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Abstract 

The effect of water treatment and flow rate on young Atlantic cod juveniles was investigated 

in a 36-days experiment. Four different flow rates (10, 20, 40, and 70 times the effective tank 

volume per day) were set up in triplicate tanks within each of three rigs with recirculated, 

UV-radiated, and untreated water, respectively. Each of the 36 tanks was stocked with 200 

weaned cod juveniles at a mean weight of 0.048g. Fish mortality was recorded daily in all 

tanks, and growth (wet weight) was determined at the end of the experiment. The microflora 

in the rearing water was investigated by means of PCR-DGGE and flow cytometry. Observed 

mortality was significantly higher at low flow rates while otherwise unexplained mortality 

(presumed to be due to cannibalism) was lowest in the recirculation system. No correlation 

was found between survival and growth. Growth was significantly affected by both water 

exchange rate and treatment, as the juveniles from high flow rates and the UV-treatment 

showed elevated growth rates. Both growth and survival scaled in accordance with metabolic 
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factors like oxygen saturation and unionized ammonia. Bacterial concentrations increased in 

all tanks and treatment from the beginning of the experiment to the end. The UV-treated and 

untreated water started at typical seawater concentrations (0.5-1 x106 mL-1) and increased 

five to tenfold during the experiment. The recycled water tanks started with bacterial 

concentrations 2-5 times higher than the UV- and untreated experiments at the time of fish 

transfer, and ended up with 10 times higher concentrations in the end. Cluster analysis of the 

DGGE profiles separated the recirculation tanks, including the respective inlet water, from 

the flow-through systems, with one exception (the highest flow rate). Eighty-five % of the 

sequences clustered within the Gammaproteobacteria, further divided into four distinct 

clusters. One of the clusters was only detected in the recirculation system, and showed 

highest affiliation to bacteria belonging to the Alteromonas/Pseudoalteromonas genera. In 

contrast, bacteria belonging to the family Vibrionaceae were detected in the flow-through 

systems. 

Keywords: Recirculation; Water treatment; Water flow rate; Juvenile production; 

Cannibalism; Acidification; Vibrio; Pseudoalteromonas; Alteromonas; DGGE; Flow 

cytometry  



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT
3

1. Introduction 

The commercial production of Atlantic cod (Gadus morhua L.) is increasing, reaching 19712 

metric tonnes in Norway in 2009 (www.fiskeridir.no). In order to sustain a viable and 

increasing cod production, juveniles have to be produced at predictable quantities under 

controlled conditions. However, variable survival and quality during cultivation of the early 

life stages are commonly experienced. This brings challenges to the establishment of a stable 

supply of cod juveniles. In this respect, water quality is of particular interest. Water quality 

may affect survival, growth, and quality of the fish. Two major components of water quality 

are flow rate and water treatment, which may affect both microbial conditions and physical 

and metabolic parameters like oxygen, ammonia, carbon dioxide, and pH.  

As the cod larvae metamorphoses, and proceed through the juvenile stages, biomass and 

organic load increase in the rearing tanks. High concentrations of nutrients and high densities 

of fish larvae provide favourable conditions for opportunistic pathogenic bacteria (Vadstein

et al., 2004). Usually, this is compensated by increasing the water exchange rate, with 

sufficient oxygen levels as the control parameter. Sometimes biomass density exceeds the 

possibilities of keeping oxygen saturation at safe levels, and aeration or oxygenation has to be 

applied. Flow rate may control not only the physical parameters in the tanks, but also 

microbial growth. Increasing flow rate will have a dilution effect and aid the removal of 

organic substrates generated by the larval rearing, as well as bacterial biomass. More 

knowledge is needed on how water exchange rate may affect microbial conditions, fish 

growth, and survival in relation to biomass density in fish tanks. 

  

Water treatment on the other hand have the possibility to affect microbial composition 

directly by killing or enhancing selection of potential opportunistic fish pathogens, or more 

beneficially, providing conditions for non-opportunistic and harmless bacteria (Vadstein et al. 

2004). The differentiation between opportunistic and non-opportunistic bacteria might also be 

explained as the division between r-strategic and K-strategic bacteria, which relates to the 

selection of life strategies promoting success in particular environments (Andrews and Harris, 

1986). In this sense water treatment should aim at selecting for K-strategic non-opportunistic 

species and avoid dominance of r-strategic and potential pathogenic opportunists. Different 

water treatment systems in marine fish rearing include microbial maturation of inlet water, 

UV-radiation or ozonation, and recirculation systems. Microbial maturation of water by 
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running the water through a maturation unit is shown to select for a non-opportunistic 

bacterial flora and to enhance larval growth and survival (Salvesen et al., 1999; Skjermo et 

al., 1997). Similarly, Verner-Jeffreys et al. (2004) reported increased growth and survival of 

halibut larvae in a recirculation system. 

Finding the optimal conditions of flow rate and water treatment may enhance juvenile 

production and improve fish welfare. The present work therefore presents results on growth, 

survival, and microbial conditions for cod during early juvenile stages, reared with three 

different water treatments, each with four different flow rates.  

2. Materials and methods

2.1. Biological material 

The experiment was carried out over 36 days from 10 June to 16 July 2004 at Institute of 

Marine Research (IMR), Austevoll Research Station, Norway. Cod eggs were collected from 

communal spring-spawning broodstock fish, and incubated in 70 l black polyethylene 

incubators, modified from van der Meeren and Lønøy (1998) with submerged water inlet and 

airflow at surface.  Newly weaned cod juveniles were obtained from larval rearing after a 

protocol described in van der Meeren et al. (2007), except for switching live Isochrysis sp. 

algae with Nannochloropsis sp. algal paste (Reed Mariculture Inc., Campbell, CA).  

    

2.2. Experimental setup and sampling 

A 36-tank experiment was conducted where each of the tanks was equipped with a separate 

water inlet with a high-grade flow meter. The tanks were organized in three rigs each 

containing twelve tank units. The water used was from 160m depth in the fjord and sand-

filtered. Each of the three rigs received a different water quality, achieved by treatment in a 

recirculation system, by UV-radiation and no treatment as a control. All the three water 

qualities were temperature adjusted to 12°C and aerated before use. 

The recirculation unit was a TMC 5000 Marine System (Tropical Marine Centre, London, 

UK), containing a 750 litre pallet reservoir with GRP support grid, filtration circulation 
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pump, mechanical bag filter unit, fluidised sand filter unit with 15 kg oolitic coral sand, 

trickling bio-tower with side wall flow-deflector rings and 70 litres if TMC Bio-Rings 

random fill media (210 m2/m3), conditioner (Teco CA2000) for maintaining stable 

temperature, and protein skimmer complete with venture pump and internal and external 

foam cup wash kits. The protein skimmer was used in conjunction with a Sander A1000 

Ozoniser (Erwin Sander Elektroapparatebau GmbH, Uetze-Eltze, Germany) controlled by a 

Burkert ORP 8206 transmitter with a PFGK-gel-2A/A redox sensor (Christian Bürkert 

GmbH, Ingelfingen, Germany). The redox potential was kept between 320 and 340 mV, and 

pure oxygen was used to both facilitate ozone production and maintain oxygen levels at the 

lowest flow rate in the recirculation unit. Approximately 5% of the water in the recirculation 

rig was removed daily during tending of the tanks, and recirculation rate was therefore ca 

95%. To allow establishment of sufficient biofilm activity in the biofilters at the low 

temperature of 12°C, the recirculation unit was started approximately 16 weeks prior to start 

of the experiment. During this period the recirculation unit with tanks, a total of 1.3 m3, was 

constantly conditioned by feeding a daily amount of 1.7 g NH4Cl by an Iwaki EH/S 

membrane pump (Iwaki, Tokyo, Japan), corresponding to the expected daily ammonia 

production from cod juveniles in the recirculation rig at experimental start-up, as calculated 

from Finn et al. (2002). During the experiment, NaHCO3 was used to counteract the 

reduction in pH appearing in the recirculation system. 

The UV-treatment was made by a TMC P8-440W UV unit (Tropical Marine Centre, London, 

UK), coupled in line with the water supply of this rig. The TMC P8-440W consisted of eight 

tubes each with a 55W UV lamp inside a quartz glass sleeve, giving off 18W UVc radiation 

at 253.7 nm. During treatment, the water had to pass through two such tubes. According to 

manufacturer, the complete unit has a maximum capacity of 265 l/min with was far above 

what was actually used (10.2 l/min).     

Within each water treatment (rig), four different flow regimes were applied in triplicate tanks. 

The water exchange rate was 10, 20, 40, and 70 times (denoted 10X, 20X, 40X, and 70X) of 

the effective tank volume (33 litres) per day. Each tank was stocked with 200 weaned cod 

juveniles (on 10 June, 61 day after hatching) at a mean weight of 0.048g. The juveniles were 

gently caught in the rearing tank with a 1.5 litre beaker and carefully transferred and counted 

when released to the experimental tanks. The fish were fed in excess with a commercial 

formulated feed (AgloNorse: Trofi AS, Tromsø, Norway) in a 24 h cycle, using belt feeders. 
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Light intensity was adjusted to 20μW/cm2 at the surface of each tank (Osram Biolux 72 

fluorescent broad-spectre daylight tubes).  

Fish mortality was recorded daily in all tanks, and dead fish was removed along with uneaten 

food and faeces. Unaccounted mortality (difference between observed mortality from 

collected fish and final numbers of surviving fish) was interpreted as cannibalism (also 

observed a couple of times).  

Growth was determined in all tanks from wet weight (WW) at the end of the experiment, 

which lasted 37 days. Wet weight was measured on fish anesthetised with tricaine 

methanesulfonate (Finquel, MS 222). The cod juveniles were flipped on a sheet of towel 

paper and subsequently weighed using a Sartorius CP153 (Sartorius AG, Goettingen, 

Germany). Specific growth rates (SGR) were calculated from Ricker (1958) as percent daily 

increase in wet weight: 

SGR = (eg - 1) * 100 %           where            g = (lnWWt - lnWWt0)/(t-t0) 

From one tank of each treatment, water samples were collected once a week for 

determination of ammonia and bacteria (total and species). Hydrography (temperature, 

salinity, oxygen, pH, and redox) was also determined once a week with an YSI 556 MPS 

(YSI Inc., Yellow Springs, Ohio). To evaluate variation within triplicates, measurements 

were carried out in all three replicate tanks of the 10 times exchange rate of the UV-

treatment.  

Since pH of seawater is not expected to get below pH 7, the pH glass electrode was calibrated 

by 2-point calibration with IUPAC buffers at pH 7 and 10. The pH readings was therefore in 

accordance with the NIST scale (former NBS scale) which is most commonly used in marine 

aquaculture, although the  Hansson’s scale based on high ionic strength buffers may be more 

correct for measurement of pH in high ionic strength solutions like seawater (Hansson, 1973).  

2.3. Ammonium analysis 
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Water samples were analysed for total ammonium content (NH4
+ and NH3), using the 

salicylate-hypochlorite method (Bower and Holm-Hansen, 1980).  Each sample was 

developed in triplicate before analysis. Absorbance of the ammonium reaction compound 

indophenol blue was detected by a Shimadzu UV-160 spectrophotometer (Shimadzu 

Corporation, Kyoto, Japan), and total ammonium content determined from standard curves. 

Calculation of the unionized ammonia fraction (NH3) was done from a minor correction of 

equation (8) of Fivelstad (1988) as compiled from Withfield (1974): 

In this equation, S is salinity (‰) and t is temperature (°C). All references to mg/l for total or 

unionized ammonium are based on the full mole weight. 

2.4. Flow cytometry 

The water samples (18 ml) were fixed by adding 2 ml of a 40% formaldehyde solution. Total 

bacterial counts were determined using FacsCalibur flow cytometer (Becton Dickinson, 

Franklin Lakes, NJ) equipped with an air-cooled laser providing 15 mW at 488 nm and with 

standard filter set-up. The samples were diluted 5- to 10-fold in TE buffer and stained with 

SYBRGreen I (Molecular Probes Inc., Eugene, OR) for 15 min in the dark and at room 

temperature (Marie et al., 1999; Thyrhaug et al., 2003). The final concentration of 

SYBRGreen I in the samples was 2×10–4 of the commercial stock solution. The flow cytomer 

instrumentation and the remaining methodology followed the recommendations of Marie et 

al. (1999).  

2.5. Polymerase chain reaction (PCR) and Denaturing Gradient Gel Electrophoresis 

(DGGE) 

Water samples for PCR-DGGE analysis were taken once a week from the different water 

treatments and flow rates by filtering 18-20 ml water on 0.2 μm Dynagard hollow fibre 

syringe filters (Microgon InC. Laguna Hills, Ca). Total community DNA was further 

extracted from the syringe filters using a commercial kit for DNA isolation (Wizard®
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Genomic DNA Purification Kit, Promega, Madison, WI). Proteins were precipitated and 

DNA purified according to the manufacturer’s protocol with modifications as described in 

Sandaa et al. (2003). The DNA pellet was dried and resuspended in 20 μl sterile distilled 

water. The extracted genomic DNA was used as target DNA in the PCR to amplify fragments 

suitable for DGGE analysis. The primer combinations EUBf (Giovannoni et al., 1990), with a 

GC-clamp, and PRU517r (Lane et al., 1985) were used with PCR conditions according to 

Sandaa et al. (2003). Clustering is based on the simple matching algorithm, while the 

dendogram was drawn using the complete link method.

DGGE was performed using a Dcode 16/16 cm gel system (BioRad, Herts, UK). PCR 

samples were loaded onto 8% (wt/vol) polyacrylamide gels in 0.5 x TAE (20 mM Tris, 10 

mM acetate, 0.5 mM Na2 EDTA at pH 7.4). The linear gradient of urea and formamide 

ranged from 35 to 55 % denaturant. The electrophoresis was run at 60o C for 20 h at 60 V. 

The gels were stained for 1 h with a 1:10 000 dilution of SYBR Green II (Molecular Probes, 

OR) in distilled water before photography. DGGE bands to be sequenced were excised from 

the gel. The DGGE profiles from the last two sampling dates, 9 and 16 July, were analysed 

using the gel image analysis program Gel2K (Svein Norland, Dept. of Biology, University of 

Bergen). Clustering is based on the simple matching algorithm, while the dendogram was 

drawn using the complete link method. 

The 500 bp amplicons were sequenced by cycle sequencing according to the protocol from 

Perkin Elmer using EUBf as a sequencing primer. Sequences were obtained on an ABI 377 

sequence analyser (Perkin-Elmer Applied Biosystems, CA). The sequences have been 

deposited to GenBank with the accession numbers GU583742 through GU583788.  

Analysis of 16S rDNA sequences was carried out by alignment to the closest relative in the 

nucleotide BLAST program (GenBank, NCBI) (Altschul et al., 1990). Additional 16S rDNA 

sequences from GenBank of closest relatives and type strains were used for the phylogenetic 

analysis. These sequences are; Alteromonas citrea (X82137), Alteromonas aurantia

(X82135), Alteromonas sp. MOLA, (AM990812), Alteromonas sp. S11-B-8 (EU016171), 

Alteromonas sp. V4.BE.32 (AJ244758), Pseudoalteromonas sp. 'turbot' (AY227707), 

Pseudoalteromonas denitrificans (X82138) and Vibrio splendidus strain 03/012 (AJ874367), 

Listonella anguillarum (AM235737), Methylophilus methylotrophus (GQ411499), 

Saprospira sp. CNJ640 (AY527410), Roseobacter sp. UST050418-052 (FJ596360), 
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Uncultured beta proteobacterium clone 9m05AISD07 (EF629704), Vibrio sp. V322 

(DQ146983), and Vibrio sinaloensis strain CAIM 648 (EU043381). Phylogenetic 

relationships were inferred from multiple alignments by the use of CLUSTALX (Thompson

et al., 1997), using the website www.phylogeny.fr (Dereeper et al., 2008). Alignment curation 

in the sequences was checked by using GBlocks (Castresana, 2000), while phylogeny was 

analysed using the PhyML 3.0 program. Supports for clades were estimated by using the 

approximate likelihood-ratio test with the settings SH-Like. The trees were drawn using the 

TreeDyn program (Chevenet et al., 2006). 

2.6. Statistical analysis

Two-way ANOVA statistics were used to test for significant differences of water treatment 

and water exchange rate. Tukey HSD post hoc test was used to determine differences among 

all the variables. Mortality data, given as percentages, were arcsine transformed before 

statistical testing (Sokal and Rohlf, 1995). Differences among means were considered 

statistically significant at P < 0.05.  
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3. Results 

3.1. Survival and growth  

Total mortality was between 8.5 and 60.5% among individual tanks. Total mortality (and 

hereby overall survival) was significantly modified by both water treatment (P < 0.0001) and 

water exchange rate (P < 0.0001). Observed mortality, averaged for the triplicates (Fig. 1A), 

was significantly affected by water flow rate (P = 0.0001), with the highest mortality 

occurring at the least water exchange. In contrast, cannibalism was lowest in the recirculation 

system (Fig. 1B), demonstrating the significant effect of water treatment on this mortality 

measure only (P < 0.0001). Within each tank, cannibalism accounted for a highly variable 

fraction of the total mortality, as cannibalism varied between 0.04 and 8.46 times that of the 

observed mortality. No interaction between water treatment and flow rate was evident for any 

of the mortality measures (P > 0.5454).  

At experiment conclusion, average juvenile wet weight among individual tanks was between 

0.73 and 1.67 g. Similarly, SGR was calculated to between 6.8 and 9.8% increase in weight 

per day among individual tanks. Average SGR among triplicate tanks was found to be 

significantly affected by both flow rate (P < 0.001) and water treatment (P = 0.012) as the 

juveniles from high flow rates and the UV-treatment showed elevated growth rates (Fig. 1C). 

No significant interaction between water treatment and flow rate was observed for SGR (P = 

0.1001)  

Both water treatment (P < 0.0001) and flow rate (P < 0.0001) had significant effects on the 

produced biomass density in the tanks (Fig. 1D), but interaction between water treatment and 

flow rate on biomass density was not significant (P = 0.0519). Among individual tanks, the 

biomass density at experiment conclusion varied between 1.8 and 7.5 g/l. Recalculating this 

to biomass-specific water exchange rates, it corresponded to a range of 2.9 to 22.6 l/g/day, 

with averages of triplicate treatments of 3.5-3.9 l/g/day (10X), 4.0-6.6 l/g/day (20X), 6.0-9.1 

l/g/day (40X), and 10.5-16.7 l/g/day (70X).  

Average oxygen saturation for the experimental period was significantly correlated with both 

survival (Fig. 2A, R2 = 0.48, P = 0.006) and growth rate (Fig. 2B, R2 = 0.46, P = 0.0078). 

High survival or SGR was associated with oxygen levels above 80% saturation and high 
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water exchange rates. Similarly, average unionized ammonia (NH3) concentration was 

negatively correlated with survival (Fig. 2C, R2 = 0.38, P = 0.019) and SGR (Fig. 2D, R2 = 

0.35, P = 0.026). High SGR or survival was observed for NH3 levels below 0.13 μM (0.0022 

mg NH3/l), occurring at high water exchange rates. No overall significant correlation was 

found between average pH levels during the experiment and survival or SGR (Fig. 2E, F). 

However, in the recirculation unit average pH throughout the experiment (7.38-7.61) was 

lower than in the flow-through treatments (7.71-8.02), and there was a strong tendency to 

improved survival or growth with increasing water exchange rate within each water treatment 

regime (Fig. 2E, F). This correlation was significant between average pH and survival for 

both flow-through treatments, and it was also significant for average pH and SGR in the 

untreated water. Finally, no correlation was found between survival and SGR (Fig. 2G), but 

high water exchange rates enhanced both growth and survival. 

3.2. Bacterial counts and signatures by flow cytometry 

  

Bacterial concentrations in the water, as counted by flow cytometry  increased in all tanks 

and treatment from the beginning of the experiment to the end (Fig. 3A) The UV-treated and 

untreated water started at typical seawater concentrations (0.5-1 x106 mL-1) and a further five 

to 10-fold increase was observed during the experimental period. The recirculated water 

tanks started with bacterial concentrations two to five times higher than the UV- and 

untreated tanks at the time of fish transfer, and ended up with 10 times higher concentrations 

in the end. Similarly, the mean side scatter (SSC) signal from the bacterial populations where 

stable in the untreated and UV-treated tanks, while the signal increased four to five times in 

the recirculated water tanks (Fig. 3B). However, this should not be directly linked to any 

physiological or genetic characteristics of the populations, but is rather an indication of a 

different development in the two systems. 

3.3. Microbial community structure described by DGGE and sequencing

Cluster analysis of the DGGE profile from the different water treatments and flow rates at 

July 9th (Fig. 4A) separated the recirculation tanks, including the respective inlet water, from 

the flow-through systems at 0.55, with one exception. The exception, the highest flow rate of 

the untreated water (Un-70X), clustered together with the recirculation tanks. The number of 

bands in the 10X and 20X water exchange rates was higher compared to the 40X and 70X for 
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all the water treatments (data not shown). At July 16th the cluster analysis of the DGGE 

profile from the different water treatments and flow rates (Fig. 4B) revealed two major 

groups at 0.64, one group consisting of the recirculation system, and the other group of the 

two flow-through systems with UV and untreated water. Similarly, band profiles were 

obtained from the inlet water of the recirculation system and the Re-70X tank. At 0.48 of the 

cluster analysis, the three water treatment systems composed three major groups with 

exception of tank UV-70X, which grouped together with the untreated tanks. The number of 

bands in the 10X and 20X water exchange rates was again higher compared to the 40X and 

70X for all the water treatments (data not shown). It was not possible to obtain PCR products 

from the inlet waters of the flow-through systems, and these profiles were therefore not 

included in the cluster analysis. 

Phylogenetic analysis of the DGGE sequences (Genbank accession numbers: GU583742-

GU583788) showed that they fell into six distinct clusters (Fig. 5). From the top of the tree 

and downward, one sequence from the UV treatment (LB20) made up a cluster together with 

Saprospira sp. that belongs to the phylogenetic group Bacterioides. The next cluster consisted 

of six sequences (LB22, LS44, LB32, LB9, LB8, LB39) with low homology to any hitherto 

known bacterial strain. These sequences represent samples from all the three water treatments 

(Un, UV, Re). The unknown group clustered closely to the Gammaproteobacteria group, with 

a sequence difference of approximately 24%. However, 85 % of the DGGE sequences 

clustered within the Gammaproteobacteria divided into four distinct clusters denoted I to IV 

(Fig. 5). Cluster I (LB41, LB16, LB7, LB12, LB43) showed approximately 15% difference 

from the Vibrio group. Cluster I consisted of samples from all the three treatments. Cluster II 

consisted of 15 DGGE sequences together with bacteria belonging to the family Vibrioaceae. 

Most of these sequences (93 %) were from the DGGE profiles of samples from the Un and 

UV treatments. Cluster III made up five DGGE sequences from the Re treatment together 

with representatives belonging to the Alteromonas and Pseudomonas genera. Finally, cluster 

IV consisted of 15 homologous DGGE sequences, with approximately 26% sequence 

difference to the Alteromonas/Pseudomonas complex represented by cluster III. Moreover, 

10 of these sequences (67 %) were DGGE profiles from the UV treatment.  
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4. Discussion 

The two mortality components, observed mortality and the unexplained mortality believed to 

be cannibalism, were affected differentially by water treatment and flow rate. The cause of 

death among observed dead fish was not explored. However, low flow brings on a number of 

changes in crucial water quality parameters related to oxygen supply, released metabolites, 

and microbial load. The metabolites will primarily include CO2, which was not measured in 

the present study, and unionized ammonia (NH3), which dissociate readily into the much less 

toxic ammonium (NH4
+) in contact with water. NH3 is a potent neurotoxin (Cooper and Plum, 

1987) that is excreted into the water by ammoniotelic fish (Wilkie, 2002). The amount of 

NH3 in the ammonium equilibrium is strongly dependent on pH and increases at higher pHs 

(Emerson et al., 1975; Whitfield, 1974). Moreover, a recirculation system with biofilter for 

nitrification of ammonium to nitrate will consume alkalinity with reduced pH as a result 

(Gundersen and Mountain, 1973). In addition, CO2 from respiration will easily dissolve in 

water and add further to reduction of pH by producing carbonic acid. Acidification of the 

water in this way could have been avoided if the recirculation system has a very efficient CO2

stripping component, but this was not the case in the present experiment.. Altogether, these 

factors accounted for the large drop in pH observed in the recirculation treatment, but which 

of the CO2 and nitrification processes that was most important cannot be determined from the 

present data. But the recirculation system probably benefited from the low pH by reducing 

toxicity of unionized ammonium. In fact, despite that total ammonium was between 2.1 and 

6.6 times higher in the recirculation tanks than in their respective flow rate tanks of the flow-

through treatments, NH3 was at the same level in all water treatments. There is a limited 

number of studies on acute toxicity of unionized ammonium in seawater, but levels between 

0.09 and 3.35 mg/l NH3-N (6.4-239.2 μM NH3) have been suggested for marine fish in a 

review by Handy and Poxton (1993). Further, effects of chronic exposures may occur at 5-

10% of the acute levels (Eddy, 2005). Without the pH effect in the recirculation treatment, 

NH3 levels would have exceeded the levels of which effects from chronic exposure may be 

expected as calculated from the numbers above.    

However, within each water treatment, there was a drop in pH of approximately 0.2 units 

from the highest to the lowest flow rate. This indicates an effect of CO2 from respiration 

alone without nitrification. Increased CO2 concentrations may reduce both survival and 

growth in fish (Ishimatsu et al., 2005), but since CO2 was not measured in the present study, 
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the exact outcome of CO2 build-up cannot be assessed. Nevertheless, low water flow may 

have deteriorated water quality in general by increasing the levels of metabolites. This is 

further amplified as seen for NH3, which was more abundant in the tanks with the lowest 

flow rate compared to the tanks with the highest flow rate (1.3 and 3.1-3.7 times more 

abundant in the recirculation and flow-through treatments, respectively).  Although the 

observed NH3 levels should not account for a particular increase in mortality or reduction in 

growth according to reported literature values for cod juveniles (Foss et al., 2004), the 

additive stress from accumulated metabolites and reduced oxygen levels may increase 

susceptibility to physiological perturbations which in turn may halt growth or lead to 

increased rates of infections from pathogens. Reduced oxygen may explain the effects on 

growth at the low flow rates as hypoxia in cod, particularly below 65% oxygen saturation, 

has been shown to decrease food consumption and explain most of the variation in growth, 

but with only a slight effect on food conversion efficiency (Cabot and Dutil, 1999). However, 

the levels of hypoxia in the present study were not low enough to affect survival in cod 

directly (Cabot et al., 2001). Thus, as both survival and growth was negatively affected by the 

low water exchange rate, resulting in reduced oxygen saturation, increased CO2

concentration, and elevated NH3 levels, this indicate that small but simultaneous changes in 

basic water quality parameters should not be overlooked regarding cumulative stress and fish 

welfare in ongrowing of marine juvenile fish. Still, very little is known about the mechanisms 

on how such stressors act, alone or in combination, chronically or acute, both at tissue, cell, 

or molecular levels.     

More unexpectedly, motivation to eat conspecifics seemed to have been much less in the 

recirculation treatment compared to the other two flow-through treatments. The reasons for 

this are unclear, but several issues may be hypothesised for explaining the observed 

differences. Due to lower cannibalism in recirculation tanks, density of fish in these units 

became somewhat higher than in the tanks of the other two water treatments. There is also a 

tendency that cannibalism increases towards higher flow rate with more surviving fish. 

However, it is unlikely that density-dependent factors may explain the differences in the 

cannibalism, as survival numbers in the recirculation units were among the best at all flow 

rates compared to the other water treatments. Reasons for the reduced cannibalism may 

therefore be found elsewhere. First, recirculation of water also implies recirculation of 

metabolites and dissolved organic compounds, originating from the feed among others. Some 

of these water-soluble compounds may be amino acids that may interfere with the sensory 
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system of fish. It may therefore be questioned if some kind of “smell” or “taste” did put the 

sensory system into satiation, and thereby reducing the motivation to eat conspecifics? 

Second, a considerable drop in pH was found in the recirculation treatment, and even a 

modest reduction in pH has shown to significantly alter the olfactory abilities of other marine 

fish (Munday et al., 2009). Suppression of taste nerve responsiveness has also been reported 

for intracellular pH changes resulting from metabolites (Yoshii and Yotsui, 1997). Whether 

young cod is susceptible to these effects is unknown, but it should be investigated if feeding 

behaviour and motivation change with pH. This may also have applications beyond 

aquaculture, as acidification of the ocean from increasing CO2 loads is currently known to 

happen (Orr et al., 2005).  

Clear differences were also seen in the bacterial community composition comparing the 

recycled water system (Re) and flow-through systems (UV, Un) (Fig. 4). The differences 

were reviled by generally cells with higher scatter and green fluorescence in the recycled 

systems, suggesting a larger cell-size compared to the cells detected in the flow-through 

systems (Fig. 4B). Accordingly, differences between water treatments were also observed in 

the DGGE patterns of 16S rDNA (Fig 4A and 4B). On a finer level of resolution (Fig. 5), the 

differences were detected within two clusters (II and III) both belonging to the 

Gammaproteobacteria class. Cluster III was only detected in the recirculation system, and 

showed highest affiliation to bacteria belonging to the Alteromonas/Pseudoalteromonas

genera. In contrast, the flow-through systems were dominated of bacteria belonging to the 

family Vibrionaceae (Cluster II), with one exception; sequence LS18 that originated from the 

DGGE profile of the recirculation water system.   

Dominance of Alteromonas/Pseudoalteromonas species associated with recirculation systems 

has previously been described (Fjellheim et al., 2007; Verner-Jeffreys et al., 2004). Species 

within Alteromonas/Pseudoalteromonas are known to be antagonistic (Hjelm et al., 2004; 

Holmstrøm and Kjelleberg, 1999; Riquelme et al., 1996). Including, several strains within 

these genera are known for their biofilm-forming capabilities, including solid surface 

attachment (Dang and Lovell, 2000; Egan et al., 2008; Pukall et al., 1999; Rao et al., 2005; 

Schäfer et al., 2000; Skovhus et al., 2004). The recirculation unit was initiated 16 weeks prior 

to the experiment to initiate biofilm formation. The formation of biofilms may provide a 

higher stability in the bacterial community in the tanks and also prevent pathogenic bacteria 

to colonise. The combination of surface attachment and antagonism are known for several 
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bacterial strains isolated from tank walls (Bruhn et al., 2006; Hjelm et al., 2004; Porsby et al., 

2008). In this context, Hjelm et al. (2004) points to the differential biofilm-formation of 

pathogen-antagonising bacteria in larval tanks as a possible explanation for the large inter-

tank variability in survival within marine hatcheries. In the present study, the coefficient of 

variation (Sokal and Rohlf, 1995) of survival among the triplicate tanks of each water 

exchange rate was lower in the recirculation treatment compared to the two flow-through 

treatments, particularly if flow rates from 20X and larger are considered: 1.7-7.3% in Re, 8.5-

16.7% in UV, and 5.4-26.9% in Un. Thus, we might speculate if a possible successful biofilm 

formation in the recirculation system created a more stable microbial environment and hence 

lower variation in survival among the triplicates. 

The detection of Pseudoalteromonas/Alteromonas in the recirculation system may also be 

explained by their extreme long-term starvation capacity that enable them to adapt to nutrient 

depletion in a state termed as starvation-survival (Cappello et al., 2008; Givskov et al., 1994; 

Nissen, 1987; Pernthaler et al., 2001). During the period of conditioning only ammonium and 

no carbon-based substrate were added to the recirculation unit. Thus, 

Pseudoalteromonas/Alteromonas may have adapted to a starvation-survival strategy in the 

recirculation water system during this period. High concentration of ribosomes during 

extended periods of non-growth makes members of the Pseudoalteromonas/Alteromonas

genera able to rapidly respond to nutrient addition (Allers et al., 2007; Eilers et al., 2000a; 

Pernthaler et al., 2001). The subsequent  addition of fish, feed and faeces represented a huge 

organic load to the rearing tanks. When nutrients in the form of carbon are in excess an 

increase in cell size has been observed within the Alteromonas genus (Allers et al., 2007). In 

the present study cells with large cell-size were detected in the recirculation system only and 

may be attributed to the detection of Alteromonas. Another major difference between the two 

water systems was bacterial abundance, observed as 2-5 times higher in the recycled water 

tanks compared to the flow-through system in the start of the experiment, and 10 times higher 

in the end of the experiment. Apart from the head start of this recirculation system and the 

circulation of bacterial biomass, a higher ammonium concentration was also detected in the 

recirculation system. High ammonium concentrations are particularly favourable for growth 

of colony-forming Gammaproteobacteria (Eilers et al., 2001) and may further have 

contributed to the higher bacterial abundance observed in this system.  



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT
17

In the flow-through systems bacteria belonging to the family Vibrionaceae were detected. As 

with the the Pseudoalteromonas/Alteromonas genera, the Vibrio genus is rarely detected in 

situ (Eilers et al., 2000b). However, they are easily cultivated in response to nutrient addition, 

as demonstrated in seawater enclosures (Allers et al., 2007; Eilers et al., 2000a; Lebaron et 

al., 1999; Øvreås et al., 2003). Species within the Vibrionaceae family are frequently 

associated with disease in farmed fish (Thompson et al., 2004; Toranzo et al., 2005). Vibrio

sp. was found as the dominating genus associated with moribund cod larvae by Brunvold et 

al. (2007). Although, the majority of sequences in the present study could not be attributed to 

recognised species of the genus Vibrio, some of the sequences associated with the flow-

through systems showed 99% homology to Vibrio splendidus and Vibrio sinaloensis. 

Recently, results have shown that V. splendidus is able to cause mortality in cod larvae (Reid

et al., 2009). V. sinaloensis was originally isolated from the spotted rose snapper Lutjanus 

guttatus (Gomez-Gil et al., 2008), however it was  associated with mortality. In addition, the 

phylogenetic analysis displayed a group with high sequence similarities to Vibrio 

anguillarum (Fig. 5). V. anguillarum is a well described pathogen of cod larvae, juveniles and 

adults (Reid et al., 2009; Samuelsen et al., 2006; Sandlund and Bergh, 2008; Toranzo et al., 

2005). In the present study, no clear correlation was observed between the presence of fish 

pathogenic bacteria belonging to species within the Vibrionaceae family and increased 

mortality. However, cannibalism was significantly higher in the flow-through systems, and it 

may be speculated if Vibrio infections might have weakened the larvae, which in turn have 

become more prone to be eaten by conspecifics. Studies have shown that differences in health 

status may affect the frequency of cannibalism amongst reared cod juveniles (Folkvord, 

1991). Nevertheless, it must be emphasised that caution should be exercised in  drawing 

conclusions about whether these bacteria are involved in disease and mortality as the analysis 

were based on a short region of the 16S rRNA gene. Studies have reported the limitations of 

16S rDNA-based analysis, due to low variation in the 16S rRNA gene that makes it difficult 

to discriminate between bacterial species (Case et al., 2007). Polymorphism between repeated 

16S rRNA genes within genomes of Vibrio are known to exist (Moreno et al., 2002), and the 

use of DGGE may further add to this problem in obtaining reliable sequences for 

phylogenetic analysis (Sekiguchi et al., 2001, Brunvold et al., 2007). 

Dominance of bacteria belonging to the Gammaproteobacteria class is frequently associated 

with intensive rearing of marine larvae, and correlation with lower larval growth and survival 

is reported (Bjornsdottir et al., 2009; Brunvold et al., 2007; Nakase et al., 2007; Schulze et 
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al., 2006). This correlates to the findings in our study where the different water treatment 

systems had a dominance of bacteria belonging to the Gammaproteobacteria class. The 

bacterial taxa detected in our study are commonly characterised as opportunistic r-strategists. 

Thus, empirical evidence from other studies, as well as the present work, indicates a selection 

from a more typically K-selective community normally dominating in seawater (Schut et al., 

1997), towards bacteria with a more r-selective strategy in marine larval tanks (Vadstein et 

al., 2004). In general, it appears important to apply water treatments systems to avoid the 

tendency towards dominance of r-strategic Gammaproteobacteria. In this sense, water 

treatment may be beneficial as part of a strategy to obtain microbial control. However, the 

use of a recirculation system imposes a challenge to the establishment of a desirable bacterial 

community structure in the unit, as unfavourable bacterial communities may also be 

established and circulated in the system. Furthermore, the community structure is altered by 

the addition of fish, feed and faeces, favouring r-selected strains. In this context the effort 

should be directed towards the establishment of a robust system also including non-

pathogenic r-selected strains, able to withstand such organic pulses. Enhanced biofilm 

formation, possibly by the action of probiotic bacteria with biofilm-forming preferences to 

solid surfaces could thus be a possible strategy.  

No significant effects of flow rate on bacterial abundance and community composition were 

found. However, a slightly higher number of bands were observed in the DGGE profiles 

associated with the lower flow rates (10X, 20X) compared to the higher flow rates (40X, 

70X), which may indicate a higher bacterial diversity in the lower flow rates. It is important 

to keep in mind that conclusions about diversity based on DGGE should only be viewed as an 

indication rather than an absolute measurement (Marzorati et al., 2008). The results from 

flow cytometry analysis also revealed a higher bacterial abundance in the low flow rates 

compared to the high flow rates (data not shown). On average, the bacterial number was 

approximately twice as high in the lowest (10X) compared to the highest (70X) flow rate 

(data not shown).  This trend corresponds with Opstad et al. (1998) who observed a higher 

number of bacteria in the tanks with lowest flow rate when studying bacterial abundance in 

relation to flow rate in halibut larval rearing tanks. Increasing flow rate will have a dilution 

effect on organic substrates and bacterial biomass, and the observed tendencies may therefore 

be expected. However, it is unclear if the flow-related divergences in microbial densities and 

communities may have affected larval survival and growth. Nevertheless, based on the actual 

survival and growth data, flow rate should be at least 40 tank volumes per day. Recalculating 
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this to biomass-specific water exchange rate in the present experiment, this corresponds to 

6.0, 8.8, and 9.1 l/g WW/day for the recirculation, UV-treated, and untreated systems, 

respectively. Thus, an average biomass-specific flow rate of 8.0 l/g WW/day may be 

suggested as a guideline for flow requirements during early juvenile stages of Atlantic cod.  

Aknowledgements 

We want to thank the technical staff at IMR-Austevoll for their efforts in providing us with 

cod juveniles for the experiment. The work was financially supported by the Norwegian 

Research Council (projects no. 152931/120 and 164873). Runar Thyrhaug passed away after 

long time battle with cancer January 7th. 2011. The other authors wish to dedicate this paper 

to his memory. 

References

Allers, E., Gomez-Consarnau, L., Pinhassi, J., Gasol, J.M., Simek, K., Pernthaler, J., 2007. 

Response of Alteromonadaceae and Rhodobacteriaceae to glucose and phosphorus 

manipulation in marine mesocosms. Environ. Microbiol. 9, 2417-2429. 

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment 

search tool. J. Mol. Biol. 215, 403-410. 

Andrews, J.H., Harris, R.F., 1986. r-selection and K-selection and microbial ecology Plenum 

Press, New York, 99-147 pp. 

Bjornsdottir, R., Johannsdottir, J., Coe, J., Smaradottir, H., Agustsson, T., Sigurgisladottir, S., 

Gudmundsdottir, B.K., 2009. Survival and quality of halibut larvae (Hippoglossus 

hippoglossus L.) in intensive farming: Possible impact of the intestinal bacterial 

community. Aquaculture 286, 53-63. 

Bower, C.E., Holm-Hansen, T., 1980. A salicylate-hypochlorite method for determining 

ammonia in seawater. Can. J. Fish. Aquat. Sci. 37, 794-798. 

Bruhn, J.B., Haagensen, J.A.J., Bagge-Ravn, D., Gram, L., 2006. Culture conditions of 

Roseobacter strain 27-4 affect its attachment and biofilm formation as quantified by 

real-time PCR. Appl. Environ. Microbiol. 72, 3011-3015. 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT
20

Brunvold, L., Sandaa, R.A., Mikkelsen, H., Welde, E., Bleie, H., Bergh, Ø., 2007. 

Characterisation of bacterial communities associated with early stages of intensively 

reared cod (Gadus morhua) using Denaturing Gradient Gel Electrophoresis (DGGE). 

Aquaculture 272, 319-327. 

Chabot, D., Dutil, J.-D., 1999. Reduced growth of Atlantic cod in non-lethal hypoxic 

conditions. J, Fish Biol. 55, 472-491. 

Chabot, D., Dutil, J.-D., Couturier, C., 2001. Impact of chronic hypoxia on food ingestion, 

growth and condition of Atlantic cod, Gadus morhua. ICES CM 2001/ V:05, 17 pp. 

Cappello, S., Denaro, R., Giuliano, L., Yakimov, M.M., 2008. Persistence of 

Alteromonas genus during a long-term starvation in a marine microcosm. Ann. 

Microbiol. 58, 15-20. 

Castresana, J., 2000. Selection of conserved blocks from multiple alignments for their use in 

phylogenetic analysis. Mol. Biol. Evol. 17, 540-552. 

Chevenet, F., Brun, C., Banuls, A.L., Jacq, B., Christen, R., 2006. TreeDyn: towards dynamic 

graphics and annotations for analyses of trees. BMC Bioinformatics 7, 439. 

Cooper, A.J.L., Plum, F., 1987. Biochemistry and physiology of brain ammonia. Physiol. 

Rev. 67, 440-519. 

Dang, H.Y., Lovell, C.R., 2000. Bacterial primary colonization and early succession on 

surfaces in marine waters as determined by amplified rRNA gene restriction analysis 

and sequence analysis of 16S rRNA genes. Appl. Environ. Microbiol. 66, 467-475. 

Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.F., 

Guindon, S., Lefort, V., Lescot, M., Claverie, J.M., Gascuel, O., 2008. Phylogeny.fr: 

robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36, 465-469. 

Eddy, F.B., 2005. Ammonia in estuaries and effects on fish. J. Fish Biol. 67, 1495-1513. 

Egan, S., Thomas, T., Kjelleberg, S., 2008. Unlocking the diversity and biotechnological 

potential of marine surface associated microbial communities. Curr. Opin. Microbiol. 

11, 219-225. 

Eilers, H., Pernthaler, J., Amann, R., 2000a. Succession of pelagic marine bacteria during 

enrichment: a close look at cultivation-induced shifts. Appl. Environ. Microbiol. 66, 

4634-4640. 

Eilers, H., Pernthaler, J., Glockner, F.O., Amann, R., 2000b. Culturability and in situ

abundance of pelagic bacteria from the North Sea. Appl. Environ. Microbiol. 66, 

3044-3051. 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT
21

Eilers, H., Pernthaler, J., Peplies, J., Glockner, F.O., Gerdts, G., Amann, R., 2001. Isolation 

of novel pelagic bacteria from the German bight and their seasonal contributions to 

surface picoplankton. Appl. Environ. Microbiol. 67, 5134-5142. 

Emerson, K., Russo, R.C., Lund, R.E., Thurston, R.V., 1975. Aqueous ammonia equilibrium 

calculations - effect of pH and temperature. Bull. Fish. Res. Board Can. 32, 2379-

2383. 

Finn, R.N., Rønnestad, I., van der Meeren, T., Fyhn, H.J., 2002. Fuel and metabolic scaling 

during the early life stages of Atlantic cod Gadus morhua. Mar. Ecol. Prog. Ser. 243, 

217-234. 

Fivelstad, S., 1988. Waterflow requirements for salmonids in single-pass and semiclosed 

land-based seawater and fresh-water systems. Aquac. Eng. 7, 183-200. 

Fjellheim, A.J., Playfoot, K.J., Skjermo, J., Vadstein, O., 2007. Vibrionaceae dominates the 

microflora antagonistic towards Listonella anguillarum in the intestine of cultured 

Atlantic cod (Gadus morhua L.) larvae. Aquaculture 269, 98-106. 

Folkvord, A., 1991. Growth, survival and cannibalism of cod juveniles (Gadus morhua) - 

effects of feed type, starvation and fish size. Aquaculture 97, 41-59. 

Foss, A., Siikavuopio, S.I., Sæther, B.S., Evensen, T.H., 2004. Effect of chronic ammonia 

exposure on growth in juvenile Atlantic cod. Aquaculture 237, 179-189. 

Giovannoni, S.J., Britschgi, T.B., Moyer, C.L., Field, K.G., 1990. Genetic diversity in 

Sargasso Sea bacterioplankton. Nature 345, 60-63. 

Givskov, M., Eberl, L., Møller, S., Poulsen, L.K., Molin, S., 1994. Responses to nutrient 

starvation in Pseudomonas putida KT2442 - analysis of general cross-proction, cell-

shape, and macromolecular content. J. Bacteriol. 176, 7-14. 

Gomez-Gil, B., Fajer-Avila, E., Pascual, J., Macian, M.C., Pujalte, M.J., Garay, E., Roque, 

A., 2008. Vibrio sinaloensis sp. nov., isolated from the spotted rose snapper, Lutjanus 

guttatus Steindachner, 1869. Int. J. Syst. Evol. Microbiol. 58, 1621-1624. 

Gundersen, K., Mountain, C.W., 1973. Oxygen utilization and pH changes in the ocean 

resulting from biological nitrate formation. Deep-Sea Res. 20, 1083-1091. 

Handy, R.D., Poxton, M.G., 1993. Nitrogen pollution in mariculture - toxicity and excretion 

of nitogenous compounds by marine fish. Reviews in Fish Biology and Fisheries 3, 

205-241. 

Hansson, I. 1973. A new set of pH scales and standard buffers for sea water. Deep-Sea Res. 

20, 479-491. 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT
22

Hjelm, M., Bergh, Ø., Riaza, A., Nielsen, J., Melchiorsen, J., Jensen, S., Duncan, H., Ahrens, 

P., Birkbeck, H., Gram, L., 2004. Selection and identification of autochthonous 

potential probiotic bacteria from turbot larvae (Scophthalmus maximus) rearing units. 

Syst. Appl. Microbiol. 27, 360-371. 

Holmstrøm, C., Kjelleberg, S., 1999. Marine Pseudoalteromonas species are associated with 

higher organisms and produce biologically active extracellular agents. FEMS 

Microbiol. Ecol. 30, 285-293. 

Ishimatsu, A., Hayashi, M., Lee, K.S., Kikkawa, T., Kita, J., 2005. Physiological effects on 

fishes in a high-CO2 world. J. Geophys. Res. 110. C09S09 doi:101029/2004JC002564 

Lane, D.J., Pace, B., Olsen, G.J., Stahl, D.A., Sogin, M.L., Pace, N.R., 1985. Rapid-

determination of 16S ribosomal-RNA sequences for phylogenetic analyses. Proc. 

Natl. Acad. Sci. USA. 82, 6955-6959. 

Lebaron, P., Servais, P., Troussellier, M., Courties, C., Vives-Rego, J., Muyzer, G., Bernard, 

L., Guindulain, T., Schafer, H., Stackebrandt, E., 1999. Changes in bacterial 

community structure in seawater mesocosms differing in their nutrient status. Aquat. 

Microb. Ecol. 19, 255-267. 

Marie, D., Partensky, F., Vaulot, D., Brussaard, C.P.D., 1999. Enumeration of phytoplankton, 

bacteria, and viruses in marine samples. In: Robinson, J.P.e.a. (Ed.), Current Protocols 

in Cytometry. John Wiley & Sons Inc., New York, pp. 111. 

Marzorati, M., Wittebolle, L., Boon, N., Daffonchio, D., Verstraete, W., 2008. How to get 

more out of molecular fingerprints: practical tools for microbial ecology. Environ. 

Microbiol. 10, 1571-1581. 

Moreno, C., Romero, J., Espejo, R.T., 2002. Polymorphism in repeated 16S rRNA genes is a 

common property of type strains and environmental isolates of the genus Vibrio. 

Microbiol. 148, 1233-1239. 

Munday, P.L., Dixson, D.L., Donelson, J.M., Jones, G.P., Pratchett, M.S., Devitsina, G.V., 

Døving, K.B., 2009. Ocean acidification impairs olfactory discrimination and homing 

ability of a marine fish. Proc. Natl. Acad. Sci. USA. 106, 1848-1852. 

Nakase, G., Nakagawa, Y., Miyashita, S., Nasu, T., Senoo, S., Matsubara, H., Eguchi, M., 

2007. Association between bacterial community structures and mortality of fish larvae 

in intensive rearing systems. Fish. Sci. 73, 784-791. 

Nissen, H., 1987. Long-term starvation of a marine bacterium, Alteromonas denitrificans, 

isolated from a Norwegian fjord. FEMS Microbiol. Ecol. 45, 173-183. 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT
23

Opstad, I., Bergh, Ø., Skiftesvik, A.B., 1998. Large scale rearing of Atlantic halibut, 

Hippoglossus hippoglossus L., yolk sac larvae: effects of flow rate on growth, 

survival and accumulation of bacteria. Aquac. Res. 29, 893-898. 

Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., Gnanadesikan, A., 

Gruber, N., Ishida, A., Joos, F., Key, R.M., Lindsay, K., Maier-Reimer, E., Matear, 

R., Monfray, P., Mouchet, A., Najjar, R.G., Plattner, G.K., Rodgers, K.B., Sabine, 

C.L., Sarmiento, J.L., Schlitzer, R., Slater, R.D., Totterdell, I.J., Weirig, M.F., 

Yamanaka, Y., Yool, A., 2005. Anthropogenic ocean acidification over the twenty-

first century and its impact on calcifying organisms. Nature 437, 681-686. 

Pernthaler, A., Pernthaler, J., Eilers, H., Amann, R., 2001. Growth patterns of two marine 

isolates: Adaptations to substrate patchiness? Appl. Environ. Microbiol. 67, 4077-

4083. 

Porsby, C.H., Nielsen, K.F., Gram, L., 2008. Phaeobacter and Ruegeria species of the 

Roseobacter clade colonize separate niches in a danish turbot (Scophthalmus 

maximus)-rearing farm and antagonize Vibrio anguillarum under different growth 

conditions. Appl. Environ. Microbiol. 74, 7356-7364. 

Pukall, R., Pauker, O., Buntefuss, D., Ulrichs, G., Lebaron, P., Bernard, L., Guindulain, T., 

Vives-Rego, J., Stackebrandt, E., 1999. High sequence diversity of Alteromonas 

macleodii-related cloned and cellular 16S rDNAs from a Mediterranean seawater 

mesocosm experiment. FEMS Microbiol. Ecol. 28, 335-344. 

Rao, D., Webb, J.S., Kjelleberg, S., 2005. Competitive interactions in mixed-species biofilms 

containing the marine bacterium Pseudoalteromonas tunicata. Appl. Environ. 

Microbiol. 71, 1729-1736. 

Reid, H.I., Treasurer, J.W., Adam, B., Birkbeck, T.H., 2009. Analysis of bacterial 

populations in the gut of developing cod larvae and identification of Vibrio logei, 

Vibrio anguillarum and Vibrio splendidus as pathogens of cod larvae. Aquaculture 

288, 36-43. 

Ricker, W.E., 1958. Handbook of computations for biological statistics of fish populations. 

Bull. Fish. Res. Board Can. 119, 300p. 

Riquelme, C., Hayashida, G., Araya, R., Uchida, A., Satomi, M., Ishida, Y., 1996. Isolation 

of a native bacterial strain from the scallop Argopecten purpuratus with inhibitory 

effects against pathogenic vibrios. J. Shellfish Res. 15, 369-374. 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT
24

Salvesen, I., Skjermo, J., Vadstein, O., 1999. Growth of turbot (Scophthalmus maximus L.) 

during first feeding in relation to the proportion of r/K-strategists in the bacterial 

community of the rearing water. Aquaculture 175, 337-350. 

Samuelsen, O.B., Nerland, A.H., Jørgensen, T., Schrøder, M.B., Svåsand, T., Bergh, Ø., 

2006. Viral and bacterial diseases of Atlantic cod Gadus morhua, their prophylaxis 

and treatment: a review. Dis. Aquat. Org. 71, 239-254. 

Sandlund, N., Bergh, Ø., 2008. Screening and characterisation of potentially pathogenic 

bacteria associated with Atlantic cod Gadus morhua larvae: bath challenge trials using 

a multidish system. Dis. Aquat. Org. 81, 203-217. 

Sandaa, R.A., Magnesen, T., Torkildsen, L., Bergh, Ø., 2003. Characterisation of the 

bacterial community associated with early stages of great scallop (Pecten maximus), 

using denaturing gradient gel electrophoresis (DGGE). Syst. Appl. Microbiol. 26, 

302-311. 

Schulze, A.D., Alabi, A.O., Tattersall-Sheldrake, A.R., Miller, K.M., 2006. Bacterial 

diversity in a marine hatchery: Balance between pathogenic and potentially probiotic 

bacterial strains. Aquaculture 256, 50-73. 

Schut, F., Prins, R.A., Gottschal, J.C., 1997. Oligotrophy and pelagic marine bacteria: Facts 

and fiction. Aquat. Microb. Ecol. 12, 177-202. 

Schäfer, H., Servais, P., Muyzer, G., 2000. Successional changes in the genetic diversity of a 

marine bacterial assemblage during confinement. Arch. Microbiol. 173, 138-145. 

Sekiguchi, H., Tomioka, N., Nakahara, T., Uchiyama, H., 2001. A single band does not 

always represent single bacterial strains in denaturing gradient gel electrophoresis 

analysis. Biotechnol. Lett. 23, 1205-1208. 

Skjermo, J., Salvesen, I., Øie, G., Olsen, Y., Vadstein, O., 1997. Microbially matured water: 

A technique for selection of a non-opportunistic bacterial flora in water that may 

improve performance of marine larvae. Aquacult. Int. 5, 13-28. 

Skovhus, T.L., Ramsing, N.B., Holmstrøm, C., Kjelleberg, S., Dahlløf, I., 2004. Real-time 

quantitative PCR for assessment of abundance of Pseudoalteromonas species in 

marine samples. Appl. Environ. Microbiol. 70, 2373-2382. 

Sokal, R.R., Rohlf, F.J., 1995. Biometry : the principles and practice of statistics in biological 

research. Freeman, New York, 887 pp. 

Thompson, F.L., Iida, T., Swings, J., 2004. Biodiversity of vibrios. Microbiol. Mol. Biol. 

Rev. 68, 403-430. 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT
25

Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The 

CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment 

aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882. 

Thyrhaug, R., Larsen, A., Thingstad, T.F., Bratbak, G., 2003. Stable coexistence in marine 

algal host-virus systems. Mar. Ecol. Prog. Ser. 254, 27-35. 

Toranzo, A.E., Magarinos, B., Romalde, J.L., 2005. A review of the main bacterial fish 

diseases in mariculture systems. Aquaculture 246, 37-61. 

Vadstein, O., Mo, T.A., Bergh, Ø., 2004. Microbial interactions, prophylaxis and diseases. In: 

Moksness, E., Kjørsvik, E., Olsen, Y. (Eds.), Culture of cold-water marine fish. 

Blackwell Publishing Ltd, Oxford, UK, pp. 28-72. 

van der Meeren, T., Lønøy, T., 1998. Use of mesocosms in larval rearing of saithe 

[Pollachius virens (L.)], goldsinny [Ctenolabrus rupestris (L.)], and corkwing 

[Crenilabrus melops (L.)]. Aquac. Eng. 17, 253-260. 

van der Meeren, T., Mangor-Jensen, A., Pickova, J., 2007. The effect of green water and light 

intensity on survival, growth and lipid composition in Atlantic cod (Gadus morhua) 

during intensive larval rearing. Aquaculture 265, 206-217. 

Verner-Jeffreys, D.W., Shields, R.J., Bricknell, I.R., Birkbeck, T.H., 2004. Effects of 

different water treatment methods and antibiotic addition on larval survival and gut 

microflora development in Atlantic halibut (Hippoglossus hippoglossus L.) yolk-sac 

larvae. Aquaculture 232, 129-143. 

Whitfield, M., 1974. Hydrolysis of ammonium-ions in sea-water - a theoretical study. J. Mar. 

Biol. Assoc. UK. 54, 565-580. 

Wilkie, M.P., 2002. Ammonia excretion and urea handling by fish gills: present 

understanding and future research challenges. J. Exp. Zool. 293, 284-301. 

Yoshii, K., Yotsui, C., 1997. NH3- and CO2-induced suppression of taste nerve responses in 

clawed toads and eels. Brain Res. 757, 202-208. 

Øvreås, L., Bourne, D., Sandaa, R.A., Casamayor, E.O., Benlloch, S., Goddard, V., Smerdon, 

G., Heldal, M., Thingstad, T.F., 2003. Response of bacterial and viral communities to 

nutrient manipulations in seawater mesocosms. Aquat. Microb. Ecol. 31, 109-121. 



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT
26

Figure 1. Observed mortality, unexplained mortality (cannibalism), specific growth rate 

(SGR), and biomass density among the various water quality and flow rate treatments at end 

of the experiment. Bars are averages of three replicate tanks with error bars as standard 

deviations. Similar lowercase letters above the bars denote group homogeneity determined 

from the Tukey HSD post-hoc test.   
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Figure 2. Relationships between survival, growth, oxygen saturation, unionized ammonia, 

and pH. Data points are averages over the whole experimental period. The water exchange 

rates (10X, 20X, 40X, and 70X of the tank volume/day) are indicated for the three water 

treatment regimes.  
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Figure 3. Flow cytometer data of bacteria in the experiment. Data points are average of the 

four flow rates within each water treatment, and error bars are standard deviations. A) Total 

number of bacteria, B) Mean SSC signal per bacterial cell. 
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Figure 4. Cluster analysis of the DGGE profiles analyzed from the experiment at 9th of July 

(A) and 16th of July (D). Water treatments (Recirculation: Re, UV treatment: UV, Untreated: 

Un) are shown together with flow rate (10X, 20X, 40X, 70X). Inflowing water are included 

for the Re treatment, only. FCM dot plots from a typical Re tank (B) and a tank representing 

the typical UV and Un situation (C) show green fluorescence vs. SSC signal from single 

bacterial cells (red dots) and other non-bacterial particles (black dots). The two plots visualise 

signals characteristic of different bacterial populations. 
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Fig. 5. Phylogenetic affiliation of 16S rDNA sequences derived from DGGE profiles 

associated with the recirculated (red), UV treated (blue), and untreated (green) water from 

samples collected from the whole sampling period. Fifteen marine bacteria (black) recovered 

from GenBank are included as reference sequences and given in section 2.5. Supports for 

clades were estimated by using the approximate likelihood-ratio test with the settings SH-

Like. Scale bar represents 0.2 substitutions per site.  
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