

EXTENDED SURVEY REPORT FROM THE JOINT NORWEGIAN/RUSSIAN ECOSYSTEM SURVEY IN THE BARENTS SEA AUGUST-OCTOBER 2004

VOLUME 2

Institute of Marine Research - IMF

Polar Research Institute of Marine Fisheries and Oceanography - PINRO

This report should be cited as: Anon. 2005. Extended survey report from the Joint Norwegian/Russian ecosystem Survey in the Barents Sea in August-October 2004 (vol.2). IMR/PINRO Joint Report Series, No. 1/2005. ISSN 1502-8828. 83 pp.

EXTENDED SURVEY REPORT FROM THE JOINT NORWEGIAN/RUSSIAN ECOSYSTEM SURVEY IN THE BARENTS SEA AUGUST-OCTOBER 2004

Volume 2

Institute of Marine Research P.O. Box 1870 Nordnes N-5817 Bergen NORWAY

PINRO

6 Knipovich Street 183763 Murmansk RUSSIA

ISSN 1502-8828

Murmansk PINRO Press 2005

Preface

The 2nd joint ecosystem survey was carried out during the period 1st of August to 4th of October 2004. This survey encompasses various surveys that previously have been carried out jointly or at national basis. Joint investigations include the 0-group survey, the acoustic survey for pelagic fish (previously known as the capelin survey), and the investigations on young Greenland Halibut north and east of Spitsbergen. Oceanographic investigations have always formed a part of these surveys, and studies on plankton have been included for many years. In recent years, observations of sea mammals, seabirds, bottom fishes, and benthos have been included. Consequently, from 2003, these surveys were called "ecosystem surveys".

Presented material not only describes survey results from 2004, but summarizes some previous years investigations.

Major materials of these investigations were involved into 1st volume of the survey report. There were presented results of temperature condition in the Barents Sea, distribution and traditional abundance indices of 0-group fish, distribution and stock abundance of pelagic fish (capelin, polar cod, young atlanto-scandian herring, blue whiting). All other results were briefly mentioned based on very preliminary results.

The present volume 2 of the report covered rest part of the survey results after age readings of bottom fish and working up of other material in laboratories. In this volume main focus now is on the hydro chemical conditions in the Barents Sea, the results from the 0-group fish abundance indices based on new joint Norwegian-Russian method, the investigation on bottom fish (cod, haddock, and additionally on Greenland halibut, redfish, long rough dab, catfish). More detail materials on sea mammals and seabirds as well as results from plankton and benthos investigations are presented in 2nd volume of the report also.

The general charts with survey tracks, bottom and pelagic trawl stations, CTD, plankton and benthos grid stations are presented in Figures 1.1-1.4.

A list of the scientific members on all vessels (as in 1st volume of the survey report) also is given in Appendix I as well as following research vessels participated:

Vessel	Institute	Cruise leader	Date	;
"Johan Hjort"	IMR	S. Aanes	01.08 –	12.08
		A. Dommasnes	13.08 –	20.08
		P. Fossum	20.08 –	09.09
		H. Gjøsæter	10.09 –	04.10
"Jan-Mayen"	IMR	M. Aschan	04.08 –	12.08
		K. Sunnanå	12.08 –	22.08
		T. de Lange Wenneck	10.09 –	01.10
"Smolensk"	PINRO	D. Prozorkevich	06.08 –	02.10
"F. Nansen"	PINRO	I. Dolgolenko	07.08 –	02.10

Besides, following specialists not taking part in the survey took part in preparing of single sections of the report:

Abundance indices of 0-group fish - V. Mamylov (PINRO);

Plankton – E. Orlova, V. Nesterova (PINRO) and P. Dalpadado, A. Hassel (IMR);

Sea mammals and birds – V. Tereshchenko, V. Zabavnikov, S. Egorov, S. Ziryanov (PINRO).

Synopsis

The main aim of the ecosystem survey was to map the distribution and abundance of the young and adult stages of several demersal and pelagic fish species, and in addition to this gather information about hydrographical features, zooplankton, benthos, seabirds and sea mammals.

Depleted content of oxygen in the bottom layer of the southern Barents Sea that started in 1998 has continued in summer and autumn 2004. Phosphate content in the Barents Sea in summer was close to the long-term mean and reduced in autumn because of late termination of water blooming.

Total abundance indices of 0-group fish were estimated by new Norwegian-Russian method used two ways. The new indices show the same richness of year classes as was found by traditional indices.

Total cod numbers was estimated to be 1544 million individuals. Numbers of haddock was estimated near 791 million individuals.

Assessments of other species biomass were estimated correspondingly: Redfish *Sebastes marinus* – 12 thousand sp., *Sebastes mentella* – 317 thousand sp., long rough dab - 3096 million individuals, Greenland halibut – 139 thousand sp. In addition, three species of catfish were also estimated.

The highest values of plankton were found west and Northeast of Spitsbergen. A minimum was found in the cold water masses East of Spitsbergen. Relative homogenous and intermediate values were found in the central part of the sea.

Migrations of cetaceans in the Barents Sea became more prolonged both in time of presence in the sea and distance. It is probably a consequence of the influence of both warming (earlier spring migration) and decrease of food base (capelin).

Despite derived estimates being relative, it can be concluded that the abundance of two species of sea birds, black-legged kittiwake and northern fulmar, declined in the Barents Sea in 2004.

The benthos species occurring most often were bivalve molluscs, Polychaeta and Echinodermata. The clam *Astarte crenata* was the most abundant, followed by species of brittle stars and sea-anemones. Clear biogeographic changes in species composition, biodiversity and distribution were observed northwards in the Barents Sea.

1. Hydrochemical investigations (based on data from Russian vessels)

1.1. Material and method

The hydrographical investigations consisted of measurements of temperature and salinity by CTD-sondes in depth profiles along sections and distributed over the total investigated area. Other hydrochemical parameters (oxygen, phosphates, nutrition and siliceous concentrations) were determined from water samples by special complex of test probe.

On Russian vessels concentrations of silicates, nitrates and nitrites were determined using Bran-Luebbe's autoanalyzer following methods recommended by the manufacturer. Methods basically used were as follows: for nitrites – Bendshnider and Robinson's method, for nitrates – reduction of nitrates to nitrites by passing the sample through a tube with coppered cadmium and subsequent estimation of a sum NO_2+NO_3 (in the form of NO_2), and for silicates – Koroleff's method.

Content of ammonia was estimated using Sagi–Solorzano's method; total nitrogen and phosphorus were combusted following the method given by Walderramma with subsequent determination in the form of phosphates and nitrates.

The basis for phosphate estimation was Morphy and Riley's method and when analyzing by spectrophotometer the method of Deniges-Atkins was also applied with the use of photocolorimeter.

Concentration of dissolved oxygen was defined using the Winkler's method.

1.2. Results of investigations (figs. 1.2.1-1.2.4)

In the period from August to September hydrochemical conditions in the Barents Sea were governed by damping of photosynthesis processes, increase of heat advection in the system of currents of Atlantic origin, decrease of the effect of Arctic waters and warming-up of the surface layer due to solar radiation.

In the sections No. 29 (along 74°30'N to the east of the Bear Island), No. 6 (the Kola Section) and No. 37 (Kanin Section) concentrations of dissolved oxygen were registered to be close to the normal in waters of Arctic origin and reduced in the Atlantic waters down to 1.5 ml/l. Aeration of surface layers was close to the normal except for stations done in areas influenced by the Arctic waters where positive anomalies of water saturation with oxygen made up about 1-2% (Figure 1.2.1). Concentrations of mineral phosphorus in the surface 50-m layer were reduced which was caused by more prolonged period of photosynthesis (Figure 1.2.2).

Above pycnocline minimum concentrations of silicon and nitrites (less than 0,4 μ M SiO₃ and 0,1 μ M NO₃) were observed. Under such low concentrations of nitrates, products of primary oxidation of organic matter such as ammonia, concentrations of which were quite high in the photic layer (0,7 – 1,4 μ M) became have an important role in supply of phytoplankton with nitrogen.

Under conditions of the observed termination of vegetative season (almost no nitrates, phosphates and silicates; surface waters were oversaturated with oxygen) high concentrations

of ammonia nitrogen showed that production processes were based on recycling due to mineralization of organic matter. Considerable increase of ammonia concentrations in the pycnocline layer and under it indicated high primary production in the upper layer.

At station 12 (74°30'N and 31°20'E) of the section 29 in the surface layer concentration of dissolved oxygen decreased to 6.0 ml/l (long-term mean was 7.1-7.5 ml/l), which could be a result of upwelling formed under increased advection of waters by northern branch of the North Cape Current over the eastern slope of the Hope Island Deep. By the same reason in the bottom layer at stations 13-14 (74°30'N, 32°30'E – 74°30'N, 33°30'E) concentrations of dissolved oxygen were observed anomalously low. Also, zone of decreased aeration of waters was formed, where saturation with oxygen of surface layer declined to 93-93% (with the normal being 103%), and in the bottom layer it reduced to 10%. Besides, because of upwelling, mineralization at depths down to 125 m was recorded to be high, which suggested formation of a zone of high biological productivity in this area of the sea.

Horizontal distribution of dissolved oxygen on the surface in its structure followed distribution of water temperature and corresponded to position of the main water masses. Concentrations varied within the range of 6.3 ml/l in warm waters of the Murman Current to 8.0 ml/l and higher in polar areas in the northeastern Barents Sea. In the bottom layer considerably depleted concentrations of dissolved oxygen were registered. Comparative analysis with the long-term mean data also indicated negative anomalies of oxygen concentration in the Atlantic waters reaching 0.4 ml/l on the surface. In the bottom layer they were close to the normal. For the Arctic waters, negative anomalies remained at all depths, sometimes exceeding 1.0ml/l.

Variability in water saturation with oxygen in the surface layer varied in the range of 99% at the Kanin Peninsula to 110% in the area west of the Bear Island (Figure 1.2.3). In the eastern part of the sea its distribution was characterized by low background aeration of waters compared to its long-term mean values. In the Northern and Central branches of the North Cape Current and in the Main and Coastal branches of the Murman Current percentage of oxygen was close to the normal, while in the Spitsbergen and Bear Island currents it was by 3-5% above the normal.

At the depth of 50 m at the Novaya Zemlya coast water saturation with oxygen was observed to be as high as 110%. Deeper, at the depths of 100 m and 200 m, this maximum was fuzzy and in the bottom layer, percentage of oxygen decreased to 75% (the normal is 86%).

Concentrations of biogenic elements in the surface layer were characteristic of vegetation period and were marginal almost over the whole area. They ranged within 0.00-0.15 μ M for nitrates, 0.00 - 0.15 μ M for phosphates, and 0.1 - 1.0 μ M for silicates.

The exception was a small area adjacent to the western shore of the southern island of Novaya Zemlya, where concentrations of biogenic elements remained high.

Variability in the phosphate concentrations on the surface was not high and constituted $0.0 - 0.3 \mu M$ (Figure 1.2.4). Their background values were observed to decrease compared to the mean long-term data.

In the result of termination of photosynthesis process in the second half of September south of the Spitbergen there was no consumption of phosphates for phytoplankton reproduction; at the same time due to water exchange between the upper and lower layers their relatively high concentrations were formed. On the surface they reached 0.5 μ M

At the end of September – beginning of October in the section No. 6 low concentrations of dissolved oxygen were observed; their minimum values were characteristic of waters of the Main and Coastal branches of the Murman Current and decreased in the

midstream down to 6.00 ml/l. Negative anomalies varied within 0.10-0.60 ml/l range. The increased water temperature could explain such situation.

Water saturation with oxygen in all layers reduced approximately by 2-3% compared to the long-term mean values (Figure 1.2.1), while at station 8 (73°00'N, 33°30'E) in the lower part of water column (100 m – bottom) it was by 4-6% lower.

Phosphate concentrations were also below the long-term mean by 0.1-0.2 (μ M)(Figure 1.2.2). Vertical structure of phosphate distribution corresponded to that of summer type, while for the long-term mean data it is characteristic that in this period waters begin to mix under the effect of autumn-winter convection.

Thus, hydrochemical investigations conducted in the Barents Sea showed the following:

On the whole background values of dissolved oxygen were low (by 0.3-1.5ml/l below the normal) and such situation was due to increased temperature of waters of the Atlantic origin and their flow to the upper layers of sea.

Zone of extreme values of hydrochemical characteristics observed in August allows suggesting upwelling at eastern stations of the section 29 and possible formation of the zone with increased biological productivity. In this area of the sea dense concentrations of zooplankton were observed.

A period characterized by depleted content of oxygen in the bottom layer of the southern Barents Sea that started in 1998 has continued in summer and autumn 2004. Phosphate content in the Barents Sea in summer was close to the long-term mean and reduced in autumn because of late termination of water blooming.

2. New abundance indices of 0-group fish based on real trawl catch (joint materials)

The standard trawling procedure consisted of tows at 3 depths, each of 0.5 nautical miles, with the headline of the trawl located at 0, 20 and 40 m. Additional tows at 60 and 80 m, also of 0.5 nm distance, were made when the 0-group fish layer was recorded deeper than 60 m or 80 m on the echo-sounder.

In addition to the traditional abundance indices, a new type of total 0-group fish abundance indices (Dingsør and Prozorkevich, in prep.) were calculated from the actual catches of the same trawl stations. These were used for the first time during the joint ecosystem survey 2004. This new method is considered to correspond better with total abundance, allows to calculate confidence limits, and makes better use of the total data than the indices used hitherto. To be able to present a time series with new indices, the survey data were reanalysed for the period 1980-2004 and the results presented in this report. The preparation of the data is explained and analysed in detail in (Dingsør, 2005). When new indices for the whole period have been recalculated, and the results have been carefully scrutinized and compared to previous traditional methods, this method is meant to replace the methods used up to now after a short period of overlap between the two methods.

2.1. Underlying principles and trawl capture efficiency

The 0-group survey in the Barents Sea has been carried out in late August - early September each year, using four to six Norwegian and Russian vessels. Since 1980, Norway, and 1981, Russia, the trawling procedure has been standardized by depth and distance (see above). Most trawl stations are spaced apart by 30-35 nm sailed distance, but the distance between cruise tracks are varying and the distance between stations are in some cases less than 30 nm.

The trawl used is a small-meshed mid-water trawl with 20 m vertical opening and 15 m wing spread (Godø et al., 1993). This sampling trawl has been used regularly since 1979 by Norwegian vessels and 1981 by Russian vessels. All Russian vessels in 1980 and one Russian vessel in 1982 - 1984 used a smaller sized (6 x 10 m) trawl. Assuming that the catches are proportional to the area of the trawl mouth, the catches of the smaller sized trawl were multiplied by a factor of 3.33 to even out the difference in vertical opening. In 1994, one Russian vessel used a non standard trawl with 30 m vertical opening and unknown wing spread, two steps were trawled to cover the usual three steps.

Due to the trawling procedure, the effective trawling distance is equal to the total distance towed divided by the number of depth steps (Stensholt and Nakken, 2001). Because of many errors in the datasets, the total distances were recalculated. The duration of a trawl haul was found by the start and stop time, duration was then multiplied by the speed and the total distance was found. If the start time, stop time, or speed was missing, then the total distance from the data was used. Even though there is developed a coding system for the number of depth steps, these codes were often lacking or in some cases erroneous. Thus, the number of depth steps were found by the duration and the following criteria: 1 step when duration < 16 minutes, 2 steps when duration is 16 - 25 min, 3 steps when duration is 26 - 35 min, 4 steps when duration is 36 - 45 min and 5 steps was found by total distance divided by 0.5 and rounded to the nearest integer. The effective distance, d_s , at station s was then found by

$$d_s = \text{total distance / depth steps} \tag{1}$$

The common practice in the traditional old indices has been to use the effective distances of 1 nm for 2 steps and 1.5 nm for 3 or more steps (Havforskningsinstituttet, 1994). The reason for making the recalculations above even when values were not missing, is that the fewer links of human touch between input and output, the smaller is the chance of human error in terms of calculation and punching errors.

Godø et al. (1993) and Hylen et al. (1995) showed that the sampling trawl is highly selective for 0-group cod and haddock. Its capture efficiency of fish smaller than 65 mm was much lower than their experimental trawl and it is reasonable to assume that this applies to other species as well. The similar results were obtained by PINRO (Mamylov, 2003). Thus there is arisen the necessity to take in attention a special correction factor which would compensate the different trawl capture efficiency subject to fish length and species. This factor is named as *Keff*, and to estimate possible catch refer the trawl swept area (the trawl mouth) the catch quantity should be multiplied with this *Keff*.

One of the ways to estimate *Keff* might be the calculated method based on the trawl geometry and mesh size (Mamylov, 2003). This method concerns only passive objects being fished and excludes the effects of fish behaviour in the trawl operation zone. It was assumed

that the small objects (4-7 cm and less in length, depending on the minimum mesh size in codend) are fished only by a cylindrical part of trawl codend with a small-meshed insertion, therefore, for them *Keff* is taken to be equivalent to the ratio of trawl mouth area and codend cross section area, that equal to 100 % -"straining" of small objects through a trawl netting.

For the sampling trawl 20x20 m this maximum *Keff* value is about 10. As for mediumand large-size marine organisms (above 10-15 cm), a fishing cross section for them is equal to trawl mouth area, i.e. *Keff* = 1, was taken and in this case, the trawl efficiency was determined only by the effective horizontal trawl opening. Values of *Keff* for the "intermediate" fish size (4-15 cm) were estimated as geometrical interpolation, corresponding to exponential dependence. Thus for this trawl with the minimum mesh size in codend a=4 mm, the dependence of *Keff* from *l* for l = 4.5 - 12.5 cm was estimated as

$$Keff = 31.177*\exp(-0.2708l)$$
 (2)

As a first approximation it is possible to adopt this theoretical value of *Keff*. But recently Prozorkevich has estimated the following correction functions for three species types according to regressions of acoustic and trawl data about fish densities received during trawling on the its relatively "pure" concentrations:

$$Keff_{gadoids} = 17.065^* \exp(-0.1932^*l)$$
 (3)

$$Keff_{capelin} = 7.2075^* \exp(-0.1688^*l)$$
 (4)

$$Keff_{herring} = 357.23^* \exp(-0.6007^* l) \tag{5}$$

where *l* is the length in cm.

It is interesting that theoretical dependence Keff(l) is inside of confidence limits of these regressions. These correction functions can be applied directly to the observed length frequencies at each station. But since the functions above give unreasonably high numbers as l decreases, it was decided to set for $l < 4 \text{ cm } Keff_{gadoids}$ constant to 8, $Keff_{herring}$ constant to 30 and $Keff_{capelin}$ constant to 4.

The abundance indices estimated with these correction functions, *Keff*, were compared to other indices and the correlations were a little weaker than without the use of *Keff*. Thus, it is a problem what *Keff* (*l*) dependencies (including *Keff*=1 independently from fish species and length) should be used for concrete surveys. This question should be coordinated for future. Thereafter it is suggested that until better correction functions are available, the new indices estimated with no correction for catching efficiency (Keff is set to 1) are regarded as the official indices and corrected index with varied *Keff* should be used as "additional".

2.2. Stratified sample mean estimator (table 2.1& figs.2.2.1-2.2.2)

For new estimation of abundance it was decided to use an index based on the stratified sample mean method. The area covered by the survey was stratified by new strata system including 22 strata (fig. 2.2.1). Example of good coverage (2000) is presented in figure 2.2.2.

Table 2.1 Area coverage coefficients and number of trawl stations

Year											St	trata nu	mber											Total	Numbers
	01	02	03	04	05	10	11	12	13	14	15	16	17	18	20	21	22	23	24	25	27	37	39	coverage	Stations
																								area,	
																								nm ²	
1980	0.20	0.87	0.91	0.88	0.93	1.00	0.67	1.00	1.00	0.66	0.71	o			1.00	0.91	0.22	0.29	0.08	0.48	0.89	0.96	0.99	351 949	326
1981	0.30	0.87	0.91	0.86	0.12	1.00	0.69	1.00	0.99	0.83	0.86	0.45			1.00	0.95	0.41	0.29	0.06	0.52	0.94	0.03	0.80	331 608	296
1982*	0.05	0.94	1.00	0.88	0.28	1.00	0.07	1.00	0.97	0.05	0.86				1.00	0.95	0.33	0.24	0.15	0.46	0.93	0.19	0.58	264 791	266
1983	0.43	0.84	0.99	0.93	0.31	1.00	0.90	1.00	1.00	0.75	1.00	0.16			1.00	0.94	0.38	0.30	0.15	0.63	0.93	0.10	0.43	336 604	268
1984*	0.26	0.49	0.96	0.81	0.17	0.88	0.71	1.00	0.47	0.50	0.46				1.00	0.95	0.36	0.26		0.63	0.93	0.04	0.48	271 478	271
1985	0.22	0.92	0.97	0.77	0.28	1.00	0.89	1.00	1.00	0.91	1.00	0.09	0.02		1.00	0.98	0.36	0.28	0.15	0.63	0.97	0.41	0.78	352 474	296
1986	0.23	0.82	1.00	0.87	0.15	1.00	0.84	1.00	1.00	0.79	1.00				1.00	0.95	0.28	0.33	0.21	0.48	0.93		0.47	314 537	275
1987	0.37	0.87	0.98	0.88	0.86	1.00	0.85	1.00	1.00	0.74	0.90				1.00	0.95	0.26	0.29	0.10	0.38	0.78	0.34	0.38	324 558	281
1988	0.31	0.86	0.92	0.92	0.67	1.00	0.81	1.00	1.00	0.61	0.80	0.02			1.00	0.91	0.27	0.32	0.06	0.48	0.78	0.45	0.70	328 583	291
1989	0.49	0.93	0.89	0.91	0.36	1.00	0.92	1.00	1.00	0.98	1.00	0.91	0.25	0.23	1.00	0.82	0.46	0.57	0.41	0.45	0.75	0.12	0.57	405 007	422
1990	0.67	0.93	0.92	0.89	0.39	1.00	0.94	1.00	1.00	0.90	1.00	0.28	0.13		1.00	0.87	0.36	0.35	0.25	0.43	0.73	0.08	0.54	358 862	396
1991	0.70	0.98	0.96	0.82	0.29	1.00	0.96	1.00	1.00	0.96	1.00	0.74	0.07		1.00	0.94	0.39	0.55	0.33	0.40	0.77	0.08	0.55	384 610	403
1992	0.29	0.85	0.86	0.79	0.16	1.00	0.88	1.00	0.98	0.90	0.86	0.22			1.00	0.97	0.36	0.44	0.21	0.61	0.74		0.33	322 792	301
1993	0.65	0.80	0.90	0.79	0.19	1.00	0.93	1.00	1.00	0.98	0.88				1.00	0.91	0.19	0.29	0.15	0.62	0.85		0.13	321 539	265
1994	0.47	0.87	0.92	0.56		1.00	0.84	0.92	0.97	0.88	0.86	0.09			0.99	0.80	0.19	0.29	0.15	0.45	0.51			280 222	245
1995	0.19	0.69	0.95	0.84	0.13	1.00	0.50	1.00	1.00	0.57	0.90				1.00	0.79		0.26	0.11	0.37	0.53		0.23	253 894	201
1996	0.53	1.00	0.90	0.79	0.11	1.00	0.92	1.00	1.00	0.94	1.00	0.78			1.00	0.87	0.20	0.19		0.34	0.65	0.02	0.23	321 637	389
1997	0.47	0.88	0.86	0.62		1.00	0.85	0.99	1.00	0.94	0.82	0.27			0.89	0.67	0.06	0.16		0.41	0.64		0.19	280 293	268
1998	0.54	0.99	0.74	0.68		1.00	0.90	0.93	1.00	0.99	1.00	0.91	0.15		1.00	0.97	0.23	0.23	0.20	0.11	0.60			320 802	356
1999	0.55	0.74	0.69	0.66	0.09	1.00	0.94	1.00	1.00	0.96	1.00	0.71			1.00	0.86	0.19	0.24	0.12	0.05	0.61		0.08	304 759	229
2000	0.56	0.75	0.69	0.74	0.37	1.00	0.94	1.00	1.00	0.95	1.00	0.71			1.00	0.95	0.19	0.30	0.12	0.38	0.62	0.11	0.38	338 466	267
2001	0.59	0.79	0.73	0.74	0.41	1.00	0.96	1.00	1.00	0.96	1.00	0.71			1.00	0.96	0.20	0.29	0.12	0.42	0.81	0.13	0.34	348 248	275
2002	0.56	0.75	0.69	0.74	0.40	1.00	0.94	1.00	1.00	0.96	1.00	0.67			1.00	0.96	0.19	0.29	0.09	0.41	0.54	0.15	0.17	330 232	254
2003	0.65	0.96	0.83	0.78	0.14	1.00	0.98	1.00	1.00	0.96	1.00	0.70			0.99	0.95		0.40	0.32	0.26	0.81	0.20	0.68	365 845	288
2004	0.51	0.94	0.73	0.66	0.10	1.00	0.94	0.98	1.00	0.93	1.00	0.92	0.22		0.97	0.92	0.35	0.40	0.26	0.43	0.27			333 239	293
Average	0.43	0.85	0.88	0.79	0.31	1.00	0.83	0.99	0.98	0.82	0.92	0.52	0.14	0.23	0.99	0.91	0.28	0.31	0.17	0.43	0.74	0.21	0.46	325 881	297

**Missing data in the eastern areas.*

To find the coverage of a stratum, the station positions were loaded into a GIS software (Manifold system 6.00). The boundary stations were traced, a buffer zone of 20 nm was added, and the areas enclosed were calculated. The conic projection Albers equal-area, with centre latitude at 75°N, centre longitude at 30°E, and standard latitudes at 70° and 80°N, was used in this operation. The coverage varies to a large extent from year to year (Table 2.1). The low coverage in 1982 and 1984 is due to missing data.

The number of fish per nm², $\rho_{s,l}$, at length, l, at each station, s, are estimated by the following equation:

$$\rho_{s,l} = \frac{f_{s,l} \cdot Keff}{a_s} \tag{6},$$

where $f_{s,l}$ is the calculated frequency of length *l* at station *s*, *Keff* is the correction functions defined above, and a_s is the swept area found by

$$a_s = \frac{d_s \cdot ws}{1852} \tag{7},$$

where ws is the wingspread of the trawl and is set to 15 m, d_s is the effective trawl distance found as total trawl distance divided on depth steps.

The stratified swept area estimate, is given by

$$\overline{y}_{st} = \sum_{i=1}^{L} A_i \overline{y}_i \tag{8},$$

where *L* is the number of strata, A_i is the covered area in the *i*th stratum, and \overline{y}_i is the average density in stratum *i*. The estimated variance of the stratified mean \overline{y}_{st} is

$$\operatorname{var}(\overline{y}_{st}) = \sum_{i=1}^{L} A_i^2 \frac{s_i^2}{n_i}$$
(9),

where

$$s_i^2 = \frac{\sum_{s=1}^{n_i} (y_{i,s} - \overline{y}_i)^2}{n_i - 1}$$
(10).

The standard error of \overline{y}_{st} is given by

$$\operatorname{se}(\overline{y}_{st}) = \sqrt{\operatorname{var}(\overline{y}_{st})} \tag{11}$$

and the confidence limits (CL) are found by

 $CL = \overline{y}_{st} \pm 1.96 \cdot se(\overline{y}_{st})$ (12).

2.3. New estimations of 0-group fish total abundance indices

Based on methods described above the total abundance indices of 0-group fish were calculated with 95 % confidence limits. Following results are presented with correction for capture efficiency (Table 2.2) and without correction for capture efficiency (Table 2.3). As it was preliminary agreed the new indices with no correction for catching efficiency (Keff=1) will be used as the official indices and indices corrected by capture efficiency should use as "additional". Generally, the new 0-group indices show the same changing trends as the previous traditional indices, but variability in the new indices are more dynamic.

Voor		Capelin			Cod			Haddock			Herring			Saithe		Pol	ar cod (eas	t)	Pol	ar cod (wes	st)
i cai	Abundance	Confi	dence	Abundance	Confi	dence	Abundance	Confi	dence	Abundance	Confi	dence	Abundance	Confid	ence	Abundance	Confi	dence	Abundance	Confi	dence
1980	1 078 218	737 682	1 418 753	417	219	616	411	253	569	124	33	215	28	0	62	0	0	0	168 932	0	410 222
1981	571 088	304 965	837 211	369	260	478	94	41	148	50	0	115	0	0	0	3 305	1 530	5 080	64 468	25 551	103 384
1982	815 597	203 572	1 427 623	3 442	2 524	4 359	3 062	2 254	3 869	1 065	292	1 837	354	0	886	4	0	7	3 668	0	8 093
1983	443 024	231 573	654 474	21 147	10 284	32 011	5 937	4 293	7 581	162 656	38 606	286 707	559	173	946	1 406	0	3 256	74 347	0	161 122
1984	224 880	137 399	312 360	27 123	7 586	46 661	5 004	3 429	6 578	24 257	1 735	46 778	1 342	443	2 240	164	0	417	35 625	8 634	62 616
1985	97 915	968	194 861	84 747	41 546	127 949	3 285	2 047	4 522	40 187	8 1 8 0	72 195	45	5	86	112 247	30 740	193 754	9 209	0	18 844
1986	75 297	6 6 2 5	143 968	12 900	8 872	16 927	2 762	1 637	3 886	149	41	258	5	0	12	85 547	29 287	141 807	24 552	0	49 632
1987	3 070	629	5 511	1 381	662	2 099	998	612	1 385	66	0	149	6	0	14	86 505	0	198 223	870	364	1 376
1988	122 766	22 343	223 190	3 558	2 063	5 052	2 249	821	3 677	83 138	28 337	137 939	41	15	67	3 628	75	7 181	55 880	0	121 347
1989	1 175 685	936 027	1 415 342	3 708	2 211	5 204	886	615	1 158	23 520	10 937	36 104	14	0	31	2 124	0	4 524	209 037	23 468	394 607
1990	153 597	103 466	203 728	31 479	17 739	45 220	4 109	3 0 3 7	5 180	10 566	828	20 304	37	4	71	3 699	890	6 507	333 996	0	744 122
1991	219 759	98 508	341 009	55 394	40 595	70 192	18 955	14 502	23 408	361 027	137 974	584 080	12	6	18	774 199	350 163	1 198 234	391 872	0	1 121 343
1992	465	0	991	226 092	122 932	329 252	6 518	4 457	8 579	118 159	68 004	168 315	443	214	672	62 894	0	126 267	109 034	17 006	201 063
1993	1 034	215	1 854	128 566	70 469	186 663	4 142	2 855	5 429	437 573	3 197	871 950	1 400	0	3 401	130 377	32 831	227 924	94 807	16 743	172 871
1994	27 983	2 590	53 376	115 923	61 246	170 600	6 921	3 897	9 945	174 920	0	365 301	8	0	18	1 616 827	731 033	2 502 621	66 016	0	146 621
1995	2 756	0	6 324	372 527	179 309	565 744	1 821	925	2 717	19 094	7 574	30 614	631	281	981	0	0	0	290	16	564
1996	191 767	98 491	285 044	370 935	246 723	495 148	3 491	2 640	4 343	758 043	359 092	1 156 994	629	263	994	815 216	511 037	1 119 394	62 511	0	155 320
1997	261 351	113 055	409 647	397 820	295 318	500 322	2 744	1 882	3 605	624 380	230 666	1 018 094	467	222	712	385 620	207 651	563 589	84 063	8 071	160 055
1998	117 380	64 377	170 384	32 088	21 040	43 136	18 880	12 572	25 188	632 685	365 795	899 574	219	106	331	22 927	11 728	34 127	127 410	0	294 535
1999	393 331	200 244	586 419	5 875	1 316	10 435	3 709	1 388	6 0 3 0	49 279	18 559	79 998	362	181	543	1 552 224	979 392	2 125 056	35 474	5 934	65 013
2000	186 841	7 492	366 191	144 970	77 486	212 454	14 670	9 2 1 8	20 123	626 908	30 754	1 223 062	1 151	608	1 693	1 186 355	679 308	1 693 403	274 315	188 173	360 457
2001	26 526	4 354	48 698	6 070	1 246	10 894	7 241	4 958	9 523	13 657	2 453	24 862	64	0	142	0	0	0	193 161	0	420 590
2002	29 182	16 813	41 552	45 252	29 031	61 472	5 840	3 925	7 754	124 280	18 213	230 346	689	400	979	129 539	76 206	182 871	312 272	63 566	560 979
2003	611 818	314 101	909 536	119 952	69 716	170 188	44 067	23 787	64 346	256 458	92 865	420 051	3 606	0	9 453	109 733	56 642	162 824	19 460	1 376	37 543
2004	74 158	16 665	131 651	103 650	74 911	132 389	55 529	37 521	73 536	1 065 883	728 730	1 403 037	6 492	3 715	9 269	345 598	151 681	539 514	3 249	890	5 608

Table 2.2 Abundance indices (in millions) with 95% confidence limits, corrected for catching efficiency

		Capelin Cod			H	Iaddock			Herring			Redfish			
Year	Abundance index	Confider	nce limit	Abundance index	Confide	nce limit	Abundance index	Confide	nce limit	Abundance index	Confider	nce limit	Abundance index	Confider	nce limit
1980	289 233	198 151	380 314	84	48	120	89	55	123	7	2	12	376 831	0	942 891
1981	146 857	79 240	214 473	65	45	86	19	9	29	5	0	11	208 676	0	495 518
1982	241 500	60 673	422 327	665	478	851	716	521	911	66	15	116	225 937	14 158	437 716
1983	134 397	72 378	196 416	5 302	2 324	8 280	1 816	1 193	2 4 4 0	43 773	16 434	71 112	71 452	35 908	106 997
1984	97 638	60 528	134 748	7 874	2 533	13 214	1 713	1 169	2 2 5 6	5 677	2 093	9 261	57 458	18 739	96 177
1985	32 255	0	65 111	20 151	10 163	30 139	923	530	1 316	10 478	1 852	19 104	425 744	159 729	691 758
1986	18 025	891	35 160	2 493	1 718	3 267	630	364	896	12	0	24	147 650	0	304 931
1987	799	178	1 421	223	113	333	170	102	239	3	0	6	32 904	17 801	48 007
1988	38 435	7 967	68 904	702	402	1 002	524	207	840	11 928	4 488	19 368	91 515	58 459	124 571
1989	344 987	273 551	416 424	957	549	1 365	234	160	307	5 484	1 876	9 092	21 354	10 223	32 485
1990	48 054	32 584	63 525	8 821	4 733	12 909	1 519	1 117	1 920	6 054	0	12 658	123 980	67 925	180 034
1991	74 506	33 789	115 223	14 776	10 663	18 889	5 281	3 954	6 608	105 890	55 508	156 271	51 494	0	104 059
1992	154	0	330	60 728	33 084	88 371	2 237	1 600	2 874	52 097	30 012	74 182	18 413	0	48 719
1993	343	96	590	35 890	19 228	52 552	1 623	1 098	2 148	90 769	5 517	176 021	7 623	0	18 569
1994	12 316	1 206	23 425	35 683	18 494	52 872	2 586	1 367	3 806	25 224	0	54 145	71 465	0	164 239
1995	819	0	1 882	119 472	60 293	178 651	720	366	1 074	2 267	814	3 720	22 022	4 497	39 546
1996	62 740	32 285	93 194	94 377	62 348	126 406	1 422	1 062	1 782	78 827	39 355	118 298	37	11	62
1997	76 780	32 845	120 714	90 747	66 917	114 576	834	576	1 093	62 444	28 017	96 870	196	0	395
1998	47 841	30 786	64 895	9 065	5 747	12 382	7 990	4 985	10 996	106 103	58 716	153 490	995	12	1 978
1999	118 474	64 831	172 117	1 819	201	3 436	1 539	503	2 575	22 033	2 821	41 245	54	20	88
2000	52 507	787	104 227	34 816	18 597	51 035	3 927	2 510	5 344	66 280	4 456	128 104	10 051	0	22 542
2001	6 950	852	13 047	1 309	250	2 367	2 688	1 724	3 652	1 136	202	2 070	8	2	14
2002	27 629	15 510	39 748	25 504	14 781	36 227	2 4 6 4	1 699	3 228	31 326	16 289	46 363	176	29	324
2003	174 219	90 750	257 687	25 464	14 899	36 028	11 524	5 974	17 073	41 866	23 187	60 546	257	0	549
2004	22 688	3 525	41 851	29 893	21 856	37 931	26 775	17 806	35 744	185 326	131 597	239 055	1 366	0	2 807

Table 2.3 Abundance indices (in millions) with 95% confidence limits, without correction for catching efficiency

End of Table 2.3

		Saithe		Halibut			LRD		Polar cod (east)			Pola	ar cod (west)		
Year	Abundance index	Confider	nce limit	Abundance index	Confidence	e limit	Abundance index	Conf	idence mit	Abundance index	Confider	nce limit	Abundance index	Confide	nce limit
1980	3.32	0.00	6.90	58.30	18.27	98.32	1 468	1 077	1 860	0	0	0	19 689	0	47 858
1981	0.00	0.00	0.00	91.35	56.33	126.37	689	338	1 041	403	187	619	7 198	2 810	11 585
1982	182.56	0.00	485.38	53.52	14.31	92.74	1 148	769	1 527	0	0	1	411	0	906
1983	325.21	111.26	539.16	51.70	26.90	76.50	486	310	661	1 406	0	3 256	8 240	0	17 624
1984	1 013.54	294.94	1 732.14	41.47	23.44	59.49	60	41	79	164	0	417	4 315	1 051	7 579
1985	18.54	0.00	37.58	60.44	36.74	84.14	377	160	593	27 127	7 198	47 056	1 1 1 9	0	2 256
1986	1.06	0.00	2.31	152.81	83.13	222.48	9 625	6 865	12 384	11 320	3 830	18 809	2 817	172	5 461
1987	0.86	0.00	1.89	49.61	32.59	66.64	1 116	582	1 651	10 388	0	24 129	103	44	162
1988	22.34	5.99	38.70	10.23	3.54	16.92	264	148	381	537	11	1 064	6 296	0	13 472
1989	1.95	0.00	4.05	2.50	0.71	4.29	233	127	339	304	0	652	23 058	3 134	42 981
1990	13.98	1.90	26.05	3.43	0.31	6.55	72	34	110	512	129	895	43 204	0	96 647
1991	4.73	2.35	7.12	4.34	0.00	8.98	111	65	157	83 453	38 143	128 762	54 034	0	155 162
1992	216.54	117.37	315.72	11.91	0.33	23.48	173	27	319	9 537	0	19 162	13 444	2 057	24 832
1993	496.36	0.00	1 235.57	5.87	2.17	9.57	68	29	106	17 646	4 610	30 682	11 174	1 846	20 502
1994	3.34	0.00	6.88	52.04	0.00	123.95	2 430	1 540	3 320	253 318	133 494	373 142	7 313	0	16 120
1995	228.98	99.59	358.36	24.67	7.19	42.15	347	57	638	0	0	0	37	3	71
1996	194.35	84.58	304.12	8.06	3.72	12.39	57	2	112	99 094	61 972	136 217	6 567	0	16 338
1997	107.68	50.43	164.93	6.67	3.69	9.65	130	59	201	43 601	23 893	63 309	10 282	831	19 732
1998	104.13	44.29	163.97	10.27	4.35	16.19	37	17	56	16 590	9 781	23 398	13 743	0	31 142
1999	179.02	88.64	269.40	21.87	12.71	31.04	142	1	283	174 810	111 485	238 135	4 179	670	7 688
2000	278.68	151.41	405.96	52.54	18.63	86.44	288	140	435	150 033	86 494	213 573	32 702	21 023	44 381
2001	27.48	0.00	61.59	69.46	14.40	124.52	104	0	220	0	0	0	21 989	0	48 328
2002	429.09	248.26	609.92	81.87	0.00	188.77	1 007	470	1 545	129 539	76 206	182 871	40 156	7 440	72 872
2003	464.52	0.00	1 098.79	18.76	0.00	40.25	158	83	232	14 428	7 600	21 257	3 652	262	7 041
2004	1 901.13	1 145.27	2 657.00	108.65	30.38	186.92	49	25	73	44 368	19 790	68 947	423	118	728

2.4. Length distributions

To minimize the chance of including older age groups in the analysis, maximum lengths were defined for each year and species. This was done by going through the survey reports and finding the maximum lengths from the length frequency tables. Most length data are also coded with age codes and all data that were coded older than 0-group were excluded from the analysis. Erroneous coding and coding that includes both 0-group and older fish will cause bias when the length distributions of 0- and 1-group overlap. Minimum length was set to one centimeter.

Another objective of the 0-group survey is to estimate the length distributions of the juveniles of the year. One way to do this is to use a variation of the ratio estimator, \hat{R} , of the mean length given by Cochran (1977):

$$\hat{R} = \frac{\sum_{s=1}^{n} y_s \bar{x}_s}{\sum_{s=1}^{n} y_s}$$
(13)

where ys is the sum of the densities estimated by equation (8) at station s, \overline{x}_s is an estimate of the average length of fish at station s, and n is the number of stations where fish of the species in question were caught.

An estimate of population variance, σ_x^2 , of lengths can be found by modification of the grouped sample variance (Bhattacharyya & Johnson, 1977):

$$\hat{\sigma}_{x}^{2} = \frac{\sum_{s=1}^{n} \sum_{l} \rho_{s,l} (l - \hat{R})^{2}}{\sum_{s=1}^{n} \sum_{l} \rho_{s,l}}$$
(14)

where $\rho_{s,l}$ is the density of fish of length l at station s.

Mean lengths for these purposes are given in table 2.4 below.

Year	Capelin	Cod	Haddock	Herring	Gr. halibut	Redfish	Saithe	Polar cod	LRD
1980	3.85	5.68	6.97	5.11	3.63	3.54	3.41	3.61	3.30
1981	3.79	5.82	6.59	5.84	6.41	4.18		3.35	3.54
1982	4.62	6.22	7.33	5.41	5.96	3.99	11.66	3.30	3.43
1983	4.66	7.68	8.86	7.98	6.26	4.34	12.17	3.33	3.57
1984	5.19	7.55	8.51	8.11	6.61	3.39	13.41	3.75	4.05
1985	5.15	7.35	8.37	8.12	6.14	4.12	10.54	7.11	3.40
1986	3.22	6.20	7.21	5.67	6.43	3.85	6.35	3.92	3.83
1987	3.75	5.38	5.59	4.75	6.21	2.96	5.13	3.74	3.63
1988	4.97	6.47	7.63	6.72	5.98	4.04	12.03	3.47	3.39
1989	4.50	7.75	8.12	7.69	6.69	3.82	4.74	3.25	3.53
1990	4.82	8.26	9.94	9.18	7.34	4.42	9.89	4.13	3.57
1991	5.35	7.99	8.25	8.06	7.39	3.67	10.01	3.66	3.61
1992	5.13	7.99	9.47	8.85	6.71	4.31	11.20	4.18	3.84
1993	4.87	8.16	10.05	7.37	5.22	3.18	9.56	3.99	3.35
1994	6.76	8.67	9.84	6.63	6.18	4.29	9.95	3.83	3.24
1995	4.53	8.88	10.13	6.37	6.33	4.08	9.54	4.04	3.86
1996	5.15	7.69	10.28	6.20	5.44	4.12	8.82	3.69	3.54
1997	4.43	7.12	8.76	6.22	6.12	3.95	7.29	3.54	3.09
1998	4.29	8.19	10.42	7.04	6.56	3.67	10.97	3.18	3.25
1999	4.72	8.81	10.42	9.05	6.33	3.17	11.31	3.34	3.45
2000	4.20	7.42	8.08	6.28	6.24	3.70	7.61	3.98	3.35
2001	3.82	6.93	10.01	5.86	6.21	3.17	10.54	3.43	3.17
2002	6.55	8.03	10.50	8.12	6.05	3.45	11.05	4.13	3.66
2003	4.31	6.80	8.13	7.67	6.62	2.54	4.38	4.10	3.37
2004	4.83	8.37	11.09	7.66	6.01	3.57	8.56	4.12	4.10

Table 2.4 Mean lengths	(cm), no correction	for catching efficiency
------------------------	---------------------	-------------------------

3. Bottom fish survey (joint materials)

The weather and ice conditions were favourable during most parts of the survey, and consequently, an almost total coverage of the Barents Sea by a regular and dense grid of bottom trawl stations was achieved. The survey design has been used as for bottom fish survey in recent years, running east-west courses starting in the south.

The main distribution area of target species was surveyed with course lines 30-40 nautical miles apart. Bottom trawl hauls were executed every 35-40 miles. All participating vessels used a Campelen trawl. "Smolensk" and "F. Nansen" surveyed the eastern and central parts of the Barents Sea whereas "Johan Hjort" and "Jan Mayen" surveyed the western, northwestern and central parts. Altogether, about 19000 nautical miles of survey tracks were made. This represents a 10% increase from 2003.

In total, the Norwegian vessels carried out 519 trawl hauls and the Russian vessels carried out 481 trawl hauls, so in total 1000 hauls were made during the survey.

3.1. Biological sampling of main bottom species during survey

Species	Norwegian vessels	Russian vessels	Sum
Cod	8		
No of samples	446	324	770
Nos. length measured	16935	18233	35168
Nos. aged	1451	1308	2759
Haddock			
No of samples	324	113	437
Nos. length measured	12601	7857	20458
Nos. aged	390	391	782
Redfish (Sebastes marinus)			
No of samples	43	15	58
Nos. length measured	210	46	256
Nos. taken for age	109	12*	121
Redfish (Sebastes mentella)			
No of samples	79	60	139
Nos. length measured	3057	1472	4529
Nos. taken for age	388	139*	527
Saithe			
No of samples	119	119	238
Nos. length measured	1400	3151	4551
Nos. taken for age	-	23*	23
Greenland halibut			
No of samples	377	157	534
Nos. length measured	7068	9414	16482
Nos. taken for age	719	600*	1319
Catfish (Anarhichas lupus)			
No of samples	52	53	105
Nos. length measured	448	509	957
Spotted catfish (Anarhichas minor)			
No of samples	63	45	108
Nos. length measured	147	145	292
Jelly catfish (Anarhichas denticulatus)			
No of samples	33	18	51
Nos. length measured	46	28	74
Long rough dab			
No of samples	260	273	533
Nos. length measured	7736	19070	26806

(Length measurements include 0-group samples)

**Age readings were not fulfilled until publishing of this report.*

3.2. Computations of stock sizes

The computations of individual's number and biomass per length- and age groups of cod, haddock and Greenland halibut were calculated from bottom trawl catches using the "swept-area" method with a strata system developed at IMR. For other bottom species (redfish, catfish and long rough dab) assessment of total numbers were made by length groups only.

Acoustic registrations of bottom fish carried out along all cruise tracks, with division of s_A -values by species based on trawl catches data. These results were additionally used for mapping of cod and haddock distribution.

3.3. Swept area analysis of bottom fishes

Length based indices for each sub area was estimated using the method of (Jakobsen *et al.* 1997). For each trawl station and length, fish density was estimated by:

$$P_{s,l} = \frac{f_{s,l}}{a_{s,l}},$$
 (15)

where $P_{s,l}$ is the number of fish/n.m.² observed at station *s* (length *l*)

 $f_{s,l}$ is the estimated frequency of length l

 $a_{s,l}$ is swept area given by

$$a_{s,l} = \frac{d_s * EW_l}{1852}$$
(16)
$$d_s \qquad \text{is towed distance (n.m.)}$$

and

 EW_l is the length dependent effective swept width.

For Greenland halibut, redfish, long rough dab and the catfishes, there is no available estimate of the length dependent effective swept width, so it was set to 25 m, independent of fish length and trawl depth.

Based on (Dickson 1993a; Dickson 1993b), length dependent effective fishing width for cod and haddock was included in the calculations where EW was:

$$EW_{l} = \alpha * l^{\beta} \quad \text{for} \quad l_{\min} < l < l_{\max}$$
(17)

$$EW_{l} = EW_{l_{\min}} = \alpha * l_{\min}^{\beta} \quad \text{for} \quad l \le l_{\min}$$
(18)

$$EW_{l} = EW_{l_{\max}} = \alpha * l_{\max}^{\beta} \quad \text{for} \quad l \ge l_{\max}$$
(19)

Species	α	β	l_{\min}	l _{max}
Cod	5.91	0.43	15 cm	62 cm
Haddock	2.08	0.75	15 cm	48 cm

T1		1 f.			1			:	41	4 4	4 - 1-1 -	
Ine	parameters	usea ro	or coa	and	падаоск	are	given	1n	the	text	table).
												۰.

Point observations for fish density based on length (*l*) was summed up in 5 cm length groups denoted by $p_{s,l}$. Stratified abundance indices for each length group and strata were generated using

$$L_{p,l} = \frac{A_p}{S_p} * \sum P_{s,l}$$
⁽²⁰⁾

where

 $L_{p,l}$ is the index for stratum p, length group l

 $\dot{A_p}$ area (n.m.²) of stratum p

is the number of stations in stratum p

For each subarea, the total number of fish in each 5cm length group was estimated by summing over all strata in the sub area, and the total number of fish in each age group in the area was estimated using an age/length key. Finally, the total index for each length and age class is the sum of the values for all sub areas.

For each year, an age/length key was estimated for each stratum. All age samples for a stratum were used. Age samples from a length group was weighted by the index of the number of fish in the 5 cm length group within a stratum divided by the number of age samples in the length group:

$$w_{p,l} = \frac{L_{p,l}}{n_{p,l}} , \qquad (21)$$

where $n_{p,l}$ is the number of age samples in stratum *p* and length group *l*.

The proportion of age a at length l was estimated using

$$P_{a}^{(l)} = \frac{\sum_{p}^{p} n_{p, a, l} * w_{p, l}}{\sum_{p}^{p} n_{p, l} * w_{p, l}} \quad , \tag{22}$$

where $P_a^{(l)}$ is the weighted proportion of age *a* in length group *l* in stratum *p*, and $n_{p,a,l}$ is the number of age samples of age *a* in length group *l*.

The sum of the weighted factors in a sub area is the abundance index for the total number of fish in the sub area. The number of fish at age was estimated by:

$$N_{a} = \sum_{p} \sum_{l} L_{p,l} * P_{a}^{(l)}$$
(23)

Average length and weight at age was estimated using (only shown for weight):

$$W_{a} = \frac{\sum_{p} \sum_{l} \sum_{j} W_{p,a,l,j} * w_{p,l}}{\sum_{p} \sum_{l} \sum_{j} \sum_{j} w_{p,l}},$$
(24)

where $W_{p,a,l,j}$ is the weight for sample *j* in length group *l* in stratum *p* and age *a*.

3.4. Distribution and abundance of bottom fish (joint materials)

Swept area assessment of bottom fishes (figs.3.4.1-3.4.3)

A new strata system was constructed covering the whole Barents Sea to include the total survey area. The new geographic system is also depth stratified using GEBCO depth data. Since this is the first total coverage of bottom fishes during this period, it is not possible to compare the indices to corresponding indices in previous years. However, for the species cod, haddock and Greenland halibut, there are indices from approximately the same period in earlier years, at least for some regions of the Barents Sea.

The old strata system for the Norwegian summer/autumn survey covered the southern and western Barents Sea where only the Spitsbergen area was depth stratified. Due to unpredictability in getting access to the Russian EEZ for Norwegian research vessels only the areas west of the Median line were covered after 1999 and the swept area analyses were run for this area. When comparing the new survey with the earlier the swept area analyses were run using the old strata system, and only stations within this area were included. In the tables, area I corresponds to the westernmost part of ICES area I, or strata 11-13 and 16 in the figure, area IIa corresponds to strata 14 and 15 and area IIb is strata 1-10. The tables for cod and haddock were made using this strata system.

The juvenile Greenland halibut survey has been conducted since 1996 and has been a joint Russian – Norwegian survey since 2000. This survey covered the main juvenile area north and east of Spitsbergen and in the first two years the area E-Frans Josef was not included. This strata system was also depth stratified. When comparing the Greenland halibut results between years this system was used.

Cod (tables 3.1, 3.2 and figs. 3.4.4, 3.4.5)

Estimation of Northeast Arctic cod by aged groups and regions showed in tables 3.1, 3.2. Main part of cod (73 %) distributed in region I ICES. Young cod distributed mainly in the central of the Barents Sea and large cod were found in eastern part and in Spitsbergen region. Total stock was observed as 1544.39 millions individuals.

Haddock (tables 3.3, 3.4 and figs. 3.4.6, 3.4.7)

The northeast arctic haddock stock was distributed in the southern and central parts of the Barents Sea, the larger fish had a more coastal distribution than smaller fish. Total index was observed as 790.7 millions individuals.

Greenland halibut (tables 3.5, 3.6 and figs. 3.4.8, 3.4.9)

The Greenland halibut had a wide distribution except from the easternmost areas. The young fish (less than 20 cm) was mainly found in the areas to the north and east of Spitsbergen. The age groups 1-3 were most abundant in the part of region I belonging to REEZ, while older fish was mainly found in the other parts of region I and in region IIb. The total index was estimated at 139 thousand individuals. This index is the highest obtained during the period 1996-2004, but it must be kept in mind that during 1996 and 1997 the REEZ was not covered, and in 2003 the investigations were hindered by severe ice conditions. The main adult area for this species, which is located along the slope between Norway and Spitsbergen at depths of 500 – 900 m, is not covered by this survey.

Redfish (Sebastes marinus) (table 3.7, figs. 3.4.10, 3.4.11)

This species was found in very scattered concentrations in the southern and western parts of the area. The total index was 12 thousand specimens.

Deepwater Redfish (Sebastes mentella) (table 3.8, figs. 3.4.12, 3.4.13)

This redfish species was mainly found in the western parts of the Barents Sea. While the fish larger than 20 cm was concentrated in the southern areas, the smaller fish were also found to the north and east of Spitsbergen. The total index was 316 thousand individuals.

Catfish (*Anarhichas lupus*) (table3.9, fig. 3.4.14)

The catfish was found in scattered concentrations in the central and southeastern part of the area, and in addition to the west and north of Spitsbergen. The total index was 12.5 million specimens.

Spotted catfish (Anarhichas minor) (table 3.10, fig. 3.4.15)

The spotted catfish had a similar distribution to the catfish. A total index of 13.5 million was estimated.

Jelly catfish (Anarhichas denticulatus) (table 3.11, fig. 3.4.16)

This species was most frequently encountered along an axis from southeast to northwest, but the density was low everywhere. A total index of 2.9 million individuals was obtained for the total area.

Long rough dab (table 3.12, fig. 3.4.17)

This species has a wide distribution in the total covered area, except from the northeastern part. The densest concentrations are found to the east of the island Hopen and southeastwards towards Cape Kanin and the island Kolguev. In total, the highest index was

obtained in the part of region I belonging to REEZ, but the smaller length groups were most frequent in the NEEZ and the Spitsbergen area. A total index of 3.1 billion individuals was obtained.

Table 3.1. Northeast Arctic cod.	Bottom trawl indices (r	million individuals) pr	[,] region and age
	group during th	he ecosystem survey	in autumn 2004

Region						Ag	ge						Total
Year	1	2	3	4	5	6	7	8	9	10	11	12+	
					Ι	(NEEZ	+ SVA)					
2004	151.93	69.70	30.93	34.40	14.37	19.32	12.23	4.71	1.14	0.40	0.06	0.08	339.27
						I (RE	EZ)						
2004	87.12	204.23	38.45	273.62	115.72	40.97	18.37	3.75	0.23	0.23	0.03	0.08	782.80
						IIa	a						
2004	10.57	5.72	1.74	6.45	2.01	2.41	0.49	0.32	0.12	-	-	-	29.83
						III	b						
2004	142.84	62.13	38.28	104.57	19.31	15.04	8.29	1.54	0.33	0.03	0.00	0.13	392.49
						Tot	al						
2004	392.46	341.78	109.40	419.04	151.41	77.74	39.38	10.32	1.82	0.66	0.09	0.29	1544.39

Year 1 2 3 4 5 6 7 8 9 10 11 12+ I<	9 422.18
I	9 422.18
	9 422.18
1995 191.02 34.99 63.23 88.03 26.33 10.81 6.11 0.74 0.42 0.17 0.14 0.	
1996 545.22 218.06 37.16 34.53 22.03 8.27 5.32 1.42 0.52 0.02 0.05 0.1	1 872.61
1997 403.98 285.31 89.58 16.60 12.68 14.08 10.77 4.86 0.62 0.11 0.06 0.	2 838.77
1998 357.55 126.39 91.54 19.38 3.74 2.58 3.28 2.03 0.33 0.05 - 0.9	2 606.89
1999 87.73 91.44 57.64 31.12 8.09 1.34 1.09 0.89 0.19 0.13 -	- 279.66
2000 26.36 50.06 73.27 27.90 15.25 5.58 0.87 0.53 0.33 0.10 0.02 0.4	3 200.30
2001 212.00 16.03 14.65 9.47 4.89 2.92 1.51 0.16	- 261.63
2002 12.91 57.76 15.93 11.56 11.00 7.43 8.52 1.13 0.35 - 0.08	- 126.67
2003 77.90 16.39 72.19 6.87 5.87 5.15 3.32 2.20 0.46 - 0.03 0.4	6 190.44
2004 152.15 62.70 28.38 22.16 5.91 7.22 5.98 2.98 0.77 0.30 0.06 0.4	6 288.67
Па	
1995 82.16 14.80 5.16 9.15 12.25 4.04 1.02 0.41	- 128.99
1996 221.77 31.52 9.31 16.11 17.13 6.12 2.38 0.48 0.03 0.03 -	- 304.88
1997 102.53 40.65 19.03 4.13 4.48 5.46 2.56 0.56 0.41 0.09 0.12	- 180.02
1998 292.99 58.68 34.22 21.44 5.77 3.55 1.44 0.45 0.52 - 0.13	- 419.19
1999 7.43 3.93 1.44 8.37 6.36 1.40 0.17 0.33 0.17	- 29.60
2000 7.83 10.09 16.20 18.15 15.33 6.51 0.90 0.24 0.06 0.03 0.08 0.0	7 75.49
2001 31.23 5.55 8.31 11.78 8.87 2.99 1.42 0.12 0.08	- 70.35
2002 0.47 9.43 4.73 11.29 10.69 5.17 2.62 0.70 0.11 - - 0.	1 45.32
2003 8.94 2.39 13.47 7.66 8.81 7.14 2.92 1.41 0.66	- 53.40
2004 10.51 7.48 3.71 8.29 3.18 3.53 0.77 0.39 0.14 -	- 38.00
IIb	
1995 472.94 66.72 108.28 81.14 67.42 32.53 10.94 2.63 0.53 0.33 0.02 0.1	7 843.75
1996 547.82 191.34 58.43 37.20 34.21 31.18 17.32 2.27 0.38 0.09 0.15 0	2 920.59
1997 238.78 225.73 55.19 17.59 9.87 9.95 6.77 2.02 0.32 0.01 0.01 0.1	4 566.28
1998 190.41 238.16 173.49 64.05 17.64 8.48 5.83 2.79 0.53	- 701.38
1999 105.01 179.18 132.16 106.15 20.84 3.96 3.89 2.08 0.43 - - 0.999 0.01 0.0	1 553.71
2000 30.28 121.30 130.94 52.47 43.46 9.62 0.91 1.37 0.28 - - 0.91	4 390.67
2001 /5.80 20./3 39.59 28.38 15.35 18.25 3.80 0.55 0.12 - - 0.93 0.55 0.55 0.12 - - 0.93 0.55 0	3 202.60
2002 6.64 80.49 28.56 18.54 17.20 6.81 3.39 0.52 0.03 0.05 -	- 162.23
2003 45.45 12.27 63.54 25.22 24.62 31.22 10.40 4.32 1.14 0.05 -	- 218.23
$2004 \ 122.54 \ /1.81 \ 35.24 \ 82.5/ \ 15./3 \ 11.9/ \ 5.61 \ 0./6 \ 0.49 \ 0.05 \ - \ 0.75 \ - $	1 346.8/
IOTAI	6 1204.02
1995 /40.12 110.51 1/0.0/ 1/8.52 100.00 4/.58 18.0/ 5.78 0.95 0.50 0.10 0.4	0 1394.92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2098.08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1303.07 2 1727.46
1998 840.95 425.25 299.25 104.87 27.15 14.01 10.55 5.27 1.58 0.05 0.15 0.1	2 1/2/.40 1 962.07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 666 46
2000 04.47 181.43 220.41 98.52 74.04 21.71 2.08 2.14 0.07 0.15 0.10 0.	4 000.40 2 524.59
2001 517.05 42.51 02.55 47.05 27.11 24.10 0.75 0.07 0.20 0.00 0.10 0.10 0.10 0.020 0.020 0.00 0.0	5 554.58 1 224.00
2002 20.02 147.00 47.22 41.37 50.07 19.41 14.55 2.55 0.49 0.05 0.08 0.2003 132.20 31.05 140.20 30.75 30.30 42.51 16.64 7.02 2.26 0.05 0.02 0.12	1 334.22 6 462.07
2003 132.29 51.05 149.20 59.75 59.50 45.51 10.04 7.75 2.20 0.05 0.05 0.05 0.05 0.05 0.05 0.0	6 673 54

Table 3.2. Northeast Arctic cod. Abundance indices (million individuals) pr region and age group from Norwegian Bottom Trawl survey in the Svalbard area summer-autumn 1995-2004

Region						Ag	ge						
Year	1	2	3	4	5	6	7	8	9	10	11	12+	Total
					Ι (NEEZ	+ SVA)					
2004	23.92	35.99	12.84	3.65	3.38	3.79	0.22	0.36	-	-	-	-	84.15
						I (RE	EZ)						
2004	35.54	150.85	142.23	71.15	73.47	20.11	1.57	0.34	0.00	0.13	-	0.25	495.64
						IIa	a						
2004	70.99	73.76	10.33	4.61	3.39	4.98	0.30	0.80	-	-	-	0.04	169.20
						II	b						
2004	24.29	5.89	2.19	1.50	3.64	2.97	0.11	1.12	-	-	-	-	41.71
						Tot	al						
2004	154.74	266.49	167.59	80.91	83.88	31.85	2.20	2.62	0.00	0.13	0.00	0.29	790.70

Table 3.3. Northeast Arctic haddock. Bottom trawl indices (million individuals) pr region andage group during the ecosystem survey in autumn 2004

Region						Ag	e						Total
Year	1	2	3	4	5	6	7	8	9	10	11	12+	
						I							
1995	54.19	20.14	3.14	5.47	9.35	1.34	0.12	-	-	-	0.06	0.06	93.87
1996	5.82	12.27	3.90	1.24	1.61	1.09	0.27	-	-	-	-	-	26.20
1997	27.17	3.06	5.13	0.52	0.17	0.26	0.24	0.01	-	-	-	-	36.56
1998	20.66	12.48	0.42	0.95	0.09	-	0.21	0.10	0.14	-	-	-	35.05
1999	126.29	8.72	8.09	1.67	1.30	0.41	0.02	0.27	0.17	-	-	-	146.94
2000	297.75	58.36	4.20	4.00	1.15	0.70	0.20	0.20	0.18	0.13	-	0.02	366.89
2001	34.22	30.53	10.25	0.86	3.30	0.98	0.14	-	-	-	-	-	80.28
2002	36.82	16.05	5.83	1.05	0.41	0.72	0.15	0.05	-	-	-	-	61.08
2003	29.21	6.38	2.29	4.83	8.66	0.62	0.31	-	-	-	-	-	52.30
2004	22.96	31.81	11.77	3.09	3.02	2.66	0.09	0.25	-	-	-	-	75.65
						IIa	a						
1995	298.24	100.29	14.20	9.60	14.22	2.59	-	-	0.05	-	-	0.07	439.26
1996	26.36	46.64	15.83	4.18	4.63	3.73	0.96	0.11	0.19	-	0.05	-	102.68
1997	324.80	36.11	39.99	13.85	2.12	2.18	7.40	0.70	0.03	-	0.36	0.07	427.61
1998	254.89	133.38	9.83	5.75	0.85	0.19	0.54	0.78	0.21	-	0.04	-	406.46
1999	66.36	4.09	1.06	-	-	-	-	-	-	-	-	-	71.51
2000	398.25	100.20	4.81	6.77	1.00	1.15	0.31	0.04	0.28	0.23	0.21	0.09	513.34
2001	150.25	60.86	22.90	2.33	3.00	0.78	0.28	0.03	-	0.07	-	0.03	240.53
2002	156.86	33.68	13.20	2.90	1.61	2.29	-	0.09	-	0.06	0.15	-	210.84
2003	282.28	33.72	21.71	20.20	11.61	2.35	2.81	0.42	0.35	0.02	-	-	375.47
2004	94.98	94.98	16.55	6.22	4.59	6.07	0.61	1.25	-	-	-	0.06	225.31
						II	b						
1995	12.63	2.38	0.38	1.93	7.57	2.87	1.27	-	0.03	-	-	-	29.06
1996	3.04	1.95	0.47	0.37	1.11	1.12	0.07	0.05	-	-	0.01	-	8.19
1997	3.96	-	0.46	0.15	0.29	0.51	1.29	0.33	0.10	0.02	-	0.01	7.12
1998	6.28	1.79	0.12	0.15	0.10	-	0.19	0.24	0.04	-	-	-	8.91
1999	71.35	1.20	1.37	0.38	0.65	0.41	-	0.28	0.58	-	-	0.01	76.23
2000	73.51	12.16	0.59	3.96	1.11	1.02	0.28	0.55	0.21	0.16	0.07	0.02	93.64
2001	75.72	13.99	23.63	2.23	8.78	1.21	3.41	0.19	0.10	0.20	0.02	-	129.48
2002	52.43	21.60	1.39	2.14	0.47	1.71	-	-	0.02	-	-	-	79.76
2003	57.11	9.85	1.25	1.01	2.06	0.20	0.22	-	0.02	-	-	-	71.72
2004	24.71	8.93	2.14	1.25	2.95	2.51	0.09	0.90	-	-	-	-	43.48
100-	2	100.01	1	1 = 00		Tot			0.00		0.07	0.10	5 (0.10
1995	365.06	122.81	17.72	17.00	31.14	6.80	1.39	-	0.08	-	0.06	0.13	562.19
1996	35.22	60.86	20.20	5.79	7.35	5.94	1.30	0.16	0.19	-	0.06	-	137.07
1997	355.93	39.17	45.58	14.52	2.58	2.95	8.93	1.04	0.13	0.02	0.36	0.08	471.29
1998	281.83	14/.65	10.37	6.85	1.04	0.19	0.94	1.12	0.39	-	0.04	-	450.42
1999	264.00	14.01	10.52	2.05	1.95	0.82	0.02	0.55	0.75	-	-	0.01	294.68
2000	769.51	1/0./2	9.60	14.73	3.26	2.87	0.79	0.79	0.67	0.52	0.28	0.13	9/3.8/
2001	260.19	105.38	56.78	5.42	15.08	2.97	5.85	0.22	0.10	0.27	0.02	0.03	450.29
2002	246.11	/1.33	20.42	6.09	2.49	4.72	0.15	0.14	0.02	0.06	0.15	-	351.68
2003	368.60	49.95	25.25	26.04	22.33	5.17	5.54	0.42	0.37	0.02	0.00	-	499.49
2004	142.00	133/2	1U 40	חר עד	10.20	11/24	0/9	7.40	0.00	0.00	0.00	0.00	144 44

Table 3.4. Northeast Arctic haddock. Abundance indices (million individuals) pr region and age group from Norwegian Bottom trawl survey in the Svalbard area summer-autumn 1995-2004

Region						Ag	ge						Total
Year	1	2	3	4	5	6	7	8	9	10	11	12+	
					I (NEEZ	+ SVA)					
2004	2 912	8 501	11 392	2 165	1 344	765	1 490	-	262	24	20	56	28 931
						I (RE	EZ)						
2004	8 3 4 2	25 230	37 546	3 4 3 4	212	1 005	129	32	78	90	75	100	76 273
						II	a						
2004	-	-	-	120	278	451	1 661	589	373	57	182	153	3 864
						II	b						
2004	5 259	3 828	6 784	3 503	3 171	2 917	1 979	747	490	333	211	404	29 627
						Tot	al						
2004	16 513	37 559	55 722	9 221	5 005	5 1 3 8	5 2 5 9	1 368	1 203	505	488	714	138 695

Table 3.5. Greenland halibut. Bottom trawl indices (thousand individuals) pr region and agegroup during the ecosystem survey in autumn 2004.

Table 3.6. Greenland halibut. Bottom trawl indices (thousand individuals) by age group duringautumn in the period 1996-2004

			Age	e			Total
Year	1	2	3	4	5	6+	
1996*	15 655	14 510	10 025	3 487	1 593	3 349	48 619
1997*	3 415	15 271	14 140	2 803	403	434	36 466
1998	10 210	28 020	17 186	6 380	1 551	932	64 279
1999	7 514	16 159	8 045	3 067	2 401	954	38 140
2000	17 087	10 320	7 460	5 855	1 629	476	42 827
2001	24 603	19 302	5 444	3 497	1 440	786	55 072
2002	53 037	32 571	17 402	3 912	1 386	596	108 904
2003**	31 220	22 103	4 404	2 275	959	507	61 468
2004	17 146	40 770	59 578	11 223	3 207	1 239	133 165

Region					Le	ength gi	coup (cn	n)					
	5.0-	10.0-	15.0-	20.0-	25.0-	30.0-	35.0-	40.0-	45.0-	50.0-	55.0-		
Year	9.9	14.9	19.9	24.9	29.9	34.9	39.9	44.9	49.9	54.9	59.9	60.0 +	Total
					Ι	(NEEZ	+ SVA)					
2004	-	-	303	499	344	529	694	252	86	118	81	-	2 905
						I (RE	EEZ)						
2004	-	-	187	88	274	841	184	48	-	-	-	-	1 621
						II	a						
2004	-	102	228	324	573	790	806	1 1 3 2	682	110	-	264	5 010
						II	b						
2004	-	4	7	67	537	761	528	428	115	12	5	-	2 464
						To	tal						
2004	0	106	725	978	1 727	2 921	2 211	1 859	882	240	86	264	12 000

Table 3.7. Sebastes marinus. Bottom trawl indices (thousand individuals) pr region and lengthgroup during the ecosystem survey in autumn 2004

Table 3.8. Sebastes mentella. Bottom trawl indices (thousand individuals) pr region and lengthgroup during the ecosystem survey in autumn 2004

Region					L	ength gr	oup (cm)					
	5.0-	10.0-	15.0-	20.0-	25.0-	30.0-	35.0-	40.0-	45.0-	50.0-	55.0-		
Year	9.9	14.9	19.9	24.9	29.9	34.9	39.9	44.9	49.9	54.9	59.9	60.0 +	Total
					Ι	(NEEZ ·	+ SVA)						
2004	320	2 677	2 669	6 047	4 3 5 6	3 525	1 842	200					21 637
						I (RE	EZ)						
2004	99	6 843	2 933	89	60	0	68	57					10 148
						IIa							
2004	320	2 672	1 947	4 887	18 938	117 894	47 773	1 613					196 045
						IIb	1						
2004	1 707	7 024	8 2 5 6	3 468	7 809	32 137	27 168	1 329	18				88 915
						Tota	al						
2004	2 4 4 6	19 216	15 805	14 491	31 163	153 556	76 851	3 199	18	0	0	0	316 745

Region											Lengt	h group	o (cm)										
	10.0-	15.0-	20.0-	25.0-	30.0-	35.0-	40.0-	45.0-	50.0-	55.0-	60.0-	65.0-	70.0-	75.0-	80.0-	85.0-	90.0-	95.0-	100.0-	105.0-	110.0-	115.0-	
Year	14.9	19.9	24.9	29.9	34.9	39.9	44.9	49.9	54.9	59.9	64.9	69.9	74.9	79.9	84.9	89.9	94.9	99.9	104.9	109.9	114.9	119.9 120	+ Total
											I (NE	$\mathbf{EZ} + \mathbf{S}$	VA)										
2004			24					116	27				17		17	30	30	41					301
											Ι	(REEZ)										
2004							60		39	530	343	765	592	550	153	462	39		160	51			3 744
												IIa											
2004	958	350	124	243	247						101	101											2 124
												IIb											
2004	1 440	1 346	1 313	322	188	209	112	66	257	670	256	185				4							6 366
												Total											
2004	2 398	1 695	1 461	565	436	209	172	182	322	1 200	700	1 0 5 1	609	550	170	496	69	41	160	51			12 536

Table 3.9. Catfish. Bottom trawl indices (thousand individuals) pr region and length group during the ecosystem survey in autumn 2004

Table 3.10. Spotted catfish. Bottom trawl indices (thousand individuals) pr region and length group during the ecosystem survey in autumn 2004

Region										L	ength g	roup (cr	n)									
	10.0-	15.0-	20.0-	25.0-	30.0-	35.0-	40.0-	45.0-	50.0-	55.0-	60.0-	65.0-	70.0-	75.0-	80.0-	85.0-90.0-	95.0-	100.0-	105.0-	110.0-1	15.0-	
Year	14.9	19.9	24.9	29.9	34.9	39.9	44.9	49.9	54.9	59.9	64.9	69.9	74.9	79.9	84.9	89.9 94.9	99.9	104.9	109.9	114.9	119.9 120 +	Total
										Ι	(NEEZ	L + SVA	.)									
2004	902	81	223	303		240	370	303	594	220	403	323		127	190		41	170	17			4 507
											I (RI	EEZ)										
2004	35			44	287	153	241	483	436	582	644	267	51									3 223
											I	[a										
2004																			88			88
											I	b										
2004	699	746	958	358	263	346	150	57	632	614	22	494	261	39	7	72						5 718
											То	tal										
2004	1 635	828	1 181	705	551	739	761	843	1 663	1 416	1 068	1 084	311	167	197	72	41	170	105			13 535

	1																							
Region											Lengt	th grou	p (cm)											
	10.0-	15.0-	20.0-	25.0-	30.0-	35.0-	40.0-	45.0-	50.0-	55.0-	60.0-	65.0-	70.0-	75.0-	80.0-	85.0-	90.0-	95.0-	100.0-	105.0-	110.0-	115.0-		
Year	14.9	19.9	24.9	29.9	34.9	39.9	44.9	49.9	54.9	59.9	64.9	69.9	74.9	79.9	84.9	89.9	94.9	99.9	104.9	109.9	114.9	119.9 1	20 +	Total
											I (NE	EZ + S	SVA)											
2004											103			74	144		81	127			40			570
											Ι	(REEZ	Z)											
2004				48								7	48	42	223	133	151	217	186	6 41		48		1 144
												IIa												
2004														63										63
												IIb												
2004										11	24	149	68	83		46	54	271	40	86	5	288	18	1 1 3 6
												Total												
2004				48						11	127	156	116	262	367	180	286	615	226	5 128	3 40	335	18	2 913

Tab	ble 3.11. Jelly catfish. Bottom trawl indices (thousand individuals) pr region and length group during the ecosystem survey in autu	mn 2004

Region					Le	ength gr	oup (cn	n)					Total
	5.0-	10.0-	15.0-	20.0-	25.0-	30.0-	35.0-	40.0-	45.0-	50.0-	55.0-		
Year	9.9	14.9	19.9	24.9	29.9	34.9	39.9	44.9	49.9	54.9	59.9	60.0 +	
					Ι (NEEZ	+ SVA)					
2004	109.18	378.14	160.51	110.10	107.34	60.34	40.57	23.41	1.90				991.49
						I (RE	EZ)						
2004	64.06	277.57	396.11	306.93	182.10	86.03	61.81	30.64	4.57				1 409.81
						IIa	a						
2004	1.03	7.81	8.41	9.38	21.68	12.08	1.63	0.52					62.53
						III)						
2004	63.32	161.07	116.33	93.17	96.80	64.26	29.44	7.04	0.93				632.36
						Tot	al						
2004	237.59	824.57	681.37	519.58	407.92	222.71	133.46	61.61	7.40	0.00	0.00	0.00	3 096.20

Table 3.12. Long rough dab. Bottom trawl indices (million individuals) pr region and lengthgroup during the ecosystem survey in autumn 2004

4. Zooplankton investigations (joint materials)

Regular Russian investigations of plankton in the main feeding areas of capelin in the northern Barents Sea were carried out in summer/autumn 1982-1993. Institute of Marine Research started regular sampling of zooplankton in the Barents Sea in August-September 1986, but had already since 1979 conducted several cruises with plankton investigations at different times of the year. Since 2002 PINRO and IMR have had joint cruises for monitoring zooplankton in the Barents Sea in autumn. The Russian vessels covered mostly the eastern part whereas the Norwegian cruises were in the central and western parts of the Barents Sea. In addition, the standard sections Bjørnøya-Fugløya and Vardø-N (since 1991) are covered on average 6 and 4 times a year respectively. Besides, PINRO conducted regular plankton investigations in spring/summer 1952-1993 in the way of drift of the commercial fishes larvae in 7 sections of the Barents Sea.

Complete processing of the most materials (1982-1985, 1987, 1989, 1992, 2002-2003) was done: species composition, age structure, spatial and vertical distribution, as well as dependence of plankton distribution on oceanographic factors were discovered.

These investigations have provided information on zooplankton e.g. annual and regional variations in abundance, biomass and species composition to different research groups at IMR and PINRO. The results are presented in the annual report at IMR and also at ICES Northern Pelagic and Blue Whiting Fisheries and Arctic Fisheries Working Group meetings. One of main aims in future is to incorporate zooplankton information in the prognosis of capelin growth and other important fish species.

4.1. Materials and Methods (fig. 1.3)

Russian plankton sampling

The Russian research vessels "F. Nansen" and "Smolensk" sampled plankton during the survey in the southeast and northeast of the Barents Sea, as well as in some standard sections. On board the first vessel, plankton was sampled by a standard Juday net (the inlet aperture diameter was 0.1 m^2 and net mesh size – $180 \text{ }\mu\text{m}$) at depths intervals 50-0, 100-50

and bottom-100 m. A part of samples were collected by the WP-2 net (the inlet aperture diameter -0.25 m^2 and the insertion mesh size $-180 \mu\text{m}$) at the depth of 50-0 m. However, by technical reasons sampling on board the second vessel ("Smolensk") was done not at certain horizons, but in the water column (50-0, 100-0, 200-0 and 400-0). In total, more than 500 samples of zooplankton were collected. A scheme of sampling is shown in figure 1.3.

The primary processing of the major part of plankton materials differed from the standard method of PINRO. It was caused by the necessity of more rapid presentation of data for identification of plankton materials on the Barents Sea in the whole. Compared to the previous years, when weighing of samples was carried out as far as the samples were processed, in 2004 the weighing was done in a short time on the material fixed by the 10-% solution of formalin. Under such conditions, the problem of quick weighing is topical in spite of the fact that it seems to be simple.

Samples were identified for further analysis of plankton materials and comparison with the Norwegian data. For that purpose, the following work has been carried out.

Weighing of samples was done in laboratory to determine plankton biomass (wet weight mg/m³) both by some groups of organisms (*Copepoda, Hyperiidae, Euphausiidae, Chaetognatha* etc.) and in total. To compare the obtained biomasses with the Norwegian data, they were converted into dry weight and diminished five times in accordance to advice of Norwegian scientists (Skjoldal etc., 1987).

Biomass values were recalculated per 1 m² (g/m^2 of dry weight); the volume of the filtered water and interval of depths of fishing were taken into consideration.

Norwegian plankton sampling

Plankton samples are obtained by using WP2 and MOCNESS (Multiple Opening and Closing Net and Environmental Sensing System) plankton nets with 180 μ m mesh size. The sampling depths in the Barents Sea for the WP2 are from bottom to 0 m and 100 to 0m. At most stations the MOCNESS nets are towed in oblique hauls from 300-200, 200-150, 150-100, 100-50, 50-25, and 25-0 m. The number of nets varies from about 3 to 8 according to the bottom depth. The zooplankton samples are usually separated into two halves. One half preserved in 4% formaldehyde is used for species identification. The second half is size fractionated on 180 μ m, 1000 μ m and 2000 μ m sieves for dry weight measurements.

For each MOCNESS and WP2 profile, the biomass $(mg/m^3 \text{ and } g/m^2)$ and abundance of individuals $(nos.m^3, nos.m^2)$ is calculated by using the depth interval and the volume of water filtered.

4.2. Results (tables 4.1, 4.2 & figs.4.2.1-4.2.6)

Quantitative processing of plankton (density of concentrations, species and age composition with the account of vertical distribution during 24 hours) was carried out by materials of certain samples collected by Juday and WP-2 nets.

Maps of distribution of biomasses in the Russian sector of research were created by data of both R/V "F. Nansen" (collected by Juday net in horizons 50-0 and 100-50 m and by WP-2 net in the layer 50-0 m; 378 samples in total) and R/V "Smolensk" (collected by Juday net at the northern stations in water columns 50-0, 100-0, 200-0 and 400-0 m; 68 samples).

Biomass values obtained during the Russian investigations by Juday net (fig. 4.2.1) and WP-2 (fig. 4.2.2) were compared to those obtained during the Norwegian investigations by MOCNESS plankton sampler and WP-2 net together (fig. 4.2.6a).

As it is seen, biomass values differ by fishing gear and areas. By Russian data, the lowest values were obtained by WP-2 net in the 50-0 m layer (fig. 4.2.2). By catches taken by this net at stations more to the south (to 73°N), mean values of biomass in dry weight did not exceed 0.9-1.6 g/m² at fluctuations from 0.04 to 4.98. At station more to the north, mean biomasses increased gradually from 2.7 g/m² (74-75°N) to 5.4 g/m² (76-78°N).

Higher values are registered when using Juday net; in some cases they are close to data obtained in the Norwegian investigations by MOCNESS trawl and WP-2 net. By Norwegian data, biomasses of 6 g/m² and higher were found over vast areas north-west and north-east of Spitsbergen. By Russian data, biomasses 6 g m² and higher were also widely distributed, predominantly north of 78°N (figs. 4.2.3-4.2.5), and maximal biomasses (to 20- 34 g/m^2) were observed in the water column from the surface to the bottom (fig. 4.2.5). However, big fluctuations of biomasses at different horizons, especially in the layer 50-0 and 100-0 m (maximal values exceeded minimal 10-12 times), were registered that was probably connected with the vertical migrations of zooplankton. The least fluctuations of biomasses correspond to data obtained in the water column 0-bottom.

As a ratio between the main groups of zooplankton (% of weight) shows, biomass values in most cases were formed by Copepoda. However, the portion of this group was inconstant (table 4.1), the lowest values were observed at the southernmost stations (not more than 55 %). North of 77° N the portion of copepods sharply increased, but decreased at 79°N when the concentrations of the other numerous groups, the Arctic species of *Hyperiidae*, *Themisto libellula* and *Chaetognatha* increased. At the same time, it should be mentioned that the catchability of these large plankton organisms in Juday net is quite low, and their actual concentrations are higher. This is proved by unusually high density of euphausid concentrations at some northern stations (77-79° N), registered by bottom nets (2,200-6,800 ind./m³ in 2004, while only small numbers were found in catches by Juday net (table 4.1).

The problem of catchability of different fishing gear is an important topic. One of the possible reasons for the higher biomasses obtained in the Norwegian investigations is the use of the MOCNESS trawl, which has advantages over other plankton gear when fishing organisms of the largest size fraction, more than 2 000 μ m (Gjøsæter et al., 2000). According to these authors, WP-2 net is on the contrary better for catching of the smallest zooplankton organisms (180-1 000 μ m). Thus, an assessed number of organisms depend on the fishing gear used, and higher biomasses can result from fishing by the above mentioned trawl.

We also compared in detail some samples taken by Juday and WP-2 nets in 2003 and 2004 (table 4.2). Although the obtained data are not sufficient for final conclusions, they justify the evident tendency of predomination of young and especially older copepodites of the species *Calanus finmarchicus* in catches taken by Juday net (in the southern areas). These data reflect also daily dynamics of crustaceans distribution: by data of the first sample, taken during a day in the 100-0 m, concentrations were somewhat higher, and in the second sample (early in the morning in the bottom layers) they were minimal. And on the contrary, in the northern areas (higher than 78° N) in the upper layer on 18-19 September, young copepodites *C. finmarchicus* occurred in high quantity; especially high concentrations were registered at night time in catches by Juday net. In the northern areas, the Arctic species *Calanus glacialis*, stages from I to V, was also registered in high quantity, but the bulk consisted of young copepodites. Ratios between two common species, *C. finmarchicus* and *C. glacialis*, in the compared fishing gear varied with time. The first species was caught in the upper layer

approximately in equal numbers during day and night, whereas maximal quantity of the second one was taken at night.

Interpretation of the quantitative results of fishing for mass concentrations of small copepods (*Oithona similes, Pseudocalanus minutus*) were not so simple. However, the conclusion can be similar to that for young copepodites *C. glacialis*.

It should be mentioned that in most cases, when biomasses obtained by Juday net constituted in dry weight 10 g/m² and higher, their values in wet weight did not exceed 700-830 mg/m³, and rarely more than 1 000 mg/m³ in wet weight. Due to existing views (Bogorov, 1974; Degtyareva et al., 1990), such a level of biomasses for the Barents Sea is considered to be quite high. Even in the Far East seas (the Okhotsk Sea and Bering Sea) with higher bioproductivity, biomasses in summer do not exceed 1,400-1,800 mg/m³ (Volkov, 1996). Usually 8-10 species dominates in the biomass, of which euphausids and copepods take the first place in the Okhotsk Sea and *Chaetognatha* in the Bering Sea.

The discussed materials permit to conclude on the following. The preliminary results of the comparative analysis of zooplankton biomasses show different values for different fishing gear, justifies to conclude that they have different catchability, when fishing for various size groups of plankton. Considering results of the other researchers one can at the given stage only report about more or less successful catching of this or that size fraction by this or that fishing gear. Larger fraction (more than 2,000 µm) is better caught by the MOCNESS trawl, whereas the small one (180-1,000 μ m) – by WP-2 net (Gjøsæter et al., 2000). The middle fraction is better caught by Juday net compared to WP-2, and small fraction (180-1 000 µm) is well caught by both fishing gear (our data). Conclusions concerning the latter two cases for Juday net coincide with data of the other authors (Volkov et al., 1980; Vinogradov and Shushkina, 1987). They propose to introduce coefficients of catchability: 1.5 for small fraction and 2 - for middle one; and with the increase of plankton organisms the coefficients grow to 3-5. At the same time, A. F. Volkov (1996) argues that the determination of catchability as regards large movable plankton organisms (hyperiidae, euphausids, chaetognaths) is inevitably limited by the expert assessment. It is necessary also to take into account the period of the day, it especially concerns the large fraction and it's most numerous groups euphausids and copepods.

As it follows from the brief review, it is impossible to create a universal plankton sampling gear with absolute or adequate catchability for various species. It probably is necessary to carry out in the nearest future (2005) sampling of hydrobiological materials in the Barents and Norwegian Seas by the unified method (horizons and time of fishing, adequate weighing) with further complete processing of samples, results of which will permit to clear up mechanisms of formation of biomasses and food base of fishes.

The zooplankton biomass based on combined data from WP2 and MOCNESS gave an average dry weight of 7,8 g/m². Distribution of its densities is shown in figure 4.2.6a. Total distribution of zooplankton biomass collected by WP-2 presented in figure 4.2.6b for comparison. The biomass in 2004 was higher compared to 2001 (5,9 g/m²) and 2003 (6,5 g/m²). Possible reasons for large variations are the differences in advective transport, temperature conditions and predation pressure. 2004 was one of the warmest years recorded and with very high salinity values. The high temperatures may have lead to increasing growth rates of zooplankton. In addition, increased advection may also have lead to high zooplankton abundance in the Barents Sea. Another explanation for the high biomass observed in 2004 could be the low predation pressure from capelin. The capelin stock size has declined from about 3.5 million tonnes in 2001 to a very low level (ca 0.5 million tonnes) in 2004.

Based on the biomass information we have from 2004, the zooplankton production in 2005 is expected to be comparatively higher, providing good feeding conditions for capelin.

4.3. Zooplankton and capelin interactions (figs.4.2.7)

In the Barents Sea ecosystem, capelin plays a very important role, on one hand as a major predator and on the other hand as a major prey. Capelin is the main predator on zooplankton, feeding mainly on copepods, krill and amphipods. The investigations in the Barents Sea have demonstrated a several fold variation in zooplankton biomass among years in the period 1979-2004 (fig. 4.2.7). The observations of low zooplankton abundance when the capelin stock is large is not surprising as capelin is the most important predator on zooplankton in the Barents Sea ecosystem and probably exploits most of the secondary production, during its feeding season (fig. 4.2.7). During periods when the capelin stock was at very low levels, the predation pressure on zooplankton was at a minimum, thus causing an increase in the zooplankton biomass. These observations seem to indicate strong interactions between capelin and zooplankton in the Barents Sea.

The recent years materials prove a dense relationship between capelin distribution and food availability.

In warm years, the favourable conditions of large fish feeding are registered, when they reach the northern boundaries of the feeding area; capelin fatness can be 11-12 %.

The latter one is connected with the fact that capelin consume in addition to the Atlantic species *C. finmarchicus* the Arctic copepods and *C. glacialis*, in particular, which is characterized by the heightened content of lipids.

As it is shown (Table 4.2), the abundance of this species in high latitudes is quite large, they develop there even in September that supports high food potential of the northern areas.

	Pos	sition	Systematic group								
1	Lati	Longi	Cono	Chaoto	Uumo	Europau	Ctana	Ially	Pteropoda		
1	tude	tude	pods	gnatha	riids	sids	phora	fish	Clione limacina	Limacina helicina	Other
-	74°30- 75°53	29°10- 42°24	54.5	4.8	2.8	1.5	3.8	4.8	10.2	17.6	0.0
	77°00- 78°43	33°01- 41°44	84.9 4.7	4.7	2.0	0.6	2.5	2.4	0.9	2.0	0.0
	79°15- 79°44	28°00- 39°47	70.3	5.5	8.3	1.3	6.3	5.2	0.0	0.5	2.6
	80°00- 80°45	15°25- 17°15	86.5	10.0	0.2	0.0	2.3	1.0	0.0	0.0	0.0
	80°15- 80°44	39°43- 44°52	72.2	2 9.6	1.9	0.4	2.4	4.4	5.4	1.4	2.3
	81°14- 81°46	36°20- 42°40	78.2	8.6	2.5	0.6	1.2	2.9	1.6	4.5	0.0

Table 4.1	Ratio between	the main	systematic	groups of	plankton
	from vario	us areas c	of the Barent	ts Sea, %	by weight

Species	69°23′N, 34°32′E		72°15′N, 36°52′E		78°05′N, 48°00′E		78°30′N, 50°00′E		78°02′N, 50°58′E	
*	0-100 m		0-224 m		0-52 m		0-50 m		0-50 m	
26.08		$003 \ 13^{20}$	$10.09.2003 \ 05^{48}$		18.09.2004 01 ⁰⁵		19.09.2004 14 ⁴⁵		$18.09.2004 \ 10^{20}$	
	WP-2	Juday	WP-2	Juday	WP-2	Juday	WP-2	Juday	WP-2	Juday
Nauplii Calanus	24	4	3	24	0	717	1105	1233	211	596
Calanus finmarchicus										
Ι	39	5	3	25	250	1248	252	233	138	251
II	14	60	8	27	383	1173	350	204	57	158
III	6	14	3	27	125	438	3	58	49	37
IV	22	112	3	14	39	93	0.2	1.2	2	2
V	61	126	3	3	0	9	0	0	0.2	0.2
VI♀	0	1	0.1	1	0	0	0	0	0	0
Calanus glacialis										
Ι	0	0	0	0	512	1713	569	893	244	456
II	0	0	0	0	738	3073	1545	981	439	754
III	0	0	0	0	43	671	146	68	33	112
IV	0	0	0	0	0	0	0	0	0	0
V	0	0	0.5	1	6	1.5	0	0	0	0.6
VI♀	0	0	0	0	0.2	0	0	0	0.2	0.4
Calanus hyperboreus										
IV	0	0	0.1	1	0.2	0.4	0	0	0	0.4
V	0	0	0.2	0.1	0	0	0	0	0	0
P	0	0	0.02	0	0	0	0	0	0	0
Pseudocalanus elongatus										
I-III	6	9	13	129	469	1862	813	126	33	223
IV-V	43	1	45	33	781	3724	236	835	8	56
P	0	0	0.01	0.1	1	19	0	0	0	0
Temora longicornis										
I-V	18	28	0	0	0	0	0	0	0	0
Acartia longiremis										
I-V	106	56	0	0	0	0	0	0	0	0

Table 4.2 Composition of mass species of zooplankton in various fishing gear (Juday and WP-2 nets)in August/September 2003 and 2004, individuals per m³

33

Report from joint Ecosystem survey 2004 vol. 1

							-			
Species	69°23′N, 34°32′E		72°15′N, 36°52′E		78°05′N, 48°00′E		78°30′N, 50°00′E		78°02′N, 50°58′E	
	0-100 m		0-224 m		0-52 m		0-50 m		0-50 m	
	26.08.2003 13 ²⁰		$10.09.2003 \ 05^{48}$		$18.09.2004 \ 01^{05}$		19.09.2004 14 ⁴⁵		$18.09.2004 \ 10^{20}$	
	WP-2	Juday	WP-2	Juday	WP-2	Juday	WP-2	Juday	WP-2	Juday
 	14	33	0	0	0	0	0	0	0	0
Oithona similis										
I-V	751	512	345	436	0	0		0	0	0
P	386	186	145	170	0	0	610*	485	0	0
ð	20	46	18	20	0	0		97	0	0
Metridia Nauplii	0		0	0	109	37	89	359	89	74
Î-II	0	0	11	62	0	0	0	0	0	0
III-IV	0	0	5	25	125	242	0	0	0	0
V-VI	0	0	0	0	23	411	0	0	0	0
Limacina helicina	0	28	292	415	766	4022	235	359	122	326

*for all Stages.
4.4. Focus on future zooplankton investigations

Main aim in future is to incorporate zooplankton information in the prognosis of capelin growth and other important fish species. In order to achieve this, it is need to include the following tasks:

Coordination of Norwegian and Russian plankton investigations and exchange of data (common gear, sampling and a data base).

Analyze plankton samples from the Bjørnøya-Fugløya transect to species level. Starting up with 2004, but also historical samples should be worked up. Note that only very few samples are worked up at species levels in the Barents Sea except for krill and amphipods.

Consider possibilities of taking samples at other time of the year than autumn.

Use of other types of gear (e.g. krill trawl) for sampling of larger organisms as e.g larger krill, amphipods, shrimps) in addition to WP2 and MOCNESS.

The nearest tasks of joint research of PINRO and IMR are as follows:

- Continuation of works on unification of the used fishing gear. It is expedient for scientific groups of PINRO and IMR to use Juday and WP-2 nets, as well as their calibration, assessment of catchability relating to organisms of different size groups; weighing of plankton material with the use of more operative way of drying.

Collection of materials on capelin feeding within the boundaries of survey zones of the Norwegian and Russian vessels with the subsequent processing of stomachs in PINRO by the agreed method.

5. Sea mammals observations (joint and aircraft materials)

During summer/autumn 2004 the vessels' observations were carried out of sea mammals and birds on board of R/V "F. Nansen" (PINRO) and Norwegian R/V "J. Hjort" and of some Russian fishing vessels leased for expeditions. Parallel with vessels investigations, the complex aircraft study (transect airborne survey) of distribution of sea mammals and birds in the Barents Sea was performed onboard of the aircraft-laboratory AN-26 "Arktika". The aim of investigations was to study the distribution pattern of main studied species of sea mammals and birds over the Barents Sea in the investigated period, to determine a mechanism and reasons of distribution, and, if possible, to give qualitative assessment of sea mammals and birds number in the studied areas of the Barents Sea.

Total volume of performed airborne investigations is presented in table 5.1.

Barents Sea

Total

The Barents and White Seas

Flight periods	Flight areas	Transects	Accounted	Total surveyed
		length, km ²	area	area, km ²
22.08-03.09.04	Central and southern part of the	7440	2980	416 500
	Barents Sea and White Sea			
17 09-30 09 04	North and northeast of the	4900	1950	239 000

Table 5.1. Total volume of works performed by PINRO during airborne surveysof sea mammals and birds in summer and autumn 2004

12 340

4930

Complex fisheries/oceanographic airborne investigations in the central, southern and eastern parts of the Barents Sea carried out within the framework of the annual Russian-Norwegian vessels ecosystem survey of pelagic fish of the Barents Sea were performed in the period from 22.08.2004 to 03.09.2004. Total duration of research and applied air works constituted about 56 hours, during which the count and studying of distribution of sea mammals and birds were performed.

Similar investigations were continued in the period 17.09.2004-30.09.2004, and they covered northern and western areas of the Barents Sea, including the area adjacent to Spitsbergen archipelago and ice-edge zone. Total duration of airborne works constituted 26 hours.

Total area surveyed onboard of the aircraft in 2004 turned out to be somewhat less than the area surveyed during the similar works in 2003.

5.1. Methods of investigations

All the discussed airborne surveys were carried out by the basic transects oriented mostly in the latitude direction with not more than 30 nautical miles. Airborne investigations were being carried out at the altitude from 100 to 500 m in dependence on the lower border of nebulosity, presence and intensity of precipitations, as well as regime of the air sounding etc.

Visual survey was carried out by not less than two experienced, specially trained observers from starboard and port side through the convex blisters permitted to observe a wide vision range. Observers registered sea mammals and birds in the visual range of their boards, data were transmitted by means of the internal communication to the computer operator (of the board automated system), who registered them in the flight report with the note of time, flight altitude and position of each point of observation.

Observers of research vessels participating in the survey collected materials on distribution of sea mammals and birds parallel with airborne investigations. Vessels observations of sea mammals and birds were performed by the standard method. Only processed materials are briefly presented in the given chapter.

To get more qualitative and representative materials on distribution of sea mammals, data obtained during airborne works were combined with results of vessels observations carried out at the same time. Materials were also used, which were obtained during expeditions. Besides, the dependence between distribution of sea mammals and localization of food objects was being revealed on the basis of analysis of 0-fish survey in 2004 reflected in the report of R/V "Smolensk" on the cruise No. 54 from 06 August to 02 October.

5.2. Sea mammals observation results (table 5.2 & figs.5.2.1-5.2.2)

During the ecosystem survey, the species composition of sea mammals of the Barents Sea was determined concerning those species, which observers succeeded to identify quite certainly, by data of the vessel and aircraft and additional coastal observations (table 5.2).

Order of cetaceans Cetacea					
Fin Whale	Balaenoptera physalus				
Sei Whale	Balaenoptera borealis				
Minke Whale	Balaenoptera acutorostrata				
HumpbackWhale	Megaptera novaeangliae				
Sperm Whale	Physeter macrocephalus				
Killer Whale	Orcinus orca				
Bottle-Nose Dolphin*	Tursiops truncatus				
White-Beaked Dolphin	Lagenorhynchus albirostris				
Common Dolphin	Delphinus delphis				
Harbour Porpoise	Phocona phocoena				
Pilot Whale	Globicephala melaena				
White Whale	Delphinapterus leucas				
Order Pir	nipedia**				
Harp Seal	Phoca groenlandica				
Ringed Seal	Phoca hispida				
Bearded Seal	Erignatus barbatus				
Grey Seal	Halichoerus grypus				
Walrus	Odobenus rosmarus				
Order carnive	pres Carnivora				
Polar Bear	Ursus maritimus				

Table 5.2 Species composition of sea mammals of the Barents Sea in summer/autumn 2004,by data of the ecosystem survey

* Registered only once during shore observations off the East Murman coast.

** Common seal Phoca vitulina, dwelling off the shore, was not revealed by the observers.

Minke whale is the most frequent species of the large cetaceans; it is easily identified and, as a rule, the most frequent species in the Barents Sea. As for the frequency of occurrence, humpback whale is comparable with minke whale at present.

White-beaked dolphin is the most frequently occurred in the Barents Sea species among small cetaceans. White-beaked dolphins became the usual and, sometimes, mass species in the Barents Sea.

In August 2004, the dispersed concentrations of harp seal, and not so often more concentrated groups, were observed in the surveyed area of the Barents Sea. Seals were distributed mainly sporadically, as single individuals or small groups (2-4, sometime to 10 individuals). Big numbers of harp seal occurred in the area from 34°E to 46°E (the area of the Central Trench), where their presence in the zone 36°-41°E and 44°-46°E coincided partly with the food concentrations of dolphins. Animals in that area, under later obtained information, fed presumably on polar cod. Besides, two quite dense concentrations of harp seal were registered in the area of the West Trench (73°-74°N and 75°-76°N)(fig. 5.2.1).

In August, two dense concentrations of dolphins were observed in the Barents Sea: one of them was registered in the eastern part of the Central Trench and northern part of the Novaya Zemlya Shoal and the second one located in the Kopytov and Nordkyn Banks. Three more relatively dense concentrations of dolphins were in the area of the Central Bank, northwestern part of the Eastern Basin and more to the south, coinciding with similar groups of whales (fig. 5.2.1). The species composition of the registered concentrations consisted of white-beaked and common dolphins and harbor porpoises. It should be mentioned that whitebeaked dolphin occurred over the entire surveyed area, whereas common dolphin was predominantly registered in the western part. Both species were registered as small groups, 3-10 animals mainly, sometimes up to 35 animals.

Several average groups of harbor porpoises were observed. Based on trawl-acoustic data once can assume that in the eastern part of the Barents Sea the registered dolphins were apparently feeding on polar cod, and in the western part – on herring.

Two quite dense concentrations of large cetaceans (minke whale and humpback whale, predominantly) were revealed in August: one was distributed on the Southern Slope of the Bear Bank (on capelin and herring), the second one in the area of the Kopytov and Nordkyn Banks (on herring). Minke whale species was presented by single individuals, and humpback whale – by single individuals or groups of to 10 animals. In the given period the presence of fin whales (2 records) and sperm whale (1 record) was registered in the surveyed area of the Barents Sea.

In September 2004 (period 17-30.09), a wide area of the northwestern Barents Sea (to 50° E) with spacious areas of ice with different density was surveyed from aboard the aircraft. Flight carried out in September over the northern and northwestern areas of the Barents Sea, as well as results of vessels' observations in the same period permitted to reveal the main concentrations of various species of sea mammals (fig. 5.2.2).

In the surveyed area, two large concentrations of dolphins (white-beaked dolphin, sometimes – common dolphin) were observed: one of them located in the area of the Franz Josef Land, the second one – on the Great Perseus Bank and Western Slope of the Bear Bank. One could say that white-beaked dolphin is at present the frequently occurred species in the Barents Sea.

Both concentrations of dolphins were probably connected with polar cod schools as showed information, which were got from vessels later. The schools consisted mainly of groups of to 10 animals. However, larger aggregations of dolphins (to 40-60 and even 200 animals) were registered as well (79.10° N 37.30° E). Besides, single individuals of white-beaked dolphins or small groups to 10 animals occurred over the entire area of the northern and northwestern areas of the Barents Sea.

Large concentrations of white whale of about 2 thousand individuals were registered in the northern part of the Great Perseus Bank. Large schools of white whales followed polar cod. In the Franz Josef Land area white whales were mainly occurring as single individuals or in groups from 2 to 5 animals.

In the northern part of the Barents Sea, in the area of ice edge, groups of migrating harp seals were registered. The main concentrations were observed in the area of the Great Perseus Bank and Franz Josef Land on the edge of drifting ice with groups from 2-5 to 40-90 animals. Single individuals and groups to 10-20 animals were revealed in the area of the Cape Zhelaniya and the Admiralty Peninsula (the Novaya Zemlya archipelago). Together with harp seal in the area of the Cape Zhelaniya, bearded seal was observed. Along with seals in the area of the ice edge two polar bears were registered.

According to observations, cetaceans and pinnipeds were widely distributed in the current year over the entire surveyed area. Concentrating of sea mammals (humpback whales and dolphins) at sites of food objects aggregation was more dense and prolonged than in 2003. Against the background of low capelin abundance and absence of their dense schools, large groups of sea mammals concentrated mainly at schools of polar cod and herring. Some rare species for this area (pilot whale, sei whale, fin whale, sperm whale and bottle-nose dolphin), were registered more frequently than before.

An increase in the number of registered minke whales was found. The most interesting feature is the availability of large summer concentrations of minke whale in the coastal zone of the Murman coast and a rare fact of minke whales entering into the White Sea (the Kandalaksha Bay). Humpback whales are being observed for a series of years approximately in the same areas of the Barents Sea (in the area of the Cape Zhelaniya and on the Great Perseus Bank). There are reasons to suppose that this species number will increase.

Some attempts to quantify the number of sea mammals based on the observations must be considered preliminary. The reason is both imperfect mathematical methods and insufficient density of transects of fulfilled aircraft surveys.

A character of the revealed distribution of sea mammals in summer/autumn in the Barents Sea is probably a consequence of the influence of both warming (earlier spring migration) and decrease of food base (capelin). It should be mentioned that in 2004, there was the first time recording of early-spring (April) grouping of white-beaked dolphins (total number is 4-5 individuals) in the central part of the Barents Sea above the areas of wintering concentrations of capelin. Migrations of cetaceans in the Barents Sea became more prolonged both in time of presence in the sea and distance.

6. Sea birds investigations

Main species in the studies of distribution and abundance of sea birds undertaken from research aircraft An-26 "Arktika" were the two most numerous and widely spread – black-legged kittiwake (*Rissa tridactyla*) and northern fulmar (*Fulmarus glacialis*). A large number of these birds in the area and a rather small percent of underestimated by the aerial survey allow to derive relatively accurate estimates of abundance of these species. Nearly permanent occurrence of these birds along transects during aerial surveys makes it possible to build their distribution fields suitable for deriving averaged estimates of their abundance.

6.1. Methodology for estimating the abundance of birds on the basis of data from aerial surveys (fig. 6.1.1)

In surveys of marine mammals and sea birds flights are performed along pre-agreed parallel tracks with the spacing of 15 to 30 miles between them. In this connection the question arises of how the survey data can be converted to be suitable for estimating the abundance in a given area. This is achieved by averaging the counts from both aircrafts. To this end a special processing module was developed on the basis of GIS ArcView 3.1. The intention with this module was to derive density estimates for some sea bird species most plentiful in a given area. The following factors were taken into consideration in estimating the density:

- 1. flight altitude, which, in the first place, influences the width of a visual strip and hence coverage at a given point;
- 2. distance between consecutive counts, which depends on the speed of an aircraft and also impacts on the coverage in an aerial survey;
- 3. observing aircraft, it is either a concrete observation aircraft, which is selected (in case when there are no data available from another aircraft or they are for some reasons unrepresentative), or both observation aircrafts;

- 4. area of data averaging $(1 \text{ km}^2 \text{ or } 10 \text{ km}^2)$;
- 5. surveyed species (most plentiful species of sea birds).

Figure 6.1.1 presents an outline of primary data collection in an aerial survey, summing up and averaging the data by area based on the conditions specified above.

Then, estimates of the density distribution of sea birds can be derived in the following way:

$$S_i = D_i \times L_i$$
 - a single area surveyed; (25)

if we introduce N_i to denote the number of sea birds observed per time unit in area S_i , the distribution density per unit area or area of averaging for estimating the density (1 km² or 10 km²) can be expressed as follows:

$$S_{P_i} = \sum_{i=1}^{P} S_i ; (26)$$

Then after averaging by area S_{Pi} the distribution density of the surveyed species, e.g. density of sea birds in the averaging area less than established (1 km² or 10 km²) is:

$$V_{P_{i}} = \sum_{i=1}^{P} S_{i} \times N_{i} ; \qquad (27)$$

To estimate densities along survey transects, corresponding to the averaging interval, N_{Pi} should be multiplied by J_k :

$$I_k = \frac{S_{P_i}}{S_B},\tag{28}$$

where: S_B – the area of data averaging;

$N_k = N_{Pi} x J_k$ – distribution density of a concrete species of sea birds in the area of averaging.

In preliminary tests of this method assessment of sea bird abundance, results of calculations for different averaging areas, 1 km² or 10 km², were tested. The results have shown that averaging by 1 km² provides abundance estimates of poorer quality as the distribution of density points along flight transects is less even because of a rather large distance between survey tacks. Therefore we decided to use the area of 10 km² for averaging the data from aerial surveys. When doing this way data from aerial survey are found at regular grid points owing to a constant distance between tacks and averaging of data along the flight transects, which is required for interpolation of data by computer methods. Distribution density data for a concrete species from all flights performed within a limited time interval in a given area are interpolated into GIS by IWD (Inversely Weighted Distances) method using an additional in-built module Spatial Analyst. In doing this, the area is delineated so that interpolation is applicable only to the inside of its limits.

Further, to build a field of distribution density of a species the area of each stratum is estimated and total abundance within each stratum is calculated as follows:

$$N_{Ri} = S_{Ri} \, x \, N_{kj} \,, \tag{29}$$

where: N_{Ri} – abundance of the species in stratum, and S_{Ri} – stratum area.

It should be noted that in interpolating the density data and estimating the stratum area it should be remembered that the initial map projection should be chosen.

Grand total abundance of a sea bird species is derived by summing up abundance estimates for all strata:

$$N = \sum_{j=1}^{G} N_{Rj} \tag{30}$$

After computations by this method data on the abundance of sea birds, two most plentiful species in the Barents Sea - black-legged kittiwake and northern fulmar, were summarized in the tables given in the results of this report.

6.2. Results of sea birds observation (tables 6.1-6.8 & figs. 6.2.1-6.2.9)

Based on aerial surveys of black-legged kittiwake and northern fulmar densitiy distribution maps of these species in surveyed areas were drawn. The abundance of birds was estimated by direct extrapolation method using average density of birds in each density gradation from the map, which provided rather accurate estimates comparable with those for 2003. For comparison of abundance estimates we have also undertaken calculations to use data from aerial surveys of sea birds in a similar period of 2003. Not included in these calculations were followers from bird groups that follow fishing vessels.

Aerial survey of black-legged kittiwake in the southern part of the Barents Sea conducted in August-September 2004 provided an average estimate of density at 46.18 birds per 100 km², which was somewhat less than in the same period of 2003 - 76.67 birds per 100 km² (table 6.1, 6.2; fig. 6.2.1, 6.2.2). A comparison of average densities for the northern part of the Barents Sea (table 6.3, 6.4; fig. 6.2.3, 6.2.4) has shown a larger reduction in average density in 2004 - 121.13 birds per 100 km² compared to 2003 - 979.22 birds per 100 km². A lower abundance estimate for black-legged kittiwake as shown by calculations could be a result of differing aerial survey areas, however, a general conclusion could be made of a slightly decreased abundance of black-legged kittiwake population in the Barents Sea. The reason for this could be both a changed distribution pattern of birds in the area due to changed availability of food, and poorer production for the same reason.

To establish a general trend in the variation of abundance of mass bird species in the Barents Sea similar calculations were undertaken for another species, northern fulmar. The average density of birds in the area surveyed in 2003, primarily in the southern part of the Barents Sea (table 6.5, fig. 6.2.5), was 1265.36 birds per 100 km², compared to 995.59 birds per 100 km² in 2004 (table 6.6, fig. 6.2.6). The largest reduction of abundance was noted for the northern part of the Barents Sea (table 6.7, 6.8; fig. 6.2.7, 6.2.8): 2536.22 birds per 100 km² in 2003 compared to 98.12 birds per 100 km² in 2004.

Despite derived estimates being relative it can be concluded that the abundance of two mass species of sea birds, black-legged kittiwake and northern fulmar, in the Barents Sea declined in 2004. We are not presently able to precisely identify the reasons behind this phenomenon. Unfortunately, data available for other bird species are insufficient for undertaking similar assessment.

Species: black-legged kittiwake		Year (survey dates): 20 August till 05 September 2003			
Gradation of density birds/10 km ²	S km² extrapol.	Average density in gradation for extrapolation, birds/10 km ²	Number in gradation	Min. number in gradation	Max. number in gradation
0-1	332812.81	0.5	16 641	0	33 281
1-5	110141.64	3	33 042	11 014	55 071
5-10	11544.46	7.5	8 658	5 772	11 544
10-50	9740.84	30	29 223	9 741	48 704
50-500	9056.12	275	249 043	45 281	452 806
50-723	434.61	611.5	26 577	21 731	31 422
Total:	473730.49		363 184	93 538	632 829

Table 6.1 Abundance of black-legged kittiwake in the Barents Sea (southern part) in the periodfrom 20 August till 5 September 2003

Table 6.2 Abundance of black-legged kittiwake in the Barents Sea (southern part) in the periodfrom 22 August till 3 September 2004

Species: black-legged kittiwake		Year (survey dates): 22 August till 03 September 2004				
Gradation of density birds/10 km ²	S km² extrapol.	Average density in gradation for extrapolation, birds/10 km ²	Number in gradation	Min. number in gradation	Max. number in gradation	
0-1	303336.29	0.5	15 167	0	30 334	
1-5	92772.57	3	27 832	9 277	46 386	
5-10	10269.90	7.5	7 702	5 135	10 270	
10-50	21198.69	30	63 596	21 199	105 993	
50-208	5566.14	154	85 719	27 831	115 776	
Total:	433143.60		200 016		308 759	

Table 6.3 Abundance of black-legged kittiwake in the Barents Sea (northern part) in the period from 16 September till 1 October 2003

Species: black-legged kittiwake		Year (survey dates): 16 September till 1 October 2003				
Gradation of density birds/10 km ²	S km ² extrapol.	Average density in gradation for extrapolation, birds/10 km ²	Number in gradation	Min. number in gradation	Max. number in gradation	
0-1	113680.88	0.5	5 684	0	11 368	
1-5	64759.45	3	19 428	6 476	32 380	
5-10	48024.39	7.5	36 018	24 012	48 024	
10-50	48734.74	30	146 204	48 735	243 674	
50-500	36419.42	275	1 001 534	182 097	1 820 971	
500-4964	6995.08	2732	1 911 055	349 754	3 472 356	
Total:	318613.97	3 119 924 611 074		5 628 773		

Species: bl	lack-legged	Year (survey dates): 17 till 30 September 2004			
Gradation of density birds/10	S km ² extrapol.	Average density in gradation for extrapolation,	Number in gradation	Min. number in gradation	Max. number in gradation	
km ²	*	birds/10 km ²	0	C	C	
0-1	99534.78	0.5	4 977	0	9 953	
1-5	80672.77	3	24 202	8 067	40 336	
5-10	52309.35	7.5	39 232	26 155	52 309	
10-50	3701.29	30	11 104	3 701	18 506	
50-359	10739.50	204.5	219 623	53 698	385 548	
Total:	246957.69		299 137	91 621	506 654	

Table 6.4 Abundance of black-legged kittiwake in the Barents Sea (northern part) in the period from 17 till 30 September 2004

Table 6.5 Abundance of northern fulmar in the Barents Sea(southern part predominantly) in the period from 20 August till 5 September 2003

Species: northern fulmar		Year (survey dates): 20 August till 5 September 2003				
Gradation		Average density in				
of density	S km ²	gradation for	Number in	Min. number	Max. number	
birds/10	extrapol.	extrapolation,	gradation	in gradation	in gradation	
km ²		birds/10 km ²				
0-1	35016.65	0.5	1 751	0	3 502	
1-5	60396.27	3	18 119	6 040	30 198	
5-10	52264.04	7.5	39 198	26 132	52 264	
10-50	195322.72	30	585 968	195 323	976 614	
50-500	113605.58	275	3 124 153	568 028	5 680 279	
500-2097	17138.16	1298.5	2 225 390	856 908	3 593 872	
Total:	473743.41		5 994 579	1 652 430	10 336 728	

Table 6.6 Abundance of northern fulmar in the Barents Sea(southern part predominantly) in the period from 22 August till 3 September 2004

Species: northern fulmar		Year (survey dates): 22 August till 3 September 2004			
Gradation of density birds/10 km ²	S km ² extrapol.	Average density in gradation for extrapolation, birds/10 km ²	Number in gradation	Min. number in gradation	Max. number in gradation
0-1	76668.47	0.5	3 833	0	7 667
1-5	84416.73	3	25 325	8 442	42 208
5-10	78439.48	7.5	58 830	39 220	78 439
10-50	113626.74	30	340 880	113 627	568 134
50-871	79987.82	485.5	3 883 408	399 939	6 966 939
Total:	433139.23		4 312 277	561 227	7 663 387

Species: northern fulmar		Year (survey dates): 16 September till 1 October 2003				
Gradation of density birds/10 km ²	S km ² extrapol.	Average density in gradation for extrapolation, birds/10 km ²	ge density in lation for Number in apolation, gradation ls/10 km ²		Max. number in gradation	
0-1	82594.99	0.5	20 649	0	41 297	
1-5	69341.45	3	104 012	6 934	173 354	
5-10	75068.17	7.5	281 506	37 534	375 341	
10-50	57730.72	57730.72 30		57 731	1 443 268	
50-500	29096.60	275	4 000 782	145 483	7 274 149	
500-1871	4734.95	1185.5	2 806 644	236 748	4 429 549	
Total:	318566.88		8 079 553	484 430	13 736 958	

Table 6.7 Abundance of northern fulmar in the Barents Sea (northern part) in the period from 16 September till 1 October 2003

Table 6.8 Abundance of northern fulmar in the Barents Sea (northern part) in the period from 17 till 30 September 2004

Species: northern fulmar		Year (survey dates): 17 till 30 September 2004				
Gradation of density birds/10 km ²	S km² extrapol.	Average density in gradation for extrapolation, birds/10 km ²	Number in gradation	Min. number in gradation	Max. number in gradation	
0-1	45247.20	0.5	2 262	0	4 525	
1-5	103044.73	3	30 913	10 304	51 522	
5-10	43630.56	7.5	32 723	21 815	43 631	
10-50	52467.12	30	157 401	52 467	262 336	
50-85.8	2838.23	67.9	19 275	14 191	24 359	
Total:	247227.82		242 575	98 778	386 373	

7. Benthos observations (fig.1.4)

PINRO has over many years sampled the benthic fauna in the Barents Sea, but this has not been done on previous Norwegian cruises. Given the increased focus on the health of the whole ecosystem, and the ecosystem aspect of the survey, a pilot scheme for sampling benthic macro-fauna from bottom-trawl catches was carried out on the RV "Johan Hjort" from 20. August to 10. September. This was in addition to the regular sampling of benthos carried out by the RV "F.Nansen" using grab and Sigsby trawl (20.08.04 - 19.09.04), and by RV "Smolensk" using bottom trawl and grab, from 5 to 20 August. Total benthos sampling stations are shown in fig.1.4.

7.1. Method of benthos observations on Russian vessels

Study of benthic communities' state is an integral part of research in a marine ecosystem. Due to data on bottom biocenosis, food supply of such important commercial benthophagous fish species as haddock, halibut and american plaice can be estimated.

The main purpose of benthic studies during survey on the Russian vessels was sampling of bottom invertebrates in the Eastern Barents Sea. These works have been started by PINRO scientists since 2003 and are continuation of investigations into the current state of the Barents Sea bottom biocenosis under the influence of climatic, biotic and anthropogenic factors. For that purpose, the following tasks have been carried out:

- quantitative zoobenthos sampling;
- qualitative zoobenthos sampling;
- zoobenthos bycatch analysis of ichthyological bottom trawlings;
- photographing of alive bottom invertebrates.

Quantitative collecting of macro-zoobenthos was carried out by a 0.1 m^2 Van Veen grab with five replicate samples at each station. The work with the grab was conducted by a cargo winch with the rope diameter of 9 mm.

Filling rate of the grab and type of bottom sediments of every sampling were examined visually and registered in an observation log. The taken sampling was washed in flowing seawater by a wash sieve with the mesh size of 0.75 mm. Washed bottom organisms with remains of ground were fixed in 4% neutralized solution of formaldehyde in hermetically covered plastic reservoirs. Tetraborate natrium was used as a buffer. During the washing and fixing the main occurring species and forms of macro-zoobenthos were examined visually and registered in the observation log.

Qualitative sampling of zoobenthos was carried out by a moderate Sigsby trawl with the frame of $1 \ge 0.35$ m and with a 10 mm mesh size of inner cover in the bag. The codend part of the inner cover was sewed by a 5 mm mesh size knitting knotless netting.

The work with the Sigsby trawl was done using standard trawl winches. Trawlings with duration of 5-10 min were made at the vessel speed of 1-2 knots. Washing of trawl catches was done on the washing table using 2 washing sieves with the mesh size of 10 and 3 mm. As a rule, marine animals were taken from the upper sieve on the deck. Sampling of animals from the lower sieve and sorting of catch into taxonomic groups were done in the vessel laboratory. When processing the trawl catch, abundant bottom species of invertebrates were counted and measured. Organisms required further taxonomic processing were fixed in 75% ethyl alcohol and 4% formalin.

Bycatch analysis of bottom invertebrates in catches made with the bottom ichthyological trawl of Campelen system was carried out selectively when some rare species of bottom fauna occurred or in the cases of especially large benthos bycatch. To determine taxonomic composition of bycatch a certain part or the whole bycatch was divided into species and taxonomic groups. Sorted organisms were weighted on electronic scales to within 0.1 g. for total biomass and part of group determination in bycatch.

Photographing of bottom invertebrates was carried out by 2 digital cameras: Minolta Dimage A1 and Canon G5 with 5.2 megapixel resolution of ultrasensitive matrix. For further processing digital photos were saved in TIF and JPG formats in a computer. Photographing was made with the use of state camera and lighting of 2 incondescent lamps of 60W. Exposure and aperture values were set both automatically and manually. To render natural

color of photographed organisms, gamma correction of white color was done before session. To photograph small objects a special macro photographing mode was used.

7.2. Results on materials of Russian vessels (figs. 7.2.1.-7.2.5)

Altogether by Russian vessels 98 benthos stations were made (fig.7.2.1), 465 qualitative and 85 quantitative macrobenthos samplings were taken during the research expedition. Bycatches of 35 bottom ichthyological trawls were analysed.

During the benthos works invertebrates of 12 types occurred in trawl and grab samplings: Spongia, Priapulida, Sipuncula, Nemertini, Coelenterata, Annelida, Arthropoda, Molluska, Bryozoa, Brachiopoda, Echinodermata, Tunicata. Among the most frequently occurring and abundant forms in catches were animals of such classes as: Bivalvia, Crustacea, Polychaeta, Asteroidea, Ophiuroidea. Aside from these groups, 16 classes of other animals were found as well: Hydrozoa, Antozoa, Pantopoda, Loricata, Gastropoda, Scaphopoda, Cephalopoda, Crinoidea, Echoidea, Holothuroidea, Priapulida, Sipunculidea, Bryozoa, Brachiopoda, Ascidiacea.

In the observed area the most occurring species were bivalves molluscs: Macoma calcarea, Ciliatocardium ciliatum, Nuculana pernula; polychaetes Pectinaria hyperborea, Spiochetopterus typicus and Echinodermata Ctenodiscus crispatus, Ophiura sarsii, Ophianacanta bidentata, Strongylocentrotus droebachiensis, S. pallidus.

Strongylocentrotus droebachiensis, S. pallidus inhabit often jointly and are used to form numerous communities, and make up sometimes more than 90% of catch taken with the Sigsby trawl. Most abundant catches of these species were taken at station 48. This biocenosis occurs on a very stony ground. 1/20 of catch consisted of 75 individuals of sea-urchins. Mass measurements of individuals enabled to determine the size structure of this local settlement (fig.7.2.2). The diameter of carapace varied from 21 to 59 mm, the mean diameter of carapace made up 36.8 mm.

Two size groups can be pointed out in this frequency. The first size group, from 21 to 33 mm in diameter, forms 52% of population, the second part of size group, from 37 to 54 mm in diameter, constitutes 45.33% of sampling.

Specimens of Crustacea predominated in catches made by the Sigsby trawl in the southern part of the research area. The most frequently found species of this group were: Pagurus pubescens, Hyas araneus, Sclerocrangon boreas, Balanus balanus, Balanus crenatus. Apart from these species, bivalves mollusks: Serripes groenlandica, Arctica islandica, Mytilis edulis occurred in the southern Barents Sea as well.

In the north the percentage of Crustaceans in catches decreased, and Echinodermata became to be predominant invertebrates group in catches. Among the specimens of this type Ophiuroidea were the most abundant: Gorgonocephalus arcticus, Ophiopleura borealis and Crinoidea: Heliometra glacialis. Pteraster sp, Ophioscolex glacialis occurred in trawl catches much rarer. Among the other groups of invertebrates such species as Sclerocrangon ferox (instead of S.boreas, which were observed to occur in the southern part), Bathyarca glacialis, Pandora glacialis were found.

The analysis of bottom invertebrates bycatches in bottom ichthyological trawl "Campelen" system was done onboard the R/V "Frodtjof Nansen" from 31.08.04 to 19.09.04.

Altogether, 35 bycatches of zoobenthos in the north-eastern Barents Sea near to the northern island of the Novaya Zemlya (fig.7.2.3) were analysed.

There was no benthos in 4 bottom trawls. The mass of zoobenthos by catch in other catches by the bottom trawl varied from 0.5 kg (0.4 kg/1-hour trawling) to 209.5 kg (419.1 kg/1-hour trawling). The average mass of zoobenthos by catch amounted to 72.7 kg/h per a trawling.

When making conversion of bycatch per unit area, the benthos biomass varied from 0.5 to 209 g/m2 at average biomass of 33 g/m2 in the research area on the data of bottom trawlings.

The largest catches, up to 1.0 t per 1-hour trawling taken and analysed from ichthyological bottom trawls were observed in the southern part of the research area near the Kanin Nos and the Kolguev island due to catch of such commercial important fish species as Gadus morhua (cod) and Melannogrammus aeglefinus (haddock). The percentage of zoobenthos in catches of these trawlings was not large and hardly amounted to 12.5% of the total mass of catch, the weight of bycatch varied from 0.4 kg per 1-hour trawling to 130 kg per 1-hour trawling.

The taxonomical analysis showed that on the average in the southern part of the research area in zoobenthos bycatches crustaceans prevail by weight and make up about 81% of bycatch and in some trawlings their percentage reaches up to 100% (fig. 7.2.4).

Paralithodes camtchatica, Hyas araneus, Pandalus borealis, Sclerocrangon boreas were the most predominating species of this taxonomical group. P. camtchatica occurred in one trawl in number of 31 specimens with the total weight of 126.5 kg, it made up 99% of zoobenthos bycatch. All crabs were males in the 2-3 molt stage. The minimal width of carapace was 116 mm, the maximal length -233 mm.

H. araneus occurred rather frequently, the maximum catch of this species was amounted 0.5 kg and made up 100% of bycatch. H. araneus – 40%, P. borealis and S. boreas by 30% of total bycatch mass occured.

The second place of occurrence was presented by Echinodermata. Their portion in bycatch averages 10% but it can reach up to 14%, as well. This group was presented in the southern part of the research area by individuals of such classes as Echinoidea, Ophiuroidea, Asteroidea. Such species of Crustaceans as Strongilocentrotus (S. droebahiensis, S. palidus), Ophiura sarsi, Ophiocanta bidentat,Ctenodiscus crispatus, Solaster endeca, Crossaster papposus were the most predominating.

Another situation was observed in the northern part of research area. The maximum total catch of ichthyological bottom trawl was not more than 520 kg per 1-hour trawling, the maximum total catch of fish made up altogether 176 kg/1-hour trawling. Among fish, the greatest portion of catches carried out by bottom trawls constituted of such commercial species as B. saida (Polar cod), which catches reached up to 159 kg/1-hour trawling. Thus, zoobenthos organisms predominated in catches of ichthyological bottom trawl generally in the northern part of the research area (fig.7.2.3).

Species diversity in zoobenthos bycatches taken in the northern part of the research area was much higher than in bycatches taken in the southern part.Individuals of Echinodermata (fig.7.2.5) prevailed in the main part of bycatches.

Among species of this group, sea urchins from genus Strongilocentrotus occurred just as in the southern part of the research area, their percentage reached by weight up to 99% and made up 20% in bycatch in average over the area.

However, individuals from class Ophiuroidea occurred in bycatches most frequently and their percentage made up 35% in average over the area. Gorgonocephalus arcticus prevailed by weight among class Ophiura. Crustaceans took in bycatches the second place by weight, it made up 18% on average over the area. Pandalus borealis occurred in bycatches both in the southern as in the northern part, catches of this species reached up to 53 kg/1-hour trawling. S. ferox started to occur instead of S.boreas among Crangonidae shrimps.Nevertheless, catches of this species were not high and not more than 8 kg/1-hour trawling.

During the cruise about 40 objects of bottom fauna were photographed. This material can be used for making of a quick atlas-guide to identification of bottom organisms. This atlas could be very helpful to research observers in their work onboard research-fishing vessels on trawl catches and analysis description of demersal fish feeding.

Thus, a great area of the Eastern Barents Sea was observed during the research expedition. A large volume of quantitative and qualitative zoobenthos samples was gathered which will allow to estimate changes taken place in bottom communities in the given research area since the last survey conducted by PINRO, to make conclusions about the food supply state of benthophage fishes.

The analysis of ichthyological trawl catches revealed a great number of benthos bycatch, it points out that bottom trawlings are very harmful to benthos communities. The wide photographic material on bottom organisms, which was gathered, is a major step toward a creation of an atlas-guide to identification of bottom organisms to help research observers in their work onboard research-fishing vessels.

7.3. Method of benthos observations on Norwegian vessels

Benthos samples were taken from the bottom-trawl catches after the fish had been sorted out of the catch. A subsample of \sim 3 kg was taken out and sorted to species level if possible. For each species group the number and total weight was recorded, except for some colonial organism like Poriphera and certain species of Polychaeta where only weight was recorded. Species that were unidentifiable were tagged and frozen at -23° C for later identification on shore. For each station the relative contribution by weight and numbers for each species was calculated.

7.4. Results on materials of Norwegian vessels (*tables 7.1 and figs. 7.4.1, 7.4.5*)

A total of 87 species groups were found, although 37 of these were not identified to species level. To clarify the analysis, these were only carried out on the 35 species that were present at more than 25% of the stations sampled (Table 7.1).

Serial no.	Total weight	Biota sampled No.	Species	Serial no.	Total weight	Biota sampled N	No. Species
2369	-	2.3	5	2430	31.3	2.9	18
2370	-	1.9	10	2433	99.1	1.7	19
2373	-	23.5	6	2434	322.7	2.2	26
2374	-	5.2	16	2441	516.0	2.6	24
2377	-	1.3	11	2442	682.5	1.8	25
2378	-	2.6	13	2445	4.4	3.0	30
2381	-	0.3	14	2446	79.6	2.0	30
2382	-	3.0	14	2449	94.2	0.5	28
2385	-	3.2	11	2450	46.4	0.7	23
2386	-	0.4	13	2453	120.0	1.3	16
2389	-	1.0	9	2454	38.5	0.6	17
2390	-	1.4	14	2457	67.4	1.0	22
2393	-	0.7	20	2458	97.6	1.1	23
2394	-	3.4	15	2461	109.3	0.8	29
2397	-	2.9	23	2462	27.4	1.0	26
2398	-	0.5	17	2465	161.7	1.3	24
2401	-	1.9	22	2466	321.6	1.9	15
2402	-	0.9	24	2469	148.9	1.6	32
2405	-	2.9	24	2470	102.9	2.0	24
2406	-	1.8	25	2473	230.0	1.0	20
2409	-	1.9	27	2474	73.2	0.5	27
2413	-	3.8	24	2477	62.3	1.2	31
2414	-	2.7	32	2480	120.1	1.3	26
2417	-	2.6	31	2484	62.5	0.9	19
2418	-	0.7	25	2485	40.4	1.2	28
2421	27.7	1.1	25	2488	96.3	7.7	25
2422	34.5	2.2	27	2492	35.3	1.3	31
2425	40.0	1.7	30	2493	15.4	1.1	28
2426	79.3	1.9	22	2496	47.8	0.6	19
2429	190.7	5.3	17				

 Table 7.1 Weight of total benthic sample (including abiotic components), weight of biotic components and number of species at bottom-trawl from "Johan Hjort"

Not recorded.

In terms of numbers the clam Astarte crenata, sea stars, brittle stars and sea-anemones were the most dominant (fig. 7.4.1). The number of species increased towards the north and east of the Barents Sea (fig. 7.4.2).

When species numbers was expressed as Hill's biodiversity index the same increase was also apparent (fig. 7.4.3).

To understand which species were occurring together, excluding each other, or showed no pattern in co-occurrence we carried out a Principal Component Analyses (PCA) on both biomass and numbers data (both as proportions of species A in relation to sample size/weight at a station).

The PCA plot (fig. 7.4.4) of the biomass data show that the species form three major groups in terms of coocurrence. The most abundant species, the clam Astarte crenata is positively correlated to the large isopod Saduria sabini, the snail Colus sabini, the clam Bathyarca glacialis and the sea-cucumber Molpadia borealis. The large crustacean Sabinea

septemcarinata, is positively correlated (shows coocurrence) with a large number of species, most notably the sea-star Usterias lineki, the brittle star Ophipholis aculeate. This group is quite broad but consists of several known arctic species, like the Sabinea shrimp. The third groups is tighter linked and consists of the two sea-stars Ceramaster granularis and Hippasterias phrygiana, hermite crabs Pagurus sp., species with a more boreal distribution.

The PCA analysis based on numbers data (fig. 7.4.5) show much the same pattern.

Clear biogeographic changes in species composition, biodiversity and distribution were observed northwards in the Barents sea. The analysis are not finished in terms of relation to depth, hydrographic parameters, etc., but the initial multivariate analysis indicate that there are at least three separate species assemblages in the survey region.

References

Bogorov, V.G. 1974. Plankton of the World Ocean. Moscow, Nauka. 320 pp. (in Russian).

Bhattacharyya, G.K. & Johnson, R.A. 1977. Statistical concepts and methods. New York: Wiley.

Cochran, W.G. 1977. Sampling Techniques, 3rd Edition. New York: Wiley.

Degtyareva, A.A., V.N. Nesterova, L.D. Panasenko. 1990. Peculiarities of formation of the food zooplankton in the Barents Sea feeding areas of capelin. Food resources and relationships between fishes of the North Atlantic. Selected papers. PINRO. Ichthyological Commission of the Ministry of Agriculture of the USSR. Murmansk. P.: 24-33 (in Russian).

Dickson, W. 1993a. Estimation of the capture efficiency of trawl gear. I: Development of a theoretical model. Fisheries Research 16: 239-253.

Dickson, W. 1993b. Estimation of the capture efficiency of trawl gear. II: Testing a theoretical model. Fisheries Research 16: 255-272.

Dingsør, G. E. 2005. Estimating abundance indices from the international 0-group fish survey in the Barents Sea. Fisheries Research, In press.

Gjosæter, H., P. Dalpadado, A. Hassel, and H. R. Skjoldal. 2000. A comparison of performance of WP2 and MOCNESS. J. Plankton Res., Vol. 22(10): 1901-1908.

Godo, O. R., Valdemarsen, J. W. & Engaas, A. 1993. Comparison of efficiency of standard and experimental juvenile gadoid sampling trawls. ICES Marine Science Symposia, 196, 196-201.

Havforskningsinstituttet. 1994. Manual til bruk ved 0-gruppe tokt i Barentshavet. Bergen: Institute of Marine Research.

Hylen, A., Korsbrekke, K., Nakken, O. & Ona, E. 1995. Comparison of the capture efficiency of 0-group fish in the pelagic trawls//Precision and relevance of pre-recruit studies for fishery management related to fish stocks in the Barents Sea and adjacent waters. Proceedings of the sixth IMR-PINRO symposium. Bergen 14-17 June 1994 (Ed. by Hylen, A.), pp. 145-156.

Jakobsen, T., Korsbrekke, K., Mehl, S. and Nakken, O. 1997. Norwegian combined acoustic and bottom trawl surveys for demersal fish in the Barents Sea during winter. ICES CM 1997/Y: 17, 26 pp.

Mamylov V.S. About the comparison of fish distribution densities estimated using trawl and acoustic methods//Improvement of Instrumental Methods for Stock Assessment of Marine Organisms: Proceed. of the Russian-Norwegian Workshop. Murmansk, 11-14 November 2003. Edited by Dr. V. Chernook. Murmansk: PINRO Press, 2004. - P.114-132.

Skjoldal, H.R., A. Hassel, F. Rey, and H. Loeng. 1987. Spring phytoplankton development and zooplankton reproduction in the central Barents Sea in the period 1979-1984. In: The effect of oceanographic condition and population dynamics of commercial fish stocks in the Barents Sea. Bergen: Inst. Mar. Biol. P. 59-89.

Stensholt, B.K. & Nakken, O. 2001. Environmental Factors, Spatial Density, and Size Distributions of 0-Group Fish. In: Spatial Processes and Management of Marine Populations (Ed. by Kruse, G. H., Bez, N., Booth, A., Dorn, M. W., Hills, S., Lipcius, R. N., Pelletier, D., Roy, C., Smith, S. J. & Witherell, D.), pp. 395-413. Fairbanks, Alaska: Alaska Sea Grant College Program.

Vinogradov, M.E., E.A. Shushkina. 1987. Functioning of plankton communities of the epipelagic ocean. Moscow, Nauka. 240 pp. (in Russian).

Volkov, A. F. 1996. Zooplankton of epipelagic seas of the Far East. Abstract of the Doctoral Thesis. Vladivostok. 70 p. (in Russian).

Volkov, A.F., E.P. Karedin, and M.S. Kun. 1980. Instruction on sampling and primary processing of plankton in the sea. Vladivostok. TINRO. 46 p. (in Russian).

Figure 1.1. Survey routes and trawl stations for "Johan Hjort", "Jan Mayen", "Nansen" and "Smolensk" August-October 2004

Figure 1.2. Survey routes and hydrographic stations for "Johan Hjort", "Jan Mayen", "Nansen", and "Smolensk", August-October 2004

Figure 1.4. Stations of macro-benthos sampled by bottom trawl (RV "*J.Hjort*"), bottom trawl and grab (RV "*Smolensk*"), or grab and Sigsby trawl (RV "*F. Nansen*")

Figure 1.2.1. Distribution of oxygen content (% of saturation) in the Kola Section and its long-term mean values

August 2004

August (long term mean)

Figure 1.2.2. Distribution of phosphate content (μ M) in the Kola Section and their long-term mean values

Bottom. August-September 2004

Surface. August-September 2004

Figure 1.2.3. Oxygen content (% of saturation) in the surface and bottom layers of the Barents Sea and its long-term mean values

Surface. August-September 2004

Bottom. August-September 2004

Bottom. Long term mean

Figure 1.2.4. Phosphate content (μ M) in the surface and bottom layers of the Barents Sea and its long-term mean values

Figure 2.2.1. The Barents Sea divided into 22 strata

Figure 2.2.2. Example of good coverage, year 2000. Gray areas are used in the 0-group abundance estimations

Figure 3.4.1. Geographic outline of the new depth stratified system used in the swept area analyses for the ecosystem survey

Figure 3.4.2. The old strata system used for the Norwegian summer/autumn survey. Used when comparing results for cod and haddock with earlier years

Figure 3.4.3. The northern strata system used for the juvenile Greenland halibut survey. Used when comparing results for Greenland halibut with earlier years

Figure 3.4.4. Northeast Arctic cod less than 20 cm. Geographical distribution (catch in numbers per hour of trawling) during the ecosystem survey in autumn 2004

Figure 3.4.5. Northeast Arctic cod larger than 20 cm. Geographical distribution (catch in numbers per hour of trawling) during the ecosystem survey in autumn 2004

Figure 3.4.6. Northeast Arctic haddock less than 20 cm. Geographical distribution (catch in numbers per hour of trawling) during the ecosystem survey in autumn 2004

Figure 3.4.7. Northeast Arctic haddock larger than 20 cm. Geographical distribution (catch in numbers per hour of trawling) during the ecosystem survey in autumn 2004

Figure 3.4.9 Greenland halibut larger than 20 cm. Geographical distribution (catch in numbers per hour of trawling) during the ecosystem survey in autumn 2004

Figure 3.4.10. Sebastes marinus less than 20 cm. Geographical distribution (catch in numbers per hour of trawling) during the ecosystem survey in autumn 2004

Figure 3.4.11. Sebastes marinus larger than 20 cm. Geographical distribution (catch in numbers per hour of trawling) during the ecosystem survey in autumn 2004

Figure 3.4.12. Sebastes mentella less than 20 cm. Geographical distribution (catch in numbers per hour of trawling) during the ecosystem survey in autumn 2004

Figure 3.4.13. Sebastes mentella larger than 20 cm. Geographical distribution (catch in numbers per hour of trawling) during the ecosystem survey in autumn 2004

Figure 3.4.14. Catfish. Geographical distribution (catch in numbers per hour of trawling) during the ecosystem survey in autumn 2004

Figure 3.4.15. Spotted catfish. Geographical distribution (catch in numbers per hour of trawling) during the ecosystem survey in autumn 2004

Figure 3.4.16. Jelly catfish. Geographical distribution (catch in numbers per hour of trawling) during the ecosystem survey in autumn 2004

Figure 3.4.17. Long rough dab. Geographical distribution (catch in numbers per hour of trawling) during the ecosystem survey in autumn 2004

Figure 4.2.1. Plankton biomass (dry weight, g/m²) in the Barents Sea in bottom-0 m layer by Juday net catches in August-September 2004 (r/v "F. Nansen")

Figure 4.2.2. Plankton biomass (dry weight, g/m²) in the Barents Sea in 0-50 m layer by WP-2 net catches in August-September 2004 (r/v "F. Nansen")

Figure 4.2.3. Plankton biomass (dry weight, g m²) in the Barents Sea in 50-0 m layer by Juday net catches in August-September 2004 (r/v "Smolensk")

Figure 4.2.4. Plankton biomass (dry weight, g m²) in the Barents Sea in 100-0 m layer by Juday net catches in August-September 2004 (r/v "Smolensk")

Figure 4.2.5. Plankton biomass (dry weight, g m²) in the Barents Sea in bottom-0 m layer by Juday net catches in August-September 2004 (r/v "Smolensk")

Figure 4.2.6. Horizontal distribution of zooplankton in 2004 (g dry weight m² from bottom - 0 m) based on WP2 and MOCNESS (a) and horizontal distribution of zooplankton (g dry weight m² from 100 - 0 m and 50-0m) based on WP2 (b)

Figure 4.2.7. Annual fluctuations in zooplankton biomass and size of capelin stock in the Barents Sea

Figure 5.2.1 Distribution of marine mammals in the Barents Sea in August 2004 according to ship- and airborne observations

Figure 5.2.2. Distribution of marine mammals in the Barents Sea according to aerial surveys by research aircraft An-26 "Arctica" from 17 till 30 September 2004 and ship-borne observations in September 2004

Figure 6.1.1. An outline of primary bird abundance data collection procedure along survey transects (where: t₁ and t₂ - times of count; V – aircraft speed; H – flight altitude; L – width of visual strip)

Figure 6.2.2. Distribution of black-legged kittiwake in the Barents Sea in the period from 20 August till 5 September 2003

Figure 6.2.3. Distribution of black-legged kittiwake in the Barents Sea in the period from 22 August till 3 September 2004

Figure 6.2.4. Distribution of black-legged kittiwake in the Barents Sea in the period from 16 September till 1 October 2003

Figure 6.2.8 Distribution of northern fulmar in the Barents Sea in the period from 16 September till 1 October 2003

Figure 6.2.9. Distribution of northern fulmar in the Barents Sea in the period from 17 till 30 September 2004

Figure 7.2.1. Chart of benthos stations made by the R/V "Smolensk", from 05.08.04 to 20.08.04 (symbols are painted in blue) and by the R/V "Fridtjof Nansen", from 20.08.04 to 19.09.04 (symbols are painted in red)

Figure 7.2.2. Size structure of Strongylocentrotus spp. community at station 48 on the data of mass measurements of trawl catch

Figure 7.2.3. Examples of catches bottom trawling in the Eastern Barents Sea and ratio of zoo benthos by catch to fish catches

Figure 7.2.4. Ratio between the taxonomical groups of bottom invertebrates in ichthyological trawl catches in the South-Eastern Barents Sea

Figure 7.2.5. Ratio between the taxonomical groups of bottom invertebrates in ichthyological trawl catches in the North-Eastern Barents Sea

Figure 7.4.1. Percentage contribution by numbers for the five most common species in terms of presence at stations. Red: *Ctenodiscus crispata*, Blue: *Pontaster tenuispinus*, Green: *Astarte crenata*, Purple: *Ophiura sarsi*, Grey: *Actiniarida sp.*

Figure 7.4.2. Number of species in bottom-trawl hauls by latitude and longitude

Figure 7.4.3. Biodiversity (Hill's index) in bottom trawl samples (non-fish only) in the Barents Sea by latitude and longitude

Figure 7.4.4. Biplot of principal component analysis of proportion of biomass by each species at each station. Scores of stations (grey) and loadings of the different species (blue). The data has been log-transformed to clarify the relationships between the species

Figure 7.4.5. Biplot of principal component analysis of proportion of numbers by each species at each station. Scores of stations (grey) and loadings of the different species (red). The data has been log-transformed to clarify the relationships between the species

APPENDIX 1

Ecosystem survey 2004

Research vessel	Participants
"Smolensk"	G. Zuikov, V. Kapralov, S. Klinushkin (06-20/8), P. Lyubin (06-
(06/08-03/10)	20/8), N. Mukhina, A. Nikifirov, D. Prozorkevich (cruise leader),
	T. Prokhorova, S. Ratushnyy, O. Sazhenkov, I. Trofimov,
	S. Kharlin, T. Yusupov
"F. Nansen"	A. Amelkin, T. Gavrilik, I. Dolgolenko (cruise leader),
(07/08-03/10)	S. Ivanov, R. Klepikovsky, S. Klinushkin (21/8-03/10),
	A. Klyuykov, P. Lyubin (21/8-03/10), P. Murashko, V. Popov,
	T. Semochkina, V. Sergeev, T. Sergeeva, V. Tataurov,
	N. Torgunova, L. Shibaev, N. Zozulya, V. Zubarevich, V. Zubov
"J. Hjort"	Part 1 (01/08-12/08): S. Aanes (cruise leader), O.O. Arnøy,
(01/08-04/10)	K.B. Eriksen, K. Hansen, J. Johannessen, H. Larsen, S. Lemvik,
	L. Rey, T. Sivertsen, A. Storaker, Ø. Torgersen, J. Welcker.
	Part 2(13/08-19/08): J. Andersen, O.O. Arnøy, A. Dommasnes
	(cruise leader), K.B. Eriksen, K. Hansen, H. Larsen, S. Lemvik,
	M. Mjanger, L. Rey, T. Sivertsen, A. Storaker, Ø. Torgersen,
	N. Ushakov, J. Welcker.
	Part 3 (20/08-08/09): J. Andersen, B. Bogstad, G. Dingsør,
	B. Endresen, M. Fonn, P. Fossum (cruise leader), H. Græsdal,
	H. Larsen, E. Meland, F. Midtøy, M. Mjanger, J.E. Nygaard,
	E. Olsen, B. Skjold, T. Sivertsen, N. Ushakov, J. Welcker.
	Part 4 (11/09-04/10): J. Alvarez, L. Drivenes, K.A. Fagerheim,
	H. Gjøsæter (cruise leader), M. Johannessen, G. McCallum,
	A. Kristiansen, R. Pettersen, B. Røttingen, B.V. Svendsen,
	Ø. Torgersen, N. Ushakov, J. Welcker.
"Jan Mayen"	Part 1 (04-22/08): I. Ahlquist, M. Aschan (cruise leader, 04-
(04/08-22.08	12/08), P.J. Helgesen, A. Harbitz, T. Haugland, E. Johannesen,
and 10.09-01/10)	H. Miran, W. Richardsen, J. Størkersen (12-22/08), K. Sunnanå
	(cruse leader, 12-22/08), G. Søvik (04-12/08).
	Part 2 (10/09-01/10): O.T. Albert, E.D. Eliassen, E. Hermansen,
	J. Johannesen, S. Kleven, W. Richardsen, L. Solbakken,
	A. Sæverud, T. Wenneck (cruise leader)

CONTENTS

Preface	2
Synopsis	3
1. Hydrochemical investigations (based on data from Russian vessels)	4
1.1. Material and method	4
1.2. Results of investigations (figs. 1.2.1-1.2.4)	4
2. New abundance indices of 0-group fish based on real trawl catch (joint materials)	6
2.1. Underlying principles and trawl capture efficiency	7
2.2. Stratified sample mean estimator (table 2.1& figs.2.2.1-2.2.2)	8
2.3. New estimations of 0-group fish total abundance indices	10
2.4. Length distributions.	14
3. Bottom fish survey (joint materials)	15
3.1. Biological sampling of main bottom species during survey	16
3.2. Computations of stock sizes	16
3.3. Swept area analysis of bottom fishes	17
3.4. Distribution and abundance of bottom fish (joint materials)	18
4. Zooplankton investigations (joint materials)	28
4.1. Materials and Methods (fig. 1.3)	28
4.2. Results (tables 4.1, 4.2 & figs.4.2.1-4.2.6)	29
4.3. Zooplankton and capelin interactions (figs.4.2.7)	32
4.4. Focus on future zooplankton investigations	35
5. Sea mammals observations (joint and aircraft materials)	35
5.1. Methods of investigations	36
5.2. Sea mammals observation results (table 5.2 & figs.5.2.1-5.2.2)	36
6. Sea birds investigations	39
6.1. Methodology for estimating the abundance of birds on the basis of data from a	erial
surveys (fig.6.1.1)	39
6.2. Results of sea birds observation (tables 6.1-6.8 & figs. 6.2.1-6.2.9)	41
7. Benthos observations (fig.1.4)	44
7.1. Method of benthos observations on Russian vessels	45
7.2. Results on materials of Russian vessels (figs. 7.2.17.2.5)	46
7.3. Method of benthos observations on Norwegian vessels	48
7.4. Results on materials of Norwegian vessels (tables 7.1 and figs. 7.4.1, 7.4.5)	48
References	50
APPENDIX 1	82
CONTENTS	83

Institute of Marine Research Nordnesgaten 50, 5817 Bergen Norway

Polar Research Institute of Marine Fisheries and Oceanography (PINRO) 6 Knipovich Street, 183763 Murmansk Russia