

Frida Lasram and Christophe Loots

projecting spatial distributions

niche-based models

climate forecast/scenario predicted spatial distribution

biological response

2°W 0° 2°E 4°E 6°E 8°E

-60°N

-58°N

-56°N

-52°N

-52°N

-52°N

-52°N

environment

A general view of the modelling method

adapted from Anderson, 2010

uncertainties in observations

sampling design:

sampling intensity, spatial/temporal scales, aggregated distributions

sampling gear (trawl) or observation (acoustics):

accessibility to observation, sensitivity, bias and precision

uncertainties in conceptual models

uncertainty in numerical formulation

functional relationships

linear, polynomial, piecewise, etc...

model complexity

number of parameters, non-linearity

interactions

additive, multiplicative, other

statistical distributions

Normal, Poisson, Log-Normal, Gamma, Binomial,...

uncertainty in parameter estimates and model fitting

statistical distribution of parameters

confidence intervals, statistical significance

correlated parameters

are parameters independent, and how is this handled by the modeling method?

overparametrisation and overfitting

number of parameters vs. number of <u>independent</u> observations

autocorrelated observations

spatial/temporal autocorrelation reduces the true number of independent observations

metric for model fitting performance

variance, deviance, likelihood, AIC, AUC, GCV,...

uncertainty in model evaluation

metric for model predictive performance variance, deviance, likelihood, AIC, AUC,...

true independence of the validation data are the validation data correlated with fitting data?

Additional considerations

Spatial scale

is spatial scale considered? are the scales of observation and modelling consistent?

adaptability of living systems

complex adaptive systems, these may modify their behaviour in the future, surprise is to be expected

Evaluating uncertainties

How are these uncertainties currently handled?

survey of the published literature 2005-2010

1137 articles -> 75 retained, which are developing models which are (or can be) used in a predictive fashion.

real world world world world independent observations uncertainties unce

Observations

Observation uncertainty

7%

Observation model

1%

conceptual model uncertainties uncertainties

Conceptual model

3% conceptual model uncertainty

numerical model and parameter uncertainties

numerical model uncertainty

24%

Parameters uncertainty

69%

model evaluation

observations uncertainties uncertainties

spatial scale and adaptability

Review summary

- Uncertainty is seen primarily as parameter uncertainty
- Observation uncertainty is poorly investigated and not modelled
- Conceptual model uncertainty is generally ignored and environment models heavily dominate (+ spatial autocorrelation a little)
- •Model validation is only performed on independent datasets in 1/4th of the studies analysed
- Adaptability of marine systems remains largely ignored

An example of uncertainty in the conceptual model

North Sea whiting: three different candidate models with equivalent predictive power

Model 1 Model 2 Model 3

- Geographical Attachment
- Environment
- Population size
- Population Demography
- Population Memory

- Geographical Attachment -
- Population size
- Population Demography
- Population Memory
- Environment
- Population size
- Population Demography
- Population Memory

An example of uncertainty in the conceptual model

Prediction under a scenario with 2°C temperature increase

Model 1 Model 2 Model 3

Models 1 and 3 (with environment) forecast an increase of abundances whereas model 2 without environment does not forecast any change

Three models with equivalent present-day predictive power, forecast different distribution with future conditions = uncertainty in predictions due to conceptual model uncertainty

An example of explicit account of scale

Correlation between the presence of auks (Uria aalgae) and several hydrographic

parameters, at 2 scales

Strong correlation at large scale and weak correlation at finer scale

observations

environmental model at large scale

environmental model at medium scale

Bellier et al. in press

Conclusion

Reliable projections of future spatial distribution of marine populations requires that uncertainty is considered in its entirety, from observations to concepts, numerical models and the potential for adaptations of living marine systems.

The lack of clear recognition of various sources of uncertainty, as is the case today, limits our ability to produce reliable, believable, and ultimately useful predictions.

Thank you

B. Planque

E. Bellier

F. Lasram

C. Loots

IMR Norway

NINA Norway

Univ. Montpellier France

DFO Canada

A post doctoral position is open to work on spatial distribution models in Tromsø for three years, starting in September 2010. If you are interested, please contact me: benjamin.planque@imr.no

