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Sammendrag: 

A bivariate bilinear time series model is introduced as a stochastic discrete time version 
of the deterministic Lotka-Volterra prey-predator model. It allows a discussion of how 
stochastic environmental variables effect the populations. Moreover, with time series 
methods the parameters of the model can be estimated directly from the population time 
series data. 
Det introduseres en bivariat bilineær tidsrekkemodell som er en stokastisk versjon av 
bytte-jeger-modellen til Lotka og Volterra. Den tillater en drøfting av hvorledes 
stokastiske miljøvariabler påvirker populasjonene. Med tidsrekkemetoder kan man 
dessuten estimere modellens parametre direkte fra tidsrekkedata for populasjonene. 
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by 
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Abstract 
The general form of the class multivariate bilinear time series model is given by 

X([) = x A, - X(t  -i) +x M j  -e(t  - j )  +Cm B,, . X(t - i )+e,( t  - j )  +e(t). 

Here the state X(T) and noise e(t) are n-vectors and the coefficients Ai, Mj, and Bdij 
are n by n matrices. If all Bdij = O, we have the class of well-known vector ARMA- 
models. The bilinear models include additional product terms 
Bdy . X(t -i) e, (t - j )  ; as the name indicates these models are linear in state X(t) and 

in noise e(t) separately, but not jointly. From a theoretical point of view, it is 
therefore natural to consider bilinear models in the process of extending the existing 
linear theory to non-linear cases. 

But there are at least equally good practical reasons. Continuous-time bilinear 
models were studied in control theory in the 1960s (e(t) is the control); the name 
bilinear was introduced by R.R.Mohler. A large number of applications, als0 on 
ecology, made it natural to consider stochastic analogues of these deterministic 
models. The discrete time series versions were introduced by Granger and Anderson, 
1976, but they considered only univariate models (Le. n=l) 
Multivariate versions were formulated and studied in Stensholt and TjØstheim 1985, 
Stensholt and Subba Rao 1987, Stensholt 1989, and Liu 1990. The main results give 
conditions for stationarity, ergodicity, invertibility, and consistency of least square 
estimates. Computer programs have been written to find the estimates of the 
coefficient matrices. These have been used for simulation studies of the distribution 
and robustness of the estimates. 

A particular reason for introducing bilinear time series in population dynamics, is 
that they are suitable for modelling environmental noise. One may start with a 
deterministic system with (constant) parameters that describe conditions which 
actually depend on a fluctuating environment. The idea is to replace them by 
stochastic parameters. As an example we consider the familiar prey-predator system 

Linearizing about the equilibrium, replacing derivatives by differences, and adding 
noise terms in the coefficients lead to a single lag bilinear bivariate (i.e. n=2) model. 
Similar models for two competing species may be treated the same way. 



l. THE BILINEAR "PARADIGM" 
Consider a population growing exponentially, N( t )  = ( 1  + r)' . N(0)  , i.e. satisfying 

the difference equation 

Assume the non-linear limitations to growth are not yet essential. Another 
important practical objection however can be that a deterministic approach is 
inadequate. So modify the model to be 

where e(t) is the "environmental noise" which covers various relevant factors that 
fluctuate from season to season. Assuming the e(t) for different values of t are 
identically and independently distributed, this is a standard first order univariate 
autoregressive time series model. This is a linear model in the sense that the solutions 
N are linear in the noise e: if e is repaced by 2e, 2N becomes a solution. 

The idea of bilinearity can now be introduced through the growth parameter r. We 
then als0 assume that the environmental noise e(t) in season t also affects the growth 
rate r by an amount proportional to e(t), to become r + b . e(t) for some constant b. So  
the increase N(t)-N(t-l) is proportional both to the population and the growth rate in 
season t - l ,  and we now have the model 

N ( t )  - N( t  - l )  = (r + b .  e(t - l ) )  . N(t  - 1)  + e( t )  (1.3) 

In standard notation, we have 

i.e. N(t) is expressed by one autoregressive, one bilinear, and one noise term. If the 
noise e(t) is considered as given, this would usually be classified as a linear difference 
equation in N(9. However, equations of this kind has come from control engineering 
where e ( i  denotes the control and N@) the state variable. Since the state variable is 
not linear in the control 

Just solve by back substitution, starting with 

and express N(t) by N(to) and e(to), e(&+ l), . . . e(t). 
It is classified as non-linear. The term bilinear indicates that the expression for 

N(?) is linear in state and noise/control separately, but not jointly. 
Wiener (1958) studied a model which in the discrete parameter takes the form 



Here e(t) is "input) and N(t) "output". Such a representation is known as the 
Volterra series expansion. Volterra (1930) showed that general non-linear systems 
can be expressed as the limit of series expansion of this type. Nisio (1960. 1961) 
shows that an arbitrary strictly stationary stochastic process can be approximated (in 
law) by a process of this form when ('e(# is a Gaussian white noise. 

Tong (1983) discusses and gives reasons why linear models are inadequate to 
approximate nonlinear models. Bilinear models were originally developed by control 
engineers to approximate the general Volterra series expansion to a reasonable degree 
of accuracy (d' Allesandro, Isidori and Ruberti 1974, Brockett 1976, Sussmann 1976). 
This property of the bilinear models may be illustrated by back substitution of the 
noise term e(t-I) in (1.4) 

2. A GENERAL PREY PREDATOR-DYNAMIC SYSTEM 
A two species system (Nl(t),N2(t)) may be modelled by 

In case Nl(t) and Nz(t) denote prey and predator respectively, it is assumed that: 

Let A and B be critical prey levels for prey and predator respectively: 

Gl(N1,Nz) < O for O< A < NI, G2f11,N2) < O for O< < Nl <B. 

A general phase plane analysis of this system can be done if Gl(O, O) > O and the 
curve Gl = O and G2 = O has a finite number of intersections; these are supposed to 
be transverse (Le. not tangential). 
If there are points (N1,N2) such that GI(N1,N2) >O and G2(NI,N2) > 0, there exists a 
stable equilibrium or limit cycle. (Hirsch and Smale 1974, Ch. 12, problem4). 

3. A WELL-KNOWN SPECIAL CASE 
Being this general, the result is almost an a-priori insight. For specific modelling 
however, e.g. with stock estimation and management in mind, we must commit 
ourselves to more specific classes of functions. The first choice may be linear Gl 
and Ga. Then ( l )  specializes to 



with a, b, c, d positive constants. In absence of predators (IVz=O) prey grows 
logistically between O and carrying capacity u-'. With insufficient prey (N1 < c-'), 
predators cannot exist. Similarly 'b ' and 'd' express certain living conditions, i.e. 

the effect on either species of the number of mutual encounters (a N, - N,). If c>a, 

there is one interesting equilibrium, 

Introducing (X1,X2) = (Nr,N2) - (N1*, N;) and linearizing about (N1*, N;), one gets 

From -(a+d) < O and ad+bc > O we see that the eigenvalues have negative real 
parts. Hence the equilibrium (N;, N;) of (2) is (locally) asymptotically stable. As 
remarked by Hirsch and Smale, it is not easy to determine its basin of attraction, 
and whether there are limit cycles. (Recall that the Lotka-Volterra specialization 
a=d=O is structurally unstable with all nontrivial solutions being cyclical.) 

4. A TIME SERIES VERSION 
In discrete time, the analogue of (4) is: 

X l ( t ) - X l ( t - l ) = r l  . ~ ~ * . [ - a . ~ ~ ( t - l ) - b . ~ , ( t - l ) ]  and 

X, (t) - X, (t - 1) = r, - N; . [c.  x1 (t - 1) - d X, (t - l)]. (4.1) 

Under constant conditions, the change from season t-l to season t is determined by 
the populations in season t-i. The assumption of constant conditions, both in (3.1) 
and (4.1) may be unrealistic. This may be improved with a stochastic extension. 

Such an extension of a modified (3.1) has been studied (Morton and Corrsin 1969; 
May 1974). To keep the non-linear dynamics of (3.1) and include stochasticity as 
well is clearly quite difficult. So it is naturalize to linearize first. Clearly, except for 
small deviations from the equilibrium (3.2), much of the realism of (3.1) as a model of 
the dynamic mechanism may well be lost through the linearizations of (3.3) and (4.1) 

However a stochastic version of (4.1) leads to a class of time series models which 
can offer other advantages: They are relatively simple, results exist on stationarity, 
invertibility, etc., and the model parameters can be estimated from observations. 

First we introduce additional "noise terms" eI(t) and ez(t) in order to model how the 
changes deviate from (4.1) because of chance fluctuations in relevant living 
conditions (temperature, precipitation, alternative food supplies, etc.) which make 
season t good or bad. These added forms of er@ and e2(t) express the composite 
influence of such causes on the survival in season t from prey and predator, 
respectively. 

Next we assume that this noise als0 influence some of the parameters of the model. 
For example, we may add terms a e ,  (t - 1) and a e, (t - 1) to the birth rate ri and r2 in 
(5). Thus we arrive at a model 



This is an example of bivariate bilinear time series model. One advantage of this 
type of model is that only the observed X-values are needed. The coefficients, and the 
distribution of the noise e, may then be estimated from the observations. No separate 
assessment of the parameters is required. On the other hand, it may then often be 
necessary with longer series than is available. A famous series is the Canadian for 
(furs of) mink (X*) and muskrat (X2). A least squares estimate of the matrices based 
on 62 years has led to 

Here the negative sign of bzz2 indicated that the muskrat (X2) population gets high 
enough for the growth to be slowed down as in logistic growth. The negative sign of 
bZ12 indicates a "diminishing return to scales" of muskrat supply in the mink's utility; 
notice that ~12 ,  bz12 and brz2 are all positive. The negative a21 and blzl are obvious: 
more mink is bad for the muskrat. 

5. MULTNARIATE BILINEAR TIME SERIES MODELS 
A general bilinear time series model with vector variable X(t) may be written: 

( a  is a constant and its inclusion does not make the theory of (5.1) different of the 
model in the abstract.) In case all matrices B,, O, (5.1) is an ARMA model. If 

B,, = O for all i<j (+j), the model is sub-diagonal (super-diagonal). The model (4.2) 

is both, i-e. diagonal. Bilinear time series models are comparatively recent, but 
systems like (4.2) and similar continuous time dynamic systems had already been 
studied in system theory. In system theory X(t) is the state and e(t) the control. 

From the theoretical point of view, the bilinear models may be considered as the 
first choice for extension of the established linear models, as they are linear both in 
state and in control (noise) separately. The similarity between the control systems and 
the time series is obvious, but the problems to be faced are quite different. It makes an 
essential difference whether the "control" actually is under control or is an imposed 
random disturbance. 



6. THEORETICAL RESULTS AND SWLULATIONS 
Results about the models (5.1) concern sufficiency conditions for the existence of 

stationary and ergodic solutions, for (various kinds of) invertibility and consistency of 
the least squares estimators. An important theme has been to extend the methods of 
Pham and Tran (1981) from the univariate to the multivariate models. 

Sufficiency criteria for stationarity and invertibility are given; they are stated as 
inequalities for the norms of certain matrices that contain model coefficients and 
expectations of stochastic terms. As an example the subdiagonal model is stationary if 

/IA,II+C~C~I~B,,II-~~ < R - ~  .21-R for all 1 < i <  R ,  

where X(t-R) is the largest lag in the state variable X in any autoregressive or bilinear 
term, and o, = Ee,(t) . To state more general results, it is convenient first to 
introduce a number of alternative ways of writing the model (7). 

Notice how the unknown coefficient matrix entries, denoted by a vector 6 ,  are 
estimated by the Q -value which minimizes the residual sum of squares 

r=1 

where 
E,(X(t)) = 

~ + Z A ,  - ~ ( t - i ) + C ~ , . e ( t - j ) + Z x x ~ , ~  .X( t - i ) -e , ( t -  j). 

Here the e(t-j), j >O,  actually denote values which are recursively calculated from 
the observations X(t) and from some initially chosen values by means of (5.1). Hence 
the X(t-jl in (6.2) depend on 6 .  

In this way models have been fitted to some existing data sets, including the well- 
known rninkfmuskat data (1848-191 1) of the Hudson Bay company. Due to a three 
years lag between muskat peaks and mink peaks, the coefficient matrices AI, Az, A j  
were estimated. Deeming from the residual sum of squares the are the most 
relevant bilinear terms. 

Moreover, the distribution of the estimated parameters have been studied by 
means of simulation experiments. Tables of simulation results, the FORTRAN listing 
for estimation of parameters, for testing stationarity and invertibility are included in 
Stensholt (1 989). 

This work bases on the presentation talk at RMA-conference, Barcelona Spain 15- 
18 July 1991. 
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