1471.9 \\
\hline \(1994{ }^{1}\) & 1035.9 & 535.8 & 296.5 & 310.2 & 147.4 & 50.6 & 9.3 & 2.4 & 1.6 & 1.3 & 2391.0 \\
\hline \(1995{ }^{\text { }}\) & 5253.1 & 541.5 & 274.6 & 241.4 & 255.9 & 76.7 & 18.5 & 2.4 & 0.8 & 1.1 & 6666.2 \\
\hline \(1996{ }^{1}\) & 5768.5 & 707.6 & 170.0 & 115.4 & 137.2 & 106.1 & 24.0 & 2.9 & 0.4 & 0.5 & 7032.5 \\
\hline \(1997{ }^{\text {1,2 }}\) & 4815.5 & 1045.1 & 238.0 & 64.0 & 70.4 & 52.7 & 28.3 & 5.7 & 0.9 & 0.5 & 6321.1 \\
\hline \(1998{ }^{1,2}\) & 2418.5 & 643.7 & 396.0 & 181.3 & 36.5 & 25.9 & 17.8 & 8.6 & 1.0 & 0.5 & 3729.8 \\
\hline \(1999{ }^{1}\) & 484.6 & 340.1 & 211.8 & 173.2 & 58.1 & 13.4 & 6.5 & 5.1 & 1.2 & 0.4 & 1294.4 \\
\hline 2000 & 128.8 & 248.3 & 235.2 & 132.1 & 108.3 & 26.9 & 4.3 & 2.0 & 1.2 & 0.4 & 887.5 \\
\hline 2001 & 657.9 & 76.6 & 191.1 & 182.8 & 83.4 & 38.2 & 8.9 & 1.1 & 0.4 & 0.2 & 1240.6 \\
\hline 2002 & 35.3 & 443.9 & 88.3 & 135.0 & 109.6 & 42.5 & 15.1 & 2.4 & 0.3 & 0.2 & 872.6 \\
\hline 2003 & 2991.7 & 79.1 & 377.0 & 129.7 & 91.1 & 67.3 & 18.3 & 4.9 & 1.0 & 0.2 & 3760.3 \\
\hline \multicolumn{12}{|l|}{\begin{tabular}{l}
\({ }^{1}\) Survey covered a larger area \\
\({ }^{2}\) Adjusted indices
\end{tabular}} \\
\hline
\end{tabular}

Table A4. North East Arctic COD. Abundance at age (millions) from the Norwegian acoustic survey on the spawning grounds off Lofoten in March-April.
\begin{tabular}{lrrrrrrrrr}
Year & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \(12+\) & Sum \\
1985 & 0.68 & 7.45 & 12.36 & 3.11 & 1.15 & 1.01 & 0.45 & & 26.21 \\
1986 & 2.49 & 3.30 & 5.54 & 2.71 & 0.16 & & 0.40 & 0.08 & 14.68 \\
1987 & 8.77 & 7.04 & 0.23 & 2.83 & 0.04 & & 0.03 & 0.03 & 18.97 \\
1988 & 1.57 & 4.43 & 2.56 & 0.05 & 0.01 & 0.05 & & & 8.67 \\
1989 & 0.04 & 13.20 & 9.73 & 2.20 & 0.38 & 0.12 & & 0.06 & 25.73 \\
1990 & 0.13 & 2.60 & 27.02 & 4.85 & 0.49 & 0.32 & & & 35.41 \\
1991 & 0.00 & 5.00 & 19.83 & 32.67 & 2.75 & 0.19 & 0.17 & & 60.61 \\
1992 & 2.74 & 5.23 & 20.80 & 20.87 & 79.60 & 4.17 & 1.61 & 0.22 & 135.24 \\
1993 & 4.87 & 14.58 & 17.35 & 20.22 & 25.44 & 41.95 & 4.74 & 0.71 & 129.86 \\
1994 & 23.78 & 25.85 & 10.36 & 8.21 & 7.68 & 3.49 & 17.53 & 2.61 & 99.51 \\
1995 & 6.49 & 35.24 & 12.34 & 2.27 & 3.60 & 2.56 & 2.15 & 7.96 & 72.61 \\
1996 & 1.41 & 14.43 & 24.00 & 3.65 & 0.79 & 0.25 & 0.80 & 1.30 & 46.63 \\
1997 & 0.40 & 4.95 & 27.56 & 16.50 & 1.50 & 0.42 & & 0.75 & 52.08 \\
1998 & 0.05 & 0.30 & 7.06 & 11.05 & 3.24 & 0.51 & 0.18 & 0.02 & 22.41 \\
1999 & 0.25 & 1.92 & 4.84 & 14.58 & 8.42 & 0.75 & 0.19 & 0.10 & 31.05 \\
2000 & 3.61 & 3.85 & 3.25 & 2.15 & 2.23 & 0.45 & 0.39 & 0.05 & 15.98 \\
2001 & 3.91 & 15.73 & 7.17 & 0.84 & 0.30 & 0.31 & 0.23 & 0.06 & 28.55 \\
2002 & 1.53 & 12.06 & 11.71 & 4.27 & 0.64 & 0.18 & 0.23 & 0.01 & 30.61 \\
2003 & 3.01 & 34.31 & 34.90 & 15.36 & 2.16 & 0.14 & 0.04 & 0.02 & 89.95
\end{tabular}

Table A5. North-east Arctic COD.
Abundance indices (millions) from the Norwegian Bottom Trawl
survey in the Svalbard area in September-October (1983-1994) and July-August (1995-2002).
Swept area estimates of number of fish at each age. Rock-hopper gear.
(1983-1988 back-calculated from bobbins gear). Corrected for length-dependent effective spread of trawl.
\begin{tabular}{lrrrrrrrrrr}
\\
Year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \(9+\) & Total \\
1983 & 191.2 & 17.0 & 4.3 & 4.4 & 1.3 & 1.1 & 0.5 & 0.8 & 0.2 & 220.8 \\
1984 & 598.4 & 106.8 & 6.3 & 3.3 & 3.4 & 1.3 & 0.3 & 0.3 & 0.3 & 720.3 \\
1985 & 280.6 & 447.7 & 81.1 & 21.5 & 9.8 & 3.9 & 0.7 & 0.3 & 0.2 & 845.8 \\
1986 & 49.8 & 182.3 & 260.6 & 32.5 & 11.0 & 1.9 & 0.7 & 0.2 & 0.1 & 539.1 \\
1987 & 48.8 & 117.7 & 147.1 & 137.2 & 20.2 & 5.0 & 0.5 & 0.3 & 0.1 & 476.7 \\
1988 & 2.6 & 26.8 & 30.8 & 24.4 & 37.2 & 7.1 & 1.5 & 0.1 & 0.1 & 130.6 \\
1989 & 4.0 & 1.4 & 12.1 & 11.3 & 9.3 & 14.7 & 3.0 & 0.4 & 0.1 & 56.3 \\
1990 & 95.0 & 10.3 & 7.0 & 10.9 & 17.0 & 11.4 & 17.4 & 1.6 & 0.3 & 170.8 \\
1991 & 144.5 & 88.0 & 22.4 & 6.1 & 9.5 & 10.2 & 8.5 & 13.2 & 1.5 & 303.7 \\
1992 & 168.0 & 125.6 & 81.8 & 37.9 & 8.4 & 3.9 & 4.4 & 2.1 & 4.5 & 436.6 \\
1993 & 157.9 & 153.1 & 116.0 & 44.8 & 16.8 & 3.4 & 2.4 & 1.5 & 4.1 & 499.9 \\
1994 & 105.6 & 149.3 & 103.1 & 48.5 & 39.7 & 18.6 & 4.3 & 1.6 & 3.0 & 473.7 \\
1995 & 465.2 & 67.1 & 101.4 & 80.8 & 82.5 & 43.1 & 14.6 & 3.2 & 1.4 & 859.2 \\
1996 & 553.2 & 195.6 & 60.0 & 38.1 & 35.1 & 32.0 & 17.7 & 2.3 & 0.9 & 934.9 \\
1997 & 243.2 & 209.1 & 55.0 & 18.2 & 10.3 & 10.2 & 6.9 & 2.0 & 0.4 & 555.4 \\
1998 & 189.9 & 272.2 & 168.5 & 62.8 & 17.1 & 8.2 & 5.6 & 2.7 & 0.5 & 727.4 \\
1999 & 105.0 & 179.2 & 132.2 & 106.2 & 20.8 & 4.0 & 3.9 & 2.1 & 0.4 & 553.8 \\
2000 & 30.3 & 121.3 & 130.9 & 52.5 & 43.5 & 9.6 & 0.9 & 1.4 & 0.3 & 390.7 \\
2001 & 75.8 & 20.7 & 39.6 & 28.4 & 15.4 & 18.3 & 3.8 & 0.6 & 0.2 & 202.8 \\
2002 & 6.6 & 80.5 & 28.6 & 18.5 & 17.2 & 6.8 & 3.4 & 0.5 & 0.1 & 162.2
\end{tabular}

Abundance indices (millions) from the Norwegian Bottom Trawl survey in the Svalbard and Barents Sea area in July-August (1995-2002).
Swept area estimates of number of fish at each age. Rock-hopper gear.
This survey covers ICES Division Ila and Ilb, as well as the north-eastern part of Sub-area I. The figures given above for the Svalbard area are included in these estimates
\begin{tabular}{rrrrrrrrrr}
\\
Year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \(9+\) \\
1995 & 746.1 & 116.5 & 176.7 & 178.3 & 106.0 & 47.4 & 18.1 & 3.8 & 2.1 \\
1996 & 1314.8 & 440.9 & 104.9 & 87.8 & 73.4 & 45.6 & 25.0 & 4.2 & 1.5 \\
19995.0 \\
1997 & 745.3 & 551.7 & 163.8 & 38.3 & 27.0 & 29.5 & 20.1 & 7.4 & 2.0 \\
1998 & 841.0 & 466.2 & 299.3 & 104.9 & 27.2 & 14.6 & 10.6 & 5.3 & 1.6 \\
1999 & 200.2 & 274.6 & 191.2 & 145.6 & 35.3 & 6.7 & 5.2 & 3.3 & 0.9 \\
2000 & 64.5 & 181.5 & 220.4 & 98.5 & 74.0 & 21.7 & 2.7 & 2.1 & 1.1 \\
2001 & 319.0 & 42.3 & 62.6 & 49.6 & 29.1 & 24.2 & 6.7 & 0.7 & 0.4 \\
2002 & 20.0 & 147.7 & 49.2 & 41.4 & 38.9 & 19.4 & 14.5 & 2.4 & 0.7 \\
\hline
\end{tabular}

Table A6. North-east Arctic COD. Mean length at age(cm) from Norwegian surveys in January-March 1983-1999 values re-calculated from raw data.
\begin{tabular}{lrrrrrrrr}
\\
Year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1978 & 14.2 & 23.1 & 32.1 & 45.9 & 54.2 & 64.6 & 67.6 & 76.9 \\
1979 & 12.8 & 22.9 & 33.1 & 40.0 & 52.3 & 64.4 & 74.7 & 83.0 \\
1980 & 17.6 & 24.8 & 34.2 & 40.5 & 52.5 & 63.5 & 73.6 & 83.6 \\
1981 & 17.0 & 26.1 & 35.5 & 44.7 & 52.0 & 61.3 & 69.6 & 77.9 \\
1982 & 14.8 & 25.8 & 37.6 & 46.3 & 54.7 & 63.1 & 70.8 & 82.9 \\
1983 & 12.8 & 27.6 & 34.8 & 45.9 & 54.5 & 62.7 & 73.1 & 78.6 \\
1984 & 14.2 & 28.4 & 35.8 & 48.6 & 56.6 & 66.2 & 74.1 & 79.7 \\
1985 & 16.5 & 23.7 & 40.3 & 48.7 & 61.3 & 71.1 & 81.2 & 85.7 \\
1986 & 11.9 & 21.6 & 34.4 & 49.9 & 59.8 & 69.4 & 80.3 & 93.8 \\
1987 & 13.9 & 21.0 & 31.8 & 41.3 & 56.3 & 66.3 & 77.6 & 87.9 \\
1988 & 15.3 & 23.3 & 29.7 & 38.7 & 47.6 & 56.8 & 71.7 & 79.4 \\
1989 & 12.5 & 25.4 & 34.7 & 39.9 & 46.8 & 56.2 & 67.0 & 83.3 \\
1990 & 14.4 & 27.9 & 39.4 & 47.1 & 53.8 & 60.6 & 68.2 & 79.2 \\
1991 & 13.6 & 27.2 & 41.6 & 51.7 & 59.5 & 67.1 & 72.3 & 77.6 \\
1992 & 13.2 & 23.9 & 41.3 & 49.9 & 60.2 & 68.4 & 76.1 & 82.8 \\
1993 & 11.3 & 20.3 & 35.9 & 50.8 & 59.0 & 68.2 & 76.8 & 85.8 \\
1994 & 12.0 & 18.3 & 30.5 & 44.7 & 55.4 & 64.3 & 73.5 & 82.4 \\
1995 & 12.7 & 18.7 & 29.9 & 42.0 & 54.1 & 64.1 & 74.8 & 80.6 \\
1996 & 12.6 & 19.6 & 28.1 & 41.0 & 49.3 & 61.4 & 72.2 & 85.3 \\
\(1997{ }^{1}\) & 11.4 & 18.8 & 28.0 & 40.4 & 49.9 & 59.3 & 69.1 & 80.6 \\
\(1998{ }^{1}\) & 10.9 & 17.4 & 28.7 & 40.0 & 50.5 & 58.9 & 67.5 & 76.3 \\
1999 & 12.1 & 18.8 & 29.0 & 40.6 & 50.6 & 59.9 & 70.3 & 78.0 \\
2000 & 13.0 & 21.0 & 28.7 & 39.7 & 51.5 & 61.6 & 70.5 & 75.7 \\
2001 & 12.0 & 22.5 & 33.1 & 41.6 & 52.2 & 63.1 & 71.2 & 79.2 \\
2002 & 12.2 & 19.9 & 30.1 & 43.6 & 52.2 & 61.7 & 71.6 & 79.1 \\
2003 & 12.0 & 21.2 & 29.1 & 39.2 & 53.3 & 61.6 & 70.3 & 80.7 \\
& \({ }^{1}\) Adjusted lengths & & & & & & &
\end{tabular}

Table A7. North-east Arctic COD. Weight (g) at age from Norwegian surveys in January-March

Table A8. Northeast Arctic COD. Length at age in cm in the Lofoten survey
\begin{tabular}{crrrrrrrr}
Year/age & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \(12+\) \\
\cline { 2 - 8 } 1985 & 59.6 & 71.1 & 79.0 & 88.2 & 97.3 & 105.2 & 114.0 & \\
1986 & 62.7 & 70.0 & 80.0 & 89.4 & 86.6 & & 105.8 & 115.0 \\
1987 & 58.2 & 64.5 & 76.7 & 86.2 & 88.0 & & 118.5 & 116.0 \\
1988 & 53.1 & 67.1 & 71.6 & 94.0 & 97.0 & 119.6 & & \\
1989 & 54.0 & 59.0 & 69.8 & 80.8 & 96.6 & 103.0 & & 125.0 \\
1990 & 56.9 & 65.1 & 69.2 & 79.5 & 83.7 & 100.1 & & \\
1991 & 59.0 & 67.3 & 74.4 & 81.0 & 91.3 & 99.8 & 85.0 & \\
1992 & 66.3 & 68.7 & 78.3 & 83.9 & 89.2 & 92.2 & 101.9 & 127.0 \\
1993 & 58.3 & 66.1 & 72.8 & 83.6 & 87.4 & 92.7 & 95.4 & 111.2 \\
1994 & 64.3 & 70.6 & 82.0 & 87.3 & 90.0 & 95.3 & 92.4 & 101.4 \\
1995 & 61.5 & 69.7 & 77.8 & 84.4 & 92.6 & 96.7 & 100.3 & 99.5 \\
1996 & 62.2 & 67.1 & 75.9 & 81.0 & 93.6 & 100.9 & 97.4 & 104.1 \\
1997 & 63.7 & 68.6 & 74.2 & 83.8 & 99.9 & 108.4 & & 109.0 \\
1998 & 55.0 & 62.6 & 70.2 & 80.0 & 92.0 & 98.0 & 96.7 & 115.0 \\
1999 & 52.7 & 67.0 & 69.4 & 78.6 & 85.8 & 100.3 & 102.0 & 125.0 \\
2000 & 58.4 & 66.5 & 72.6 & 77.0 & 83.9 & 90.6 & 93.7 & 112.4 \\
2001 & 59.2 & 66.8 & 73.1 & 86.4 & 88.9 & 101.8 & 98.1 & 128.2 \\
2002 & 57.8 & 65.8 & 73.0 & 80.8 & 88.2 & 102.0 & 91.2 & 101.4 \\
2003 & 62.3 & 65.0 & 73.2 & 80.9 & 89.0 & 86.2 & 120.0 & 122.0
\end{tabular}

Table A9. Northeast Arctic COD. Mean weight at age (kg) in the Lofoten survey
\begin{tabular}{lrrrrrrrr}
\multicolumn{1}{c}{ Year } & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \(12+\) \\
\cline { 2 - 9 } 1985 & 2.00 & 3.42 & 4.61 & 6.67 & 8.89 & 10.73 & 14.29 & \\
1986 & 2.22 & 3.22 & 4.74 & 6.40 & 5.80 & & 10.84 & 13.48 \\
1987 & 1.44 & 1.94 & 3.61 & 5.40 & 5.64 & & 13.15 & 12.55 \\
1988 & 1.46 & 2.82 & 3.39 & 6.63 & 7.27 & 13.64 & & \\
1989 & 1.30 & 1.77 & 2.89 & 4.74 & 8.28 & 9.98 & & 26.00 \\
1990 & 1.54 & 2.32 & 2.55 & 3.78 & 4.77 & 8.80 & & \\
1991 & 2.21 & 2.52 & 3.51 & 5.18 & 7.40 & 11.36 & 5.35 & \\
1992 & 2.56 & 2.85 & 3.99 & 5.43 & 6.35 & 8.03 & 9.50 & 17.80 \\
1993 & 1.79 & 2.58 & 3.55 & 5.31 & 6.21 & 7.69 & 9.28 & 14.71 \\
1994 & 2.31 & 3.27 & 5.06 & 6.39 & 6.64 & 7.92 & 7.73 & 10.10 \\
1995 & 2.20 & 3.24 & 4.83 & 5.98 & 7.80 & 10.03 & 10.39 & 10.68 \\
1996 & 2.22 & 2.75 & 4.11 & 5.63 & 7.92 & 10.53 & 10.58 & 12.08 \\
1997 & 2.42 & 2.92 & 3.86 & 5.71 & 9.65 & 13.41 & & 12.67 \\
1998 & 1.88 & 2.09 & 2.98 & 4.85 & 7.92 & 9.91 & 11.05 & 18.34 \\
1999 & 1.51 & 2.80 & 2.96 & 4.22 & 5.92 & 9.33 & 9.17 & 16.00 \\
2000 & 1.71 & 2.50 & 3.16 & 3.85 & 5.32 & 7.07 & 7.62 & 12.84 \\
2001 & 1.89 & 2.71 & 3.48 & 6.02 & 6.88 & 10.69 & 10.19 & 28.58 \\
2002 & 1.76 & 2.51 & 3.49 & 4.62 & 6.12 & 10.59 & 8.74 & 10.48 \\
2003 & 2.32 & 2.35 & 3.50 & 4.60 & 5.90 & 8.03 & 24.50 & 27.70 \\
& ' - preliminary & & & & & & &
\end{tabular}

Table A10 North-east Arctic COD. Results from the Russian trawl-acoustic survey in the Barents Sea and adjacent wates in the autumn. Stock number in millions.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & & & & & & & \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \(1985{ }^{1}\) & 77 & 569 & 400 & 568 & 244 & 51 & 20 \\
\hline \(1986{ }^{1}\) & 25 & 129 & 899 & 612 & 238 & 69 & 20 \\
\hline \(1987{ }^{2}\) & 2 & 58 & 103 & 855 & 198 & 82 & 19 \\
\hline \(1988{ }^{2}\) & 3 & 23 & 96 & 100 & 305 & 54 & 16 \\
\hline \(1989{ }^{1}\) & 1 & 3 & 17 & 45 & 57 & 91 & 75 \\
\hline \(1990{ }^{1}\) & 36 & 27 & 8 & 27 & 62 & 74 & 91 \\
\hline \(1991{ }^{1}\) & 63 & 65 & 96 & 45 & 50 & 54 & 66 \\
\hline \(1992{ }^{1}\) & 133 & 399 & 380 & 121 & 56 & 58 & 33 \\
\hline \(1993{ }^{1}\) & 20 & 44 & 220 & 234 & 164 & 51 & 19 \\
\hline \(1994{ }^{1}\) & 105 & 38 & 147 & 275 & 303 & 314 & 100 \\
\hline \(1995{ }^{1}\) & 242 & 42 & 111 & 219 & 229 & 97 & 21 \\
\hline \(1996{ }^{1,3,5}\) & 424 & 275 & 189 & 316 & 449 & 314 & 126 \\
\hline \(1997{ }^{4.5}\) & 72 & 160 & 263 & 198 & 112 & 57 & 27 \\
\hline \(1998{ }^{1}\) & 26 & 86 & 279 & 186 & 57 & 23 & 10 \\
\hline \(1999{ }^{1}\) & 19 & 79 & 166 & 260 & 98 & 20 & 8 \\
\hline \(2000{ }^{1, \text { rev }}\) & 24 & 82 & 191 & 159 & 127 & 48 & 6 \\
\hline \(2001{ }^{1}\) & 38 & 59 & 148 & 204 & 120 & 70 & 14 \\
\hline \multicolumn{8}{|c|}{\({ }^{1}\) October-December} \\
\hline \multicolumn{8}{|c|}{\({ }^{2}\) September-October} \\
\hline \multicolumn{8}{|c|}{\({ }^{3}\) Area llb not covered} \\
\hline \multicolumn{8}{|r|}{\multirow[t]{2}{*}{\({ }^{4}\) Areas Ila, llb covered in October-December, part of Area I covered in February-March 1998}} \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table A11. North-East Arctic COD. Results from the Russian bottom trawl survey in the Barents Sea and adjacent waters in November-December (numbers per hour trawling)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{12}{|c|}{Age} \\
\hline & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10+ & Total \\
\hline \multicolumn{13}{|c|}{Total (Sub-area I and Division Ila and Ilb)} \\
\hline 1982 & & 2.1 & 2.5 & 14.1 & 7.6 & 9.4 & 5.8 & 3.2 & 1.1 & 0.4 & 0.3 & 46.3 \\
\hline 1983 & & 11.7 & 5.1 & 6.0 & 7.3 & 4.8 & 2.0 & 0.7 & 1.1 & 0.2 & 0.2 & 39.2 \\
\hline 1984 & & 11.1 & 11.3 & 15.6 & 9.3 & 4.9 & 3.0 & 1.2 & 0.5 & 0.3 & 0.2 & 57.2 \\
\hline 1985 & & 6.2 & 39.6 & 28.3 & 39.7 & 18.1 & 4.5 & 1.7 & 0.6 & 0.1 & 0.2 & 139.0 \\
\hline 1986 & & 1.5 & 8.0 & 49.5 & 28.6 & 14.0 & 5.0 & 1.4 & 0.2 & 0.1 & 0.1 & 108.4 \\
\hline 1987 & & 0.1 & 2.5 & 6.1 & 40.2 & 7.8 & 3.4 & 0.8 & 0.2 & 0.1 & 0.1 & 61.2 \\
\hline 1988 & & 0.2 & 1.5 & 6.6 & 7.3 & 19.3 & 3.3 & 1.0 & 0.2 & 0.1 & 0.1 & 39.5 \\
\hline 1989 & & 0.3 & 0.6 & 3.4 & 9.1 & 10.9 & 16.1 & 13.1 & 5.5 & 2.9 & 0.8 & 62.7 \\
\hline 1990 & & 3.8 & 2.9 & 0.9 & 2.9 & 6.5 & 7.8 & 9.6 & 4.3 & 1.1 & 0.3 & 40.1 \\
\hline 1991 & & 6.9 & 7.1 & 10.2 & 4.8 & 5.8 & 6.6 & 8.3 & 7.1 & 0.7 & 0.1 & 57.6 \\
\hline 1992 & & 10.8 & 30.6 & 30.9 & 9.0 & 4.5 & 4.8 & 2.6 & 2.3 & 0.9 & 0.1 & 96.4 \\
\hline 1993 & & 4.5 & 10.3 & 49.1 & 52.6 & 37.7 & 11.7 & 4.5 & 3.2 & 1.9 & 2.5 & 178.0 \\
\hline 1994 & & 11.4 & 5.8 & 23.0 & 40.4 & 38.3 & 36.6 & 12.0 & 4.2 & 1.3 & 1.4 & 174.3 \\
\hline 1995 & & 26.0 & 4.5 & 11.9 & 23.5 & 24.7 & 10.5 & 2.3 & 0.7 & 0.2 & 0.2 & 104.5 \\
\hline \(1996{ }^{1}\) & & 17.8 & 11.6 & 7.7 & 10.1 & 12.6 & 8.6 & 3.6 & 0.9 & 0.1 & 0.1 & 73.1 \\
\hline \(1997{ }^{1}\) & & 7.3 & 17.3 & 9.9 & 8.3 & 6.2 & 3.7 & 1.8 & 0.5 & 0.1 & 0.0 & 55.1 \\
\hline 1998 & & 4.9 & 15.9 & 50.8 & 33.4 & 9.7 & 3.7 & 1.6 & 0.7 & 0.1 & 0.1 & 120.9 \\
\hline 1999 & & 3.6 & 14.3 & 28.4 & 47.5 & 16.2 & 3.1 & 1.2 & 0.8 & 0.2 & 0.1 & 115.4 \\
\hline 2000 & & 3.1 & 11.7 & 27.6 & 21.9 & 16.9 & 5.8 & 0.8 & 0.3 & 0.1 & 0.1 & 88.3 \\
\hline 2001 & & 6.7 & 11.0 & 27.7 & 37.2 & 20.6 & 11.5 & 2.2 & 0.3 & 0.1 & 0.1 & 117.4 \\
\hline 2002 & 2 & 12.6 & 0.3 & 18.0 & 14.4 & 24.1 & 25.2 & 11.7 & 5.2 & 1.2 & 0.3 & 113.1 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Adjusted assuming area distribution as 1982-1995 average.
\({ }^{2}\) Adjusted assuming area distribution as 1998-2001 average.
}

Table A12 North-East Arctic COD. Length at age (cm) from Russian surveys in November-December
\begin{tabular}{lrccccccccr}
\hline Year & \multicolumn{11}{c}{ Age } \\
\cline { 2 - 12 } & \multicolumn{1}{c|}{0} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 1984 & 15.7 & 22.3 & 30.7 & 44.3 & 51.7 & 63.6 & 73.4 & 82.5 & 88.4 & 97.0 \\
1985 & 15.0 & 21.1 & 30.6 & 43.2 & 53.7 & 61.2 & 72.8 & 83.0 & 92.8 & 101.3 \\
1986 & 15.2 & 19.7 & 28.3 & 39.0 & 51.8 & 62.2 & 70.9 & 83.0 & 91.3 & 104.0 \\
1987 & - & 19.2 & 27.9 & 33.4 & 41.4 & 59.1 & 69.2 & 80.1 & 95.7 & 102.6 \\
1988 & 11.3 & 21.3 & 28.7 & 36.2 & 43.9 & 53.3 & 65.3 & 79.5 & 85.0 & - \\
1989 & - & 20.8 & 28.8 & 34.8 & 46.0 & 53.9 & 61.8 & 69.8 & 78.7 & 88.6 \\
1990 & 16.0 & 24.0 & 30.4 & 46.5 & 54.9 & 62.5 & 69.7 & 77.6 & 87.8 & 102.0 \\
1991 & 11.5 & 22.4 & 30.6 & 43.0 & 55.9 & 64.6 & 72.8 & 78.5 & 87.9 & 101.8 \\
1992 & 11.3 & 21.3 & 31.9 & 50.1 & 59.8 & 69.1 & 78.6 & 84.0 & 90.8 & 97.5 \\
1993 & 12.1 & 17.4 & 29.1 & 43.4 & 52.7 & 64.3 & 73.9 & 81.2 & 89.1 & 91.8 \\
1994 & 12.2 & 20.3 & 26.3 & 33.7 & 47.4 & 58.7 & 70.6 & 80.8 & 90.1 & 96.1 \\
1995 & 11.6 & 19.8 & 27.6 & 33.8 & 45.2 & 60.5 & 71.1 & 83.5 & 92.9 & 99.1 \\
1996 & 10.2 & 20.0 & 28.1 & 36.7 & 48.7 & 58.9 & 70.5 & 80.0 & 93.6 & 102.7 \\
1997 & 9.6 & 18.5 & 28.8 & 38.2 & 50.8 & 62.0 & 70.5 & 80.1 & 88.9 & 103.5 \\
1998 & 11.4 & 19.0 & 28.0 & 36.4 & 50.5 & 61.0 & 70.7 & 80.3 & 91.1 & 102.5 \\
1999 & 11.7 & 19.7 & 27.9 & 35.3 & 51.6 & 60.6 & 70.6 & 78.9 & 86.8 & 94.3 \\
2000 & 10.7 & 20.8 & 30.1 & 34.7 & 49.8 & 61.1 & 71.6 & 82.0 & 88.3 & 85.7 \\
2001 & 10.6 & 19.4 & 29.8 & 37.3 & 50.4 & 61.9 & 71.9 & 81.4 & 91.0 & 98.7 \\
2002 & 10.7 & 19.2 & 29.9 & 38.2 & 52.5 & 60.4 & 70.6 & 82.2 & 91.3 & 97.2
\end{tabular}

Table A13 North-East Arctic COD. Weight (g) at age from Russian surveys in November-December.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multicolumn{11}{|c|}{Age} \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 1984 & 26 & 90 & 250 & 746 & 1,187 & 2,234 & 3,422 & 5,027 & 6,479 & 9,503 & - \\
\hline 1985 & 26 & 80 & 245 & 762 & 1,296 & 1,924 & 3,346 & 5,094 & 7,360 & 6,833 & 11,167 \\
\hline 1986 & 25 & 63 & 191 & 506 & 1,117 & 1,940 & 2,949 & 4,942 & 7,406 & 9,300 & - \\
\hline 1987 & - & 54 & 182 & 316 & 672 & 1,691 & 2,688 & 3,959 & 8,353 & 10,583 & 13,107 \\
\hline 1988 & 15 & 78 & 223 & 435 & 789 & 1,373 & 2,609 & 4,465 & 5,816 & - & - \\
\hline 1989 & - & 73 & 216 & 401 & 928 & 1,427 & 2,200 & 3,133 & 4,649 & 6,801 & 8,956 \\
\hline 1990 & 28 & 106 & 230 & 908 & 1,418 & 2,092 & 2,897 & 4,131 & 6,359 & 10,078 & 13,540 \\
\hline 1991 & 26 & 93 & 260 & 743 & 1,629 & 2,623 & 3,816 & 4,975 & 7,198 & 11,165 & 15,353 \\
\hline 1992 & 10 & 76 & 273 & 1,165 & 1,895 & 2,971 & 4,377 & 5,596 & 7,319 & 9,452 & 12,414 \\
\hline 1993 & 11 & 46 & 211 & 717 & 1,280 & 2,293 & 3,509 & 4,902 & 6,621 & 7,339 & 8,494 \\
\hline 1994 & 12 & 69 & 153 & 316 & 919 & 1,670 & 2,884 & 4,505 & 6,520 & 8,207 & 9,812 \\
\hline 1995 & 11 & 61 & 180 & 337 & 861 & 1,987 & 3,298 & 5,427 & 7,614 & 9,787 & 10,757 \\
\hline 1996 & 7 & 64 & 191 & 436 & 1,035 & 1,834 & 3,329 & 5,001 & 8,203 & 10,898 & 11,358 \\
\hline 1997 & 6 & 48 & 203 & 487 & 1,176 & 2,142 & 3,220 & 4,805 & 6,925 & 10,823 & 12,426 \\
\hline 1998 & 11 & 55 & 187 & 435 & 1,186 & 2,050 & 3,096 & 4,759 & 7,044 & 11,207 & 12,593 \\
\hline 1999 & 10 & 58 & 177 & 371 & 1,214 & 1,925 & 3,064 & 4,378 & 6,128 & 7,843 & 11,543 \\
\hline 2000 & 8 & 74 & 232 & 379 & 1,101 & 2,128 & 3,341 & 5,054 & 6,560 & 8,497 & 12,353 \\
\hline 2001 & 9 & 58 & 221 & 459 & 1,125 & 2,078 & 3,329 & 4,950 & 7,270 & 9,541 & 11,672 \\
\hline 2002 & 8 & 65 & 232 & 505 & 1,299 & 1,964 & 3,271 & 5,325 & 7,249 & 9,195 & 11,389 \\
\hline
\end{tabular}

Table A14 Abundance indices of 0-group fish in the Barents Sea and adjacent waters in 19652002
Indices for 1965-1985 adjusted according to Nakken and Raknes (1996).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Year} & \multirow{3}{*}{Cod} & \multirow{3}{*}{Haddock} & \multicolumn{2}{|l|}{Polar cod} & \multirow{3}{*}{Redfish} & \multirow{3}{*}{Greenland halibut} & \multirow{3}{*}{Long rough Dab} \\
\hline & & & \multirow[b]{2}{*}{West} & & & & \\
\hline & & & & East & & & \\
\hline 1965 & 11 & 13 & & 0 & 159 & & 66 \\
\hline 1966 & 2 & 2 & & 129 & 236 & & 97 \\
\hline 1967 & 62 & 76 & & 165 & 44 & & 73 \\
\hline 1968 & 45 & 14 & & 60 & 21 & & 17 \\
\hline 1969 & 211 & 186 & & 208 & 295 & & 26 \\
\hline 1970 & 1097 & 208 & & 197 & 247 & 1 & 12 \\
\hline 1971 & 356 & 166 & & 181 & 172 & 1 & 81 \\
\hline 1972 & 225 & 74 & & 140 & 177 & 8 & 65 \\
\hline 1973 & 1101 & 87 & & (26) & 385 & 3 & 67 \\
\hline 1974 & 82 & 237 & & 227 & 468 & 13 & 83 \\
\hline 1975 & 453 & 224 & & 75 & 315 & 21 & 113 \\
\hline 1976 & 57 & 148 & & 131 & 447 & 16 & 96 \\
\hline 1977 & 279 & 187 & 157 & 70 & 472 & 9 & 72 \\
\hline 1978 & 192 & 110 & 107 & 144 & 460 & 35 & 76 \\
\hline 1979 & 129 & 95 & 23 & 302 & 980 & 22 & 69 \\
\hline 1980 & 61 & 68 & 79 & 247 & 651 & 12 & 108 \\
\hline 1981 & 65 & 30 & 149 & 73 & 861 & 38 & 95 \\
\hline 1982 & 136 & 107 & 14 & 50 & 694 & 17 & 150 \\
\hline 1983 & 459 & 219 & 48 & 39 & 851 & 16 & 80 \\
\hline 1984 & 559 & 293 & 115 & 16 & 732 & 40 & 70 \\
\hline 1985 & 742 & 156 & 60 & 334 & 795 & 36 & 86 \\
\hline 1986 & 434 & 160 & 111 & 366 & 702 & 55 & 755 \\
\hline 1987 & 102 & 72 & 17 & 155 & 631 & 41 & 174 \\
\hline 1988 & 133 & 86 & 144 & 120 & 849 & 8 & 72 \\
\hline 1989 & 202 & 112 & 206 & 41 & 698 & 5 & 92 \\
\hline 1990 & 465 & 227 & 144 & 48 & 670 & 2 & 35 \\
\hline 1991 & 766 & 472 & 90 & 239 & 200 & 1 & 28 \\
\hline 1992 & 1,159 & 313 & 195 & 118 & 150 & 3 & 32 \\
\hline 1993 & 910 & 240 & 171 & 156 & 162 & 11 & 55 \\
\hline 1994 & 899 & 282 & 50 & 448 & 414 & 20 & 272 \\
\hline 1995 & 1,069 & 148 & 6 & - & 220 & 15 & 66 \\
\hline 1996 & 1,142 & 196 & 59 & 484 & 19 & 5 & 10 \\
\hline 1997 & 1,077 & 150 & 129 & 453 & 50 & 13 & 42 \\
\hline 1998 & 576 & 593 & 144 & 457 & 78 & 11 & 28 \\
\hline 1999 & 194 & 184 & 116 & 696 & 27 & 13 & 66 \\
\hline 2000 & 870 & 417 & 76 & 387 & 195 & 28 & 81 \\
\hline 2001 & 212 & 394 & 148 & 146 & 11 & 32 & 86 \\
\hline 2002 & 1055 & 412 & 179 & 588 & 28 & 34 & 173 \\
\hline
\end{tabular}

Table A15 Estimated logarithmic indices with \(90 \%\) confidence limits of year class abundance for 0group herring, cod and haddock in the Barents Sea and adjacent waters 1965-2002
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{3}{|c|}{Herring \({ }^{1}\)} & \multicolumn{3}{|c|}{Cod} & \multicolumn{3}{|c|}{Haddock} \\
\hline & Index & \multicolumn{2}{|l|}{Confidence limits} & Index & \multicolumn{2}{|l|}{Confidence limits} & Index & \multicolumn{2}{|l|}{Confidence limits} \\
\hline 1965 & \multicolumn{9}{|c|}{+} \\
\hline 1966 & 0.14 & 0.04 & 0.31 & 0.02 & 0.01 & 0.04 & 0.01 & 0.00 & 0.03 \\
\hline 1967 & 0.00 & - & - & 0.04 & 0.02 & 0.08 & 0.08 & 0.03 & 0.13 \\
\hline 1968 & 0.00 & - & - & 0.02 & 0.01 & 0.04 & 0.00 & 0.00 & 0.02 \\
\hline 1969 & 0.01 & 0.00 & 0.04 & 0.25 & 0.17 & 0.34 & 0.29 & 0.20 & 0.41 \\
\hline 1970 & 0.00 & - & - & 2.51 & 2.02 & 3.05 & 0.64 & 0.42 & 0.91 \\
\hline 1971 & 0.00 & - & - & 0.77 & 0.57 & 1.01 & 0.26 & 0.18 & 0.36 \\
\hline 1972 & 0.00 & - & - & 0.52 & 0.35 & 0.72 & 0.16 & 0.09 & 0.27 \\
\hline 1973 & 0.05 & 0.03 & 0.08 & 1.48 & 1.18 & 1.82 & 0.26 & 0.15 & 0.40 \\
\hline 1974 & 0.01 & 0.01 & 0.01 & 0.29 & 0.18 & 0.42 & 0.51 & 0.39 & 0.68 \\
\hline 1975 & 0.00 & - & - & 0.90 & 0.66 & 1.17 & 0.60 & 0.40 & 0.85 \\
\hline 1976 & 0.00 & - & - & 0.13 & 0.06 & 0.22 & 0.38 & 0.24 & 0.51 \\
\hline 1977 & 0.01 & 0.00 & 0.03 & 0.49 & 0.36 & 0.65 & 0.33 & 0.21 & 0.48 \\
\hline 1978 & 0.02 & 0.01 & 0.05 & 0.22 & 0.14 & 0.32 & 0.12 & 0.07 & 0.19 \\
\hline 1979 & 0.09 & 0.01 & 0.20 & 0.40 & 0.25 & 0.59 & 0.20 & 0.12 & 0.28 \\
\hline 1980 & - & - & - & 0.13 & 0.08 & 0.18 & 0.15 & 0.10 & 0.20 \\
\hline 1981 & 0.00 & - & - & 0.10 & 0.06 & 0.18 & 0.03 & 0.00 & 0.05 \\
\hline 1982 & 0.00 & - & - & 0.59 & 0.43 & 0.77 & 0.38 & 0.30 & 0.52 \\
\hline 1983 & 1.77 & 1.29 & 2.33 & 1.69 & 1.34 & 2.08 & 0.62 & 0.48 & 0.77 \\
\hline 1984 & 0.34 & 0.20 & 0.52 & 1.55 & 1.18 & 1.98 & 0.78 & 0.60 & 0.99 \\
\hline 1985 & 0.23 & 0.18 & 0.28 & 2.46 & 2.22 & 2.71 & 0.27 & 0.23 & 0.31 \\
\hline 1986 & 0.00 & - & - & 1.37 & 1.06 & 1.70 & 0.39 & 0.28 & 0.52 \\
\hline 1987 & 0.00 & 0.00 & 0.03 & 0.17 & 0.01 & 0.40 & 0.10 & 0.00 & 0.25 \\
\hline 1988 & 0.32 & 0.16 & 0.53 & 0.33 & 0.22 & 0.47 & 0.13 & 0.05 & 0.34 \\
\hline 1989 & 0.59 & 0.49 & 0.76 & 0.38 & 0.30 & 0.48 & 0.14 & 0.10 & 0.20 \\
\hline 1990 & 0.31 & 0.16 & 0.50 & 1.23 & 1.04 & 1.34 & 0.61 & 0.48 & 0.75 \\
\hline 1991 & 1.19 & 0.90 & 1.52 & 2.30 & 1.97 & 2.65 & 1.17 & 0.98 & 1.37 \\
\hline 1992 & 1.06 & 0.69 & 1.50 & 2.94 & 2.53 & 3.39 & 0.87 & 0.71 & 1.06 \\
\hline 1993 & 0.75 & 0.45 & 1.14 & 2.09 & 1.70 & 2.51 & 0.64 & 0.48 & 0.82 \\
\hline 1994 & 0.28 & 0.17 & 0.42 & 2.27 & 1.83 & 2.76 & 0.64 & 0.49 & 0.81 \\
\hline 1995 & 0.16 & 0.07 & 0.29 & 2.40 & 1.97 & 2.88 & 0.25 & 0.13 & 0.40 \\
\hline 1996 & 0.65 & 0.47 & 0.85 & 2.87 & 2.53 & 3.24 & 0.39 & 0.25 & 0.56 \\
\hline 1997 & 0.39 & 0.25 & 0.54 & 1.60 & 1.35 & 1.86 & 0.21 & 0.12 & 0.31 \\
\hline 1998 & 0.59 & 0.40 & 0.82 & 0.68 & 0.48 & 0.91 & 0.59 & 0.44 & 0.76 \\
\hline 1999 & 0.41 & 0.25 & 0.59 & 0.21 & 0.11 & 0.34 & 0.25 & 0.11 & 0.44 \\
\hline 2000 & 0.30 & 0.17 & 0.46 & 1.49 & 1.21 & 1.78 & 0.64 & 0.46 & 0.84 \\
\hline 2001 & 0.13 & 0.04 & 0.25 & 0.23 & 0.12 & 0.36 & 0.67 & 0.52 & 0.84 \\
\hline 2002 & 0.53 & 0.36 & 0.73 & 1.22 & 0.97 & 1.50 & 0.99 & 0.75 & 1.25 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Assessment for 1965-1984 made by Toresen (1985).
}

Table A16. Sum of acoustic abundance estimates (millions) in the Joint winter Barents Sea aurvey (Table A2)
and the Norwegian Lofoten acoustic survey (Table A4)
\begin{tabular}{rrrrrrrrrrrrr}
\hline & & & \multicolumn{9}{c}{ Age } & 3 \\
\cline { 2 - 14 } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \(12+\) \\
\hline 1985 & 69.1 & 446.3 & 153.0 & 141.6 & 20.4 & 15.1 & 15.7 & 3.3 & 1.3 & 1.0 & 0.5 & 0.0 \\
1986 & 353.6 & 243.9 & 499.6 & 134.3 & 68.4 & 11.6 & 7.7 & 3.1 & 0.3 & 0.0 & 0.4 & 0.1 \\
1987 & 1.6 & 34.1 & 62.8 & 204.9 & 50.2 & 17.4 & 1.4 & 3.0 & 0.7 & 0.0 & 0.0 & 0.0 \\
1988 & 2.0 & 26.3 & 50.4 & 35.5 & 57.8 & 10.9 & 4.0 & 0.3 & 0.0 & 0.1 & 0.0 & 0.0 \\
1989 & 7.5 & 8.0 & 17.0 & 34.4 & 21.4 & 67.0 & 16.6 & 3.2 & 0.5 & 0.2 & 0.0 & 0.1 \\
1990 & 81.1 & 24.9 & 14.8 & 20.6 & 26.2 & 26.9 & 66.8 & 7.3 & 0.6 & 0.3 & 0.0 & 0.0 \\
1991 & 181.0 & 219.5 & 50.2 & 34.6 & 29.3 & 33.9 & 36.7 & 50.0 & 3.7 & 0.2 & 0.2 & 0.0 \\
1992 & 241.4 & 562.1 & 176.5 & 65.8 & 21.5 & 18.4 & 28.4 & 25.4 & 82.4 & 4.4 & 1.6 & 0.2 \\
1993 & 1074.0 & 494.7 & 357.2 & 191.1 & 113.1 & 35.4 & 25.5 & 25.2 & 27.7 & 44.5 & 4.7 & 0.7 \\
1994 & 858.3 & 577.2 & 349.8 & 404.5 & 217.5 & 89.5 & 22.5 & 11.9 & 9.4 & 4.4 & 17.5 & 2.6 \\
1995 & 2619.2 & 292.9 & 166.2 & 159.8 & 216.6 & 104.0 & 29.0 & 4.4 & 4.3 & 3.6 & 2.2 & 8.0 \\
1996 & 2396.0 & 339.8 & 92.9 & 70.5 & 87.2 & 89.1 & 44.6 & 6.5 & 1.1 & 0.7 & 0.8 & 1.3 \\
1997 & 1623.5 & 430.5 & 188.3 & 51.7 & 49.7 & 42.2 & 49.9 & 20.5 & 2.2 & 0.5 & 0.0 & 0.8 \\
1998 & 3401.3 & 632.9 & 427.7 & 182.6 & 42.4 & 33.8 & 34.0 & 24.7 & 4.9 & 0.8 & 0.2 & 0.0 \\
1999 & 358.3 & 304.3 & 150.0 & 96.4 & 45.4 & 12.2 & 11.2 & 18.7 & 9.2 & 1.1 & 0.2 & 0.1 \\
2000 & 154.1 & 221.4 & 245.2 & 158.9 & 145.7 & 49.3 & 12.9 & 6.9 & 5.2 & 1.6 & 0.4 & 0.1 \\
2001 & 629.9 & 63.9 & 138.2 & 171.6 & 81.2 & 55.4 & 19.0 & 2.2 & 0.8 & 0.5 & 0.3 & 0.1 \\
2002 & 18.2 & 215.5 & 69.3 & 112.2 & 103.5 & 59.1 & 29.7 & 7.3 & 1.0 & 0.4 & 0.3 & 0.0 \\
2003 & 1693.9 & 61.5 & 303.4 & 114.4 & 132.0 & 149.2 & 69.2 & 23.1 & 4.1 & 0.5 & 0.1 & 0.1 \\
\hline
\end{tabular}

\subsection*{4.1 Status of the Fisheries}

\subsection*{4.1.1 Historical development of the fisheries}

Haddock is mainly fished by trawl as a by-catch in the fishery for cod. Occasionally there is also a directed trawl fishery for haddock. On average approximately \(25 \%\) of the catch is with conventional gears, mostly longline, which are used almost exclusively by Norway. Part of the longline catches are from a directed fishery. The fishery is restricted by national quotas. In the Norwegian fishery the quotas are set separately for trawl and other gears. The fishery is also regulated by a minimum landing size, a minimum mesh size in trawls and Danish seine, a maximum by-catch of undersized fish, closure of areas with high density/catches of juveniles and other seasonal and areal restrictions.

Historical landings of the fishery show a cyclical pattern (Figure 4.1A, Table 4.1). The historical high catch level of \(320,000 \mathrm{t}\) in 1973 divides the time-series into two periods. In the first period, highs were close to \(200,000 \mathrm{t}\) around 1956, 1961 and 1968, and lows were between 75,000 and \(100,000 t\) in 1959, 1964 and 1971. The second period showed a steady decline from the peak in 1973 down to the historically low level of \(17,300 \mathrm{t}\) in 1984. Afterwards, landings increased to \(151,000 \mathrm{t}\) before declining to \(26,000 \mathrm{t}\) in 1990. A new increase peaked in 1996 at \(174,000 \mathrm{t}\).

The trawl fishery has been more variable than other gears (Table 4.2). In recent years Norway and Russia have accounted for more than \(90 \%\) of the landings (Table 4.3). Before the introduction of national economic zones in 1977, UK (mainly England) landings made up \(10-30 \%\) of the total.

The exploitation rate of haddock has been variable. The highest fishing mortalities for haddock have occurred at intermediate stock levels and show little relationship with the exploitation rate of cod, in spite of haddock being primarily a by-catch in the cod fishery. The exception is the 1990s when more restrictive quota regulations resulted in a similar pattern in the exploitation rate for both species. It might be expected that good year classes of haddock would attract more directed trawl fishing, but this is not reflected in the fishing mortalities.

\subsection*{4.1.2 Landings prior to 2003 (Tables 4.1-4.3, Figure 4.1A)}

Final reported landings in 2001 are 81842 t (Table 4.1), which is close to the figure used in last year's assessment. The provisional landings for 2002 are 83848 t , which is slightly less than the 85000 t landings expected by the Working Group last year. The agreed TAC was 85000 t . Catches increased in subareas I and IIb. The catch by area, broken down by trawl and other gears, is given in Table 4.2. The nominal catch by country is given in Table 4.3. Landings from 2001 and 2002 were revised according to official statistics from ICES.

\subsection*{4.1.3 Expected landings in 2003}

The 85000 t TAC agreed for 2002 was not exceeded. ACFM recommended to set a TAC lower than 101000 t for 2003. The agreed TAC for 2003 is 101000 t . The total landing in 2003 is expected to be equal to the agreed TAC.

\subsection*{4.2 Status of Research}

\subsection*{4.2.1 Fishing effort and CPUE}

After a period of reduced trawl fishery for haddock, it has increased in recent years (Table 4.2). The CPUE series of Norwegian trawl fisheries has previously been updated for tuning of the older ages in the VPA. The basis was the trawl effort in Norwegian statistical areas 03,04 , and 05 , covering the Norwegian coastal banks north of Lofoten. These areas account for approximately \(70 \%\) of the Norwegian trawl landings. However, because of the large proportion taken as bycatch it is difficult to estimate the actual trawl effort on haddock. The CPUE series was not used for tuning the XSA in last year's assessment and the series has not been updated with values for 2002.

\subsection*{4.2.2 Survey results (Tables B1-B6)}

The overall picture seen in the surveys is summarized as follows: the year class 1997 seems to be poor, and the 1998, 1999, 2000, and 2001 year classes appear above average. The 2002 year class looks even more promising and can be the first sign of a year class comparable with the 1990 or 1983 year classes. Regarding the fishable stock, numbers of 6+ age groups are much reduced after the fading of the strong 89-91 year classes from the surveys.

\section*{Norwegian bottom trawl and acoustic survey}

Norway provided indices from the 2003 Barents Sea bottom trawl and acoustic survey in January-March (Table B1 and B3). There was a reduced coverage of the Barents Sea in 1997-1998, but full coverage since then. Trawl survey indices from 1983 onwards have been recalculated in the same way as for cod (Section 3.2.2). High indices, caused by the good period of recruitment around 1990, can be tracked from year to year in both series and the 1990 year class appears as the strongest for age groups 3-8. The year classes 1998 to 2001 have been observed as stronger than the 1992-1997 year classes. The 2002 year class has been observed only once, but the results suggest a year class even stronger and possibly as strong as the 1990 year class.

\section*{Russian bottom trawl and acoustic survey}

Russia provided indices from the 2002 Barents Sea trawl and acoustic survey (Tables B2, B4a, and B4b), which was carried out in October-December. The Russian survey shows the same main trends as the Norwegian survey. From 1995 onwards there has been a substantial change in the method for calculating acoustic indices. The acoustic survey is therefore presented in 2 tables (Table B4a and B4b) for old and new method of calculating indices.

\section*{International 0-group survey}

Estimates of the abundance of 0 -group haddock from the International 0 -group survey are presented in Tables A14 and A15. The indices indicate good recruitment for haddock from 1990 to 1994, average from 1995 to 1997, good in 1998, average in 1999 and good again in 2000 and 2001 and very good in 2002.

\subsection*{4.2.3 Weight-at-age (Table B6)}

Length and weight-at-age from the surveys are given in Tables B5 and B6, respectively. All weights-at-age are comparable with the previous years except the weight-at-age for the 1997 year class, which is somewhat reduced.

\subsection*{4.3 Data Used in the Assessment}

\subsection*{4.3.1 Catch-at-age (Table 4.7)}

Age compositions of the landings for 2002 were available from Norway and Russia in Subarea I, from Norway, Russia, and Germany in Division IIa, and from Norway and Russia in Division IIb. The catches of the other countries were distributed among ages using the combined Norwegian/Russian age composition in Subarea I and in Division IIb, and the Russian trawl age composition in Division IIa. The SOP check gave no deviation from the nominal catch of 2002.

\subsection*{4.3.2 Weight-at-age (Tables 4.8-4.9)}

The mean weights-at-age in the catch (Table 4.8) were calculated as weighted averages of the weights in the catch of Norway and Russia. The weights-at-age in the catch in 2002 are showing a declining tendency for ages 1 to 6 .

Stock weights (Table 4.9) used from 1985 to 2003 are averages of values derived from Russian surveys in autumn (mostly October-December) and Norwegian surveys in January-March the following year (Table B6). These averages are assumed to give representative values for the beginning of the year. For the oldest age groups, fixed weights were used when survey data were missing or inadequate. The fixed weights have been reduced in the most recent years to be more consistent with observed weights on the younger year classes.

\subsection*{4.3.3 Natural mortality (Table 4.10)}

Natural mortality was set to \(0.2+\) mortality from predation by cod (see Section 4.4.1). The proportion of F and M before spawning was set to zero.

\subsection*{4.3.4 Maturity-at-age (Table 4.4 and 4.11)}

A maturity ogive was available from Russia for the period 1981-2003 (Table 4.4). The ogive shows a relatively early maturation compared to the period 1994 to 1998. The maturity-at-age series for the whole period 1950-2002 is shown in Table 4.11.

\subsection*{4.3.5}

Data for tuning (Table 4.12)
The following surveys series are included in the data for tuning:
\begin{tabular}{llllll}
\hline Name & Place & Season & Age & Year & \begin{tabular}{l}
prior \\
weight
\end{tabular} \\
\hline Russian bottom trawl & Total area & Autumn & \(1-7\) & \(1983-2002\) & 1 \\
Norwegian bottom trawl & Barents Sea & Winter & \(1-8\) & \(1982-2002\) & 1 \\
Norwegian acoustic & Barents Sea & Winter & \(1-7\) & \(1980-2002\) & 1 \\
\hline
\end{tabular}

The indices for the 1996 year class was not used for tuning the XSA. See Section 4.4.1 in last years report.

\subsection*{4.3.6 Recruitment indices (Table 4.5)}

The table with recruitment indices cover the year classes 1980 and later. The 0 -group index was not used for input to the RCT3. Since the indices of the 1996 year classes were removed from the tuning of the XSA, they were also removed from recruitment estimation. See section 4.4.1 in last years report.

\subsection*{4.3.7 Prediction data (Table 4.19)}

Weights-at-age and proportions mature at age shows strong cyclic patterns related to periods of good recruitment. The working group believes that the estimated recruitment in the latest years is so high that it will effect growth and maturation processes. The working group therefore decided to use similar trends in weight-at-age, maturity and natural mortality as has been observed in previous periods following good recruitment. The input data for making the prediction was then:
- \(\quad\) The estimated recruitment given in Table 4.6.
- The average fishing pattern observed in the 3 last years.
- Observed maturity for 2003, average maturity for the periods 1987-1989 and 1994-1997 (7 years) for 2005 and maturity-at-age in 2004 as the average between 2003 and 2005
- Weight-at-age in the stock was calculated in the same way as maturity-at-age with the exception that the period 1987-1989 was not used. This due to poor weight data for that period.
- Weight-at-age in the catches for 2003 was set equal to the observed data in 2002,. The 2004 and 2005 numbers was calculated in the same way as the weight-at-age in the stock (using the average weight-at-age in the catches in 1994-1997 as the weight-at-age in 2005).
- Natural mortality was calculated similar to the maturity with the exception that natural mortality for 2003 was set equal to 2002.
- And stock numbers and fishing mortalities from the standard VPA.

\subsection*{4.4 Methods Used in the Assessment}

\subsection*{4.4.1 VPA and tuning}

The Extended Survivors Analysis (XSA) was used to tune the VPA to the available index series (Table 4.12). The settings used by the AFWG in 2002 were used. We quote from the 2001 WG report: "The catchability dependent on stock size for ages \(<7\) was used instead of 6 because the diagnostics show the age 6 as the last age group in which the slope differs from 1. In addition, the assessment was made to truncate the older ages (e.g., 1-11+). An age span of ages 1 to \(11+\) was used because the catchability analysis for the old ages are under-determined. Survivor estimates shrunk towards the mean F of the final 5 years of the 3 oldest ages, and S.E.D. of the mean to which the estimates are shrunk was set to 1 , due to high variability in the fishing mortality of recent years. "

The estimated consumption of NEA haddock by NEA cod is incorporated into the XSA analysis by first constructing a catch number-at-age matrix, adding the numbers of haddock eaten by cod to the catches for the years where such data are available (1984-2001) (Table A16). The consumption of NEA haddock by NEA cod is given below:
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multirow{3}{*}{} & \multicolumn{6}{|l|}{ Consumption of Haddock by NEA Cod (millions) } \\
\cline { 2 - 7 } & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 1984 & 980.0 & 14.7 & 0.1 & 0.0 & 0.0 & 0.0 \\
\hline 1985 & 1203.5 & 5.2 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 1986 & 563.9 & 244.9 & 168.0 & 0.0 & 0.0 & 0.0 \\
\hline 1987 & 766.7 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 1988 & 17.1 & 0.5 & 9.1 & 0.0 & 0.2 & 0.0 \\
\hline 1989 & 236.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 1990 & 142.3 & 36.4 & 3.5 & 0.0 & 0.0 & 0.0 \\
\hline 1991 & 460.5 & 14.4 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 1992 & 2114.9 & 151.1 & 1.1 & 0.0 & 0.0 & 0.0 \\
\hline 1993 & 1375.7 & 167.7 & 37.4 & 3.4 & 2.9 & 0.0 \\
\hline 1994 & 1407.7 & 80.8 & 25.1 & 7.7 & 0.9 & 0.0 \\
\hline 1995 & 2895.2 & 163.7 & 12.0 & 30.1 & 30.1 & 0.3 \\
\hline 1996 & 1586.9 & 160.9 & 40.0 & 5.4 & 2.6 & 3.4 \\
\hline 1997 & 900.9 & 35.4 & 25.7 & 1.7 & 0.8 & 0.5 \\
\hline 1998 & 1513.5 & 27.7 & 2.0 & 2.9 & 0.5 & 0.0 \\
\hline 1999 & 908.5 & 23.3 & 0.3 & 0.0 & 0.0 & 0.0 \\
\hline 2000 & 1251.5 & 64.8 & 1.9 & 1.0 & 0.2 & 0.1 \\
\hline 2001 & 574.0 & 51.8 & 4.3 & 0.1 & 0.0 & 0.0 \\
\hline 2002 & 4169.4 & 410.5 & 65.5 & 1.8 & 0.2 & 0.0 \\
\hline
\end{tabular}

The fishing mortality estimated by this XSA was split into the mortality caused by the fishing fleet (F) and the mortality caused by the cod's predation (M2) according to the ratio of fleet catch and predation "catch". The new natural mortality data set was then prepared by adding 0.2 (M1) to the predation mortality. This new M matrix (Table 4.10) was used in the final XSA. Based on this last run, a conventional VPA was made, which includes age group 3 and older in order to get a summary table needed for the report. Terminal F's were set equal to the last year and highest true age (10 years) F's from the XSA.

The retrospective performance of the XSA is illustrated in Figures 4.5 to 4.7

\subsection*{4.4.2 Recruitment (Tables 4.6)}

The recruiting year classes 2000-2002 were estimated using RCT3 (input given in Tables 4.5 and output given in 4.6). The 0 -group index was not used and the indices for the 1996 year class was also removed. This year class was removed because there is strong evidence that this year class is distributed mainly outside the areas covered by the surveys used. See also section 4.4.1 of last years report. The 2002 year class estimate was heavily influenced by the "shrinkage" (high weight given to mean recruitment). The different indices all indicates a year class strength more than twice the 422 millions estimated in Table 4.6.

\subsection*{4.5 Results of the Assessment}

\subsection*{4.5.1 Fishing mortality and VPA (Tables 4.13-4.18 and Figures 4.1A-B, 4.1D, 4.5-4.7)}

The tuning diagnostics of the final XSA (predation included) are given in Table 4.13.

Natural mortalities, fishing mortalities, and stock numbers of the final VPA are given in Tables 4.10, 4.14, and 4.15, respectively, while the stock biomass at age and the spawning biomass at age are given in Tables 4.16 and 4.17. A summary of landings, fishing mortality, spawning stock biomass, and recruitment since 1950 is given in Table 4.18 and Figures 4.1A, 4.1B, 4.1C, and 4.1D.

This years assessment revised the 2001 fishing mortality slightly upwards. \(\mathrm{F}_{4-7}\) indicates a slightly reduced fishing mortality relative to the period 1997-1999, but since the assessment is rather uncertain (especially for the 1996 year class) this cannot be a strong conclusion. We can however, conclude that the fishing mortality in 2002 was well above \(\mathbf{F}_{\mathrm{pa}}(0.35)\).

The fishery has in 2000 and 2001 mainly been targeting the 1996 year class, but the 1998 yerclass is the most numerous in the 2002 catches.

The spawning stock biomass was revised through the changes made to the assessment, but the trends are quite similar to last year's assessment. The maturity ogives used are rather "noisy" and show clear signs of inconsistencies. The spawning stock biomass seemed to reach the bottom in 2000 and the small decrease in 2002 from the 2001 estimate was not expected, but could in part be caused by the afore mentioned "noisy" ogives.

\subsection*{4.5.2 Recruitment (Tables 4.6A, 4.6B, 4.15 and Figure 4.1C)}

This year's assessment made the following revisions to the estimated year class strength of the recruiting year classes (numbers in millions at age 3):
\begin{tabular}{|l|l|l|}
\hline Year Class & 2002 & 2003 \\
\hline 1997 & 58 & 61 \\
\hline 1998 & 265 & 309 \\
\hline 1999 & 241 & 330 \\
\hline 2000 & 199 & 250 \\
\hline 2001 & 284 & 277 \\
\hline 2002 & & 422 \\
\hline
\end{tabular}

The overall picture is towards higher estimates than the previous assessment. This could be expected as the shrinkage towards mean recruitment gets less weight.

\subsection*{4.5.3 Yield-per-recruit (Table 4.20, Figure 4.3)}

A simple yield-per-recruit plot with updated data is presented in Figure 4.3.

\subsection*{4.5.4 Catch options for 2004 (Table 4.21)}

The catch in 2002 correspond to \(\mathrm{Fbar}=0.44\) and the estimated spawning stock biomass will be 120000 t in the beginning of 2003. Assuming a status quo F in 2003 the deterministic projection suggests an increase in SSB to 133000 \(t\) in the beginning of 2004 (which is well above \(\mathbf{B}_{\mathrm{pa}}\)). Fishing at \(\mathbf{F}_{\mathrm{pa}}\) in 2004 corresponds to total landings of 120000 t , with a further strengthening of the SSB into the beginning of 2005. A prediction with single option table is shown in Table 4.22. The input to the prediction is given in Table 4.19.

\subsection*{4.6 Biological reference points.}

\subsection*{4.6.1 Biomass reference points (Figures 4.2 and 4.4)}

The biomass reference points adopted by ACFM for this stock are \(\mathbf{B}_{\mathrm{lim}}=50,000 \mathrm{t}\) and \(\mathbf{B}_{\mathrm{pa}}=80,000 \mathrm{t}\). No revisions to these values were put forward for consideration at this meeting. However, in light of the strong retrospective year class dependent bias in haddock assessments it appears that the separation between \(\mathbf{B}_{\mathrm{lim}}\) and \(\mathbf{B}_{\mathrm{pa}}\) is rather small. Therefore, a more conservative level for \(\mathbf{B}_{\mathrm{pa}}\) should be investigated.

\subsection*{4.6.2 Fishing mortality reference points (Figure 4.4)}

The fishing mortality reference points adopted by ACFM for this stock are \(\mathbf{F}_{\text {lim }}=0.49\) and \(\mathbf{F}_{\mathrm{pa}}=0.35\). No revisions to these values were put forward for consideration at this meeting. However, given the concerns noted above a more conservative level for \(\mathbf{F}_{\mathrm{pa}}\) also should be investigated.

As commented on in section 4.9 the tuning is not very stable.

The working groups had problems to estimate reasonable fishing mortalities for the 1996 year class in last year's assessment. Our solution was to delete it all together from the tuning and let the fishing mortality be decided by "shrinkage" to the mean F. The WG groups made runs both with and without this year class in the tuning this year as well, but came to the same conclusion (the inclusion of tuning indices gave an estimate of \(\mathrm{F}=1.15\) for this year class). The same reasoning was used when we decided to not use the indices from this year class as input to the RCT3.

The problem with the survey coverage of the 1996 year class is not new and similar problems with earlier year classes can have been a contributing factor to previous assessment problems for this stock.

The forecasts are very much depending on the estimates of the year class strength of the incoming year classes. The forecasts are also quite depending on the maturity-at-age, natural mortality and weight-at-age numbers used as input. These parameters are known to vary quite a lot for this stock and we have tried to create a trend towards observations of such parameters made after period of good recruitment (1987-1989 and 1994-1997). This makes the forecast much more conservative than the traditional average over some range of most recent years. But the working group believes this to be amore realistic approach.

\subsection*{4.7.1 Changes from last year}

The following changes was made to the assessment compared to last year:
1) Total landings in 2001 were revised slightly.
2) As in the 2002 assessment the tuning data for the 1996 year class was removed.
3) The XSA estimate of the recruiting year class (1999) was accepted. (Last years XSA estimate of the 1998 year class was replaced with a RCT3 estimate.
4) Age group 4 was not used in the RCT3 run (see 3) and neither was the 0 -group index.

\subsection*{4.8 Technical minutes from ACFM}

\section*{Age 1 and 2}

We quote: "It was proposed in the last Technical minutes that the AFWG runs the XSA without the age groups 1 and 2 due to low catches and uncertain predation mortality at these ages. This suggests that population estimates at these ages will be very noisy. As these estimates contribute to estimation of survivors from the oldest age of the cohort they are likely to add noise to the survivor estimates. Also it was noted that there are no weight-at-age estimates for theses young age groups available.

AFWG did not follow this and ran the XSA with age groups 1 and 2. The AFWG is asked to either exclude these age groups or to explain why they wish to include them in present assessment."

The working group agree with ACFM in their concern that these agegroups may contribute to increased noise in the estimate of survivors over the whole age range. We believe however, that this level of noise is negligible relative to other problems with assessing this stock.

The working group started the preparation of assessing the deletion of ages 1 and 2 from the assessment by comparing single fleet runs with a combined run of 3 fleets. The combined tuning gave most weight to the fleet that indicated the lowest SSB in 2002, but the combined run SSB estimate was higher than any of the single fleet runs. See Figure 4.8 top panel. The estimates are all shrunk towards the mean and we increased the shrinkage from the modest \(\mathrm{se}=1.00\) to the default \(\mathrm{se}=0.5\). The effect can be seen in the middle panel of Figure 4.8. And the difference in the regression parameters in the single fleet runs and the combined run was larger than with the more modest shrinkage. The third attempt was the removal of all shrinkage and the results can be seen in the bottom panel. The regression parameters did not change much between the single fleet runs and the combined, but the single fleet runs "spread" out too much.

The working group tried also to assess the effect of removing younger agegroups from the assessment by comparing retrospective runs. See Figures 4.9 and 4.10. The removal of the youngest agegroups seemed to increase the overall bias. The observed retrospective bias is clearly year class dependent and it was mainly the year classes 1989-1991 that was overestimated. Other (and weaker) year classes were typically underestimated. Since we know are entering a period
with potentially quite high abundance we choose to let the youngest agegroups be included in the assessment for now. The additional tuning problems without these agegroups contributed to that decision.

\section*{0-group data as input to RCT3}

We quote: "Also in the technical minutes from last year it was noted that 0 group survey data were of little significance in estimating recruitment and the AFWG was asked to remove these from the RCT3 data set.

The AFWG did not follow this either. The AFWG is asked to explain why they included the 0-group in the present assessment."

The working group removed the logarithmic 0 -group index series and replaced it with an area based 0 -group index.

\section*{More than one RCT3 run}

We quote: " ACFM could not understand why two RCT3 runs were made using different surveys to estimate population numbers for the same age group. The reason for this was not explained in the report, so ACFM chose to re-run RCT3 using only one combined set of survey indices, with the 1996 year class included in the RCT3 input file."

As ACFM raised the question of indices representing younger agegroups being more "noisy" than older agegroups we tried to remove this potential noise by not using them as input when we had indices representing the year class at age 2 , 3 or 4 . This year we used the input suggested by ACFM, but we did not include the indices for the 1996 year class (this year class is distributed mainly outside the survey areas).

\section*{Data series}

We quote: "By rerunning the RCT3 it was noted that similar values in the input RCT3-Table 4.5A (column RT1) could not be found in Table B2."

The RT1 series used in last year's assessment was representing only a part of the total survey area. It has been replaced with the corresponding index representing the total survey area. The labelling was also misleading because this series represented the 0 -group fish late in the year. The labelling of the 2 other indices from this survey was also misleading. The indices are no labelled RT0, RT1, and RT2 with values taken from Table 4.5.

\section*{Missing plots}

We quote: "Comments were made that the standard plots summary figures (A-D) are missing."
By a mistake the plots was not copied from final runs\standard graphs into the report folder.

Table 4.1 North-East Arctic HADDOCK. Total nominal catch (t) by fishing areas.
(Data provided by Working Group members).
\begin{tabular}{rrrrr}
\hline Year & Sub-area I & Division Ila & Division Ilb & \multicolumn{1}{c}{ Total } \\
\hline 1960 & 125,026 & 27,781 & 1,844 & 154,651 \\
1961 & 165,156 & 25,641 & 2,427 & 193,224 \\
1962 & 160,561 & 25,125 & 1,723 & 187,408 \\
1963 & 124,332 & 20,956 & 936 & 146,224 \\
1964 & 79,262 & 18,784 & 1,112 & 99,158 \\
1965 & 98,921 & 18,719 & 943 & 118,578 \\
1966 & 125,009 & 35,143 & 1,626 & 161,778 \\
1967 & 107,996 & 27,962 & 440 & 136,397 \\
1968 & 140,970 & 40,031 & 725 & 181,726 \\
1969 & 89,948 & 40,306 & 566 & 130,820 \\
1970 & 60,631 & 27,120 & 507 & 88,257 \\
1971 & 56,989 & 21,453 & 463 & 78,905 \\
1972 & 221,880 & 42,111 & 2,162 & 266,153 \\
1973 & 285,644 & 23,506 & 13,077 & 322,226 \\
1974 & 159,051 & 47,037 & 15,069 & 221,157 \\
1975 & 121,692 & 44,337 & 9,729 & 175,758 \\
1976 & 94,054 & 37,562 & 5,648 & 137,264 \\
1977 & 72,159 & 28,452 & 9,547 & 110,158 \\
1978 & 63,965 & 30,478 & 979 & 95,422 \\
1979 & 63,841 & 39,167 & 615 & 103,623 \\
1980 & 54,205 & 33,616 & 68 & 87,889 \\
1981 & 36,834 & 39,864 & 455 & 77,153 \\
1982 & 17,948 & 29,005 & 2 & 46,955 \\
1983 & 7,550 & 13,872 & 185 & 21,607 \\
1984 & 4,000 & 13,247 & 71 & 17,318 \\
1985 & 30,385 & 10,774 & 111 & 41,270 \\
1986 & 69,865 & 26,006 & 714 & 96,585 \\
1987 & 109,425 & 38,181 & 3,048 & 150,654 \\
1988 & 43,990 & 47,087 & 668 & 91,745 \\
1989 & 31,116 & 23,390 & 353 & 54,859 \\
1990 & 15,093 & 10,344 & 303 & 25,741 \\
1991 & 18,772 & 14,417 & 416 & 33,605 \\
1992 & 30,746 & 22,177 & 964 & 53,887 \\
1993 & 47,574 & 27,010 & 3,037 & 77,621 \\
1994 & 75,059 & 46,329 & 7,315 & 128,703 \\
1995 & 70,390 & 54,169 & 14,118 & 138,677 \\
1996 & 112,781 & 57,189 & 3,294 & 173,264 \\
1997 & 78,335 & 67,917 & 2,504 & 148,756 \\
1998 & 45,471 & 47,774 & 701 & 93,946 \\
1999 & 36,096 & 42,036 & 4,214 & 82,346 \\
2000 & 25,312 & 31,857 & 4,126 & 61,295 \\
2002 & 1 & 35,071 & 39,449 & 7,323 \\
\hline 81,842 \\
\hline & 40,390 & 30,891 & 12,567 & 83,848 \\
\hline & & & &
\end{tabular}

1 Provisional figures, Norwegian catches on Russian quotas are included

Table 4.2 North-East Arctic HADDOCK.
Total nominal catch ('000 t) by trawl and other gear for each area.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{2}{|l|}{Sub-area I} & \multicolumn{2}{|l|}{Division Ila} & \multirow[t]{2}{*}{Division IIb Trawl} \\
\hline & Trawl & Others & Trawl & Others & \\
\hline 1967 & 73.7 & 34.3 & 20.5 & 7.5 & 0.4 \\
\hline 1968 & 98.1 & 42.9 & 31.4 & 8.6 & 0.7 \\
\hline 1969 & 41.4 & 47.8 & 33.2 & 7.1 & 1.3 \\
\hline 1970 & 37.4 & 23.2 & 20.6 & 6.5 & 0.5 \\
\hline 1971 & 27.5 & 29.2 & 15.1 & 6.7 & 0.4 \\
\hline 1972 & 193.9 & 27.9 & 34.5 & 7.6 & 2.2 \\
\hline 1973 & 242.9 & 42.8 & 14.0 & 9.5 & 13.1 \\
\hline 1974 & 133.1 & 25.9 & 39.9 & 7.1 & 15.1 \\
\hline 1975 & 103.5 & 18.2 & 34.6 & 9.7 & 9.7 \\
\hline 1976 & 77.7 & 16.4 & 28.1 & 9.5 & 5.6 \\
\hline 1977 & 57.6 & 14.6 & 19.9 & 8.6 & 9.5 \\
\hline 1978 & 53.9 & 10.1 & 15.7 & 14.8 & 1.0 \\
\hline 1979 & 47.8 & 16.0 & 20.3 & 18.9 & 0.6 \\
\hline 1980 & 30.5 & 23.7 & 14.8 & 18.9 & 0.1 \\
\hline 1981 & 18.8 & 17.7 & 21.6 & 18.5 & 0.5 \\
\hline 1982 & 11.6 & 11.5 & 23.9 & 13.5 & - \\
\hline 1983 & 3.7 & 3.8 & 7.6 & 6.3 & 0.2 \\
\hline 1984 & 1.6 & 2.4 & 6.4 & 6.9 & 0.1 \\
\hline 1985 & 24.4 & 6.0 & 4.5 & 6.3 & 0.1 \\
\hline 1986 & 51.7 & 18.1 & 12.8 & 13.2 & 0.7 \\
\hline 1987 & 77.8 & 31.6 & 22.1 & 16.1 & 3.0 \\
\hline 1988 & 27.5 & 16.5 & 33.6 & 13.5 & 0.7 \\
\hline 1989 & 21.4 & 9.7 & 11.6 & 11.7 & 0.4 \\
\hline 1990 & 5.9 & 9.2 & 4.8 & 5.6 & 0.3 \\
\hline 1991 & 9.8 & 9.0 & 7.8 & 6.6 & 0.4 \\
\hline 1992 & 21.2 & 9.5 & 9.3 & 12.9 & 1.0 \\
\hline 1993 & 37.9 & 9.7 & 18.0 & 9.0 & 3.0 \\
\hline 1994 & 61.3 & 13.8 & 31.3 & 15.1 & 7.3 \\
\hline 1995 & 57.0 & 12.1 & 32.6 & 20.5 & 13.9 \\
\hline 1996 & 96.3 & 14.2 & 34.0 & 22.0 & 3.2 \\
\hline 1997 & 56.9 & 20.6 & 42.1 & 25.1 & 2.5 \\
\hline 1998 & 26.4 & 20.0 & 25.3 & 23.5 & 0.7 \\
\hline 1999 & 28.5 & 8.5 & 16.8 & 23.7 & 4.9 \\
\hline 2000 & 19.5 & 5.8 & 17.1 & 14.8 & 4.0 \\
\hline 2001 & 28.4 & 6.7 & 21.5 & 17.9 & 7.0 \\
\hline \(2002{ }^{1}\) & 30.2 & 10.2 & 15.8 & 15.1 & 12.5 \\
\hline
\end{tabular}

1 Provisional

Table 4.3 North-East Arctic HADDOCK. Nominal catch (t) by countries
Sub-area I and Divisions Ila and Ilb combined. (Data provided by Working Group members).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Faroe Islands & France & German Dem.Re. & Fed. Re. Germ. & Norway & Poland & United Kingdom & Russia \({ }^{2}\) & Others & Total \\
\hline 1960 & 172 & - & - & 5,597 & 46,263 & - & 45,469 & 57,025 & 125 & 154,651 \\
\hline 1961 & 285 & 220 & - & 6,304 & 60,862 & - & 39,650 & 85,345 & 558 & 193,224 \\
\hline 1962 & 83 & 409 & - & 2,895 & 54,567 & - & 37,486 & 91,910 & 58 & 187,408 \\
\hline 1963 & 17 & 363 & - & 2,554 & 59,955 & - & 19,809 & 63,526 & - & 146,224 \\
\hline 1964 & - & 208 & - & 1,482 & 38,695 & - & 14,653 & 43,870 & 250 & 99,158 \\
\hline 1965 & - & 226 & - & 1,568 & 60,447 & - & 14,345 & 41,750 & 242 & 118,578 \\
\hline 1966 & - & 1,072 & 11 & 2,098 & 82,090 & - & 27,723 & 48,710 & 74 & 161,778 \\
\hline 1967 & - & 1,208 & 3 & 1,705 & 51,954 & - & 24,158 & 57,346 & 23 & 136,397 \\
\hline 1968 & - & - & - & 1,867 & 64,076 & - & 40,129 & 75,654 & - & 181,726 \\
\hline 1969 & 2 & - & 309 & 1,490 & 67,549 & - & 37,234 & 24,211 & 25 & 130,820 \\
\hline 1970 & 541 & - & 656 & 2,119 & 37,716 & - & 20,423 & 26,802 & - & 88,257 \\
\hline 1971 & 81 & - & 16 & 896 & 45,715 & 43 & 16,373 & 15,778 & 3 & 78,905 \\
\hline 1972 & 137 & - & 829 & 1,433 & 46,700 & 1,433 & 17,166 & 196,224 & 2,231 & 266,153 \\
\hline 1973 & 1,212 & 3,214 & 22 & 9,534 & 86,767 & 34 & 32,408 & 186,534 & 2,501 & 322,226 \\
\hline 1974 & 925 & 3,601 & 454 & 23,409 & 66,164 & 3,045 & 37,663 & 78,548 & 7,348 & 221,157 \\
\hline 1975 & 299 & 5,191 & 437 & 15,930 & 55,966 & 1,080 & 28,677 & 65,015 & 3,163 & 175,758 \\
\hline 1976 & 536 & 4,459 & 348 & 16,660 & 49,492 & 986 & 16,940 & 42,485 & 5,358 & 137,264 \\
\hline 1977 & 213 & 1,510 & 144 & 4,798 & 40,118 & - & 10,878 & 52,210 & 287 & 110,158 \\
\hline 1978 & 466 & 1,411 & 369 & 1,521 & 39,955 & 1 & 5,766 & 45,895 & 38 & 95,422 \\
\hline 1979 & 343 & 1,198 & 10 & 1,948 & 66,849 & 2 & 6,454 & 26,365 & 454 & 103,623 \\
\hline 1980 & 497 & 226 & 15 & 1,365 & 61,886 & - & 2,948 & 20,706 & 246 & 87,889 \\
\hline 1981 & 381 & 414 & 22 & 2,398 & 58,856 & Spain & 1,682 & 13,400 & - & 77,153 \\
\hline 1982 & 496 & 53 & - & 1,258 & 41,421 & - & 827 & 2,900 & - & 46,955 \\
\hline 1983 & 428 & - & 1 & 729 & 19,371 & 139 & 259 & 680 & - & 21,607 \\
\hline 1984 & 297 & 15 & 4 & 400 & 15,186 & 37 & 276 & 1,103 & - & 17,318 \\
\hline 1985 & 424 & 21 & 20 & 395 & 17,490 & 77 & 153 & 22,690 & - & 41,270 \\
\hline 1986 & 893 & 33 & 75 & 1,079 & 48,314 & 22 & 431 & 45,738 & - & 96,585 \\
\hline 1987 & 464 & 26 & 83 & 3,106 & 69,333 & 99 & 563 & 76,980 & - & 150,654 \\
\hline 1988 & 1,113 & 116 & 78 & 1,324 & 57,273 & 72 & 435 & 31,293 & 41 & 91,745 \\
\hline 1989 & 1,218 & 125 & 26 & 171 & 31,825 & 1 & 590 & 20,903 & - & 54,859 \\
\hline 1990 & 875 & - & 5 & 128 & 17,634 & - & 494 & 6,605 & - & 25,741 \\
\hline 1991 & 1,117 & 60 & Greenld & 219 & 19,285 & - & 514 & 12,388 & 22 & 33,605 \\
\hline 1992 & 1,093 & 151 & 1,719 & 387 & 30,203 & 38 & 596 & 19,699 & 1 & 53,887 \\
\hline 1993 & 546 & 1,215 & 880 & 1,165 & 36,590 & 76 & 1,802 & 34,700 & 646 & 77,620 \\
\hline 1994 & 2,761 & 678 & 770 & 2,412 & 64,688 & 22 & 4,673 & 51,822 & 877 & 128,703 \\
\hline 1995 & 2,833 & 598 & 1,351 & 2,675 & 72,864 & 14 & 3,108 & 54,516 & 718 & 138,677 \\
\hline 1996 & 3,743 & 537 & 1,524 & 942 & 89,500 & 669 & 2,275 & 73,857 & 217 & 173,264 \\
\hline 1997 & 3,327 & 495 & 1,877 & 972 & 97,789 & 424 & 2,340 & 41,228 & 304 & 148,756 \\
\hline 1998 & 1,566 & 241 & 854 & 385 & 68,747 & 257 & 1,241 & 20,559 & 96 & 93,946 \\
\hline 1999 & 1,003 & 64 & 252 & 437 & 48,632 & 652 & 694 & 30,520 & 92 & 82,346 \\
\hline 2000 & 631 & 169 & 432 & 931 & 34,172 & 582 & 814 & 22,738 & 823 & 61,292 \\
\hline 2001 & 1,210 & 324 & 553 & 554 & 41,269 & 1,497 & 1,068 & 34,307 & 2,471 & 81,842 \\
\hline \(2002{ }^{1}\) & 1,564 & 297 & 858 & 627 & 40,029 & 1,505 & 1,129 & 37,157 & 2,152 & 83,848 \\
\hline
\end{tabular}

\footnotetext{
1 Provisional figures, Norwegian catches on Russian quotas are included.
\({ }^{2}\) USSR prior to 1991.
}

Table 4.3 North-East Arctic HADDOCK. Nominal catch (t) by countries
Sub-area I and Divisions Ila and Ilb combined. (Data provided by Working Group members).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Faroe Islands & France & German Dem.Re. & Fed. Re. Germ. & Norway & Poland & United Kingdom & Russia \({ }^{2}\) & Others & Total \\
\hline 1960 & 172 & - & - & 5,597 & 46,263 & - & 45,469 & 57,025 & 125 & 154,651 \\
\hline 1961 & 285 & 220 & - & 6,304 & 60,862 & - & 39,650 & 85,345 & 558 & 193,224 \\
\hline 1962 & 83 & 409 & - & 2,895 & 54,567 & - & 37,486 & 91,910 & 58 & 187,408 \\
\hline 1963 & 17 & 363 & - & 2,554 & 59,955 & - & 19,809 & 63,526 & - & 146,224 \\
\hline 1964 & - & 208 & - & 1,482 & 38,695 & - & 14,653 & 43,870 & 250 & 99,158 \\
\hline 1965 & - & 226 & - & 1,568 & 60,447 & - & 14,345 & 41,750 & 242 & 118,578 \\
\hline 1966 & - & 1,072 & 11 & 2,098 & 82,090 & - & 27,723 & 48,710 & 74 & 161,778 \\
\hline 1967 & - & 1,208 & 3 & 1,705 & 51,954 & - & 24,158 & 57,346 & 23 & 136,397 \\
\hline 1968 & - & - & - & 1,867 & 64,076 & - & 40,129 & 75,654 & - & 181,726 \\
\hline 1969 & 2 & - & 309 & 1,490 & 67,549 & - & 37,234 & 24,211 & 25 & 130,820 \\
\hline 1970 & 541 & - & 656 & 2,119 & 37,716 & - & 20,423 & 26,802 & - & 88,257 \\
\hline 1971 & 81 & - & 16 & 896 & 45,715 & 43 & 16,373 & 15,778 & 3 & 78,905 \\
\hline 1972 & 137 & - & 829 & 1,433 & 46,700 & 1,433 & 17,166 & 196,224 & 2,231 & 266,153 \\
\hline 1973 & 1,212 & 3,214 & 22 & 9,534 & 86,767 & 34 & 32,408 & 186,534 & 2,501 & 322,226 \\
\hline 1974 & 925 & 3,601 & 454 & 23,409 & 66,164 & 3,045 & 37,663 & 78,548 & 7,348 & 221,157 \\
\hline 1975 & 299 & 5,191 & 437 & 15,930 & 55,966 & 1,080 & 28,677 & 65,015 & 3,163 & 175,758 \\
\hline 1976 & 536 & 4,459 & 348 & 16,660 & 49,492 & 986 & 16,940 & 42,485 & 5,358 & 137,264 \\
\hline 1977 & 213 & 1,510 & 144 & 4,798 & 40,118 & - & 10,878 & 52,210 & 287 & 110,158 \\
\hline 1978 & 466 & 1,411 & 369 & 1,521 & 39,955 & 1 & 5,766 & 45,895 & 38 & 95,422 \\
\hline 1979 & 343 & 1,198 & 10 & 1,948 & 66,849 & 2 & 6,454 & 26,365 & 454 & 103,623 \\
\hline 1980 & 497 & 226 & 15 & 1,365 & 61,886 & - & 2,948 & 20,706 & 246 & 87,889 \\
\hline 1981 & 381 & 414 & 22 & 2,398 & 58,856 & Spain & 1,682 & 13,400 & - & 77,153 \\
\hline 1982 & 496 & 53 & - & 1,258 & 41,421 & - & 827 & 2,900 & - & 46,955 \\
\hline 1983 & 428 & - & 1 & 729 & 19,371 & 139 & 259 & 680 & - & 21,607 \\
\hline 1984 & 297 & 15 & 4 & 400 & 15,186 & 37 & 276 & 1,103 & - & 17,318 \\
\hline 1985 & 424 & 21 & 20 & 395 & 17,490 & 77 & 153 & 22,690 & - & 41,270 \\
\hline 1986 & 893 & 33 & 75 & 1,079 & 48,314 & 22 & 431 & 45,738 & - & 96,585 \\
\hline 1987 & 464 & 26 & 83 & 3,106 & 69,333 & 99 & 563 & 76,980 & - & 150,654 \\
\hline 1988 & 1,113 & 116 & 78 & 1,324 & 57,273 & 72 & 435 & 31,293 & 41 & 91,745 \\
\hline 1989 & 1,218 & 125 & 26 & 171 & 31,825 & 1 & 590 & 20,903 & - & 54,859 \\
\hline 1990 & 875 & - & 5 & 128 & 17,634 & - & 494 & 6,605 & - & 25,741 \\
\hline 1991 & 1,117 & 60 & Greenld & 219 & 19,285 & - & 514 & 12,388 & 22 & 33,605 \\
\hline 1992 & 1,093 & 151 & 1,719 & 387 & 30,203 & 38 & 596 & 19,699 & 1 & 53,887 \\
\hline 1993 & 546 & 1,215 & 880 & 1,165 & 36,590 & 76 & 1,802 & 34,700 & 646 & 77,620 \\
\hline 1994 & 2,761 & 678 & 770 & 2,412 & 64,688 & 22 & 4,673 & 51,822 & 877 & 128,703 \\
\hline 1995 & 2,833 & 598 & 1,351 & 2,675 & 72,864 & 14 & 3,108 & 54,516 & 718 & 138,677 \\
\hline 1996 & 3,743 & 537 & 1,524 & 942 & 89,500 & 669 & 2,275 & 73,857 & 217 & 173,264 \\
\hline 1997 & 3,327 & 495 & 1,877 & 972 & 97,789 & 424 & 2,340 & 41,228 & 304 & 148,756 \\
\hline 1998 & 1,566 & 241 & 854 & 385 & 68,747 & 257 & 1,241 & 20,559 & 96 & 93,946 \\
\hline 1999 & 1,003 & 64 & 252 & 437 & 48,632 & 652 & 694 & 30,520 & 92 & 82,346 \\
\hline 2000 & 631 & 169 & 432 & 931 & 34,172 & 582 & 814 & 22,738 & 823 & 61,292 \\
\hline 2001 & 1,210 & 324 & 553 & 554 & 41,269 & 1,497 & 1,068 & 34,307 & 2,471 & 81,842 \\
\hline \(2002{ }^{1}\) & 1,564 & 297 & 858 & 627 & 40,029 & 1,505 & 1,129 & 37,157 & 2,152 & 83,848 \\
\hline
\end{tabular}

\footnotetext{
1 Provisional figures, Norwegian catches on Russian quotas are included.
\({ }^{2}\) USSR prior to 1991.
}

Table 4.4 North-East Arctic HADDOCK. Maturity at age in percent from Russian data
\begin{tabular}{cccccccccccc}
\hline & \multicolumn{10}{c}{ Age } & 7 \\
\cline { 2 - 10 } Year & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline 1981 & 1 & 12 & 64 & 73 & 96 & 100 & 100 & - & - & - \\
1982 & 9 & 55 & 73 & 93 & 96 & 100 & 93 & - & - & - \\
1983 & 17 & 70 & 100 & 99 & 99 & 100 & - & - & - & - \\
1984 & 7 & 14 & 35 & 47 & 74 & 82 & 89 & - & - & - \\
1985 & 2 & 8 & 80 & 93 & 96 & 91 & 96 & - & - & - \\
1986 & + & 22 & 53 & 86 & 86 & 100 & 83 & 100 & - & - \\
1987 & - & 1 & 21 & 53 & 100 & 100 & - & 100 & - & - \\
1988 & - & 3 & 33 & 51 & - & - & - & - & - & - \\
1989 & - & 4 & 30 & 63 & 82 & 100 & - & - & - & - \\
1990 & - & 2 & 30 & 54 & 77 & 87 & 80 & 100 & - & - \\
1991 & - & 7 & 30 & 50 & 80 & 92 & 100 & 100 & - & - \\
1992 & 2 & 13 & 50 & 62 & 77 & 80 & 94 & 100 & - & - \\
1993 & 2 & 22 & 49 & 76 & 79 & 88 & 88 & 87 & 100 & 100 \\
1994 & - & 2 & 13 & 41 & 90 & 88 & 100 & 100 & 97 & 100 \\
1995 & - & 2 & 12 & 42 & 81 & 88 & 100 & 87 & 100 & 94 \\
1996 & - & - & 10 & 36 & 78 & 86 & 90 & 93 & 90 & 100 \\
1997 & - & 3 & 10 & 29 & 60 & 82 & 100 & 83 & 100 & 100 \\
1998 & - & 5 & 28 & 50 & 66 & 81 & 91 & 100 & - & 100 \\
1999 & 1 & 17 & 50 & 71 & 81 & 91 & 92 & 100 & 100 & - \\
2000 & & 10 & 32 & 59 & 72 & 94 & 94 & 96 & 100 & 100 \\
2001 & 0 & 6 & 54 & 72 & 87 & 94 & 90 & 100 & 91 & 100 \\
2002 & 1 & 13 & 33 & 73 & 83 & 90 & 100 & 94 & 100 & 100 \\
\(2003^{*}\) & 0 & 5 & 37 & 63 & 88 & 100 & 92 & 100 & 100 & 100
\end{tabular}
* Preliminary data, revised in april/may meeting.
(Data provided by Working Group members).

Table 4.5 North-East Arctic HADDOCK. Input data for recruitment prediction (RCT3).
Yearclass in first column, VPA numbers at age 3 in second.
\begin{tabular}{lrrrrrrrrrr}
& VPA & R-T-O & R-T-1 & R-T-2 & N-BST1 & N_BST2 & N_BST3 & N_BST4 & N-BSA1 & OGP_A \\
1980 & 5 & -11 & -11 & -11 & 3 & 2 & 3 & 2 & 7 & 68 \\
1981 & 8 & -11 & -11 & 9.5 & 4 & 5 & 19 & 15 & 9 & 30 \\
1982 & 260 & -11 & 59.2 & 58.4 & 2919 & 515 & 476 & 111 & 0 & 107 \\
1983 & 537 & 29.8 & 58.6 & 134.3 & 3833 & 1594 & 385 & 290 & 1685 & 219 \\
1984 & 84 & 6.4 & 14.4 & 10.7 & 1901 & 370 & 154 & 69 & 1530 & 293 \\
1985 & 43 & 3 & 1.4 & 1.7 & 665 & 80 & 25 & 22 & 556 & 156 \\
1986 & 17 & 0.2 & 0.9 & 0.7 & 164 & 15 & 14 & 3 & 85 & 160 \\
1987 & 25 & 0.3 & 0.3 & 2.4 & 35 & 10 & 5 & 5 & 18 & 72 \\
1988 & 82 & 1.3 & 1.8 & 10.6 & 81 & 55 & 33 & 24 & 52 & 86 \\
1989 & 198 & 2.2 & 14.3 & 17.6 & 644 & 300 & 151 & 106 & 270 & 112 \\
1990 & 642 & 44.8 & 42.9 & 128.6 & 2006 & 1376 & 508 & 437 & 1890 & 227 \\
1991 & 281 & 16.7 & 28.2 & 35.7 & 1659 & 599 & 340 & 171 & 1135 & 472 \\
1992 & 81 & 16.4 & 4.8 & 5.8 & 728 & 228 & 54 & 48 & 947 & 313 \\
1993 & 91 & 3.5 & 4.9 & 4.2 & 603 & 179 & 53 & 28 & 562 & 240 \\
1994 & 101 & 9.1 & 7.2 & 5.7 & 1464 & 264 & 86 & 33 & 1379 & 282 \\
1995 & 43 & 6.4 & 2.3 & 1.9 & 310 & 68 & 23 & 12 & 249 & 148 \\
1996 & 182 & 6 & 4.6 & 11.5 & 1268 & 138 & 60 & 35 & 693 & 196 \\
1997 & 62 & 1.8 & 2.9 & 6.1 & 213 & 58 & 27 & 29 & 220 & 150 \\
1998 & 311 & 10.7 & 28.9 & 26.2 & 1245 & 452 & 296 & 185 & 856 & 593 \\
1999 & 333 & 11.7 & 20.7 & 26.1 & 847 & 460 & 315 & 182 & 1024 & 184 \\
2000 & -11 & 15.1 & 14.9 & 18.9 & 1221 & 535 & 317 & -11 & 976 & 417 \\
2001 & -11 & 20.8 & 19.3 & -11 & 1680 & 513 & -11 & -11 & 2062 & 394 \\
2002 & -11 & 33.2 & -11 & -11 & 3332 & -11 & -11 & -11 & 2394 & 412
\end{tabular}
\begin{tabular}{lll}
R-T-1 & Russian Bottom Trawl Survey & age 0 \\
OGP_A & International 0 Group Survey \(\quad\) area based index & age 0 \\
N-BST1 & Norwegian Barents Sea Bottom Trawl Survey & age 1 \\
N-BSA1 & Norwegian Barents Sea Acoustic Survey & age 1 \\
N-BST2 & Norwegian Barents Sea Bottom Trawl Survey & age 2 \\
N-BST3 & Norwegian Barents Sea Bottom Trawl Survey & age 3
\end{tabular}

\section*{Table 4.6}
```

Analysis by RCT3 ver3.1 of data from file :
t1_96.txt
NORTHEAST ARCTIC HADDOCK: recruits as 3 year-olds
Data for 8 surveys over 23 years : 1980 - 2002
Regression type = C
Tapered time weighting applied
power = 3 over 20 years
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Year class = 2000

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Survey/ \\
Series
\end{tabular} & Slope & Intercept & \begin{tabular}{l}
Std \\
Error
\end{tabular} & Rsquare & \begin{tabular}{l}
No. \\
Pts
\end{tabular} & Index Value & Predicted Value & Std Error & \begin{tabular}{l}
WAP \\
Weights
\end{tabular} \\
\hline RT1 & . 93 & 2.77 & . 30 & . 923 & 17 & 2.77 & 5.34 & . 349 & . 277 \\
\hline RT2 & . 89 & 2.63 & . 35 & . 898 & 18 & 2.99 & 5.28 & . 409 & . 202 \\
\hline NT2 & . 83 & . 45 & . 42 & . 862 & 19 & 6.28 & 5.66 & . 495 & . 137 \\
\hline NT3 & . 79 & 1.28 & . 29 & . 928 & 19 & 5.76 & 5.85 & . 351 & . 274 \\
\hline \multicolumn{10}{|l|}{NT4} \\
\hline RT0 & 1.32 & 2.16 & . 91 & . 562 & 16 & 2.78 & 5.83 & 1.085 & . 029 \\
\hline NT1 & 1.17 & -2.64 & . 92 & . 559 & 19 & 7.11 & 5.65 & 1.087 & . 029 \\
\hline NA1 & 1.18 & -2.43 & 1.26 & . 407 & 19 & 6.88 & 5.68 & 1.470 & . 016 \\
\hline & & & & & VPA & Mean = & 4.83 & . 951 & . 037 \\
\hline
\end{tabular}
 Year class \(=2001\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Survey/ \\
Series
\end{tabular} & Slope & \[
\begin{gathered}
\text { Inter- } \\
\text { cept }
\end{gathered}
\] & Std Error & Rsquare & \[
\begin{aligned}
& \text { No. } \\
& \text { Pts }
\end{aligned}
\] & Index Value & Predicted Value & \begin{tabular}{l}
Std \\
Error
\end{tabular} & \begin{tabular}{l}
WAP \\
Weights
\end{tabular} \\
\hline RT1 & . 93 & 2.78 & . 28 & . 932 & 17 & 3.01 & 5.58 & . 333 & . 557 \\
\hline RT2 & & & & & & & & & \\
\hline NT2 & . 84 & . 38 & . 42 & . 858 & 19 & 6.24 & 5.64 & . 502 & . 246 \\
\hline NT3 & & & & & & & & & \\
\hline NT4 & & & & & & & & & \\
\hline RT0 & 1.36 & 2.07 & . 95 & . 539 & 16 & 3.08 & 6.26 & 1.174 & . 045 \\
\hline NT1 & 1.21 & -2.91 & . 92 & . 554 & 19 & 7.43 & 6.07 & 1.124 & . 049 \\
\hline NA1 & 1.19 & -2.54 & 1.14 & . 445 & 19 & 7.63 & 6.53 & 1.429 & . 030 \\
\hline & & & & & VPA & Mean = & 4.85 & . 926 & . 072 \\
\hline
\end{tabular}

\section*{Table 4.6 (Cont'd)}
```

Year class = 2002

```


RT1
RT2
NT2
NT3
NT4
\begin{tabular}{llllllllll}
RT0 & 1.41 & 1.94 & .98 & .514 & 16 & 3.53 & 6.93 & 1.327 & .192
\end{tabular}
\begin{tabular}{lllllllll}
NT1 & 1.24 & -3.11 & .91 & .555 & 19 & 8.11 & 6.95 & 1.236
\end{tabular}
\begin{tabular}{llllllllll}
NA1 & 1.21 & -2.73 & 1.07 & .471 & 19 & 7.78 & 6.71 & 1.402 & .172
\end{tabular}
VPA Mean \(=4.88 \quad .904 \quad .414\)
\begin{tabular}{lccccccc}
\begin{tabular}{l}
Year \\
Class
\end{tabular} & \begin{tabular}{c}
Weighted \\
Average \\
Prediction
\end{tabular} & Log & WAP & \begin{tabular}{c}
Int \\
Std \\
Error
\end{tabular} & \begin{tabular}{c}
Ext \\
Std \\
Error
\end{tabular} & Var & VPA io
\end{tabular}\(\quad\)\begin{tabular}{c}
Log \\
\\
2000
\end{tabular}

\section*{Table 4.7}

Run title : NEA Haddock (AFWG03: Final run)
At 30/04/2003 13:48
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 1 C & \multicolumn{2}{|l|}{Catch numbers at age} & \multicolumn{8}{|l|}{Numbers*10**-3} \\
\hline YEAR & 1950 & 1951 & 1952 & & & & & & & \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 1 & 0 & 4069 & 0 & & & & & & & \\
\hline 2 & 4446 & 222 & 13674 & & & & & & & \\
\hline 3 & 3189 & 65643 & 6012 & & & & & & & \\
\hline 4 & 37949 & 9178 & 151996 & & & & & & & \\
\hline 5 & 35344 & 18014 & 13634 & & & & & & & \\
\hline 6 & 18849 & 13551 & 9850 & & & & & & & \\
\hline 7 & 28868 & 6808 & 4693 & & & & & & & \\
\hline 8 & 9199 & 6850 & 3237 & & & & & & & \\
\hline 9 & 1979 & 3322 & 2434 & & & & & & & \\
\hline 10 & 1093 & 1182 & 606 & & & & & & & \\
\hline +gp & 2977 & 1348 & 880 & & & & & & & \\
\hline TOTALNUM & 143893 & 130187 & 207016 & & & & & & & \\
\hline TONSLAND & 132125 & 120077 & 127660 & & & & & & & \\
\hline SOPCOF \% & 45 & 65 & 51 & & & & & & & \\
\hline Table 1 C & \multicolumn{2}{|l|}{Catch numbers at age} & \multicolumn{2}{|l|}{Numbers*10**-3} & & & & & & \\
\hline YEAR & 1953 & 1954 & 1955 & 1956 & 1957 & 1958 & 1959 & 1960 & 1961 & 1962 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 1 & 392 & 1726 & 0 & 97 & 828 & 153 & 169 & 2319 & 362 & 0 \\
\hline 2 & 8031 & 493 & 989 & 3012 & 243 & 2312 & 2425 & 3613 & 5531 & 4524 \\
\hline 3 & 64528 & 6563 & 1154 & 16437 & 2074 & 1727 & 20318 & 39910 & 15429 & 39503 \\
\hline 4 & 13013 & 154696 & 10689 & 5922 & 24704 & 5914 & 7826 & 70912 & 56855 & 30868 \\
\hline 5 & 70781 & 5885 & 176678 & 14713 & 7942 & 31438 & 7243 & 13647 & 63351 & 48903 \\
\hline 6 & 5431 & 27590 & 4993 & 127879 & 12535 & 5820 & 14040 & 7101 & 8706 & 33836 \\
\hline 7 & 2867 & 3233 & 28273 & 3182 & 46619 & 12748 & 3154 & 6236 & 3578 & 3201 \\
\hline 8 & 1080 & 1302 & 1445 & 8003 & 1087 & 17565 & 2237 & 1579 & 4407 & 1341 \\
\hline 9 & 424 & 712 & 271 & 450 & 1971 & 822 & 5918 & 2340 & 788 & 1773 \\
\hline 10 & 315 & 319 & 100 & 200 & 356 & 1072 & 285 & 2005 & 527 & 242 \\
\hline +gp & 1005 & 543 & 100 & 185 & 176 & 601 & 500 & 606 & 1434 & 756 \\
\hline TOTALNUM & 167867 & 203062 & 224692 & 180080 & 98535 & 80172 & 64115 & 150268 & 160968 & 164947 \\
\hline TONSLAND & 123920 & 156788 & 202286 & 213924 & 123583 & 112672 & 88211 & 154651 & 193224 & 187408 \\
\hline SOPCOF \% & 57 & 60 & 47 & 55 & 57 & 61 & 80 & 84 & 80 & 75 \\
\hline Table 1 Ca & \multicolumn{2}{|l|}{Catch numbers at age} & \multicolumn{2}{|l|}{Numbers*10**-3} & & & & & & \\
\hline YEAR & 1963 & 1964 & 1965 & 1966 & 1967 & 1968 & 1969 & 1970 & 1971 & 1972 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 1 & 3 & 149 & 0 & 0 & 0 & 0 & 0 & 480 & 15 & 133 \\
\hline 2 & 2143 & 834 & 3498 & 2577 & 53 & 33 & 1061 & 281 & 3535 & 9399 \\
\hline 3 & 28466 & 22363 & 5936 & 26345 & 15907 & 657 & 1524 & 23444 & 1978 & 230942 \\
\hline 4 & 72736 & 49290 & 46356 & 22631 & 41346 & 67632 & 1968 & 2454 & 24358 & 22315 \\
\hline 5 & 18969 & 30672 & 40201 & 63176 & 13496 & 41267 & 44634 & 1906 & 1257 & 42981 \\
\hline 6 & 13579 & 5815 & 12631 & 29048 & 25719 & 7748 & 19002 & 22417 & 918 & 3206 \\
\hline 7 & 9257 & 3527 & 1679 & 5752 & 8872 & 15599 & 3620 & 8100 & 9279 & 1611 \\
\hline 8 & 1239 & 2716 & 974 & 582 & 1616 & 5292 & 4937 & 2012 & 3056 & 6758 \\
\hline 9 & 559 & 833 & 897 & 438 & 218 & 655 & 1628 & 2016 & 826 & 2638 \\
\hline 10 & 409 & 104 & 123 & 189 & 175 & 182 & 316 & 740 & 1043 & 900 \\
\hline +gp & 375 & 633 & 802 & 242 & 271 & 286 & 109 & 293 & 534 & 1652 \\
\hline TOTALNUM & 147735 & 116936 & 113097 & 150980 & 107673 & 139351 & 78799 & 64143 & 46799 & 322535 \\
\hline TONSLAND & 146224 & 99158 & 118578 & 161778 & 136397 & 181726 & 130820 & 88257 & 78905 & 266153 \\
\hline SOPCOF \% & 74 & 62 & 70 & 66 & 79 & 79 & 80 & 75 & 101 & 86 \\
\hline
\end{tabular}

\section*{Table 4.7 (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{able 1 Catch numbers at age Numbers*10**-3} \\
\hline YEAR & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 \\
\hline AGE & & & & & & & & & & \\
\hline 1 & 0 & 281 & 1321 & 3475 & 184 & 46 & 0 & 0 & 1 & 2 \\
\hline 2 & 5956 & 3713 & 4355 & 7499 & 18456 & 2033 & 48 & 0 & 68 & 29 \\
\hline 3 & 70679 & 9685 & 10037 & 13994 & 55967 & 47311 & 17540 & 627 & 486 & 883 \\
\hline 4 & 260520 & 41706 & 14088 & 13454 & 22043 & 18812 & 35290 & 22878 & 2561 & 900 \\
\hline 5 & 24180 & 88120 & 33871 & 6810 & 7368 & 4076 & 10645 & 21794 & 22124 & 3372 \\
\hline 6 & 6919 & 5829 & 49711 & 20796 & 2586 & 1389 & 1429 & 2971 & 10685 & 12203 \\
\hline 7 & 422 & 4138 & 2135 & 40057 & 7781 & 1626 & 812 & 250 & 1034 & 2625 \\
\hline 8 & 426 & 382 & 1236 & 1247 & 11043 & 2596 & 546 & 504 & 162 & 344 \\
\hline 9 & 1692 & 618 & 92 & 1350 & 311 & 6215 & 1466 & 230 & 162 & 75 \\
\hline 10 & 529 & 2043 & 131 & 193 & 388 & 162 & 2310 & 842 & 72 & 80 \\
\hline +gp & 584 & 1870 & 934 & 1604 & 379 & 400 & 323 & 1460 & 963 & 649 \\
\hline TOTALNUM & 371907 & 158385 & 117911 & 110479 & 126506 & 84666 & 70409 & 51556 & 38318 & 21162 \\
\hline TONSLAND & 322226 & 221157 & 175758 & 137264 & 110158 & 95422 & 103623 & 87889 & 77153 & 46955 \\
\hline SOPCOF \% & 83 & 87 & 81 & 63 & 77 & 95 & 113 & 104 & 99 & 95 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 1 C & \multicolumn{2}{|l|}{Catch numbers at age} & \multicolumn{8}{|l|}{Numbers*10**-3} \\
\hline YEAR & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 1 & 0 & 0 & 1 & 96 & 8 & 0 & 0 & 6 & 21 & 1258 \\
\hline 2 & 162 & 247 & 2288 & 690 & 154 & 46 & 179 & 293 & 329 & 2668 \\
\hline 3 & 704 & 447 & 29548 & 25596 & 3928 & 794 & 1045 & 516 & 3968 & 12342 \\
\hline 4 & 1930 & 825 & 1153 & 61470 & 88294 & 9031 & 3932 & 1171 & 1967 & 12652 \\
\hline 5 & 884 & 820 & 546 & 1013 & 52609 & 50869 & 12246 & 1866 & 1886 & 2411 \\
\hline 6 & 1374 & 301 & 715 & 376 & 586 & 19465 & 22922 & 4126 & 2876 & 1740 \\
\hline 7 & 3282 & 750 & 316 & 346 & 207 & 382 & 3407 & 6734 & 4442 & 2070 \\
\hline 8 & 906 & 2206 & 634 & 144 & 123 & 65 & 246 & 849 & 4422 & 2619 \\
\hline 9 & 52 & 489 & 1312 & 295 & 74 & 35 & 11 & 388 & 398 & 2737 \\
\hline 10 & 37 & 69 & 416 & 484 & 119 & 44 & 36 & 50 & 21 & 241 \\
\hline +gp & 172 & 284 & 113 & 157 & 285 & 310 & 66 & 30 & 17 & 18 \\
\hline TOTALNUM & 9503 & 6438 & 37042 & 90667 & 146387 & 81041 & 44090 & 16029 & 20347 & 40756 \\
\hline TONSLAND & 21607 & 17318 & 41270 & 96585 & 150654 & 91745 & 54859 & 25741 & 33605 & 53887 \\
\hline SOPCOF \% & 92 & 94 & 97 & 90 & 98 & 99 & 96 & 96 & 96 & 100 \\
\hline Table 1 C & \multicolumn{2}{|l|}{Catch numbers at age} & \multicolumn{2}{|l|}{Numbers*10**-3} & & & & & & \\
\hline YEAR & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 1 & 117 & 11 & 33 & 69 & 75 & 11 & 136 & 88 & 37 & 39 \\
\hline 2 & 455 & 369 & 196 & 393 & 253 & 2036 & 451 & 585 & 831 & 392 \\
\hline 3 & 13398 & 3048 & 1282 & 1622 & 2193 & 2411 & 20329 & 939 & 12010 & 4821 \\
\hline 4 & 25902 & 43740 & 12915 & 5512 & 6043 & 13615 & 7722 & 30029 & 5268 & 35977 \\
\hline 5 & 13154 & 32614 & 71007 & 34791 & 11506 & 8214 & 16295 & 5458 & 35236 & 7384 \\
\hline 6 & 2784 & 8330 & 20209 & 70893 & 32302 & 7303 & 5765 & 4489 & 4045 & 16254 \\
\hline 7 & 973 & 1627 & 3361 & 10315 & 47298 & 12003 & 3574 & 1686 & 2468 & 1672 \\
\hline 8 & 1297 & 660 & 367 & 1885 & 4579 & 17811 & 7095 & 1206 & 885 & 1039 \\
\hline 9 & 2131 & 1142 & 295 & 417 & 530 & 1117 & 2764 & 1390 & 493 & 270 \\
\hline 10 & 2011 & 1756 & 447 & 281 & 183 & 227 & 255 & 1830 & 855 & 242 \\
\hline +gp & 384 & 1889 & 963 & 1230 & 536 & 227 & 139 & 327 & 1014 & 776 \\
\hline TOTALNUM & 62606 & 95186 & 111075 & 127408 & 105498 & 64975 & 64525 & 48027 & 63142 & 68866 \\
\hline TONSLAND & 77621 & 128703 & 138677 & 173264 & 148756 & 93946 & 82346 & 61292 & 81842 & 83848 \\
\hline SOPCOF \% & 100 & 111 & 105 & 105 & 105 & 105 & 105 & 100 & 100 & 100 \\
\hline
\end{tabular}

\section*{Table 4.8}

Run title : NEA Haddock (AFWG03: Final run)
At 30/04/2003 13:48
\begin{tabular}{lccrr}
\begin{tabular}{lll}
Table 2 \\
YEAR
\end{tabular} & \multicolumn{4}{c}{ Catch weights at age (kg) } \\
& & 1950 & 1951 & 1952 \\
AGE & & & & \\
& 1 & 0 & 0 & 0 \\
& 2 & 0 & 0 & 0 \\
& 3 & 0.66 & 0.66 & 0.66 \\
& 4 & 1.03 & 1.03 & 1.03 \\
& 5 & 1.79 & 1.79 & 1.79 \\
& 6 & 2.38 & 2.38 & 2.38 \\
& 7 & 2.86 & 2.86 & 2.86 \\
& 8 & 3.33 & 3.33 & 3.33 \\
& 9 & 3.7 & 3.7 & 3.7 \\
& 10 & 4.41 & 4.41 & 4.41 \\
+gp & & 5.4 & 5.4 & 5.4 \\
SOPCOFAC & & 0.4545 & 0.6514 & 0.5127
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{Table 2 Catch weights at age (kg)} \\
\hline YEAR & & 1953 & 1954 & 1955 & 1956 & 1957 & 1958 & 1959 & 1960 & 1961 & 1962 \\
\hline \multicolumn{12}{|l|}{AGE} \\
\hline & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 3 & 0.66 & 0.66 & 0.66 & 0.66 & 0.66 & 0.66 & 0.66 & 0.66 & 0.66 & 0.66 \\
\hline & 4 & 1.03 & 1.03 & 1.03 & 1.03 & 1.03 & 1.03 & 1.03 & 1.03 & 1.03 & 1.03 \\
\hline & 5 & 1.79 & 1.79 & 1.79 & 1.79 & 1.79 & 1.79 & 1.79 & 1.79 & 1.79 & 1.79 \\
\hline & 6 & 2.38 & 2.38 & 2.38 & 2.38 & 2.38 & 2.38 & 2.38 & 2.38 & 2.38 & 2.38 \\
\hline & 7 & 2.86 & 2.86 & 2.86 & 2.86 & 2.86 & 2.86 & 2.86 & 2.86 & 2.86 & 2.86 \\
\hline & 8 & 3.33 & 3.33 & 3.33 & 3.33 & 3.33 & 3.33 & 3.33 & 3.33 & 3.33 & 3.33 \\
\hline & 9 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 \\
\hline & 10 & 4.41 & 4.41 & 4.41 & 4.41 & 4.41 & 4.41 & 4.41 & 4.41 & 4.41 & 4.41 \\
\hline +gp & & 5.4 & 5.4 & 5.4 & 5.4 & 5.4 & 5.4 & 5.4 & 5.4 & 5.4 & 5.4 \\
\hline SOPCOFAC & & 0.5742 & 0.6021 & 0.4731 & 0.5529 & 0.5679 & 0.6146 & 0.8007 & 0.8379 & 0.8026 & 0.7459 \\
\hline \multicolumn{12}{|l|}{Table 2 Catch weights at age (kg)} \\
\hline YEAR & & 1963 & 1964 & 1965 & 1966 & 1967 & 1968 & 1969 & 1970 & 1971 & 1972 \\
\hline \multicolumn{12}{|l|}{AGE} \\
\hline & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 3 & 0.66 & 0.66 & 0.66 & 0.66 & 0.66 & 0.66 & 0.66 & 0.66 & 0.66 & 0.66 \\
\hline & 4 & 1.03 & 1.03 & 1.03 & 1.03 & 1.03 & 1.03 & 1.03 & 1.03 & 1.03 & 1.03 \\
\hline & 5 & 1.79 & 1.79 & 1.79 & 1.79 & 1.79 & 1.79 & 1.79 & 1.79 & 1.79 & 1.79 \\
\hline & 6 & 2.38 & 2.38 & 2.38 & 2.38 & 2.38 & 2.38 & 2.38 & 2.38 & 2.38 & 2.38 \\
\hline & 7 & 2.86 & 2.86 & 2.86 & 2.86 & 2.86 & 2.86 & 2.86 & 2.86 & 2.86 & 2.86 \\
\hline & 8 & 3.33 & 3.33 & 3.33 & 3.33 & 3.33 & 3.33 & 3.33 & 3.33 & 3.33 & 3.33 \\
\hline & 9 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 \\
\hline & 10 & 4.41 & 4.41 & 4.41 & 4.41 & 4.41 & 4.41 & 4.41 & 4.41 & 4.41 & 4.41 \\
\hline +gp & & 5.4 & 5.4 & 5.4 & 5.4 & 5.4 & 5.4 & 5.4 & 5.4 & 5.4 & 5.4 \\
\hline SOPCOFAC & & 0.7442 & 0.6183 & 0.6978 & 0.6601 & 0.7919 & 0.7921 & 0.8028 & 0.7547 & 1.0105 & 0.8593 \\
\hline
\end{tabular}

\section*{Table 4.8 (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{Table 2 Catch weights at age (kg)} \\
\hline YEAR & & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 \\
\hline \multicolumn{12}{|l|}{AGE} \\
\hline & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 3 & 0.66 & 0.66 & 0.66 & 0.66 & 0.66 & 0.66 & 0.66 & 0.66 & 0.66 & 0.66 \\
\hline & 4 & 1.03 & 1.03 & 1.03 & 1.03 & 1.03 & 1.03 & 1.03 & 1.03 & 1.03 & 1.03 \\
\hline & 5 & 1.79 & 1.79 & 1.79 & 1.79 & 1.79 & 1.79 & 1.79 & 1.79 & 1.79 & 1.79 \\
\hline & 6 & 2.38 & 2.38 & 2.38 & 2.38 & 2.38 & 2.38 & 2.38 & 2.38 & 2.38 & 2.38 \\
\hline & 7 & 2.86 & 2.86 & 2.86 & 2.86 & 2.86 & 2.86 & 2.86 & 2.86 & 2.86 & 2.86 \\
\hline & 8 & 3.33 & 3.33 & 3.33 & 3.33 & 3.33 & 3.33 & 3.33 & 3.33 & 3.33 & 3.33 \\
\hline & 9 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 \\
\hline & 10 & 4.41 & 4.41 & 4.41 & 4.41 & 4.41 & 4.41 & 4.41 & 4.41 & 4.41 & 4.41 \\
\hline +gp & & 5.4 & 5.4 & 5.4 & 5.4 & 5.4 & 5.4 & 5.4 & 5.4 & 5.4 & 5.4 \\
\hline SOPCOFAC & & 0.8281 & 0.8657 & 0.8127 & 0.6296 & 0.7708 & 0.9507 & 1.1278 & 1.0352 & 0.9942 & 0.951 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{Table 2 Catch weights at age (kg)} \\
\hline YEAR & & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline \multicolumn{12}{|l|}{AGE} \\
\hline & 1 & 0.09 & 0.25 & 0.19 & 0.1 & 0.1 & 0.12 & 0.1 & 0.1 & 0.11 & 0.104 \\
\hline & 2 & 0.3 & 0.44 & 0.31 & 0.24 & 0.39 & 0.53 & 0.23 & 0.28 & 0.33 & 0.303 \\
\hline & 3 & 0.59 & 0.54 & 0.63 & 0.64 & 0.66 & 0.71 & 0.73 & 0.6 & 0.63 & 0.573 \\
\hline & 4 & 1.06 & 0.88 & 0.66 & 0.79 & 0.99 & 0.9 & 1.06 & 1.09 & 0.97 & 0.979 \\
\hline & 5 & 1.52 & 1.33 & 1.06 & 1.04 & 1.09 & 1.27 & 1.27 & 1.39 & 1.4 & 1.379 \\
\hline & 6 & 1.84 & 1.74 & 1.68 & 1.34 & 1.22 & 1.38 & 1.55 & 1.59 & 1.76 & 1.62 \\
\hline & 7 & 2.18 & 2.06 & 2.11 & 1.81 & 1.48 & 1.54 & 1.66 & 1.82 & 1.95 & 2.114 \\
\hline & 8 & 2.3 & 2.2 & 2.34 & 2.29 & 1.99 & 1.79 & 1.79 & 1.91 & 2.13 & 2.208 \\
\hline & 9 & 2.52 & 2.5 & 2.67 & 2.31 & 2.26 & 2.37 & 2.06 & 2.07 & 2.32 & 2.643 \\
\hline & 10 & 2.64 & 2.58 & 2.91 & 3.18 & 2.26 & 2.51 & 2.6 & 2.22 & 2.41 & 2.436 \\
\hline +gp & & 3.11 & 2.89 & 3.02 & 2.62 & 2.98 & 2.68 & 2.85 & 2.58 & 2.56 & 2.695 \\
\hline SOPCOFAC & & 1.0002 & 1.1112 & 1.0541 & 1.0517 & 1.049 & 1.0468 & 1.0536 & 0.9991 & 0.9993 & 1 \\
\hline
\end{tabular}

\section*{Table 4.9}

Run title : NEA Haddock (AFWG03: Final run)
At 30/04/2003 13:48
\begin{tabular}{lrrrr}
Table 3 & \multicolumn{4}{l}{ Stock weights at age (kg) } \\
YEAR & & 1950 & 1951 & 1952 \\
& & & & \\
AGE & & & & \\
& 1 & 0 & 0 & 0 \\
& 2 & 0 & 0 & 0 \\
& 3 & 0.66 & 0.66 & 0.66 \\
& 4 & 1.03 & 1.03 & 1.03 \\
& 5 & 1.79 & 1.79 & 1.79 \\
& 6 & 2.38 & 2.38 & 2.38 \\
& 7 & 2.86 & 2.86 & 2.86 \\
& 8 & 3.33 & 3.33 & 3.33 \\
& 9 & 3.7 & 3.7 & 3.7 \\
& 10 & 4.41 & 4.41 & 4.41 \\
+gp & & 6.875 & 6.875 & 6.875
\end{tabular}

\section*{Table 4.9 (continued)}

Table 4.10

Run title : NEA Haddock (AFWG03: Final run)
At 30/04/2003 13:48
\begin{tabular}{lcccc}
\begin{tabular}{l}
Table 4 \\
YEAR
\end{tabular} & \multicolumn{4}{l}{ Natural Mortality (M) at age } \\
& & 1950 & 1951 & 1952 \\
AGE & & & \\
& 1 & 0.2 & 0.2 & 0.2 \\
& 2 & 0.2 & 0.2 & 0.2 \\
& 3 & 0.2 & 0.2 & 0.2 \\
& 4 & 0.2 & 0.2 & 0.2 \\
& 5 & 0.2 & 0.2 & 0.2 \\
& 6 & 0.2 & 0.2 & 0.2 \\
& 7 & 0.2 & 0.2 & 0.2 \\
& 8 & 0.2 & 0.2 & 0.2 \\
& 9 & 0.2 & 0.2 & 0.2 \\
& 10 & 0.2 & 0.2 & 0.2 \\
+gp & & 0.2 & 0.2 & 0.2
\end{tabular}

\section*{Table 4.10 (continued)}

\section*{Table 4.11}

Run title : NEA Haddock (AFWG03: Final run)
At 30/04/2003 13:48
\begin{tabular}{|c|c|c|c|c|}
\hline Table 5 & \multicolumn{4}{|l|}{Proportion mature at age} \\
\hline YEAR & & 1950 & 1951 & 1952 \\
\hline \multicolumn{5}{|l|}{AGE} \\
\hline & 1 & 0 & 0 & 0 \\
\hline & 2 & 0 & 0 & 0 \\
\hline & 3 & 0 & 0 & 0 \\
\hline & 4 & 0.05 & 0.05 & 0.05 \\
\hline & 5 & 0.23 & 0.23 & 0.23 \\
\hline & 6 & 0.53 & 0.53 & 0.53 \\
\hline & 7 & 0.88 & 0.88 & 0.88 \\
\hline & 8 & 0.98 & 0.98 & 0.98 \\
\hline & 9 & 1 & 1 & 1 \\
\hline & 10 & 1 & 1 & 1 \\
\hline +gp & & 1 & 1 & 1 \\
\hline Table 5 & & mature & & \\
\hline YEAR & & 1953 & 1954 & 1955 \\
\hline
\end{tabular}
\begin{tabular}{crrrr}
YEAR & & 1953 & 1954 & 1955 \\
AGE & & & & \\
& 1 & 0 & 0 & 0 \\
& 2 & 0 & 0 & 0 \\
& 3 & 0 & 0 & 0 \\
& 4 & 0.05 & 0.05 & 0.05 \\
& 5 & 0.23 & 0.23 & 0.23 \\
& 6 & 0.53 & 0.53 & 0.53 \\
& 7 & 0.88 & 0.88 & 0.88 \\
& 8 & 0.98 & 0.98 & 0.98 \\
& 9 & 1 & 1 & 1 \\
& 10 & 1 & 1 & 1 \\
\(+g p\) & & 1 & 1 & 1
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{ble 5 Proportion mature at age} \\
\hline YEAR & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.01 & 0.09 \\
\hline 4 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.05 & 0.12 & 0.55 \\
\hline 5 & 0.23 & 0.23 & 0.23 & 0.23 & 0.23 & 0.23 & 0.23 & 0.23 & 0.64 & 0.73 \\
\hline 6 & 0.53 & 0.53 & 0.53 & 0.53 & 0.53 & 0.53 & 0.53 & 0.53 & 0.73 & 0.93 \\
\hline 7 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.88 & 0.96 & 0.96 \\
\hline 8 & 0.98 & 0.98 & 0.98 & 0.98 & 0.98 & 0.98 & 0.98 & 0.98 & 1 & 1 \\
\hline 9 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 10 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline & & & & 1 & 1 & & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{Table 4.11 (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 5 & & mature & & & & & & & & & \\
\hline YEAR & & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 \\
\hline \multicolumn{12}{|l|}{AGE} \\
\hline & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 3 & 0.17 & 0.07 & 0.02 & 0 & 0 & 0 & 0 & 0 & 0 & 0.02 \\
\hline & 4 & 0.7 & 0.14 & 0.08 & 0.22 & 0.01 & 0.03 & 0.04 & 0.02 & 0.07 & 0.13 \\
\hline & 5 & 1 & 0.35 & 0.8 & 0.53 & 0.21 & 0.33 & 0.3 & 0.3 & 0.3 & 0.5 \\
\hline & 6 & 1 & 0.47 & 0.93 & 0.86 & 0.53 & 0.51 & 0.63 & 0.54 & 0.5 & 0.62 \\
\hline & 7 & 1 & 0.74 & 0.96 & 0.86 & 1 & 1 & 0.82 & 0.77 & 0.8 & 0.77 \\
\hline & 8 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0.87 & 0.92 & 0.8 \\
\hline & 9 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0.8 & 1 & 0.94 \\
\hline & 10 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline +gp & & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline Table 5 & Pro & mature & & & & & & & & & \\
\hline YEAR & & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline \multicolumn{12}{|l|}{AGE} \\
\hline & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 3 & 0.015 & 0 & 0 & 0 & 0 & 0 & 0.01 & 0 & 0.004 & 0.008 \\
\hline & 4 & 0.219 & 0.017 & 0.02 & 0 & 0.03 & 0.05 & 0.17 & 0.1 & 0.06 & 0.13 \\
\hline & 5 & 0.49 & 0.13 & 0.12 & 0.1 & 0.1 & 0.28 & 0.5 & 0.32 & 0.54 & 0.33 \\
\hline & 6 & 0.76 & 0.41 & 0.42 & 0.36 & 0.29 & 0.5 & 0.71 & 0.59 & 0.72 & 0.73 \\
\hline & 7 & 0.79 & 0.9 & 0.81 & 0.78 & 0.6 & 0.66 & 0.81 & 0.72 & 0.87 & 0.83 \\
\hline & 8 & 0.88 & 0.88 & 0.88 & 0.86 & 0.82 & 0.81 & 0.91 & 0.94 & 0.94 & 0.9 \\
\hline & 9 & 0.88 & 1 & 1 & 0.9 & 1 & 0.91 & 0.92 & 0.94 & 0.9 & 1 \\
\hline & 10 & 0.87 & 1 & 0.87 & 0.93 & 0.83 & 1 & 1 & 0.96 & 1 & 0.94 \\
\hline +gp & & 1 & 0.97 & 1 & 0.9 & 1 & 1 & 1 & 1 & 0.91 & 1 \\
\hline
\end{tabular}

\section*{Table 4.12}

FLT02: Norwegian acoustic survey, Barents sea, Jan-Mar, age 1-7, shifted 19802002
```

1 1 0.99 1.00

```
17
\begin{tabular}{rrrrrrrr}
1 & 140 & 50 & 210 & 600 & 180 & 10 & 0 \\
1 & 20 & 30 & 40 & 40 & 100 & 60 & 0 \\
1 & 50 & 20 & 30 & 10 & 10 & 40 & 20 \\
1 & 1730 & 60 & 20 & 10 & 0 & 0 & 0 \\
1 & 7760 & 2150 & 50 & 0 & 0 & 0 & 0 \\
1 & 2660 & 4520 & 1890 & 0 & 0 & 0 & 0 \\
1 & 170 & 490 & 1710 & 500 & 0 & 0 & 0 \\
1 & 40 & 80 & 230 & 460 & 70 & 0 & 0 \\
1 & 50 & 60 & 110 & 200 & 210 & 20 & 0 \\
1 & 350 & 30 & 30 & 40 & 70 & 110 & 20 \\
1 & 2520 & 450 & 80 & 30 & 30 & 30 & 60 \\
1 & 8680 & 1340 & 230 & 20 & 0 & 0 & 10 \\
1 & 6260 & 5630 & 1300 & 130 & 0 & 0 & 0 \\
1 & 1930 & 2550 & 6310 & 1110 & 120 & 0 & 0 \\
1 & 2850 & 360 & 1110 & 3870 & 420 & 20 & 0 \\
1 & 2290 & 440 & 310 & 760 & 1510 & 80 & 0 \\
1 & 240 & 510 & 170 & 120 & 430 & 430 & 20 \\
1 & 1220 & 200 & 280 & 120 & 50 & 130 & 160 \\
1 & 460 & 570 & 130 & 140 & 40 & 10 & 20 \\
1 & 5090 & 320 & 650 & 190 & 110 & 20 & 10 \\
1 & 3160 & 2100 & 230 & 220 & 10 & 10 & 0 \\
1 & 2820 & 2160 & 1490 & 140 & 120 & 10 & 0 \\
1 & 2790 & 1450 & 1980 & 1690 & 170 & 50 & 0
\end{tabular}

\section*{Table 4.12 (continued)}

FLT04: Norwegian bottom trawl survey, Jan-Mar, age 1-7, shifted 19822002
110.991 .00

18
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & 48 & 31 & 24 & 9 & 19 & 25 & 7 & 0 \\
\hline 1 & 5146 & 189 & 15 & 8 & 2 & 1 & 4 & 1 \\
\hline 1 & 15938 & 4759 & 147 & 5 & 5 & 1 & 1 & 4 \\
\hline 1 & 3703 & 3846 & 1108 & 6 & 2 & 1 & 1 & 1 \\
\hline 1 & 799 & 1544 & 2902 & 529 & 0 & 0 & 0 & 0 \\
\hline 1 & 153 & 253 & 689 & 1164 & 138 & 1 & 0 & 0 \\
\hline 1 & 95 & 141 & 216 & 340 & 327 & 34 & 1 & 0 \\
\hline 1 & 546 & 45 & 34 & 50 & 92 & 118 & 18 & 0 \\
\hline 1 & 3003 & 334 & 51 & 42 & 27 & 17 & 42 & 0 \\
\hline 1 & 13755 & 1505 & 244 & 21 & 6 & 7 & 16 & 23 \\
\hline 1 & 5990 & 5077 & 1056 & 105 & 6 & 4 & 3 & 4 \\
\hline 1 & 2280 & 3395 & 4366 & 497 & 34 & 2 & 1 & 2 \\
\hline 1 & 1793 & 536 & 1711 & 3395 & 345 & 28 & 0 & 1 \\
\hline 1 & 2636 & 525 & 481 & 1486 & 2528 & 116 & 9 & 0 \\
\hline 1 & 679 & 861 & 280 & 194 & 467 & 622 & 35 & 1 \\
\hline 1 & 1379 & 227 & 332 & 132 & 34 & 80 & 81 & 7 \\
\hline 1 & 576 & 598 & 122 & 102 & 28 & 10 & 17 & 11 \\
\hline 1 & 4522 & 272 & 354 & 84 & 40 & 8 & 3 & 7 \\
\hline 1 & 4603 & 2960 & 293 & 251 & 17 & 9 & 1 & 1 \\
\hline 1 & 5347 & 3147 & 1853 & 176 & 82 & 8 & 3 & 0 \\
\hline 1 & 5131 & 3174 & 1820 & 736 & 55 & 23 & 2 & 1 \\
\hline
\end{tabular}

\section*{Table 4.13}

Lowestoft VPA Version 3.1

30/04/2003 13:47

Extended Survivors Analysis

NEA Haddock (AFWG03: Final run)

CPUE data from file fleet

Catch data for 53 years. 1950 to 2002. Ages 1 to 11 .

Time series weights :

Tapered time weighting applied
Power \(=3\) over 20 years

Catchability analysis :

Catchability dependent on stock size for ages < 7

Regression type \(=\mathrm{C}\)
Minimum of 5 points used for regression
Survivor estimates shrunk to the population mean for ages < 7

Catchability independent of age for ages \(>=9\)

Terminal population estimation :

Survivor estimates shrunk towards the mean F
of the final 5 years or the 3 oldest ages.
S.E. of the mean to which the estimates are shrunk \(=1.000\)

Minimum standard error for population
estimates derived from each fleet \(=.300\)

Prior weighting not applied

Tuning had not converged after 30 iterations
Total absolute residual between iterations
29 and \(30=.00343\)
Final year \(F\) values
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline Iteration 29 & 0 & 0.0011 & 0.0182 & 0.1825 & 0.2708 & 0.7992 & 0.5105 & 0.8078 & 0.6324 & 0.8419 \\
\hline Iteration 30 & 0 & 0.0011 & 0.0182 & 0.1824 & 0.2708 & 0.799 & 0.5103 & 0.807 & 0.631 & 0.8412 \\
\hline \multicolumn{11}{|l|}{Regression weights} \\
\hline & 0.751 & 0.82 & 0.877 & 0.921 & 0.954 & 0.976 & 0.99 & 0.997 & 1 & 1 \\
\hline
\end{tabular}

\section*{Table 4.13 (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{Fishing mortalities} \\
\hline Age & & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & 2 & 0.001 & 0.003 & 0.001 & 0.002 & 0.004 & 0.009 & 0.006 & 0.002 & 0.002 & 0.001 \\
\hline & 3 & 0.024 & 0.013 & 0.019 & 0.028 & 0.029 & 0.066 & 0.132 & 0.017 & 0.044 & 0.018 \\
\hline & 4 & 0.215 & 0.107 & 0.08 & 0.128 & 0.205 & 0.316 & 0.319 & 0.295 & 0.129 & 0.182 \\
\hline & 5 & 0.469 & 0.472 & 0.275 & 0.362 & 0.473 & 0.501 & 0.827 & 0.396 & 0.681 & 0.271 \\
\hline & 6 & 0.537 & 0.668 & 0.62 & 0.534 & 0.701 & 0.648 & 0.833 & 0.57 & 0.583 & 0.799 \\
\hline & 7 & 0.374 & 0.707 & 0.632 & 0.773 & 0.872 & 0.622 & 0.787 & 0.625 & 0.731 & 0.51 \\
\hline & 8 & 0.382 & 0.471 & 0.333 & 0.927 & 1.001 & 1.022 & 0.976 & 0.681 & 0.813 & 0.807 \\
\hline & 9 & 0.487 & 0.695 & 0.398 & 0.796 & 0.743 & 0.719 & 0.412 & 0.504 & 0.667 & 0.631 \\
\hline & 10 & 0.305 & 0.999 & 0.654 & 0.841 & 1.055 & 0.86 & 0.348 & 0.531 & 0.677 & 0.841 \\
\hline
\end{tabular}

XSA population numbers (Thousands)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{YEAR} & \multicolumn{10}{|l|}{AGE} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 1993 & \(1.75 \mathrm{E}+06\) & 5.28E+05 & \(6.42 \mathrm{E}+05\) & \(1.50 \mathrm{E}+05\) & \(4.09 \mathrm{E}+04\) & 7.41E+03 & 3.45E+03 & 4.51E+03 & \(6.11 \mathrm{E}+03\) & \(8.45 \mathrm{E}+03\) \\
\hline 1994 & \(1.89 \mathrm{E}+06\) & \(1.88 \mathrm{E}+05\) & \(2.81 \mathrm{E}+05\) & \(4.80 \mathrm{E}+05\) & 9.64E+04 & \(1.89 \mathrm{E}+04\) & \(3.55 \mathrm{E}+03\) & \(1.94 \mathrm{E}+03\) & \(2.52 \mathrm{E}+03\) & \(3.07 \mathrm{E}+03\) \\
\hline 1995 & \(3.55 \mathrm{E}+06\) & \(2.90 \mathrm{E}+05\) & \(8.06 \mathrm{E}+04\) & \(2.04 \mathrm{E}+05\) & \(3.46 \mathrm{E}+05\) & \(4.86 \mathrm{E}+04\) & \(7.93 \mathrm{E}+03\) & \(1.43 \mathrm{E}+03\) & \(9.93 \mathrm{E}+02\) & \(1.03 \mathrm{E}+03\) \\
\hline 1996 & \(1.81 \mathrm{E}+06\) & \(3.00 \mathrm{E}+05\) & \(9.08 \mathrm{E}+04\) & \(5.40 \mathrm{E}+04\) & 1.28E+05 & \(1.92 \mathrm{E}+05\) & 2.12E+04 & \(3.45 \mathrm{E}+03\) & \(8.40 \mathrm{E}+02\) & \(5.46 \mathrm{E}+02\) \\
\hline 1997 & \(1.30 \mathrm{E}+06\) & \(9.06 \mathrm{E}+04\) & \(1.01 \mathrm{E}+05\) & \(3.71 \mathrm{E}+04\) & \(3.43 \mathrm{E}+04\) & 7.13E+04 & \(8.98 \mathrm{E}+04\) & \(8.00 \mathrm{E}+03\) & 1.12E+03 & 3.10E+02 \\
\hline 1998 & \(1.69 \mathrm{E}+06\) & \(2.55 \mathrm{E}+05\) & \(4.29 \mathrm{E}+04\) & 5.73E+04 & \(2.34 \mathrm{E}+04\) & \(1.69 \mathrm{E}+04\) & \(2.86 \mathrm{E}+04\) & \(3.07 \mathrm{E}+04\) & \(2.41 \mathrm{E}+03\) & \(4.35 \mathrm{E}+02\) \\
\hline 1999 & \(1.61 \mathrm{E}+06\) & \(1.00 \mathrm{E}+05\) & \(1.82 \mathrm{E}+05\) & \(3.12 \mathrm{E}+04\) & \(3.20 \mathrm{E}+04\) & 1.13E+04 & \(7.25 \mathrm{E}+03\) & 1.26E+04 & \(9.05 \mathrm{E}+03\) & \(9.60 \mathrm{E}+02\) \\
\hline 2000 & \(1.92 \mathrm{E}+06\) & \(4.56 \mathrm{E}+05\) & 6.17E+04 & \(1.31 \mathrm{E}+05\) & \(1.86 \mathrm{E}+04\) & 1.15E+04 & \(4.01 \mathrm{E}+03\) & \(2.70 \mathrm{E}+03\) & \(3.88 \mathrm{E}+03\) & \(4.91 \mathrm{E}+03\) \\
\hline 2001 & \(1.29 \mathrm{E}+06\) & \(4.64 \mathrm{E}+05\) & \(3.11 \mathrm{E}+05\) & \(4.80 \mathrm{E}+04\) & \(7.88 \mathrm{E}+04\) & \(1.01 \mathrm{E}+04\) & \(5.26 \mathrm{E}+03\) & 1.76E+03 & 1.12E+03 & \(1.92 \mathrm{E}+03\) \\
\hline 2002 & \(4.04 \mathrm{E}+06\) & 6.16E+05 & \(3.33 \mathrm{E}+05\) & \(2.40 \mathrm{E}+05\) & \(3.45 \mathrm{E}+04\) & \(3.27 \mathrm{E}+04\) & \(4.62 \mathrm{E}+03\) & \(2.07 \mathrm{E}+03\) & \(6.38 \mathrm{E}+02\) & \(4.70 \mathrm{E}+02\) \\
\hline
\end{tabular}

Estimated population abundance at 1st Jan 2003
\begin{tabular}{llllllllll}
\(0.00 \mathrm{E}+00\) & \(3.79 \mathrm{E}+05\) & \(1.91 \mathrm{E}+05\) & \(2.11 \mathrm{E}+05\) & \(1.62 \mathrm{E}+05\) & \(2.14 \mathrm{E}+04\) & \(1.20 \mathrm{E}+04\) & \(2.27 \mathrm{E}+03\) & \(7.59 \mathrm{E}+02\) & \(2.79 \mathrm{E}+02\)
\end{tabular}

Taper weighted geometric mean of the VPA populations:
\begin{tabular}{llllllllll}
\(1.60 \mathrm{E}+06\) & \(2.46 \mathrm{E}+05\) & \(1.23 \mathrm{E}+05\) & \(7.47 \mathrm{E}+04\) & \(4.21 \mathrm{E}+04\) & \(2.09 \mathrm{E}+04\) & \(8.79 \mathrm{E}+03\) & \(3.95 \mathrm{E}+03\) & \(1.73 \mathrm{E}+03\) & \(8.38 \mathrm{E}+02\)
\end{tabular}

Standard error of the weighted Log(VPA populations) :
\begin{tabular}{llllllllllll}
0.77 & 0.9146 & 0.9621 & 1.0217 & 1.0299 & 1.0838 & 1.1383 & 1.1748 & 1.154 & 1.2884
\end{tabular}

Log catchability residuals.

Fleet : FLT01: Russian botto
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age & & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 \\
\hline & 1 & 1.71 & 0.82 & 0.13 & -0.02 & 0.25 & -0.28 & -0.48 & 0.72 & 0.31 & 0.3 \\
\hline & 2 & 2.74 & 0.8 & 0.77 & 0.26 & -0.29 & -0.11 & 0.54 & 0.48 & 0.08 & 0.52 \\
\hline & 3 & 0.99 & 1.14 & 0.79 & -0.35 & 0.1 & -0.22 & -0.54 & 1.33 & -0.1 & 0.31 \\
\hline & 4 & 0.13 & 0.06 & -0.13 & -0.12 & -0.19 & -0.51 & -0.47 & 1.09 & -0.43 & -0.23 \\
\hline & 5 & -1.82 & -0.22 & 0.32 & -0.54 & -0.18 & -0.59 & -0.08 & 1.14 & -0.57 & -0.55 \\
\hline & 6 & 99.99 & -1.73 & 0.22 & -1.14 & -2.17 & -0.52 & 0.1 & 0.74 & -0.49 & 0.31 \\
\hline & 7 & 99.99 & 99.99 & 99.99 & -1.59 & -1.15 & -2.47 & 0.84 & 0.75 & 0.31 & 0.45 \\
\hline & \multicolumn{11}{|l|}{8 No data for this fleet at this age} \\
\hline
\end{tabular}

\section*{Table 4.13 (continued)}
\begin{tabular}{lrrrrrrrrrrr}
& & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
& 1 & -0.22 & -0.56 & -0.42 & -0.27 & 99.99 & -0.14 & 0.57 & 0.25 & -0.15 & 0.17 \\
& 2 & 0.24 & -0.06 & -0.51 & -0.35 & -0.33 & 99.99 & 0.33 & -0.07 & -0.13 & -0.02 \\
& 0 & 0.44 & 0.17 & -0.49 & -0.34 & -0.57 & 0.24 & 99.99 & 0.16 & -0.18 & 0.02 \\
& 4 & 0.59 & 0.23 & -0.61 & -0.08 & -0.06 & -0.09 & 0.33 & 99.99 & -0.23 & 0.28 \\
& 5 & 0.3 & 0.05 & -0.43 & 0.55 & -0.75 & -0.52 & 0.53 & 0.51 & 99.99 & 0.24 \\
& 6 & 0.47 & 0.14 & -0.04 & 0.23 & -0.68 & -0.65 & 0.28 & 0.32 & 0.45 & 99.99 \\
& 7 & 0.48 & -0.62 & 0.12 & 1.03 & -1.39 & -0.08 & -0.16 & -0.12 & 0.4 & 0.32 \\
& & & & & & & & & &
\end{tabular}

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\begin{tabular}{lr}
Age & 7 \\
Mean Log q & -6.6953 \\
S.E(Log q) & 0.7767
\end{tabular}

Regression statistics :

Ages with q dependent on year class strength
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Age & \multicolumn{2}{|c|}{Slope} & t-value & Intercept & RSquare & \multicolumn{2}{|l|}{No Pts} & Reg s.e & Mean Log q \\
\hline & 1 & 0.81 & 1.195 & 9.29 & 0.82 & & 19 & 0.4 & -8.13 \\
\hline & 2 & 0.82 & 1.53 & 8.08 & 0.89 & & 19 & 0.35 & -7.15 \\
\hline & 3 & 0.74 & 1.749 & 7.99 & 0.83 & & 19 & 0.47 & -6.69 \\
\hline & 4 & 0.86 & 1.083 & 7.12 & 0.86 & & 19 & 0.44 & -6.44 \\
\hline & 5 & 0.75 & 1.42 & 7.45 & 0.79 & & 19 & 0.58 & -6.42 \\
\hline & 6 & 0.8 & 1.192 & 7.15 & 0.8 & & 18 & 0.59 & -6.47 \\
\hline
\end{tabular}

Ages with q independent of year class strength and constant w.r.t. time.
\begin{tabular}{cccccccccc}
Age & Slope & t-value & Intercept & RSquare & No Pts & Reg s.e & Mean Q \\
& & & & & & & & & \\
7 & 0.98 & 0.102 & 6.75 & 0.69 & 17 & 0.8 & -6.7
\end{tabular}

Fleet : FLT02: Norwegian aco
\begin{tabular}{ccccc}
Age & & 1980 & 1981 & 1982 \\
& 1 & 99.99 & 99.99 & 99.99 \\
& 2 & 99.99 & 99.99 & 99.99 \\
& 3 & 99.99 & 99.99 & 99.99 \\
& 4 & 99.99 & 99.99 & 99.99 \\
& 5 & 99.99 & 99.99 & 99.99 \\
& 6 & 99.99 & 99.99 & 99.99 \\
& 7 & 99.99 & 99.99 & 99.99 \\
& 8 &
\end{tabular}

\section*{Table 4.13 (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age & & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline & 1 & 0.33 & 0.28 & -0.07 & -0.68 & 99.99 & -0.25 & 0.42 & 0.01 & -0.18 & -0.13 \\
\hline & 2 & 0.16 & -0.09 & -0.14 & -0.12 & 0.14 & 99.99 & 0.19 & -0.02 & -0.05 & -0.01 \\
\hline & 3 & 0.22 & -0.24 & 0.11 & -0.09 & -0.06 & 0.03 & 99.99 & 0.04 & -0.16 & 0.13 \\
\hline & 4 & 0.37 & 0.04 & -0.2 & -0.23 & 0.15 & -0.08 & 0.7 & 99.99 & -0.09 & 0.17 \\
\hline & 5 & 0.3 & 0.28 & -0.15 & -0.06 & -0.2 & 0.04 & 0.67 & -0.8 & 99.99 & 0.51 \\
\hline & 6 & 99.99 & -0.02 & 0.1 & 0.01 & 0.17 & -0.47 & 0.63 & -0.14 & -0.01 & 99.99 \\
\hline & 7 & 99.99 & 99.99 & 99.99 & -0.09 & 0.65 & -0.54 & 0.31 & 99.99 & 99.99 & 99.99 \\
\hline
\end{tabular}

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{lr}
Age & 7 \\
Mean Log q & -5.9101 \\
S.E(Log q) & 0.6085
\end{tabular}

Regression statistics :

Ages with q dependent on year class strength
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Age & Slope & & t-value & Intercept & RSquare & No Pts & & Reg s.e & Mean Log q \\
\hline & 1 & 0.74 & 1.73 & 7.47 & 0.83 & & 19 & 0.38 & -5.07 \\
\hline & 2 & 0.74 & 4.334 & 7.11 & 0.97 & & 19 & 0.19 & -5.2 \\
\hline & 3 & 0.75 & 4.25 & 6.79 & 0.97 & & 19 & 0.18 & -5.19 \\
\hline & 4 & 0.73 & 2.519 & 6.83 & 0.91 & & 17 & 0.35 & -5.24 \\
\hline & 5 & 0.72 & 1.602 & 6.94 & 0.81 & & 13 & 0.48 & -5.41 \\
\hline & 6 & 0.79 & 1.746 & 6.77 & 0.91 & & 11 & 0.33 & -5.86 \\
\hline
\end{tabular}

Ages with q independent of year class strength and constant w.r.t. time.
\begin{tabular}{cccccccccc}
Age & Slope & \multicolumn{2}{c}{ t-value } & Intercept & RSquare & No Pts & Reg s.e & Mean Q \\
& & & & & & & & & \\
7 & 0.93 & 0.212 & 6.2 & 0.73 & 7 & 0.64 & -5.91
\end{tabular}

Fleet : FLT04: Norwegian bot
\begin{tabular}{rrrrr}
Age & & 1980 & 1981 & 1982 \\
& 1 & 99.99 & 99.99 & 99.99 \\
& 2 & 99.99 & 99.99 & 99.99 \\
& 3 & 99.99 & 99.99 & 99.99 \\
& 4 & 99.99 & 99.99 & 99.99 \\
& 5 & 99.99 & 99.99 & 99.99 \\
& 6 & 99.99 & 99.99 & 99.99 \\
& 7 & 99.99 & 99.99 & 99.99 \\
& 8 & 99.99 & 99.99 & 99.99
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age & & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 \\
\hline & 1 & 0.73 & 0.77 & 0.07 & 0.61 & -0.05 & -0.14 & -0.39 & 0.47 & 0.39 & 0.07 \\
\hline & 2 & 1.67 & 0.57 & -0.3 & 0.54 & 0.27 & 0.75 & -0.44 & -0.29 & 0.01 & -0.32 \\
\hline & 3 & 0.44 & 1.56 & -0.23 & 0.08 & 0.46 & 0.42 & -0.29 & -0.24 & -0.33 & -0.04 \\
\hline & 4 & 0.07 & 0.24 & -0.39 & -0.14 & 0.12 & 0.35 & -0.18 & 0.31 & -0.43 & -0.47 \\
\hline & 5 & 0.58 & 1 & 0.98 & 99.99 & -0.12 & -0.18 & 0.07 & 0.15 & -0.06 & -0.26 \\
\hline & 6 & -0.63 & 0.44 & 0.5 & 99.99 & -0.01 & 0.31 & -0.05 & -0.56 & -0.36 & 0.07 \\
\hline & 7 & -0.78 & -0.83 & 0.27 & 99.99 & 99.99 & -0.26 & 1.25 & 0.35 & 0.1 & -0.74 \\
\hline & 8 & -0.83 & 0.05 & 0.05 & 99.99 & 99.99 & 99.99 & 99.99 & 99.99 & 0.35 & -0.62 \\
\hline
\end{tabular}

\section*{Table 4.13 (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age & & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline & 1 & 0.23 & -0.32 & -0.17 & -0.16 & 99.99 & -0.36 & 0.09 & 0.06 & 0.03 & 0.15 \\
\hline & 2 & 0.15 & -0.01 & -0.23 & 0.05 & 0.03 & 99.99 & -0.13 & 0.01 & 0 & 0.33 \\
\hline & 3 & -0.1 & 0.02 & 0.34 & 0.18 & -0.05 & -0.17 & 99.99 & 0.1 & -0.07 & 0 \\
\hline & 4 & -0.13 & 0.09 & 0.42 & 0.18 & 0.26 & -0.28 & 0.13 & 99.99 & 0.12 & -0.34 \\
\hline & 5 & -0.29 & 0.18 & 0.02 & 0.01 & -0.15 & 0.13 & 0.2 & -0.01 & 99.99 & -0.01 \\
\hline & 6 & -0.47 & 0.39 & 0.34 & 0.01 & -0.23 & -0.18 & 0.2 & 0.1 & 0.15 & 99.99 \\
\hline & 7 & -1 & 99.99 & 0.62 & 1.14 & 0.63 & -0.03 & -0.23 & -0.9 & 0.03 & -0.46 \\
\hline & 8 & -0.43 & -0.19 & 99.99 & -0.31 & 0.87 & -0.01 & 0.39 & -0.31 & 99.99 & 0.08 \\
\hline
\end{tabular}

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{lrr}
Age & 7 & 8 \\
Mean \(\log q\) & -6.5769 & -6.7136 \\
S.E(Log q) & 0.6959 & 0.4485
\end{tabular}

Regression statistics

Ages with q dependent on year class strength
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Age & Slope & & t-value & Intercept & RSquare & No Pts & & Reg s.e & Mean Log q \\
\hline & 1 & 0.8 & 1.933 & 6.67 & 0.91 & & 19 & 0.27 & -4.73 \\
\hline & 2 & 0.73 & 3.233 & 6.96 & 0.94 & & 19 & 0.26 & -4.91 \\
\hline & 3 & 0.78 & 3.088 & 6.48 & 0.96 & & 19 & 0.22 & -5.04 \\
\hline & 4 & 0.77 & 2.535 & 6.68 & 0.93 & & 19 & 0.31 & -5.32 \\
\hline & 5 & 0.59 & 7.074 & 7.78 & 0.97 & & 18 & 0.19 & -5.84 \\
\hline & 6 & 0.65 & 3.997 & 7.52 & 0.93 & & 18 & 0.3 & -6.2 \\
\hline
\end{tabular}

Ages with q independent of year class strength and constant w.r.t. time.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age & & Slope & & t-value & & Intercept & RSquare & No Pts & & Reg s.e & Mean Q \\
\hline & 7 & & 0.72 & & 2.198 & 7.32 & 0.87 & & 17 & 0.43 & -6.58 \\
\hline & 8 & & 0.87 & & 0.904 & 6.97 & 0.88 & & 13 & 0.4 & -6.71 \\
\hline & 1 & & & & & & & & & & \\
\hline
\end{tabular}

Terminal year survivor and \(F\) summaries :

Age 1 Catchability dependent on age and year class strength

Year class \(=2001\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Fleet} & & & & & & & & \multirow[t]{2}{*}{N} & \multicolumn{2}{|c|}{Scaled} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Estimated F}} \\
\hline & Surv & s.e & & s.e & & Ratio & & & & & & \\
\hline FLT01: Russia & 450930 & & 0.447 & & 0 & & 0 & & 1 & 0.207 & & 0 \\
\hline FLT02: Norwe! & 332942 & & 0.414 & & 0 & & 0 & & 1 & 0.241 & & 0 \\
\hline FLT04: Norwe! & 441042 & & 0.3 & & 0 & & 0 & & 1 & 0.46 & & 0 \\
\hline P shrinkage r & 246393 & & 0.91 & & & & & & & 0.05 & & 0 \\
\hline F shrinkage n & 106227 & & 1 & & & & & & & 0.041 & & 0 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Survivors & Int & & Ext & & N & & Var & & F & \\
\hline at end of year & s.e & & s.e & & & & Ratio & & & \\
\hline 379200 & & 0.2 & & 0.16 & & 5 & & 0.791 & & 0 \\
\hline
\end{tabular}

\section*{Table 4.13 (continued)}

Age 2 Catchability dependent on age and year class strength

Year class \(=2000\)

Weighted prediction :

Age 3 Catchability dependent on age and year class strength

Year class \(=1999\)

Weighted prediction :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Survivors & Int & & Ext & & N & & Var & & \\
\hline at end of year & s.e & & s.e & & & & Ratio & & \\
\hline 210539 & & 0.11 & & 0.06 & & 11 & & 0.571 & 0.018 \\
\hline
\end{tabular}

Age 4 Catchability dependent on age and year class strength

Year class \(=1998\)

Weighted prediction :

\section*{Table 4.13 (continued)}

Age 5 Catchability dependent on age and year class strength

Year class \(=1997\)

Weighted prediction :

Age 6 Catchability dependent on age and year class strength

Year class \(=1996\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Fleet} & Estir & Int & & Ext & & Var & & N & & & Estimated \\
\hline & Surv & s.e & & s.e & & Ratio & & & & & F \\
\hline FLT01: Russia & 1 & & 0 & & 0 & & 0 & & 0 & 0 & 0 \\
\hline FLT02: Norwe! & 1 & & 0 & & 0 & & 0 & & 0 & 0 & 0 \\
\hline FLT04: Norwe! & 1 & & 0 & & 0 & & 0 & & 0 & 0 & 0 \\
\hline \(P\) shrinkage r & 8790 & & 1.14 & & & & & & & 0.436 & 0.983 \\
\hline F shrinkage n & 15298 & & 1 & & & & & & & 0.564 & 0.673 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Survivors & Int & & Ext & & N & & Var & & F & \\
\hline at end of year & s.e & & s.e & & & & Ratio & & & \\
\hline 12017 & & 0.75 & & 9.4 & & 2 & & 12.51 & & 0.799 \\
\hline
\end{tabular}

Age 7 Catchability constant w.r.t. time and dependent on age

Year class \(=1995\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Fleet} & Estir & \multicolumn{2}{|l|}{Int} & Ex & & \multicolumn{2}{|l|}{Var} & N & \multicolumn{2}{|c|}{Scaled} & Estimated \\
\hline & Surv & s.e & & s.e & & Ratio & & & & & F \\
\hline FLT01: Russia & 2659 & & 0.221 & & 0.131 & & 0.59 & & 7 & 0.194 & 0.45 \\
\hline FLT02: Norwe! & 2274 & & 0.159 & & 0.186 & & 1.17 & & 6 & 0.3 & 0.51 \\
\hline FLT04: Norwe! & 2211 & & 0.137 & & 0.073 & & 0.53 & & 7 & 0.471 & 0.521 \\
\hline F shrinkage n & 1395 & & 1 & & & & & & & 0.035 & 0.735 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Survivors \\
at end of year
\end{tabular}} & \multicolumn{2}{|l|}{Int} & \multicolumn{2}{|l|}{Ext} & \multirow[t]{2}{*}{N} & \multicolumn{3}{|c|}{Var} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{F}} \\
\hline & s.e & & s.e & & & & Ratio & & & \\
\hline 2274 & & 0.1 & & 0.07 & & 21 & & 0.727 & & 0.51 \\
\hline
\end{tabular}

\section*{Table 4.13 (continued)}

Age 8 Catchability constant w.r.t. time and dependent on age

Year class \(=1994\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Fleet} & Estir & \multicolumn{2}{|l|}{Int} & \multicolumn{2}{|l|}{Ext} & \multicolumn{2}{|l|}{Var} & \(N\) & \multicolumn{2}{|c|}{Scaled} & Estimated \\
\hline & Surv & s.e & & s.e & & Ratio & & & & & F \\
\hline FLT01: Russia & 780 & & 0.247 & & 0.159 & & 0.64 & & 7 & 0.146 & 0.791 \\
\hline FLT02: Norwe! & 728 & & 0.173 & & 0.098 & & 0.57 & & 6 & 0.221 & 0.829 \\
\hline FLT04: Norwe! & 790 & & 0.193 & & 0.044 & & 0.23 & & 8 & 0.538 & 0.784 \\
\hline F shrinkage n & 635 & & 1 & & & & & & & 0.095 & 0.908 \\
\hline
\end{tabular}

Age 9 Catchability constant w.r.t. time and dependent on age

Year class \(=1993\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Fleet} & Estir & Int & & Ext & & Var & & N & \multicolumn{2}{|c|}{Scaled} & Estimated \\
\hline & Surv & s.e & & s.e & & Ratio & & & & & F \\
\hline FLT01: Russia & 219 & & 0.238 & & 0.118 & & 0.49 & & 7 & 0.168 & 0.75 \\
\hline FLT02: Norwe! & 340 & & 0.16 & & 0.139 & & 0.87 & & 6 & 0.256 & 0.542 \\
\hline FLT04: Norwe! & 267 & & 0.146 & & 0.147 & & 1.01 & & 7 & 0.393 & 0.649 \\
\hline F shrinkage n & 288 & & 1 & & & & & & & 0.183 & 0.614 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Survivors & Int & & Ext & & N & & Var & & \\
\hline at end of year & s.e & & s.e & & & & Ratio & & \\
\hline 279 & & 0.2 & & 0.07 & & 21 & & 0.373 & 0.631 \\
\hline
\end{tabular}

Age 10 Catchability constant w.r.t. time and age (fixed at the value for age) 9

Year class \(=1992\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Fleet} & Estir & \multicolumn{2}{|l|}{Int} & \multicolumn{2}{|l|}{Ext} & \multicolumn{2}{|l|}{Var} & N & \multicolumn{2}{|c|}{Scaled} & Estimated \\
\hline & Surv & s.e & & s.e & & Ratio & & & & & F \\
\hline FLT01: Russia & 123 & & 0.227 & & 0.103 & & 0.45 & & 7 & 0.117 & 1.023 \\
\hline FLT02: Norwe! & 153 & & 0.168 & & 0.117 & & 0.7 & & 7 & 0.211 & 0.886 \\
\hline FLT04: Norwe! & 150 & & 0.18 & & 0.084 & & 0.47 & & 8 & 0.408 & 0.899 \\
\hline F shrinkage n & 237 & & 1 & & & & & & & 0.264 & 0.655 \\
\hline
\end{tabular}

Weighted prediction :

\section*{Table 4.14}

Run title : Arctic Haddock (run: Standard VPA AFWG03) At 1/05/2003 13:16
\begin{tabular}{crrrr}
\multicolumn{5}{c}{ Traditional vpa using file input for terminal F } \\
Table 8 & Fishing mortality (F) at age \\
YEAR & & 1950 & 1951 & 1952 \\
& & & & \\
AGE & & & & \\
& 3 & 0.0547 & 0.14 & 0.1163 \\
& 4 & 0.5936 & 0.2196 & 0.5485 \\
& 5 & 0.8245 & 0.6341 & 0.5849 \\
& 6 & 0.8125 & 0.9135 & 0.8887 \\
& 7 & 1.157 & 0.8053 & 0.9961 \\
& 8 & 1.0055 & 1.0036 & 1.2502 \\
& 9 & 0.6504 & 1.4256 & 1.3695 \\
+gp & 10 & 0.946 & 1.0901 & 1.2251 \\
FBAR 4-7 & & 0.946 & 1.0901 & 1.2251 \\
& & 0.8469 & 0.6431 & 0.7546
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{e 8 Fishing mortality (F) at age} \\
\hline YEAR & 1953 & 1954 & 1955 & 1956 & 1957 & 1958 & 1959 & 1960 & 1961 & 1962 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3 & 0.072 & 0.0619 & 0.0254 & 0.1141 & 0.0454 & 0.0287 & 0.0719 & 0.2012 & 0.1697 & 0.1995 \\
\hline 4 & 0.3926 & 0.246 & 0.1356 & 0.1753 & 0.2502 & 0.176 & 0.175 & 0.3802 & 0.4876 & 0.5958 \\
\hline 5 & 0.5373 & 0.3091 & 0.4901 & 0.2792 & 0.3751 & 0.5789 & 0.3383 & 0.5192 & 0.6974 & 1.0616 \\
\hline 6 & 0.4899 & 0.4146 & 0.4691 & 0.8125 & 0.4072 & 0.5215 & 0.5583 & 0.6531 & 0.7516 & 1.0617 \\
\hline 7 & 0.7145 & 0.6139 & 1.0131 & 0.6249 & 0.8167 & 0.9643 & 0.6025 & 0.5207 & 0.8335 & 0.7002 \\
\hline 8 & 0.6589 & 0.8609 & 0.6211 & 0.9345 & 0.4513 & 0.8693 & 0.4321 & 0.7026 & 0.8825 & 0.904 \\
\hline 9 & 0.5162 & 1.3582 & 0.43 & 0.3985 & 0.6298 & 0.743 & 0.8446 & 1.1478 & 0.9636 & 1.1812 \\
\hline 10 & 0.6331 & 0.9584 & 0.6948 & 0.6588 & 0.6371 & 0.8688 & 0.6304 & 0.7976 & 0.9015 & 0.9374 \\
\hline +gp & 0.6331 & 0.9584 & 0.6948 & 0.6588 & 0.6371 & 0.8688 & 0.6304 & 0.7976 & 0.9015 & 0.9374 \\
\hline BAR 4-7 & 0.5336 & 0.3959 & 0.527 & 0.473 & 0.4623 & 0.5602 & 0.4185 & 0.5183 & 0.6925 & 0.8548 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{ble 8 Fishing mortality (F\()\) at age} \\
\hline YEAR & 1963 & 1964 & 1965 & 1966 & 1967 & 1968 & 1969 & 1970 & 1971 & 1972 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3 & 0.1219 & 0.0811 & 0.0671 & 0.1303 & 0.0615 & 0.0421 & 0.1016 & 0.1708 & 0.0234 & 0.2858 \\
\hline 4 & 0.6784 & 0.3193 & 0.2401 & 0.3875 & 0.3091 & 0.3971 & 0.1707 & 0.2355 & 0.2691 & 0.392 \\
\hline 5 & 0.9366 & 0.6929 & 0.4682 & 0.5962 & 0.4224 & 0.5791 & 0.498 & 0.2483 & 0.1818 & 1.0699 \\
\hline 6 & 1.0265 & 0.871 & 0.6985 & 0.7436 & 0.5206 & 0.4594 & 0.5818 & 0.504 & 0.1815 & 0.9505 \\
\hline 7 & 1.0012 & 0.8437 & 0.6762 & 0.8235 & 0.5329 & 0.7022 & 0.4051 & 0.5298 & 0.4033 & 0.5516 \\
\hline 8 & 0.6536 & 0.9605 & 0.5955 & 0.5278 & 0.5806 & 0.716 & 0.5023 & 0.4139 & 0.3896 & 0.581 \\
\hline 9 & 1.3586 & 1.3821 & 1.0492 & 0.5925 & 0.384 & 0.4946 & 0.5017 & 0.3945 & 0.2979 & 0.6928 \\
\hline 10 & 1.0158 & 1.0779 & 0.7832 & 0.6549 & 0.5027 & 0.6449 & 0.4735 & 0.4494 & 0.365 & 0.6151 \\
\hline +gp & 1.0158 & 1.0779 & 0.7832 & 0.6549 & 0.5027 & 0.6449 & 0.4735 & 0.4494 & 0.365 & 0.6151 \\
\hline FBAR 4-7 & 0.9107 & 0.6817 & 0.5208 & 0.6377 & 0.4462 & 0.5344 & 0.4139 & 0.3794 & 0.2589 & 0.741 \\
\hline \multicolumn{11}{|c|}{Fishing mortality (F) at age} \\
\hline YEAR & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3 & 0.3385 & 0.2252 & 0.2573 & 0.3213 & 0.7669 & 0.3616 & 0.1542 & 0.0378 & 0.0928 & 0.1263 \\
\hline 4 & 0.6042 & 0.3429 & 0.5905 & 0.6487 & 1.2663 & 0.6431 & 0.5041 & 0.3077 & 0.2125 & 0.2478 \\
\hline 5 & 0.9919 & 0.4214 & 0.5184 & 0.644 & 0.9363 & 0.8651 & 0.9687 & 0.6793 & 0.5514 & 0.4766 \\
\hline 6 & 0.4782 & 0.6968 & 0.4478 & 0.7091 & 0.5447 & 0.446 & 0.8883 & 0.8177 & 0.8689 & 0.6823 \\
\hline 7 & 0.2982 & 0.5926 & 0.6002 & 0.8046 & 0.6391 & 0.8069 & 0.5124 & 0.3687 & 0.7727 & 0.5406 \\
\hline 8 & 0.2728 & 0.4829 & 0.3512 & 0.8775 & 0.5411 & 0.4552 & 0.7128 & 0.7048 & 0.4347 & 0.6437 \\
\hline 9 & 0.2772 & 0.8009 & 0.2027 & 0.8145 & 0.5624 & 0.678 & 0.5064 & 0.7646 & 0.5159 & 0.3684 \\
\hline 10 & 0.2829 & 0.6318 & 0.3856 & 0.8431 & 0.5857 & 0.653 & 0.5817 & 0.6192 & 0.5803 & 0.5228 \\
\hline +gp & 0.2829 & 0.6318 & 0.3856 & 0.8431 & 0.5857 & 0.653 & 0.5817 & 0.6192 & 0.5803 & 0.5228 \\
\hline FBAR 4-7 & 0.5931 & 0.5134 & 0.5392 & 0.7016 & 0.8466 & 0.6903 & 0.7184 & 0.5434 & 0.6014 & 0.4868 \\
\hline \multicolumn{11}{|l|}{Table 8 Fishing mortality (F) at age} \\
\hline YEAR & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3 & 0.1807 & 0.061 & 0.1355 & 0.0671 & 0.0533 & 0.0239 & 0.0706 & 0.0257 & 0.0552 & 0.0721 \\
\hline 4 & 0.4425 & 0.3323 & 0.2214 & 0.4569 & 0.4589 & 0.1666 & 0.185 & 0.1055 & 0.1424 & 0.2487 \\
\hline 5 & 0.4101 & 0.3415 & 0.3832 & 0.3087 & 0.9187 & 0.5272 & 0.3557 & 0.1255 & 0.2463 & 0.2596 \\
\hline 6 & 0.363 & 0.2376 & 0.5655 & 0.4976 & 0.2952 & 1.1343 & 0.4826 & 0.1939 & 0.2889 & 0.377 \\
\hline 7 & 0.39 & 0.3452 & 0.4198 & 0.5964 & 0.5675 & 0.3192 & 0.6064 & 0.2529 & 0.3295 & 0.3485 \\
\hline 8 & 0.3612 & 0.4957 & 0.5519 & 0.3435 & 0.4385 & 0.3482 & 0.3504 & 0.2945 & 0.2623 & 0.33 \\
\hline 9 & 0.184 & 0.3381 & 0.6258 & 0.5424 & 0.2976 & 0.2132 & 0.0904 & 1.5752 & 0.2185 & 0.2572 \\
\hline 10 & 0.3129 & 0.395 & 0.5389 & 0.4987 & 0.4392 & 0.2901 & 0.3536 & 0.7338 & 0.299 & 0.1993 \\
\hline +gp & 0.3129 & 0.395 & 0.5389 & 0.4987 & 0.4392 & 0.2901 & 0.3536 & 0.7338 & 0.299 & 0.1993 \\
\hline FBAR 4-7 & 0.4014 & 0.3141 & 0.3975 & 0.4649 & 0.5601 & 0.5368 & 0.4074 & 0.1694 & 0.2518 & 0.3084 \\
\hline
\end{tabular}

Table 4.14 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{Table 8 Fishing mortality (\(F\)) at age} \\
\hline YEAR & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & FBAR **_** \\
\hline \multicolumn{12}{|l|}{AGE} \\
\hline 3 & 0.0243 & 0.0128 & 0.0195 & 0.0274 & 0.0289 & 0.0662 & 0.1326 & 0.0173 & 0.0441 & 0.0182 & 0.0265 \\
\hline 4 & 0.2161 & 0.1082 & 0.08 & 0.1287 & 0.2058 & 0.3177 & 0.3203 & 0.2966 & 0.1296 & 0.1824 & 0.2029 \\
\hline 5 & 0.4681 & 0.4735 & 0.2752 & 0.3631 & 0.4741 & 0.5016 & 0.8258 & 0.3963 & 0.682 & 0.2708 & 0.4497 \\
\hline 6 & 0.538 & 0.6688 & 0.6212 & 0.535 & 0.7005 & 0.6489 & 0.832 & 0.5715 & 0.5826 & 0.799 & 0.651 \\
\hline 7 & 0.375 & 0.7076 & 0.6342 & 0.7736 & 0.8718 & 0.6239 & 0.7869 & 0.6258 & 0.7316 & 0.5103 & 0.6226 \\
\hline 8 & 0.384 & 0.4723 & 0.3359 & 0.9258 & 0.9964 & 1.0171 & 0.9724 & 0.6812 & 0.8119 & 0.807 & 0.7667 \\
\hline 9 & 0.4903 & 0.6949 & 0.4004 & 0.798 & 0.7441 & 0.7161 & 0.4123 & 0.5049 & 0.6685 & 0.631 & 0.6015 \\
\hline 10 & 0.3051 & 0.9987 & 0.654 & 0.8411 & 1.0553 & 0.8599 & 0.3475 & 0.5307 & 0.6774 & 0.8412 & 0.6831 \\
\hline +gp & 0.3051 & 0.9987 & 0.654 & 0.8411 & 1.0553 & 0.8599 & 0.3475 & 0.5307 & 0.6774 & 0.8412 & \\
\hline FBAR 4-7 & 0.3993 & 0.4896 & 0.4026 & 0.4501 & 0.563 & 0.523 & 0.6912 & 0.4726 & 0.5315 & 0.4406 & \\
\hline
\end{tabular}

Table 4.15

Run title : Arctic Haddock (run: Standard VPA AFWG03)
At 1/05/2003 13:16
\begin{tabular}{crrrr}
\multicolumn{4}{c}{ Traditional vpa using file input for terminal F } \\
Table 10 & \multicolumn{3}{c}{ Stock number at age (start of year) } \\
YEAR & 1950 & 1951 & \\
& & & & \\
AGE & & & \\
& 3 & 66026 & 553019 & 60283 \\
& 4 & 92622 & 51179 & 393614 \\
& 5 & 68513 & 41886 & 33641 \\
& 6 & 36893 & 24596 & 18190 \\
& 7 & 45596 & 13404 & 8078 \\
& 8 & 15745 & 11738 & 4905 \\
& 9 & 4518 & 4716 & 3523 \\
& 10 & 1941 & 1930 & 928 \\
+gp & 5287 & 2201 & 1348 \\
TOTAL & 337141 & 704669 & 524510
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 10 & \multicolumn{3}{|l|}{Stock number at age (start of year)} & \multicolumn{7}{|l|}{Numbers*10**-3} \\
\hline YEAR & 1953 & 1954 & 1955 & 1956 & 1957 & 1958 & 1959 & 1960 & 1961 & 1962 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3 & 1023249 & 120542 & 50765 & 167878 & 51537 & 67410 & 322648 & 240840 & 108736 & 240221 \\
\hline 4 & 43935 & 779545 & 92769 & 40521 & 122627 & 40323 & 53631 & 245830 & 161251 & 75127 \\
\hline 5 & 186200 & 24292 & 499066 & 66319 & 27842 & 78175 & 27687 & 36860 & 137614 & 81075 \\
\hline 6 & 15346 & 89074 & 14600 & 250291 & 41068 & 15665 & 35875 & 16162 & 17956 & 56095 \\
\hline 7 & 6123 & 7697 & 48176 & 7478 & 90933 & 22377 & 7613 & 16806 & 6886 & 6934 \\
\hline 8 & 2442 & 2454 & 3411 & 14321 & 3277 & 32898 & 6985 & 3412 & 8175 & 2450 \\
\hline 9 & 1150 & 1035 & 849 & 1501 & 4605 & 1709 & 11292 & 3712 & 1384 & 2769 \\
\hline 10 & 733 & 562 & 218 & 452 & 825 & 2009 & 665 & 3973 & 964 & 432 \\
\hline +gp & 2339 & 957 & 218 & 418 & 408 & 1126 & 1168 & 1201 & 2624 & 1350 \\
\hline TOTAL & 1281518 & 1026158 & 710071 & 549179 & 343123 & 261691 & 467564 & 568796 & 445591 & 466453 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 10 & \multicolumn{3}{|l|}{Stock number at age (start of year)} & \multicolumn{7}{|l|}{Numbers*10**-3} \\
\hline YEAR & 1963 & 1964 & 1965 & 1966 & 1967 & 1968 & 1969 & 1970 & 1971 & 1972 \\
\hline AGE & & & & & & & & & & \\
\hline 3 & 273037 & 316145 & 100872 & 237489 & 293825 & 17580 & 17380 & 164303 & 94306 & 1020049 \\
\hline 4 & 161110 & 197881 & 238663 & 77231 & 170693 & 226209 & 13800 & 12855 & 113403 & 75425 \\
\hline 5 & 33898 & 66931 & 117722 & 153693 & 42919 & 102594 & 124511 & 9526 & 8317 & 70941 \\
\hline 6 & 22960 & 10878 & 27406 & 60348 & 69323 & 23033 & 47073 & 61952 & 6084 & 5677 \\
\hline 7 & 15885 & 6735 & 3728 & 11159 & 23488 & 33723 & 11912 & 21540 & 30640 & 4155 \\
\hline 8 & 2818 & 4779 & 2372 & 1552 & 4010 & 11286 & 13681 & 6504 & 10382 & 16760 \\
\hline 9 & 812 & 1200 & 1497 & 1070 & 750 & 1837 & 4516 & 6778 & 3520 & 5757 \\
\hline 10 & 696 & 171 & 247 & 429 & 485 & 418 & 917 & 2239 & 3740 & 2140 \\
\hline +gp & 638 & 1040 & 1609 & 550 & 750 & 657 & 316 & 886 & 1915 & 3927 \\
\hline TOTAL & 511853 & 605760 & 494115 & 543521 & 606242 & 417336 & 234107 & 286584 & 272308 & 1204831 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 10 & \multicolumn{3}{|l|}{Stock number at age (start of year)} & \multicolumn{7}{|l|}{Numbers*10**-3} \\
\hline YEAR & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3 & 270065 & 52805 & 48611 & 55887 & 113858 & 170999 & 135116 & 18656 & 6039 & 8193 \\
\hline 4 & 627516 & 157622 & 34517 & 30772 & 33183 & 43296 & 97521 & 94820 & 14708 & 4506 \\
\hline 5 & 41726 & 280766 & 91589 & 15658 & 13169 & 7658 & 18633 & 48229 & 57071 & 9737 \\
\hline 6 & 19925 & 12670 & 150824 & 44651 & 6733 & 4228 & 2640 & 5790 & 20019 & 26921 \\
\hline 7 & 1797 & 10112 & 5168 & 78910 & 17990 & 3197 & 2216 & 889 & 2093 & 6874 \\
\hline 8 & 1959 & 1092 & 4578 & 2322 & 28896 & 7774 & 1168 & 1087 & 503 & 791 \\
\hline 9 & 7676 & 1221 & 551 & 2638 & 790 & 13772 & 4037 & 469 & 440 & 267 \\
\hline 10 & 2358 & 4763 & 449 & 369 & 956 & 369 & 5723 & 1992 & 179 & 215 \\
\hline +gp & 2603 & 4359 & 3200 & 3064 & 934 & 911 & 800 & 3454 & 2390 & 1744 \\
\hline TOTAL & 975624 & 525410 & 339488 & 234270 & 216510 & 252202 & 267854 & 175386 & 103441 & 59248 \\
\hline
\end{tabular}

\section*{Table 4.15 (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 10 & \multicolumn{3}{|l|}{Stock number at age (start of year)} & \multicolumn{10}{|l|}{Numbers*10**-3} \\
\hline YEAR & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & & & \\
\hline \multicolumn{14}{|l|}{AGE} \\
\hline 3 & 4686 & 8370 & 256679 & 531455 & 83414 & 42171 & 16887 & 24337 & 81501 & 196086 & & & \\
\hline 4 & 5912 & 3202 & 6381 & 183519 & 262700 & 64748 & 25608 & 12883 & 16316 & 63146 & & & \\
\hline 5 & 2879 & 3110 & 1881 & 4187 & 95144 & 135925 & 44876 & 17425 & 9492 & 11586 & & & \\
\hline 6 & 4950 & 1564 & 1809 & 1050 & 2517 & 31082 & 65536 & 25744 & 12585 & 6074 & & & \\
\hline 7 & 11141 & 2819 & 1010 & 842 & 522 & 1534 & 8185 & 33115 & 17362 & 7718 & & & \\
\hline 8 & 3278 & 6176 & 1634 & 543 & 380 & 242 & 913 & 3655 & 21055 & 10224 & & & \\
\hline 9 & 340 & 1870 & 3080 & 770 & 316 & 200 & 140 & 526 & 2229 & 13261 & & & \\
\hline 10 & 151 & 232 & 1092 & 1349 & 367 & 192 & 133 & 105 & 89 & 1467 & & & \\
\hline +gp & 703 & 954 & 297 & 438 & 878 & 1352 & 243 & 63 & 72 & 110 & & & \\
\hline TOTAL & 34040 & 28297 & 273863 & 724152 & 446237 & 277447 & 162522 & 117853 & 160701 & 309672 & & & \\
\hline Table 10 & Stock number & ge (start of & & Numbers*10**-3 & & & & & & & & & \\
\hline YEAR & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 2003 & T 50-** & 50-** \\
\hline \multicolumn{14}{|l|}{AGE} \\
\hline 3 & 634499 & 277171 & 79624 & 89684 & 99341 & 42504 & 180336 & 61329 & 309488 & 330393 & 0 & 93510 & 180362 \\
\hline 4 & 148450 & 474041 & 201845 & 53313 & 36698 & 56587 & 30922 & 129034 & 47739 & 238443 & 208676 & 65672 & 125373 \\
\hline 5 & 40318 & 95207 & 341759 & 126851 & 33839 & 23087 & 31555 & 18379 & 77755 & 34286 & 161085 & 37635 & 71803 \\
\hline 6 & 7317 & 18646 & 47909 & 189240 & 70293 & 16700 & 11109 & 11313 & 10010 & 32186 & 21279 & 18268 & 35027 \\
\hline 7 & 3411 & 3498 & 7814 & 20862 & 88428 & 28242 & 7146 & 3958 & 5185 & 4577 & 11837 & 8419 & 16234 \\
\hline 8 & 4460 & 1920 & 1411 & 3393 & 7880 & 30278 & 12391 & 2664 & 1733 & 2043 & 2249 & 3818 & 6844 \\
\hline 9 & 6018 & 2487 & 980 & 826 & 1101 & 2382 & 8965 & 3836 & 1103 & 630 & 746 & 1731 & 2974 \\
\hline 10 & 8395 & 3018 & 1016 & 538 & 304 & 428 & 953 & 4860 & 1896 & 463 & 274 & 737 & 1356 \\
\hline & 1603 & 3246 & 2190 & 2353 & 892 & 428 & 519 & 868 & 2248 & 1485 & 688 & & \\
\hline TOTAL & 854472 & 879233 & 684549 & 487058 & 338775 & 200637 & 283896 & 236241 & 457158 & 644505 & 406835 & & \\
\hline
\end{tabular}

Table 4.16

Run title : Arctic Haddock (run: Standard VPA AFWG03)
At 1/05/2003 13:16
Traditional vpa using file input for terminal F
\begin{tabular}{lrrrrr}
Table 14 & Stock biomass at age with SOP \\
(start of year) & Tonnes \\
YEAR & & 1950 & 1951 & 1952 & \\
& & & & & \\
AGE & & & & \\
& 3 & 19804 & 237753 & 20398 & \\
& 4 & 43355 & 34338 & 207854 & \\
& 5 & 55734 & 48839 & 30873 & \\
& 6 & 39904 & 38131 & 22195 & \\
& 7 & 59263 & 24971 & 11844 & \\
& 8 & 23827 & 25461 & 8374 & \\
& 9 & 7596 & 11367 & 6682 & \\
+gp & 10 & 3890 & 5545 & 2098 & \\
TOTALBIO & 16519 & 9858 & 4751 & \\
& 269894 & 436263 & 315070 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Table 14 YEAR} & \multicolumn{3}{|l|}{Stock biomass at age with SOP (start of year)} & Tonnes & & & & & & \\
\hline & 1953 & 1954 & 1955 & 1956 & 1957 & 1958 & 1959 & 1960 & 1961 & 1962 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3 & 387813 & 47898 & 15852 & 61258 & 19316 & 27344 & 170497 & 133185 & 57597 & 118254 \\
\hline 4 & 25986 & 483407 & 45207 & 23075 & 71725 & 25527 & 44228 & 212155 & 133299 & 57716 \\
\hline 5 & 191395 & 26179 & 422644 & 65632 & 28301 & 86005 & 39680 & 55284 & 197698 & 108244 \\
\hline 6 & 20973 & 127633 & 16440 & 329341 & 55505 & 22915 & 68363 & 32229 & 34299 & 99578 \\
\hline 7 & 10057 & 13254 & 65187 & 11824 & 147685 & 39334 & 17433 & 40273 & 15807 & 14791 \\
\hline 8 & 4671 & 4920 & 5374 & 26366 & 6198 & 67331 & 18622 & 9521 & 21848 & 6085 \\
\hline 9 & 2444 & 2305 & 1487 & 3070 & 9677 & 3886 & 33452 & 11508 & 4109 & 7642 \\
\hline 10 & 1857 & 1492 & 454 & 1103 & 2066 & 5444 & 2350 & 14680 & 3414 & 1422 \\
\hline +gp & 9236 & 3960 & 708 & 1591 & 1592 & 4758 & 6427 & 6917 & 14481 & 6924 \\
\hline TOTALBIO & 654431 & 711048 & 573353 & 523259 & 342063 & 282543 & 401051 & 515752 & 482552 & 420654 \\
\hline \multirow[t]{2}{*}{Table 14 YEAR} & \multicolumn{3}{|l|}{Stock biomass at age with SOP (start of year)} & Tonnes & & & & & & \\
\hline & 1963 & 1964 & 1965 & 1966 & 1967 & 1968 & 1969 & 1970 & 1971 & 1972 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3 & 134114 & 129020 & 46459 & 103472 & 153559 & 9191 & 9209 & 81845 & 62897 & 578504 \\
\hline 4 & 123500 & 126029 & 171543 & 52513 & 139218 & 184567 & 11411 & 9994 & 118034 & 66757 \\
\hline 5 & 45158 & 74082 & 147049 & 181611 & 60834 & 145472 & 178927 & 12869 & 15044 & 109117 \\
\hline 6 & 40668 & 16009 & 45517 & 94815 & 130647 & 43424 & 89943 & 111285 & 14633 & 11611 \\
\hline 7 & 33811 & 11910 & 7440 & 21067 & 53192 & 76402 & 27350 & 46495 & 88554 & 10210 \\
\hline 8 & 6985 & 9840 & 5511 & 3412 & 10573 & 29771 & 36575 & 16347 & 34936 & 47958 \\
\hline 9 & 2237 & 2746 & 3866 & 2615 & 2196 & 5384 & 13414 & 18929 & 13162 & 18304 \\
\hline 10 & 2284 & 466 & 759 & 1250 & 1692 & 1460 & 3247 & 7452 & 16669 & 8108 \\
\hline +gp & 3264 & 4422 & 7717 & 2495 & 4086 & 3577 & 1746 & 4600 & 13304 & 23202 \\
\hline TOTALBIO & 392020 & 374524 & 435861 & 463249 & 555997 & 499249 & 371822 & 309815 & 377234 & 873771 \\
\hline
\end{tabular}

Table 4.16 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Table 14 YEAR} & \multicolumn{3}{|l|}{Stock biomass at age with SOP (start of year)} & Tonnes & & & & & & \\
\hline & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3 & 147607 & 30172 & 26075 & 23225 & 57920 & 107298 & 100578 & 12746 & 3963 & 5142 \\
\hline 4 & 535248 & 140551 & 28894 & 19956 & 26343 & 42397 & 113288 & 101100 & 15061 & 4413 \\
\hline 5 & 61852 & 435089 & 133241 & 17647 & 18169 & 13032 & 37618 & 89368 & 101562 & 16574 \\
\hline 6 & 39271 & 26106 & 291733 & 66913 & 12350 & 9566 & 7086 & 14266 & 47367 & 60931 \\
\hline 7 & 4255 & 25038 & 12012 & 142101 & 39656 & 8693 & 7147 & 2632 & 5951 & 18696 \\
\hline 8 & 5403 & 3147 & 12389 & 4868 & 74166 & 24610 & 4387 & 3746 & 1667 & 2505 \\
\hline 9 & 23518 & 3912 & 1658 & 6146 & 2254 & 48444 & 16847 & 1796 & 1618 & 939 \\
\hline 10 & 8610 & 18184 & 1609 & 1024 & 3251 & 1546 & 28467 & 9094 & 784 & 901 \\
\hline +gp & 14818 & 25947 & 17881 & 13264 & 4951 & 5951 & 6205 & 24582 & 16338 & 11399 \\
\hline TOTALBIO & 840583 & 708146 & 525492 & 295144 & 239061 & 261537 & 321622 & 259331 & 194309 & 121501 \\
\hline \multirow[t]{2}{*}{Table 14 YEAR} & \multicolumn{3}{|l|}{Stock biomass at age with SOP (start of year)} & Tonnes & & & & & & \\
\hline & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3 & 2070 & 2275 & 108183 & 141876 & 19772 & 8979 & 4539 & 6200 & 29150 & 67949 \\
\hline 4 & 5676 & 2903 & 4779 & 128438 & 124280 & 24867 & 10880 & 9076 & 12110 & 52465 \\
\hline 5 & 4349 & 5294 & 3415 & 3961 & 86748 & 83851 & 29356 & 15892 & 13088 & 17832 \\
\hline 6 & 9481 & 3687 & 4306 & 1391 & 3640 & 34761 & 63454 & 32074 & 19670 & 12076 \\
\hline 7 & 26581 & 5938 & 1796 & 1393 & 943 & 2801 & 11158 & 49759 & 29851 & 17517 \\
\hline 8 & 10047 & 19343 & 3713 & 1149 & 1157 & 566 & 2062 & 7068 & 45084 & 24034 \\
\hline 9 & 1159 & 6508 & 8180 & 1905 & 851 & 547 & 370 & 1380 & 5837 & 34505 \\
\hline 10 & 614 & 961 & 3120 & 3587 & 1064 & 563 & 377 & 298 & 264 & 5238 \\
\hline +gp & 4447 & 6168 & 1085 & 1490 & 3263 & 5080 & 884 & 229 & 262 & 419 \\
\hline TOTALBIO & 64424 & 53078 & 138577 & 285191 & 241716 & 162015 & 123081 & 121977 & 155317 & 232036 \\
\hline \multirow[t]{2}{*}{Table 14 YEAR} & \multicolumn{3}{|l|}{Stock biomass at age with SOP (start of year)} & Tonnes & & & & & & \\
\hline & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3 & 189485 & 72174 & 18054 & 19632 & 21379 & 10538 & 53660 & 14133 & 95577 & 64193 \\
\hline 4 & 120204 & 284858 & 77057 & 25135 & 14948 & 27520 & 19316 & 88428 & 23550 & 138029 \\
\hline 5 & 57778 & 112198 & 289416 & 91445 & 24298 & 20279 & 33861 & 19500 & 91528 & 33411 \\
\hline 6 & 14681 & 31767 & 72958 & 224049 & 81761 & 21109 & 17441 & 14690 & 15608 & 48933 \\
\hline 7 & 7743 & 7548 & 16069 & 40507 & 136274 & 43748 & 12464 & 5897 & 10534 & 9392 \\
\hline 8 & 13609 & 5359 & 4336 & 8676 & 20201 & 63071 & 25024 & 4291 & 4323 & 5051 \\
\hline 9 & 20451 & 6570 & 3032 & 2447 & 3718 & 7962 & 24018 & 6973 & 2904 & 1706 \\
\hline 10 & 28606 & 8802 & 3251 & 1880 & 1065 & 1277 & 2527 & 10762 & 5034 & 1329 \\
\hline +gp & 6747 & 11416 & 7304 & 8616 & 4351 & 1730 & 2090 & 2591 & 8605 & 5675 \\
\hline TOTALBIO & 459304 & 540693 & 491478 & 422388 & 307995 & 197235 & 190400 & 167265 & 257664 & 307720 \\
\hline
\end{tabular}

\section*{Table 4.17}

Run title : Arctic Haddock (run: Standard VPA AFWG03)
At 1/05/2003 13:16
Traditional vpa using file input for terminal F
\begin{tabular}{lrrrrr}
Table 15 & Spawning stock biomass with SOP (spawning time) & Tonnes \\
YEAR & 1950 & 1951 & 1952 & \\
& & & & & \\
AGE & 0 & 0 & 0 & \\
& 3 & 2168 & 1717 & 10393 & \\
& 4 & 12819 & 11233 & 7101 & \\
& 5 & 21149 & 20209 & 11764 & \\
& 6 & 52152 & 21975 & 10423 & \\
& 7 & 23351 & 24952 & 8207 & \\
& 8 & 7596 & 11367 & 6682 & \\
& 9 & 3890 & 5545 & 2098 & \\
+gp & 10 & 16519 & 9858 & 4751 & \\
TOTSPBIO & 139644 & 106855 & 61418 &
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{able 15 Spawning stock biomass with SOP (spawning time) Tonnes} \\
\hline YEAR & 1953 & 1954 & 1955 & 1956 & 1957 & 1958 & 1959 & 1960 & 1961 & 1962 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 4 & 1299 & 24170 & 2260 & 1154 & 3586 & 1276 & 2211 & 10608 & 6665 & 2886 \\
\hline 5 & 44021 & 6021 & 97208 & 15095 & 6509 & 19781 & 9126 & 12715 & 45471 & 24896 \\
\hline 6 & 11116 & 67646 & 8713 & 174551 & 29417 & 12145 & 36232 & 17082 & 18179 & 52776 \\
\hline 7 & 8850 & 11664 & 57364 & 10405 & 129963 & 34613 & 15341 & 35440 & 13910 & 13016 \\
\hline 8 & 4577 & 4821 & 5267 & 25839 & 6074 & 65985 & 18250 & 9330 & 21411 & 5963 \\
\hline 9 & 2444 & 2305 & 1487 & 3070 & 9677 & 3886 & 33452 & 11508 & 4109 & 7642 \\
\hline 10 & 1857 & 1492 & 454 & 1103 & 2066 & 5444 & 2350 & 14680 & 3414 & 1422 \\
\hline +gp & 9236 & 3960 & 708 & 1591 & 1592 & 4758 & 6427 & 6917 & 14481 & 6924 \\
\hline TOTSPBIO & 83400 & 122079 & 173462 & 232807 & 188884 & 147888 & 123389 & 118280 & 127639 & 115524 \\
\hline
\end{tabular}

\section*{Table 4.17 (continued)}

Run title : Arctic Haddock (run: Standard VPA AFWG03)
At 1/05/2003 13:16
Traditional vpa using file input for terminal F
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 15 & \multicolumn{5}{|l|}{Spawning stock biomass with SOP (spawning time) Tonnes} & & & & & \\
\hline YEAR & 1963 & 1964 & 1965 & 1966 & 1967 & 1968 & 1969 & 1970 & 1971 & 1972 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 4 & 6175 & 6301 & 8577 & 2626 & 6961 & 9228 & 571 & 500 & 5902 & 3338 \\
\hline 5 & 10386 & 17039 & 33821 & 41771 & 13992 & 33459 & 41153 & 2960 & 3460 & 25097 \\
\hline 6 & 21554 & 8485 & 24124 & 50252 & 69243 & 23015 & 47670 & 58981 & 7756 & 6154 \\
\hline 7 & 29754 & 10481 & 6547 & 18539 & 46809 & 67233 & 24068 & 40915 & 77928 & 8985 \\
\hline 8 & 6845 & 9643 & 5401 & 3344 & 10362 & 29176 & 35843 & 16020 & 34237 & 46999 \\
\hline 9 & 2237 & 2746 & 3866 & 2615 & 2196 & 5384 & 13414 & 18929 & 13162 & 18304 \\
\hline 10 & 2284 & 466 & 759 & 1250 & 1692 & 1460 & 3247 & 7452 & 16669 & 8108 \\
\hline +gp & 3264 & 4422 & 7717 & 2495 & 4086 & 3577 & 1746 & 4600 & 13304 & 23202 \\
\hline TOTSPBIO & 82499 & 59583 & 90813 & 122890 & 155341 & 172533 & 167712 & 150357 & 172417 & 140187 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Table 15 YEAR} & \multicolumn{5}{|l|}{Spawning stock biomass with SOP (spawning time) Tonnes} & & & & & \\
\hline & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 463 \\
\hline 4 & 26762 & 7028 & 1445 & 998 & 1317 & 2120 & 5664 & 5055 & 1807 & 2427 \\
\hline 5 & 14226 & 100070 & 30645 & 4059 & 4179 & 2997 & 8652 & 20555 & 65000 & 12099 \\
\hline 6 & 20814 & 13836 & 154619 & 35464 & 6546 & 5070 & 3755 & 7561 & 34578 & 56665 \\
\hline 7 & 3745 & 22034 & 10571 & 125049 & 34897 & 7650 & 6289 & 2316 & 5713 & 17948 \\
\hline 8 & 5295 & 3084 & 12141 & 4770 & 72683 & 24118 & 4299 & 3671 & 1667 & 2505 \\
\hline 9 & 23518 & 3912 & 1658 & 6146 & 2254 & 48444 & 16847 & 1796 & 1618 & 939 \\
\hline 10 & 8610 & 18184 & 1609 & 1024 & 3251 & 1546 & 28467 & 9094 & 784 & 901 \\
\hline +gp & 14818 & 25947 & 17881 & 13264 & 4951 & 5951 & 6205 & 24582 & 16338 & 11399 \\
\hline TOTSPBIO & 117788 & 194095 & 230569 & 190774 & 130078 & 97896 & 80180 & 74630 & 127542 & 105348 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Table 15 Spawning stock biomass with SOP (spawning time) Tonnes} & & & & \\
\hline YEAR & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 3 & 2842 & 0 & 0 & 0 & 0 & 0 & 537 & 0 & 382 & 514 \\
\hline 4 & 26325 & 4843 & 1541 & 0 & 448 & 1376 & 3284 & 8843 & 1413 & 17944 \\
\hline 5 & 28311 & 14586 & 34730 & 9145 & 2430 & 5678 & 16930 & 6240 & 49425 & 11025 \\
\hline 6 & 11157 & 13024 & 30642 & 80658 & 23711 & 10555 & 12383 & 8667 & 11238 & 35721 \\
\hline 7 & 6117 & 6794 & 13016 & 31595 & 81764 & 28874 & 10096 & 4246 & 9164 & 7795 \\
\hline 8 & 11976 & 4716 & 3816 & 7462 & 16565 & 51088 & 22772 & 4034 & 4064 & 4546 \\
\hline 9 & 17997 & 6570 & 3032 & 2202 & 3718 & 7246 & 22096 & 6554 & 2614 & 1706 \\
\hline 10 & 24887 & 8802 & 2828 & 1749 & 884 & 1277 & 2527 & 10331 & 5034 & 1250 \\
\hline +gp & 6747 & 11073 & 7304 & 7755 & 4351 & 1730 & 2090 & 2591 & 7831 & 5675 \\
\hline TOTSPBIO & 136360 & 70408 & 96910 & 140565 & 133871 & 107823 & 92714 & 51506 & 91165 & 86176 \\
\hline
\end{tabular}

Table 4.18

Run title : Arctic Haddock (run: Standard VPA AFWG03)
At 1/05/2003 13:16
Table 17 Summary (with SOP correction)
Traditional vpa using file input for terminal F
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & RECRUITS Age 3 & TOTALBIO & TOTSPBIO & LANDINGS & YIELD/SSB & SOPCOFAC F & FBAR 4-7 \\
\hline & 1950 & 66026 & 269894 & 139644 & 132125 & 0.9462 & 0.4545 & 0.8469 \\
\hline & 1951 & 553019 & 436263 & 106855 & 120077 & 1.1237 & 0.6514 & 0.6431 \\
\hline & 1952 & 60283 & 315070 & 61418 & 127660 & 2.0785 & 0.5127 & 0.7546 \\
\hline & 1953 & 1023249 & 654431 & 83400 & 123920 & 1.4859 & 0.5742 & 0.5336 \\
\hline & 1954 & 120542 & 711048 & 122079 & 156788 & 1.2843 & 0.6021 & 0.3959 \\
\hline & 1955 & 50765 & 573353 & 173462 & 202286 & 1.1662 & 0.4731 & 0.527 \\
\hline & 1956 & 167878 & 523259 & 232807 & 213924 & 0.9189 & 0.5529 & 0.473 \\
\hline & 1957 & 51537 & 342063 & 188884 & 123583 & 0.6543 & 0.5679 & 0.4623 \\
\hline & 1958 & 67410 & 282543 & 147888 & 112672 & 0.7619 & 0.6146 & 0.5602 \\
\hline & 1959 & 322648 & 401051 & 123389 & 88211 & 0.7149 & 0.8007 & 0.4185 \\
\hline & 1960 & 240840 & 515752 & 118280 & 154651 & 1.3075 & 0.8379 & 0.5183 \\
\hline & 1961 & 108736 & 482552 & 127639 & 193224 & 1.5138 & 0.8026 & 0.6925 \\
\hline & 1962 & 240221 & 420654 & 115524 & 187408 & 1.6222 & 0.7459 & 0.8548 \\
\hline & 1963 & 273037 & 392020 & 82499 & 146224 & 1.7724 & 0.7442 & 0.9107 \\
\hline & 1964 & 316145 & 374524 & 59583 & 99158 & 1.6642 & 0.6183 & 0.6817 \\
\hline & 1965 & 100872 & 435861 & 90813 & 118578 & 1.3057 & 0.6978 & 0.5208 \\
\hline & 1966 & 237489 & 463249 & 122890 & 161778 & 1.3164 & 0.6601 & 0.6377 \\
\hline & 1967 & 293825 & 555997 & 155341 & 136397 & 0.8781 & 0.7919 & 0.4462 \\
\hline & 1968 & 17580 & 499249 & 172533 & 181726 & 1.0533 & 0.7921 & 0.5344 \\
\hline & 1969 & 17380 & 371822 & 167712 & 130820 & 0.78 & 0.8028 & 0.4139 \\
\hline & 1970 & 164303 & 309815 & 150357 & 88257 & 0.587 & 0.7547 & 0.3794 \\
\hline & 1971 & 94306 & 377234 & 172417 & 78905 & 0.4576 & 1.0105 & 0.2589 \\
\hline & 1972 & 1020049 & 873771 & 140187 & 266153 & 1.8986 & 0.8593 & 0.741 \\
\hline & 1973 & 270065 & 840583 & 117788 & 322226 & 2.7356 & 0.8281 & 0.5931 \\
\hline & 1974 & 52805 & 708146 & 194095 & 221157 & 1.1394 & 0.8657 & 0.5134 \\
\hline & 1975 & 48611 & 525492 & 230569 & 175758 & 0.7623 & 0.8127 & 0.5392 \\
\hline & 1976 & 55887 & 295144 & 190774 & 137264 & 0.7195 & 0.6296 & 0.7016 \\
\hline & 1977 & 113858 & 239061 & 130078 & 110158 & 0.8469 & 0.7708 & 0.8466 \\
\hline & 1978 & 170999 & 261537 & 97896 & 95422 & 0.9747 & 0.9507 & 0.6903 \\
\hline & 1979 & 135116 & 321622 & 80180 & 103623 & 1.2924 & 1.1278 & 0.7184 \\
\hline & 1980 & 18656 & 259331 & 74630 & 87889 & 1.1777 & 1.0352 & 0.5434 \\
\hline & 1981 & 6039 & 194309 & 127542 & 77153 & 0.6049 & 0.9942 & 0.6014 \\
\hline & 1982 & 8193 & 121501 & 105348 & 46955 & 0.4457 & 0.951 & 0.4868 \\
\hline & 1983 & 4686 & 64424 & 61003 & 21607 & 0.3542 & 0.9205 & 0.4014 \\
\hline & 1984 & 8370 & 53078 & 41526 & 17318 & 0.417 & 0.9405 & 0.3141 \\
\hline & 1985 & 256679 & 138577 & 27104 & 41270 & 1.5226 & 0.9689 & 0.3975 \\
\hline & 1986 & 531455 & 285191 & 40882 & 96585 & 2.3626 & 0.9019 & 0.4649 \\
\hline & 1987 & 83414 & 241716 & 28666 & 150654 & 5.2555 & 0.9836 & 0.5601 \\
\hline & 1988 & 42171 & 162015 & 55702 & 91745 & 1.6471 & 0.995 & 0.5368 \\
\hline & 1989 & 16887 & 123081 & 62061 & 54859 & 0.8839 & 0.9634 & 0.4074 \\
\hline & 1990 & 24337 & 121977 & 68364 & 25741 & 0.3765 & 0.9651 & 0.1694 \\
\hline & 1991 & 81501 & 155317 & 86330 & 33605 & 0.3893 & 0.9589 & 0.2518 \\
\hline & 1992 & 196086 & 232036 & 95391 & 53887 & 0.5649 & 1.0132 & 0.3084 \\
\hline & 1993 & 634499 & 459304 & 136360 & 77621 & 0.5692 & 1.0021 & 0.3993 \\
\hline & 1994 & 277171 & 540693 & 70408 & 128703 & 1.828 & 1.1128 & 0.4896 \\
\hline & 1995 & 79624 & 491478 & 96910 & 138677 & 1.431 & 1.0546 & 0.4026 \\
\hline & 1996 & 89684 & 422388 & 140565 & 173264 & 1.2326 & 1.0524 & 0.4501 \\
\hline & 1997 & 99341 & 307995 & 133871 & 148756 & 1.1112 & 1.0498 & 0.563 \\
\hline & 1998 & 42504 & 197235 & 107823 & 93946 & 0.8713 & 1.0595 & 0.523 \\
\hline & 1999 & 180336 & 190400 & 92714 & 82346 & 0.8882 & 1.0552 & 0.6912 \\
\hline & 2000 & 61329 & 167265 & 51506 & 61292 & 1.19 & 1.0019 & 0.4726 \\
\hline & 2001 & 309488 & 257664 & 91165 & 81842 & 0.8977 & 1.0027 & 0.5315 \\
\hline & 2002 & 330393 & 307720 & 86176 & 83848 & 0.973 & 1.0015 & 0.4406 \\
\hline \multicolumn{9}{|l|}{Arith.} \\
\hline Mean & & 185629 & 363543 & 112812 & 120372 & 1.1841 & . 5324 & \\
\hline Units & & (Thousands & (Tonnes) & (Tonnes) & (Tonnes) & & & \\
\hline
\end{tabular}

Table 4.19
PREDICTION WITH MANAGEMENT OPTION TABLE: INPUT DATA
MFDP version 1a
Run: had03_final
Time and date: 20:50 01.05.2003
Fbar age range: 4-7

2003

2005

Input units are thousands and kg - output in tonnes

MFYPR version 2a
Run: NEA Haddock
NEA Haddock (AFWG03: Final run)
Time and date: 15:58 02.05.2003
Fbar age range: 4-7
\begin{tabular}{lllllcl}
Age M & Mat PF & PM SWt & Sel & CWt & \\
3 & 0.36984 & 0.000 & 0 & 0.2408 & 0.0265 & 0.6303 \\
4 & 0.25027 & 0.080 & 0 & 0.5351 & 0.2029 & 0.9379 \\
5 & 0.23389 & 0.290 & 0 & 0.9713 & 0.4497 & 1.2749 \\
6 & 0.20582 & 0.550 & 0 & 1.4260 & 0.6510 & 1.5720 \\
7 & 0.2 & 0.780 & 0 & 1.8144 & 0.6226 & 1.8724 \\
8 & 0.2 & 0.880 & 0 & 2.3784 & 0.7667 & 2.0948 \\
9 & 0.2 & 0.950 & 0 & 2.7569 & 0.6015 & 2.3723 \\
10 & 0.2 & 0.940 & 0 & 2.8763 & 0.6831 & 2.5746 \\
11 & 0.2 & 0.980 & 0 & 3.6888 & 0.6831 & 2.7985
\end{tabular}

Weights in kilograms
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Yield per results} \\
\hline FMult & Fbar Catch & os & \begin{tabular}{l}
d StockNos Biomass \\
(Jan) (Spawn)
\end{tabular} & & SpwnNos SS & SBJan & wnNos & SSBSpwn \\
\hline 0 & & 0 & 4.56617 .3993 & 2.2067 & 75.8174 & 2.20 & 5.817 & \\
\hline 0.05 & 0.0241 & 0.0765 & - 0.15154 .1891 & 16. & 18 & 24.6 & 1.85 & 58 \\
\hline 0.1 & 0.0482 & 0.1341 & 0.25633 .9059 & 5.3085 & 1.6005 & 3.8368 & 1.600 & 3.8368 \\
\hline 0.15 & 0.0722 & 0.1793 & 3.33143 .685 & 4.6457 & 1.4026 & 3.2176 & 1.40 & 3.2176 \\
\hline 0.2 & 0.0963 & 0.2158 & 0.38683 .5075 & 4.1314 & 1.2462 & 2.7417 & 1.246 & 2.7417 \\
\hline 0.25 & 0.1204 & 0.246 & 0.42853 .3613 & 3.7229 & 1.1198 & 2.3676 & 1.119 & 2.3676 \\
\hline 0.3 & 0.1445 & 0.2715 & 0.46053 .2388 & 3.392 & 1.0156 & 2.0679 & 1.0156 & 2.0679 \\
\hline 0.35 & 0.1685 & 0.2933 & 0.48553 .1343 & 3.1195 & 0.9284 & 1.8239 & 0.928 & 1.8239 \\
\hline 0.4 & 0.1926 & 0.3123 & 0.50523 .0441 & 2.8919 & 0.8545 & 1.6226 & 0.854 & 1.6226 \\
\hline 0.45 & 0.2167 & 0.3289 & 0.52092 .9652 & 2.6995 & 0.7911 & 1.4545 & 0.7911 & 1.4545 \\
\hline 0.5 & 0.2408 & 0.3437 & 0.53372 .8956 & 2.5351 & 0.7362 & 1.3127 & 0.7362 & 1.3127 \\
\hline 0.55 & 0.2648 & 0.357 & 0.54412 .8336 & 2.3932 & 0.6882 & 1.192 & 0.6882 & 1.192 \\
\hline 0.6 & 0.2889 & 0.3689 & 0.55262 .778 & 2.2696 & 0.646 & 1.0882 & 0.646 & 1.0882 \\
\hline 0.65 & 0.313 & 0.3798 & 0.55972 .7278 & 2.1612 & 0.6085 & 0.9985 & 0.6085 & 0.9985 \\
\hline 0.7 & 0.3371 & 0.3897 & 0.56562 .6821 & 2.0655 & 0.5751 & 0.9203 & 0.5751 & 0.9203 \\
\hline 0.75 & 0.3612 & 0.3989 & 0.57062 .6404 & 1.9803 & 0.5452 & 0.8518 & 0.5452 & 0.8518 \\
\hline 0.8 & 0.3852 & 0.4073 & 0.57482 .6021 & 1.9041 & 0.5182 & 0.7914 & 0.5182 & 0.7914 \\
\hline 0.85 & 0.4093 & 0.4151 & 0.57832 .5668 & 1.8355 & 0.4937 & 0.7378 & 0.4937 & 0.7378 \\
\hline 0.9 & 0.4334 & 0.4224 & 40.58142 .534 & 1.7735 & 0.4715 & 0.6901 & 0.4715 & 0.6901 \\
\hline 0.95 & 0.4575 & 0.4293 & 0.58392 .5036 & 1.7172 & 0.4512 & 0.6474 & 0.4512 & 0.6474 \\
\hline & 0.4815 & 0.4357 & 0.58622 .4752 & 1.6658 & 0.4326 & 0.609 & 0.432 & 0.609 \\
\hline
\end{tabular}

Reference point F multiplier Absolute F
Fbar(4-7) 10.4815
\(F_{\text {max }} 2.25911 .0879\)
\(F_{0.1} 0.39020 .1879\)
F35\%SPR 0.3060 .1473
Weights in kilograms

Table 4.21
PREDICTION WITH MANAGEMENT OPTION TABLE
MFDP version 1a
Run: had03_final
North East Arctic Haddock
Time and date: 20:50 01.05.2003
Fbar age range: 4-7
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{2003} & & & & & \\
\hline Biomass & SSB & FMult & FBar & Landings & & \\
\hline 397813 & 120009 & 1 & 0.4815 & 140376 & & \\
\hline 2004 & & \multirow[b]{2}{*}{FMult} & \multirow[b]{2}{*}{FBar} & \multirow[b]{2}{*}{Landings} & 2005 & \\
\hline Biomass & SSB & & & & Biomass & SSB \\
\hline 414230 & 132733 & 0.25 & 0.1204 & 46234 & 527838 & 194135 \\
\hline & 132733 & 0.3 & 0.1445 & 54822 & 519564 & 188889 \\
\hline & 132733 & 0.35 & 0.1685 & 63204 & 511503 & 183796 \\
\hline & 132733 & 0.4 & 0.1926 & 71386 & 503649 & 178851 \\
\hline & 132733 & 0.45 & 0.2167 & 79374 & 495998 & 174049 \\
\hline & 132733 & 0.5 & 0.2408 & 87172 & 488544 & 169387 \\
\hline & 132733 & 0.55 & 0.2648 & 94786 & 481280 & 164860 \\
\hline & 132733 & 0.6 & 0.2889 & 102220 & 474201 & 160464 \\
\hline & 132733 & 0.65 & 0.313 & 109480 & 467303 & 156195 \\
\hline & 132733 & 0.7 & 0.3371 & 116571 & 460579 & 152049 \\
\hline & 132733 & 0.75 & 0.3612 & 123496 & 454026 & 148023 \\
\hline & 132733 & 0.8 & 0.3852 & 130261 & 447638 & 144113 \\
\hline & 132733 & 0.85 & 0.4093 & 136869 & 441412 & 140316 \\
\hline & 132733 & 0.9 & 0.4334 & 143326 & 435341 & 136627 \\
\hline & 132733 & 0.95 & 0.4575 & 149634 & 429422 & 133045 \\
\hline & 132733 & , & 0.4815 & 155798 & 423651 & 129564 \\
\hline & 132733 & 1.05 & 0.5056 & 161821 & 418024 & 126184 \\
\hline & 132733 & 1.1 & 0.5297 & 167708 & 412536 & 122900 \\
\hline & 132733 & 1.15 & 0.5538 & 173462 & 407184 & 119710 \\
\hline & 132733 & 1.2 & 0.5779 & 179087 & 401964 & 116610 \\
\hline & 132733 & 1.25 & 0.6019 & 184585 & 396873 & 113599 \\
\hline
\end{tabular}

Input units are thousands and kg - output in tonnes

\section*{Table 4.22}

Prediction single option table
MFDP version 1 a
Run: had03_final
Time and date: 20:50 01.05.2003
Fbar age range: 4-7
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year: & & 2003 F & F multiplier: & & & Fbar: & 0.4815 & & & & \\
\hline \multirow[t]{10}{*}{Age} & F & & CatchNos & Yield & & StockNos & Biomass & SSNos(Jan) & SSB(Jan) & SSNos(ST) & SSB(ST) \\
\hline & 3 & 0.0265 & 5298 & & 3036 & 250000 & 60250 & 750 & 181 & 750 & 181 \\
\hline & 4 & 0.2029 & 34686 & & 33957 & 208676 & 99121 & 9808 & 4659 & 9808 & 4659 \\
\hline & 5 & 0.4497 & 53126 & & 73261 & 161085 & 173005 & 59601 & 64012 & 59601 & 64012 \\
\hline & 6 & 0.651 & 9323 & & 15103 & 21279 & 30642 & 13384 & 19274 & 13384 & 19274 \\
\hline & 7 & 0.6226 & 5023 & & 10619 & 11837 & 23118 & 10428 & 20367 & 10428 & 20367 \\
\hline & 8 & 0.7667 & 1105 & & 2440 & 2249 & 5587 & 2249 & 5587 & 2249 & 5587 \\
\hline & 9 & 0.6015 & 309 & & 816 & 746 & 2077 & 689 & 1917 & 689 & 1917 \\
\hline & 10 & 0.6831 & 124 & & 303 & 274 & 812 & 274 & 812 & 274 & 812 \\
\hline & 11 & 0.6831 & 312 & & 841 & 688 & 3203 & 688 & 3203 & 688 & 3203 \\
\hline Total & & & 109306 & & 140376 & 656834 & 397813 & 97872 & 120009 & 97872 & 120009 \\
\hline Year: & & 2004 F & F multiplier: & & 0.75 & Fbar: & 0.3612 & & & & \\
\hline \multirow[t]{10}{*}{Age} & F & & CatchNos & Yield & & StockNos & Biomass & SSNos(Jan) & SSB(Jan) & SSNos(ST) & SSB(ST) \\
\hline & 3 & 0.0199 & 4435 & & 2639 & 277000 & 63156 & 554 & 126 & 554 & 126 \\
\hline & 4 & 0.1522 & 19773 & & 17895 & 156589 & 71248 & 5324 & 2422 & 5324 & 2422 \\
\hline & 5 & 0.3373 & 35762 & & 44882 & 138119 & 129970 & 38259 & 36002 & 38259 & 36002 \\
\hline & 6 & 0.4883 & 29456 & & 45893 & 83599 & 114614 & 45143 & 61892 & 45143 & 61892 \\
\hline & 7 & 0.4669 & 3092 & & 6153 & 9074 & 17031 & 7831 & 14698 & 7831 & 14698 \\
\hline & 8 & 0.575 & 2081 & & 4592 & 5200 & 13151 & 4992 & 12625 & 4992 & 12625 \\
\hline & 9 & 0.4511 & 284 & & 720 & 855 & 2404 & 823 & 2312 & 823 & 2312 \\
\hline & 10 & 0.5123 & 123 & & 317 & 335 & 1011 & 335 & 1011 & 335 & 1011 \\
\hline & 11 & 0.5123 & 146 & & 406 & 398 & 1644 & 398 & 1644 & 398 & 1644 \\
\hline Total & & & 95152 & & 123496 & 671169 & 414230 & 103659 & 132733 & 103659 & 132733 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year: & & 2005 & F multiplier: & 0.75 & Fbar: & 0.3612 & & & & \\
\hline \multirow[t]{10}{*}{Age} & & & CatchNos & Yield & StockNos & Biomass & SSNos(Jan) & SSB(Jan) & SSNos(ST) & SSB(ST) \\
\hline & 3 & 0.0199 & 6785 & 4193 & 422000 & 91152 & 0 & 0 & 0 & 0 \\
\hline & 4 & 0.1522 & 22033 & 18288 & 176288 & 76685 & 3702 & 1610 & 3702 & 1610 \\
\hline & 5 & 0.3373 & 27460 & 31029 & 106535 & 86081 & 19603 & 15839 & 19603 & 15839 \\
\hline & 6 & 0.4883 & 27921 & 41742 & 79348 & 103311 & 35707 & 46490 & 35707 & 46490 \\
\hline & 7 & 0.4669 & 14256 & 26587 & 41836 & 75347 & 35310 & 63593 & 35310 & 63593 \\
\hline & 8 & 0.575 & 1864 & 4109 & 4657 & 11988 & 4285 & 11029 & 4285 & 11029 \\
\hline & 9 & 0.4511 & 794 & 1934 & 2396 & 6792 & 2396 & 6792 & 2396 & 6792 \\
\hline & 10 & 0.5123 & 163 & 447 & 446 & 1373 & 446 & 1373 & 446 & 1373 \\
\hline & 11 & 0.5123 & 132 & 379 & 359 & 1298 & 359 & 1298 & 359 & 1298 \\
\hline Total & & & 101408 & 128708 & 833865 & 454026 & 101806 & 148023 & 101806 & 148023 \\
\hline
\end{tabular}

Input units are thousands and kg - output in tonnes

Figure 4.1 A Landings of Northeast Arctic Haddock
Fishing Mortality

Figure 4.1 B Fishing mortality of Northeast Arctic Haddock

Figure 4.1C Recruitment of Northeast Arctic Haddock

Figure 4.1D Spawning stock biomass of Northeast Arctic haddock

Figure 4.2 Northeast Arctic haddock

Figure 4.3 Northeast Arctic haddock

Figure 4.4 Northeast Arctic haddock

\section*{Retrospective plots}

Figure \(4.8 \quad\) Illustration of the observed instability of the XSA tuning after the deletion of agegroups 1 and 2. The top panel shows the single fleet tuning results compared with a combined tuning with the same settings as with the final XSA run, but with agegroups 1 and 2 deleted. The second panel illustrates the effect of increasing the shrinkage from the \(\mathrm{se}=1.00\) in the top panel down to \(\mathrm{se}=0.50\). The lower panel is results after tuning with no shrinkage.

Figure 4.9
The "retrospective"effect of keeping all ages, deleting age 1 or deleting both age 1 and 2 from the assessment. Points on the graph represents mean percentage change of F at age from the assessment year relative to the converged (last assessment)

Figure 4.10
"Overall bias" in numbers-at-age. Residual numbers-at-age (ass. year minus converged) added together and presented as a percentage of the sum of numbers-at-age from the converged series. The top panel shows the overall effect while the bottom panel shows the effect of removing the year classes 1989, 1990 and 1991 from the calculations.

Table B1 North-East Arctic HADDOCK. Results from the Norwegian bottom trawl survey in the Barents Sea in January-March. Index of number of fish at age. Indices for 1983-1998 revised August 1999.
\begin{tabular}{rrrrrrrrrrrr}
\hline & \multicolumn{10}{c}{ Age } & Pear \\
\cline { 2 - 13 } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \(10+\) & Total \\
\hline 1981 & 3.1 & 7.3 & 2.3 & 7.8 & 1.8 & 5.3 & 0.5 & \(0.2-\) & - & & 28.3 \\
1982 & 3.9 & 1.5 & 1.7 & 1.8 & 1.9 & 4.8 & 2.4 & \(0.2-\) & - & 18.2 \\
1983 & 2919.3 & 4.8 & 3.1 & 2.4 & 0.9 & 1.9 & 2.5 & 0.7 & - & - & 2935.6 \\
1984 & 3832.6 & 514.6 & 18.9 & 1.5 & 0.8 & 0.2 & 0.1 & 0.4 & 0.1 & - & 4369.2 \\
1985 & 1901.1 & 1593.8 & 475.9 & 14.7 & 0.5 & 0.5 & 0.1 & 0.1 & 0.4 & 0.3 & 3987.4 \\
1986 & 665.0 & 370.3 & 384.6 & 110.8 & 0.6 & 0.2 & 0.1 & 0.1 & 0.1 & 0.1 & 1531.9 \\
1987 & 163.8 & 79.9 & 154.4 & 290.2 & 52.9 & 0.0 & - & - & - & 0.3 & 741.5 \\
1988 & 35.4 & 15.3 & 25.3 & 68.9 & 116.4 & 13.8 & 0.1 & - & - & - & 275.2 \\
1989 & 81.2 & 9.5 & 14.1 & 21.6 & 34.0 & 32.7 & 3.4 & 0.1 & - & - & 196.6 \\
1990 & 644.1 & 54.6 & 4.5 & 3.4 & 5.0 & 9.2 & 11.8 & 1.8 & -- & & 734.4 \\
1991 & 2006.0 & 300.3 & 33.4 & 5.1 & 4.2 & 2.7 & 1.7 & 4.2 & - & - & 2357.6 \\
1992 & 1659.4 & 1375.5 & 150.5 & 24.4 & 2.1 & 0.6 & 0.7 & 1.6 & \(2.3-\) & & 3217.1 \\
1993 & 727.9 & 599.0 & 507.7 & 105.6 & 10.5 & 0.6 & 0.4 & 0.3 & 0.4 & 1.1 & 1953.5 \\
1994 & 603.2 & 228.0 & 339.5 & 436.6 & 49.7 & 3.4 & 0.2 & 0.1 & 0.2 & 0.6 & 1661.5 \\
1995 & 1463.6 & 179.3 & 53.6 & 171.1 & 339.5 & 34.5 & \(2.8-\) & & \(0.1-\) & & 2244.5 \\
1996 & 309.5 & 263.6 & 52.5 & 48.1 & 148.6 & 252.8 & 11.6 & 0.9 & - & 0.1 & 1087.7 \\
\(1997^{1}\) & 1268.0 & 67.9 & 86.1 & 28.0 & 19.4 & 46.7 & 62.2 & 3.5 & 0.1 & - & 1581.9 \\
\(1998^{1}\) & 212.9 & 137.9 & 22.7 & 33.2 & 13.2 & 3.4 & 8.0 & 8.1 & 0.7 & 0.1 & 440.2 \\
1999 & 1244.9 & 57.6 & 59.8 & 12.2 & 10.2 & 2.8 & 1.0 & 1.7 & \(1.1-\) & & 1391.3 \\
2000 & 847.2 & 452.2 & 27.2 & 35.4 & 8.4 & 4.0 & 0.8 & 0.3 & 0.7 & 0.2 & 1376.4 \\
2001 & 1220.5 & 460.3 & 296.0 & 29.3 & 25.1 & 1.7 & 0.9 & 0.1 & 0.1 & 0.3 & 2034.3 \\
2002 & 1680.3 & 534.7 & 314.7 & 185.3 & 17.6 & 8.2 & 0.8 & 0.3 & + & 0.3 & 2742.2 \\
2003 & 3332.1 & 513.1 & 317.4 & 182 & 73.6 & 5.5 & 2.3 & 0.2 & 0.1 & 0.2 & 4426.5 \\
\hline
\end{tabular}
\({ }^{1}\) Indices adjusted to account for limited area coverage.
Survey area extended from 1993 onwards.

Table B2 North-East Arctic HADDOCK. Results from the Russian trawl survey in the Barents Sea and adjacent waters in late autumn (numbers per hour trawling).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{11}{|c|}{Age} & \multirow[b]{2}{*}{Total} \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & Older & \\
\hline & \multicolumn{7}{|c|}{Sub-area I} & & & & & \\
\hline 1983 & 39.9 & 97.3 & 16.5 & 0.8 & 0.7 & + & & & & & 1.1 & 156.3 \\
\hline 1984 & 9.7 & 100.2 & 110.6 & 2.8 & 0.4 & 0.2 & + & & & & 0.7 & 224.6 \\
\hline 1985 & 3.9 & 19.1 & 213.4 & 168.8 & 0.8 & 0.2 & 0.1 & - & & & 0.3 & 406.6 \\
\hline 1986 & 0.2 & 2.3 & 16.6 & 58.1 & 27.6 & 0.1 & + & + & + & & - & 105.0 \\
\hline 1987 & 0.4 & 1.4 & 2.5 & 12.5 & 34.2 & 8.6 & + & + & - & + & & 59.8 \\
\hline 1988 & 1.9 & 0.4 & 1.1 & 2.8 & 6.2 & 11.6 & 1.1 & + & + & + & & 25.2 \\
\hline 1989 & 3.3 & 3.0 & 3.6 & 0.7 & 2.5 & 7.1 & 13.9 & 1.8 & 0.1 & + & & 36.0 \\
\hline 1990 & 71.7 & 22.2 & 18.6 & 13.2 & 7.5 & 13.2 & 13.3 & 10.3 & 0.6 & 0.1 & & 170.7 \\
\hline 1991 & 15.9 & 61.5 & 27.5 & 10.8 & 1.6 & 0.6 & 1.0 & 3.3 & 2.6 & 0.3 & & 125.1 \\
\hline 1992 & 19.6 & 44.2 & 180.6 & 52.1 & 8.4 & 0.7 & 1.0 & 1.6 & 1.3 & 0.2 & & 309.7 \\
\hline 1993 & 5.5 & 8.1 & 69.2 & 371.5 & 78.4 & 10.2 & 1.4 & 0.7 & 0.8 & 1.8 & & 547.7 \\
\hline 1994 & 13.5 & 6.7 & 8.0 & 65.9 & 146.0 & 15.9 & 1.7 & 0.1 & 0.2 & 0.7 & & 258.8 \\
\hline 1995 & 9.9 & 12.7 & 6.5 & 4.0 & 26.8 & 77.6 & 7.3 & 1.0 & 0.1 & 0.5 & & 146.3 \\
\hline 1996 & 5.0 & 3.1 & 5.6 & 3.4 & 7.7 & 62.3 & 56.5 & 4.8 & 0.4 & 0.6 & & 149.3 \\
\hline \(1997{ }^{1}\) & 2.7 & 6.9 & 3.2 & 5.3 & 5.5 & 1.5 & 4.5 & 1.7 & 1.5 & - & & 32.7 \\
\hline 1998 & 10.5 & 2.9 & 17.2 & 6.7 & 7.8 & 0.6 & 0.9 & 2.1 & 0.7 & + & & 49.4 \\
\hline 1999 & 6.9 & 34.9 & 8.8 & 34.0 & 5.3 & 5.6 & 1.2 & 0.3 & 0.9 & 0.3 & & 98.2 \\
\hline 2000 & 18.0 & 25.4 & 37.5 & 9.3 & 13.0 & 3.2 & 1.1 & 0.2 & 0.1 & 0.4 & & 108.3 \\
\hline 2001 & 30.5 & 18.6 & 42.3 & 58.9 & 5.8 & 6.8 & 0.8 & 0.5 & 0.1 & 0.1 & & 164.5 \\
\hline \multirow[t]{2}{*}{2002} & 39.7 & 29.2 & 29.4 & 69.2 & 74.7 & 6.7 & 3.2 & 0.6 & 0.1 & 0.2 & & 252.7 \\
\hline & \multicolumn{7}{|r|}{Division IIa} & & & & & \\
\hline 1983 & 5.4 & 5.5 & 0.1 & 0.2 & 0.3 & 0.1 & & & & & 1.0 & 12.6 \\
\hline 1984 & 4.9 & 14.4 & 5.6 & 0.1 & 0.1 & 0.1 & - & & & & 0.2 & 25.4 \\
\hline 1985 & 3.8 & 7.0 & 11.7 & 4.1 & 0.1 & - & + & - & & & 0.1 & 26.8 \\
\hline 1986 & 0.4 & 0.3 & 3.5 & 10.4 & 2.9 & 0.1 & + & + & - & & - & 17.6 \\
\hline 1987 & - & - & - & - & 0.3 & 0.3 & - & - & - & - & & 0.6 \\
\hline 1988 & 1.0 & 0.1 & - & + & 0.2 & 0.5 & 0.2 & - & - & - & & 2.1 \\
\hline 1989 & 0.1 & 0.7 & 2.7 & + & 0.1 & 0.1 & 0.1 & - & - & - & & 3.8 \\
\hline 1990 & 6.1 & 0.9 & 0.9 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & - & - & & 8.4 \\
\hline 1991 & 5.7 & 3.8 & 0.6 & 0.1 & + & - & - & - & - & - & & 10.2 \\
\hline 1992 & 1.2 & 2.3 & 5.6 & 2.3 & 3.0 & 0.3 & 0.3 & 0.4 & 0.4 & - & & 15.9 \\
\hline 1993 & 1.8 & 1.1 & 1.5 & 4.5 & 2.5 & 0.8 & 0.2 & 0.1 & 0.2 & 0.2 & & 12.8 \\
\hline 1994 & 1.0 & 0.6 & 0.5 & 3.1 & 15.9 & 4.4 & 1.5 & + & 0.1 & 0.1 & & 27.2 \\
\hline 1995 & 5.0 & 8.5 & 6.3 & 5.3 & 6.2 & 23.9 & 4.1 & 0.6 & + & 0.2 & & 60.1 \\
\hline 1996 & 29.2 & 4.1 & 25.0 & 8.1 & 4.9 & 9.1 & 13.4 & 1.3 & 0.4 & 0.1 & & 95.7 \\
\hline 1997 & 1.2 & 2.8 & 0.8 & 1.3 & 0.7 & 0.6 & 0.9 & 0.5 & 0.1 & - & & 8.9 \\
\hline 1998 & 23.2 & 7.8 & 15.5 & 1.1 & 2.4 & 3.2 & 0.5 & 2.8 & 0.8 & 0.1 & & 57.3 \\
\hline 1999 & 34.8 & 34.1 & 4.3 & 16.9 & 3.9 & 6.3 & 1.7 & 0.9 & 1.2 & 0.5 & & 104.6 \\
\hline 2000 & 27.9 & 23.9 & 13.5 & 1.8 & 9.3 & 2.0 & 0.9 & 0.2 & 0.2 & 0.4 & & 80.1 \\
\hline 2001 & 39.0 & 13.5 & 7.6 & 8.4 & 2.2 & 7.9 & 1.4 & 0.3 & 0.1 & 0.4 & & 80.8 \\
\hline \(2002{ }^{2}\) & 61.9 & 16.6 & 5.3 & 10.2 & 29.9 & 6.0 & 3.3 & 0.3 & 0.1 & 0.2 & & 133.7 \\
\hline
\end{tabular}

Table B3. North-East Arctic HADDOCK. Results from the Norwegian acoustic survey in the Barents Sea in January-March. Stock numbers in millions. New TS and rock-hopper gear (1981-1988 backcalculated from bobbins gear). Corrected for length dependent effective spread of the trawl.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{10}{|c|}{Age} & \multirow[b]{2}{*}{Total} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10+ & \\
\hline 1981 & 7 & 14 & 5 & 21 & 60 & 18 & 1 & + & + & + & 126 \\
\hline 1982 & 9 & 2 & 3 & 4 & 4 & 10 & 6 & + & + & + & 38 \\
\hline 1983 & 0 & 5 & 2 & 3 & 1 & 1 & 4 & 2 & + & + & 18 \\
\hline 1984 & 1,685 & 173 & 6 & 2 & 1 & + & + & + & + & + & 1,867 \\
\hline 1985 & 1,530 & 776 & 215 & 5 & + & + & + & + & + & + & 2,526 \\
\hline 1986 & 556 & 266 & 452 & 189 & + & + & + & + & + & + & 1,463 \\
\hline 1987 & 85 & 17 & 49 & 171 & 50 & + & + & + & - & + & 372 \\
\hline 1988 & 18 & 4 & 8 & 23 & 46 & 7 & + & - & - & + & 106 \\
\hline 1989 & 52 & 5 & 6 & 11 & 20 & 21 & 2 & - & - & - & 117 \\
\hline 1990 & 270 & 35 & 3 & 3 & 4 & 7 & 11 & 2 & + & + & 335 \\
\hline 1991 & 1,890 & 252 & 45 & 8 & 3 & 3 & 3 & 6 & + & - & 2,210 \\
\hline 1992 & 1,135 & 868 & 134 & 23 & 2 & + & + & 1 & 2 & + & 2,165 \\
\hline 1993 & 947 & 626 & 563 & 130 & 13 & + & + & + & + & 3 & 2,282 \\
\hline 1994 & 562 & 193 & 255 & 631 & 111 & 12 & + & + & + & + & 1,764 \\
\hline 1995 & 1,379 & 285 & 36 & 111 & 387 & 42 & 2 & + & + & + & 2,242 \\
\hline 1996 & 249 & 229 & 44 & 31 & 76 & 151 & 8 & + & - & + & 788 \\
\hline \(1997{ }^{1}\) & 693 & 24 & 51 & 17 & 12 & 43 & 43 & 2 & + & + & 885 \\
\hline \(1998{ }^{1}\) & 220 & 122 & 20 & 28 & 12 & 5 & 13 & 16 & 1 & + & 437 \\
\hline 1999 & 856 & 46 & 57 & 13 & 14 & 4 & 1 & 2 & 2 & + & 994 \\
\hline 2000 & 1,024 & 509 & 32 & 65 & 19 & 11 & 2 & 1 & 2 & + & 1,664 \\
\hline 2001 & 976 & 316 & 210 & 23 & 22 & 1 & 1 & + & + & 1 & 1,549 \\
\hline 2002 & 2,062 & 282 & 216 & 149 & 14 & 12 & 1 & + & + & 1 & 2,737 \\
\hline 2003 & 2394 & 279 & 145 & 198 & 169 & 17 & 5 & + & \(+\) & 1 & 3208 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Indices adjusted to account for limited area coverage.
Survey area extended from 1993 onwards.
}

Table B4a. North-East Arctic HADDOCK. Results from the Russian trawl-acoustic survey in the Barents Sea and adjacent waters in late autumn 1985-2001 (old method). Index of number of fish at age.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{11}{|c|}{Age} & \multirow[b]{2}{*}{Total} \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10+ & \\
\hline \(1985{ }^{1}\) & 194 & 434 & 1,468 & 636 & 3 & 1 & + & - & - & - & 1 & 2,737 \\
\hline \(1986{ }^{1}\) & 34 & 37 & 208 & 917 & 910 & 2 & + & + & + & - & + & 2,109 \\
\hline \(1987{ }^{2}\) & 6 & 16 & 29 & 62 & 197 & 61 & + & - & - & + & 12 & 383 \\
\hline \(1988{ }^{2}\) & 2 & 1 & 3 & 18 & 83 & 301 & 46 & - & - & - & + & 454 \\
\hline \(1989{ }^{1}\) & 41 & 32 & 94 & 2 & 14 & 35 & 67 & 9 & 1 & + & - & 295 \\
\hline \(1990{ }^{1}\) & 594 & 176 & 75 & 28 & 17 & 23 & 43 & 44 & 4 & 1 & - & 1,004 \\
\hline \(1991{ }^{1}\) & 240 & 368 & 143 & 65 & 11 & 4 & 7 & 21 & 17 & 2 & + & 878 \\
\hline \(1992{ }^{1}\) & 199 & 245 & 758 & 218 & 35 & 3 & 4 & 7 & 6 & + & + & 1,475 \\
\hline \(1993{ }^{1}\) & 20 & 26 & 199 & 1,076 & 228 & 31 & 5 & 2 & 3 & 2 & 3 & 1,595 \\
\hline \(1994{ }^{1}\) & 118 & 51 & 39 & 252 & 591 & 76 & 9 & + & 1 & 1 & 3 & 1,141 \\
\hline \(1995{ }^{1}\) & 38 & 40 & 18 & 18 & 77 & 225 & 23 & 3 & 1 & 1 & + & 443 \\
\hline \(1996{ }^{1,4}\) & 281 & 44 & 148 & 93 & 69 & 280 & 242 & 19 & 3 & 1 & 1 & 1,181 \\
\hline \(1997{ }^{1,4}\) & 70 & 138 & 41 & 207 & 82 & 48 & 41 & 25 & 20 & - & - & 671 \\
\hline \(1998{ }^{3}\) & 107 & 27 & 82 & 22 & 25 & 7 & 3 & 9 & 3 & + & + & 284 \\
\hline \(1999{ }^{1}\) & 222 & 330 & 43 & 129 & 25 & 29 & 7 & 3 & 7 & 2 & + & 798 \\
\hline \(2000^{1}\) & 246 & 292 & 238 & 49 & 86 & 23 & 9 & 2 & 1 & 2 & 2 & 949 \\
\hline \(2001{ }^{1}\) & 256 & 122 & 200 & 229 & 24 & 45 & 7 & 3 & 1 & 2 & + & 888 \\
\hline 2002 \({ }^{1,5}\) & 462 & 166 & 127 & 263 & 267 & 31 & 20 & 3 & 1 & 1 & 1 & 1340 \\
\hline
\end{tabular}
\({ }^{1}\) October-December
\({ }^{2}\) September-October
\({ }^{3}\) November-January
\({ }^{4}\) Adjusted data based on average 1985-1995 distribution
\({ }^{5}\) Adjusted data based on 2001 distribution

Table B4b. North-East Arctic HADDOCK. Results from the Russian trawl-acoustic survey in the Barents Sea and adjacent waters in late autumn 1996-2001 (new method). Index of number of fish at age.
\begin{tabular}{crrrrrrrrrrrrr}
\hline & \multicolumn{11}{c}{ Age } & \\
\cline { 2 - 14 } & Year & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \(10+\) & Total \\
\hline \(1996^{1,3}\) & 992 & 245 & 291 & 91 & 63 & 206 & 187 & 17 & 1 & + & + & 2,092 \\
\(1997^{1,3}\) & 185 & 104 & 21 & 121 & 94 & 48 & 47 & 31 & 20 & + & + & 671 \\
\(1998^{2}\) & 257 & 44 & 83 & 20 & 20 & 6 & 2 & 7 & 2 & + & + & 442 \\
\(1999^{1}\) & 632 & 499 & 60 & 123 & 14 & 16 & 4 & 1 & 4 & 1 & + & 1,355 \\
\(2000^{1}\) & 524 & 395 & 287 & 54 & 57 & 14 & 6 & 1 & 1 & 2 & + & 1,340 \\
\(2001^{1}\) & 491 & 160 & 227 & 221 & 19 & 35 & 5 & 2 & 1 & 1 & 1 & 1,163 \\
\(2002^{1,4}\) & 1062 & 204 & 140 & 268 & 237 & 26 & 15 & 2 & 1 & + & 1 & 1955 \\
\hline
\end{tabular}
\({ }^{1}\) October-December
\({ }^{2}\) November-January
\({ }^{3}\) Adjusted data based on average 1985-1995 distribution
\({ }^{4}\) Adjusted data based on 2001 distribution

Table B5 North-East Arctic HADDOCK. Length data (cm) from Norwegian surveys in January-March and Russian surveys in November-December.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Norway} & Year & \multicolumn{10}{|c|}{Age} \\
\hline & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & & & \\
\hline & 1983 & 16.8 & 25.2 & 34.9 & 44.7 & 52.5 & 58.0 & 62.4 & & & \\
\hline & 1984 & 16.6 & 27.5 & 32.7 & - & 56.6 & 62.4 & 61.8 & & & \\
\hline & 1985 & 15.7 & 23.9 & 35.6 & 41.9 & 58.5 & 61.9 & 63.9 & & & \\
\hline & 1986 & 15.1 & 22.4 & 31.5 & 43.0 & 54.6 & - & - & & & \\
\hline & 1987 & 15.4 & 22.4 & 29.2 & 37.3 & 46.5 & - & - & & & \\
\hline & 1988 & 13.5 & 24.0 & 28.7 & 34.7 & 41.5 & 47.9 & 54.6 & & & \\
\hline & 1989 & 16.0 & 23.2 & 31.1 & 36.5 & 41.7 & 46.4 & 52.9 & & & \\
\hline & 1990 & 15.7 & 24.7 & 32.7 & 43.4 & 46.1 & 50.1 & 52.4 & & & \\
\hline & 1991 & 16.8 & 24.0 & 35.7 & 44.4 & 52.4 & 54.8 & 55.6 & & & \\
\hline & 1992 & 15.1 & 23.9 & 33.9 & 45.5 & 53.1 & 59.2 & 60.6 & & & \\
\hline & 1993 & 14.5 & 21.4 & 31.8 & 42.4 & 50.6 & 56.1 & 59.4 & & & \\
\hline & 1994 & 14.7 & 21.0 & 29.7 & 38.5 & 47.8 & 54.2 & 56.9 & & & \\
\hline & 1995 & 15.4 & 20.1 & 28.7 & 34.2 & 42.8 & 51.2 & 55.8 & & & \\
\hline & 1996 & 15.4 & 21.6 & 28.6 & 37.8 & 42.0 & 46.7 & 55.3 & & & \\
\hline & 1997 & 16.1 & 27.7 & 27.7 & 35.4 & 39.7 & 47.5 & 50.1 & & & \\
\hline & 1998 & 14.4 & 29.2 & 29.2 & 35.8 & 41.3 & 48.4 & 50.9 & & & \\
\hline & 1999 & 14.7 & 20.8 & 32.3 & 39.4 & 45.5 & 52.3 & 54.6 & & & \\
\hline & 2000 & 15.8 & 22.5 & 30.3 & 41.6 & 47.7 & 50.8 & 51.1 & & & \\
\hline & 2001 & 22.2 & 22.2 & 32.2 & 37.8 & 47.2 & 51.2 & 58.7 & & & \\
\hline & 2002 & 21.1 & 21.1 & 29.6 & 40.2 & 44.2 & 50.9 & 58.4 & & & \\
\hline & 2003 & 16.5 & 24.1 & 28 & 37.2 & 46.5 & 49.6 & 54.7 & & & \\
\hline Russia & & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline & 1984 & - & 24.1 & 35.8 & 44.4 & 56.4 & 62.8 & 64.8 & - & - & - \\
\hline & 1985 & 16.5 & 22.4 & 30.9 & 44.1 & 53.8 & 61.3 & 64.7 & - & - & - \\
\hline & 1986 & 17.0 & 20.7 & 28.1 & 35.4 & 46.7 & 62.0 & - & 68.0 & - & - \\
\hline & 1987 & 12.1 & 21.5 & 27.8 & 32.3 & 37.3 & 48.6 & - & - & - & - \\
\hline & 1988 & 13.7 & 23.2 & 29.7 & 33.7 & 39.3 & 46.2 & 51.2 & - & - & - \\
\hline & 1989 & 14.9 & 22.2 & 26.5 & 38.5 & 44.5 & 49.3 & 53.0 & 57.7 & 64.1 & - \\
\hline & 1990 & 17.0 & 24.5 & 30.9 & 40.4 & 50.6 & 53.2 & 55.7 & 59.7 & 63.8 & 67.7 \\
\hline & 1991 & 17.2 & 24.2 & 30.5 & 39.7 & 53.4 & 55.4 & 58.3 & 60.5 & 62.7 & 70.2 \\
\hline & 1992 & 16.0 & 22.8 & 31.1 & 44.6 & 53.8 & 63.8 & 61.2 & 66.4 & 69.0 & 69.6 \\
\hline & 1993 & 15.3 & 21.7 & 28.7 & 38.3 & 48.3 & 54.3 & 60.9 & 64.2 & 63.2 & 65.0 \\
\hline & 1994 & 15.7 & 22.5 & 28.1 & 33.0 & 44.1 & 54.9 & 61.5 & 67.5 & 67.7 & 67.8 \\
\hline & 1995 & 15.5 & 22.5 & 28.5 & 33.3 & 39.7 & 49.9 & 58.2 & 63.1 & 66.3 & 69.5 \\
\hline & \(1996{ }^{2}\) & 15.8 & 22.8 & 28.4 & 33.7 & 42.0 & 48.7 & 54.8 & 63.4 & 69.3 & 72.0 \\
\hline & \(1997{ }^{2}\) & 13.8 & 23.5 & 29.3 & 36.1 & 45.3 & 50.0 & 54.6 & 58.9 & 69.4 & 66.0 \\
\hline & 1998 & 15.0 & 22.0 & 29.0 & 38.3 & 47.7 & 52.1 & 54.5 & 57.8 & 63.4 & - \\
\hline & 1999 & - & 22.8 & 27.4 & 40.1 & 47.4 & 50.9 & 54.6 & 55.9 & 58.0 & 61.6 \\
\hline & 2000 & 15.0 & 22.7 & 30.4 & 35.2 & 49.3 & 55.1 & 57.8 & 62.4 & 63.3 & 63.6 \\
\hline & 2001 & 15.1 & 22.4 & 29.8 & 37.8 & 48 & 55.3 & 58.8 & 62.1 & 63.6 & 65.4 \\
\hline & 2002 & 14.6 & 23.8 & 30.1 & 35.6 & 48.2 & 55.1 & 60.2 & 60.5 & 63.3 & 66.8 \\
\hline
\end{tabular}
\({ }^{1}\) Lengths adjusted to account for limited area coverage.
\({ }^{2}\) Limited area coverage.

Table B6 North-East Arctic HADDOCK. Weight data (g) from Norwegian surveys in January-March and Russian surveys in November-December.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Year & \multicolumn{11}{|c|}{Age} \\
\hline Norway & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & & & & \\
\hline & 1983 & 52 & 133 & 480 & 1,043 & 1,641 & 2,081 & 2,592 & & & & \\
\hline & 1984 & 36 & 196 & 289 & 964 & 1,810 & 2,506 & 2,240 & & & & \\
\hline & 1985 & 35 & 138 & 432 & 731 & 1,970 & 2,517 & - & & & & \\
\hline & 1986 & 47 & 100 & 310 & 734 & - & - & - & & & & \\
\hline & 1987 & 24 & 91 & 273 & 542 & 934 & - & - & & & & \\
\hline & 1988 & 23 & 139 & 232 & 442 & 743 & 1,193 & 1,569 & & & & \\
\hline & 1989 & 43 & 125 & 309 & 484 & 731 & 1,012 & 1,399 & & & & \\
\hline & 1990 & 34 & 148 & 346 & 854 & 986 & 1,295 & 1,526 & & & & \\
\hline & 1991 & 41 & 138 & 457 & 880 & 1,539 & 1,726 & 1,808 & & & & \\
\hline & 1992 & 32 & 136 & 392 & 949 & 1,467 & 2,060 & 2,274 & & & & \\
\hline & 1993 & 26 & 93 & 317 & 766 & 1,318 & 1,805 & 2,166 & & & & \\
\hline & 1994 & 25 & 86 & 250 & 545 & 1,041 & 1,569 & 1,784 & & & & \\
\hline & 1995 & 30 & 71 & 224 & 386 & 765 & 1,286 & 1,644 & & & & \\
\hline & 1996 & 30 & 93 & 220 & 551 & 741 & 1,016 & 1,782 & & & & \\
\hline & 1997 & 35 & 88 & 200 & 429 & 625 & 1,063 & 1,286 & & & & \\
\hline & 1998 & 25 & 112 & 241 & 470 & 746 & 1,169 & 1,341 & & & & \\
\hline & 1999 & 27 & 85 & 333 & 614 & 947 & 1,494 & 1,616 & & & & \\
\hline & 2000 & 32 & 108 & 269 & 720 & 1,068 & 1,341 & 1,430 & & & & \\
\hline & 2001 & 28 & 106 & 337 & 556 & 1,100 & 1,429 & 2,085 & & & & \\
\hline & 2002 & 30 & 84 & 144 & 623 & 848 & 1,341 & 2,032 & & & & \\
\hline & 2003 & 38 & 127 & 202 & 493 & 981 & 1189 & 1613 & & & & \\
\hline Russia & & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline & 1984 & 36 & 127 & 438 & 815 & 1,777 & 2,395 & 2,688 & - & - & - & - \\
\hline & 1985 & 37 & 105 & 282 & 817 & 1,530 & 2,262 & 2,263 & - & - & - & - \\
\hline & 1986 & 38 & 88 & 209 & 419 & 919 & 2,240 & - & 3,100 & - & - & - \\
\hline & 1987 & - & 95 & 196 & 330 & 497 & 1,055 & - & - & - & - & - \\
\hline & 1988 & 35 & 106 & 248 & 398 & 627 & 997 & 1,431 & - & - & - & - \\
\hline & 1989 & 52 & 105 & 181 & 606 & 903 & 1,287 & 1,587 & 2,004 & 2,716 & - & - \\
\hline & 1990 & 62 & 143 & 288 & 667 & 1,337 & 1,533 & 1,778 & 2,233 & 2,731 & 3,092 & - \\
\hline & 1991 & 57 & 133 & 292 & 690 & 1,570 & 1,863 & 2,206 & 2,320 & 2,568 & 3,525 & - \\
\hline & 1992 & 40 & 108 & 279 & 850 & 1,542 & 2,199 & 2,363 & 3,045 & 3,391 & 3,400 & 4,200 \\
\hline & 1993 & 31 & 96 & 217 & 535 & 1,077 & 1,493 & 2,094 & 2,509 & 2,374 & 2,621 & 3,160 \\
\hline & 1994 & 27 & 106 & 205 & 337 & 841 & 1,602 & 2,256 & 2,913 & 2,934 & 3,033 & 3,163 \\
\hline & 1995 & 28 & 95 & 196 & 345 & 628 & 1,234 & 1,908 & 2,430 & 2,815 & 3,323 & 3,479 \\
\hline & \(1996{ }^{2}\) & 30 & 103 & 209 & 347 & 743 & 1,152 & 1,650 & 2,442 & 3,218 & 3,333 & 4,648 \\
\hline & \(1997{ }^{2}\) & 22 & 115 & 227 & 447 & 911 & 1,216 & 1,583 & 1,966 & 3,155 & 2,815 & , \\
\hline & 1998 & 27 & 94 & 230 & 569 & 1,087 & 1,482 & 1,690 & 1,914 & 2,539 & - & - \\
\hline & 1999 & - & 104 & 191 & 648 & 1,049 & 1,251 & 1,544 & 1,608 & 1,814 & 2,210 & 2,978 \\
\hline & 2000 & 29 & 110 & 278 & 427 & 1,249 & 1,681 & 1,966 & 2,488 & 2,625 & 2,648 & - \\
\hline & 2001 & 26 & 102 & 244 & 533 & 1,097 & 1,695 & 2,065 & 2,469 & 2,704 & 2,867 & - \\
\hline & 2002 & 25 & 127 & 280 & 457 & 1166 & 1690 & 2293 & 2484 & 2784 & 2962 & 4655 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Lengths adjusted to account for limited area coverage.
\({ }^{2}\) Limited area coverage.
}

\subsection*{5.1 Status of the Fishery}

\subsection*{5.1.1 Landings prior to 2003 (Tables 5.1-5.2, Figure 5.6)}

Landings of saithe were highest in 1970-1976 with an average of \(238,000 \mathrm{t}\) and a maximum of \(265,000 \mathrm{t}\) in 1970 . This period was followed by a sharp decline to a level of about \(160,000 \mathrm{t}\) in the years 1978-1984. Another decline followed and from 1985 to 1991 the landings ranged from 70,000-122,000 t (Table 5.1). An increasing trend was seen after 1990 to \(171,498 \mathrm{t}\) in 1996. Since then the annual landings have been between 134,000 and \(154,000 \mathrm{t}\).

The TAC for 2002 was initially set at 152,000 t. Based on last year's assessment results Norwegian authorities increased the TAC for 2002 by 10,000 tonnes. Provisional figures show that the landings in 2002 were approximately \(154,000 \mathrm{t}\), which is also the level expected by the WG last year.

\subsection*{5.1.2 Expected landings in 2003}

Last year ACFM advised that the fishing mortality should be below \(\mathbf{F}_{\mathrm{pa}}\), corresponding to catch in 2003 of less than \(168,000 \mathrm{t}\). Due to the increased TAC for 2002 Norwegian authorities set the TAC for 2003 to \(164,000 \mathrm{t}\). Official landings in 2003 are expected to be around the TAC of \(164,000 \mathrm{t}\), not accounting for problems with by-catch and discards of saithe in the cod fishery.

\subsection*{5.2 Status of Research}

\subsection*{5.2.1 Fishing Effort and Catch-per-unit-effort (Tables C1-C2)}

Until 1992, all Norwegian trawl CPUE observations were first averaged for each month and then averaged over the year to calculate a yearly index. The CPUE indices were split on age groups by quarterly weight, length and age data from the trawl fishery. In the present analysis, all CPUE observations were first averaged for each quarter, and then averaged over the year to calculate a yearly index. The CPUE indices are finally split on age groups by yearly catch in numbers and weight-at-age data from the trawl fishery. The new approach is less influenced by short periods with poor data but still smooths out seasonal variations.

In 1992, the Directorate of Fishery changed the format of the logbook data. The trawl CPUE analyses show some discrepancies in the results when merging the time-series based on old and new data format. All data have been revised and updated to the latest format and the CPUE have been recalculated backwards to 1980, (Mehl and Fotland, WD 15). Updated 2002 XSA-analysis resulted in relatively small changes (F3-6 in 2001 of 0.24 compared to 0.22).

\subsection*{5.2.2 Survey results (Tables C3-C4)}

The results from the survey in autumn 2002 showed a stock in sound condition with some year class differences, e.g., fewer 3-, 5- and 6+ year old fish than 2001 (Korsbrekke and Mehl, WD 20).

\subsection*{5.3 Data used in the Assessment}

\subsection*{5.3.1 Catch numbers-at-age (Table 5.3)}

The age composition of Norwegian landings in 2001 was revised, resulting in only minor changes in the catch numbers-at-age. Age composition data for 2002 was available from Norway, Russia (Subarea I and Division IIA) and Germany (Division IIA). These countries accounted for \(98 \%\) of the landings. Russian length compositions were available for Division IIB, and were applied on the Russian landings together with an age-length-key from the Norwegian trawl landings. Other countries were assumed to have the same age composition as Norwegian trawlers.

\subsection*{5.3.2 Weight-at-age (Table 5.4)}

Constant weight-at-age values were used for the period 1960-1979. For subsequent years, annual estimates of weight-atage in the catches were used. Weight-at-age in the stock was assumed to be the same as weight-at-age in the catch. An increase in individual weights is observed for age groups 7-9, while a slight decrease is observed for the younger compared with recent previous years.

\subsection*{5.3.3 Natural mortality}

A fixed natural mortality of 0.2 was used both in the assessment and the forecast.

\subsection*{5.3.4 Maturity-at-age (Table 5.14)}

The same ogive was used for all years.

\subsection*{5.3.5 Tuning data (Table 5.5)}

The tuning is based on three data series: indices from the Norwegian acoustic survey on saithe, data from the purse seine fishery and a CPUE series from the trawl fisheries (see chapter 5.2.1). The time span in the Norwegian acoustic survey series included data from 1992 - 2002 only because area coverage was extended from 1992 and onwards. Age 2 data were not included from this series in the current assessment. The CPUE series from the Norwegian trawl fishery, used in WG 2002, was revised and used in the current assessment.

\subsection*{5.3.6 Recruitment indices}

Reliable recruitment indices are crucial for the predictions. Attempts at establishing year class strength at age 0 or 1 have so far failed. An observer program aimed at establishing a 0 -group index series has started (2000) (Borge and Mehl, WD 21 2002). The accuracy of the recruitment indices varies from year to year according to the extent to which 2 year old saithe (and in some years even 3 year olds) have migrated out from the near coast areas and become available to the acoustic saithe survey on the banks.

\subsection*{5.3.7 Prediction data (Table 5.14)}

The input data to the predictions based on results from the XSA-analysis are given in Table 5.14. The stock number-atage in 2003 was taken from the XSA for age 5 and older. The recruitment at ages 2 and 3 in 2002 (1999 and 2000 year classes) was estimated using RCT3 (Section 5.5.2). The corresponding numbers-at-age 3 and 4 in 2003 was calculated applying a natural mortality of 0.2 and fishing mortalities according to the catches taken of these year classes. The longterm geometric mean recruitment (1960-1998) of 211 million was used for the 2001 and subsequent year classes. The natural mortality and the maturity ogive are the same as were used in the assessment. For the exploitation pattern the average of 2000-2002 has been used, scaled to the 2002 level. For ages 3 to 9 the changes in exploitation pattern in 2002 have increased compared to the most recent years. For weight-at-age in the catch and stock, the average weight-atage for the last three years in the VPA has been used.

\subsection*{5.4 Methods used in the Assessment}

\subsection*{5.4.1 XSA and tuning (Table 5.6, Figures 5.2A-C, 5.3)}

Extended Survivors Analysis (XSA) was used for the assessment with the same settings as the last year in the analyses and the revised tuning fleets as described above. Figures 5.2A-C show plots of the tuning indices versus stock numbers from the XSA, and Figure 5.3 shows how the three tuning fleets separately assess the stock. The tuning fleet diagnostics are given in Table 5.6.

\subsection*{5.4.2 Recruitment (Tables 5.12-5.13, C. 3 and 5.3, Figures 5.2A-C)}

Estimates of the recruiting year classes up to the 1998 year class from the XSA were accepted. Catches of age group 2 have declined to very low levels in recent years except for an increase in 2000, probably due to a strong 1998 year class (Tables 5.3, Table C3). RCT3-runs were therefore conducted to estimate both the 1999- and 2000- year classes, with 2 and 3 year olds from the survey as input for the estimation.

\subsection*{5.5 Results of the Assessment}

\subsection*{5.5.1 Fishing mortalities and VPA (Tables 5.7-5.11, Figures 5.1, 5.5,5.6)}

The fishing mortality \(\left(\mathrm{F}_{3-6}\right)\) in 2001 was 0.19 which is below the value of 0.21 from last year's assessment (Figure 5.1). Using the RCT3 estimation of the 1999 year class gives a fishing mortality \(\left(\mathrm{F}_{3-6}\right)\) in 2002 of 0.22 , i.e lower than current \(\mathbf{F}_{\mathrm{pa}}\). Fishing mortalities and stock size tend to be over- and underestimated, respectively, in the assessment year as is
illustrated by the retrospective plots in Figure 5.5. The retrospective analysis carried out fleet by fleet all show the same trend (Mehl and Fotland,WD 15).

The XSA-estimates of the 1999-2000 year classes are not considered to be valid and these estimates are therefore put in brackets (Tables 5.8-5.9). In Table 5.11 the long-term average recruitment and recalculated total biomass are presented. The 1992 and 1996 year classes have been well represented in the catches over several years. These year classes appeared to be above average in the current assessment. The 1997 year class has shown up as being weaker than the 1996 year class both in the catches and in the assessment.

The total biomass (ages 2+) has been at a stable and high level above the long-term (1960-2001) mean since 1993. Likewise, the SSB has been above the long-term mean since 1996 (Tables 5.9-5.11).

\subsection*{5.5.2 Recruitment (Tables 5.12-5.13)}

The RCT3 estimate (with 2 year olds as input, Table 5.12) of the 2000 year class is 192 million individuals, while the RCT3 estimate (with 3 year olds as input and back calculating the strength as 2 year olds, Table 5.13) of the 1999 year class gives 244 million individuals. Thus, the 1999-year class is estimated to be of similar strength as the 1997-year class at age 2, while the 2000-year class is estimated to be somewhat weaker and below the long-term mean. It was decided to use the RCT3 estimates for ages 2 and 3 in 2002, and the long-term geometric mean of 211 million individuals for the 2001 and subsequent year classes in the predictions.

\subsection*{5.6 Reference points}

\subsection*{5.6.1 Biomass reference points}

In 1995 MBAL for Northeast Arctic saithe was set at 170,000 t. (ICES 1996/Assess:4). This was also proposed as a suitable level for \(\mathbf{B}_{\mathrm{pa}}\) by The Study Group on the Precautionary Approach to Fisheries Management (SGPAFM, ICES 1998/ACFM:10). Based on a examination of the stock-recruitment plot ACFM reduced the \(\mathbf{B}_{\mathrm{pa}}\) to \(150,000 \mathrm{t}\) (ICES 1998).

\subsection*{5.6.2 Fishing mortality reference points (Tables 5.14, 5.15, Figures 5.1A, 5.4)}

Yield and SSB per recruit were based on the parameters in Table 5.14 and are presented in Table 5.15. \(\mathbf{F}_{0.1}\) and \(\mathbf{F}_{\max }\) were estimated to be 0.11 and 0.24 , respectively, which is as obtained last year. The plot of SSB versus recruitment is shown in Figure 5.5. The values of \(\mathbf{F}_{\text {low }}, \mathbf{F}_{\text {med }}\) and \(\mathbf{F}_{\text {high }}\) obtained in 1999 were 0.18, 0.34 and 0.70, respectively, while the values that were recalculated by WG 2002 were \(0.1113,0.3438\) and 0.6945 , respectively. ACFM estimated \(\mathbf{F}_{\mathrm{pa}}\) using the formula \(\mathbf{F}_{\mathrm{pa}}=\mathbf{F}_{\text {lim }} \cdot \mathrm{e}^{-1.645 \sigma}\) with \(\sigma=0.3\) giving a \(\mathbf{F}_{\mathrm{pa}}=0.26\) based on an estimated \(\mathbf{F}_{\text {lim }}=0.45\) (ICES 1998). Since then the fishing pattern has changed due to the introduction of new minimum catch sizes effective 1 March 1999. A revision of the present fishing mortality reference points will be conducted if and when the new regulation has manifested itself in a stable and improved fishing pattern.

\subsection*{5.7 Catch options for 2004 (short-term predictions) (Table 5.16)}

The management option table (Table 5.16) shows that the expected catch of \(164,000 \mathrm{t}\) in 2003 will keep the fishing mortality below \(\mathbf{F}_{\mathrm{pa}}\). A catch in 2004 corresponding to \(\mathrm{F}_{01}\) (status quo) level of 0.22 will give \(159,000 \mathrm{t}\), while a catch corresponding to \(\mathbf{F}_{\mathrm{pa}}\), which is also close to \(\mathbf{F}_{\text {max }}\), in 2003 , will give \(183,000 \mathrm{t}\). It should be kept in mind when deciding upon catch level for 2004 that the fishing mortality in the assessment year still tends to be overestimated for this stock. The SSB is expected to increase to \(438,000 \mathrm{t}\) in the beginning of 2004 which is above the prediction made by last year's working group. The 1996 year class is now fully represented in the spawning stock and this can explain much of the increase in SSB.

\subsection*{5.8 Medium-term forecasts and management scenarios (Table 5.17A,B, Figures 5.1B, 5.4A,B)}

The input data were the same as used for the short-term predictions (Table 5.14). At \(\mathrm{F}_{\text {status quo }}\) the catch will decrease to \(159,000 \mathrm{t}\) in 2006-2007. Assuming the F(status quo) fishing mortality for this period the SSB will stay at a stable level of about 430.000-438,000 t . At \(\mathbf{F}_{\mathrm{pa}}\) the catch will increase to \(183,000 \mathrm{t}\) in 2004, and stay above \(160,000 \mathrm{t}\) during the forecast period. At the same fishing mortality the SSB will increase to about \(438,000 \mathrm{t}\) in 2004 and decrease to 385,000 in the years 2006-2007. Results from a projection using RISK is shown for \(\mathbf{F}_{\mathrm{pa}}\) for SSB and catch as for \(\mathbf{F}_{\mathrm{sq}}\) for SSB and catch up to 2007 (Figure 5.4).

The current assessment estimated the total stock and SSB for 2002 to be about \(13 \%\) higher than in the previous assessment while the F in 2001 is estimated to be marginally lower.
\begin{tabular}{|l|l|l|l|l|}
\hline & \begin{tabular}{l}
Total stock (2+) by \\
1 January 2002
\end{tabular} & \begin{tabular}{l}
SSB by 1 January \\
2002
\end{tabular} & F3-6 in 2002 & F3-6 in 2001 \\
\hline WG 2002 & 798380 & 388289 & 0.22 (prediction) & 0.21 \\
\hline WG 2003 & 908668 & 447221 & 0.22 & 0.20 \\
\hline
\end{tabular}

\subsection*{5.10 Comments on the assessment and the forecast}

The AFWG WG should further investigate the data from purse seine tuning series to clarify the use of this tuning fleet series in the assessment. Trial XSA-runs using only the fishery independent acoustic survey series gave positive \(\log \mathrm{q}\) residuals. Relying only on the acoustic series therefore tends to give the highest stock. In general, the working group tends to put greater reliance in the survey, especially for ages 4 and 5 , compared with purse seine commercial CPUEs. The applicability of only using the survey or together with the trawl series should therefore be further investigated.

In order to enhance the reliability of the assessment, the area of saithe distribution should be covered by the acoustic surveys as completely as possible. This coverage would include the Russian EEZ where much of the saithe are distributed (Drevetnyak, WD 16). Standardization of trawling performance, acoustic methods, scrutinizing data and estimation methods needs to be undertaken before different surveys can be combined.

The new increased minimum landing size together with growing interest to fish bigger saithe will probably improve the exploitation patterns further. Current fishing mortality reference points should be updated accordingly when an improved exploitation pattern are realised, and the retrospective assessment trend can be dealt with in the new estimation framework.

Prediction of growth has been a small problem in some periods, especially for abundant year classes. In the last years, however, the prediction of the weight-at-age the next year has been close to the actual weights used in the following years' assessments. Difficulty in estimating initial stock size due to the widely divergent indices of abundance used in the tuning of the XSA is, in addition to recruitment, at present the major problem in the forecast. This may also be the cause for underestimating the stock size in the assessment year Prediction of catches beyond the TAC year will, to a large extent, be dependent on assumptions of average recruitment.

Table 5.1
Northeast Arctic saithe. Nominal catch (t) by countries as officially reported to ICES. (Sub-area I and Divisions Ila and llb combined.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Faroe Islands & France & Germany Dem.Rep & Fed.Rep. Germany & Norway & Poland & Portugal & Russia \({ }^{3}\) & Spain & \begin{tabular}{l}
UK \\
(England \& Wales)
\end{tabular} & UK (Scotland) & Others \({ }^{5}\) & Total all countries \\
\hline 1960 & 23 & 1,700 & - & 25,948 & 96,050 & - & - & - & - & 9,780 & - & 14 & 133,515 \\
\hline 1961 & 61 & 3,625 & - & 19,757 & 77,875 & - & - & - & - & 4,595 & 20 & 18 & 105,951 \\
\hline 1962 & 2 & 544 & - & 12,651 & 101,895 & - & - & 912 & - & 4,699 & & 4 & 120,707 \\
\hline 1963 & & 1,110 & - & 8,108 & 135,297 & - & - & - & - & 4,112 & - & - & 148,627 \\
\hline 1964 & - & 1,525 & - & 4,420 & 184,700 & - & - & 84 & - & 6,511 & - & 186 & 197,426 \\
\hline 1965 & - & 1,618 & - & 11,387 & 165,531 & - & - & 137 & - & 6,741 & 5 & 181 & 185,600 \\
\hline 1966 & - & 2,987 & 813 & 11,269 & 175,037 & - & - & 563 & - & 13,078 & - & 41 & 203,788 \\
\hline 1967 & - & 9,472 & 304 & 11,822 & 150,860 & - & - & 441 & - & 8,379 & - & 48 & 181,326 \\
\hline 1968 & - & & 70 & 4,753 & 96,641 & - & - & , & - & 8,781 & 2 & - & 110,247 \\
\hline 1969 & 20 & 193 & 6,744 & 4,355 & 115,140 & - & - & - & - & 13,585 & & 23 & 140,060 \\
\hline 1970 & 1,097 & & 29,362 & 23,466 & 151,759 & - & - & 43,550 & - & 15,469 & 221 & & 264,924 \\
\hline 1971 & 215 & 14,536 & 16,840 & 12,204 & 128,499 & 6,017 & - & 39,397 & 13,097 & 10,361 & 106 & - & 241,272 \\
\hline 1972 & 109 & 14,519 & 7,474 & 24,595 & 143,775 & 1,111 & - & 1,278 & 13,125 & 8,223 & 125 & - & 214,334 \\
\hline 1973 & 7 & 11,320 & 12,015 & 30,338 & 148,789 & 23 & - & 2,411 & 2,115 & 6,593 & 248 & - & 213,859 \\
\hline 1974 & 46 & 7,119 & 29,466 & 33,155 & 152,699 & 2,521 & - & 38,931 & 7,075 & 3,001 & 103 & 5 & 274,121 \\
\hline 1975 & 28 & 3,156 & 28,517 & 41,260 & 122,598 & 3,860 & 6,430 & 13,389 & 11,397 & 2,623 & 140 & 55 & 233,453 \\
\hline 1976 & 20 & 5,609 & 10,266 & 49,056 & 131,675 & 3,164 & 7,233 & 9,013 & 21,661 & 4,651 & 73 & 47 & 242,468 \\
\hline 1977 & 270 & 5,658 & 7,164 & 19,985 & 139,705 & 1 & 783 & 989 & 1,327 & 6,853 & 82 & - & 182,817 \\
\hline 1978 & 809 & 4,345 & 6,484 & 18,190 & 121,069 & 35 & 203 & 381 & 121 & 2,790 & 37 & - & 154,464 \\
\hline 1979 & 1,117 & 2,601 & 2,435 & 14,823 & 141,346 & - & - & 3 & 685 & 1,170 & - & - & 164,180 \\
\hline 1980 & 532 & 1,016 & 2, & 12,511 & 128,878 & - & - & 43 & 780 & 794 & - & - & 144,554 \\
\hline 1981 & 236 & 194 & - & 8,431 & 166,139 & - & - & 121 & - & 395 & - & - & 175,516 \\
\hline 1982 & 339 & 82 & - & 7,224 & 159,643 & - & - & 14 & - & 731 & 1 & - & 168,034 \\
\hline 1983 & 539 & 418 & - & 4,933 & 149,556 & - & - & 206 & 33 & 1,251 & - & - & 156,936 \\
\hline 1984 & 503 & 431 & 6 & 4,532 & 152,818 & - & - & 161 & - & 335 & - & - & 158,786 \\
\hline 1985 & 490 & 657 & 11 & 1,873 & 103,899 & - & - & 51 & - & 202 & - & - & 107,183 \\
\hline 1986 & 426 & 308 & - & 3,470 & 66,152 & - & - & 27 & - & 54 & 21 & - & 70,458 \\
\hline 1987 & 712 & 576 & - & 4,909 & 85,710 & - & - & 426 & - & 54 & 3 & 1 & 92,391 \\
\hline 1988 & 441 & 411 & - & 4,574 & 108,244 & - & - & 130 & - & 436 & 6 & - & 114,242 \\
\hline 1989 & 388 & \(460{ }^{2}\) & - & 606 & 119,625 & - & - & 23 & 506 & - & 702 & - & 122,310 \\
\hline 1990 & 1,207 & \(340{ }^{2}\) & - & 1,143 & 92,397 & - & - & 52 & & 681 & 28 & - & 95,848 \\
\hline 1991 & 963 & \(77^{2}\) & Greenland & 2,003 & 103,283 & - & - & \(504{ }^{4}\) & - & 449 & 42 & 5 & 107,326 \\
\hline 1992 & 165 & 1,890 \({ }^{2}\) & 734 & 3,451 & 119,765 & - & - & 964 & 6 & 516 & 25 & - & 127,516 \\
\hline 1993 & 31 & \(566^{2}\) & 78 & 3,687 & 139,288 & - & 1 & 9,509 & 4 & 408 & 7 & 5 & 153,584 \\
\hline 1994 & 67 & \(151{ }^{2}\) & 15 & 1,863 & 141,589 & - & 1 & 1,640 & 655 & 548 & 9 & 6 & 146,544 \\
\hline 1995 & \(172{ }^{2}\) & \(222{ }^{2}\) & 53 & 872 & 165,001 & - & 4 & 1,144 & - & 589 & 99 & 18 & 168,174 \\
\hline 1996 & \(248{ }^{2}\) & \(365{ }^{2}\) & \(176{ }^{2}\) & 2,615 & 166,149 & - & 24 & 1,159 & \(9^{2}\) & \(690{ }^{2}\) & 16 & \(47^{2}\) & 171,498 \\
\hline 1997 & \(193{ }^{2}\) & 560 & \(363{ }^{2}\) & 2,915 & 137,054 & - & 12 & 1,774 & & 676 & 123 & 45 & 143,760 \\
\hline 1998 & \(366{ }^{2}\) & 932 & \(437{ }^{2}\) & 2,936 & 144,468 & - & \(49^{2}\) & 3,836 & \(407{ }^{2}\) & 355 & & \(36^{2}\) & 153,822 \\
\hline 1999 & \(181{ }^{2}\) & 2 \(638{ }^{2}\) & \(655{ }^{2}\) & 2,473 & 141,828 & - & \(18{ }^{2}\) & 3,929 & \(35^{2}\) & 339 & & \(178{ }^{2}\) & 150,274 \\
\hline 2000 & \(224{ }^{2}\) & \(237{ }^{2}\) & \(651{ }^{2}\) & 2,573 & 126,336 & - & 46 & 4,452 & \(167{ }^{2}\) & 443 & & \(41^{2}\) & 135,170 \\
\hline 2001 & 519 & 1279 & 701 & 2,690 & 125,495 & - & 75 & 4,951 & 119 & 352 & 162 & 59 & 136,402 \\
\hline \(2002{ }^{1}\) & 520 \({ }^{2}\) & \(972{ }^{1}\) & \(823{ }^{2}\) & 2,642 & \({ }^{6} \quad 143,941\) & - & 122 & 5,081 & \(38^{2}\) & 420 & & \(72^{1}\) & 154,631 \\
\hline
\end{tabular}

\footnotetext{
Provisional figures
\({ }^{2}\) As reported to Norwegian authorities.
3 USSR prior to 1991.
\({ }^{4}\) Includes Estonia.
Includes Denmark, Netherlands, Iceland, Ireland and Sweden
\({ }^{6}\) As reported by Working Group members
}

Table 5.2 Northeast Arctic saithe. Landings ('000 tonnes) by gear category for Sub-area I, Division Ila and Division IIb combined.
\begin{tabular}{crrrrr}
\hline Year & Purse Seine & Trawl & Gill Net & Others & \multicolumn{1}{c}{ Total } \\
\hline 1977 & 75.2 & 69.5 & 19.3 & 12.7 & \(176.7^{2}\) \\
1978 & 62.9 & 57.7 & 21.1 & 13.9 & \(155.6^{2}\) \\
1979 & 74.7 & 52.0 & 21.6 & 15.9 & 164.2 \\
1980 & 61.3 & 46.8 & 21.1 & 15.4 & 144.6 \\
1981 & 64.3 & 72.4 & 24.0 & 14.8 & 175.5 \\
1982 & 76.4 & 59.4 & 16.7 & 15.5 & 168.0 \\
1983 & 54.1 & 68.2 & 19.6 & 15.0 & 156.9 \\
1984 & 36.4 & 85.6 & 23.7 & 13.1 & 158.8 \\
1985 & 31.1 & 49.9 & 14.6 & 11.6 & 107.2 \\
1986 & 7.9 & 36.2 & 12.3 & 8.2 & \(64.6^{2}\) \\
1987 & 34.9 & 28.0 & 19.0 & 10.8 & \(92.7^{2}\) \\
1988 & 43.5 & 45.4 & 15.3 & 10.0 & 114.2 \\
1989 & 48.6 & 44.8 & 16.8 & 12.1 & 122.3 \\
1990 & 24.6 & 44.0 & 19.3 & 7.9 & 95.8 \\
1991 & 38.9 & 40.1 & 18.9 & 9.4 & 107.3 \\
1992 & 27.1 & 66.9 & 21.2 & 12.3 & 127.5 \\
1993 & 33.1 & 83.5 & 21.2 & 15.8 & 153.6 \\
1994 & 30.2 & 81.7 & 21.1 & 13.5 & \(146.5^{3}\) \\
1995 & 21.8 & 103.5 & 26.9 & 15.9 & \(168.2^{4}\) \\
1996 & 46.9 & 72.7 & 31.6 & 20.3 & 171.5 \\
1997 & 44.4 & 56.1 & 24.4 & 19.0 & 143.8 \\
1998 & 44.4 & 58.2 & 27.6 & 23.6 & 153.8 \\
1999 & 39.2 & 57.9 & 29.7 & 23.5 & 150.3 \\
2000 & 28.2 & 52.2 & 29.6 & 25.1 & 135.2 \\
2001 & 28.1 & 58.3 & 28.1 & 21.9 & 136.4 \\
\(2002{ }^{1}\) & 27.4 & 75.4 & 30.3 & 21.5 & 154.6 \\
\hline
\end{tabular}
\({ }^{1}\) Provisional figures.
\({ }^{2}\) Unresolved discrepancy between Norwegian catch by gear figures and the total reported to ICES for these years.
\({ }^{3}\) Includes 4,300 tonnes not categorized by gear, proportionally adjusted.
\({ }^{4}\) Reduced by 1,200 tonnes not categorized by gear, proportionally adjusted.

Run title : North-East Arctic saithe
At 25/04/2003 9:38
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Table 1 & \multicolumn{3}{|l|}{Catch numbers at age} & \multicolumn{3}{|c|}{Numbers*10**-3} & \multirow[b]{2}{*}{1966} & \multirow[b]{2}{*}{1967} & \multirow[b]{2}{*}{1968} & \multirow[b]{2}{*}{1969} & \multirow[b]{2}{*}{1970} & \multirow[b]{2}{*}{1971} & \multirow[b]{2}{*}{1972} \\
\hline & YEAR & 1960 & 1961 & 1962 & 1963 & 1964 & 1965 & & & & & & & \\
\hline \multicolumn{15}{|c|}{AGE} \\
\hline & 2 & 7381 & 4936 & 1246 & 2815 & 20308 & 30430 & 7450 & 6952 & 5297 & 4090 & 25952 & 19842 & 11608 \\
\hline & 3 & 10509 & 17824 & 37266 & 42050 & 9001 & 37115 & 22392 & 29664 & 25196 & 77333 & 43540 & 77019 & 65178 \\
\hline & 4 & 13083 & 9131 & 11131 & 28925 & 59601 & 5001 & 54537 & 24836 & 18384 & 11949 & 62846 & 59280 & 52389 \\
\hline & 5 & 13545 & 12506 & 4421 & 5888 & 13154 & 26300 & 13124 & 35956 & 5101 & 16939 & 13987 & 26961 & 29146 \\
\hline & 6 & 5064 & 3799 & 8290 & 4650 & 2718 & 10142 & 12899 & 4125 & 8282 & 4747 & 16189 & 9556 & 10186 \\
\hline & 7 & 4883 & 1332 & 2427 & 3861 & 3472 & 2861 & 4652 & 5616 & 787 & 4798 & 5122 & 9592 & 5616 \\
\hline & 8 & 2401 & 968 & 1024 & 1099 & 2655 & 2110 & 1374 & 2916 & 1913 & 1126 & 7950 & 2901 & 3547 \\
\hline & 9 & 1315 & 520 & 938 & 1075 & 1251 & 2733 & 933 & 1413 & 900 & 1711 & 2504 & 4352 & 1865 \\
\hline & 10 & 743 & 405 & 451 & 697 & 1221 & 699 & 965 & 1397 & 577 & 675 & 3697 & 2195 & 2140 \\
\hline & +gp & 1525 & 1229 & 1728 & 1777 & 3559 & 3593 & 2900 & 3493 & 1166 & 511 & 2799 & 5490 & 3149 \\
\hline \multirow[t]{3}{*}{0} & TOTAL & 60449 & 52650 & 68922 & 92837 & 116940 & 120984 & 121226 & 116368 & 67603 & 123879 & 184586 & 217188 & 184824 \\
\hline & TONSL, & 133515 & 105951 & 120707 & 148627 & 197426 & 185600 & 203788 & 181326 & 110247 & 140060 & 264924 & 241272 & 214334 \\
\hline & SOPCO & 126 & 138 & 123 & 121 & 116 & 108 & 111 & 95 & 117 & 97 & 97 & 78 & 84 \\
\hline & Table 1 & \multicolumn{3}{|l|}{Catch numbers at age} & \multicolumn{3}{|c|}{Numbers*10**-3} & & & & & & & \\
\hline & YEAR & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 & & & \\
\hline \multicolumn{15}{|c|}{AGE} \\
\hline & 2 & 13829 & 21159 & 81601 & 54151 & 31662 & 45758 & 28334 & 18226 & 10467 & 17225 & & & \\
\hline & 3 & 76296 & 36782 & 60832 & 125030 & 99049 & 48969 & 61963 & 40796 & 83954 & 34733 & & & \\
\hline & 4 & 25206 & 44027 & 11691 & 30576 & 34317 & 27685 & 23328 & 36644 & 21822 & 65052 & & & \\
\hline & 5 & 26911 & 15671 & 16366 & 7947 & 10140 & 12476 & 14122 & 9211 & 21528 & 13060 & & & \\
\hline & 6 & 16031 & 20419 & 4436 & 8712 & 2062 & 4534 & 4400 & 6379 & 3619 & 8212 & & & \\
\hline & 7 & 7114 & 12148 & 7808 & 3435 & 4332 & 1468 & 2901 & 3200 & 2550 & 1054 & & & \\
\hline & 8 & 3935 & 4802 & 6789 & 3212 & 1456 & 1848 & 963 & 1338 & 2008 & 1251 & & & \\
\hline & 9 & 2871 & 3258 & 2914 & 2679 & 1606 & 938 & 1356 & 147 & 369 & 461 & & & \\
\hline & 10 & 2610 & 2505 & 2350 & 1724 & 963 & 976 & 438 & 730 & 279 & 263 & & & \\
\hline & +gp & 3924 & 3821 & 4140 & 2880 & 1134 & 2150 & 1192 & 1629 & 629 & 448 & & & \\
\hline \multirow[t]{3}{*}{0} & TOTAL & 178727 & 164592 & 198927 & 240346 & 186721 & 146802 & 138997 & 118300 & 147225 & 141759 & & & \\
\hline & TONSL, & 213859 & 274121 & 233453 & 242486 & 182817 & 154464 & 164180 & 144554 & 175516 & 168034 & & & \\
\hline & SOPCO & 81 & 101 & 102 & 100 & 101 & 103 & 114 & 94 & 100 & 98 & & & \\
\hline & Table 1 & \multicolumn{3}{|l|}{Catch numbers at age} & \multicolumn{3}{|c|}{Numbers*10**-3} & & & & & & & \\
\hline & YEAR & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & & & \\
\hline \multicolumn{15}{|c|}{AGE} \\
\hline & 2 & 11638 & 14624 & 2216 & 3311 & 3867 & 5017 & 11157 & 11543 & 6135 & 14333 & & & \\
\hline & 3 & 17244 & 41466 & 48917 & 22115 & 17869 & 8126 & 12378 & 21002 & 73878 & 49750 & & & \\
\hline & 4 & 23768 & 33233 & 11974 & 12895 & 49829 & 35847 & 19915 & 13463 & 11619 & 26640 & & & \\
\hline & 5 & 32700 & 12064 & 7189 & 6062 & 4339 & 32827 & 32643 & 8996 & 5395 & 4865 & & & \\
\hline & 6 & 3226 & 11204 & 5279 & 4525 & 3118 & 4560 & 18751 & 9152 & 5066 & 5594 & & & \\
\hline & 7 & 3008 & 1135 & 3740 & 2805 & 3490 & 2328 & 1939 & 7735 & 2988 & 4850 & & & \\
\hline & 8 & 1177 & 1772 & 775 & 1399 & 755 & 1219 & 377 & 1126 & 2009 & 3353 & & & \\
\hline & 9 & 760 & 560 & 878 & 351 & 620 & 966 & 191 & 154 & 272 & 1480 & & & \\
\hline & 10 & 247 & 557 & 134 & 454 & 257 & 320 & 179 & 121 & 81 & 291 & & & \\
\hline & +gp & 760 & 897 & 701 & 285 & 797 & 102 & 149 & 253 & 132 & 267 & & & \\
\hline \multirow[t]{3}{*}{0} & TOTAL & 94528 & 117512 & 81803 & 54202 & 84941 & 91312 & 97679 & 73545 & 107575 & 111423 & & & \\
\hline & TONSL, & 156936 & 158786 & 107183 & 70458 & 92391 & 114242 & 122310 & 95848 & 107326 & 127516 & & & \\
\hline & SOPCO & 101 & 100 & 99 & 99 & 102 & 99 & 99 & 100 & 99 & 100 & & & \\
\hline & Table 1 & \multicolumn{3}{|l|}{Catch numbers at age} & \multicolumn{3}{|c|}{Numbers* \({ }^{\text {1 }}{ }^{* *}-3\)} & & & & & & & \\
\hline & YEAR & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & & & \\
\hline \multicolumn{15}{|c|}{AGE} \\
\hline & 2 & 3379 & 1432 & 70 & 961 & 326 & 35 & 91 & 1192 & 246 & 92 & & & \\
\hline & 3 & 26933 & 9369 & 16402 & 10225 & 14827 & 3100 & 9644 & 9397 & 4101 & 6669 & & & \\
\hline & 4 & 63451 & 38499 & 48351 & 57448 & 13295 & 16261 & 12220 & 22921 & 8795 & 17827 & & & \\
\hline & 5 & 26254 & 48587 & 37268 & 18667 & 43309 & 11981 & 22804 & 7865 & 27411 & 11640 & & & \\
\hline & 6 & 3427 & 17617 & 32240 & 17805 & 13029 & 31918 & 10321 & 11282 & 8610 & 26258 & & & \\
\hline & 7 & 1636 & 1772 & 4842 & 17861 & 11219 & 8405 & 18932 & 5806 & 6858 & 4639 & & & \\
\hline & 8 & 1263 & 517 & 572 & 2765 & 5837 & 5556 & 3384 & 8177 & 3041 & 4104 & & & \\
\hline & 9 & 950 & 305 & 139 & 485 & 755 & 2881 & 3335 & 2330 & 4625 & 2343 & & & \\
\hline & 10 & 650 & 275 & 280 & 202 & 63 & 731 & 2293 & 2526 & 1834 & 3431 & & & \\
\hline & +gp & 106 & 697 & 305 & 443 & 160 & 397 & 589 & 1210 & 2076 & 2477 & & & \\
\hline \multirow[t]{3}{*}{0} & TOTAL & 128049 & 119070 & 140469 & 126862 & 102820 & 81265 & 83613 & 72706 & 67597 & 79480 & & & \\
\hline & TONSL, & 153584 & 146544 & 168174 & 171498 & 143760 & 153822 & 150274 & 135170 & 136402 & 154631 & & & \\
\hline & SOPCO & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & & & \\
\hline
\end{tabular}

Run title: North-East Arctic saithe
At 25/04/2003 9:38

\section*{Table 5.5 Tuning data}
```

Northeast Arctic saithe (Subareas I and II)
103
FLT08: Norway Purse Seine reviced 2000 (Catch: Unknown) (Effort: Unknown)
1989 2002
1 1 0.00 1.00
3

119.2	5250	8521	18211	2880	24
56.4	7207	3319	2582	1845	673
98.5	43110	1907	453	162	95
88.8	29527	5214	89	45	38
71.9	8010	24251	1302	39	23
79.3	6365	16182	8997	1151	90
52.2	5524	13357	4368	1335	105
81.9	4053	36274	6022	2610	589
92.0	9665	6691	18403	1852	1329
130.1	1994	9690	5302	10330	1226
133.0	6420	5990	10422	2275	2749
126.6	8000	13543	1316	1247	281
104.5	2420	4321	11502	651	279
77.7	4825	9963	3220	3091	307

FLT12: Nor new trawl revised 2000 (Catch: Unknown) (Effort: Unknown)
1994 2002
1 1 0.00 1.00
59
1 395.6 260.4 37.4 8.2 4.2
293.8 359.1 65.8 11.1 1.2
139.5 205.6 293.0 32.9 8.5
371.4 194.1 183.4 112.0 16.9
55.3 244.0 93.1 56.6 16.1
105.5 80.0 187.5 43.0 30.8
78.7 170.1 100.2 156.2 44.5
276.4 194.4 183.1 77.1 109.9
1 122.7 396.0 84.9 78.9 39.5
FLT13: Norway Ac Survey extended 2000 (Catch: Unknown) (Effort: Unknown)
1992 2002
1 1 0.75 0.85
36
273.6 57.5 6.2 8.8
227.7 103.9 12.7 3.2
87.8 112.4 39.5 10.0
165.2 87.0 46.8 20.0
118.9 214.7 32.1 19.3
36.7 185.8 79.8 61.7
96.5 200.6 70.0 96.7
233.8 72.9 62.2 47.8
142.5 176.3 11.6 26.5
275.9 45.9 53.8 20.1
206.1 88.1 18.2 14.9

```

\section*{Table 5.6 Tuning Diagnostics}

\section*{Lowestoft VPA Version 3.1 25/04/2003 9:35}

Extended Survivors Analysis
North-East Arctic saithe
CPUE data from file fleetall.dat
Catch data for 43 years. 1960 to 2002. Ages 2 to 11 .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Fleet & \begin{tabular}{l}
Firs \\
year
\end{tabular} & Last year & First age & & Last age & & Alpha & Beta \\
\hline FLT08: Nc & 1989 & 2002 & & 3 & & 7 & 0 & 1 \\
\hline FLT12: Nc & 1994 & 2002 & & 5 & & 9 & 0 & 1 \\
\hline FLT13: Nc & 1992 & 2002 & & 3 & & 6 & 0.75 & 0.85 \\
\hline
\end{tabular}

Time series weights :
Tapered time weighting applied
Power \(=3\) over 20 years

Catchability analysis :
Catchability independent of stock size for all ages
Catchability independent of age for ages \(>=8\)

Terminal population estimation :
Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages.
S.E. of the mean to which the estimates are shrunk \(=.500\)

Minimum standard error for population
estimates derived from each fleet \(=.300\)
Prior weighting not applied

Tuning converged after 42 iterations

1

Regression weights
\begin{tabular}{llllllll}
0.751 & 0.82 & 0.877 & 0.921 & 0.954 & 0.976 & 0.99 & 0.997
\end{tabular}
\begin{tabular}{rrrrrrrrrrr}
\multicolumn{9}{c}{\begin{tabular}{l}
Fishing mortalities \\
Age
\end{tabular}} & 1993 & 1994 \\
& & & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
2 & 0.015 & 0.003 & 0.001 & 0.005 & 0.003 & 0 & 0.001 & 0.007 & 0.001 & 0.002 \\
3 & 0.117 & 0.054 & 0.05 & 0.094 & 0.105 & 0.039 & 0.044 & 0.106 & 0.029 & 0.05 \\
4 & 0.293 & 0.245 & 0.429 & 0.245 & 0.17 & 0.16 & 0.215 & 0.141 & 0.137 & 0.168 \\
5 & 0.481 & 0.383 & 0.397 & 0.291 & 0.295 & 0.228 & 0.352 & 0.209 & 0.251 & 0.272 \\
6 & 0.553 & 0.706 & 0.474 & 0.335 & 0.34 & 0.37 & 0.314 & 0.294 & 0.373 & 0.406 \\
7 & 0.658 & 0.629 & 0.423 & 0.529 & 0.366 & 0.384 & 0.392 & 0.292 & 0.293 & 0.353 \\
8 & 0.584 & 0.445 & 0.423 & 0.457 & 0.326 & 0.311 & 0.262 & 0.292 & 0.244 & 0.286 \\
9 & 0.738 & 0.267 & 0.203 & 0.79 & 0.215 & 0.264 & 0.311 & 0.289 & 0.267 & 0.302 \\
10 & 0.592 & 0.488 & 0.42 & 0.511 & 0.212 & 0.333 & 0.348 & 0.412 & 0.39 & 0.324
\end{tabular}

Table 5.6 Tuning Diagnostics (Cont'd)

1
XSA population numbers (Thousands)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{AGE} \\
\hline YEAR & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 1993 & \(2.45 \mathrm{E}+05\) & 2.69E+05 & \(2.76 \mathrm{E}+05\) & 7.60E+04 & 8.91E+03 & \(3.75 \mathrm{E}+03\) & \(3.15 \mathrm{E}+03\) & \(2.01 \mathrm{E}+03\) & \(1.61 \mathrm{E}+03\) \\
\hline 1994 & 4.60E+05 & 1.97E+05 & 1.96E+05 & 1.69E+05 & \(3.84 \mathrm{E}+04\) & \(4.20 \mathrm{E}+03\) & 1.59E+03 & \(1.44 \mathrm{E}+03\) & 7.87E+02 \\
\hline 1995 & 1.54E+05 & \(3.75 \mathrm{E}+05\) & 1.53E+05 & 1.26E+05 & 9.43E+04 & 1.55E+04 & 1.83E+03 & 8.35E+02 & 9.02E+02 \\
\hline 1996 & \(2.03 \mathrm{E}+05\) & \(1.26 \mathrm{E}+05\) & \(2.92 \mathrm{E}+05\) & 8.17E+04 & \(6.91 \mathrm{E}+04\) & 4.81E+04 & 8.33E+03 & \(9.82 \mathrm{E}+02\) & \(5.58 \mathrm{E}+02\) \\
\hline 1997 & \(1.09 \mathrm{E}+05\) & 1.65E+05 & \(9.41 \mathrm{E}+04\) & 1.87E+05 & \(5.00 \mathrm{E}+04\) & 4.05E+04 & \(2.32 \mathrm{E}+04\) & 4.32E+03 & \(3.65 \mathrm{E}+02\) \\
\hline 1998 & \(3.00 \mathrm{E}+05\) & 8.86E+04 & 1.22E+05 & 6.50E+04 & \(1.14 \mathrm{E}+05\) & 2.91E+04 & 2.30E+04 & 1.37E+04 & \(2.85 \mathrm{E}+03\) \\
\hline 1999 & \(1.26 E+05\) & \(2.45 \mathrm{E}+05\) & 6.97E+04 & 8.50E+04 & 4.24E+04 & 6.45E+04 & 1.63E+04 & 1.38E+04 & 8.61E+03 \\
\hline 2000 & 1.97E+05 & \(1.03 \mathrm{E}+05\) & 1.92E+05 & 4.60E+04 & 4.89E+04 & \(2.54 \mathrm{E}+04\) & 3.57E+04 & 1.02E+04 & 8.27E+03 \\
\hline 2001 & 1.85E+05 & \(1.60 \mathrm{E}+05\) & 7.57E+04 & 1.37E+05 & 3.06E+04 & \(2.98 \mathrm{E}+04\) & \(1.55 \mathrm{E}+04\) & \(2.18 \mathrm{E}+04\) & \(6.28 \mathrm{E}+03\) \\
\hline 2002 & 4.09E+04 & \(1.51 \mathrm{E}+05\) & 1.27E+05 & \(5.40 \mathrm{E}+04\) & 8.70E+04 & \(1.72 \mathrm{E}+04\) & 1.82E+04 & 9.95E+03 & 1.37E+04 \\
\hline
\end{tabular}

Estimated population abundance at 1st Jan 2003
\(0.00 \mathrm{E}+00 \quad 3.34 \mathrm{E}+04 \quad 1.18 \mathrm{E}+05 \quad 8.83 \mathrm{E}+04 \quad 3.37 \mathrm{E}+04 \quad 4.75 \mathrm{E}+04 \quad 9.91 \mathrm{E}+03 \quad 1.12 \mathrm{E}+04 \quad 6.02 \mathrm{E}+03\)
Taper weighted geometric mean of the VPA populations:
\(1.79 \mathrm{E}+05 \quad 1.64 \mathrm{E}+05 \quad 1.17 \mathrm{E}+05 \quad 6.93 \mathrm{E}+04 \quad 3.87 \mathrm{E}+04 \quad 1.75 \mathrm{E}+04 \quad 8.03 \mathrm{E}+03 \quad 3.62 \mathrm{E}+03 \quad 1.66 \mathrm{E}+03\)
Standard error of the weighted Log(VPA populations) :
```

1 lllllllllll

```

Log catchability residuals.

Fleet : FLT08: Norway Purse
\begin{tabular}{rrrrrr}
Age & & 1989 & 1990 & 1991 & 1992 \\
& 3 & 0.63 & 1.74 & 1.66 & 0.73 \\
& 4 & 0.44 & 0.7 & -0.25 & -0.56 \\
& 5 & 1.64 & 1 & -0.84 & -2.19 \\
& 6 & 0.83 & 1.64 & -1.09 & -1.63 \\
& 7 & -1.4 & 1.61 & -0.63 & -1.06
\end{tabular}

8 No data for this fleet at this age
9 No data for this fleet at this age
\begin{tabular}{rrrrrrrrrrrr}
Age & & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
& 3 & -0.01 & -0.06 & -0.42 & -0.07 & 0.42 & -0.92 & -0.79 & 0.38 & -1.1 & -0.05 \\
& 4 & 0.38 & 0.2 & 0.75 & 0.57 & -0.13 & -0.37 & -0.29 & -0.48 & -0.5 & 0.13 \\
& 5 & -0.8 & 0.19 & 0.19 & 0.44 & 0.61 & 0.05 & 0.49 & -0.98 & 0.31 & 0.27 \\
& 6 & -1.5 & 0.39 & -0.04 & 0.43 & 0.29 & 0.86 & 0.28 & -0.42 & -0.37 & 0.45 \\
7 & -0.55 & 0.6 & -0.23 & -0.04 & 0.76 & 0.67 & 0.66 & -0.68 & -0.66 & 0.31 \\
& 8 & & & & & & \\
& \\
& &
\end{tabular}

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\begin{tabular}{crrrrr}
Age & 3 & 4 & 5 & 6 & 7 \\
Mean Log & -7.6287 & -6.8517 & -7.2178 & -7.8541 & -8.4253 \\
S.E(Log q. & 0.8012 & 0.4632 & 0.8538 & 0.8445 & 0.7568
\end{tabular}

Table 5.6 Tuning Diagnostics (Cont'd)

Regression statistics:

Ages with \(q\) independent of year class strength and constant w.r.t. time.
\begin{tabular}{rlrlrrrrrr}
Age & \multicolumn{2}{l}{ Slope } & \multicolumn{1}{l}{ t-value } & Intercept & RSquare & No Pts & \multicolumn{2}{l}{ Reg s.e } & Mean Q \\
& & & & & & & & \\
3 & 1.19 & -0.337 & 6.78 & 0.24 & 14 & 1 & -7.63 \\
4 & 0.83 & 0.868 & 7.66 & 0.74 & 14 & 0.39 & -6.85 \\
5 & 0.59 & 2.268 & 8.86 & 0.76 & 14 & 0.42 & -7.22 \\
6 & 0.57 & 3.02 & 9.06 & 0.84 & 14 & 0.36 & -7.85 \\
7 & 0.78 & 1.078 & 8.73 & 0.72 & 14 & 0.59 & -8.43
\end{tabular}

Fleet : FLT12: Nor new trawl
\begin{tabular}{rrrrrrrrrrr}
Age & \multicolumn{6}{c}{1993} & 1994 & 1995 & 1996 & 1997 \\
& & No data for this fleet at this age & & 1998 & 1999 & 2000 & 2001 & \\
& & & & & & & & \\
& No data for this fleet at this age & & & & & & & \\
5 & 99.99 & 0.34 & 0.35 & -0.02 & 0.13 & -0.74 & -0.31 & -0.05 & 0.13 & 0.26 \\
6 & 99.99 & 0.76 & 0.08 & -0.23 & 0.04 & -0.54 & -0.69 & -0.09 & 0.55 & 0.23 \\
7 & 99.99 & 0.75 & -0.08 & 0.33 & -0.04 & -0.38 & -0.48 & -0.21 & 0.23 & 0.03 \\
8 & 99.99 & 0.27 & 0.43 & 0.01 & 0.16 & -0.52 & -0.47 & 0.04 & 0.15 & 0.03 \\
9 & 99.99 & -0.37 & -1.11 & 0.94 & -0.1 & -1.29 & -0.62 & 0.03 & 0.17 & -0.05
\end{tabular}

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{crrrrr}
Age & 5 & 6 & 7 & 8 & 9 \\
Mean Log & -6.1194 & -5.3345 & -5.0837 & -5.238 & -5.238 \\
S.E(Log q. & 0.3529 & 0.4681 & 0.3704 & 0.3179 & 0.7338
\end{tabular}

Regression statistics:

Ages with q independent of year class strength and constant w.r.t. time.
\begin{tabular}{rlrlrrrrrr}
Age & \multicolumn{2}{l}{ Slope } & t-value & Intercept & RSquare & No Pts & \multicolumn{2}{l}{ Reg s.e } & Mean Q \\
& & & & & & & & \\
5 & 0.77 & 1.239 & 7.36 & 0.81 & 9 & 0.26 & -6.12 \\
6 & 1.73 & -1.14 & 1.23 & 0.27 & 9 & 0.79 & -5.33 \\
7 & 1.43 & -2.088 & 2.89 & 0.78 & 9 & 0.44 & -5.08 \\
& 1.19 & -1.708 & 4.44 & 0.92 & 9 & 0.34 & -5.24 \\
& & 1.07 & -0.305 & 5.29 & 0.75 & 9 & 0.77 & -5.5
\end{tabular}

Fleet : FLT13: Norway Ac Sur
\begin{tabular}{rrrrrr}
Age & & 1989 & 1990 & 1991 & 1992 \\
& 3 & 99.99 & 99.99 & 99.99 & -0.1 \\
& 4 & 99.99 & 99.99 & 99.99 & -0.48 \\
& 5 & 99.99 & 99.99 & 99.99 & 0.04 \\
& 6 & 99.99 & 99.99 & 99.99 & 0.85
\end{tabular}

Table 5.6 Tuning Diagnostics (Cont'd)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 7
8
9 & No data for No data for No data for & \begin{tabular}{l}
fleet \\
fleet \\
fleet
\end{tabular} & age
age
age & & & & & & & \\
\hline \multirow[t]{8}{*}{Age} & & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline & 3 & 0.07 & -0.62 & -0.64 & 0.16 & -1.28 & 0.26 & 0.13 & 0.56 & 0.71 & 0.5 \\
\hline & 4 & -0.69 & -0.31 & -0.17 & -0.06 & 0.87 & 0.68 & 0.27 & 0.08 & -0.34 & -0.18 \\
\hline & 5 & -0.72 & -0.46 & 0.02 & -0.01 & 0.07 & 0.94 & 0.66 & -0.52 & -0.04 & -0.18 \\
\hline & 6 & -0.21 & -0.41 & -0.8 & -0.64 & 0.85 & 0.5 & 0.74 & -0.01 & 0.25 & -1.07 \\
\hline & 7 & \multicolumn{10}{|l|}{No data for this fleet at this age} \\
\hline & 8 & \multicolumn{10}{|l|}{No data for this fleet at this age} \\
\hline & 9 & \multicolumn{10}{|l|}{No data for this fleet at this age} \\
\hline
\end{tabular}

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time
\begin{tabular}{lrrrr}
Age & 3 & 4 & 5 & 6 \\
Mean Log q & -6.8925 & -6.7984 & -7.4344 & -7.1188 \\
S.E(Log q) & 0.6162 & 0.4747 & 0.4923 & 0.6917
\end{tabular}

Regression statistics :

Ages with \(q\) independent of year class strength and constant w.r.t. time.
\begin{tabular}{lllllllrrr}
Age & \multicolumn{2}{l}{ Slope } & t-value & Intercept & RSquare & No Pts & Reg s.e & Mean Q \\
& & & & & & & & \\
& 3 & 2.03 & -1.218 & 1.53 & 0.15 & 11 & 1.22 & -6.89 \\
& 4 & 1.63 & -1.202 & 3.64 & 0.32 & 11 & 0.75 & -6.8 \\
& 5 & 1.01 & -0.051 & 7.38 & 0.63 & 11 & 0.53 & -7.43 \\
6 & 1.41 & -0.978 & 5.65 & 0.42 & 11 & 0.98 & -7.12
\end{tabular}

Terminal year survivor and \(F\) summaries:
Age 2 Catchability constant w.r.t. time and dependent on age
Year class \(=2000\)

Weighted prediction :

Table 5.6 Tuning Diagnostics (cont'd)
Age 3 Catchability constant w.r.t. time and dependent on age
Year class \(=1999\)

Weighted prediction :

Age 4 Catchability constant w.r.t. time and dependent on age
Year class \(=1998\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Fleet & & \[
\begin{aligned}
& \text { Int } \\
& \text { s.e }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ext } \\
& \text { s.e }
\end{aligned}
\] & \begin{tabular}{l}
Var \\
Ratio
\end{tabular} & N & & Scaled Weights & \begin{tabular}{l}
Estimated \\
F
\end{tabular} \\
\hline FLT08: Norway Purse & 74207 & 0.418 & 0.529 & 1.26 & & 2 & 0.339 & 0.197 \\
\hline FLT12: Nor new trawl & 1 & 0 & 0 & 0 & & 0 & 0 & 0 \\
\hline FLT13: Norway Ac Sur & 101797 & 0.395 & 0.431 & 1.09 & & 2 & 0.379 & 0.147 \\
\hline F shrinkage mean & 89689 & 0.5 & & & & & 0.282 & 0.165 \\
\hline \multicolumn{9}{|l|}{Weighted prediction :} \\
\hline Survivors & Int & Ext & N & Var & F & & & \\
\hline at end of year & s.e & s.e & & Ratio & & & & \\
\hline 88254 & 0.25 & 0.21 & 5 & 0.857 & & & & \\
\hline
\end{tabular}

Age 5 Catchability constant w.r.t. time and dependent on age
Year class \(=1997\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Fleet} & I & Int & Ext & Var & N & & Scaled & Estimated \\
\hline & & s.e & s.e & Ratio & & & Weights & F \\
\hline FLT08: Norway Purse & 28226 & 0.38 & 0.284 & 0.75 & & 3 & 0.221 & 0.317 \\
\hline FLT12: Nor new trawl & 43651 & 0.373 & 0 & 0 & & 1 & 0.26 & 0.216 \\
\hline FLT13: Norway Ac Sur & 30725 & 0.315 & 0.238 & 0.75 & & 3 & 0.33 & 0.295 \\
\hline F shrinkage mean & 34204 & 0.5 & & & & & 0.19 & 0.268 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Survivors at end of year} & & Int & Ext & N & & Var & \multirow[t]{2}{*}{F} \\
\hline & \multicolumn{2}{|c|}{s.e} & s.e & & \multicolumn{2}{|r|}{Ratio} & \\
\hline & 33712 & 0.19 & 0.12 & & 8 & 0.629 & 0.272 \\
\hline
\end{tabular}

Age 6 Catchability constant w.r.t. time and dependent on age
Year class \(=1996\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Fleet} & 1 & Int & Ext & Var & N & & Scaled & Estimated \\
\hline & & s.e & s.e & Ratio & & & Weights & F \\
\hline FLT08: Norway Purse & 38929 & 0.353 & 0.271 & 0.77 & & 4 & 0.197 & 0.476 \\
\hline FLT12: Nor new trawl & 56516 & 0.3 & 0.047 & 0.16 & & 2 & 0.314 & 0.351 \\
\hline FLT13: Norway Ac Sur & 39155 & 0.292 & 0.263 & 0.9 & & 4 & 0.294 & 0.474 \\
\hline F shrinkage mean & 58641 & 0.5 & & & & & 0.195 & 0.34 \\
\hline
\end{tabular}

Table 5.6 Tuning Diagnostics (Cont'd)
Weighted prediction :
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Survivors at end of year} & \multicolumn{2}{|r|}{Int} & Ext & \multirow[t]{2}{*}{N} & \multicolumn{2}{|r|}{Var} & \multirow[t]{2}{*}{F} \\
\hline & & & s.e & & & Ratio & \\
\hline & 47479 & 0.17 & 0.12 & & 11 & 0.688 & 0.406 \\
\hline
\end{tabular}

Age 7 Catchability constant w.r.t. time and dependent on age
Year class \(=1995\)

Weighted prediction :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Survivors at end of year} & & Int & Ext & N & & Var & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{F}} \\
\hline & \multicolumn{2}{|c|}{s.e} & s.e & & & Ratio & & \\
\hline & 9914 & 0.16 & 0.09 & & 13 & 0.578 & & 0.353 \\
\hline
\end{tabular}

1
Age 8 Catchability constant w.r.t. time and dependent on age
Year class \(=1994\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet & ! & \[
\begin{aligned}
& \text { Int } \\
& \text { s.e }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ext } \\
& \text { s.e }
\end{aligned}
\] & \begin{tabular}{l}
Var \\
Ratio
\end{tabular} & N & Scaled Weights & Estimated F \\
\hline FLT08: Norway Purse & 8432 & 0.342 & 0.202 & 0.59 & 5 & 0.128 & 0.365 \\
\hline FLT12: Nor new trawl & 11388 & 0.205 & 0.097 & 0.47 & 4 & 0.572 & 0.282 \\
\hline FLT13: Norway Ac Sur & 13880 & 0.298 & 0.398 & 1.34 & 4 & 0.137 & 0.237 \\
\hline F shrinkage mean & 11103 & 0.5 & & & & 0.162 & 0.289 \\
\hline \multicolumn{8}{|l|}{Weighted prediction :} \\
\hline \multirow[t]{3}{*}{Survivors at end of year 11213} & Int & Ext & N & Var & F & & \\
\hline & s.e & s.e & & Ratio & & & \\
\hline & 0.15 & 0.1 & 14 & 0.619 & 0.286 & & \\
\hline
\end{tabular}

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 8
Year class = 1993
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Fleet & 1 & Int & Ext & Var & N & & Scaled & Estimated \\
\hline & ! & s.e & s.e & Ratio & & & Weights & F \\
\hline FLT08: Norway Purse & 4987 & 0.34 & 0.167 & 0.49 & & 5 & 0.118 & 0.354 \\
\hline FLT12: Nor new trawl & 5069 & 0.2 & 0.173 & 0.87 & & 5 & 0.568 & 0.349 \\
\hline FLT13: Norway Ac Sur & 12828 & 0.298 & 0.153 & 0.51 & & 4 & 0.128 & 0.153 \\
\hline F shrinkage mean & 6818 & 0.5 & & & & & 0.186 & 0.271 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Survivors at end of year} & & Int & Ext & N & & Var & \multirow[t]{2}{*}{F} \\
\hline & \multicolumn{2}{|c|}{s.e} & s.e & & & Ratio & \\
\hline & 6023 & 0.16 & 0.12 & & 15 & 0.741 & 0.302 \\
\hline
\end{tabular}

Table 5.6 Tuning Diagnostics (Cont'd)
Age 10 Catchability constant w.r.t. time and age (fixed at the value for age) 8
Year class \(=1992\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Fleet & I & Int & Ext & Var & \(N\) & & Scaled & Estimated \\
\hline & & s.e & s.e & Ratio & & & Weights & F \\
\hline FLT08: Norway Purse & 14185 & 0.355 & 0.165 & 0.46 & & 5 & 0.095 & 0.198 \\
\hline FLT12: Nor new trawl & 7314 & 0.206 & 0.136 & 0.66 & & 5 & 0.539 & 0.354 \\
\hline FLT13: Norway Ac Sur & 8359 & 0.305 & 0.201 & 0.66 & & 4 & 0.1 & 0.316 \\
\hline F shrinkage mean & 8066 & 0.5 & & & & & 0.265 & 0.326 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Survivors at end of year} & & Int & Ext & N & & Var & F & \\
\hline & & & s.e & & & Ratio & & \\
\hline & 8103 & 0.18 & 0.08 & & 15 & 0.467 & & 0.32 \\
\hline
\end{tabular}

Table 5.7
Run title : North-East Arctic saithe
At 25/04/2003 9:38
Terminal Fs derived using XSA (With F shrinkage)

Terminal Fs derived using XSA (With F shrinkage)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{Table 8 Fishing mortality (F) at age} & \multirow[b]{2}{*}{1976} & \multirow[b]{2}{*}{1977} & \multirow[b]{2}{*}{1978} & \multirow[b]{2}{*}{1979} & \multirow[b]{2}{*}{1980} & \multirow[b]{2}{*}{1981} & \multirow[b]{2}{*}{1982} & \\
\hline & YEAR & 1973 & 1974 & 1975 & & & & & & & & \\
\hline \multicolumn{13}{|c|}{AGE} \\
\hline & 2 & 0.1396 & 0.1204 & 0.2763 & 0.2181 & 0.2178 & 0.1964 & 0.2067 & 0.0582 & 0.0788 & 0.1461 & \\
\hline & 3 & 0.4905 & 0.6669 & 0.5962 & 0.9053 & 0.7860 & 0.6157 & 0.4446 & 0.5172 & 0.4112 & 0.4041 & \\
\hline & 4 & 0.4766 & 0.5911 & 0.4590 & 0.6942 & 0.6807 & 0.5240 & 0.6834 & 0.5183 & 0.5842 & 0.6566 & \\
\hline & 5 & 0.4110 & 0.6230 & 0.4556 & 0.6609 & 0.5207 & 0.5675 & 0.5606 & 0.6404 & 0.6680 & 0.8678 & \\
\hline & 6 & 0.3693 & 0.6370 & 0.3552 & 0.4704 & 0.3522 & 0.4670 & 0.3990 & 0.5356 & 0.5631 & 0.5849 & \\
\hline & 7 & 0.3373 & 0.5334 & 0.5379 & 0.5163 & 0.4538 & 0.4574 & 0.6257 & 0.5720 & 0.4245 & 0.3133 & \\
\hline & 8 & 0.2654 & 0.4017 & 0.6559 & 0.4431 & 0.4306 & 0.3556 & 0.6248 & 0.6730 & 0.8954 & 0.3811 & \\
\hline & 9 & 0.3210 & 0.3673 & 0.4563 & 0.5920 & 0.4163 & 0.5508 & 0.4824 & 0.1765 & 0.3907 & 0.5211 & \\
\hline & 10 & 0.3429 & 0.5166 & 0.4960 & 0.5409 & 0.4378 & 0.4833 & 0.5429 & 0.5237 & 0.5934 & 0.5380 & \\
\hline & +gp & 0.3429 & 0.5166 & 0.4960 & 0.5409 & 0.4378 & 0.4833 & 0.5429 & 0.5237 & 0.5934 & 0.5380 & \\
\hline 0 & FBAR 3 & 0.4369 & 0.6295 & 0.4665 & 0.6827 & 0.5849 & 0.5435 & 0.5219 & 0.5529 & 0.5567 & 0.6284 & \\
\hline \multicolumn{13}{|c|}{Table 8 Fishing mortality (F) at age} \\
\hline & YEAR & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & \\
\hline \multicolumn{13}{|c|}{AGE} \\
\hline & 2 & 0.1145 & 0.1249 & 0.0090 & 0.0181 & 0.0421 & 0.0725 & 0.1483 & 0.0442 & 0.0140 & 0.0471 & \\
\hline & 3 & 0.2136 & 0.7502 & 0.7847 & 0.1174 & 0.1279 & 0.1169 & 0.2570 & 0.4581 & 0.4363 & 0.1509 & \\
\hline & 4 & 0.5382 & 0.8220 & 0.5011 & 0.4840 & 0.4199 & 0.4069 & 0.4640 & 0.4931 & 0.4987 & 0.2756 & \\
\hline & 5 & 0.8438 & 0.5834 & 0.4108 & 0.5146 & 0.2955 & 0.5446 & 0.8178 & 0.3941 & 0.3740 & 0.4014 & \\
\hline & 6 & 0.5393 & 0.8088 & 0.5505 & 0.4953 & 0.5496 & 0.5822 & 0.7033 & 0.5680 & 0.4039 & 0.8541 & \\
\hline & 7 & 0.4394 & 0.3670 & 0.7087 & 0.6471 & 0.9259 & 1.1028 & 0.5281 & 0.7217 & 0.3638 & 0.8719 & \\
\hline & 8 & 0.6968 & 0.5058 & 0.4617 & 0.6372 & 0.3555 & 1.0505 & 0.5077 & 0.6802 & 0.4089 & 0.9198 & \\
\hline & 9 & 0.4220 & 0.8805 & 0.5082 & 0.3924 & 0.6585 & 1.1001 & 0.4397 & 0.4005 & 0.3389 & 0.6061 & \\
\hline & 10 & 0.5933 & 0.6347 & 0.5323 & 0.5417 & 0.5617 & 0.8854 & 0.6045 & 0.5575 & 0.3804 & 0.7491 & \\
\hline & +gp & 0.5933 & 0.6347 & 0.5323 & 0.5417 & 0.5617 & 0.8854 & 0.6045 & 0.5575 & 0.3804 & 0.7491 & \\
\hline 0 & FBAR 3 & 0.5337 & 0.7411 & 0.5618 & 0.4028 & 0.3482 & 0.4127 & 0.5605 & 0.4783 & 0.4282 & 0.4205 & \\
\hline & Table 8 & Fishing & rtality (F) & & & & & & & & & \\
\hline & YEAR & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & FBAR **-** \\
\hline \multicolumn{13}{|c|}{AGE} \\
\hline & 2 & 0.0154 & 0.0034 & 0.0005 & 0.0053 & 0.0033 & 0.0001 & 0.0008 & 0.0067 & 0.0015 & 0.0025 & 0.0036 \\
\hline & 3 & 0.1172 & 0.0539 & 0.0496 & 0.0938 & 0.1045 & 0.0394 & 0.0444 & 0.1064 & 0.0287 & 0.0500 & 0.0617 \\
\hline & 4 & 0.2926 & 0.2448 & 0.4289 & 0.2450 & 0.1698 & 0.1597 & 0.2153 & 0.1414 & 0.1374 & 0.1679 & 0.1489 \\
\hline & 5 & 0.4813 & 0.3826 & 0.3974 & 0.2911 & 0.2953 & 0.2278 & 0.3519 & 0.2093 & 0.2508 & 0.2719 & 0.2440 \\
\hline & 6 & 0.5534 & 0.7065 & 0.4743 & 0.3352 & 0.3397 & 0.3699 & 0.3136 & 0.2942 & 0.3729 & 0.4058 & 0.3576 \\
\hline & 7 & 0.6577 & 0.6289 & 0.4227 & 0.5288 & 0.3659 & 0.3839 & 0.3919 & 0.2917 & 0.2930 & 0.3530 & 0.3126 \\
\hline & 8 & 0.5844 & 0.4448 & 0.4234 & 0.4571 & 0.3260 & 0.3109 & 0.2615 & 0.2919 & 0.2443 & 0.2861 & 0.2741 \\
\hline & 9 & 0.7384 & 0.2668 & 0.2033 & 0.7896 & 0.2148 & 0.2644 & 0.3111 & 0.2895 & 0.2668 & 0.3016 & 0.2860 \\
\hline & 10 & 0.5924 & 0.4882 & 0.4199 & 0.5111 & 0.2117 & 0.3331 & 0.3484 & 0.4119 & 0.3898 & 0.3244 & 0.3754 \\
\hline & +gp & 0.5924 & 0.4882 & 0.4199 & 0.5111 & 0.2117 & 0.3331 & 0.3484 & 0.4119 & 0.3898 & 0.3244 & \\
\hline 0 & FBAR 3 & 0.3611 & 0.3469 & 0.3376 & 0.2413 & 0.2273 & 0.1992 & 0.2313 & 0.1878 & 0.1975 & 0.2239 & \\
\hline
\end{tabular}

Table 5.8
Run title : North-East Arctic saithe
At 25/04/2003 9:38
Terminal Fs derived using XSA (With F shrinkage)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Table 10 & \multicolumn{4}{|l|}{Stock number at age (start of year)} & \multicolumn{9}{|l|}{Numbers*10**-3} \\
\hline & YEAR & 1960 & 1961 & 1962 & 1963 & 1964 & 1965 & 1966 & 1967 & 1968 & 1969 & 1970 & 1971 & 1972 \\
\hline & \multicolumn{14}{|l|}{AGE} \\
\hline & 2 & 121650 & 213269 & 355505 & 121815 & 368899 & 210354 & 241202 & 191872 & 367843 & 347431 & 379816 & 219524 & 278465 \\
\hline & 3 & 88173 & 92920 & 170143 & 289935 & 97187 & 283654 & 144689 & 190738 & 150801 & 296372 & 280751 & 287484 & 161778 \\
\hline & 4 & 85921 & 62681 & 59948 & 105582 & 199330 & 71425 & 198653 & 98200 & 129322 & 100667 & 172675 & 190463 & 165683 \\
\hline & 5 & 38001 & 58508 & 43057 & 39010 & 60271 & 109269 & 53953 & 113296 & 57927 & 89246 & 71608 & 84509 & 102299 \\
\hline & 6 & 26165 & 18857 & 36586 & 31252 & 26611 & 37443 & 65664 & 32298 & 60225 & 42811 & 57741 & 45971 & 44795 \\
\hline & 7 & 16897 & 16840 & 12001 & 22453 & 21379 & 19328 & 21479 & 42090 & 22711 & 41814 & 30755 & 32626 & 28992 \\
\hline & 8 & 7761 & 9416 & 12582 & 7630 & 14890 & 14362 & 13236 & 13376 & 29379 & 17882 & 29893 & 20546 & 18033 \\
\hline & 9 & 4823 & 4181 & 6833 & 9375 & 5252 & 9788 & 9850 & 9593 & 8313 & 22322 & 13622 & 17281 & 14197 \\
\hline & 10 & 2580 & 2759 & 2953 & 4746 & 6703 & 3168 & 5541 & 7220 & 6576 & 5992 & 16728 & 8887 & 10210 \\
\hline & +gp & 5253 & 8334 & 11260 & 12044 & 19432 & 16183 & 16565 & 17951 & 13243 & 4518 & 12585 & 22073 & 14934 \\
\hline 0 & TOT/ & 397223 & 487765 & 710869 & 643841 & 819953 & 774974 & 770831 & 716635 & 846340 & 969055 & 1066173 & 929364 & 839385 \\
\hline
\end{tabular}

Terminal Fs derived using XSA (With F shrinkage)

Table 5.9
Run title : North-East Arctic saithe
At 25/04/2003 9:38
Terminal Fs derived using XSA (With F shrinkage)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Table 12 & \multicolumn{4}{|l|}{Stock biomass at age (start of year)} & \multicolumn{2}{|l|}{Tonnes} & \multirow[b]{2}{*}{1966} & \multirow[b]{2}{*}{1967} & \multirow[b]{2}{*}{1968} & \multirow[b]{2}{*}{1969} & \multirow[b]{2}{*}{1970} & \multirow[b]{2}{*}{1971} & \multirow[b]{2}{*}{1972} \\
\hline & YEAR & 1960 & 1961 & 1962 & 1963 & 1964 & 1965 & & & & & & & \\
\hline & \multicolumn{14}{|l|}{AGE} \\
\hline & 2 & 41361 & 72511 & 120872 & 41417 & 125426 & 71520 & 82009 & 65237 & 125067 & 118126 & 129137 & 74638 & 94678 \\
\hline & 3 & 62603 & 65973 & 120802 & 205854 & 69002 & 201394 & 102729 & 135424 & 107069 & 210424 & 199334 & 204114 & 114862 \\
\hline & 4 & 95372 & 69576 & 66543 & 117196 & 221257 & 79282 & 220505 & 109002 & 143548 & 111741 & 191669 & 211414 & 183908 \\
\hline & 5 & 61942 & 95368 & 70183 & 63586 & 98241 & 178108 & 87943 & 184673 & 94421 & 145470 & 116720 & 137749 & 166748 \\
\hline & 6 & 60964 & 43936 & 85246 & 72817 & 62003 & 87243 & 152998 & 75254 & 140323 & 99750 & 134537 & 107113 & 104371 \\
\hline & 7 & 53395 & 53214 & 37924 & 70952 & 67559 & 61076 & 67874 & 133004 & 71766 & 132132 & 97187 & 103098 & 91613 \\
\hline & 8 & 31275 & 37946 & 50706 & 30748 & 60005 & 57880 & 53339 & 53906 & 118396 & 72064 & 120469 & 82800 & 72672 \\
\hline & 9 & 23490 & 20363 & 33278 & 45655 & 25578 & 47669 & 47968 & 46718 & 40485 & 108710 & 66337 & 84158 & 69137 \\
\hline & 10 & 14524 & 15534 & 16625 & 26719 & 37737 & 17837 & 31196 & 40649 & 37021 & 33734 & 94178 & 50032 & 57485 \\
\hline & +gp & 42179 & 66999 & 89227 & 94556 & 151201 & 128800 & 134275 & 143498 & 102186 & 33794 & 93178 & 155657 & 111663 \\
\hline \multirow[t]{12}{*}{0} & TOTAL & 487106 & 541421 & 691404 & 769500 & 918009 & 930808 & 980836 & 987365 & 980281 & 1065944 & 1242746 & 1210774 & 1067137 \\
\hline & \multicolumn{14}{|l|}{AGE} \\
\hline & 2 & 39882 & 70115 & 127007 & 103859 & 60784 & 96422 & 57016 & 160316 & 65620 & 71438 & & & \\
\hline & 3 & 154414 & 59301 & 106282 & 164721 & 142779 & 83582 & 135456 & 88211 & 200887 & 88912 & & & \\
\hline & 4 & 81559 & 121019 & 38962 & 74942 & 85264 & 83273 & 57801 & 127169 & 76308 & 167261 & & & \\
\hline & 5 & 143841 & 60881 & 80564 & 29601 & 45005 & 51898 & 59286 & 43697 & 100092 & 50258 & & & \\
\hline & 6 & 133703 & 111606 & 38212 & 59783 & 17888 & 31293 & 34435 & 43351 & 25638 & 53493 & & & \\
\hline & 7 & 86767 & 102624 & 65541 & 29747 & 41471 & 13967 & 21783 & 26710 & 26884 & 14161 & & & \\
\hline & 8 & 75179 & 64656 & 62856 & 39963 & 18534 & 27505 & 9231 & 13102 & 16431 & 17058 & & & \\
\hline & 9 & 56270 & 57041 & 42810 & 32273 & 25385 & 11921 & 19070 & 5170 & 7503 & 5884 & & & \\
\hline & 10 & 55938 & 38634 & 37392 & 25675 & 16899 & 15845 & 6505 & 11379 & 4402 & 3933 & & & \\
\hline & +gp & 109507 & 74775 & 82570 & 55177 & 25903 & 46217 & 24295 & 30321 & 10504 & 8899 & & & \\
\hline \multirow[t]{14}{*}{0} & TOTAL & 937060 & 760652 & 682197 & 615738 & 479912 & 461923 & 424877 & 549427 & 534269 & 481297 & & & \\
\hline & Table 12 & \multicolumn{4}{|l|}{Stock biomass at age (start of year)} & Tonnes & & & & & & & & \\
\hline & YEAR & 1983 & 1984 & 1985 & 1986 & \[
1987
\] & 1988 & 1989 & 1990 & 1991 & 1992 & & & \\
\hline & \multicolumn{14}{|l|}{AGE} \\
\hline & 2 & 71353 & 72930 & 103315 & 65460 & 35256 & 26160 & 40260 & 159194 & 194535 & 155026 & & & \\
\hline & 3 & 104053 & 61653 & 74571 & 130150 & 87177 & 50467 & 44668 & 47997 & 166262 & 274840 & & & \\
\hline & 4 & 83938 & 82570 & 45661 & 45315 & 134901 & 103095 & 57512 & 41278 & 38916 & 134435 & & & \\
\hline & 5 & 117938 & 60933 & 49287 & 32808 & 31112 & 113181 & 89772 & 47617 & 34016 & 32197 & & & \\
\hline & 6 & 23948 & 60279 & 36244 & 29446 & 18907 & 27748 & 74271 & 49481 & 37745 & 25189 & & & \\
\hline & 7 & 37399 & 15844 & 26702 & 18673 & 18971 & 14904 & 15773 & 39909 & 30969 & 25886 & & & \\
\hline & 8 & 10835 & 22051 & 9196 & 12206 & 11156 & 11146 & 3914 & 9204 & 21964 & 20026 & & & \\
\hline & 9 & 13005 & 5666 & 11033 & 5139 & 6705 & 9329 & 2753 & 1857 & 4737 & 14610 & & & \\
\hline & 10 & 3465 & 7938 & 1988 & 5626 & 3595 & 3227 & 2071 & 1993 & 1613 & 3776 & & & \\
\hline & +gp & 16077 & 14985 & 15213 & 4915 & 13997 & 1406 & 2691 & 3103 & 3259 & 4071 & & & \\
\hline \multirow[t]{14}{*}{0} & TOTAL & 482011 & 404850 & 373211 & 349738 & 361777 & 360663 & 333685 & 401633 & 534016 & 690057 & & & \\
\hline & Table 12 & \multicolumn{4}{|l|}{Stock biomass at age (start of year)} & Tonnes & & & & & & & & \\
\hline & YEAR & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & & & \\
\hline & \multicolumn{14}{|l|}{AGE} \\
\hline & 2 & 112675 & 160847 & 77121 & 81075 & 41253 & 104891 & 80481 & 72909 & [78672] & [16346] & & & \\
\hline & 3 & 169524 & 102694 & 209979 & 74469 & 102348 & 60238 & 164372 & 62753 & 120510 & [104174] & & & \\
\hline & 4 & 281970 & 144995 & 119505 & 239565 & 86560 & 121738 & 73209 & 195977 & 83901 & 128641 & & & \\
\hline & 5 & 129124 & 206080 & 151959 & 107830 & 222784 & 96203 & 123187 & 74104 & 209084 & 79977 & & & \\
\hline & 6 & 22278 & 83011 & 164143 & 126453 & 82985 & 213347 & 81790 & 103716 & 62266 & 170276 & & & \\
\hline & 7 & 10805 & 13382 & 43468 & 118715 & 93471 & 75181 & 147124 & 67452 & 78197 & 45278 & & & \\
\hline & 8 & 9745 & 6317 & 6849 & 30984 & 71887 & 70540 & 48271 & 114599 & 49190 & 59395 & & & \\
\hline & 9 & 7440 & 6650 & 3674 & 4408 & 18737 & 56461 & 49626 & 38315 & 79834 & 38437 & & & \\
\hline & 10 & 9948 & 4154 & 4765 & 2957 & 2204 & 15541 & 35400 & 35968 & 28791 & 58504 & & & \\
\hline & +gp & 2118 & 11992 & 7262 & 8498 & 7026 & 12380 & 12107 & 23466 & 37860 & 56502 & & & \\
\hline 0 & TOTAL & 755628 & 740123 & 788725 & 794954 & 729255 & 826522 & 815568 & 789259 & [828305] & [757533] & & & \\
\hline
\end{tabular}

Table 5.10
Run title : North-East Arctic saithe
At 25/04/2003 9:38

Terminal Fs derived using XSA (With F shrinkage)

Table 5.11
Run title : North-East Arctic saithe

At 25/04/2003 9:38

Table 16 Summary (without SOP correction)
Terminal Fs derived using XSA (With F shrinkage)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & RECRUITS & totalbio & TOTSPBIO & LANDINGS & YIELD/SSB & FBAR 3-6 \\
\hline \multicolumn{7}{|c|}{Age 2} \\
\hline 1960 & 121650 & 487106 & 250637 & 133515 & 0.5327 & 0.2667 \\
\hline 1961 & 213269 & 541421 & 283486 & 105951 & 0.3737 & 0.2338 \\
\hline 1962 & 355505 & 691404 & 338725 & 120707 & 0.3564 & 0.2289 \\
\hline 1963 & 121815 & 769500 & 365250 & 148627 & 0.4069 & 0.2244 \\
\hline 1964 & 368899 & 918009 & 449677 & 197426 & 0.439 & 0.2262 \\
\hline 1965 & 210354 & 930808 & 484948 & 185600 & 0.3827 & 0.2254 \\
\hline 1966 & 241202 & 980836 & 513917 & 203788 & 0.3965 & 0.2767 \\
\hline 1967 & 191872 & 987365 & 581741 & 181326 & 0.3117 & 0.2751 \\
\hline 1968 & 367843 & 980281 & 541060 & 110247 & 0.2038 & 0.1606 \\
\hline 1969 & 347431 & 1065944 & 543704 & 140060 & 0.2576 & 0.2117 \\
\hline 1970 & 379816 & 1242746 & 649874 & 264924 & 0.4077 & 0.3292 \\
\hline 1971 & 219524 & 1210774 & 642605 & 241272 & 0.3755 & 0.3671 \\
\hline 1972 & 278465 & 1067137 & 583004 & 214334 & 0.3676 & 0.4217 \\
\hline 1973 & 117299 & 937060 & 575501 & 213859 & 0.3716 & 0.4369 \\
\hline 1974 & 206220 & 760652 & 465237 & 274121 & 0.5892 & 0.6295 \\
\hline 1975 & 373549 & 682197 & 367039 & 233453 & 0.636 & 0.4665 \\
\hline 1976 & 305466 & 615738 & 250083 & 242486 & 0.9696 & 0.6827 \\
\hline 1977 & 178777 & 479912 & 168173 & 182817 & 1.0871 & 0.5849 \\
\hline 1978 & 283593 & 461923 & 171152 & 154464 & 0.9025 & 0.5435 \\
\hline 1979 & 167696 & 424877 & 142903 & 164180 & 1.1489 & 0.5219 \\
\hline 1980 & 356258 & 549427 & 148302 & 144554 & 0.9747 & 0.5529 \\
\hline 1981 & 152604 & 534269 & 142793 & 175516 & 1.2292 & 0.5567 \\
\hline 1982 & 140075 & 481297 & 124436 & 168034 & 1.3504 & 0.6284 \\
\hline 1983 & 118922 & 482011 & 166093 & 156936 & 0.9449 & 0.5337 \\
\hline 1984 & 137604 & 404850 & 151744 & 158786 & 1.0464 & 0.7411 \\
\hline 1985 & 271883 & 373211 & 121970 & 107183 & 0.8788 & 0.5618 \\
\hline 1986 & 204561 & 349738 & 89713 & 70458 & 0.7854 & 0.4028 \\
\hline 1987 & 103694 & 361777 & 88576 & 92391 & 1.0431 & 0.3482 \\
\hline 1988 & 79271 & 360663 & 126581 & 114242 & 0.9025 & 0.4127 \\
\hline 1989 & 89466 & 333685 & 139966 & 122310 & 0.8739 & 0.5605 \\
\hline 1990 & 294803 & 401633 & 123929 & 95848 & 0.7734 & 0.4783 \\
\hline 1991 & 486337 & 534016 & 113104 & 107326 & 0.9489 & 0.4282 \\
\hline 1992 & 344503 & 690057 & 108315 & 127516 & 1.1773 & 0.4205 \\
\hline 1993 & 244946 & 755628 & 132615 & 153584 & 1.1581 & 0.3611 \\
\hline 1994 & 459563 & 740123 & 227582 & 146544 & 0.6439 & 0.3469 \\
\hline 1995 & 154241 & 788725 & 289443 & 168174 & 0.581 & 0.3376 \\
\hline 1996 & 202688 & 794954 & 332375 & 171498 & 0.516 & 0.2413 \\
\hline 1997 & 108559 & 729255 & 385390 & 143760 & 0.373 & 0.2273 \\
\hline 1998 & 299688 & 826522 & 464076 & 153822 & 0.3315 & 0.1992 \\
\hline 1999 & 125751 & 815568 & 427592 & 150274 & 0.3514 & 0.2313 \\
\hline 2000 & 197051 & 789259 & 409326 & 135170 & 0.3302 & 0.1878 \\
\hline 2001 & 244552 & 888181 & 441069 & 136402 & 0.3093 & 0.1975 \\
\hline 2002 & 192000 & 908668 & 447221 & 154631 & 0.3458 & 0.220 \\
\hline
\end{tabular}

Arith.
\(\begin{array}{llllllll}\text { Mean } & 233936 & 700679 & 315603 & 159724 & 0.6601 & 0.3835\end{array}\)
0 Units (Thousar (Tonnes (Tonnes (Tonnes)

Table 5.12 Input to RCT3 analysis program
NORTHEAST ARCTIC SAITHE : recruits as 2 year-olds
1112 (No. of surveys No. of years VPA Column No.)
'Yearcl' 'VPA' 'Ac-surv'
\(1990345 \quad 163.5\)
\(1991245 \quad 106.9\)
\(1992460 \quad 34.4\)
\(1993154 \quad 38.7\)
199420337.0
\(1995 \quad 109 \quad 5.1\)
\(1996300 \quad 43.6\)
\(1997 \quad 126 \quad 61.1\)
1998197164.8

1999 -11 104.7
\(2000-11 \quad 21.9\)

NORTHEAST ARCTIC SAITHE : recruits as 3 year-olds
1112 (No. of surveys, No. of years, VPA Column No.)
'Yearcl' 'VPA' 'Ac-surv'
\(1989 \quad 393 \quad 273.6\)
\(1990269 \quad 227.7\)
\(1991 \quad 198 \quad 87.8\)
\(1992 \quad 375 \quad 165.2\)
\(1993 \quad 126 \quad 118.9\)
\(1994 \quad 165 \quad 36.7\)
\(1995 \quad 89 \quad 96.5\)
\(1996246 \quad 233.8\)
\(1997103 \quad 142.5\)
\(1998 \quad 160 \quad 275.9\)
1999 -11 206.1

Table 5.13 Analysis by RCT3 program
```

Analysis by RCT3 ver3.1 of data from file :

```

\section*{ret2-02.txt}

NORTHEAST ARCTIC SAITHE : recruits as 2 year-olds
```

Data for 1 surveys over 11 years : 1990 - 2000
Regression type = C
Tapered time weighting applied
power = 3 over 20 years
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . }2
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Year class = 1999

```

Year class \(=2000\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Survey/ \\
Series
\end{tabular} & Slope & Intercept & \[
\begin{gathered}
\text { Std } \\
\text { Error }
\end{gathered}
\] & Rsquare & \[
\begin{aligned}
& \text { No. } \\
& \text { Pts }
\end{aligned}
\] & \begin{tabular}{l}
Index \\
Value
\end{tabular} & Predicted Value & \[
\begin{aligned}
& \text { Std } \\
& \text { Error }
\end{aligned}
\] & \begin{tabular}{l}
WAP \\
Weights
\end{tabular} \\
\hline \multirow[t]{2}{*}{Ac-sur} & 1.09 & 1.08 & 1.09 & . 179 & 9 & 3.13 & 4.50 & 1.370 & . 106 \\
\hline & & & & & VPA & Mean \(=\) & 5.35 & . 473 & . 894 \\
\hline
\end{tabular}
\begin{tabular}{lccccccc}
Year & \begin{tabular}{c}
Weighted \\
Average \\
Class
\end{tabular} & \begin{tabular}{c}
Log \\
WAP
\end{tabular} & \begin{tabular}{c}
Int \\
Std \\
Error
\end{tabular} & \begin{tabular}{c}
Ext \\
Std \\
Error
\end{tabular} & \begin{tabular}{c}
Var \\
Ratio
\end{tabular} & VPA & \begin{tabular}{l}
Log \\
1999
\end{tabular} \\
2000 & 232 & 5.45 & .45 & .25 & .32 & VPA \\
& 192 & 5.26 & .45 & .26 & .35 &
\end{tabular}

Table 5.13 Analysis by RCT3 program (Cont.d) Analysis by RCT3 ver3.1 of data from file :
ret \(3-02 . t x t\)
NORTHEAST ARCTIC SAITHE : recruits as 3 year-olds
```

Data for 1 surveys over 11 years : 1989 - 1999

```
Regression type \(=C\)
Tapered time weighting applied
power \(=3\) over 20 years
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Year class = 1992
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Survey/ Series & Slope & Intercept & \begin{tabular}{l}
Std \\
Error
\end{tabular} & Rsquare & \begin{tabular}{l}
No. \\
Pts
\end{tabular} & Index Value & Predicted Value & \begin{tabular}{l}
Std \\
Error
\end{tabular} & WAP Weights \\
\hline \multirow[t]{2}{*}{Ac-sur} & \multirow[t]{2}{*}{. 62} & 2.40 & . 22 & . 823 & 3 & 5.11 & 5.58 & . 450 & . 366 \\
\hline & & & & & VPA & Mean = & 5.62 & . 342 & . 634 \\
\hline
\end{tabular}
Year class \(=1993\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Survey/ Series & Slope & Intercept & \begin{tabular}{l}
Std \\
Error
\end{tabular} & Rsquare & \begin{tabular}{l}
No. \\
Pts
\end{tabular} & Index Value & Predicted Value & \begin{tabular}{l}
Std \\
Error
\end{tabular} & \begin{tabular}{l}
WAP \\
Weights
\end{tabular} \\
\hline \multirow[t]{2}{*}{Ac-sur} & \multirow[t]{2}{*}{. 84} & \multirow[t]{2}{*}{1.34} & . 33 & . 580 & 4 & 4.79 & 5.38 & . 566 & . 241 \\
\hline & & & & & VPA & Mean = & 5.70 & . 319 & . 759 \\
\hline
\end{tabular}
Year class \(=1994\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Survey/ \\
Series
\end{tabular} & Slope & Intercept & \begin{tabular}{l}
Std \\
Error
\end{tabular} & Rsquare & \begin{tabular}{l}
No. \\
Pts
\end{tabular} & Index Value & Predicted Value & Std Error & WAP Weights \\
\hline Ac-sur & 1.45 & -1.83 & . 54 & . 503 & 5 & 3.63 & 3.42 & 1.356 & . 108 \\
\hline & & & & & VPA & Mean = & 5.53 & . 473 & . 892 \\
\hline
\end{tabular}
Year class \(=1995\)
I---------- Regression----------I I----------Prediction---------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP

Table 5.13 Analysis by RCT3 program (Cont.d)

Table 5.13 Analysis by RCT3 program (Cont.d)
\begin{tabular}{lccccccc}
\begin{tabular}{l}
Year \\
Class
\end{tabular} & \begin{tabular}{c}
Weighted \\
Average \\
Prediction
\end{tabular} & \begin{tabular}{c}
Log \\
WAP
\end{tabular} & \begin{tabular}{c}
Int \\
Std \\
Error
\end{tabular} & \begin{tabular}{c}
Ext \\
Std \\
Error
\end{tabular} & \begin{tabular}{c}
Var \\
Ratio
\end{tabular} & VPA & \begin{tabular}{c}
Log \\
VPA
\end{tabular} \\
1992 & 272 & 5.61 & .27 & .02 & .01 & 376 & 5.93 \\
1993 & 276 & 5.62 & .28 & .14 & .24 & 127 & 4.84 \\
1994 & 200 & 5.30 & .45 & .65 & 2.15 & 165 & 5.11 \\
1995 & 219 & 5.39 & .39 & .11 & .07 & 90 & 4.50 \\
1996 & 243 & 5.49 & .49 & .37 & .55 & 247 & 5.51 \\
1997 & 212 & 5.36 & .45 & .05 & .01 & 104 & 4.64 \\
1998 & 229 & 5.44 & .49 & .45 & .84 & 160 & 5.08 \\
1999 & 200 & 5.30 & .47 & .23 & .23 & &
\end{tabular}

Table 5.14 Prediction with management option table: input data MFDP version 1a
Run: 03
Time and date: 16:50 28.04.2003
Fbar age range: 2-11

2004
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Age} & \multicolumn{2}{|c|}{N} & M & & Mat & & PF & & PM & & , & Sel & & CWt \\
\hline & 2 & 211340 & & 0.2 & & 0 & & 0 & & 0 & 0.3987 & & 0.0030 & 0.3987 \\
\hline & 3. & & & 0.2 & & 0 & & 0 & & 0 & 0.6840 & & 0.0629 & 0.6840 \\
\hline & 4. & & & 0.2 & & 0.01 & & 0 & & 0 & 1.0457 & & 0.1627 & 1.0457 \\
\hline & 5. & & & 0.2 & & 0.55 & & 0 & & 0 & 1.5403 & & 0.2666 & 1.5403 \\
\hline & 6. & & & 0.2 & & 0.85 & & 0 & & 0 & 2.0380 & & 0.3908 & 2.0380 \\
\hline & 7. & & & 0.2 & & 0.98 & & 0 & & 0 & 2.6357 & & 0.3416 & 2.6357 \\
\hline & 8. & & & 0.2 & & 1 & & 0 & & 0 & 3.2133 & & 0.2995 & 3.2133 \\
\hline & 9. & & & 0.2 & & 1 & & 0 & & 0 & 3.7540 & & 0.3125 & 3.7540 \\
\hline & 10. & & & 0.2 & & 1 & & 0 & & 0 & 4.4030 & & 0.4102 & 4.4030 \\
\hline & 11. & & & 0.2 & & 1 & & 0 & & 0 & 5.7010 & & 0.4102 & 5.7010 \\
\hline
\end{tabular}

2005
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Age} & N & & M & & Mat & & PF & & & & Sel & CWt \\
\hline & 2 & 211340 & & 0.2 & & 0 & & 0 & 0 & 0.3987 & 0.0030 & 0.3987 \\
\hline & 3 & & & 0.2 & & 0 & & 0 & 0 & 0.6840 & 0.0629 & 0.6840 \\
\hline & 4 & & & 0.2 & & 0.01 & & 0 & 0 & 1.0457 & 0.1627 & 1.0457 \\
\hline & 5 & & & 0.2 & & 0.55 & & 0 & 0 & 1.5403 & 0.2666 & 1.5403 \\
\hline & 6 & & & 0.2 & & 0.85 & & 0 & 0 & 2.0380 & 0.3908 & 2.0380 \\
\hline & 7 & & & 0.2 & & 0.98 & & 0 & 0 & 2.6357 & 0.3416 & 2.6357 \\
\hline & 8 & & & 0.2 & & 1 & & 0 & 0 & 3.2133 & 0.2995 & 3.2133 \\
\hline & 9 & & & 0.2 & & 1 & & 0 & 0 & 3.7540 & 0.3125 & 3.7540 \\
\hline & 10 & & & 0.2 & & 1 & & 0 & 0 & 4.4030 & 0.4102 & 4.4030 \\
\hline & 11 & & & 0.2 & & 1 & & 0 & 0 & 5.7010 & 0.4102 & 5.7010 \\
\hline
\end{tabular}

Input units are thousands and kg - output in tonnes

Table 5.15 Yield per recruit: summary table
MFYPR version 2 a
Run: sop
Time and date: 12:14 29.04.2003
Yield per results
\begin{tabular}{cccccccccc}
FMult & Fbar & CatchNos & Yield & StockNos & Biomass & SpwnNosJan & SSBJan & SpwnNosSpwn & SSBSpwn \\
\hline 0.0000 & 0.0000 & 0.0000 & 0.0000 & 5.5167 & 12.3715 & 2.7126 & 10.1818 & 2.7126 & 10.1818 \\
0.1000 & 0.0221 & 0.0942 & 0.2906 & 5.0475 & 10.1438 & 2.2575 & 7.9756 & 2.2575 & 7.9756 \\
0.2000 & 0.0442 & 0.1630 & 0.4661 & 4.7051 & 8.5989 & 1.9288 & 6.4516 & 1.9288 & 6.4516 \\
0.3000 & 0.0662 & 0.2159 & 0.5760 & 4.4425 & 7.4725 & 1.6795 & 5.3455 & 1.6795 & 5.3455 \\
0.4000 & 0.0883 & 0.2580 & 0.6462 & 4.2334 & 6.6200 & 1.4834 & 4.5127 & 1.4834 & 4.5127 \\
0.5000 & 0.1104 & 0.2926 & 0.6916 & 4.0622 & 5.9558 & 1.3249 & 3.8675 & 1.3249 & 3.8675 \\
0.6000 & 0.1325 & 0.3215 & 0.7209 & 3.9190 & 5.4259 & 1.1941 & 3.3561 & 1.1941 & 3.3561 \\
0.7000 & 0.1545 & 0.3462 & 0.7396 & 3.7970 & 4.9951 & 1.0842 & 2.9432 & 1.0842 & 2.9432 \\
0.8000 & 0.1766 & 0.3676 & 0.7511 & 3.6916 & 4.6389 & 0.9907 & 2.6045 & 0.9907 & 2.6045 \\
0.9000 & 0.1987 & 0.3863 & 0.7578 & 3.5995 & 4.3403 & 0.9100 & 2.3228 & 0.9100 & 2.3228 \\
1.0000 & 0.2208 & 0.4028 & 0.7611 & 3.5181 & 4.0870 & 0.8399 & 2.0860 & 0.8399 & 2.0860 \\
1.1000 & 0.2428 & 0.4176 & 0.7621 & 3.4455 & 3.8698 & 0.7783 & 1.8847 & 0.7783 & 1.8847 \\
1.2000 & 0.2649 & 0.4309 & 0.7615 & 3.3803 & 3.6817 & 0.7239 & 1.7122 & 0.7239 & 1.7122 \\
1.3000 & 0.2870 & 0.4429 & 0.7598 & 3.3213 & 3.5174 & 0.6755 & 1.5631 & 0.6755 & 1.5631 \\
1.4000 & 0.3091 & 0.4539 & 0.7574 & 3.2677 & 3.3729 & 0.6321 & 1.4333 & 0.6321 & 1.4333 \\
1.5000 & 0.3311 & 0.4639 & 0.7545 & 3.2186 & 3.2448 & 0.5931 & 1.3196 & 0.5931 & 1.3196 \\
1.6000 & 0.3532 & 0.4732 & 0.7512 & 3.1735 & 3.1305 & 0.5579 & 1.2193 & 0.5579 & 1.2193 \\
1.7000 & 0.3753 & 0.4817 & 0.7476 & 3.1318 & 3.0280 & 0.5259 & 1.1304 & 0.5259 & 1.1304 \\
1.8000 & 0.3974 & 0.4897 & 0.7440 & 3.0932 & 2.9356 & 0.4967 & 1.0512 & 0.4967 & 1.0512 \\
1.9000 & 0.4194 & 0.4971 & 0.7403 & 3.0573 & 2.8517 & 0.4700 & 0.9804 & 0.4700 & 0.9804 \\
2.0000 & 0.4415 & 0.5040 & 0.7366 & 3.0237 & 2.7754 & 0.4456 & 0.9167 & 0.4456 & 0.9167 \\
\hline
\end{tabular}
\begin{tabular}{lcc}
Reference point & F multiplier & Absolute \(\mathbf{F}\) \\
\hline Fbar(3-6) & 1.0000 & 0.2208 \\
FMax & 1.1077 & 0.2445 \\
F0.1 & 0.4918 & 0.1086 \\
F35\%SPR & 0.5567 & 0.1229
\end{tabular}

Weights in kilograms

Table 5.16 Prediction with management optin table MFDP version 1a
Run: 03
North-East Arctic saithe
Time and date: 12:11 29.04.2003
Fbar age range: 3-6
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
\[
2003
\] \\
Biomass
\end{tabular} & SSB & FMult & FBar & Landings & & \\
\hline 866212 & 437232 & 1.0201 & 0.2252 & 164000 & & \\
\hline 2004 & & & & & 2005 & \\
\hline Biomass & SSB & FMult & FBar & Landings & Biomass & SSB \\
\hline 859129 & 438371 & 0.0000 & 0.0000 & 0 & 1039643 & 592614 \\
\hline . & 438371 & 0.1000 & 0.0221 & 18233 & 1018817 & 574656 \\
\hline . & 438371 & 0.2000 & 0.0442 & 35925 & 998617 & 557279 \\
\hline . & 438371 & 0.3000 & 0.0662 & 53092 & 979023 & 540462 \\
\hline . & 438371 & 0.4000 & 0.0883 & 69752 & 960014 & 524187 \\
\hline . & 438371 & 0.5000 & 0.1104 & 85921 & 941573 & 508435 \\
\hline . & 438371 & 0.6000 & 0.1325 & 101615 & 923679 & 493189 \\
\hline . & 438371 & 0.7000 & 0.1545 & 116851 & 906316 & 478432 \\
\hline . & 438371 & 0.8000 & 0.1766 & 131641 & 889465 & 464147 \\
\hline . & 438371 & 0.9000 & 0.1987 & 146002 & 873111 & 450319 \\
\hline . & 438371 & 1.0000 & 0.2208 & 159947 & 857237 & 436931 \\
\hline . & 438371 & 1.1000 & 0.2428 & 173490 & 841827 & 423970 \\
\hline . & 438371 & 1.2000 & 0.2649 & 186642 & 826867 & 411421 \\
\hline . & 438371 & 1.3000 & 0.2870 & 199418 & 812342 & 399270 \\
\hline . & 438371 & 1.4000 & 0.3091 & 211828 & 798237 & 387504 \\
\hline . & 438371 & 1.5000 & 0.3311 & 223885 & 784540 & 376110 \\
\hline . & 438371 & 1.6000 & 0.3532 & 235600 & 771237 & 365076 \\
\hline . & 438371 & 1.7000 & 0.3753 & 246984 & 758316 & 354390 \\
\hline . & 438371 & 1.8000 & 0.3974 & 258047 & 745764 & 344039 \\
\hline . & 438371 & 1.9000 & 0.4194 & 268800 & 733570 & 334014 \\
\hline . & 438371 & 2.0000 & 0.4415 & 279252 & 721722 & 324304 \\
\hline
\end{tabular}

Input units are thousands and kg - output in tonnes

Table 5.17 A, medium term projection Fpa
MFDP version 1a
Run: fpa
North-East Arctic saithe
Time and date: 09:05 02.05.2003
Fbar age range: 3-6
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{2003} & \multirow[b]{2}{*}{FMult} & & \multirow[b]{2}{*}{Landings} & & \\
\hline Biomass & SSB & & FBar & & & \\
\hline 866212 & 437232 & 1.0201 & 0.2252 & 164000 & & \\
\hline 2004 & & & & & & \\
\hline Biomass & SSB & FMult & FBar & Landings & & \\
\hline 859129 & 438371 & 1.1777 & 0.26 & 183744 & & \\
\hline 2005 & & & & & & \\
\hline Biomass & SSB & FMult & FBar & Landings & & \\
\hline 830163 & 414183 & 1.1777 & 0.26 & 176314 & & \\
\hline 2006 & & & & & & \\
\hline Biomass & SSB & FMult & FBar & Landings & & \\
\hline 810744 & 394711 & 1.1777 & 0.26 & 169363 & & \\
\hline 2007 & & & & & & \\
\hline \multirow[t]{2}{*}{Biomass
\[
801395
\]} & SSB & FMult & FBar & Landings & & \\
\hline & 384546 & 1.1777 & 0.26 & 165510 & & \\
\hline 2008 & & & \multirow[b]{2}{*}{FBar} & \multicolumn{2}{|r|}{2009} & \\
\hline \multirow[t]{2}{*}{Biomass
\[
794136
\]} & SSB & FMult & & Landings & Biomass & SSB \\
\hline & 377179 & 0 & 0 & 0 & 980114 & 532514 \\
\hline . & 377179 & 0.1 & 0.0221 & 16173 & 961371 & 516594 \\
\hline . & 377179 & 0.2 & 0.0442 & 31873 & 943181 & 501184 \\
\hline . & 377179 & 0.3 & 0.0662 & 47117 & 925527 & 486266 \\
\hline . & 377179 & 0.4 & 0.0883 & 61919 & 908390 & 471825 \\
\hline . & 377179 & 0.5 & 0.1104 & 76294 & 891756 & 457843 \\
\hline . & 377179 & 0.6 & 0.1325 & 90254 & 875607 & 444307 \\
\hline . & 377179 & 0.7 & 0.1545 & 103814 & 859927 & 431200 \\
\hline . & 377179 & 0.8 & 0.1766 & 116986 & 844701 & 418509 \\
\hline - & 377179 & 0.9 & 0.1987 & 129782 & 829916 & 406220 \\
\hline . & 377179 & 1 & 0.2208 & 142215 & 815556 & 394319 \\
\hline . & 377179 & 1.1 & 0.2428 & 154297 & 801608 & 382794 \\
\hline . & 377179 & 1.2 & 0.2649 & 166037 & 788059 & 371631 \\
\hline . & 377179 & 1.3 & 0.287 & 177448 & 774896 & 360819 \\
\hline . & 377179 & 1.4 & 0.3091 & 188539 & 762107 & 350347 \\
\hline . & 377179 & 1.5 & 0.3311 & 199321 & 749680 & 340203 \\
\hline . & 377179 & 1.6 & 0.3532 & 209804 & 737603 & 330375 \\
\hline . & 377179 & 1.7 & 0.3753 & 219996 & 725865 & 320855 \\
\hline . & 377179 & 1.8 & 0.3974 & 229907 & 714456 & 311631 \\
\hline . & 377179 & 1.9 & 0.4194 & 239546 & 703365 & 302694 \\
\hline & 377179 & 2 & 0.4415 & 248921 & 692583 & 294034 \\
\hline
\end{tabular}

Input units are thousands and kg - output in tonnes

Table 5.17 B medium term projection, Fsq
MFDP version 1a
Run: fsq
North-East Arctic saithe
Time and date: 09:04 02.05.2003
Fbar age range: 3-6
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{2003} \\
\hline Biomass & SSB & FMult & FBar & Landings \\
\hline 866212 & 437232 & 1.0201 & 0.2252 & 164000 \\
\hline \multicolumn{5}{|l|}{2004} \\
\hline Biomass & SSB & FMult & FBar & Landings \\
\hline 859129 & 438371 & 1 & 0.2207 & 159947 \\
\hline \multicolumn{5}{|l|}{2005} \\
\hline Biomass & SSB & FMult & FBar & Landings \\
\hline 857237 & 436931 & 1 & 0.2208 & 160530 \\
\hline \multicolumn{5}{|l|}{2006} \\
\hline Biomass & SSB & FMult & FBar & Landings \\
\hline 856367 & 434756 & 1 & 0.2208 & 159364 \\
\hline \multicolumn{5}{|l|}{2007} \\
\hline Biomass & SSB & FMult & FBar & Landings \\
\hline 859401 & 436654 & 1 & 0.2208 & 159184 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{2008} & \multirow[b]{2}{*}{FMult} & \multirow[b]{2}{*}{FBar} & \multicolumn{3}{|c|}{2009} \\
\hline Biomass & SSB & & & Landings & Biomass & SSB \\
\hline 859610 & 436709 & 0 & 0 & 0 & 1044782 & 595098 \\
\hline & 436709 & 0.1 & 0.0221 & 18173 & 1023873 & 577059 \\
\hline & 436709 & 0.2 & 0.0442 & 35807 & 1003591 & 559603 \\
\hline & 436709 & 0.3 & 0.0662 & 52920 & 983918 & 542710 \\
\hline & 436709 & 0.4 & 0.0883 & 69529 & 964832 & 526362 \\
\hline & 436709 & 0.5 & 0.1104 & 85650 & 946314 & 510540 \\
\hline . & 436709 & 0.6 & 0.1325 & 101299 & 928346 & 495227 \\
\hline & 436709 & 0.7 & 0.1545 & 116491 & 910911 & 480405 \\
\hline . & 436709 & 0.8 & 0.1766 & 131241 & 893990 & 466057 \\
\hline . & 436709 & 0.9 & 0.1987 & 145563 & 877566 & 452169 \\
\hline . & 436709 & 1 & 0.2208 & 159472 & 861625 & 438723 \\
\hline . & 436709 & 1.1 & 0.2428 & 172980 & 846149 & 425707 \\
\hline & 436709 & 1.2 & 0.2649 & 186100 & 831125 & 413104 \\
\hline . & 436709 & 1.3 & 0.287 & 198845 & 816537 & 400902 \\
\hline . & 436709 & 1.4 & 0.3091 & 211227 & 802372 & 389088 \\
\hline & 436709 & 1.5 & 0.3311 & 223257 & 788615 & 377647 \\
\hline & 436709 & 1.6 & 0.3532 & 234947 & 775254 & 366568 \\
\hline & 436709 & 1.7 & 0.3753 & 246307 & 762276 & 355838 \\
\hline . & 436709 & 1.8 & 0.3974 & 257348 & 749668 & 345446 \\
\hline & 436709 & 1.9 & 0.4194 & 268079 & 737420 & 335382 \\
\hline & 436709 & 2 & 0.4415 & 278512 & 725519 & 325633 \\
\hline
\end{tabular}

Input units are thousands and kg - output in tonnes

Figure 5.1 A and B, Yield and spawning stock biomass

MFYPR version 2a
Run: sop
Time and date: 12:14 29.04.2003
\begin{tabular}{lcc}
\multicolumn{1}{r}{ Reference point } & F multiplier & Absolute F \\
\hline Fbar(3-6) & 1.0000 & 0.2208 \\
FMax & 1.1077 & 0.2445 \\
F0.1 & 0.4918 & 0.1086 \\
F35\%SPR & 0.5567 & 0.1229
\end{tabular}

Weights in kilograms

MFDP version 1a
Run: 03
North-East Arctic saithe
Time and date: 12:11 29.04.2003
Fbar age range: 3-6
Input units are thousands and kg - output in tonnes

Figure 5.2A. North-East Arctic Saithe - Acoustic survey vs VPA

Figure 5.2B. North-East Arctic Saithe - Norwegian purse seine vs VPA

Figure 5.2C. North-East Arctic Saithe - Norwegian trawl vs VPA

Figure \(5.3 \log Q\) se residuals NeA saithe, XSA
\begin{tabular}{lrrrrrrrr}
age & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
Purse seine & 0.8019 & 0.4436 & 0.8395 & 0.8146 & 0.7282 & & \\
Nor trawl & & & 0.3246 & 0.4316 & 0.3542 & 0.3103 & 0.7502 \\
Nor ac. Survey age 3-6 & 0.6762 & 0.2801 & 0.2891 & 0.6835 & & & \\
Nor ac. Sul 0.8988 & 0.6297 & 0.3338 & 0.3111 & 0.6673 & & & \\
Nor trawl age 5-8 & & & 0.3224 & 0.4296 & 0.3513 & 0.3115 & &
\end{tabular}

The three tuning fleets marked as "solid lines" were allocated as tuning fleets used in afwg 2003 assessment.

SSB according to \(\mathrm{Fbar}=0.26\) (Fpa)

SSB according to \(\mathrm{Fbar}=0.22\) (F status quo)
Figure 5.4 Risk analysis on medium-term projections, time span 2003-2007 (Continued)

\section*{NeA Saithe RETROSPECTIVE XSA (Shrinkage SE=0.5) \\ P-shrinkage OFF}

Figure 5.5

Figure 5.6 Northeast Arctic saithe (Subareas I and II)

Table C. 1 Northeast Arctic saithe. Catches splitted on vessels with catch < 100 t and \(>100 \mathrm{t}\),
and number of vessels with catch \(>100 \mathrm{t}\) scaled by total purse seine catch
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & \multicolumn{3}{|l|}{No. of vessels with catch} & \multicolumn{2}{|l|}{\[
\begin{array}{|c|}
\hline \text { No. of vessels in \% } \\
\text { with catch } \\
<100(t)>100(t) \\
\hline
\end{array}
\]} & \multicolumn{3}{|l|}{Catch from vessel with catch} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Catch in \% \\
by vessel
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Catch per vessel \\
by vessel
\[
<100(\mathrm{t}) \quad>100(\mathrm{t})
\]
\end{tabular}} & effort, by vessel>100(t) scaled to total \\
\hline 1989 & 160 & 109 & 269 & 59\% & 41\% & 4,164.8 & 44,308.7 & 48,473.5 & 9\% & 91\% & 26.0 & 406.5 & 119.2 \\
\hline 1990 & 110 & 51 & 161 & 68\% & 32\% & 2,340.7 & 22,277.5 & 24,618.2 & 10\% & 90\% & 21.3 & 435.8 & 56.4 \\
\hline 1991 & 105 & 92 & 197 & 53\% & 47\% & 2,568.5 & 36,329.4 & 38,897.9 & 7\% & 93\% & 24.5 & 394.9 & 98.5 \\
\hline 1992 & 89 & 80 & 169 & 53\% & 47\% & 2,670.7 & 24,206.3 & 26,877.0 & 10\% & 90\% & 30.0 & 302.6 & 88.8 \\
\hline 1993 & 41 & 69 & 110 & 37\% & 63\% & 1,319.4 & 31,831.5 & 33,150.9 & 4\% & 96\% & 32.2 & 461.3 & 71.9 \\
\hline 1994 & 56 & 75 & 131 & 43\% & 57\% & 1,601.3 & 27,746.3 & 29,347.6 & 5\% & 95\% & 28.6 & 370.0 & 79.3 \\
\hline 1995 & 72 & 48 & 120 & 60\% & 40\% & 1,762.7 & 20,137.6 & 21,900.3 & 8\% & 92\% & 24.5 & 419.5 & 52.2 \\
\hline 1996 & 83 & 79 & 162 & 51\% & 49\% & 1,653.7 & 45,194.5 & 46,848.2 & 4\% & 96\% & 19.9 & 572.1 & 81.9 \\
\hline 1997 & 69 & 88 & 157 & 44\% & 56\% & 1,942.7 & 42,357.8 & 44,300.5 & 4\% & 96\% & 28.2 & 481.3 & 92.0 \\
\hline 1998 & 193 & 118 & 311 & 62\% & 38\% & 4,141.5 & 40,234.0 & 44,375.5 & 9\% & 91\% & 21.5 & 341.0 & 130.1 \\
\hline 1999 & 213 & 115 & 328 & 65\% & 35\% & 5,314.0 & 33,885.0 & 39,199.0 & 14\% & 86\% & 24.8 & 293.8 & 133.0 \\
\hline 2000 & 200 & 102 & 302 & 66\% & 34\% & 5,308.0 & 22,922.0 & 28,230.0 & 19\% & 81\% & 26.5 & 224.7 & 125.6 \\
\hline 2001 & 215 & 87 & 302 & 71\% & 29\% & 4,715.0 & 23,396.0 & 28,111.0 & 17\% & 83\% & 21.9 & 268.9 & 104.5 \\
\hline 2002 & 229 & 68 & 297 & 77\% & 23\% & 3,435.0 & 23,995.0 & 27,430.0 & 13\% & 87\% & 15.0 & 352.9 & 77.7 \\
\hline Mean & 131.1 & 84.4 & 215.4 & 58\% & 42\% & 3,067.0 & 31,344.4 & 34,411.4 & 9\% & 91\% & 24.6 & 380.4 & 93.7 \\
\hline
\end{tabular}

1 Provisional figures.

Table C. 2 Northeast Arctic saithe. Trawl CPUE by agegroup.
Catch in numbers per trawlhour.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year & \multicolumn{9}{|c|}{Agegroup} \\
\hline & effort & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 1993 & 1 & 91.3 & 338.6 & 376.7 & 59.5 & 23.4 & 23.7 & 10.9 & 15.5 \\
\hline 1994 & 1 & 8.1 & 136.9 & 395.6 & 260.4 & 37.4 & 8.2 & 4.2 & 5.6 \\
\hline 1995 & 1 & 40.8 & 200.4 & 293.8 & 359.1 & 65.8 & 11.1 & 1.2 & 3.0 \\
\hline 1996 & 1 & 27.3 & 140.3 & 139.5 & 205.6 & 293.0 & 32.9 & 8.5 & 0.2 \\
\hline 1997 & 1 & 49.1 & 65.7 & 371.4 & 194.1 & 183.4 & 112.0 & 16.9 & 3.0 \\
\hline 1998 & 1 & 3.3 & 33.0 & 55.3 & 244.0 & 93.1 & 56.6 & 16.1 & 7.8 \\
\hline 1999 & 1 & 15.6 & 37.7 & 105.5 & 80.0 & 187.5 & 43.0 & 30.8 & 9.2 \\
\hline 2000 & 1 & 9.4 & 71.5 & 78.7 & 170.1 & 100.2 & 156.2 & 44.5 & 56.0 \\
\hline 2001 & 1 & 8.3 & 50.2 & 276.4 & 194.4 & 183.1 & 77.1 & 109.9 & 48.4 \\
\hline \(2002{ }^{2}\) & 1 & 11.2 & 80.0 & 122.7 & 396.0 & 84.9 & 78.9 & 39.5 & 68.2 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{2}\) Provisional figures.
}

Table C. 3 Northeast Arctic saithe. Acoustic abundance indices from Norwegian surveys in October-November. In 1985-1987 the area was incomplete. Numbers in millions.
\begin{tabular}{c|r|r|rrrrrr}
\hline Year & \multicolumn{7}{|c}{ Age } \\
\cline { 2 - 8 } & \multicolumn{1}{|c|}{2} & \multicolumn{2}{|c}{3} & \multicolumn{2}{c}{4} & \multicolumn{1}{c}{5} & \multicolumn{1}{c}{\(6+\)} & Total \\
\hline 1985 & 3.1 & 4.9 & 2.4 & 0.5 & 0.0 & 10.9 \\
1986 & 19.5 & 40.8 & 3.6 & 1.8 & 1.8 & 67.5 \\
1987 & 1.8 & 22.0 & 48.4 & 1.8 & 1.7 & 75.7 \\
1988 & 15.7 & 22.5 & 19.0 & 7.1 & 0.6 & 64.9 \\
1989 & 24.8 & 28.4 & 17.0 & 10.1 & 12.4 & 92.7 \\
1990 & 99.6 & 31.9 & 14.7 & 5.1 & 7.4 & 158.7 \\
1991 & 87.8 & 104.0 & 4.6 & 4.0 & 7.1 & 207.5 \\
1992 & 163.5 & 273.6 & 57.5 & 6.2 & 8.8 & 509.6 \\
1993 & 106.9 & 227.7 & 103.9 & 12.7 & 3.2 & 454.4 \\
1994 & 34.4 & 87.8 & 112.4 & 39.5 & 10.0 & 284.1 \\
1995 & 38.7 & 165.2 & 87.0 & 46.8 & 20.0 & 357.7 \\
1996 & 37.0 & 118.9 & 214.7 & 32.1 & 19.3 & 422.0 \\
1997 & 5.1 & 36.7 & 185.8 & 79.8 & 61.7 & 369.1 \\
1998 & 43.6 & 96.5 & 200.6 & 70.0 & 96.7 & 507.4 \\
1999 & 61.1 & 233.8 & 72.9 & 62.2 & 47.8 & 477.8 \\
2000 & 164.8 & 142.5 & 176.3 & 11.6 & 26.5 & 521.7 \\
2001 & 104.7 & 275.9 & 45.9 & 53.8 & 20.1 & 500.4 \\
2002 & 21.9 & 206.1 & 88.1 & 18.2 & 14.9 & 349.2 \\
\hline
\end{tabular}

Table C. 4 Northeast Arctic saithe. Acoustic abundance indices from Norwegian coast and fjord surveys by Fiskeriforskning, using ALKs from IMR's survey the same year. Numbers in thousands. Only inner parts of areas A,C and D (which are not covered by IMR) are included.
\begin{tabular}{r|rrrrrrrrrrrr|}
\hline & \multicolumn{12}{|c|}{ agegroup } \\
\cline { 2 - 13 } Year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \(6+\) & Total \\
\hline & & & & & & & & & & & & \\
1995 & 680 & 13686 & 33703 & 9365 & 5695 & 2404 & 1342 & 708 & 110 & 171 & 4735 & 67865 \\
1996 & 453 & 8332 & 21694 & 39385 & 7477 & 9440 & 3868 & 1249 & 0 & 0 & 14556 & 91897 \\
1997 & 713 & 3410 & 7249 & 25713 & 7163 & 3741 & 2001 & 727 & 66 & 114 & 6648 & 50896 \\
1998 & 1561 & 4451 & 3277 & 4260 & 1562 & 1257 & 1027 & 1854 & 378 & 332 & 4848 & 19958 \\
1999 & 305 & 1166 & 14044 & 1869 & 4916 & 1790 & 3098 & 4414 & 991 & 511 & 10804 & 33104 \\
2000 & 0 & 6170 & 6617 & 9221 & 1463 & 4963 & 1565 & 1504 & 1163 & 8585 & 17780 & 41251 \\
2001 & 0 & 13036 & 18232 & 7494 & 7523 & 2249 & 2799 & 1067 & 2404 & 7728 & 16247 & 62532 \\
2002 & 303 & 1591 & 3225 & 1792 & 1052 & 3640 & 1430 & 1825 & 1370 & 1718 & 9984 & 17947 \\
\hline
\end{tabular}

\subsection*{6.1 Status of the Fisheries}

\subsection*{6.1.1 Historical development of the fishery}

A description of the historical development of the fishery is found in the Quality handbook for this stock (see Annex....).

Since 1 January 2003 the regulations for this stock have been enlarged since from this date all directed trawl fishery for redfish (both \(S\). marinus and \(S\). mentella) outside the permanently closed areas is forbidden in the Norwegian Economic Zone north of \(62^{\circ} \mathrm{N}\) and in the Svalbard area. When fishing for other species it is legal to have up to \(20 \%\) redfish (both species together) in round weight as by-catch per haul and on board at any time.

\subsection*{6.1.2 Landings prior to 2003 (Tables 6.1-6.4, D1-D2)}

Nominal catches of S. mentella by country for Subareas I and II combined are presented in Table 6.1, and for both redfish species (i.e., S. mentella and S. marinus) in Table D1. The nominal catches by country for Subarea I and Divisions IIa and IIb are shown in Tables 6.2-6.4.

After a continuous decrease in the total landings from \(48,727 \mathrm{t}\) in 1991 to a historical low at about 8,000 t in 1996 and 1997. Apart from a temporary increase of \(18,434 \mathrm{t}\) in 2001, caused by Norwegian trawlers obtaining very good catch rates along the continental slope outside the closed areas in winter 2001, the catches decreased to 7,022 t in 2002.

The redfish population in Subarea IV (North Sea) is believed to belong to the Northeast Arctic stock. Since this area is outside the traditional areas handled by this Working Group, the catches are not included in the assessment. The total redfish landings from Subarea IV have been 1,000-3,000 t per year, and show a preliminary landing of about 1,000 tin 2002 (Table D2).

\subsection*{6.1.3 Expected landings in 2003}

There will be no directed fishery for \(S\). mentella in 2003, and in addition, the legal by-catch percentage has been reduced from \(25 \%\) (previous regulations for northern areas only) to \(20 \%\) (new regulations for all areas) from 2003 onwards. Based on these new strengthened regulations, and reports from the first months in 2003, the total landings of S. mentella for 2003 are expected to be \(\mathbf{3 , 0 0 0} \mathbf{t}\).

\subsection*{6.2 Data used in the Assessment}

All input data sets were updated up to and including 2002.

\subsection*{6.2.1 Fishing effort and catch-per-unit-effort (Table D3, Figure 6.8)}

CPUEs (catch per hour trawling) from Russian BMRT-trawlers fishing in ICES Division IIa in March-May 1975-2002, representative for the directed Russian fishery accounting for \(60-80 \%\) of the total Russian catch, are plotted in Figure 6.8. The Working Group considers that the Russian trawl CPUE series do not represent the trend in stock size but is more a reflection of stock density. This is because the fishery on which these data are based since 1996 was carried out by one or two vessels on localised concentrations in the Kopytov area southwest of Bear Island. In 2002, no BMRT-trawlers were fishing, and CPUE from the PST-trawlers have therefore been converted to BMRT-units (based on historic comparisons of these trawler types) in order to maintain the time-series. Figure 6.8 shows a considerable drop in the CPUE from 2001 to 2002, which probably is influenced by an increased effort (15-20 vessels).

\subsection*{6.2.2 Catch-at-age (Table 6.5)}

Catch-at-age for 2000-2001 was revised according to new catch data. Age data for 2002 for \(S\). mentella were only available from Norway. Russian length distributions were available from all Subareas/Divisions, and these were converted to age using the total Norwegian age-length key from trawl. The landings from other countries were distributed on age according to the Norwegian age distribution.

The Norwegian fishery along the slope outside Lofoten in winter 2001 was composed of fish older than 18 years, making a big plus-group in the catch-at-age matrix. Although this area also was open for fishing in 2002, the trawlers did not find similar \(S\). mentella concentrations.

\subsection*{6.2.3 Weight-at-age (Table 6.6)}

Catch weight-at-age data for 2002 were available from Norway (Table 6.6). The weight-at-age in the stock was set equal to the weight-at-age in the catch. It should be investigated further whether it would be better to use a constant weight-at-age series (e.g., based on survey information) instead of catch weight-at-age which may vary due to changes and selections in the fisheries and not due to growth changes in the stock.

\subsection*{6.2.4 Maturity-at-age (Tables 6.7 and D9)}

Age-based maturity ogives for S. mentella (sexes combined) were available for 2000 and 2001 from Russian research vessel observations in spring. For 2002, when the Russian research vessel did not get access to the survey area, a weighted (by sample size) average of the 2000 and 2001 data was used.

\subsection*{6.2.5 Survey results (Tables A14, D4-D8, Figures 6.1-6.7)}

The results from the following research vessel survey series were evaluated by the Working Group:
1) The international 0-group survey in the Svalbard and Barents Sea areas in August-September (Table A14 and Figure 6.1).
2) Russian bottom trawl survey in the Svalbard and Barents Sea areas in October-December from 1978-2001 in fishing depths of 100-900 m (Table D4, Figure 6.2).
3) Norwegian Svalbard (Division IIb) bottom trawl survey (August-September) from 1986-2002 in fishing depths of 100-500 m. Data disaggregated by age only for the years 1992-2002 (Table D5a,b and Figure 6.3a,b).
4) Norwegian Barents Sea bottom trawl survey (February) from 1986-2003 (joint with Russia since 2000) in fishing depths of 100-500 m. Data disaggregated by age only for the years 1992-2003 (Tables D6a,b and Figures 6.4a,b).

Although the Norwegian Svalbard (August-September) and Barents Sea (February) groundfish surveys are conducted at different times of the year and may overlap in the south of Bear Island area, the two series can be combined to get an approximate total estimate for the whole area. This has been done in Figures 6.5a,b.
5) A new Norwegian survey designed for redfish and Greenland halibut covers the Norwegian Economic Zone (NEZ) and Svalbard incl. north and east of Spitsbergen in August 1996-2002 from less than 100 m to 500 m depth (Table D7, Figure 6.6). This survey includes survey no. 3 above.
6) Russian acoustic survey in April-May from 1992-2001 (except 1994 and 1996) on S. mentella spawning grounds in the western Barents Sea (Table D8, Figure 6.7).

A considerable reduction in the abundance of 0 -group redfish has been observed since 1991: abundance decreased to only \(20 \%\) of the 1979-1990 average. With the exception of an abundance index of twice the 1991-level in 1994, the indices have remained very low. Record low levels of less than \(20 \%\) of the 1991-1995 average have been observed for the 1996-1999 year classes. The 2000 year class was stronger than the preceding four year classes, whereas the estimate of the 2001 and 2002 year classes are among the lowest on record.

The Norwegian Svalbard groundfish survey in August-September (Table D5a,b and Figures 6.3a,b), with age disaggregated data from 1992 onwards, shows some relatively good year classes (1988-1990) followed by weak ones after 1991.

Since 1981, a stratified bottom trawl survey, targeted for cod and haddock, has been carried out by Norway in February in the Barents Sea, and joint with Russia since 2000. The results for S. mentella are available by length from 1986-2003 and are age disaggregated from 1992 onwards (Tables D6a,b and Figures 6.4a,b). Also in this survey the 1988-1990 year classes (possibly also the 1987 year class) are stronger than the adjacent ones. In this survey the 1991-1992 year classes are poor, while the 1993-1995 year classes which seemed to be at an intermediate level as 1-3 year olds have decreased since then and must now be considered poor.

In the Russian bottom trawl survey the most recent estimates are among the lowest observed (Table D4, Figure 6.2). The overall picture of the relative strength of the year classes is, however, very similar in the Russian and Norwegian surveys.

The decrease in the abundance of young redfish in the surveys is consistent with the decline in the consumption of redfish by cod from 1995 onwards (Tables 1.3, 1.4 and Figure 6.5a).

Russian acoustic surveys estimating the commercial sized and mature part of the \(S\). mentella stock have been conducted in April-May on the Malangen, Kopytov, and Bear Island Banks since 1986. Table D8 shows a \(43 \%\) decrease in the estimated spawning stock biomass in 1997 to a low level that was observed up to 2000 inclusive. The strong 1982-year class migrating west-southwest and out of the surveyed area could explain this. The next year classes expected to contribute significantly to the spawning stock (i.e., the 1987-1990 year classes) are now more than \(50 \%\) mature (males before females), and these year classes contributed in the 2001 survey to a three fold increase in the survey abundance of mature fish (Table D8, Figure 6.7). This is the only survey targeting commercial sized S. mentella, but only a limited area of its distribution. In 2002 it was unfortunately impossible to run this survey due to denied access to the NEZ.

\subsection*{6.3 Results of the Assessment (Tables 6.8-6.14, Figures 6.9-6.11)}

All available information since last year's assessment confirms the poor condition of this stock. The surveys indicate that recruitment continues to decline.

Length and age data from Norwegian and Russian surveys show that the 1982 and 1983 year classes are stronger than those just before and after. The 1988-1990 year classes (possibly also the 1987 year class) appear to be at a similar level to those of 1982-1983. The 0 -group survey indicates at present record low levels of \(S\). mentella. There is no doubt that the recruitment to the fishable biomass will be poor after a short period of expected increase in the fishable stock due to the 1987-1990 year classes.

Any improvement of the stock condition is not expected until a significant increase in spawning stock biomass has been detected in surveys with a following increase in the number of juveniles. As long as the recruitment of new year classes is very poor and no signs of improved recruitment have appeared, it is of crucial importance that the 1987-1990 year classes (approx. \(30-36 \mathrm{~cm}\)) which currently have recruited more than \(50 \%\) to the spawning stock are protected.

It is also of vital importance that the younger recruiting year classes be given the strongest possible protection from being taken as by-catch in any fishery, e.g., the shrimp fisheries in the Barents Sea and Svalbard area. This will ensure that they can contribute as much as possible to the stock rebuilding.

The Working Group has previously been asked by ACFM to provide results of exploratory XSA analyses. A XSA was run with settings similar to recent years. Only fishery independent tuning series were included, and the time-series was reduced due to changed age reading method in 1991 and improved surveys since then. Standard errors of \(\log\) catchability at age for the different fleets used for tuning the XSA are shown in graphically in Figure 6.9. Log catchability residuals are shown in Figure 6.10 for single fleet runs.

Although the two Norwegian survey series covering the Barents Sea in winter and Svalbard in summer extend 4 more years back in time than the new Norwegian survey, last year's working group rejected these series as they produced an unlikely stock development. This is caused most probably by their limited area coverage, partly overlapping, and therefore not easy to combine directly.

Input tuning data for the final exploratory run are given in Table 6.8. Results from the exploratory XSA runs, excluding ages 12-16 from the new Norwegian survey (F14), are shown in Figure 6.11, and the diagnostics are presented in Table 6.9. The XSA output results are shown in Tables 6.10-6.14. The handling of the plus-group in the XSA leads to contradictory results, i.e., the low F on the oldest true age group (F-old) in 2000 generates a higher plus-group biomass than the very large plus-group in the catches of 2001, accounting for ca. \(50 \%\) of the catch-in-numbers. To overcome this problem and to get a picture of the SSB, a traditional VPA was used to calculate the plus-group. The input of F-old was iterated to F10-16, assuming a flat fishing pattern, and the F-at-age for 2002 from the XSA was used as input for the Fs in the last year.

The results from the traditional/standard VPA are plotted in Figure 6.11. The results suggest a spawning stock level about \(50 \%\) of the level in the early 1990s.

\subsection*{6.4 Comments to the assessment}

An expected increase in the fishable stock due to the last strong year classes 1987-1990 observed in the research surveys is not showing up in the exploratory XSA/VPA run, neither in the Russian trawl fishery. It is difficult to interpret the increase (Figure 6.8) in the Russian catch rates of 11-15 year old fish in 2000-2001 in relation to the stock development, since the
catch rates decreased again in 2002 when more effort was used (15-20 vessels). Preliminary survey data on \(S\). mentella from the Greenland halibut survey along the western slope of the Barents Sea deeper than 400 m from 68 N to 80 N show lower abundance in 2002. It is therefore highly recommended to produce survey maps to visualize any specific migration pattern of the \(S\). mentella to better explain why the shown increase of 12 years and older fish in some surveys do not show up in other data series.

The trawlers did not find similar concentrations of plus-group S. mentella in 2002 compared to the year before. The current most likely explanation for this temporary increase is therefore that these old fish may migrate in from the Norwegian Sea and settle on the fishing grounds along the continental slope some years. However, this is probably only a minor buffer to the stock as long as the recruitment to the stock, as observed by surveys expected to cover the entire nursery area, is critically low.

The Working Group would like to repeat its request to ACFM to have a closer look at the algorithm for how a plusgroup is or may be handled by XSA, e.g., an age group specific shrinkage option would probably be one of several possibilities to reduce this technical problem. This matter is especially important for long-lived species and in cases where the relative contribution from plus-group fish may vary from year to year due to migration in and out of an 'assessment-area'.

The survey tuning series may still be improved further, and it is imperative for good results that valuable research survey time-series are continued, and that Norwegian and Russian research vessels get full access to each other's exclusive economic zones.

Possible alternative methods to conventional catch-at-age analyses, such as the FLEKSIBEST model, have previously been discussed also for this redfish stock. This model is closely related to the BORMICON model which currently is used by the ICES North-Western WG on S. marinus (Björnsson and Sigurdsson 2003). Preparatory work may be done in order to explore these possibilities.

\subsection*{6.5 Biological reference points}

Until an analytical assessment can be accepted and used as basis for reference points calculations, candidate reference points for the biomass or numbers (\(\mathrm{U}_{\mathrm{lim}}\)) could be set at the maximum biomass (or number) level, or at a certain percentage of this level, estimated by the Russian and Norwegian trawl surveys since 1986. Such practice is currently used by ICES for the Icelandic redfish stocks (ICES CM 2002/ACFM:20) and is a procedure mentioned and recommended as an alternative by the ICES Study Groups on the Precautionary Approach.

\subsection*{6.6 Management advice}

ICES recommended last year that there be no directed fishery on this stock until a significant increase in spawning stock biomass has been detected in surveys with a following increase in the number of juveniles. In addition, the by-catch of redfish in other fisheries should be reduced to the lowest possible level. The current assessment indicates no improvement in recruitment while a stabilizing or temporary increase of the SSB is expected if the catches are kept low.

As long as the recruitment of new year classes is very poor and no signs of improved recruitment have appeared, it is of crucial importance and urgent that the 1987-1990 year classes (approx. 30-36 cm) which currently have recruited more than \(50 \%\) to the spawning stock are protected. The Working Group is therefore satisfied with the stronger regulations enforced in the trawl fisheries from 1 January 2003 onwards.

It is also of vital importance that the younger recruiting year classes be given the strongest possible protection to ensure that they can contribute as much as possible to the stock rebuilding.

Therefore the same advice should be maintained for 2004. Given the current depleted state of the stock it is imperative that data collection and surveys be maintained in order to monitor the progress of the resource.

Table 6.1 Sebastes mentella. Nominal catch (t) by countries in Subarea I, Divisions IIa and IIb combined.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & Canada & Denmark & Faroe Islands & France & Germany \({ }^{3}\) & Greenland & Ireland \\
\hline 1986 & - & - & - & - & 1,252 & - & - \\
\hline 1987 & - & - & 200 & 63 & 1,321 & - & - \\
\hline 1988 & \multicolumn{7}{|c|}{No species-specific data available by country.} \\
\hline 1989 & - & - & 335 & 1,111 & 3,833 & - & - \\
\hline 1990 & - & - & 108 & 142 & 6,354 & 36 & - \\
\hline 1991 & - & - & 487 & 85 & - & 23 & - \\
\hline 1992 & - & - & 23 & 12 & - & - & - \\
\hline 1993 & 8 & 4 & 13 & 50 & 35 & 1 & - \\
\hline 1994 & - & 28 & 4 & 74 & 18 & 1 & 3 \\
\hline 1995 & - & - & 3 & 16 & 176 & 2 & 4 \\
\hline 1996 & - & - & 4 & 75 & 119 & 3 & 2 \\
\hline 1997 & - & - & 4 & 37 & 81 & 16 & 6 \\
\hline 1998 & - & - & 20 & 73 & 100 & 14 & 9 \\
\hline 1999 & Iceland & - & 73 & 26 & 202 & 50 & 3 \\
\hline 2000 & 48 & Estonia & 50 & 63 & 62 & 11 & 7 \\
\hline \(2001{ }^{1}\) & 3 & - & 52 & 16 & 198 & 17 & 4 \\
\hline \(2002{ }^{1}\) & 41 & 15 & 53 & 56 & 99 & 18 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & Norway & Poland & Portugal & Russia \({ }^{4}\) & Spain & UK (Eng. \& Wales) & UK
(Scotland) & Total \\
\hline 1986 & 1,274 & - & 1,273 & 17,815 & - & 84 & - & 23,112 \({ }^{2}\) \\
\hline 1987 & 1,488 & - & 1,175 & 6,196 & 25 & 49 & 1 & 10,455 \\
\hline 1988 & \multicolumn{6}{|c|}{No species-specific data available by country.} & & 15,586 \\
\hline 1989 & 4,633 & - & 340 & 13,080 & 5 & 174 & 1 & 23,512 \\
\hline 1990 & 10,173 & - & 830 & 17,355 & - & 72 & - & 35,070 \\
\hline 1991 & 33,592 & - & 166 & 14,302 & 1 & 68 & 3 & 48,727 \\
\hline 1992 & 10,751 & - & 972 & 3,577 & 14 & 238 & 3 & 15,590 \\
\hline 1993 & 5,182 & - & 963 & 6,260 & 5 & 293 & - & 12,814 \\
\hline 1994 & 6,511 & - & 895 & 5,021 & 30 & 124 & 12 & 12,721 \\
\hline 1995 & 2,646 & - & 927 & 6,346 & 67 & 93 & 4 & 10,284 \\
\hline 1996 & 6,053 & - & 467 & 925 & 328 & 76 & 23 & 8,075 \\
\hline 1997 & 4,657 & 1 & 474 & 2,972 & 272 & 71 & 7 & 8,598 \\
\hline 1998 & 9,733 & 13 & 125 & 3,646 & 177 & 93 & 41 & 14,045 \\
\hline 1999 & 7,884 & 6 & 65 & 2,731 & 29 & 112 & 28 & 11,209 \\
\hline 2000 & 6,151 \({ }^{1}\) & 2 & 115 & 3,519 & 87 & & \(130^{5}\) & 10,245 \\
\hline 2001 & 13,975 \({ }^{1}\) & 5 & 179 & 3,775 & 90 & & \(120^{5}\) & 18,434 \\
\hline \(2002{ }^{1}\) & 2,204 & 8 & 242 & 3,904 & 190 & & \(188^{5}\) & 7,022 \\
\hline
\end{tabular}
\({ }^{1}\) Provisional figures.
\({ }^{2}\) Including 1,414 tonnes in Division IIb not split on countries.
\({ }^{3}\) Includes former GDR prior to 1991.
\({ }^{4}\) USSR prior to 1991.
\({ }^{5}\) UK (E\&W)+UK(Scot.)

Table 6.2
Sebastes mentella. Nominal catch (t) by countries in Subarea I.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & Faroe & Germany \({ }^{4}\) & Greenland & Norway & Russia \({ }^{5}\) & UK(Eng. \&Wales) & Iceland & Total \\
\hline \(1986{ }^{3}\) & - & - & - & 1,274 & 911 & - & - & 2,185 \\
\hline \(1987{ }^{3}\) & - & 2 & - & 1,166 & 234 & 3 & - & 1,405 \\
\hline 1988 & \multicolumn{8}{|c|}{No species-specific data presently available} \\
\hline 1989 & 13 & - & & 60 & 484 & \(9^{2}\) & - & 566 \\
\hline 1990 & 2 & - & - & - & 100 & - & - & 102 \\
\hline 1991 & - & - & - & 8 & 420 & - & - & 428 \\
\hline 1992 & - & & - & 561 & 408 & - & - & 969 \\
\hline 1993 & \(2^{2}\) & - & - & 16 & 588 & - & - & 606 \\
\hline 1994 & \(2^{2}\) & 2 & - & 36 & 308 & - & - & 348 \\
\hline 1995 & \(2^{2}\) & - & - & 20 & 203 & - & - & 225 \\
\hline 1996 & - & - & - & 5 & 101 & - & - & 106 \\
\hline 1997 & - & - & \(3^{2}\) & 12 & 174 & \(1^{2}\) & - & 190 \\
\hline 1998 & \(20^{2}\) & - & - & 26 & 378 & - & - & 424 \\
\hline 1999 & \(69^{2}\) & - & - & 69 & 489 & - & - & 627 \\
\hline 2000 & - & - & - & \(43^{1}\) & 406 & - & \(48^{2}\) & 497 \\
\hline 2001 & - & - & - & \(8^{1}\) & 296 & - & \(3^{2}\) & 307 \\
\hline \(2002{ }^{1}\) & - & - & , & 12 & 587 & , & . & 599 \\
\hline
\end{tabular}
\({ }^{1}\) Provisional figures.
\({ }^{2}\) Split on species according to reports to Norwegian authorities.
\({ }^{3}\) Based on preliminary estimates of species breakdown by area.
\({ }^{4}\) Includes former GDR prior to 1991.
\({ }^{5}\) USSR prior to 1991.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Year & Faroe Islands & France & Germany \({ }^{4}\) & Greenland & Ireland & Norway \\
\hline \(1986{ }^{3}\) & - & - & 1,252 & - & - & - \\
\hline \(1987{ }^{3}\) & 200 & 63 & 970 & - & - & 149 \\
\hline 1988 & \multicolumn{6}{|c|}{No species-specific data presently available} \\
\hline 1989 & \(312^{2}\) & 1,065 \({ }^{2}\) & 3,200 & - & - & 4,573 \\
\hline 1990 & \(98^{2}\) & \(137^{2}\) & 1,673 & - & - & 8,842 \\
\hline 1991 & \(487^{2}\) & \(72^{2}\) & - & - & - & 32,810 \\
\hline 1992 & \(23^{2}\) & \(7{ }^{2}\) & - & - & - & 9,816 \\
\hline 1993 & \(11^{2}\) & \(15^{2}\) & 35 & \(1^{2}\) & - & 5,029 \\
\hline 1994 & \(2^{2}\) & \(33^{2}\) & \(16^{2}\) & \(1^{2}\) & \(2^{2}\) & 6,119 \\
\hline 1995 & \(1^{2}\) & \(16^{2}\) & \(176^{2}\) & \(2^{2}\) & \(2^{2}\) & 2,251 \\
\hline 1996 & - & \(75^{2}\) & \(119^{2}\) & \(3^{2}\) & - & 5,895 \\
\hline 1997 & - & \(37^{2}\) & 77 & \(12^{2}\) & \(2^{2}\) & 4,422 \\
\hline 1998 & - & \(73^{2}\) & \(58^{2}\) & \(14^{2}\) & \(6^{2}\) & 9,186 \\
\hline 1999 & - & \(16^{2}\) & \(160^{2}\) & \(50^{2}\) & \(3^{2}\) & 7,358 \\
\hline 2000 & \(50^{2}\) & \(58^{2}\) & \(35^{2}\) & \(11^{2}\) & - & 5,975 \({ }^{1}\) \\
\hline \(2001{ }^{1}\) & \(33^{2}\) & \(12^{2}\) & \(161^{2}\) & \(17^{2}\) & \(4^{2}\) & 13,673 \({ }^{1}\) \\
\hline \(2002{ }^{1}\) & \(14^{2}\) & \(52^{2}\) & \(59^{2}\) & \(18^{2}\) & \(3^{2}\) & 1,990 \\
\hline Year & Portugal & Russia \({ }^{5}\) & Spain & UK(Eng. \& Wales) & UK (Scotland) & Total \\
\hline \(1986{ }^{3}\) & 1,273 & 16,904 & - & 84 & - & 19,513 \\
\hline \(1987{ }^{3}\) & 1,156 & 4,469 & - & 34 & 1 & 7,042 \\
\hline 1988 & \multicolumn{6}{|c|}{No species-specific data presently available} \\
\hline 1989 & 251 & 9,749 & - & \(158^{2}\) & \(1^{2}\) & 19,309 \\
\hline 1990 & 824 & 6,492 & - & 9 & - & 18,075 \\
\hline 1991 & \(159{ }^{2}\) & 7,596 & - & \(23^{2}\) & - & 41,147 \\
\hline 1992 & \(824^{2}\) & 1,096 & - & \(27^{2}\) & - & 11,793 \\
\hline 1993 & \(648^{2}\) & 5,328 & - & \(2^{2}\) & - & 11,069 \\
\hline 1994 & \(687^{2}\) & 4,692 & \(8^{2}\) & \(4^{2}\) & - & 11,564 \\
\hline 1995 & \(715^{2}\) & 5,916 & \(65^{2}\) & \(41^{2}\) & \(2^{2}\) & 9,187 \\
\hline 1996 & \(429{ }^{2}\) & 677 & \(5^{2}\) & \(42^{2}\) & \(19^{2}\) & 7,264 \\
\hline 1997 & \(410^{2}\) & 2,341 & \(9^{2}\) & \(48^{2}\) & \(7{ }^{2}\) & 7,365 \\
\hline 1998 & \(118^{2}\) & 2,626 & \(55^{2}\) & \(65^{2}\) & \(41^{2}\) & 12,242 \\
\hline 1999 & \(56^{2}\) & 1,340 & \(14^{2}\) & \(94^{2}\) & \(26^{2}\) & 9,117 \\
\hline 2000 & \(98^{2}\) & 2,167 & \(18^{2}\) & Iceland & \(103^{2,6}\) & 8,515 \\
\hline 2001 & \(105^{2}\) & 2,716 & \(18^{2}\) & - & \(95^{2,6}\) & 16,834 \\
\hline \(2002{ }^{1}\) & \(124^{2}\) & 2,615 & \(8^{2}\) & \(41^{2}\) & \(157^{2,6}\) & 5,081 \\
\hline
\end{tabular}
\({ }^{1}\) Provisional figures.
\({ }^{2}\) Split on species according to reports to Norwegian authorities.
\({ }^{3}\) Based on preliminary estimates of species breakdown by area.
\({ }^{4}\) Includes former GDR prior to 1991.
\({ }^{5}\) USSR prior to 1991.
\({ }^{6}\) UK (E\&W)+UK(Scot.)

Table 6.4 Sebastes mentella. Nominal catch (t) by countries in Division IIb.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & Canada & Denmark & Faroe Islands & France & Germany \({ }^{5}\) & \[
y^{5} \quad \text { Gre }
\] & enland & Ireland \\
\hline \(1986{ }^{4}\) & \multicolumn{8}{|c|}{Data not available on countries} \\
\hline \(1987{ }^{4}\) & - & - & - & - & 349 & & - & - \\
\hline 1988 & \multicolumn{8}{|c|}{No species-specific data presently available} \\
\hline 1989 & - & - & 10 & 28 & 633 & & - & - \\
\hline 1990 & - & - & \(8^{2}\) & \(5^{2}\) & 4,681 & & \(36^{2}\) & - \\
\hline 1991 & - & - & - & \(13^{2}\) & & - & 23 & - \\
\hline 1992 & - & - & - & \(5^{2}\) & & - & - & - \\
\hline 1993 & \(8^{2}\) & \(4^{2}\) & - & \(35^{2}\) & & - & - & - \\
\hline 1994 & - & \(28^{2}\) & - & \(41^{2}\) & & - & - & \(1^{2}\) \\
\hline 1995 & - & - & - & - & & - & - & \(2^{2}\) \\
\hline 1996 & - & - & \(4^{2}\) & - & & - & - & \(2^{2}\) \\
\hline 1997 & - & - & \(4^{2}\) & - & & 3 & \(1^{2}\) & \(4^{2}\) \\
\hline 1998 & - & - & - & - & \(42^{2}\) & \(2^{2}\) & - & \(3^{2}\) \\
\hline 1999 & - & - & \(4^{2}\) & \(10^{2}\) & \(42^{2}\) & \(2^{2}\) & - & - \\
\hline 2000 & - & - & - & \(5^{2}\) & \(27^{2}\) & \(7^{2}\) & - & \(7^{2}\) \\
\hline \(2001{ }^{1}\) & - & - & \(19^{2}\) & \(4^{2}\) & \(37^{2}\) & \(7^{2}\) & - & - \\
\hline \(2002{ }^{1}\) & & & \(39^{2}\) & \(4^{2}\) & \(40^{2}\) & \(0^{2}\) & & \(1^{2}\) \\
\hline Year & Norway & Poland & Portugal & Russia \({ }^{6}\) & Spain \(\begin{array}{ll}\text { UK } \\ & \& W\end{array}\) & \begin{tabular}{l}
K(Eng. \\
Wales)
\end{tabular} & UK
(Scotland) & Total \\
\hline \(1986{ }^{4}\) & & & Data not ava & ailable on coun & tries & & & 1,414 \\
\hline \(1987{ }^{4}\) & 173 & - & 19 & 1,493 & 25 & 12 & - & 2,071 \\
\hline 1988 & & No s & species-specifi & c data presentl & y available & & & \\
\hline 1989 & - & & 89 & 2,847 & 5 & \(7^{2}\) & - & 3,619 \\
\hline 1990 & 1,331 & - & 6 & 10,763 & - & \(63^{2}\) & - & 16,893 \\
\hline 1991 & 774 & - & 7 & 6,286 & 1 & \(45^{2}\) & \(3^{2}\) & 7,152 \\
\hline 1992 & 374 & - & \(148^{2}\) & 2,073 & 14 & \(211^{2}\) & \(3^{2}\) & 2,828 \\
\hline 1993 & 137 & - & \(315{ }^{2}\) & 344 & \(57^{3}\) & 2912 & 2 & 1,191 \\
\hline 1994 & 356 & - & \(208{ }^{2}\) & 21 & \(22^{3}\) & \(120^{2}\) & \(12^{2}\) & 809 \\
\hline 1995 & 375 & - & \(212^{2}\) & 227 & \(2^{3}\) & \(52^{2}\) & \(2^{2}\) & 872 \\
\hline 1996 & 153 & - & \(38^{2}\) & 147 & \(323{ }^{2}\) & \(34^{2}\) & \(4^{2}\) & 705 \\
\hline 1997 & 223 & \(1^{2}\) & \(64^{2}\) & 457 & \(263^{2}\) & \(22^{2}\) & , & 1,042 \\
\hline 1998 & 521 & \(13^{2}\) & \(7{ }^{2}\) & 642 & \(122^{2}\) & \(28^{2}\) & \(1^{2}\) & 1,379 \\
\hline 1999 & 457 & \(6^{2}\) & \(9^{2}\) & 902 & \(15^{2}\) & \(18^{2}\) & \(2^{2}\) & 1,465 \\
\hline 2000 & \(133{ }^{1}\) & \(2^{2}\) & \(17^{2}\) & 946 & \(69^{2}\) & & \(27^{2,7}\) & 1,233 \\
\hline 2001 & \(294{ }^{1}\) & \(5^{2}\) & \(74^{2}\) & 763 & \(72^{2} \quad\) E & Estonia & \(25^{2,7}\) & 1,293 \\
\hline \(2002{ }^{1}\) & 202 & \(8^{2}\) & \(118^{2}\) & 702 & \(182^{2}\) & \(15^{8}\) & \(31^{2,7}\) & 1,342 \\
\hline
\end{tabular}
\({ }^{1}\) Provisional figures.
\({ }^{2}\) Split on species according to reports to Norwegian authorities.
\({ }^{3}\) Split on species according to the 1992 catches.
\({ }^{4}\) Based on preliminary estimates of species breakdown by area.
\({ }^{5}\) Includes former GDR prior to 1991.
\({ }^{6}\) USSR prior to 1991.
\({ }^{7}\) UK(E\&W)+UK(Scot.)
\({ }^{8}\) Split on species by Working Group.

Table 6.5. Catch numbers at age
Run title : Arctic S. mentella
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{At 30/04/2003 16:24} \\
\hline \multicolumn{3}{|l|}{Catch numbers at age} \\
\hline YEAR & 1991 & 1992 \\
\hline \multicolumn{3}{|l|}{AGE} \\
\hline & 1653 & 1873 \\
\hline 7 & 5453 & 2498 \\
\hline & 7994 & 1898 \\
\hline & 6781 & 1622 \\
\hline 10 & 8226 & 1780 \\
\hline 11 & 5344 & 1531 \\
\hline 12 & 6227 & 2108 \\
\hline 13 & 9880 & 2288 \\
\hline 14 & 10824 & 2258 \\
\hline 15 & 4049 & 2506 \\
\hline 16 & 2105 & 2137 \\
\hline 17 & 9603 & 1512 \\
\hline 18 & 6522 & 677 \\
\hline +gp & 19299 & 9258 \\
\hline TOTALNUM & 103960 & 33946 \\
\hline TONSLAND & 48727 & 15590 \\
\hline SOPCOF \% & 100 & 103 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrrr}
\multicolumn{8}{c}{ Numbers*10**-3 } \\
1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 \\
& & & & & & & \\
159 & 738 & 662 & 223 & 125 & 37 & 9 & 1 \\
159 & 730 & 941 & 634 & 533 & 882 & 83 & 24 \\
174 & 722 & 1279 & 1699 & 1287 & 2904 & 441 & 397 \\
512 & 992 & 719 & 1554 & 1247 & 4236 & 1511 & 1259 \\
2094 & 2561 & 740 & 1236 & 1297 & 3995 & 2250 & 2485 \\
3139 & 2734 & 1230 & 1078 & 1244 & 2741 & 3262 & 2160 \\
2631 & 3060 & 2013 & 1146 & 876 & 1877 & 1867 & 1838 \\
2308 & 1535 & 4297 & 1413 & 1416 & 1373 & 1454 & 1214 \\
2987 & 2253 & 3300 & 1865 & 1784 & 1277 & 1447 & 1016 \\
1875 & 2182 & 2162 & 880 & 1217 & 1595 & 1557 & 1004 \\
1514 & 3336 & 1454 & 621 & 537 & 1117 & 1418 & 948 \\
1053 & 1284 & 757 & 498 & 1177 & 784 & 1317 & 511 \\
527 & 734 & 794 & 700 & 342 & 786 & 658 & 606 \\
6022 & 3257 & 2404 & 2247 & 3568 & 6241 & 3919 & 5827 \\
25154 & 26118 & 22752 & 15794 & 16650 & 29845 & 21193 & 19290 \\
12866 & 12721 & 10284 & 8075 & 8597 & 14045 & 11209 & 10245 \\
101 & 104 & 100 & 95 & 101 & 101 & 102 & 101
\end{tabular}

Table 6.6. Catch weights at age
Run title : Arctic S. mentella
At 30/04/2003 16:24
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{Catch weights at age (kg)} \\
\hline YEAR & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 6 & 0.13 & 0.19 & 0.17 & 0.16 & 0.14 & 0.2 & 0.18 & 0.14 & 0.15 & 0.1 \\
\hline 7 & 0.18 & 0.22 & 0.23 & 0.22 & 0.16 & 0.2 & 0.21 & 0.19 & 0.22 & 0.15 \\
\hline 8 & 0.21 & 0.26 & 0.25 & 0.24 & 0.19 & 0.25 & 0.25 & 0.23 & 0.22 & 0.22 \\
\hline 9 & 0.27 & 0.28 & 0.28 & 0.3 & 0.21 & 0.31 & 0.29 & 0.29 & 0.28 & 0.26 \\
\hline 10 & 0.34 & 0.31 & 0.33 & 0.34 & 0.28 & 0.42 & 0.33 & 0.33 & 0.33 & 0.31 \\
\hline 11 & 0.35 & 0.33 & 0.38 & 0.37 & 0.32 & 0.44 & 0.38 & 0.38 & 0.37 & 0.36 \\
\hline 12 & 0.42 & 0.38 & 0.44 & 0.4 & 0.37 & 0.47 & 0.46 & 0.43 & 0.44 & 0.42 \\
\hline 13 & 0.46 & 0.46 & 0.47 & 0.44 & 0.41 & 0.59 & 0.48 & 0.48 & 0.49 & 0.44 \\
\hline 14 & 0.51 & 0.43 & 0.5 & 0.45 & 0.47 & 0.67 & 0.51 & 0.54 & 0.53 & 0.51 \\
\hline 15 & 0.58 & 0.43 & 0.57 & 0.49 & 0.53 & 0.69 & 0.55 & 0.59 & 0.56 & 0.56 \\
\hline 16 & 0.59 & 0.45 & 0.58 & 0.55 & 0.58 & 0.71 & 0.6 & 0.61 & 0.62 & 0.62 \\
\hline 17 & 0.58 & 0.52 & 0.62 & 0.58 & 0.66 & 0.74 & 0.66 & 0.64 & 0.66 & 0.63 \\
\hline 18 & 0.59 & 0.57 & 0.65 & 0.67 & 0.71 & 0.74 & 0.65 & 0.66 & 0.67 & 0.67 \\
\hline +gp & 0.7 & 0.67 & 0.662 & 0.79 & 0.806 & 0.847 & 0.787 & 0.753 & 0.805 & 0.774 \\
\hline SOPCOFAC & 1.0032 & 1.0291 & 1.0052 & 1.0377 & 0.9998 & 0.9465 & 1.0103 & 1.0085 & 1.0184 & 1.0065 \\
\hline
\end{tabular}

Table 6.7. Proportion mature at age
Run title : Arctic S. mentella
At 30/04/2003 16:24
Proportion mature at age
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline YEAR & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 \\
\hline 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0.018 & 0.021 & 0 & 0 \\
\hline 8 & 0.015 & 0.015 & 0 & 0 & 0 & 0 & 0 & 0.014 & 0.016 & 0 \\
\hline 9 & 0.055 & 0.062 & 0.023 & 0.023 & 0 & 0.014 & 0.027 & 0 & 0.059 & 0.048 \\
\hline 10 & 0.132 & 0.133 & 0.113 & 0.113 & 0.055 & 0.093 & 0.13 & 0.074 & 0.11 & 0.087 \\
\hline 11 & 0.202 & 0.224 & 0.267 & 0.267 & 0.111 & 0.212 & 0.312 & 0.171 & 0.333 & 0.202 \\
\hline 12 & 0.481 & 0.411 & 0.438 & 0.438 & 0.368 & 0.325 & 0.281 & 0.276 & 0.579 & 0.375 \\
\hline 13 & 0.545 & 0.539 & 0.574 & 0.574 & 0.587 & 0.577 & 0.566 & 0.622 & 0.689 & 0.489 \\
\hline 14 & 0.741 & 0.774 & 0.843 & 0.843 & 0.696 & 0.716 & 0.736 & 0.714 & 0.788 & 0.742 \\
\hline 15 & 0.85 & 0.888 & 0.951 & 0.951 & 0.729 & 0.78 & 0.831 & 0.871 & 0.813 & 0.833 \\
\hline 16 & 0.962 & 0.946 & 0.92 & 0.92 & 0.789 & 0.874 & 0.958 & 0.919 & 0.903 & 0.904 \\
\hline 17 & 1 & 0.992 & 0.989 & 0.989 & 1 & 0.975 & 0.95 & 1 & 0.923 & 1 \\
\hline 18 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline +gp & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{Table 6.8. Tuning data}

Sebastes mentella in Sub-areas I \& II 103
FLT10: Rus young SURVEY. Effort and catch rates. S.mentella (Catch: Number) (Effort: Unknown) 19912002
110.850 .95

68
\begin{tabular}{cccc}
1 & 17 & 22 & 40 \\
1 & 21 & 17 & 24 \\
1 & 20 & 12 & 6 \\
1 & 86 & 106 & 56 \\
1 & 40 & 112 & 96 \\
1 & 115 & 66 & 28 \\
1 & 39 & 65 & 66 \\
1 & 20 & 33 & 55 \\
1 & 30 & 23 & 46 \\
1 & 52 & 42 & 49 \\
1 & 35 & 43 & 26 \\
1 & 10 & 34 & 31
\end{tabular}

FLT13: Rus acous spring survey (Catch: Number) (Effort: Unknown)
19952002
110.300 .50

614
\(\begin{array}{llllllllll}1 & 51 & 83 & 90 & 41 & 31 & 31 & 41 & 94 & 73\end{array}\)
\(\begin{array}{llllllllll}-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1\end{array}\)
\(\begin{array}{llllllllll}1 & 24 & 102 & 150 & 53 & 48 & 24 & 20 & 26 & 36\end{array}\)
\(\begin{array}{llllllllll}1 & 8 & 47 & 77 & 63 & 71 & 46 & 27 & 19 & 23\end{array}\)
\(\begin{array}{llllllllll}1 & 9 & 14 & 57 & 75 & 63 & 73 & 31 & 25 & 17\end{array}\)
\(\begin{array}{llllllllll}1 & 14 & 15 & 62 & 100 & 143 & 122 & 54 & 34 & 24\end{array}\)
\(\begin{array}{llllllllll}1 & 11 & 22 & 24 & 84 & 123 & 134 & 144 & 115 & 78\end{array}\)
\(\begin{array}{llllllllll}-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1\end{array}\)
FLT14: Norw New Combined
19962002
110.580 .68

211
\begin{tabular}{rrrrrrrrrrr}
1 & 146,198 & 112742 & 22353 & 53507 & 165531 & 181980 & 108738 & 43328 & 65310 & 40546 \\
1 & 62,682 & 130816 & 12492 & 23452 & 74342 & 55880 & 76607 & 82503 & 17640 & 14274 \\
1 & 313 & 78767 & 85715 & 39849 & 25805 & 23413 & 84825 & 100332 & 54287 & 24329 \\
1 & 5,359 & 23240 & 117170 & 47851 & 41608 & 76797 & 128677 & 73306 & 58018 & 64781 \\
1 & 5,964 & 23169 & 14336 & 19960 & 52666 & 68081 & 83857 & 77513 & 100442 & 72294 \\
1 & 5,026 & 6541 & 10957 & 1093 & 19766 & 25591 & 36594 & 51644 & 44407 & 61704 \\
1 & 9,112 & 6646 & 7379 & 3821 & 8635 & 28215 & 47456 & 63903 & 103368 & 49964
\end{tabular}

Table 6.9. Tuning diagnostics
Lowestoft VPA Version 3.1
30/04/2003 16:23
Extended Survivors Analysis
Arctic S. mentella
CPUE data from file fleet-final
Catch data for 12 years. 1991 to 2002. Ages 6 to 19.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Fleet & & Last year & First age & & Last age & & Alpha & Beta \\
\hline FLT10: Rı & 1991 & 2002 & & 6 & & 8 & 0.85 & 0.95 \\
\hline FLT13: R & 1995 & 2002 & & 6 & & 14 & 0.3 & 0.5 \\
\hline FLT14: Nc & 1996 & 2002 & & 2 & & 11 & 0.58 & 0.68 \\
\hline
\end{tabular}

Time series weights :
Tapered time weighting applied
Power = 3 over 20 years
Catchability analysis :
Catchability independent of stock size for all ages Catchability independent of age for ages >= 17
Terminal population estimation :
Survivor estimates shrunk towards the mean F of the final 2 years or the 5 oldest ages. S.E. of the mean to which the estimates are shrunk \(=2.000\) Minimum standard error for population estimates derived from each fleet \(=.300\) Prior weighting not applied
Tuning converged after 188 iterations
Regression weights \(\begin{array}{lllllllll}0.751 & 0.82 & 0.877 & 0.921 & 0.954 & 0.976 & 0.99 & 0.997 & 1\end{array}\)

Fishing mortalities
\begin{tabular}{rrrrrrrrrrr}
Age & & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001
\end{tabular} 2002

XSA population numbers (Thousands)
\begin{tabular}{rccccccccccc}
\multicolumn{8}{c}{ AGE } \\
YEAR & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
1993 & \(4.06 \mathrm{E}+04\) & \(2.19 \mathrm{E}+04\) & \(1.61 \mathrm{E}+04\) & \(1.91 \mathrm{E}+04\) & \(2.29 \mathrm{E}+04\) & \(3.85 \mathrm{E}+04\) & \(2.28 \mathrm{E}+04\) & \(1.79 \mathrm{E}+04\) & \(1.18 \mathrm{E}+04\) & \(1.54 \mathrm{E}+04\) \\
1994 & \(6.97 \mathrm{E}+04\) & \(3.66 \mathrm{E}+04\) & \(1.96 \mathrm{E}+04\) & \(1.44 \mathrm{E}+04\) & \(1.68 \mathrm{E}+04\) & \(1.88 \mathrm{E}+04\) & \(3.18 \mathrm{E}+04\) & \(1.81 \mathrm{E}+04\) & \(1.40 \mathrm{E}+04\) & \(7.83 \mathrm{E}+03\) \\
1995 & \(8.43 \mathrm{E}+04\) & \(6.24 \mathrm{E}+04\) & \(3.24 \mathrm{E}+04\) & \(1.71 \mathrm{E}+04\) & \(1.21 \mathrm{E}+04\) & \(1.28 \mathrm{E}+04\) & \(1.44 \mathrm{E}+04\) & \(2.59 \mathrm{E}+04\) & \(1.49 \mathrm{E}+04\) & \(1.05 \mathrm{E}+04\) \\
1996 & \(8.63 \mathrm{E}+04\) & \(7.57 \mathrm{E}+04\) & \(5.55 \mathrm{E}+04\) & \(2.81 \mathrm{E}+04\) & \(1.48 \mathrm{E}+04\) & \(1.03 \mathrm{E}+04\) & \(1.04 \mathrm{E}+04\) & \(1.11 \mathrm{E}+04\) & \(1.93 \mathrm{E}+04\) & \(1.03 \mathrm{E}+04\) \\
1997 & \(6.19 \mathrm{E}+04\) & \(7.79 \mathrm{E}+04\) & \(6.79 \mathrm{E}+04\) & \(4.86 \mathrm{E}+04\) & \(2.40 \mathrm{E}+04\) & \(1.22 \mathrm{E}+04\) & \(8.26 \mathrm{E}+03\) & \(8.32 \mathrm{E}+03\) & \(8.69 \mathrm{E}+03\) & \(1.57 \mathrm{E}+04\) \\
1998 & \(3.72 \mathrm{E}+04\) & \(5.59 \mathrm{E}+04\) & \(6.99 \mathrm{E}+04\) & \(6.02 \mathrm{E}+04\) & \(4.28 \mathrm{E}+04\) & \(2.04 \mathrm{E}+04\) & \(9.85 \mathrm{E}+03\) & \(6.64 \mathrm{E}+03\) & \(6.18 \mathrm{E}+03\) & \(6.17 \mathrm{E}+03\) \\
1999 & \(3.46 \mathrm{E}+04\) & \(3.36 \mathrm{E}+04\) & \(4.97 \mathrm{E}+04\) & \(6.05 \mathrm{E}+04\) & \(5.04 \mathrm{E}+04\) & \(3.49 \mathrm{E}+04\) & \(1.59 \mathrm{E}+04\) & \(7.13 \mathrm{E}+03\) & \(4.70 \mathrm{E}+03\) & \(4.38 \mathrm{E}+03\) \\
2000 & \(4.23 \mathrm{E}+04\) & \(3.13 \mathrm{E}+04\) & \(3.03 \mathrm{E}+04\) & \(4.45 \mathrm{E}+04\) & \(5.33 \mathrm{E}+04\) & \(4.35 \mathrm{E}+04\) & \(2.85 \mathrm{E}+04\) & \(1.26 \mathrm{E}+04\) & \(5.06 \mathrm{E}+03\) & \(2.88 \mathrm{E}+03\) \\
2001 & \(3.00 \mathrm{E}+04\) & \(3.83 \mathrm{E}+04\) & \(2.83 \mathrm{E}+04\) & \(2.71 \mathrm{E}+04\) & \(3.91 \mathrm{E}+04\) & \(4.59 \mathrm{E}+04\) & \(3.73 \mathrm{E}+04\) & \(2.40 \mathrm{E}+04\) & \(1.02 \mathrm{E}+04\) & \(3.62 \mathrm{E}+03\) \\
2002 & \(9.41 \mathrm{E}+03\) & \(2.70 \mathrm{E}+04\) & \(3.43 \mathrm{E}+04\) & \(2.51 \mathrm{E}+04\) & \(2.36 \mathrm{E}+04\) & \(3.45 \mathrm{E}+04\) & \(3.99 \mathrm{E}+04\) & \(3.12 \mathrm{E}+04\) & \(1.92 \mathrm{E}+04\) & \(7.45 \mathrm{E}+03\)
\end{tabular}

Estimated population abundance at 1st Jan 2003

\section*{Table 6.9. (Continued)}

Taper weighted geometric mean of the VPA populations:
\(\begin{array}{llllllllll}3.92 E+04 & 3.99 E+04 & 3.62 E+04 & 3.22 E+04 & 2.87 E+04 & 2.44 E+04 & 1.93 E+04 & 1.48 E+04 & 1.10 E+04 & 7.54 E+03\end{array}\)
Standard error of the weighted Log(VPA populations) :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{array}{r}
0.6421 \\
\text { AC }
\end{array}
\] & \[
0.4512
\] & 0.47 & 0.5054 & 0.5144 & 0.5388 & 0.5579 & 0.5647 & 0.5609 & 0.5757 \\
\hline YEAR & 16 & 17 & 18 & & & & & & & \\
\hline 1993 & 7.95E+03 & 5.00E+03 & \(2.88 \mathrm{E}+03\) & & & & & & & \\
\hline 1994 & 1.21E+04 & 5.76E+03 & 3.52E+03 & & & & & & & \\
\hline 1995 & 5.01E+03 & 7.79E+03 & 3.99E+03 & & & & & & & \\
\hline 1996 & 7.47E+03 & 3.15E+03 & 6.33E+03 & & & & & & & \\
\hline 1997 & 8.52E+03 & 6.16E+03 & \(2.38 \mathrm{E}+03\) & & & & & & & \\
\hline 1998 & \(1.31 \mathrm{E}+04\) & 7.20E+03 & 4.46E+03 & & & & & & & \\
\hline 1999 & 4.07E+03 & 1.08E+04 & 5.77E+03 & & & & & & & \\
\hline 2000 & \(2.48 \mathrm{E}+03\) & \(2.33 E+03\) & 8.48E+03 & & & & & & & \\
\hline 2001 & 1.65E+03 & 1.34E+03 & 1.62E+03 & & & & & & & \\
\hline 2002 & \(1.59 \mathrm{E}+03\) & \(3.35 E+02\) & \(5.34 \mathrm{E}+02\) & & & & & & & \\
\hline
\end{tabular}

Estimated population abundance at 1st Jan 2003
\[
5.94 \mathrm{E}+03 \quad 8.42 \mathrm{E}+02 \quad 1.50 \mathrm{E}+02
\]

Taper weighted geometric mean of the VPA populations:
\[
5.13 \mathrm{E}+03 \quad 3.82 \mathrm{E}+03 \quad 3.45 \mathrm{E}+03
\]

Standard error of the weighted Log(VPA populations) :
\[
0.7539 \quad 1.0528 \quad 0.8511
\]

Log catchability residuals.
Fleet : FLT10: Rus young SUR
\begin{tabular}{rrrr}
Age & & 1991 & 1992 \\
& 6 & -0.13 & 0.02 \\
& 7 & -0.2 & -0.09 \\
& 8 & 0.19 & 0.04
\end{tabular}

No data for this fleet at this age
No data for this fleet at this age
1 No data for this fleet at this age
12 No data for this fleet at this age
13 No data for this fleet at this age
14 No data for this fleet at this age
\begin{tabular}{rrrrrrrrrrrr}
Age & & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
& 6 & -0.54 & 0.39 & -0.57 & 0.46 & -0.29 & -0.45 & 0.02 & 0.37 & 0.33 & 0.23 \\
& 7 & -0.62 & 1.05 & 0.57 & -0.16 & -0.2 & -0.54 & -0.41 & 0.26 & 0.09 & 0.2 \\
& 8 & -1.06 & 1 & 1.05 & -0.73 & -0.09 & -0.28 & -0.15 & 0.41 & -0.15 & -0.17
\end{tabular}

No data for this fleet at this age
No data for this fleet at this age
1 No data for this fleet at this age
2 No data for this fleet at this age
3 No data for this fleet at this age
4 No data for this fleet at this age
Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{lrrr}
Age & 6 & 7 & 8 \\
Mean Log & -6.9845 & -6.7872 & -6.7394 \\
S.E(Log q. & 0.384 & 0.4745 & 0.6033 \\
Regression statistics : & &
\end{tabular}

Ages with \(q\) independent of year class strength and constant w.r.t. time.
\begin{tabular}{rrrrrrrrr}
Age & \multicolumn{2}{l}{ Slope } & t-value & Intercept & RSquare & No Pts & \multicolumn{2}{l}{ Reg s.e }
\end{tabular} Mean Q

Table 6.9. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{Fleet : FLT13: Rus acous spr} \\
\hline Age & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline 6 & 99.99 & 99.99 & 0.58 & 99.99 & 0.14 & -0.45 & -0.26 & -0.02 & 0.08 & 99.99 \\
\hline 7 & 99.99 & 99.99 & 0.6 & 99.99 & 0.58 & 0.14 & -0.56 & -0.43 & -0.24 & 99.99 \\
\hline 8 & 99.99 & 99.99 & 0.61 & 99.99 & 0.37 & -0.32 & -0.29 & 0.29 & -0.59 & 99.99 \\
\hline 9 & 99.99 & 99.99 & 0.35 & 99.99 & -0.44 & -0.47 & -0.32 & 0.28 & 0.61 & 99.99 \\
\hline 10 & 99.99 & 99.99 & 0.19 & 99.99 & -0.05 & -0.22 & -0.53 & 0.24 & 0.39 & 99.99 \\
\hline 11 & 99.99 & 99.99 & 0.02 & 99.99 & -0.19 & -0.04 & -0.13 & 0.14 & 0.18 & 99.99 \\
\hline 12 & 99.99 & 99.99 & 0.13 & 99.99 & -0.05 & 0.11 & -0.26 & -0.32 & 0.4 & 99.99 \\
\hline 13 & 99.99 & 99.99 & 0.08 & 99.99 & -0.07 & -0.14 & 0.06 & -0.25 & 0.33 & 99.99 \\
\hline 14 & 99.99 & 99.99 & 0.06 & 99.99 & -0.12 & -0.23 & -0.2 & 0.01 & 0.48 & 99.99 \\
\hline
\end{tabular}

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{lrrrrrrrrr}
Age & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
Mean Log & -7.9511 & -7.1775 & -6.4385 & -6.3259 & -6.0972 & -5.9596 & -5.8849 & -5.5791 & -5.228 \\
S.E(Log q & 0.3517 & 0.5037 & 0.4713 & 0.4687 & 0.3434 & 0.1475 & 0.2728 & 0.2058 & 0.2641 \\
Regression statistics : & & & & & & & &
\end{tabular}

Ages with q independent of year class strength and constant w.r.t. time.

Age Slope t-value Intercept RSquare No Pts Reg s.e Mean Q
\begin{tabular}{rrrrrlrr}
6 & 0.6 & 2.164 & 9.06 & 0.88 & 6 & 0.16 & -7.95 \\
7 & 0.43 & 7.042 & 9.2 & 0.98 & 6 & 0.07 & -7.18 \\
8 & 1.05 & -0.077 & 6.24 & 0.41 & 6 & 0.55 & -6.44 \\
9 & 3.89 & -2.447 & -6 & 0.16 & 6 & 1.28 & -6.33 \\
10 & 1.21 & -0.568 & 5.19 & 0.66 & 6 & 0.45 & -6.1 \\
11 & 0.86 & 1.599 & 6.52 & 0.97 & 6 & 0.11 & -5.96 \\
12 & 0.93 & 0.313 & 6.14 & 0.85 & 6 & 0.28 & -5.88 \\
13 & 0.84 & 1.354 & 6.2 & 0.95 & 6 & 0.16 & -5.58 \\
14 & 0.76 & 1.212 & 6.11 & 0.87 & 6 & 0.19 & -5.23
\end{tabular}

Fleet : FLT14: Norw New Comb
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age & & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline & 6 & 99.99 & 99.99 & 99.99 & 0.61 & 0.14 & -0.41 & 0.14 & 0.17 & -0.46 & -0.13 \\
\hline & 7 & 99.99 & 99.99 & 99.99 & 0.75 & -0.46 & -0.99 & 0.7 & 0.64 & -0.53 & -0.09 \\
\hline & 8 & 99.99 & 99.99 & 99.99 & 0.17 & -0.39 & -0.3 & 0.44 & 0.51 & -0.25 & -0.19 \\
\hline & 9 & 99.99 & 99.99 & 99.99 & -0.1 & -0.02 & -0.01 & -0.36 & 0 & 0.1 & 0.38 \\
\hline & 10 & 99.99 & 99.99 & 99.99 & 0.97 & -0.84 & -0.27 & -0.4 & 0.09 & -0.43 & 0.92 \\
\hline & 11 & 99.99 & 99.99 & 99.99 & 0.9 & -0.32 & -0.28 & 0.14 & 0 & -0.22 & -0.17 \\
\hline & \multicolumn{11}{|l|}{12 No data for this fleet at this age} \\
\hline & \multicolumn{11}{|l|}{13 No data for this fleet at this age} \\
\hline & \multicolumn{11}{|l|}{14 No data for this fleet at this age} \\
\hline
\end{tabular}

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{crrrrrr}
Age & 6 & 7 & 8 & 9 & 10 & 11 \\
Mean Log & 0.1103 & 0.1955 & 0.5823 & 0.633 & 0.6384 & 0.6089 \\
S.E(Log q. & 0.3701 & 0.7001 & 0.3703 & 0.2242 & 0.696 & 0.417
\end{tabular}

Regression statistics :

Ages with \(q\) independent of year class strength and constant w.r.t. time.
Age Slope t-value Intercept RSquare No Pts Regs.e Mean Q
\begin{tabular}{rrrrrrrr}
6 & 0.77 & 1.456 & 2.29 & 0.9 & 7 & 0.26 & 0.11 \\
7 & 1.57 & -0.506 & -6.44 & 0.14 & 7 & 1.18 & 0.2 \\
8 & 1.39 & -0.656 & -4.93 & 0.37 & 7 & 0.54 & 0.58 \\
9 & 1.65 & -2.018 & -7.93 & 0.67 & 7 & 0.3 & 0.63 \\
10 & 4.88 & -1.415 & -43.49 & 0.03 & 7 & 3.14 & 0.64 \\
11 & 1.4 & -1.007 & -4.92 & 0.57 & 7 & 0.58 & 0.61
\end{tabular}

\section*{Table 6.9. (Continued)}

Terminal year survivor and \(F\) summaries :
Age 6 Catchability constant w.r.t. time and dependent on age
Year class \(=1996\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Fleet & & \[
\begin{aligned}
& \text { Int } \\
& \text { s.e }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ext } \\
& \text { s.e }
\end{aligned}
\] & & \begin{tabular}{l}
Var \\
Ratio
\end{tabular} & N & & Scaled Weights & Estimated F \\
\hline FLT10: Rus young SUR & 10690 & 0.402 & & 0 & 0 & & 1 & 0.483 & 0 \\
\hline FLT13: Rus acous spr & 1 & 0 & & 0 & 0 & & 0 & 0 & 0 \\
\hline FLT14: Norw New Comb & 7452 & 0.396 & & 0 & 0 & & 1 & 0.497 & 0 \\
\hline F shrinkage mean & 918 & 2 & & & & & & 0.02 & 0.002 \\
\hline \multicolumn{10}{|l|}{Weighted prediction :} \\
\hline Survivors & Int & Ext & N & & Var & F & & & \\
\hline at end of year & s.e & s.e & & & Ratio & & & & \\
\hline 8517 & 0.28 & 0.26 & & 3 & 0.922 & & 0 & & \\
\hline
\end{tabular}

Age 7 Catchability constant w.r.t. time and dependent on age
Year class \(=1995\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Fleet & & \[
\begin{aligned}
& \text { Int } \\
& \text { s.e }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ext } \\
& \text { s.e }
\end{aligned}
\] & Var Ratio & \(N\) & & Scaled Weights & Estimated F \\
\hline FLT10: Rus young SUR & 32160 & 0.312 & 0.061 & 0.2 & & 2 & 0.402 & 0.001 \\
\hline FLT13: Rus acous spr & 26501 & 0.381 & 0 & 0 & & 1 & 0.27 & 0.001 \\
\hline FLT14: Norw New Comb & 16700 & 0.35 & 0.154 & 0.44 & & 2 & 0.319 & 0.002 \\
\hline \(F\) shrinkage mean & 6853 & 2 & & & & & 0.01 & 0.006 \\
\hline \multicolumn{9}{|l|}{Weighted prediction :} \\
\hline Survivors & Int & Ext & \(N\) & Var & F & & & \\
\hline at end of year & s.e & s.e & & Ratio & & & & \\
\hline 24393 & 0.2 & 0.14 & 6 & 0.727 & & & & \\
\hline
\end{tabular}

Age 8 Catchability constant w.r.t. time and dependent on age
Year class \(=1994\)

Weighted prediction :

Age 9 Catchability constant w.r.t. time and dependent on age
Year class \(=1993\)

Table 6.9. (Continued)
Age 10 Catchability constant w.r.t. time and dependent on age
Year class \(=1992\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Fleet & & \[
\begin{aligned}
& \text { Int } \\
& \text { s.e }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ext } \\
& \text { s.e }
\end{aligned}
\] & \begin{tabular}{l}
Var \\
Ratio
\end{tabular} & N & & Scaled Weights & Estimated F \\
\hline FLT10: Rus young SUR & 15840 & 0.282 & 0.24 & 0.85 & & 3 & 0.216 & 0.041 \\
\hline FLT13: Rus acous spr & 19074 & 0.237 & 0.277 & 1.17 & & 4 & 0.306 & 0.035 \\
\hline FLT14: Norw New Comb & 24564 & 0.192 & 0.201 & 1.05 & & 5 & 0.473 & 0.027 \\
\hline \(F\) shrinkage mean & 17410 & 2 & & & & & 0.005 & 0.038 \\
\hline \multicolumn{9}{|l|}{Weighted prediction :} \\
\hline Survivors & Int & Ext & N & Var & F & & & \\
\hline at end of year & s.e & s.e & & Ratio & & & & \\
\hline 20644 & 0.13 & 0.13 & 13 & 0.989 & & & & \\
\hline
\end{tabular}

Age 11 Catchability constant w.r.t. time and dependent on age
Year class = 1991
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet & , & Int & Ext & Var Ratio & \(N\) & Scaled Weights & Estimated F \\
\hline FLT10: Rus young SUR & 21811 & 0.285 & 0.104 & 0.37 & 3 & 0.175 & 0.023 \\
\hline FLT13: Rus acous spr & 36426 & 0.201 & 0.11 & 0.55 & 5 & 0.357 & 0.014 \\
\hline FLT14: Norw New Comb & 30934 & 0.177 & 0.147 & 0.83 & 6 & 0.464 & 0.016 \\
\hline F shrinkage mean & 10468 & 2 & & & & 0.004 & 0.047 \\
\hline \multicolumn{8}{|l|}{Weighted prediction :} \\
\hline Survivors & Int & Ext & N & Var & F & & \\
\hline at end of year & s.e & s.e & & Ratio & & & \\
\hline 30722 & 0.12 & 0.09 & 15 & 0.726 & 0.016 & & \\
\hline
\end{tabular}

Age 12 Catchability constant w.r.t. time and dependent on age
Year class \(=1990\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet & & Int & Ext & Var & N & Scaled & Estimated \\
\hline & & s.e & s.e & Ratio & & Weights & \\
\hline FLT10: Rus young SUR & 38191 & 0.288 & 0.244 & 0.85 & 3 & 0.157 & 0.033 \\
\hline FLT13: Rus acous spr & 38894 & 0.186 & 0.136 & 0.73 & 5 & 0.409 & 0.033 \\
\hline FLT14: Norw New Comb & 30461 & 0.178 & 0.161 & 0.91 & 6 & 0.43 & 0.042 \\
\hline F shrinkage mean & 16916 & 2 & & & & 0.004 & 0.074 \\
\hline Weighted prediction : & & & & & & & \\
\hline Survivors & Int & Ext & \(N\) & Var & F & & \\
\hline at end of year & s.e & s.e & & Ratio & & & \\
\hline 34798 & 0.12 & 0.09 & 15 & 0.793 & 0.037 & & \\
\hline
\end{tabular}

Age 13 Catchability constant w.r.t. time and dependent on age
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Year class = 1989} \\
\hline Fleet & I & Int & Ext & Var & N \\
\hline & ! & s.e & s.e & Ratio & \\
\hline FLT10: Rus young SUR & 18899 & 0.294 & 0.156 & 0.53 & 3 \\
\hline FLT13: Rus acous spr & 30094 & 0.153 & 0.174 & 1.13 & 6 \\
\hline FLT14: Norw New Comb & 24497 & 0.199 & 0.137 & 0.69 & 5 \\
\hline F shrinkage mean & 14580 & 2 & & & \\
\hline \multicolumn{6}{|l|}{Weighted prediction :} \\
\hline Survivors & Int & Ext & \(N\) & Var & F \\
\hline at end of year & s.e & s.e & & Ratio & \\
\hline 26472 & 0.11 & 0.1 & 15 & 0.894 & 0.065 \\
\hline
\end{tabular}

Age 14 Catchability constant w.r.t. time and dependent on age
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Year class \(=1988\)} \\
\hline \multirow[t]{2}{*}{Fleet} & | & Int & Ext & Var & N & & Scaled & Estimated \\
\hline & , & s.e & s.e & Ratio & & & Weights & F \\
\hline FLT10: Rus young SUR & 19512 & 0.302 & 0.352 & 1.16 & & 3 & 0.116 & 0.075 \\
\hline FLT13: Rus acous spr & 15120 & 0.147 & 0.137 & 0.93 & & 6 & 0.616 & 0.096 \\
\hline FLT14: Norw New Comb & 16574 & 0.208 & 0.072 & 0.35 & & 4 & 0.264 & 0.087 \\
\hline \(F\) shrinkage mean & 5917 & 2 & & & & & 0.005 & 0.228 \\
\hline
\end{tabular}

Table 6.9. (Continued)
Weighted prediction :

Age 15 Catchability constant w.r.t. time and dependent on age Year class \(=1987\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet & & \[
\begin{aligned}
& \text { Int } \\
& \text { s.e }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Ext } \\
& \text { s.e }
\end{aligned}
\] & Var Ratio & \(N\) & Scaled Weights & Estimated F \\
\hline FLT10: Rus young SUR & 8262 & 0.313 & 0.559 & 1.78 & 3 & 0.096 & 0.093 \\
\hline FLT13: Rus acous spr & 6109 & 0.138 & 0.144 & 1.04 & 6 & 0.723 & 0.123 \\
\hline FLT14: Norw New Comb & 4712 & 0.244 & 0.158 & 0.65 & 3 & 0.176 & 0.157 \\
\hline F shrinkage mean & 991 & 2 & & & & 0.006 & 0.592 \\
\hline \multicolumn{8}{|l|}{Weighted prediction} \\
\hline Survivors & Int & Ext & N & Var & F & & \\
\hline at end of year & & s.e & & Ratio & & & \\
\hline 5944 & 0.11 & 0.12 & 13 & 1.09 & 0.126 & & \\
\hline
\end{tabular}

Age 16 Catchability constant w.r.t. time and dependent on age
Year class \(=1986\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Fleet & | & Int & Ext & Var & N & & Scaled & Estimated \\
\hline & ! & s.e & s.e & Ratio & & & Weights & \\
\hline FLT10: Rus young SUR & 866 & 0.329 & 0.428 & 1.3 & & 3 & 0.097 & 0.522 \\
\hline FLT13: Rus acous spr & 865 & 0.15 & 0.061 & 0.41 & & 5 & 0.795 & 0.522 \\
\hline FLT14: Norw New Comb & 835 & 0.394 & 0.549 & 1.39 & & 2 & 0.082 & 0.537 \\
\hline F shrinkage mean & 340 & 2 & & & & & 0.026 & 1.011 \\
\hline
\end{tabular}

Weighted prediction :

Age 17 Catchability constant w.r.t. time and dependent on age
Year class \(=1985\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Fleet & 1 & Int & Ext & Var & \(N\) \\
\hline & : & s.e & s.e & Ratio & \\
\hline FLT10: Rus young SUR & 104 & 0.351 & 0.295 & 0.84 & 3 \\
\hline FLT13: Rus acous spr & 135 & 0.163 & 0.071 & 0.43 & 4 \\
\hline FLT14: Norw New Comb & 369 & 0.465 & 0 & 0 & 1 \\
\hline F shrinkage mean & 212 & 2 & & & \\
\hline Weighted prediction & & & & & \\
\hline Survivors & Int & Ext & \(N\) & Var & F \\
\hline at end of year & s.e & s.e & & Ratio & \\
\hline 150 & 0.28 & 0.12 & 9 & 0.436 & 0.705 \\
\hline
\end{tabular}

Age 18 Catchability constant w.r.t. time and age (fixed at the value for age) 17
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{Year class \(=1984\)} \\
\hline Fleet & I & Int & Ext & Var & N & & Scaled & Estimated \\
\hline & : & s.e & s.e & Ratio & & & Weights & \\
\hline FLT10: Rus young SUR & 239 & 0.501 & 0.12 & 0.24 & & 2 & 0.056 & 0.656 \\
\hline FLT13: Rus acous spr & 233 & 0.182 & 0.072 & 0.4 & & 3 & 0.829 & 0.668 \\
\hline FLT14: Norw New Comb & 1 & 0 & 0 & 0 & & 0 & 0 & 0 \\
\hline F shrinkage mean & 622 & 2 & & & & & 0.115 & 0.305 \\
\hline
\end{tabular}

Weighted prediction :

Table 6.10. Fishing mortality (F)at age
Run title : Arctic S. mentella
At 30/04/2003 16:24
Terminal Fs derived using XSA (With F shrinkage)
Fishing mortality (F) at age
YEAR
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline YEAR & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & \multicolumn{2}{|l|}{2002 FBAR} \\
\hline AGE & & & & & & & & & & & & & \\
\hline 6 & 0.074 & 0.0783 & 0.0041 & 0.0112 & 0.0083 & 0.0027 & 0.0021 & 0.001 & 0.0003 & 0 & 0.0041 & 0.0002 & 0.0015 \\
\hline 7 & 0.2023 & 0.1373 & 0.0077 & 0.0212 & 0.016 & 0.0088 & 0.0072 & 0.0167 & 0.0026 & 0.0008 & 0.0103 & 0.0016 & 0.0042 \\
\hline 8 & 0.2477 & 0.0902 & 0.0114 & 0.0394 & 0.0424 & 0.0327 & 0.0201 & 0.0446 & 0.0094 & 0.0139 & 0.0203 & 0.0077 & 0.014 \\
\hline 9 & 0.1357 & 0.0651 & 0.0285 & 0.075 & 0.0453 & 0.0599 & 0.0273 & 0.0769 & 0.0266 & 0.0302 & 0.0387 & 0.0241 & 0.031 \\
\hline 10 & 0.2566 & 0.0431 & 0.1009 & 0.1744 & 0.0663 & 0.0921 & 0.0586 & 0.1032 & 0.048 & 0.0502 & 0.0252 & 0.0319 & 0.0358 \\
\hline 11 & 0.2079 & 0.062 & 0.0897 & 0.1663 & 0.1066 & 0.117 & 0.1135 & 0.1519 & 0.1033 & 0.0536 & 0.04 & 0.0162 & 0.0366 \\
\hline 12 & 0.3246 & 0.1062 & 0.1296 & 0.1066 & 0.1592 & 0.1232 & 0.1182 & 0.2236 & 0.1318 & 0.0702 & 0.0777 & 0.0367 & 0.0615 \\
\hline 13 & 0.3959 & 0.1693 & 0.1457 & 0.0935 & 0.1919 & 0.1437 & 0.1972 & 0.245 & 0.2414 & 0.1068 & 0.1236 & 0.0652 & 0.0985 \\
\hline 14 & 0.6425 & 0.1309 & 0.3094 & 0.1854 & 0.265 & 0.107 & 0.243 & 0.245 & 0.3906 & 0.2368 & 0.2182 & 0.0911 & 0.1821 \\
\hline 15 & 0.4026 & 0.2621 & 0.1374 & 0.3464 & 0.2433 & 0.0937 & 0.085 & 0.3171 & 0.4685 & 0.4564 & 0.7239 & 0.1264 & 0.4356 \\
\hline 16 & 0.3503 & 0.3413 & 0.2233 & 0.3418 & 0.3637 & 0.0915 & 0.0685 & 0.0942 & 0.4567 & 0.5144 & 1.4964 & 0.5335 & 0.8481 \\
\hline 17 & 1.3766 & 0.4051 & 0.2504 & 0.2672 & 0.1078 & 0.1816 & 0.224 & 0.1215 & 0.1379 & 0.2621 & 0.8208 & 0.7049 & 0.5959 \\
\hline 18 & 0.6362 & 0.2623 & 0.2136 & 0.2474 & 0.2348 & 0.1237 & 0.1638 & 0.205 & 0.1277 & 0.0781 & 0.7483 & 0.6141 & 0.4802 \\
\hline +gp & 0.6362 & 0.2623 & 0.2136 & 0.2474 & 0.2348 & 0.1237 & 0.1638 & 0.205 & 0.1277 & 0.0781 & 0.7483 & 0.6141 & \\
\hline FBAR 10-16 & 0.3686 & 0.1593 & 0.1623 & 0.2021 & 0.1994 & 0.1097 & 0.1263 & 0.1972 & 0.2629 & 0.2126 & 0.3864 & 0.1287 & \\
\hline
\end{tabular}

Table 6.11. Stock number at age
Run title : Arctic S. mentella
At 30/04/2003 16:24
Terminal Fs derived using XSA (With F shrinkage)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Stock number at age (start of year)} & \multicolumn{2}{|l|}{Numbers*10**-3} & \multirow[b]{2}{*}{1995} & \multirow[b]{2}{*}{1996} \\
\hline YEAR & 1991 & 1992 & 1993 & 1994 & & \\
\hline & & & & & & \\
\hline 6 & 24355 & 26141 & 40600 & 69689 & 84330 & 86284 \\
\hline 7 & 31299 & 20465 & 21872 & 36585 & 62355 & 75676 \\
\hline 8 & 38306 & 23133 & 16141 & 19639 & 32409 & 55526 \\
\hline 9 & 56165 & 27056 & 19126 & 14440 & 17083 & 28108 \\
\hline 10 & 38214 & 44370 & 22939 & 16819 & 12122 & 14774 \\
\hline 11 & 29928 & 26753 & 38454 & 18764 & 12782 & 10265 \\
\hline 12 & 23616 & 21997 & 22750 & 31809 & 14378 & 10396 \\
\hline 13 & 31769 & 15445 & 17898 & 18083 & 25871 & 11095 \\
\hline 14 & 24006 & 19347 & 11799 & 13999 & 14902 & 19322 \\
\hline 15 & 12844 & 11426 & 15358 & 7835 & 10524 & 10345 \\
\hline 16 & 7487 & 7770 & 7955 & 12113 & 5013 & 7466 \\
\hline 17 & 13504 & 4773 & 4998 & 5757 & 7787 & 3153 \\
\hline 18 & 14566 & 3085 & 2880 & 3521 & 3988 & 6326 \\
\hline +gp & 42857 & 42072 & 32839 & 15585 & 12046 & 20278 \\
\hline TOTAL & 388915 & 293831 & 275609 & 284638 & 315592 & 359013 \\
\hline
\end{tabular}

Table 6.12. Stock biomass at age
Run title : Arctic S. mentella
At 30/04/2003 16:24
Terminal Fs derived using XSA (With F shrinkage)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Stock biomass at age (start of year)} & \multicolumn{2}{|l|}{Tonnes} & \multirow[b]{2}{*}{1995} & \multirow[b]{2}{*}{1996} & \multirow[b]{2}{*}{1997} & \multirow[b]{2}{*}{1998} & \multirow[b]{2}{*}{1999} & \multirow[b]{2}{*}{2000} & \multirow[b]{2}{*}{2001} & \multirow[b]{2}{*}{2002} \\
\hline YEAR & 1991 & 1992 & 1993 & 1994 & & & & & & & & \\
\hline AGE & & & & & & & & & & & & \\
\hline 6 & 3166 & 4967 & 6902 & 11150 & 14589 & 17257 & 11134 & 5204 & 5192 & 4233 & 3296 & 1224 \\
\hline 7 & 5634 & 4502 & 5031 & 8049 & 13905 & 15135 & 16351 & 10612 & 7392 & 4697 & 5745 & 4590 \\
\hline 8 & 8044 & 6015 & 4035 & 4713 & 8102 & 13882 & 16968 & 16087 & 10933 & 6671 & 5662 & 7547 \\
\hline 9 & 15164 & 7576 & 5355 & 4332 & 4903 & 8714 & 14102 & 17455 & 16947 & 11582 & 6765 & 7279 \\
\hline 10 & 12993 & 13755 & 7570 & 5718 & 3964 & 6205 & 7905 & 14128 & 16642 & 16532 & 11733 & 8009 \\
\hline 11 & 10475 & 8828 & 14613 & 6943 & 4602 & 4516 & 4633 & 7768 & 12927 & 15657 & 15603 & 13458 \\
\hline 12 & 9919 & 8359 & 10010 & 12724 & 5852 & 4886 & 3801 & 4235 & 6991 & 11974 & 14546 & 17553 \\
\hline 13 & 14614 & 7105 & 8412 & 7956 & 11823 & 6546 & 3992 & 3189 & 3492 & 5545 & 10582 & 13739 \\
\hline 14 & 12243 & 8319 & 5781 & 6300 & 6855 & 12945 & 4434 & 3336 & 2493 & 2583 & 4919 & 10192 \\
\hline 15 & 7450 & 4913 & 8754 & 3839 & 5230 & 7138 & 8640 & 3641 & 2450 & 1613 & 1917 & 4249 \\
\hline 16 & 4418 & 3497 & 4614 & 6662 & 2642 & 5301 & 5114 & 7964 & 2521 & 1536 & 974 & 920 \\
\hline 17 & 7968 & 2482 & 3099 & 3339 & 4462 & 2333 & 4069 & 4609 & 7096 & 1468 & 831 & 207 \\
\hline 18 & 8594 & 1758 & 1872 & 2359 & 2513 & 4681 & 1547 & 2943 & 3866 & 5679 & 1055 & 326 \\
\hline +gp & 30000 & 28188 & 21739 & 12312 & 8517 & 17175 & 19502 & 26601 & 27624 & 63010 & 22322 & 6771 \\
\hline TOTALBIO & 150680 & 110263 & 107787 & 96396 & 97959 & 126715 & 122191 & 127771 & 126568 & 152781 & 105949 & 96065 \\
\hline
\end{tabular}

Table 6.13. Spawning stock biomass at age
Run title : Arctic S. mentella
At 30/04/2003 16:24
Terminal Fs derived using XSA (With F shrinkage)
Spawning stock biomass at age (spawning time) Tonnes
\begin{tabular}{crrrrr}
AGE & & & & & \\
6 & 0 & 0 & 0 & 0 & 0 \\
7 & 0 & 0 & 0 & 0 & 0 \\
8 & 121 & 90 & 0 & 0 & 0 \\
9 & 834 & 470 & 123 & 100 & 218 \\
10 & 1715 & 1829 & 855 & 646 & 511 \\
11 & 2116 & 1978 & 3902 & 1854 & 2153 \\
12 & 4771 & 3435 & 4384 & 5573 & 6940 \\
13 & 7964 & 3829 & 4829 & 4567 & 477 \\
14 & 9072 & 6439 & 4874 & 5311 & 3813 \\
15 & 6332 & 4363 & 8325 & 3651 & 2085 \\
16 & 4250 & 3308 & 4245 & 6129 & 4462 \\
17 & 7968 & 2462 & 3065 & 3303 & 2513 \\
18 & 8594 & 1758 & 1872 & 2359 & 8517 \\
+gp & 30000 & 28188 & 21739 & 12312 & 35982 \\
TOTSPBIO & 83736 & 58150 & 58213 & 45804 & 3
\end{tabular}

Table 6.14. Summary
Run title : Arctic S. mentella
At 30/04/2003 16:24
Summary (without SOP correction)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & inal Fs de & ved using & (With F sh & nkage) & & \\
\hline & & RECRUITS & TOTALBIO & TOTSPBIO & LANDINGS & YIELD/SSB & FBAR 10-16 \\
\hline & & Age 6 & & & & & \\
\hline & 1991 & 24355 & 150680 & 83736 & 48727 & 0.5819 & 0.3686 \\
\hline & 1992 & 26141 & 110263 & 58150 & 15590 & 0.2681 & 0.1593 \\
\hline & 1993 & 40600 & 107787 & 58213 & 12866 & 0.221 & 0.1623 \\
\hline & 1994 & 69689 & 96396 & 45804 & 12721 & 0.2777 & 0.2021 \\
\hline & 1995 & 84330 & 97959 & 35982 & 10284 & 0.2858 & 0.1994 \\
\hline & 1996 & 86284 & 126715 & 50623 & 8075 & 0.1595 & 0.1097 \\
\hline & 1997 & 61856 & 122191 & 46733 & 8597 & 0.184 & 0.1263 \\
\hline & 1998 & 37172 & 127771 & 52999 & 14045 & 0.265 & 0.1972 \\
\hline & 1999 & 34617 & 126568 & 58037 & 11209 & 0.1931 & 0.2629 \\
\hline & 2000 & 42330 & 152781 & 87165 & 10245 & 0.1175 & 0.2126 \\
\hline & 2001 & 29963 & 105949 & 49927 & 18434 & 0.3692 & 0.3864 \\
\hline & 2002 & 9415 & 96065 & 36059 & 7022 & 0.1947 & 0.1287 \\
\hline Arith. & & & & & & & \\
\hline Mean & & 45563 & 118427 & 55286 & 14818 & 0.2598 & 0.2096 \\
\hline Units & & (Thousands) & (Tonnes) & (Tonnes) & (Tonnes) & & \\
\hline
\end{tabular}

Figure 6.1. Abundance indices of 0 -group redfish (believed to be mostly \(S\).mentella) in the international 0-group survey in the Barents Sea and Svalbard areas in AugustSeptember 1980-2002.

Figure 6.2. Catch (numbers of specimens) per hour trawling of different ages of Sebastes mentella in the Russian groundfish survey in the Barents Sea and Svalbard areas (ref. Table D4).

Figure 6.3a. Sebastes mentella. Abundance indices (on length) from the Norwegian bottom trawl survey in the Svalbard area (Division IIb) in summer/fall 1986-2002 (ref. Table D5a).

Figure 6.3b. Sebastes mentella. Abundance indices (on age) from the Norwegian bottom trawl survey in the Svalbard area (Division IIb) in summer/fall 1992-2002 (ref. Table D5b).

Figure 6.4a. Sebastes mentella. Abundance indices (on length) from the Norwegian bottom trawl survey in the Barents Sea in winter 1986-2003 (ref. Table D6a).

Figure 6.4b. Sebastes mentella. Abundance indices (on age) from the Norwegian bottom trawl survey in the Barents Sea in winter 1992-2003 (ref. Table D6b).

Figure 6.5a. Sebastes mentella. Left axis - abundance indices (on length) when combining the Norwegian bottom trawl surveys 1986-2002 at Svalbard (summer/fall) and in the Barents Sea (winter). Right axis (upper panel) - kilogram Sebastes spp. eaten per kilogram 3 year and older cod per year.

Figure 6.5b. Sebastes mentella . Abundance indices (on age) when combining the Norwegian bottom trawl surveys 1992-2002 at Svalbard (summer/fall) and in the Barents Sea (winter).

Figure 6.6. Sebastes mentella . Abundance indices (on age) from the new Norwegian demersal fish survey in August-September 1996-2002 covering the Norwegian Economic Zone (NEZ) and Svalbard incl. the area north and east of Spitsbergen.

Figure 6.7. Results of the Russian trawl/acoustic redfish survey for ages 9-14 (ref.
Table D7).

Figure 6.8. Russian trawl (BMRT) CPUE for ages 11-15.

Figure 6.9. St. errors of \(\log \mathrm{Q}\) at age for different fleets included in the exploratory XSA runs.

Figure 6.10. Log q residuals from different fleets included in the exploratory XSA runs.

Fig. 6.11. Estimated total biomass, SSB and fishing mortality from exploratory XSA/VPA runs.

Table D1
REDFISH in Subareas I and II. Nominal catch (t) by countries in Subarea I, Divisions IIa and IIb combined as officially reported to ICES.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & \begin{tabular}{l}
Can \\
ada
\end{tabular} & Den mark & \begin{tabular}{l}
Faroe \\
Islands
\end{tabular} & France & \[
\begin{array}{r}
\text { Ger } \\
\text { many }^{4} \\
\hline
\end{array}
\] & Green land & \[
\begin{array}{r}
\text { Ice } \\
\text { land }
\end{array}
\] & \[
\begin{array}{r}
\text { Ire } \\
\text { land }
\end{array}
\] & Nether lands & Nor way & \[
\begin{array}{r}
\text { Po } \\
\text { land }
\end{array}
\] & & \[
\text { Russia }^{5}
\] & Spain & \[
\begin{array}{r}
\mathrm{UK} \\
\mathrm{E} \& \mathrm{~W}) \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\mathrm{UK} \\
\text { (Scot.) } \\
\hline
\end{array}
\] & Total \\
\hline 1984 & - & - & - & 2,970 & 7,457 & - & - & - & - & 18,650 & - & 1,806 & 69,689 & 25 & 716 & - & 101,313 \\
\hline 1985 & - & - & - & 3,326 & 6,566 & - & - & - & - & 20,456 & - & 2,056 & 59,943 & 38 & 167 & - & 92,552 \\
\hline 1986 & - & - & 29 & 2,719 & 4,884 & - & - & - & - & 23,255 & - & 1,591 & 20,694 & & 129 & 14 & 53,315 \\
\hline 1987 & - & + & \(450{ }^{3}\) & 1,611 & 5,829 & - & - & - & - & 18,051 & - & 1,175 & 7,215 & 25 & 230 & 9 & 34,595 \\
\hline 1988 & - & - & 973 & 3,349 & 2,355 & - & - & - & - & 24,662 & - & 500 & 9,139 & 26 & 468 & 2 & 41,494 \\
\hline 1989 & - & - & 338 & 1,849 & 4,245 & - & - & - & - & 25,295 & - & 340 & 14,344 & \(5^{2}\) & 271 & 1 & 46,688 \\
\hline 1990 & - & \(37^{3}\) & 386 & 1,821 & 6,741 & - & - & - & - & 34,090 & - & 830 & 18,918 & & 333 & - & 63,156 \\
\hline 1991 & - & 23 & 639 & 791 & 981 & - & - & - & - & 49,463 & - & 166 & 15,354 & 1 & 336 & 13 & 67,768 \\
\hline 1992 & - & 9 & 58 & 1,301 & 530 & 614 & - & - & - & 23,451 & - & 977 & 4,335 & 16 & 479 & 3 & 31,773 \\
\hline 1993 & \(8^{3}\) & 4 & 152 & 921 & 685 & 15 & - & - & - & 18,319 & - & 1,040 & 7,573 & 65 & 734 & 1 & 29,517 \\
\hline 1994 & - & 28 & 26 & 771 & 1026 & 6 & 4 & 3 & - & 21,466 & - & 985 & 6,220 & 34 & 259 & 13 & 30,841 \\
\hline 1995 & - & - & 30 & 748 & 692 & 7 & 1 & 5 & 1 & 16,162 & - & 936 & 6,985 & 67 & 252 & 13 & 25,899 \\
\hline 1996 & - & - & \(42^{3}\) & 746 & 618 & 37 & - & 2 & - & 21,675 & - & 523 & 1,641 & 408 & 305 & 121 & 26,118 \\
\hline 1997 & - & - & 7 & 1,011 & 538 & \(39^{2}\) & - & 11 & - & 18,839 & 1 & 535 & 4,556 & 308 & 235 & 29 & 26,109 \\
\hline 1998 & - & - & 98 & 567 & 231 & \(47^{3}\) & - & 28 & - & 26,273 & 13 & 131 & 5,278 & 228 & 211 & 94 & 33,199 \\
\hline 1999 & - & - & 108 & \(61^{3}\) & 430 & 97 & 14 & 10 & - & 24,634 & 6 & 68 & 4,422 & 36 & 247 & 62 & 30,195 \\
\hline 2000 & - & - & \(67^{3}\) & 132 & 222 & 19 & 65 & 7 & - & 19,187 \({ }^{1}\) & 2 & 131 & 4,631 & 87 & & \(203{ }^{6}\) & 24,753 \\
\hline 2001 & - & - & \(69^{3}\) & 397 & 436 & 39 & 38 & 5 & - & 23,133 \({ }^{1}\) & 5 & 186 & 4,738 & & Estonia & \(239{ }^{6}\) & 29,376 \\
\hline \(2002{ }^{1}\) & - & - & \(70^{3}\) & 85 & 141 & \(49^{3}\) & 44 & \(4^{3}\) & - & 10,619 & 8 & 276 & 4,736 & \(193{ }^{2}\) & 15 & \(234{ }^{6}\) & 16,474 \\
\hline
\end{tabular}
\({ }^{1}\) Provisional figures.
\({ }^{2}\) Working Group figure.
\({ }^{3}\) As reported to Norwegian authorities.
\({ }^{4}\) Includes former GDR prior to 1991.
\({ }^{5}\) USSR prior to 1991.
\({ }^{6}\) UK(E\&W)+UK(Scot.)

Table D2 REDFISH in Subarea IV (North Sea). Nominal catch (t) by countries as officially reported to ICES. Not included in the assessment.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Belgium & Denmark & Faroe Islands & France & Germany & Ireland & Netherlands & Norway & \begin{tabular}{l}
UK \\
(England \& Wales)
\end{tabular} & UK (Scotl) & Total \\
\hline 1986 & - & 24 & - & 578 & 183 & - & - & 1,048 & 35 & 1 & 1,869 \\
\hline 1987 & - & 16 & 3 & 833 & 70 & - & - & 411 & 16 & 55 & 1,404 \\
\hline 1988 & - & 32 & 90 & 915 & 188 & - & - & 696 & 125 & 9 & 2,055 \\
\hline 1989 & 1 & 23 & 13 & 554 & 111 & - & - & \(500^{2}\) & 134 & 6 & 1,342 \\
\hline 1990 & + & 41 & 25 & 554 & 47 & - & - & \(483{ }^{2}\) & 369 & 6 & 1,525 \\
\hline 1991 & 5 & 29 & 144 & 914 & 213 & - & 2 & \(415^{2}\) & 43 & 38 & 1,803 \\
\hline 1992 & 4 & 22 & 23 & 1,960 & 170 & - & 1 & 416 & 65 & 122 & 2,783 \\
\hline 1993 & 28 & 14 & 4 & 1,211 & 33 & - & 1 & 373 & 138 & 71 & 1,873 \\
\hline 1994 & 4 & 13 & 1 & 863 & 324 & - & 8 & 371 & 38 & 66 & 1,688 \\
\hline 1995 & 16 & 12 & 65 & 1,120 & 80 & - & 16 & 297 & 46 & 241 & 1,893 \\
\hline 1996 & 20 & 20 & 1 & 932 & 74 & - & 41 & 363 & 37 & 146 & 1,634 \\
\hline 1997 & 16 & 23 & - & 1,049 & 45 & - & 53 & 595 & 21 & 528 & 2,330 \\
\hline 1998 & 2 & 27 & 12 & \(570^{1}\) & 370 & 4 & 21 & 1,113 & 68 & 681 & 2,868 \\
\hline 1999 & 3 & 52 & 1 & n.a. & 58 & 39 & 16 & 862 & 67 & 465 & 1,563 \\
\hline 2000 & 5 & 41 & n.a. & 224. & 19 & 28 & 19 & \(350{ }^{1}\) & 132 & 486 & 1,080 \\
\hline 2001 & 4 & 96 & n.a. & \(254{ }^{1}\) & 13 & 19 & + & \(422{ }^{1}\) & 80 & 458 & 1,346 \\
\hline \(2002{ }^{1}\) & 4 & 39 & n.a. & 96 & 11 & n.a. & - & 235 & & \(524{ }^{3}\) & 909 \\
\hline
\end{tabular}
\({ }^{1}\) Provisional figures.
\({ }^{2}\) Working Group figure.
\({ }^{3}\) UK(E/W/)+UK(Scotl)
n.a. = not available.

Table D3. Sebastes mentella in Divisions IIa and IIb. Catch per unit effort and calculated total international effort.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{2}{|c|}{USSR/Russia} & \multicolumn{2}{|c|}{Total effort} \\
\hline & \multicolumn{2}{|l|}{catch/hour trawling (t/hr)} & \multicolumn{2}{|l|}{(USSR/Russia units)} \\
\hline & \(\mathrm{BMRT}^{1}\) & PST \({ }^{2}\) & BMRT \({ }^{1}\) & PST \({ }^{2}\) \\
\hline 1975 & 2.0 & 0.9 & 119,535 & 265,634 \\
\hline 1976 & 1.7 & 1.11 & 158,198 & 242,285 \\
\hline 1977 & 1.5 & 1.02 & 97,576 & 143,495 \\
\hline 1978 & 0.9 & 0.75 & 102,901 & 123,482 \\
\hline 1979 & 0.9 & 0.84 & 96,828 & 103,744 \\
\hline 1980 & 1.8 & 1.25 & 44,085 & 63,483 \\
\hline 1981 & 1.9 & 1.31 & 42,669 & 61,886 \\
\hline 1982 & 1.8 & 1.59 & 64,102 & 72,568 \\
\hline 1983 & 3.0 & 1.86 & 35,091 & 56,599 \\
\hline 1984 & 1.8 & 1.42 & 40,519 & 51,362 \\
\hline 1985 & 1.1 & 1.01 & 57,335 & 62,444 \\
\hline 1986 & 0.8 & 0.81 & 28,890 & 28,533 \\
\hline 1987 & 0.8 & 0.78 & 13,148 & 13,485 \\
\hline 1988 & 0.8 & 0.71 & 19,483 & 21,952 \\
\hline 1989 & 0.8 & 0.79 & 29,367 & 29,739 \\
\hline 1990 & 0.8 & 0.72 & 43,838 & 48,708 \\
\hline 1991 & 1.0 & 0.77 & 48,727 & 63,282 \\
\hline 1992 & 0.5 & 0.70 & 31,180 & 22,271 \\
\hline 1993 & 0.4 & 0.90 & 32,165 & 14,296 \\
\hline 1994 & 1.1 & 0.83 & 11,565 & 15,327 \\
\hline 1995 & 1.5 & 0.80 & 8,856 & 12,855 \\
\hline 1996 & \(1.5{ }^{3}\) & \(0.80^{3}\) & 5,383 & 10,094 \\
\hline 1997 & 1.3 & 0.80 & 6,088 & 10,654 \\
\hline 1998 & 0.8 & 1.0 & 17,556 & \\
\hline 1999 & 1.7 & & 6,593 & \\
\hline 2000 & 2.5 & & 4,082 & \\
\hline 2001 & 3.8 & 1.6 & 4,851 & \\
\hline 2002 & \(1.0^{4}\) & 0.8 & 7,022 & \\
\hline
\end{tabular}
\({ }^{1}\) Stern trawlers, 1900-2400 HP.
\({ }^{2}\) Stern trawlers, 2200 HP .
\({ }^{3}\) Average 1995 and 1997
\({ }^{4}\) Using the relationship BMRT \(=1.59 *\) PST- 0.2621 for the period 1975-1997.

Table D4. Sebastes mentella. Average catch (numbers of specimens) per hour trawling of different ages of Sebastes mentella in the Russian groundfish survey in the Barents Sea and Svalbard areas (1976-1983 published in "Annales Biologiques").
\begin{tabular}{lrrrrrrrrrrrr}
\hline \begin{tabular}{l}
Year \\
class
\end{tabular} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline 1965 & - & - & - & - & - & - & - & - & - & - & - & 0.4 \\
1966 & - & - & - & - & - & - & - & - & - & - & 3.0 & - \\
1967 & - & - & - & - & - & - & - & - & - & 11.7 & - & 0.3 \\
1968 & - & - & - & - & - & - & - & - & 16.2 & - & 1.5 & 0.3 \\
1969 & - & - & - & - & - & - & - & 43.4 & - & 8.7 & 12.2 & 3.1 \\
1970 & - & - & - & - & - & - & 85.8 & - & 19.8 & 34.9 & 11.9 & - \\
1971 & - & - & - & - & - & 22.7 & - & 19.5 & 51.9 & 18.0 & 5.7 & - \\
1972 & - & - & - & - & 9.4 & \(-\overline{6.7}\) & 6.7 & 57.6 & 12.3 & 6.7 & - & - \\
1973 & - & - & - & 0.6 & - & 4.3 & 37.3 & 8.6 & 5.6 & - & - & - \\
1974 & - & - & 4.8 & - & 4.9 & 22.8 & 4.8 & 4.8 & - & - & - & 3.0 \\
1975 & - & 7.4 & - & 1.7 & 6.4 & 2.4 & 3.5 & 5.0 & - & - & 4.0 & - \\
1976 & 7.0 & - & 8.1 & 1.2 & 2.5 & 6.8 & 4.9 & 5.0 & 1.0 & 13.0 & - & - \\
1977 & - & 0.2 & 0.2 & 0.2 & 0.9 & 5.1 & 3.7 & 1.0 & 19.0 & 2.0 & - & - \\
1978 & 0.8 & 0.02 & 0.9 & 1.0 & 5.0 & 3.8 & 2.0 & 20.0 & 6.0 & - & - & - \\
1979 & - & 1.9 & 1.4 & 3.6 & 2.3 & 9.0 & 11.0 & 16.0 & 1.0 & - & - & 0.1 \\
1980 & 0.3 & 0.4 & 2.0 & 2.5 & 16.0 & 6.0 & 11.0 & 25.0 & 2.0 & - & 1.5 & 2.0 \\
1981 & - & 2.2 & 3.9 & 20.0 & 6.0 & 12.0 & 47.0 & 18.0 & 6.3 & 1.6 & 0.5 & 1.0 \\
1982 & 19.8 & 13.2 & 13.0 & 15.0 & 34.0 & 44.0 & 39.0 & 32.6 & 4.3 & 3.1 & 4.9 & + \\
1983 & 12.5 & 3.0 & 5.0 & 6.0 & 31.0 & 34.0 & 32.3 & 13.3 & 4.0 & 4.2 & 0.6 & 1.1 \\
1984 & - & 10.0 & 2.0 & - & 5.0 & 18.3 & 19.0 & 2.2 & 2.4 & 0.2 & 1.7 & 2.4 \\
1985 & 107.0 & 7.0 & - & 1.0 & 5.2 & 16.2 & 1.7 & 1.7 & 0.6 & 2.8 & 3.8 & 0.3 \\
1986 & 2.0 & - & 1.0 & 1.8 & 8.4 & 3.6 & 2.1 & 1.2 & 5.6 & 8.2 & 0.9 & 0.7 \\
1987 & - & 3.0 & 37.9 & 1.3 & 8.0 & 4.1 & 2.0 & 10.6 & 9.6 & 1.4 & 2.0 & 1.3 \\
1988 & 4.0 & 58.1 & 4.3 & 13.3 & 25.8 & 3.9 & 8.6 & 1.2 & 2.8 & 4.2 & 3.0 & 4.7 \\
1989 & 8.7 & 9.0 & 17.0 & 23.4 & 4.6 & 5.4 & 4.0 & 6.6 & 6.6 & 4.1 & 7.7 & 5.3 \\
1990 & 2.5 & 6.3 & 6.1 & 1.0 & 4.3 & 1.7 & 11.5 & 6.5 & 5.5 & 6.7 & 7.4 & 3.6 \\
1991 & 0.3 & 1.0 & 0.5 & 1.5 & 1.2 & 11.3 & 3.9 & 3.3 & 4.6 & 5.8 & 2.7 & 1.9 \\
1992 & 0.6 & + & 0.2 & 0.1 & 4.3 & 1.3 & 2.0 & 2.3 & 4.9 & 2.3 & 1.0 & - \\
\(1993^{1}\) & - & + & 1.5 & 1.8 & 1.0 & 1.2 & 3.0 & 4.2 & 2.6 & 2.0 & - & - \\
1994 & 0.3 & 3.5 & 1.7 & 1.7 & 0.9 & 3.6 & 5.2 & 4.3 & 3.1 & - & - & - \\
1995 & 2.8 & 1.0 & 1.1 & 0.4 & 2.2 & 2.6 & 3.5 & 3.4 & - & - & - & - \\
\(1996^{2}\) & + & 0.1 & 0.1 & 0.4 & 0.7 & 1.1 & 1.0 & - & - & - & - & - \\
1997 & - & - & + & 0.4 & 0.5 & 0.3 & - & - & - & - & - & - \\
1998 & - & 0.1 & 0.2 & 0.3 & 0.2 & - & - & - & - & - & - & - \\
1999 & 0.1 & - & 0.1 & + & - & - & - & - & - & - & - & - \\
2000 & - & 0.6 & 0.1 & - & - & - & - & - & - & - & - & - \\
2001 & - & 0.1 & - & - & - & - & - & - & - & - & - & - \\
\(2002^{3}\) & 0.1 & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) - Not complete area coverage of Division IIb.
\({ }^{2}\) - Area surveyed restricted to Subarea I and Division IIa only.
\({ }^{3}\) - Area surveyed restricted to Subarea I and Division IIb only.
}

Table D5a
Sebastes mentella \({ }^{1}\) in Division IIb. Abundance indices (on length) from the bottom trawl survey in the Svalbard area (Division IIb) in summer/fall 1986-2002 (numbers in millions).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{\[
\begin{aligned}
& \text { Length group } \\
& (\mathrm{cm})
\end{aligned}
\]} \\
\hline Year & 5.0-9.9 & \[
\begin{aligned}
& \hline 10.0- \\
& 14.9 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\hline 15.0- \\
19.9 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline 20.0- \\
24.9 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \hline 25.0- \\
& 29.9 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\hline 30.0- \\
34.9 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline 35.0- \\
39.9 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline 40.0- \\
44.9 \\
\hline
\end{gathered}
\] & >45.0 & Total \\
\hline \(1986^{2}\) & 6 & 101 & 192 & 17 & 10 & 5 & 2 & 4 & + & 338 \\
\hline \(1987^{2}\) & 20 & 14 & 140 & 19 & 6 & 2 & 1 & 2 & + & 208 \\
\hline \(1988{ }^{2}\) & 33 & 23 & 82 & 77 & 7 & 3 & 2 & 2 & + & 228 \\
\hline 1989 & 566 & 225 & 24 & 72 & 17 & 2 & 2 & 8 & 4 & 921 \\
\hline 1990 & 184 & 820 & 59 & 65 & 111 & 23 & 15 & 7 & 3 & 1,287 \\
\hline 1991 & 1,533 & 1,426 & 563 & 55 & 138 & 38 & 30 & 7 & 1 & 3,791 \\
\hline 1992 & 149 & 446 & 268 & 43 & 22 & 15 & 4 & 7 & 4 & 958 \\
\hline 1993 & 9 & 320 & 272 & 89 & 16 & 13 & 3 & 1 & + & 722 \\
\hline 1994 & 4 & 284 & 613 & 242 & 10 & 9 & 2 & 2 & 1 & 1,165 \\
\hline 1995 & 33 & 33 & 417 & 349 & 77 & 18 & 5 & 1 & + & 933 \\
\hline 1996 & 56 & 69 & 139 & 310 & 97 & 8 & 4 & 1 & 1 & 685 \\
\hline 1997 & 3 & 44 & 13 & 65 & 57 & 9 & 5 & + & + & 195 \\
\hline 1998 & + & 37 & 35 & 28 & 132 & 73 & 45 & 2 & + & 353 \\
\hline 1999 & 4 & 3 & 121 & 62 & 259 & 169 & 42 & 1 & 0 & 661 \\
\hline 2000 & + & 10 & 31 & 59 & 126 & 143 & 21 & 1 & 0 & 391 \\
\hline 2001 & 1 & 5 & 3 & 32 & 57 & 228 & 50 & 3 & 0 & 378 \\
\hline 2002 & 1 & 4 & 6 & 21 & 62 & 266 & 47 & 4 & + & 410 \\
\hline
\end{tabular}
\({ }^{1}\) - Includes some unidentified Sebastes specimens, mostly less than 15 cm .
\({ }^{2}\) - Old trawl equipment (bobbins gear and 80 meter sweep length)

Table D5bSebastes mentella \({ }^{1}\) in Division IIb. Norwegian bottom trawl survey indices (on age) in the Svalbard area (Division IIb) in summer/fall 1992-2002 (numbers in millions).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{Age} \\
\hline Year & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & Total \\
\hline 1992 & 283 & 419 & 484 & 131 & 58 & 45 & 14 & 8 & 5 & 2 & 7 & 2 & 1 & 3 & 1,462 \\
\hline 1993 & 2 & 527 & 117 & 202 & 142 & 8 & 23 & 6 & 13 & 1 & 7 & 1 & 1 & + & 1,050 \\
\hline 1994 & 7 & 280 & 290 & 202 & 235 & 42 & 94 & 1 & 1 & 3 & 4 & 1 & 1 & + & 1,161 \\
\hline 1995 & 4 & 50 & 365 & 237 & 132 & 61 & 19 & 17 & 11 & + & 1 & 3 & 0 & 0 & 900 \\
\hline 1996 & 23 & 47 & 15 & 37 & 105 & 144 & 84 & 17 & 51 & 32 & 34 & 9 & 6 & 2 & 605 \\
\hline 1997 & 8 & 43 & 6 & 6 & 40 & 20 & 30 & 25 & 7 & 3 & 1 & 2 & 2 & 1 & 194 \\
\hline 1998 & + & 26 & 28 & 14 & 10 & 13 & 69 & 66 & 49 & 15 & 1 & 6 & 15 & 5 & 317 \\
\hline 1999 & 3 & 16 & 114 & 27 & 36 & 53 & 117 & 78 & 67 & 41 & 45 & 11 & 19 & 13 & 640 \\
\hline 2000 & 4 & 6 & 6 & 14 & 35 & 22 & 31 & 54 & 81 & 60 & 24 & 24 & 10 & 8 & 379 \\
\hline 2001 & 2 & 4 & 3 & 1 & 9 & 16 & 22 & 30 & 34 & 57 & 57 & 50 & 54 & 6 & 344 \\
\hline 2002 & 3 & 2 & 4 & 2 & 5 & 22 & 34 & 23 & 88 & 36 & 62 & 64 & 15 & 21 & 379 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) - Includes some unidentified Sebastes specimens, mostly less than 15 cm .
}

Table D6a Sebastes mentella \({ }^{1}\). Abundance indices (on length) from the bottom trawl surveys in the Barents Sea in the winter 1986-2003 (numbers in millions). The area coverage was extended from 1993.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Length group (cm)} \\
\hline Year & 5.0-9.9 & \[
\begin{aligned}
& 10.0- \\
& 14.9
\end{aligned}
\] & \[
\begin{aligned}
& 15.0- \\
& 19.9
\end{aligned}
\] & \[
\begin{aligned}
& 20.0- \\
& 24.9
\end{aligned}
\] & \[
\begin{aligned}
& 25.0- \\
& 29.9
\end{aligned}
\] & \[
\begin{gathered}
30.0- \\
34.9
\end{gathered}
\] & \[
\begin{gathered}
35.0- \\
39.9
\end{gathered}
\] & \[
\begin{gathered}
40.0- \\
44.9
\end{gathered}
\] & >45.0 & Total \\
\hline 1986 & 81.3 & 151.9 & 205.4 & 87.7 & 169.2 & 129.8 & 87.5 & 23.6 & 13.8 & 950.2 \\
\hline 1987 & 71.8 & 25.1 & 227.4 & 56.1 & 34.6 & 11.4 & 5.3 & 1.1 & 0.1 & 432.9 \\
\hline 1988 & 587.0 & 25.2 & 132.6 & 182.1 & 39.6 & 50.1 & 47.9 & 3.6 & 0.1 & 1068. \\
\hline 1989 & 622.9 & 55.0 & 28.4 & 177.1 & 58.0 & 9.4 & 8.0 & 1.9 & 0.3 & 961.0 \\
\hline 1990 & 323.6 & 304.5 & 36.4 & 55.9 & 80.2 & 12.9 & 12.5 & 1.5 & 0.2 & 827.7 \\
\hline 1991 & 395.2 & 448.8 & 86.2 & 38.9 & 95.6 & 34.8 & 24.3 & 2.5 & 0.2 & 1126. \\
\hline 1992 & 139.0 & 366.5 & 227.1 & 34.6 & 55.2 & 34.4 & 7.5 & 1.8 & 0.5 & \(866 . \overline{6}\) \\
\hline 1993 & 30.8 & 592.7 & 320.2 & 116.3 & 24.2 & 25.0 & 6.3 & 1.0 & + & 1116. \\
\hline 1994 & 6.9 & 258.6 & 289.4 & 284.3 & 51.4 & 69.8 & 19.9 & 1.4 & 0.1 & \(981 . \overline{8}\) \\
\hline 1995 & 263.7 & 71.4 & 637.8 & 505.8 & 90.8 & 68.8 & 31.3 & 3.9 & 0.5 & 1674. \\
\hline 1996 & 213.1 & 100.2 & 191.2 & 337.6 & 134.3 & 41.9 & 16.6 & 1.4 & 0.3 & 1036. \\
\hline \(1997{ }^{2}\) & 62.8 & 121.1 & 24.7 & 277.9 & 274.4 & 72.3 & 40.7 & 5.1 & 0.2 & 879.0 \\
\hline \(1998{ }^{2}\) & 1.3 & 90.6 & 62.8 & 100.8 & 203.1 & 40.7 & 13.0 & 1.7 & 0.2 & 514.0 \\
\hline 1999 & 2.2 & 6.8 & 67.6 & 36.8 & 167.4 & 71.9 & 21.0 & 3.1 & 0.1 & 376.8 \\
\hline 2000 & 9.0 & 12.9 & 39.3 & 76.8 & 141.9 & 97.2 & 26.6 & 6.9 & 1.5 & 412.1 \\
\hline 2001 & 9.3 & 22.5 & 7.0 & 54.9 & 77.4 & 73.2 & 9.4 & 0.6 & 0.1 & 254.2 \\
\hline 2002 & 16.1 & 7.2 & 19.1 & 41.7 & 103.9 & 113.7 & 22.9 & 1.4 & + & 326.0 \\
\hline 2003 & 3.9 & 3.9 & 10.0 & 12.4 & 70.8 & 199.8 & 46.9 & 6.0 & 0.3 & 354.0 \\
\hline
\end{tabular}
\({ }^{1}\) - Includes some unidentified Sebastes specimens, mostly less than 15 cm .
\({ }^{2}\) - Adjusted indices to account for not covering the Russian EEZ in Subarea I.
Table D6b Sebastes mentella \({ }^{1}\) in Subareas I and II. Preliminary Norwegian bottom trawl indices (on age) from the annual Barents Sea survey in February 1992-2003 (numbers in millions). The area coverage was extended from 1993 onwards.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{Age} \\
\hline Year & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & Total \\
\hline 1992 & 351 & 252 & 132 & 56 & 14 & 11 & 3 & 9 & 18 & 16 & 12 & 11 & 2 & 5 & 892 \\
\hline 1993 & 38 & 473 & 192 & 242 & 62 & 45 & 19 & 22 & 13 & 11 & 10 & 4 & 2 & 3 & 1,136 \\
\hline 1994 & 7 & 85 & 332 & 189 & 370 & 228 & 73 & 42 & 3 & 30 & 8 & 14 & 25 & 7 & 1,413 \\
\hline 1995 & 308 & 45 & 146 & 264 & 364 & 211 & 69 & 23 & 7 & 17 & 23 & 9 & 11 & 10 & 1,507 \\
\hline 1996 & 173 & 119 & 109 & 114 & 128 & 122 & 106 & 64 & 24 & 19 & 12 & 7 & 8 & 4 & 1,009 \\
\hline \(1997{ }^{2}\) & 43 & 101 & 19 & 54 & 96 & 43 & 44 & 171 & 76 & 74 & 39 & 29 & 10 & 9 & 808 \\
\hline \(1998{ }^{2}\) & 1 & 73 & 49 & 27 & 13 & 52 & 107 & 104 & 41 & 18 & 7 & 4 & 3 & 3 & 502 \\
\hline 1999 & 1 & + & 32 & 43 & 30 & 24 & 30 & 81 & 79 & 28 & 2 & 1 & 6 & + & 357 \\
\hline 2000 & 9 & 12 & 21 & 17 & 9 & 39 & 77 & 73 & 50 & 41 & 14 & 10 & 7 & 6 & 385 \\
\hline 2001 & 1 & 17 & 8 & 1 & 7 & 22 & 39 & 30 & 34 & 23 & 24 & 17 & 9 & 3 & 236 \\
\hline 2002 & 18 & 4 & 12 & 7 & 4 & 14 & 49 & 55 & 27 & 19 & 34 & 24 & 28 & 11 & 306 \\
\hline 2003 & 0 & 2 & 2 & 4 & 6 & 6 & 14 & 39 & 24 & 34 & 39 & 65 & 46 & 20 & 301 \\
\hline
\end{tabular}
\({ }^{1}\) - Includes some unidentified Sebastes specimens, mostly less than 15 cm .
\({ }^{2}\) - Adjusted indices to account for not covering the Russian EEZ in Subarea I.
Table D7 Sebastes mentella in Subareas I and II. Abundance indices (on age) from the new Norwegian demersal fish survey in August-September 1996-2002 covering the Norwegian Economic Zone (NEZ) and Svalbard incl. the area north and east of Spitsbergen (numbers in thousands).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multicolumn{16}{|c|}{Age} \\
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & Total \\
\hline 1996 & 146198 & 112742 & 22353 & 53507 & 165531 & 181980 & 108738 & 43328 & 65310 & 40546 & 38254 & 19843 & 29446 & 10931 & 17414 & 1366761 \\
\hline 1997 & 62682 & 130816 & 12492 & 23452 & 74342 & 55880 & 76607 & 82503 & 17640 & 14274 & 675 & 2238 & 1723 & 633 & 8765 & 587223 \\
\hline 1998 & 313 & 78767 & 85715 & 39849 & 25805 & 23413 & 84825 & 100332 & 54287 & 24329 & 11334 & 7457 & 15250 & 576 & 25212 & 577670 \\
\hline 1999 & 5359 & 23240 & 117170 & 47851 & 41608 & 76797 & 128677 & 73306 & 58018 & 64781 & 49890 & 13565 & 18458 & 12171 & 24672 & 755562 \\
\hline 2000 & 5964 & 23169 & 14336 & 19960 & 52666 & 68081 & 83857 & 77513 & 100442 & 72294 & 71148 & 36599 & 17183 & 20590 & 26501 & 690837 \\
\hline 2001 & 5026 & 6541 & 10957 & 1093 & 19766 & 25591 & 36594 & 51644 & 44407 & 61704 & 50083 & 86122 & 53952 & 15699 & 31877 & 507131 \\
\hline 2002 & 9112 & 6646 & 7379 & 3821 & 8635 & 28215 & 47456 & 63903 & 103368 & 49964 & 76133 & 71970 & 25241 & 36765 & 34957 & 573565 \\
\hline
\end{tabular}

Sebastes mentella in Subareas I and II.
Results of the Russian trawl/acoustic redfish survey in the western Barents Sea in April-May 1992-2001. Abundance indices in millions.

Table D9
Sebastes mentella. Maturity ogives from Russian research vessels. Sexes combined. Data collected during April-June in the Kopytov area (western Barents Sea) and adjacent waters
\begin{tabular}{clllllllllll}
\hline & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1995 & 1997 & 1998 & 1999 & 2000 \\
2001 \\
\hline 7 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & 0.018 & 0.021 & 0.000 & 0.000 \\
8 & 0.000 & 0.000 & 0.000 & 0.046 & 0.000 & 0.000 & 0.000 & 0.000 & 0.014 & 0.016 & 0.000 \\
9 & 0.000 & 0.000 & 0.012 & 0.139 & 0.013 & 0.033 & 0.000 & 0.027 & 0.000 & 0.059 & 0.048 \\
10 & 0.028 & 0.074 & 0.131 & 0.174 & 0.092 & 0.133 & 0.055 & 0.130 & 0.074 & 0.110 & 0.087 \\
10.082 \\
11 & 0.125 & 0.178 & 0.300 & 0.138 & 0.169 & 0.364 & 0.111 & 0.312 & 0.171 & 0.333 & 0.202 \\
12 & 0.297 & 0.473 & 0.688 & 0.358 & 0.396 & 0.480 & 0.368 & 0.281 & 0.276 & 0.579 & 0.375 \\
13 & 0.562 & 0.684 & 0.714 & 0.470 & 0.452 & 0.696 & 0.587 & 0.566 & 0.622 & 0.689 & 0.489 \\
14 & 0.760 & 0.716 & 0.824 & 0.637 & 0.761 & 0.925 & 0.696 & 0.736 & 0.714 & 0.788 & 0.742 \\
142 \\
15 & 0.855 & 0.794 & 0.848 & 0.762 & 0.939 & 0.962 & 0.729 & 0.831 & 0.871 & 0.813 & 0.833 \\
16 & 1.000 & 1.000 & 1.000 & 1.000 & 0.886 & 0.953 & 0.789 & 0.958 & 0.919 & 0.903 & 0.904 \\
17 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 0.977 & 1.000 & 0.950 & 1.000 & 0.923 & 1.000 \\
18 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
18 & & & & & & & & & & 1.909 \\
\hline
\end{tabular}

\subsection*{7.1 Status of the Fisheries}

\subsection*{7.1.1 Historical development of the fishery}

A description of the historical development of the fishery is found in the Quality handbook for this stock (see Annex....).

Until 1 January 2003 there were no regulations particularly for the \(S\). marinus fishery, and the regulations aimed at \(S\). mentella (see chapter 6.1.1) had only marginal effects on the \(S\). marinus stock. After this date, all directed trawl fishery for redfish (both S. marinus and S. mentella) is forbidden in the Norwegian Economic Zone north of \(62^{\circ} \mathrm{N}\) and in the Svalbard area. When fishing for other species it is legal to have up to \(20 \%\) redfish (both species together) in round weight as by-catch per haul and on board at any time.

\subsection*{7.1.2 Landings prior to 2003 (Tables 7.1-7.5, D1 and D2)}

Nominal catches of S. marinus by country for Subareas I and II combined are presented in Table 7.1 and the totals for both S. marinus and S. mentella in Tables D1 and D2. Landings of S. marinus showed a decrease in 1991 from a level of 23,000\(30,000 \mathrm{t}\) in 1984-1990 to a stable level of about \(16,000-19,000 \mathrm{t}\) in the years 1991-1999. Since then the landings have decreased further, and the provisional total landings figure for \(S\). marinus in 2002 of \(9,452 \mathrm{t}\) is the lowest since the mid1940ies (!).

Information describing the splitting of the redfish landings by species and area is given in Section 6.1.2. The time-series of \(S\). marinus landings are given in Table 7.5 and shows a long-term (1908-2002) mean of 17,440 t .

\subsection*{7.1.3 Expected landings in 2003}

On the basis of reports from the first months of the year and no directed trawl fishery, the Norwegian landings in 2003 are expected to further decrease to around \(4,000 \mathrm{t}\). The Russian catch is expected to be 800 t . On this basis landings of \(5,000 \mathbf{t}\) are expected in 2003.

\subsection*{7.2 Data Used in the Assessment}

\subsection*{7.2.1 Fishing effort and catch-per-unit-effort (Tables D10, Figure 7.1)}

Data for S. marinus were available for Norwegian freezer trawlers (ISSCFV-code 07, 250-499.9 GRT) since 1981 (Table D10). The total international effort was estimated from these data. Mean CPUEs together with standard errors are presented in Table D10 and Figure 7.1.

A lower but stable effort was observed in 1991-1997 compared to previous years. In 1998-1999 the effort increased to \(80 \%\) of the 1981-1990 level. In recent years the effort has again decreased and stabilized at the 1991-1997 level. The year, area and month effects are all significant. The provisional figure for 2002 of \(0.42 \mathrm{t} / \mathrm{hour}\) is the lowest in the timeseries. Although the trawl fishery in 2002 was almost unregulated, it is worrying that fewer and fewer fishing days fulfilled the input data requirements when only including days with more than \(50 \% S\) marinus in the catches (from 200300 days in 1998-2000 to less than 40 days in 2002).

\subsection*{7.2.2 Catch-at-age (Table 7.8).}

Catch-at-age data for 2000-2001 were revised. Age composition data for 2002 were provided only by Norway, accounting for \(89 \%\) of the total landings. Russian catch-at-length from each Subarea and German catch-at-length from Division IIa were converted to catch-at-age by using the Norwegian age-length keys for trawlers in Divisions IIa and IIb. Other countries were assumed to have the same relative age distribution and mean weight as Norway.

\subsection*{7.2.3 Weight-at-age (Table 7.9).}

Weight-at-age data for ages 7-24+ were available from the Norwegian landings in 2002.

\subsection*{7.2.4} Maturity-at-age

A maturity ogive was not available for \(S\). marinus, and knife-edge maturity-at-age 15 was assumed.

\subsection*{7.2.5 Survey results (Tables 7.6, 7.7, D11a,b-D12a,b, Figures 7.2a,b-7.3a,b)}

The results from the following research vessel survey series were evaluated by the Working Group:
1) Norwegian Barents Sea bottom trawl survey (February) from 1986-2003 (joint with Russia since 2000) in fishing depths of 100-500 m. Length compositions for the years 1986-2003 are shown in Table D11a and Fig 7.2a. Age compositions for the years 1992-2003 are shown in Table D11b and Figure 7.2b. This survey covers important nursery areas for the stock
2) Norwegian Svalbard (Division IIb) bottom trawl survey (August-September) from 1985-2002 in fishing depths of \(100-500 \mathrm{~m}\). Length compositions for the years 1985-2002 and age compositions for the years 1992-2002 are shown in Table D12a and D12b, respectively. This survey covers the northernmost part of the species' distribution.

Data on length and age from both these surveys have been combined and are shown in Figures 7.3a,b.
3) Catch rates (numbers/nautical mile) and acoustic indices of Sebastes marinus from the Norwegian Coastal and Fjord survey in 1995-2002 from Finnmark to Møre (Tables 7.6-7.7).

The bottom trawl surveys covering the Barents Sea and the Svalbard areas show that the abundance indices over the commercial size range (\(>25 \mathrm{~cm}\)) were relatively stable up to 1998 . Since then the abundance has decreased. In addition, fewer pre-recruit sized fish \((<25 \mathrm{~cm})\) will lead to poorer recruitment to the fishable biomass.

Results from the Norwegian Coastal and Fjord survey confirm poor recruitment and also show an overall reduction in the abundance of this species irrespective of fish size (except for fish \(>35 \mathrm{~cm}\)). Some variation in the results from year to year may be due to a variable number of trawl stations taken in some of the areas from year to year (Table 7.6).

\subsection*{7.3 Results of the Assessment}

The current assessment is an update of last year's assessment, and all present available information confirms last years' evaluation of stock status.

The current assessment raises great concern about the stock. Data from both the scientific surveys and commercial CPUE show a very disturbing reduction in fishable biomass. The survey covering the near-coast and fjord resources show an overall reduction in abundance from 1995 to 2002 for all sizes less than 35 cm . Concerns are again expressed about the low number of pre-recruit size groups in all the recent surveys suggesting that future recruitment to the fishery may be poor. Further declines in the stock can therefore be expected in the near future.
S. marinus is considered to be an easier species to age than S. mentella, and since it is possible to follow year classes through the input survey data series, a trial XSA run was made which showed a likely stock development. Ongoing work to improve the tuning series as well as a need for more exploratory XSA-analyses, lead the working group to postpone any presentation of possible XSA-analyses. Possible alternative methods to conventional catch-at-age analyses, such as the FLEKSIBEST model, were mentioned also for this redfish stock. This model is closely related to the BORMICON model which currently is used by the ICES North-Western WG on S. marinus (Björnsson and Sigurdsson 2003). Preparatory work should be done in order to explore these possibilities.

\subsection*{7.4 Biological reference points}

Candidate limit reference point for the biomass or numbers (\(\mathrm{U}_{\mathrm{lim}}\)) could be set at the maximum biomass (or number) level of \(S\). marinus above 25 cm , or at a certain percentage of this level, estimated by the Russian and Norwegian trawl surveys for the time period 1986-1997. Such practice is currently used by ICES for the Icelandic redfish stocks (ICES CM 2002/ACFM:20) and is a procedure mentioned and recommended as an alternative by the ICES Study Groups on the Precautionary Approach.

The stock is expected to continue to decline over the next several years as a series of poor year classes will recruit to the fishery. ICES has recommended that a management plan consistent with the precautionary approach to be immediately developed and implemented as a pre-requisite to continued fishing. Such a plan may consider an enlargement of the current by-catch regime, restricted fishing periods, closure of areas and TAC. The Working Group is confident with the new regulations enforced in 2003, but re-iterates the need for a management plan, also including the gillnet fishery directed on unisex shoals of females during the live-bearing period.

Table 7.1 Sebastes marinus. Nominal catch (t) by countries in Subarea I and Divisions IIa and IIb combined.
\begin{tabular}{crrrrrrr}
\hline Year & Faroe Islands & France & Germany \(^{2}\) & Greenland & Iceland & Ireland & Netherlands \\
\hline 1986 & 29 & 2,719 & 3,369 & - & - & - & - \\
1987 & 250 & 1,553 & 4,508 & - & - & - & - \\
1988 & \multicolumn{5}{c}{} & No species-specific data presently available on countries & \\
1989 & 3 & 796 & 412 & - & - & - & - \\
1990 & 278 & 1,679 & 387 & 1 & - & - & - \\
1991 & 152 & 706 & 981 & - & - & - & - \\
1992 & 35 & 1,289 & 530 & 623 & - & - & - \\
1993 & 139 & 871 & 650 & 14 & - & - & - \\
1994 & 22 & 697 & 1,008 & 5 & 4 & - \\
1995 & 27 & 732 & 517 & 5 & 1 & - & - \\
1996 & 38 & 671 & 499 & 34 & - & - & - \\
1997 & 3 & 974 & 457 & 23 & - & - & - \\
1998 & 78 & 494 & 131 & 33 & - & - \\
1999 & 35 & 35 & 228 & 47 & 14 & - \\
2000 & 17 & 69 & 160 & 8 & 16 & - & - \\
2001 & 17 & 30 & 238 & 17 & - & 1 & - \\
\(2002^{1}\) & 17 & 29 & 42 & 31 & 3 & - & - \\
& & & & & & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & Norway & Portugal & Russia \({ }^{3}\) & Spain & \[
\begin{gathered}
\hline \text { UK (Eng. \& } \\
\text { Wales) }
\end{gathered}
\] & & Total \\
\hline 1986 & 21,680 & - & 2,350 & - & 42 & 14 & 30,203 \\
\hline 1987 & 16,728 & - & 850 & - & 181 & 7 & 24,077 \\
\hline 1988 & \multicolumn{6}{|c|}{No species-specific data presently available on countries} & 25,908 \\
\hline 1989 & 20,662 & - & 1,264 & - & 97 & - & 23,234 \\
\hline 1990 & 23,917 & - & 1,549 & - & 261 & - & 28,072 \\
\hline 1991 & 15,872 & - & 1.052 & - & 268 & 10 & 19.041 \\
\hline 1992 & 12,700 & 5 & 758 & 2 & 241 & 2 & 16,185 \\
\hline 1993 & 13,137 & 77 & 1,313 & 8 & 441 & 1 & 16,651 \\
\hline 1994 & 14,955 & 90 & 1,199 & 4 & 135 & 1 & 18,120 \\
\hline 1995 & 13,516 & 9 & 639 & - & 159 & 9 & 15,616 \\
\hline 1996 & 15,622 & 55 & 716 & 81 & 229 & 98 & 18,043 \\
\hline 1997 & 14,182 & 61 & 1,584 & 36 & 164 & 22 & 17,511 \\
\hline 1998 & 16,540 & 6 & 1,632 & 51 & 118 & 53 & 19,155 \\
\hline 1999 & 16,750 & 3 & 1,691 & 7 & 135 & 34 & 18,986 \\
\hline 2000 & 13,036 \({ }^{1}\) & 16 & 1,112 & - & & \(73^{4}\) & 14,507 \\
\hline 2001 & 9,158 \({ }^{1}\) & 7 & 963 & 1 & & \(119{ }^{4}\) & 10,551 \\
\hline \(2002^{1}\) & 8,415 & 34 & 832 & 3 & & \(46^{4}\) & 9,452 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Provisional figures.
\({ }^{2}\) Includes former GDR prior to 1991.
\({ }^{3}\) USSR prior to 1991.
\({ }^{4}\) UK (E\&W) + UK (Scot.)
}

Table 7.2
Sebastes marinus. Nominal catch (t) by countries in Subarea I.
\begin{tabular}{crrrrrrrrrr}
\hline Year & \begin{tabular}{r}
Faroe \\
Islands
\end{tabular} & Germany \(^{4}\) & Greenland & Iceland & Norway & Russia \(^{5}\) & \begin{tabular}{r}
UK(Eng \\
\&Wales)
\end{tabular} & \begin{tabular}{r}
UK \\
(Scotland)
\end{tabular} & Total \\
\hline \(1986^{3}\) & - & 50 & - & - & 2,972 & 155 & 32 & 3 & 3,212 \\
\(1987^{3}\) & - & 8 & - & - & 2,013 & 50 & 11 & - & 2,082 \\
1988 & & - & - & No species-specific data presently available \\
1989 & - & - & - & 1,763 & 110 & \(4^{2}\) & - & 1,877 \\
1990 & 5 & - & - & - & 1,263 & 14 & - & - & 1,282 \\
1991 & - & - & - & - & 1,993 & 92 & - & - & 2,085 \\
1992 & - & - & - & - & 2,162 & 174 & - & - & 2,336 \\
1993 & \(24^{2}\) & - & - & - & 1,178 & 330 & - & - & 1,532 \\
1994 & \(12^{2}\) & 72 & - & 4 & 1,607 & 109 & & - & 1,804 \\
1995 & \(19^{2}\) & \(1^{2}\) & - & \(1^{2}\) & 1,947 & 201 & \(1^{2}\) & - & 2,170 \\
1996 & \(7^{2}\) & - & - & - & 2,245 & 131 & \(3^{2}\) & - & 2,386 \\
1997 & \(3^{2}\) & - & \(5^{2}\) & - & 2,431 & 160 & \(2^{2}\) & - & 2,601 \\
1998 & \(78^{2}\) & \(5^{2}\) & - & - & 2,109 & 308 & \(30^{2}\) & - & 2,530 \\
1999 & \(35^{2}\) & \(18^{2}\) & \(9^{2}\) & \(14^{2}\) & 2,114 & 360 & \(11^{2}\) & - & 2,561 \\
2000 & - & \(1^{2}\) & - & \(16^{2}\) & \(1,843^{1}\) & 146 & & \(12^{6}\) & 2,018 \\
2001 & - & \(11^{2}\) & - & - & \(1,056^{1}\) & 128 & France & \(16^{6}\) & 1,211 \\
\(2002^{1}\) & - & \(5^{2}\) & - & - & - & 678 & 220 & 1 & \(9^{2,6}\) & 913 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Provisional figures.
}
\({ }^{2}\) Split on species according to reports to Norwegian authorities.
\({ }^{3}\) Based on preliminary estimates of species breakdown by area.
\({ }^{4}\) Includes former GDR prior to 1991.
\({ }^{5}\) USSR prior to 1991.
\({ }^{6}\) UK (E\&W)+UK (Scot.)

Table 7.3
Sebastes marinus. Nominal catch (t) by countries in Division IIa.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & \begin{tabular}{l}
Faroe \\
Islands
\end{tabular} & France & \[
\begin{gathered}
\text { Ger- } \\
\text { many }^{4}
\end{gathered}
\] & Greenland & \[
\begin{array}{r}
\text { Ire- } \\
\text { land } \\
\hline
\end{array}
\] & Nether- Norway lands & Portugal & Russia \({ }^{5}\) & Spain & UK (Eng. \& Wales) & \[
\begin{array}{r}
\mathrm{UK} \\
\text { (Scotland) }
\end{array}
\] & Total \\
\hline \(1986^{3}\) & 29 & 2,719 & 3,319 & - & - & - 18,708 & - & 2,195 & - & 10 & 11 & 26,991 \\
\hline \(1987{ }^{3}\) & 250 & 1,553 & 2,967 & - & - & 14,715 & - & 800 & - & 170 & 7 & 20,462 \\
\hline 1988 & \multicolumn{12}{|c|}{No species-specific data presently available} \\
\hline 1989 & \(3^{2}\) & \(784^{2}\) & 412 & - & - & - 18,833 & - & 912 & - & \(93^{2}\) & - & 21,037 \\
\hline 1990 & 273 & 1,684 \({ }^{2}\) & 387 & - & - & - 22,444 & - & 392 & - & 261 & - & 25,441 \\
\hline 1991 & \(152^{2}\) & \(706^{2}\) & 678 & - & - & - 13,835 & - & 534 & - & \(268^{2}\) & \(10^{2}\) & 16,183 \\
\hline 1992 & \(35^{2}\) & 1,294 \({ }^{2}\) & 211 & 614 & - & - 10,536 & - & 404 & - & \(206{ }^{2}\) & \(2^{2}\) & 13,302 \\
\hline 1993 & \(115^{2}\) & \(871^{2}\) & 473 & \(14^{2}\) & - & - 11,959 & \(77^{2}\) & 940 & - & \(431^{2}\) & \(1^{2}\) & 14,881 \\
\hline 1994 & \(10^{2}\) & \(697{ }^{2}\) & \(654{ }^{2}\) & \(5^{2}\) & - & - 13,330 & \(90^{2}\) & 1,030 & - & \(129{ }^{2}\) & - & 15,945 \\
\hline 1995 & \(8^{2}\) & \(732^{2}\) & \(328{ }^{2}\) & \(5^{2}\) & \(1^{2}\) & 111,466 & \(2^{2}\) & 405 & - & \(158^{2}\) & \(9^{2}\) & 13,115 \\
\hline 1996 & \(27^{2}\) & \(671^{2}\) & \(448^{2}\) & \(34^{2}\) & - & - 13,329 & \(51^{2}\) & 449 & \(5^{2}\) & \(223{ }^{2}\) & \(98^{2}\) & 15,335 \\
\hline 1997 & - & \(974{ }^{2}\) & 438 & \(18^{2}\) & \(5^{2}\) & - 11,708 & \(61^{2}\) & 1,199 & \(36^{2}\) & \(162^{2}\) & \(22^{2}\) & 14,623 \\
\hline 1998 & - & \(494{ }^{2}\) & \(116^{2}\) & \(33^{2}\) & \(19^{2}\) & - 14,326 & \(6^{2}\) & 1,078 & \(51^{2}\) & \(85^{2}\) & \(52^{2}\) & 16,260 \\
\hline 1999 & - & \(35^{2}\) & \(210^{2}\) & \(38^{2}\) & \(7^{2}\) & - 14,598 & \(3^{2}\) & 976 & \(7^{2}\) & \(122^{2}\) & \(34^{2}\) & 16,030 \\
\hline 2000 & \(17^{2}\) & \(63^{2}\) & \(159^{2}\) & \(8^{2}\) & - & - \(11,176{ }^{1}\) & \(16^{2}\) & 658 & - & & \(61^{6}\) & 12,158 \\
\hline 2001 & \(17^{2}\) & \(30^{2}\) & \(227^{2}\) & \(17^{2}\) & \(1^{2}\) & - \(8,023^{1}\) & \(6^{2}\) & 612 & \(1^{2}\) & Iceland & \(103^{2,6}\) & 9,037 \\
\hline \(2002{ }^{1}\) & \(17^{2}\) & \(28^{2}\) & \(37^{2}\) & \(31^{2}\) & - & - 7,632 & \(18^{2}\) & 192 & \(2^{2}\) & \(3^{2}\) & \(32^{2,6}\) & 7,992 \\
\hline
\end{tabular}
\({ }^{1}\) Provisional figures.
\({ }^{2}\) Split on species according to reports to Norwegian authorities.
\({ }^{3}\) Based on preliminary estimates of species breakdown by area.
\({ }^{4}\) Includes former GDR prior to 1991.
\({ }^{5}\) USSR prior to 1991.
\({ }^{6}\) UK (E\&W) + UK (Scot.)

Table 7.4
Sebastes marinus. Nominal catch (t) by countries in Division IIb.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Faroe Islands & Germany \({ }^{5}\) & Greenland & Norway & Portugal & Russia \({ }^{6}\) & Spain & \[
\begin{gathered}
\hline \text { UK(Eng. \& } \\
\text { Wales) } \\
\hline
\end{gathered}
\] & UK
(Scotland) & Total \\
\hline 1986 & - & & & & & & & & & + \\
\hline \(1987{ }^{4}\) & - & 1533 & - & - & - & - & - & - & - & 1533 \\
\hline 1988 & & \multicolumn{9}{|c|}{No species-specific data presently available} \\
\hline 1989 & - & - & - & 66 & & 242 & & - & - & 308 \\
\hline 1990 & - & - & \(1^{2}\) & 210 & - & 1157 & - & - & - & 1368 \\
\hline 1991 & - & 303 & - & 44 & - & 426 & - & - & - & 773 \\
\hline 1992 & - & 319 & \(9^{2}\) & 2 & \(5^{2}\) & 180 & 2 & \(35^{2}\) & - & 552 \\
\hline 1993 & - & 177 & - & - & - & 43 & \(8^{3}\) & \(10^{2}\) & - & 238 \\
\hline 1994 & - & 282 & - & 18 & - & 60 & \(4^{3}\) & \(6^{2}\) & \(1^{2}\) & 371 \\
\hline 1995 & - & 187 & - & 103 & 7 & 33 & - & - & - & 330 \\
\hline 1996 & 4 & \(51^{2}\) & - & 27 & 5 & 136 & \(76^{2}\) & \(3^{2}\) & - & 302 \\
\hline 1997 & - & 20 & - & 43 & - & 225 & - & - & - & 288 \\
\hline 1998 & - & \(10^{2}\) & - & 105 & - & 246 & - & \(3^{2}\) & - & 364 \\
\hline 1999 & - & - & - & 38 & - & 355 & - & \(2^{2}\) & - & 395 \\
\hline 2000 & - & - & - & \(17^{1}\) & - & 308 & - & - & - & 325 \\
\hline 2001 & - & - & - & \(79^{1}\) & \(1^{2}\) & 223 & - & - & - & 303 \\
\hline \(2002{ }^{1}\) & - & - & - & 106 & \(16^{2}\) & 420 & \(1^{2}\) & - & \(5^{2,7}\) & 548 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Provisional figures.
\({ }^{2}\) Split on species according to reports to Norwegian authorities.
\({ }^{3}\) Split on species according to the 1992 catches.
\({ }^{4}\) Based on preliminary estimates of species breakdown by area.
\({ }^{5}\) Includes former GDR prior to 1991.
\({ }^{6}\) USSR prior to 1991.
\({ }^{7}\) UK(E\&W)+UK(Scot.)
}

Table 7.5
Sebastes marinus in Subareas I and II, Total international landings 1908-2002 (thousand tonnes),
\begin{tabular}{|c|c|c|c|}
\hline Year & Landings '000 t & Year & Landings
\(\cdot 000 \mathrm{t}\) \\
\hline 1908 & 0.65 & 1957 & 51.61 \\
\hline 1909 & 1.00 & 1958 & 33.12 \\
\hline 1910 & 1.03 & 1959 & 28.07 \\
\hline 1911 & 1.01 & 1960 & 31.77 \\
\hline 1912 & 1.01 & 1961 & 26.73 \\
\hline 1913 & 0.81 & 1962 & 22.82 \\
\hline 1914 & 1.14 & 1963 & 28.10 \\
\hline 915 & 1.31 & 1964 & 26.55 \\
\hline 1916 & 1.46 & 1965 & 24.31 \\
\hline 1917 & 1.16 & 1966 & 25.63 \\
\hline 1918 & 1.11 & 1967 & 17.73 \\
\hline 1919 & 1.51 & 1968 & 13.35 \\
\hline 1920 & 1.17 & 1969 & 24.07 \\
\hline 1921 & 1.83 & 1970 & 12.82 \\
\hline 1922 & 1.47 & 1971 & 13.82 \\
\hline 1923 & 1.94 & 1972 & 17.73 \\
\hline 1924 & 2.21 & 1973 & 21.44 \\
\hline 1925 & 2.72 & 1974 & 27.27 \\
\hline 1926 & 3.19 & 1975 & 39.13 \\
\hline 1927 & 4.47 & 1976 & 48.58 \\
\hline 1928 & 1.95 & 1977 & 39.51 \\
\hline 1929 & 5.28 & 1978 & 31.74 \\
\hline 1930 & 5.29 & 1979 & 26.48 \\
\hline 1931 & 5.88 & 1980 & 23.41 \\
\hline 1932 & 6.10 & 1981 & 20.83 \\
\hline 1933 & 9.59 & 1982 & 16.37 \\
\hline 1934 & 15.86 & 1983 & 19.26 \\
\hline 1935 & 17.69 & 1984 & 28.38 \\
\hline 1936 & 21.03 & 1985 & 29.48 \\
\hline 1937 & 34.59 & 1986 & 30.20 \\
\hline 1938 & 39.17 & 1987 & 24.08 \\
\hline 1939 & 21.87 & 1988 & 25.91 \\
\hline 1940 & 2.29 & 1989 & 23.23 \\
\hline 1941 & 1.68 & 1990 & 28.07 \\
\hline 1942 & 1.43 & 1991 & 19.04 \\
\hline 1943 & 1.02 & 1992 & 16.19 \\
\hline 1944 & 0.92 & 1993 & 16.65 \\
\hline 1945 & 0.56 & 1994 & 18.12 \\
\hline 1946 & 3.57 & 1995 & 15.62 \\
\hline 1947 & 14.88 & 1996 & 18.04 \\
\hline 1948 & 20.00 & 1997 & 17.51 \\
\hline 1949 & 22.36 & 1998 & 19.15 \\
\hline 1950 & 25.56 & 1999 & 18.99 \\
\hline 1951 & 45.30 & 2000 & 14.47 \\
\hline 1952 & 56.17 & 2001 & 10.55 \\
\hline 1953 & 34.83 & 2002 & 9.45 \\
\hline 1954 & 35.78 & Average & 17.44 \\
\hline 1955 & 35.47 & & \\
\hline 1956 & 43.38 & & \\
\hline
\end{tabular}

Table 7.6. Sebastes marinus. Mean catch rates \(\left(\mathrm{N} / \mathrm{nm}^{2}\right)\) of Sebastes marinus from Norwegian Coastal Surveys in 1995-2002 within 100-350 m depth. Catch rates for the total area are area-weighted means of catch rates from the individual subareas.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Length range (cm)} & \multicolumn{8}{|c|}{Area 3 - East Finnmark} & \multicolumn{8}{|c|}{Area 4 - W.Finnmark/Troms} & \multicolumn{8}{|c|}{Area 5 - Lofoten/Vesterålen} \\
\hline & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline 0-4 & 0 \\
\hline 5-9 & 244 & 322 & 39 & 0 & 0 & 0 & 3 & 0 & 107 & 19 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 10-14 & 152 & 273 & 98 & 0 & 0 & 17 & 15 & 0 & 318 & 331 & 0 & 2 & 4 & 2 & 5 & 0 & 219 & 21 & 0 & 0 & 31 & 0 & 0 & 0 \\
\hline 15-19 & 19 & 157 & 112 & 28 & 2 & 93 & 43 & 0 & 135 & 574 & 10 & 6 & 2 & 26 & 23 & 0 & 149 & 49 & 0 & 0 & 314 & 0 & 0 & 0 \\
\hline 20-24 & 69 & 287 & 77 & 33 & 2 & 33 & 52 & 0 & 62 & 698 & 7 & 2 & 8 & 16 & 38 & 10 & 162 & 6 & 0 & 16 & 136 & 3 & 10 & 0 \\
\hline 25-29 & 169 & 476 & 268 & 42 & 4 & 50 & 84 & 10 & 24 & 64 & 20 & 50 & 10 & 18 & 28 & 6 & 72 & 27 & 17 & 8 & 9 & 3 & 3 & 12 \\
\hline 30-34 & 299 & 333 & 255 & 28 & 15 & 20 & 56 & 48 & 7 & 696 & 40 & 43 & 39 & 49 & 28 & 16 & 133 & 88 & 54 & 18 & 62 & 8 & 16 & 36 \\
\hline 35-39 & 112 & 200 & 19 & 8 & 47 & 56 & 24 & 52 & 21 & 796 & 30 & 43 & 55 & 83 & 69 & 16 & 92 & 529 & 324 & 341 & 295 & 239 & 71 & 244 \\
\hline 40-44 & 38 & 53 & 27 & 6 & 50 & 43 & 19 & 15 & 7 & 238 & 23 & 22 & 25 & 81 & 57 & 8 & 60 & 133 & 385 & 291 & 263 & 269 & 154 & 309 \\
\hline 45-49 & 2 & 16 & 12 & 0 & 11 & 12 & 7 & 0 & 3 & 48 & 3 & 2 & 23 & 56 & 34 & 8 & 11 & 24 & 83 & 50 & 40 & 43 & 61 & 48 \\
\hline 50-54 & 2 & 3 & 0 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 3 & 0 & 8 & 2 & 0 & 0 & 0 & 0 & 0 & 8 & 5 & 3 & 0 & 3 \\
\hline 55-59 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 & 0 & 4 & 2 & 2 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 60-64 & 0 & 0 & 4 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Total & 1106 & 2120 & 911 & 144 & 134 & 326 & 305 & 125 & 684 & 3463 & 142 & 170 & 178 & 335 & 284 & 63 & 903 & 878 & 864 & 731 & 1156 & 568 & 315 & 654 \\
\hline Measured & 398 & 602 & 230 & 52 & 62 & 139 & 111 & 18 & 198 & 243 & 43 & 54 & 87 & 108 & 92 & 32 & 168 & 185 & 70 & 97 & 148 & 156 & 53 & 139 \\
\hline \# trawls & 23 & 17 & 19 & 16 & 25 & 25 & 22 & 22 & 15 & 16 & 20 & 21 & 25 & 25 & 24 & 25 & 13 & 14 & 17 & 15 & 22 & 19 & 16 & 16 \\
\hline \# trawl with species & 18 & 12 & 16 & 7 & 10 & 8 & 13 & 2 & 10 & 15 & 9 & 10 & 9 & 10 & 11 & 9 & 9 & 13 & 9 & 9 & 13 & 15 & 6 & 9 \\
\hline Area \(\mathrm{nm}^{2}\) & \multicolumn{8}{|c|}{4205} & \multicolumn{8}{|c|}{7303} & \multicolumn{8}{|c|}{9962} \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Length range (cm)} & \multicolumn{8}{|c|}{Area 0 - Vestfjord} & \multicolumn{8}{|c|}{Area 6 - Nordland} & \multicolumn{8}{|c|}{Area 7 - Møre} \\
\hline & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline 0-4 & 0 \\
\hline 5-9 & 0 \\
\hline 10-14 & 0 & 0 & 0 & 0 & 55 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 26 & 0 & 0 & 0 \\
\hline 15-19 & 0 & 0 & 0 & 6 & 711 & 0 & 0 & 0 & 0 & 7 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 479 & 0 & 10 & 0 \\
\hline 20-24 & 0 & 0 & 430 & 26 & 273 & 0 & 0 & 0 & 0 & 25 & 5 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 557 & 0 & 0 & 0 \\
\hline 25-29 & 0 & 8 & 587 & 6 & 88 & 8 & 0 & 0 & 5 & 15 & 21 & 4 & 0 & 0 & 16 & 4 & 0 & 0 & 0 & 0 & 111 & 4 & 29 & 0 \\
\hline 30-34 & 18 & 41 & 286 & 0 & 88 & 132 & 0 & 85 & 28 & 167 & 75 & 15 & 0 & 0 & 8 & 4 & 0 & 0 & 0 & 0 & 57 & 9 & 0 & 11 \\
\hline 35-39 & 454 & 206 & 380 & 58 & 328 & 136 & 366 & 564 & 564 & 526 & 225 & 78 & 44 & 20 & 31 & 356 & 5 & 14 & 3 & 0 & 114 & 388 & 0 & 284 \\
\hline 40-44 & 442 & 33 & 361 & 64 & 230 & 182 & 683 & 401 & 373 & 599 & 229 & 81 & 61 & 133 & 117 & 246 & 14 & 10 & 3 & 0 & 31 & 147 & 10 & 214 \\
\hline 45-49 & 53 & 8 & 88 & 13 & 0 & 8 & 25 & 24 & 52 & 217 & 59 & 19 & 4 & 31 & 31 & 34 & 0 & 7 & 3 & 4 & 0 & 9 & 0 & 18 \\
\hline 50-54 & 9 & 0 & 6 & 6 & 0 & 8 & 12 & 16 & 3 & 0 & 5 & 0 & 4 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 9 & 0 & 0 \\
\hline 55-59 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 \\
\hline 60-64 & 0 \\
\hline Total & 976 & 296 & 2138 & 180 & 1772 & 474 & 1086 & 1091 & 1028 & 1556 & 620 & 204 & 118 & 184 & 211 & 648 & 19 & 31 & 10 & 4 & 1374 & 566 & 49 & 530 \\
\hline Measured & 75 & 22 & 162 & 28 & 40 & 38 & 38 & 58 & 183 & 172 & 91 & 55 & 27 & 36 & 27 & 54 & 4 & 9 & 3 & 1 & 95 & 26 & 5 & 25 \\
\hline \# trawls & 10 & 6 & 11 & 7 & 5 & 6 & 4 & 6 & 22 & 16 & 12 & 15 & 13 & 12 & 7 & 12 & 11 & 15 & 16 & 13 & 12 & 12 & 7 & 15 \\
\hline \# trawl with species & 7 & 3 & 11 & 4 & 3 & 5 & 4 & 6 & 15 & 12 & 9 & 6 & 4 & 7 & 5 & 7 & 2 & 5 & 3 & 4 & 3 & 5 & 2 & 5 \\
\hline Area \(\mathrm{nm}^{2}\) & & & & & & & & & & & & & 16 & & & & & & & 72 & & & & \\
\hline
\end{tabular}

Table 7.6 (Continued)
\begin{tabular}{l|rrrrrrrr|}
\hline & \multicolumn{7}{|c|}{ Total } \\
Length range (cm) & 1995 & 1996 & 1997 & 1998 & 1999 & \(\mathbf{2 0 0 0}\) & \(\mathbf{2 0 0 1}\) & \(\mathbf{2 0 0 2}\) \\
\hline \(0-4\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\(5-9\) & 41 & 34 & 4 & 0 & 0 & 0 & 0 & 0 \\
\(10-14\) & 118 & 87 & 9 & 0 & 19 & 2 & 2 & 0 \\
\(15-19\) & 59 & 124 & 12 & 4 & 242 & 13 & 11 & 0 \\
\(20-24\) & 54 & 151 & 64 & 12 & 160 & 7 & 14 & 2 \\
\(25-29\) & 38 & 67 & 112 & 16 & 34 & 10 & 22 & 6 \\
\(30-34\) & 69 & 210 & 96 & 17 & 43 & 30 & 15 & 29 \\
\(35-39\) & 214 & 415 & 178 & 110 & 151 & 160 & 83 & 259 \\
\(40-44\) & 157 & 209 & 190 & 96 & 117 & 155 & 160 & 213 \\
\(45-49\) & 21 & 64 & 45 & 18 & 15 & 30 & 30 & 26 \\
\(50-54\) & 2 & 0 & 2 & 3 & 4 & 4 & 2 & 4 \\
\(55-59\) & 1 & 0 & 1 & 0 & 2 & 0 & 0 & 1 \\
\(60-64\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Total & 775 & 1361 & 715 & 277 & 786 & 411 & 340 & 538 \\
Measured & 1026 & 1233 & 599 & 287 & 459 & 419 & 326 & 326 \\
\# trawls & 94 & 84 & 95 & 87 & 102 & 96 & 80 & 96 \\
\# trawl with species & 61 & 60 & 57 & 40 & 42 & 49 & 41 & 38 \\
\hline \hline
\end{tabular}

Table 7.7 Acoustic index (numbers) of Sebastes marinus from the Norwegian Coastal Surveys in 1995-2002, within \(5-\mathrm{cm}\) length-groups and total for six subareas.
\begin{tabular}{|crrrrrrrr|}
\hline \multicolumn{9}{|c|}{ Areas 00 and 03-07 } \\
\hline Length (cm) & \(\mathbf{1 9 9 5}\) & \(\mathbf{1 9 9 6}\) & \(\mathbf{1 9 9 7}\) & \(\mathbf{1 9 9 8}\) & \(\mathbf{1 9 9 9}\) & \(\mathbf{2 0 0 0}\) & \(\mathbf{2 0 0 1}\) & \(\mathbf{2 0 0 2}\) \\
\hline \(5-9\) & 40519 & 1908 & 232 & 0 & 0 & 31 & 4 & 0 \\
\(10-14\) & 13627 & 7656 & 706 & 24 & 519 & 221 & 45 & 0 \\
\(15-19\) & 8161 & 11057 & 1207 & 96 & 6926 & 1112 & 488 & 0 \\
\(20-24\) & 9396 & 7983 & 6171 & 1500 & 5679 & 2661 & 262 & 106 \\
\(25-29\) & 4229 & 10275 & 12113 & 81 & 1183 & 4310 & 825 & 293 \\
\(30-34\) & 3914 & 10504 & 7382 & 2090 & 2423 & 3797 & 1564 & 2457 \\
\(35-39\) & 15711 & 34437 & 22440 & 9914 & 9082 & 14036 & 5391 & 13317 \\
\(40-44\) & 13960 & 19171 & 28846 & 5477 & 7881 & 14680 & 12310 & 10399 \\
\(45-49\) & 3431 & 4539 & 5653 & 499 & 1587 & 2278 & 1612 & 4061 \\
\(50-54\) & 657 & 8 & 230 & 0 & 376 & 709 & 97 & 300 \\
\(55-59\) & 519 & 0 & 147 & 0 & 179 & 40 & 33 & 383 \\
\(60-64\) & 0 & 0 & 20 & 0 & 0 & 18 & 0 & 0 \\
\hline
\end{tabular}

Table 7.8 Sebastes marinus. Catch numbers at age
Numbers*10**-3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & YEAR & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline \multicolumn{12}{|c|}{AGE} \\
\hline & 6 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 10 \\
\hline & 7 & 0 & 46 & 60 & 9 & 9 & 28 & 78 & 4 & 23 & 17 \\
\hline & 8 & 24 & 7 & 85 & 119 & 98 & 51 & 593 & 13 & 23 & 33 \\
\hline & 9 & 193 & 292 & 230 & 313 & 156 & 206 & 855 & 69 & 44 & 49 \\
\hline & 10 & 359 & 640 & 672 & 361 & 321 & 470 & 572 & 239 & 199 & 137 \\
\hline & 11 & 406 & 816 & 908 & 879 & 686 & 721 & 1006 & 902 & 346 & 348 \\
\hline & 12 & 1036 & 1930 & 1610 & 1234 & 1065 & 968 & 1230 & 947 & 481 & 620 \\
\hline & 13 & 1022 & 2096 & 2038 & 1638 & 1781 & 1512 & 1618 & 1775 & 1117 & 1059 \\
\hline & 14 & 1523 & 2030 & 2295 & 2134 & 2276 & 1736 & 1480 & 1415 & 1339 & 1715 \\
\hline & 15 & 2353 & 1601 & 1783 & 1675 & 2172 & 1582 & 1612 & 2132 & 1670 & 1274 \\
\hline & 16 & 1410 & 2725 & 1406 & 1614 & 1848 & 1045 & 1239 & 2213 & 1650 & 1223 \\
\hline & 17 & 1655 & 2668 & 785 & 1390 & 1421 & 1277 & 1407 & 1723 & 1241 & 1143 \\
\hline & 18 & 1678 & 1409 & 563 & 952 & 851 & 970 & 1558 & 754 & 567 & 409 \\
\hline & 19 & 745 & 617 & 670 & 679 & 804 & 1018 & 1019 & 484 & 118 & 292 \\
\hline & 20 & 716 & 733 & 593 & 439 & 608 & 846 & 394 & 463 & 183 & 99 \\
\hline & 21 & 534 & 514 & 419 & 560 & 511 & 443 & 197 & 133 & 154 & 97 \\
\hline & 22 & 528 & 256 & 368 & 334 & 205 & 764 & 459 & 231 & 112 & 120 \\
\hline & 23 & 576 & 177 & 250 & 490 & 334 & 486 & 174 & 227 & 135 & 103 \\
\hline & +gp & 3482 & 1508 & 3232 & 3135 & 2131 & 3389 & 2131 & 903 & 254 & 221 \\
\hline 0 & TOTALNUM & 18240 & 20065 & 17971 & 17955 & 17277 & 17512 & 17622 & 14627 & 9656 & 8969 \\
\hline & TONSLAND & 16651 & 18120 & 15616 & 18043 & 17511 & 19155 & 18986 & 14507 & 10551 & 9452 \\
\hline & SOPCOF \% & 104 & 100 & 100 & 105 & 100 & 99 & 103 & 101 & 99 & 100 \\
\hline
\end{tabular}

Table 7.9 Sebastes marinus. Catch weights at age (kg)
\begin{tabular}{rllllllllll}
YEAR & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
& & & & & & & & & & \\
AGE & & & & & & & & \\
6 & 0.00 & 0.00 & 0.24 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.13 \\
7 & 0.00 & 0.25 & 0.33 & 0.22 & 0.23 & 0.37 & 0.14 & 0.19 & 0.15 & 0.22 \\
8 & 0.33 & 0.37 & 0.43 & 0.49 & 0.51 & 0.21 & 0.26 & 0.24 & 0.26 & 0.28 \\
9 & 0.36 & 0.38 & 0.64 & 0.56 & 0.53 & 0.47 & 0.44 & 0.32 & 0.45 & 0.34 \\
10 & 0.43 & 0.49 & 0.61 & 0.65 & 0.74 & 0.62 & 0.57 & 0.44 & 0.56 & 0.45 \\
11 & 0.51 & 0.51 & 0.59 & 0.71 & 0.72 & 0.67 & 0.69 & 0.54 & 0.58 & 0.59 \\
12 & 0.51 & 0.64 & 0.65 & 0.81 & 0.78 & 0.77 & 0.78 & 0.64 & 0.67 & 0.70 \\
13 & 0.64 & 0.74 & 0.74 & 0.84 & 0.80 & 0.77 & 0.86 & 0.73 & 0.80 & 0.76 \\
14 & 0.64 & 0.76 & 0.79 & 0.88 & 0.86 & 0.85 & 1.04 & 0.84 & 0.89 & 0.88 \\
15 & 0.76 & 0.86 & 0.84 & 0.96 & 0.91 & 1.05 & 1.07 & 0.96 & 1.01 & 1.02 \\
16 & 0.86 & 0.95 & 0.92 & 1.00 & 0.99 & 0.96 & 1.12 & 1.11 & 1.14 & 1.14 \\
17 & 0.89 & 1.03 & 1.12 & 1.02 & 1.16 & 1.25 & 1.18 & 1.25 & 1.33 & 1.25 \\
18 & 0.98 & 1.07 & 1.01 & 1.01 & 1.18 & 1.28 & 1.71 & 1.32 & 1.43 & 1.34 \\
19 & 1.00 & 1.11 & 1.01 & 1.00 & 1.21 & 1.30 & 1.09 & 1.53 & 1.62 & 1.49 \\
20 & 1.03 & 1.16 & 1.21 & 1.03 & 1.34 & 1.23 & 1.18 & 1.06 & 1.60 & 1.87 \\
21 & 1.21 & 1.15 & 1.14 & 1.04 & 1.28 & 1.87 & 1.04 & 1.29 & 1.47 & 1.79 \\
22 & 1.03 & 1.13 & 1.09 & 1.14 & 1.54 & 1.46 & 1.34 & 1.32 & 2.00 & 1.99 \\
23 & 1.20 & 1.02 & 1.30 & 1.09 & 1.19 & 1.73 & 1.18 & 1.12 & 2.70 & 2.22 \\
+ gp & 1.14 & 1.36 & 1.01 & 1.16 & 1.29 & 1.29 & 1.34 & 1.20 & 2.31 & 1.99
\end{tabular}

Figure 7.1. Sebastes marinus. Plot of simple mean CPUEs with 2 st.errors from the Norwegian trawl fishery. The figure is an illustration of the data given in Table D9.

Figure 7.2a. Sebastes marinus. Abundance indices (by length) from the Norwegian bottom trawl survey in the Barents Sea in winter 1986-2003 (ref. Table D10a).

Figure 7.2b. Sebastes marinus. Abundance indices (by age) from the Norwegian bottom trawl surveys 1992-2003 in the Barents Sea (ref. Table D10b).

Figure 7.3a. Sebastes marinus. Abundance indices (by length) when combining the Norwegian bottom trawl surveys 1986-2002 in the Barents Sea (winter) and at Svalbard (summer/fall).

Figure 7.3b. Sebastes marinus. Abundance indices (by age) when combining the Norwegian bottom trawl surveys 19922002 in the Barents Sea (winter) and at Svalbard (summer/fall).

Table D10. Sebastes marinus. Catch and catch per unit effort for Norwegian stern trawlers (ISSCFV - Code 07, 250-499,9 GRT), and total international effort (Norwegian trawl units). \({ }^{1}\)
\begin{tabular}{crrrc}
\hline Year & \begin{tabular}{c}
Trawleatch (t) as \\
basis for the \\
analysis
\end{tabular} & \begin{tabular}{c}
\% of total \\
international catch
\end{tabular} & \begin{tabular}{c}
CPUE \\
(t/hour)
\end{tabular} & \begin{tabular}{c}
Effort \\
hours trawling
\end{tabular} \\
\hline 1981 & 1,315 & 6.3 & 0.58 & 36,194 \\
1982 & 2,014 & 12.3 & 0.73 & 22,538 \\
1983 & 1,588 & 8.3 & 0.64 & 30,188 \\
1984 & 3,960 & 14.0 & 0.77 & 36,960 \\
1985 & 3,086 & 10.5 & 0.50 & 58,801 \\
1986 & 4,502 & 14.9 & 0.75 & 40,271 \\
1987 & 2,168 & 9.0 & 0.68 & 35,407 \\
1988 & 4,349 & 16.8 & 0.77 & 33,647 \\
1989 & 3,044 & 13.1 & 0.59 & 39,380 \\
1990 & 3,589 & 12.8 & 1.08 & 25,993 \\
1991 & 4,943 & 26.0 & 0.92 & 20,697 \\
1992 & 2,265 & 14.0 & 0.65 & 24,900 \\
1993 & 1,426 & 8.6 & 0.75 & 22,201 \\
1994 & 1,241 & 6.8 & 0.87 & 20,828 \\
1995 & 928 & 5.9 & 0.66 & 23,661 \\
1996 & 1,831 & 10,1 & 0.79 & 22,839 \\
1997 & 1,313 & 7.4 & 0.66 & 26,532 \\
1998 & 1,681 & 8,7 & 0.57 & 33,605 \\
1999 & 1,155 & 6.1 & 0.55 & 34,520 \\
2000 & 2,181 & 15.0 & 0.81 & 17,910 \\
2001 & 481 & 4.6 & 0.50 & 21,102 \\
\(2002^{2}\) & 308 & 3.3 & 0.42 & 22,505 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Only including days with more than \(50 \%\) S. marinus in the catches, and analysed by a GLM-analysis.
\({ }^{2}\) Provisional figures.
}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline \multirow{3}{*}{} & \multicolumn{10}{|c|}{ Length group (cm) } \\
Year & \(5.0-9.9\) & \(10.0-14.9\) & \(15.0-19.9\) & \(20.0-24.9\) & \(25.0-29.9\) & \(30.0-34.9\) & \(35.0-39.9\) & \(40.0-44.9\) & \(>45.0\) & Total \\
\hline 1986 & 3.0 & 11.7 & 26.4 & 34.3 & 17.7 & 21.0 & 12.8 & 4.4 & 2.6 & 133.9 \\
1987 & 7.7 & 12.7 & 32.8 & 7.7 & 6.4 & 3.4 & 3.8 & 3.8 & 4.2 & 82.5 \\
1988 & 1.0 & 5.6 & 5.5 & 14.2 & 12.6 & 7.3 & 5.2 & 4.1 & 3.7 & 59.2 \\
1989 & 48.7 & 4.9 & 4.3 & 11.8 & 15.9 & 12.2 & 6.6 & 4.8 & 3.0 & 112.2 \\
1990 & 9.2 & 5.3 & 6.5 & 9.4 & 15.5 & 14.0 & 8.0 & 4.0 & 3.4 & 75.3 \\
1991 & 4.2 & 13.6 & 8.4 & 19.4 & 18.0 & 16.1 & 14.8 & 6.0 & 4.0 & 104.5 \\
1992 & 1.8 & 3.9 & 7.7 & 20.6 & 19.7 & 13.7 & 10.5 & 6.6 & 5.8 & 90.3 \\
1993 & 0.1 & 1.2 & 3.5 & 6.9 & 10.3 & 14.5 & 12.5 & 8.6 & 6.3 & 63.9 \\
1994 & 0.7 & 6.5 & 9.3 & 11.7 & 11.5 & 19.4 & 9.1 & 4.4 & 2.8 & 75.4 \\
1995 & 0.6 & 5.0 & 13.1 & 11.5 & 9.1 & 15.9 & 17.2 & 10.9 & 4.7 & 88.0 \\
1996 & + & 0.7 & 3.5 & 6.4 & 9.4 & 11.7 & 16.6 & 7.9 & 3.9 & 60.1 \\
\(1997^{1}\) & - & 0.5 & 1.3 & 2.7 & 6.9 & 21.4 & 28.2 & 8.5 & 3.3 & 72.7 \\
\(1998^{1}\) & 0.1 & 3.9 & 2.0 & 7.4 & 5.8 & 25.3 & 13.2 & 7.0 & 2.3 & 67.0 \\
1999 & 0.2 & 0.9 & 2.1 & 4.0 & 4.6 & 6.4 & 6.0 & 5.3 & 3.5 & 33.0 \\
2000 & 0.5 & 1.1 & 1.5 & 4.2 & 4.7 & 5.0 & 3.5 & 1.8 & 1.2 & 24.0 \\
2001 & 0.1 & 0.4 & 0.4 & 2.4 & 5.8 & 5.6 & 5.0 & 3.5 & 1.8 & 25.0 \\
2002 & 0.1 & 1.0 & 1.9 & 1.7 & 3.7 & 4.1 & 3.3 & 3.6 & 2.5 & 22.0 \\
2003 & 0.0 & 0.5 & 1.2 & 1.5 & 4.3 & 3.8 & 2.7 & 3.3 & 2.9 & 20.2 \\
\hline
\end{tabular}
\({ }^{1}\) - Adjusted indices to account for not covering the Russian EEZ in Subarea I.

Table D11b
Sebastes marinus in Subareas I and II. Norwegian bottom trawl indices (on age) from the annual Barents Sea survey in February 1992-2003 (numbers in thousands). The area coverage was extended from 1993 onwards.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|c|}{Age} \\
\hline Year & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & Total \\
\hline 1992 & 2,295 & 4,261 & 10,760 & 2,043 & 1,474 & 13,178 & 4,230 & 6,302 & 8,251 & 3,751 & 3,865 & 3,064 & 3,568 & 67,042 \\
\hline 1993 & 468 & 1,218 & 1,424 & 2,020 & 979 & 5,048 & 2,968 & 4,230 & 2,142 & 4,634 & 3,338 & 2,951 & 9,148 & 40,568 \\
\hline 1994 & 2,951 & 4,485 & 2,573 & 3,801 & 8,338 & 3,254 & 1,297 & 7,231 & 6,443 & 248 & 10,192 & 6,341 & 2,612 & 59,766 \\
\hline 1995 & 2,540 & 7,450 & 6,090 & 7,150 & 5,820 & 6,590 & 5,670 & 2,000 & 4,440 & 6,500 & 4,320 & 5,330 & 6,030 & 69,930 \\
\hline 1996 & 310 & 1,300 & 2,340 & 3,520 & 3,660 & 8,720 & 5,650 & 3,960 & 6,590 & 5,730 & 6,230 & 4,070 & 2,950 & 55,030 \\
\hline 1997 & 190 & 80 & 360 & 1,320 & 2,530 & 5,370 & 10,570 & 6,840 & 5,810 & 7,390 & 8,790 & 9,740 & 1,980 & 60,980 \\
\hline 1998 & 2,380 & 1,930 & 850 & 660 & 1,140 & 7,090 & 6,124 & 4,962 & 4,091 & 5,190 & 8,790 & 2,730 & 2,560 & 48,487 \\
\hline 1999 & 737 & 916 & 1,246 & 3,469 & 1,650 & 1,826 & 1,679 & 3,084 & 2,371 & 2,953 & 3,837 & 2,132 & 1,979 & 27,879 \\
\hline 2000 & 490 & 720 & 900 & 1,310 & 1,800 & 2,440 & 2,020 & 2,710 & 2,090 & 940 & 1,440 & 2,940 & 430 & 20,230 \\
\hline 2001 & 320 & 170 & 190 & 940 & 1,360 & 2,220 & 3,110 & 2,400 & 2,690 & 2,230 & 2,180 & 1,200 & 1,370 & 20,380 \\
\hline 2002 & 130 & 910 & 902 & 1,590 & 544 & 1,546 & 2,153 & 1,822 & 1,900 & 2,220 & 1,073 & 1,294 & 1,730 & 17,814 \\
\hline \(2003^{1}\) & 220 & 250 & 590 & 1,080 & 680 & 1,020 & 2,910 & 1,180 & 2,250 & 1,370 & 1,530 & 840 & 1,310 & 15,230 \\
\hline
\end{tabular}
\({ }^{1}\) Preliminary

Table D12a Sebastes marinus in Division IIb. Abundance indices (on length) from the bottom trawl survey in the Svalbard area (Division IIb) in summer/fall 1985-2002 (numbers in thousands).
\begin{tabular}{rrrrrrrrrrr}
\hline \multicolumn{9}{c}{ Length group (cm) } \\
\hline Year & \(5.0-9.9\) & \(10.0-14.9\) & \(15.0-19.9\) & \(20.0-24.9\) & \(25.0-29.9\) & \(30.0-34.9\) & \(35.0-39.9\) & \(40.0-44.9\) & \(>45.0\) & Total \\
\hline \(1985^{1}\) & 158 & 1,307 & 795 & 1,728 & 2,273 & 1,417 & 311 & 142 & 194 & 8,325 \\
\(1986^{1}\) & 200 & 2,961 & 1,768 & 547 & 643 & 1,520 & 639 & 467 & 196 & 8,941 \\
\(1987^{1}\) & 124 & 1,343 & 1,964 & 1,185 & 1,367 & 652 & 352 & 29 & 44 & 7,060 \\
\(1988^{1}\) & 520 & 1,001 & 1,953 & 1,609 & 684 & 358 & 158 & 68 & 95 & 6,450 \\
1989 & 197 & 1,629 & 2,963 & 2,374 & 1,320 & 846 & 337 & 323 & 104 & 10,100 \\
1990 & 1,673 & 3,886 & 4,478 & 4,047 & 2,972 & 1,509 & 365 & 140 & 122 & 19,185 \\
1991 & 127 & 5,371 & 5,821 & 9,171 & 8,523 & 4,499 & 1,531 & 982 & 395 & 36,420 \\
1992 & 1,689 & 10,228 & 8,858 & 5,330 & 13,960 & 12,720 & 4,547 & 494 & 346 & 58,172 \\
1993 & 205 & 10,160 & 9,078 & 5,855 & 7,071 & 4,327 & 2,088 & 1,552 & 948 & 41,284 \\
1994 & 51 & 3,340 & 5,883 & 4,185 & 3,922 & 3,315 & 1,021 & 845 & 423 & 22,985 \\
1995 & 470 & 2,000 & 9,100 & 5,070 & 3,060 & 2,400 & 1,040 & 920 & 780 & 24,840 \\
1996 & 80 & 130 & 1,260 & 2,480 & 1,030 & 480 & 550 & 990 & 400 & 7,400 \\
1997 & 40 & 810 & 1,980 & 5,470 & 5,560 & 2,340 & 590 & 190 & 450 & 17,430 \\
1998 & 210 & 2,698 & 1,741 & 4,620 & 4,053 & 1,761 & 535 & 545 & 241 & 16,403 \\
1999 & 0 & 794 & 7,057 & 3,698 & 4,563 & 2,449 & 467 & 619 & 369 & 20,017 \\
2000 & 40 & 360 & 1,240 & 1,390 & 2,010 & 760 & 400 & 160 & 390 & 6,750 \\
2001 & 10 & 110 & 790 & 1,470 & 3,710 & 4,600 & 1,880 & 680 & 370 & 13,660 \\
2002 & 0 & 0 & 64 & 415 & 459 & 880 & 620 & 565 & 519 & 3,522 \\
\hline
\end{tabular}
\({ }^{1}\) - Old trawl equipment (bobbins gear and 80 meter sweep length)

Table D12b Sebastes marinus in Subareas I and II. Norwegian bottom trawl survey indices (on age) in the Svalbard area (Division IIb) in summer/fall 1992-2002 (numbers in thousands).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{Age} \\
\hline Year & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & Total \\
\hline 1992 & 284 & 12,378 & 5,576 & 2,279 & 371 & 2,064 & 3,687 & 5,704 & 9,215 & 6,413 & 1,454 & 1,387 & 696 & 22 & 51,530 \\
\hline 1993 & 32 & 10,704 & 5,710 & 5,142 & 1,855 & 1,052 & 1,314 & 3,520 & 2,847 & 2,757 & 2,074 & 1,245 & 844 & 119 & 39,215 \\
\hline 1994 & 429 & 1,150 & 3,418 & 2,393 & 1,723 & 1,106 & 1,714 & 1,256 & 1,938 & 1,596 & 2,039 & 484 & 550 & 319 & 20,115 \\
\hline 1995 & 600 & 1,600 & 6,400 & 5,100 & 1,800 & 2,200 & 1,800 & 700 & 700 & 400 & 700 & 500 & 400 & 500 & 23,400 \\
\hline 1996 & 40 & 110 & + & 560 & 1,050 & 940 & 930 & 400 & 1,050 & 280 & 320 & 590 & 160 & 70 & 6,500 \\
\hline 1997 & 320 & 490 & + & 480 & 1,500 & 6,950 & 2,720 & 1,680 & 800 & 1,310 & 550 & 30 & + & 120 & 16,950 \\
\hline 1998 & 210 & 1,817 & 881 & 202 & 1,555 & 2,187 & 4,551 & 1,913 & 1,010 & 797 & 49 & 264 & 73 & 187 & 15,696 \\
\hline 1999 & 0 & 760 & 2,893 & 1,339 & 3,534 & 1,037 & 3,905 & 2,603 & 762 & 1,663 & 481 & 361 & 258 & 152 & 19,748 \\
\hline 2000 & 40 & 20 & 400 & 350 & 840 & 480 & 730 & 1,670 & 620 & 340 & 510 & 100 & 80 & 70 & 6,250 \\
\hline 2001 & 0 & 40 & 50 & 450 & 330 & 790 & 1,760 & 1,970 & 3,300 & 1,200 & 1,810 & 150 & 660 & 430 & 12,940 \\
\hline 2002 & 0 & 0 & + & + & 65 & 160 & 204 & 326 & 364 & 614 & 442 & 328 & 15 & , & 2,518 \\
\hline
\end{tabular}

\subsection*{8.1 Status of the fisheries}

\subsection*{8.1.1 Landings prior to 2002 (Tables 8.1-8.5, E10)}

Nominal catches by country for Subareas I and II combined are presented in Table 8.1. Tables 8.2-8.4 give the catches for Subarea I and Divisions IIa and IIb separately. For most countries the catches listed in the tables are similar to those officially reported to ICES. Some of the values in the tables vary slightly from the official statistics, and represents those presented to the Working Group by the members. The tables also incorporate data presented to the Working Group on Spanish survey catches. Landings separated by gear type are presented in Table 8.5.

The revised total catch for 2001 is \(16,307 \mathrm{t}\), which is about 300 t more than used in the previous assessment. The preliminary estimate of the total catch for 2002 is \(13,140 \mathrm{t}\). This is \(4,000 \mathrm{t}\) below the projected catch for 2002 estimated by the Working Group during its 2002 meeting.

In recent years, some fishing for Greenland halibut has taken place in the northern part of Division IVa. In the period 1973-1990, the annual catch in Division IVa was usually well below 100 t , occasionally reaching 200 t . Since then, catches increased sharply from 558 t in 1991 to \(2,010 \mathrm{t}\) in 1996 (Table E10). Catches remained comparatively high until they dropped to below 900 t in 2000. The increase from 1973 to 1991 was due mainly to a gillnet fishery. In recent years most of the catch has been taken by trawl. This fishery is in another management area and is not restricted by any TAC regulations. Although there is a continuous distribution of this species from the southern part of Division IIa along the continental slope towards the Shetland area, little is known about the stock structure and the catch taken from this area has therefore not been added to the catch from Subareas I and II.

Around Jan Mayen, small catches of Greenland halibut have been taken in some years. In the period 1992-97 the reported annual catches were \(56,0,140,270,59\), and 54 respectively. In the period \(1998-1999\) no catches were reported from this area. In the period 2000-2002 catches in this area were around 60 t . Jan Mayen is within Subarea IIa, but little is known about the relationship with the stock assessed by the Arctic Fisheries Working Group. Catches from this area have therefore not been included in the catches given for Subarea II.

\subsection*{8.1.2 Expected landings in 2003}

The fishery for Greenland halibut is regulated by quotas that should be taken by gillnetters and longliners within a restricted time period, and by restricting allowed by-catch in the trawl fishery. The total Norwegian catch in 2003 is expected to be \(9,400 \mathrm{t}\). In addition \(5,000 \mathrm{t}\) is expected to be caught by Russian vessels and 600 t by other countries. Expected total landings (officially) for 2003 are thus \(15,000 \mathrm{t}\). It is believed that there may be additional landings that are not reported.

The catches from Division IVa are expected to be maintained at the same level as last year.

\subsection*{8.2 Status of research}

\subsection*{8.2.1 Survey results (Tables A14, E1-E8)}

Over the last several years the Working Group has been concerned about trends in catchability within individual surveys used for tuning of the XSA. The trends were seen for younger ages of year classes in the late 80 's and early 90 's that were initially estimated very low in abundance. With increasing age these year classes were estimated much closer to the mean abundance. In previous meetings the Working Group therefore increased the lower age used in tuning to five years in order to reduce the problem. This only partly solved the problem though, and in all subsequent assessments estimated recruitment of the last 2-3 years has increased from one year to the next.

Most of the surveys considered by the Working Group in 2002 cover either the adult population in the slope area or juvenile distribution in northern areas. The problem of underestimation of recruitment in the last few years included in the analyses has been attributed to shortcomings in survey coverage. The Working Group has at previous meetings noted the need for annual surveys that sample most of the population within a short period of time. Prior to the 2002 WG meeting effort was therefore made to combine some of these surveys into a new total index. The new index is termed the Norwegian Combined Survey Index and is established back to 1996, the first year with survey coverage northeast of Svalbard. It includes bottom trawls from the Norwegian bottom trawl survey in August in the Barents Sea and Svalbard (Tables E1 and E2), the Norwegian Greenland halibut survey in August along the continental slope (Table E3), and the Norwegian bottom trawl
survey in August-September north and east of Svalbard (Table E4). Prior to the meeting in 2003 work was done to evaluate the combination of these survey series into one index and this was reported to the Working Group (Pennington, WD 5). Based on these results it was decided to use the combined index in this years assessment.

The Norwegian Combined Survey Index (Table E5) indicates a significant increase in the total stock during the last three years and a stock size in 2002, nearly \(40 \%\) above last years index. However, there is no clear year class pattern in the data and some ages are consistently underestimated relative to adjacent age groups (e.g. age 9 and partly age 4). The highest indices were observed for age seven, with exception of the two last years when age 1 was most abundant. That indicates that the catchability of younger ages (i.e. those primarily from northern surveys) are not comparable with the older ones (i.e. those primarily from the slope). This is probably a result of pooling different surveys using different gears. These weaknesses reduce the applicability of the combined surveys, and the Working Group advises that further work be done to improve the combined index in the future.

Also in the Russian bottom trawl surveys in October-December (Table E6) it is difficult to identify year classes that appear consistently either strong or weak across ages. In previous Working Group reports this survey series was the one with the clearest and strongest trends in catchability with age. These surveys usually cover large parts of the total known distribution of the Greenland halibut within \(100-900 \mathrm{~m}\) depth. In 2002 , no observations were made in the Exclusive Economic Zone of Norway (NEZ). Greenland halibut abundance for 2002 over the whole standard area was estimated based on the assumption that in 2002 the Greenland halibut stock was proportionately distributed the same as in 2001 (Smirnov, WD 22). As is seen from Table 1 in WD 22 conversion factors of the Greenland halibut abundance are lowest for smaller fish and highest (\(>4\)) for larger fish. This is believed to be a result of mature individuals migrating to the spawning area in the NEZ during the survey period. The results indicate a continuing increase in abundance and biomass of Greenland halibut in the Barents Sea and adjacent waters. Nevertheless, the magnitude of the increase should be treated with caution given the high conversion factors associated with the larger fish.

The Spanish bottom trawl survey results (Table E7) differ from the two survey series above and indicate reduced abundance in this area during the last three years. The Norwegian Bottom trawl Survey in the Barents Sea in winter (Table E8) shows no clear trend in the total abundance.

Although representing a larger part of the stock, the new combined survey indices were not successful in establishing consistency in the relative size of year classes at age. Future inclusion of northern parts of the Russian zone may improve the index. Also the joint Russian-Norwegian research program on Greenland halibut may eventually contribute by increasing our understanding of the processes involved. The main objectives are to clarify the migration dynamics of the stock, including vertical distribution and relations with Greenland halibut in other areas. The results may improve both biological sampling and the subsequent assessments.

Abundance indices of 0-group Greenland halibut are shown in Table A14. There has been a significant increase of this index the last three years.

\subsection*{8.2.2 Commercial catch-per-unit-effort (Table 8.6 and E9)}

The CPUE from the experimental fishery was found to be considerably higher than in the traditional fishery and has exhibited an increasing trend from 1992-1996. After 1996 the Norwegian CPUE series has varied between 1200 and 1650 \(\mathrm{kg} / \mathrm{h}\) with the highest value in 2000 (Table E9). The Russian experimental CPUE series shows an increasing trend since 1997, and this series also shows the highest value in 2000.

\subsection*{8.2.3 Age readings}

In the current assessment of the Greenland halibut stock, the problem of low abundance at age 9 in the Norwegian data from surveys and catches remains unresolved. Analysis of size composition suggested that the problem is more likely to be related to age reading uncertainties rather than to peculiarities in distribution and migration. At present, work is underway to address this problem for the future including comparative age reading by Russian and Norwegian experts. In addition, work will be done to revise the historical time-series and results from this work will be submitted to the next AFWG meeting for review.

\subsection*{8.3 Data used in the assessment}

Based on the arguments in Section 8.2.1 the Working Group also this year considers the survey indices for ages below age 5 not appropriate for inclusion in the tuning data. Consequently, a standard XSA was run for age 5 and above.

\subsection*{8.3.1 Catch-at-age (Table 8.7-8.8)}

The catch-at-age data for 2001 were updated using revised catch figures and revised Norwegian age composition. Catch-at-age data for 2002 were available from both the Norwegian and Russian fisheries. The combined Norwegian and Russian catch-at-age were used to allocate catches from other countries by age groups. Total international catch-atage is given in Table 8.7. Greenland halibut are usually caught in the range of \(3-16\) years old, but the catch is mainly dominated by ages 5-10. Generally, fish older than age 10 comprise a very low proportion of the catches. The Working Group noted that similar low numbers of age 9 were observed in the catches.

\subsection*{8.3.2 Weight-at-age (Table 8.7, 8.8)}

For the years 1964-1969 separate weight-at-age data were used for the Norwegian and the Russian catches. Both data sets were mean values for the period and were combined as a weighted average for each year. A constant set of weight-at-age data was used for the total catches in the years 1970-1978. For subsequent years annual estimates were used. The mean weight-at-age in the catch in 2002 (Table 8.8) was calculated as a weighted average of the weight in the catch from Norway and Russia. The weight-at-age in the stock was set equal to the weight-at-age in the catch for all years.

\subsection*{8.3.3 Natural mortality}

Natural mortality of Greenland halibut was set to 0.15 for all ages and years. This is the same assumption as was used in previous years.

\subsection*{8.3.4 Maturity-at-age (Tables 8.9)}

Annual ogives were derived to estimate the spawning stock biomass based on females only using Russian survey data for the years 1984-2002, except for the year 1991. An average ogive computed for 1984-1987 was applied to 19641983. The average of 1990 and 1992 was used to represent the maturity ogive for 1991. For 1984-2002 a three-year running average was applied. In previous assessments a similar procedure using the same data set was implemented but was based on sexes combined.

\subsection*{8.3.5 Tuning data}

The XSA was run with the same tuning series as used in last year's assessment :

Fleet 4: Experimental commercial fishery CPUE from 1992-2002 for ages 5-14.
Fleet 7: Russian trawl survey from 1992-2002 for ages 5-14.
Fleet 8: Norwegian Combined Survey from 1996-2002 for ages 5-15.

A XSA-run with the Norwegian tuning series truncated to ages \(5-9\) with no plus group was done (xsaaag47), but the diagnostics did not improve and there were only minor changes in the result. It was therefore decided to use the same tuning data as last year.

\subsection*{8.3.6 Recruitment indices (Tables A14, E1-E9)}

In addition to the indices mentioned in Section 8.3.5, all surveys in Section 8.2.1 may provide information on recruitment. However, because the dynamics of migration and distribution patterns are not well understood for this stock, it is not known which age should be used for a reliable recruitment estimate. As outlined in previous Working Group reports there is no longer evidence for a major recruitment failure in the 1990's. Nevertheless, the relative size of the individual year classes is still poorly estimated, especially at ages below 5 years and for the most recent years. Since recruitment appears remarkably stable for this stock, the short-term prediction was therefore based on mean numbers-atage 5 for the years 1990-2000 from the XSA.

\subsection*{8.4 Methods used in the assessment}

\subsection*{8.4.1 VPA and tuning}

The Extended Survivors Analysis (XSA) was used to tune the VPA to the fleets as mentioned in Section 8.3.5. The analyses used survivor estimates shrunk towards the mean of the final 2 years and 5 ages and the standard error of the
mean to which the estimates were shrunk was set to 0.5 . The catchability was considered to be independent of stock size for all ages and independent of age for ages 10 and older. These are the same settings as used in last years assessment.

Input data and diagnostics of the final XSA run are given in Tables 8.7-8.10 and log catchability residuals for the three fleets used in the tuning are shown in Figure 8.1. Figure 8.2 shows that the three fleets gave similar trends when used separately for tuning.

\subsection*{8.5 Results of the Assessment}

The diagnostics of the assessment indicate that it is generally unbiased, and describes the trend in stock development reasonably well. The survivor estimates for 2003 for most of the important year classes are determined primarily from the tuning fleet data and in most instances each tuning fleet contributes significantly to the determinations with little effect from inclusion of F shrinkage means in the tuning process. Nevertheless, the assessment diagnostics also indicated substantial uncertainties in absolute values of the survivor estimates determined by the analysis shown by instances of very high residuals, large S.E. \((\log \mathrm{q})\) 's and low \(\mathrm{R}^{2}\), \(s\) in the regression statistics for certain fleets and ages.

\subsection*{8.5.1 Results of the VPA (Figures 8.3-8.4, Tables 8.11-8.15)}

The fishing mortality (F) matrix indicates that historically Greenland halibut were fully recruited to the fishery at approximately age 6-7. Since 1991 the age of full recruitment appears closer to age 10 (Table 8.11). This is likely due to a substantial proportional reduction in trawler effort since 1991 combined with reduced catchability of some year classes in the fishing areas. Trawlers catch more young fish compared to gillnetters and longliners. Nevertheless, F on ages 6-10 continues to represent the average fishing mortality on the major age groups procecuted by the fishery.

Until 1976 the female spawning stock varied between 60,000 and \(140,000 \mathrm{t}\), then it was relatively stable at around \(40,000 \mathrm{t}\) until the late 1980's after which it declined markedly. It reached an all time low of 14,000 t by 1995-96 but has been increasing since then to an estimate of 28,000 by 2002, the highest estimated since the late 1980's. .

Prior to the reduction in the early 1990's the fishing mortality had increased continuously for more than a decade and peaked in 1991 at 0.66 . After the reduction the fishing mortality has averaged around 0.3 . The high catch in 1999 resulted in an increase in fishing mortality to 0.40 but since then has declined to 0.20 by 2002, the lowest value estimated for the last 20 years.

Recruitment-at-age 5 has been relatively low in recent years compared to the long-term average, and since 1990 lower than in all previous years. Nevertheless, the reduction is not especially dramatic and the 1990-2002 average is about \(80 \%\) of the average during the 1980 's. The 2001 and 2002 values are near the average of the last 13 years

\subsection*{8.5.2 Biological reference points}

In its previous assessment of Greenland halibut the WG attempted to compute preliminary biological reference points using the traditional PA Software Package. The Working Group emphasised that this analysis was meant only to illustrate a first attempt at moving towards appropriate reference points for this stock. Given the continuing levels of uncertainty in the current assessment no further attempts were made to develop reference points for this stock. The WG reiterates that a major joint three-year scientific program on Greenland halibut is currently under way between Russia and Norway and is in the second year of the program. As one of its terms of reference the program aims to develop appropriate biological reference points for this stock to be proposed for management of this important resource.

\subsection*{8.5.3 Catch options for 2004}

The input data for the prediction based on the results from the XSA-analysis are as follows (Table 8.16):

The stock numbers-at-age in 2003 were taken from the XSA for ages 6 and older. The recruitment-at-age 5 in 2003 was estimated using the mean from 1990 to 2000 following the argument that recruitment-at-age 5 shows a sharp reduction in the most recent years in the previous assessments, which is not believed to reflect the true recruitment. The natural mortality and the maturity ogive are the same as used in the assessment. For the exploitation pattern the average of 2000-2002 has been used. For weight-at-age in the catch and stock, the average weight-at-age for the last three years in the VPA has been used.

The management option table (8.17) shows that the expected catch of \(15,000 \mathrm{t}\) in 2003 will decrease the fishing mortality \(\left(\mathrm{F}_{2003}=0.22\right)\) slightly in comparison with \(\mathrm{F}_{\text {Bar00-02. }}\). The total stock biomass and SSB will be slightly increased
(\(90,000 \mathrm{t}\) and \(34,800 \mathrm{t}\) respectively). To further rebuild the stock and SSB, future fishing mortality should not exceed current level.

\subsection*{8.6 Comparison of this years assessment with last years assessment}

Compared to last years assessment, the current one has revised previous year's fishing mortality for 2002 downwards and the stock level upwards. This is mainly because the youngest age groups in the tuning are estimated to be slightly higher in abundance than in previous years.
\begin{tabular}{|l|c|c|c|c|}
\hline & \begin{tabular}{c}
Total stock (5+) by \\
1 January 2002
\end{tabular} & \begin{tabular}{c}
SSB by \\
1 January 2002
\end{tabular} & F6-10 in 2002 & F6-10 in 2001 \\
\hline WG 2002 & 77161 & 23344 & \(0.31^{*}\) & 0.27 \\
\hline WG 2003 & 82474 & 28497 & 0.20 & 0.27 \\
\hline
\end{tabular}

Prediction

\subsection*{8.7 Comments to the assessment}

The current assessment was conducted using the same catch matrix, surveys series and settings as in the previous year with only the updated data for 2002. The assessment is considered uncertain due to age-reading problems and evidence of unreported landings that could not be taken into account. Despite the continuing uncertainties in the assessment of this stock as noted above, the current analysis indicated only marginal differences in the stock size and fishing mortality values for 2005 compared to the previous assessment.

Table 8.1 GREENLAND HALIBUT in Sub-areas I and II.
Nominal catch (t) by countries (Subarea I,Divisions Ila and llb combined) as officially reported to ICES.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Denmark & Est onia & Faroe Isl. & France & \begin{tabular}{l}
Fed. \\
Rep. \\
Germ any
\end{tabular} & Gre enl. & Ice land & Ire land & & Lithu ania & Norway & \begin{tabular}{l}
Pola \\
nd
\end{tabular} & Portu gal & \[
\begin{aligned}
& \text { Rus } \\
& \text { sia }^{3}
\end{aligned}
\] & Spain & \begin{tabular}{l}
UK \\
(Engl. \& \\
Wales)
\end{tabular} & UK (Scot land) & Total \\
\hline 1984 & 0 & 0 & 0 & 138 & 2165 & 0 & 0 & 0 & 0 & 0 & 4376 & 0 & 0 & 15181 & 0 & 23 & 0 & 21883 \\
\hline 1985 & 0 & 0 & 0 & 239 & 4000 & 0 & 0 & 0 & 0 & 0 & 5464 & 0 & 0 & 10237 & 0 & 5 & 0 & 19945 \\
\hline 1986 & 0 & 0 & 42 & 13 & 2718 & 0 & 0 & 0 & 0 & 0 & 7890 & 0 & 0 & 12200 & 0 & 10 & 2 & 22875 \\
\hline 1987 & 0 & 0 & 0 & 13 & 2024 & 0 & 0 & 0 & 0 & 0 & 7261 & 0 & 0 & 9733 & 0 & 61 & 20 & 19112 \\
\hline 1988 & 0 & 0 & 186 & 67 & 744 & 0 & 0 & 0 & 0 & 0 & 9076 & 0 & 0 & 9430 & 0 & 82 & 2 & 19587 \\
\hline 1989 & 0 & 0 & 67 & 31 & 600 & 0 & 0 & 0 & 0 & 0 & 10622 & 0 & 0 & 8812 & 0 & 6 & 0 & 20138 \\
\hline 1990 & 0 & 0 & 163 & 49 & 954 & 0 & 0 & 0 & 0 & 0 & 17243 & 0 & 0 & \(4764{ }^{2}\) & 0 & 10 & 0 & 23183 \\
\hline 1991 & 11 & 2564 & 314 & 119 & 101 & 0 & 0 & 0 & 0 & 0 & 27587 & 0 & 0 & \(2490{ }^{2}\) & 132 & 0 & 2 & 33320 \\
\hline 1992 & 0 & 0 & 16 & 111 & 13 & 13 & 0 & 0 & 0 & 0 & 7667 & 0 & 31 & 718 & 23 & 10 & 0 & 8602 \\
\hline 1993 & 2 & 0 & 61 & 80 & 22 & 8 & 56 & & 0 & 30 & 10380 & 0 & 43 & 1235 & 0 & 16 & 0 & 11933 \\
\hline 1994 & 4 & 0 & 18 & 55 & 296 & 3 & 15 & & 5 & 4 & 8428 & 0 & 36 & 283 & 1 & 76 & 2 & 9226 \\
\hline 1995 & 0 & 0 & 12 & 174 & 35 & 12 & 25 & & 2 & 0 & 9368 & 0 & 84 & 794 & 1106 & 115 & 7 & 11734 \\
\hline 1996 & 0 & 0 & 2 & 219 & 81 & 123 & 70 & & 0 & 0 & 11623 & 0 & 79 & 1576 & 200 & 317 & 57 & 14347 \\
\hline 1997 & 0 & 0 & 27 & 253 & 56 & 0 & 62 & & 2 & 0 & 7661 & 12 & 50 & 1038 & \(157{ }^{2}\) & 67 & 25 & 9410 \\
\hline 1998 & 0 & 0 & 57 & 67 & 34 & 0 & 23 & & 2 & 0 & 8435 & 31 & 99 & 2659 & \(259{ }^{2}\) & 182 & 45 & 11893 \\
\hline \(1999{ }^{1}\) & 0 & 0 & 94 & 0 & 34 & 38 & 7 & 2 & 2 & 0 & 15004 & 8 & 49 & 3823 & \(319{ }^{2}\) & 94 & 45 & 19517 \\
\hline \(2000{ }^{1}\) & 0 & 0 & 0 & 45 & 15 & 0 & 16 & & 0 & 0 & \(9223{ }^{2}\) & 3 & 37 & 4568 & \(375{ }^{2}\) & 112 & 43 & 14437 \\
\hline \(2001{ }^{1}\) & 0 & 0 & 0 & 122 & 58 & 0 & 9 & 1 & 1 & 0 & \(10843{ }^{2}\) & 2 & 35 & 4694 & \(413{ }^{2}\) & 100 & 30 & 16307 \\
\hline \(2002{ }^{1}\) & 0 & 219 & 0 & 6 & 42 & 0 & 0 & 0 & 0 & 0 & \(7013{ }^{2}\) & 5 & 516 & 5584 & \(186{ }^{2}\) & 41 & 28 & 13140 \\
\hline
\end{tabular}

\footnotetext{
Provisional figures.
Working Group figures.
\({ }^{3}\) USSR prior to 1991.
}

TABLE 8.2 GREENLAND HALIBUT in Sub-areas I and II. Nominal catch (t) by countries in Sub-area I as officially reported to ICES.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Estonia & Faroe Islands & Fed. Rep. Germany & \[
\begin{aligned}
& \text { Greenlan } \\
& \text { d }
\end{aligned}
\] & Iceland & & Norway & Russia \({ }^{3}\) & Spain & & UK (England \& Wales) & \[
\begin{aligned}
& \text { UK } \\
& \text { W } \\
& \text { (Scot } \\
& \text { land) }
\end{aligned}
\] & & Total \\
\hline 1984 & - & - & - & & & - & 593 & 81 & & - & 17 & & - & 691 \\
\hline 1985 & - & - & - & & & - & 602 & 122 & & - & & 1 & - & 725 \\
\hline 1986 & - & - & 1 & & & - & 557 & 615 & & - & & 5 & 1 & 1179 \\
\hline 1987 & - & - & 2 & & & - & 984 & 259 & & - & 10 & & + & 1255 \\
\hline 1988 & - & 9 & 4 & & & - & 978 & 420 & & - & & 7 & - & 1418 \\
\hline 1989 & - & - & - & & & - & 2039 & 482 & & - & & + & - & 2521 \\
\hline 1990 & - & 7 & - & & & - & 1304 & \(321{ }^{2}\) & & - & & - & - & 1632 \\
\hline 1991 & 164 & - & - & & & - & 2029 & \(522{ }^{2}\) & & - & & - & - & 2715 \\
\hline 1992 & - & - & + & - & & - & 2349 & 467 & & - & & - & - & 2816 \\
\hline 1993 & - & 32 & - & - & & 56 & 1754 & 867 & & - & & - & - & 2709 \\
\hline 1994 & - & 17 & 217 & - & & 15 & 1165 & 175 & & - & & + & - & 1589 \\
\hline 1995 & - & 12 & - & - & & 25 & 1352 & 270 & & 84 & & - & - & 1743 \\
\hline 1996 & - & 2 & + & - & & 70 & 911 & 198 & & - & & + & - & 1181 \\
\hline 1997 & - & 15 & - & - & & 62 & 610 & 170 & & - & & + & - & 857 \\
\hline 1998 & - & 47 & + & - & & 23 & 859 & 491 & & - & & 2 & - & 1422 \\
\hline \(1999{ }^{1}\) & - & 91 & - & 13 & & 7 & 1101 & 1203 & & - & & + & - & 2415 \\
\hline \(2000{ }^{1}\) & - & - & + & - & & 16 & 920 & 1169 & & - & & 1 & - & 2106 \\
\hline \(2001{ }^{1}\) & - & - & - & - & & 9 & \(821{ }^{2}\) & 951 & & - & & 2 & - & 1783 \\
\hline \(2002{ }^{1}\) & - & - & 3 & - & + & & \(792{ }^{2}\) & 1167 & & - & & + & - & 1962 \\
\hline
\end{tabular}

1 Provisional figures.
\({ }^{2}\) Working Group figures.
\({ }^{3}\) USSR prior to 1991.

Table 8.3. GREENLAND HALIBUT in Sub areas I and II. Nominal catch (t) by countries in Division lla as officially reported to ICES.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Estonia & Faroe Islands & France & Fed. Rep. Germ. & Greenland & \begin{tabular}{l}
Ire- \\
land
\end{tabular} & Norway & Portugal & Russia \({ }^{5}\) & Spain & \begin{tabular}{l}
UK \\
(Engl. \& \\
Wales)
\end{tabular} & UK (Scotland) & Total \\
\hline 1984 & & - & 138 & 265 & - & - & 3703 & - & 5459 & - & 1 & - & 9566 \\
\hline 1985 & & - & 239 & 254 & - & - & 4791 & - & 6894 & - & 2 & - & 12180 \\
\hline 1986 & & 6 & 13 & 97 & - & - & 6389 & - & 5553 & - & 5 & 1 & 12064 \\
\hline 1987 & & - & 13 & 75 & - & - & 5705 & - & 4739 & - & 44 & 10 & 10586 \\
\hline 1988 & & 177 & 67 & 150 & - & - & 7859 & - & 4002 & - & 56 & 2 & 12313 \\
\hline 1989 & & 67 & 31 & 104 & - & - & 8050 & - & 4964 & - & 6 & - & 13222 \\
\hline 1990 & & 133 & 49 & 12 & - & - & 8233 & - & \(1246{ }^{2}\) & - & 1 & - & 9674 \\
\hline 1991 & 1400 & 314 & 119 & 21 & - & - & 11189 & - & \(305{ }^{2}\) & & + & 1 & 13349 \\
\hline 1992 & - & 16 & 108 & 1 & \(13^{4}\) & - & 3586 & \(15^{3}\) & 58 & - & 1 & - & 3798 \\
\hline 1993 & - & 29 & 78 & 14 & \(8^{4}\) & - & 7977 & 17 & 210 & - & 2 & - & 8335 \\
\hline 1994 & - & - & 47 & 33 & \(3^{4}\) & 4 & 6382 & 26 & 67 & + & 14 & - & 6576 \\
\hline 1995 & - & - & 174 & 30 & \(12^{4}\) & 2 & 6354 & 60 & 227 & - & 83 & 2 & 6944 \\
\hline 1996 & - & - & 219 & 34 & \(123{ }^{4}\) & - & 9508 & 55 & 466 & 4 & 278 & 57 & 10744 \\
\hline 1997 & - & - & 253 & 23 & \(-{ }^{4}\) & - & 5702 & 41 & 334 & 1 & 21 & 25 & 6400 \\
\hline 1998 & - & - & 67 & 16 & \(-4\) & 1 & 6661 & 80 & 530 & 5 & 74 & 41 & 7475 \\
\hline \(1999{ }^{1}\) & & & & 20 & \(25^{4}\) & 2 & 13064 & 33 & 734 & 1 & 63 & 45 & 13987 \\
\hline \(2000{ }^{1}\) & & & 43 & 10 & 4 & & 7774 & 18 & 690 & 1 & 65 & 43 & 8644 \\
\hline \(2001{ }^{1}\) & & & 122 & 49 & 4 & 1 & \(8895{ }^{2}\) & 13 & 726 & & 56 & 30 & 9892 \\
\hline \(2002{ }^{1}\) & & & 6 & 9 & 4 & & \(5776{ }^{2}\) & 5 & 849 & 8 & 12 & 28 & 6693 \\
\hline
\end{tabular}

\footnotetext{
1 Provisional figures.
2 Working Group figure.
\({ }^{3}\) As reported to Norwegian authorities.
4 Includes Division Ilb.
5 USSR prior to 1991.
}

Table 8.4 GREENLAND HALIBUT in Sub-areas I and II.
Nominal catch (t) by countries in Division Ilb as officially reported to ICES.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Den mark & \begin{tabular}{l}
Estoni \\
a
\end{tabular} & Faroe Islands & Franc
e & Fed. rep. Germ. & \[
\begin{aligned}
& \text { Irela } \\
& \text { nd }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Lithu } \\
& \text { ania }
\end{aligned}
\] & Norway & Pola nd & Portug al & Russia \({ }^{4}\) & Spain & UK (Engl. \& Wales) & \[
\begin{aligned}
& \hline \text { UK } \\
& \text { (Scot } \\
& \text { land) }
\end{aligned}
\] & Total \\
\hline 1984 & - & & - & - & 1900 & & & 80 & & - - & 9641 & - & 5 & - & 11626 \\
\hline 1985 & - & & - & - & 3746 & - & & 71 & & - - & 3221 & - & 2 & - & 7040 \\
\hline 1986 & - & & 36 & - & 2620 & & & 944 & - & - - & 6032 & - & + & - & 9632 \\
\hline 1987 & + & & - & - & 1947 & - & & 572 & - & - - & 4735 & - & 7 & 10 & 7271 \\
\hline 1988 & - & & - & - & 590 & - & & 239 & - & - - & 5008 & - & 19 & + & 5856 \\
\hline 1989 & - & & - & - & 496 & - & & 533 & - & - - & 3366 & - & - & - & 4395 \\
\hline 1990 & - & & \(23{ }^{2}\) & - & 942 & - & & 7706 & - & - - & \(3197{ }^{2}\) & - & 9 & - & 11877 \\
\hline 1991 & 11 & 1000 & - & - & 80 & - & - & 14369 & - & - - & \(1663{ }^{2}\) & 132 & + & 1 & 17256 \\
\hline 1992 & - & - & - & \(3{ }^{2}\) & 12 & & - & 1732 & - & 16 & 193 & 23 & 9 & - & 1988 \\
\hline 1993 & \(2^{3}\) & - & - & \(2^{3}\) & 8 & & \(30^{3}\) & 649 & - & 26 & 158 & - & 14 & - & 889 \\
\hline 1994 & 4 & - & \(1^{3}\) & \(8{ }^{3}\) & 46 & 1 & \(4^{3}\) & 881 & - & 10 & 41 & 1 & 62 & 2 & 1061 \\
\hline 1995 & - & - & - & - & 5 & - & - & 1662 & - & 24 & 297 & 1022 & 32 & 5 & 3047 \\
\hline 1996 & + & - & - & - & 47 & - & - & 1204 & - & 24 & 912 & 196 & 39 & + & 2422 \\
\hline 1997 & - & - & 12 & - & 33 & 2 & - & 1349 & 12 & 9 & 534 & \(156{ }^{2}\) & 46 & + & 2153 \\
\hline 1998 & - & - & 10 & - & 18 & 1 & - & 915 & 31 & 19 & 1638 & \(254{ }^{2}\) & 106 & 4 & 2996 \\
\hline \(1999{ }^{1}\) & - & - & 3 & - & 14 & - & - & 839 & 8 & 16 & 1886 & \(318{ }^{2}\) & 31 & - & 3115 \\
\hline \(2000{ }^{1}\) & - & - & & 2 & 5 & & - & 529 & 3 & 19 & 2709 & \(374{ }^{2}\) & 46 & - & 3687 \\
\hline \(2001{ }^{1}\) & - & - & & + & 9 & - & - & \(1127{ }^{2}\) & 2 & 22 & 3017 & \(413{ }^{2}\) & 42 & - & 4632 \\
\hline \(2002{ }^{1}\) & - & 219 & & + & 30 & - & - & \(445{ }^{2}\) & 5 & 11 & 3568 & \(178{ }^{2}\) & 29 & - & 4485 \\
\hline
\end{tabular}

1 Provisional figures.
\({ }^{2}\) Working Group figure.
\({ }^{3}\) As reported to Norwegian authorities.
\({ }^{4}\) USSR prior to 1991.

Table 8.5 GREENLAND HALIBUT in the Sub-areas I and II.
Landings by gear (tonnes). Approximate figures, the total may differ slightly from Table 8.1
\begin{tabular}{rrrrr}
\hline Year & \multicolumn{1}{l}{ Gillnet } & \multicolumn{1}{l}{ Longline } & \multicolumn{1}{l}{ Trawl } & \multicolumn{1}{c}{ Total } \\
\hline 1980 & 1189 & 336 & 11759 & 13284 \\
1981 & 730 & 459 & 13829 & 15018 \\
1982 & 748 & 679 & 15362 & 16789 \\
1983 & 1648 & 1388 & 19111 & 22147 \\
1984 & 1200 & 1453 & 19230 & 21883 \\
1985 & 1668 & 750 & 17527 & 19945 \\
1986 & 1677 & 497 & 20701 & 22875 \\
1987 & 2239 & 588 & 16285 & 19112 \\
1988 & 2815 & 838 & 15934 & 19587 \\
1989 & 1342 & 197 & 18599 & 20138 \\
1990 & 1372 & 1491 & 20325 & 23188 \\
1991 & 1904 & 4552 & 26864 & 33320 \\
1992 & 1679 & 1787 & 5787 & 9253 \\
1993 & 1497 & 2493 & 7889 & 11879 \\
1994 & 1403 & 2392 & 5353 & 9148 \\
1995 & 1500 & 4034 & 5494 & 11028 \\
1996 & 1480 & 4616 & 7977 & 14073 \\
1997 & 998 & 3378 & 5198 & 9574 \\
1998 & 1327 & 3891 & 6708 & 11926 \\
1999 & 2565 & 6804 & 9981 & 19350 \\
2000 & 1707 & 5029 & 7656 & 14393 \\
2001 & 2041 & 6303 & 7635 & 15979 \\
2002 & 1737 & 5309 & 6350 & 13396 \\
\hline
\end{tabular}

Table 8.6. GREENLAND HALIBUT in Sub-areas I and II. Catch per unit effort and total effort.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{2}{|l|}{USSR catch/hour trawling (t)} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Norway \({ }^{10}\) catch/hour trawling \\
(t)
\end{tabular}} & \multicolumn{2}{|l|}{Average CPUE} & \multirow[t]{2}{*}{Total effort (in '000 hrs trawling) \({ }^{5}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { CPUE } \\
& 7+^{6}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{GDR}^{7} \\
\text { (catch/day } \\
\text { tonnage (kg) }
\end{gathered}
\]} \\
\hline & \(\mathrm{RT}^{1}\) & \(\mathrm{PST}^{2}\) & \(\mathrm{A}^{8}\) & \(\mathrm{B}^{9}\) & \(\mathrm{A}^{3}\) & \(\mathrm{B}^{4}\) & & & \\
\hline 1965 & 0.80 & - & - & - & 0.80 & - & - & - & - \\
\hline 1966 & 0.77 & - & - & - & 0.77 & - & - & - & - \\
\hline 1967 & 0.70 & - & - & - & 0.70 & - & - & - & - \\
\hline 1968 & 0.65 & - & - & - & 0.65 & - & - & - & - \\
\hline 1969 & 0.53 & - & - & - & 0.53 & - & - & - & - \\
\hline 1970 & 0.53 & - & - & - & 0.53 & - & 169 & 0.50 & - \\
\hline 1971 & 0.46 & - & - & - & 0.46 & - & 172 & 0.43 & - \\
\hline 1972 & 0.37 & - & - & - & 0.37 & - & 116 & 0.33 & - \\
\hline 1973 & 0.37 & - & 0.34 & - & 0.36 & - & 83 & 0.36 & - \\
\hline 1974 & 0.40 & - & 0.36 & - & 0.38 & - & 100 & 0.36 & - \\
\hline 1975 & 0.39 & 0.51 & 0.38 & - & 0.39 & 0.45 & 99 & 0.37 & - \\
\hline 1976 & 0.40 & 0.56 & 0.33 & - & 0.37 & 0.45 & 100 & 0.34 & - \\
\hline 1977 & 0.27 & 0.41 & 0.33 & - & 0.30 & 0.37 & 96 & 0.26 & - \\
\hline 1978 & 0.21 & 0.32 & 0.21 & - & 0.21 & 0.27 & 123 & 0.17 & - \\
\hline 1979 & 0.23 & 0.35 & 0.28 & - & 0.26 & 0.32 & 67 & 0.19 & - \\
\hline 1980 & 0.24 & 0.33 & 0.32 & - & 0.28 & 0.33 & 47 & 0.25 & - \\
\hline 1981 & 0.30 & 0.36 & 0.36 & - & 0.33 & 0.36 & 42 & 0.28 & - \\
\hline 1982 & 0.26 & 0.45 & 0.41 & - & 0.34 & 0.43 & 39 & 0.37 & - \\
\hline 1983 & 0.26 & 0.40 & 0.35 & - & 0.31 & 0.38 & 58 & 0.32 & - \\
\hline 1984 & 0.27 & 0.41 & 0.32 & - & 0.30 & 0.37 & 59 & 0.30 & - \\
\hline 1985 & 0.28 & 0.52 & 0.37 & - & 0.33 & 0.45 & 44 & 0.37 & - \\
\hline 1986 & 0.23 & 0.42 & 0.37 & - & 0.30 & 0.40 & 57 & 0.32 & - \\
\hline 1987 & 0.25 & 0.50 & 0.35 & - & 0.30 & 0.43 & 44 & 0.35 & - \\
\hline 1988 & 0.20 & 0.30 & 0.31 & - & 0.26 & 0.31 & 63 & 0.26 & 4.26 \\
\hline 1989 & 0.20 & 0.30 & 0.26 & - & 0.23 & 0.28 & 73 & 0.19 & 2.95 \\
\hline 1990 & - & 0.20 & 0.27 & - & - & 0.24 & 95 & 0.16 & 1.66 \\
\hline 1991 & - & - & 0.24 & - & - & - & 134 & 0.18 & - \\
\hline 1992 & - & - & 0.46 & 0.72 & - & - & 20 & 0.29 & - \\
\hline 1993 & - & - & 0.79 & 1.22 & - & - & 15 & 0.65 & - \\
\hline 1994 & - & - & 0.77 & 1.27 & - & - & 11 & 0.70 & - \\
\hline 1995 & - & - & 1.03 & 1.48 & - & - & - & - & - \\
\hline 1996 & - & - & 1.45 & 1.82 & - & - & - & - & - \\
\hline 1997 & 0.71 & - & 1.23 & 1.60 & - & - & - & - & - \\
\hline 1998 & 0.71 & - & 0.98 & 1.35 & - & - & - & - & - \\
\hline 1999 & 0.84 & - & 0.82 & 1.77 & - & - & - & - & - \\
\hline 2000 & 0.94 & - & 1.38 & 1.92 & - & - & - & - & - \\
\hline 2001 & \(0.82{ }^{11}\) & - & 1.18 & 1.57 & - & - & - & - & - \\
\hline 2002 & & - & 1.07 & 1.82 & - & - & - & - & - \\
\hline
\end{tabular}

\footnotetext{
1 Side trawlers, 800-1000 hp. From 1983 onwards, side trawlers (SRTM), 1,000 hp. From 1997 based on research fishing.
2 Stern trawlers, up to 2,000 HP.
\({ }^{3}\) Arithmetic average of CPUE from USSR RT (or SRTM trawlers) and Norwegian trawlers.
4 Arithmetic average of CPUE from USSR PST and Norwegian trawlers.
5 For the years 1981-1990, based on average CPUE type B. For 1991-1993, based on the Norwegian CPUE, type A.
6 Total catch (t) of seven years and older fish divided by total effort.
\({ }^{7}\) For the years 1988-1989, frost-trawlers 995 BRT (FAO Code 095). For 1990, factory trawlers FVS IV, 1943 BRT (FAO Code 090).
8 Norwegian trawlers, ISSCFV-code 07, 250-499.9 GRT.
\({ }^{9}\) Norwegian factory trawlers, ISSCFV-code 09, 1000-1999.9 GRT
10 From 1992 based on research fishing. 1992-1993: two weeks in May/June and October; 1994-1995: 10 days in May/June
11 Based on fishery from april-october only, a period with relatively low CPUE. In previous years fishery was carried out throughout the whole year.
}

Table 8.7

Run title : Arctic Green.halibut (run: XSAAAG46/X46) At 25/04/2003 12:23
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Table 1 & \multicolumn{3}{|l|}{Catch numbers-at-age} & \multicolumn{7}{|c|}{Numbers*10**-3} \\
\hline & YEAR, & 1964, & 1965, & 1966, & 1967, & 1968, & 1969, & 1970, & 1971, & 1972, & \\
\hline & \multicolumn{11}{|l|}{AGE} \\
\hline & 5, & 372, & 253, & 170, & 156, & 114, & 1064, & 526, & 80, & 1109, & \\
\hline & 6 , & 1480, & 853, & 563, & 332, & 283, & 2420, & 2792, & 4486, & 3521, & \\
\hline & 7, & 2808, & 1735, & 1106, & 623, & 452, & 3208, & 10464, & 12712, & 9605, & \\
\hline & 8 , & 5674, & 3868, & 2715, & 2006, & 1976, & 6288, & 18562, & 12283, & 6438, & \\
\hline & 9, & 4951, & 4203, & 4054, & 3237, & 3923, & 4921, & 10034, & 6130, & 2775, & \\
\hline & 10, & 3981, & 3799, & 2499, & 2409, & 2950, & 4431, & 6671, & 4339, & 1734, & \\
\hline & 11, & 1853, & 1799, & 1284, & 1718, & 2234, & 2381, & 2517, & 2703, & 1368, & \\
\hline & 12, & 1018, & 1002, & 783, & 871, & 792, & 812, & 1250, & 1660, & 1234, & \\
\hline & 13, & 364, & 372, & 246, & 315, & 146, & 229, & 616, & 1044, & 675, & \\
\hline & 14, & 251, & 282, & 261, & 155, & 43, & 100, & 1104, & 300, & 200, & \\
\hline & +gp, & 76, & 50, & 28, & 19, & 7, & 30, & 281, & 143, & 80, & \\
\hline 0 & TOTALNUM, & 22828, & 18216, & 13709, & 11841, & 12920, & 25884, & 54817, & 45880, & 28739, & \\
\hline & TONSLAND, & 40391, & 34751, & 26321, & 24267, & 26168, & 43789, & 89484, & 79034, & 43055, & \\
\hline & SOPCOF \%, & 100, & 100, & 101, & 100, & 100, & 103, & 94, & 104, & 98, & \\
\hline & Table 1 & \multicolumn{3}{|l|}{Catch numbers-at-age} & \multicolumn{7}{|c|}{Numbers*10**-3} \\
\hline & YEAR, & 1973, & 1974, & 1975, & 1976, & 1977, & 1978, & 1979, & 1980, & 1981, & 1982, \\
\hline \multicolumn{12}{|c|}{AGE} \\
\hline & 5, & 212, & 917, & 840, & 830, & 2037, & 1897, & 2218, & 731, & 1896, & 1304, \\
\hline & 6, & 1117, & 2519, & 2337, & 2982, & 3255, & 3589, & 3155, & 1138, & 1917, & 1494, \\
\hline & 7, & 3923, & 6204, & 6520, & 5824, & 4200, & 4118, & 2727, & 1665, & 1919, & 1276, \\
\hline & 8 , & 3515, & 3838, & 4118, & 5002, & 2524, & 2365, & 1234, & 1341, & 933, & 1208, \\
\hline & 9, & 2551, & 1834, & 2265, & 3000, & 1610, & 1509, & 495, & 944, & 484, & 1493, \\
\hline & 10, & 1919, & 1942, & 1654, & 1350, & 1104, & 946, & 319, & 473, & 448, & 1258, \\
\hline & 11, & 1536, & 1622, & 1857, & 915, & 1062, & 934, & 296, & 511, & 482, & 838, \\
\hline & 12, & 1127, & 1338, & 1536, & 1212, & 858, & 438, & 243, & 275, & 380, & 502, \\
\hline & 13, & 716, & 734, & 1122, & 698, & 595, & 349, & 103, & 242, & 384, & 324, \\
\hline & 14, & 251, & 531, & 600, & 526, & 384, & 147, & 45, & 145, & 150, & 108, \\
\hline & +gp, & 126, & 216, & 368, & 358, & 180, & 112, & 51, & 78, & 62, & 46, \\
\hline 0 & TOTALNUM, & 16993, & 21695, & 23217, & 22697, & 17809, & 16404, & 10886, & 7543, & 9055, & 9851, \\
\hline & TONSLAND, & 29938, & 37763, & 38172, & 36074, & 28827, & 24617, & 17312, & 13284, & 15018, & 16789, \\
\hline & SOPCOF \%, & 92, & 98, & 88, & 93, & 101, & 105, & 104, & 109, & 107, & 100, \\
\hline & Table 1 & \multicolumn{3}{|l|}{Catch numbers-at-age} & \multicolumn{7}{|c|}{Numbers*10**-3} \\
\hline & YEAR, & 1983, & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & 1991, & 1992, \\
\hline \multicolumn{12}{|c|}{AGE} \\
\hline & 5, & 1543, & 915, & 1219, & 1672, & 1212, & 907, & 2080, & 2139, & 3312, & 1098, \\
\hline & 6 , & 1864, & 3698, & 2874, & 3335, & 2972, & 2540, & 4453, & 5163, & 3889, & 1195, \\
\hline & 7, & 1851, & 3350, & 2561, & 2712, & 3572, & 3141, & 3655, & 4642, & 4716, & 1069, \\
\hline & 8, & 2287, & 1938, & 1548, & 1531, & 1746, & 2096, & 1657, & 1932, & 2355, & 778, \\
\hline & 9, & 1491, & 1064, & 972, & 1128, & 752, & 1182, & 801, & 1221, & 1031, & 360, \\
\hline & 10, & 1228, & 1191, & 1037, & 997, & 828, & 860, & 318, & 499, & 1284, & 600, \\
\hline & 11, & 713, & 602, & 614, & 530, & 362, & 481, & 228, & 264, & 774, & 188, \\
\hline & 12, & 488, & 340, & 363, & 434, & 202, & 313, & 126, & 314, & 673, & 150, \\
\hline & 13, & 247, & 171, & 161, & 314, & 186, & 133, & 120, & 42, & 177, & 79, \\
\hline & 14, & 201, & 132, & 120, & 305, & 63, & 140, & 140, & 96, & 266, & 89, \\
\hline & +gp, & 64, & 71, & 63, & 239, & 7, & 47, & 28, & 44, & 517, & 56, \\
\hline \multirow[t]{17}{*}{0} & TOTALNUM, & 11977, & 13472, & 11532, & 13197, & 11902, & 11840, & 13606, & 16356, & 18994, & 5662, \\
\hline & TONSLAND, & 22147, & 21883, & 19945, & 22875, & 19112, & 19587, & 20138, & 23183, & 33320, & 8602, \\
\hline & SOPCOF \%, & 98, & 100, & 99, & 98, & 101, & 100, & 103, & 102, & 105, & 95, \\
\hline & Table 1 & \multicolumn{3}{|l|}{Catch numbers-at-age} & \multicolumn{7}{|c|}{Numbers*10**-3} \\
\hline & YEAR, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002, \\
\hline & \multicolumn{11}{|l|}{AGE} \\
\hline & 5, & 1140, & 631, & 846, & 1034, & 330, & 359, & 433, & 380, & 441, & 288, \\
\hline & 6, & 1088, & 708, & 992, & 2083, & 921, & 1116, & 1905, & 735, & 1347, & 944, \\
\hline & 7, & 1608, & 1252, & 1719, & 3795, & 1822, & 2466, & 3955, & 1926, & 2338, & 1632, \\
\hline & 8 , & 1118, & 817, & 990, & 1426, & 953, & 1464, & 1810, & 1464, & 1325, & 1043, \\
\hline & 9, & 140, & 310, & 405, & 262, & 342, & 527, & 914, & 743, & 788, & 550, \\
\hline & 10, & 976, & 642, & 726, & 655, & 822, & 924, & 1905, & 1318, & 1140, & 958, \\
\hline & 11, & 444, & 416, & 461 , & 270, & 231, & 237, & 380, & 457, & 519, & 500, \\
\hline & 12, & 144, & 330, & 371, & 132, & 150, & 122, & 237, & 330, & 372, & 336, \\
\hline & 13, & 36, & 88, & 154, & 29, & 18, & 15, & 67, & 49, & 115, & 148, \\
\hline & 14, & 20, & 39, & 56, & 22, & 41, & 29, & 42, & 37, & 54, & 67, \\
\hline & +gp, & 4, & 3, & 8, & 1, & 1, & 15, & 7, & 14, & 12, & 43, \\
\hline \multirow[t]{3}{*}{0} & TOTALNUM, & 6718, & 5236, & 6728, & 9709, & 5631, & 7274, & 11655, & 7453, & 8451, & 6509, \\
\hline & TONSLAND, & 11933, & 9226, & 11734, & 14347, & 9410, & 11893, & 19517, & 14437, & 16307, & 13140, \\
\hline & SOPCOF \%, & 102, & 99, & 101, & 101, & 99, & 100, & 102, & 101, & 100, & 100, \\
\hline
\end{tabular}

Run title : Arctic Green.halibut (run: XSAAAG46/X46)
At 25/04/2003 12:23
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Table & 2 & Catch & weights-at & age (kg) & & & & & & & \\
\hline & YEAR, & & 1964, & 1965, & 1966, & 1967, & 1968, & 1969, & 1970, & 1971, & 1972, & \\
\hline & \multicolumn{12}{|l|}{AGE} \\
\hline & 5, & & . 4200, & . 4200, & . 4200, & . 4200, & . 4200, & . 4200, & . 5670, & . 5670, & . 5670, & \\
\hline & 6, & & .6400, & . 6400, & . 6400, & . 6500, & . 6600, & . 6400, & . 7370 , & . 7370 , & . 7370 , & \\
\hline & 7, & & . 9000 , & . 9000 , & . 9100 , & . 9300 , & . 9600 , & . 9100 , & 1.0790, & 1.0790, & 1.0790, & \\
\hline & 8, & & 1.2000, & 1.2200, & 1.2400, & 1.2700, & 1.3100, & 1.2500, & 1.4210, & 1.4210, & 1.4210, & \\
\hline & 9, & & 1.6300, & 1.6600, & 1.7000, & 1.7100, & 1.7400, & 1.6400, & 1.8480, & 1.8480, & 1.8480, & \\
\hline & 10, & & 2.2600, & 2.2300, & 2.2200, & 2.2000, & 2.1900, & 2.2500, & 2.2810, & 2.2810, & 2.2810, & \\
\hline & 11, & & 3.1100, & 3.0000 , & 2.9400, & 2.8400, & 2.7900, & 2.9900, & 2.8870, & 2.8870, & 2.8870, & \\
\hline & 12, & & 3.7400, & 3.4900, & 3.3900 , & 3.3000, & 3.1900, & 3.6300, & 3.2470, & 3.2470, & 3.2470, & \\
\hline & 13, & & 4.5700, & 4.4000, & 4.3800, & 4.2700, & 4.2700, & 4.6800, & 4.3030, & 4.3030, & 4.3030, & \\
\hline & 14, & & 5.0100, & 4.9100, & 4.8400 , & 4.8800, & 5.0000, & 5.3800, & 4.9310, & 4.9310, & 4.9310, & \\
\hline & +gp, & & 5.9400, & 5.8900, & 5.8800 , & 5.8000 , & 5.9900, & 5.9900, & 5.7940, & 5.8410, & 6.0370, & \\
\hline \multirow[t]{15}{*}{0} & SOPCOFAC, & & . 9986 , & 1.0046, & 1.0054, & 1.0024, & . 9994 , & 1.0262, & . 9436 , & 1.0434, & . 9752 , & \\
\hline & Table & & \multicolumn{10}{|l|}{Catch weights-at-age (kg)} \\
\hline & YEAR, & & 1973, & 1974, & 1975, & 1976, & 1977, & 1978, & 1979, & 1980, & 1981, & 1982, \\
\hline & \multicolumn{12}{|l|}{AGE} \\
\hline & 5, & & . 5670, & . 5670, & . 5670, & . 5670, & . 5670, & . 5670, & . 9000 , & . 7020 , & . 6600, & . 6900, \\
\hline & 6, & & . 7370 , & . 7370 , & . 7370 , & . 7370 , & . 7370 , & . 7370 , & 1.2000, & . 8720, & . 8400, & . 8400 , \\
\hline & 7, & & 1.0790, & 1.0790, & 1.0790, & 1.0790, & 1.0790, & 1.0790, & 1.5000, & 1.1410, & 1.1500, & 1.0300, \\
\hline & 8, & & 1.4210, & 1.4210, & 1.4210, & 1.4210, & 1.4210, & 1.4210, & 1.8000, & 1.4680, & 1.5600, & 1.3100, \\
\hline & 9, & & 1.8480, & 1.8480, & 1.8480, & 1.8480, & 1.8480, & 1.8480, & 2.2000, & 1.7780, & 2.0400, & 1.7400, \\
\hline & 10, & & 2.2810, & 2.2810, & 2.2810, & 2.2810, & 2.2810, & 2.2810, & 2.6000, & 2.3020, & 2.5700, & 2.2400, \\
\hline & 11, & & 2.8870, & 2.8870, & 2.8870, & 2.8870, & 2.8870, & 2.8870, & 3.0000, & 2.6640, & 2.9800, & 2.7700, \\
\hline & 12, & & 3.2470, & 3.2470, & 3.2470 , & 3.2470, & 3.2470, & 3.2470, & 3.5000, & 3.0460 , & 3.4300, & 3.3700 , \\
\hline & 13, & & 4.3030, & 4.3030, & 4.3030, & 4.3030, & 4.3030, & 4.3030, & 4.1000, & 3.3680, & 4.1300, & 4.3200, \\
\hline & 14, & & 4.9310, & 4.9310, & 4.9310, & 4.9310, & 4.9310, & 4.9310, & 4.8000, & 4.2850, & 4.6800, & 5.3500, \\
\hline & +gp, & & 6.0060, & 5.9640, & 5.9100, & 5.9230, & 6.0270, & 5.9060, & 6.1760, & 5.3460, & 5.9990, & 5.8330, \\
\hline 0 & SOPCOFAC, & & . 9231, & . 9825 , & . 8805 , & . 9255 , & 1.0095, & 1.0485, & 1.0364, & 1.0894, & 1.0680, & 1.0038, \\
\hline
\end{tabular}

Table 8.9
Run title : Arctic Green.halibut (run: XSAAAG46/X46)
At 25/04/2003 12:23
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table & \multirow[t]{2}{*}{5} & \multicolumn{10}{|l|}{Proportion mature at age} \\
\hline YEAR, & & 1964, & 1965, & 1966, & 1967, & 1968, & 1969, & 1970, & 1971, & 1972, & \\
\hline \multicolumn{12}{|l|}{AGE} \\
\hline 5, & & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & \\
\hline 6, & & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , & \\
\hline 7, & & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , & \\
\hline 8, & & . 2100, & . 2100, & . 2100, & . 2100, & . 2100, & . 2100, & . 2100, & . 2100, & . 2100, & \\
\hline 9, & & . 6700, & . 6700, & . 6700, & . 6700, & .6700, & .6700, & . 6700, & . 6700, & .6700, & \\
\hline 10, & & . 8600 , & . 8600 , & . 8600 , & . 8600 , & . 8600 , & . 8600 , & . 8600 , & . 8600 , & . 8600 , & \\
\hline 11, & & . 9800 , & . 9800 , & . 9800 , & . 9800 , & . 9800 , & . 9800 , & . 9800 , & . 9800 , & . 9800, & \\
\hline 12, & & . 9800, & . 9800, & . 9800, & . 9800 , & . 9800 , & . 9800 , & . 9800, & . 9800, & . 9800 , & \\
\hline 13, & & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & \\
\hline 14, & & 1.0000, & 1.0000 , & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000 , & 1.0000, & \\
\hline +gp, & & 1.0000, & 1.0000 , & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000 , & 1.0000, & \\
\hline Table & 5 & Propor & ion matu & at age & & & & & & & \\
\hline YEAR, & & 1973, & 1974, & 1975, & 1976, & 1977, & 1978, & 1979, & 1980, & 1981, & 1982, \\
\hline \multicolumn{12}{|l|}{AGE} \\
\hline 5, & & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , \\
\hline 6 , & & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , \\
\hline 7, & & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , & . 0300 , \\
\hline 8 , & & . 2100, & . 2100, & . 2100, & . 2100, & . 2100, & . 2100 , & . 2100, & . 2100, & . 2100, & . 2100, \\
\hline 9, & & . 6700, & . 6700, & . 6700, & . 6700, & .6700, & . 6700, & . 6700, & . 6700, & .6700, & . 6700, \\
\hline 10, & & . 8600 , & . 8600 , & . 8600 , & . 8600 , & . 8600 , & . 8600 , & . 8600 , & . 8600 , & . 8600 , & . 8600 , \\
\hline 11, & & . 9800 , & . 9800 , & . 9800 , & . 9800 , & . 9800 , & . 9800 , & . 9800 , & . 9800 , & . 9800 , & . 9800 , \\
\hline 12, & & . 9800 , & . 9800 , & . 9800 , & . 9800 , & . 9800 , & . 9800 , & . 9800 , & . 9800 , & . 9800 , & . 9800 , \\
\hline 13, & & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, \\
\hline 14, & & 1.0000 , & 1.0000 , & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, \\
\hline +gp, & & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table & \multirow[t]{2}{*}{5} & \multicolumn{10}{|l|}{Proportion mature at age} \\
\hline YEAR, & & 1983, & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & 1991, & 1992, \\
\hline \multicolumn{12}{|l|}{AGE} \\
\hline 5, & & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , \\
\hline 6 , & & . 0300 , & . 0400 , & . 0400 , & . 0300 , & . 0100 , & . 0100 , & . 0100, & . 0100 , & . 0100 , & . 0100 , \\
\hline 7, & & . 0300 , & . 0300, & . 0400 , & . 0300, & . 0200, & . 0100, & . 0200, & . 0200, & . 0400 , & . 0600 , \\
\hline 8, & & . 1800 , & . 1800, & . 1900, & . 2400 , & . 2200, & . 2100, & . 1800 , & . 1700, & . 1500 , & . 2800 , \\
\hline 9, & & . 6000, & .6100, & . 6500, & . 7400 , & . 6600, & . 5300, & . 4900 , & . 5100, & . 5400, & . 6600, \\
\hline 10, & & . 8200 , & . 8300 , & . 8500 , & . 9100 , & . 9000 , & . 8700 , & . 8000 , & . 7700 , & . 7700 , & . 8600 , \\
\hline 11, & & . 9600 , & . 9700 , & . 9700 , & . 9900, & . 9500, & . 8900 , & . 8900 , & . 9100 , & . 8900 , & . 8700 , \\
\hline 12, & & . 9800 , & . 9800 , & . 9900, & . 9800, & . 9800 , & . 9800 , & 1.0000, & 1.0000, & 1.0000, & 1.0000, \\
\hline 13, & & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, \\
\hline 14, & & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, \\
\hline +gp, & & 1.0000, & 1.0000, & 1.0000 , & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000 , \\
\hline Table & 5 & Propor & on matu & e at age & & & & & & & \\
\hline YEAR, & & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002, \\
\hline \multicolumn{12}{|l|}{AGE} \\
\hline 5, & & . 0100 , & . 0100, & . 0100, & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0100, & . 0200 , \\
\hline 6, & & . 0100 , & . 0100, & . 0100 , & . 0000 , & . 0000 , & . 0000 , & . 0000 , & . 0100 , & . 0300 , & . 0400 , \\
\hline 7, & & . 0800 , & . 0700 , & . 0800 , & . 0700 , & . 0700 , & . 0400 , & . 0200, & . 0300 , & . 0600 , & . 0900 , \\
\hline 8, & & . 3200 , & . 3400 , & . 2900, & . 2500, & . 2100, & . 1000 , & . 0700 , & . 1000 , & . 1900, & . 2600 , \\
\hline 9, & & . 6800, & . 6900, & . 5800, & . 5800 , & . 5300, & . 4500 , & . 3300 , & . 3700 , & . 4900, & . 6300, \\
\hline 10, & & . 8300 , & . 8100, & . 7900 , & . 8800 , & . 8500 , & . 8200 , & . 6600, & . 6300, & . 6500, & . 7200 , \\
\hline 11, & & . 8800 , & . 9500 , & . 9600 , & . 9700 , & . 9400 , & . 9200 , & . 8600 , & . 8700 , & . 8400 , & . 9100, \\
\hline 12, & & . 9400 , & . 9400 , & . 8900 , & . 9400 , & . 9400, & 1.0000, & . 9900 , & . 9600 , & . 9600 , & . 9600 , \\
\hline 13, & & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, \\
\hline 14, & & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000 , \\
\hline +gp, & & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, & 1.0000, \\
\hline
\end{tabular}

\section*{Table 8.10}

Lowestoft VPA Version 3.1
25/04/2003 12:21
Extended Survivors Analysis
Arctic Green.halibut (run: XSAAAG46/X46)
CPUE data from file fleet
Catch data for 39 years. 1964 to 2002. Ages 5 to 15.

Time-series weights :
Tapered time weighting applied
Power \(=3\) over 20 years
Catchability analysis :
Catchability independent of stock size for all ages
Catchability independent of age for ages \(>=10\)

Terminal population estimation :
Survivor estimates shrunk towards the mean \(F\)
of the final 2 years or the 5 oldest ages.
S.E. of the mean to which the estimates are shrunk = . 500

Minimum standard error for population
estimates derived from each fleet \(=\). 300
Prior weighting not applied
Tuning converged after 39 iterations

Regression weights
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline , & . 751, & . 820 , & . 877 , & . 921 , & . 954, & . 976 , & . 990 , & . 997 , & . 000 , & 1.000 \\
\hline Fishing & \multicolumn{10}{|l|}{mortalities} \\
\hline Age, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002 \\
\hline 5, & .100, & . 038, & . 055, & . 067 , & . 020, & . 024, & . 032, & . 022, & . 030, & . 019 \\
\hline 6 , & .159, & . 079, & . 074 , & . 175 , & . 075, & . 084 , & . 163, & . 067 , & . 097 , & . 079 \\
\hline 7, & . 371 , & . 261, & . 264 , & . 415, & . 217, & . 275, & . 446 , & . 234, & . 295, & . 154 \\
\hline 8 , & . 397 , & . 308, & . 320 , & . 345 , & .163, & . 256 , & . 315 , & . 276 , & . 237, & . 196 \\
\hline 9, & . 075 , & . 171, & . 233, & . 123, & .122, & . 121, & . 238, & . 195, & . 222, & . 138 \\
\hline 10, & . 596, & . 532, & . 707 , & . 680, & . 651, & . 522, & . 772 , & . 597, & . 482 , & . 432 \\
\hline 11, & . 507, & . 516 , & . 883, & . 587, & . 510, & . 367 , & . 397 , & . 392 , & . 468 , & . 380 \\
\hline 12, & . 494, & . 845 , & 1.206, & . 639, & . 725 , & . 524, & . 725 , & . 676, & . 606 , & . 596 \\
\hline 13, & . 319, & . 604 , & 1.272, & . 239, & . 153, & . 132 , & . 579, & . 295, & . 496 , & . 486 \\
\hline 14, & . 455, & . 640 , & . 951, & . 556, & . 586 , & . 369 , & . 615, & . 700 , & . 580, & . 571 \\
\hline
\end{tabular}

XSA population numbers (Thousands)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{AGE} \\
\hline YEAR & , & 5, & & 6, & 7, & & 8, & 9 , & 10, & & 11, \\
\hline 12, & & 13, & 14, & & & & & & & & \\
\hline 1993 & , & 1.29E+04, & 8.00E+03, & \(5.59 \mathrm{E}+03\), & 3.68E+03, & 2.10E+03, & 2.34E+03, & 1.20E+03, & 3.98E+02, & 1.42E+02, & \(5.90 \mathrm{E}+01\), \\
\hline 1994 & & 1.82E+04, & 1.00E+04, & \(5.87 \mathrm{E}+03\), & 3.32E+03, & 2.13E+03, & 1.68E+03, & \(1.11 \mathrm{E}+03\), & \(6.24 \mathrm{E}+02\), & 2.09E+02, & 8.89E+01, \\
\hline 1995 & , & 1.71E+04, & 1.51E+04, & 7.98E+03, & 3.89E+03, & 2.10E+03, & 1.54E+03, & \(8.47 \mathrm{E}+02\), & 5.71E+02, & 2.31E+02, & 9.83E+01, \\
\hline 1996 & , & 1.72E+04, & 1.40E+04, & 1.20E+04, & \(5.27 \mathrm{E}+03\), & 2.43E+03, & 1.43E+03, & \(6.55 \mathrm{E}+02\), & 3.01E+02, & 1.47E+02, & \(5.56 \mathrm{E}+01\), \\
\hline 1997 & , & 1.78E+04, & 1.38E+04, & 1.01E+04, & \(6.84 \mathrm{E}+03\), & 3.21E+03, & 1.85E+03, & \(6.23 \mathrm{E}+02\), & 3.13E+02, & 1.37E+02, & 9.97E+01, \\
\hline 1998 & & 1.62E+04, & \(1.50 \mathrm{E}+04\), & 1.10E+04, & \(6.99 \mathrm{E}+03\), & 5.00E+03, & \(2.45 \mathrm{E}+03\), & 8.31E+02, & 3.22E+02, & 1.31E+02, & 1.01E+02, \\
\hline 1999 & & 1.47E+04, & 1.36E+04, & 1.19E+04, & 7.22E+03, & 4.66E+03, & 3.82E+03, & 1.25E+03, & 4.95E+02, & 1.64E+02, & 9.85E+01, \\
\hline 2000 & & 1.87E+04, & 1.22E+04, & 9.95E+03, & \(6.54 \mathrm{E}+03\), & 4.53E+03, & \(3.16 \mathrm{E}+03\), & 1.52E+03, & 7.24E+02, & 2.07E+02, & 7.92E+01, \\
\hline 2001 & & 1.60E+04, & \(1.58 \mathrm{E}+04\), & 9.86E+03, & \(6.78 \mathrm{E}+03\), & 4.27E+03, & 3.21E+03, & \(1.50 \mathrm{E}+03\), & 8.83E+02, & 3.17E+02, & 1.32E+02, \\
\hline 2002 & & 1.64E+04, & 1.34E+04, & 1.23E+04, & \(6.31 \mathrm{E}+03\), & 4.60E+03, & 2.94E+03, & 1.71E+03, & 8.07E+02, & 4.15E+02, & 1.66E+02, \\
\hline
\end{tabular}

Estimated population abundance at 1st Jan 2003
\(0.00 \mathrm{E}+00,1.38 \mathrm{E}+04,1.06 \mathrm{E}+04,9.08 \mathrm{E}+03,4.47 \mathrm{E}+03,3.45 \mathrm{E}+03,1.64 \mathrm{E}+03,1.00 \mathrm{E}+03,3.83 \mathrm{E}+02,2.19 \mathrm{E}+02\),
Taper weighted geometric mean of the VPA populations:
\(1.61 \mathrm{E}+04,1.29 \mathrm{E}+04,9.39 \mathrm{E}+03,5.52 \mathrm{E}+03,3.40 \mathrm{E}+03,2.31 \mathrm{E}+03,1.09 \mathrm{E}+03,5.55 \mathrm{E}+02,2.36 \mathrm{E}+02,1.31 \mathrm{E}+02\), Standard error of the weighted Log(VPA populations) :
.1740, .2366, .2820, .2865, .3243, .3108, .3597, .4585, .5784, .7141,

\section*{Table 8.10 (Continued)}

Log catchability residuals.

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age , & 5, & 6, & 7, & 8 , & 9, & 10, & 11, & 12, & 13, & 14 \\
\hline Mean Log q, & -4.7006, & -3.9282, & -3.0999, & -3.5435, & -4.7144, & -3.3981, & -3.3981, & -3.3981, & -3.3981, & -3.3981, \\
\hline S.E(Log q), & .5355, & .2497, & . 2354 , & . 3069 , & .8398, & .5330, & . 8296, & .5818, & .8373, & .6310, \\
\hline
\end{tabular}

Regression statistics :
Ages with \(q\) independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q
\begin{tabular}{rrrrrrrr}
5, & .68, & .385, & 6.27, & .16, & 11, & .39, & -4.70, \\
6, & .80, & .658, & 5.00, & .59, & 11, & .21, & -3.93, \\
7, & .69, & 2.000, & 4.97, & .84, & 11, & .14, & -3.10, \\
8, & 1.02, & -.054, & 3.45, & .50, & 11, & .33, & -3.54, \\
9, & .52, & 1.187, & 6.34, & .44, & 11, & .43, & -4.71, \\
10, & .96, & .084, & 3.59, & .30, & 11, & .54, & -3.40, \\
11, & 1.93, & -.955, & 1.23, & .12, & 11, & 1.08, & -3.98, \\
12, & .77, & .718, & 4.26, & .54, & 11, & .40, & -3.66, \\
13, & -29.62, & -2.347, & 46.30, & .00, & 9, & 13.39, & -3.96, \\
14, & 1.15, & -.267, & 3.62, & .33, & 9, & .62, & -3.75,
\end{tabular}

Fleet : FLT07: Russ.Surv. ne
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age & , & 1992 & & & & & & & & & \\
\hline 5 & , & 1.77 & & & & & & & & & \\
\hline 6 & & . 79 & & & & & & & & & \\
\hline 7 & , & . 42 & & & & & & & & & \\
\hline 8 & , & . 19 & & & & & & & & & \\
\hline 9 & & -. 70 & & & & & & & & & \\
\hline 10 & & -. 55 & & & & & & & & & \\
\hline 11 & , & . 26 & & & & & & & & & \\
\hline 12 & , & . 15 & & & & & & & & & \\
\hline 13 & & -. 55 & & & & & & & & & \\
\hline 14 & , & -5.11 & & & & & & & & & \\
\hline Age & , & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002 \\
\hline 5 & , & . 63, & -. 07, & -.53, & -. 38, & -.96, & -. 20, & -. 37, & -.03, & . 62, & . 11 \\
\hline 6 & , & . 49 , & . 08 , & -. 29 , & -. 10 , & -. 61, & -. 43, & -. 51, & -. 24 , & . 41 , & . 72 \\
\hline 7 & , & . 46 , & -. 05 , & -.07, & . 00 , & -. 30, & -. 29, & -. 38, & -.11, & . 34, & . 20 \\
\hline 8 & , & .17, & -. 09, & . 16, & . 02, & -. 18, & -.05, & -. 13, & . 21, & -. 26 , & . 06 \\
\hline 9 & , & -.14, & -.06, & . 26 , & . 68 , & -. 22 , & . 09 , & . 06 , & . 19, & -.06, & -. 30 \\
\hline 10 & , & -. 12, & . 17, & . 11, & -. 92 , & -. 10, & . 09 , & . 02, & . 24, & . 23 , & . 59 \\
\hline 11 & & -. 25 , & -. 57, & -.12, & -. 73, & . 26 , & . 66, & -. 32, & . 47, & . 23 , & -. 41 \\
\hline 12 & & . 29 , & -. 14, & . 01, & -. 90 , & -. 44, & . 56, & . 21, & . 51, & . 78, & . 95 \\
\hline 13 & & -. 44, & -. 49, & -. 34, & -. 43, & . 42 , & . 39, & . 72, & -. 79, & 1.10, & 1.58 \\
\hline 14 & & . 62 , & . 40 , & -1.79, & -. 36 , & -. 31, & -. 25 , & -. 16 , & . 71, & . 59, & -. 93 \\
\hline
\end{tabular}

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

\section*{Table 8.10 (Continued)}

Regression statistics :

Ages with \(q\) independent of year class strength and constant w.r.t. time.
Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q
\begin{tabular}{rrrrrrrr}
5, & -.43, & -3.336, & 13.65, & .41, & 11, & .20, & -.38, \\
6, & -16.14, & -1.616, & 172.65, & .00, & 11, & 7.41, & .67, \\
7, & 1.93, & -1.634, & -10.52, & .28, & 11, & .52, & 1.06, \\
8, & 1.33, & -1.542, & -4.63, & .73, & 11, & .20, & 1.32, \\
9, & 1.20, & -.510, & -2.60, & .44, & 11, & .42, & .80, \\
10, & .59, & 1.920, & 2.86, & .74, & 11, & .21, & .51, \\
11, & 1.06, & -.139, & -.95, & .37, & 11, & .52, & .47, \\
12, & .53, & 2.491, & 2.54, & .78, & 11, & .23, & .71, \\
13, & .47, & 1.829, & 2.48, & .60, & 11, & .33, & .67, \\
14, & -.75, & -1.969, & 8.09, & .14, & 11, & .99, & .02,
\end{tabular}

Fleet : FLT08: Norw.Comb.Sur
\begin{tabular}{rrrrrrrrrrr}
Age, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002 \\
5 & 99.99, & 99.99, & 99.99, & .31, & .02, & -.15, & -.21, & -.01, & -.11, & .16 \\
6, & 99.99, & 99.99, & 99.99, & .30, & .18, & -.24, & .08, & -.09, & -.10, & -.10 \\
7, & 99.99, & 99.99, & 99.99, & .17, & -.05, & .09, & -.02, & -.13, & .09, & -.13 \\
8 & 99.99, & 99.99, & 99.99, & .34, & -.51, & -.26, & .24, & .03, & .10, & .06 \\
9, & 99.99, & 99.99, & 99.99, & .01, & -.44, & -.67, & -.30, & .56, & .13, & .67 \\
10 & 99.99, & 99.99, & 99.99, & .49, & .04, & .00, & .08, & -.46, & .02, & -.13 \\
11, & 99.99, & 99.99, & 99.99, & -.20, & -.23, & -.24, & -.67, & -1.23, & -.80, & -.18 \\
12, & 99.99, & 99.99, & 99.99, & .00, & .15, & .54, & .53, & -.57, & -.31, & .27 \\
13 & 99.99, & 99.99, & 99.99, & -.63, & -1.31, & -3.18, & -.08, & -.78, & -.81, & -.25 \\
14 & 99.99, & 99.99, & 99.99, & -.02, & -.08, & .15, & .05, & -.57, & -.28, & -.16
\end{tabular}

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Age & 5, & 6, & 7, & 8, & 9, & 10, & 11, & 12, & 13, & 14 \\
\hline Mean Log q, & -. 2352 , & . 3681 , & 1.1063, & .6318, & -. 1108, & 1.0513, & 1.0513, & 1.0513, & 1.0513, & 1.0513, \\
\hline S.E(Log q), & .1818, & .1885, & .1144, & . 2895, & .5035, & . 2810, & . 6880 , & . 4294 , & 1.5048, & .2788, \\
\hline
\end{tabular}

Regression statistics :

Ages with \(q\) independent of year class strength and constant w.r.t. time.

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q
\begin{tabular}{rrrrrrrr}
5, & .48, & 1.205, & 5.21, & .52, & 7, & .08, & -.24, \\
6, & 1.76, & -.421, & -7.91, & .06, & 7, & .36, & .37, \\
7, & .89, & .237, & .06, & .48, & 7, & .11, & 1.11, \\
8, & -3.03, & -1.171, & 37.33, & .02, & 7, & .85, & .63, \\
9, & .85, & .192, & 1.30, & .26, & 7, & .47, & -.11, \\
10, & 2.07, & -1.787, & -10.58, & .37, & 7, & .50, & 1.05, \\
11, & 2.22, & -1.523, & -9.74, & .24, & 7, & .82, & .54, \\
12, & 1.74, & -1.215, & -6.61, & .36, & 7, & .70, & 1.14, \\
13, & .46, & 1.280, & 2.83, & .54, & 7, & .46, & .05, \\
14, & 1.02, & -.070, & -1.04, & .67, & 7, & .27, & .92,
\end{tabular}

Terminal year survivor and \(F\) summaries :
Age 5 Catchability constant w.r.t. time and dependent on age
Year class \(=1997\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, & Int, & Ext, & Var, & N, & Scaled, & Estimated \\
\hline , & Survivors, & s.e, & s.e, & Ratio, & , & Weights, & F \\
\hline FLT04: Norw. Exp. CP, & 11151., & . 562, & . 000 , & . 00 , & 1, & .156, & . 024 \\
\hline FLT07: Russ.Surv. ne, & 15393., & . 720 , & . 000 , & . 00 , & 1, & . 095, & . 017 \\
\hline FLT08: Norw. Comb.Sur, & 16234., & . 300 , & . 000 , & . 00 , & 1, & . 548 , & . 016 \\
\hline F shrinkage mean & 10078., & . 50, & & & & . 201, & . 026 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{llllll}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & S.e, & Ratio, & \\
\(13840 .\), & .22, & .13, & 4, & .574, & .019
\end{tabular}

Table 8.10 (Continued)
Age 6 Catchability constant w.r.t. time and dependent on age Year class \(=1996\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, Survivors, & Int,
s.e, & Ext,
s.e, & \begin{tabular}{l}
Var, \\
Ratio,
\end{tabular} & & Scaled, Weights, & \[
\begin{aligned}
& \text { Estimated } \\
& \mathrm{F}
\end{aligned}
\] \\
\hline FLT04: Norw. Exp. CP, & 9749. & . 265, & . 192, & . 73, & 2, & . 309, & . 086 \\
\hline FLT07: Russ.Surv. ne, & 21058., & . 423, & . 048 , & . 11, & 2, & .120, & 041 \\
\hline FLT08: Norw. Comb.Sur, & 9533., & . 212, & . 004 , & . 02 , & 2, & . 477 , & . 088 \\
\hline F shrinkage mean & 10257., & . 50 , & & & & . 094 , & . 082 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{llllll}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & S.e, & Ratio, & \\
\(10632 .\), & .15, & .11, & 7, & .764, & .079
\end{tabular}

Age 7 Catchability constant w.r.t. time and dependent on age Year class = 1995
Fleet, Estimated, Int, Ext, Var, N, Scaled, Estimated
FLT04': Norw. Exp. CP
\begin{tabular}{rrrrrr}
Survivors, & s.e, & s.e, & Ratio, & Weights, & F \\
\(9854 .\), & .199, & .104, & .52, & 3, & .318, \\
\(11291 .\), & .248, & .086, & .35, & 3, & .209, \\
\(8363 .\), & .174, & .034, & .20, & 3, & .411, \\
\(4976 .\), & \(.50, \ldots\), & & & & .126 \\
& & & & & .062,
\end{tabular}

Weighted prediction :
\begin{tabular}{cccccc}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & S.e, & Ratio, & \\
\(9084 .\), & .11, & .07, & 10, & .659, & .154
\end{tabular}

Age 8 Catchability constant w.r.t. time and dependent on age Year class \(=1994\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, Survivors, & Int,
s.e, & Ext,
s.e, & \[
\begin{gathered}
\text { Var, } \\
\text { Ratio, }
\end{gathered}
\] & N, & Scaled, Weights, & \[
\begin{aligned}
& \text { Estimated } \\
& \mathrm{F}
\end{aligned}
\] \\
\hline FLT04: Norw. Exp. CP, & 4477. & . 171, & . 099, & . 58, & 4, & . 311, & . 196 \\
\hline FLT07: Russ.Surv. ne, & 4933., & . 194 , & . 124, & . 64, & 4, & . 257, & . 179 \\
\hline FLT08: Norw. Comb.Sur, & 4354. & . 154 , & . 067 , & . 43, & 4, & . 378 , & 201 \\
\hline F shrinkage mean & 3296., & . 50, & & & & . 054 , & . 257 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{cccccc}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & s.e, & Ratio, & \\
\(4467 .\), & .10, & .05, & 13, & .549, & .196
\end{tabular}

Age 9 Catchability constant w.r.t. time and dependent on age Year class \(=1993\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, Survivors, & Int,
s.e, & Ext,
s.e, & \begin{tabular}{l}
Var, \\
Ratio,
\end{tabular} & & Scaled, Weights, & Estimated F \\
\hline FLT04: Norw. Exp. CP, & 4649., & . 170 , & . 230 , & 1.36, & 5, & . 276, & 104 \\
\hline FLT07: Russ.Surv. ne, & 2685., & . 172, & . 051 , & . 30 , & 5, & . 313, & . 174 \\
\hline FLT08: Norw. Comb.Sur, & 3664 & . 150, & . 121, & . 81 , & 5, & . 357, & 130 \\
\hline F shrinkage mean , & 2197., & . 50 , & & & & . 055, & . 209 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{llllll}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & s.e, & Ratio, & \\
\(3453 .\), & .09, & .10, & 16, & 1.036, & .138
\end{tabular}

Age 10 Catchability constant w.r.t. time and dependent on age Year class \(=1992\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, Survivors, & \[
\begin{aligned}
& \text { Int, } \\
& \text { s.e, }
\end{aligned}
\] & Ext,
s.e, & \begin{tabular}{l}
Var, \\
Ratio,
\end{tabular} & & Scaled, Weights, & \[
\begin{gathered}
\text { Estimated } \\
\mathrm{F}
\end{gathered}
\] \\
\hline FLT04: Norw. Exp. CP, & 1829. & . 172, & .167, & . 97, & 6 , & . 235, & 396 \\
\hline FLT07: Russ.Surv. ne, & 1748., & .167, & . 171, & 1.02, & 6 , & . 300 , & . 411 \\
\hline FLT08: Norw. Comb. Sur, & 1555., & .145, & . 048 , & . 33 , & 6 , & . 390 , & . 452 \\
\hline F shrinkage mean , & 1232., & . 50, & & & & . 075, & . 543 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{cccccc}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & S.e, & Ratio, & \\
\(1644 .\), & .09, & .07, & 19, & .768, & .432
\end{tabular}

Table 8.10 (Continued)
Age 11 Catchability constant w.r.t. time and age (fixed at the value for age) 10

Age 13 Catchability constant w.r.t. time and age (fixed at the value for age) 10
Year class \(=1989\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, & Int, & Ext, & Var, & N, & Scaled, & Estimated \\
\hline , & Survivors, & s.e, & s.e, & Ratio, & , & Weights, & F \\
\hline FLT04: Norw. Exp. CP, & 143., & . 235, & . 246 , & 1.05, & 9, & . 227, & . 672 \\
\hline FLT07: Russ.Surv. ne, & 334., & . 202, & . 207, & 1.02, & 9, & . 294, & . 344 \\
\hline FLT08: Norw. Comb.Sur, & 163., & . 201, & . 154, & . 77 , & 7, & . 266 , & . 611 \\
\hline F shrinkage mean , & 281., & . 50, & & & & . 212, & . 398 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{llllll}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & S.e, & S.e, & Ratio, & \\
\(219 .\), & .14, & .12, & 26, & .864, & .486
\end{tabular}

1
Age 14 Catchability constant w.r.t. time and age (fixed at the value for age) 10
Year class \(=1988\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Fleet, & Estimated, & Int, & Ext, & Var, & N, & Scaled, & Estimated \\
\hline , & Survivors, & s.e, & S.e, & Ratio, & & Weights, & F \\
\hline FLT04: Norw. Exp. CP, & 73., & . 275, & .175, & . 64, & 10, & .185, & . 617 \\
\hline FLT07: Russ.Surv. ne, & 90. & . 211, & . 174, & . 83, & 10, & .169, & . 526 \\
\hline FLT08: Norw. Comb.Sur, & 67., & . 222 , & . 085 , & . 38 , & 7, & . 444 , & . 657 \\
\hline F shrinkage mean & 123., & . 50, & & & & . 201, & . 408 \\
\hline
\end{tabular}

Weighted prediction :
\begin{tabular}{llllll}
Survivors, & Int, & Ext, & N, & Var, & F \\
at end of year, & s.e, & S.e, & , & Ratio, & \\
\(81 .\), & .15, & .08, & 28, & .535, & .571
\end{tabular}

Table 8.11

Run title : Arctic Green.halibut (run: XSAAAG46/X46)
At 25/04/2003 12:23
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & Table 8 & Fishing & mortality & (F) at & & & & & & \\
\hline & & YEAR, & 1964, & 1965, & 1966, & 1967, & 1968, & 1969, & 1970, & 1971, & 1972, \\
\hline \multicolumn{12}{|c|}{AGE} \\
\hline & & 5, & . 0094 , & . 0053 , & . 0032 , & . 0024, & . 0019, & . 0207, & . 0139, & . 0027 , & . 0363, \\
\hline & & 6, & . 0484 , & . 0255, & . 0138, & . 0072 , & . 0051 , & . 0484 , & . 0659 , & . 1491, & . 1510, \\
\hline & & 7, & . 1146 , & . 0699, & . 0397, & . 0180, & . 0116, & . 0691 , & . 2864 , & . 4473 , & . 5110, \\
\hline & & 8, & . 2531, & . 2160, & . 1411, & . 0891 , & . 0694 , & . 2081, & . 6556 , & . 6021, & . 4033, \\
\hline & & 9, & . 4566 , & . 2848 , & . 3476 , & . 2356 , & . 2381, & . 2332, & . 5603, & . 4392 , & . 2444 , \\
\hline & & 10, & . 7003 , & . 7254 , & . 2583 , & . 3382 , & . 3302 , & . 4350, & . 5339, & . 4739 , & .1999, \\
\hline & & 11, & . 6375, & . 7606 , & . 5421 , & . 2684 , & . 5685, & . 4571, & . 4457 , & . 4037 , & . 2511, \\
\hline & & 12, & . 5666 , & . 8214, & . 8585 , & . 8373, & . 1802 , & . 3905, & . 4362 , & . 5627, & . 3063 , \\
\hline & & 13, & . 4065 , & . 3910, & . 4515, & 1.0092, & . 2945, & . 0686 , & . 5465 , & . 7562 , & . 4414, \\
\hline & & 14, & . 5568, & .6004, & . 4943, & . 5409, & . 3237, & . 3182 , & . 5074, & . 5302 , & .2898, \\
\hline & & +gp, & . 5568, & . 6004, & . 4943, & . 5409, & . 3237 , & . 3182, & . 5074, & . 5302, & . 2898, \\
\hline 0 & FBAR & 6-10, & . 3146 , & . 2643 , & . 1601, & . 1376 , & . 1309 , & . 1988 , & . 4204, & . 4223, & . 3019, \\
\hline
\end{tabular}

\section*{Table 8.12}

Run title : Arctic Green.halibut (run: XSAAAG46/X46)
At 25/04/2003 12:23
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Table 10 & \multicolumn{5}{|l|}{Stock number-at-age (start of year)} & \multicolumn{4}{|c|}{Numbers*10**-3} \\
\hline YEAR, & 1964, & 1965, & 1966, & 1967, & 1968, & 1969, & 1970, & 1971, & 1972, \\
\hline \multicolumn{10}{|l|}{AGE} \\
\hline 5, & 42840, & 51686, & 57828, & 70443, & 64280, & 55932, & 41112, & 31550, & 33556, \\
\hline 6, & 33792, & 36528, & 44251, & 49616, & 60486 , & 55221, & 47154, & 34898, & 27081, \\
\hline 7, & 27961, & 27712, & 30648, & 37565, & 42397, & 51798, & 45284, & 37995, & 25875, \\
\hline 8 , & 27353, & 21461, & 22243, & 25353, & 31755, & 36072, & 41607, & 29268, & 20909, \\
\hline 9, & 14559, & 18279, & 14883, & 16626, & 19961, & 25498, & 25214, & 18591, & 13796, \\
\hline 10, & 8521, & 7938, & 11833, & 9049, & 11307, & 13541, & 17381, & 12393, & 10314, \\
\hline 11, & 4237, & 3641, & 3307, & 7867, & 5554, & 6995, & 7544, & 8771, & 6641, \\
\hline 12, & 2537, & 1928, & 1465, & 1656, & 5177, & 2707, & 3812, & 4158, & 5042, \\
\hline 13, & 1175, & 1239, & 730, & 534, & 617, & 3721, & 1577, & 2121, & 2039, \\
\hline 14, & 634, & 673, & 721, & 400, & 168, & 395, & 2990, & 786, & 857, \\
\hline +gp, & 190, & 118, & 77, & 49, & 27, & 118, & 756, & 372, & 341, \\
\hline TOTAL, & 163799, & 171203, & 187987, & 219156, & 241727, & 251999, & 234430, & 180902, & 146451, \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Table 10 & \multicolumn{5}{|l|}{Stock number-at-age (start of year)} & \multicolumn{3}{|c|}{Numbers*10**-3} & \multirow[b]{2}{*}{1991,} & \multirow[b]{2}{*}{1992,} \\
\hline YEAR, & 1983, & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & & \\
\hline \multicolumn{11}{|l|}{AGE} \\
\hline 5, & 19010, & 17813, & 19928, & 19860, & 19425, & 22958, & 20708, & 14498, & 12611, & 10476, \\
\hline 6 , & 15085, & 14930, & 14483, & 16022, & 15542, & 15594, & 18918, & 15894, & 10494, & 7781, \\
\hline 7, & 10345, & 11255, & 9420, & 9799, & 10696, & 10620, & 11066, & 12152, & 8890, & 5425, \\
\hline 8, & 8647 , & 7186, & 6579, & 5732, & 5918, & 5892, & 6227, & 6134, & 6153, & 3277, \\
\hline 9, & 6066, & 5320, & 4387, & 4227, & 3513, & 3474, & 3127, & 3822, & 3487, & 3111, \\
\hline 10, & 3621, & 3837, & 3592, & 2874, & 2591, & 2326, & 1894, & 1948, & 2157, & 2045, \\
\hline 11, & 2823, & 1977, & 2198, & 2130, & 1549, & 1462, & 1204, & 1335, & 1214, & 665, \\
\hline 12, & 1383, & 1768, & 1143, & 1322, & 1341, & 998, & 812, & 825, & 904, & 327, \\
\hline 13, & 878, & 738, & 1206, & 647, & 735, & 967, & 568, & 582, & 419, & 154, \\
\hline 14, & 677, & 527, & 476, & 889, & 266, & 460, & 709, & 378, & 462, & 196, \\
\hline +gp, & 214, & 282, & 249, & 692, & 29, & 154, & 141, & 172, & 887, & 122, \\
\hline TOTAL, & 68747, & 65634, & 63663, & 64193, & 61606 , & 64905, & 65375, & 57740, & 47677, & 33578, \\
\hline
\end{tabular}

\section*{Table 8.13}

Run title : Arctic Green.halibut (run: XSAAAG46/X46)
At 25/04/2003 12:23
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Table 12 & \multicolumn{5}{|l|}{Stock biomass at age (start of year)} & \multicolumn{2}{|r|}{Tonnes} & \multirow[b]{2}{*}{1971,} & \multirow[b]{2}{*}{1972,} \\
\hline & YEAR, & 1964, & 1965, & 1966, & 1967, & 1968, & 1969, & 1970, & & \\
\hline & AGE & & & & & & & & & \\
\hline & 5, & 17993, & 21708, & 24288, & 29586, & 26998, & 23491, & 23311, & 17889, & 19026, \\
\hline & 6 , & 21627, & 23378, & 28321, & 32250, & 39921, & 35341, & 34752, & 25720, & 19959, \\
\hline & 7, & 25165, & 24941, & 27890, & 34936, & 40701, & 47136, & 48861, & 40997 , & 27919, \\
\hline & 8, & 32824, & 26182, & 27581, & 32199, & 41599, & 45090, & 59123, & 41590, & 29712, \\
\hline & 9, & 23731, & 30343, & 25301, & 28430, & 34732, & 41817, & 46595, & 34356, & 25495, \\
\hline & 10, & 19258, & 17701, & 26270, & 19908, & 24761, & 30467 , & 39646, & 28267, & 23526, \\
\hline & 11, & 13178, & 10923, & 9724, & 22342, & 15494, & 20915, & 21779, & 25322, & 19172, \\
\hline & 12, & 9488, & 6728, & 4965, & 5463, & 16515, & 9828, & 12376, & 13501, & 16370, \\
\hline & 13, & 5368, & 5452, & 3196, & 2281, & 2634, & 17415, & 6786, & 9127, & 8772, \\
\hline & 14, & 3175, & 3306 , & 3491, & 1952, & 838, & 2128, & 14746, & 3875, & 4226, \\
\hline & +gp, & 1131, & 697, & 452, & 282, & 163, & 707, & 4378, & 2171, & 2060, \\
\hline 0 & TOTALBIO, & 172936, & 171359, & 181480, & 209627, & 244355, & 274335, & 312354, & 242814, & 196238, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Table 12 & \multicolumn{5}{|l|}{Stock biomass at age (start of year)} & \multicolumn{2}{|r|}{Tonnes} & \multirow[b]{2}{*}{1980,} & \multirow[b]{2}{*}{1981,} & \multirow[b]{2}{*}{1982,} \\
\hline & YEAR, & 1973, & 1974, & 1975, & 1976, & 1977, & 1978, & 1979, & & & \\
\hline & \multicolumn{11}{|l|}{AGE} \\
\hline & 5, & 17612, & 15106, & 12780, & 12530, & 13432, & 11676, & 17732, & 13061, & 11800, & 13063, \\
\hline & 6 , & 20527, & 19559, & 16273, & 13724, & 13451, & 13634, & 19157, & 12993, & 12882, & 11448, \\
\hline & 7, & 21626 , & 24749, & 22125, & 18167, & 14309, & 13691, & 18889, & 12338, & 13534, & 11764, \\
\hline & 8, & 18984, & 19341, & 19874, & 16483, & 12914, & 10682, & 12781, & 12197, & 12110, & 10938, \\
\hline & 9, & 22221, & 15223, & 15070, & 15186, & 9874, & 10128, & 9407, & 8831, & 12051, & 10119, \\
\hline & 10, & 21213, & 18208, & 12292, & 11216 , & 9785, & 7083, & 8625, & 7415, & 8736, & 10383, \\
\hline & 11, & 20985, & 17969, & 14634, & 8960, & 8603, & 7702, & 5385, & 6818, & 6954, & 6953, \\
\hline & 12, & 14438, & 15687, & 12508, & 8572, & 5918, & 5129, & 5004, & 3870, & 5930, & 5262, \\
\hline & 13, & 13746, & 11970, & 12552, & 8136, & 4940, & 3325, & 3908, & 3385, & 3463, & 4905, \\
\hline & 14, & 5565, & 10283, & 8448, & 7247, & 4831, & 2150, & 1638, & 3106, & 2998, & 1955, \\
\hline & +gp, & 3388, & 5034, & 6168, & 5883, & 2747, & 1949, & 2382, & 2076, & 1581, & 903, \\
\hline 0 & TOTALBIO, & 180304, & 173129, & 152725, & 126105, & 100803, & 87150, & 104910, & 86092, & 92039, & 87693, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Table 12 & \multicolumn{5}{|l|}{Stock biomass at age (start of year)} & \multicolumn{3}{|c|}{Tonnes} & \multirow[b]{2}{*}{1991,} & \multirow[b]{2}{*}{1992,} \\
\hline & YEAR, & 1983, & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & & \\
\hline \multicolumn{12}{|c|}{AGE} \\
\hline & 5, & 14257, & 11222, & 11957, & 12313, & 13772, & 16989, & 15738, & 10294, & 9710, & 7123, \\
\hline & 6, & 15689, & 14333, & 12890, & 14740, & 15589, & 15002, & 19486, & 16848, & 11019, & 7548, \\
\hline & 7, & 13862, & 13281, & 11304, & 12543, & 13541, & 13264, & 14607, & 15676, & 12269, & 6889, \\
\hline & 8 , & 13575, & 10995, & 12172, & 10890, & 9961, & 9581, & 11208, & 10427, & 10767, & 5767, \\
\hline & 9, & 11949, & 12290, & 11363, & 10482, & 8719, & 7518, & 7567, & 8026, & 7671, & 6875, \\
\hline & 10, & 9884, & 11013, & 11423, & 8940, & 7728, & 6738, & 5927, & 5085, & 5608, & 5234, \\
\hline & 11, & 9287, & 6840, & 7957, & 7135, & 5495, & 4981, & 4058, & 3831, & 3387, & 2069, \\
\hline & 12, & 5836, & 6665, & 4515, & 4918, & 5097, & 3652, & 3290, & 2846, & 2965, & 1173, \\
\hline & 13, & 4137, & 2943, & 5404, & 2588, & 3353, & 4108, & 2437, & 2166, & 1629, & 589, \\
\hline & 14, & 4114, & 2291, & 2024, & 3716, & 1329, & 1928, & 3191, & 1545, & 2025, & 834, \\
\hline & +gp, & 1311, & 1276, & 1200, & 3132, & 175, & 686, & 667, & 779, & 4692, & 587, \\
\hline 0 & TOTALBIO, & 103901, & 93151, & 92209, & 91397, & 84759, & 84445, & 88176, & 77522, & 71741, & 44688, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Table 12 & \multicolumn{5}{|l|}{Stock biomass at age (start of year)} & \multicolumn{2}{|r|}{Tonnes} & \multirow[b]{2}{*}{2000,} & \multirow[b]{2}{*}{2001,} & \multirow[b]{2}{*}{2002,} \\
\hline & YEAR, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & & & \\
\hline \multicolumn{12}{|c|}{AGE} \\
\hline & 5, & 10178, & 13083, & 12506, & 13222, & 13675, & 11829, & 10283, & 14226, & 11847, & 11801, \\
\hline & 6 , & 8158, & 9429, & 14151, & 13541, & 12991, & 13932, & 12933, & 11875, & 16231, & 12836, \\
\hline & 7, & 7545, & 7460, & 9971, & 15769, & 12906, & 14353, & 15060, & 13234, & 13699, & 17116, \\
\hline & 8, & 6913, & 5708, & 6777, & 9172, & 11217, & 11251, & 11183, & 10656, & 11861, & 10733, \\
\hline & 9, & 5162, & 4660, & 4386, & 5451, & 6653, & 10606, & 9313, & 9560, & 9775, & 10221, \\
\hline & 10, & 6257, & 4224, & 3875, & 3705, & 4796, & 6294, & 9390, & 8247, & 8604, & 7769, \\
\hline & 11, & 4127, & 3301, & 2499, & 2156, & 2057, & 2701, & 4027, & 5085, & 4985, & 5458, \\
\hline & 12, & 1708, & 2052, & 1907, & 1212, & 1257, & 1260, & 1907, & 2874, & 3460, & 3099, \\
\hline & 13, & 722, & 803, & 883, & 699, & 662, & 640, & 757, & 1027, & 1524, & 1869, \\
\hline & 14, & 373, & 440, & 490, & 347, & 593, & 573, & 575, & 461, & 769, & 910, \\
\hline & +gp, & 104, & 45, & 113, & 15, & 15, & 256, & 97, & 214, & 216, & 662, \\
\hline 0 & TOTALBIO, & 51247, & 51206, & 57557, & 65288, & 66823, & 73694, & 75527, & 77459, & 82970, & 82474, \\
\hline
\end{tabular}

\section*{Table 8.14}

Run title : Arctic Green.halibut (run: XSAAAG46/X46)
At 25/04/2003 12:23
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Table 13 & Spawning & stock & biomass at & age (sp & ing ti & & Tonnes & & & \\
\hline & YEAR, & 1964, & 1965, & 1966, & 1967, & 1968, & 1969, & 1970, & 1971, & 1972, & \\
\hline & AGE & & & & & & & & & & \\
\hline & 5, & 0, & 0, & 0, & 0, & 0, & 0, & 0, & 0, & 0, & \\
\hline & 6 , & 649, & 701, & 850, & 968, & 1198, & 1060, & 1043, & 772, & 599, & \\
\hline & 7, & 755, & 748, & 837, & 1048, & 1221, & 1414, & 1466, & 1230, & 838, & \\
\hline & 8, & 6893, & 5498, & 5792, & 6762, & 8736, & 9469, & 12416, & 8734, & 6240, & \\
\hline & 9, & 15900, & 20330, & 16952, & 19048, & 23270, & 28018, & 31218, & 23018, & 17082, & \\
\hline & 10, & 16562, & 15223, & 22592, & 17121, & 21295, & 26201, & 34096, & 24310, & 20233, & \\
\hline & 11, & 12914, & 10704, & 9529, & 21895, & 15184, & 20496, & 21343, & 24816, & 18789, & \\
\hline & 12, & 9298, & 6594, & 4866, & 5354, & 16185, & 9631, & 12129, & 13231, & 16043, & \\
\hline & 13, & 5368, & 5452, & 3196, & 2281, & 2634, & 17415, & 6786, & 9127, & 8772, & \\
\hline & 14, & 3175, & 3306 , & 3491, & 1952, & 838, & 2128, & 14746, & 3875, & 4226, & \\
\hline & +gp, & 1131, & 697, & 452, & 282, & 163, & 707, & 4378, & 2171, & 2060, & \\
\hline 0 & TOTSPBIO, & 72644, & 69254, & 68557, & 76709, & 90723, & 116540, & 139620, & 111283, & 94880, & \\
\hline & Table 13 & Spawning & stock & biomass at & age (sp & ning tim & & Tonnes & & & \\
\hline & YEAR, & 1973, & 1974, & 1975, & 1976, & 1977, & 1978, & 1979, & 1980, & 1981, & 1982, \\
\hline & AGE & & & & & & & & & & \\
\hline & 5, & 0 , & 0, & 0, & 0, & 0, & 0, & 0, & 0, & 0, & 0, \\
\hline & 6, & 616, & 587, & 488, & 412, & 404, & 409, & 575, & 390, & 386, & 343, \\
\hline & 7, & 649, & 742, & 664, & 545, & 429, & 411, & 567, & 370, & 406, & 353, \\
\hline & 8, & 3987, & 4062, & 4174, & 3461, & 2712, & 2243, & 2684, & 2561, & 2543, & 2297, \\
\hline & 9, & 14888, & 10200, & 10097, & 10175, & 6616, & 6786, & 6303, & 5917, & 8074, & 6780, \\
\hline & 10, & 18243, & 15659, & 10571, & 9646, & 8415, & 6092, & 7418, & 6377, & 7513, & 8930, \\
\hline & 11, & 20565, & 17610, & 14341, & 8781, & 8431, & 7548, & 5278, & 6682, & 6815, & 6814, \\
\hline & 12, & 14150, & 15373, & 12258, & 8401, & 5799, & 5026, & 4904, & 3793, & 5811, & 5157, \\
\hline & 13, & 13746, & 11970, & 12552, & 8136, & 4940, & 3325, & 3908, & 3385, & 3463, & 4905, \\
\hline & 14, & 5565 , & 10283, & 8448, & 7247, & 4831, & 2150, & 1638, & 3106 , & 2998, & 1955, \\
\hline & +gp, & 3388, & 5034, & 6168, & 5883, & 2747, & 1949, & 2382, & 2076, & 1581, & 903, \\
\hline 0 & TOTSPBIO, & 95795, & 91519, & 79761 , & 62687, & 45323, & 35939, & 35656, & 34657 , & 39591, & 38436, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Table 13 & Spawning & stock b & biomass at & age (sp & ning ti & & Tonnes & & & \\
\hline & YEAR, & 1983, & 1984, & 1985, & 1986, & 1987, & 1988, & 1989, & 1990, & 1991, & 1992, \\
\hline & \multicolumn{11}{|l|}{AGE} \\
\hline & 5, & 0, & 0, & 0, & 0, & 0, & 0 , & 0 , & 0, & 0, & 0, \\
\hline & 6, & 471, & 573, & 516, & 442, & 156, & 150, & 195, & 168, & 110, & 75, \\
\hline & 7, & 416, & 398, & 452, & 376, & 271, & 133, & 292, & 314, & 491, & 413, \\
\hline & 8 , & 2444, & 1979, & 2313, & 2614, & 2191, & 2012, & 2017, & 1773, & 1615, & 1615, \\
\hline & 9, & 7170, & 7497, & 7386, & 7757, & 5755, & 3985, & 3708, & 4093, & 4142, & 4537, \\
\hline & 10, & 8105, & 9141, & 9710, & 8135, & 6955, & 5862, & 4742, & 3915, & 4318, & 4501, \\
\hline & 11, & 8915, & 6635, & 7718, & 7063, & 5220, & 4433, & 3612, & 3486, & 3014, & 1800, \\
\hline & 12, & 5719, & 6532, & 4470, & 4820, & 4995, & 3579, & 3290, & 2846, & 2965, & 1173, \\
\hline & 13, & 4137, & 2943, & 5404 , & 2588, & 3353, & 4108, & 2437, & 2166, & 1629, & 589, \\
\hline & 14, & 4114, & 2291, & 2024, & 3716, & 1329, & 1928, & 3191, & 1545, & 2025, & 834, \\
\hline & +gp, & 1311, & 1276, & 1200, & 3132, & 175, & 686, & 667, & 779, & 4692, & 587, \\
\hline \multirow[t]{15}{*}{0} & TOTSPBIO, & 42801, & 39266, & 41193, & 40643, & 30400, & 26874, & 24151, & 21085, & 25001, & 16125, \\
\hline & Table 13 & Spawning & stock b & biomass at & age (sp & ning ti & & Tonnes & & & \\
\hline & YEAR, & 1993, & 1994, & 1995, & 1996, & 1997, & 1998, & 1999, & 2000, & 2001, & 2002, \\
\hline & \multicolumn{11}{|l|}{AGE} \\
\hline & 5, & 102, & 131, & 125, & 0, & 0 , & 0, & 0 , & 0, & 118, & 236, \\
\hline & 6, & 82, & 94, & 142, & 0 , & 0, & 0, & 0, & 119, & 487, & 513, \\
\hline & 7, & 604, & 522, & 798, & 1104, & 903, & 574, & 301, & 397, & 822, & 1540, \\
\hline & 8, & 2212, & 1941, & 1965, & 2293, & 2356, & 1125, & 783, & 1066, & 2254, & 2791, \\
\hline & 9, & 3510, & 3215, & 2544, & 3162, & 3526, & 4773, & 3073, & 3537, & 4790, & 6439, \\
\hline & 10, & 5193, & 3422, & 3061 , & 3260 , & 4076, & 5161, & 6197, & 5196, & 5592, & 5594, \\
\hline & 11, & 3632, & 3136, & 2399, & 2091, & 1934, & 2485, & 3463, & 4424, & 4187, & 4967, \\
\hline & 12, & 1606, & 1929, & 1697, & 1139, & 1182, & 1260, & 1888, & 2759, & 3321, & 2975, \\
\hline & 13, & 722, & 803, & 883, & 699, & 662, & 640, & 757, & 1027, & 1524, & 1869, \\
\hline & 14, & 373, & 440, & 490, & 347, & 593, & 573, & 575, & 461, & 769, & 910, \\
\hline & +gp, & 104, & 45, & 113, & 15, & 15, & 256, & 97, & 214, & 216, & 662, \\
\hline 0 & TOTSPBIO, & 18139, & 15678, & 14216, & 14110, & 15247, & 16847, & 17136, & 19199, & 24081, & 28497, \\
\hline
\end{tabular}

Table 8.15

Run title : Arctic Green.halibut (run: XSAAAG46/X46)
At 25/04/2003 12:23
Table 16 Summary (without SOP correction)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline , & RECRUITS, Age 5 & TOTALBIO, & TOTSPBIO, & LANDINGS, & YIELD/SSB, & FBAR & 6-10, \\
\hline 1964, & 42840, & 172936, & 72644, & 40391, & . 5560 , & & . 3146 , \\
\hline 1965, & 51686, & 171359, & 69254, & 34751, & . 5018, & & . 2643, \\
\hline 1966, & 57828, & 181480, & 68557, & 26321, & . 3839 , & & .1601, \\
\hline 1967, & 70443, & 209627, & 76709, & 24267, & . 3163, & & .1376, \\
\hline 1968, & 64280, & 244355, & 90723, & 26168, & . 2884 , & & .1309, \\
\hline 1969, & 55932, & 274335, & 116540, & 43789, & . 3757 , & & . 1988, \\
\hline 1970, & 41112, & 312354, & 139620, & 89484, & . 6409, & & . 4204, \\
\hline 1971, & 31550, & 242814, & 111283, & 79034, & . 7102 , & & . 4223, \\
\hline 1972, & 33556, & 196238, & 94880, & 43055, & . 4538, & & . 3019, \\
\hline 1973, & 31061 , & 180304, & 95795, & 29938, & . 3125 , & & . 2252 , \\
\hline 1974, & 26642, & 173129, & 91519, & 37763, & . 4126, & & . 2787 , \\
\hline 1975, & 22540, & 152725, & 79761, & 38172, & . 4786 , & & . 3360 , \\
\hline 1976, & 22099, & 126105, & 62687, & 36074, & . 5755 , & & . 4264 , \\
\hline 1977, & 23689, & 100803, & 45323, & 28827, & . 6360, & & . 3409 , \\
\hline 1978, & 20593, & 87150, & 35939, & 24617, & . 6850, & & . 3659 , \\
\hline 1979, & 19702, & 104910, & 35656, & 17312, & . 4855 , & & . 1911, \\
\hline 1980, & 18606, & 86092, & 34657 , & 13284, & . 3833, & & . 1720, \\
\hline 1981, & 17878, & 92039, & 39591, & 15018, & . 3793, & & . 1445 , \\
\hline 1982, & 18932, & 87693, & 38436, & 16789, & . 4368, & & . 2187, \\
\hline 1983, & 19010, & 103901, & 42801, & 22147, & . 5174, & & . 2911, \\
\hline 1984, & 17813, & 93151, & 39266, & 21883, & . 5573, & & . 3382 , \\
\hline 1985, & 19928, & 92209, & 41193, & 19945, & . 4842 , & & . 3051 , \\
\hline 1986, & 19860, & 91397, & 40643, & 22875, & . 5628, & & . 3511 , \\
\hline 1987, & 19425, & 84759, & 30400 , & 19112, & . 6287, & & . 3489 , \\
\hline 1988, & 22958, & 84445 , & 26874, & 19587, & . 7288 , & & . 4052 , \\
\hline 1989, & 20708, & 88176, & 24151, & 20138, & . 8338, & & . 3187 , \\
\hline 1990, & 14498, & 77522, & 21085, & 23183, & 1.0995 , & & . 4243, \\
\hline 1991, & 12611, & 71741, & 25001, & 33320, & 1.3327, & & . 6600, \\
\hline 1992, & 10476, & 44688 , & 16125, & 8602, & . 5335, & & . 2458 , \\
\hline 1993, & 12883, & 51247 , & 18139, & 11933, & . 6579, & & . 3195 , \\
\hline 1994, & 18171, & 51206, & 15678, & 9226, & . 5885 , & & . 2704 , \\
\hline 1995, & 17131, & 57557, & 14216, & 11734, & . 8254 , & & . 3197 , \\
\hline 1996, & 17171, & 65288, & 14110, & 14347, & 1.0168, & & . 3478 , \\
\hline 1997, & 17760, & 66823, & 15247, & 9410, & . 6172, & & . 2454 , \\
\hline 1998, & 16204, & 73694, & 16847, & 11893, & . 7059 , & & . 2515, \\
\hline 1999, & 14691, & 75527, & 17136, & 19517, & 1.1389, & & . 3868 , \\
\hline 2000, & 18718, & 77459, & 19199, & 14437, & . 7520 , & & . 2738 , \\
\hline 2001, & 16010, & 82970, & 24081, & 16307, & . 6772 , & & . 2666 , \\
\hline 2002, & 16390, & 82474, & 28497, & 13140, & . 4611 , & & . 1999, \\
\hline Arith. & & & & & & & \\
\hline Mean & , 25984, & 120838, & 48468, & 25841, & . 6085, & & . 2979, \\
\hline 0 Units, & (Thousands), & (Tonnes), & (Tonnes), & (Tonnes), & & & \\
\hline
\end{tabular}

\section*{Table 8.16}

MFDP version 1a
Run: MFDPGrHal03
Time and date: 14:37 29.04.2003
Fbar age range: 6-10

Input units are thousands and kg - output in tonnes

Table 8.17

MFDP version 1a
Run: MFDPGrHal03
Arctic Green.halibut
Time and date: 14:37 29.04.2003
Fbar age range: 6-10
\begin{tabular}{ccccc}
\begin{tabular}{c}
2003 \\
Biomass
\end{tabular} & SSB & FMult & FBar & Landings \\
\hline 87378 & 31556 & 0.8699 & 0.2146 & 15000
\end{tabular}
\begin{tabular}{ccccccc}
\begin{tabular}{c}
2004 \\
Biomass
\end{tabular} & SSB & FMult & FBar & Landings & Biomass & SSB \\
\hline 90051 & 34868 & 0.0000 & 0.0000 & 0 & 109585 & 49329 \\
. & 34868 & 0.1000 & 0.0247 & 2038 & 107257 & 47663 \\
. & 34868 & 0.2000 & 0.0493 & 4004 & 105011 & 46065 \\
. & 34868 & 0.3000 & 0.0740 & 5902 & 102845 & 44533 \\
. & 34868 & 0.4000 & 0.0987 & 7735 & 100754 & 43063 \\
. & 34868 & 0.5000 & 0.1234 & 9505 & 98736 & 41654 \\
. & 34868 & 0.6000 & 0.1480 & 11215 & 96787 & 40301 \\
. & 34868 & 0.7000 & 0.1727 & 12867 & 94905 & 39003 \\
. & 34868 & 0.8000 & 0.1974 & 14465 & 93086 & 37757 \\
. & 34868 & 0.9000 & 0.2221 & 16009 & 91328 & 36560 \\
. & 34868 & 1.0000 & 0.2467 & 17503 & 89629 & 35411 \\
. & 34868 & 1.1000 & 0.2714 & 18949 & 87985 & 34306 \\
. & 34868 & 1.2000 & 0.2961 & 20348 & 86396 & 33245 \\
. & 34868 & 1.3000 & 0.3208 & 21702 & 84858 & 32224 \\
. & 34868 & 1.4000 & 0.3454 & 23014 & 83369 & 31243 \\
. & 34868 & 1.5000 & 0.3701 & 24284 & 81927 & 30299 \\
. & 34868 & 1.6000 & 0.3948 & 25515 & 80531 & 29392 \\
. & 34868 & 1.7000 & 0.4195 & 26708 & 79179 & 28518 \\
. & 34868 & 1.8000 & 0.4441 & 27865 & 77869 & 27677 \\
. & 34868 & 1.9000 & 0.4688 & 28987 & 76599 & 26868 \\
. & 34868 & 2.0000 & 0.4935 & 30075 & 75367 & 26088 \\
\hline
\end{tabular}

Input units are thousands and kg - output in tonnes

Figure 8.1. Log catchability residuals by age and year for the tuning fleets included in the assessments. For each graph all bubbles are normalized to the same maximum bubble-size. Open bubbles represent positive values; filled bubbles represent negative values.

Figure 8.2. Plots of XSA results by tuning separately with individual fleets for Greenland halibut.

Figure 8.3. Retrospective analysis based on current assessment.

Figure 8.4. Historical landings, recruitment, fishing mortality and spawning stock biomass. Long term yield pr recruit and spawning stock biomass per recruit. Short term yield and spawning stock biomass .

Table E1. GREENLAND HALIBUT in Sub-area I and II. Norwegian bottom trawl survey indices (numbers in thousands) in the Svalbard area (Division IIb).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Fish }<20 \\
\mathrm{~cm}^{2}
\end{gathered}
\]} & \multicolumn{9}{|c|}{Age} & \multirow{2}{*}{Total} \\
\hline & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9+ & \\
\hline 1981 & 2.1 & \multicolumn{9}{|c|}{No age data} & 20100 \\
\hline 1982 & 0.7 & & & & & & & & & & 2600 \\
\hline 1983 & 5.9 & & & & & & & & & & 26690 \\
\hline 1984 & 3.2 & 550 & 3042 & 2924 & 8573 & 6847 & 5657 & 4345 & 2796 & 1896 & 36630 \\
\hline 1985 & 1.6 & 884 & 3921 & 4294 & 6674 & 8793 & 8622 & 3920 & 1817 & 525 & 39450 \\
\hline 1986 & 0.1 & 49 & 1005 & 1967 & 7314 & 4671 & 1754 & 2301 & 372 & 37 & 19470 \\
\hline 1987 & 1 & 630 & 1014 & 3076 & 4409 & 4786 & 3141 & 964 & 364 & 116 & 18500 \\
\hline 1988 & 2.5 & 818 & 4298 & 6191 & 6696 & 12289 & 2396 & 6015 & 338 & 1277 & 40318 \\
\hline \(1989{ }^{1}\) & 1.4 & 712 & 3232 & 8158 & 7493 & 7069 & 2374 & 1753 & 353 & 744 & 31888 \\
\hline \(1990{ }^{1}\) & 0.4 & 115 & 336 & 5050 & 7130 & 7730 & 4490 & 2330 & 918 & 544 & 28643 \\
\hline \(1991{ }^{1}\) & 0.1 & 71 & 877 & 3080 & 6720 & 9270 & 5450 & 2800 & 1660 & 524 & 30452 \\
\hline \(1992{ }^{1}\) & + & 33 & 30 & 338 & 1190 & 3520 & 4420 & 2280 & 1280 & 474 & 13565 \\
\hline \(1993{ }^{1}\) & + & 25 & 60 & 51 & 1049 & 2369 & 2056 & 2772 & 1114 & 665 & 10161 \\
\hline \(1994{ }^{1}\) & + & 4 & 238 & 296 & 652 & 2775 & 2371 & 2593 & 531 & 844 & 10304 \\
\hline \(1995{ }^{1}\) & 0.1 & 76 & + & + & 322 & 886 & 1200 & 1950 & 487 & 497 & 5418 \\
\hline \(1996{ }^{1}\) & 0.4 & 410 & 61 & 104 & 171 & 881 & 2052 & 2587 & 862 & 976 & 8104 \\
\hline \(1997{ }^{1}\) & 0.4 & 268 & 484 & 21 & 65 & 284 & 2089 & 2143 & 379 & 295 & 6028 \\
\hline \(1998{ }^{1}\) & 2.5 & 1999 & 2351 & 2715 & 493 & 609 & 2192 & 2814 & 1252 & 822 & 15247 \\
\hline \(1999{ }^{1}\) & 1.3 & 126 & + & 995 & 1789 & 415 & 709 & 2501 & 507 & 674 & 7716 \\
\hline \(2000{ }^{1}\) & 2 & 2009 & 540 & 323 & 1347 & 2135 & 2634 & 1784 & 1197 & 530 & 12499 \\
\hline \(2001{ }^{1}\) & 4.3 & 4258 & 1235 & 873 & 1506 & 2456 & 1718 & 1504 & 558 & 1079 & 15187 \\
\hline \(2002{ }^{1}\) & 2.3 & 1435 & 2019 & 1176 & 2437 & 3413 & 2685 & 3304 & 847 & 2229 & 19545 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) New standard trawl equipment (rockhopper gear and 40 meter sweep length).
\({ }^{2}\) In millions.
}

Table E2. GREENLAND HALIBUT in Sub-area I and II. Abundance indices from bottom trawl surveys in the Barents Sea and Svalbard area in August (in thousands).

A: The Barents Sea area; B: The expanded Svalbard area.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline A & \multicolumn{13}{|c|}{Age} & \multirow[t]{2}{*}{Total} \\
\hline Year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13+ & \\
\hline 1995 & 42 & - & - & 596 & 989 & 1239 & 1673 & 1020 & - & 195 & - & - & - & 5754 \\
\hline 1996 & 12028 & 900 & - & - & - & 415 & 829 & 861 & 85 & 261 & 118 & 82 & - & 15579 \\
\hline \(1997{ }^{1}\) & 143 & 1162 & 53 & 331 & 589 & 1579 & 2736 & 1120 & 550 & 44 & - & - & - & 8307 \\
\hline \(1998{ }^{1}\) & 46 & 446 & 328 & 416 & 481 & 323 & 1828 & 924 & 432 & 234 & - & - & - & 5458 \\
\hline 1999 & 11637 & 5910 & 384 & 280 & 201 & 1508 & 1729 & 215 & 134 & 661 & 255 & 218 & - & 23132 \\
\hline 2000 & - & 619 & 302 & 417 & 816 & 620 & 1163 & 844 & 605 & 270 & 54 & 221 & - & 5931 \\
\hline 2001 & - & - & 259 & 203 & 743 & 1120 & 293 & 697 & - & 215 & 107 & - & - & 3637 \\
\hline 2002 & - & - & - & 85 & 773 & 2509 & 3047 & 165 & 290 & 839 & - & 255 & - & 7963 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{B Year} & \multicolumn{13}{|c|}{Age} & \multirow[t]{2}{*}{Total} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13+ & \\
\hline 1995 & 77 & - & - & 429 & 1255 & 1720 & 2535 & 665 & 135 & 281 & 136 & 95 & - & 7328 \\
\hline 1996 & 1760 & 360 & 105 & 291 & 1144 & 2717 & 3525 & 1290 & 309 & 603 & 30 & 92 & 45 & 12271 \\
\hline 1997 & 593 & 2357 & 311 & 116 & 593 & 3053 & 3019 & 478 & 312 & 20 & - & - & - & 10852 \\
\hline 1998 & 2295 & 2836 & 2918 & 540 & 770 & 2477 & 3248 & 1472 & 340 & 346 & 130 & - & 65 & 17437 \\
\hline 1999 & 387 & 263 & 1516 & 3095 & 809 & 836 & 2773 & 486 & 333 & 360 & - & 87 & 140 & 11085 \\
\hline 2000 & 1976 & 818 & 1280 & 2836 & 3946 & 3216 & 2112 & 1560 & 460 & 199 & - & 95 & - & 18498 \\
\hline 2001 & 4659 & 1690 & 1789 & 2517 & 3536 & 2474 & 1889 & 690 & 383 & 773 & 134 & 27 & 50 & 20611 \\
\hline 2002 & 2174 & 2475 & 1718 & 2962 & 4291 & 3620 & 4205 & 1031 & 293 & 1267 & 453 & 304 & 212 & 25005 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Only Norwegian and international zones covered. Adjusted (according to the mean distribution in the period 1991-1999) to include the Russian EEZ.
}

Table E3. GREENLAND HALIBUT in Sub-area I and II. Abundance indices on age from the Norwegian stratified bottom trawl survey in August using a hired commercial vessel (numbers in thousands). Trawls were made at 400-1500 m depth along the continental slope from \(68-80^{\circ} \mathrm{N}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multicolumn{15}{|c|}{Age} & \multirow{2}{*}{Total} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15+ & \\
\hline 1994 & 0 & 0 & 1 & 2001 & 16980 & 11008 & 15552 & 6173 & 1241 & 3628 & 1460 & 443 & 129 & 81 & 11 & 58708 \\
\hline 1995 & 0 & 0 & 0 & 1432 & 16945 & 12946 & 20925 & 6737 & 1975 & 4393 & 1385 & 648 & 152 & 103 & 21 & 67662 \\
\hline 1996 & 0 & 0 & 10 & 704 & 13623 & 18538 & 24908 & 8114 & 1473 & 3223 & 820 & 396 & 131 & 100 & 2 & 72042 \\
\hline 1997 & 0 & 0 & 16 & 1446 & 11738 & 17005 & 18927 & 5383 & 1107 & 3261 & 936 & 600 & 87 & 165 & 16 & 60687 \\
\hline 1998 & 0 & 0 & 66 & 1726 & 7868 & 12399 & 23487 & 6243 & 1458 & 4317 & 1238 & 969 & 13 & 183 & 14 & 59981 \\
\hline 1999 & 0 & 0 & 27 & 1300 & 5901 & 15383 & 20209 & 12019 & 1872 & 5913 & 1167 & 1198 & 273 & 183 & 15 & 65460 \\
\hline 2000 & 0 & 0 & 383 & 1920 & 6901 & 10352 & 17885 & 7795 & 5038 & 3284 & 867 & 458 & 204 & 75 & 16 & 55178 \\
\hline 2001 & 0 & 10 & 95 & 986 & 6107 & 15068 & 22584 & 10086 & 3130 & 5442 & 1146 & 1147 & 267 & 180 & 67 & 66315 \\
\hline 2002 & 0 & 3 & 427 & 2492 & 7730 & 10913 & 21660 & 9847 & 6327 & 4248 & 2468 & 1642 & 619 & 208 & 183 & 68767 \\
\hline
\end{tabular}

Table E4. GREENLAND HALIBUT in Sub-area I and II. Abundance indices on age from the Norwegian bottom trawl survey north and east of Spitsbergen in September (numbers in thousands).

A: Survey area, Russian EEZ excluded B: Including Russian EEZ
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{A}^{\text {Year }}\) & \multicolumn{6}{|c|}{Age} & \multirow[t]{2}{*}{Total} \\
\hline Year & 1 & 2 & 3 & 4 & 5 & 6+ & \\
\hline 1996 & 15655 & 14510 & 10025 & 3487 & 1593 & 3349 & 48619 \\
\hline 1997 & 3415 & 15271 & 14140 & 2803 & 403 & 434 & 36466 \\
\hline 1998 & 8482 & 18718 & 9463 & 5161 & 1166 & 932 & 43922 \\
\hline 1999 & 5370 & 9074 & 3328 & 2271 & 1492 & 954 & 22489 \\
\hline 2000 & 9529 & 16844 & 8007 & 6274 & 1746 & 722 & 43122 \\
\hline 2001 & 26206 & 15765 & 4515 & 1767 & 802 & 465 & 49520 \\
\hline 2002 & 40186 & 34065 & 15441 & 3862 & 1320 & 556 & 95430 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline B & \multicolumn{6}{|c|}{Age} & \multirow{2}{*}{Total} \\
\hline Year & 1 & 2 & 3 & 4 & 5 & 6+ & \\
\hline 1998 & 10210 & 28020 & 17186 & 6380 & 1551 & 932 & 64279 \\
\hline 1999 & 7514 & 16159 & 8045 & 3067 & 2401 & 954 & 38140 \\
\hline 2000 & \multicolumn{7}{|c|}{No coverage in Russian EEZ} \\
\hline 2001 & 38112 & 40377 & 7960 & 4300 & 1215 & 510 & 92475 \\
\hline 2002 & 96231 & 58113 & 31500 & 5665 & 1576 & 556 & 193641 \\
\hline
\end{tabular}

Table E5. GREENLAND HALIBUT in Sub-area I and II. Abundance indices from three Norwegian bottom trawl surveys in the Barents Sea in August - September combined to one index (in thousands).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{15}{|c|}{Age} & \multirow[b]{2}{*}{Total} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15+ & \\
\hline 1996 & 17926 & 14906 & 10134 & 4486 & 16194 & 22217 & 30014 & 10163 & 1857 & 3954 & 957 & 523 & 175 & 100 & 2 & 133608 \\
\hline 1997 & 4050 & 18107 & 14547 & 4481 & 12917 & 20753 & 22984 & 6362 & 1563 & 3312 & 936 & 600 & 87 & 165 & 16 & 110880 \\
\hline 1998 & 10704 & 21705 & 12521 & 7603 & 9915 & 14680 & 27784 & 7800 & 1937 & 4586 & 1353 & 1027 & 13 & 241 & 14 & 121883 \\
\hline 1999 & 5895 & 9451 & 5200 & 7116 & 8412 & 17437 & 24175 & 12857 & 2407 & 6595 & 1294 & 1387 & 273 & 183 & 144 & 102826 \\
\hline 2000 & 11474 & 17755 & 9870 & 11359 & 13093 & 14139 & 20608 & 9704 & 5707 & 3548 & 901 & 695 & 204 & 75 & 16 & 119148 \\
\hline 2001 & 30631 & 17452 & 6521 & 5115 & 10077 & 17548 & 24465 & 10973 & 3440 & 6280 & 1302 & 1147 & 267 & 180 & 67 & 135464 \\
\hline 2002 & 42348 & 36537 & 17472 & 9105 & 13649 & 15040 & 27076 & 10130 & 6679 & 5104 & 2909 & 1893 & 619 & 257 & 183 & 188999 \\
\hline
\end{tabular}

Table E6. GREENLAND HALIBUT in Sub-area I and II. Russian autumn bottom trawl surveys: Abundance indices at different age (numbers in thousands).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Year} & \multicolumn{13}{|c|}{Age-group} & \multirow[b]{2}{*}{Total} \\
\hline & \(\leq 3\) & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15+ & \\
\hline 1984 & 4124 & 5359 & 7788 & 24951 & 19863 & 11499 & 6750 & 5416 & 2420 & 1196 & 247 & 146 & 143 & 89902 \\
\hline 1985 & 3331 & 4371 & 17076 & 35648 & 27826 & 11717 & 5722 & 4090 & 1937 & 895 & 311 & 31 & 131 & 113086 \\
\hline 1986 & 2687 & 6600 & 15853 & 25696 & 16468 & 5436 & 3811 & 2660 & 974 & 539 & 184 & 72 & 6 & 80986 \\
\hline 1987 & 289 & 6761 & 9724 & 12703 & 7633 & 3867 & 1903 & 1627 & 721 & 416 & 110 & 0 & 38 & 45792 \\
\hline 1988 & 2591 & 4409 & 7891 & 14181 & 11311 & 4308 & 2253 & 1756 & 820 & 307 & 125 & 163 & 54 & 50169 \\
\hline 1989 & 1429 & 11310 & 13124 & 25881 & 12782 & 5989 & 2381 & 1285 & 334 & 271 & 98 & 102 & 118 & 75104 \\
\hline 1990 & 2820 & 8360 & 16252 & 15621 & 11393 & 4120 & 1911 & 1158 & 307 & 198 & 58 & 36 & 0 & 62234 \\
\hline \(1991{ }^{1}\) & 1422 & 8455 & 25408 & 21843 & 15235 & 9419 & 2369 & 1211 & 655 & 142 & 95 & 16 & 26 & 86296 \\
\hline 1992 & 685 & 7461 & 33341 & 25498 & 17272 & 10178 & 2720 & 1262 & 938 & 318 & 67 & 0 & 0 & 99740 \\
\hline 1993 & 114 & 2166 & 13317 & 19752 & 16528 & 10305 & 3370 & 1868 & 903 & 519 & 103 & 111 & 111 & 69167 \\
\hline 1994 & 49 & 1604 & 9868 & 17549 & 11533 & 7746 & 3401 & 1876 & 605 & 394 & 114 & 114 & 57 & 54910 \\
\hline 1995 & 19 & 467 & 5759 & 18222 & 15296 & 11539 & 4393 & 1413 & 529 & 312 & 84 & 11 & 32 & 58076 \\
\hline \(1996{ }^{2}\) & 0 & 1670 & 6680 & 18722 & 21714 & 13354 & 8512 & 476 & 284 & 106 & 115 & 36 & 20 & 71689 \\
\hline 1997 & 235 & 1575 & 4023 & 12165 & 15919 & 16452 & 4591 & 1432 & 779 & 162 & 271 & 66 & 88 & 57758 \\
\hline 1998 & 3917 & 5542 & 7768 & 15589 & 16842 & 17727 & 9676 & 2548 & 1752 & 535 & 254 & 85 & 72 & 82307 \\
\hline 1999 & 4057 & 4961 & 5951 & 12350 & 14255 & 16078 & 7952 & 3009 & 965 & 494 & 307 & 74 & - & 70453 \\
\hline 2000 & 2841 & 5327 & 10718 & 15719 & 18694 & 21235 & 9155 & 3593 & 2580 & 1011 & 108 & 133 & 120 & 91234 \\
\hline 2001 & 1592 & 6884 & 17365 & 37881 & 27661 & 14163 & 6576 & 3988 & 1875 & 1713 & 929 & 217 & 180 & 121024 \\
\hline \(2002{ }^{3}\) & 2145 & 7127 & 10771 & 44220 & 33675 & 18747 & 5947 & 5477 & 1216 & 1877 & 1973 & 60 & 120 & 133355 \\
\hline
\end{tabular}
\({ }^{1}\) Age composition based on combined age-length-keys for 1990 and 1992.
\({ }^{2}\) Only half of standard area investigated
\({ }^{3}\) Adjusted (according to the 2001 distribution) to include the Norwegian EEZ which was not covered by the survey.

Table E7.- Greenland halibut catch in weight, numbers, and Biomass and abundance estimated from Spanish survey 1997-2002.
\begin{tabular}{ccccc}
\hline Year & Catch \((\mathrm{Kg})\) & Catch (numbers) & Biomass \({ }^{\mathrm{TM}}\) & Abundance ('000) \\
\hline 1997 & 195056 & 211533 & 344014 & 379444 \\
1998 & 180974 & 187259 & 351466 & 373149 \\
1999 & 198781 & 172687 & 436956 & 377792 \\
2000 & 169389 & 140355 & 340619 & 291265 \\
2001 & 152681 & 129289 & 283511 & 249219 \\
2002 & 144335 & 115213 & 256460 & 207466 \\
\hline
\end{tabular}

Table E8. GREENLAND HALIBUT in Sub-area I and II. Abundance indices from bottom trawl surveys in the Barents Sea in winter (in thousands).

A: Restricted area surveyed every year; B: Enlarged area (includes the restricted one) surveyed since 1993
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline A & \multicolumn{13}{|c|}{Age} & \multirow[t]{2}{*}{Total} \\
\hline Year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13+ & \\
\hline 1989 & 1078 & 788 & 1056 & 2284 & 3655 & 2655 & 864 & 971 & 210 & - & 19 & 76 & 56 & 13712 \\
\hline 1990 & 66 & 907 & 2071 & 1716 & 1996 & 2262 & 1046 & 365 & 175 & - & 30 & 119 & 165 & 10918 \\
\hline 1991 & - & 279 & 755 & 1323 & 1257 & 1526 & 2440 & 906 & 450 & 457 & - & 55 & 127 & 9575 \\
\hline 1992 & 63 & 128 & 719 & 897 & 1554 & 543 & 1069 & 791 & - & 648 & 135 & 40 & 53 & 6640 \\
\hline 1993 & - & 17 & 168 & 502 & 1730 & 868 & 1490 & 758 & 88 & 655 & 382 & 31 & 35 & 6724 \\
\hline 1994 & - & 16 & 142 & 1178 & 2259 & 1644 & 1750 & 885 & - & 506 & 38 & 25 & - & 8443 \\
\hline 1995 & - & - & - & 168 & 786 & 749 & 1331 & 760 & 359 & 486 & 60 & 199 & - & 4898 \\
\hline 1996 & 1816 & - & 28 & 40 & 709 & 1510 & 2964 & 1000 & 307 & 808 & 154 & 152 & 45 & 9533 \\
\hline 1997 & - & 21 & - & 21 & 176 & 812 & 1788 & 1440 & 653 & 209 & 94 & 73 & - & 5287 \\
\hline 1998 & - & - & - & 67 & 474 & 1172 & 2491 & 1144 & 302 & 401 & 89 & 19 & 4 & 6163 \\
\hline 1999 & - & 77 & 276 & 243 & 495 & 485 & 1058 & 555 & 408 & 152 & 75 & 56 & - & 3880 \\
\hline 2000 & - & 40 & 56 & 396 & 719 & 519 & 1187 & 261 & 290 & 531 & 131 & 23 & 55 & 4208 \\
\hline 2001 & 19 & 36 & 112 & 558 & 517 & 260 & 497 & 697 & 267 & 478 & 43 & 42 & 30 & 3556 \\
\hline 2002 & - & - & 32 & 609 & 1019 & 1148 & 989 & 362 & 139 & 591 & 106 & 54 & 54 & 5103 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline B & \multicolumn{13}{|c|}{Age} & \multirow{2}{*}{Total} \\
\hline Year & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13+ & \\
\hline 1993 & - & 17 & 279 & 1002 & 3129 & 2818 & 3895 & 1632 & 309 & 1406 & 616 & 31 & 35 & 15169 \\
\hline 1994 & - & 16 & 152 & 1482 & 3768 & 2698 & 3420 & 1615 & - & 1171 & 135 & 25 & - & 14482 \\
\hline 1995 & - & - & - & 216 & 2824 & 6229 & 10624 & 2727 & 1250 & 1902 & 172 & 718 & 57 & 26719 \\
\hline 1996 & 3149 & - & 28 & 102 & 1547 & 3043 & 4991 & 1599 & 472 & 1211 & 317 & 250 & 72 & 16781 \\
\hline \(1997{ }^{1}\) & - & 163 & - & 203 & 624 & 2742 & 5759 & 4170 & 1653 & 562 & 240 & 181 & 66 & 16363 \\
\hline \(1998{ }^{1}\) & 220 & 501 & 2797 & 1011 & 1847 & 3477 & 6539 & 3057 & 867 & 1179 & 301 & 96 & 57 & 21949 \\
\hline 1999 & 41 & 195 & 691 & 825 & 829 & 1531 & 3130 & 1496 & 1011 & 500 & 115 & 129 & 101 & 10594 \\
\hline 2000 & 169 & 482 & 947 & 5425 & 2575 & 1310 & 3035 & 553 & 796 & 1109 & 284 & 27 & 55 & 16767 \\
\hline 2001 & 69 & 250 & 363 & 2046 & 4250 & 2730 & 2983 & 1123 & 416 & 1148 & 111 & 137 & 94 & 15720 \\
\hline 2002 & 233 & 104 & 248 & 1373 & 2748 & 3265 & 3641 & 932 & 449 & 1714 & 365 & 177 & 178 & 15427 \\
\hline 2003 & 50 & 89 & 151 & 785 & 1786 & 2860 & 5411 & 1313 & 289 & 951 & 356 & 189 & 92 & 14322 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Adjusted (according to the 1996 distribution) to include the Russian EEZ which was not covered by the survey.
}

Table E9. GREENLAND HALIBUT in Sub-areas I and II. Results from a research program using trawlers in a limited commercial fishery 1992-2002. All areas combined. Spring and autumn combined in 1992-1993, otherwise only spring-data.
\begin{tabular}{rrrrrrrrrrrr}
\hline \multicolumn{14}{c}{ Catch in numbers on age (\%) } \\
Age & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline 1 & & & & & & & & & & & \\
2 & & & & & & & & & & & \\
3 & 0.1 & & & 0.1 & & 0.0 & 0.0 & 0.0 & & & \\
4 & 4.6 & 4.2 & 3.2 & 0.7 & 0.5 & 0.9 & 0.2 & 0.7 & 1.2 & 1.3 & 0.7 \\
5 & 19.1 & 25.0 & 24.7 & 22.5 & 19.5 & 24.8 & 6.6 & 7.7 & 10.8 & 6.3 & 7.7 \\
6 & 23.0 & 18.4 & 23.8 & 22.6 & 31.6 & 22.9 & 25.5 & 23.0 & 17.1 & 20.2 & 16.8 \\
7 & 25.9 & 27.1 & 26.8 & 30.2 & 35.6 & 30.5 & 44.5 & 39.6 & 43.0 & 28.5 & 42.5 \\
8 & 13.3 & 12.4 & 11.2 & 11.0 & 8.7 & 10.1 & 15.5 & 14.5 & 12.3 & 24.5 & 12.4 \\
9 & 1.7 & 0.7 & 1.0 & 2.7 & 1.3 & 2.6 & 4.5 & 1.6 & 4.5 & 7.8 & 7.1 \\
10 & 6.8 & 7.4 & 5.9 & 6.6 & 2.0 & 5.0 & 2.0 & 9.7 & 8.5 & 7.3 & 8.8 \\
11 & 2.9 & 3.1 & 2.4 & 2.0 & 0.5 & 1.9 & 0.8 & 1.0 & 0.9 & 1.9 & 2.2 \\
12 & 1.7 & 1.0 & 0.6 & 1.1 & 0.2 & 0.8 & 0.3 & 1.8 & 1.1 & 1.7 & 1.2 \\
13 & 0.5 & 0.4 & 0.2 & 0.3 & 0.0 & 0.3 & & 0.2 & 0.6 & 0.3 & 0.2 \\
14 & 0.2 & 0.2 & 0.1 & 0.2 & 0.1 & 0.2 & & 0.2 & 0.0 & 0.2 & 0.4 \\
15 & 0.1 & & & & & 0.0 & & 0.0 & 0.0 & 0.2 & 0 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrrrrrrr}
\hline \multicolumn{15}{c}{ CPUE (N) on age } \\
& 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline 1 & & & & & & & & & & & \\
2 & & & & & & & & & & & \\
3 & 0 & & & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
4 & 19 & 30 & 26 & 7 & 7 & 11 & 2 & 7 & 14 & 17 & 10 \\
5 & 80 & 176 & 198 & 219 & 286 & 298 & 59 & 72 & 132 & 86 & 112 \\
6 & 97 & 130 & 191 & 220 & 463 & 275 & 229 & 214 & 208 & 278 & 243 \\
7 & 109 & 191 & 215 & 294 & 521 & 366 & 400 & 369 & 524 & 392 & 616 \\
8 & 56 & 87 & 90 & 107 & 127 & 121 & 139 & 135 & 150 & 337 & 179 \\
9 & 7 & 5 & 8 & 26 & 19 & 31 & 40 & 15 & 55 & 108 & 103 \\
10 & 29 & 52 & 47 & 64 & 29 & 60 & 18 & 90 & 104 & 100 & 127 \\
11 & 12 & 22 & 19 & 19 & 7 & 23 & 7 & 9 & 11 & 25 & 32 \\
12 & 7 & 7 & 5 & 11 & 3 & 10 & 3 & 17 & 13 & 24 & 17 \\
13 & 2 & 3 & 2 & 3 & 0 & 4 & 0 & 2 & 7 & 4 & 2 \\
14 & 1 & 1 & 1 & 2 & 1 & 2 & 0 & 2 & 0 & 2 & 6 \\
15 & 0 & & & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Mean individual weight (kg)} \\
\hline Age & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline 1 & & & & & & & & & & & \\
\hline 2 & & & & & & & & & & & \\
\hline 3 & 0.26 & & & 0.40 & & 0.39 & & & & & \\
\hline 4 & 0.50 & 0.53 & 0.52 & 0.47 & 0.48 & 0.45 & 0.41 & 0.51 & 0.5 & 0.60 & 0.44 \\
\hline 5 & 0.71 & 0.76 & 0.73 & 0.70 & 0.74 & 0.69 & 0.76 & 0.74 & 0.69 & 0.66 & 0.69 \\
\hline 6 & 0.96 & 0.98 & 0.95 & 0.94 & 0.94 & 0.88 & 0.96 & 0.92 & 0.98 & 0.94 & 0.93 \\
\hline 7 & 1.29 & 1.33 & 1.28 & 1.24 & 1.23 & 1.15 & 1.19 & 1.25 & 1.23 & 1.12 & 1.22 \\
\hline 8 & 1.77 & 1.85 & 1.79 & 1.71 & 1.66 & 1.55 & 1.79 & 1.64 & 1.57 & 1.48 & 1.39 \\
\hline 9 & 2.00 & 2.28 & 2.23 & 2.03 & 2.00 & 1.87 & 2.26 & 2.18 & 1.9 & 1.84 & 1.69 \\
\hline 10 & 2.46 & 2.65 & 2.55 & 2.50 & 2.50 & 2.34 & 2.54 & 2.38 & 2.4 & 2.30 & 2.31 \\
\hline 11 & 3.10 & 3.43 & 3.37 & 3.28 & 3.16 & 2.95 & 3.47 & 3.17 & 3.13 & 2.92 & 3.19 \\
\hline 12 & 3.86 & 4.32 & 4.22 & 3.71 & 3.70 & 3.46 & 4.16 & 3.79 & 4.04 & 3.82 & 3.91 \\
\hline 13 & 4.44 & 5.18 & 5.01 & 4.62 & & 4.52 & & 5.07 & 4.47 & 3.68 & 5.20 \\
\hline 14 & 6.00 & 6.44 & 6.29 & 5.59 & & 5.47 & & 5.60 & 6.00 & 5.74 & 5.59 \\
\hline 15 & 5.22 & & & & & & & & 8.79 & 5.52 & 7 \\
\hline
\end{tabular}
\begin{tabular}{rrrrrrrrrrrrr}
\hline \multicolumn{17}{c}{ CPUE (kg) on age } \\
& 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 & 2002 \\
\hline 1 & & & & & & & & & & & & \\
2 & & & & & & & & & & & \\
3 & 0 & & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
4 & 10 & 16 & 13 & 3 & 4 & 5 & 1 & 3 & 7 & 10 & 4 \\
5 & 57 & 134 & 145 & 153 & 211 & 207 & 45 & 53 & 91 & 57 & 77 \\
6 & 93 & 127 & 182 & 207 & 435 & 243 & 220 & 197 & 204 & 261 & 226 \\
7 & 140 & 254 & 276 & 364 & 641 & 423 & 476 & 461 & 645 & 439 & 749 \\
8 & 99 & 162 & 161 & 183 & 211 & 189 & 249 & 221 & 236 & 499 & 249 \\
9 & 14 & 11 & 18 & 53 & 38 & 59 & 91 & 32 & 105 & 198 & 175 \\
10 & 70 & 138 & 121 & 161 & 73 & 141 & 46 & 215 & 250 & 231 & 293 \\
11 & 38 & 75 & 65 & 64 & 23 & 68 & 25 & 30 & 33 & 74 & 101 \\
12 & 28 & 30 & 20 & 40 & 11 & 33 & 11 & 64 & 53 & 90 & 67 \\
13 & 9 & 15 & 8 & 13 & 0 & 16 & 0 & 9 & 32 & 15 & 13 \\
14 & 5 & 9 & 5 & 11 & 0 & 13 & & 10 & 2 & 13 & 33 \\
15 & 2 & & & 0 & 0 & 0 & & & 3 & 15 & 5 \\
\hline
\end{tabular}

Overall mean individual weight (kg)
CPUE (kg round weight per trawlhour)*
CPUE (Number fish per trawlhour)*
Catch (in tonnes)
\(\begin{array}{lllllllllll}1.35 & 1.38 & 1.27 & 1.29 & 1.12 & 1.16 & 1.30 & 1.39 & 1.35 & 1.38 & 1.38\end{array}\) \(\begin{array}{lllllllllll}567 & 973 & 1020 & 1255 & 1640 & 1393 & 1169 & 1294 & 1647 & 1377 & 1449\end{array}\) \(\begin{array}{lllllllllll}420 & 705 & 803 & 973 & 1464 & 1201 & 899 & 931 & 1220 & 998 & 1050\end{array}\)

\footnotetext{
*) Average for freezer- and factorytrawler
}

Table E10. GREENLAND HALIBUT in ICES Sub-area IV (North Sea. Nominal catch (t) by countries as officially reported to ICES. Not included in the assessment .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & Denmark & Faroe Islands & France & Germany & Ireland & Norway & Russia & UK
England \&
Wales & \[
\begin{gathered}
\hline \text { UK } \\
\text { Scotland }
\end{gathered}
\] & Total \\
\hline 1973 & - & - & - & 4 & - & 9 & & \(8 \quad 28\) & - & 49 \\
\hline 1974 & - & - & - & 2 & - & 2 & & 30 & - & 34 \\
\hline 1975 & - & - & - & 1 & - & 4 & & 12 & - & 17 \\
\hline 1976 & - & - & - & 1 & - & 2 & & 18 & - & 21 \\
\hline 1977 & - & - & - & 2 & - & 2 & & 8 & - & 12 \\
\hline 1978 & - & - & 2 & 30 & - & - & & 1 & - & 33 \\
\hline 1979 & - & - & 2 & 16 & - & 2 & & 1 & - & 21 \\
\hline 1980 & - & 177 & - & 34 & - & 5 & & - - & - & 216 \\
\hline 1981 & - & - & - & - & - & 7 & & - - & - & 7 \\
\hline 1982 & - & - & 2 & 26 & - & 17 & & - - & - & 45 \\
\hline 1983 & - & - & 1 & 64 & - & 89 & & - - & - & 154 \\
\hline 1984 & - & - & 3 & 50 & - & 32 & & - - & - & 85 \\
\hline 1985 & - & 1 & 2 & 49 & - & 12 & & - - & - & 64 \\
\hline 1986 & - & - & 30 & 2 & - & 34 & & - - & - & 66 \\
\hline 1987 & - & 28 & 16 & 1 & - & 35 & & - - & - & 80 \\
\hline 1988 & - & 71 & 62 & 3 & - & 19 & & 1 & - & 156 \\
\hline 1989 & - & 21 & \(14^{1}\) & 1 & - & 197 & & 5 & - & 238 \\
\hline 1990 & - & 10 & \(30^{1}\) & 3 & - & 29 & & 4 & - & 76 \\
\hline 1991 & - & 48 & \(291{ }^{1}\) & 1 & - & 216 & & 2 & - & 558 \\
\hline 1992 & 1 & 15 & \(416{ }^{1}\) & 3 & - & 626 & & + & 1 & 1062 \\
\hline 1993 & 1 & - & \(78^{1}\) & 1 & - & 858 & & 10 & + & 948 \\
\hline 1994 & + & 103 & \(84^{1}\) & 4 & - & 724 & & 6 & - & 921 \\
\hline 1995 & + & 706 & 165 & 2 & - & 460 & & 52 & 283 & 1668 \\
\hline 1996 & + & - & 249 & 1 & - & 1496 & & 105 & 159 & 2010 \\
\hline 1997 & + & - & 316 & 3 & - & 873 & & 1 & 162 & 1355 \\
\hline 1998 & + & - & \(71^{1}\) & 10 & 10 & 804 & & 35 & 435 & 1365 \\
\hline 1999 & + & - & & 1 & 18 & 2157 & & - 43 & 358 & 2577 \\
\hline 2000 & + & & 41 & 10 & 19 & \(498{ }^{1}\) & & - 67 & 192 & 827 \\
\hline \(2001{ }^{1}\) & + & & 43 & - & 10 & 470 & & 122 & 202 & 847 \\
\hline \(2002{ }^{1}\) & + & & 8 & + & & 200 & & - & 249 & 457 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Provisional figures
}

\subsection*{9.1 Status of the Fisheries}

\subsection*{9.1.1 Historical development of the fisheries (Table 9.1, Figure 9.1)}

Norwegian vessels began to exploit the shrimp fisheries in the Barents Sea and Svalbard area in 1970. Russian vessels entered the shrimp fishery in 1974. The catches increased continuously (Table 9.1 and Figure 9.1) until 1984 when the total catch reached a maximum of \(128,000 \mathrm{t}\). By that time vessels from other countries had entered the fishery. Since then, biomass and catch levels have fluctuated because there were different recruitments, cod consumption and effort in the fisheries due to price of shrimp. The catch peaked at \(81,164 \mathrm{t}\) in 1990 and at \(82,816 \mathrm{t}\) in 2000, and the lowest catches are \(43,367 \mathrm{t}\) in 1987 and \(25,220 \mathrm{t}\) in 1995.

\subsection*{9.1.2 Regulation}

In the Svalbard area the shrimp fisheries are regulated by number of effective fishing days and number of vessels by country. In the Barents Sea and Svalbard area, Norwegian rules are that the fisheries be regulated by smallest allowable shrimp size (maximum \(10 \%\) of catch weight may be \(<15 \mathrm{~mm}\) carapace length, CL) and by provisions of the fishing licences. In the Russian Economic Zone, a TAC is established each year by Russian authorities. Fishing grounds are closed if by-catch limits given as number of individuals in 10 kg of shrimp are exceeded. In 2003 the values of allowed by-catch are set at eight for the sum of cod and haddock, ten for redfish and three for Greenland halibut per catch of 10 kg shrimp.

\subsection*{9.1.3 Landings (Table 9.1, Figure 9.1)}

Preliminary reported landings for all countries show a substantial decrease of catches to 55,198 t in 2001 and a catch of 59,853 in 2002 (Table 9.1 and Figure 9.1) which is a increase of \(9 \%\) from 2001.

\subsection*{9.2 Status of Research}

\subsection*{9.2.1 Surveys (Tables 9.3, 9.4)}

In the Barents Sea and the Svalbard area, standard shrimp surveys have been conducted by Norway since 1982 and by Russia since 1984 (Tables 9.3,9.4). However, during the 90 's, both surveys have suffered from reductions in survey time. The Russian vessels did not surveyed the Svalbard area for many years but have carried out surveys in this area in 2001 and 2002. The amount of time available for the Norwegian survey has been reduced from 50 days to 27 days. Detailed information pertaining to the status of the stock is described in 1981-1991 Norwegian reports (Tavares and Øynes 1980, Teigsmark and Øynes 1981, 1982, 1983a, 1983b, Hylen et al. 1984, Tveranger and Øynes 1985, Hylen and Øynes 1986, Hylen et al. 1987, Hylen and Øynes 1988, Hylen et al. 1989, Hylen and Ågotnes 1990) and Russian reports (Berenboim et al. 1986, Berenboim et al. 1989, Berenboim et al. 1990, Mukhin and Sheveleva 1991). Annual joint Norwegian-Russian papers have been produced since 1991 (Berenboim et al. 1992, Aschan et al. 1993,1994,1995, 1996). Since 1997 the status of the stock has been summarised in annual protocols (Anon 1997, 1998, 1999, ICES 2000/ACFM:3, 2001/ACFM:02, 2001/ACFM:19). Additionally evaluations of the Norwegian surveys have been conducted (Aschan and Sunnanå 1997, Harbitz et al. 1998).

\subsection*{9.2.2 Samples from commercial catches}

In 2002 observers collected samples on board commercial Spanish vessels in the Svalbard zone. Length and sex distribution data and data on by-catch was obtained (Casas, WD 17). Length distribution data and by-catch data is collected by the Norwegian surveillance since 1995. However, this sampling is not continuous in time and space.

\subsection*{9.2.3 Fishing effort and CPUE (Table 9.2, Figure 9.3)}

Catch, effort, and annual CPUE series for Norway and Russia are presented in Table 9.2 and Figure 9.3. The Norwegian shrimp fleet has since late 90 's been upgraded both concerning vessels and the use of double and triple trawls. In the logbooks the use of these trawl types have been difficult to register and to make available for further use. This problem has now been overcome and this year a revised series of catch per unit of effort (CPUE), effort and corresponding catch have been given (Sunnanå, WD-26) The Norwegian data show a a peak in the effort in 2000 at the same level as the earlier peaks in 1985 and 1990. The Norwegian effort decreased in 2001. The Russian series of effort data is unchanged and both series show an increase in effort in 2002. The CPUE series indicate an increase of CPUE in 2002 (Table 9.2
and Figure 9.3). The CPUE of the Russian fleet (vessels \(<1300 \mathrm{hp}\)) has fluctuated in accordance with the shrimp biomass (Berenboim et al. 2001, figure 9.3). and the revised Norwegian series show the same picture. It should be noted that the Russian fleet is also under development.

\subsection*{9.2.4 Survey results (Tables 9.3-9.5, Figures 9.2-9.5)}

There is a strong correlation between the Norwegian and the Russian survey results (Figure 9.2). Biomass indices were highest during 1984, and have since fluctuated between \(30 \%\) and \(60 \%\) of this level (Tables 9.3 and 9.4 and Figures 9.29.3) with peaks in 1991 and 1998-1990 and low values in 1987-1988, 1994-1995 and 2001. Norwegian and Russian bottom trawl surveys indicate an increase in shrimp biomass in the Barents Sea and Svalbard area of 6\% and 109\% respectively from 2001 to 2002 (Tables 9.3-9.4 and Figure 9.2). The main survey areas are shown in Figure 9.4. Increase in biomass may be explained by the appeared average strength 1998 and 1999 year classes following the weak 1996 and 1997 year classes (Table 9.5, Aschan et al. 2000) and a decline of cod consumption (Korzhev and Berenboim, WD 17; Berenboim et al., 2001) (Figure 9.5).

\subsection*{9.2.5 Population structure}

Genetic investigations have been conducted by Kartavtsev et al. (1991) on Pandalus borealis in the Barents Sea and the Bering Sea. Norwegian scientists conducted both allozyme electrophoresis and DNA-fingerprinting in an attempt to identify potential sub-populations of shrimp in the Northeast-Atlantic including the Jan Mayen area, the Norwegian coast, the Barents Sea, and the Svalbard area (Rasmussen et al. 1993, Drengstig et al. 2000, Martinez et al. 1997). These analyses showed that there are no distinct sub-populations in the open sea, and that there is a high degree of genetic variance between individuals within each location. However, genetic gradients related to geographic distance and sea currents have been identified. There may be mother populations responsible for the recruitment to other areas, as is claimed by Russian scientists (Lysy 1981, 1983). Knowledge pertaining to the presence of such mother populations is of great importance when managing the shrimp resources. Current models have been developed for dispersal of particles (e.g., plankton) in the sea. Data on larval hatching, development, and behaviour of shrimp larvae have been obtained from field and laboratory experiments and will be used as input data for particle tracking and biological models (Ådlandsvik and Sundby 1994, Hanssen and \(\AA\) dlandsvik 1996). Preliminary results reveal that the majority of shrimp larvae settle approximately 80 km from the spot where hatched (Pedersen et al. in prep).

\subsection*{9.2.6 Age determination}

The Norwegian and Russian scientists agreed upon the procedures for obtaining shrimp biological data in 1993 (Aschan et al. 1993). In order to obtain good length frequency distributions for age analyses, oblique carapace lengths (CL) (from the posterior margin of eyestalk to the posterior mid-dorsal edge) of approximately 300 individuals from each trawl station are measured to the nearest 0.01 mm with an electronic calliper (Mitutoyo, Japan). The data are saved in the database in intervals of 0.1 mm . Shrimp ageing is completed by modal analysis using MIX 3.0 (MacDonald and Pitcher 1979). Annual age determinations have been conducted for 15 areas in the Barents Sea and 7 areas in the Svalbard area since 1991 (Aschan 2001, Hansen and Aschan 2001). Scientists agree on how the available length-at-age data should be implemented in the production of recruitment indices, maturity-at-age and catch-at-age data.

\subsection*{9.2.7 Maturity-at-age}

The biological development of shrimp is divided into several stages. Shrimp starts off as males (Stage 2) after the juvenile stage (Stage 1). Thereafter they reach intersex (Stage 3) before they develop into first time spawning females with headroe (Stage 4). When the females mate, the roe is moved under the abdomen (Stage 5) where the eggs stay until hatched (Stage 6). Some females then take a resting period (Stage 7), but the majority starts on a new cycle with headroe (Stage 8). The Russian and the Norwegian coding of the stages are given in Aschan et al. (1993). The life history of shrimp varies geographically, from the south to the north, as well as over time (Berenboim 1982, Teigsmark 1983, Hansen and Aschan 2001). Nilssen and Hopkins (1991) show that, although significant latitudinal trends are present, the effects of specific environmental conditions (e.g., warm or cold current systems at a given latitude, seasonal production cycles, and more recent trends toward increased fishing effort on previously unexploited stocks at high latitudes) are important factors modifying "latitudinal life cycle strategies" of this species. Analyses of data from the 90 's suggest that shrimp in the southern Barents Sea (area A) grew quickly and changed sex at an age of four years, whereas shrimp in the central and northern Barents Sea grew slowly (areas B, C and E) and changed sex at an age of 5 years or greater (Aschan 2001). In the Svalbard area, shrimp were between 6 and 10 years at sex change (Hansen and Aschan 2001). Data from Spanish commercial catches indicate a sex change at 5-6 years in the Svalbard zone. The life strategy has changed over time. In the 80 's, when the water was cold, the shrimp in the Barents Sea grew slowly and changed sex later than in the 90 's when the water was warmer (Teigsmark 1983, Grimsmo 1993). These large variations in life history cause problems when applying traditional fishery models based on time-series.

Since the growth of shrimp varies in time and space, it is difficult to decide on a good recruitment index. An age-length key constructed from the Norwegian Barents sea survey has been used to define the number of recruits of 1, 2, 3 and 4 year old shrimp in the whole area (Table 9.5) (Aschan et al. 2000). A common procedure for dividing shrimp into age groups has been agreed upon. Since very few shrimp \(<15 \mathrm{~mm}\) CL are caught in the trawl, it is suggested that a mesh bag is attached to the underbelly of the survey trawl (Aschan and Sunnanå 1997, Nilssen et al. 1986).

\subsection*{9.2.9 Natural mortality and predation (Figure 9.5)}

Predation by cod is the main source of natural mortality. However, it should be noted that other fish species such as Greenland halibut (Reinhardtius hippoglossoides), long rough dab (Hippoglossoides platessoides), thorny skate (Raja radiata) and blue whiting (Micromesistius poutassou) also prey on shrimp (Dolgov 1997, Dolgova and Dolgov 1997. The methods used in estimating cod consumption are described by Bogstad and Mehl (1997), and dos Santos and Jobling (1995). In the Barents Sea, the annual consumption of shrimp was estimated to be above \(200,000 \mathrm{t}\) throughout the period 1994-2001 (Figure 9.5, Table 1.3 and 1.4). Shrimp consumption rates may, however, have been overestimated. Since all future shrimp assessments have to include cod as predator, it is important to identify and study possible problems with the cod consumption estimates.

\subsection*{9.3 Evaluation of the Stock (Table 9.6)}

\subsection*{9.3.1 Assessment methods under progress.}

The great plasticity in growth of shrimp and age at sex change, as well as a lack of biological data and length distributions from the catches make it difficult to apply traditional analytical fishery assessment methods to the data. Therefore a spreadsheet performance report (Caddy 1999, Koeller et al. 2001) has been used to assess the available information (Table 9.6).

Other models have been used in assessing shrimp and some of these are listed below together with the experience achieved by using them.

\section*{Production models}
1) Shaefer and Fox stock models;
2) stock production model including predation (Stefánsson et al. 1994, Berenboim and Korzhev 1997);
3) age-structured production model (Shepherd 1991);
4) biomass dynamic models (Hilborn and Walters 1996).
5) dynamic production model (Babayan and Kizner, 1998).

Babayan and Kizner production models were used to assess the MSY of the Barents Sea shrimp (Korzhev and Berenboim, WD 17). Since cod consumption is not included in this model the Stefánsson production model is to be preferred.

The production model elaborated by Stefánsson et al. (1994) for shrimp of north Icelandic water was applied to Barents Sea shrimp data (Berenboim and Korzhev, 1997). This model considers cod and shrimp populations without dividing them into age or length groups.

Catch-at-age analysis (cohort models)
1) single-species virtual population analysis;
2) multi species virtual population analysis.

For these models it is important to apply reasonable values for the natural mortality coefficient as a function of age and year, because these parameters are important in shrimp models due to high cod consumption.

Single-species VPA
Single VPA (Lowestoft ICES) may be used in two variants:
- to estimate total natural mortality in advance (for example with the help of multispecies model), or
- to introduce the predator as an additional fleet.

\section*{Multispecies model MSVPA}

The MSVPA is developed in the MAWG ICES (Sparre 1984). Cod stomach data is obtained from the Joint RussianNorwegian stomach data base. Methods used in parameter estimation and preparation of input files are described in Bulgakova et al. (1995 a,b,c) and ICES (1996/Assess:3).

\section*{Length-at-age analysis}
1) Jones' analysis (for sustainable stock);
2) analysis including stochastic growth (Sullivan et al. 1991, Kunzlik 1991);
3) Fleksibest (Froeysa et al. 2002);
4) Bormicon - multispecies analysis (Stefánsson and Pálsson 1997).

\subsection*{9.4 Status of the Stock (Table 9.2-9.4, Figures 9.3, 9.5)}

Norwegian and Russian CPUE and survey biomass indices indicate an increase in the CPUE and the stock from 2001 to 2002 (Table 9.2, Figure 9.3). Russian survey biomass index in 2002 is above the long-term mean (1984-2002) where as the Norwegian index is still below this level. The CPUE series show that the Norwegian series is above the average and the Russian is below the average. The average strength 1998 and 1999 year classes have probably resulted in the growth of the survey index in year 2002. The 2000-2001 year classes are of uncertain strength but may contribute to some increase in shrimp stock in 2003-2004 if they turn out to be of average size. The decreased shrimp consumption by cod will probably also result in an increase in the shrimp stock biomass (Figure 9.5).

\subsection*{9.5 Recommendations for further work}
- Scientists should evaluate the procedures used in estimating the shrimp consumed by cod;
- Length and sex data from commercial catches should be provided by all nations involved in the fishery;
- Authorities should enforce the accurate completion of logbook data in Norway, especially the use of single, double and triple trawls;
- Work on developing and evaluating assessment methods should be continued;
- National shrimp cruises should survey the entire area of shrimp distribution in the Barents Sea and the Svalbard area; therefore, more vessel time is necessary.
- Catch and effort statistics should be delivered to the ICES by all countries involved in the shrimp fishery in the Barents Sea and the Svalbard area. Now there are available Norwegian, Russian and Spanish data only.

The Institute of Marine Research (IMR) and PINRO are responsible for providing the necessary research results to manage the stock of shrimp (Pandalus borealis) in the Barents Sea and Svalbartd area (ICES sub areas I and II.

In addition, talks between the responsible parties on shrimp research in the North Atlantic have led to a suggestion of putting all the assessment work on shrimp into a joint NAFO / ICES Working Group. However, the shrimp stock in the Barents Sea and Svalbard area was included in the terms of reference for the ICES Arctic Fisheries WG meeting in August 2000. The main argument was the ecosystem approach and the intense predation by cod on the shrimp stock.

During the AFWG meeting in 2000 the establishing of such an ICES/NAFO Shrimp Working Group was taken forward and it was indicated that October would be a suitable time for such a WG. One reason was the new timing for the AFWG that in 2001 and in the future will meet in late April. As this is also the timing of the Russian and Norwegian shrimp surveys in the Barents Sea, conducted since 1982, this will obviously create problems for the Russian and Norwegian scientists.

These topics have been discussed in the AFWG this year and an ICES/NAFO Shrimp WG to meet in October 2003 is being regarded as a good solution. Other arguments for the North Atlantic shrimp WG were the low number of shrimp scientists in the AFWG, the need for broader competence within shrimp assessment.

AFWG would like to ask ICES to proceed in the intention to establish a joint NAFO / ICES North Atlantic Shrimp Working Group to meet, preferable, in October.

Table 9.1
Nominal shrimp catches (t) by country (Subareas I and II combined). Data were provided by ICES and Working Group members.
\begin{tabular}{|c|c|c|c|c|}
\hline Year & Norway & Russia & Others & Total \\
\hline 1970 & 5,508 & 0 & 0 & 5,508 \\
\hline 1971 & 5,116 & 0 & 0 & 5,116 \\
\hline 1972 & 6,772 & 0 & 0 & 6,772 \\
\hline 1973 & 6,921 & 0 & 0 & 6,921 \\
\hline 1974 & 8,008 & 992 & 0 & 9,000 \\
\hline 1975 & 8,197 & 0 & 2 & 8,199 \\
\hline 1976 & 9,752 & 548 & 0 & 10,300 \\
\hline 1977 & 6,780 & 12,774 & 4,854 & 24,408 \\
\hline 1978 & 20,484 & 15,859 & 0 & 36,343 \\
\hline 1979 & 25,435 & 10,864 & 390 & 36,689 \\
\hline 1980 & 35,061 & 11,219 & 0 & 46,280 \\
\hline 1981 & 32,713 & 10,897 & 1,011 & 44,621 \\
\hline 1982 & 43,451 & 15,552 & 3,835 & 62,838 \\
\hline 1983 & 70,798 & 29,105 & 4,903 & 104,806 \\
\hline 1984 & 76,636 & 43,180 & 8,246 & 128,062 \\
\hline 1985 & 82.123 & 32,104 & 10,262 & 124,489 \\
\hline 1986 & 48,569 & 10,216 & 6,538 & 65,323 \\
\hline 1987 & 31,353 & 6,690 & 5,324 & 43,367 \\
\hline 1988 & 32,021 & 12,320 & 4,348 & 48,689 \\
\hline 1989 & 47,064 & 12,252 & 3,432 & 62,748 \\
\hline 1990 & 54,182 & 20,295 & 6,687 & 81,164 \\
\hline 1991 & 39,663 & 29,434 & 6,156 & 75,253 \\
\hline 1992 & 39,657 & 20,944 & 8,021 & 68,622 \\
\hline 1993 & 32,663 & 22,397 & 806 & 55,866 \\
\hline 1994 & 20,116 & 7,108 & 1,063 & 28,287 \\
\hline 1995 & 19,337 & 3,564 & 2,319 & 25,220 \\
\hline 1996 & 25,445 & 5,747 & 3,320 & 34,512 \\
\hline 1997 & 29,079 & 1,493 & 5,164 & 35,736 \\
\hline 1998 & 44,792 & 4,895 & 6,103 \({ }^{1}\) & 55,790 \\
\hline 1999 & 52,612 & 10,765 & 12,292 \({ }^{2}\) & 75,669 \\
\hline 2000 & 54,979 & 19,596 & 8,241 \({ }^{3}\) & 82,816 \\
\hline \(2001{ }^{6}\) & 41,216 & 5,846 & 8,136 \({ }^{4}\) & 55,198 \\
\hline \(2002{ }^{6}\) & 48,004 & 3,745 & 8,104 \({ }^{5}\) & 59,853 \\
\hline
\end{tabular}
\({ }^{1}\) Catches reported by Estonia, Faroe Island, Iceland, Lithuania, Portugal, Spain and UK(Eng.Wal.NI)
\({ }^{2}\) Catches reported by Estonia, Faroe Islands, Germany, Greenland, Iceland, Lithuania, Portugal Spain and UK(Eng.Wal.NI)
\({ }^{3}\) Catches reported by Estonia, Faroe Islands, Iceland, Lithuania, Portugal, Spain and UK.
\({ }_{5}^{4}\) Catches reported by Estonia, Faroe Islands, Lithuania, Portugal, Spain and UK
\({ }^{5}\) Catches reported by Estonia, Faroe Islands, Lithuania, Spain and UK
\({ }^{6}\) Preliminary data

Catch (t), effort (h) and CPUE (kg/h) data in ICES subareas I, IIa and IIb. Norwegian data based on log books from all vessels and scaled to the level of vessels fishing with single trawl at the size of between 1000 hp and 1500 hp . Russian data based on daily reports from vessels smaller than 1300 hp .
\begin{tabular}{lccccccc}
\hline Norway & \multicolumn{7}{c}{ Russia } \\
\hline Year & Catch & Effort & N-CPUE & Year & \multicolumn{1}{l}{ Catch } & Effort & R-CPUE \\
1980 & 20,748 & 85,844 & 242 & 1980 & & & \\
1981 & 21,865 & 77,736 & 281 & 1981 & 2,341 & 8,1 & 289 \\
1982 & 30,053 & 118,314 & 254 & 1982 & 4,966 & 20,4 & 243 \\
1983 & 50,909 & 174,39 & 292 & 1983 & 13,223 & 48 & 276 \\
1984 & 55,254 & 177,382 & 311 & 1984 & 33,403 & 118,9 & 281 \\
1985 & 57,063 & 200,852 & 284 & 1985 & 27,974 & 110,9 & 252 \\
1986 & 32,212 & 170,747 & 189 & 1986 & 7,912 & 33,5 & 236 \\
1987 & 17,192 & 128,191 & 134 & 1987 & 3,818 & 23,9 & 160 \\
1988 & 20,803 & 155,67 & 134 & 1988 & 9,01 & 61,6 & 146 \\
1989 & 33,775 & 202,419 & 167 & 1989 & 7,928 & 53,5 & 148 \\
1990 & 39,722 & 224,61 & 177 & 1990 & 17,126 & 94,5 & 181 \\
1991 & 32,922 & 164,865 & 200 & 1991 & 15,532 & 74,1 & 210 \\
1992 & 36,449 & 151,899 & 240 & 1992 & 13,025 & 57 & 229 \\
1993 & 27,376 & 106,634 & 257 & 1993 & 11,39 & 60 & 190 \\
1994 & 11,636 & 55,81 & 208 & 1994 & 4,521 & 27,5 & 164 \\
1995 & 10,480 & 59,527 & 176 & 1995 & 3,347 & 26,1 & 128 \\
1996 & 15,077 & 70,981 & 212 & 1996 & 5,68 & 35,3 & 161 \\
1997 & 21,303 & 94,931 & 224 & 1997 & 1,507 & 7,6 & 198 \\
1998 & 30,985 & 102,512 & 302 & 1998 & 4,9 & 21,212 & 231 \\
1999 & 45,137 & 194,948 & 231 & 1999 & 6,238 & 30,9 & 202 \\
2000 & 48,459 & 232,6 & 208 & 2000 & 12,204 & 71,784 & 170 \\
2001 & 41,175 & 181,872 & 226 & 2001 & 2,484 & 16,609 & 150 \\
2002 & 47,203 & 204,926 & 230 & 2002 & 3,745 & 16,528 & 172 \\
\hline
\end{tabular}

Table 9.3
Indices of shrimp biomass from Norwegian surveys in the years 1982-2002 by main areas.

Table 9.4 Indices of shrimp biomass (1000 t) from Russian survey in the 1984-2002 by main areas.
Catchability of 0.182 is used in the estimate.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Main Area} & A & B & C & E & F & G & H & I & K & \multirow[t]{3}{*}{Total} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Sum. } \\
\text { A,B,C,E }
\end{gathered}
\]} \\
\hline & East Finm ark & Tiddly Bank & Thor Iversen Bank & Hopen & \begin{tabular}{l}
Bear \\
Island
\end{tabular} & Storfiord Trench & Spitsbergen & Kola coast & Goose Bank & & \\
\hline Strata & 1-4 & 6,7,1s & 10-12,25 & 14-18 & \[
\begin{aligned}
& \hline 38-40, \\
& 43-45
\end{aligned}
\] & 48-50 & \[
\begin{gathered}
53-55,58- \\
60,63-65, \\
58-70
\end{gathered}
\] & 2s-6s & 7s-8s & & \\
\hline 1984 & 38 & 137 & 99 & 254 & & & & 133 & & 661 & 528 \\
\hline 1985 & 14 & 45 & 74 & 255 & & 6 & 46 & 19 & 9 & 468 & 388 \\
\hline 1986 & 9 & 19 & 44 & 140 & & 42 & 127 & 9 & 9 & 399 & 212 \\
\hline 1987 & 16 & 17 & 59 & 107 & 45 & 36 & 27 & 25 & 14 & 346 & 199 \\
\hline 1988 & 14 & 31 & 39 & 49 & & 22 & 29 & 36 & 13 & 233 & 133 \\
\hline 1989 & 70 & 128 & 57 & 132 & 6 & 60 & 25 & 105 & 20 & 603 & 387 \\
\hline 1990 & 90 & 195 & 119 & 259 & 14 & 110 & 30 & 196 & 15 & 1028 & 663 \\
\hline 1991 & 90 & 153 & 104 & 541 & 9 & 70 & 27 & 155 & 43 & 1192 & 888 \\
\hline 1992 & 80 & 153 & 92 & 409 & & & & 65 & 77 & 876 & 734 \\
\hline 1993 & 45 & 91 & 159 & 382 & 9 & & 58 & 37 & 111 & 892 & 677 \\
\hline 1994 & 4 & 35 & 48 & 255 & 21 & & & 14 & 27 & 404 & 342 \\
\hline 1995 & 5 & 28 & 15 & 80 & 33 & 53 & & 16 & 18 & 248 & 128 \\
\hline 1996 & 20 & 98 & 127 & & 21 & & & 67 & 108 & 441 & 245 \\
\hline 1997 & 26 & 108 & 130 & 341 & & & & 108 & 52 & 765 & 605 \\
\hline 1998 & 14 & 106 & 136 & 172 & & & & 108 & 41 & 576 & 427 \\
\hline 1999 & 43 & 139 & 107 & 523 & & & & 93 & 61 & 966 & 812 \\
\hline 2000 & 29 & 73 & 109 & 328 & 9 & 39 & & 72 & 141 & 800 & 539 \\
\hline 2001 & 11 & 52 & 105 & 185 & 19 & 14 & 13 & 14 & 55 & 468 & 353 \\
\hline 2002 & 30 & 129 & 198 & 353 & 15 & 39 & 51 & 70 & 105 & 980 & 710 \\
\hline \% 01\00 & -62 & -29 & -4 & -44 & 111 & -64 & & -81 & -61 & -42 & -35 \\
\hline \% 02/01 & 173 & 148 & 89 & 91 & -21 & 179 & 292 & 400 & 91 & 109 & 101 \\
\hline
\end{tabular}

Table 9.5 Recruitment index for shrimp in the Barents Sea defined as index of numbers in size groups according to carapace length-at-age in the Norwegian Barents sea survey (whole mm).
\begin{tabular}{|l|c|rrrrrrrrrr|}
\hline CL \((\mathrm{mm})\) & age & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 & 1997 & 1998 & 1999 \\
\hline\(<9\) & 1 & 0.2 & 4.2 & 2.8 & 3.8 & 4.2 & 0.1 & 0.2 & 0.2 & 0.1 & 0.9 \\
\(9<\mathrm{cl}<12\) & 2 & 4.5 & 28.1 & 42.9 & 31.7 & 16.1 & 12.3 & 14.0 & 13.7 & 2.8 & 7.4 \\
\(12<\mathrm{cl}<15\) & 3 & 32.6 & 92.1 & 127.9 & 112.8 & 60.6 & 66.9 & 77.9 & 84.4 & 85.7 & 26.4 \\
\(15<\mathrm{cl}<18\) & 4 & 343.0 & 299.6 & 361.9 & 415.7 & 247.2 & 305.5 & 468.0 & 561.2 & 544.7 & 342.5 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|r|r|r|}
\hline CL \((\mathrm{mm})\) & age & 2000 & 2001 & 2002 \\
\hline\(<9\) & 1 & 0.5 & 0.0 & 0.2 \\
\(9<\mathrm{cl}<12\) & 2 & 21.1 & 12.2 & 14.6 \\
\(12<\mathrm{cl}<15\) & 3 & 70.6 & 44.6 & 54.7 \\
\(15<\mathrm{cl}<18\) & 4 & 191.2 & 163.3 & 323.2 \\
\hline
\end{tabular}

Table 9.6 Evaluation of the shrimp (Pandalus borealis) stock in Barents Sea and Svalbard area, ICES Sub areas I, IIa and IIb.
\begin{tabular}{|c|c|}
\hline Catch & Increased to \(128,000 \mathrm{t}\) in 84 followed by a drop to \(43,000 \mathrm{t}\) in 87 . Catches fluctuated between \(81,000 \mathrm{t}\) in 90 and 25,000 in 95 . During 96-00 catches increased continuously to \(83,000 \mathrm{t}\). In 2001 the catches were reduced by \(33 \%\) to \(55,000 \mathrm{t}\) and increased somewhat in \(2002(60,000 \mathrm{t}\)) \\
\hline Effort & The total Norwegian and Russian effort (measured as hours fishing equivalent to medium sized vessel using single trawl) was at its lowest in 94 to 97 (approx. \(100,000 \mathrm{~h}\)) but increased to above \(300,000 \mathrm{~h}\) in 2000 , which is at the same level as in 85 and 90 which represent an all time high. In 2001 the effort was reduced to a level at about \(200,000 \mathrm{~h}\) and has increased by \(10 \%\) in 2002. Since 97 the number of Norwegian vessels using double and triple trawl has increased. The Norwegian increase in effort is estimated close to a four time increase over the last 8 years where as the Russian effort is at a low level. \\
\hline By Catch & The mandatory use of 19 mm sorting grates excludes most fish \(>18 \mathrm{~cm}\). Areas are closed if the following criteria are exceeded: 8 cod and haddock or 10 redfish or 3 Greenland halibut per 10 kg of shrimp. In 2002 the northeastern Hopen area and the Svalbard fjords were closed due to juvenile shrimp in and areas in the central and southern Barents Sea were closed due to juvenile haddock and cod. In autumn areas northeast of Svalbard were closed due to juveniles of Greenland halibut. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline INDEX & OBSERVATION & INTERPRETATION & EVALUATION \\
\hline FISHERY DATA & & & \\
\hline CPUE index & Increased for the Norwegian and the Russian fleet from 1995 to 1998 (302 and \(231 \mathrm{~kg} / \mathrm{h}\) respectively) but show a decrease in the years 99 and 00 for both fleets. In 2001 the Russian index was further reduced, but increased again in \(2002(172 \mathrm{~kg} / \mathrm{h})\). The Norwegian index has been revised to take into account double and triple trawling, and this index showed a lower value in 2000 but increased again in 2001 and \(2002(230 \mathrm{~kg} / \mathrm{h})\). & Between 95 and 98 the shrimp biomass and usage of new technology increased, however, the biomass decreased in 99,00 and 01 whereas there is signs for an increase in 2002, even when technological improvements has been accounted for. The Norwegian index is at the average Norwegian level of \(224 \mathrm{~kg} / \mathrm{h}\) but the Russian index is below the average Russian level of \(200 \mathrm{~kg} / \mathrm{h}\). & ? \\
\hline Spatial pattern & The Hopen deep remains the most important fishing area. & Reflects a stable situation for the fishery & + \\
\hline Temporal pattern & This is an all year fishery with the best catches in March-August and the lowest catches in November-February. & Monthly variation is due to seasonal vertical migrations, presence of ice and weather conditions rather than shrimp abundance. & + \\
\hline Male/female abundance & Only biological data from commercial catches in a small area west of Svalbard is available. & & ? \\
\hline Sex inversion & 5-6 years is the age range at sex change from Spanish commercial catch in 2000, 2001 and 2002 & The lack of previous information in commercial catches does not permit any interpretation. & ? \\
\hline
\end{tabular}

Table 9.6 cont.
\begin{tabular}{|c|c|c|c|}
\hline RESEARCH DATA & & & \\
\hline Biomass index & Norwegian and Russian biomass indices are well correlated and agree with the commercial CPUE. The Norwegian index indicates a reduction from 1998 to 2001 (\(46 \%\)). The Russian index indicates a reduction from 1999 to 2001 (\(52 \%\)). In 2002 both indices show an increase. Norway 6\% and Russia 109 \% & Biomass shows an increase. & + \\
\hline Spatial pattern & Widely distributed throughout the management area. Distribution/density patterns vary between years. The surveys do not cover the north-eastern part of the distribution area. & Area of distribution appears to be constant. & ? \\
\hline Recruitment (male age structure) & The 2001 year class show strength below average as 1 year olds, while the 1998, 1999 and 2000 year classes appeared to be of average strength. & The fishable shrimp biomass may increase as the 1999 and 2000 year classes enter the stock. & ? \\
\hline Spawning stock (females) & Has been a stable proportion of the stock through the 90 's; female abundances vary with the biomass index. The decrease in 2001 SSB index was due to the weak 96 year class. & The 97 and 98 year classes have contribute to some increase in the SSB in 2002. & ? \\
\hline Sex inversion & The majority of shrimp change sex at five years. Temporal and spatial distribution of mean length at sex change will be calculated using \(\mathrm{L}_{50}\) or Lt. & M suggest that we try to use Lt (Skuladottir, Koeler). Identify first time spawners as intersex with head roe (stage) & ? \\
\hline
\end{tabular}

Table 9.6 cont.
\begin{tabular}{|c|c|c|c|}
\hline OTHER FACTORS & & & \\
\hline Predation & \begin{tabular}{l}
Cod consumption since 1992 has been approximately 10 times higher than the landings. The decline in the cod stock has resulted in a decline in the consumption from 325,000 t in 98 to 256,000 t in 99 . Cod consumption has increased to \(459,000 \mathrm{t}\) in 2000 but again reduced in 2001 to 283,0000 t. The number for 2002 is estimated to be 186 thousand \(t\).. \\
Other predators are Greenland halibut and thorny skate.
\end{tabular} & Consumption by cod is declining and this may improve the level of the shrimp stock. & ? \\
\hline Environment & The 95-98 temperatures in the Barents Sea were below the longterm mean. Since the beginning of 1998 , temperatures have increased and this could impact growth, survival and sex change. & Possibly a positive effect on growth and recruitment and thereby on stock size. & ? \\
\hline Industry perspectives & In 2001 the Russian shrimp fishery indicates that the catch rate is lower than 2000. In the Norwegian fishery the catch rates are maintained using double or triple trawl. The price of shrimp has declined and has led to a reduction in the numbers of vessels fishing and in fishing hours. However, the catches seem to be good in April 2003. & Technological development is necessary to maintain the fishery. An effort increase in the Norwegian fleet of close to four times is estimated for the last decade. & ? \\
\hline
\end{tabular}

Table 9.6 cont.
\begin{tabular}{|l|l|l|l|}
\hline ASSESSMENT & & \begin{tabular}{l}
In the 80 's the ratio of catch to the combined Norwegian \\
and Russian survey biomass index was above the long- \\
term mean (1984-2002). During the mid 90's the ratio \\
was close to half of the mean. However, in 2000 and 2001 \\
it was some \(30 \%\) above the mean and in 2002 it is just \\
above and close to the mean. This is the same trend as \\
shown by the total effort.
\end{tabular} \\
\hline Exploitation Rate & \begin{tabular}{l}
Current status: Biomass and CPUE \\
indices are at an average level and show \\
a slight increase. \\
Stock Status
\end{tabular} & \begin{tabular}{l}
Prospects: Over the next few years, \\
residual female stock and average year \\
classes may contribute to some increase \\
of the stock. There is concern that an \\
increase in the effort will increase the \\
level of exploitation.
\end{tabular} & + \\
\hline \hline
\end{tabular}

The Norwegian and Russian surveys uses different catchability in their calculations and the exact stock level is unknown. Norwegian and Russian surveys do not cover the \(?\) entire area of distribution.

Uncertainty about the absolute stock size and the cod consumption

Figure 9.1. Shrimp landings from ICES areas I, IIa and IIb by Norway, Russia and other countries in the period 1970-2002

Figure 9.2
Shrimp biomass indices from Norwegian and Russian surveys in the Barents Sea and Spitsbergen area in 1982-2002.

Figure 9.3 Biomass indices from the Norwegian surveys, total landings and Norwegian and Russian CPUE for ICES areas I, IIa and IIb.

Figure 9.4 Survey strata are combined to 10 larger areas marked with letters A to K.East Finnmark (A), Tiddly Bank (B), Thor Iversen Bank (C), Hopen (E), Bear Island (F), Storfjord Trench (G), Spitsbergen (H), Kola coast (I) and the Goose Bank (K).

Figure 9.5
Biomass indices from the Norwegian surveys, biomass estimate for cod (age 3 years and older) and the shrimp consumed by the cod in the Barents Sea.

\section*{WD\# Title}

1 Ecological conditions in the Barents Sea, 2002-2003

6 Consumption of various prey species by cod in 1984-2002.
7 NEA cod dynamic simulation for the testing of various management scenarios
8 A regression model for recruitment of 3-year-old NEA cod based on capelin biomass, survey index and climate
Software implementation of process models
Application of age/length keys for Northeast Arctic cod to growth modelling
Abundance dynamics of the Barents Sea euphausiids and their importance as a component of cod food supply
On estimating an index of abundance for Greenland halibut Sea and adjacent waters in 1993 Comparison of different methods

Assessing cod by-catch in the Norwegian shrimp fishery
1 Short status report of the results from the Norwegian-Russian cod and haddock comparative age readings
Forecasting of growth rate in Northeast Arctic cod in 2002-2004

The Spanish NE Arctic cod fishery in 2002
Retrospective NEA saithe analysis
Norwegian trawl CPUE analysis for NEA saithe
6 Results of Russian research on saithe in 2002
The use of production models to estimate the northern shrimp stock in the Barents Sea
The Spanish NE Arctic shrimp fishery in 2002
Investigations on demersal fish in the Barents Sea winter 2003

Abundance of saithe Finnmark - Møre autumn 2003
Acoustic abundance of spawning Northeast Arctic cod in the Lofoten survey spring 2003. Preliminary results

Results from the Russian survey for Greenland halibut in the Barents Sea and adjacent waters in 2002
The demersal fish survey in the Barents Sea and Svalbard area during summer 2002
Results of Russian autumn surveys of cod and haddock in 1984-2002

\section*{Authors}

Stiansen, J. E, Ottersen, G., Dalpadado, P., Loeng, H and Ingvaldsen, R.
Needle, C. and Marshall, C.T.
Marshall, C.T. and Needle, C.
Drobysheva, S., Nesterova, V. and Zhukova, N.

Pennington, M .
Dolgov, A.

Borisov, V. and Bulgakova, T.

Stiansen, J.E, Aglen, A., Bogstad, B., Mehl, S. and Nakken, O.

Sokolov, K.

Ajiad, A., and Nedreaas, K.

Nedreaas, K., and Yaragina, N.

Filin, A.

Casas, J.M., and Murua, H.
Mehl, S. and Fotland, Å.
Mehl, S. and Fotland, \(\AA\).

Drevetnyak, K., and Russkikh, A.

Korzhev, V.A., and Berenboim, B.I.
Casas, J.M.

Aglen, A., Alvsvåg, J., Halland, T.I, Høines, Å., Nakken, O., Russkikh, A. and Smirnov, O.
Korsbrekke, K. and Mehl, S.
Mehl, S., Nedreaas, K. and Salthaug, A.

Smirnov, O.

Høines, Å.

Sokolov, A., Gusev, E. And Yaragina, N.

Spanish bottom trawl survey "FLETAN ARTICO 2002" in the slope of Svalbard Area, ICES Division IIb.
Norwegian catch and effort series - an update.

\section*{Sunnanå, K}

Ajiad, A., Jakobsen, T., and Nakken, O. 1999. Sexual difference in maturation of Northeast Arctic cod. J. Northw. Atl. Fish. Sci. 25: 1-15.

Anon. 1997. Protocol of the co-operation meeting held in Tromsø 12-13 June 1997.
Anon. 1998. Protocol of the co-operation meeting held in Tromsø 18-19 June 1998.
Anon. 1999. Protocol of the co-operation meting held in Kirkenes, 11-13 October, 1999.
Anon. 2001. dst2. Development of structurally detailed statistically testable models of marine populations. QLK5-CT1999-01609. Progress report for 1 January 2000 to 31 December 2000. Marine Research Institute Technical Report nr. 78, Marine Research Institute, Reykjavik, Iceland.

Anon. 2002a. dst2. Development of structurally detailed statistically testable models of marine populations. QLK5-CT1999-01609. Progress report for 1 January 2001 to 31 December 2001. Marine Research Institute Technical Report nr. 87, Marine Research Institute, Reykjavik, Iceland.

Anon., 2002b. Report from the 2002 joint Russian-Norwegian meeting to assess the Barents Sea capelin stock, Kirkenes 7-9 October 2002.

Aschan, M. 2001. Spatial variability in length frequency distribution and growth of shrimp (Pandalus borealis Krøyer 1838) in the Barents Sea. J. Northw. Atl. Fish. Sci. Vol.27: 77-89.

Aschan, M., Berenhoim, B., Mukhin, S. and Sunnanå, K. 1993. Results of Norwegian and Russian investigations of shrimp (Pandalus borealis) in the Barents Sea and Svalbard area in 1992. ICES CM 1993/K:9.

Aschan, M., Berenboim, B. and Mukhin, S. 1994. Results of Norwegian and Russian investigations of shrimp (Pandalus borealis) in the Barents Sea and the Svalbard area 1993, compared with earlier studies. ICES CM 1994/K:37.

Aschan, M., Berenboim, B. and Mukhin, S. 1995. Results of Norwegian and Russian investigations of shrimp (Pandalus borealis) in the Barents Sea and the Svalbard area 1994. ICES CM 1995/K:11.

Aschan, M., Berenboim, B. and Mukhin, S. 1996. Results of Norwegian and Russian investigations of Shrimp (Pandalus borealis) in the Barents Sea and in the Svalbard area 1995. ICES CM 1996/K:6.

Aschan, M., Ådlandsvik, B. and Tjelmeland, S. 2000. Spatial and temporal patterns in Recruitment of shrimp Pandalus borealis in the Barents Sea. ICES CM 2000/N:32.

Aschan, M. and Sunnanå, K. 1997. Evaluation of the Norwegian Shrimp Surveys conducted in the Barents Sea and the Svalbard area 1980-1997. ICES CM 1997/Y:07.

Asplin, L. and E. Dahl (Editors) 2003. Havets Miljø 2003. Fisken og Havet, særnr. 2- 2003. Institute of Marine Research, Bergen, Norway. In Norwegian with English subtitles.

Babayan V.K. and Kizner Z.I.1998. Dynamic models for NFC assessment. Logic, Notentialities, development //CSEAP, Colin. Sci. Pap. ICSEAF, v. 15 (1): p.69-83.

Berenboim B.I.1982. Reproduction of the shrimp Pandalus borealis in the Barents Sea. Oceanology 22(1): 85-89.
Berenboim, B.I., Lysy, A. Yu. and Salmov, V.Z. 1986. Soviet investigations on shrimp (Pandalus borealis) in the Barents Sea and Spitsbergen area in May 1985. ICES CM 1986/K:11.

Berenboim, B.I., Mukhin, S.G. and Sheveleva, G.K. 1989. Soviet investigations of shrimp Pandalus borealis in the Barents Sea and off the Spitsbergen in 1988. ICES CM 1989/K:14.

Berenboim, B.I., Mukhin, S.G. and Sheveleva, G.K. 1990. Soviet investigations of shrimp Pandalus borealis in the Barents Sea and off the Spitsbergen in 1989. ICES CM 1990/K: 4.

Berenboim, B., Mukhin, S. and Sunnanå, K. 1992. Results from Norwegian and Soviet investigations of shrimp Pandalus borealis in the Barents Sea. ICES CM 1991/K:14.

Berenboim, B. and Korzhev, V. 1997. On possibility of using Stefansson's production model to assess the northern shrimp (Pandalus borealis) stock in the Barents Sea. ICES CM 1997/Y.

Berenboim, B.I., Dolgov, A.V., Korzhev, V.A. and Yaragina N.A. 2001. The impact of cod on the dynamics of Barents Sea shrimp (Pandalus borealis) as determined by multispecies models. J. Northw. Atl. Fish. Sci. 27: 1-7.

Björnsson, H., and Sigurdsson, T. 2003. Assessment of golden redfish (Sebastes marinus L.) in Icelandic waters. Scienta Marina 67 (Suppl. 1):301-314.

Bogstad, B., Hiis Hauge, K., and Ulltang, Ø. 1997. MULTSPEC - A Multi-Species Model for Fish and Marine Mammals in the Barents Sea. J. Northw. Atl. Fish. Sci. 22: 317-341.

Bogstad, B. and Mehl, S. (MS) 1997. Interactions Between Cod (Gadus morhua) and Its Prey Species in the Barents Sea. Forage Fishes in Marine Ecosystems. Proceedings of the International Symposium on the Role of Forage Fishes in Marine Ecosystems. Alaska Sea Grant College Program Report No. 97-01: 591-615. University of Alaska Fairbanks.

Brander, K. 2002. Predicting weight at age. Internal ICES note to Assessment Working Groups.

Bulgakova, T., D.Vasilyev, V.Korzhev, V.Tretyak 1995a. The results of multispecies analysis for the Barents Sea fishery community (cod, capelin, shrimp and herring)// ICES C.M. 1995/D:14. 24p.

Bulgakova, T., D.Vasilyev and A.Dolgov 1995b Some special algorithms for the Barents Sea fish stomach content data base processing// ICES CM 1995/D:13 Ref. G,H,K.

Bulgakova T., D.Vasilyev et al. 1995 c Seasonal and yearly dynamics of the Barents Sea cod rations. ICES CM 1995/G:32 Ref. D,H,K.

Caddy, J.F. 1999. Deciding on precautionary management measures for a stock based on a suite of limit reference points (LRPs) as a basis for a multi-LRP harvest law. NAFO Sci. Coun. Studies, 32: 55-68.

Dalpadado, P. B. Bogstad, H. Gjøsæter, S. Mehl and H. R. Skjoldal. 2002. Zooplankton-fish interactions in the Barents Sea. In Large Marine Ecosystems, pp.269-291. Blackwell Science Inc.

Deriso, R. B., Quinn, T. J. and Neal, P. R. 1985. Catch-age analysis with auxiliary information. Can. J. fish. Aquat. Sci., 42: 815-824.

Dingsør, G. E. 2001. Estimation of discards in the commercial trawl fishery for Northeast Arctic cod (Gadus morhua L.) and some effects on assessment. Cand. Scient thesis, University of Bergen, 2001

Dolgov A.V. 1997. Distribution, abundance, biomass and feeding of thorny skate, Raja radiata, in the Barents Sea. ICES CM 1997/GG: 04.

Dolgova N.V and Dolgov A.V. 1997. Stock status and predation of long rough dab (Hippoglossoides platessoides) in the Barents and Norwegian Seas. (In: International Symposium on the Role of Forage Fishes in Marine Ecosystems, Anchorage, Alaska 13-16 November 1996.

Drengstig, A., Fevolden S.E, Galand P.E, and Aschan, M.M. 2000. Population structuring of the deep sea shrimp (Pandalus borealis) in the NE Atlantic based on allozymic differentiation. Aquat. Living Resour. 13:1-9.

Ellertsen B., Solemdal P., and Stromme T. 1981. Spawning period, transport and dispersal of eggs from spawning area of Arcto-Norwegian cod, Gadus morhua L. Rapp. P.-v. Reun.Cons.int.Explor.Mer 178:.260-267.

Folkow, L. P., Haug, T., Nilssen, K.T., and Nordøy, E. S. 2000. Estimated food consumption of minke whales Balaenoptera acutorostrata in Northeast Atlantic waters in 1992-1995. NAMMCO Scientific Publications 2: 65-81.

Fournier, D. and Archibald, C. P. 1982. A general theory for analysing catch at age data. Can. J. Fish. Aquat. Sci., 39: 1195-1207.

Frøysa, K.G., Bogstad, B., and Skagen, D.W. 2002. Fleksibest - an age-length structured fish stock assessment tool with application to North-east Arctic cod (Gadus morhua L.) Fisheries research 55:87-101.

Grimsmo, L.1993. Biology and management of Pandalus borealis in the Barents Sea. Thesis at the University of Tromsø. -86 pp. (in Norwegian).

Hansen, H.Ø., and Aschan, M. 2001. Growth performance, size and age at maturity of shrimp Pandalus borealis, in the Svalbard area related to environment. J. Northw. Atl. Fish. Sci.

Hansen, R. and Ådlandsvik B. 1996. Application of a hydrodynamical model on transport of larvae of polar cod in the northern Barents Sea. Fisken og Havet nr.27-1996. 65 pp.

Harbitz, A., Aschan, M. and Sunnanå, K. 1998. Optimum stratified sampling design for biomass estimates in large area trawl surveys - exemplified by shrimp surveys in the Barents Sea. Fisheries research 37:107-113.

Hilborn, R. and Walters, C.J. 1996. Biomass dynamic models. User's manual. FAO computerized information series (fisheries). No. 10. Rome, FAO. 62p.

Hylen, A., Tveranger, B. and Øynes, P. 1984. Norwegian investigations on the deep Sea shrimp (Pandalus borealis) in the Barents Sea in April - May 1984 and in the Spitsbergen area in July - August 1984. ICES CM 1984/K:21.

Hylen, A. and Øynes, P. 1986. Results of stratified trawl surveys for shrimps (Pandalus borealis) in the Barents Sea and in the Svalbard region in 1986. ICES CM 1986/K:34.

Hylen, A., Jacobsen, J. A. and Øynes, P. 1987. Results of stratified trawl surveys for shrimps (Pandalus borealis) in the Barents Sea and the Svalbard region in 1987. ICES CM 1987/K:39.

Hylen, A. and Øynes, P. 1988. Results of stratified trawl surveys for shrimps (Pandalus borealis) in the Barents Sea and the Svalbard region in 1988. ICES CM 1988/K:18.

Hylen, A., Sunnanå, K. and Øynes, P. 1989. Results of stratified trawl surveys for shrimps (Pandalus borealis) in the Barents Sea and the Svalbard region in 1989. ICES CM 1989/K:26.

Hylen, A. and Ågotnes, P. 1990. Results of stratified shrimp trawl surveys for shrimps (Pandalus borealis) in the Barents Sea and the Svalbard region in 1990. Survey Report.

ICES. 1996. Report of the multispecies assessment working group. Bergen, Norway, 21 - 28 June 1995. ICES CM 1996/Assess:3.

ICES 1996. Report of the Arctic Fisheries Working Group. ICES CM 1996/Assess: 4.311 pp.
ICES. 1997. Report of the Northern Pelagic and Blue Whiting Fisheries Working Group. ICES CM 1997/Assess: 14
ICES 1998. Study Group on the Precautionary Approach to Fisheries Management. ICES CM 1998/ACFM:10.
ICES. 1998. Technical minutes of ACFM meeting, ICES 20-29 October 1998. Internal document.
ICES. 1999. Report of the Joint ICES/NAFO Working Group on harp and hooded seals. Tromsø, Norway, 29 September - 2 October 1998. ICES CM 1999/ACFM:7, 36 pp.
ICES 2000. Report of the Arctic Fisheries Working Group. ICES CM 2000/ACFM: 3.312 pp.
ICES 2001. Report of the Arctic Fisheries Working Group. ICES Headquarters August 2000. ICES CM 2001/ACFM:02. 340 pp .

ICES 2001. Report of the Arctic Fisheries Working Group. Bergen, Norway, 24 April - 3 May 2001. ICES CM 2001/ACFM:19. 380 pp.

ICES 2002. Report of the Arctic Fisheries Working Group. ICES Headquarters 16-25 April 2002. ICES CM 2002/ACFM:18. 451 pp .

ICES ACFM. 2003. Report of the Study Group on Growth, Maturity and Condition in Stock Projections. ICES CM 2003/D:01.

ICES 2003. Report of the Study Group on the Further Development of the Precautionary Approach to Fisheries Management. ICES Headquarters 2-6 December 2002. ICES CM 2003/ACFM: (in prep.).

ICES 2003. Study Group on Biological Reference Points for Northeast Arctic Cod. Svanhovd, Norway 13-17 January 2003. ICES CM 2003/ACFM:11.

ICES 2003. Study Group on Precautionary Reference Points for Advice on Fisheries Management. ICES Headquarters 24-26 February 2003. ICES CM 2003/ACFM:15.

Ingvaldsen, R., Loeng, H, Ottersen, G, and Ådlandsvik, B. 2002. Climatic variability in the Barents Sea during the \(20^{\text {th }}\) century with focus on the 1990s. ICES Marine Science Symposium (in press).

Jakobsen, T., Korsbrekke, K., Mehl, S., and Nakken, O. 1997. Norwegian combined acoustic and bottom trawl surveys for demersal fish in the Barents Sea during winter. ICES CM 1997/Y:17.

Johansen, G. O., Bogstad, B., Mehl, S., and Ulltang, Ø. 2002. Consumption of juvenile herring (Clupea harengus L.) by Northeast Arctic cod (Gadus morhua L.) in the Barents Sea: a new approach to estimating consumption in piscivorous fish. In: Johansen, G. O. (2002). The predator-prey interaction between Northeast Arctic cod (Gadus morhua L.) and juvenile Norwegian spring-spawning herring (Clupea harengus L.). Dr scient thesis, Department of Fisheries and Marine Biology, University of Bergen.

Kartavtsev, V.P., Berenboim, B. and Zugurovsky, K.I. 1991. Population genetic differentiation on the pink shrimp Pandalus borealis Krøyer 1838, from the Barents and Bering Seas. J. Shell. Res. 10 (2): 333-339.

Koeller, P., Savard, L., Parsons, D.G. and Fu, C. 2001. A precautionary approach to assessment and management of shrimp stocks in the Northwest Atlantic. J. Northw. Atl. Fish. Sci.

Korsbrekke, K. 1997. Norwegian acoustic survey of Northeast Arctic cod on the spawning grounds off Lofoten. ICES C.M 1997/Y:18.

Köster, F.W., H.-H. Hinrichsen, M.A. St. John, D. Schnack, B.R. MacKenzie, J. Tomkiewicz, and M. Plikshs. 2001. Developing Baltic cod recruitment models II: Incorporation of environmental variability and species interaction. Can. J. Fish. Aquat. Sci. 58: 1535-1557.

Kunzlik, P.A. 1991. An Itroduction to Sullivan, Lai and Gallucci's Catch at Size Analysis (CASA). Working Paper to the 1991 Nephrops Assessment Working Group. 21 pp.

Kvamme, C. and Frøysa, K. G. 2003. Assessing the stock effects of selectivity changes in a fishery. Fisheries Research (submitted).

Lindstrøm, U., Haug, T. and Røttingen, I. 2002. Predation on herring, Clupea harengus, by minke whales, Balaenoptera acutorostrata, in the Barents Sea. ICES Journal of Marine Science, 59: 58-70.

Lysy, A.Y. 1981. Distribution of larvae of deep-sea prawn (Pandalus borealis Krøyer) in Norwegian and Barents Seas in 1979. Annales biol., 3:107-108.

Lysy, A.Y. 1983. Distribution, abundance, and development of deep-water shrimp (Pandalus borealis) larvae in the Norwegian and Barents Seas in 1980. Ann. Biol. Copenh. 37:107-108.

Macdonald, P.D.M., and T.J. Pitcher. 1979. Age groups from size-frequency data: a versatile and efficient method of analysing distribution mixtures. J. Fish. Res. Board Can., 36: 987-1001.

Marshall, C.T., Kjesbu, O.S., Yaragina, N.A., Solemdal, P., and Ulltang, Ø. 1998. Is spawner biomass a sensitive measure of the reproductive and recruitment potential of Northeast Arctic cod? Can. J. Fish. Aquat. Sci. 55: 17661783.

Martinez, I., Skjeldal, T.O., Dreyer, B. and Aljanabi, S.M. 1997. Genetic structuring of Pandalus borealis in the NEAtlantic. II. RAPD analysis. ICES CM 1997/T:24.

Mehl, S. 1999. Demersal fish investigations in the Barents Sea winter 1999. Fisken og Havet 13-1999. (In Norwegian with table and figure text also in English).

Mehl, S., and Yaragina, N. A. 1992. Methods and results in the joint PINRO-IMR stomach sampling program. In: Bogstad, B. and Tjelmeland, S. (eds.), Interrelations between fish populations in the Barents Sea. Proceedings of the fifth PINRO-IMR Symposium. Murmansk, 12-16 August 1991. Institute of Marine Research, Bergen, Norway, 5-16.

Mukhin, S.G. and Sheveleva, G.K. 1991. Soviet investigations on shrimp in the Barents Sea and off the Spitsbergen in 1990. ICES CM 1991/K:14.

Nakken, O. and A.Raknes 1996. Corrections of indices of abundance of 0-group fish in the Barents Sea for varying capture efficiency. ICES CM 1996/G:12.

Nilssen, E.M. and Hopkins, C.C.E. 1991. Population parameters and life histories of the deep-water prawn Pandalus borealis from different regions. ICES CM 1991/K:2.

Nilssen, E.M., Larsen, R.B. and Hopkins, C.C.E. 1986. Catch and size selection of Pandalus borealis in a bottom trawl and implications for population dynamic analyses. ICES CM 1986/K:4.

Nilssen, K.T., Pedersen, O-P., Folkow, L. and Haug, T. 2000. Food consumption estimates of Barents Sea harp seals. NAMMCO Scientific Publications 2: 9-27.

Ottersen G., Ådlandsvik B., and Loeng, H. 2000. Predictability of Barents Sea temperature. Fisheries Oceanography 9: 121-135

Pedersen, T. 1984. Variation of peak spawning of Arcto-Norwegian cod (Gadus morhua L.) during the time period 1929-1982 based on indices estimated from fishery statistics. The Propagation of cod Gadus morhua L. Flødevigen rapportser., 1, Part 1, p.301-316.

Pedersen, O. P., Aschan, M., Tande, K., Slagstad, D. and Rasmussen, T. In prep. The advection and population dynamics of Pandalus borealis investigated by a Lagrangian particle tracking model.

Rasmussen, T., Thollesson, M. and Nilssen, E.M. 1993. Preliminary investigations on the population genetic differentiation of the deep water prawn, Pandalus borealis Krøyer 1838, from Northern Norway and the Barents Sea. ICES CM 1993/K:11.
dos Santos, J and Jobling, M. 1995. Test of a food consumption model for the Atlantic cod. ICES J. mar. Sci., 52:209219.

Schweder, T., Skaug, H.J., Dimakos, X.K., Langaas, M. and Øien, N. 1997. Abundance of northeastern Atlantic minke whales, estimates for 1989 and 1995. Rep. Int. Whal. Commn 47: 453-483.

Shepherd, J.G. 1991. Simple methods for short-term forecasting of catch and biomass. ICES J. mar. Sci., 48: 67-78.
Stefánsson, G. and Pálsson, Ó.K. 1997. Bormicon. A boreal migration and consumption model. Report no. 58, Marine Research Institute, Reykjavik, Iceland.

Stefánsson, G. and Pálsson, Ó. K.1998. A framework for multispecies modelling of Arcto-boreal systems. Rev. Fish. Biol. Fish. 8,101-104.

Stefánsson, G., Skúladóttir, U. and Pétursson, G. 1994. The use of a stock production type model in evaluating the offshore Pandalus borealis stock of North Icelandic waters, including the predation of Northern shrimp by cod. ICES CM 1994/K:25.

Sparre P. 1984. A computer program for estimation of food suitability coefficients from stomach content data and multispecies VPA// ICES C.M. 1984/G:25.

Sullivan,P.J., Lai H.L., Gallucci V.F. 1991. A catch-at-length analysis that incorporates a stochastic model of growth.Can. J. Fish. Aquat. Sci. 47: 184-198.

Tavares, A. M. and Øynes, P. 1980. Results of a stratified bottom trawl survey for shrimps (Pandalus borealis) in the Barents Sea and the Spitsbergen area in May-June 1980. ICES CM 1980/K:22.

Teigsmark G.1983. Populations of the deep-sea shrimp (Pandalus borealis Krøyer) in the Barents Sea. Fiskedir. Skr. Ser. HavUnders., 17: 377-430.

Teigsmark, G. and Øynes, P. 1981. Results of a stratified bottom trawl survey for shrimps (Pandalus borealis) in the Barents Sea in May - June 1981. ICES CM 1981/K:21.

Teigsmark, G. and Øynes, P. 1982. Norwegian investigations on the deep Sea shrimp(Pandalus borealis) in the Barents Sea in 1982. ICES CM 1982/K:12.

Teigsmark, G. and Øynes, P. 1983a. Results of a stratified bottom trawl survey for shrimps (Pandalus borealis) in the Spitsbergen area in July 1982. ICES CM 1983/K:17.

Teigsmark, G. and Øynes, P. 1983b. Norwegian investigations on the deep Sea shrimp (Pandalus borealis) in the Barents Sea in April - May 1983 and in the Spitsbergen area in July 1983. ICES CM 1983/K:46.

Tomkiewicz, J., M. Eriksson, T. Baranova, V. Feldman, and H. Müller. 1997. Maturity ogives and sex ratios for Baltic cod: establishment of a database and time series. ICES CM 1997/CC:20.

Trenkel, V. O’Brien, C. M. and Bogstad, B. 2002. Length-based population dynamics in state space form. Appendix C. 3 in dst2. Development of structurally detailed statistically testable models of marine populations. QLK5-CT1999-01609. Progress report for 1 January 2001 to 31 December 2001. Marine Research Institute Technical Report nr. 87, Marine Research Institute, Reykjavik, Iceland.

Tveranger, P. and Øynes, P. 1985. Results of stratified trawl surveys for shrimps (Pandalus borealis) in the Barents Sea in May and in the Svalbard region in July - August 1985. ICES CM 1985/K:50.

Yaragina N. A. and Marshall C. T. 2000. Trophic influences on interannual and seasonal variation in the liver condition index of Northeast Arctic cod (Gadus morhua). ICES Journal of Marine Science, 57: 42-55.

Ådlandsvik, B. and Sundby, S. 1994. Modelling the transport of cod larvae from the Lofoten area. ICES Mar. Sci. Symp. 198: 379-392.

\section*{ANNEX 1}

\section*{ARCTIC FISHERIES WORKING GROUP}

San Sebastian, 23 April - 2 May 2003
\begin{tabular}{|c|c|c|c|c|}
\hline NAME & ADDRESS & TELEPHONE & FAX & E-MAIL \\
\hline Asgeir Aglen & Institute of Marine Research P.O. Box 1870 Nordnes N-5817 Bergen Norway & +4755238680 & +4755238687 & asgeir.aglen@imr.no \\
\hline Ole Thomas Albert & Institute of Marine Research Tromsø Branch N-9291 Tromsø Norway & \[
\begin{aligned}
& \hline+4777609736 \\
& +4777609700
\end{aligned}
\] & +4777609701 & ole.thomas.albert@i mr.no \\
\hline Carolina Alonso & AZTI-Food and Fisheries Technological Institute Herrera Kaia, Portualde Z/G, 20110 Pasaia-Gipuzkoa Spain & +34 943004850 & +43943004801 & calonso@pas.azti.es \\
\hline Erik Berg & Institute of Marine Research Tromsø Branch N-9291 Tromsø Norway & \[
\begin{aligned}
& \hline+4777609735 \\
& +4777609700
\end{aligned}
\] & +4777609701 & erik.berg@imr.no \\
\hline Boris Berenboim & \begin{tabular}{l}
Polar Research Institute of Marine \\
Fisheries and Oceanography \\
(PINRO) \\
6 Knipovich Street \\
183763 Murmansk \\
Russia
\end{tabular} & +78152 472176 & \[
\begin{aligned}
& \hline+78152473331 \\
& +4778910518
\end{aligned}
\] & borisber@pinro.ru \\
\hline Bjarte Bogstad & Institute of Marine Research P.O. Box 1870 Nordnes N-5817 Bergen Norway & +47 55238681 & +47 55238687 & bjarte@imr.no \\
\hline Ray Bowering & \begin{tabular}{l}
Dept. of Fisheries \& Oceans P.O. Box 5667 \\
St John's, Nfld A1C 5X1 Canada
\end{tabular} & +1 7097722054 & +1709 7724105 & BoweringR@dfompo.gc.ca \\
\hline Vladimir Borisov & \begin{tabular}{l}
Federal Research Institute of Fisheries and Oceanography (VNIRO) \\
17 Verkhne Krasnoselskaya 107140 Moscow \\
Russia
\end{tabular} & +7952649229 & +7952649187 & forecast@, vniro,ru \\
\hline Tatiana Bulgakova & \begin{tabular}{l}
Federal Research Institute of Fisheries and Oceanography (VNIRO) \\
17 Verkhne Krasnoselskaya 107140 Moscow \\
Russia
\end{tabular} & +7952649965 & +7952649187 & tbulgakova@vniro.ru \\
\hline Jose Miguel Casas & \begin{tabular}{l}
Instituto Español de Oceanografía \\
P.O. Box 1552 \\
36080 Vigo \\
Spain
\end{tabular} & +34986 492111 & +34 986492351 & \[
\begin{aligned}
& \hline \text { mikel.casas@vi.ieo.e } \\
& \underline{s}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Konstantin V. \\
Drevetnyak
\end{tabular} & \begin{tabular}{l}
Polar Research Institute of Marine \\
Fisheries and Oceanography \\
(PINRO) \\
6 Knipovich Street \\
183763 Murmansk, Russia
\end{tabular} & +78152 472231 & +78152473331 & drevko@pinro.ru \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline NAME & ADDRESS & TELEPHONE & FAX & E-MAIL \\
\hline Anatoly Filin & \begin{tabular}{l}
Polar Research Institute of Marine Fisheries and Oceanography (PINRO) \\
6 Knipovich Street 183763 Murmansk Russia
\end{tabular} & +78152 472562 & \[
\begin{aligned}
& +78152473461 \\
& +4778910518
\end{aligned}
\] & filin@pinro.ru \\
\hline Aage Fotland & \begin{tabular}{l}
Institute of Marine Research P.O. Box 1870, Nordnes \\
N-5817 Bergen \\
Norway
\end{tabular} & +47 55238682 & +4755238687 & aage.fotland@imr.no \\
\hline Aage Høines & Institute of Marine Research P.O. Box 1870 Nordnes N-5817 Bergen Norway & +4755238674 & +47 55238687 & aageh@imr.no \\
\hline Knut Korsbrekke & Institute of Marine Research P.O. Box 1870 Nordnes N -5817 Bergen Norway & +4755238638 & +47 55238687 & knutk@imr.no \\
\hline Yuri Kovalev & \begin{tabular}{l}
Polar Research Institute of Marine Fisheries and Oceanography (PINRO) \\
6 Knipovich Street 183763 Murmansk, Russia
\end{tabular} & +7 8152472462 & +78152 473331 & kovalev@pinro.ru \\
\hline Yu. M. Lepesevich & \begin{tabular}{l}
Polar Research Institute of Marine Fisheries and Oceanography \\
(PINRO) \\
6 Knipovich Street 183763 Murmansk, Russia
\end{tabular} & +78152 474324 & +75129510518 & lepesev@pinro.ru \\
\hline Tara Marshall & \begin{tabular}{l}
Institute of Marine Research P.O. Box 1870 Nordnes \\
N-5817 Bergen \\
Norway
\end{tabular} & +4755238475 & +47 55238584 & tara@imr.no \\
\hline Sigbjoern Mehl & Institute of Marine Research P.O. Box 1870 Nordnes N-5817 Bergen Norway & +4755238666 & +47 55238687 & sigbjorn@imr.no \\
\hline Lorenzo Motos & AZTI-Food and Fisheries Technological Institute Herrera Kaia, Portualde Z/G, 20110 Pasaia-Gipuzkoa, Spain & +34 943004800 & +34 943004801 & 1motos@pas.azti.es \\
\hline Hilario Murua & AZTI-Food and Fisheries Technological Institute Herrera Kaia, Portualde Z/G, 20110 Pasaia-Gipuzkoa, Spain & +34943004800 & +34943004801 & hmurua@pas.azti.es \\
\hline Kjell H. Nedreaas & Institute of Marine Research P.O. Box 1870, Nordnes 5817 Bergen Norway & +47 55238671 & +47 55238687 & \[
\begin{aligned}
& \text { kjell.nedreaas@imr.n } \\
& \underline{o}
\end{aligned}
\] \\
\hline Ruediger Schoene & \begin{tabular}{l}
Bundesforschunganstalt fur \\
Fischerei \\
Palmaille 9 \\
D-22767 Hamburg, \\
Germany
\end{tabular} & +49 38905226 & +49 38905263 & ruediger.schoene@is h.bfa-fisch.de \\
\hline Mikhail Shevelev & \begin{tabular}{l}
Polar Research Institute of Marine Fisheries and Oceanography \\
(PINRO) \\
6 Knipovich Street 183763 Murmansk \\
Russia
\end{tabular} & +78152473022 & +75129510518 & shevelev@pinro.ru \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline NAME & ADDRESS & TELEPHONE & FAX & E-MAIL \\
\hline Oleg Smirnov & \begin{tabular}{l}
Polar Research Institute of Marine Fisheries and Oceanography (PINRO) \\
6 Knipovich Street 183763 Murmansk Russia
\end{tabular} & +78152473022 & +75129510518 & smirnov@pinro.ru \\
\hline Knut Sunnanå & Institute of Marine Research Tromsø Branch N-9291 Troms \(\varnothing\) Norway & \[
\begin{aligned}
& +4777609732 \\
& +4777609700
\end{aligned}
\] & +4777609701 & \[
\begin{aligned}
& \text { knut.sunnana@imr.n } \\
& \underline{\text { o }}
\end{aligned}
\] \\
\hline Jan Erik Stiansen & Institute of Marine Research P.O. Box 1870, Nordnes N-5817 Bergen Norway & +4755238626 & +4755238584 & \begin{tabular}{l}
jan.erik.stiansen@im \\
r.no
\end{tabular} \\
\hline Natalia Yaragina & \begin{tabular}{l}
Polar Research Institute of Marine Fisheries and Oceanography \\
(PINRO) \\
6 Knipovich Street 183763 Murmansk \\
Russia
\end{tabular} & +78152472231 & +78152473331 & yaragina@pinro.ru \\
\hline Ekaterina Volkovinskaya & \begin{tabular}{l}
Polar Research Institute of Marine Fisheries and Oceanography \\
(PINRO) \\
6 Knipovich Street 183763 Murmansk \\
Russia
\end{tabular} & \[
\begin{aligned}
& +4778910518 \\
& +78152473461
\end{aligned}
\] & +75129510518 & katerina@pinro.ru \\
\hline Morten Åsnes & Institute of Marine Research P.O. Box 1870, Nordnes N-5817 Bergen Norway & \[
\begin{aligned}
& +4755238645 \\
& +4792869214
\end{aligned}
\] & +47 55238687 & mortenn@imr.no \\
\hline
\end{tabular}

\title{
Standard Procedure for Assessment XSA/ICA Type
}

Stock specific documentation of standard assessment procedures used by ICES.

\author{
Stock:...Norwegian Coastal cod \\ Working Group:...Arctic Fisheries Working Group
}
\(\qquad\)

Date: 30-04-03

\section*{A General}

\section*{A.1. Stock definition}

Cod in the Barents Sea, the Norwegian Sea and in the coastal areas living under variable environmental conditions form groups with some peculiarities in geographical distribution, migration pattern, growth, maturation rates, genetics features, etc. The degree of intermingle of different groups is uncertain (Borisov, Ponomarenko and Yaragina, 1999). However, taking into account some biological characteristics of cod in the coastal zone and the specifics of the coastal fishery, the Working Group considered it acceptable to assess the Norwegian coastal cod stock (in the frame of ICES) separately from North-East Arctic cod.

Both types of cod (the Norwegian Coastal cod and the North-East Arctic cod) can be met together on spawning grounds during spawning period as well as in catches all the year round both inshore and offshore in variable proportions.

The Norwegian Coastal cod (NCC) is distributed in the fjords and along the coast of Norway from the Kola peninsula in northeast and south to Møre at \(62^{\circ}\) N. Spawning areas are located in fjords as well as offshore along the coast. Spawning season extents from March to late June. The 0 and 1 -group of NCC inhabit shallow water both in fjords and in coastal areas and are hardly found in deeper trawling areas until reaching about 25 cm . Afterwards they gradually move towards deeper water. NCC starts on average to mature at age 4-6 and migrates towards spawning grounds in early winter. The majority of the biomass (about \(75 \%\)) is located in the northern part of the area (North of \(67^{\circ} \mathrm{N}\)).

Tagging experiments of cod inhabiting fjords indicate only short migrations (Jakobsen 1987, Nøstvik and Pedersen 1999, Skreslet, et al. 1999). From these experiments very few tagged cod migrated into the Barents Sea (\(<1 \%\)). Investigations based on genetics find large difference between NCC and North-East Arctic cod (NEAC) (Fevolden and Pogson 1995, Fevolden and Pogson 1997, Jørstad and Nævdal 1989, Møller 1969), while others do not find any difference (Arnason and Pálsson 1996, Mork, et al. 1984, Artemjeva and Novikov, 1990). Investigations also indicate that NCC probably consists of several separate populations.

Ongoing investigations on the genetic structure of cod along the Norwegian coast, the Murman coast and in the White Sea will hopefully further elucidate the stock structure of cod in these areas.

\section*{A.2. Fishery}

The fishery is conducted both with trawlers and with smaller coastal vessels using traditional fishing gears like gillnet, longline, hand line and danish seine. In addition to quotas, the fishery is regulated by the same minimum catch size, minimum mesh size on the fishing gears as for the North-East Arctic cod, maximum by-catch of undersized fish, closure of areas having high densities of juveniles and by seasonal and area restrictions. The fishery is dominated by gillnet (\(50 \%\)), while longline/hand line account for about \(20 \%\), Danish seine \(20 \%\) and Trawl \(10 \%\) of the total catch. There was a shift around 1995 in the portion caught by the different gears. After 1995 the portion taken by longline and hand line has decreased, while the portion taken by danish seine has increased. Norwegian vessels take all the reported catch. However, trawlers from other countries probably take a small amount of NCC when fishing near the Norwegian coast fishing for North-East Arctic cod and North-East Arctic haddock.

\section*{A.3. Ecosystem aspects}

\section*{Not investigated}

\section*{B. Data}

\section*{B. 1 Commercial catch}

From 1996, cod caught inside the 12 n.mile zone have been separated into Norwegian coastal cod and Northeast Arctic cod based on biological sampling (Berg, et al. 1998) The method is based on otolith-typing. This is the same method as is used in separating the two stocks in the surveys targeting NEAC. The catches of Norwegian coastal cod (NCC) have been calculated back to 1984. During this period the catches have been between 25,000 and 75,000 t .

The separation of the Norwegian catches into NEAC and NCC is based on:
- No catches outside the 12 n.mile zone have been allocated to the NCC catches.
- The catches inside 12 n.mile zone are separated into quarter, fishing gear and Norwegian statistical areas.
- From the otolith structure, catches inside the 12 n.mile zone have been allocated to NCC and NEAC. The Institute of Marine Research in Bergen has been taking samples of commercial catches along the coast for a long period.

Norwegian commercial catch in tonnes by quarter, area and gear are derived from the sales notes statistics of The Directorate of Fisheries. Data from 8 sub areas are aggregated on 6 main areas for the gears gillnet, long line, hand line, Danish seine and trawl. No discards are reported or accounted for, but there are reports of discards and incorrect landings with respect to fish species and amount of catch. The scientific sampling strategy from the commercial fishing is to have age-length samples from all major gears in each area and quarter.

There are at present no defined criteria on how to allocate samples of catch numbers, mean length and mean weight at age to unsampled catches. The following general process has been applied: First look for samples from a neighbouring area if the fishery extends to this area in the same quarter. If there are no samples available in neighbouring areas, search for samples from other gears with the most similar selectivity in the same area or in neighbouring areas. The last option is to search in neighbouring quarters, first from the same gear in the same area, and than from neighbouring areas and similar gears. Age-length keys from research surveys with shrimp trawl (Norwegian coastal survey) are also used to fill holes.

Weight at age is calculated from the commercial catch back to 1984.
Proportions mature at age from 1984 to 1994 are obtained from the commercial catch data. From 1995-2001 the proportions mature at age are obtained from the Norwegian coastal survey.

Norway is assumed to account for most of the NCC landings. The text table below shows which kind of data are collected:
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{ Kind of data } \\
\hline Country & \begin{tabular}{l}
Caton (catch in \\
weight)
\end{tabular} & \begin{tabular}{l}
Canum (catch at \\
age in numbers)
\end{tabular} & \begin{tabular}{l}
Weca (weight at \\
age in the catch)
\end{tabular} & \begin{tabular}{l}
Matprop \\
(proportion \\
mature by age)
\end{tabular} & \begin{tabular}{l}
Length \\
composition in \\
catch
\end{tabular} \\
\hline Norway & X & X & X & X & X \\
\hline
\end{tabular}

The result files (FAD data) can be found at ICES and with the stock co-ordinator, either in the IFAP system as SAS datasets or as ASCII files on the Lowestoft format, either under w:\acfm\afwglyear\stock\coas_cod or w: lifapdataleximportlafwg\coas_cod.

\section*{B.2. Biological}

Weight at age in the stock is obtained from the Norwegian coastal survey in the period 1995 to 2001. From 1984 to 1994 weight at age in stock is taken from weight at age in the catch because no survey data from this period are available.

A fixed natural mortality of 0.2 is used both in the assessment and the forecast.

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing moratlity before spawning (Fprop) are to 0 .

\section*{B.3. Survey}

Since 1995 a Norwegian trawl-acoustic survey (Norwegian coastal survey) specially designed for coastal cod has been conducted annually in October-November (28 days). The survey covers the fjords and coastal areas from the Varangerfjord close to the Russian border and southwards to \(62^{\circ} \mathrm{N}\). The aim of conducting a acoustic survey targeting Norwegian coastal cod has been to support the stock assessment with fishery-independent data of the abundance of both the commercial size cod as well as the youngest pre-recruit coastal cod. The survey therefore covers the main areas where the commercial fishery takes place, normally dominated by 4-7 year old fish.

The 0 - and 1 year-old coastal cod, mainly inhabiting shallow water (\(0-50\) meter) near the coast and in the fjords, are also represented in the survey, although highly variable from year to year. However, the 0 -group cod caught in the survey is impossible to classify to NCC or NEAC by the otoliths since the first winter zone is used in this separation. A total number of more than 200 trawl hauls are conducted during the survey (100 bottom trawl, 100 pelagic trawl).

The survey abundance indexes at age are total numbers (in thousands) computed from the acoustics.

Ages 2-8 are used in the XSA-tuning.

\section*{B.4. Commercial CPUE}

No commercial CPUE are available for this stock.

\section*{B.5. Other relevant data}

None

\section*{C. Historical stock development}

\section*{Model used: XSA}

Software used: IFAP / Lowestoft VPA suite
Model Options chosen:
Tapered time weighting applied, power \(=3\) over 20 years
Catchability independent of stock size for all ages
Catchability independent of age for ages \(>=8\)
Survivor estimates shrunk towards the mean F of the final 2 years or the 4 oldest ages
S.E. of the mean to which the estimate are shrunk \(=1.0\)

Minimum standard error for population estimates derived from each fleet \(=0.300\)
Prior weighting not applied

\section*{Input data types and characteristics:}
\begin{tabular}{|l|l|l|l|l|}
\hline Type & Name & Year range & Age range & \begin{tabular}{l}
Variable from year to \\
year \\
Yes/No
\end{tabular} \\
\hline Caton & Catch in tonnes & \(1984-\) last data year & \(2-10+\) & Yes \\
\hline Canum & \begin{tabular}{l}
Catch at age in \\
numbers
\end{tabular} & \begin{tabular}{l}
Weight at age in the \\
commercial catch
\end{tabular} & \(1984-\) last data year & \(2-10+\) \\
\hline Weca & \begin{tabular}{l}
Weight at age of the \\
Spawning stock at \\
spawning time.
\end{tabular} & \(1984-\) last data year & \(2-10+\) & Yes \\
\hline West & \begin{tabular}{l}
Proportion of natural \\
mortality before \\
spawning
\end{tabular} & \(1984-\) last data year & \(2-10+\) & \begin{tabular}{l}
Yes/No -assumed to \\
be the same as as \\
weight at age in the \\
catch from 1984- \\
1994
\end{tabular} \\
\hline Mprop & \begin{tabular}{l}
Proportion of fishing \\
mortality before \\
spawning
\end{tabular} & \(1984-\) last data year & \(2-10+\) & \begin{tabular}{l}
No - set to 0 for all \\
ages in all years
\end{tabular} \\
\hline Fprop & \begin{tabular}{l}
Proportion mature at \\
age
\end{tabular} & \(1984-\) last data year & \(2-10+\) & \begin{tabular}{l}
No - set to 0 for all \\
ages in all years
\end{tabular} \\
\hline Matprop & \begin{tabular}{l}
Natural mortality
\end{tabular} & \(1984-\) last data year & \(2-10+\) & Yes \\
\hline Natmor & & \begin{tabular}{l}
No -set to 0.2 for all \\
ages in all years
\end{tabular} \\
\hline
\end{tabular}

Tuning data:
\begin{tabular}{|l|l|l|l|}
\hline Type & Name & Year range & Age range \\
\hline Tuning fleet 1 coastal & \begin{tabular}{l}
Norwegian \\
survey
\end{tabular} & \(1995-\) last data year & \(2-8\) \\
\hline
\end{tabular}

\section*{D. Short-term projection}

Model used: Age structured

Software used: MFDP- prediction with management option table and MFYPR- yield per recruit.

Initial stock size. Taken from the XSA for age 3 and older. The recruitment at age 2 in intermediate year is estimated using the RCT-3 software and indices from the Norwegian Acoustic survey. The same recruitment is used for age 2 in all projection years.

Natural mortality: Set to 0.2 for all ages in all years
Maturity: Geometric average of the last three years.
\(F\) and \(M\) before spawning: Set to 0 for all ages in all years
Weight at age in the stock: Geometric average of the last three years.
Weight at age in the catch: Geometric average of the last three years.
Exploitation pattern: Average of the three last years, scaled by the Fbar (4-7) to the level of the last year
Intermediate year assumptions: F status quo
Stock recruitment model used: RCT3
Procedures used for splitting projected catches: Not relevant

\section*{E. Medium-term projections}

Not done.

\section*{F. Long-term projections}

Not done.

\section*{G. Biological reference points}

\section*{Not available.}

\section*{H. Other issues}

\section*{I. References}

Árnason, E. and Pálsson, S. 1996. Mitochondrial cytochrome b DNA sequence variation of Atlantic cod Gadus morhua, from Norway. Molecular Ecology 5: 715-724.

Artemjeva, K.F. and G.G. Novikov. 1990. Peculiarities of population structure of the Northeast Atlantic cod. In: Eco;ogy, reproduction and conservation of biological resources in seas of the Northern Europe. Murmansk, p.162164 (in Russian)

Berg, E., Eriksen, I. A. and Eliassen, J.-E. 1998. Catch-statistics for Norwegian Coastal cod 1984-1997, -data and methods. Fiskeriforskning, 10/1998.

Borisov, V. M., Ponomarenko, V. P. and Yaragina, N. A. (1999). A Critical Review of the Population Status in Coastal cod (Gadus morhua) from Barents Sea Region of Norway. Journal of Ichthyology 39: 18-28.

Fevolden, S. E. and Pogson, G. H. 1995. Difference in nuclear DNA RFLPs between the Norwegian coastal and the Northeast Arctic population of Atlantic cod. pp. 403-415. In: Skjoldal, H. R., Hopkins, C., Erikstad, K. E. and Leinaas, H. P. (ed.) Ecology of Fjords and Coastal Waters, Elsevier Science B. V.

Fevolden, S. E. and Pogson, G. H. 1997. Genetic divergence at the synoptophysin (Syp I) locus among Norwegian coastal and north-east Arctic populations of Atlantic cod. Journal of Fish Biology 51: 895-908.

Jakobsen, T. 1987. Coastal Cod in Northern Norway. Fisheries Research 5: 223-234.

Jørstad, K. E. and Nævdal, G. 1989. Genetic variation and population structure of cod, Gadus morhua L., in some fjords in northern Norway. Journal of Fish Biology 35: 245-252.

Mork, J., Giskeødegård, R. and Sundnes, G. 1984. Population genetics studies in cod (Gadus morhua L.) by means of the haemoglobin polymorphism; observations in a Norwegian coastal population. Fiskeridirektoratets Skrifter Serie Havundersøkelser 17, No. 12: 449-471.

Møller, D. 1969. The relationship between Arctic and coastal cod in their immature stages illustrated by frequencies of genetic charaters. Fiskeridirektoratets Skrifter Serie Havundersøkelser 15: 220-233.

Nøstvik, F. and Pedersen, T. 1999. Movement pattern and growth of wild cod (Gadus morhua L.) and hatchery-reared cod released as 1-group. pp. 315-333. In: Howell, E., Moksness, E. and Svåsand, T. (ed.) Stock Enhancement and Sea Ranching, Fishing News Books, Oxford.

Skreslet, S., Albrigtsen, I., Andersen, A. P., Kolbeinshavn, A., Pedersen, T. and Unstad, K. 1999. Migration, growth and survival in stocked and wild cod (Gadus morhua L.) in the Vestfjord region, North Norway. pp. 306-314. In: Howell, E., Moksness, E. and Svåsand, T. (ed.) Stock Enhancement and Sea Ranching, Fishing News Books, Oxford.

\title{
Standard Procedure for Assessment XSA/ICA Type
}

Stock specific documentation of standard assessment procedures used by ICES.

\author{
Stock:...North-East Arctic Cod
}

Working Group:...Arctic Fisheries Working Group
Date: 20-02-02

\section*{General}

\section*{Stock definition}

The North-East Arctic cod (Gadus morhua) is distributed in the Barents Sea and adjacent waters, mainly in waters above \(0^{\circ}\) Celsius. The main spawning areas are along the Norwegian coast between \(\mathrm{N} 67^{\circ} 30^{\prime}\) and \(70^{\circ}\). The 0 -group cod drifts from the spawning grounds eastwards and northwards and during the international 0 -group survey in august it is observed over wide areas in the Barents Sea.

\section*{Fishery}

The fishery for North-east Arctic cod is conducted both by an international trawler fleet operating in offshore waters and by vessels using gillnets, longlines, handlines and Danish seine operating both offshore and in the coastal areas. \(60-80 \%\) of the annual landings are from trawlers. Catch quotas were introduced in the trawl fishery in 1978 and for the fisheries with conventional gears in 1989. In addition to quotas the fisheries are regulated by mesh size limitations including sorting grids, a minimum catching size, a maximum by-catch of undersized fish, maximum by-catch of nontarget species, closure of areas with high densities of juveniles and by seasonal and area restrictions. Since January 1997 sorting grids have been mandatory for the trawl fisheries in most of the Barents Sea and Svalbard area. Discarding is prohibited. The minimum catching size of cod is 42 cm in the Russian Economic zone, 47 cm in Norwegian Economic zone; both minimum landing sizes are used by respective fleets in the Svalbard area pursuant to the Svalbard Treaty 1920). The fisheries are controlled by inspections at sea, requirement of reporting to catch control points when entering and leaving the EEZs and by inspections when landing the fish for all fishing vessels. Keeping a detailed fishing logbook on board is mandatory for most vessels, and large parts of the fleet report to the authorities on a daily basis. There is some evidence that the present catch control and reporting systems are not sufficient to prevent discarding and underreporting of catches, but it has considerably improved in comparison with historical period.

\section*{Ecosystem aspects}

Considerable effort has been devoted to investigate multispecies interactions in the Northeast Arctic. Some of these investigations have reached the stage where quantitative results are available for use in assessments. Growth of cod depends on availability of prey such as capelin (Mallotus villosus), and variability in cod growth has had major impacts on the cod fishery. Cod are able to compensate only partially for low capelin abundance, by switching to other prey species. This may lead to periods of high cannibalism on young cod, and may result in impacts on other prey species which are greater than those estimated for periods when capelin are abundant. In a situation with low capelin abundance, juvenile herring (Clupea harengus) experience increased predation mortality by cod. The timing of cod spawning migrations is influenced by the presence of spawning herring in the relevant area. The interaction between capelin and herring is illustrated by the recruitment failure of capelin coinciding with years of high abundance of young herring in the Barents Sea. Herring predation on capelin larvae is believed to be partially responsible for the recruitment failure of capelin when young herring are abundant in the Barents Sea.

The composition and distribution of species in the Barents Sea depend considerably on the position of the polar front which separates warm and salty Atlantic waters from colder and fresher waters of arctic origin. Variation in the
recruitment of some species including cod and capelin has been associated with the changes in the influx of Atlantic waters to the large areas of the Barents Sea shelf.

The annual consumption of herring, capelin and cod by marine mammals (mainly harp seals and minke whales) has been estimated to be in the order of 1.5-2.0 million \(t\) (Bogstad, Haug and Mehl, 2000; See also Section 1.3.4 AFWG Report 2003).

However, estimates of total annual food consumption of Barents Sea harp seals are in the range of about 3.3-5 million tons (depending on choice of input parameters, ICES 2000d). The applied model used different values for the field metabolic rate of the seals (corresponding to two or three times their predicted basal metabolic rate) and under two scenarios: with an abundant capelin stock and with a very low capelin stock.
1. If capelin was abundant the total harp seal consumption was estimated to be about 3.3 million tons (using lowest field metabolic rate). The estimated consumption of various commercially important species was as follows (in tons): capelin approximately 800,000 , polar cod (Boreogadus saida) 600,000, herring 200,000 and Atlantic cod 100,000.
2. A low capelin stock in the Barents Sea (as it was in 1993-1996) led to switches in seal diet composition, with estimated increased consumption of polar cod (870,000 tons), other codfishes (mainly Atlantic cod; 360,000 tons), and herring (390,000 tons).

\section*{DATA}

\section*{Commercial catch}

\section*{Norway}

Norwegian commercial catch in tonnes by quarter, area and gear are derived from the sales notes statistics of The Directorate of Fisheries. Data from about 20 sub areas are aggregated on 6 main areas for the gears gill net, long line, hand line, purse seine, Danish seine, bottom trawl, shrimp trawl and trap. For bottom trawl the quarterly area distribution of the catches is adjusted by logbook data from The Directorate of Fisheries and the total bottom trawl catch by quarter and area is adjusted so that the total annual catch for all gears is the same as the official total catch reported to ICES.

No discards are reported or accounted for, but there are several reports of discards. In later years there are also reports of misreporting, saithe is landed as cod in a period with decreasing quotas and availability of cod and good availability of saithe.

The sampling strategy is to have age and length samples from all major gears in each main area and quarter. The main sampling program is sampling the landings. Additional samples from catches are obtained from the coast guard, from observers and from crew members reporting according to an agreed sampling procedure.

There are at present no defined criteria on how to allocate samples to unsampled catches, but the following general procedure has been applied: First look for samples from a neighbouring area if the fishery extends to this area in the same quarter. If there are no samples available in neighbouring areas, search for samples from other gears with the most similar selectivity in the same area or in neighbouring areas. The last option is to search in neighbouring quarters, first from the same gear in the same area, and than from neighbouring areas and similar gears. For some gears, areas and quarters length samples taken by the coast guard are applied and combined with an ALK from a neighbouring area, gear or quarter. ALKs from research surveys (shrimp trawl) are also used to fill holes.

\section*{Russia}

Russian commercial catch in tonnes by quarter and area are derived from the All-Russian Institute of fishery and oceanography (Moscow) statistics department. Data from each fishing vessel are aggregated on three ICES subDivision (1, IIa and IIb).Russian fishery by passive gears was almost stopped by the end of the 1940s. At present bottom trawl fishery constitutes more than \(95 \%\) cod catch.

The sampling strategy was to conduct mass measurements and collect age samples directly at sea, onboard of both research and commercial vessels to have age and length distributions from each area and quarter. Data on length distribution of cod in catches were collected in areas of cod fishery all the year round by a "standard" fishery trawl (mesh
size is 125 mm in the Russian Economic zone and Svalbard area and 135 mm in the Norwegian Economic zone) and summarized by three ICES sub-areas (1, IIa and IIb). Previously the PINRO area divisions were used, differed from the ICES sub-Divisions.

Age sampling was carried out by two ways: without any selection (otoliths were taken from any fish caught in one trawl, usually from 100-300 sp.) or using a stratified by length sampling method (i.e. approximately \(10-15 \mathrm{sp}\). per each \(10-\mathrm{cm}\) length group). The last method has been used since 1988.

All fish taken for age-reading were measured and weighted individually.
Catch at age are reported to ICES AFWG by sub-Division (1, IIa and IIb) and quarter (before 1984 - by sub-Division and year). Data on length distribution of cod in catches, as well as age-length keys, are formed for each quarter and area. In the case when a catch is present in the area/quarter but a length frequency is absent, a length frequency for the corresponding quarter, summarised for the whole sea is used. If there is no data on length composition of cod in catches per a quarter within the whole sea, a frequency summarised for the whole year and whole sea is used. Gaps in age-length distributions in subDivisions are filled in with data from the corresponding quarter, summarised for the whole sea. Rest gaps are filled in with information from the age-length key formed for the long-term period (1984-1997) for each quarter and for the whole sea. (Kovalev and Yaragina, 1999). Before 1984 calculation of annually catch cod numbers in sub-Divisions was derived from summarized for both the whole year age-length keys and length distribution in catches.

\section*{Germany and Spain}

Catch at age reported to the WG by ICES sub-Division (I, IIa and IIb) and quarter, according to national sampling. Missing quarters/sub-Divisions filled in by use of Russian or Norwegian sampling data.

\section*{Other nations}

Total annual catch in tonnes is reported by ICES sub-Divisions. All caches by other nations are taken by trawl. The age composition from the sampled trawl fleets is therefore applied to the catches by other nations.

The text table below shows which country supplied which kind of data for 2000:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{Kind of data} \\
\hline Country & Caton (catch in weight) & Canum (catch at age in numbers) & Weca (weight at age in the catch) & Matprop (proportion mature by age) & Length composition in catch \\
\hline Norway & x & x & x & x & x \\
\hline Russia & x & x & x & x & X \\
\hline Germany & x & X & X & & X \\
\hline United Kingdom & X & & & & \\
\hline France \({ }^{1}\) & x & & & & \\
\hline Spain & x & x & x & & x \\
\hline Portugal \({ }^{1}\) & X & & & & \\
\hline Ireland \({ }^{1}\) & x & & & & \\
\hline Greenland \({ }^{1}\) & X & & & & \\
\hline Faroe Islands \({ }^{1}\) Iceland \({ }^{1}\) & \[
\begin{aligned}
& \mathrm{x} \\
& \mathrm{x}
\end{aligned}
\] & & & & \\
\hline
\end{tabular}
\({ }^{1}\) As reported to Norwegian and Russian authorities

The nations that sample the catches, provide the catch at age data and mean weights at age on Excel spreadsheet files, and the national catches are combined in Excel spreadsheet files. The data should be found in the national laboratories and with the stock co-ordinator.

For 1983 and later years mean weight at age in the catch is calculated as the weighted average for the sampled catches. For the earlier period (1946-1982) mean weight at age in catches is set equal to mean weight at age in the stock (ICES 2001).

The Excel spreadsheet files used for age distribution, adjustments and aggregations can be found with the stock coordinator and for the current and previous year in the ICES computer system under w:\acfm\afwg|year\personal\name (of stock co-ordinator).

The result files (FAD data) can be found at ICES and with the stock co-ordinator, either in the IFAP system as SAS datasets or as ASCII files on the Lowestoft format, either under w: \(\mathbf{a c f m} \backslash \mathbf{a f w g} \backslash \mathbf{2 0 0 0} \backslash\) datalcod_arct or w: \(\backslash i f a p d a t a l e x i m p o r t \mid a f w g \backslash c o d _a r c t . ~\)

\section*{Biological}

For 1983 and later years weight at age in the stock and maturity at age is calculated as weighted averages from Russian and Norwegian surveys during the winter season. Stock weights at age a \(\left(\mathrm{W}_{\mathrm{a}}\right)\) at the start of year y are calculated as follows:
\(W_{a}=0.5\left(W_{\text {rus }, a-1}+\left(\frac{N_{\text {nbar }, a} W_{\text {nbar }, a}+N_{\text {lof }, a} W_{\text {lof }, a}}{N_{\text {nbar }, a}+N_{\text {lof }, a}}\right)\right)\)
where
\(W_{\text {rus,a-l }}\) : Weight at age a-1 in the Russian survey in year \(\mathrm{y}-1\)
\(N_{n b a r, a}\) : Abundance at age a in the Norwegian Barents Sea acoustic survey in year y
\(W_{n b a r, a}\) : Weight at age a in the Norwegian Barents Sea acoustic survey in year y
\(N_{l o f, a}\) : Abundance at age a in the Lofoten survey in year y
\(W_{\text {lof,a }}\) : Weight at age a in the Lofoten survey in year y
Maturity at age is estimated from the same surveys by the same formulae, replacing weight by proportion mature.

For age groups 12 and older, the stock weights is set equal to the catch weights, since most of this fish is taken during the spawning fisheries, and in most years considerably more fish from these ages are sampled from the catches than from the surveys.

For the earlier period (1946-1982) the maturity at age and weight at age in the stock is based on Russian sampling in late autumn (both from fisheries and from surveys) and Norwegian sampling in the Lofoten spawning fishery. These data were introduced and described in the 2001 assessment report (ICES 2001).

A fixed natural mortality of 0.2 is used both in the assessment and the forecast.
Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 . The peak spawning in the Lofoten area occurs most years in late March-early April.

\section*{Surveys}

\section*{Russia}

Russian surveys of cod in the southern Barents Sea started in the late 1940s as trawl surveys of young demersal fishes. Since 1957 such surveys have been conducted over the whole feeding area including the Bear Island - Spitbergen area (Baranenkova, 1964; Trambachev, 1981), both young and adult cod have been surveyed simultaneously. In 1984, acoustic methods started to be implemented during surveys of fish stocks (Zaferman, Serebrov, 1984; Lepesevich, Shevelev, 1997; Lepesevich et al., 1999). In 1995 a new acoustic assessment method was applied for the first time, which allowed the differentiation and registration of echo intensities from fish of different length (Shevelev et al., 1998). Methods of calculations of survey indices also changed, e.g. due to the necessity to derive length-based indices for the FLEKSIBEST model (Bogstad et al.1999; Gusev, Yaragina, 2000).

Time of survey conducting has reduced from 5-6 months (September-February) in 1946-1981 to 2-2.5 months (October-December) since 1982. The aim of conducting a survey is to investigate both the commercial size cod as well as the young cod. The survey covers the main areas where fries settle down as well as the commercial fishery takes place, included cod at age \(0+-10+\) years. A total number of more than 400 trawl hauls are conducted during the survey (mainly bottom trawl, a few pelagic trawl).

There are two survey abundance indices at age: 1). absolute numbers (in thousands) computed from the acoustics and 2). trawl indices, calculated as relative numbers per hour trawling.

Ages 3-8 are used in the XSA-tuning.

Joint Russian-Norwegian winter (February) survey

The survey started in 1981 and covers the ice-free part of the Barents see. Both swept area estimates from bottom trawl and acoustic estimates are produced. The swept area estimates are used in the tuning for ages 3-8, and the acoustic estimate are added to the Norwegian acoustic survey in Lofoten and used for tuning for ages 3-11. The survey is described in Jakobsen et al (1997) and Aglen et al. (2002).

\section*{Norwegian Lofoten survey}

Acoustic estimates from the Lofoten survey extends back to 1984. The survey is described by Korsbrekke (1997).

\section*{Commercial CPUE}

\section*{Russia}

Two CPUE data series exist, one is historical series, based on RT vessel type (side trawler, 800-1000 HP), which stopped operating in the Barents Sea in the middle of the \(1970-\mathrm{s}\), and other one is presently used, based on PST vessel type (stern trawler, 2000 HP). Information from each fishing trawler was daily transferred to PINRO, including data on each haul (timing, location, gear and catch by species). Yearly catch \(f\) cod by the PST trawlers as well as number of hour trawling were summarized and CPUE index (catch on tons per hour fishing) was calculated.

The effort (hours trawling) was scaled to the whole Russian catch. The CPUE indices are split on age groups by age data from the trawl fishery. Data on ages 9-13+ are used in the XSA-tuning.

\section*{ESTIMATION OF HISTORICAL STOCK DEVELOPMENT}

Model used: XSA

Software used: IFAP / Lowestoft VPA suite

Model Options chosen:
Tapered time weighting applied, power \(=3\) over 10 years
Catchability independent of stock size for ages \(>6\)
Catchability independent of age for ages \(>=10\)
Survivor estimates shrunk towards the mean F of the final 5 years or the 2 oldest ages
S.E. of the mean to which the estimate are shrunk \(=1.000\)

Minimum standard error for population estimates derived from each fleet \(=0.300\)
Prior weighting not applied

Input data types and characteristics:
\begin{tabular}{|l|l|l|l|l|}
\hline Type & Name & Year range & Age range & \begin{tabular}{l}
Variable from year to \\
year \\
Yes/No
\end{tabular} \\
\hline Caton & Catch in tonnes at age in & 1946 - last data year & \(3-13+\) & Yes \\
\hline Canum & \begin{tabular}{l}
Catch at data year \\
numbers
\end{tabular} & \(3-13+\) & Yes \\
\hline Weca & \begin{tabular}{l}
Weight at age in the \\
commercial catch
\end{tabular} & \(1982-\) last data year & \(3-13+\) & \begin{tabular}{l}
Yes, set equal to west \\
for 1946-1981
\end{tabular} \\
\hline West & \begin{tabular}{l}
Weight at age of the \\
spawning stock at \\
spawning time.
\end{tabular} & 1946 - last data year & \(3-13+\) & Yes \\
\hline Mprop & \begin{tabular}{l}
Proportion of natural \\
mortality before \\
spawning
\end{tabular} & \(1946-\) last data year & \(3-13+\) & \begin{tabular}{l}
No - set to 0 for all \\
ages in all years
\end{tabular} \\
\hline Fprop & \begin{tabular}{l}
Proportion of fishing \\
mortality before \\
spawning
\end{tabular} & \(1960-\) last data year & \(3-13+\) & \begin{tabular}{l}
No - set to 0 for all \\
ages in all years
\end{tabular} \\
\hline Matprop & \begin{tabular}{l}
Proportion mature at \\
age
\end{tabular} & \(1960-\) last data year & \(3-13+\) & \begin{tabular}{l}
yes \\
\hline Natmor
\end{tabular} \begin{tabular}{l}
Natural mortality \\
\end{tabular} \\
& \(1960-\) last data year & \(3-13+\) & \begin{tabular}{l}
Includes annual est. \\
of cannibalism from \\
1984, otherwise set \\
to 0.2 for all ages in \\
all years
\end{tabular} \\
\hline
\end{tabular}

Tuning data:
\begin{tabular}{|l|l|l|l|}
\hline Type & Name & Year range & Age range \\
\hline Tuning fleet 1 & \begin{tabular}{l}
Russian com. CPUE, \\
trawl
\end{tabular} & 1985 - last data year & \(9-13+\) \\
\hline Tuning fleet 2 & \begin{tabular}{l}
Joint Barents Sea \\
trawl survey, \\
february
\end{tabular} & 1981- last data year & \(3-8\) \\
\hline Tuning fleet 3 & \begin{tabular}{l}
Joint Barents Sea \\
Acoustic, February+ \\
Lofoten Acoustic \\
survey
\end{tabular} & 1985 - last data year & \(3-11\) \\
\hline Tuning fleet 4 & \begin{tabular}{l}
Russian bottom trawl \\
survey, November
\end{tabular} & 1984 - last data year & \(3-8\) \\
\hline
\end{tabular}

\section*{XSA-settings}
\begin{tabular}{|l|l|l|}
\hline Type of setting & Settings last year & \begin{tabular}{l}
Used this year (why \\
changed)
\end{tabular} \\
\hline Time series weighting & \begin{tabular}{l}
Tapered time weighting \\
power = 3 over 10 years
\end{tabular} & The same \\
\hline \begin{tabular}{l}
Recruitment regression \\
model (catchability \\
analysis)
\end{tabular} & \begin{tabular}{l}
Catchability dependent of \\
stock size for ages \(<6\) \\
Regression type \(=\) C \\
Min. 5 points used \\
Survivor estimates \\
shrunk to the population \\
mean for ages < 6
\end{tabular} & The same \\
Catchability independent \\
of age for ages >= 10
\end{tabular}\(\quad\left|\begin{array}{l}\text { Therminal population } \\
\text { estimation } \\
\begin{array}{l}\text { Survivor estimates shrunk } \\
\text { towards the mean F of the } \\
\text { final 5 years or the 2 oldest } \\
\text { ages. } \\
\text { S.E. of the mean to which } \\
\text { the estimate are shrunk = } \\
1.0 .\end{array} \\
\hline \text { Minimum standard error } \\
\text { for population estimates } \\
\text { derived from each fleet = } \\
0.300 .\end{array}\right|\)

\section*{SHORT-TERM PROJECTION}

Model used: Age structured

Software used: IFAP prediction with management option table and yield per recruit routines
Initial stock size. Taken from the XSA for age 4 and older. The recruitment at age 3 for the initial stock and the following 2 years are estimated from survey data and....(have to decide)

Natural mortality: Set equal to the values estimated for the terminal year.

Maturity: average of the three last years
\(F\) and \(M\) before spawning: Set to 0 for all ages in all years

Weight at age in the stock: Predicted by applying (10yr average) annual increments by cohort on last years observations.

Weight at age in the catch: Predicted by applying (10yr average) annual increments by cohort on last years observations.

Exploitation pattern: Average of the three last years, scaled by the Fbar (3-6) to the level of the last year
Intermediate year assumptions: F constraint

Stock recruitment model used: None

Procedures used for splitting projected catches: Not relevant

\section*{MEDIUM-TERM PROJECTIONS}

Model used: Age structured
Software used: ????

Initial stock size: Same as in the short-term projections.

Natural mortality: Same as in the short-term projections
Maturity: Same as in the short-term projections

F and M before spawning: Same as in the short-term projections
Weight at age in the stock: Same as last year in the short-term projections

Weight at age in the catch: Same as last year in the short-term projections
Exploitation pattern: Same as in the short-term projections
Intermediate year assumptions: Same as in the short-term projections

Stock recruitment model used: ????
Uncertainty models used: @RISK for excel, Latin Hypercubed, 500 iterations, fixed random number generator
1. Initial stock size: Lognormal distribution, LOGNORM(mean, standard deviation), with mean as in the short-term projections and standard deviation calculated by multiplying the mean by the external standard error from the XSA diagnostics
2. Natural mortality:
3. Maturity:
4. F and M before spawning:
5. Weight at age in the stock:
6. Weight at age in the catch:
7. Exploitation pattern: Average of the three last years, scaled by the Fbar to the level of the last year
8. Intermediate year assumptions: F-constraint
9. Stock recruitment model used: Truncated lognormal distribution, TLOGNORM(mean, standard deviation, minimum, maximum), is used for recruitment age 2, also in the initial year. The long term geometric mean, standard deviation, minimum, maximum are taken from the XSA for the period \(1960-4^{\text {th }}\) last year.

\section*{LONG-TERM PROJECTIONS}

SPR and YPR calculations

\section*{BIOLOGICAL REFERENCE POINTS}

Introduced 1998: \(\mathbf{B}_{\mathrm{lim}}=112000 \mathrm{t}, \mathbf{B}_{\mathrm{pa}}=500000 \mathrm{t}, \mathbf{F}_{\mathrm{lim}}=0.7, \mathbf{F}_{\mathrm{pa}}=0.42\)
Proposed SGBRP 2003: \(\mathbf{B}_{\mathrm{lim}}=220000 \mathrm{t}, \mathbf{B}_{\mathrm{pa}}=460000 \mathrm{t}, \mathbf{F}_{\mathrm{lim}}=0.74, \mathbf{F}_{\mathrm{pa}}=0.40\)

\section*{OTHER ISSUES}

Since the 1999 AFWG a new assessment model (Fleksibest) has been used to provide alternative assessments and to describe characteristics of the data for this stock.

\section*{REFERENCES}

Aglen, A., Alvsvåg, J., Lepesevich, Y., Korsbrekke, K., Mehl, S., Nedreaas, K.H., Sokolov, K., and Ågotnes, P. 2002. Investigations on demersal fish in the Barents Sea winter 2001. Detailed report. IMR/PINRO Joint report series no 2, 2002. 66pp.

Anon. 2001. dst2. Development of structurally detailed statistically testable models of marine populations. QLK5-CT1999-01609. Progress report for 1 January 2000 to 31 December 2000. Marine Research Institute Technical Report nr. 78, Marine Research Institute, Reykjavik, Iceland.

Anon. 2002. dst2. Development of structurally detailed statistically testable models of marine populations. QLK5-CT1999-01609. Progress report for 1 January 2001 to 31 December 2001. Marine Research Institute Technical Report nr. 87, Marine Research Institute, Reykjavik, Iceland.

Babayan V.K. and Kizner Z.I.1998. Dynamic models for NFC assessment. Logic, Notentialities, development //CSEAP, Colin. Sci. Pap. ICSEAF, v. 15 (1): p.69-83.

Baranenkova, A.S. 1964. Some results of estimation of cod fry in the Barents Sea during 1946-1961. In: Materials of PINRO Scientific Council Meeting by the results of investigations conducted in 1962-63. PINRO, Murmansk, 3:72-107 (in Russian).

Beckett, J. S. and Serra, R. 2001. Scientific peer review of Northeast Arcic cod assessment. Internal report to ICES, 9 October 2001, Oslo, Norway.

Berg, E., Eriksen, I.A. and Eliassen, J.E. 1998. Catch-statistics on Norwegian Coastal cod 1984-1997, data and methods. Fiskeriforskning Troms \(\varnothing\), report 10/1998. 13 pp.

Berenboim, B. and Korzhev, V. 1997. On possibility of using Stefansson's production model to assess the northern shrimp (Pandalus borealis) stock in the Barents Sea. ICES CM 1997/Y.

Berenboim, B.I., Dolgov, A.V., Korzhev, V.A. and Yaragina N.A. 2001. The impact of cod on the dynamics of Barents Sea shrimp (Pandalus borealis) as determined by multispecies models. J. Northw. Atl. Fish. Sci. 27: 1-7.

Bogstad B., Fotland Aa., Mehl S., 1999. A revision of the abundance indices for cod and haddock from the Norwegian winter survey in the Barents Sea, 1983-1999. . Working Document N 16 for the Arctic Fisheries Working Group, August 1999, 14 pp.

Bogstad, B., Haug, T. and Mehl, S. 2000. Who eats whom in the Barents Sea? NAMMCO Scientific Publications 2: 98119.

Bogstad, B., Lilly, G. R., Mehl, S., Pálsson, Ó. K., and Stefánsson, G. 1994. Cannibalism and year-class strength in Atlantic cod (Gadus morhua L.) in Arcto-boreal ecosystems (Barents Sea, Iceland and eastern Newfoundland). ICES mar. Sci, Symp. 198: 576-599.

Bogstad, B. and Mehl, S. (MS) 1997. Interactions Between Cod (Gadus morhua) and Its Prey Species in the Barents Sea. Forage Fishes in Marine Ecosystems. Proceedings of the International Symposium on the Role of Forage Fishes in Marine Ecosystems. Alaska Sea Grant College Program Report No. 97-01: 591-615. University of Alaska Fairbanks.

Bulgakova, T., D.Vasilyev and A.Dolgov 1995b Some special algorithms for the Barents Sea fish stomach content data base processing// ICES CM 1995/D:13 Ref. G,H,K.

Bulgakova T., D.Vasilyev et al. 1995 c Seasonal and yearly dynamics of the Barents Sea cod rations. ICES CM 1995/G:32 Ref. D,H,K.

Caddy, J.F. 1999. Deciding on precautionary management measures for a stock based on a suite of limit reference points (LRPs) as a basis for a multi-LRP harvest law. NAFO Sci. Coun. Studies, 32: 55-68.

CEFAS 1999. PA software users guide. The Centre for Environment, Fisheries and Aquaculture Science, CEFAS, Lowestoft, United Kingdom, 22 April 1999.

Deriso, R. B., Quinn, T. J. and Neal, P. R. 1985. Catch-age analysis with auxiliary information. Can. J. fish. Aquat. Sci., 42: 815-824.

Dingsør, G. E. 2001. Estimation of discards in the commercial trawl fishery for Northeast Arctic cod (Gadus morhua L.) and some effects on assessment. Cand. Scient thesis, University of Bergen, 2001

Folkow, L.P., Haug, T., Nilssen, K.T. and Nordøy, E.S. 2000. Estimated food consumption of minke whales Balaenoptera acutorostrata in Northeast Atlantic waters in 1992-1995. NAMMCO Scientific Publications 2: 6581.

Fournier, D. and Archibald, C. P. 1982. A general theory for analysing catch at age data. Can. J. Fish. Aquat. Sci., 39: 1195-1207.

Frøysa, K. G. 2002. Results and recommendations on test runs of Fleksibest with simulated annealing (SA). Appendix D. 6 in dst2. Development of structurally detailed statistically testable models of marine populations. QLK5-CT1999-01609. Progress report for 1 January 2001 to 31 December 2001. Marine Research Institute Technical Report nr. 87, Marine Research Institute, Reykjavik, Iceland.

Frøysa, K.G., Bogstad, B., and Skagen, D.W. 2002. Fleksibest - an age-length structured fish stock assessment tool with application to North-east Arctic cod (Gadus morhua L.) Fisheries research 55:87-101.

Gusev E.V. and Yaragina N.A. 2000. A conversion of cod abundance from the trawl-acoustic survey data to a number of cod in different age-length groups to be used in the Flexibest model. Working Document N 35 for the Arctic Fisheries Working Group, August 2000, 9 pp.

Harbitz, A., Aschan, M. and Sunnanå, K. 1998. Optimum stratified sampling design for biomass estimates in large area trawl surveys - exemplified by shrimp surveys in the Barents Sea. Fisheries research 37:107-113.

Hilborn, R. and Walters, C.J. 1996. Biomass dynamic models. User's manual. FAO computerized information series (fisheries). No. 10. Rome, FAO. 62p.

ICES. 1996. Report of the multispecies assessment working group. Bergen, Norway, 21 - 28 June 1995. ICES CM 1996/Assess:3.

ICES 1996. Report of the Arctic Fisheries Working Group. ICES CM 1996/Assess: 4.311 pp.

ICES 1997. Report of the Arctic Fisheries Working Group. ICES CM 1997/ACFM: 4.326 pp.
ICES. 1997. Report of the Northern Pelagic and Blue Whiting Fisheries Working Group. ICES CM 1997/ACFM: 14
ICES 1998. Report of the Arctic Fisheries Working Group. ICES CM 1998/ACFM: 2. 366 pp.

ICES 1998a. Report of the Study Group on the Precautionary Approach to Fisheries Management. ICES CM 1998/ACFM:10. 39 pp.

ICES 1998b. Report to the ICES Advisory Committee on Fishery Management, 1998. ICES Cooperative Research Report No. 29.

ICES 1998. Study Group on the Precautionary Approach to Fisheries Management. ICES CM 1998/ACFM:10.

ICES. 1998. Technical minutes of ACFM meeting, ICES 20-29 October 1998. Internal document.

ICES 1999. Report of the Arctic Fisheries Working Group. ICES CM 1999/ACFM: 3.276 pp.

ICES. 1999. Report of the Joint ICES/NAFO Working Group on harp and hooded seals. Tromsø, Norway, 29 September - 2 October 1998. ICES CM 1999/ACFM:7, 36 pp.

ICES 2000. Report of the Arctic Fisheries Working Group. ICES CM 2000/ACFM: 3.312 pp.
ICES 2001. ICES Annual Report for 2000. ISSN 0906-0596. 276 pp.
ICES 2001. Report of the ICES Advisory Committee on Fishery Management, 2001. ICES Cooperative Research Report No. 246.

ICES 2001. Report of the Arctic Fisheries Working Group. ICES Headquarters August 2000. ICES CM 2001/ACFM:02. 340 pp .

ICES 2001. Report of the Workshop on Fleksibest - an age and length based assessment tool. ICES CM 2001/ACFM:09. 61 pp .

ICES 2001. Report of the Arctic Fisheries Working Group. Bergen, Norway, 24 April - 3 May 2001. ICES CM 2001/ACFM:19. 340 pp.

ICES 2002. Report of the Working Group on Methods on Fish Stock Assessments. ICES Headquarters 3-3 December 2001. ICES CM/D:01. 98 pp.

ICES 2002. Report of the Study Group on the Further Development of the Precautionary Approach to Fisheries Management. Lisbon, Portugal, 4-8 March 2002. ICES CM 1998/ACFM: (in prep.).

Ingvaldsen, R., Loeng, H, Ottersen, G, and Ådlandsvik, B. 2002. The Barents Sea climate during the 1990s. ICES Marine Science Symposia (in press)

Jakobsen, T., Korsbrekke, K., Mehl, S., and Nakken, O. 1997. Norwegian combined acoustic and bottom trawl surveys for demersal fish in the Barents Sea during winter. ICES CM 1997/Y:17.

Korsbrekke, K. 1997. Norwegian acoustic survey of Northeast Arctic cod on the spawning grounds off Lofoten. ICES C.M 1997/Y:18.

Korsbrekke, K., Mehl, S., Nakken, O. and Pennington, M. 2001. A survey-based assessment of the Northeast Arctic cod stock. ICES Journal of Marine Science, 58: 763-769, 2001.

Kovalev Yu., Yaragina N.A., 1999. Scheme of recalculation of cod commercial catch weight into number of fish of different length-age groups accepted in PINRO (Russia) for the Flexibest model. Working Document N 10 for the Arctic Fisheries Working Group, August 1999, 9 pp.

Kunzlik P.A. 1991. An Introduction to Sullivan, Lai and Gallucci's Catch at Size Analysis (CASA). Working Paper to the 1991 Nephrops Ass.WG. : 21pp.

Lepesevich, Yu. M. and Shevelev, M. S. 1997. Evolution of the Russian survey for demersal fish: From ideal to reality. ICES C. M. 1997/Y:09.

Lepesevich Yu1.M., Smirnov O.V. and K.V. Drevetnyak, 1999. The Russian trawl acoustic survey on demersal adult and young fish stock assessments in the Barents Sea in autumn/winter. Working Document N 7 for the Arctic Fisheries Working Group, August 1999, 11 pp.

Macdonald, P.D.M., and T.J. Pitcher. 1979. Age groups from size-frequency data: a versatile and efficient method of analysing distribution mixtures. J. Fish. Res. Board Can., 36: 987-1001.

Marshall, C.T., Kjesbu, O.S., Yaragina, N.A., Solemdal, P., and Ulltang, Ø. 1998. Is spawner biomass a sensitive measure of the reproductive and recruitment potential of Northeast Arctic cod? Can. J. Fish. Aquat. Sci. 55: 17661783.

Mehl, S. 1999. Demersal fish investigations in the Barents Sea winter 1999. Fisken og Havet 13-1999. (In Norwegian with table and figure text also in English).

Mehl, S., and Yaragina, N. A. 1992. Methods and results in the joint PINRO-IMR stomach sampling program. In: Bogstad, B. and Tjelmeland, S. (eds.), Interrelations between fish populations in the Barents Sea. Proceedings of the fifth PINRO-IMR Symposium. Murmansk, 12-16 August 1991. Institute of Marine Research, Bergen, Norway, 5-16.

MRAG. 1997. Core program development for the modelling management strategies. Final Report of EC Study Project 94/110.

Nilssen, K.T., Pedersen, O-P., Folkow, L. and Haug, T. 2000. Food consumption estimates of Barents Sea harp seals. NAMMCO Scientific Publications 2: 9-27.

Ottersen G., Ådlandsvik B., and Loeng, H. 2000. Predictability of Barents Sea temperature. Fisheries Oceanography 9: 121-135

Pennington, M. (ed). 1999. Report of the workshop on comparison of stock assessment model strategies, with application to Northeast Arctic cod, Bergen 1-4 December 1998. Fisken og havet 4-1999, Institute of Marine Research, Bergen, Norway.

Richards, L.J., Schnute, J.T., Kronlund, A.R., and Beamish, R.J. 1992. Statistical models for the analysis of ageing error," Canadian Journal of Fisheries and Aquatic Sciences, 49, 1801-1815.
dos Santos, J and Jobling, M. 1995. Test of a food consumption model for the Atlantic cod. ICES J. mar. Sci., 52:209219.

Schweder, T., Skaug, H.J., Dimakos, X.K., Langaas, M. and Øien, N. 1997. Abundance of northeastern Atlantic minke whales, estimates for 1989 and 1995. Rep. Int. Whal. Commn 47: 453-483.

Shepherd, J.G. 1991. Simple methods for short-term forecasting of catch and biomass. ICES J. mar. Sci., 48: 67-78.

Shevelev M.S., Mamylov V.S., Ratushny S.V., and E.N. Gavrilov, 1998. Technique of Russian bottom trawl and acoustic surveys of the Barents Sea and how to improve them. NAFO Scientific Council Studies, No. 31, p.13-19.

Skagen, D.W. 2002. Programs for stochastic prediction and management simulation (STPR3 and LTEQ). Program description and instructions for use. (version dated 6-3-2002).

Sokolov, K. M. 2001. On feasibility of assessment of discards of small cod in trawl fishery for Gadidae in the Barents Sea and adjacent waters in 1996-2000. \(9^{\text {th }}\) joint Russian-Norwegian symposium "Technical regulations and bycatch criteria in the Barents Sea Fisheries" (PINRO, Murmansk, 14-15 August 2001).

Stefánsson, G. and Pálsson, Ó.K. 1997. Bormicon. A boreal migration and consumption model. Report no. 58, Marine Research Institute, Reykjavik, Iceland.

Stefánsson, G. and Pálsson, Ó. K.1998. A framework for multispecies modelling of Arcto-boreal systems. Rev. Fish. Biol. Fish. 8,101-104.

Stefánsson, G., Skúladóttir, U. and Pétursson, G. 1994. The use of a stock production type model in evaluating the offshore Pandalus borealis stock of North Icelandic waters, including the predation of Northern shrimp by cod. ICES CM 1994/K:25.

Trenkel, V. O’Brien, C. M. and Bogstad, B. 2002. Length-based population dynamics in state space form. Appendix C. 3 in dst2. Development of structurally detailed statistically testable models of marine populations. QLK5-CT1999-01609. Progress report for 1 January 2001 to 31 December 2001. Marine Research Institute Technical Report nr. 87, Marine Research Institute, Reykjavik, Iceland.

Trambachev, M.F. 1981. Young cod in the Barents Sea and Bear Island-Spitsbergen area in the in the autumn and winter 1978-1979. Annls.biol., Copenh., 1981(1979), 36: 107-109.

Zaferman M.L. and L.I., Serebrov. 1984. On the instrumental methods for estimating bottom and demersal fish stocks in the Barents and Norwegian Seas. - In: Reproduction and recruitment of Arctic cod. Reports of the \(1^{\text {st }}\) Soviet/Norwegian Symposium, Moscow, P. 359-370 (in Russian).

Stock specific documentation of standard assessment procedures used by ICES.

\author{
Stock:... Northeast Arctic Saithe \\ Working Group:... Arctic Fisheries Working Group
}

Date: 28.04.2003

\section*{A. General}

\section*{A.1. Stock definition}

The Northeast Arctic saithe is mainly distributed along the coast of Norway from the Kola peninsula in northeast and south to Møre at \(62^{\circ} \mathrm{N}\). The 0 -group saithe drifts from the spawning grounds to inshore waters. 2-3 years old the saithe gradually moves to deeper waters, and at age 3-6 it is found at typical saithe grounds. It starts to mature at age 5-7, and in early winter a migration towards the spawning grounds further out and south starts.

The stock boundary \(62^{\circ} \mathrm{N}\) is more for management purposes than a biological basis for stock separation. Tagging experiments show a regular annual migration of mature fish from the North-Norwegian coast to the spawning areas off the west coast of Norway and also to a lesser extent to the northern North Sea (ICES 1965). There is also a substantial migration of immature saithe to the North Sea from the Norwegian coast between \(62^{\circ}\) and \(66^{\circ} \mathrm{N}\) (Jakobsen 1981). In some years there are also examples of mass migration from northern Norway to Iceland and to a lesser extent to the Faroe Islands (Jakobsen 1987). 0-group saithe, on the other side, drifts from the northern North Sea to the coast of Norway north of \(62^{\circ} \mathrm{N}\).

\section*{A.2. Fishery}

Since the early 1960s the fishery has been dominated by purse seine and trawl fisheries accounting for \(60 \%\) in 2000 . A traditional gillnet fishery for spawning saithe accounts for about \(22 \%\). The remaining catches are taken by Danish seine and hand line in addition to minor by-catches in the long line fishery for other species. Some changes in recent regulations have led to fewer amounts taken by purse seine. Catches declined sharply after 1976. This was partly caused by the introduction of national economic zones in 1977. The stock was accepted as exclusively Norwegian and quota restrictions were put on fishing by other countries while the Norwegian fishery for some years remained unrestricted. In recent years the purse seine and trawl fisheries have been regulated by quotas where account has been taken of expected landings from other gears. Quotas can be transferred between purse seine and trawl fisheries if the quota allocated to one of the gears will not be taken. The target set for the total landings has generally been consistent with the scientific recommendations. Norway presently accounts for about \(93 \%\) of the landings.

The number of vessels taking part in the purse seine fishery has varied between 112 and 429 since 1977, with the highest participation in the first part of the period. There have been some variations from year to year, and many of the vessels that have taken part in the fishery the last decade have accounted for only a small fraction of the purse seine catches. The annual effort in the Norwegian trawl fishery has varied between 12000 and 77000 hours, with the highest effort from 1989 to 1995. Like in the purse seine fishery there have been rather large changes from year to year.

1 March 1999 the minimum landing size was increased from \(35-40 \mathrm{~cm}\) to 45 cm for trawl and conventional gears, and to 42 cm (north of Lofoten) and 40 cm (between \(62^{\circ} \mathrm{N}\) and Lofoten) for purse seine, with an exception for the first 3000 t purse seine catch between \(62^{\circ} \mathrm{N}\) and \(65^{\circ} 30 \mathrm{~N}\), where the minimum landing size still is 35 cm .

\section*{A.3. Ecosystem aspects}

The recruitment of saithe may suffer in years with reduced in \(\mathbf{F}_{\text {low }}\) of Atlantic water (Jakobsen 1986).

\section*{B. Data}
B.1. Commercial catch

Norwegian commercial catch in tonnes by quarter, area and gear are derived from the sales notes statistics of The Directorate of Fisheries. Data from about 20 sub areas are aggregated on 6 main areas for the gears gillnet, long line, hand line, purse seine, Danish seine, bottom trawl, shrimp trawl and trap. For bottom trawl the quarterly area distribution of the catches is adjusted by logbook data from The Directorate of Fisheries and the total bottom trawl catch by quarter and area is adjusted so that the total annual catch for all gears is the same as the official total catch reported to ICES. No discards are reported or accounted for, but there are several reports of discards. In later years there are also reports of misreporting, saithe is landed as cod in a period with decreasing quotas and availability of cod and good availability of saithe.

The sampling strategy is to have age-length samples from all major gears in each area and quarter. There are at present no defined criteria on how to allocate samples of catch numbers, mean length and mean weight-at-age to unsampled catches, but the following general process has been applied: First look for samples from a neighbouring area if the fishery extends to this area in the same quarter. If there are no samples available in neighbouring areas, search for samples from other gears with the most similar selectivity in the same area or in neighbouring areas. The last option is to search in neighbouring quarters, first from the same gear in the same area, and than from neighbouring areas and similar gears. For some gears, areas and quarters length samples taken by the coast guard are applied and combined with an ALK from a neighbouring area, gear or quarter. ALKs from research surveys (shrimp trawl) are also used to fill holes.

Constant weight-at-age values is used for the period \(1960-1979\). For subsequent years, Norwegian weights-at-age in the catch are estimated from length-at-age by the formula:
\[
\text { weight }(\mathrm{kg})=\left(1^{3} * 5.0+\mathrm{l}^{2} * 37.5+\mathrm{l}^{*} 123.75+153.125\right) * 0.0000017
\]
where
\[
1=\text { length in } \mathrm{cm} .
\]

Norway have on average accounted for about \(95 \%\) of the saithe landings. Data on catch in tonnes from other countries are either taken from ICES official statistics (by ICES area) or from reports to Norwegian authorities. A few countries also supply some additional data. The text table below shows which country supply which kind of data:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|l|}{Kind of data} \\
\hline Country & Caton (catch in weight) & Canum (catch-atage in numbers) & Weca (weight-atage in the catch) & Matprop (proportion mature by age) & Length composition in catch \\
\hline Norway & x & x & x & X & x \\
\hline Russia & X & & & & x \\
\hline Germany & x & x & x & & \\
\hline United Kingdom & x & & & & \\
\hline France \({ }^{1}\) & x & & & & \\
\hline Spain \({ }^{1}\) & x & & & & \\
\hline Portugal \({ }^{1}\) & x & & & & \\
\hline Ireland \({ }^{1}\) & X & & & & \\
\hline Greenland \({ }^{1}\) & X & & & & \\
\hline Faroe Islands \({ }^{1}\) & x & & & & \\
\hline Iceland \(^{1}\) & x & & & & \\
\hline
\end{tabular}
\({ }^{1}\) As reported to Norwegian authorities

The Norwegian, Rusian and German input files are Excel spreadsheet files. Russian input data earlier than 2002 are supplied on paper and later punched into Excel spreadsheet files before aggregation to international data. The data should be found in the national laboratories and with the Norwegian stock co-ordinator.

The national data have been aggregated to international data on Excel spreadsheet files. Age composition data for 2002 was available from Norway, Russia (Subarea I and Division IIA) and Germany (Division IIA). Generally the Russian length composition has been applied on the Russian landings together with an age-length-key (ALK) and weight-at-age data from the Norwegian trawl landings. In 2002 Russian length compositions were available for Division IIB, and were applied on the Russian landings together with an age-length-key from the Norwegian trawl landings. Catches from the other countries were assumed to have the same age composition and weight-at-age as the Norwegian trawl landings. In some years the final German and Russian numbers-at-age have been adjusted to remove SOP discrepancies before
aggregation to international data. The Excel spreadsheet files used for age distribution, adjustments and aggregations can be found with the Norwegian stock co-ordinator and for the current and previous year in the ICES computer system under w: \(\mathbf{a c f m} \backslash \mathbf{a f w g} \backslash \mathbf{y e a r} \backslash p e r s o n a l \backslash n a m e ~(o f ~ s t o c k ~ c o-o r d i n a t o r) . ~\)

The result files (FAD data) can be found at ICES and with the stock co-ordinator, either in the IFAP system as SAS datasets or as ASCII files on the Lowestoft format, either under w: \(\backslash \mathbf{a c f m} \backslash \mathbf{a f w g} \backslash \mathbf{2 0 0 0} \backslash\) datalsai_arct or w:lifapdataleximportlafwg|sai_arct.

\section*{B.2. Biological}

Weight-at-age in the stock is assumed to be the same as weight-at-age in the catch.
A fixed natural mortality of 0.2 is used both in the assessment and the forecast.

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

Regarding the proportion mature at age, until 1995 knife-edge maturity-at-age 6 was used for this stock. When data on spawning zones recorded in otoliths in Norway were investigated, no evidence of change in maturation rates over the period in the assessment was found and it was decided to use the same ogive for all years. This ogive is based on the distribution of age at first spawning among 8 year and older fish. It represents an approximation of the data from 1973 to 1994 , with most weight given to recent observations.

\section*{B.3. Surveys}

Since 1985 a Norwegian acoustic survey specially designed for saithe has been conducted annually in OctoberNovember (Nedreaas 1997). The survey covers the near coastal banks from the Varangerfjord close to the Russian border and southwards to \(62^{\circ} \mathrm{N}\). The whole area has been covered since 1992, and the major parts since 1988. The aim of conducting an acoustic survey targeting Northeast Arctic saithe has been to support the stock assessment with fishery-independent data of the abundance of the youngest saithe. The survey mainly covers the grounds where the trawl fishery takes place, normally dominated by 3-5(6) year old fish. 2-year-old saithe, mainly inhabiting the fjords and more coastal areas, are also represented in the survey, although highly variable from year to year. In 1997 and 1998 there was a large increase in the abundance of age 5 and older saithe, confirming reports from the fishery. In 1999 the abundance of these age groups decreased somewhat, but was still at a high level compared to years before 1997 (Mehl 2000). Abundance indices for ages 2-5 from 1988 and onwards have traditionally been used for tuning, but including older ages as a \(6+\) group in the tuning series improved the scaled weights a little and at the 2000 WG meeting it was decided to apply the extended series in the assessment. The results from the survey autumn 2000 showed a further decrease in the abundance of age 5 and older saithe (Korsbrekke and Mehl 2000). It is not known how well the survey covers the oldest age groups from year to year, but at least for precautionary reasons the \(6+\) group was kept in the tuning series.

Since 1995 a Norwegian acoustic survey for coastal cod has been conducted along the coast and in the fjords from Varanger to Stad in September, just prior to the saithe survey described above. This survey covers coastal areas not included in the regular saithe survey. Because saithe is also acoustically registered, this survey provides supplementary information, especially about 2- and 3-year-old saithe that have not yet migrated out to the banks. At the WG meeting in 2000 analyses were done on combining these indices with indices from the regular saithe survey in the tuning series, but it did not influence the assessment much. The WG therefore decided, for the time being, to only apply indices from the regular saithe survey in the assessment since this series is longer.

\section*{B.4. Commercial CPUE}

Two CPUE data series are used, one from the Norwegian purse seine fishery and one from the Norwegian trawl fishery.
Until 1999 indices of fishing effort in the purse seine fishery was based on the number of vessels of 20-24.9 m length and the effort (number of vessels) of this length category was raised by the catches to represent the total purse seine effort. The number of vessels taking part in the fishery almost doubled from 1997 to 1998, but due to regulations the catches were almost the same as in 1997. In such a situation the total number of vessels participating in a fishery is perhaps not a good measure of effort. Many of the vessels that have taken part in the fishery the last decade have accounted for only a small fraction of the purse seine catches. Roughly half of the vessels have caught less than 100 tonnes per year, and the sum of these catches represents only about \(5-10 \%\) of the total purse seine catch. Therefore the
number of vessels catching more than 100 tonnes annually seems to be a more representative and more stable measure of effort in the purse seine fishery. These numbers are raised to the total purse seine catch. The new effort series show a smaller decrease in later years than the old one and in XSA runs it gets higher scaled weights. The 2000 WG meeting therefore decided to use the new CPUE data series in the assessment.

Catch and effort data for Norwegian trawlers were until 2000 taken from hauls where the effort almost certainly had been directed towards saithe, i.e., days with more than \(50 \%\) saithe and only on trips with more than \(50 \%\) saithe in the catch. The effort estimated for the directed fishery was raised by the catches to give the total effort of Norwegian trawlers. From 1997 to 1998 the effort increased by more than \(50 \%\), but due to regulations the catches were slightly lower in 1998 and the CPUE decreased by almost \(40 \%\) from 1997 to 1998 and stayed low in 1999. This may at least partly be explained by change in fishing strategies in a period with increasing problems with by-catch of saithe in the declining cod fishery due to good availability of saithe. In 2001 new CPUE indices by age were estimated based on the logbook database of the Directorate of Fisheries, which has a daily resolution (Salthaug and Godø 2000). After some initial analyses it was decided to only include data from vessels larger than the median length since they showed the least noisy trends. One single CPUE observation from a given vessel is the total catch per day divided by the duration of all the trawl hauls that day. To increase the number of observations during a time period with decreasing directed saithe fishery, all days with \(20 \%\) or more saithe were included. The effort (hours trawling) for each CPUE observation is standardised or calibrated to a standard vessel. Until 1992, a yearly index was calculated by first averaging all CPUE observations for each month, and then averaging over the year. The CPUE indices were splitted on age groups by quarterly weight, length and age data from the trawl fishery. From 2003, a yearly index is calculated by first averaging all CPUE observations for each quarter, and then averaging over the year. The CPUE indices are finally splitted on age groups by yearly catch in numbers and weight-at-age data from the trawl fishery. The new approach is less influenced by short periods with poor data, while it still evens out seasonal variations.

Due to rather large negative \(\log \mathrm{q}\) residuals in the first part of the new time-series, it was shortened to only cover the period after 1993.

\section*{B.5. Other relevant data}

None.

\section*{C. Historical Stock Development}

Model used: XSA

Software used: IFAP / Lowestoft VPA suite

Model Options chosen:
Tapered time weighting applied, power \(=3\) over 20 years
Catchability independent of stock size for all ages
Catchability independent of age for ages \(>=8\)

Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages
S.E. of the mean to which the estimate are shrunk \(=0.500\)

Minimum standard error for population estimates derived from each fleet \(=0.300\)

Prior weighting not applied

Input data types and characteristics:
\begin{tabular}{|l|l|l|l|l|}
\hline Type & Name & Year range & Age range & \begin{tabular}{l}
Variable from year to \\
year \\
Yes/No
\end{tabular} \\
\hline Caton & Catch in tonnes in & \(1960-\) last data year & \(2-11+\) & Yes \\
\hline Canum & \begin{tabular}{l}
Catch-at-age last data year \\
numbers
\end{tabular} & \(2-11+\) & Yes \\
\hline Weca & \begin{tabular}{l}
Weight-at-age in the \\
commercial catch
\end{tabular} & \(1960-\) last data year & \(2-11+\) & \begin{tabular}{l}
Yes/No - constant at \\
age from 1960-1979
\end{tabular} \\
\hline West & \begin{tabular}{l}
Weight-at-age of the \\
spawning stock at \\
spawning time.
\end{tabular} & \(1960-\) last data year & \(2-11+\) & \begin{tabular}{l}
Yes/No - assumed to \\
be the same as \\
weight-at-age in the \\
catch
\end{tabular} \\
\hline Mprop & \begin{tabular}{l}
Proportion of natural \\
mortality before \\
spawning
\end{tabular} & \(1960-\) last data year & \(2-11+\) & \begin{tabular}{l}
No - set to 0 for all \\
ages in all years
\end{tabular} \\
\hline Fprop & \begin{tabular}{l}
Proportion of fishing \\
mortality before \\
spawning
\end{tabular} & \(1960-\) last data year & \(2-11+\) & \begin{tabular}{l}
No - set to 0 for all \\
ages in all years
\end{tabular} \\
\hline Matprop & \begin{tabular}{l}
Proportion mature at \\
age
\end{tabular} & \(1960-\) last data year & \(2-11+\) & \begin{tabular}{l}
No - the same ogive \\
for all years
\end{tabular} \\
\hline Natmor & \begin{tabular}{l}
Natural mortality \\
\end{tabular} & \(1960-\) last data year & \(2-11+\) & \begin{tabular}{l}
No - set to 0.2 for all \\
ages in all years
\end{tabular} \\
\hline
\end{tabular}

Tuning data:
\begin{tabular}{|l|l|l|l|}
\hline Type & Name & Year range & Age range \\
\hline Tuning fleet 1 & \begin{tabular}{l}
Norway ac survey \\
extended 2000
\end{tabular} & 1992 - last data year & \(3-6+\) \\
\hline Tuning fleet 2 & \begin{tabular}{l}
Norway purse seine \\
revised 2000
\end{tabular} & 1989 - last data year & \(3-7\) \\
\hline Tuning fleet 3 & \begin{tabular}{l}
Nor new trawl \\
revised 2001
\end{tabular} & 1994 - last data year & \(5-9\) \\
\hline
\end{tabular}

For analysis of alternative procedures see WG reports from AFWG 1997-2002.

\section*{D. Short-Term Projection}

Model used: Age structured
Software used: IFAP prediction with management option table and yield-per-recruit routines, until 2002.
Software used: MFDP prediction with management option table and yield-per-recruit routines, MFYPR.
Initial stock size. Taken from the XSA for age 5 and older. The recruitment at age 2 and 3 in the last data year is estimated using RCT3 and the corresponding numbers-at-age 3 and 4 in the start year of the projection is calculated applying a natural mortality of 0.2 and fishing mortality according to the catches taken of these age groups. The longterm geometric mean recruitment is used for age 2 in all projection years.

Natural mortality: Set to 0.2 for all ages in all years
Maturity: The same ogive as in the assessment is used for all years
F and M before spawning: Set to 0 for all ages in all years
Weight-at-age in the stock: Assumed to be the same as weight-at-age in the catch
Weight-at-age in the catch: Average weight of the three last years

Exploitation pattern: Average of the three last years, scaled by the Fbar (3-6) to the level of the last year
Intermediate year assumptions: TAC constraint
Stock recruitment model used: None, the long-term geometric mean recruitment at age 2 is used
Procedures used for splitting projected catches: Not relevant

\section*{E. Medium-Term Projections}

Model used: Age structured
Software used: IFAP single option prediction, until 2002
Software used: MFDP single option prediction

Initial stock size: Same as in the short-term projections.
Natural mortality: Set to 0.2 for all ages in all years
Maturity: The same ogive as in the assessment is used for all years
F and M before spawning: Set to 0 for all ages in all years

Weight-at-age in the stock: Assumed to be the same as weight-at-age in the catch
Weight-at-age in the catch: Average weight of the three last years
Exploitation pattern: Average of the three last years, scaled by the Fbar (3-6) to the level of the last year
Intermediate year assumptions: F-factor from the management option table corresponding to the TAC
Stock recruitment model used: None, the long-term geometric mean recruitment at age 2 is used

Uncertainty models used: @RISK for excel, Latin Hypercubed, 500 iterations, fixed random number generator
- Initial stock size: Lognormal distribution, LOGNORM(mean, standard deviation), with mean as in the shortterm projections and standard deviation calculated by multiplying the mean by the external standard error from the XSA diagnostics (except for age 2, see recruitment below)
- Natural mortality: Set to 0.2 for all ages in all years
- Maturity: The same ogive as in the assessment is used for all years
- \(\quad \mathrm{F}\) and M before spawning: Set to 0.2 for all ages in all years
- Weight-at-age in the stock: Assumed to be the same as weight-at-age in the catch
- Weight-at-age in the catch: Average weight of the three last years
- Exploitation pattern: Average of the three last years, scaled by the Fbar (3-6) to the level of the last year
- Intermediate year assumptions: F-factor from the management option table corresponding to the TAC
- Stock recruitment model used: Truncated lognormal distribution, TLOGNORM(mean, standard deviation, minimum, maximum), is used for recruitment age 2, also in the initial year. The long-term geometric mean, standard deviation, minimum, maximum are taken from the XSA for the period \(1960-4^{\text {th }}\) last year.

\section*{F. Long-Term Projections}

Not done

\section*{G. Biological Reference Points}

In 1994 the WG proposed a MBAL of \(150,000 \mathrm{t}\), based on the frequent occurrence of poor year classes below this level of SSB. The new maturity ogive introduced in 1995 gave somewhat higher historical SSB estimates. 150,000 t was considered to represent a less restrictive MBAL and \(170,000 \mathrm{t}\) was found to correspond better with the arguments used in 1994. The Study Group on the Precautionary Approach to Fisheries Management (SGPAFM, ICES 1998/ACFM:10) also found this to be a suitable level for \(\mathbf{B}_{\mathrm{pa}}\). However, based on a visual examination of the stock-recruitment plot ACFM later reduced the \(\mathbf{B}_{\mathrm{pa}}\) to \(150,000 \mathrm{t}\) (ICES 1998b).
\(\mathbf{F}_{0.1}\) and \(\mathbf{F}_{\max }\) are estimated by the MFDP yield-per-recruit routine, and increased from 0.08 to 0.11 and from 0.14 to 0.24 for \(\mathbf{F}_{0.1}\) and \(\mathbf{F}_{\text {max }}\), respectively, in the 1999-2003 assessments.

The SGPAFM (ICES 1998/ACFM:10) suggested the limit reference point \(\mathbf{F}_{\text {lim }}=\mathbf{F}_{\text {med }}\) for Northeast Arctic cod, haddock and saithe. A precautionary fishing mortality \(\left(\mathbf{F}_{\mathrm{pa}}\right)\) was defined as \(\mathbf{F}_{\mathrm{pa}}=\mathbf{F}_{\lim } \cdot \mathrm{e}^{-1.645 \sigma}(\sigma=0.2-0.3)\). The 1998 WG , however, found that setting \(\mathbf{F}_{\text {lim }}=\mathbf{F}_{\text {med }}\) did not correspond very well with the exploitation history for those fish stocks. It was therefore decided to estimate \(\mathbf{F}_{\mathrm{pa}}\) and other reference points by the PASoft program package (MRAG 1997). The estimates for \(\mathbf{F}_{0.1}, \mathbf{F}_{\text {max }}\), and \(\mathbf{F}_{\text {med }}\) were exactly the same as the values already estimated by other routines. The median value for \(\mathbf{F}_{\text {loss }}\) was estimated at 0.43. \(\mathbf{F}_{\text {lim }}\) can be set at \(\mathbf{F}_{\text {loss }}\) (ICES 1998/ACFM:10). The probability of exceeding \(\mathbf{F}_{\text {lim }}\) should be no more than \(5 \%\) (ICES 1997/Assess: 7). The \(5^{\text {th }}\) percentile of the \(\mathbf{F}_{\text {loss }}\) estimated here was 0.30 and the 1998 WG recommended using this value for \(\mathbf{F}_{\mathrm{pa}}\). ACFM considered the \(5^{\text {th }}\) percentile calculated from the PASoft program package to be too unstable for long-term use and re-estimated \(\mathbf{F}_{\mathrm{pa}}\) using the formula \(\mathbf{F}_{\mathrm{pa}}=\mathbf{F}_{\text {lim }} \cdot \mathrm{e}^{-1.645 \sigma}\) with \(\sigma=0.3\) giving a \(\mathbf{F}_{\mathrm{pa}}=0.26\), based on an estimated \(\mathbf{F}_{\text {lim }}=0.45\) (ICES 1998c). An updated version of the PASoft program package (CEFAS 1999) was available at the 1999 WG and \(\mathbf{F}_{\mathrm{pa}}\) was re-estimated to 0.26 . The WG therefore agreed to use this value for a precautionary fishing mortality for saithe \(\left(\mathbf{F}_{\mathrm{pa}}=0.26\right)\).

Recent increments in minimum landing size and an improved exploitation pattern indicate that the PA fishing mortality reference point \(\left(\mathbf{F}_{\mathrm{pa}}\right)\) should be re-estimated in the near future.

\section*{H. Other Issues}

None.

\section*{I. References}

CEFAS 1999. PA software users guide. The Centre for Environment, Fisheries and Aquaculture Science, CEFAS, Lowestoft, United Kingdom, 22 April 1999.

ICES 1965. Report of the Coalfish Working Group. Co-op. Res. Rep. Int. Counc. Explor. Sea ser. A. 6: 1-23.
ICES 1998a. Report of the Study Group on the Precautionary Approach to Fisheries Management. ICES CM 1998/ACFM:10. 39 pp.

ICES 1998b. Report to the ICES Advisory Committee on Fishery Management, 1998. ICES Cooperative Research Report No. 29.

ICES 1998c. Technical minutes of ACFM meeting, ICES 20-29 October 1998. Internal document.

Jakobseen, T. 1981. Preliminary results of saithe tagging experiments on the Norwegian coast 1975-77. ICES CM 1981/G:35.

Jakobsen, T. 1986. Recruitment and distribution of Northeast Arctic saithe in relation to changes in the environment. Pp 213-223 in Loeng, H. (ed.) The effect of oceanographic conditions on distribution and population dynamics of commercial fish stocks in the Barents Sea. Proceedings of the third Soviet-Norwegian Symposium, Murmansk 26-28 May 1986. Institute of Marine Research, Bergen, 1987.

Jakobsen, T. 1987. Variation in rates of migration of saithe from Norwegian waters to Iceland and Faroe Islands. Fisheries Research, 5:217-222.

Mehl, S. 2000. Mengdemåling av sei Finnmark - Møre, hausten 1999 (Abundance of saithe Finnmark - Møre autumn 1999). Fisken og Havet 5 - 2000. 21 pp (in Norwegian with table and figure text also in English).

Korsbrekke, K. og Mehl, S. 2001. Mengdemåling av sei Finnmark - Møre, hausten 2000 (Abundance of saithe Finnmark - Møre autumn 2000). Havforskningsinstituttet, Bergen. Intern. Web rep. http://ressurs.imr.no/bunnfisk/rapporter/seirap00.htm. 21 pp (in Norwegian with table and figure text also in English).

MRAG. 1997. Core program development for the modelling of fishery management strategies. Final Report of EC Study Project 94/110.

Nedreaas, K. 1997. Evaluation of the Northeast Arctic saithe (Pollachius virens) acoustic survey. ICES CM 1997/Y:20.

Salthaug, A. and Godø, O.R. 2000. Analysis of CPUE from the Norwegian bottom trawl fleet. ICES CM 2000 /W: 14.

Stock specific documentation of standard assessment procedures used by ICES.
\begin{tabular}{ll}
Stock: & Sebastes Mentella (Deep-Sea Redfish) In Subareas I and II \\
Working Group: & Arctic Fisheries Working Group ((Afwg) \\
Date: & 01.05 .03
\end{tabular}

\section*{A. General}

\section*{A.1. Stock definition}

The stock of Sebastes mentella (deep-sea redfish) in ICES Subareas I and II is found in the northeast Arctic from \(62^{\circ} \mathrm{N}\) in the south to the Arctic ice north and east of Spitsbergen. The south-western Barents Sea and the Spitsbergen areas are first of all nursery areas. Although some adult fish may be found in smaller subareas, the main behaviour of \(S\). mentella is to migrate westwards and south-westwards towards the continental slope as it grows and becomes adult. South of \(70^{\circ} \mathrm{N}\) only few specimens less than 28 cm are observed, and south of this latitude \(S\). mentella are only found along the slope from about 450 m down to about 650 m depth. The southern limit of its distribution is not well defined but is believed to be somewhere on the slope northwest of Shetland. The stock boundary \(62^{\circ} \mathrm{N}\) is therefore more for management purposes than a biological basis for stock separation, although the abundance of this species south of this latitude becomes less. The main areas of larval extrusion are along the slope from north of Shetland to west of Bear Island. The peak of larval extrusion takes place during the first half of April. Genetic studies have not revealed any hybridisation with S. marinus or S. viviparus in the area.

\section*{A.2. Fishery}

The only directed fisheries for Sebastes mentella (deep-sea redfish) are trawl fisheries. By-catches are taken in the cod fishery and as juveniles in the shrimp trawl fisheries. Traditionally, the fishery for \(S\). mentella was conducted by Russia and other East European countries on grounds located south of Bear Island towards Spitsbergen. The highest landings of S. mentella were \(269,000 \mathrm{t}\) in 1976. This was followed by a rapid decline to \(80,000 \mathrm{t}\) in \(1980-1981\) then a second peak of \(115,000 \mathrm{t}\) in 1982. The fishery in the Barents Sea decreased in the mid-1980s to the low level of \(10,500 \mathrm{t}\) in 1987. At this time Norwegian trawlers showed interest in fishing S. mentella and started fishing further south, along the continental slope at approximately 500 m depth. These grounds had never been harvested before and were inhabited primarily by mature redfish. After an increase to \(49,000 \mathrm{t}\) in 1991 due to this new fishery, landings have been at a level of \(10,000-15,000 \mathrm{t}\), except in 1996-1997 when they dropped to \(8,000 \mathrm{t}\). Since 1991 the fishery has been dominated by Norway and Russia. Since 1997 ACFM has advised that there should be no directed fishery and that the by-catch should be reduced to the lowest possible level.

The redfish population in Subarea IV (North Sea) is believed to belong to the Northeast Arctic stock. Since this area is outside the traditional areas handled by this Working Group, the catches are not included in the assessment. The landings from Subarea IV have been \(1,000-3,000 \mathrm{t}\) per year. Historically, these landings have been \(S\). marinus, but since the mid1980s trawlers have also caught S. mentella in Subarea IV along the northern slope of the North Sea. Approximately \(80 \%\) of the Norwegian catches are considered to be S. mentella.

Strong regulations were enforced in the fishery in 1997. Since then it has been forbidden to fish redfish (both S.marimus and S. mentella) in the Norwegian EEZ north and west of straight lines through the positions:
\[
\begin{aligned}
& \text { 1. N } 7000^{\prime} \mathrm{E} 0521^{\prime} \\
& \text { 2. } 7000^{\prime} \mathrm{E} 1730^{\prime} \\
& \text { 3. N } 7330^{\prime} \mathrm{E} 1800^{\prime} \\
& \text { 4. } 7330^{\prime} \mathrm{E} 3555{ }^{\prime}
\end{aligned}
\]
and in the Svalbard area (Division IIb). When fishing for other species in these areas, a maximum \(25 \%\) by-catch (in weight) of redfish in each trawl haul is allowed.

To provide additional protection of the adult \(S\). mentella stock, two areas south of Lofoten have been closed for all trawl fishing since 1 March 2000. The two areas (A and B) are delineated by straight lines between the following positions:

\section*{A}
1. N \(6630^{\prime}\) E \(0659^{\prime}\)
2. N \(6621^{\prime}\) E 0644 '
3. N \(6543^{\prime}\) E \(0600^{\prime}\)
4. N 6520' E 0600'
5. N \(6520^{\prime}\) E \(0530^{\prime}\)
6. N 6600' E \(0530^{\prime}\)
7. N \(6630^{\prime}\) E \(0634.27^{\prime}\)
1. N 6236' E 0300’
2. N \(6210^{\prime}\) E \(0115^{\prime}\)
3. N \(6240^{\prime}\) E \(0052^{\prime}\)
4. N 6300' E 0300'

Area A has recently been enlarged to include the continental slope north to \(\mathrm{N} 67^{\circ} 10^{\prime}\).

Since 1 January 2003 all directed trawl fishery for redfish (both \(S\). marinus and S. mentella) is forbidden in the Norwegian Economic Zone north of \(62^{\circ} \mathrm{N}\). When fishing for other species it is legal to have up to \(20 \%\) redfish (both species together) in round weight as by-catch per haul and on board at any time.

Since 1 January 2000 a maximum legal by-catch criterion of 10 juvenile redfish (both S.marinus, \(S\). mentella and \(S\). viviparus) per 10 kg shrimp has been enforced in the shrimp fishery.

\section*{A.3. Ecosystem aspect}

As 0 -group and juvenile this stock is an important plankton eater in the Barents Sea, and when this stock was sound, 0group were observed in great abundance in the upper layers utilizing the plankton production. Especially during the first five-six years of life \(S\). mentella is also preyed upon by other species, of which its contribution to the cod diet is well documented.

\section*{B. Data}

\section*{B.1. Commercial catch}

The landings statistics used by the Arctic Fisheries Working Group (AFWG) are those officially reported to ICES. In cases where such reportings to ICES do not exist, reportings made directly to Norwegian authorities during the fishery have been used as preliminary figures. Norwegian commercial catch in tonnes by quarter, area and gear are derived from the sales notes statistics of The Directorate of Fisheries. Data are aggregated on 17 areas for bottom trawl. For bottom trawl the quarterly area distribution of the catches is area adjusted by logbook data from The Directorate of Fisheries. No discards are reported or accounted for. Reliable estimates of species breakdown (S. mentella vs. \(S\). marinus) by area are available back to 1989. The national landings of redfish for Norway and Russia are split into species by the respective national laboratories. For other countries (and areas) the AFWG has split the landings into \(S\). mentella and S. marinus based on reports from different fleets to the Norwegian fisheries authorities.

The Norwegian sampling strategy is to have age-length samples from all major gears in each area and quarter. There are at present no defined criteria on how to allocate samples of catch numbers, mean length and mean weight-at-age to unsampled catches, but the following general process has been applied: First look for samples from a neighbouring area if the fishery extends to this area in the same quarter. If there are no samples available in neighbouring areas, search in neighbouring quarters, first from the same gear in the same area, and than from neighbouring areas and similar gears. The last option is to search for samples from other gears with the most similar selectivity in the same area or in neighbouring areas. For some gears, areas and quarters length samples taken by the coast guard are applied and combined with an ALK from a neighbouring area, gear or quarter. ALKs from research surveys (shrimp trawl) are also used to fill holes.

For Norway, weights-at-age in the catch are estimated according to the formula which gives the best fit to the lengthweight data pairs collected during the year and applied to the mean length-at-age

The text table below shows which country supply which kind of data:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Kind of data} \\
\hline Country & Caton (catch in weight) on unidentified redfish & Caton (catch in weight) on S. mentella & Canum (catch-atage in numbers) & Weca (weight-atage in the catch) & Matprop (proportion mature by age) & Length composition in catch \\
\hline Norway & & X & x & x & & x \\
\hline Russia & & X & \(\mathrm{x}^{2)}\) & \(\mathrm{x}^{2)}\) & x & x \\
\hline Germany & x & \(\mathrm{x}^{3}\) & & & & \(\mathrm{x}^{3)}\) \\
\hline United Kingdom & X & \({ }^{1)}\) & & & & \\
\hline France & x & 1) & & & & \\
\hline Spain & X & 1) & & & & \\
\hline Portugal & X & 1) & & & & \\
\hline Ireland & x & 1) & & & & \\
\hline Greenland & x & 1) & & & & \\
\hline \begin{tabular}{l}
Faroe Islands \({ }^{1)}\) \\
Iceland
\end{tabular} & x & 1) & & & & \\
\hline
\end{tabular}
\({ }^{1)}\) As reported to Norwegian authorities during the fishery (only for the Norwegian Economic Zone and Svalbard)
\({ }^{2)}\) For main fishing area until 2001
\({ }^{3)}\) Irregularly

The Norwegian and German input files are Excel spreadsheet files, while the Russian input data are supplied on paper and later punched into Excel spreadsheet files before aggregation to international data. The data should be found in the national laboratories and with the stock co-ordinator.

The national data have been aggregated to international data on Excel spreadsheet files. The Russian and German length composition has been applied on the Russian and German landings, respectively, using an age-length-key (ALK) and weight-at-age data from the Norwegian trawl landings. Catches from the other countries were assumed to have the same age composition and weight-at-age as the Norwegian trawl landings. In some years the final German and Russian numbers-at-age have been adjusted to remove SOP discrepancies before aggregation to international data. The Excel spreadsheet files used for age distribution, adjustments and aggregations can be found with the Norwegian stock coordinator and for the current and previous year in the ICES computer system under w: \(\backslash \mathbf{a c f m} \backslash \mathbf{a f w g} \backslash<\) year>\(>\) personal \(\backslash\) name (of stock co-ordinator).

The result files (FAD data) can be found at ICES and with the stock co-ordinator, either in the IFAP system as SAS datasets or as ASCII files on the Lowestoft format, either under w: \(\backslash \mathbf{a c f m} \backslash \mathbf{a f w g} \mid<\mathbf{y e a r}>\backslash\) datalsmn_arct or \(\mathbf{w}\) : \(\backslash i f a p d a t a l e x i m p o r t \mid a f w g \backslash s m n _a r c t\).

\section*{B.2. Biological}

Since 1991, the catch in numbers-at-age of \(S\). mentella from Russia is based on otolith readings. The Norwegian catch-at-age is based on otoliths back to 1990 . Before 1990, when the Norwegian catches of \(S\). mentella were smaller, Russian scalebased age-length keys were used to convert the Norwegian length distribution to age.

As input to trial analytical assessments, weight-at-age in the stock is assumed to be the same as weight-at-age in the catch.

A fixed natural mortality of 0.1 is used both in the assessment and the forecast.

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

Age-based maturity ogives for \(S\). mentella (sexes combined) are available for 1986-1993, 1995 and 1997-2001 from Russian research vessel observations in spring. Average ogives for 1966-1972 and 1975-1983 have been used for the periods 1965-1975 and 1976-1983, respectively. Average ogives for 1975-1983, 1984-1985 and data for 1986-1993 (Table D8) were used to generate a smoothed maturity ogive for 1984-1992 (3 year running average). The 1992-1993 average was used for 1993 and 1994, the 1995 data for 1995, the average for 1995 and 1997 for 1996, and the collected material for the subsequent years up to 2001 were taken as representative for these years.

\section*{B.3. Surveys}

The results from the following research vessel survey series have annually been evaluated by the AFWG:
1) The international 0-group survey in the Svalbard and Barents Sea areas in August-September since 1980 (incl.).
2) Russian bottom trawl survey in the Svalbard and Barents Sea areas in October-December since 1978 (incl.) in fishing depths of \(100-900 \mathrm{~m}\).
3) Norwegian Svalbard (Division IIb) bottom trawl survey (August-September) since 1986 (incl.) in fishing depths of \(100-500 \mathrm{~m}\). Data disaggregated on age only since 1992.
4) Norwegian Barents Sea bottom trawl survey (February) since 1986 (incl.) in fishing depths of 100-500 m. Data disaggregated on age only since 1992.

Although the Norwegian Svalbard (August-September) and Barents Sea (February) groundfish surveys are conducted at different times of the year and may overlap in the south of Bear Island area, the two series can be combined to get an approximate total estimate for the whole area.
5) A new Norwegian survey designed for redfish and Greenland halibut is covering the Norwegian Economic Zone (NEZ) and Svalbard incl. north and east of Spitsbergen in August since 1996 from less than 100 m to 500 m depth. The results from this survey includes survey no. 3) above.
6) Russian acoustic survey in April-May since 1992 (except 1994, 1996 and 2002) on spawning grounds in the western Barents Sea .

The international 0-group fish survey carried out in the Barents Sea in August-September since 1965 does not distinguish between the species of redfish but it is believed to be mostly \(S\). mentella. The survey design has improved and the indices earlier than 1980 are not directly comparable with subsequent years. A considerable reduction in the abundance of 0 -group redfish was observed in the 1991 survey: abundance decreased to only \(20 \%\) of the 1979-1990 average. With the exception of an abundance index of twice the 1991-level in 1994, the indices have remained very low. Record low levels of less than \(20 \%\) of the 1991-1995 average have been observed for the 1996-1999 year classes. The 2000 year class was stronger than the preceding four year classes, whereas the estimate of the 2001 and 2002 year classes are among the lowest on record.

Russian acoustic surveys estimating the commercially sized and mature part of the \(S\). mentella stock have been conducted in April-May on the Malangen, Kopytov, and Bear Island Banks since 1986. In 1992 the area covered was extended, and data on age are available for 1992-1993, 1995 and 1997-2001. This is the only survey targeting commercially sized \(S\). mentella, but only a limited area of its distribution.

\section*{B.4. Commercial CPUE}

Revised catch-per-hour-trawling data for the \(S\). mentella fishery have been available from Russian PST- and BMRTtrawlers fishing in ICES Division IIa in March-May 1975-2002, representative for the directed Russian fishery accounting for \(60-80 \%\) of the total Russian catch. The Working Group mean that the Russian trawl CPUE series do not represent the trend in stock size but is more a reflection of stock density. This is because the fishery on which these data are based since 1996 was carried out by one or two vessels on localised concentrations in the Kopytov area southwest of Bear Island. This is also reflected by the relative low effort at present. Due to this change in fishing behaviour/effort, CPUEs have been plotted only for the period after 1991.

\section*{B.5. Other relevant data}

None

\section*{C. Historical Stock Development}

Model used:

Software used:

\section*{Model Options chosen:}

Input data types and characteristics:
\begin{tabular}{|l|l|l|l|l|}
\hline Type & Name & Age range & \begin{tabular}{l}
Variable from year \\
to year \\
Yes/No
\end{tabular} \\
\hline Caton & Catch in tonnes in & \(1965-2002\) & \(6-19+\) & yes \\
\hline Canum & \begin{tabular}{l}
Catch-at-age \\
numbers
\end{tabular} & \begin{tabular}{l}
Weight-at-age in the \\
commercial catch
\end{tabular} & \(1965-2002\) & \(6-19+\) \\
\hline Weca & \begin{tabular}{l}
Weight-at-age of the \\
spawning stock at \\
spawning time.
\end{tabular} & \(1965-2002\) & \(6-19+\) & yes \\
\hline West & \begin{tabular}{l}
Proportion of natural \\
mortality before \\
spawning
\end{tabular} & \(1965-2002\) & \(6-19+\) & yes \\
\hline Mprop & \begin{tabular}{l}
Proportion of fishing \\
mortality before \\
spawning
\end{tabular} & \(1965-2002\) & \(6-19+\) & Constant=0 \\
\hline Fprop & \begin{tabular}{l}
Proportion mature at \\
age
\end{tabular} & \(1965-2002\) & \(6-19+\) & \begin{tabular}{l}
\(1965-1975\), const. \\
\(1976-1983\), const. \\
\(1984-\)-ariable
\end{tabular} \\
\hline Matprop & Natural mortality & \(1965-2002\) & \(6-19+\) & Constant=0.1 \\
\hline Natmor & & & \\
\hline
\end{tabular}
\({ }^{1}\) Based on otoliths since 1991

Tuning data:
\begin{tabular}{|l|l|l|l|}
\hline Type & Name & Year range & Age range \\
\hline Tuning fleet 1 & FLT10 Rus young & \(1991-2002\) & \(6-8\) \\
\hline Tuning fleet 2 & FLT13 Rus acous & \(1995-2001\) & \(6-14\) \\
\hline Tuning fleet 3 & FLT14 Norw bottom & \(1996-2002\) & \(2-11\) \\
\hline\(\ldots\). & & & \\
\hline
\end{tabular}

\section*{D. Short-Term Projection}

Model used: Visual analysis of survey results.

Software used: none

Initial stock size:

Maturity:

F and M before spawning:
Weight-at-age in the stock:

Weight-at-age in the catch:

Exploitation pattern:
Intermediate year assumptions:

Stock recruitment model used:

Procedures used for splitting projected catches:

\section*{E. Medium-Term Projections}

Model used: Visual analysis of survey results.

Software used: none

Initial stock size:

Natural mortality:

Maturity:

F and M before spawning:

Weight-at-age in the stock:

Weight-at-age in the catch:

Exploitation pattern:

Intermediate year assumptions:

Stock recruitment model used:

Uncertainty models used:
1. Initial stock size:
2. Natural mortality:
3. Maturity:
4. F and M before spawning:
5. Weight-at-age in the stock:
6. Weight-at-age in the catch:
7. Exploitation pattern:
8. Intermediate year assumptions:
9. Stock recruitment model used:

\section*{F. Long-Term Projections}

Model used:

Software used:

Maturity:

F and M before spawning:
Weight-at-age in the stock:
Weight-at-age in the catch:
Exploitation pattern:
Procedures used for splitting projected catches:

\section*{G. Biological Reference Points}
H. Other Issues

\section*{I. References}

Stock specific documentation of standard assessment procedures used by ICES.

\author{
Stock:... \\ Sebastes marinus in ICES Subareas I and II \\ Working Group:... Arctic Fisheries Working Group \\ Date: \\ 28.04.03
}

\section*{A. General}

\section*{A.1. Stock definition}

The stock of Sebastes marinus (golden redfish) in ICES Subareas I and II is found in the northeast Arctic from \(62^{\circ} \mathrm{N}\) in the south to north of Spitsbergen. The Barents Sea area is first of all a nursery areas, and relatively few fish are distributed outside Spitsbergen. S. marinus are distributed all over the continental shelf southwards to beyond \(62^{\circ} \mathrm{N}\), and also along the coast and in the fjords. The main areas of larval extrusion are outside Vesterålen, on the Halten Bank area and on the banks outside Møre. The peak of larval extrusion takes place ca. one month later than S. mentella, i.e. during beginning of May. Genetic studies have not revealed any hybridisation with \(S\). marinus or \(S\). viviparus in the area.

\section*{A.2. Fishery}

The fishery for Sebastes marinus (golden redfish) is mainly conducted by Norway which accounts for \(80-90 \%\) of the total catch. Germany also has a long tradition of a trawl fishery for this species. The fish are caught mainly by trawl and gillnet, and to a lesser extent by longline and handline. The trawl and gillnet fishery have benefited from the females concentrating on the "spawning" grounds during spring. Some of the catches, and most of the catches taken by other countries, are taken in mixed fisheries together with saithe and cod. Important fishing grounds are the Møre area (Svinøy), Halten Bank, the banks outside Lofoten and Vesterålen, and Sleppen outside Finnmark. Traditionally, S. marinus has been the most popular and highest priced redfish species.

Until 1 January 2003 there were no regulations particular for the \(S\). marinus fishery, and the regulations aimed at \(S\). mentella (see chapter 6.1.1) had only marginal effects on the S. marinus stock. After this date, all directed trawl fishery for redfish (both \(S\). marinus and \(S\). mentella) is forbidden in the Norwegian Economic Zone north of \(62^{\circ} \mathrm{N}\). When fishing for other species it is legal to have up to \(20 \%\) redfish (both species together) in round weight as by-catch per haul and on board at any time.

\section*{A.3. Ecosystem aspects}

\section*{B. Data}

\section*{B.1. Commercial catch}

The landings statistics used by the Arctic Fisheries Working Group (AFWG) are those officially reported to ICES. In cases where such reportings to ICES do not exist, reportings made directly to Norwegian authorities during the fishery have been used as preliminary figures. Norwegian commercial catch in tonnes by quarter, area and gear are derived from the sales notes statistics of The Directorate of Fisheries. Data from about 20 sub areas are aggregated for the gears gillnet, long line, hand line, Danish seine and bottom trawl. For bottom trawl the quarterly area distribution of the catches is area adjusted by logbook data from The Directorate of Fisheries. No discards are reported or accounted for. Reliable estimates of species breakdown (S. mentella vs. S. marinus) by area are available back to 1989. The national landings of redfish for Norway and Russia are split into species by the respective national laboratories. For other countries (and areas) the AFWG has split the landings into S. mentella and S. marinus based on reports from different fleets to the Norwegian fisheries authorities.

The Norwegian sampling strategy is to have age-length samples from all major gears in each area and quarter. There are at present no defined criteria on how to allocate samples of catch numbers, mean length and mean weight-at-age to unsampled catches, but the following general process has been applied: First look for samples from a neighbouring area if the fishery extends to this area in the same quarter. If there are no samples available in neighbouring areas, search in
neighbouring quarters, first from the same gear in the same area, and than from neighbouring areas and similar gears. The last option is to search for samples from other gears with the most similar selectivity in the same area or in neighbouring areas. For some gears, areas and quarters length samples taken by the coast guard are applied and combined with an ALK from a neighbouring area, gear or quarter. ALKs from research surveys (shrimp trawl) are also used to fill holes.

For Norway, weights-at-age in the catch are estimated according to the formula which gives the best fit to the lengthweight data pairs collected during the year and applied to the mean length-at-age.

The text table below shows which country supply which kind of data:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Kind of data} \\
\hline Country & Caton (catch in weight) on unidentified redfish & Caton (catch in weight) on S. marinus & Canum (catch-atage in numbers) & Weca (weight-atage in the catch) & Matprop (proportion mature by age) & Length composition in catch \\
\hline Norway & & X & X & X & & X \\
\hline Russia & & x & & & & x \\
\hline Germany & x & \(\mathrm{x}^{3}\) & & & & x \\
\hline United Kingdom & x & 1) & & & & \\
\hline France & X & 1) & & & & \\
\hline Spain & X & 1) & & & & \\
\hline Portugal & x & 1) & & & & \\
\hline Ireland & x & 1) & & & & \\
\hline Greenland & X & 1) & & & & \\
\hline Faroe Islands \({ }^{1{ }^{1}}\) Iceland & x & 1) & & & & \\
\hline
\end{tabular}
\({ }^{1)}\) As reported to Norwegian authorities during the fishery (only for the Norwegian Economic Zone and Svalbard)
\({ }^{2)}\) For main fishing area until 2001
\({ }^{3)}\) Irregularly

The Norwegian and German input files are Excel spreadsheet files, while the Russian input data are supplied on paper and later punched into Excel spreadsheet files before aggregation to international data. The data should be found in the national laboratories and with the stock co-ordinator.

The national data have been aggregated to international data on Excel spreadsheet files. The Russian and German length composition has been applied on the Russian and German landings, respectively, using an age-length-key (ALK) and weight-at-age data from the Norwegian trawl landings. Catches from the other countries were assumed to have the same age composition and weight-at-age as the Norwegian trawl landings. In some years the final German and Russian numbers-at-age have been adjusted to remove SOP discrepancies before aggregation to international data. The Excel spreadsheet files used for age distribution, adjustments and aggregations can be found with the Norwegian stock coordinator and for the current and previous year in the ICES computer system under \(\mathbf{w}: \backslash \mathbf{a c f m} \backslash \mathbf{a f w g} \backslash<\mathbf{y e a r}>\backslash \mathbf{p e r s o n a l} \backslash\) name (of stock co-ordinator).

The result files (FAD data) can be found at ICES and with the stock co-ordinator, either in the IFAP system as SAS datasets or as ASCII files on the Lowestoft format, either under w: \(\mathbf{a c f m} \backslash \mathbf{a f w g} \backslash<\mathbf{y e a r}>\backslash\) datalsmr-arct or w: lifapdataleximportlafwg \(\mid\) smr-arct.

\section*{B.2. Biological}

The total catch-at-age data back to 1991 are based on Norwegian otolith readings. In 1989-1990 it was a combination of the German scale readings on the German catches, and Norwegian otolith readings for the rest. In 1984-1989 only German scale readings were available, while in the years prior to 1984 Russian scale readings exist.

Weight-at-age in the stock is assumed to be the same as weight-at-age in the catch.

When an analytical assessment is made, a fixed natural mortality of 0.1 is used both in the assessment and the forecast.

Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

A knife-edge maturity-at-age 15 has been used for this stock.

\section*{B.3. Surveys}

The results from the following research vessel survey series have annually been evaluated by the Working Group:
1) Norwegian Barents Sea bottom trawl survey (February) from 1986-2003 in fishing depths of 100-500 m. Data are available on length for the years 1986-2003, and on age for the years 1992-2003. This survey covers important nursery areas for the stock
2) Norwegian Svalbard (Division IIb) bottom trawl survey (August-September) from 1985-2002 in fishing depths of \(100-500 \mathrm{~m}\). This survey covers the northernmost part of the species' distribution.

Data on length and age from both these surveys have been simply added together and used in the assessments.
3) Catch rates (numbers/nautical mile) and acoustic indices of Sebastes marinus from the Norwegian Coastal and Fjord survey in 1995-2002 from Finnmark to Møre.

\section*{B.4. Commercial CPUE}

Data for S. marinus were available for Norwegian freezer trawlers (ISSCFV-code 07, 250-499.9 GRT) since 1981. The total international effort was estimated from these data. This series is based on statistical (GLM) analysis of monthly data from five Norwegian statistical areas along the Norwegian coast. Although typical \(S\). mentella grounds have been excluded, errors related to the splitting of the redfish species in the catches may contribute to fluctuations in the time trend.

Although the trawl fishery up to 2002 has been almost unregulated, it is worrying that fewer and fewer fishing days meet the input data requirements when only including days with more than \(50 \% S\) marinus in the catches (from 200-300 days in 1998-2000 to less than 40 days in 2002).

\section*{B.5. Other relevant data}

None.

\section*{C. Historical Stock Development}

The development of the stock has annually been discussed and evaluated based on the research survey series, and information from the fishery.

In some years trial analytical XSA assessments have been made and discussed by the Working Group. In such cases the following settings have been used/recommended, but NOTE that this is subject to further improvement and evaluation before being adopted:

Model used: XSA

Software used: IFAP / Lowestoft VPA suite

Model Options chosen:

Tapered time weighting applied, power \(=3\) over 20 years
Catchability independent of stock size for all ages
Catchability independent of age for ages \(>=24\)
Survivor estimates shrunk towards the mean F of the final 2 years or the 5 oldest ages
S.E. of the mean to which the estimate are shrunk \(=2.00\)

Minimum standard error for population estimates derived from each fleet \(=0.300\)
Prior weighting not applied

Input data types and characteristics:
\begin{tabular}{|c|c|c|c|c|}
\hline Type & Name & Year range & Age range & \begin{tabular}{l}
Variable from year to year \\
Yes/No
\end{tabular} \\
\hline Caton & Catch in tonnes & 1965 - last data year & 2-24+ & Yes \\
\hline Canum & Catch-at-age in
numbers & 1965 - last data year 1) & 2-24+ & Yes \\
\hline Weca & Weight-at-age in the commercial catch & 1965 - last data year 1) & 2-24+ & Yes/No - constant at age in begiining of time-series \\
\hline West & Weight-at-age of the stock & 1965 - last data year 1) & 2-24+ & Yes/No - assumed to be the same as weight-at-age in the catch \\
\hline Mprop & Proportion of natural mortality before spawning & 1965 - last data year & 2-24+ & No - set to 0 for all ages in all years \\
\hline Fprop & Proportion of fishing mortality before spawning & 1965 - last data year & 2-24+ & No - set to 0 for all ages in all years \\
\hline Matprop & Proportion mature at age & 1965 - last data year & 2-24+ & No - knife edged at age 15 \\
\hline Natmor & Natural mortality & 1965 - last data year & 2-24+ & No - set to 0.1 for all ages in all years \\
\hline
\end{tabular}
\({ }^{1)}\) Age reading based on only otoliths since 1991 (incl.).
Tuning data:
\begin{tabular}{|l|l|l|l|}
\hline Type & Name & Year range & Age range \\
\hline Tuning fleet 1 & \begin{tabular}{l}
Norway bottom \\
trawl, Svalbard, fall
\end{tabular} & 1992 - last data year & \(2-15\) \\
\hline Tuning fleet 2 & \begin{tabular}{l}
Norway bottom \\
trawl, Barents Sea, \\
winter
\end{tabular} & 1992 - last data year & \(3-15\) \\
\hline Tuning fleet 3 & Norway trawl CPUE & 1989 - last data year & \(9-23\) \\
\hline
\end{tabular}

\section*{D. Short-Term Projection}

Model used: Visual inspection/analysis of survey results together with information from the fishery.
No analytical short-term projection has been made for this stock.

\section*{E. Medium-Term Projections}

Model used: Visual inspection/analysis of survey results together with information from the fishery.
No analytical short-term projection has been made for this stock.

Uncertainty models used: None

\section*{F. Long-Term Projections}

Not done

\section*{G. Biological Reference Points}

It is proposed to adopt the average biomass level of \(S\). marinus above 25 cm estimated by the combined Norwegian Barents Sea -Svalbard bottom trawl survey for the time period 1986-1997 as a limit reference point for the biomass (\(\mathrm{U}_{\mathrm{lim}}\)).

Stock specific documentation of standard assessment procedures used by ICES.

\author{
Stock: Northeast Arctic Greenland Halibut \\ Working Group: Arctic Fisheries Working Group \\ Date: 30-04-03
}

\section*{General}

\section*{Stock definition}

Greenland halibut (Reinhardtius hippoglossoides, Walbaum) is distributed in the Arctic and boreal waters in the North Atlantic and in the North Pacific (Fedorov 1971; Godø and Haug 1989; Bowering and Brodie 1995; Bowering and Nedreaas 2000). In the northeastern Atlantic the distribution is more or less continuous along the continental slope from the Faeroe Islands and Shetland to north of Spitsbergen (Whitehead et al. 1986; Godø and Haug 1989; Nizovtsev, 1989), with the highest concentrations from 500 to 800 m depth between Norway and Bear Island, which is also regarded as the main spawning area (Nizovtsev, 1968; Godø and Haug 1987; Albert et al. 2001b). Peak spawning occurs in December in the main spawning area, but also in nearby localities during summer (Nizovtsev, 1989; Albert et al. 2001b). Atlantic currents transport eggs and larvae northwards and the juveniles are distributed around Svalbard and in the northeastern Barents Sea, to the waters around Franz Josef Land and Novaja Zemlya area (Borkin, 1983; Nizovtsev, 1983; Godø and Haug 1987; Godø and Haug 1989; Albert et al. 2001a). As they grow older they gradually move southwards and eventually alternate between the spawning area and feeding areas in the central-western Barents Sea (Nizovtsev, 1989).

The Northeast arctic Greenland halibut stock is a pragmatically defined management unit. The degree of exchange with other stocks is not resolved, but is believed to be low. Potential routes of exchange may be drift of larvae towards Greenland and migration of adults between the Barents Sea and the Iceland-Faeroe Islands area.

\section*{Fishery}

Before the mid 1960s the fishery for Greenland halibut was mainly a coastal long line fishery off the coasts of eastern Finnmark and Vesterålen in Norway. The annual catch of the coastal fishery was about \(3,000 \mathrm{t}\). In recent years this fishery has landed \(3,000-6,000 \mathrm{t}\) although now gillnets are also used in the fishery. In 1964 dense Greenland halibut concentrations were found by Soviet trawlers in the slope area to the west of the Bear Island (Nizovtsev, 1989). Following the introduction of international trawlers in the fishery in the mid 1960s, the total landings increased to about \(80,000 \mathrm{t}\) in the early 1970 s . The total Greenland halibut landings decreased steadily to about \(20,000 \mathrm{t}\) during the early 1980s. This level was maintained until 1991, when the catch increased sharply to \(33,000 \mathrm{t}\). From 1992 total landings varied between 9 000-19 000 t with a peak in 1999 .

From 1992 the fishery has been regulated by allowing only the long line and gillnet fisheries by vessels smaller than 28 m to be directed for Greenland halibut. This fishery is also regulated by seasonal closure. Target trawl fishery has been prohibited and trawl catches are limited to by-catch only. From 1992 to autumn 1994 by-catch in each haul was not to exceed \(10 \%\) by weight. In autumn 1994 this was changed to \(5 \%\) by-catch of Greenland halibut onboard at any time. In autumn 1996 it was changed to \(5 \%\) by-catch in each haul, and from January 1999 this percentage was increased to \(10 \%\). In August 1999 it was adjusted further to \(10 \%\) in each haul but only \(5 \%\) of the landed catch. From 2001 the bycatch regulations again was changed to \(12 \%\) in each haul and \(7 \%\) of the landed catch.

The regulations enforced in 1992 reduced the total landings of Greenland halibut by trawlers from 20,000 to about \(6,000 \mathrm{t}\). Since then and until 1998 annual trawler landings have varied between 5,000 and \(8,000 \mathrm{t}\) without any clear trend attributable to changes in allowable by-catch. However, the increase of trawler landings in 1999 to 10000 t may be attributable partly to the less restrictive by-catch regulations. Landings of Greenland halibut from the directed longline and gillnet fisheries have also increased in recent years to well above the level of \(2,500 \mathrm{t}\) set by the Norwegian authorities. This is attributed to the increased difficulties of regulating a fishery that only lasts for a few weeks.

\section*{Ecosystem aspects}

Greenland halibut is a very tolerant species. It occurs in the wide range of depths (from 20 to 2200 m) and temperatures (from -1.5 to \(10^{\circ} \mathrm{C}\)) (Boje and Hareide, 1993; Shuntov, 1965; Nizovtsev, 1989).

Young Greenland halibut occur mostly in the northeastern Barents Sea where the presence of their adult individuals or other predators seems to be minimal.

Based on the peculiarities mentioned above, natural mortality of the Greenland halibut should be rather stable and not high, at least after its youngest stages settling down at the bottom.

\section*{DATA}

\section*{Commercial catch}

Norwegian commercial catch in tonnes by quarter, area and gear are derived from the sales notes statistics of the Directorate of Fisheries. Data from about 20 sub areas are aggregated on 6 main areas for the gears gillnet, long line, bottom trawl and shrimp trawl. For bottom trawl the quarterly area distribution of the catches is adjusted by logbook data from The Directorate of Fisheries and the total bottom trawl catch by quarter and area is adjusted so that the total annual catch for all gears is the same as the official total catch reported to ICES. No discards are reported or accounted for in the catch statistics.

Russian catch based on daily reports from the vessels are combined in the statistics of the All-Russian Research Institute of Fisheries and Oceanography (VNIRO, Moscow). Data are provided separately by ICES areas and gears.

The sampling strategy is to have age-length samples from all major gears in each area and quarter. There are at present no defined criteria on how to allocate samples of catch numbers, mean length and mean weight-at-age to unsampled catches, but the following general process has been applied: First look for samples from a neighbouring area if the fishery extends to this area in the same quarter. If there are no samples available in neighbouring areas, search for samples from other gears with the most similar selectivity in the same area or in neighbouring areas. The last option is to search in neighbouring quarters, first from the same gear in the same area, and then from neighbouring areas and similar gears. ALKs from research surveys (shrimp trawl) are also used to fill gaps in age sampling data.

Norway and Russia, on average, have accounted for about \(90-95 \%\) of the Greenland halibut landings during more recent years. Data on catch in tonnes from other countries are either taken from ICES official statistics (by ICES area) or from reports to Norwegian authorities. A few countries also supply some additional data. The text table below indicates the type of data provided by country:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{Kind of data} \\
\hline Country & Caton (catch in weight) & Canum (catch-atage in numbers) & Weca (weight-atage in the catch) & Matprop (proportion mature by age) & Length composition in catch \\
\hline Norway & x & x & x & & x \\
\hline Russia & x & x & x & x & x \\
\hline Germany & x & & & & \\
\hline United Kingdom & x & & & & \\
\hline France \({ }^{1}\) & x & & & & \\
\hline Spain \({ }^{1}\) & x & & & & \\
\hline Portugal \({ }^{1}\) & x & & & & \\
\hline Ireland \({ }^{1}\) & x & & & & \\
\hline Greenland \({ }^{1}\) & X & & & & \\
\hline Faroe Islands \({ }^{1}\) & x & & & & \\
\hline Iceland \({ }^{1}\) & x & & & & \\
\hline Poland \({ }^{1}\) & x & & & & \\
\hline
\end{tabular}
\({ }^{1}\) As reported to Norwegian authorities

The Norwegian input files are Excel spreadsheet files, while the Russian input data are supplied on paper and later input to Excel spreadsheet files before aggregation to international data. The data are archived in the national laboratories and with the Norwegian stock co-ordinator.

The national data have been aggregated with international data on Excel spreadsheet files. The Russian length composition has been applied to Russian landings together with an age-length-key (ALK) and weight-at-age data from the Norwegian landings. Catches from the other countries were assumed to have the same age composition and weight-at-age as the Norwegian landings. The Excel spreadsheet files used for age distribution, adjustments and aggregations are held by the Norwegian stock co-ordinator and for the current and previous year in the ICES computer system under \(\mathbf{w}: \backslash \mathbf{a c f m} \backslash \mathbf{a f w g} \backslash \mathbf{y e a r} \backslash\) personal \(\backslash n a m e\) (of stock co-ordinator).

The result files (FAD data) can be found at ICES and with the stock co-ordinator, either in the IFAP system as SAS datasets or as ASCII files on the Lowestoft format, under w:\acfm \(\backslash \mathbf{a f w g} \backslash \mathbf{y e a r} \backslash\) data \(\backslash \mathbf{g r h} _\)arct.

\section*{Biological}

For 1964-1969, separate weight-at-age data are used for the Norwegian and the Russian catches. Both data sets are mean values for the period and are combined as a weighted average for each year. A constant set of weight-at-age data is used for the total catches in 1970-1978. For subsequent years annual estimates are used. The mean weight-at-age in the catch is calculated as a weighted average of the weight in the catch from Norway and Russia. The weight-at-age in the stock is set equal to the weight-at-age in the catch for all years.

A fixed natural mortality of 0.15 is used both in the assessment and the forecast.
Both the proportion of natural mortality before spawning (Mprop) and the proportion of fishing mortality before spawning (Fprop) are set to 0 .

Annual ogives based on sexes combined using Russian survey data are given for the years 1984-1990 and 1992-last data year. An average ogive derived from 1984-1987 is used for 1964-1983. For 1984 to the last data year a three-year running average is used.

\section*{Surveys}

The results from the following research vessel survey series are evaluated by the Working Group:
1. Norwegian bottom trawl survey in August in the Barents Sea and Svalbard from 1984 in fishing depths of less than 100 m and down to 500 m . (Table E1 and E2).
2. Norwegian Greenland halibut surveys in August from 1994. The surveys cover the continental slope from 68 to \(80^{\circ} \mathrm{N}\), in depths of \(400-1500 \mathrm{~m}\) north of \(70^{\circ} 30^{\prime} \mathrm{N}\), and \(400-1000 \mathrm{~m}\) south of this latitude. This series has in 2000 been revised to also include depths between \(400-500 \mathrm{~m}\) in all years (Table E3).
3. Norwegian bottom trawl surveys east and north of Svalbard in autumn from 1996 (Table E4).
4. The Norwegian Combined Survey index Table E5, combination of the results from Tables E1-E4.
5. Russian bottom trawl surveys in the Barents Sea from 1984 in fishing depths of \(100-900 \mathrm{~m}\). This series has been revised substantially since the 1998 assessment in order to make the years more comparable with respect to area coverage and gear type (Table E6).
6. Spanish bottom trawl survey in the slope of Svalbard area in October, ICES Division IIb: from 1997 (Table E7).
7. Norwegian Barents Sea bottom trawl survey (winter) from 1989 in fishing depths of less than 100 m and down to 500 m . In order to utilise the last year values in the VPA calibration, this series was adjusted back by one year and one age group to reflect sampling as if it occurred in the autumn of the previous year (Table E8).
8. International pelagic 0-group surveys from 1970. (Table A14).

Over the last several years the Working Group has been concerned about trends in catchability within individual surveys used for tuning of the XSA. The trends were seen for younger ages of year classes in the late 80 's and early 90 's that were initially estimated to be very low in abundance. With increasing age these year classes were estimated to be much closer to the mean abundance. In previous meetings the Working Group therefore increased the lower age used in tuning to five years
in order to reduce the problem. This only partly resolved the problem though, and in all subsequent assessments estimated recruitment of the last 2-3 years has increased from one year to the next.

The Norwegian bottom trawl survey in the Barent Sea and Svalbard catch Greenland halibut mainly in the range of ages 18 , although in most years age 1 is poorly represented and all age group younger than five years are not considered to be well represented in this survey due to the limited depth range covered. The relative strength of the year classes varies considerably with age. In more recent years there has been low but somewhat better representation of young fish in this survey.

The Norwegian juvenile Greenland halibut survey north and east of Svalbard were started in 1996 and from 2000 this survey is conducted as a joint survey between Norway and Russia. As a result it is expected that the area coverage will improve, better representing the distribution of juveniles and will provide a more comparable time-series. Only the Norwegian part of these northern surveys is currently included in the Norwegian Combined Survey index (see below) . In future, when the extended coverage in the Russian zone has been repeated for at least five years the Working Group will consider revising the combined index.

The Norwegian Greenland halibut survey along the deep continental slope south and west of Spitsbergen began in 1994. Although Greenland halibut older than 15 years are caught, few fish are represented in the catch over age 12 or less than age 5 (Table E4). Most of the abundance indices are dominated by ages 5-8.

Most of the surveys considered by the Working Group in 2002 cover either the adult population in the slope area or juvenile distribution in northern areas. The problem of underestimation of recruitment in the last few years included in the analyses has been attributed to shortcomings in survey coverage. The Working Group at previous meetings has noted the need for annual surveys that sample most of the population within a short period of time. Prior to the 2002 WG meeting effort was therefore made to combine some of these surveys into a new total index. The new index is termed the Norwegian Combined Survey Index and is established back to 1996, the first year with survey coverage northeast of Svalbard. It includes bottom trawls from the Norwegian bottom trawl survey in August in the Barents Sea and Svalbard (Tables E1 and E2), the Norwegian Greenland halibut survey in August along the continental slope (Table E3), and the Norwegian bottom trawl survey in August-September north and east of Svalbard (Table E4). Prior to the meeting in 2003 work was done to evaluate the combination of these survey series into one index and this was reported in Working Document 5 to the Working Group. Based on these results it was decided to use this combined index in this years assessment.

The Norwegian Combined Survey Index (Table E5) indicates a significant increase in the total stock during the last three years and a stock size in 2002, nearly \(40 \%\) above last years index. However, there is no clear year class pattern in the data and some ages are consistently underestimated relative to adjacent age groups (e.g. age 9 and partly age 4). The highest indices were observed for age seven, with exception of the two last years when age 1 was most abundant. That indicates that the catchability of younger ages (i.e. those primarily from northern surveys) are not comparable with the older ones (i.e. those primarily from the slope). This is probably a result of pooling different surveys using different gears. These weaknesses reduce the applicability of the combined surveys, and the Working Group advises that further work be done to improve the combined index in the future.

The Russian Barents Sea bottom trawl survey, which extends back to 1984 catch fish mainly in the range of 4-10 years old. The relative abundance of the year classes against age is similar to the surveys above. This survey covers the Barents Sea including the continental slope of the Norwegian Sea. Total abundance indices from this survey show trend to grow since 1996.

The Spanish bottom trawl surveys along the continental slope north of \(73^{\circ} 30^{\prime} \mathrm{N}\) from 1997 (Table E7) differ from the other survey series indicating reduced abundance in this area since 1999.

The Norwegian bottom trawl survey during winter in the Barents Sea catch Greenland halibut older than 12 years, but are not particularly effective in catching fish older than 7 years. This is likely due to the limited depth distribution of the survey area. Nevertheless, the survey appears very effective at catching Greenland halibut up to age 6 . The relative abundance of the year classes against age is comparable with the survey above.

The strengths of the Greenland halibut year classes of 1970-1997 from the International pelagic 0-group surveys in the Barents Sea are shown in Table A14. The results are highly variable over the time period. However, most of the 1970's and 1980's year classes are represented in reasonably high numbers. In recent years the 1988-1992 and the 1996 year classes have been well below the long-term average. The 1993-1995 and 1997-1999 year classes are closer to the average. Significant increase of 0-group abundance indices with compare to previous years was observed in 2000-2002.

All in all, the surveys seem to indicate that the catchability of the 1990-1995 year classes increased considerably as the fish becomes five years and older. Based on extremely low catch rates in the surveys, these year classes were considered very poor in previous assessments by the Working Group, but improved considerably at older ages. The reason for this change in catchability is not clear. However, it is known that important areas for young Greenland halibut may be found north and east of Svalbard (Table E4). Albert et al. (2001a) showed that the south-western end of the distribution area of age 1 fish was gradually displaced northwards along west Spitsbergen in the period 1989-92 and southwards in the period 1994-1996. These displacements corresponded to changes in hydrography and may be explained by increased migration of the 19901995 year classes to areas outside the survey area.

\section*{Commercial CPUE}

The restrictive regulations imposed on the trawl fishery after 1991 disrupted the traditional time-series of commercial CPUE data. However, an attempt to continue the series was made through a research program using two Norwegian trawlers in a limited commercial fishery (Tables 8.6 and E9). This comprises fishing during two weeks in May-June and October, representing an effort somewhat less than \(20 \%\) of the 1991 level. Since 1994 the fishery has been restricted to May-June. This fishery was conducted, as much as possible, in the same way as the commercial fishery in the previous years. Since 1997 also two Russian trawlers conducted a limited research fishery for Greenland halibut.

The CPUE from the experimental fishery was found, however, to be considerably higher than in the traditional fishery and has exhibited an increasing trend from 1992-1996. After 1996 the Norwegian CPUE series has varied between 1200 and \(1650 \mathrm{~kg} / \mathrm{h}\) with the highest value in 2000 (Table E9). The Russian experimental CPUE series shows an increasing trend since 1997, and this series also shows the highest value in 2000.

\section*{Other relevant data}

None

\section*{HISTORICAL STOCK DEVELOPMENT}

Model used: XSA
Software used: IFAP / Lowestoft VPA suite

Model Options chosen:

Tapered time weighting applied, power \(=3\) over 20 years
Catchability independent of stock size for all ages
Catchability independent of age for ages \(>=10\)
Survivor estimates shrunk towards the mean F of the final 2 years or the 5 oldest ages
S.E. of the mean to which the estimate are shrunk \(=0.500\)

Minimum standard error for population estimates derived from each fleet \(=0.300\)
Prior weighting not applied

Input data types and characteristics:
\begin{tabular}{|c|c|c|c|c|}
\hline Type & Name & Year range & Age range & Variable from year to year Yes/No \\
\hline Caton & Catch in tonnes & 1964 - last data year & - (total) & Yes \\
\hline Canum & Catch-at-age in numbers & 1964 - last data year & 5-15+ & Yes \\
\hline Weca & Weight-at-age in the commercial catch & 1964 - last data year & 5-15+ & Yes/No - constant at age from 1964-1978 \\
\hline West & Weight-at-age of the spawning stock at spawning time. & 1964 - last data year & 5-15+ & Yes/No - assumed to be the same as weight-at-age in the catch \\
\hline Mprop & Proportion of natural mortality before spawning & 1964 - last data year & 5-15+ & No - set to 0 for all ages in all years \\
\hline Fprop & Proportion of fishing mortality before spawning & 1964 - last data year & 5-15+ & No - set to 0 for all ages in all years \\
\hline Matprop & Proportion mature at age & 1964 - last data year & 5-15+ & Yes/No - three year running mean, constant at age from 1964-1983 \\
\hline Natmor & Natural mortality & 1964 - last data year & 5-15+ & No - set to 0.15 for all ages in all years \\
\hline
\end{tabular}

Tuning data:
\begin{tabular}{|l|l|l|l|}
\hline Type & Name & Year range & Age range \\
\hline Tuning fleet 1 & \begin{tabular}{l}
Norwegian \\
Combined survey \\
index
\end{tabular} & 1996 - last data year & \(5-15+\) \\
\hline Tuning fleet 2 & \begin{tabular}{l}
Norwegian \\
experimental CPUE
\end{tabular} & 1992 - last data year & \(5-14\) \\
\hline Tuning fleet 3 & \begin{tabular}{l}
Russian trawl survey \\
from 1992
\end{tabular} & 1992 - last data year & \(5-15+\) \\
\hline
\end{tabular}

\section*{SHORT-TERM PROJECTION}

Model used: Age structured
Software used: IFAP prediction with management option table and yield-per-recruit routines
Initial stock size. Taken from the XSA for age 6 and older. The recruitment at age 5 in the last data year is estimated using the mean from 1990 to two years before the last data year following the argument that recruitment at age 5 shows a sharp reduction in the most recent years in the previous assessments, which is not believed to reflect the true recruitment.

Natural mortality: Set to 0.15 for all ages in all years
Maturity: The same ogive as in the assessment is used for all years
F and M before spawning: Set to 0 for all ages in all years
Weight-at-age in the stock: Average weight-at-age for the last three years used in the assessment
Weight-at-age in the catch: Average weight-at-age for the last three years used in the assessment
Exploitation pattern: Average of the three last years
Intermediate year assumptions: Catch constraint
Stock recruitment model used: Constant recruitment as described earlier
Procedures used for splitting projected catches: Not relevant

\section*{MEDIUM-TERM PROJECTIONS}

Not done

\section*{LONG-TERM PROJECTIONS}

\section*{Not done}

\section*{BIOLOGICAL REFERENCE POINTS}

No limit or precautionary reference points for the fishing mortality or the spawning stock biomass are proposed.

\section*{OTHER ISSUES}

\section*{REFERENCES}

Albert, O.T., E.M. Nilssen, K.H. Nedreaas \& A.C. Gundersen 2001a. Distribution and abundance of juvenile Northeast Arctic Greenland halibut (Reinhardtius hippoglossoides) in relation to survey coverage and physical environment. ICES Journal of Marine Science 58: 000-000.

Albert, O.T., E.M. Nilssen, A. Stene, A.C. Gundersen \& K.H. Nedreaas 2001b. Maturity classes and spawning behaviour of Greenland halibut (Reinhardtius hippoglossoides). Fisheries Research 51: 217-228.

Boje, J., \& N.R. Hareide 1993. Trial deepwater longline fishery in Davis Strait, May-June 1992. NAFO SCR Doc. 93/53, Serial No. N2236, 6 pp.

Borkin, I.V. 1983. Results from research on ichthyophauna in the Frantz-Josef Land area and north of Svalbard. In: Research into biology, morphology and physiology of marine organisms. USSR Academy of Science Publishers, Apatity, pp. 34-42 (in Russian).

Bowering, W.R. \& W.B. Brodie 1995. Greenland halibut (Reinhardtius hippoglossoides). A review of the dynamics of its distribution and fisheries off eastern Canada and Greenland. -Pp. 113-160 in: Hopper, A.G. (ed.). DeepWater Fisheries of the North Atlantic Oceanic Slope. Kluwer Academic Publishers, Boston, USA.

Bowering, W.R. \& K.H. Nedreaas 2000. A comparison of Greenland halibut (Reinhardtius hippoglossoides, Walbaum) fisheries and distribution in the Nortwest and Northeast Atlantic. Sarsia 85: 61-76.

Fedorov, K.Y. 1971. Zoogeographic characteristics of the Greenland halibut (Reinhardtius hippoglossoides, Walbaum). Journal of Ichthyology 11: 971-976.

Godø, O.R. \& T. Haug 1987. Migration and recruitment to the commercial stock of Greenland halibut, Reinhardtius hippoglossoides (Walbaum), in the Svalbard area. FiskeridirektoratetsSkrifterSerieHavundersøkelser 18: 311328.

Godø, O.R. \& T. Haug 1989. A review of the natural history, fisheries and management of Greenland halibut (Reinhardtius hippoglossoides) in the eastern Norwegian and Barents Seas. Journal du Conseil. Conseil international pour l'Exploration de la Mer 46: 62-75.

Nizovtsev, G.P. 1968. Distribution and age-length characteristics of Greenland halibut (Reinhardtius hippoglossoides Walbaum) catches in the Barents sea in 1996. Trudy PINRO,23: 402-413. (in Russian).

Nizovtsev, G.P. 1983. Distribution of young Greenland halibut in the Barents Sea and in the eastern Norwegian Sea. Rybnoye khozyaistvo, 12:26-28 (in Russian).

Nizovtsev, G.P. 1989. Recommendations on rational exploitation of Greenland halibut stocks in the Barents and Norwegian seas. USSR Ministry of Fisheries, PINRO, Murmansk, 93 pp. (in Russian).

Shuntov, V.P. 1965. Distribution of Greenland halibut and arrowtooth flounder in the northern Pacific.Trudy VNIRO, 58: 155-164 (in Russian).

Whitehead, P.J.P., M.-L. Bauchot, J.-C. Hureau, J. Nielsen \& E. Tortonese 1986. Fishes of the Northeastern Atlantic and the Mediterranean. UNESCO, Paris, France, 1473 pp.```

