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Abstract 

The cultivation of marine larvae is often associated with high rates of mortality and is 

regarded as a bottle-neck in maintaining stable levels of production of juveniles for 

on-growing. In the course of the past few decades a great deal of effort has been put 

into increasing the production of farmed marine species. In spite of this, production is 

still low, compared to the production of salmonids, partly due to problems that arise 

during the early stages of life. The mortality problem is thought to be caused by 

bacteria that originate either from larval or live feed cultures. These are systems with 

high densities of biological waste and debris which may contribute to the growth of 

opportunistic bacteria. Vibrio spp. have often been suggested as causal agents. 

Because of the complex microbiological composition involved in larval and live feed 

cultures, and the small size of the larvae and feed organisms, isolating bacteria and 

describing their roles may be demanding. In order to identify pathogenic bacteria, 

reliable infection models are needed. The aim of this thesis is to enhance the 

knowledge of the bacteria associated with the cultivation of marine species. 

Experimental model organisms were great scallop Pecten maximus, cod Gadus 

morhua, halibut Hippoglossus hipposlossus, and turbot Scophthalmus maximus.  

The present work utilizes the multi-dish system as a model for bath challenge 

experiments using several species of marine larvae (Papers I-III, V). The method is 

reliable and efficient both as means of minimizing the number of larvae needed and 

for saving time and work space. It also provides individual control. In Paper I, six 

candidates of bacteria pathogenic to great scallop larvae were tested. In a similar 

experiment with cod larvae, 53 bacterial strains were tested for virulence (Paper II). 

Both studies included two controls i.e. unchallenged larvae as negative control and 

one larval group challenged with a known pathogen Vibrio pectenicida (Paper I) and 

Vibrio anguillarum serotype O2α (Paper II) as positive control. In addition to the 

positive controls, Vibrio splendidus (Paper I), four different strains of V. anguillarum 

and Carnobacterium sp. strain were verified as highly pathogenic (Paper II). The 

attempt to serotype the V. anguillarum strains produced inconclusive results (Paper 
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II), and further studies are needed. The study described in Paper II also show that 

most bacteria associated with diseased fish is not a primary cause to disease.  

Studies of the susceptibility of cod, halibut and turbot larvae to various serotypes of 

V. anguillarum and Vibrio spp. produced high mortality in all groups challenged with 

the O2α serotype. Cod and halibut larvae also suffered high mortalities when 

challenged with O1 (Paper V). The immunohistochemical examinations of larvae 

challenged with serotype O2α showed little or no pathology, leading to the hypothesis 

that extracellular products or toxins were killing the larvae (Paper III, V). Serotype 

O1 caused severe pathology (Paper V).  

Bioencapsulation using rotifers were successfully used to administer V. anguillarum 

and Vibrio logei to cod larvae. The immunohistochemical examination revealed the 

presence of bacteria within the gastrointestinal tract of challenged larvae (Paper IV). 

However, mortality in these groups could not be related to exposure of bacteria as 

there was no increased mortality compared to the control groups. V. logei has been 

frequently isolated from cod larval cultures suffering from high mortality, thus 

suggested as a causative agent to disease. However bath challenge (Paper II) and 

bioencapsulation of the bacterium in live feed (Paper IV) did not have any negative 

effects on the cod larvae. It cannot be ruled out that under different circumstances the 

bacterium could be pathogenic. The absence of mortality in groups orally challenged 

with V. anguillarum serotype O2α (Paper IV) is in contrast to the bath challenge 

experiments in which mortality increased a few days post-challenge (Papers II, III, 

V). No conclusive explanations were found regarding this matter.  
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Sammendrag 

Produksjon av marine larver er ofte forbundet med høy dødelighet og er sett på som 

en av flaskehalsene for å få til en stabil produksjon av yngel. Over de siste par tiårene 

har det blitt satset på å få fram en marin oppdrettsnæring. Til tross for dette er 

produksjonen fortsatt lav sammenlignet med produksjon av laksefisk, mye på grunn 

av problemene i de tidlige livsstadiene. Problemene med høy dødelighet er antatt å 

skyldes bakterier som enten har sitt opphav i larve- eller levendefôrkulturene. Dette er 

systemer med høy tetthet av biologisk materiale og avfall som sannsynligvis bidrar til 

vekst av opportunistiske patogener. Infeksjoner med Vibrio spp. blir ofte satt i 

sammenheng med den høye dødeligheten.  Det mikrobielle samfunnet i larve- og 

levendefôrkulturer er komplekse og sammensatte, noe som kompliserer arbeidet med 

å identifisere mulige agens. Det er derfor nødvendig med gode og forutsigbare 

smittemodeller.  Formålet med dette studiet var å øke kunnskapen om bakterielle 

infeksjoner i marin larve produksjon. Eksperimentelle modellorganismer var larver av 

kamskjell Pecten maximus, torsk Gadus morhua, kveite Hippoglossus hippoglossus 

og piggvar Scophthalmus maximus.  

Dette studiet bruker et brønn-brett system som bad-smitte modell (Artikkel I-III,V). 

Metoden er pålitelig og effektiv, både med hensyn på reduksjon av antall forsøksdyr, 

tidsbesparende og romkapasitet. I tilegg kommer individuell kontroll. I Artikkel I ble 

seks mulige kamskjell-larve-patogene bakterie isolater virulenstestet. Et lignende 

forsøk utført på toskelarver testet 53 bakterie isolater for virulens (Artikkel II). I 

begge studiene ble det brukt to ulike kontroller, en usmittet negativ kontroll og en 

positiv kontroll i form av larvegrupper smittet med en kjent patogen Vibrio 

pectenicida (Artikkel I) og Vibrio anguillarum serotype O2α (Artikkel II). I tilegg 

til de positive kontrollene, forårsaket Vibrio splendidus (Artikkel I), fire ulike 

isolater av V. anguillarum og et Carnobacterium sp. isolat høy dødelighet. De fire V. 

anguillarum ble forøkt serotypet, men resultatene var ikke entydige. Videre studier er 

derfor nødvendige. I tillegg viser studiet beskrevet i Artikkel II at mesteparten av 

bakterieisolatene fra syke fiskelarver ikke kan regnes som primær årsak til sykdom. 
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Studier for å se på mottagelighet for ulike V. anguillarum serotyper og Vibrio spp. 

viste at torsk-, kveite- og piggvarlarver er mottakelige for V. anguillarum serotype 

O2α. Smitte forårsaket høy dødelighet hos alle artene. I tillegg var dødeligheten høy i 

torsk og kveite larvegruppene smittet med O1 serotypen (Artikkel V). De 

immunhistologiske undersøkelsene viste lite histopatologi i larver smittet med O2α-

serotypen i motsetning til grupper smittet med O1 serotypen. Denne mangelen på 

histopatologi kan skyldes av at larvene dør som følge av utskillelse av ekstracellulære 

produkter og toksiner (Artikkel III, V). 

Inkorporering av V. anguillarum og Vibrio logei i rotatorier ble brukt som metode for 

og oral smitte av torskelarver. Immunhistologiske undersøkelser bekreftet at 

bakteriene ble overført til larvene ved at bakterier ble observert i larvenes mage og 

tarmkanal (Artikkel IV). Likevel, dødeligheten i disse gruppene var ikke høyere enn i 

kontrollgruppene og kunne dermed ikke relateres til smitten. V. logei har ofte blitt 

isolert fra larvegrupper av tosk med høy dødelighet og dermed satt i sammenheng 

med sykdomsutbrudd. Verken badsmitte (Artikkel II) eller oral administrering 

(Artikkel IV) av bakterien har ført til øket dødelighet. Det kan like vel ikke utelukkes 

at V. logei under andre forutsetninger ville kunne være patogen. Fraværet av 

dødelighet i de V. anguillarum smittede gruppene (Artikkel IV) står i sterk kontrast 

til badsmitteforsøkene, hvor bakterien forårsaket høy dødelighet (Artikkel II, III, V). 

Ingen konkret forklaring ble funnet ble funnet på dette. 
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Introduction  

Norwegian aquaculture has become an important industry in the course of the past 20 

years. Large-scale aquaculture started about 40 years ago with salmon, Salmo salar, 

and rainbow trout, Oncorhynchus mykiss. Production of those species expanded and 

new species began to be cultivated. In 2007, the total export value of grow-out fish 

produced in the Norwegian aquaculture industry was estimated to be approximately 

NOK 19 billion and a production volume of over 700,000 tonns (Kjønhaug 2008). 

The production of marine aquaculture species is small compared to that of salmonids. 

In 2007 the exported value of cod, Gadus morhua, was approximately NOK 170 

millions, and halibut, Hippoglossus hippoglossus, NOK 62.2 million. The EU is the 

main the export market. Historically, marine species, in particular cod, have been of 

great economic importance in Norwegian fisheries for over 300 years (Vollan 1956). 

In spite of efforts to establish a marine fish farming industry, high mortality during 

the early life stages has resulted in an unstable supply of cod and halibut fry for on-

growing. Even so, farmed production of cod and halibut has increased in the course of 

the past few years. Bivalve farming of mussels, Mytilus edulis, oyster, Ostrea edulis, 

and great scallop, Pecten maximus, is a small industry in Norway, with an annual 

production of a few thousand tonnes (Directorate of Fisheries, 

http://www.fiskeridir.no). Great scallop is a highly valued commodity and market 

prizes are high due to their excellent quality and large biomass. One commercial 

hatchery in Norway, Scalpro (Rong, Øygarden, Hordaland County), produce great 

scallop. Spat production has been highly variable over the last years due to water 

quality problems.  

Mortalities in marine larval cultures occur randomly and frequently and the causative 

agents are not always identified. This thesis addresses only bacterial infections as 

causes of disease and mortality. However, it should be noted that virus infections 

cause severe losses, such as irido-like viruses and herpes-like viruses in bivalve larval 

cultures (reviewed by Le Pennec et al. 2003, and Batista et al. 2007), and nodavirus in 

turbot, Scophthalmus maximus, and halibut hatcheries (Johansen et al. 2004, Nerland 



 16 

et al. 2007, respectively). The nutritional value of larval feed has been studied as an 

important factor to sustain larval growth, development and survival (reviewed by 

Kvåle et al. 2007).  

Rearing marine larvae is complex. It involves various live feed cultures, and rearing 

protocols are highly variable. The various live feed cultured and rearing regimes 

essential in commercial production of the four aquaculture species, great scallop, cod, 

turbot, Scophthalmus maximus, and halibut involved in this study, will therefore be 

introduced.  

 

Rearing marine larvae 

Large-scale aquaculture of marine species is a relatively young industry, and the 

methods used when rearing of marine larvae are not as standardised as the rearing 

protocols used for salmonid fish. The used of water treatment, water flow in tanks, 

live feed cultures and enrichment methods, feeding regimes and densities in larval 

tanks vary among the commercial operators. Such differences in rearing regimes are 

likely to cause variations in tank environment among the hatcheries. The following 

paragraphs concerning “Rearing of marine larvae” therefore include only a selection 

of protocols. 

Live feed cultures 

Great scallop, cod, turbot, and halibut larvae all require live feed as part of their 

feeding regime. In nature, marine larvae feed on algae and zooplankton (e.g. 

copepods). In large-scale aquaculture rotifers and Artemia spp. have replaced natural 

zooplankton, due to the easiness of culture and availability (see further details in 

paragraphs below). Live feed cultures with their high densities of organic matter have 

been associated with high rates of mortality in larval cultures, as they represent a 

significant quantity of the bacterial load on the larvae (reviewed by Austin 2006). 

Larval intestinal microflora is reported to be similar to that of live feed cultures 
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(Munro et al. 1994, Eddy & Jones 2002). Commercial enrichments used in live feed 

production of cod larvae influence the total number of bacteria (colony-forming units) 

in the enrichment cultures and the gastrointestinal tract of the larvae (Korsnes et al. 

2006). The composition of the bacterial population associated with cod larvae difffers 

among hatcheries (Verner-Jeffreys et al. 2003b), probably influenced by the 

enrichment and rearing protocols utilised. The various live feed cultures used to rear 

marine larvae are described below.  

Algae 

Different types of algae are used during the production of marine larvae, either as a 

direct food source, added to rearing water (“the green water technique”) or food for 

live prey. The alga needs to be easily cultured and be of the right size (2-15 µm) 

(Reitan 2005, Muller-Feuga et al. 2003b). Intensive rearing of great scallop and fish 

larvae uses algae such as Tetraselmis spp. Chaetoceros spp., Pavlova lutheri, and 

Isochrysis spp., among others (Christophersen et al. 2006, Muller-Feuga et al. 2003b). 

The mixture protocol of algal cultures differ in terms of species and ratio, with 

nutrient value and composition, mainly the content of lipids and fatty acids, being an 

important aspect (Muller-Feuga et al. 2003a, reviewed by Reitan et al. 1997). Algae 

are reared in transparent plastic bags or tubes to which nutrients and carbon dioxide 

are added and which are exposed to a light source. The rearing temperature is around 

20-25°C. Algae are either grown in batch cultures, i.e. the whole culture is harvested, 

or in continuous cultures, where a limited volume is harvested during the late growth 

phase.  

In marine fish larvae cultures, algae are not used as a direct food source, but are added 

as green water (reviewed by Reitan et al. 1997). A recent study that compared 

survival and feeding incidence of cod larvae reared in green water consisting of 

Isochrysis galbana versus clear water, showed that the addition of algae in 

conjunction with low light intensity produced the highest feeding incident during start 

feeding. However, this difference was not significant. Significantly improved survival 
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was found in cod larval tanks to which green water was added (van der Meeren et al. 

2007).  

Benefits reported from addition of microalgae (reviewed by Reitan et al. 1997 and 

Palmer et al. 2007) are: 

 That algae may be used as a direct food source, through active uptake by the 

larvae 

 That algae may serve as an indirect food source in which the nutrient value of 

the live prey is sustained 

 Improved water quality thanks to the production of oxygen and removal of 

metabolic by-products like nitrogenous substances 

 Microbial control by production of antibacterial substances  

 Increased feeding incidence, possibility due to modification of light conditions 

 

Algae are commercially available as fresh and frozen products if the facilities for 

algal growth are not avaiable in the hatchery. 

Rotifers 

Several species of rotifers are used in production of marine larvae, with Brachionus 

plicatilis the most common (Olsen 2004). Their rapid reproduction, body size and 

relatively slow motility compared to fish larvae, have contributed to their usefulness 

as suitable prey. Rotifers alone do not have sufficient nutrient value (Olsen 2004), but 

their capability as filter-feeding organisms has been utilised by bioencapsulation of 

algae, yeasts, and even beneficial bacteria to improve their nutrient value and general 

quality as live feed. The use of yeasts, with the addition of oil to increase fat content, 

in rotifer production has fallen in Norwegian hatcheries. Several farmers report a 

preference for the use of algae instead of yeast, as rotifer cultures have a better 

reproduction rate and are easier to maintain. Rotifers are robust and tolerate wide 

variations in temperature and salinity, as long as these parameters are changed 

gradually. Rotifers are thus suitable for mass production as live feed. Rotifer cultures 
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are usually reared around 20-26°C and at salinities of around 20-25 ppt (Hagiwara et 

al. 2007), Olsen 2004), but commercial cod hatcheries often use 30-35 ppt salinity. 

Rotifer culture densities vary widely, but 3000 rotifers ml
-1

 are commonly found in 

cultures ready for harvesting (Reitan 2005). Rotifers can be grown in either batch, or 

continuous culture.  

Artemia spp. 

Artemia or brine shrimp nauplii (the early life stage of Artemia) have been used to 

culture all species of cold water fish larvae. The most widely used species is A. 

franciscana (Olsen et al. 2004). As with rotifers, filter-feeding capacity is exploited to 

improve the nutrient value and general quality as live feed. Commercially available 

oil emulsion products like Super Selco and DHA Super Selco are commonly used as 

enrichments to increase the content of essential n-3 fatty acids (HUFA) (Olsen 2004). 

Another advantage is their easy availability. Artemia are commercially available as 

cysts that are hatched at the farm, making it easier to maintain stable access to larval 

food compared to rotifers, which need to be cultured. The temperature for cultivation 

of Artemia is around 28°C, with salinity 33-35 ppt, while densities may range from 

100-300 individuals ml
-1 

(Reitan 2005, Olsen 2004). Juvenile Artemia are sometimes 

used for feeding turbot and halibut larvae that require larger prey than cod larvae.  

Larvae 

The four aquaculture species used as experimental models in this thesis require 

differences in rearing regimes, and are therefore described separately below.  

Great scallop  

In the only commercial scallop hatchery in Norway, Scalpro AS, great scallop larvae 

are hatched and reared at 18°C in 450-800 l conical tanks at a concentration of 5-10 

larvae ml
-1

 (Torkildsen & Magnesen 2004).  Development from egg to 20 mm fry 

takes around 180 days via seven distinct developmental stages. The larvae settle 

around day 30 as postlarvae (Hovgaard et al. 2001). 
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The larval cultures are given a mix of micro algae as described above. The species of 

algae used at the Scalpro AS facility are Pavlova lutheri, Isochrysis sp. Skeletonema 

costatum and Chaetoceros mülleri (Christophersen et al. 2006). 

Cod 

The production of cod larvae in Norway started in the 1880s at Flødevigen research 

station in southern Norway, where larvae were hatched and released into the sea. 

About 20 years ago large-scale farming started (Øiestad 2005). In intensive 

production the eggs are held in conical cylindrical up-welling tanks or incubators in 

the dark at 7-8°C. The up-welling system enables the eggs to float freely and makes it 

easier to remove dead eggs. Newly hatched larvae are transferred to feeding tanks and 

the temperature is raised to between 9 and 12°C (Olsen et al. 2004). Start-feeding 

with rotifers usually begins around three days post hatch and the rotifer diet lasts for 

about 25-30 days, depending on temperature (Fig. 1). Cod are recommended to be fed 

large rotifers (180-320 µm) (Reitan 2005). Typical larval densities are 30-40 larvae l
-

1
. (Olsen et al. 2004). A period with Artemia may be used prior to dry feed or as a 

supplement during the change from rotifers to formulated feed. A transition period is 

used when diets are changed in order to ease the changeover between the various feed 

and to ensure that most larvae have access to the right size of prey (Fig 1.). Most 

Norwegian cod farmers have stopped using Artemia and go directly from rotifers to 

formulated feed.  

Turbot 

The only commercial turbot farm in Norway, Stolt Sea Farm Øye, Kvinesdal, in the 

County of Aust-Agder, is now merely operated as a broodstock station. Until recently, 

the facility was operated as a producer of turbot fry, using intensive production 

protocols (J. Stoss, Stolt Sea Farm Øye, pers.comm). In European hatcheries, turbot 

eggs are normally kept in up-welling incubators and hatched at temperatures of 

around 12-14°C. During the first five days post-hatch (p.h.), the temperature is 

gradually increased to around 18-20°C. Addition of algae (green water) and feeding 

with rotifers starts at day one p.h. and lasts for around12-14 days (Fig. 1). Larvae are 
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held in tanks of various sizes with densities ranging from 10-100 larvae l
-1

. Densities 

of 20-40 larvae l
-1 

are most common (Olsen et al. 2004). During the green water 

period the water is kept stagnant (Olsen et al. 2004, Stoss et al. 2004). As the larvae 

grow the water flow is increased. The larvae are usually fed Artemia nauplii after two 

weeks. Weaning, or change of diet to formulated feed, is usually around days 22-25 

p.h. As with cod, a transition period is used to ease the transition between the feeds 

(Fig. 1) (Olsen et al. 2004).  

Halibut 

Like cod and turbot eggs, halibut eggs are kept in up-welling tanks in the dark. 

Halibut larvae hatch around 16 days (82 d°) post-fertilisation. The larvae are 

premature and have the longest yolk-sac stage of the fish species discussed in this 

study. In farming facilities, halibut yolk-sac larvae are kept in tall dark silos at 5-6°C 

until start-feeding (Kjørsvik et al. 2004,) in order to mimic their natural environment 

(Fig. 1). These tanks also use up-welling water flow. During the yolk-sac stage, the 

larvae are fragile and sensitive to environmental changes, and the dark environment in 

the silos provides the stability needed. The larvae are usually transferred to start-

feeding tanks around day 40 p.h (Fig. 1). At this stage the temperature is gradually 

raised to around 9-12°C (Kjørsvik et al. 2004). When the larvae are transferred to 

first-feeding tanks, sand or clay is added to colour the water during the live feed stage 

(Fig. 1) (Van der Meeren pers. comm.). Green water may also be used. Larval 

densities are normally between 1-10 larvae l
-1

 (Olsen et al. 2004). Large rotifers (300 

µm) can be used as feed during the first few days, but Artemia nauplii are usually 

used as start feed. Later on, Artemia juveniles may be used before weaning or as a 

supplement during the weaning process. The addition of dry feed usually starts around 

day 80 p.h. (Fig. 1) (Olsen et al. 2004, Stoss et al. 2004). 



 22 

 

Figure 1. Overview of general feeding regimes used in commercial hatcheries for the three species, 

halibut Hippoglossus hippoglossus, turbot Scophthalmus maximus and cod Gadus morhua. Green 

water; addition of microalgae. The figure is based on Olsen et al. 2004, Stoss et al. 2004 in addition 

to communication with fish farmers. * = Artemia is not always used. Drawing of turbot larvae (at the 

end of the yolk-sac stage) from Jones (1972), cod larvae (at the end of the yolk-sac stage) from 

Fridgeirsson (1978) and halibut larvae from Russel 1976. Drawing of algae (Isochrysis sp.) by Stein 

Mortensen and drawings of rotifer and Artemia nauplii by Anonymous.  
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Identification of bacteria associated with marine larval cultures 

The isolation and identification of bacterial strains from environmental samples or 

larvae are complicated by the presence of a wide variety of bacterial strains. This 

often results in a complex selection of bacterial strains. In subadult and adult fish, 

bacteria are commonly isolated from haematopoietic tissue, i.e. head kidney, spleen 

and liver. In larvae, small size and undifferentiated tissue complicate such protocols, 

causing high risk for contamination, hence homogenisation of whole surface 

disinfected larvae is commonly used. In order to make marine larval production more 

efficient and to reduce the mortality problem, it is vital to obtain as much knowledge 

as possible about the normal and infectious bacterial flora. 

Phenotypic characterisation 

Phenotypic characterisation provides information about the physical and biochemical 

characteristics of an organism. In dealing with unknown bacteria, descriptions of 

colony morphology, growth on different media, motility, Gram staining and 

description of shape all provide rapid information about the bacterial strain involved. 

To isolate marine bacteria, marine agar (MA), blood agar added salt (BA), and 

thiosulphate citrate bile sucrose agar (TCBS) are often used. BA provides information 

about the ability of the bacterium to lyse red blood cells (haemolytic capacity).  

TCBS, a Vibrio-specific medium originally developed for isolation of human 

pathogenic Vibrio strains, is now also widely used for the isolation of environmental 

strains (reviewed by Harwood et al. 2004). 

Commercial biochemical tests like API 20E, originally developed for identification of 

human pathogens, is becoming more frequently used to identify fish pathogens when 

a rapid diagnostic method is needed (reviewed by Popovic et al. 2007). API 20E was 

developed for the identification of Enterobacteriaceae and/or non-fastidious, Gram-

negative bacteria based on the bacterium‟s metabolism. It is standardised, easy to 

perform and the results are avaiable within 48 hours. However, as pointed out by 
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Popovic et al. (2007) the method needs to be modified for use with marine bacteria, 

especially as far as incubation temperature and duration are concerned. 

Genotypic characterisation 

Genotypic characterisation provides information that cannot be obtained via 

phenotypic characterisation. In the course of the past couple of decades, sequencing 

of bacterial genes has become a common method for identifying unknown bacteria. 

Amplification and sequencing of the 16S rRNA gene revolutionized taxonomy and 

identification of prokaryotes (Giovannoni et al. 1990) and has since been widely used 

as a molecular clock to estimate phylogenetic relationships among bacteria. The 

reason for its widespread use is its ubiquity, evolutionary stability and essential 

function in the protein synthesis system. 16S rRNA forms part of the small ribosomal 

subunit, 30S. In the course of the past few years, additional genes have been utilised 

in phylogenetic studies. Basing identification of bacterial strains on one gene alone is 

usually not sufficient (reviewed by Thompson et al. 2004b). Polymorphisms (Moreno 

et al. 2002), and heterogeneity (Dahllöf et al. 2000, Case et al. 2007) have shown to 

be as common in the 16S rRNA gene, and additional genes are therefore needed for 

phylogenetic studies. Examples of genes suggested as good phylogenetic markers are 

GyrB (Le Roux et al. 2004), recA (Thompson et al. 2004a) and rpoB (Dahllöf et al. 

2000, Case et al. 2007). 
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Bacteria associated with marine larval cultures 

Normal bacterial flora  

Even though the species discussed in this thesis are diverse in terms of development, 

rearing and feeding regimes, their farmers face similar challenges, for example the 

production of live feed cultures and maintenance of a stable tank environment. The 

main obstacle is probably the high rates of mortality that are too frequently 

experienced during the larval stages. Larvae are exposed to bacteria from hatching 

onwards, as bacteria are naturally present in the environment (reviewed by Hansen & 

Olafsen 1999 and Olafsen 2001). Knowledge of the normal microflora is essential if 

we are to fully understand the shifts in microflora that occur during a disease outbreak 

and identify possible pathogenic bacteria. Being water-filtering organisms, scallop 

larvae ingest bacteria through feeding, and fish yolk sac larvae as they drink water 

(Mangor-Jensen & Adoff 1987). The epiflora of eggs and the water flora are 

important for the first bacterial colonisation of the gastrointestinal tract (reviewed by 

Ringø & Birkbeck 1999), while at start-feeding the microflora shifts and is affected 

by the exogenous feed (Bergh et al. 1994, Munro et al. 1994, Verner-Jeffreys et al. 

2003b, Brunvold et al. 2007). Studies of bacteria associated with reared yolk-sac 

larvae show dominance of oxidative Gram-negative rods, and after the onset of first 

feeding, vibrios dominate (Blanch et al. 1997, Verner-Jeffreys et al. 2003a). Jensen et 

al. (2004) suggested that halibut larvae possess a relatively distinct and specific 

normal microflora, regardless of their geographical origin. However, results were 

more variable in fed larvae than in yolk-sac larvae, possibly due to differing live-feed 

protocols. As the water source and water treatment differ among the hatcheries, it 

cannot be out ruled that the normal flora will also differ among rearing facilities. 

Results suggesting this were found by Verner-Jeffreys et al. (2003b), who studied the 

microflora at three different halibut hatcheries. 

Infectious bacteria 

Disease in a hatchery can affect both egg and larval stages. Disease is often related to 

changes in water quality and environmental parameters that can lead to growth of 
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opportunistic and pathogenic bacteria. Verification of a bacterium‟s virulence 

involves in vivo challenge studies (Table 1). Challenge studies involving early life 

stages can be divided into two main groups, bath challenge and oral administration by 

bioencapsulation of the bacterium in live feed. Challenge experiments and probiotic 

studies, involving challenges with pathogenic bacteria, on marine bivalves and fish 

larvae, are listed in Table 1.  

The bacterial flora of marine fish eggs seems to be dominated by the genera 

Cytophaga, Flavobacterium, and Flexibacter (some strains have been renamed 

Tenacibaculum spp.) (Hansen & Olafsen 1989, Verner-Jeffreys et al. 2003b).  

Tenacibaculum ovolyticum (formerly named Flexibacter ovolyticus) is known to 

cause disease in halibut eggs (Hansen et al. 1992). Good disinfection and rearing 

routines (e.g. removal of dead eggs) reduce outbreaks of disease during the egg phase. 

A common experience in hatcheries is a sudden collapse in larval cultures. Changes in 

mortality may appear overnight and at random among tanks. The critical periods are 

several, although start-feeding (reviewed by Yúfera & Darias 2007) and change in 

diets seems to be high-risk periods. Frequent observations are that larvae appear 

apathetic and stop feeding, followed by a collapse in the larval culture. Live feed 

cultures, which introduce large amounts of organic matter to larval cultures, are a 

possible source of pathogenic bacteria (reviewed by Battaglene & Cobcroft 2007). 

Bacterial enteritis may be common, as has been described in rearing of striped 

trumpeter, Latris lineata, larvae (reviewed by Battaglene & Cobcroft 2007) and larval 

cultures of Japanese flounder, caused by Vibrio ichthyoenteri (Muroga 2001). These 

reports are similar to what is experienced in hatcheries of cod, halibut and turbot. In 

farming of gilt-head sea bream larvae, Sparus aurata, mortalities related to abdominal 

swelling caused by a bacterial infection have been reported (Sedano et al. 1996). 

Typical clinical signs in cod larvae are dilations in the swim bladder and intestine. 

The term “floaters”, is used of these larvae due to their characteristic way of floating 

on the side or upside-down in the water surface. Observations imply bacterial 

infection (van der Meeren et al. 2005) and Vibrio logei have been suggested as a 
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causative agent (Egil Karlsbakk unpubl. results, Institute of Marine Research).  

Although other genera, such as Aeromonas, Alteromonas and Pseudomonas, besides 

Vibrio are associated with disease and mortality in larval cultures, Vibrio spp. 

infections dominate and have been most studied (see Table 1 for more details) 

 

Table 1. Overview of challenge experiments and probiotic studies, involving challenge with 

pathogenic bacteria and virus on marine larvae. I.P injection = intraperitoneal injection 

Species 
Bacterial strain(s)  

or Virus 
Challenge model(s) Reference 

halibut  

Hippoglossus 

hippoglossus 

Flexibacter spp. 

NCIMB 13127, NCMBI 

13128, Vibrio 

anguillarum NCMBI 6, 

Vibrio fisheri 

ATCC 7744,  

Vibrio strain HI-10448 

bath challenge Bergh et al. 1992 

halibut, 

cod Gadus morhua 

Flexibacter ovolyticus 

NCMBI 13127, Vibrio 

sp. HI-10448, V. 

anguillarum HI-1360 

bath challenge 
Skiftesvik & Bergh 

1993 

halibut, turbot 

Scophthalmus maximus 

A. salmonicida subsp. 

salmonicida, 
bath challenge Bergh et al. 1997 

halibut and cod 

F. ovolyticus NCMBI 

13127 and 13128, A. 

salmonicida subsp. 

salmonicida, V. 

anguillarum strain HI 

10448, 

bath challenge Bergh 2000 

halibut Strain 4:44, and PB52 bioencapsulation in rotifers Makridis et al. 2000 

halibut 
Vibrio strains PB 1-11 

and PB 6-1 

bioencapsulation in 

Artemia  sp. 
Makridis et al. 2001 

halibut 
V. anguillarum and 

others 
bath challenge 

Verner-Jeffreys  

et al. 2003a 

turbot 
Lactic Acid Bacterium 

(LAB),Vibrio sp. 

bath challenge and 

bioencapsulation in rotifers 

(Probiotic study) 

Gatesoupe 1994 

turbot 

V. anguillarum 91079, 

Vibrio alginolyticus, 

Aeromonas sp.  

strain C39 . 

bioencapsulation in rotifers Munro et al. 1995 

turbot V. anguillarum 
bioencapsulation in 

Artemia sp. 
Grisez et al. 1996 

turbot 
Vibrio splendidus, 

Vibrio strain E 

bath 

challenge/bioencapsulation 

in rotifers (Probiotic study) 

Gatesoupe 1997 
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Species 
Bacterial strain(s)  

or Virus 
Challenge model(s) Reference 

turbot Vibrio splendidus bath challenge Gatesoupe et al. 1999 

turbot Vibrio spp. 
bath challenge, 

 (probiotic study) 
Huys et al. 2001 

turbot Vibrio pelagicus Bath challenge Villamil et al. 2003 

turbot 

Roceobacter sp., 

V. anguillarum strain 

90-11-287, 

V. splendidus DMC-1 

 

bath challenge, 

(probiotic study) 

 

Hjelm et al. 2004 

turbot 
V. splendidus spp.,  

V. alginolyticus spp. 

bioencapsulation 

 in rotifers 
Thomson et al. 2005 

turbot V. anguillarum 

bath challenge, 

bioencapsulation 

 in rotifers 

Planas et al. 2005 

turbot 
Roceobacter sp.,  

V. anguillarum 

bath challenge, 

bioencapsulation in rotifers 

(probiotic study) 

Planas et al. 2006 

Cod, 

 herring 

 Clupea harengus 

V. fisheri, V. 

salmonocid, 

Flavobacterium sp. 

bath challenge Olafsen & Hansen 1992 

flounder  

Paralichthys olivaceus 
Vibrio spp. 

bioencapsulation in rotifers 

and Artemia sp. 
Muroga et al. 1990 

flounder  

Vibrio ichthyoenteri 

(strains F-2, FK-1), 

Edwardsiella tarda,  

V. anguillarum 

bioencapsulation 

 in Artemia sp. 
Kim et al. 2004 

gilt-head seabream 

Sparus aurata 
Vibrio spp. 

bioencapsulation in rotifers 

and Artemia sp. 
Sedano et al. 1996 

European sea bass 

Dicentrarchus labrax 
V. anguillarum bath challenge Kotzamanis et al. 2007 

pollack Pollachius 

pollachius 

Probiotic strain 

Pediococcus 

acidilactici 

bioencapsulation in 

Artemia (Probiotic study) 
Gatesoupe 2002 

Colorado River 

cutthroat trout 

Oncorhynchus clarkii 

pleuriticus 

Lactobacillus sp. 

bioencapsulation in 

Artemia sp. 

 (Probiotic study) 

Arndt & Wagner 2007 

Pacific threadfin 

Polydactylus sexfilis 

and Amberjack Seriola 

rivoliana 

Vibrio spp. and 

Pseudoalteromonas 

spp. 

bath challenge 
Verner-Jeffreys  

et al. 2006 

grouper 

Epinephelus coioides 

Nervous Necrosis Virus 

(NNV) 

bioencapsulation of 

recombinant E. coli 

expressing NNV capsid 

protein gene in Artemia sp. 

I.P injection of virus 

suspention 

 (vaccination study) 

Lin et al. 2007 

Pacific herring  

Clupea pallasii 

Viral Haemorrhagic 

Septicaemia Virus 

(VHSV) 

bath challenge Hershberger et al. 2007 
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Species 
Bacterial strain(s)  

or Virus 
Challenge model(s) Reference 

great scallop  

Pecten maximus 
Vibrio spp. bath challenge Nicolas et al. 1996 

great scallop Roseobacter  sp. bath challenge Ruiz-Ponte et al. 1999 

great scallop 

V. splendidus spp., 

Aeromonas spp./ 

Pseudoalteromonas 

spp. 

bath challenge Torkildsen et al. 2005 

Chilean scallop 

Argopecten purpuratus 

V. anguillarum- related 

(VAR) 
bath challenge 

 

Riquelme et al. 1995 

Chilean scallop 

Vibrio alginolyticus,  

V. splendidus, 

Aeromonas hydrophila 

bath challenge Riquelme et al. 1996b 

Chilean scallop 

VAR,  

Alteromonas 

haloplanktis 

bath challenge  

(probiotic study) 
Riquelme et al. 1996a 

Chilean scallop 

Vibrio spp. 

Pseudoalteromonas 

spp. and others 

bath challenge  

(probiotic study) 
Riquelme et al. 1997 

Chilean scallop 
Inhibitor producing 

strains, 11, C33 and 77 
bath challenge Riquelme et al. 2000 

Chilean scallop 

Inhibitor producing 

Vibrio C33, 

Pseudoalteromonas sp. 

bath challenge Riquelme et al. 2001 

Pacific oyster 

Crassostrea gigas 

Vibrio spp., Aeromonas 

spp. 
bath challenge Garland et al. 1983 

Pacific oyster Herpes-like virus 

bath challenge, inoculation 

with virus suspention made 

from diseased larvae 

LeDeuff et al. 1996 

Pacific oyster 
Vibrio splendidus, 

VAR, Vibrio spp. 
bath challenge Sugumar et al. 1998 

Pacific oyster 

Vibrio tubiashii, 

Aeromonas media  

strain A199 

bath challenge  

(probiotic study) 
Gibson et al. 1998 

Pacific oyster V. alginolyticus bath challenge Nakamura et al. 1999 

Pacific oyster Vibrio spp. bath challenge Estes et al. 2004 

Pacific oyster V. tubiashii bath challenge Elston et al. 2004  

Pacific oyster, 

flat oyster 

Ostrea edulis 

Vibrio spp. bath challenge Jeffries 1982 

flat oyster 

Pseudomonas spp., 

Vibrio spp. amongst 

others 

bath challenge Lodeiros et al. 1987 

American oyster 

Crassostrea virgincia 

eggs and larvae 

Vibrio spp.  

Pseudomonas spp. 

(supernatant, heat-killed 

and washed bacteria) 

bath challenge Brown 1973 

American oyster  

eggs and larvae 

Vibrio sp.  

(supernatant, heat-killed 

and washed bacteria) 

bath challenge Brown & Losee 1978 
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Species 
Bacterial strain(s)  

or Virus 
Challenge model(s) Reference 

American oyster Vibrio spp. bath challenge 
Elston & Leibovitz 

1980 

American oyster 
Vibrio spp. (VAR, 

V. splendidus like) 
bath challenge Brown 1981 

clam Mercenaria 

mercenaria,  

American oyster, flat 

oyster, bay scallop 

Aequipecten irradians,  

shipworm  

Teredo navalis 

27 Gram-negative 

motile rod strains, 

Aeromonas sp. Vibrio 

sp. 

bath challenge Tubiash et al. 1965 

scallop Argopecten 

ventricosus,  

scallop Nodipecten 

subnodosus, 

 penshell Atrina maura, 

Pacific oyster 

Vibrio alginolyticus bath challenge 
Luna-González  

et al. 2002 

giant clam 

 tridacna gigas larvae 
Vibrio spp. bath challenge Sutton & Garrick 1993 

Manila clam  

Tapes philippinarum, 

great scallop,  

Pacific oyster 

Vibrio sp. 
bath/ 

co-habitation challenge 
Nicolas et al. 1992 

red abalone 

 Haliotis rufescens 

 larvae and post-larvae 

V. alginolyticus bath challenge 
Anguiano-Beltran  

et al. 1998 

abalone Haliotis 

diversicolor supertexta 

post-larvae 

V. paraheamilyticus and 

others 
bath challenge Cai et al. 2006a 

abalone post-larvae 
V. alginolyticus and 

others 
bath challenge Cai et al. 2006b 

shrimp  

Penaeus modon 

V. harveyi like and 

Photobacterium 

phosphoreumlike 

bath challenge 
Prayitno & Latchford 

1995 

 shrimp 

 Penaeus indicus  
V. harveyi 

bath challenge 

(vaccination study) 
Alabi et al. 1999 

rock lobster Jasus 

verreauxi phyllosoma 
V. harveyi bath challenge Diggles et al. 2000 

tropical rock lobster 

Panulirus ornatus  
Vibrio spp. 

bath challenge and 

bioencapsulation in 

Artemia sp. 

(probiotic/virulence study) 

Payne 2006  



Vibrio infections 

Vibrios are commonly found in large amounts in the marine environment and are also 

associated with live feed organisms such as rotifers and Artemia (Verdonck et al. 

1997, Eddy & Jones 2002, respectively). Some of these vibrios are known to be 

opportunistic bacteria (Reviewed by Thompson et al. 2004b). More specifically, 

Vibrio pectenicida and Vibrio splendidus have been associated with mortalities in 

great scallop hatcheries (Nicolas et al. 1996, Lambert et al. 1998, Torkildsen et al. 

2005). V. splendidus and V. splendidus-related strains are globally distributed and are 

frequently involved in disease in a wide variety of species, i.e. the cold water coral 

Eunicella verrucosa (Hall-Spencer et al. 2007), carpet shell clam Ruditapes 

decussatus larvae (Gómez-León et al. 2005), Pacific oyster Crassostrea gigas larvae 

and adults (Sugumar et al. 1998, Gay et al. 2004, respectively), turbot larvae  

(Gatesoupe et al. 1999, Thomson et al. 2005) and corkwing wrasse Symphodus 

melops (Bergh & Samuelsen 2007). A bacterium that has frequently been isolated in 

cod hatcheries suffering high mortalities is Vibrio logei, which is thus assumed to be 

one of the causative agents of collapse in larval batches (Egil Karlsbakk unpubl. 

results, Institute of Marine Research). V. logei is particularly associated with 

luminescence and is symbiotic with Vibrio fisheri in light organs in sepiolid squid 

(Fidopiastis et al. 1998, Nishiguchi et al. 1998). Findings of V. logei associated with 

cod larvae were also reported in recent work by Brunvold et al. (2007) and McIntosh 

et al. (2008), in studies of microbial communities in cod hatcheries using denaturing 

gradient gel electrophoresis (DGGE).  

Classical vibriosis - Vibrio anguillarum  

Vibrio anguillarum was first described as pathogenic to eel Anguilla anguilla about 

100 years ago. A description of the disease probably dates as far back as the early 

1700s from diseased eel on the north-east coast of Italy (reviewed by Egidius 1987).  

In the present study, V. anguillarum was included in all fish larval (challenge) 

experiments because of its well-known virulence to cod, turbot and halibut (reviewed 
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by Egidius 1987, and Bergh et al. 2001, respectively). The bacterium was used either 

as an additional (positive) control group or for descriptive histopathological studies. 

V. anguillarum is Gram-negative, rod-shaped, oxidise-positive, motile, with growth 

between 15-37°C and requiring the addition of salt in growth media (Austin & Austin 

2007). The bacterium‟s strong affinity for iron may cause anaemia in chronically 

infected fish. The virulence plasmid pJM1 codes for iron transportation proteins and 

siderophores (Crosa 1980, Actis et al. 1985, Actis et al. 1986). However bacterial 

strains without the pJM1 plasmid are pathogenic, suggesting chromosome-mediated 

virulence characteristics (Lemos et al. 1988, Wiik et al. 1989). Other essential 

virulence mechanisms are flagella (motility) (Milton et al. 1996), chemotaxis (Larsen 

et al. 2004) and extracellular products (Lamas et al. 1994a, 1994b).  

The opportunistic pathogen causes haemorrhagic septicaemia in a wide range of cold- 

and warm-water fish species (reviewed by Toranzo et al. 2005). It is part of the 

normal marine flora, and outbreaks often occur when water temperature rises quickly 

(Reviewed by Toranzo & Barja 1990). V. anguillarum has also been associated with 

live feed cultures used in rearing of the Japanese flounder Paralichthys olivaceus, and 

is thus assumed to transfer the bacterium to the larvae (Mizuki et al. 2006). 

V. anguillarum is a heterogeneous species divided into serotypes, and so far more 

than 23 serotypes have been described (Pedersen et al. 1999). Serotypes O1 and O2 

are most frequently isolated as pathogenic strains, where O1 is associated with 

salmonids and O2 is mostly associated with cod (Larsen et al. 1994). The O2 serotype 

is divided into two subgroups O2α and O2β, of which O2α is the dominant serotype 

of the two (reviewed by Toranzo & Barja 1990). Serotype O3 is usually isolated from 

diseased eel (Pedersen et al. 1999), but recently the O3 serotype has also been isolated 

from diseased salmonids (i.e. Atlantic salmon Salmo salar, Pacific salmon 

Oncorhynchus kisutch and rainbow trout Oncorhynchus mykiss) in Chile (Silva-Rubio 

et al. 2008).  
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Vaccination against vibriosis, primarily V. anguillarum serotype O1, O2α and O2β, 

has been successfully done in commercial farming of salmonid fish for almost 20 

years (reviewed by Sommerset et al. 2005). However, vaccination regimes in marine 

fish farming have not provided the same reliable protection, with the result that 

outbreaks of vibriosis are still frequent, causing significant losses to the aquaculture 

industry all over the world. In 2007, 19 Norwegian cod farming sites were diagnosed 

with vibriosis caused by various serotypes of V. anguillarum (Hellberg et al. 2008). 

Recent results have shown that V. anguillarum strains isolated from diseased cod 

differ from known serotypes biochemically, serologically and genetically (Mikkelsen 

et al. 2007). Mikkelsen et al. have suggested that these isolates belong to a new sero-

subtype other than O2 α and O2 β and address the question of vaccination and 

bacterial isolates used in cod vaccines. 

 It should be noted that V. anguillarum was suggested to be reclassified as Listonella 

anguillarum in the mid-80s (Macdonell & Colwell 1985). Since 1986 Listonella has 

been on the “List of Prokaryotic Names with Standing in Nomenclature” 

(http://www.bacterio.cict.fr/l/listonella.html). On the other, hand there is still some 

debate regarding this change in nomenclature, with the result that both names are used 

in recent published work (Planas et al. 2006, Mikkelsen et al. 2007, Sugita et al. 2008) 

http://www.bacterio.cict.fr/l/listonella.html)
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Preventing disease  

As described above, bacteria cause significant losses in marine larval cultures. 

Prophylactic management is probably the most important means of promoting good 

health conditions in a farming situation. Key issues are water treatment and good 

cleaning routines, including disinfection of equipment, hygienic zones with limited 

transportation of equipment and people. The importance of a stable microbiological 

environment in larval tanks has been pointed out by several authors (Vadstein et al. 

2004, Verner-Jeffreys et al. 2004, reviewed by Battaglene & Cobcroft 2007).  

Rearing systems 

In aquaculture facilities the quality of the water supply is of great importance, as 

pathogens may enter the farming facility via the water. Norway has implemented a 

directive concerning treatment of inlet and outlet water to aquaculture facilities with 

guide-lines regarding filtration and disinfection (FKD: 1997-02-20 nr 192). Removal 

of particles by filtration is utilised to improve the efficiency of UV radiation. Ozone is 

also added as a disinfection method. Ozone is highly reactive and breaks down 

organic particles into smaller components by oxidation. Biofilters are used for 

“biological cleaning of organic nitrogenous compounds” and are often used in 

recirculation systems. Essential for a biofilter is that the surface area should be as 

large as possible relative to volume (Uglenes et al. 2005, Weaton 1977). Skimming is 

a method for removing the smallest particles from the water. Microscopic bubbles are 

passed through the water column, producing a surface layer of organic matter that is 

easily removed. The method is often used in conjunction with ozone (Uglenes et al. 

2005). These are all frequently used methods to prevent or minimise the occurrence of 

pathogenic agents such as parasites, bacteria and viruses in inlet water. Differences in 

water flow in rearing systems have been tested in both fish (Verner-Jeffreys et al. 

2004) and scallop hatcheries (Andersen et al. 2000, Torkildsen & Magnesen 2004, 

Christophersen et al. 2006, Magnesen et al. 2006). Recirculation of water may result 

in a stable microflora and better survival of halibut larvae (Verner-Jeffreys et al. 

2004). In rearing of great scallop larvae a different approach to water treatment has 
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led to fewer problems with mortality, hence more stable spat production. The key 

factor in this process seems to have been the introduction of a flow-through system 

(Andersen et al. 2000, Christophersen et al. 2006). The results show that optimal 

rearing conditions will vary among hatcheries and species. 

Administration of beneficial bacteria - probiotics  

Probiotics, in Greek meaning “for life”, have been defined as “microbial cells that are 

administered in such a way as to enter the gastrointestinal tract and to be kept alive, 

with the aim of improving health” (Gatesoupe 1999) and “a live microbial feed 

supplement which beneficially affects the host animal by improving its intestinal 

microbial balance” (Fuller 1989). The idea is to add bacteria that provide a stable 

microflora in the gastrointestinal tract and that have a beneficial effect on the health 

of the host. It should be remembered that aquatic animals interact with “microbiota” 

not only in the gastrointestinal tract, but throughout the whole body surface, including 

the gills. The beneficial effects of probiotics can include disease treatment and, more 

importantly, prevention of disease outbreaks, as probiotic bacteria may minimize the 

opportunity for opportunistic bacteria to proliferate. Probiotics may also improve 

nutrient digestion and absorption (reviewed by Vine et al. 2006, Kesarcodi-Watson et 

al. 2008, and Tinh et al. 2008). Concerning cold-water fish larvae, in vivo studies with 

turbot, larvae have been performed with promising results, using a Roseobacter strain 

(Hjelm et al. 2004, Planas et al. 2006). Roseobacter has also proven beneficial in 

farming of great scallop larvae, with increasing larval survival (Ruiz-Ponte et al. 

1999). However, this positive effect was not seen when the pathogenic bacteria Vibrio 

pectenicida A496 was added. In the rearing of cod larvae, addition of Lactobacillus 

plantarum resulted in lower bacterial counts and lower presence of bacteria such as 

Pseudomonas and Cytophaga/Flexibacter-like species. The latter is frequently 

associated with egg microflora (Bergh 1995) and mortality in early life stages 

(Hansen et al. 1992).  

Also in bivalve cultures the benefits of probiotic bacteria have been investigated 

(reviewed by Kesarcodi-Watson et al. 2008). In a study by Riquelme et al. (2001) 
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(Table 1) two strains of inhibitor-producing bacteria (IPB), Vibrio sp. and 

Pseudomonas sp., were added to tanks of Chilean scallop Argopecten purpuratus 

larvae, in order to compare survival with larval groups treated with antibiotics. 

Although survival rates in IPB-treated groups were higher, no significant differences 

were found. This addresses another important aspect, the use of probiotics as 

supplements or substitutes for antibacterial agents (reviewed by Vine et al. 2006 and 

Tinh et al. 2008). Minimising the use of antibiotics is a key factor in attempts to limit 

the development of resistance. 

 

Immunity 

The larval period is associated with an environment that is believed to contain a heavy 

bacterial load. During the larval stages, cod, turbot and halibut lack a fully competent 

immune system, which makes larvae vulnerable to disease. The combination of these 

factors complicates the rearing of marine larvae. Bivalves do not develop a specific 

immune system and the haemocytes are the essential cells involved in the immune 

response (reviewed by Dyrynda et al. 1995). Nevertheless specific expression of 

possibly immune related genes, as a result of bacterial challenge, has been reported in 

mussels, Mytilus galloprovincialis, and carpet-shell clams Ruditapes decussatus 

(Cellura et al. 2007, Gestal et al. 2007, respectively). For cod, the unspecific immune 

system (Complement factor 3, C3) is expressed at the egg stage (three days post-

fertilisation and onwards) (Lange et al. 2004, Magnadóttir et al. 2004, Magnadóttir et 

al. 2005) while the specific immune system (immunoglobulin M, IgM) is believed to 

be competent by around two months post-hatch (Schrøder et al. 1998). Preliminary 

results of current research on halibut larvae have shown that the specific immune 

system (B-cell marker IgM and T-cell markers CD8α, CD8β and CD4) is expressed 

around day 73 post hatch and onwards (Sonal Patel, Institute of Marine Research, 

unpublished results). To the best of my knowledge no such immune studies have been 

performed in turbot. 
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The development of vaccines has been critical for the development of the aquaculture 

industry (reviewed by Sommerset et al. 2005). One of the criteria for successful 

vaccination in an organism is its ability to produce immunological "memory", i.e. a 

specific immune response. Since the larvae are not immunocompetant at early 

developmental stages, vaccination is not an option. However, stimulation of the 

unspecific immune system by addition of immunostimulants in the form of a dietary 

supplement has been proposed in order to maintain good health and increase survival 

rates in larval cultures (reviewed by Bricknell & Dalmo 2005). Examples of 

immunostimulants are bacterial peptidoclycan and lipopolysaccharides (LPS), 

polysaccharides and β-glucans. In larval cultures of cod bacterial LPS, various 

polysaccharids and β-glucans have been tested, but the results have been variable. 

However, LPS (originating from Aeromonas salmonicida spp.) and β-glucans 

(originating from Chaetoceros mülleri) gave promising results (reviewed by 

Magnadóttir et al. 2006, Skjermo et al. 2006, respectively).  
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Aims of the study  

Bacterial infections are a major obstacle to the rearing of marine larvae. Larval 

rearing systems consist of high densities of organic matter and heavy bacterial loads 

as a consequence of high larval densities and the addition of live feed cultures. Such 

environments may contribute to the proliferation of opportunistic bacteria and 

outbreaks of disease. Verification of a causative agent is often difficult due to the 

complexity of the microflora found in these systems. Key issues to improve marine 

larval rearing protocols are therefore to understand the microflora, which bacteria are 

involved in infections, and how the bacteria infect. The general aim of this study was 

to enhance our knowledge of bacteria associated with marine cold-water larvae and to 

identify virulent strains.  

Specific aims for this study were: 

 To use known pathogens in order to study infection and histopathology in 

bivalve and fish larvae, by means of immunohistochemistry (Vibrio 

pectenicida and Vibrio anguillarum, respectively).  

 To further study bacteria that have been suggested to be pathogenic (i.e. Vibrio 

splendidus-like LT-06, Pseudoalteromonas-like strain LT-13 and Vibrio logei) 

by means of challenge experiments and immunohistochemistry. 

 To describe differences in susceptibility to and infection caused by various 

Vibrio spp. among cod, halibut and turbot, by means of challenge experiments 

and immunohistochemistry. 

 To investigate differences in infection between bath challenge and oral 

administration of a pathogen. 
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Summary of papers 

Paper I describes a study that tested the virulence of bacterial strains associated with 

mortality in great scallop Pecten maximus larvae. Vibrio pectenicida was used as a 

positive control in the experiment. The study confirmed that the Vibrio splendidus-

like strain LT 06 is pathogenic to great scallop larvae. In addition to increased 

mortality, immunohistochemical studies showed bacterial cells in lumen and in 

mucosal cells. Immunohistochemical examinations of larvae exposed to V. 

pectenicida showed positive immunostaining, however no free bacterial cells were 

observed. This led to the assumption that extracellular products or toxins killed the 

larvae. The Pseudoalteromonas-like strain LT 13, which is assumed to be pathogenic 

to scallop larvae, did not cause increased mortality and no histopathology was 

observed. It was therefore suggested that the bacterium is not a primary cause of 

disease, but merely an opportunist or secondary pathogen.  

Paper II describes a screening study performed on cod yolk sac larvae, testing 

virulence among various bacterial strains isolated from diseased marine larvae, mostly 

cod, and other marine fish. The results showed that most bacterial isolates did not 

have a negative effect on the larvae and were therefore not regarded as primary 

pathogens. Five strains caused mortality that was significantly higher than in the 

unchallenged control group, four were identified as Vibrio anguillarum and one as 

Carnobacterium sp. However the serotyping of the four V. anguillarum strains gave 

inconclusive results, suggesting they belong to a different serotype than O1, O2 and 

O3, which are usually associated with disease in fish.       

Paper III describes histopathology in cod yolk sac larvae challenged with a high (10
6
 

CFU ml
-1

) or low (10
4
 CFU ml

-1
) dose of V. anguillarum serotype O2α. Larvae 

exposed to the high challenge dose suffered high mortality but the 

immunohistochemical examinations revealed scarce histopathology limited to the 

gastrointestinal tract. It was therefore suggested that extracellular products or toxins 

excreted from the bacterium were involved in the increased mortality.   
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Paper IV presents a study in which cod larvae were exposed to V. anguillarum and 

Vibrio logei through bioencapsulation in rotifers. No increase in mortality compared 

to the unchallenged control was observed in the challenged groups. Although 

reisolation of V. anguillarum and Vibrio logei from exposed larvae was unsuccessful, 

immunohistochemical examinations revealed presence of the bacterial strains in the 

gastrointestinal tract, showing that the bacteria were successfully transferred to the 

larvae. The larval culture in one of the control tanks experienced a sudden collapse, in 

which most larvae died within 3-4 days. Isolation of bacteria from diseased larvae 

together with immunohistochemical examinations led to the conclusion that V. 

splendidus was the causative agent.      

Paper V describes differences in susceptibility to various serotypes of V. anguillarum 

among cod, halibut and turbot yolk sac larvae. All three species suffered high 

mortality when exposed to serotype O2α while cod and halibut were also affected by 

the O1 serotype. Indications that the two serotypes use different infections strategies 

were found during the immunohistochemical examinations. Examinations revealed 

severe histopathology in larvae exposed to the O1 compared to the groups exposed to 

O2α. Positive immunostaining, necrotic tissue and bacterial cells were seen in several 

organs throughout the whole larvae. In contrast, the O2α-infected larvae showed 

limited histopathology, and bacterial cells were limited to the gastrointestinal tract. 

The V. splendidus and Vibrio salmonicida strains did not have negative effects on the 

larvae. 
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Discussion 

Marine larvae reared in hatcheries are exposed to an environment very different from 

their natural habitat. In nature, marine larvae inhabit the pelagic waters grazing on 

algae and zooplankton. This dynamic and diverse environment is in sharp contrast to 

the larval and live feed oligo-cultures in the hatcheries.  

In commercial aquaculture, cost-effectiveness is crucial, thus densities in live feed 

and larval cultures are kept high. This environment with high abundance of biomass 

(larvae, food, detritus and green water) gives pathogenic and opportunistic bacteria 

increased possibilities to proliferate and thereby cause disease. In such high densities 

of larvae and organic matter an outbreak of disease may develop rapidly. Marine 

larvae are hatched at an early immature stage without a fully developed immune 

system to deal with infections, and no efficient treatments are yet available.  

 

The microbial environment in larval rearing systems 

A common experience in hatcheries is an unanticipated and sudden outbreak of 

disease. Such an incident is described in Paper IV, in which a Vibrio splendidus 

infection terminated one out of six identical tanks populations. This observation gives 

room for speculation that in spite of identical rearing regimes, in reality every larval 

unit has its own microflora and that small shifts may cause drastic changes. Microbial 

control in rearing systems have been pointed out as essential in rearing of marine 

larvae (Skjermo & Vadstein 1999). Obtaining a favourable balance in the micro flora 

between r-selected (fast-growing, which many are opportunistic) and K-selected 

(slow-growing, primarily non-opportunistic) bacteria, thus appear to be an important 

challenge. The use of matured water has been suggested as a method approach for 

improving the rearing environment of marine larvae (Vadstein et al. 2004). Matured 

water is considered to be inhabited by K-selected species forming a more stable and 

controlled system (Vadstein et al. 2004). A study showed up to76% higher survival 

rates in halibut, Hippoglossus hippoglossus, and turbot, Scophthalmus maximus, yolk-



 43 

sac larval groups reared in matured water than in groups reared in filtered water. The 

matured water also seemed to have a positive effect on the growth of turbot larvae 

(Skjermo et al. 1997).  

As the production of marine larvae is associated with high rates of mortality, different 

approaches have been tried to improve rearing conditions. Rearing protocols in the 

commercial hatcheries vary in terms of water treatment and flow systems, depending 

on their source of water and their facilities. Optimizing feed production protocols and 

rearing routines and improving in-let water quality will probably result in a better 

controlled environment in hatcheries, as has been reported successfully done in 

rearing of striped trumpeter, Latris lineata, (reviewed by Battaglene & Cobcroft 

2007).  

Variations such as stagnant water, flow-through systems and recirculation of the 

water may be used within the same facility and at different stages of the production 

cycle. In the Norwegian great scallop, Pecten maximus, hatchery, a flow-through 

system has been established and has proven to be efficient in terms of increase growth 

and survival (Andersen et al. 2000, Christophersen et al. 2006). In a study of water 

treatment in halibut larvae rearing, recycled water produced the highest survival rate 

(unless antibiotics were added) in addition to the most stable physical environment 

(Verner-Jeffreys et al. 2004).  

Marine scallop and fish larvae are small; this makes it technically difficult to isolate 

bacteria from specific organs and a wide range of bacterial strains is therefore usually 

isolated during an outbreak of disease. As shown in the screening experiment (Paper 

II, and to some degree in Paper I), most bacterial strains isolated in association with 

diseased larvae cannot be regarded as primary pathogens. This is in agreement with 

similar challenge studies performed on halibut and great scallop larvae (Verner-

Jeffreys et al. 2003a, Torkildsen et al. 2005, respectively). The virulence test on 

halibut larvae included isolates from three different rearing regimes, i.e. disinfected 

eggs with either flow or recycled water, and non-disinfected eggs in recycled water 

(Verner-Jeffreys et al. 2003a), while Torkildsen et al. (2005) tested bacterial strains 
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isolated from algal cultures, eggs and larvae from the only great scallop hatchery in 

Norway, Scalpro AS. Given the differences in water source, water treatment and 

rearing regimes among hatcheries, it may be speculated that differences in microflora 

will also occur. Comparative studies are therefore valuable and different approaches 

need to be considered for different species and hatcheries. 

A study by Jensen et al. (2004) suggested that halibut larvae possess a distinct and 

specific normal flora regardless of geographic region. On the other hand, both egg 

epiflora and larval microflora differed among halibut hatcheries (Verner-Jeffreys et 

al. 2003b). Although Pseuodoalteromonas and Vibrio species dominated the larval 

samples, the larval microflora was highly variable among larvae sampled from the 

same batches. The studies referred to above illustrate the difficulties in studying the 

microflora in marine larval rearing systems. 

All the studies referred to above are based on the cultivation of bacterial strains. 

However not all bacteria will grow on agar. A method that circumvents cultivation, 

denaturing gradient gel electrophoresis (DGGE), has been successfully used to 

monitor the bacterial flora in great scallop (Sandaa et al. 2003, Sandaa et al. 2008) 

and cod Gadus morhua (Brunvold et al. 2007, McIntosh et al. 2008) hatcheries. As 

shown in Paper IV, identification of bacterial strains using cultivation and DGGE is 

not always consistent. On the other hand, the two methods will probably complement 

each other. 
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Bacterial infections in larval cultures  

Live feed cultures as source of pathogenic bacteria?  

Live feed cultures contain a heavy bacterial load and supply large quantities of 

biological material to the larval rearing system. This may contribute to growth of 

opportunistic bacteria. Consistency between microflora in live feed cultures and larval 

intestinal flora (Munro et al. 1994, Eddy & Jones 2002) and between microflora in 

live feed cultures and larval rearing water (Eddy & Jones 2002), have been reported. 

To support this it has been shown that as a food source is introduced, a shift in the 

larval microflora follows (Verner-Jeffreys et al. 2003b, Brunvold et al. 2007).  

The high densities and the harvesting procedures of live feed cultures may contribute 

to shifts in microflora which can be transferred to the larvae. It can be speculated that 

the replacement of the harvested volume in live feed cultures creates a potential for 

proliferation of opportunistic bacteria causing this sudden shifts in microflora. In 

addition, these cultures are reared at higher temperatures than the larval species, and it 

can be speculated that the larvae are therefore introduced to bacteria not normally part 

of their normal flora.  

Inconclusive results have been reported concerning the topic of live feed cultures, i.e 

algae, rotifers and Artemia spp., as a source of pathogenic bacteria. The intestine of 

larvae fed live feed has been found to contain a higher bacterial count than larvae and 

juveniles fed formulated feed (Savas et al. 2005). However, the quantity of bacteria is 

not necessarily correlated with survival (Munro et al. 1994, Verner-Jeffreys et al. 

2004) but is probably more closely related to the species of bacteria involved. The 

Pseudoalteromonas-like strain LT-13 (Paper I) and the Carnobacterium sp. strain 

causing high mortality to cod larvae (Paper II) were originally isolated from an algal 

culture of Tetraselmis spp. (Torkildsen et al. 2005, Paper II, respectively). This could 

be regarded as a paradox in view of the beneficial aspects that have been reported 

regarding the addition of Tetraselmis spp. cultures; for example antibacterial activity 

(Tolomei et al. 2004, Makridis et al. 2006) and the ability to change the composition 
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of the microflora (Olsen et al. 2000, Salvesen et al. 2000). Salvesen et al. (2000) 

found that Tetraselmis sp. and Pavlova lutheri cultures had an overall low level of 

fast-growing opportunistic bacteria compared to cultures of Nannochloropsis oculata, 

Skeletonema costatum, Chaetoceros mülleri and Isochrysis galbana. Olsen et al. 

(2000) found that Tetraselmis sp. may change the gut bacterial flora in Artemia 

franciscana by reducing the number of haemolytic bacteria. By feeding the Artemia to 

first-feeding halibut larvae, this change in microflora was transferred to the larvae. 

Commercial enrichments used in the production of live feed have been suggested to 

influence the growth rate of pathogenic bacteria. Korsnes et al. (2006) isolated Vibrio 

anguillarum from cod, Gadus morhua, larvae, fed rotifers enriched with a selection of 

four commercial enrichment diets. Verdonck et al. (1997) identified V. anguillarum in 

rotifer cultures. However this finding could not be related to mortality as the V. 

anguillarum strains were identified as belonging to serotypes not associated with 

disease. 

It should be noted that identification, based on 16S rDNA analysis, of the cod larval 

pathogenic strain as Carnobacterium sp. may not be correct (Paper II). 

Carnobacterium sp. is Gram-positive while the isolate identified as Carnobacterium 

sp., stained Gram-negative and were weakly haemolytic.  

Vibrio infections 

Vibrio infections cause substantial losses in marine aquaculture. Vibrio anguillarum 

and Vibrio splendidus are often associated with disease in bivalve and marine fish 

farms (reviewed by Paillard et al. 2004, and Toranzo et al. 2005, respectively).  

Vibrio anguillarum  

Paper II adds information to support the theory that unknown serotypes of V. 

anguillarum may be responsible for vibriosis outbreaks in marine fish farms, as has 

recently been suggested by Mikkelsen et al. (2007). The attempt to serotype the four 

pathogenic strains identified as V. anguillarum through phenotypic and genotypic 

analysis gave inconclusive results (Paper II). Because of the wide variety of both 
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virulent and avirulent strains of V. anguillarum that have been isolated (Austin et al. 

1995), the thorough identification and characterisation of strains involved in 

outbreaks of vibriosis should be emphasised in terms of vaccine development.   

Bath challenge experiments with V. anguillarum HI-610 strain serotype O2α have 

resulted in significant increases in mortality (Samuelsen & Bergh 2004, Vik-Mo et al. 

2005, Seljestokken et al. 2006, Papers II, III, V). In spite of this, little pathology and 

few bacterial cells were observed during the immunohistochemical examinations 

(Papers III, V). Intestinal damage and loss of erythrocytes are common during 

bacterial infection but variations are reported in both fish larvae and fry (reviewed by 

Ringø et al. 2007). It has been shown that V. anguillarum serotype O2 does not 

adhere to mucus as other fish pathogenic bacteria (Knudsen et al. 1999). This may 

explain why histological and immunohistological findings in Papers III, IV and V 

showed free bacterial cells in the lumen, whereas few were attached to the brush 

border in the gastrointestinal. Supernatant taken from cultures of V. anguillarum or V. 

anguillarum-like strains contain extracellular products (ECPs) known to be toxic to 

Chilean scallop, Argopecten purpuratus, and turbot larvae (Riquelme et al. 1995, 

Planas et al. 2005, respectively). This suggests that toxins are killing the larvae. This 

was also suggested to be the case in the scallop larval experiment based on 

observations of pathology and positive immunostaining in larval tissue, in spite of the 

absence of observations of free bacterial cells (Paper I). Bacteria may also be 

degraded, causing positive staining.  

Differences in susceptibility to serotypes of V. anguillarum were observed among 

cod, halibut and turbot larvae (Paper V). Given that different serotypes of V. 

anguillarum are associated with different species of fish (Pedersen et al. 1999), this is 

not a unique finding. On the other hand, knowledge about such differences in larval 

stages, before a specific immune system has developed, is scarce. The portal of entry 

for V. anguillarum has been debated (Baudin Laurencin & Germon 1987, Kanno et al. 

1989, Smith et al. 2004). This study did not provide conclusive results regarding the 

portal of entry for V. anguillarum strain HI-610 (Paper III), but it seems likely that 
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the bacterium is capable of surviving inside the gastrointestinal tract without causing 

disease (Papers III –V). In contrast to the O2α serotype strain, the O1 serotype 

showed extended pathology and necrotic tissue in the cod and halibut larvae 

examined. Dermis and muscular tissue in addition to the head area were most severely 

affected (Paper V). Grisez et al. (1996) reported septicaemia in turbot larvae exposed 

to V. anguillarum serotype O1 embedded in Artemia. Severe pathology caused by the 

O1 serotype was also observed in newly hatched spotted wolfish, Anarhichas minor 

(Ringø et al. 2006). However, these two studies did not include serotype O2α. The 

observed differences in infection seem to be linked to serotype rather than species, 

indicating that the two serotypes display different strategies for host infection. 

Vibrio splendidus 

Vibrio splendidus strains were originally isolated as a non-pathogenic environmental 

bacteria (Reviewed by Thompson et al. 2004b). It has however been shown that V. 

splendidus is pathogenic to both molluscs (Nicolas et al. 1996, Sugumar et al. 1998, 

Lacoste et al. 2001a, Le Roux et al. 2002, Gay et al. 2004, Gómez-León et al. 2005) 

and fish (Jensen et al. 2003, Thomson et al. 2005, Bergh & Samuelsen 2007, Paper 

IV) on several occasions. Before the experiment described in Paper I, Torkildsen et 

al. (2005) verified a V. splendidus-like strain, LT-06, as being pathogenic to Great 

scallop larvae in a Norwegian hatchery. These studies demonstrate V. splendidus as a 

worldwide problem, also in marine larval cultures.  

The V. splendidus strain isolated from the diseased cod larvae (paper IV) seems to be 

serologically similar to the LT-06 strain. The antiserum against the LT-06 strain 

(Paper I) gave positive immunostaining of the cod larval isolate (Paper IV). Further 

studies are needed to verify this V. splendidus strain as pathogenic, i.e. challenge 

studies, and to characterise the differences between the two isolates. Preliminary 

results have revealed 99-100% similarity between the gyrB sequences of the two 

isolates (data not shown). The V. splendidus isolate used in the susceptibility study 

did not cause mortality to either turbot, cod or halibut larvae (Paper V). This 



 49 

seemingly avirulent V. splendidus isolate should be implemented in the further studies 

suggested above. 

Pseudoalteromonas sp. and Vibrio logei – opportunists or just secondary 

pathogens? 

The incidents that led to the inclusion of the Pseudolateromonas-like strain LT-13 

and Vibrio logei strains in this study (Papers I, II, IV) were the challenge experiment 

by Torkildsen et al. (2005) and the frequent isolation of V. logei in cod hatcheries 

suffering high mortality (Egil Karlsbakk, Institute of Marine Research, Pers. Comm.). 

Both bacteria were associated with mortality in larval cultures. However, the limited 

mortality observed in these experiments could not be related to the bacterial challenge 

(Papers I, II, IV). In both scallop larvae and cod larvae immunohistochemical 

examinations showed the presence of LT-13 and V. logei (Papers I and IV, 

respectively), but no indications of infection was observed. To support this, an 

experiment performed on cod (15 g) challenged by an intraperitoneal injection with V. 

logei (cell concentration 1x10
8
), resulted in death of only two out of 30 fish (Nylund 

et al. 2006). Moreover, a bath challenge experiment on cod (approximately 2.6 g) to 

test the virulence of a V. logei-like strain resulted in low mortality and the bacteria 

could not be reisolated from diseased fish (Mikkelsen et al. 2007). A study that 

monitored the presence of the LT-13 strain in a great scallop hatchery over a period of 

11 months (Sandaa et al. 2008), showed that the observations of the bacterium were 

usually related to mortality. These results indicate that V. logei and LT-13 may be 

secondary pathogens or opportunists. It should also be noted that luminous bacteria 

(e.g. V. logei) are regarded as commonly present in the intestinal tract of a variety of 

marine species (reviewed by Hansen & Olafsen 1999)  

The immunohistochemical observations of larvae challenged with V. logei showed 

that the bacterium was present in the gastrointestinal tract for a maximum of 72 hours 

post-challenge (Paper IV), suggesting that they were unable to colonise the gut. 

Similar experiments on turbot larvae showed that bacterial strains added through 

bioencapsulation in live feed display different abilities to colonise the gastrointestinal 
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tract (Makridis et al. 2000, Makridis et al. 2001). This could also be the case for the V. 

logei strain (Paper IV). 

Strains of V. logei have been identified as symbiotic to the bacterium Vibrio fisheri, 

that possesses quorum sensing (QS), in sepiolid squids (Fidopiastis et al. 1998). QS 

systems are a complex communication system used for both species-specific and 

interspecies communication among bacteria by the release of signal molecules 

(Greenberg 2003). It can therefore be speculated that V. logei possesses the same 

characteristics as its symbiont. The QS system involves regulation of gene expression 

and is activated when the signal molecules reach a threshold concentration. There is 

some evidence that QS is essential for virulence (Diggle et al. 2007, Nelson et al. 

2007). Well-known fish pathogenic bacteria such as Vibrio salmonicida (Nelson et al. 

2007), V. anguillarum (Milton et al. 1997), and Aeromonas salmonicida (Rasch et al. 

2007) posess this system. It would therefore be of interest to examine V. logei strains 

for the presence of a QS system and to determine whether this influences the role of 

the bacterium in outbreaks of disease. Taking this into consideration, it could further 

be suggested that the absence of mortality was caused by challenge doses of V. logei 

were too low or that additional bacteria need to be present.  

Stress and infection 

Opportunistic bacteria cause disease under certain conditions, such as when the host 

is stressed or the immune system is weakened. In a farming situation, where the 

animal is kept within a limited area, stress can be triggered by several factors. 

Examples of such factors are environmental changes (e.g.changes in oxygen levels, 

pollution or shifts in temperature), handling and presence of predators or high 

concentrations of algae and jelly-fish. It seems to be a general phenomenon that stress 

may induce immunosuppression (reviewed by Tort et al. 2004), which in turn could 

increase susceptibility to disease (reviewed by Magnadóttir 2006, and Ringø et al. 

2007), as shown in juvenile oysters, Crassostrea gigas (Lacoste et al. 2001b), juvenile 

sea bass, Dicentrarchus labrax (Varsamos et al. 2006) and goldfish, Carassius 

auratus (Dror et al. 2006). These aspects complicate the search for pathogenic agents 
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when it comes to in vivo testing of virulence using a challenge model. Challenge 

models are controlled environments, in which variable factors, such as rearing 

conditions, are limited to a minimum in order to ensure that the added bacterium is 

responsible for any increased mortality. Assuming that Pseudoalteromonas strain LT-

13 and V. logei are opportunists, it cannot be out ruled that under different 

circumstances the bacteria could cause disease. 
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Larval studies - methology 

Larval challenge models 

Survival in larval groups is usually unpredictable which complicates studies of early 

life stages. In the study of virulence, reliable challenge models are essential in order 

to achieve consistent and repeatable results. Challenge experiments usually contain 

one type of control, i.e. unchallenged control group replicates. However, two positive 

controls were implemented in the studies included in this thesis (i.e. Vibrio 

pectenicida (Paper I) and Vibrio anguillarum strain HI-610 serotype O2α, Paper II). 

By comparing the results to two control groups two extremes may be compared, 

thereby elucidating any intermediate results. This is particularly useful when studying 

unknown possible pathogens.  

As overviewed in Table 1 (page 27-30), either bath challenge or oral administration 

through live feed is used in larval challenge studies. This thesis utilizes a multidish 

system for bath challenge studies (Papers I-III, V) and bioencapsulation in rotifers 

for oral administration of bacteria to cod larvae (Paper IV). 

Multidish systems 

The multidish challenge model used in Papers I-III and V is based on the principle 

of using small volumes for performing animal tests. This makes it the ideal method 

for studies involving larvae.  Larvae are placed in a sterile environment without the 

possibility of aeration or feeding. The challenge system is “user-friendly” and may be 

used for a number of larval species. The model represents an “artificial environment” 

compared to the “real life” of a hatchery situation. Nevertheless, it is possible to keep 

larvae alive long enough to obtain necessary information, in this case concerning the 

virulence of a particular bacterium. As the experiments show, the bacteria verified as 

primary pathogens caused significant mortality in the course of 2-7 days post-hatch.  

The most significant benefits and disadvantages regarding the challenge method are 

listed below.  
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Benefits of using a multidish system are:  

 A highly controlled environment 

 Individual control  

 The possibility of performing screening tests with large amounts of bacteria 

 That by challenging the egg stage information regarding the bacterium‟s ability 

of being pathogenic to eggs and/or larvae is obtained  

 Less work than when working on larger fish  

 

Disadvantages of using a multidish system are: 

 That the duration of the experiments will be limited by the length of the yolk 

sac stage 

 That it is not possible to feed the larvae 

 That it is a highly artificial environment 

 

Bioencapsulation  

Bioencapsulation in live feed, i.e. rotifers and Artemia, is a method administrating 

bacteria or substances are administrated to larvae. This model has been used to test 

bacterial strains for virulence as well as in vivo probiotic abilities (see Table 1, page 

27-30 for more details). In addition, live feed (Artemia sp.) has been used for oral 

administration of immunostimulants (Skjermo & Bergh 2004). This model represents 

an environment closer to a hatchery situation than the multi dish system can simulate. 

Larvae are fed and reared in a manner comparable to those of a commercial hatchery.  

In commercial farming of marine species the green water technique is applied. This 

technique was not included in the bioencapsulation experiment (Paper IV). 

Furthermore, the tanks were small and had water exchange, and dead larvae and 

debris were easily removed. This may have produced an environment in which the 
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opportunistic bacterium V. anguillarum would not proliferate and be infectious. It 

could also be speculated whether the study should have lasted longer. However, in the 

turbot infection study of Planas et al. (2005), mortality started within 24-72 hours. 

Bioencapsulation as a challenge method, using both rotifers and Artemia, has been 

successfully performed with turbot larvae on several occasions (Makridis et al. 2000, 

Makridis et al. 2001, Planas et al. 2005, Planas et al. 2006). This indicates that the 

method needs to be further modified for cod larval experiments.  

A different approach to the bioencapsulation experiment would be to use axenic 

larvae (Munro et al. 1995) and live feed, i.e. rotifers (Tinh et al. 2006) and Artemia 

sp. (Gomez-Gil et al. 1998, Marques et al. 2004). Using axenic larvae would 

presumably limit the risk of a collapse in a control group, as experienced in the study 

described in Paper IV, and other unpredictable incidents. On the other hand, the 

collapse in the control group that resulted in the isolation of V. splendidus turned out 

to present significant input to the experiment. In addition the experiment was a useful 

reminder that even in controlled (challenge) experiments, controlling all the factors 

involved in structuring a microbial community, is complicated. Looking back, the 

axenic approach could probably have been tested prior to the cod experiment. On the 

other hand it was desirable to run the experiment in as similar a fashion to a 

commercial farming situation as possible.  

Immunohistochemistry - a useful tool in larval studies  

Studying gross pathology in larvae is difficult due to size, which means that 

examinations of tissue samples by means of histological methods are more practical. 

Various histological methods are regularly used in the detection, diagnosis and 

verification of pathogenic agents and histopathological studies (Grisez et al. 1996, 

Mortensen et al. 2005, Timur et al. 2005). Immunohistochemistry (IHC) is based on 

the principle of specific antibody-antigen binding to verify the presence of a specific 

agent. The studies that make up this thesis used IHC to verify the presence of bacteria 

after challenge (Papers I, III-V). Using IHC for this purpose also improves the 

analysis in larval challenge studies as a supplementary method to reisolation of 
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bacteria (as shown in Paper IV). Detection of the added bacterium is also vital as a 

means of validating the challenge model, as it provides information regarding the 

hosts‟ uptake of the bacterium. Polyclonal antisera were used in the 

immunohistochemical studies presented in this thesis (Papers I, III-V). Antibodies of 

this type are not as specific as the monoclonal antibodies, which could result in false 

positive immunostaining on tissue samples. However, absorption of a polyclonal 

antiserum with closely related antigens will increase the specificity of the serum (Ross 

& Boulton 1972, Knappskog et al. 1993). The polyclonal antisera used in these 

studies were absorbed with the other bacteria included in that specific study or with 

closely related bacteria (Papers I, III-V) (e.g. the anti-V. anguillarum sera were 

absorbed with other serotypes of V. anguillarum). No cross reaction were found after 

testing on bacterial smears and tissue samples (e.g. anti V. anguillarum O1 serum was 

tested for cross-reactions on bacterial smears and tissue samples containing O2a and 

O2b).  

Another limitation of using IHC and specific antisera, is that identification of other 

agents present will be at least difficult. This could result in the wrong diagnosis, for 

example if more than one pathogenic agent is present. The diagnoses of V. splendidus 

as the causative agent in cod larvae (Paper IV) however, were based on positive 

immunostaining of the bacterium in larval tissues samples as well as isolation of the 

bacterium from homogenised larvae.  

Larvae tend to have poorly differentiated and developed tissues, which complicate 

histopathological studies. Even so, IHC has been successfully used to describe 

differences in histopathology in great scallop larvae (Paper I) and fish larvae (Papers 

III-V) from different challenge regimes. 
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Larval studies - results 

The bacterium V. anguillarum strain HI-610 serotype O2α produced a significant 

increase in mortality the bath challenge experiments (Papers II, III, V). The lack of 

mortality in the “bioencapsulation experiment” was therefore not expected (Paper 

IV). The immunohistochemical examination verified the successful transfer of V. 

anguillarum and V. logei from the rotifers to the cod larvae (Paper IV). V. 

anguillarum was present in the gastrointestinal tract throughout the experiment, while 

V. logei apparently disappeared within 72 hours post-challenge. It has been verified 

that V. anguillarum orally administrated to juvenile turbot survive the passage 

through the gastrointestinal tract and proliferate in faeces (Olsson et al. 1998). This 

finding together with the immunohistochemical observations, indicates that the V. 

anguillarum strain was alive in the cod larvae (Paper IV). Dead bacteria would 

probably be either digested or expelled together with the digested food. As mentioned 

above, the minimal attachment of V. anguillarum to mucosal surfaces could be linked 

to serotype (Knudsen et al. 1999). This is in agreement with observations of larvae 

exposed to V. anguillarum by bath challenge, where few bacterial cells were seen in 

the gastrointestinal tract (Paper II). Repeating this experiment with serotype O1 

would therefore be desirable. The absence of mortality seen in the V. anguillarum 

groups could also be related to the rearing volume and water exchange. Based on the 

suggestion that that toxins were the cause of death in the small-volume, stagnant 

multidish system (Papers II, III, V), it can be speculated that the concentration of 

toxins in the tank experiment was not sufficiently high (Paper IV). 

Isolation of bacterial strains within the gastrointestinal tract requires surface 

disinfection prior to homogenisation of the whole larvae due to their small size. The 

attempt to reisolate V. anguillarum and V. logei was not successful. This indicates that 

the quantity of identified bacterial strains was too low. On the other hand, isolation of 

V. splendidus, the causative agent of the mortality in the control group, was 

successful.  
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Visual examination of immunostained larval tissue samples suggested that larvae 

infected with V. splendidus were extensively infected and large amounts of bacteria 

were observed in the gastrointestinal tract whereas larvae infected with V. 

anguillarum and V. logei were unaffected. This noticeable difference could be central 

when attempting to isolate the bacteria.  

 

Isolation and characterisation of bacterial strains 

The microflora associated with live feed and marine larval cultures is complex, 

heterogeneous and therefore complicated to study. Culture-dependant techniques are 

the most common approach, but as pointed out by Austin (2006) quantitative and 

qualitative aspects are rarely emphasised together and the relevance of such data 

could be questioned. Furthermore, the presence of anaerobic bacteria is ignored by 

most culture-dependant approaches. 

The use of various types of growth medium will broaden the selection of bacterial 

strains, resulting in a wide variety of strains (Paper II). It can also be narrowed down 

by the use of specific media, such as the Vibrio-specific medium Thiosulphate Citrate 

Bile Sucrose agar (TCBS). In search of pathogenic bacteria, growth on blood agar, to 

test for haemolytic characteristics, could help to narrow down the search. Even 

though not all pathogenic bacteria are haemolytic (i.e. Vibrio alginolyticus, Yersinia 

ruckeri Buller 2004), this is a good starting point. Adjusting the growth temperature 

in relation to the environment should also be considered. Bacterial strains may be 

sensitive to high temperatures, such as the causative agent of cold-water vibrioisis, 

Vibrio salmonicida, which has a growth optimum at 15°C and a maximum growth 

temperature of  22°C (Egidius et al. 1986). The difference in optimal growth 

temperature can be exploited to enhance the selection of particular bacterial strains by 

using variations in incubation temperature. Combinations of various incubation 

methods will also assist in the process of obtaining a pure culture of the bacterial 

strain. 
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The use of phenotypic, genotypic or serological characterisation alone rarely provides 

sufficient information to identify a bacterial strain. On the other hand, using a 

combination of the various methods provides a more reliable identification. 

Phenotypic and genotypic variations may be found among closely related isolates, as 

shown for V. splendidus-related (Le Roux et al. 2002) and Vibrio alginolyticus 

(Snoussi et al. 2008) strains. This was also found among the pathogenic V. 

anguillarum strains (HI 21412, HI 21413, HI 21414 and HI 21429) tested in Paper 

II. V. anguillarum strains are described as haemolytic when grown on blood agar 

(BA) (Buller 2004). The four strains were weakly haemolytic and did not show a clear 

zone around the colonies (Paper II). Further yellow colonies were produced on 

TCBS (Paper II). According to Buller (2004) V. anguillarum strains show variations 

in growth on TCBS. In terms of isolating pathogenic vibrios from environmental 

samples (Lotz et al. 1983), TCBS was not found to be sufficient by itself but rather a 

supplement.  

The API 20E test has been used as a phenotypic test for various fish pathogenic 

bacteria, including V. anguillarum (Austin & Austin 2007). The A/L/O test (ADH, 

LDC and ODC included in the API 20E test, respectively) identifies V. anguillarum 

strains as +/-/- (Alsina & Blanch 1994). The four strains from the screening 

experiment gave a similar A+/L-/O- profile (Paper II). Even so variations among the 

four strains were observed when using the API 20E test. HI 21413, HI 21414 and HI 

21429 tested negative for utilization of arabinose while HI 21412 tested positive. 

Further strains HI 21412, HI 21413 and HI 21414 showed variable test results for 

citrate utilization, while HI 21429 tested negative (Paper II).Variations among V. 

anguillarum isolates have been reported (Austin & Austin 2007). As reviewed by 

Popovic et al. (2007), limitations and inconsistent API results are frequently reported 

when testing marine bacteria. None-the-less it was concluded that API can be a useful 

tool when modifications are being made. As discussed above, the serological analysis 

of the four strains was inconclusive (Paper II) and further studies need to be 

performed. 
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Sequencing the 16S rRNA and gyrB genes of the four strains showed 98-99% 

similarity to various V. anguillarum isolates (Paper II). A minimum of 97% 

resemblance in gene sequence has been suggested for certain identification (Hagström 

et al. 2000, Hagström et al. 2002). Polymorphism and heterogeneity in the 16S rRNA 

gene have been reported (Dahllöf et al. 2000, Moreno et al. 2002). As reviewed by 

Thompson et al. (2004b), the 16S rRNA gene has been found to be appropriate for 

allocation of bacterial strains into families but not sufficient to allocation on the 

species level, hence the decision to use two genes. The decision to use the gyrB gene 

as an additional gene was based on the previous results suggesting that this gene 

would be a good phylogenetic marker (Le Roux et al. 2004).  
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Conclusive remarks and future perspectives  

This study has described four Vibrio anguillarum strains, isolated from moribund cod 

larvae, as highly pathogenic to cod larvae. This confirms vibriosis and V. anguillarum 

to be a problem in cod hatcheries. It has further been suggested that these strains 

belong to other serotypes than O1, O2 and O3, usually associated with disease in fish 

(Toranzo et al. 2005). The assumption of new serotypes was based on the 

inconclusive serotyping results and the fact that a recent study put forward a similar 

suggestion (Mikkelsen et al. 2007). Further biochemical, serological and phylogenetic 

studies of the four V. anguillarum isolates are needed. Such studies should include 

optima and limitations regarding growth and tests of the presence of virulence 

plasmids, in addition to a thorough serotyping scheme. In vivo virulence studies with 

these V. anguillarum strains on juvenile cod, in addition other cultured fish species, 

should be of interest for vaccine development for the aquaculture industry. 

The incident of the collapse of one of the control groups presented in Paper IV 

resulted in the suggestion of Vibrio splendidus as pathogenic to cod larvae. However 

the bacterium was only isolated form moribund larvae, hence in vivo virulence studies 

are needed to confirm the isolate as pathogenic. Such studies should also include 

immunohistochemical examinations of challenged larvae to compare the results with 

the histological findings of Paper IV. 

Few of the bacterial isolates tested for virulence caused an increase in larval morality, 

suggesting that most bacteria associated with disease are not primary pathogens. 

Further studies of bacterial populations in hatcheries, similar to those performed by 

Jensen et al. (2004) , Verner-Jeffreys et al. (2003b), Brunvold et al. (2007),  McIntoch 

et al. (2008) and Sandaa et al. (2003, 2008) are therefore needed. Thorough studies 

comparing the microflora in larval batches that experience high survival or low 

survival rates might provide more clues about the dynamics of the bacteria involved 

in larval disease. In addition, studies of the interactions between micro flora and 

abiotic parameters are vital to obtain a full picture of collapse in marine larval 

cultures. 
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Examples of abiotic parameters are:  

 water treatment and water quality  

 temperature (fluctuations) 

 handling  

 feeding regimes and nutrient value 

 

Looking at changes in the microflora in relation to such parameters, will probably 

help to optimise production protocols and limit the incidence of disease outbreaks. 

One topic identified as challenging is the nutritional value of the live feed used in 

production of both bivalve (Muller-Feuga et al. 2003b) and fish (Olsen 2004) larval 

cultures. In a hatchery situation, larval diets are based on a few food organisms, which 

could result in an inadequate nutrient composition. Protein (reviewed by Kvåle et al. 

2007) and fatty acid (Morais et al. 2007, Garcia et al. 2008) requirements of fish 

larvae are hard to meet. In rearing of halibut this is often associated with problems of 

malpigmentation and abnormal eye migration (reviewed by Hamre et al. 2007). A 

recent study of sea bass, Dicentrarchus labrax, larvae showed that diets that contain 

different levels of fish protein hydrolysates caused variations in the composition of 

larval microbiota and susceptibility to challenge with V. anguillarum (Kotzamanis et 

al. 2007). However, it was not established whether or not this was caused by 

stimulation of the immune system or antagonism between V. anguillarum and other 

bacteria. In the view of this fact, it would be of great interest to combine challenge 

and nutritional studies to investigate susceptibility to disease, i.e. to compare 

susceptibility to disease among larval groups fed a natural zooplankton diet and an 

enriched rotifer and Artemia spp. diet. 
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Final remark; The problems of the aquaculture industry can only be solved through 

close cooperation between the farmers, the authorities and research will be crucial. 

Such interdisciplinary cooperation is the only way to ensure sustainable growth of the 

marine aquaculture industry. 

 

 



 63 

Literature cited 

Actis LA, Potter SA, Crosa JH (1985) Iron regulated outer membrane protein Om2 of Vibrio 

anguillarum is encoded by virulence plasmid pjM1. Journal of Bacteriology 161:736-

742 

Actis LA, Fish W, Crosa JH, Kellerman K, Ellenberger SR, Hauser FM, Sandersloehr J 

(1986) Characterization of Anguibactin, a novel siderophore from Vibrio 

anguillarum 775 (Pjm1). Journal of Bacteriology 167:57-65 

Alabi AO, Jones DA, Latchford JW (1999) The efficacy of immersion as opposed to oral 

vaccination of Penaeus indicus larvae against Vibrio harveyi. Aquaculture 178:1-11 

Alsina M, Blanch AR (1994) A set of keys for biochemical identification of environmental 

Vibrio species. Journal of Applied Bacteriology 76:79-85 

Andersen S, Burnell G, Bergh O (2000) Flow-through systems for culturing great scallop 

larvae. Aquaculture International 8:249-257 

Anguiano-Beltran C, Searcy-Bernal R, Lizarraga-Partida ML (1998) Pathogenic effects of 

Vibrio alginolyticus on larvae and postlarvae of the red abalone Haliotis rufescens. 

Diseases of Aquatic Organisms 33:119-122 

Arndt RE, Wagner EJ (2007) Enriched artemia and probiotic diets improve survival of 

Colorado River cutthroat trout larvae and fry. North American Journal of 

Aquaculture 69:190-196 

Austin B, Alsina M, Austin DA, Blanch AR, Grimont F, Grimont PAD, Jofre J, Koblavi S, 

Larsen JL, Pedersen K, Tiainen T, Verdonck L, Swings J (1995) Identification and 

typing of Vibrio anguillarum: A comparison of different methods. Systematic and 

Applied Microbiology 18:285-302 

Austin B (2006) The bacterial microflora of fish, revised. The Scientific World Journal 

6:931-945 

Austin B, Austin D (2007) Bacterial fish pathogens - Diseases of farmed and wild 

 fish. Fourth edition, Springer and Praxis Publishing, Chichester, UK 

Batista FM, Arzul I, Pepin JF, Ruano F, Friedman CS, Boudry P, Renault T (2007) Detection 

of ostreid herpesvirus 1 DNA by PCR in bivalve molluscs: A critical review. Journal 

of Virological Methods 139:1-11 

Battaglene SC, Cobcroft JM (2007) Advances in the culture of striped trumpeter larvae: A 

review. Aquaculture 268:195-208 

Baudin Laurencin F, Germon E (1987) Experimental infection of rainbow trout, Salmo 

gairdneri R., by dipping in suspensions of Vibrio anguillarum: ways of bacterial 

penetration; influence of temperature and salinity. Aquaculture 67:203-205 

Bergh Ø, Hansen GH, Taxt RE (1992) Experimental infection of eggs and yolk-sac larvae of 

halibut, Hippoglossus hippoglossus L. Journal of Fish Diseases 15:379-391 

Bergh Ø, Naas KE, Harboe T (1994) Shift in the intestinal microflora of Atlantic halibut 

(Hippoglossus hippoglossus) larvae during first feeding. Canadian Journal of 

Fisheries and Aquatic Sciences 51:1899-1903 

Bergh Ø (1995) Bacteria associated with early life stages of halibut, Hippoglossus 

hippoglossus L., inhibit growth of a pathogenic Vibrio sp. Journal of Fish Disease 

18:31-40 

Bergh Ø, Hjeltnes B, Skiftesvik AB (1997) Experimental infection of turbot Scophthalmus 

maximus and halibut Hippoglossus hippoglossus yolk sac larvae with Aeromonas 

salmonicida subsp salmonicida. Diseases of Aquatic Organisms 29:13-20 

Bergh Ø (2000) Bacterial pathogens associated with early stages of marine fish. 8th 

International symposium on Microbial ecology Halifax, Canada:221-228 



 64 

Bergh Ø, Nilsen F, Samuelsen OB (2001) Diseases, prophylaxis and treatment of the 

Atlantic halibut Hippoglossus hippoglossus: A review. Diseases of Aquatic 

Organisms 48:57-74 

Bergh Ø, Samuelsen OB (2007) Susceptibility of corkwing wrasse Symphodus melops, 

goldsinny wrasse Ctenolabrus rupestis, and Atlantic salmon Salmo salar smolt, to 

experimental challenge with Vibrio tapetis and Vibrio splendidus isolated from 

corkwing wrasse. Aquaculture International 15:11-18 

Blanch AR, Alsina M, Simón M, Jofre J (1997) Determination of bacteria associated with 

reared turbot (Scophthalmus maximis) larvae. Journal of Applied Microbiology 

82:729-734 

Bricknell I, Dalmo RA (2005) The use of immunostimulants in fish larval aquaculture. Fish 

& Shellfish Immunology 19:457-472 

Brown C (1973) Effects of some selected bacteria on embryos and larvae of American 

oyster, Crassostrea virginica. Journal of Invertebrate Pathology 21:215-223 

Brown C (1981) A study of two shellfish pathogenic Vibrio strains isolated from a Long 

Island hatchery during a recent outbreak of disease. Journal of Shellfish Research 

1:83-87 

Brown C, Losee E (1978) Observations on natural and induced epizootics of vibriosis in 

Crassostrea virginica larvae. Journal of Invertebrate Pathology 31:41-47 

Brunvold L, Sandaa RA, Mikkelsen H, Welde E, Bleie H, Bergh Ø (2007) Characterisation 

of bacterial communities associated with early stages of intensively reared cod 

(Gadus morhua) using Denaturing Gradient Gel Electrophoresis (DGGE). 

Aquaculture 272:319-327 

Buller NB (2004) Bacteria from fish and other aquatic animals: A practical identification 

manual. CABI Publishing, Cambridge, USA 

Cai J, Han Y, Wang Z (2006a) Isolation of Vibrio parahaemolyticus from abalone (Haliotis 

diversicolor supertexta L.) postlarvae associated with mass mortalities. Aquaculture 

257:161-166 

Cai JP, Han HC, Song ZP, Li CX, Zhou J (2006b) Isolation and characterization of 

pathogenic Vibrio alginolyticus from diseased postlarval abalone, Haliotis 

diversicolor supertexta (Lischke). Aquaculture Research 37:1222-1226 

Case RJ, Boucher Y, Dahllof I, Holmstrom C, Doolittle WF, Kjelleberg S (2007) Use of 16S 

rRNA and rpoB genes as molecular markers for microbial ecology studies. Applied 

and Environmental Microbiology 73:278-288 

Cellura C, Toubiana M, Parrinello N, Roch P (2007) Specific expression of antimicrobial 

peptide and HSP70 genes in response to heat-shock and several bacterial challenges 

in mussels. Fish & Shellfish Immunology 22:340-350 

Christophersen G, Torkildsen L, van der Meeren T (2006) Effect of increased water 

recirculation rate on algal supply and post-larval performance of scallop (Pecten 

maximus) reared in a partial open and continuous feeding system. Aquacultural 

Engineering 35:271-282 

Crosa JH (1980) A plasmid associated with virulence in the marine fish pathogen Vibrio 

anguillarum specifies an iron sequestering system. Nature 284:566-568 

Dahllöf I, Baillie H, Kjelleberg S (2000) rpoB-based microbial community analysis avoids 

limitations inherent in 16S rRNA gene intraspecies heterogeneity. Applied and 

Environmental Microbiology 66:3376-3380 

Diggle SP, Griffin AS, Campbell GS, West SA (2007) Cooperation and conflict in quorum-

sensing bacterial populations. Nature 450:411-U417 



 65 

Diggles BK, Moss GA, Carson J, Anderson CD (2000) Luminous vibriosis in rock lobster 

Jasus verreauxi (Decapoda : Palinuridae) phyllosoma larvae associated with infection 

by Vibrio harveyi. Diseases of Aquatic Organisms 43:127-137 

Dror M, Sinyakov MS, Okun E, Dym M, Sredni B, Avtalion RR (2006) Experimental 

handling stress as infection-facilitating factor for the goldfish ulcerative disease. 

Veterinary Immunology and Immunopathology 109:279-287 

Dyrynda EA, Pipe RK, Ratcliffe NA (1995) Host defense mechanisms in marine invertebrate 

larvae. Fish & Shellfish Immunology 5:569-580 

Eddy SD, Jones SH (2002) Microbiology of summer flounder Paralichthys dentatus 

fingerling production at a marine fish hatchery. Aquaculture 211:9-28 

Egidius E, Wiik R, Andersen K, Hoff KA, Hjeltnes B (1986) Vibrio salmonicida Sp. Nov. A 

new fish pathogen. International Journal of Systematic Bacteriology 36:518-520 

Egidius E (1987) Vibriosis - pathogenicity and pathology - A review. Aquaculture 67:15-28 

Elston R, Leibovitz L (1980) Pathogenesis of experimental vibriosis in larval American 

oysters, Crassostrea virginica. Canadian Journal of Fisheries and Aquatic Sciences 

37:964-978 

Elston R, Humphrey K, Gee A, Cheney D, Davis J (2004) Progress in the development of 

effective probiotic bacteria for bivalve shellfish hatcheries and nurseries. Journal of 

Shellfish Research (abstracts) 32:654 

Estes RM, Friedman CS, Elston RA, Herwig RP (2004) Pathogenicity testing of shellfish 

hatchery bacterial isolates on Pacific oyster Crassostrea gigas larvae. Diseases of 

Aquatic Organisms 58:223-230 

Fidopiastis PM, von Boletzky S, Ruby EG (1998) A new niche for Vibrio logei, the 

predominant light organ symbiont of squids in the genus Sepiola. Journal of 

Bacteriology 180:59-64 

Fridgeirsson E (1978) Embryonic development of five species of gadoid fishes in Icelandic 

waters Rit Fiskideidar 5:1-68 

Fuller R (1989) Probiotics in Man and Animals. Journal of Applied Bacteriology 66:365-378 

Garcia AS, Parrish CC, Brown JA (2008) Use of enriched rotifers and Artemia during 

larviculture of Atlantic cod (Gadus morhua Linnaeus, 1758): effects on early growth, 

survival and lipid composition. Aquaculture Research 39:406-419 

Garland CD, Nash GV, Sumner CE, Mcmeekin TA (1983) Bacterial pathogens of oyster 

larvae (Crassostrea gigas) in a Tasmanian hatchery. Australian Journal of Marine 

and Freshwater Research 34:483-487 

Gatesoupe FJ (1994) Lactic acid bacteria increase the resistance of turbot larvae, 

Scophthalmus maximus, against pathogenic Vibrio. Aquatic Living Resources 7:277-

282 

Gatesoupe FJ (1997) Siderophore production and probiotic effect of Vibrio sp. associated 

with turbot larvae, Scophthalmus maximus. Aquatic Living Resources 10:239-246 

Gatesoupe FJ (1999) The use of probiotics in aquaculture. Aquaculture 180:147-165 

Gatesoupe FJ, Lambert C, Nicolas JL (1999) Pathogenicity of Vibrio splendidus strains 

associated with turbot larvae, Scophthalmus maximus. Journal of Applied 

Microbiology 87:757-763 

Gatesoupe FJ (2002) Probiotic and formaldehyde treatments of Artemia nauplii as food for 

larval pollack, Pollachius pollachius. Aquaculture 212:347-360 

Gay M, Renault T, Pons AM, Le Roux F (2004) Two Vibrio splendidus related strains 

collaborate to kill Crassostrea gigas: taxonomy and host alterations. Diseases of 

Aquatic Organisms 62:65-74 



 66 

Gestal C, Costa MM, Figueras A, Novoa B (2007) Analysis of differentially expressed genes 

in response to bacterial stimulation in hemocytes of the carpet-shell clam Ruditapes 

decussatus: Identification of new antimicrobial peptides. Gene 406:134-143 

Gibson LF, Woodworth J, George AM (1998) Probiotic activity of Aeromonas media on the 

Pacific oyster, Crassostrea gigas, when challenged with Vibrio tubiashii. 

Aquaculture 169:111-120 

Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic Diversity in Sargasso Sea 

Bacterioplankton. Nature 345:60-63 

Gomez-Gil B, Herrera-Vega MA, Abreu-Grobois FL, Roque A (1998) Bioencapsulation of 

two different Vibrio species in nauplii of the brine shrimp (Artemia franciscana). 

Applied and Environmental Microbiology 64:2318-2322 

Gómez-León J, Villamil L, Lemos ML, Novoa B, Figueras A (2005) Isolation of Vibrio 

alginolyticus and Vibrio splendidus from aquacultured carpet shell clam (Ruditapes 

decussatus) larvae associated with mass mortalities. Applied and Environmental 

Microbiology 71:98-104 

Greenberg EP (2003) Bacterial communication and group behaviour. The Journal of Clinical 

Investigation 112:1288-1290 

Grisez L, Chair M, Sorgeloos P, Ollevier F (1996) Mode of infection and spread of Vibrio 

anguillarum in turbot Scophthalmus maximus larvae after oral challenge through live 

feed. Diseases of Aquatic Organisms 26:181-187 

Hagiwara A, Suga K, Akazawa A, Kotani T, Sakakura Y (2007) Development of rotifer 

strains with useful traits for rearing fish larvae. Aquaculture 268:44-52 

Hagström A, Pinhassi J, Zweifel UL (2000) Biogeographical diversity among marine 

bacterioplankton. Aquatic Microbial Ecology 21:231-244 

Hagström A, Pommier T, Rohwer F, Simu K, Stolte W, Svensson D, Zweifel UL (2002) Use 

of 16S ribosomal DNA for delineation of marine bacterioplankton species. Applied 

and Environmental Microbiology 68:3628-3633 

Hall-Spencer JM, Pike J, Munn CB (2007) Diseases affect cold-water corals too: Eunicella 

verrucosa (Cnidaria: Gorgonacea) necrosis in SW England. Diseases of Aquatic 

Organisms 76:87-97 

Hamre K, Holen E, Moren M (2007) Pigmentation and eye migration in Atlantic halibut 

(Hippoglossus hippoglossus L.) larvae: new findings and hypotheses. Aquaculture 

Nutrition 13:65-80 

Hansen GH, Olafsen JA (1989) Bacterial colonization of cod (Gadus morhua L.) and halibut 

(Hippoglossus hippoglossus ) eggs in marine aquaculture. Applied and 

Environmental Microbiology 55:1435-1446 

Hansen GH, Strøm E, Olafsen JA (1992) Effect of different holding regimens on the 

intestinal microflora of herring (Clupea harengus) larvae. Applied and 

Environmental Microbiology 58:461-470 

Hansen GH, Olafsen JA (1999) Bacterial interactions in early life stages of marine cold 

water fish. Microbial Ecology 38:1-26 

Harwood VJ, Gandhi JP, Wright AC (2004) Methods for isolation and confirmation of 

Vibrio vulnificus from oysters and environmental sources: A review. Journal of 

Microbiological Methods 59:301-316 

Hellberg H, Colcuhoun D, Hansen H, Nilsen H (2008) Helsesituasjonen hos marin fisk 2007. 

 In: Helsesituasjonen hos oppdrettsfisk 2007. pp. 14-19. Veterinærinstituttet, Norway, 

www.vetinst.no,  

http://www.vetinst.no/


 67 

Hershberger PK, Gregg J, Pacheco C, Winton J, Richard J, Traxler G (2007) Larval Pacific 

herring, Clupea pallasii (Valenciennes), are highly susceptible to viral haemorrhagic 

septicaemia and survivors are partially protected after their metamorphosis to 

juveniles. Journal of Fish Diseases 30:445-458 

Hjelm M, Bergh Ø, Riaza A, Nielsen J, Melchiorsen J, Jensen S, Duncan H, Ahrens P, 

Birkbeck H, Gram L (2004) Selection and identification of autochthonous potential 

probiotic bacteria from turbot larvae (Scophthalmus maximus) rearing units. 

Systematic and Applied Microbiology 27:360-371 

Hovgaard P, Mortensen S, Strand Ø (2001) Skjell - biologi og dyrking. Kystnæringen 

 Forlag og Bokklubb AS, Bergen, Norway 

Huys L, Dhert P, Robles R, Ollevier F, Sorgeloos P, Swings J (2001) Search for beneficial 

bacterial strains for turbot (Scophthalmus maximus L.) larviculture. Aquaculture 

193:1-2 

Jeffries VE (1982) Three Vibrio strains pathogenic to larvae of Crassostrea gigas and Ostrea 

edulis. Aquaculture 29:201-226 

Jensen S, Samuelsen OB, Andersen K, Torkildsen L, Lambert C, Choquet G, Paillard C, 

Bergh Ø (2003) Characterization of strains of Vibrio splendidus and V. tapetis 

isolated from corkwing wrasse Symphodus melops suffering vibriosis. Diseases of 

Aquatic Organisms 53:25-31 

Jensen S, Øvreas L, Bergh Ø, Torsvik V (2004) Phylogenetic analysis of bacterial 

communities associated with larvae of the Atlantic halibut propose succession from a 

uniform normal flora. Systematic and Applied Microbiology 27:728-736 

Johansen R, Sommerset I, Torud B, Korsnes K, Hjortaas MJ, Nilsen F, Nerland AH, 

Dannevig BH (2004) Characterization of nodavirus and viral encephalopathy and 

retinopathy in farmed turbot, Scophthalmus maximus (L.). Journal of Fish Diseases 

27:591-601 

Jones A (1972) Studies on egg development and larval rearing of turbot, Scophthalmus 

maximus L, and brill, Scophthalmus rhombus L, in laboratory. Journal of the Marine 

Biological Association of the United Kingdom 52:965-& 

Kanno T, Nakai T, Muroga K (1989) Mode of transmission of vibriosis among ayu 

Plecoglossus altivelis. Journal of Aquatic Animal Health 1:2-6 

Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L (2008) Probiotics in aquaculture: 

The need, principles and mechanisms of action and screening processes. Aquaculture 

274:1-14 

Kim DH, Han HJ, Kim SM, Lee DC, Park SI (2004) Bacterial enteritis and the development 

of the larval digestive tract in olive flounder, Paralichthys olivaceus (Temminck & 

Schlegel). Journal of Fish Diseases 27:497-505 

Kjønhaug AF (2008) Produksjon av oppdrettsfisk 2007 In: Kyst og Havbruk. pp. 108-112. 

 Eds. Boxaspen KK, Dahl E, Gjøsæter J, Sunnset BH. Havforskningsinstituttet, 

Bergen, Norway. 

Kjørsvik E, Pittman K, Pavlov D (2004) From fertilisation to the end of 

 metamorphosis –Functional development. In: Culture of cold-water marine fish. 

pp.204- 277. Eds. Moksness E, Kjørsvik E, Olsen Y. Blackwell Publishing, Oxford, 

UK. 

Knappskog DH, Rodseth OM, Slinde E, Endresen C (1993) Immunochemical analyses of 

Vibrio anguillarum strains isolated from cod, Gadus morhua L, suffering from 

vibriosis. Journal of Fish Diseases 16:327-338 



 68 

Knudsen G, Sørum H, Press CM, Olafsen JA (1999) In situ adherence of Vibrio spp. to 

cryosections of Atlantic salmon, Salmo salar L., tissue. Journal of Fish Diseases 

22:409-418 

Korsnes K, Nicolaisen O, Skår CK, Nerland AH, Bergh Ø (2006) Bacteria in the gut of 

juvenile cod Gadus morhua fed live feed enriched with four different commercial 

diets. ICES Journal of Marine Science 63:296-301 

Kotzamanis YP, Gisbert E, Gatesoupe FJ, Infante JZ, Cahu C (2007) Effects of different 

dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut 

microbiota, and resistance to Vibrio anguillarum in European sea bass 

(Dicentrarchus labrax) larvae. Comparative Biochemistry and Physiology a 

Molecular and Integrative Physiology 147:205-214 

Kvåle A, Nordgreen A, Tonheim SK, Hamre K (2007) The problem of meeting dietary 

protein requirements in intensive aquaculture of marine fish larvae, with emphasis on 

Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture Nutrition 13:170-185 

Lacoste A, Jalabert F, Malham S, Cueff A, Gelebart F, Cordevant C, Lange M, Poulet SA 

(2001a) A Vibrio splendidus strain is associated with summer mortality of juvenile 

oysters Crassostrea gigas in the Bay of Morlaix (North Brittany, France). Diseases of 

Aquatic Organisms 46:139-145 

Lacoste A, Jalabert F, Malham SK, Cueff A, Poulet SA (2001b) Stress and stress-induced 

neuroendocrine changes increase the susceptibility of juvenile oysters (Crassostrea 

gigas) to Vibrio splendidus. Applied and Environmental Microbiology 67:2304-2309 

Lamas J, Santos Y, Bruno D, Toranzo AE, Anadon R (1994a) A comparison of pathological 

changes caused by Vibrio anguillarum and its extracellular products in rainbow trout 

(Oncorhynchus mykiss). Fish Pathology 29:79-89 

Lamas J, Santos Y, Bruno DW, Toranzo AE, Oanadon R (1994b) Nonspecific cellular 

responses of rainbow trout to Vibrio anguillarum and its extracellular products 

(ECPs). Journal of Fish Biology 45:839-854 

Lambert C, Nicolas JL, Cilia V, Corre S (1998) Vibrio pectenicida sp. nov., a pathogen of 

scallop (Pecten maximus) larvae. International Journal of Systematic Bacteriology 

48:481-487 

Lange SR, Bambir S, Dodds AW, Magnadóttir B (2004) The ontogeny of complement 

component C3 in Atlantic cod (Gadus morhua L.) - an immunohistochemical study. 

Fish & Shellfish Immunology 16:359-367 

Larsen JL, Pedersen K, Dalsgaard I (1994) Vibrio anguillarum serovars associated with 

vibriosis in fish. Journal of Fish Diseases 17:259-267 

Larsen MH, Blackburn N, Larsen JL, Olsen JE (2004) Influences of temperature, salinity and 

starvation on the motility and chemotactic response of Vibrio anguillarum. 

Microbiology-Sgm 150:1283-1290 

Le Pennec M, Paugam A, Le Pennec G (2003) The pelagic life of the pectinid Pecten 

maximus - A review. ICES Journal of Marine Science 60:211-223 

Le Roux F, Gay M, Lambert C, Waechter M, Poubalanne S, Chollet B, Nicolas JL, Berthe F 

(2002) Comparative analysis of Vibrio splendidus-related strains isolated during 

Crassostrea gigas mortality events. Aquatic Living Resources 15:251-258 

Le Roux F, Gay M, Lambert C, Nicolas JL, Gouy M, Berthe F (2004) Phylogenetic study and 

identification of Vibrio splendidus-related strains based on gyrB gene sequences. 

Diseases of Aquatic Organisms 58:143-150 

LeDeuff RM, Renault T, Gerard A (1996) Effects of temperature on herpes-like virus 

detection among hatchery reared larval Pacific oyster Crassostrea gigas. Diseases of 

Aquatic Organisms 24:149-157 



 69 

Lemos ML, Salinas P, Toranzo AE, Barja JL, Crosa JH (1988) Chromosome mediated iron 

uptake system in pathogenic strains of Vibrio anguillarum. Journal of Bacteriology 

170:1920-1925 

Lin CC, Lin JHY, Chen MS, Yang HL (2007) An oral nervous necrosis virus vaccine that 

induces protective immunity in larvae of grouper (Epinephelus coioides). 

Aquaculture 268:265-273 

Lodeiros C, Bolinches J, Dopazo CP, Toranzo AE (1987) Bacillary necrosis in hatcheries of 

Ostrea edulis in Spain. Aquaculture 65:15-29 

Lotz MJ, Tamplin ML, Rodrick GE (1983) Thiosulfate citrate bile salts sucrose agar and its 

selectivity for clinical and marine Vibrio organisms. Annals of Clinical and 

Laboratory Science 13:45-48 

Luna-González A, Maeda-Martínez AN, Sainz JC, Ascencio-Valle F (2002) Comparative 

susceptibility of veliger larvae of four bivalve mollusks to a Vibrio alginolyticus 

strain. Diseases of Aquatic Organisms 49:221-226 

Macdonell MT, Colwell RR (1985) Phylogeny of the Vibrionaceae, and recommendation for 

2 new genera, Listonella and Shewanella. Systematic and Applied Microbiology 

6:171-182 

Magnadóttir B, Lange S, Steinarsson A, Gudmundsdóttir S (2004) The ontogenic 

development of innate immune parameters of cod (Gadus morhua L.). Comparative 

Biochemistry and Physiology B-Biochemistry & Molecular Biology 139:217-224 

Magnadóttir B, Lange S, Gudmundsdóttir S, Bogwald J, Dalmo RA (2005) Ontogeny of 

humoral immune parameters in fish. Fish & Shellfish Immunology 19:429-439 

Magnadóttir B (2006) Innate immunity of fish (overview). Fish & Shellfish Immunology 

20:137-151 

Magnadóttir B, Gudmundsdóttir BK, Lange S, Steinarsson A, Oddgeirsson M, Bowden T, 

Bricknell I, Dalmo RA, Gudmundsdóttir S (2006) Immunostimulation of larvae and 

juveniles of cod, Gadus morhua L. Journal of Fish Diseases 29:147-155 

Magnesen T, Bergh Ø, Christophersen G (2006) Yields of great scallop, Pecten maximus, 

larvae in a commercial flow-through rearing system in Norway. Aquaculture 

International 14:377-394 

Makridis P, Fjellheim JA, Skjermo J, Vadstein O (2000) Colonization of the gut in first 

feeding turbot by bacterial strains added to the water or bioencapsulated in rotifers. 

Aquaculture International 8:367-380 

Makridis P, Bergh Ø, Skjermo J, Vadstein O (2001) Addition of bacteria bioencapsulated in 

Artemia metanauplii to a rearing system for halibut larvae. Aquaculture International 

9:225-235 

Makridis P, Costa RA, Dinis MT (2006) Microbial conditions and antimicrobial activity in 

cultures of two microalgae species, Tetraselmis chuii and Chlorella minutissima, and 

effect on bacterial load of enriched Artemia metanauplii. Aquaculture 255:76-81 

Mangor-Jensen A, Adoff G (1987) Drinking activity of newly hatched larvae of cod Gadus 

morhua L. Fish Physiology and Biochemistry 3:99-103 

Marques A, Francois JM, Dhont J, Bossier P, Sorgeloos P (2004) Influence of yeast quality 

on performance of gnotobiotically grown Artemia. Journal of Experimental Marine 

Biology and Ecology 310:247-264 

McIntosh D, Ji B, Forward BS, Puvanendran V, Boyce D, Ritchie R (2008) Culture-

independent characterization of the bacterial populations associated with cod (Gadus 

morhua L.) and live feed at an experimental hatchery facility using denaturing 

gradient gel electrophoresis. Aquaculture 275:42-50 



 70 

Mikkelsen H, Lund V, Martinsen LC, Gravningen K, Schrøder MB (2007) Variability among 

Vibrio anguillarum O2 isolates from Atlantic cod (Gadus morhua L.): 

Characterisation and vaccination studies. Aquaculture 266:16-25 

Milton DL, O'Toole R, Horstedt P, WolfWatz H (1996) Flagellin A is essential for the 

virulence of Vibrio anguillarum. Journal of Bacteriology 178:1310-1319 

Milton DL, Hardman A, Camara M, Chhabra SR, Bycroft BW, Stewart GSAB, Williams P 

(1997) Quorum sensing in Vibrio anguillarum: Characterization of the vanI/vanR 

locus and identification of the autoinducer N-(3-oxodecanoyl)-L-homoserine lactone. 

Journal of Bacteriology 179:3004-3012 

Mizuki H, Washio S, Morita T, Itoi S, Sugita H (2006) Distribution of a fish pathogen 

Listonella anguillarum in the Japanese flounder Paralichthys olivaceus hatchery. 

Aquaculture 261:26-32 

Morais S, Conceição LEC, Rønnestad I, Koven W, Cahu C, Infante JLZ, Dinis MT (2007) 

Dietary neutral lipid level and source in marine fish larvae: Effects on digestive 

physiology and food intake. Aquaculture 268:106-122 

Moreno C, Romero J, Espejo RT (2002) Polymorphism in repeated 16S rRNA genes is a 

common property of type strains and environmental isolates of the genus Vibrio. 

Microbiology-Sgm 148:1233-1239 

Mortensen S, Harkestad LS, Stene RO, Renault T (2005) Picoeucaryot alga infecting blue 

mussel Mytilus edulis in southern Norway. Diseases of Aquatic Organisms 63:25-32 

Muller-Feuga A, Moal J, Kaas R (2003a) The microalgae of aquaculture. In: Live feeds in 

 marine aquaculture. pp. 206-252. Eds. Støttrup JG, McEvoy LA. Blackwell Science 

Publishing, Oxford, UK 

Muller-Feuga A , Robert R, Cahu C, Robin J, Divanach P (2003b) Uses of microalgae in 

 aquaculture. In: Live feeds in marine aquaculture. pp. 253-299. Eds. Støttrup JG, 

McEvoy LA. Blackwell Science Publishing, Oxford, UK 

Munro PD, Barbour A, Birkbeck TH (1994) Comparison of the gut bacterial flora of start-

feeding larval turbot reared under different conditions. Journal of Applied 

Bacteriology 77:560-566 

Munro PD, Barbour A, Birkbeck TH (1995) Comparison of the growth and survival of larval 

turbot in the absence of culturable bacteria with those in the presence of Vibrio 

anguillarum, Vibrio alginolyticus, or a marine Aeromonas sp. Applied and 

Environmental Microbiology 61:4425-4428 

Muroga K, Yasunobu H, Okada N, Masumura K (1990) Bacterial enteritis of cultured 

flounder Paralichthys olivaceus larvae. Diseases of Aquatic Organisms 9:121-125 

Muroga K (2001) Viral and bacterial diseases of marine fish and shellfish in Japanese 

hatcheries. Aquaculture 202:23-44 

Nakamura A, Takahashi KG, Mori K (1999) Vibriostatic bacteria isolated from rearing 

seawater of oyster brood stock: Potentiality as biocontrol agents for vibriosis in oyster 

larvae. Fish Pathology 34:139-144 

Nelson EJ, Tunsjø HS, Fidopiastis PM, Sørum H, Ruby EG (2007) A novel lux operon in the 

cryptically bioluminescent fish pathogen Vibrio salmonicida is associated with 

virulence. Applied and Environmental Microbiology 73:1825-1833 

Nerland AH, Skaar C, Eriksen TB, Bleie H (2007) Detection of nodavirus in seawater from 

rearing facilities for Atlantic halibut Hippoglossus hippoglossus larvae. Diseases of 

Aquatic Organisms 73:201-205 

Nicolas JL, Ansquer D, Cochard JC (1992) Isolation and characterization of a pathogenic 

bacterium specific to manila clam Tapes philippinarum larvae. Diseases of Aquatic 

Organisms 14:153-159 



 71 

Nicolas JL, Corre S, Gauthier G, Robert R, Ansquer D (1996) Bacterial problems associated 

with scallop Pecten maximus larval culture. Diseases of Aquatic Organisms 27:67-76 

Nishiguchi MK, Ruby EG, McFall-Ngai MJ (1998) Competitive dominance among strains of 

luminous bacteria provides an unusual form of evidence for parallel evolution in 

sepiolid squid-vibrio symbioses. Applied and Environmental Microbiology 64:3209-

3213 

Nylund A, Ottem KF, Watanabe K, Karlsbakk E, Krossøy B (2006) Francisella sp. (Family 

Francisellaceae) causing mortality in Norwegian cod (Gadus morhua) farming. 

Archives of Microbiology 185:383-392 

Olafsen JA, Hansen GH (1992) Intact antigen uptake in intestinal epithelial cells of marine 

fish larvae. Journal of Fish Biology 40:141-156 

Olafsen JA (2001) Interactions between fish larvae and bacteria in marine aquaculture. 

Aquaculture 200:223-247 

 Olsen AI, Olsen Y, Attramadal Y, Christie K, Birkbeck TH, Skjermo J, Vadstein O (2000) 

Effects of short term feeding of microalgae on the bacterial flora associated with 

juvenile Artemia franciscana. Aquaculture 190:11-25 

Olsen Y (2004) Live food technology of cold-water marine fish larvae. In: Culture of cold- 

water marine fish. pp. 73-128. Eds. Moksness E, Kjørsvik E, Olsen Y. Blackwell 

Publishing, Oxford, UK. 

Olsen Y, van der Meeren, Reitan KI (2004) First feeding technology. In: Culture of cold- 

water marine fish. pp. 279-336. Eds. Moksness E, Kjørsvik E, Olsen Y. Blackwell 

Publishing, Oxford, UK. 

Olsson JC, Jöborn A, Westerdahl A, Blomberg L, Kjelleberg S, Conway PL (1998) Survival, 

persistence and proliferation of Vibrio anguillarum in juvenile turbot, Scophthalmus 

maximus (L.), intestine and faeces. Journal of Fish Diseases 21:1-9 

Paillard C, Le Roux F, Borreg JJ (2004) Bacterial disease in marine bivalves, a review of 

recent studies: Trends and evolution. Aquatic Living Resources 17:477-498 

Palmer PJ, Burke MJ, Palmer CJ, Burke JB (2007) Developments in controlled green-water 

larval culture technologies for estuarine fishes in Queensland, Australia and 

elsewhere. Aquaculture 272:1-21 

Payne M (2006) Towards successful aquaculture of the Tropical Rock Lobster, Panulirus 

 ornatus: The microbiology of larval rearing. Ph.D Thesis. James Cook University, 

Brisbane, Australia   

Pedersen K, Grisez L, van Houdt R, Tiainen T, Ollevier F, Larsen JL (1999) Extended 

serotyping scheme for Vibrio anguillarum with the definition and characterization of 

seven provisional O-serogroups. Current Microbiology 38:183-189 

Planas M, Perez-Lorenzo M, Vazquez JA, Pintado J (2005) A model for experimental 

infections with Vibrio (Listonella) anguillarum in first feeding turbot (Scophthalmus 

maximus L.) larvae under hatchery conditions. Aquaculture 250:232-243 

Planas M, Perez-Lorenzo M, Hjelm M, Gram L, Fiksdal IU, Bergh Ø, Pintado J (2006) 

Probiotic effect in vivo of Roseobacter strain 27-4 against Vibrio (Listonella) 

anguillarum infections in turbot (Scophthalmus maximus L.) larvae. Aquaculture 

255:323-333 

Popovic NT, Coz-Rakovac R, Strunjak-Perovic I (2007) Commercial phenotypic tests (API 

20E) in diagnosis of fish bacteria: A review. Veterinarni Medicina 52:49-53 

Prayitno SB, Latchford JW (1995) Experimental Infections of crustaceans with luminous 

bacteria related to Photobacterium and Vibrio - Effect of salinity and pH on 

infectiosity. Aquaculture 132:105-112 



 72 

Rasch M, Kastbjerg VG, Bruhn JB, Dalsgaard I, Givskov M, Gram L (2007) Quorum 

sensing signals are produced by Aeromonas salmonicida and quorum sensing 

inhibitors can reduce production of a potential virulence factor. Diseases of Aquatic 

Organisms 78:105-113 

Reitan KI, Rainuzzo JR, Øie G, Olsen Y (1997) A review of the nutritional effects of algae 

in marine fish larvae. Aquaculture 155:207-221 

Reitan KI (2005) Produksjon av levende fôr. In: Oppdrett av torsk- næring i framtid. pp. 121- 

142. Eds. Otterå H, Taranger GL, Borthen J. Norsk fiskeoppdrett, Valdres trykkeri, 

Fagernes, Norway 

Ringø E, Birkbeck TH (1999) Intestinal microflora of fish larvae and fry. Aquaculture 

Research 30:73-93 

Ringø E, Mikkelsen H, Kaino T, Olsen RE, Mayhew TM, Myklebust R (2006) Endocytosis 

of indigenous bacteria and cell damage caused by Vibrio anguillarum in the foregut 

and hindgut of spotted wolffish (Anarhichas minor Olafsen) fry: An electron 

microscopical study. Aquaculture Research 37:647-651 

Ringø E, Myklebust R, Mayhew TM, Olsen RE (2007) Bacterial translocation and 

pathogenesis in the digestive tract of larvae and fry. Aquaculture 268:251-264 

Riquelme C, Hayashida G, Toranzo AE, Vilches J, Chavez P (1995) Pathogenicity studies on 

a Vibrio anguillarum-related (VAR) strain causing an epizootic in Argopecten 

purpuratus larvae cultured in Chile. Diseases of Aquatic Organisms 22:135-141 

Riquelme C, Hayashida G, Araya R, Uchida A, Satomi M, Ishida Y (1996a) Isolation of a 

native bacterial strain from the scallop Argopecten purpuratus with inhibitory effects 

against pathogenic vibrios. Journal of Shellfish Research 15:369-374 

Riquelme C, Toranzo AE, Barja JL, Vergara N, Araya R (1996b) Association of Aeromonas 

hydrophila and Vibrio alginolyticus with larval mortalities of scallop (Argopecten 

purpuratus). Journal of Invertebrate Pathology 67:213-218 

Riquelme C, Araya R, Vergara N, Rojas A, Guaita M, Candia M (1997) Potential probiotic 

strains in the culture of the Chilean scallop Argopecten purpuratus (Lamarck, 1819). 

Aquaculture 154:17-26 

Riquelme C, Araya R, Escribano R (2000) Selective incorporation of bacteria by Argopecten 

purpuratus larvae: Implications for the use of probiotics in culturing systems of the 

Chilean scallop. Aquaculture 181:25-36 

Riquelme CE, Jorquera MA, Rojas AI, Avendano RE, Reyes N (2001) Addition of inhibitor-

producing bacteria to mass cultures of Argopecten purpuratus larvae (Lamarck, 

1819). Aquaculture 192:111-119 

Ross GW, Boulton MG (1972) Improvement of specificity of an antiserum to beta lactamase 

by absorption with a mutant which does not produce enzyme. Journal of Bacteriology 

112:1435-& 

Ruiz-Ponte C, Samain JF, Sanchez JL, Nicolas JL (1999) The benefit of a Roseobacter 

species on the survival of scallop larvae. Marine Biotechnology 1:52-59 

Russel FS (1976) The eggs and planktonic stages of British marine fishes. pp. 408. Academic 

 Press. London, UK 

Salvesen I, Reitan KI, Skjermo J, Øie G (2000) Microbial environments in marine 

larviculture: Impacts of algal growth rates on the bacterial load in six microalgae. 

Aquaculture International 8:275-287 

Samuelsen OB, Bergh Ø (2004) Efficacy of orally administered florfenicol and oxolinic acid 

for the treatment of vibriosis in cod (Gadus morhua). Aquaculture 235:27-35 



 73 

Sandaa RA, Magnesen T, Torkildsen L, Bergh Ø (2003) Characterisation of the bacterial 

community associated with early stages of great scallop (Pecten maximus), using 

denaturing gradient gel electrophoresis (DGGE). Systematic and Applied 

Microbiology 26:302-311 

Sandaa RA, Brunvold L, Magnesen T, Bergh Ø (2008) Monitoring the opportunistic bacteria 

Pseodoalteromonas sp. LT-13 in a great scallop, Pecten maximus hatchery. 

Aquaculture 276:14-21 

Savas S, Kubilay A, Basmaz N (2005) Effect of bacterial load in feeds on intestinal 

microflora of seabream (Sparus aurata) larvae and juveniles. Israeli Journal of 

Aquaculture-Bamidgeh 57:3-9 

Schrøder MB, Flano E, Pilstrom L, Jørgensen TO (1998) Localisation of Ig heavy chain 

mRNA positive cells in Atlantic cod (Gadus morhua L) tissues identified by in situ 

hybridisation. Fish & Shellfish Immunology 8:565-576 

Sedano J, Zorrilla I, Morinigo MA, Balebona MC, Vidaurreta A, Bordas MA, Borrego JJ 

(1996) Microbial origin of the abdominal swelling affecting farmed larvae of gilt-

head seabream, Sparus aurata L. Aquaculture Research 27:323-333 

Seljestokken B, Bergh Ø, Melingen GO, Rudra H, Olsen RH, Samuelsen OB (2006) Treating 

experimentally induced vibriosis (Listonella anguillarum) in cod, Gadus morhua L., 

with florfenicol. Journal of Fish Diseases 29:737-742 

Silva-Rubio A, Avendano-Herrera R, Jaureguiberry B, Toranzo AE, Magarinos B (2008) 

First description of serotype O3 in Vibrio anguillarum strains isolated from 

salmonids in Chile. Journal of Fish Diseases 31:235-239 

Skiftesvik AB, Bergh Ø (1993) Changes in behavior of Atlantic halibut (Hippoglossus 

hippoglossus) and turbot (Scophthalmus maximus) yolk-sac larvae induced by 

bacterial infections. Canadian Journal of Fisheries and Aquatic Sciences 50:2552-

2557 

Skjermo J, Salvesen I, Øie G, Olsen Y, Vadstein O (1997) Microbially matured water: a 

technique for selection of a non-opportunistic bacterial flora in water that may 

improve performance of marine larvae. Aquaculture International 5:13-28  

Skjermo J, Vadstein O (1999) Techniques for microbial control in the intensive rearing of 

marine larvae. Aquaculture 177:333-343 

Skjermo J, Bergh Ø (2004) High-M alginate immunostimulation of Atlantic halibut 

(Hippoglossus hippoglossus L.) larvae using Artemia for delivery, increases 

resistance against vibriosis. Aquaculture 238:107-113 

Skjermo J, Storseth TR, Hansen K, Handa A, Oie G (2006) Evaluation of beta-(1 -> 3, 1 -> 

6)-glucans and high-M alginate used as immunostimulatory dietary supplement 

during first feeding and weaning of Atlantic cod (Gadus morhua L.). Aquaculture 

261:1088-1101 

Smith PA, Rojas ME, Guajardo A, Contreras J, Morales MA, Larenas J (2004) Experimental 

infection of coho salmon Oncorhynchus kisutch by exposure of skin, gills and 

intestine with Piscirickettsia salmonis. Diseases of Aquatic Organisms 61:53-57 

Snoussi M, Hailaoui H, Noumii E, Zanetti S, Bakhrouf A (2008) Phenotypic and genetic 

diversity of Vibrio alginolyticus strains recovered from juveniles and older Sparus 

aurata reared in a Tunisian marine farm. Annals of Microbiology 58:141-146 

Sommerset I, Krossøy B, Biering E, Frost P (2005) Vaccines for fish in aquaculture. Expert  

Review of Vaccines 4:89-101 

Stoss J, Kamre K, Otterå H (2004) Weaning and nursery. In: Culture of cold-water marine 

fish. pp. 337-362. Eds. Moksness E, Kjørsvik E, Olsen Y. Blackwell Publishing, 

Oxford, UK. 



 74 

Sugita H, Mizuki H, Itoi S (2008) Prevalence of a fish pathogen, Listonella anguillarum, in 

the intestinal tract of fish collected off the coast of Japan. Aquaculture Research 

39:103-105 

Sugumar G, Nakai T, Hirata Y, Matsubara D, Muroga K (1998) Pathogenicity of Vibrio 

splendidus biovar II, the causative bacterium of bacillary necrosis of Japanese oyster 

larvae. Fish Pathology 33:79-84 

Sutton DC, Garrick R (1993) Bacterial disease of cultured giant clam Tridacna gigas larvae. 

Diseases of Aquatic Organisms 16:47-53 

Thompson CC, Thompson FL, Vandemeulebroecke K, Hoste B, Dawyndt P, Swings J 

(2004a) Use of recA as an alternative phylogenetic marker in the family 

Vibrionaceae. International Journal of Systematic and Evolutionary Microbiology 

54:919-924 

Thompson FL, Iida T, Swings J (2004b) Biodiversity of vibrios. Microbiology and Molecular 

Biology Reviews 68:403-431 

Thomson R, Macpherson HL, Riaza A, Birkbeck TH (2005) Vibrio splendidus biotype 1 as a 

cause of mortalities in hatchery-reared larval turbot, Scophthalmus maximus (L.). 

Journal of Applied Microbiology 99:243-250 

Timur G, Timur M, Akayli T, Korun J, Thompson KD (2005) First observation of Rickettsia-

like organisms in cultured sea bass (Dicentrarchus labrax) in Turkey. Bulletin of the 

European Association of Fish Pathologists 25:196-202 

Tinh NTN, Phuoc NN, Dierckens K, Sorgeloos P, Bossier P (2006) Gnotobiotically grown 

rotifer Brachionus plicatilis sensu strictu as a tool for evaluation of microbial 

functions and nutritional value of different food types. Aquaculture 253:421-432 

Tinh NTN, Dierckens K, Sorgeloos P, Bossier P (2008) A review of the functionality of 

probiotics in the larviculture food chain. Marine Biotechnology 10:1-12 

Tolomei A, Burke C, Crear B, Carson J (2004) Bacterial decontamination of on-grown 

Artemia. Aquaculture 232:357-371 

Toranzo AE, Barja JL (1990) A Review of the taxonomy and seroepizootiology of Vibrio 

anguillarum, with special reference to aquaculture in the Northwest of Spain. 

Diseases of Aquatic Organisms 9:73-82 

Toranzo AE, Magarinos B, Romalde JL (2005) A review of the main bacterial fish diseases 

in mariculture systems. Aquaculture 246:37-61 

Torkildsen L, Magnesen T (2004) Hatchery production of scallop larvae (Pecten maximus) - 

survival in different rearing systems. Aquaculture International 12:489-507 

Torkildsen L, Lambert C, Nylund A, Magnesen T, Bergh Ø (2005) Bacteria associated with 

early life stages of the great scallop, Pecten maximus: Impact on larval survival. 

Aquaculture International 13:575-592 

Tort L, Balasch JC, MacKenzie S (2004) Fish health challenge after stress. Indicators of 

immunocompetence. Contributions to Science 2:443-454 

Tubiash HS, Chanley PE, Leifson E (1965) Bacillary necrosis a disease of larval and juvenile 

bivalve mollusks .1. Etiology and epizootiology. Journal of Bacteriology 90:1036-

1044 

Uglenes Y, Eikebrokk B, Salvesen I (2005) Vannkvalitet og vannbehandling. In: Oppdrett av 

 torsk- næring i framtid. pp. 191-206. Eds. Otterå H, Taranger GL, Borthen J. Norsk 

fiskeoppdrett, Valdres trykkeri, Fagernes, Norway  

Vadstein O, Mo TA, Bergh Ø (2004) Microbial interactions, prophylaxis and diseases. In: 

Culture of cold-water marine fish. pp. 28-72. Eds. Moksness E, Kjørsvik E, Olsen Y. 

Blackwell publishing, Oxford, UK. 

van der Meeren T, Pedersen JP, Kolbeinshavn AG (2005) Yngelproduksjon – larvefasen. In: 



 75 

 Oppdrett av torsk- næring i framtid pp.85-112. Eds. Otterå H, Taranger GL, Borthen 

J. Norsk fiskeoppdrett, Valdres trykkeri, Fagernes, Norway  

van der Meeren T, Mangor-Jensen A, Pickova J (2007) The effect of green water and light 

intensity on survival, growth and lipid composition in Atlantic cod (Gadus morhua) 

during intensive larval rearing. Aquaculture 265:206-217 

Varsamos S, Flik G, Pepin JF, Bonga SEW, Breuil G (2006) Husbandry stress during early 

life stages affects the stress response and health status of juvenile sea bass, 

Dicentrarchus labrax. Fish & Shellfish Immunology 20:83-96 

Verdonck L, Grisez L, Sweetman E, Minkoff G, Sorgeloos P, Ollevier F, Swings J (1997) 

Vibrios associated with routine productions of Brachionus plicatilis. Aquaculture 

149:203-214 

Verner-Jeffreys DW, Shields RJ, Birkbeck TH (2003a) Bacterial influences on Atlantic 

halibut Hippoglossus hippoglossus yolk-sac larval survival and start-feed response. 

Diseases of Aquatic Organisms 56:105-113 

Verner-Jeffreys DW, Shields RJ, Bricknell IR, Birkbeck TH (2003b) Changes in the gut-

associated microflora during the development of Atlantic halibut (Hippoglossus 

hippoglossus L.) larvae in three British hatcheries. Aquaculture 219:21-42 

Verner-Jeffreys DW, Shields RJ, Bricknell IR, Birkbeck TH (2004) Effects of different water 

treatment methods and antibiotic addition on larval survival and gut microflora 

development in Atlantic halibut (Hippoglossus hippoglossus L.) yolk-sac larvae. 

Aquaculture 232:129-143 

Verner-Jeffreys DW, Nakamura I, Shields RJ (2006) Egg-associated microflora of Pacific 

threadfin, Polydactylus sexfilis and amberjack, Seriola rivoliana, eggs. 

Characterisation and properties. Aquaculture 253:184-196 

Vik-Mo FT, Bergh O, Samuelsen OB (2005) Efficacy of orally administered flumequine in 

the treatment of vibriosis caused by Listonella anguillarum in Atlantic cod Gadus 

morhua. Diseases of Aquatic Organisms 67:87-92 

Villamil L, Figueras A, Planas M, Novoa B (2003) Control of Vibrio alginolyticus in 

Artemia culture by treatment with bacterial probiotics. Aquaculture 219:43-56 

Vine NG, Leukes WD, Kaiser H (2006) Probiotics in marine larviculture. FEMS 

Microbiology Reviews 30:404-427 

Vollan O (1956) Norsk epoke. In: Den norske Klippfiskhandels historie. pp. 89-110. Øens 

 Forlag, Førde, Norway. 

Weaton FW (1977) Filtration. In: Aquacultural engineering. pp. 463-604. Eds. 

Mccormick ME, Bhattacharyya R john Wiley & Sons, Inc. New York, USA.   

Wiik R, Hoff KA, Andersen K, Daae FL (1989) Relationships between plasmids and 

phenotypes of presumptive strains of Vibrio anguillarum isolated from different fish 

species. Applied and Environmental Microbiology 55:826-831 

Yúfera M, Darias MJ (2007) The onset of exogenous feeding in marine fish larvae. 

Aquaculture 268:53-63 

Øiestad V (2005) Torsk i oppdrett – gjennom hundre år. In: Oppdrett av torsk- næring i  

framtid pp. 27-32. Eds. Otterå H, Taranger GL, Borthen J. Norsk fiskeoppdrett, 

Valdres trykkeri, Fagernes, Norway  

 

 

 



Paper I 

Sandlund N, Torkildsen L, Magnesen T, Mortensen S, Bergh Ø (2006) 

Immunohistochemistry of great scallop Pecten maximus larvae 

experimentally challenged with pathogenic bacteria. Dis Aqua Org 69: 

136-173 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DISEASES OF AQUATIC ORGANISMS
Dis Aquat Org

Vol. 69: 163–173, 2006 Published April 6

INTRODUCTION

The great scallop Pecten maximus L occurs natu-
rally along the coasts of Europe, north to the Lofoten
islands in Norway. Due to good prices on the European
market, suitable environmental conditions and a
harvestable wild population, potential for commercial
scallop production in Norway has been identified, and
attempts to cultivate the species are currently under-
way in Norway and France (reviewed by Bergh &
Strand 2001). 

Aquaculture of the great scallop in Norway is based
upon hatchery-produced spat. This production is com-
monly associated with highly variable survival during

the larval stages. Mortalities of up to 100% during the
early life stages have frequently been experienced at
the only Norwegian hatchery, and the total annual
production of 2 mm spat has been limited to about
2 million since 1996 (Torkildsen & Magnesen 2004). 

Opportunistic bacteria are probably the primary
cause of the mortalities (Nicolas et al. 1996, Robert et
al. 1996, Torkildsen et al. 2000, 2002, 2005). This is a
well-known problem in bivalve hatcheries, and several
bacteria, especially Vibrio species, cause diseases in
bivalves. Vibrio pectenicida has been isolated from
moribund Pecten maximus larvae in French hatcheries
(Lambert et al. 1998). In cultivated northern Chilean
scallop Argopecten purpuratus, vibriosis caused by
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V. anguillarum (Riquelme et al. 1995) and V. algino-
lyticus (see Riquelme et al. 1996a,b) has caused high
mortality. V. splendidus was the causative agent of
annual summer mortalities of the Pacific oyster
Crassostrea gigas in France (Lacoste et al. 2001, Le
Roux et al. 2002, Waechter et al. 2002). The causative
agent of brown ring disease (BRD), V. tapetis (Borrego
et al. 1996) caused high mortalities in Manila clams
Ruditapes philippinarum, especially in France. Mortal-
ities up to 100% caused by V. tapetis occurred in a
challenge study of Manila clams (Allam et al. 2002).
Other bacterial species causing disease in bivalves are
Aeromonas hydrophila (Riquelme et al. 1996a),
Chlamydia (Leibovitz 1989), Chlamydia-like organ-
isms (Morrison & Shum 1982, Renault & Cochennec
1995, Hine & Diggles 2002) and Rickettsia-like organ-
isms (Elston 1986, Le Gall et al. 1988, 1991, Wu & Pan
1999). 

However, bacteria are also a part of the diet of
bivalves, which feed on microalgae, other microplank-
ton, bacteria and particulate organic material (Hov-
gaard et al. 2001). When Samain et al. (1987) studied
water quality, they found that feed particle sizes be-
tween 0.22 and 1 µm significantly improved the
growth of Pecten maximus larvae and suggested that
bacteria are an important part of the food supply. Com-
parable results were found in studies of the Chilean
scallop Argopecten purpuratus. Larval growth and sur-
vival increased when this species was cultivated in
water filtered though a 5 µm filter, compared with fil-
tration though a 0.22 µm filter (Riquelme et al. 1997). In
hatcheries, scallop larvae are normally fed various
species of algae, typically Pavlova lutheri, Isochrysis
galbana, Skeletonema costatum, Chaetoceros calci-
trans and Tetraselmis suecica, in different combina-
tions and concentrations (Ruiz-Ponte et al. 1999,
Riquelme et al. 2001, Torkildsen & Magnesen 2004).
The different algal cultures and the scallop larvae are
associated with different bacterial communities
(Sandaa et al. 2003). The use of bacterial supplements,
as an addition to algal diets, was suggested by Douillet
& Langdon (1993) and Douillet (1993a,b). By using
14C-labelled live or heat-killed bacteria, Douillet
(1993a,b) demonstrated that Pacific oyster, Crassostrea
gigas, larvae can digest and assimilate bacterial car-
bon. Crosby et al. (1990) found similar abilities in
the American oyster C. virginica. In early studies of
the blue mussel Mytilus edulis, Birkbeck & McHenery
(1982) concluded that mussels are capable of selecting
lysozyme-sensitive bacteria for subsequent processing.
Douillet & Langdon (1993) demonstrated that the addi-
tion of a particular bacterial strain, CA2, possibly an
Alteromonas sp., enhanced the growth and survival of
Pacific oyster larvae. The optimal bacterial concentra-
tion of CA2 was 105 cells ml–1 (Douillet & Langdon

1994). P. maximus larvae showed significantly lower
mortality rates when cell extracts of Roseobacter strain
BS107, were added to larval cultures (Ruiz-Pointe et al.
1999). 

Since the literature cited above clearly documents
that bacteria in bivalve cultures may represent both
threats and valuable food components, it is important
to describe the action of different bacteria found in
larval cultures. An understanding of the processes
involved in larval mortality is essential. The aim of the
present study was to investigate the action of bacteria
suspected of being pathogenic to scallop larvae. Larval
groups were challenged with bacterial isolates from
Pecten maximus larvae, resembling Vibrio splendidus
and Pseudoalteromonas (Torkildsen 2004). Mortality
was compared to that of larvae challenged with the
known pathogenic bacterium V. pectenicida (Lambert
et al. 1998) and an unchallenged control group.
Immunohistochemistry was employed to assess uptake
of the bacteria and their effect on larval tissues.

MATERIALS AND METHODS

Broodstock, oocytes and larvae. Scallop larvae were
produced according to standard cultivation procedures
at the scallop hatchery Scalpro A/S, Rong, near
Bergen, as described by Torkildsen & Magnesen
(2004). Broodstock originated from the County of
Hordaland in western Norway (60° N). Oocytes were
collected and hatched at the hatchery in April 2001.
Spawning was induced by thermal shock, and the
oocytes were fertilised as described by Gruffydd &
Beaumont (1970). Larvae were kept in 800 l tanks with
stagnant seawater at 18 ± 1°C taken from the nearby
fjord at a depth of 60 m. The water was filtered through
a 1µm filter bag and renewed 3 times a week. Larvae
were fed a diet consisting of mixed monocultures of the
algae Isochrysis galbana (Parke) Tahitian strain, Pav-
lova lutheri (Droop), Chaetoceros calcitrans (Takano)/
C. mulleri, Skeletonema costatum and Tetraselmis sue-
cica at a ratio of 3:2:3:1:1 with a total concentration of
50 cells µl–1. 

Bacteria. The following bacteria were selected for
challenge experiments: LT 06, LT 13, LT 21 and LT 73,
isolated by Torkildsen et al. (2000, 2002, 2005) and
PMV 18 and PMV 19 (C. Lambert unpubl.). LT 13
belongs to the genus Pseudoalteromonas, while the
others (PMV 18, PMV 19, LT 06, LT 21 and LT 73)
resemble Vibrio splendidus (Torkildsen et al. 2005).
Challenge experiments included a negative control
(unchallenged control) and a positive control chal-
lenged with V. pectenicida strain A496, a known
pathogen of great scallop larvae (Lambert et al. 1998),
referred to as challenged control. All bacteria were
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stored at –80°C in a 20% glycerol/marine broth (Difco
2216) stock. They were incubated at 18°C and grown
on petri dishes with Difco 2216 marine agar (MA) for
48 h. Colonies of the bacteria were transferred to
Erlenmeyer flasks with 50 ml of marine broth (MB)
(Difco 2216) and shaken at 90 rpm in a shaking incuba-
tor (INFORS AG) for 48 h. PMV 18 grows slower than
the other strains and was therefore grown for 72 h.
Bacteria were harvested by centrifugation (Heraeus
Sepathec Megafuge 1.0 R) at 2772 × g for 10 min at
4°C, washed twice in phosphate-buffered saline (PBS)
and resuspended in PBS. The number of live cells
in the suspensions was determined by counting
colony-forming units (CFU). Each bacterial suspension
(100 µl) was plated on MA and grown for 48 h.
Colonies were then counted, and total cell concentra-
tion was determined (Table 1). For each experiment,
2 parallel counts were made. 

Challenge experiments. Three almost identical chal-
lenge experiments were performed. Scallop larvae
were exposed to bacteria at different ages post hatch-
ing, 10 d in challenge Expt I, 13 d in Expt II and 15 d in
Expt III. The multidish tray containing the control
group of Expt I was lost during handling, and thus this
experiment did not include a negative control. Larvae
were transferred to 24-well polystyrene multidishes
(Nunc) with 2 ml of sterile seawater (SSW) (28 ppt

salinity), with about 20 to 40 larvae in each well. Ide-
ally, the number of larvae per well should have been
identical, but priority was given to minimizing han-
dling. Given the small size (100 to 150 µm) and fragility
of the larvae, an approximately equal number of larvae
per well combined with a large number of replicates
was considered preferable to the risk of losing
larvae due to physical handling. To each well (except
for the unchallenged control) 100 µl of the above-
mentioned 48 h bacterial suspension (PBS+bacteria)
was added. The cell concentrations of the bacterial
suspensions were approximately 108 cells ml–1, except
for 3 suspensions that had a cell concentration of
107 cells ml–1 (Table 1). One multidish (i.e. 24 wells)
was used for each bacterial strain. Inoculations were
repeated with 10-fold and 100-fold dilutions of the bac-
terial culture. The larvae were incubated at 16°C in an
air-conditioned room. Live and dead larvae were
counted after 24 and 48 h using an inverted stereo-
scopic microscope (Leitz DM IL). Six wells were
counted for each dilution and bacterial strain. Non-
swimming larvae and larvae lying passively on the
bottom were counted as dead. In some wells it was
difficult to determine the exact number of live and
dead larvae, especially when they were swimming
rapidly. To reduce the possibility of error, the wells
were counted twice. At the end of each counting ses-

sion, 12 wells were emptied with a pipette, and
larvae were fixed in 4% phosphate-buffered
formaldehyde for further processing for
immunohistochemistry. This procedure did not
discriminate among live, moribund and dead
larvae. The 12 wells that were emptied
included the 6 counted wells.

For bacterial samples, 100 µl water was
taken from randomly selected wells from each
group, and plated on MA. The remaining
larvae were returned to the air-conditioned
room. The counting procedure lasted about
15 min. Bacterial colonies grown from the wells
were inoculated in Erlenmeyer flasks with
50 ml MB, incubated at 18°C and shaken at
90 rpm for 48 h. The cultures were frozen at
–80°C in 20% glycerol until the polymerase
chain reaction (PCR) was performed. Three
counts were made for each experiment.

Statistical considerations. The survival/mor-
tality data were not normally distributed; non-
parametric tests were used for statistical analy-
ses. Testing for several proportions (α = 0.025,
critical region: χ2 < 12.832 for ν = 5 df) (Walpole
et al. 2002) was performed to test the homo-
geneity among the 6 wells that were counted
for each larval group, after 24 and 48 h. A 2 × 2
contingency table (p < 0.05, df = 1), performed
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Bacteria Expt Dilution CFU Cell 
plated Plate 1 Plate 2 conc.

A496 I 1.00 × 107 3 3 3.00 × 108

PMV 18 I 1.00 × 106 9 7 8.00 × 107

PMV 19 I 1.00 × 107 1 4 2.50 × 108

LT 06 I 1.00 × 107 3 3 3.00 × 108

LT 13 I 1.00 × 107 4 6 5.00 × 108

LT 21 I 1.00 × 107 4 2 3.00 × 108

LT 73 I 1.00 × 107 3 3 3.00 × 108

A496 II 1.00 × 106 3 5 4.00 × 107

PMV 18 II 1.00 × 107 1 3 2.00 × 108

PMV 19 II 1.00 × 107 3 6 4.50 × 108

LT 06 II 1.00 × 107 3 4 3.50 × 108

LT 13 II 1.00 × 107 5 7 6.00 × 108

LT 21 II 1.00 × 107 5 6 5.50 × 108

LT 73 II 1.00 × 107 4 4 4.00 × 108

A496 III 1.00 × 106 6 5 5.50 × 108

PMV 18 III 1.00 × 107 4 6 5.00 × 107

PMV 19 III 1.00 × 107 9 8 8.50 × 108

LT 06 III 1.00 × 107 8 9 8.50 × 108

LT 13 III 1.00 × 107 7 6 8.50 × 108

LT 21 III 1.00 × 107 5 5 5.00 × 108

LT 73 III 1.00 × 107 9 8 8.50 × 108

Table 1. Cell concentration (cells ml–1)in all bacterial suspensions for
each experiment, based on viability counts. CFU = colony-forming
units on plates 1 and 2. 100 µl was added to each plate. A496 = Vibrio
pectenicida. The bacterial strains PMV18, PMV 19, LT 06, LT 21 and
LT 73 resemble Vibrio splendidus, while LT 13 resembles Pseudo-

alteromonas
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in Statistica v 5.0 (StatSoft), was used to test for mortal-
ity differences between the 2 control larval groups and
the challenged test larval groups. 

Polymerase chain reaction (PCR), DNA amplifi-
cation. This method was used to verify that the
bacteria present in the wells actually were LT 06
and LT 13. Specific primers were used for LT 06
f1: 55–82 (ACAGTAACAATCCTTCGGGTGCG), r1:
452–476 (TCAAGAGGCGCCGCTATTAACTAC) and
LT 13 f1: 55–80 (AACAGAAAGTAGCTTGCTACTT-
GGC), r1: 435–460 (TCACAGCTAGCAGGTATTAAC-
TACT). The fragment size produced by the LT 06
primers is 417 bp and the fragment produced by the LT
13 primers is 405 bp. The PCR was performed in reac-
tion mixtures of 25 µl in 0.2 ml 8-strip PCR tubes (Axy-
gen). The mixture contained 14.85 µl of distilled water,
3 µl of MgCl2, 2.5 µl of PCR buffer, 2.5 µl of 1.25 mM
dNTP (Promega Madison), 0.5 µl of each primer,
0.15 µl of Taq polymerase (Promega) and 1 µl of bacte-
rial sample. The mixture without bacterial sample was
used as a negative control, and LT 06 and LT 13 were
used as positive controls. Reactions were carried out in
a Gene Amp, PCR systems 9700 (Perkin Elmer) with an
initial denaturation step of 94°C for 2 min, 35 cycles of
denaturation (94°C for 1 min), annealing (62°C for
30 s), extension (72°C for 1 min) and final extension at
72°C for 5 min. Amplified DNA, 5 µl, was examined by
horizontal 1% agarose (SeaKem LE). Gene Mass Ruler
DNA ladder mix (MBI Ferments), 2 µl, was used as a
nucleic acid standard. Visualisation was obtained by
UV illumination after staining with ethidium bromide. 

Immunohistochemistry. All microscope slides used
for testing the different bacteria against the antiserum
were coated with a diluted Poly-L-Lysine solution
(Sigma Diagnostics). Coating was carried out to allow
the bacteria to attach to the slides during the staining
procedure. 

Antisera were made for the bacterial strains Vibrio
pectenicida (anti-A496), LT 06 (anti-LT 06) and LT 13
(anti-LT 13) and were produced according to the me-
thod of Oeding (1957). Formaldehyde-killed, washed
bacteria were administered by intravenous injection to
the rabbits. The polyclonal rabbit antisera were ab-
sorbed by the method of Knappskog et al. (1993), to
minimize the possibility of cross-reaction. Each ab-
sorbed antiserum (anti-A496, anti-LT 06 and anti-
LT 13) was tested for cross-reaction with bacterial
strains and larval tissue samples prior to the immuno-
histochemistry. The dilution used on tissue samples of
each antiserum was determined by testing a range of
antiserum dilutions on bacterial samples.

Larval samples fixed in 4% phosphate-buffered
formaldehyde were dehydrated in ethanol and em-
bedded in paraffin. Larvae were sectioned at 3 µm
(Leica Jung Biocut 2035), incubated at 58°C for 30 min,

dewaxed in xylene, rehydrated in a series of ethanol
baths and washed in running water. The absorbed
polyclonal rabbit antisera, anti-A496, anti-LT 06 and
anti-LT 13, were diluted 1:10 in Tris-buffered saline
(TBS) with 2.5% bovine serum albumin (BSA). To pre-
vent non-specific antibody binding, sections were
blocked by using 5% BSA in Tris-buffered formalde-
hyde for 20 min. Avidine-biotin-alkaline phosphatase
complex (ABC/AP) reaction kit (DAKO A/S) and New
Fuchsin Substrate system (Dako) were used to visu-
alise positive staining. Shandon’s haematoxylin was
used for counterstaining. At each stage of staining,
2 controls were used. Unchallenged larvae were used
as negative controls and bacterial smears on micro-
scope slides were used as positive controls. The same
procedure was used to stain both larvae and bacteria.
During the staining procedure, tissue sections and bac-
terial samples were kept separately in order to prevent
cross-contamination. To ensure complete staining of
all the larvae, each microscope slide was totally cover-
ed with the immunohistochemistry kit. All incubations
were performed at room temperature (20 °C) in a
humidity chamber. A Leica DMBE microscope equip-
ped with a Leica Wild MPS52 phototube was used to
photograph the sections. Films used were Fujichrome
100 and Fujichrome 200.

RESULTS

Challenge experiments

Survival and mortality data were pooled if there
were no significant differences among the 6 wells.
From these results, 8 out of 46 of the chi-square statis-
tical analyses rejected the Ho hypothesis, i.e. rejected
that all populations had equal survival rates. We con-
cluded that there were differences in mortality among
the 6 wells (Tables 2 & 3).  

In most challenged larval groups, mortality (i.e num-
ber of non-motile larvae) was higher at 48 than at 24 h
after challenge (Table 3). The exception was larval
groups challenged with LT 13, in which the mortality
rate decreased in Expts II and III. In the unchallenged
control group, there was no difference between 24 and
48 h (Table 3). Mortality within the unchallenged con-
trol larval groups was higher in Expt III than in Expt II.

Mortality in the unchallenged control larval groups
was between 18.2 and 31.4% (average mortality was
approximately 25%) (Table 3). In challenged control
larval groups (larvae challenged with Vibrio pecteni-
cida) the mortality rate varied between 17.6% and
65.7% (average mortality 37%) (Table 3). The differ-
ence in mortality rates between the 2 control groups
was only significant in Expt III after 24 h (2 × 2 contin-
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gency table, p = 0.0162). At that time, mortality rates in
all challenged groups were significantly different from
the unchallenged control larval group (Table 3).

Larvae challenged with LT 06 suffered an average
mortality rate of approximately 40%, ranging between
28.6 and 64.7% (Table 3). Mortality in these groups
was significantly different from the mortality in the un-
challenged control larval groups in Expt III after 24 h
(2 × 2 contingency table, p = 0.0110). When compared
with mortality in the challenged control larval groups,
a significant difference in mortality was found in Expt I
after 24 h of challenge (2 × 2 contingency table, p =
0.0051). 

In general, the challenge with LT 13 resulted in low
mortality in most larval groups and the average per-
centage mortality was lowest of all challenged groups
(approximately 29%). Mortality in these larval groups
was the same as or less than in the unchallenged con-
trol groups (Table 3), and was significantly different
only in the Expt III after 24 h (2 × 2 contingency table,
p = 0.0286). Mortality in larval groups challenged with
LT 13 was significantly different from the challenged
control larval groups in Expts II and III, 48 h post-

challenge (2 × 2 contingency table, p = 0.0019 and p =
0.0258, respectively) 

Challenge with LT 21 caused an average mortality
rate of approximately 45% (Table 3), and mortality was
significantly different from that in the unchallenged
controls in Expt II, 24 and 48 h after the challenge (2 × 2
contingency table, p = 0.0294 and p = 0.0000, respec-
tively) and Expt III after 24 and 48 h (2 × 2 contingency
table p = 0.0010 and p = 0.0000). In comparison with
the challenged control larval groups, the difference in
mortality was significant in Expt I, 24 h post challenge
(2 × 2 contingency table, p = 0.0002) and in Expt II and
III after 48 h of challenge (2 × 2 contingency table, p =
0.0126 and p = 0.0026, respectively).

Challenge with the bacterial strain LT 73 resulted in
high mortality in all challenge experiments, especially
in Expt III after 48 h of challenge (86.4%) (Table 3).
Average mortality was approximately 49%, which was
the highest of all groups. The mortality was signifi-
cantly different from that in the unchallenged control
larvae in Expt II after both 24 and 48 h (2 × 2 contin-
gency table, p = 0.0349 and p = 0.0000, respectively),
and in Expt III after 24 and 48 h of challenge (2 × 2
contingency table, p = 0.0127 and p = 0.0000, respec-
tively). When compared to the mortality experienced in
the challenged control larval groups, significant differ-
ences were found in Expts I and III after 24 h (2 × 2 con-
tingency table, p = 0.0000 and p = 0.0162, respectively).

PMV 18 caused an average mortality of approxi-
mately 38% (Table 3). Mortality in larval groups chal-
lenged with PMV 18 and the unchallenged control lar-
val groups was significantly different in Expts II and III
after 24 h (2 × 2 contingency table, p = 0.0000 and p =
0.0001, respectively). Compared with the challenge
control larval groups, the mortality in larval groups
challenged with PMV 18 was significantly different in
Expt I at both 24 and 48 h (2 × 2 contingency table, p =
0.0245 and p = 0.0009) and in Expt II after 24 and 48 h
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Expt Time Unchallenged Challenged PMV 18 PMV19 LT 06 LT 13 LT 21 LT 73
(h) control control

I 24 ND 17.6 29.4^ 36.8^ 31.5^ 26.3 33.3^ 36.5^
I 48 ND 65.7 40.7^ 75.0 64.7 50.5 65.9 53.0
II 24 18.2 24.1 60.6*^ 18.5 28.6 18.0 27.2* 27.9*
II 48 19.3 26.6 12.8^ 18.8 29.4 10.4^ 39.9*^ 46.8*^
III 24 31.4^ 46.4* 50.0* 40.8* 44.3* 42.6* 47.1* 43.8*
III 48 31.0 39.3 36.9 49.6*^ 39.7 23.6^ 53.6*^ 86.4*^

Average 20.5 36.6 38.4 39.9 39.7 28.6 44.5 49.1

Table 3. Percent mortality of challenge Expts I, II and III including unchallenged and challenged control groups. Challenged
control: larval groups challenged with Vibrio pectenicida. ND: no data (Challenge Expt I did not include an unchallenged
control group). *Significantly different from the unchallenged control larval groups (p < 0.05). ^Significantly different from the
challenged control larval groups (p < 0.05). The bacterial strains PMV18, PMV 19, LT 06, LT 21 and LT 73 resemble Vibrio

splendidus, while LT 13 resembles Pseudoalteromonas

Expt Time (h) Bacteria χ2

I 24 LT 72 14.87
I 48 LT13 16.43
I 48 LT21 13.87
II 24 LT73 15.75
II 48 PMV 19 14.71
III 24 LT2 21 14.85
III 48 PMV 19 11.25
III 48 LT21 20.64

Table 2. Treatments found to be significantly different in
mortality. The bacterial strains LT 21, LT 73 and PMV 19
resemble Vibrio splendidus, while LT 13 resembles Pseudo-

alteromonas
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(2 × 2 contingency table, p = 0.0000 and p = 0.0005,
respectively).

Larvae challenged with PMV 19 experienced an
average mortality of approximately 40% (Table 3).
These larval groups were significantly different from
the unchallenged control larval groups in Expt III after
24 and 48 h (2 × 2 contingency table, p = 0.0481 and
p = 0.0003, respectively). When compared to larval
groups challenged with Vibrio pectenicida, significant
differences in mortality were found in Expt I after 24 h
(2 × 2 contingency table, p = 0.0002) and Expt III after
48 h (2 × 2 contingency table, p = 0.0370). 

PCR verified that the randomly sampled bacteria
taken after each counting (24 and 48 h) and challenge
experiment, were LT 06 and LT 13 that were used for
challenge (Figs. 1 & 2). The use of specific primers
against these 2 bacterial strains produced fragments
similar in size to the fragment size produced by the
primers LT 06 (417 bp) and LT 13 (405 bp). Some vari-
ations in the intensity of the fragments were detected. 

Immunohistochemistry

Formaldehyde fixation produced contraction of the
larvae prior to embedding, complicating the reading of
slides and interpretation of immunohistochemical
staining. The structure of larvae, before and after
fixation, is shown in Fig. 3. Fig. 3c was drawn from
Fig. 4, and represents an explanation of Figs. 4 to 13.

Cross-reactions among the 3 antisera, anti-A496,
anti-LT 06 and anti-LT 13 were not found, either when
tested directly on bacteria or on larval tissue samples.
The unchallenged control larvae did not display posi-
tive immuno-staining when stained with anti-A496
and anti-LT 06 (Fig. 4). However, approximately 50%
of the unchallenged control larvae displayed specific
immuno-staining inside the stomach and digestive
area and endothelial cells when stained with anti-
LT 13 serum (see Fig. 13). This staining was generally
weaker than in larvae challenged with LT 13. The
morphology of all control larvae was normal and dis-
played no signs of tissue damage (Fig. 4). The immuno-
histochemical examinations showed no relationship
between pathogenesis and larval age.

Immuno-staining revealed large differences among
the 3 larval groups; challenged control larval groups
(larvae challenged with Vibrio pectenicida) and
larval groups challenged with LT 06 or LT 13. Larvae
challenged with V. pectenicida and LT 06 displayed
similarities when immuno-stained (Figs. 5 & 8) and
showed similar signs of infection in comparison with
larvae challenged with LT 13. In addition, most larvae
were positively stained on the outer shell and mantle
surfaces. 

All challenged control larvae examined displayed
positive immuno-staining. Infection was located in
oesophagus, stomach and rectum, spreading in the
areas around the digestive mass, especially the
endothelial mucosa, and to the surrounding tissues. In
most of the larvae, necrotic tissue and pycnotic cells
could be observed (Figs. 5 & 6). In challenge Expt III a
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Fig. 1. Agarose gel electrophoresis photo of PCR-amplified
16S rDNA in bacterial isolates sampled from the 24-well
multidishes challenged with LT 06. Lanes 2 to 7: bacterial
isolates taken from the 24-well mulitidishes from the different
challenge experiments randomly sampled after each count;
Lane 8: LT 06 used as positive control; Lane 9: Strain LT 13
used as negative control; Lane 1: standard marker. All

templates are diluted 1:100

Fig. 2. Agarose gel electrophoresis photo of PCR amplified
16S rDNA in bacterial isolates sampled from the 24-well
multidishes challenged with LT 13. Lanes 2 to 5: bacterial
isolates taken from the 24-well multidishes from the differ-
ent challenge experiments randomly sampled after each
count; Lane 6: bacterial strain LT 06 used as negative control;
Lanes 7 and 8: LT 13 used as positive control; Lane 9: core mix
with no template; Lanes 1 and 10: standard markers. All

templates are diluted 1:100
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clear difference was seen in the positive immuno-
staining between 24 and 48 h (Figs. 6 & 7). All larvae
challenged for 48 h were generally infected and ap-
peared positively immuno-stained in most or all tissues
(Fig. 7). This clear difference was not found in the
2 previous challenge experiments or in larval groups
challenged with LT 06 and LT 13. Despite the positive
intracellular immuno-staining of mucosal cells (Fig. 6,
arrow), no positive identification of bacterial cells was
confirmed in any of the individuals examined, either
inside the digestive mass or intracellularly in epithelial
cells. 

In contrast to larvae challenged with Vibrio pecteni-
cida, examination of larvae challenged with LT 06
revealed apparently intact bacterial cells inside the
digestive mass and inside mucosal cells (Fig. 8,
indicated with small arrow). Otherwise, the challenge
results with LT 06 apparently had similar impact on the
scallop larvae as V. pectenicida. Infection was basi-
cally located in the gut and the digestive area,

although spread to the surrounding area in
some larvae. Although a few larvae were
generally infected, larvae challenged for
48 h did not appear to be more severely
affected by the infection than larvae chal-
lenged for 24 h. Despite challenge, 2 larvae,
one in challenge Expt I (48 h) and one in
challenge Expt III (48 h), displayed a
total absence of specific immuno-staining
(Fig. 9). Other larvae on the same sections,
adjacent to these unstained larvae, were all
positively stained (Fig. 10).

All the examined larvae examined from
the challenge with LT 13 displayed positive
immuno-staining. The infection was ap-
parently less severe, as they were less
positively stained than larvae challenged
with Vibrio pectenicida and LT 06. Positive
immuno-staining was limited to visual
bacteria inside the digestive area and
mucosal cells (Figs. 11 & 12). Surrounding
tissues were not infected and appeared nor-
mal. Intracellular bacteria could not be
observed.

DISCUSSION

Scallop larva challenged with Vibrio
pectenicida and the V. splendidus-like
strain LT 06 showed many similarities
regarding pathology, immuno-staining and
mortality. Apparently our study is the first
attempt to characterise such infections in
bivalves by immunohistochemistry. This

method enabled us to visualise affected tissue in the
digestive mass and gut area of larvae challenged
with these bacteria. Infection seemed to spread from
these areas to the surrounding tissues. Together with
the mortality results, these observations demonstrate
that LT 06, like V. pectenicida, is pathogenic to scal-
lop larvae. This supports the results of Nicolas et al.
(1996) who described a strain resembling V. splen-
didus associated with mortality in scallop Pecten
maximus larval cultures.

Immunohistochemical examinations of larval groups
challenged with Vibrio pectenicida revealed no bac-
terial cells, despite a high degree of positive immuno-
staining. A general experience at our laboratory in
studies of fish larvae with identical immuno-staining
protocols (Ø. Bergh unpubl.) is that tissue samples
exposed to pathogenic Vibrio spp. will be positively
stained in areas around the stained bacteria. This is
probably due to staining of partially dissolved extracel-
lular bacterial products. Lambert et al. (1998, 2001)
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Fig. 3. Pecten maximus. Orientation and tissues seen in the sections
(see Figs. 4–13). (a) illustrates the larva prior to fixation and how the velum
contracts (arrows). (b) illustrates the larvae after fixation, with the
contracted velum inside the thin shell, folded inwards with a longitudinal
furrow and ciliar rim, underlying the mantle lobes. The longitudinal
section that cuts through the approximate centre of the larva (indicates
orientation of the larva section, cut to illustrate [c]), includes parts of
stomach and gut. The ventral part includes parts of the contracted velum
and mantle. (c) Tissues and body compartments of the larva corresponding
to the larva shown in Fig. 4 (where strong staining covers the details and
makes difficult any differentiation between the mantle cells, the thin
epithelium of the velum roof and the larger cells of the velum basis). Lines
indicate counter-clockwise turning, to the same orientation as Fig. 4. 
Eso: esophagus; St: stomach; Dig: digestive cells; Sh: shell matrix;

Vel cil: velum cilia; Ma: mantle cells
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Figs. 4 to 13. Pecten maximus.
Immunohistochemical staining of
paraffin sections from larvae. Avi-
dine-biotin-alkaline phosphatase
method, rabbit anti-A496, -LT 06
and -LT 13 serum and Shandon
haematoxylin counterstained. Po-
sitive immunohistochemistry is vi-
sualised by red colour. Counter-
staining gives tissues different
tones of blue. Larval diameters
range between 90 and 150 µm.
Fig. 4. Unchallenged, healthy
larva stained with anti-LT 06.
Figs. 5, 6 & 7. Larva challenged
with Vibrio pectenicida for 24 h
(Fig. 6) and 48 h (Figs. 5 & 7)
stained with anti-A496. In Fig. 5
note intracellular staining in
mucous cells (arrow). Red area
inside digestive mass is probably a
cluster of bacteria. Figs. 6 & 7
show variation in infectivity be-
tween 24 and 48 h observed in
Expt III. In Fig. 6 the esophagus
(arrow) and digestive areas, in
particular, are clearly positively
stained together with the shell sur-
face. Fig. 7. Totally infected larvae
48 h post challenge. Figs. 8, 9 & 10.
Larvae challenged with LT 06 for
48 h, stained with anti LT 06.
Fig. 8. Mantle surface, shell matrix
and stomach wall are positively
stained, and bacteria are visible
and positively stained in the
stomach (large arrow). Intracellu-
lar bacteria are verified in mucous
cells (small arrow). The cilia (C)
are also positively stained. Fig. 9.
Note absence of immuno-staining
in spite of bacterial exposure for
48 h. Larvae show no signs of
infection. Fig. 10. Larvae situated
next to larvae in Fig. 8. Note the
generally positive immuno-stain-
ing. Figs. 11 & 12. Larvae chal-
lenged with LT 13 for 24 and 48 h,
respectively, stained with anti-LT
13. Fig. 11. Bacteria are seen in
stomach and digestive area (ar-
row). Positive staining is restricted
to digestive mass, showing no
signs of infiltrating the surround-
ing area. Fig. 12. Positive immuno-
staining is seen on shell surface,
on stomach wall and in esopha-
gus. Fig. 13. Unchallenged control
larvae stained with anti-LT 13.
Positive immuno-staining is seen
in esophagus, stomach lumen and

endothelial cells
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demonstrated that V. pectenicida is highly toxic to
Pecten maximus larvae due to an intracellular release
of toxins that inhibit the respiratory burst activity of the
haemocytes. These toxins may infiltrate the larval tis-
sue. It is likely that polyclonal antiserum anti-A496
labelled some of these released toxins and possibly
other compounds, and thereby positively stained the
larval tissue, even though no bacterial cells were
found. Verification of the presence of bacterial cells
was difficult in all challenged larvae, partly due to
clustering of bacterial cells. The large red area inside
the digestive mass in some larvae (see Fig. 6) could be
clusters of bacteria. The size of the scallop larvae
(approximately 100 to 150 µm) and the low number of
cells made observation of tissue degeneration and
necrosis difficult. Most challenged larvae displayed
positive immuno-staining on the shell surface and
mantle. This could be due to bacterial adhesion to the
surface of the larvae, but could also be due to lack of
washing of the larvae prior to fixation.

Few papers describe scallop larval anatomy, and
the majority are based on electron microscopy of
veliger larvae (Cragg & Crisp 1991). However these
examinations have limited relevance to immuno-
histochemical examinations. The development of the
immunohistochemical protocol described herein was
optimised for the visualisation of the presence and
modes of action of certain bacteria. However, the
method is clearly suboptimal for purposes of precise
morphological studies. 

The challenge experiments showed that all chal-
lenged larval groups suffered higher average mortality
than the unchallenged control groups. In comparison
with the larval groups challenged with Vibrio pecteni-
cida, all challenged groups, except those challenged
with LT 13, experienced average higher mortality.
From the mortality results, we consider that the bacte-
rial strains PMV 18, PMV 19, LT 06, LT 21 and LT 73
are pathogenic to scallop larvae. 

In contrast, larval groups challenged with LT 13
suffered relatively low average mortality and the
immunohistochemical examinations revealed a lesser
degree of infection compared with larvae challenged
with Vibrio pectenicida and LT 06. However, Dena-
turating Gradient Gel Electrophoresis (DGGE) showed
bacteria apparently identical to LT 13 to be frequently
present in larval cultures suffering from high mortality
(R. A. Sandaa unpubl.). Thus this bacterium may act
as a secondary opportunistic pathogen that causes
disease and mortality in already weakened larvae.
Many other factors, such as broodstock condition, egg
quality, larval condition and feed affect larval growth,
development and survival in mussels (Phillips 2002)
and scallops (Seguineau et al. 1996, 2001, Soudant et
al. 1998). 

Some of the unchallenged control larvae were posi-
tively stained with the antiserum anti-LT 13 in the
digestive mass and gut area. Compared with larvae
challenged with LT 13, this positive staining was
weaker. Although neither bacterial samples nor larval
tissue samples revealed cross-reaction, cross-reaction
with other bacteria present inside the larval lumen is
possible. The scallop larvae in our experiment were
not axenic, and were not kept in a sterile environment
prior to the challenge experiments. When specific
primers for the bacterial strains LT 06 and LT 13 were
used, no other bacteria present in the wells were
detected. Recently, characterisations of bacterial flora
associated with Pecten maximus larvae have been
performed by DGGE of PCR-amplified 16S rDNA
(Sandaa et al. 2003). This method provides an over-
view of the bacterial community, including both cultur-
able and non-culturable components. Full sequencing
of the 16S rDNA and Restriction Fragment Length
Polymorphism (RFLP) for genotyping 16S rRNA are
2 methods for characterising unknown cultured
bacteria. The latter was used by Jensen et al. (2002) to
characterise bacteria cultured from halibut Hippo-
glossus hippoglossus fry. LT 13 has been isolated from
the microalgae Chaetoceros calcitrans, which is used
as feed for scallop larvae (Torkildsen et al. 2005). The
bacterium could be inside the larvae as a consequence
of feeding. Bacteria accumulating in the algal cultures
may influence the bacterial flora associated with filter-
feeders such as bivalve larvae. Skjermo & Vadstein
(1993) found that adding algae to the rearing water of
halibut larvae increased the bacterial concentration by
45% and that the bacterial flora associated with fish
larvae was related to the flora in the water. The DGGE
profile of the bacterial community in a mixed algal
culture resembled the DGGE profile of the algae pre-
sent in the highest concentration (Sandaa et al. 2003).
This suggests that additions of algae may influence the
bacterial community. However, a clear difference in
the DGGE profile of bacteria associated with the scal-
lop larvae and the DGGE profile of the water samples
was also found.

The bacterial strains PMV 18, PMV 19, LT 06, LT 21
and LT 73 all resemble Vibrio splendidus (Torkild-
sen et al. 2005). V. splendidus strains are widely
spread in the marine ecosystem and cause disease in
various aquatic organisms including the Pacific oyster
(Lacoste et al. 2001, Waechter et al. 2002), great scallop
(Nicolas et al. 1996), turbot Scophthalmus maximus
larvae (Gatesoupe et al. 1999), gilt-head sea bream
Sparus aurata (Balebona et al. 1998) and juvenile giant
tiger shrimps Penaeus monodon (Leaño et al. 1998).
The V. splendidus biovar II-related strain TNEMF6,
caused a cumulative mortality of 80% in Pacific oyster
spat (Waechter et al. 2002). V. splendidus infect a wide
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range of animals. Not all V. splendidus-related strains
are pathogenic (Waechter et al. 2002). This could
explain the differences in mortality among the strains
used in this challenge experiment. The number of
larvae inside the wells likely affected larval survival.
Wells containing large amounts of larvae may provide
better growth for the bacteria and an increased in
infection rates.

Three of the bacterial suspensions were at a concen-
tration of 107 cells ml–1 instead of 108 when they were
added to the wells. In Expt II the concentration of bac-
teria in the suspension of Vibrio pectenicida was 4.0 ×
107 CFU ml–1, and in Expts I and III the bacterial
concentrations were 3.0 × 108 and 5.5 × 108 CFU ml–1,
respectively. The low mortality in Expt II compared to
the mortality in Expt I may have been related to the
differences in cell concentration of the bacterial sus-
pensions. However, concentration differences be-
tween the suspensions used in Expts II and III did not
affect the mortality. Cell concentrations of the PMV 18
suspensions added in Expts I and III were 8.0 × 107 and
5.0 × 107 CFU ml–1, respectively. In Expt II the concen-
tration was 2.0 × 108 CFU ml–1. PMV 18 caused similar
mortality rates in all 3 challenge experiments. Thus it
cannot be concluded if differences in bacterial concen-
trations may have affected larval mortality. In a similar
multidish challenge experiment with Tenacibaculum
ovolyticum (previously Flexibacter ovolyticus), V. an-
guillarum and Aeromonas salmonicida subsp. salmo-
nicida, on eggs and larvae of Atlantic halibut Hippo-
glossus hippoglossus and Atlantic cod Gadus morhua,
mortality increased with increasing challenge dose
(Bergh 2000).

In conclusion, immunohistochemistry can be a
powerful tool for studies of diseases of larval bivalves.
Our results indicate that the Vibrio splendidus-like
strains tested are pathogenic to scallop larvae. The
pathology resembles infections with V. pectenicida.
The Pseudoalteromonas-like strain LT13 is probably
not a primary pathogen, but could act as a secondary
opportunistic bacterium. 
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Screening and characterisation of potentially pathogenic bacteria associated with Atlantic cod 1 

Gadus morhua larvae: Bath challenge trials using a multidish system. 2 

 3 

Nina Sandlund*, Øivind Bergh 4 

Institute of Marine Research, PO Box 1870 Nordnes, NO-5817 Bergen, Norway 5 

 6 

ABSTRACT 7 

In intensive aquaculture systems, high concentrations of nutrients and high densities of fish 8 

larvae provide favorable conditions for opportunistic pathogenic bacteria to flourish. The 9 

purpose of this study was to screen potentially pathogenic bacterial strains isolated from 10 

moribund Atlantic cod Gadus morhua larvae, pollack Pollachius pollachius, coalfish 11 

Pollachius virens, Atlantic halibut Hippoglossus hippoglossus, rotifers, algae and water 12 

samples from different hatcheries. Three identical challenge experiments were carried out and 13 

a total of 53 strains were tested. A multidish system was used, with one cod egg placed in 14 

each well, together with 2 ml sterile seawater and exposed to the bacterial cultures. Final 15 

bacterial concentrations in the wells were 10
6
 and 10

4
 CFU ml

-1
, respectively. Eggs and larvae 16 

not exposed to bacteria were used as unchallenged controls.  Each experiment also included a 17 

challenged control group, larvae exposed to the known pathogenic strain, Vibrio anguillarum 18 

strain 610. The eggs were challenged approximately 48 hours prior to hatching and readings 19 

of mortality were taken every day throughout the yolk-sac period. In spite of the high 20 

challenge dose of 10
6
 CFU ml

-1
, only five of the bacterial strains tested caused higher 21 

mortality than the unchallenged control group.  Four of these strains were identified by 16S 22 

rDNA and GyrB sequencing as resembling V. anguillarum and one strain resembled 23 

Carnobacterium sp. Most of the larvae exposed to these strains died within 10 days of 24 

challenge. Serotyping, by specific antisera and Mono-Va agglutination kits, of the strains 25 
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resembling V. anguillarum gave inconclusive results. This indicates differences in serology 26 

compared to the serotypes O1, O2 and O3, associated with disease (Toranzo et al. 2005). 27 

Three bacterial strains seemed to have a slower infection rate, indicating a longer incubation 28 

period than the ones found to be highly pathogenic. The remaining 45 strains did not seem to 29 

have a negative effect on larval survival, suggesting that these are not primary pathogens.  30 

 31 

Key words: Screening, Cod larvae, Bath challenge, Opportunistic bacteria, Vibriosis, Vibrio 32 

anguillarum   33 

 34 
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 36 

 37 

INTRODUCTION 38 

Atlantic cod (Gadhus morhua L.) aquaculture has been expanding rapidly in Norway since 39 

2000 (Svåsand et al. 2004). In 2006, about 10384 tonnes of farmed cod (full life cycle) were 40 

slaughtered and 213 licenses for cod farming to 103 companies were operational (Directorate 41 

of Fisheries, Bergen, Norway). Of these, 60-80 ongrowth farms and 15-20 hatcheries were in 42 

operation (Kongsvik 2007).  43 

 44 

The production of juveniles has been a bottleneck in cod farming. Cod larvae have a relatively 45 

short yolk-sac stage and they start to feed on live feed, i.e. rotifers and Artemia spp., around 46 

three to four days post-hatching. Rotifers and Artemia are filter-feeding, capable to 47 

concentrate bacteria, and thus a potential source of pathogenic bacteria in the larval rearing 48 

system. Larvae also ingest bacteria by drinking water. High larval densities and suboptimal 49 

rearing conditions may provide good conditions for opportunistic bacterial pathogens to 50 
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flourish (Vadstein et al. 2004), and high rates of mortality are still common. Commercial 51 

enrichment diets for rotifers may enhance the growth of pathogens, including Vibrio 52 

anguillarum (Korsnes et al. 2006). Adult cod are frequently subject to classical vibriosis 53 

caused by V. anguillarum (reviewed by Samuelsen et al. 2006). V. anguillarum is also known 54 

to cause high mortality in a variety of fish species (reviewed by Thompson et al. 2004b).  55 

 56 

The epiflora of cod eggs seems to be dominated by members of the 57 

Cytophaga/Flavobacterium/Flexibacter group, while Vibrio spp. are not frequent (Hansen & 58 

Olafsen 1989). In the past overgrowth of eggs were regarded a problem. However, 59 

disinfection has reduced this problem (Reviewed by Olafsen 2001).  60 

 61 

While the composition of the intestinal bacterial flora associated with yolk-sac larvae of fish 62 

generally resembles the egg epibiota, a shift in the intestinal microbiota from a generally 63 

nonfermentative to a fermentative flora dominated by the Vibrio/Aeromonas group coincides 64 

with the onset of exogenous feeding (Vadstein et al. 2004). During first feeding, yolk-sac 65 

larvae in general are subject to a massive inflow of bacteria from the live feed organisms 66 

Brachionus plicatilis and Artemia spp., resulting in a shift in intestinal bacterial flora 67 

(Brunvold et al. 2007), and suspected pathogens such as V. anguillarum may accumulate in 68 

the live feed (Korsnes et al. 2006). The mucosal surfaces of fish serve as a substrate for 69 

bacterial adhesion (Spangaard et al. 2000) and thereby a potential portal of entry. Uptake of 70 

intact antigens from bacteria in the intestine of four- to six-day-old yolk-sac larvae of cod has 71 

been demonstrated, and it has been suggested that this uptake may play a role in immune 72 

development, or in nutrition (Olafsen & Hansen 1992). 73 

 74 
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Whether the bacteria are primary causes of mortality or secondary pathogens take advantage 75 

of weakened larvae is disputed. An important step would be to test whether any of the 76 

bacterial strains found has the ability to cause disease. Knowledge concerning sources and 77 

species of bacteria most commonly associated with cod larvae at different life stages is 78 

essential. It is also important to know the amount of bacteria needed to induce infection. The 79 

objectives of this study were to screen a large number of bacterial strains associated with 80 

diseased cod larvae, other marine cold water species and live feed cultures, and to test the 81 

virulence of the strains in a challenge model using cod yolk-sac larvae.  82 

 83 

 84 

MATERIALS AND METHODS 85 

Broodstock, eggs and larvae. Eggs were collected at the Sagafjord commercial cod hatchery, 86 

in the county of Hordaland, Norway (59° 45’ N, 5° 29’ E). The broodstock originated from 87 

the Bømlo and Halsnøy area in the same county. 88 

 89 

All eggs were taken from the same group. They were disinfected immediately after 90 

fertilization in glutardialdehyde 300 ppm for 10 min, and kept in black conical 150 l tanks at 91 

6.5 to 7.0 C. Eggs were transported from the hatchery to the Institute of Marine Research in 92 

boxes filled with ice, with the eggs stored in plastic bags. The transfer took about two to three 93 

hours. 94 

 95 

Bacteria. A total of 117 bacterial isolates were collected, mostly from dead or moribund cod 96 

Gadus morhua larvae, while some were isolated from Pollack Pollachius pollachius, Coalfish 97 

Pollachius virens and Atlantic halibut Hippoglossus hippoglossus fry, water samples, rotifer 98 

and algal cultures. In order to reduce the number of strains used, the growth patterns of all 99 



5 

 

strains were compared on different growth media, such as marine agar (MA), Thiosulphate 100 

Citrate Bile Sucrose Agar (TCBS) (Merck KGaA, Darmstradt, Germany), Cytophaga medium 101 

(CA) (Whitman 2004) and blood agar (nutrient blood agar (Oxoid) supplemented with 5% 102 

sheep blood and 1.5% NaCl). 16S rDNA sequencing was also performed in order to compare 103 

the 16S rDNA sequence and look for similar DNA sequences. All strains with similar growth 104 

patterns and similarities in 16S rDNA sequences greater than 97% (Hagström et al. 2000, 105 

2002) were eliminated from the challenge trails (data not shown). A total of 53 different 106 

bacterial strains were selected for further studies, which were performed in three identical 107 

challenge experiments (Table 1).  108 

The challenge experiment included an unchallenged control (eggs and larvae not exposed to 109 

bacteria) and two challenged control groups (eggs and larvae challenged with Vibrio 110 

anguillarum strain 610, challenge dose 10
6
 and 10

4 
CFU ml

 -1
 respectively). V. anguillarum 111 

strain 610 is known to cause high mortality in fish species such as Atlantic cod Gadus morhua 112 

(Samuelsen & Bergh 2004, Vik-Mo et al. 2005, Seljestokken et al. 2006) and Atlantic halibut, 113 

Hippoglossus hippoglossus (Samuelsen et al. 1997) and is commonly used in our laboratory 114 

during challenge experiments. All bacteria were stored at –80ºC in a 20% glycerol/marine 115 

broth (Difco 2216, Difco, Detroit, MI, USA) stock. They were incubated at 15ºC and grown 116 

on petri dishes with Difco 2216 marine agar (MA) for 48 h. Colonies of the bacteria were 117 

transferred to Erlenmeyer flasks with 50 ml of marine broth (MB) (Difco 2216) and shaken at 118 

80 rpm in a shaking incubator (INFORS AG CH-4103 Bottmingen, Switzerland) for 48 h at 119 

7 C. The bacterial cultures, 30 ml, were harvested by centrifugation (Heraeus Sepathec 120 

Megafuge 1.0 R) at 2772 G for 10 min at 4ºC, washed twice in 30 ml phosphate-buffered 121 

saline (PBS) and suspended in 30 ml PBS. The cell concentration was determined by 122 

counting, using a Hawksley counting chamber. 123 

 124 



6 

 

The V. anguillarum strain 610 was originally isolated from cod suffering from vibriosis in the 125 

Parisvatnet research facility of the Institute of Marine Research (Øygarden municipality, 126 

Western Norway). Moritella viscosa was provided by Helene Mikkelsen at the Norwegian 127 

Institute of Fisheries and Aquaculture Research in Tromsø, and the strains F95B/98 and 128 

F95C/98 were provided by Anne Berit Olsen from the National Veterinary Institute in 129 

Bergen. Strains HI 21030 to HI 21069 were provided by Egil Karlsbakk at the Institute of 130 

Marine Research. These strains were all characterised by these researchers respectively, 131 

except for the API results and the growth studies on TCBS and CA medium for HI 21030- HI 132 

21069. 133 

 134 

Challenge experiments. Three identical challenge experiments were preformed. All eggs 135 

were exposed to bacteria approximately 48 h before hatching on day 10 or day 11 after 136 

fertilization. 137 

Eggs were randomly taken and transferred to 24-well polystyrene dishes (Nunc, Roskilde, 138 

Denmark) by autoclaved Pasteur pipettes. The protocol was modified from Bergh et al. (1992, 139 

1997). All eggs hatched within a time range of 10 h, and 7841 of 7848 eggs hatched 140 

successfully. The eggs were put separately into each well containing 2.0 ml of sterile 80% 141 

(28‰) seawater. The seawater was aerated just before use in order to minimize the possibility 142 

of contamination. Exactly 100 l of bacterial suspension was added to each well. Final 143 

bacterial concentrations in the wells were 10
6
 and 10

4
 cells ml

-1
, respectively. Final volume in 144 

each well was 2.1 ml. Three plates (72 wells) were used for each bacterial concentration, so 145 

that six plates (144 wells) were used for each bacterial strain. Three plates with unchallenged 146 

larvae were used as negative control. The eggs and larvae were incubated in darkness in a 147 

climate-controlled room at 7 C. All eggs and larvae were inspected each day and mortality 148 

was registered. 
 

149 
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 150 

API 20E. API 20E tests (Biomérieux, Marcy l’Etoile, France) were performed according to 151 

the manufacturer’s manual, with the following modifications: Bacterial cultures were 152 

dissolved in sterile physiological saline (9 g NaCl dissolved in 1 l distilled water). The 153 

McFarland 2 standard was used as reference to culture density. The API strips were incubated 154 

at 15°C for 48h.  155 

Gram staining was performed with the Dagnostica MERCK, (Darmstadt, Germany) Gram 156 

staining set. 157 

 158 

Immunostaining of bacterial smears. In order to test some of the Vibrio anguillarum strains 159 

used in these experiments for serotype, bacterial smears of HI 21412, HI 21413, HI 21414 and 160 

HI 21429 were stained with specific absorbed polyclonal antiserum against serotypes O2α, 161 

O2β and O1. All antisera were produced according to the method of Oeding (1957) and 162 

absorbed by the method of Knappskog et al. 1993. The antiserum against serotype O2α was 163 

absorbed against O2β and O1, the antiserum against O2β was absorbed against O1 and the 164 

antiserum against O1 was absorbed against O2β. All three antisera were diluted in tris-165 

hydroxymethyl-aminomethane (TRIS)-buffered saline (TBS) with 2.5% bovine serum 166 

albumin (BSA). In order to prevent non-specific antibody binding, sections were blocked by 167 

using 5% BSA in TRIS-buffered formaldehyde for 20 min. Avidin-biotin-alkaline 168 

phosphatase complex (ABComplex/AP) reaction kit (Dako A/S, Denmark) and New Fuchsin 169 

Substrate system (Dako A/S) were used according to the manufacturer’s manual. During the 170 

staining procedures, the different bacterial strains were kept separate to prevent cross-171 

contamination. During staining both positive and negative controls were used. Known O2α 172 

(strain HI 610), O2β (strain HI 618) and O1 (strain HI 644) serotypes isolates were used as 173 

positive controls. The O2α and O2β were used as negative controls during staining procedures 174 
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with the O1 antiserum, O2β and O1 isolates were used when staining with O2α antiserum, 175 

and O2α and O1 isolates were used as negative controls when the O2β antiserum was used. 176 

All incubations were performed at room temperature (20 C) in a humidity chamber.  177 

 178 

Mono-Va agglutination Kit against Vibrio anguillarum. Mono-Va tests (Bionor AS, Skien, 179 

Norway) were used to identify the isolates Vibrio anguillarum 610, HI 21412, HI 21413, HI 180 

21414 and HI 21429. The test was done according to the manufacturer’s manual. 181 

 182 

DNA isolation. Genomic bacterial DNA was isolated from 1 ml of a liquid culture harvested 183 

at the end of the exponential growth phase, using the purification kit DNeasy® 96 tissue kit 184 

(Qiagen, Hilden, Germany). The protocol for gram negative bacteria was used.  185 

 186 

PCR (Polymerase Chain Reaction) amplification of 16S rDNA genes. 187 

Universal primers, 27f and 1492r (Escherichia coli numbering), were used for 16S rDNA 188 

analyses. The mix contained 2.0 l PCR buffer (10x), 1.2 l MgCl2 (25 mM), 3.2 l dNTP 189 

(1.25 mM/each, Promega, Madison, Wisconsin), 1.0 l 27f Forward primer (10 m), 1.0 l 190 

1492r Revers primer (10 m), 0.2 l Taq polymerise (5 U/ l, Promega) 7.4 l Nuclease-free 191 

water (Eppendorf, Hamburg, Germany) and 4 l template (approx. 50 ng/ l). The 192 

amplification was performed in an automated thermal cycler (Perkin Elmer, Gene Amp, PCR 193 

system 9700) and the cycles were as follows: initial denaturation at 95 C for 5 min, then 35 194 

cycles of denaturation at 94 C for 1 min, annealing at 55 C for 1 min, extension at 72 C for 195 

11 min. All PCR reactions were performed in 50 l reaction tubes. 196 

PCR (Polymerase Chain Reaction) amplification of GyrB gene. Primers used for 197 

amplification of the GyrB gene were GyrB-1 (forward) and GyrB-2 (reverse) (Yamamoto & 198 

Harayama 1995). The mix contained 2.0 l PCR buffer (10x), 1.5 l MgCl2 (25 mM), 4.0 l 199 
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dNTP (1.25 mM/each, Promega), 1.0 l GyrB-1 primer (10 M), 1.0 l GyrB-2 primer (10 200 

M), 0.5 l Taq polymerise (5 U/ l) (Promega), 6 l nuclease-free water (Eppendorf) and 4 201 

l template (approx. 50 ng/ l). The amplification cycle was as follows: initial denaturation at 202 

95 C for 5 min, then 35 cycles of denaturation at 94 C for 1 min, annealing at 58 C for 1 min, 203 

extension at 72 C for 2 min and extension/hold for 7 min. The amplification was performed in 204 

an automated thermal cycler (Perkin Elmer, Gene Amp, PCR system 9700). 205 

 206 

Sequencing of 16S rDNA and GyrB genes. All PCR products were prepared for sequencing 207 

by using a Pre-Sequencing Kit (USB Corporation, Cleveland, Ohio). One cycle of 37 C for 208 

15 minutes and in addition, another 15 minutes at 80 C were run. Primers used for sequencing 209 

16S rDNA genes were the same as for the PCR amplification described in the paragraph 210 

above. The pre-sequencing mix contained, 1 l Big Dye mix(2.5x) (Big Dye version 3.1, 211 

Applied Biosystems, Foster City, California), 1.5 l sequence buffer (5.0x), 2.0 l primer 212 

(10 M) and 2.5 l RNAse free water (Eppendorf, Germany) and 3 l of template were used. 213 

The amplification cycles were as follows: initial denaturation at 96 C for one minute then 25 214 

cycles of denaturation at 96 C for 10 s, annealing at 50 C for 5 s, and extension at 60 C for 4 215 

min.     216 

 217 

Primers used for sequencing GyrB genes were different from the ones used for PCR 218 

amplification, GyrB-1s (forward) and GyrB-2s (reverse) (Yamamoto & Harayama 1995). The 219 

same pre-sequencing mix and amplification cycles as used for 16S rDNA genes were used on 220 

the sequencing of the GyrB genes as well. The amplification was performed in an automated 221 

thermal cycler (Perkin Elmer, Gene Amp, PCR system 9700). The sequence analysis was 222 

performed by the sequence laboratory at the University of Bergen, using an ABI 3700 223 

sequencing analyser (Applied Biosystems). The 16S rRNA and GyrB encoding gene 224 
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sequences were searched for nucleotide-nucleotide matches in the BLAST database at the 225 

NCBI (<http://www.ncbi.nlm.nih.gov/BLAST/>) to establish tentative strain identity 226 

(Altschul et al. 1990). 227 

 228 

Statistical analyses. Since the survival and mortality data are not normally distributed, non-229 

parametric tests were used. A 2 x 2 contingency table (p < 0.00094 Bonferroni correction for 230 

multiple independent tests), performed in Statistica v 7.0 (StatSoft, Tulsa, USA), was used to 231 

test for mortality differences among the treatment and control groups. Since multiple 232 

independent tests were used to test differences in mortality rate among all challenged larval 233 

groups and the three larval control groups, a Bonferroni correction was applied (to minimize 234 

the possibility of doing a type II error) (Rice 1989). We thus tested for 53 bacterial strains, 235 

and the p value was corrected by 53 (p = 0.05/53 = 0.000094): see Rice (1989). Yates 236 

correction was used since there was only one degree of freedom (df).  237 

 238 

 239 

RESULTS 240 

Bacterial characterisation. Further characterisation of the bacterial strains used in these 241 

challenge experiments showed that all bacterial strains were Gram-negative. Most of the 242 

strains were short rod-shaped bacteria except for F95B/98 and F95/C98, which were long 243 

filamentous bacteria. These two strains were also the only non-motile strains. On the other 244 

hand, HI 21050, HI 21402 and HI 21407 proved to be weakly motile. The majority of the 245 

strains were found to be oxidase-positive, except for the strains Marinomonas sp., HI 21050, 246 

HI 21059, HI 21068, HI 21069, HI 21017 and HI 22002 (See Table 1 for an overview of all 247 

details). In certain cases, the API results were inconclusive. In Table 2 these results are 248 

marked as +/-. HI 21050, which resembled Carnobacterium sp., did not produce any positive 249 

http://www.ncbi.nlm.nih.gov/BLAST/
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results in the API tests, in spite of three attempts. API tests of the four strains HI 21412, HI 250 

21413, HI 21414 and HI 21429 revealed similar phenotypic characterization as is known for 251 

other Vibrio anguillarum strains, referring to the ALO test (A: arginine decarboxylase, L: 252 

lysine decarboxylase, O: ornithine decarboxylase,): A+/L-/O- (Alsina & Blanch 1994) (see 253 

Table 2 for more details). This was confirmed by the 16S rDNA and GyrB sequence analysis, 254 

which showed 98-99% similarity to various V. anguillarum (Table 1) gene sequences. Some 255 

of the sequencing analyses produced inconclusive results when the two genes were compared. 256 

HI 21404’s 16S rDNA sequence showed similarities to Vibrio sp. while the GyrB sequence 257 

was 100% similar to Aeromonas salmonicida subsp. salmonicida. The 16S rDNA sequence 258 

for strain HI 21408 was 100% similar to V. anguillarum, while the GyrB sequence was 94% 259 

similar to V. logei. HI 22022 was also similar to V. anguillarum the 16S rDNA sequence was 260 

BLASTed, but the GyrB sequence showed most similarity to Pseudoalteromonas rubra 261 

(98%). HI 22019’s 16s rDNA and the GyrB sequence were similar to Pseudoalteromonas 262 

nigrificans and Vibrio splendidus, respectively. The last strain to show differences was HI 263 

22025. The16S rDNA sequence was 96% similar to Tenacibaculum ovolyticum while the 264 

GyrB gene sequence was almost identical (99%) to V. splendidus. The bacterial strain HI 265 

22022 came out as 96% similar to the gram positive bacteria Bacillus herbersteinensis 266 

isolated from a medieval wall painting in the chapel of Castle Herberstein, Styria (Austria) 267 

(Wieser et al. 2005).  Unfortunately no GyrB gene sequence was obtained for this strain. No 268 

GyrB sequences were obtained for HI 22019, HI 22015 and 22054 either, in spite of three 269 

attempts being made. 270 

  271 

Cumulative mortality and statistical analysis. In these three challenge experiments, each 272 

experiment contained three control groups, an unchallenged control group and two challenged 273 

controls.  Large differences in survival were found between the unchallenged and the 274 
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challenged control groups (Figs. 1-6). The differences in mortality rates among the control 275 

groups were significantly different throughout all three experiments, except for the lowest 276 

challenge dose,10
4
, in experiment II (Table 3). Observations among the unchallenged control 277 

groups were not significantly different from each other except at the end of the experiments 278 

on day 15 (p < 0.00094, Bonferonni correction, data not shown).    279 

 280 

Only a few of the strains tested caused high mortality rates early in the experiments that were 281 

significantly different from the negative control groups. The increase in mortality observed at 282 

the end of the experiments, was due to the lack of feeding.    283 

 284 

The challenged controls groups displayed some differences in terms of when the larvae started 285 

to die. In the first experiment the larva tended to die about four days earlier, between days 286 

three and four, than larvae in experiments II and III (see Figs. 1-6). In the second experiment 287 

the cumulative mortality among the challenged control group was lower and significantly 288 

different from that of the challenged control groups in experiments I and III (Figs. 1-6 and 289 

Table 3, p < 0.00094, Bonferonni correction). On the other hand, the cumulative mortalities 290 

for all other bacterial strains tested in experiment II were in the same range as for the negative 291 

control group (Figs. 3 and 4) and found to not be significantly different from each other. 292 

However, the statistical analysis confirmed that mortality rates of the high-dose challenged 293 

control group and the unchallenged control group were significantly different from each other 294 

(Table 5). The mortality rates of the positive controls in experiments I and III were not found 295 

to be significantly different (data not shown). 296 

 297 

As Figures 1, 2, 5 and 6 show, only the five strains HI 21412, HI 21413, HI 21414, HI 21429 298 

and HI 21050 caused high mortality. HI 21412 appeared to be the most virulent strain of the 299 
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five. Mortality caused by this strain was significantly different from the mortality rate found 300 

in the negative control group on day three post-challenge (challenge dose 10
6
 CFU ml

-1
) and 301 

on day six (challenge dose 10
4
 CFU ml

-1
) (Table 4). The mortality rate among the remaining 302 

four strains was found to be significantly different from that of the unchallenged control 303 

groups from day six and onwards for the highest challenge dose and in low-challenged dose 304 

groups from day nine (p < 0.00094, Bonferonni correction details (Table 4). The lowest 305 

challenge dose did not cause any increase in mortality rate in larval groups challenged with HI 306 

21050. Compared to the positive control, these strains did not produce significantly different 307 

results. Strains HI 21052, HI 22001 and HI 22027, resembling Vibrio logei, Vibrio 308 

anguillarum and Vibrio splendidus, respectively (see Table 1) led to cumulative mortality 309 

rates that were different from both control groups (Figs. 1, 2, 5 and 6). In spite of this, the 310 

mortality rates for these strains were significantly different from the unchallenged control (p < 311 

0.00094, Bonferonni correction, Table 4) only at the end of the experiment (i.e. from day 12 312 

and onwards), indicating that they had a longer incubation period. The same strains were also 313 

significantly different from the positive control, indicating they are less virulent (data not 314 

shown). It should be noted that the low challenge dose of these three strains did not appear to 315 

cause the same increase in mortality as was found in the high challenge dose groups. 316 

 317 

Cumulative mortality rates in most challenge groups were similar to the negative control 318 

groups (Figs. 1-6) and mortality rates among these 45 remaining groups did not differ 319 

significantly from the negative control groups (p > 0.00094, Bonferonni correction, data not 320 

shown). The mortality rates for the same groups were also found to be significantly different 321 

from the positive control group (p < 0.00094, Bonferonni correction (data not shown). This 322 

indicates that these 45 strains had no harmful effect. 323 

 324 
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Immunostaining of bacterial smears and Mono-Va testing. The four pathogenic strains HI 325 

21412, HI 21413, HI 21414 and HI 21429, which were found to have similar 16rDNA and 326 

GyrB sequence as V. anguillarum, were tested for positive immunostaining with three 327 

different antisera against the V. anguillarum serotypes O2α, O2β and O1. Positive 328 

immunostaining was only found when they were stained with the antiserum against the O2α 329 

serotype. On the other hand, when tested with the Mono-Va agglutination kit for V. 330 

anguillarum strains, no positive reaction was found in any of the four strains.   331 

 332 

 333 

DISCUSSION  334 

The aim of this study was to evaluate the virulence of candidate pathogenic bacteria among 335 

bacterial isolates associated with diseased cod larvae, other marine cold water fish and live 336 

feed cultures. Out of 53 bacterial strains tested, only the five strains HI 21412, HI 21413, HI 337 

21414, HI 21429 and HI 21050 could be classified as primary pathogens, i.e. had a negative 338 

effect on cod larva survival. This indicated that most of the bacteria associated with and 339 

isolated from moribund cod Gadus morhua larvae, halibut Hippoglossus hippoglossus, 340 

coalfish Pollachius virens and pollack Pollachius pollachius, are not primary pathogens, i.e. 341 

they are probably not primary causes of disease. Similar results were found by Verner-342 

Jeffreys et al. (2003) testing virulence among bacterial strains isolated from halibut 343 

hatcheries. 344 

 345 

Four strains in this high mortality group were shown to resemble Vibrio anguillarum by 16S 346 

rDNA and GyrB analysis. This confirms that vibriosis may also be a problem in the 347 

aquaculture of early life stages of cod. However, serotyping of these four strains, HI 21412, 348 

HI 21413, HI 21414 and HI 21429, did not provide any clear results. Serological testing with 349 



15 

 

specific antisera against the V. anguillarum serotypes, O1, O2α and O2β, produced positive 350 

results only against the O2α serum. At the same time, no positive results were found by using 351 

a Mono-Va agglutination kit, which should have produced positive results for the O1, O2 and 352 

O3 serotypes. This can be explained by that these V. anguilllarum strains may differ from 353 

serotypes known today, for which commercially produced antisera exist. A recent study by 354 

Mikkelsen et al. (2007) showed that bacteria isolated from diseased cod differ from O2α and 355 

O2β isolates serologically, biochemically and genotypically. These authors further indicate 356 

that these V. anguillarum isolates belong to a new sero-subtype. However, the four isolates 357 

used in the present study are biochemically and genotypically consistent with V. anguillarum. 358 

The ALO test gave A+/L-/O- as a classification of the V. anguillarum strains (See Table 2). 359 

However, further studies should be carried out in order to compare already known isolates and 360 

serotypes with these findings. Studies of this kind are probably essential if efficient vaccines 361 

are to be developed. Vaccines developed for cod do not provide sufficient protection and 362 

vibriosis is still a problem in cod farming even though vaccines for cod have been on the 363 

market for more than 10 years (Samuelsen et al. 2006).  364 

 365 

Strain HI 21050, resembling Carnobacterium sp., was isolated from a culture of the alga 366 

Tetraselmis sp. This alga is commonly used as a feed and enrichment in rotifer cultures 367 

(Muller-Feuga et al. 2003). Algal cultures are associated with bacterial populations. 368 

Population studies of algal cultures used as feed for scallop larvae have identified a variety of 369 

bacterial strains associated with the algal cultures (Sandaa et al. 2003, Nicolas et al. 2004), 370 

probably including opportunistic pathogens as well as commensal or mutualistic bacteria. In 371 

intensive aquaculture, cod larvae are offered rotifers, usually Brachionus plicatilis, and brine 372 

shrimp, mostly Artemia franciscana, as live feed (Svåsand et al. 2004, Reitan 2005). 373 

Recently, Korsnes et al. (2006) demonstrated the presence of bacteria with high sequence 374 
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similarity to Vibrio anguillarum in rotifer cultures and the gut of cod larvae fed rotifers. Both 375 

rotifers and Artemia sp. are filter feeders capable of concentrating large amounts of bacteria, 376 

and live feed is a major source of bacterial influx to the gastrointestinal tract of fish (Nicolas 377 

et al. 1989, Skjermo and Vadstein 1993, Makridis et al. 2000a, b). The present results support 378 

the view that the composition of this influx influences larval survival. However, as most 379 

strains did not induce mortality, they could be viewed as secondary pathogens, i.e. 380 

opportunists that invade larvae that are already stressed or weakened. 381 

 382 

Three strains, HI 21052, HI 22001 and HI 22027, resembling Vibrio logei, Vibrio 383 

anguillarum and Vibrio splendidus, respectively, caused mortality rates significantly different 384 

from the negative control from day nine post hatching. These strains appeared to have a 385 

slower infection rate. The could be caused by non-optimal growth conditions for the specific 386 

bacterium, such as temperature, salinity and nutrients. Therefore, it cannot be out ruled that 387 

these bacterial strains might act like primary pathogens under different growth conditions. 388 

During laboratory studies fish are kept under controlled optimal conditions, which might 389 

make them more capable of dealing with an infection compared to fish kept in commercial 390 

farms. The bacterial strain HI 22001 is probably a less virulent strain of V. anguillarum. 391 

Differences in virulence among O1 isolates of V. anguillarum were reported by (Pedersen et 392 

al. 1997), and it is likely that differences in virulence will occur among all V. anguillarum 393 

serotypes. Less virulent O2 strains of V. anguillarum isolates, isolated from cod, have also 394 

been reported (Mikkelsen et al. 2007).   395 

 396 

None of the three different Vibrio logei strains tested had any negative effect on larval 397 

survival. This was not expected prior to the challenge experiments. V. logei is frequently 398 

isolated from moribund and dead larvae and it has been assumed to play a significant role in 399 
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bacterial problems experienced in hatcheries. There are several possible explanations to why 400 

bath challenge did not have any effect. A challenged dose of 10
6
 CFU ml

-1
 may not be 401 

sufficient to cause disease. It is possible to grow V. logei in cultures up to 10
8 

CFU ml
-1

, so a 402 

higher challenge dose should be tested in repeated experiments. Cod larvae drink water from 403 

hatching onwards (Mangor-Jensen & Addof 1987), thus bacteria will enter the gastrointestinal 404 

tract. Consequently the intestine as a route of entry for pathogenic bacteria cannot be ruled 405 

out. On the other hand the results lead to the hypothesis that a different route of entry than 406 

bath challenge or that a combination of both bath and oral exposure is needed. Experiments 407 

that deliver challenges via live feed have been performed on turbot Scophthalmus maximus 408 

larvae (Grisez et al. 1996, Planas et al. 2005) but to the best of our knowledge, no such 409 

experiments have been performed on cod larvae. Another explanation for the lack of 410 

pathogenicity is the possibility of quorum sensing. V. logei strains were first described as 411 

symbiotic with Vibrio fisheri in squids (Sepiola robusta and Sepiola affinis) light organs 412 

(Fidopiastis et al. 1998). The two luminous bacteria are closely related, and with V. logei 413 

being symbiotic with a bacterium capable of quorum sensing (Dunlap 1999, Milton 2006), it 414 

is reasonable to believe that V. logei might possess some of the same abilities as its fellow 415 

organism. This leaves room for speculation about whether or not V. logei is an opportunist 416 

taking advantage of other bacteria, perhaps through mechanisms of quorum sensing. The 417 

work done by Fidopiastis et al. (1998) also confirms the difficulty of distinguishing two 418 

closely related coexisting bacteria by growth and genetic analysis. During a disease outbreak, 419 

finding and isolating the primary pathogen could thus be difficult if other agents are present at 420 

high densities, as V. logei often is. The role of V. logei in disease outbreaks in cod hatcheries 421 

still needs to be elucidated. 422 

 423 
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Moritella viscosa has been isolated form cultivated cod that display skin lesions similar to the 424 

ones seen on salmonids (Colquhoun et al. 2004), but the bacteria showed some phenotypical 425 

differences from to the NCIMB 13584
T
 strain. The M. viscosa isolate used in these 426 

experiments did not have any negative effect on the cod larvae. In a study performed by 427 

Gudmunsdóttir et al. (2006), a bath challenge with M. viscosa resulted in mortality only when 428 

the challenge dose was as high as 10
7
 CFU ml

-1
. Similar results were obtained by Björnsdóttir 429 

et al. (2004), in challenge experiments on turbot juveniles (50 g). No clinical signs were found 430 

on fish challenged with the lowest dose (10
6
 CFU ml

-1
) in either of these two experiments. On 431 

this basis, future experiments on cod larvae should contain a higher challenge dose. However, 432 

in the present experiments we chose to use the same challenge dose for all strains tested. On 433 

the other hand, a challenge dose of 10
6
 CFU ml

-1 
is frequently used in challenge experiments 434 

and is generally considered to be a high challenge dose (Bergh et al. 1992, Vik-Mo et al. 435 

2005, Schrøder et al. 2006, Sandlund et al. 2006).  436 

 437 

When comparing growth temperatures, Tunsjø et al. (2007) found that M. viscosa grew denser 438 

and had better motility at 4
o
C and with the addition of 3 to 4% NaCl, than at 15

o
C with 1% 439 

NaCl. Conditions for growth in these experiments should be within the range of optimal 440 

growth for this bacterium.   441 

 442 

The reason for the differences seen between the challenged control groups, especially in 443 

experiment II, is not known. It could be caused by inaccuracy when the dilutions of these 444 

particular bacterial suspensions were made. It is known that loss of flagella, for example 445 

during the washing procedure, makes the bacterium less pathogenic, as the flagella are very 446 

important as a source of virulence (Milton et al. 1996, O’Toole et al.1996). Before challenge, 447 

all bacterial suspensions were examined in order to verify that the motile bacteria were still 448 
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intact and motile after the washing procedure. Hence it is unlikely that the loss of flagella was 449 

the cause of differences in mortality. Reduction or loss of virulence induced by washing of 450 

bacterial suspensions should also be considered. Given that all bacterial suspensions were 451 

grown under the same conditions, and that this washing procedure is routinely used in our 452 

laboratory, this is unlikely to have affected the results.       453 

 454 

The same temperature was used both to grow the bacterial cultures and as the incubation 455 

temperature inside the air-conditioned room. This was done in order to keep conditions as 456 

close to the natural environment as possible, where the bacteria grow under the same 457 

conditions as the larvae. Changes in characteristics when bacterial strains have been grown at 458 

different temperatures had been observed, hence the decision to use the same temperatures.     459 

 460 

To keep unfed cod larvae alive for up to 14 days post-hatch proves that the multi-dish system 461 

is well adapted for studying bath challenge for cod larvae as well as for halibut (Bergh et al. 462 

1992, 1997), turbot (Bergh et al. 1997, Hjelm et al. 2004) and great scallop larvae (Sandlund 463 

et al. 2006). Only at the end of the experiments, 15 days post-hatching were significant 464 

differences between the unchallenged control groups in the three experiments found. These 465 

individual differences are most likely caused by the lack of feeding.  466 

 467 

The larvae were kept alive until starvation point due to the possibility of losing significant 468 

data. To the best of our knowledge this is the first time this kind of experiment has been 469 

carried out on cod larvae, and we needed all three experiments to be performed identically to 470 

be able to rely on the results. Similar future experiments done under similar conditions can be 471 

brought to an end at an earlier stage. 472 

 473 
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None of the bacterial strains were re-isolated from the larvae. Larvae possess a sterile 474 

digestive system until hatching, when it is colonized by the egg flora (Reviewed by Vine et al. 475 

2006). Reisolation of bacteria form larvae is difficult, particularly due to the small size of the 476 

larvae, the need for exterior washing or disinfection resulting in decreasing number of viable 477 

bacteria. Concerning this matter we chose by means of immunochemistry to verify the 478 

presence of Vibrio anguillarum (Engelsen et al. in press). Given that sterile water and a high 479 

concentration of bacteria were added to each well, it is reasonable to believe that the dominant 480 

bacteria inside the wells were the bacteria used for challenge. Furthermore, the eggs were 481 

selected at random and most of the larvae lived until the point of starvation, indicating that the 482 

larvae did not die of other factors than the bacterial strains added.  483 

 484 

The use of API 20E as a diagnostic tool for aquatic bacteria has been debated for decades, as 485 

reviewed by Popovic et al. (2007). According to Alsina & Blanch (1994), this could be a 486 

useful tool when adjustments or modifications to the manufactory’s manual are being made 487 

and as a supplement to other methods of identification. In our laboratory we have modified 488 

the API protocol to suit cold-water bacterial strains on the basis of previous experience. In 489 

spite of this we observed some inconclusive results among some of the bacterial strains tested, 490 

especially concerning the fermentation of sugars. This has occasionally been observed in our 491 

laboratory (authors’ observations)  492 

 493 

Analyses of 16S rDNA and GyrB gene sequences were primarily used as a preliminary stage 494 

of identification in order to limit the number of bacteria used in these challenge trials and for 495 

further characterisation, respectively. When the 16S rDNA and GyrB sequences were 496 

compared, some identifications were inconclusive (Table 1). This may have been due to 497 

polymorphism and heterogeneity in the 16S rDNA gene (Dahllöf et al. 2000, Moreno et al. 498 
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2002), which would make it difficult to identify strains based on one gene only. Several other 499 

genes have been suggested as additional sources of information for identifying bacterial 500 

strains; for instance recA (Thompson et al 2004a), rpoB (Dahllöf et al. 2000), GyrB, fusA, 501 

nifD (Holmes et al. 2004). Another aspect is the limited number of GyrB sequences available 502 

in the GeneBank, compared to 16S rDNA sequences. This is probably the cause of the low 503 

frequency of matches with GyrB found in the database. The average length of the fragments 504 

used in this study is in the range of 1250 – 1350 nucleotides for the 16S rDNA gene and 505 

1100-1200 nucleotides for the GyrB gene, which is normally sufficient to obtain a match. 506 

 507 
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Table. 1 Characterization of the bacterial strains used in this experiment. V. ang 610 = Vibrio anguillarum strain 610, Source = the bacterial strain’s origin of isolation, 

Salmon Salmo salar, Cod Gadus morhua, Pollack Pollachius pollachius, Coalfish Pollachius virens, Halibut Hippoglossus hippoglossus, Tetra. sp = Tetraselmis sp. culture, 

Rot. Culture = rotifer culture, Long fil. = long filamentous, Cocc rod = coccoid rod shape, + = positive, - = negative, w = weak, gr = growth, Yel colon = yellow colonies, Gr 

colon = green colonies, TCBS = Thiosulphate citrate bile sucrose agar, CA = cytophaga agar, Hemolytic = haemolytic growth on blood agar 1.5% NaCl, N.D = not 

determined, no match = no match during BLAST search, No seq. obtained = no sequences were obtained for these strains 
 

 

Bacterial strain Source Gram Shape Motility Okxidase Hemolytic TCBS CA 16S rDNA GyrB 

V. ang. 610 Control - Cocc rod + + + Yel colon. + V. anguillarum V. anguillarum 

Marinomonas sp. Cod - rod + - - - + Marinomonas sp. Marinomonas sp. 

M. viscosa Salmon - rod + + + N.D N.D Moritella viscosa  

F95B/98 Salmon - Long fil. - + No gr N.D N.D Tenacibaculum sp. Tenacibaculum sp. 

F95C/98 Salmon - Long fil. - + No gr N.D N.D Tenacibaculum sp. Tenacibaculum sp. 

HI 21030 Cod larvae - rod + + - w gr + (w) Marinobacter sp.  

HI 21031 Cod larvae - rod + + - - + Pseudoalteromonas sp.  

HI 21037 Cod larvae - rod + + - - + Pseudoalteromonas sp.  

HI 21039 Cod larvae - rod + + - Gr colon. + Vibrio logei  

HI 21040 Cod larvae - rod + + - Gr colon. - V. logei  

HI 21041 Cod larvae - rod + + - w gr/ w Yel. - Psychromonas sp.  

HI 21047 Cod larvae - rod + + - Gr colon. + Pseudoalteromonas sp.  

HI 21050 Tetra. sp. - rod w - + (w) w gr/Gr colon. - Carnobacterium sp.  

HI 21052 Cod larvae - rod + + - Gr colon. + V. logei  

HI 21056 Cod larvae - rod + + - Gr colon. + Vibrio aff splendidus  

HI 21059 Cod larvae - rod + - - - + Marinomonas sp.  

HI 21061 Pollack - rod + + + Gr colon. + Marinomonas sp.  

HI 21063 Pollack - rod + + (w) - - + Photobacterium cf.iliopiscarium  

HI 21064 Pollack - rod + + (w) - Gr colon. + Vibrio wodanis  

HI 21065 Cod larvae - Cocc rod + + - Yel. Colon. + (w) Shewanella-sairae/marinintestina  

HI 21066 Coalfish - rod + + + Gr colon. + Vibrio splendidus  

HI 21068 Coalfish - Cocc rod + - - w gr + Photobacterium cf.iliopiscarium  

HI 21069 Cod larvae - rod + - - w gr + Marinomonas sp.  

HI 21400 Rot. culture - rod + + - w gr + Vibrio sp. Vibrio parahaemolyticus (86%) 

HI 21402 Cod larvae - rod w + - Gr colon. +  Vibrio fisheri or Vibrio logei (99%) V. fisheri (88%) 

HI 21404 Cod larvae - rod + + + - + (w) Vibrio sp. 

Aeromonas salmonicida subsp. salmonicida 

(100%)  

HI 21405 Cod larvae - rod + + - - + (w) Marinomonas sp. (96%) Marinomonas vaga (80%) 



HI 21407 Cod larvae - rod w + - Yel. Colon. + (w) Vibrio sp. V. parahaemolyticus (86%) 

HI 21408 Cod larvae - rod + + - Yel. Colon. + (w) V. anguillarum strain 010610-3 (100%) V. logei (94%) 

HI 21410 Cod larvae - rod + + ++ Gr colon. + V. splendidus V. splendidus (100%) 

HI 21412 Cod larvae - rod + + + (w) Yel. Colon. + V. anguillarum O2a (99%) V. anguillarum (99%) 

HI 21413 Cod larvae - rod + + + (w) Yel. Colon. + V. anguillarum O2a (99%) V. anguillarum NCMB 6 (98%) 

HI 21414 Cod larvae - rod + + + (w) Yel. Colon. + V. anguillarum (99%) V. anguillarum (98%) 

HI 21417 Cod larvae - rod + - - - + Rhodococcus sp. (99%) Rhodococcus erythropolis (99%) 

HI 21424 Cod larvae - Cocc rod + + + Yel/White colon + V. wodanis (99%) V. splendidus (91%) 

HI 21427 Cod larvae - rod + + - - + Vibrio gallicus (99%) V. parahaemolyticus (86%) 

HI 21429 Cod larvae - rod + + + (w) 

Yel. Colon./Yel 

agar + V. anguillarum (99%) V. anguillarum NCMB 6 (98%) 

HI 21430 Cod larvae - rod + + - - + V. gallicus (97%) V. anguillarum (98%) 

HI 21433 Cod larvae - rod + + - - + V. gallicus (99%)  V. parahaemolyticus (86%) 

HI 22001 Cod larvae - rod + + - - + V. anguillarum Pseudoalteromonas rubra (98%) 

HI22002 Cod larvae - rod + - - w gr/Gr + Vibrio sp. No seq. obtained 

HI 22019 Hallibut - rod + + + w Yel. + Pseudoalteromonas nigrifaceis (99%) V. splendidus LT 06 or LP1 (99%) 

HI 22022 Hallibut - rod + + - - + 

Bacillus herbersteinensis type strain D-

1.5a (96%) No seq. obtained 

HI 22025 Hallibut - rod + + No gr 
Yel. Colon./Yel 

agar +  Tenacibaculum ovolyticum (96%) V. splendidus LT 06 or LP1 (99%) 

HI 22027 Hallibut - rod + + + Gr colon. + Vibrio sp. Da2 or PMV19 (98%) V. splendidus LP1 or LT 06 (99%) 

HI 22029 Hallibut - rod + + + - + Pseudoalteromonas haloplanktis (98%) Pseudoalteromonas carrageenovora (90%) 

HI 22032 Hallibut - rod + + + 

Yel. Colon./Yel 

agar + V. splendidus (98%) V. splendidus LP1 or LT 06 (98%) 

HI 22034 Hallibut - rod + + - - + Pseudoalteromonas sp. EH-2-1 (99%) P. haloplanktis (99%) 

HI 22042 Hallibut - rod + + - - + Pseudoalteromonas sp. P. carrageenovora (91%) 

HI 22044 Hallibut - rod + + + Gr colon. + Vibrio sp. V. splendidus LT06 or PMV18 (99%) 

HI 22051 Hallibut - rod + + No gr - + (w) Tenacibaculum sp. No seq. obtained 

HI 22054 Hallibut - rod + + No gr - - Pseudoalteromonas sp. (99%) No seq. obtained 

HI 22077 Rot. culture - rod + + + - + Pseudoalteromonas sp. (99%) P. haloplanktis (98%) 

 

 

 

 

 

 

 



 
Table 2. API 20E results for all strains used in these challenge experiments. ONPG = β-galactosidase, ADH = arginine dihydrolase, LDC = lysine decarboxylase, ODC = 

ornithine decarboxylase, CIT = citrate utilization, H2S = H2S production, URE = urease, TDA = tryptophane deaminase, IND = indole production, VP = acetoin production, 

GEL = galatinase, GLU = glucose, MAN = mannitol, INO = inositol, SOR = sorbitol, RHA = rhamnose, SAC = saccharose, MEL = melibiose, AMY = amygdalin, ARA =  

arabinose, V. ang 610 = Vibrio anguillarum strain 610, +/- =  are  used when results have differed between API runs,  N.D = Not determined 

                     

                     

Bacterial strain ONPG ADH LDC ODC CIT H2S URE TDA IND VP GEL GLU MAN INO SOR RHA SAC MEL AMY ARA 

V. ang. 610 + + - - -/+ - - - - - + + -/+ - + - +/- - - - 

Marinomonas sp. + - - + - - - - - - - +/- +/- + + - + +/- +/- +/- 

M. viscosa N.D - + - N.D N.D N.D N.D N.D N.D + + - N.D N.D N.D - N.D N.D N.D 

F95B/98 N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D 

F95C/98 N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D N.D 

HI 21030 - -  - - - - - - - + - - - - - - - + - - 

HI 21031 - - - - +/- - +/- -  + + - + - - - - - - - 

HI 21037 - - - - + - - - - + - + - - - -/+ - + - + 

HI 21039 - - + - - - - - - +/- - +/- + - - - - - +/- - 

HI 21040 - - + - +/- - - - - +/- - +/- + - - - - - +/- - 

HI 21041 + - + - - - - - - +/- - - + - - - - - +/- - 

HI 21047 - - + - - - + - - +/- - +/- +/- - - - - - + - 

HI 21050 - - - - - - - - - - - - - - - - - - - - 

HI 21052 - - + - - - + - - +/- - +/- + - - - - - +/- - 

HI 21056 + - - - - - - - - +/- + + + - - - - - + - 

HI 21059 + - - - + - - - - + - +/- +/- +/- +/- +/- +/- +/- +/- +/- 

HI 21061 + - - - - - - - - +/- + + + - - - - - + - 

HI 21063 - + + - - - - - - + - + - - - - - - - - 

HI 21064 + - + - - - - - - +/- - + - - - - - - + - 

HI 21065 - - + - - - + - + - - + + - - - + - + - 

HI 21066 + - - - - - - - - + + + + - - - + +/- - - 

HI 21068 + + - - + - - - - + - + +/- +/- +/- - +/- + + +/- 

HI 21069 + - - - + - - - - + - +/- +/- +/- +/- +/- - +/- +/- +/- 

HI 21400 - - - - - - - + - - - + + - - - + - - + 

HI 21402 - - + - - - + - - - - - - - - - - - - - 

HI 21404 + - - - - - - - - + + + + - - - - - + - 

HI 21405 + - - - - - - + - - - - - - - - - - - -                     



HI 21407 - - - - - - - - - - - +/- + - - - + - - + 

HI 21408 + - + - - - - - - - +/- + - - - + - - - - 

HI 21410 + - - - - - - - - - + +/- + - - - - +/- + - 

HI 21412 + + - - +/- - - - - + + + + - + - + - + + 

HI 21413 + + - - +/- - - - - + + + + - + - + - + - 

HI 21414 - + - - +/- - - - - + + + + - + - + - + - 

HI 21417 - - - - - - + - - - - - - - - - - - - - 

HI 21424 - - - - - - - - - - + + + - - - + - + - 

HI 21427 - - - - - - - - - - - + + - - - + - +/- + 

HI 21429 + + - - - - - - - + + + + - + - + - + - 

HI 21430 - - - - - - - - - - - + + - - - + - + + 

HI 21433 - - - - - - - - - - - + + - - - + - +/- +/- 

HI 22001 - - - - - - - - + + - - - - - - - - - - 

HI22002 - - - - - - + - - - - - - - - - - - - - 

HI 22019 +/- - - - - - - - - +/- + + + - - - - + - - 

HI 22022 + - - - - - - - - +/- + - - - - - - - - - 

HI 22025 + - - - - - - - - - + + + - - - + - + - 

HI 22027 + - - - - - - - - + + + + - - - + + + - 

HI 22029 + - - - - - - - - +/- + + + - - - + - - + 

HI 22032 + - - - - - - - - +/- + - + - - - + - + - 

HI 22034 + - - - +/- - - - - +/- + + + - - - + - + - 

HI 22042 + - - - - - - - - - - - - - - - - +/- - +/- 

HI 22044 - - - - - - - - - + - + + - - - - - + - 

HI 22051 - - - - - - - - - - - - - - - - - + - - 

HI 22054 - - - - - - - - - - - - - - - - - - - - 

HI 22077 - - - - - - - - - - + - - - - - - - - - 
 

                     

                     

                     

                     

                     

                     

                     

                     

                     



Table 3. Yates-corrected Chi-square (χ
2
) values

 
and p-values (p < 0.00094, Bonferonni correction) for 2 x 2 

contingency table negative control vs positive control in all three challenge experiments. 10
6 
and 10

4 
= 

Challenge dose 10
6 
and 10

4
.
 
All significant p-values in bold. Exp = experiment , V. ang 610 = Vibrio 

anguillarum strain 610, Day = days post-hatch. 

 

  Day 3 Day 6 Day 9 Day 12 Day 15 

Exp Bacteria χ2 p-value χ2 p-value χ2 p-value χ2 p-value χ2 p-value 

1 V. ang 610 106 51,13 .0000 114.33 .0000 113.80 .0000 113.80 .0000 10.72 .0011 

1 V. ang 610 104 16.78 .0000 95.68 .0000 97.37 .0000 113.80 .0000 8.51 .0035 

2 V. ang 610 106 4.27 .0388 41.89 .0000 37.53 .0000 33.57 .0000 24.25 .0000 

2 V. ang 610 104 .82 .3657 1.35 .2448 1.45 .2283 .42 .5157 6.37 .0116 

3 V. ang 610 106 .60 .4383 33.27 .0000 103.44 .0000 114.33 .0000 38.61 .0000 

3 V. ang 610 104 5.41  .0200 47.53  .0000 93.90 .0000 100.02 .0000 38.61 .0000 

 

 

 

Table 4. Yates-corrected Chi-square (χ
2
) values

 
and p-values (p < 0.00094, Bonferonni correction) for 2 x 2 

contingency table of all isolates significantly different from the negative control group. 10
6 
and 10

4 
= Challenge 

doses 10
6 
and 10

4
. All significant p-values in bold. Exp. = Experiment, Day = days post-hatch.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Day 3 
 

Day 6 
 

Day 9 
 

Day 12 
 

Day 15 
 

Exp. Isolate χ2 p-value χ2 p-value χ2 p-value χ2 p-value χ2 p-value 

1  HI 21412 106 20.70 .0000 101.59 .0000 121.02 .0000 125.08 .0000 13.37 .0003 

1 HI 21412 104 .26 .6121 40.33 .0000 97.37 .0000 113.80 .0000 8.51 .0035 

1  HI 21413 106 3.31 .0689 87.33 .0000 124.79 .0000 125.08 .0000 13.37 .0003 

1 HI 21413 104 2.40 .1212 7.36 .0067 19.55 .0000 25.52 .0000 3.88 .0489 

1  HI 21414 106 4.27 .0389 104.65 .0000 128.67 .0000 125.08 .0000 13.37 .0003 

1 HI 21414 104 .26 .6121 1.57 .2109 23.68 .0000 45.61 .0000 8.51 .0035 

1  HI 21047 106 0.00 1.0000 .83 .3626 3.04 .0810 21.25 .0000 6.67 .0098 

1 HI 21047 104 0.00 1.0000 0.00 1.0000 0.00 1.0000 .13 .7160 .05 .8285 

1  HI 22001 106 1.57  .2109 1.57 .2095 7.68 .0056 24.06 .0000 0.00 .0000 

1 HI 22001 104 3.31 .0689 5.27 .0218 9.81 .0017 21.25 .0000 .36 .5476 

3  HI 21429 106 2.69 .1012 49.50 .0000 121.21 .0000 114.33 .0000 38.61 .0000 

3 HI 21429 104 .26 .6121 0.00 1.0000 1.35 .2448 25.23 .0000 22.34 .0000 

3  HI 21050 106 6.41 .0114 16.00 .0001 34.92 .0000 40.09 .0000 9.23 .0024 

3 HI 21050 104 0.00 1.0000 0.00 1.0000 6.06 .0138 11.05 .0009 8.09 .0045 

3  HI 21052 106 .60 .4383 4.27 .0388 7.03 .0080 28.27 .0000 20.25 .0000 

3 HI 21052 104 1.19 .2751 .39 .5304 .39 .5304 9.98 .0016 11.81 .0006 

3  HI 22027 106 2.69 .1012 7.03 .0080 10.14 .0015 18.27 .0000 2.40 .1213 

3 HI 22027 104 .51 .4764 .83 .3626 .17 .6767 .08 .7785 .11 .7383 



Table 5. Yates-corrected Chi-square (χ
2
) values

 
and p-values (p < 0.00094, Bonferonni correction) for 2 x 2 

contingency table of all isolates in challenge experiment II, not significantly different from the negative control 

Only challenge dose 10
6
 is presented in this table. All significant p-values in bold. Exp. = experiment, Day = 

days post-hatch, V. ang 610 = Vibrio anguillarum strain 610. 
 
 

     Day 3 

  

Day 6 

  

Day 9 

  

Day 12 

  

Day 15 

  
Exp. Isolate χ2 p-value χ2 p-value χ2 p-value χ2 p-value χ2 p-value 

2  V.ang 610  4.27 .0388 41.89  .0000 37.53  .0000 33.57  .0000 24.25  .0000 

2  M. viscoca .11 .7431 .39 .5304 .08  .7785 .05  .8168 2.37  .1239 

2  F95b/98 .00 1.0000 .00 1.0000 .08  .7785 .19  .6599 1.00 .3173 

2 F95c/98 .17 .6767 .17  .6767 .97  .3254 .00 1.0000 .44 .5049 

2 HI 21056 .00 1.0000 .00 1.0000 .08 .7785 .00 1.0000 4.75 .0293 

2 HI 21059 .17 .6767 .00 1.0000 .00 1.0000 .00 1.0000 3.38 .0658 

2  HI 21061 2.31 .1282 .83  .3626 .00 1.0000 4.66  .0309 2.79  .0948 

2 HI 21064 .82 .3657 .82  .3657 .00 1.0000 .19 .6599 6.37  .0116 

2  HI 21066 .82 .3657 .82 .3657 .00 1.0000 .19 .6599 6.37 .0116 

2 HI 21069 2.31  .1282 .83  .3626 1.90  .1685 .06  .8096 1.36 .2432 

2  HI 21408 2.31  .1282 .00 1.0000 .39  .5304 .00 1.0000 .25  .6169 

2 HI 21410 2.31 .1282 2.31  .1282 .00 1.0000 .00 1.0000 5.53 .0187 

2  HI 21417 .17  .6767 .00 1.0000 .39  .5304 .24 .6224 7.28  .0070 

2  HI 21427 .17  .6767 .17 .6767 .97 .3254 1.07  .3016 1.33  .2482 

2 HI 21430 .82 .3657 1.35  .2448 .27 .6055 1.11  .2924 7.28 .0070 

2 HI 21433 .17  .6767 .00 1.0000 .97  .3254 1.76 .1849 2.79 .0948 

2 HI 22029 .00 1.0000 .00 1.0000 .27  .6055 .42  .5157 6.37 .0116 

2  HI 22042 .00 1.0000 .39  .5304 .00 1.0000 .42  .5157 4.04 .0445 

2  HI 22044 .13 .7160 .13  .7160 .00 1.0000 .24  .6224 4.04  .0445 

2  HI 22054 .00 1.0000 .13  .7160 .09 .7630 .57  .4497 2.26 .1330 



 

Fig. 1. Gadus morha. Cumulative mortality in percentage in Challenge experiment I, challenged dose 10
6
. 

Negative control is larvae not challenged with bacteria. Positive control is the larval group challenged with 

Vibrio anguillarum strain 610. The other numbers refers to strain number. 
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Fig. 2. Gadus morha. Cumulative mortality in percentage in Challenge experiment I, challenged dose 10
4
. 

Negative control is larvae not challenged with bacteria. Positive control is the larval group challenged with 

Vibrio anguillarum strain 610. The other numbers refers to strain number. 
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Fig. 3. Gadus morha. Cumulative mortality in percentage in Challenge experiment II, challenged dose 10
6
. 

Negative control is larvae not challenged with bacteria. Positive control is the larval group challenged with 

Vibrio anguillarum strain 610. The other numbers refers to strain number. 
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Fig. 4. Gadus morha. Cumulative mortality in percentage in Challenge experiment II, challenged dose 10
4
. 

Negative control is larvae not challenged with bacteria. Positive control is the larval group challenged with 

Vibrio anguillarum strain 610. The other numbers refers to strain number. 

 

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Days post hatching

Cumulative mortality (%) Ch. dose 104 Exp. II 

Negative control

Positive control

M.viscosa 

F95B/98 

F95C/98 

HI 21056

HI 21059 

HI 21061

HI 21064 

HI 21066 

HI 21069 

HI 21408 

HI 21410 

HI 21417 

HI 21427 

HI 21430 

HI 21433 

HI 22029

HI 22042 

HI 22044 

HI 22054 



 

Fig. 5. Gadus morha. Cumulative mortality in percentage in Challenge experiment III, challenged dose 10
6
. 

Negative control is larvae not challenged with bacteria. Positive control is the larval group challenged with 

Vibrio anguillarum strain 610. The other numbers refers to strain number. 
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Fig. 6. Gadus morha. Cumulative mortality in percentage in Challenge experiment III, challenged dose 10
4
. 

Negative control is larvae not challenged with bacteria. Positive control is the larval group challenged with 

Vibrio anguillarum strain 610. The other numbers refers to strain number. 
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1 

 

Immunohistochemistry of Atlantic cod larvae Gadus morhua experimentally challenged with 1 

Vibrio anguillarum 2 

 3 

Ane Rebecca Engelsen, Nina Sandlund*, Ingrid Uglenes Fiksdal, Øivind Bergh 4 

Institute of Marine Research, PO Box 1870 Nordnes, NO-5817 Bergen, Norway 5 

 6 

ABSTRACT 7 

Farming of Atlantic cod Gadus morhua is one of the most rapidly growing sectors of 8 

Norwegian aquaculture. Classical vibriosis caused by Vibrio anguillarum is a problem in cod 9 

aquaculture. In order to prevent disease outbreaks, a thorough understanding of the infection 10 

route and the impact of the bacteria on the host is important. The intestinal tract, skin and gills 11 

have all been proposed as routes of entry for bacterial infection such as vibriosis. The aim of 12 

this study is to further develop our understanding of V. anguillarum serotype O2  infections 13 

in cod larvae, including possible route of entry, pattern of infection and histopathology. Cod 14 

eggs were transferred to a 24-well polystyrene multi-dish with 2 ml of sterile aerated 80% 15 

(28‰ salinity) seawater. Challenge doses were 10
4
 and 10

6 
CFU ml

-1
. Unchallenged larvae 16 

were used as controls. Larvae for immunohistochemical examination were sampled from each 17 

group every day. In most of the larvae, wither no or very few bacteria were observed. Typical 18 

findings were clusters of bacteria in the space between the primary gill lamellae. None of 19 

these bacteria seemed to have adhered to the gills. Intestines of three out of 161 larvae 20 

examined showed positively immunostained bacteria in the intestine. Some of the bacteria 21 

appeared to be attached to the microvilli, but none were observed inside epithelial cells. Only 22 

two larvae from the low-challenge dose group showed clear signs of histopathology, which 23 
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was found in the intestine. It is not possible to draw any conclusions regarding the portal of 24 

entry. 25 

 26 

KEY WORDS:  Vibrio anguillarum, Cod larvae, Immunohistochemical studies, Challenge 27 

experiment 28 
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 30 

 31 

INTRODUCTION 32 

The Atlantic cod Gadus morhua is an economically important species on the Norwegian 33 

coast, and cod fisheries have long traditions (Svåsand et al. 2004). Declining wild cod 34 

populations, reduced catch quotas and thus rising prices have turned Atlantic cod farming into 35 

one of the most rapidly growing sectors of Norwegian aquaculture. A most important 36 

challenges to the creation of profitable cod farms has been the lack of large-scale fry 37 

production. It is not merely the lack of fry available, but also the instability of production and 38 

quality of the larvae produced that causes problems. The industry lacks a standardized 39 

production method, which may be one reason for the wide difference among larval groups 40 

(Svåsand et al. 2004). Infectious bacterial diseases have always been an important aspect in 41 

aquaculture. The high mortality of the larval stages is still a major bottleneck, partly because 42 

of infectious diseases (Vadstein 1997, Bricknell & Dalmo 2005). Compared to salmonids, 43 

Atlantic cod is poorly developed at hatching and undergo a long larval period before 44 

metamorphosis (Kjørsvik et al. 1991, Pedersen & Falk-Petersen 1992). During these stages 45 
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the fry are vulnerable to bacterial infections (Bricknell et al. 2006). Several important 46 

bacterial diseases affect Atlantic cod (reviewed by Samuelsen et al. 2006). Classical vibriosis, 47 

caused by Vibrio anguillarum, may be a problem for both adult fish and larvae. V. 48 

anguillarum and closely related bacterial species have been identified in many different 49 

marine habitats (reviewed by Thompson et al. 2004). This implies that the bacterium is native 50 

in these environments, and eradication of the disease is not possible. At least 23 O serotypes 51 

of V. anguillarum have been described (Pedersen et al. 1999). In salmonids, the main V. 52 

anguillarum serotypes that cause disease are O1 and O2 , while the serotypes O2  and O2  53 

are most commonly associated with cod (Larsen et al. 1994, Pedersen et al. 1999). Both O2  54 

and O2  have been isolated from diseased cod, but O2  seem to be the predominant serotype 55 

(Bricknell et al. 2006). A recent study published by Mikkelsen et al. (2007) indicates that 56 

some V. anguillarum isolates that cause disease in cod belong to a new sero-subtype because 57 

of their serological, biochemical and genotypical differences from other known serotypes.  58 

 59 

Cod larvae have a fully competent immune system around 2 to 3 months after hatching 60 

(Schrøder et al. 1998). Hence, conventional vaccination prior to this stage will probably not 61 

have a positive effect.  62 

Both exterior and internal surfaces like the skin, gills and intestinal tract have been proposed 63 

as entry portals for pathogenic bacteria (Baudin Laurencin & Germon 1987, Kanno et al. 64 

1989, Smith et al. 2004). Studies involving intestinal mucus are frequently used to test 65 

growth, adherence and attachment of pathogenic bacteria (Garcia et al. 1997, Vine at al. 2004, 66 

Yan et al. 2007). The entry portal for V. anguillarum has been debated. The gut may be the 67 

initial site of infection in turbot larvae Scophthalmus maximus (Grisez et al. 1996), a 68 

proposition supported by experiments done by O’Toole et al. (1999) and Olsson et al. (1996). 69 
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V. anguillarum have been detected in cod larvae fed rotifers enriched with commercial 70 

products (Korsnes et al. 2006), and it is possible that live feed, such as rotifers and Artemia 71 

spp., may be vectors for opportunistic bacteria that infect cod larvae. 72 

Spanggaard et al. (2000) found that the external surfaces (skin and fins) of rainbow trout were 73 

important sites for the attachment and proliferation of V. anguillarum. Bath challenge 74 

experiments on unfed cod yolk sac larvae have caused high mortalities (Sandlund & Bergh 75 

unpubl. data), suggesting that the skin is an important entry portal.  76 

The gills have also been suggested as an entry portal for V. anguillarum. In an immersion 77 

challenge trial with rainbow trout, Salmo gairdneri, Baudin Laurencin & Germon (1987) 78 

suggested that the gills were the initial sites of infection. However, due to early observations 79 

of bacteria in the anterior and posterior intestine, they concluded that contamination by oral or 80 

anal routes was also a possibility. Inconclusive results were also found by Olsson et al. 81 

(1996). When they inoculated V. anguillarum directly on the gills of turbot they were unable 82 

to recover the pathogen from the spleen. 83 

 84 

The aim of this study was to further develop our understanding of V. anguillarum serotype 85 

O2  infections in cod larvae by (1) using immunohistochemical methods to identify a 86 

possible portal entry route, (2) observing the pattern of infection and the tissues types 87 

infected, and (3) describing the histopathology. 88 

 89 

MATERIALS AND METHODS 90 

Broodstock, eggs and larvae. Cod Gadhus morhua eggs were provided by the commercial 91 

hatchery Sagafjord in Hordaland County, Western Norway (59° 45’ N, 5° 29’ E). The 92 
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broodstock originated from the area outside Bømlo/Halsnøy in the same county. The 93 

broodfish were kept in 40 m
3
 tanks, each tank containing 60 to 80 fish that spawned naturally. 94 

The fertilized eggs were collected and disinfected with glutardialdehyde (300 ppm) for 10 95 

minutes before incubating in black conical 150-liter tanks. The average temperature was 96 

between 6.5 to 7 C. A flow-through system provided 2 to 3 liters per minute of aerated water.  97 

Bacterium. The bacterium used in this challenge experiment was Vibrio anguillarum strain 98 

HI-610 serotype O2 , originally isolated from cod suffering from vibriosis at the Parisvatnet 99 

research facility in Øygarden near Bergen, Hordaland county. This bacterium was previously 100 

serotyped according to Knappskog et al. (1993). Bacteria were stored at -80ºC in a 20% 101 

glycerol/marine broth (Difco 2216, Difco, Detroit, MI, USA) stock. They were incubated at 102 

15º C and grown on petri dishes with Difco 2216 Marine Agar (MA) for 48 h. Colonies were 103 

transferred to Erlenmeyer flasks containing 50 ml of marine broth (MB) (Difco 2216) and 104 

shaken at 80 rpm in a shaking incubator (INFORS AG CH-4103 Bottmingen, Switzerland) for 105 

48 h. 30 ml of each bacterial culture were harvested by centrifugation (Heraeus Sepatech 106 

Megafuge 1.0 R) at 2772 x g for 10 min at 4ºC, washed twice in 30 ml phosphate-buffered 107 

saline (PBS) and resuspended in 30 ml PBS. The cell concentration was determined by 108 

counting, using a Hawksley counting chamber. The bacterial suspension was examined in a 109 

microscope in order to verify that the bacterium were still viable prior to challenge. 110 

Challenge experiment. Eggs were randomly selected, and individual eggs were transferred to 111 

separate wells in a 24-well polystyrene multi-dish (Nunc, Roskilde, Denmark) containing 2 112 

ml of sterile aerated 80% (28‰ salinity) seawater. They were challenged with Vibrio 113 

anguillarum strain HI-610 on the same day by adding 100 l of bacterial suspension to each 114 

well. All eggs hatched successfully after 48 hours. This experiment comprised three groups of 115 

larvae. The control group consisted of unchallenged larvae, groups I and II were challenged 116 
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with 10
4 

colony-forming units (CFU) ml
-1

 and 10
6 
CFU ml

-1
, respectively. Three plates were 117 

used for each group, giving a total number of 72 larvae in each treatment group. Dead larvae 118 

were counted daily. To provide material for the immunohistological examinations, three extra 119 

plates with larvae for all three groups were prepared. The first samples were taken on day four 120 

after challenge and every following day until the experiment was terminated. Day 16 after 121 

hatching was the last sampling day in group I and the control group. Because all the larvae 122 

needed to be sampled alive, no samples were taken from group II after day 14 due to the high 123 

mortality in this group. Between two and five larvae were sampled from each group every 124 

day, and a total of 161 larvae were analyzed in this study. The experiment lasted 21 days. 125 

Antisera. All antisera against Vibrio anguillarum HI 610 were produced according to the 126 

method of Oeding (1957) and absorbed by the method described by Knappskog et al. (1993). 127 

Due to availability limitations, two different batches of antiserum were used to perform the 128 

immunohistochemical analyses. The antisera were absorbed against serotype O2  strain HI-129 

618 and serotype O1 strain HI-644, and tested for cross-reaction.  130 

Immunohistochemistry. Larval samples were fixed in 4% phosphate-buffered formaldehyde, 131 

dehydrated in ethanol and embedded in paraffin. All the larvae were sectioned at 3 µm (Leica 132 

Jung Biocut 2035, Nussloch , Germany), incubated at 60 C for 30 min, dewaxed in xylene 133 

(Chemi-Teknik AS, Oslo, Norway), rehydrated in a series of ethanol baths and washed in 134 

running water. The absorbed polyclonal rabbit antiserum anti-HI-610 was diluted in Tris-135 

hydroxymethyl-aminomethane (TRIS) – buffered saline (TBS) with 2.5% bovine serum 136 

albumin (BSA). In order to prevent non-specific antibody binding, sections were blocked by 137 

using 5% BSA in TRIS-buffered formaldehyde for 20 min. Avidine-biotin-alkaline 138 

phosphatase complex (ABComplex/AP) reaction kit (DAKO A/S, Denmark) and New 139 

Fuchsin Substrate system (Dako) were used to stain Vibrio anguillarum. A positive staining 140 
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was evident as red coloration. Shandon’s hematoxylin was used for counterstaining, which 141 

gave the tissue a blue coloration. At each stage of staining, two controls were used. 142 

Unchallenged larvae were used as a negative control, and bacterial smears on microscope 143 

slides were used as a positive control. The same procedure was used to stain both larvae and 144 

bacteria. During the staining procedures, tissue sections and bacterial samples were kept apart 145 

to prevent cross-contamination. All incubations were performed at room temperature (20 C) 146 

in a humidity chamber. A Leica DMBE microscope equipped with a Leica Wild MPS52 147 

phototube was used to photograph the tissue sections.  148 

Hematoxylin-Erythrosine-Saffron (HES) staining. Heated, dewaxed and rehydrated larval 149 

sections were stained with hematoxylin, 1% erythrosine and saffron. These were added 150 

through a series of baths in order to stain nuclei, muscle and cytoplasm and connective tissue. 151 

This staining was performed in order to identify histopathology in the larvae. 152 

Statistical analysis of mortality rates. The mortality data were not normally distributed and 153 

a non-parametric test was performed. A 2 x 2 contingency table analysis was performed in 154 

Statistica v 7.0 (StatSoft, Tulsa, USA) using a Bonferroni corrected p-value (p < 0.00094) for 155 

multiple independent tests. This was used to test for mortality differences among the treated 156 

groups and the control group. Multiple independent tests were used to test differences in 157 

mortality rates between the challenged larval groups and the larval control groups, and a 158 

Bonferroni correction was applied (to minimize the possibility of type II error) (Rice 1989). 159 

Because there was only one degree of freedom, Yates correction was applied. 160 

This experiment formed part of a larger challenge experiment. The statistical analyses of 161 

mortality rates will therefore be published in a separate article by Sandlund & Bergh (in 162 

press). This article contains only data regarding the control and larval groups exposed to 163 

Vibrio anguillarum strain HI-610.  164 
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RESULTS 165 

Cumulative mortality and statistical analysis. Mortality rates in the control group and 166 

group I were less than 0.15 during the first 12 days after hatching. At day 13, there was a 167 

rapid rise in group II mortality (Fig. 1). Cumulative mortality in this group increased between 168 

days 2 and 6 post hatching, stabilizing at approximately 0.6 for several days before increasing 169 

towards the end of the experiment (Fig. 1). The mortality rates of the control group and group 170 

II were significantly different (p < 0.00094, Bonferonni correction, data not shown), but rates 171 

in group I and the control group were not. Feed was not provided during this experiment; the 172 

rise in mortality at the end of the experiment was thus due to starvation.  173 

Immunohistochemistry. The immunohistochemical studies provided no clear explanations 174 

for the portal entry route or for the pathology causing the high mortality. In most of the larvae 175 

studied, there were very few or no bacteria. Typical findings were clusters of bacteria in the 176 

space between the primary gill lamellae, but none seemed to have adhered to the gills. 177 

However, these clusters were only partially stained or not positively stained at all (Figs. 2 & 178 

3). Two group II larvae (Figs. 4 & 5) and one group I larva (Figs. 6 & 7) contained stained 179 

bacteria in their intestines. Some of the bacteria appear attached to the microvilli, but although 180 

interstitial immunostaining was performed, no bacteria were observed inside the cells (Figs. 4 181 

- 6). One group II larva had more bacteria in the intestine than any other larvae (Fig. 4). 182 

Except for the two group II larvae (Figs. 4 & 5), no histopathology was observed in any of the 183 

larval groups. Necrotic cells with some pycnotic nuclei (Fig. 5, arrow) and dissolved 184 

epithelial cell nuclear membranes occurred in the intestine. Note the rounding and 185 

dissociation of the epithelial cells in the brush border (Fig. 5, arrow). Three control group 186 

larvae had some bacteria in the space between the primary gill lamellas, but these were not 187 

specifically stained (data not shown). 188 
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DISCUSSION 189 

To further understanding of Vibrio anguillarum infections in cod larvae Gadus morhua we 190 

investigated a possible entry portal, the pattern of infection, tissue types infected, and we 191 

described the histopathology. The results were inconclusive. In spite of the high mortality 192 

observed in the high challenge-dose group, little histopathology was observed in the course of 193 

the immunohistochemical examinations. The absence of histopathology also suggests that the 194 

disease develops acutely and that the larvae died before any pathological alterations became 195 

apparent. 196 

Toxic components associated with and released from metabolized bacterial cells may cause 197 

disease. Supernatant from Vibrio anguillarum led to mortality in turbot Scophthalmus 198 

maximus larvae (Planas et al. 2005, 2006). Supernatants of bacterial cultures include 199 

extracellular products (ECP) produced by the bacteria. An experimental bath challenge (with 200 

typical Aeromonas salmonicida ssp. Salmonicida) to turbot and halibut yolk-sac larvae 201 

resulted in significant mortality (Bergh et al. 1997). Histological and immunohistochemical 202 

examinations of the larvae revealed no evidence of bacteria in affected tissues. Bergh et al. 203 

(1997) suggest that the mortality was a result of the production of toxic exudates by the 204 

bacteria, which may also explain our results with cod larvae. Supporting evidence is provided 205 

by Sandlund et al. (2006), who challenged great scallop Pecten maximus larvae with Vibrio 206 

pectenicida, but in this case there was histopathology in tissue samples. Furthermore, live and 207 

heat-killed V. anguillarum were equally lethal when injected into goldfish Carassus auratus 208 

(reviewed by Egidius 1987). 209 

The immunohistochemical examinations revealed clusters of bacteria around the larval gills 210 

(Figs. 2 & 3). These cells appeared smaller than the bacteria found in the intestine. It has 211 

repeatedly been observed in our laboratory that this particular Vibrio anguillarum strain 212 
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changes its size and appearance when it is grown and transferred from an in vitro to an in vivo 213 

environment. The polyclonal antiserum used in this experiment attaches to the surface 214 

lipopolysaccharide (LPS) of the bacteria. When bacterial clusters are extremely compact, the 215 

form of the LPS may change or become unavailable to the antiserum, preventing positive 216 

staining. The bacteria may release LPS when entering the intestine and thus appear larger. 217 

However, in view of the near total absence of positive immunostaining of the gill-associated 218 

bacteria in all the larvae we examined, and the fact that fish larvae are not sterile (Verner-219 

Jeffreys et al. 2003), it is likely that other bacteria are present in the larvae. 220 

 221 

Suffocation caused by the bacteria that we observed around the gill lamellae is another 222 

possible explanation of larval death without apparent presence of bacteria. However, oxygen 223 

exchange through the body surface skin occur in larvae and juveniles of Atlantic salmon 224 

Salmo salar (Wells & Pinder 1996 a, b) and rainbow trout Oncorhynchus mykiss (Rombough 225 

1998). It is likely that cod larvae are similarly capable of exchanging oxygen across the skin. 226 

Thus, bacteria clustered around the gills of cod larvae likely did not cause a lack of oxygen or 227 

influence mortality. In similar challenges to halibut larvae with Vibrio fischeri, large numbers 228 

of bacteria were observed between the gill arches, and there was necrosis in the gill 229 

epithelium (Bergh et al. 1992). None of the larvae examined in this experiment showed 230 

damaged gill tissue, supporting the suggestion that the bacteria observed in the gill area did 231 

not have any negative effects on the larvae. Moreover, clusters of bacteria also occurred in 232 

larval Group I and the control group, in which no bacteriogenic mortality occurred. 233 

 234 

Bacterial epiflora may create lethal or sublethal conditions in the environment through 235 

excessive oxygen consumption (Hansen & Olafsen 1989) that affects fish eggs and larvae. 236 
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However, all of the eggs in this experiment hatched successfully within a period of 12 hours, 237 

indicating that they were healthy and unaffected by adverse environmental influences. 238 

Furthermore, all the eggs, and thus all the larvae, originated from the same egg bath and were 239 

randomly selected. If potentially unfavorable bacteria or other factors were present in the 240 

environment, all larval groups should have been affected in the same way.  241 

As mentioned above, bacteria have three potential points of entry into the larvae: skin, gills 242 

and intestine. The mucosa serves as a substrate for bacterial adhesion in fish (Hansen & 243 

Olafsen 1989, Vine et al. 2004). Vibrio anguillarum may have a stronger tendency to adhere 244 

to intestinal mucosa than skin mucosa (O’Toole et al. 1999, Olsson et al. 1996). Conversely, 245 

other papers suggest that the skin is a major site of attachment and proliferation of V. 246 

anguillarum in ayu Plecoglossus altivelis and rainbow trout (Kanno et al. 1989, Spanggaard 247 

et al. 2000, respectively). Baudin Laurencin & Germon (1987) propose that the gills are the 248 

initial infection site in rainbow trout Salmo gairdneri. In their experiment, they inspected 249 

gills, anterior and posterior intestine and anterior kidney, but did not take skin samples. No 250 

cod larvae in the present challenge experiment had bacteria associated with the skin. 251 

In our laboratories Vibrio anguillarum strain HI-610 is commonly used in challenge 252 

experiments, and a bath challenge dose of 10
4
 CFU ml

-1
 usually causes high mortality 253 

(Sandlund & Bergh in press). However, in this present work, only the high challenge-dose 254 

group (10
6 

CFU ml
-1

) suffered significantly higher mortality than the control group. There are 255 

no obvious explanations of this result. The washing procedure prior to challenge may have 256 

stressed the bacteria, resulting in a temporary loss of virulence (Planas et al. 2005). 257 

Chemotactic motility mediated by the polar flagellum is essential for the virulence of V. 258 

anguillarum (Milton et al. 1996, O’Toole et al. 1996, Ormonde et al. 2000). However, 259 

examinations of the bacterial suspension prior to the challenge revealed no lack of motility. 260 
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The washing procedure used is a standardized procedure in our laboratory. In a similar 261 

challenge experiment with V. anguillarum and Atlantic halibut Hippoglossus hippoglossus 262 

yolk-sac larvae, temperature was suggested as an affective factor (Verner-Jeffreys et al. 263 

2003). The authors suggested that low temperature (6 C) could cause the bacteria to multiply 264 

slowly inside the larvae, thus lowering fish mortality rates. This was also implied by Larsen 265 

(1984). However, cod larvae in this present study were reared at 7 C, the temperature used to 266 

grow the bacteria prior to challenge. We observed little difference in the growth rates at 7°C 267 

and 15°C for this V. anguillarum strain. Given our observations of motile bacteria prior to 268 

challenge and the fact that high mortality occurred in group II, we find it unlikely that the 269 

washing procedure or temperature are contributed significantly to the absence of mortality 270 

seen in the low challenge-dose group.  271 

The decision to keep the larvae alive until the point of starvation, was due to the possibility of 272 

losing significant data. Thanks to the knowledge obtained in this experiment, future 273 

experiments done under similar conditions can be brought to an end at an earlier stage, i.e. 274 

until day 12 to 13 post hatching. 275 

In order to obtain a correct impression of the histopathology and to avoid post mortem 276 

changes, all the larvae were sampled live. Sampling when larvae are moribund would be 277 

optimal, but practical considerations made it impossible to monitor the larvae so closely. It is 278 

probable that most of the larva in this experiment were sampled before any clear 279 

histopathology was present. This might explain the low correspondence between the 280 

histological findings and the mortality observed in the experiment.  281 

 282 

Marine fish larvae drink water from day one post hatch (Mangor-Jensen & Adoff 1987) and 283 

will thereby ingest bacteria. Fish larvae have an undeveloped stomach at hatching (Kjørsvik et 284 
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al. 1991). The onset of the acid digestion is a gradual process and the lowering of the pH takes 285 

2 to 3 months in sea bream Sparus aurata larvae (Yúfera et al. 2004). It is likely that the 286 

larval intestinal pH in this experiment was similar to that of seawater, which is not low 287 

enough to inhibit bacterial growth.  288 

Apart from drinking water, infection of feed is another way of ensuring presence of bacteria 289 

in the intestine. To describe the infection route of Vibrio anguillarum, Grisez et al. (1996) 290 

orally fed infected Artemia sp. nauplii to turbot larvae. The bacteria were taken up 291 

endosomally from the brush border of the epithelium. They were transported to the lamina 292 

propria and onwards to the bloodstream and other organs. These findings contrast with our 293 

observations. The fact that we saw bacteria seemingly attached to the microvilli does not 294 

necessarily mean that they enter the larvae by this route. Olafsen & Hansen (1992) showed 295 

endocytosis of bacteria by epithelial cells in the hindgut of 4 to 6 day-old cod larvae and 10 to 296 

12 day-old herring Clupea harengus larvae. They also found intact bacterial antigens in 297 

columnar epithelial cells in the foregut of 4 day-old cod yolk-sac larvae. It is possible that the 298 

findings of Grisez et al. (1996) detected merely the endocytosis of dissolved LPS rather than 299 

whole bacteria, since most antisera are designed to react on the LPS of bacteria. In our 300 

opinion, this does not provide conclusive evidence of the infection route in turbot. 301 
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Fig. 1. Gadus morhua. Cumulative mortality for three larval groups. Contr: Control group containing larvae not 

exposed to bacteria. Gr I:  Larval group I challenged with Vibrio anguillarum strain HI-610 dose 10
4
 CFU ml

-1
, 

Gr II: Larval group II challenged with V. anguillarum strain HI-610 dose 10
6 
CFU ml

-1
. 

 

 

Figs. 2-7. Gadus morhua. Figs. 2-6: Immunohistochemical staining of larvae (paraffin sections). Avidine-biotin-

alkaline phosphatase method, rabbit anti Vibrio anguillarum strain HI-610 serum and Shandon haematoxylin 

counterstained. Postive immunohistochemistry is visualized by red colour. Counterstaining gives tissue different 

tones of blue. Fig. 2. Gills of larvae from group I eight days post hatching. Bacteria are present in the space 

between the primary lamellae, some are clearly positively stained red while others show no positive colour. Fig. 

3. Gills of group II larvae 15 days post hatching. Many bacteria are present, but little positive staining. Fig. 4. 

Intestine of group II larvae four days post hatching. Large numbers of bacteria are present. Necrotic cells are 

visible among the bacteria (arrow). Fig. 5. Intestine of group II larvae four days post hatching. Large numbers of 

bacteria are present. Necrotic cells are visible among the bacteria (arrow). Fig. 6. Intestine of group I larvae four 

days post hatching. Bacteria are present in the lumen and attached to the brush border of the intestine (arrow), 

but no necrotic cells are visable. Fig. 7. Intestine of same larvae as in Fig. 4 (group I four days post hatching) 

stained with hematoxyline-erythrosine-saffron. Bacteria are present (stained violet) in the brush border (arrow), 

but there is no necrosis. All Scale bars = 10 µm. 
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Abstract 26 

Problems with rearing of cod larvae have been suggested to be related to opportunistic 27 

pathogenic bacteria, as the high densities of fish larvae and the live feed cultures may 28 

provide a source for opportunistic bacteria. The purpose of this experiment was to 29 

further investigate whether oral administration of the two bacteria Vibrio anguillarum 30 

and Vibrio logei through live feed can cause an outbreak of disease in cod larvae. 31 

Approximately 5000 eggs were transferred to six identical tanks. For oral 32 

administration V. anguillarum strain HI-610 and V. logei were bioencapsulated into 33 

rotifers and fed to the larvae. Two tanks were used for each treatment and two tanks 34 

served as controls. Samples for immunohistochemical analysis were taken every day. 35 

No mortality that could be related to the exposure to bacteria was observed in any of 36 

the challenged groups. Immunohistochemical analysis showed presence of V. 37 

anguillarum and V. logei inside the intestinal lumen, but no histopathology was 38 

observed. However, in one of the control tanks a mass mortality started on day 17 39 

post-hatching, resulting in 99% mortality by day 21. Isolation of bacteria and 40 

immunohistochemical analysis demonstrated the presence of Vibrio splendidus in 41 

large quantities. Necrotic tissue inside lumen and gills were found. Denaturing 42 

gradient gel electrophoresis (DGGE) was employed as an additional method to 43 

investigate the outbreak. The DGGE results of bacteria associated with water samples 44 

from the two control tanks revealed different DGGE profiles. Although the DGGE 45 

results could not confirm presence of V. splendidus, a band in the same position as the 46 

V. splendidus marker was found in larval samples taken from the diseased tank.   47 

 48 

Keywords: Cod, Vibrio anguillarum, Vibrio logei, Vibrio splendidus, 49 

bioencapsulation 50 
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 51 

1. Introduction 52 

 53 

Over the past few years, cod, Gadus morhua, farming has been a growing industry in 54 

Norway, Scotland and Canada. The fall in the supply of wild cod has enabled cod 55 

farming to expand. Although a bright future had been predicted, problems with the 56 

larval stages have made it difficult to maintain stable production of juvenile cod. High 57 

rates of mortality are often experienced in hatcheries, especially around days 30 to 35 58 

and 60 to 70 post-hatching (E. Otterlei, unpublished data). Abdominal swelling is 59 

often seen and larvae are found floating on the surface. Bacterial infections in these 60 

larvae have been hypothesized, but to date, no evidence of such infections has been 61 

published. Similar observations had been reported in farming of gilt-head sea bream, 62 

Sparus aurata, larvae (Sedano et al., 1996). Pathogenic bacteria may be present in the 63 

live feed cultures, such as rotifers and Artemia spp., and rearing systems for marine 64 

fish larvae (Brunvold et al., 2007, Korsnes et al., 2006, Mizuki et al., 2006, Sugita et 65 

al., 2005). Marine fish larvae are known to drink water (Olafsen and Hansen, 1998, 66 

Reitan et al., 1998, Mangor-Jensen and Adoff, 1987), allowing for colonization of the 67 

intestine even before active feeding commences (reviewed by Hansen and Olafsen, 68 

1999). Changes in the bacterial flora associated with larvae typically occur at onset of 69 

feeding and with change of diet (Brunvold et al., 2007, Verner-Jeffreys et al., 2003). 70 

Live feed cultures as a source of opportunistic bacteria are an obvious assumption, as 71 

rotifers and Artemia spp. are believed to lay a heavy bacterial load on the larvae 72 

(Reitan et al., 1998). Both rotifers and Artemia spp. are filter-feeding organisms 73 

capable of consuming bacteria. Live feed production is a dynamic process, which 74 

makes it difficult to maintain a stable microflora. In such a changeable environment, 75 
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opportunistic bacteria may flourish, as pulses of organic matter may favour the 76 

growth of fast-growing, opportunistic bacteria (Skjermo and Vadstein, 1993). This 77 

leads to the suggestion that pathogenic and opportunistic bacteria play part in the high 78 

mortality in early life stages (Vadstein et al., 2004, Samuelsen et al., 2006).  79 

 80 

Like most fish species, cod hatch at an ontogenetically relatively primitive stage. The 81 

larvae do not possess a fully competent immune system until 2-3 months after 82 

hatching (Schrøder et al., 1998), thus during this period the larvae are probably highly 83 

susceptible to opportunistic bacteria.  84 

 85 

Vibrio logei has frequently been isolated from moribund and dead larvae and has 86 

therefore assumed by fish farmers to play a significant role in the bacterial problems 87 

encountered in hatcheries. However, in bath challenge experiments, various V. logei 88 

isolates have not produced mortality in cod yolk-sac larvae (Sandlund and Bergh, in 89 

press). This leads to the hypothesis that oral administration of V. logei is necessary to 90 

cause disease. Bioencapsulation of bacteria in live feed such as rotifers and Artemia 91 

nauplii (Makridis et al., 2000a, 2000b), and subsequent challenge of marine fish 92 

larvae via rotifers, has been successful (Planas et al., 2005). Vibrio anguillarum is a 93 

known pathogen that produces high rates of mortality in cod larvae (Sandlund and 94 

Bergh, in press) and cod fry (Samuelsen and Bergh 2004, Seljestokken et al., 2006, 95 

Vik-Mo et al., 2005) when administered via bath challenge. Experiments performed 96 

by Planas et al. (2005) and Grisez et al. (1996) showed V. anguillarum to be 97 

pathogenic to turbot, Scophthalmus maximus, larvae when administrated through live 98 

feed. The bacterium has been isolated from cod larvae fed rotifers enriched with 99 

commercial rotifer enrichment products (Korsnes et al., 2006).  100 
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 101 

The purpose of this study was to investigate infections, following oral administration 102 

of suspected pathogenic Vibrio spp. through rotifers. Uptake and processing were 103 

studied by means of immunohistochemistry, while changes in the bacterial flora 104 

associated with the cod larvae and water in the larval tanks were examined by PCR-105 

amplified 16S rDNA and subsequent denaturing gradient gel electrophoresis (DGGE) 106 

analysis.   107 

 108 

2. Materials and methods  109 

 110 

2.1. Broodstock, eggs and larvae 111 

 Eggs were collected at the Sagafjord commercial cod hatchery, in the county of 112 

Hordaland, Norway (59° 45’ N, 5° 29’ E). The broodstock originated from the Bømlo 113 

and Halsnøy area in the same county. 114 

 115 

All eggs were taken from the same group. They were disinfected immediately after 116 

fertilization in glutardialdehyde 300 ppm for 10 min, and kept in black conical 150 l 117 

tanks at 6.5 – 7.0 C. The eggs were transported from the hatchery to the Institute of 118 

Marine Research in boxes filled with ice, with the eggs stored in plastic bags. The 119 

journey (by car and ferry) took about two to three hours. At the Institute 120 

approximately 5000 randomly chosen eggs were placed in six identical 160 l tanks. 121 

The eggs were held at 34.8 ppt salinity seawater until hatching, three days after 122 

arrival. The eggshells were removed and the larvae kept in the same tanks. 123 

Temperature and oxygen were monitored daily. The temperature was 9.5 C ± 0.4 C 124 

throughout the experiment. The oxygen concentration levels were stable around 8.6 125 
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mg
-l
 ± 0.1 mg

-l 
(ppm) (OxyGuard® Handy MK III, Sterner AquaTech a.s., Langhus, 126 

Norway). The flow in the tanks was 0.85 l min
-1

. The outlet pipes in each tank were 127 

covered with a 250 µm nylon mesh filter (Sefar Nytal, Heiden, Switzerland), to 128 

prevent larvae from escaping. The filters were aerated in order to prevent blocking the 129 

outlets. 130 

 131 

2.2. Bacterial strains and challenge  132 

The bacterial strains used were Vibrio anguillarum strain HI-610 serotype O2α and 133 

Vibrio logei HI 21039, Institute of Marine Research. V. anguillarum strain HI-610 134 

were originally isolated form diseased cod at the Parisvatnet research facility and the 135 

V. logei strain was originally isolated from diseased cod larvae. Tanks 1 and 6 were 136 

control tanks, tanks 2 and 3 contained larvae challenged with V. anguillarum, while 137 

tanks 4 and 5 contained larvae challenged with Vibrio logei. Both bacteria were stored 138 

at –80 ºC in a 20% glycerol/marine broth (MB, Difco 2216, Difco, Detroit, MI, USA) 139 

stock. They were incubated at 15 ºC and grown on petri dishes with Difco 2216 140 

marine agar (MA) for 48 h. Colonies of the bacteria were transferred to Erlenmeyer 141 

flasks with 250 ml of MB and shaken at 80 rpm in a shaking incubator (INFORS AG, 142 

CH-4103 Bottmingen, Switzerland) for 48 h at 9 C. The same temperature was used 143 

both to grow the bacterial cultures and as the water temperature in the tanks during 144 

the challenge experiment. The bacterial cultures, 250 ml, were harvested by 145 

centrifugation (Sorvall RC-5B, Minnesota USA) at 4068 G for 10 min at 4 ºC, washed 146 

twice in 250 ml phosphate-buffered saline (PBS) and resuspended in 250 ml PBS. 147 

 148 

2.3. Rotifer culture and bioencapsulation of bacteria  149 
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The rotifers (Brachionus sp.) were held in 70 l tanks at 30 ppt salinity, 24.5 C ± 0.5 150 

C and cultured on Instant Algae
®
 Nannochloropsis sp. (Reed Mariculture, Campbell, 151 

CA, USA) and Instant Algae
®
 Tetraselmis sp. (Reed Mariculture) 10:1. Prior to 152 

feeding, the rotifers were enriched with Pavlova sp. (Reed Mariculture) every day 153 

throughout the whole experiment. The amount of algae used for feeding and enriching 154 

the rotifers depended on the daily growth and production of the rotifer cultures. It was 155 

ensured that the rotifers had access to food at all times. This was done visually by 156 

keeping the water coloured by the added algae. Rotifer production was expanded 157 

throughout the experiment as the larvae grew and the need for feed increased. The 158 

first day of feeding was on day 4 post-hatching.  Every morning the rotifers needed 159 

for one day's feeding were harvested (60 m nylon mesh, Sefar Nytal, Heiden, 160 

Switzerland), washed in sea water and placed in a 45 l tank enriched with Pavlova sp. 161 

Larvae were fed four times a day at four-hour intervals. The first feeding of the day 162 

was given at 07:30 am and the last at 07:30 pm. All the larval tanks were fed at the 163 

same time with the same quantity of rotifers. The quantity of rotifers remaining in 164 

each tank at the end of each feeding was approximately 3000 rotifers ml
-1

. The light in 165 

the lab went on at 07:00 am and off at 10:00 pm. The rotifer enrichment tank was 166 

emptied, washed and sterilized every morning before new rotifers were added.  167 

 168 

Prior to the bioencapsulation of bacteria, the rotifers (200-250 rotifers ml
-1

) were 169 

filtered (60 m nylon mesh, Sefar Nytal) washed, and transferred into buckets 170 

containing the bacterial suspension and seawater. The cell concentration was 171 

determined by counting, using a Hawksley counting chamber. Final concentration in 172 

buckets was 1.0-3.0 x 10
8
 Colony Forming Units (CFU) ml

-1
. Total volume in the 173 

buckets was 5 l. The rotifers were maintained in the bacterial suspension for 1 hour, 174 
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filtered (60 m nylon mesh), washed and fed to the cod larvae. Makridis et al. (2000b) 175 

showed that rotifers were much more efficient taking up bacteria when they grazed on 176 

a bacterial suspension containing 10
8
 CFU ml

-1
 than one containing 10

7
 CFU ml

 
ml

-1
. 177 

On average, the rotifers grazing on 1.8-3.5 x 10
8
 CFU ml

-1
 contained 3.2-7.1 x 10

4
 178 

CFU ml
-1

 after 20-60 minutes of feeding.  179 

The larvae were challenged a second time on day 15 post-hatch. The same procedures 180 

as described above were employed.  181 

 182 

2.4. Bacterial sampling  183 

Water samples were taken throughout the experiment in order to estimate numbers of 184 

bacteria, CFU, in each tank. Water samples were diluted in sterile seawater and plated 185 

on marine agar plates (MA, Difco 2216) and two parallel assays were run. The 186 

colonies were counted after 96 hours. To test for haemolysis, colonies were grown on 187 

blood agar (nutrient blood agar (Oxoid) supplemented with 5% sheep blood and 1.5% 188 

NaCl). 189 

 190 

Live larvae were sampled at day 8, 20 and 22 post hatch from the tanks and sterilized 191 

with 0.1% benzalkonium chloride for 1 minute (Munro et al., 1994) and homogenized 192 

in 1 ml sterile sea water (Mixer mill 300, Retsch, Qiagen, Hilden, Germany) using 193 

Tungsten carbide beads (3mm, Qiagen), diluted in sterile seawater and plated on MA 194 

plates in duplicate. The colonies were counted after 96 hours. Colonies were then 195 

harvested and grown in marine broth (MB, Difco 2216) for 48 hours, and frozen at -196 

80 C in a 20% glycerol/MB stock.  197 

 198 

2.5. Gram staining  199 
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Small amounts of bacterial culture together with a drop of distilled water were 200 

transferred to slides using an inoculation loop. The slides were air dried prior to heat 201 

fixing over open flame. The slides were cooled and stained according to the procedure 202 

listed in the Gram staining set (Diagnostica MERCK, Darmstadt, Germany).  203 

 204 

2.6. Oxidase test  205 

The bacterial strains for cytochrome oxidase were tested using the Bactident
® 

Oxidase 206 

kit (MERCK), according to the manufacturer's manual.  207 

 208 

2.7. DNA isolation Genomic bacterial DNA was isolated from 1 ml of a liquid culture 209 

harvested at the end of the exponential growth phase, using the purification kit 210 

DNeasy® 96 tissue kit (Qiagen). The protocol for gram-negative bacteria was used.  211 

 212 

2.8. Identification of bacteria  213 

2.8.1. PCR (Polymerase Chain Reaction) amplification of 16S rRNA genes  214 

Universal primers 27f and 1492r (Escherichia coli numbering), were used for 16S 215 

rDNA analyses. The mix contained 2.0 l PCR buffer (10x), 1.2 l MgCl2 (25 mM), 216 

3.2 l dNTP (1.25 mM/each, Promega, Madison, Wisconsin), 1.0 l 27f Forward 217 

primer (10 m), 1.0 l 1492r Reverse primer (10 m), 0.2 l Taq polymerase (5 U/ l, 218 

Promega) 7.4 l nuclease-free water (Eppendorf, Hamburg, Germany) and 4 l 219 

template (approx. 50 ng/ l). The amplification was performed in an automated 220 

thermal cycler (Perkin Elmer, Gene Amp, PCR system 9700) and the cycles were as 221 

follows: initial denaturation at 95 C for 5 min, then 35 cycles of denaturation at 94 222 

C for 1 min, annealing at 55 C for 1 min, extension at 72 C for 11 min. All PCR 223 

reactions were performed in 50 l reaction tubes. 224 
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 225 

2.8.2. Polymerase Chain Reaction (PCR) amplification of gyrB gene  226 

Primers used for amplification of the gyrB gene were gyrB-1 (forward) and gyrB-2 227 

(reverse) (Yamamoto and Harayama, 1995). The mix contained 2.0 l PCR buffer 228 

(10x), 1.5 l MgCl2 (25 mM), 4.0 l dNTP (1.25 mM/each, Promega), 1.0 l gyrB-1 229 

primer (10 M), 1.0 l gyrB-2 primer (10 M), 0.5 l Taq polymerase (5 U/ l) 230 

(Promega), 6 l nuclease-free water (Eppendorf) and 4 l template (approx. 50 ng/ l). 231 

The amplification cycle was as follows: initial denaturation at 95 C for 5 min, then 232 

35 cycles of denaturation at 94 C for 1 min, annealing at 58 C for 1 min, extension 233 

at 72 C for 2 min and extension/hold for 7 min. The amplification was performed in 234 

an automated thermal cycler (Perkin Elmer, Gene Amp, PCR system 9700). 235 

 236 

2.8.3. Sequencing of 16S rRNA and gyrB genes  237 

All PCR products were prepared for sequencing using a Pre-Sequencing Kit (USB 238 

Corporation, Cleveland, Ohio). One cycle of 37 C for 15 minutes and another 15 239 

minutes at 80 C were run. Primers used for sequencing 16S rRNA genes were the 240 

same as for the PCR amplification described in the paragraph above. The pre-241 

sequencing mix contained, 1 l Big Dye mix(2.5x) (Big Dye version 3.1, Applied 242 

Biosystems, Foster City, California), 1.5 l sequence buffer (5.0x), 2.0 l primer 243 

(10 M) and 2.5 l RNAse-free water (Eppendorf) and 3 l of template were used. 244 

The amplification cycles were as follows: initial denaturation at 96 C for one minute 245 

then 25 cycles of denaturation at 96 C for 10 s, annealing at 50 C for 5 s, and 246 

extension at 60 C for 4 min. 247 

 248 
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Primers used for sequencing gyrB genes were different from those used for PCR 249 

amplification, gyrB-1s (forward) and gyrB-2s (reverse) (Yamamoto and Harayama, 250 

1995). The same pre-sequencing mix and amplification cycles as used for 16S rRNA 251 

genes were used to sequence the gyrB genes. The amplification was performed in an 252 

automated thermal cycler (Perkin Elmer, Gene Amp, PCR system 9700). The 253 

sequence analysis was performed by the sequence laboratory at the University of 254 

Bergen, using an ABI 3700 sequencing analyser (Applied Biosystems). The 16S 255 

rRNA and gyrB encoding gene sequences were searched for nucleotide-nucleotide 256 

matches in the BLAST database at the National Center for Biotechnology Information 257 

(NCBI) to establish tentative strain identity (Altschul et al., 1990). 258 

 259 

2.9. Antisera  260 

Antisera were made for Vibrio anguillarum strain HI-610 (anti-V. anguillarum), 261 

Vibrio logei strain HI 21039 (anti-V. logei) and Vibrio splendidus (anti- V. 262 

splendidus) according to the method described by Oeding (1959). Formaldehyde-263 

killed washed bacteria were administrated by intravenous injection to the rabbits. The 264 

polyclonal antisera were absorbed as described by Knappskog et al. (1993), in order 265 

to minimize the possibility of cross-reaction. The anti-V. anguillarum serum was 266 

absorbed against V. anguillarum serotype O2  strain HI-618 and serotype O1 strain 267 

HI-644. The anti-V. logei serum was absorbed against V. anguillarum strain HI-610. 268 

Each of the absorbed antisera was tested for cross-reaction with bacterial strains and 269 

tissue samples prior to the immunohistochemistry. The anti-V. splendidus antiserum 270 

had been made prior to a different experiment (Sandlund et al., 2006) and was 271 

absorbed against Vibrio pectenicida and Pseudoalteromonas sp. The dilution used on 272 
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tissue samples was determined after a range of antiserum dilutions had been tested on 273 

bacterial and tissue samples. 274 

 275 

2.10. Immunohistochemistry  276 

To provide material for immunohistological examinations, 4-6 larvae were taken from 277 

each treatment group every day throughout the experiment. Larval samples were fixed 278 

in 4% phosphate-buffered formaldehyde, dehydrated in ethanol and embedded in 279 

paraffin. Larvae were sectioned at 3 µm (Leica Jung Biocut 2035, Leitz, Nussloch, 280 

Germany), incubated at 58 ºC for 30 min, dewaxed in xylene (Chemi-Teknik AS, 281 

Oslo, Norway), rehydrated in a series of ethanol baths and washed in running water. 282 

The absorbed polyclonal antisera, anti-V. anguillarum, anti-V. logei and anti-V. 283 

splendidus strain LT06 were diluted in Tris-hydroxymethyl-aminomethane (TRIS)-284 

buffered saline (TBS) with 2.5% bovine serum albumin (BSA). In order to prevent 285 

non-specific antibody binding, sections were blocked by using 5% BSA in Tris-286 

buffered formaldehyde for 20 min. Avidin-biotin-alkaline phosphatase complex 287 

(ABComplex/AP) reaction kit (DAKO A/S, Denmark) and New Fuchsin Substrate 288 

system (Dako) were used to stain both V. anguillarum and V. logei. A positive 289 

staining appeared with red coloration. Shandon’s haematoxylin was used for 290 

counterstaining, which gave the tissue a blue coloration. At each staining, two 291 

controls were used. Unchallenged larvae were used as a negative control, and 292 

bacterial smears on microscope slides were used as a positive control. The same 293 

procedure was used to stain both larvae and bacteria. In order to avoid cross-294 

contamination during the staining procedure, the tissue samples and the bacterial 295 

smears were processed separately. All incubations were performed at room 296 
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temperature (20 C) in a humidity chamber. A Leica DMBE microscope equipped 297 

with a Leica wild MPS52 phototube was used to photograph the sections.  298 

 299 

During these immunohistological studies a total of 122 larvae were examined (see 300 

Table 1 for details) and 281 larval tissue samples were immunostained with the three 301 

antisera.    302 

 303 

2.11. DGGE (Denaturing Gradient Gel Electrophoresis) analysis 304 

Samples of 10 larvae were taken from each tank on days 19, 21, 25 and 27 post-hatch 305 

and kept at –20 
o
C until analysis. On the same days twenty millilitres of water 306 

samples from all tanks were filtered on 0.2 m Dynagard hollow-fibre syringe filters 307 

(Microgon InC. Laguna Hills, Ca.) and kept at –20 C prior to analysis. DNA was 308 

extracted from the homogenised cod larvae pellet and the syringe filters using the 309 

commercial kit DNA isolation Wizard
®

 Genomic DNA Purification (Promega, 310 

Wisconsin, USA). The extracted genomic DNA was used as target DNA in the 311 

polymerase chain reaction to amplify fragments suitable for subsequent DGGE 312 

analysis using primer combinations EUBf (Giovannoni et al., 1990) and PRU517r 313 

(Lane et al., 1985) as described by Sandaa et al. (2003). DGGE was performed using 314 

a Dcode 16/16 cm gel system (BioRad, Herts, UK). PCR samples were loaded onto 315 

8% (wt/vol) polyacrylamide gels in 0.5 x TAE (20 mM Tris, 10 mM acetate, 0.5 mM 316 

Na2 EDTA (pH 7.4)). The linear gradient of urea and formamide ranged from 35 to 317 

60% denaturant. The electrophoresis was run at 60 
o
C for 20 h at 60 V. The gels were 318 

stained for 1 h with a 1:10 000 dilution of SYBR Green II (Molecular Probes, OR, 319 

USA) in distilled water before photography. Amplified 16S rDNA from the bacterial 320 
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isolates of V. anguillarum, V. logei and V. splendidus were used as markers in the 321 

DGGE profiles. 322 

 323 

2.12. Screening for presence of nodavirus  324 

Larvae from the various treatment groups were tested for the presence of nodavirus. 325 

Five larvae were pooled together to make a single sample, and homogenised using 3 326 

mm tungsten carbide beads (Qiagen). Total RNA was purified using the RNeasy
®

 327 

Mini Kit according to the manufacturer’s protocol, and 500 ng of total RNA was 328 

reverse transcribed using random hexanucleotides. cDNA was synthesised in a 15 µl 329 

reaction containing 1x RT-buffer, 5 mM MgCL2, 2 mM dNTP, 2.5 µM random 330 

hexanucleotides, 6 U Rnase inhibitor and 20 U MuLV reverse transcriptase; the 331 

mixture was incubated at 25 ºC for 10 min, 42 ºC for 30 min followed by 95 ºC for 5 332 

min. In order to analyse the samples for presence of nodavirus, using real time RT-333 

PCR, the primers and probe were designed within the conserved region of the 334 

sequence in order to allow us to recognise virus variants. The samples were analyzed 335 

using 900 nM of forward primer AhRNA2tmUP3 (5’-336 

GAGTTCGAAATTCAGCCAATGTG-3’), 900 nM of reverse primer 337 

AhRNA2tmLP3 (5’-GAAGCCAGCCACGTAACCA-3’), 250 nM TaqMan probe 338 

AhRNA2TaqM3 (6-FAM 5’-CCGCAAACACGGGC-3’-TAMRA) in addition to 12.5 339 

μl 2x TaqMan Universal PCR Master Mix, and 2 μl cDNA (10-100 ng) in a final 340 

volume of 25 μl. PCR cycling was performed as follows: 50 ºC for 2 min, 95 ºC for 341 

10 min, 40 cycles of 95 ºC for 15 sec followed by 60 ºC for 1 min. The primers 342 

employed in this assay generated a PCR fragment of 60 bp corresponding to the 343 

region 350 bp to 410 bp downstream of the start codon of RNA2, and the probe used 344 
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binds in the middle of this PCR fragment.  The assay was performed on an Applied 345 

Biosystems 7500 Real-Time PCR System. 346 

 347 

3. Results 348 

 349 

3.1. Challenge experiment 350 

 351 

During the first two weeks post start-feeding, mortality in the six tanks was low. Only 352 

10 to15 larvae per day were observed floating on the surface of the water. These were 353 

removed throughout the day. All larvae in all six tanks grew well and had a good 354 

appetite. The larvae were equally distributed in the water column and showed normal 355 

swimming behaviour. Rotifers could be observed inside the intestinal lumen. A 356 

sudden change appeared in one of the control tanks on day 17 post-hatch. 357 

Observations revealed that most of the larvae had stopped feeding and appeared 358 

apathetic. Instead of showing normal swimming pattern they were drifting close to the 359 

surface. In the course of the next four days approximately 99 % of the larvae in this 360 

tank died. No technical problems occurred during the period leading to this incident 361 

and no changes in temperature, salinity or oxygen levels were seen. Nothing out of the 362 

ordinary could be observed the day prior to this sudden change. The larvae showed 363 

normal feeding and swimming patterns as seen in the other five tanks.  364 

 365 

Due to difficulties with the daily collection of dead larvae inside the tanks, accurate 366 

daily mortality data could not be obtained. At the end of the experiment, however, all 367 

the larvae that remained in each tank were counted (Table 2). Given that 368 

approximately 5000 eggs were transferred into each tank at the beginning of the 369 
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experiment, the average mortality rates in the tanks with normal development were 370 

between 45 and 56% (Table 2). The low number of larvae remaining in tank 4 was 371 

due to technical problems at the end of the experiment, when the outlet pipe loosened 372 

and most of the larvae managed to escape. The remaining larvae in this tank 373 

developed normally. 374 

 375 

3.2. Counting Colony Forming units (CFU) among the different experiment tanks 376 

The concentration of culturable bacteria among the six tanks showed no differences in 377 

the course of the experiment. On day 0, a water sample taken before the eggs were 378 

added to the tanks showed the amount of bacteria to be 1.0 x 10
2
 CFU ml

-1
. On day 5 379 

post-hatch, two days post start-feeding, this had increased to 7.0 x 10
2
. Within the 380 

next two days, on day 7 post hatching, the CFU had increased to 1.1 x 10
4
 CFU ml

-1
. 381 

From then on, the CFU stabilized at between 1.2 and 4.4 x 10
4 

CFU ml
-1

 in all tanks 382 

the rest of the experiment.  383 

The number of CFU grown from the homogenized larvae rose towards the end of the 384 

experiment. Up to day 20 post-hatch the CFU had been stable at approximately 3 x 385 

10
3 

CFU larva
-1

. Then, on day 22 post-hatch the CFU of homogenized larvae 386 

increased and stabilized again, at levels ranging from 2.1 to 3.1 x 10
5 
CFU larva

-1
 387 

during the rest of the experiment.  388 

 389 

3.3. Identification of bacterial strains  390 

Ten strains isolated from homogenized larvae taken from each tank were identified 391 

using sequencing of the genes 16S rDNA and gyrB. All isolates were gram negative 392 

and oxidase positive. In one tank the dominant bacteria were found to differ from 393 

those in the other five tanks. Larvae sampled from the control tank that experienced 394 
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high mortality showed a clear dominance of Vibrio splendidus and all isolates were 395 

haemolytic on blood agar. The bacterial strains grown from larvae in the other five 396 

tanks were dominated by Vibrio parahaemolyticus and only four of these strains were 397 

haemolytic. The bacterial strain grown form water samples taken from the six 398 

experiment tanks did not reveal such differences and the isolates were identified as V. 399 

parahaemolyticus and Pseudoalteromonas haloplanktis. Only one of the P. 400 

haloplanktis strains was haemolytic. We were unable to reisolate either Vibrio 401 

anguillarum or V. logei from the challenged larvae.  402 

 403 

3.4. Immunohistochemical examinations 404 

No specific immunostaining were observed in unchallenged rotifers or larvae stained 405 

with anti-V. anguillarum 610 and anti-V. logei indicating that these bacteria were not 406 

present in the everyday feed (Fig. 1 and data not shown, respectively) Rotifers 407 

bioencaplulated with V. anguillarum strain HI 610 and V. logei, however, were 408 

positively stained (Figs. 2 and 3, respectively), confirming that the bacteria had been 409 

successfully administered to the larvae. No larvae sampled from the healthy control 410 

group were positively immunostained with anti-V. splendidus (Fig 4).  411 

 412 

Larvae exposed to rotifers bioencapsulated with V. anguillarum showed positive 413 

immunostaining inside the lumen (Figs. 5 and 6), and it was possible to see free 414 

bacterial cells (large arrow, Fig. 6). Some bacteria seemed to be attached to the 415 

microvilli and mucus cells, but they did not seem to infect the larvae (Fig. 6, small 416 

arrow). No histopathology was observed in any of the larvae examined. Positive 417 

immunostaining of V. anguillarum cells in the gastrointestinal tract was found 418 

throughout the whole experiment.        419 
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 420 

Presence of V. logei was also confirmed by the immunohistochemical examinations 421 

(Figs. 7 and 8). The bacterium could be observed attached to the lumen brush border 422 

(arrow, Fig. 8), but no bacteria were observed interstitially. However, in contrast to 423 

larvae exposed to V. anguillarum, larvae challenged with V. logei seemed to have 424 

been able to rid themselves of the bacterium 72 hours post-challenge. At 48 hours 425 

post-challenge only a few larvae showed positive immunostaining inside the lumen 426 

cavity and at 72 hours none of them appeared to contain the bacterium (Fig. 9). No 427 

histopathological alterations were found. 428 

 429 

Larval samples taken from the control tank that experienced high mortality revealed 430 

the presence of neither V. anguillarum nor V. logei. On the other hand, 431 

immunohistochemistry demonstrated that Vibrio splendidus cells were abundandt in 432 

the intestinal lumen (Fig. 10). These findings were consistent with the bacterial 433 

isolation performed on homogenized larvae. Shedding of necrotic epithelial cells (Fig. 434 

10, arrow) and necrotic gill tissue (Fig. 11, arrow) was observed. Larval samples 435 

taken from the five other tanks together with the rotifer samples showed no positive 436 

immunostaining against V. splendidus. 437 

 438 

3.5. Denaturing Gradient Gel Electrophoresis (DGGE) 439 

From the DGGE profile shown in Figure 12, eight bands were cut out and sequenced 440 

and the results of the BLAST search are presented in Table 3. Samples were also 441 

taken from the other four tanks but these results are not included, as they provided no 442 

additional information of interest to this study.    443 

   444 
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3.5.1. Control tanks (1 and 6) 445 

One band (band 2, Fig. 12) in the PCR-DGGE profile of bacteria in water from tank 1 446 

at day 21 post hatch, appeared in the same position as a band from the Vibrio 447 

splendidus isolate used as a marker in the DGGE analysis. This band also appeared in 448 

the PCR-DGGE profiles of bacteria associated with both larvae and water from tanks 449 

1 and 6, but with a weaker signal (Fig 12). Sequence results from the 450 

BLAST search showed 99% similarity to Vibrio sp. (Table 3). 451 

 452 

The DGGE analysis of bacteria associated with water and larval samples from tank 1 453 

resulted in different DGGE profiles, with six bands in the DGGE profile of water that 454 

were different from the two bands in the DGGE profile of larvae (Fig. 12). There was 455 

also a change in the bacterial community associated with larvae from day 19 to days 456 

25 and 27 post-hatch (tank 1). Two dominant bands in the DGGE profile of larvae on 457 

day 19 were in different positions from two dominant bands associated with larvae on 458 

days 25 and 27 post-hatch. The DGGE profiles of the bacteria associated with larvae 459 

on days 25 and 27 post-hatch in tank 1 resembled the PCR-DGGE profiles associated 460 

with larvae sampled from tank 6 in the same time period, with two dominant bands 7 461 

and 8 (Fig. 12). Sequencing of these bands showed 96 and 97% similarity respectively 462 

to Alteromonas sp. (Table 3). The DGGE analysis of bacteria associated with larval 463 

samples in tank 6 produced DGGE profiles with two dominant bands in the same 464 

position in the sampling period. Bands in similar positions were seen in the DGGE 465 

profile of bacteria associated with water in tank 6 on day 21 post-hatch. One band in 466 

the PCR-DGGE profile of larvae sampled on day 19 post-hatch in tank 6 was 467 

sequenced as Vibrio sp. with 99% sequence similarity (Table 3).  468 

 469 
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The DGGE profiles of the bacterial community in the water from tanks 1 and 6 on day 470 

21 post-hatch were slightly different, in that six bands were in similar positions 471 

between the two tanks, and two bands appeared in the DGGE profile from tank 6 in 472 

different positions from the DGGE profile from tank 1 (Fig. 12). The signal intensity 473 

of the six bands in similar position in the DGGE-profiles also differed between the 474 

two tanks. 475 

 476 

None of the larvae examined tested positive for nodavirus. 477 

 478 

4. Discussion 479 

The larval groups challenged with Vibrio anguillarum strain HI-610 and Vibrio logei 480 

did not suffer any increase in mortality compared to the unchallenged control groups. 481 

This was confirmed by the findings of the immunohistochemical examinations. No or 482 

little histopathology was found in the larvae examined. All the larvae demonstrated 483 

the presence of bacteria post-challenge, demonstrating that the transfer of bacteria had 484 

been successful (Fig. 5-8). In support of this, examinations of rotifers showed the 485 

presence of bacteria (Figs. 2 and 3).  486 

 487 

The immunohistological analysis of larvae exposed to V. anguillarum revealed no 488 

signs of histopathology. This particular V. anguillarum strain is known to cause high 489 

mortalities in bath challenge experiments in both juvenile cod (Seljestokken et al., 490 

2006, Vik-Mo et al., 2005) and cod yolk-sac larvae (Sandlund and Bergh, in press). 491 

Planas et al. (2005) used a V. anguillarum strain to test bioencapsulation of bacteria 492 

into live feed as an infection model for turbot, Scophthalmus maximus, with success. 493 

The strain used in this present study is known to change size depending on how it is 494 
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grown. When grown in vitro, either on agar or in a liquid medium, the shape of the 495 

bacterium is almost coccoid. Grown in vivo and becoming infective, the shape 496 

changes to rod shape (Sandlund, unpublished observations). The bacteria seen in the 497 

tissue samples were rod-shaped (Fig. 6).  498 

 499 

 Rotifers are found to be more efficient at grazing bacteria in a bacterial suspension of 500 

10
8
 CFU ml

-1
 than in one of 10

7
 CFU ml

-1
. The number of bacteria bioencapsulated 501 

within each rotifer was found to be between 3.2 x 10
4
 and 7.1 10

4
 CFU ml 

–1 
502 

(Makridis et al., 2000b).  In the study by Makridis et al. (2000b) there was only a 503 

small difference between 20 minutes and 60 minutes of grazing in terms of uptake. 504 

Differences in uptake between the two strains tested were also found. On the basis of 505 

these results and estimates that cod larvae eat an average of 168 rotifers per day on 506 

day 5 and 480 on day 15 (Van der Meeren et al., 2005), each larva would consume an 507 

average of 10
6
 bacteria per day of challenge, we consider the amount of bacteria 508 

administrated to the larvae to be sufficient to cause disease. Previous results showed 509 

that bath challenge of cod yolk sac larvae with V. anguillarum strain HI-610 caused 510 

high mortality at a challenge dose of 10
4
 CFU ml

-1 
(Sandlund and Bergh, in press). It 511 

should also be in mind that the larvae were fed rotifers bioencapsulated with bacteria 512 

four times a day during the days of challenge. This ensured a stable supply of bacteria 513 

fed to the larvae.  514 

 515 

The immunohistological examinations revealed the presence of V. anguillarum inside 516 

the lumen throughout the experiment post-challenge. However, no histopathology was 517 

found, which is consistent with the absence of mortality that can be directly related to 518 

the challenge. V. anguillarum was described as surviving a passage through the 519 
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gastrointestinal tract of turbot, Scophthalmus maximus (Olsson et al., 1998). The same 520 

study also demonstrated that V. anguillarum is able to colonize the intestine when 521 

administrated orally by coating pellets with a bacterial suspension. This is consistent 522 

with the findings of the assumed infective stages of V. anguillarum in our 523 

immunohistological examinations. However it does not explain the absence of 524 

mortality. Considering the origin of the bacterium and the fact that the same strain and 525 

cultivation protocols and environmental conditions were used in the experiment by 526 

(Sandlund and Bergh, in press), results indicate that the bacterium do not cause 527 

disease when administrated orally to cod larvae. In contrast to larvae challenged with 528 

V. anguillarum, V. logei was only found prior to 72 hours post-challenge. Most of the 529 

larvae examined showed little presence of V. logei at 48 hours post-challenge, and 530 

after 72 hours none of the larvae contained the bacterium, indicating that it had been 531 

eliminated from the gastrointestinal tract. Bioencapsulation of bacteria into live feed 532 

as a method to administer bacteria to marine larvae has been used successfully by 533 

Planas et al. (2005) and Makridis et al. (2000a, 2000b). This, together with the 534 

immunohistochemical findings, leaves room for speculation that V. logei is unable to 535 

infect healthy cod larvae. Supporting this hypothesis is the finding by Sandlund and 536 

Bergh (in press) where no increased mortality was observed when cod yolk sac larvae 537 

were bath challenged with the same V. logei strain (challenge dose 10
6
 CFU ml

-1
). In 538 

a similar experimental design with halibut, Hippoglossus hippoglossus fry, to which 539 

non-pathogenic Vibrio spp. via Artemia sp. had been added, Makridis et al. (2001) 540 

found that the bacteria did not become established in the intestine. Similarly, the 541 

probiotic Roseobacter sp. added to turbot larvae by Planas et al. (2006) did not 542 

become established in the larvae, and was only found in the intestinal lumen of the 543 

larvae when examined by immunohistochemistry.  544 
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 545 

During an outbreak of disease, bacteria are secreted into the environment or tank, 546 

raising the challenge pressure; hence, the larvae will be constantly exposed to 547 

bacteria. During this challenge experiment the bacteria were added on only two days, 548 

which might not have been sufficient in order to cause disease. It might be speculated 549 

that the challenge dose was too low, or that the bacterium should have been added 550 

over a longer period of time in order to cause disease. Our findings might also 551 

indicate that the larvae are capable of eliminating the bacterium from the intestine. 552 

This however, is in contrast to the findings in larval batches that have suffered high 553 

mortality rates in large-scale aquaculture, where V. logei is frequently isolated (E. 554 

Karlsbakk, Institute of Marine Research, pers. comm.). During this laboratory 555 

experiment environmental factors were tightly controlled, making it easier to maintain 556 

a stable environment. This again helped to avoid unnecessary stress, which might 557 

otherwise have made the larvae more susceptible to disease. 558 

 559 

Two weeks post start-feeding, larvae in one of the two control tanks started to die and 560 

within four days 99% of the larvae in this tank were dead. Technical problems in that 561 

specific tank are unlikely to be due to the fact that all tanks used the same water-flow, 562 

water and food source. No shifts in temperature, oxygen levels, water-flow or feeding 563 

problems were identified. Water samples from all tanks displayed stabile CFU values, 564 

and by cultivation and sequencing similar bacterial isolates with presence of Vibrio 565 

parahaemolyticus and Pseudoalteromonas haloplanktis were identified. The DGGE 566 

analysis of bacteria associated with water samples from tank 1 and 6 on day 21 post-567 

hatch also revealed different DGGE profiles, but the presence of V. parahaemolyticus 568 

and P. haloplanktis could not be verified by this method. 569 
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 570 

Identification of bacterial strains isolated and grown from larval homogenate revealed 571 

that tank 1 differed from the other five tanks. In tank 1, Vibrio splendidus was the 572 

dominant strain while in the other tanks V. parahaemolyticus was the most frequently 573 

isolated strain. This may explain the high mortality in control tank 1, as V. splendidus 574 

is often associated with mortality of a variety of fish species including corkwing 575 

wrasse, Symphodus melops (Jensen et al., 2003), turbot larvae, Scophthalmus 576 

maximus (Gatesoupe et al., 1999), and bivalves such as scallop larvae, Pecten 577 

maximus (Sandlund et al., 2006, Torkildsen et al., 2005) and Japanese oyster 578 

Crassostrea gigas (Gay et al., 2004, Sugumar et al., 1998) and gorgons such as 579 

Paramuricea clavata and Eunicella cavolinii (Martin et al., 1999).  580 

 581 

The immunohistochemical findings demonstrated the presence of V. splendidus in all 582 

examined larvae from tank 1. All larvae showed extended necrotic tissue in the lumen 583 

area and in the gills (Figs. 10 and 11). In order to substantiate this finding V. 584 

splendidus was used as a marker in the DGGE analysis. In the DGGE profile of 585 

bacteria in water on day 21 post-hatch in tank 1, one band appeared in the same 586 

position as the V. splendidus marker (Fig. 12). This band showed 99% sequence 587 

similarity to a Vibrio sp. originally isolated from crab (Table 3, Gudkovs et al., 588 

unpubl.). The same sequence was also found analysing bacteria in larvae on day 19 589 

post-hatch in tank 6. It should be noted that similar unspecific species results are 590 

commonly seen using the 16S rRNA gene to discriminate between vibrios, as this 591 

genus possess high similarity within this gene.  592 

 593 
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The DGGE analysis showed that the larval samples from the two control tanks 1 and 594 

6 had different DGGE profiles on day 19 post-hatch, this might correspond to the 595 

different health status seen for the larvae (Fig. 12). Sequencing of bands from the 596 

DGGE profile associated with larvae on days 25 and 27 in tank 6 showed 96 and 97% 597 

sequence similarity to Alteromonas sp. (Table 3, Pinhassi et al., 1997). This sequence 598 

result was also seen by Brunvold et al. (2007), analysing apparently healthy larvae. 599 

Towards the end of the experiment on days 25 and 27 post-hatch, the DGGE profiles 600 

of the larvae became more similar, and the remaining larvae in tank 1 survived till the 601 

end of the experiment. 602 

 603 

The DGGE method circumvents cultivation, and thus includes both cultivable and 604 

non-culturable bacteria. The method have been used to study bacterial communities 605 

associated with a wide variety of aquaculture purposes (Griffiths et al., 2001, 606 

Rombout et al., 2001, Sandaa et al., 2003, Jensen et al., 2004, Brunvold et al., 2007). 607 

In this present study the DGGE results were not consistent with the culturing, i.e. 608 

positive identification of V. parahaemolyticus and P. haloplanktis were not detected 609 

in the DGGE profile of water samples and only indications of the presence of V. 610 

splendidus were found in the DGGE profile of larvae. DGGE is based on PCR and 611 

several publications points to the biases introduced by this amplification (Farrelly et 612 

al., 1995, Wintzingerode et al., 1997, reviewed by Kanagawa 2003). Biases are also 613 

associated to the primer target 16S rRNA, with the possibility of heteroduplex 614 

formation resulting from the multiple copies of the 16S rRNA gene seen in bacteria 615 

(Moreno et al., 2002, Dahllöf et al., 2000). Despite this, we conclude that differences 616 

in water profile were found and the results indicate a more similar profile towards the 617 

end of the experiment.  618 
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 619 

Slight differences between the microbial communities in the individual tanks might 620 

explain how opportunistic bacteria like V. splendidus could infect only one of the 621 

larval groups. The larval group that experienced high mortality was screened for 622 

presence of nodavirus, but the results were negative, ruling out nodavirus infection as 623 

the cause of the massive mortality. We conclude that V. splendidus probably caused 624 

the disease outbreak in tank 1. This is the first time that V. splendidus has been 625 

associated with high mortality in cod larvae.    626 

 627 
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Table 1  

Number of larvae in the different treatment groups examined using immunohistochemical analysis. Control = 

control group, V. anguillarum = larvae sampled from groups challenged with Vibrio anguillarum, V. logei = 

larvae sampled from groups challenged with Vibrio logei, Dying control = larvae sampled from the control 

group suffering from high mortality 

Treatment Number of examined larvae 

Control 47 

V. anguillarum 28 

V. logei 27 

Dying control 20 

Total  122 

 

 

Table 2 

Number of larvae remaining in each tank at the end of the experiment. Tanks 1 and 6 were control tanks, tanks 2 

and 3 contained larvae challenged with Vibrio anguillarum, tanks 4 and 5 contained larvae challenged with 

Vibrio logei. Number of larvae = the number of remaining larvae in the tanks at the end of the experiment, % 

survival is an approximate value of the mortality in each experimental tank, based on 5000 eggs being added to 

each tank.  

Tank Number of larvae % survival 

1 89
¤ 2

¤ 

2 2364 47 

3 2168 44 

4 278* 5* 

5 2434 49 

6 2755 55 
¤ = Tank 1 suffered from high mortality from day 17 post hatch.  

* = Tank 4 had problems with the outlet pipe, which allowed the larvae to escape the tank. 

 

 

 

 

 

 

 

 

 

 



Table 3 

Results from BLAST search of the bands cut out and sequenced from the DGGE profile of 16S rDNA isolated 

from water and larvae samples from tank 1 and 6 (Fig. 12).  

DGGE bands Closest relative Similarity
a
 

(%) 

GenBank 

accession 

number 

Reference 

1 

2 

3 

4 

5 

6 

7 

8 

Uncultured gamma proteobacterium 

Vibrio sp. 

Alteromonas sp. 

Vibrio sp. 

Uncultured bacterium 

Vibrio sp. 

Alteromonas sp. 

Alteromonas sp. 

94 

99 

97 

90 

92 

99 

96 

97 

EF215819 

 

DQ146983 

 

U64027 

 

DQ146983 

 

EF646105 

 

DQ146983 

 

U64027 

 

U64027 

Dang et al. 2008 

Gudkovs et al. Unpubl. 

Pinhassi et al. 1997 

Gudkovs et al. Unpubl. 

Woebken et al. 2007 

Gudkovs et al. Unpubl. 

Pinhassi et al. 1997 

Pinhassi et al. 1997 

a
 = sequences were aligned to the closest relative based upon BLAST search in the GenBank database. The 

similarity was calculated with gaps not taken into account. 

 

 

 



Figs. 1 to 3. Immunohistochemical staining of paraffin sections of rotifers, Brachionus sp. Figs. 4 to 11. 

Immunohistochemical staining of paraffin sections of cod, Gadus morhua, larvae. All sections have been 

immunostained with Avidin-biotin-alkaline phosphatase method. Shandon haematoxylin counterstained. Positive 

immunohistostaining is visualized in red. Counterstaining gives tissue various tones of blue. Fig 1. Control 

rotifer immunostained with anti- V. anguillarum. No positive immunostaining was found. Fig. 2. Rotifer 

embedded with Vibrio anguillarum positively immunostained with anti-V. anguillarum. Positive 

immunostaining is seen on the surface and inside the lumen. Fig. 3. Rotifer embedded with Vibrio logei 

positively immunostained with anti-V. logei. Positive immunostaining is seen on the surface and inside the 

lumen. All three figs. with magnifications 200x, scale bars 100 µm. Fig. 4. Control larvae immunostained with 

anti-V. splendidus . No positive immunostaining was found. Magnification 400x, scale bar 50µm. Figs. 5 and 6. 

Intestine of larvae challenged with V. anguillarum positively immunostained with anti-V. anguillarum. Fig. 5. 

Magnification 400x, scale bar 50µm. Fig. 6. Bacteria are seen attached to the brush border (small arrow), but no 

bacteria were observed interstitially. Bacteria were also observed as free cells in the intestinal cavity (large 

arrow). Magnification 1000x, scale bar 10µm. Figs. 7 to 9. Intestine of larvae challenged with V. logei 

immunostained with anti-V. logei. Fig. 7. Magnification 400x, scale bar 50µm. Fig. 8. Bacteria attached to the 

brush border, but no infection of the epithelium was observed. Magnification 1000x, scale bar 10µm. Figs. 9. 

Larvae exposed to V. logei 72 hours post-challenge. No positive immunostaining was seen. Magnifications 200x, 

scale bars 100 µm. Figs. 10 and 11. Control larvae positively immunostained with anti- V. splendidus. Fig. 10. 

Intestine of larvae showing an extensive infection of V. splendidus. Pathology is observed as shedding of 

necrotic epithelial cells (arrow) Magnification 400x, scale bar 50µm. Fig. 11. Gill lamellas infected with V. 

splendidus. Early stages of necrotic cells can be seen (arrow). Magnification 1000x, scale bar 10µm. 







Figure 12. The DGGE profile display the DGGE profile of PCR amplified 16S rDNA isolated from larvae (l) 

and water (v) samples from tank 1 and 6 on days 19, 21, 25 and 27 post-hatch. The bacterial isolates V. 

anguillarum (M1), V.logei (M2) and V.splendidus (M3) were used as markers in the DGGE profile. 
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ABSTRACT  15 

In intensive aquaculture systems high mortalities are frequently observed during the early life 16 

stages of marine fish. The aim of this study was to investigate differences in susceptibility to 17 

various serotypes of Vibrio anguillarum O1, O2α and O2β, Vibrio salmonidida and Vibrio 18 

splendidus for turbot Scophthalmus maximus, halibut Hippoglossus hippoglossus and cod 19 

Gadus morhua. A multidish system was used, with one egg distributed to each well added 2 20 

ml (turbot and cod) or 10 ml (halibut) of sterile seawater and bacterial cultures. Final 21 

concentrations in the wells were 10
6
 and 10

4
 CFU ml

-1
, respectively. Unchallenged eggs and 22 

larvae were used as controls. Larvae in challenged groups suffering from high mortality were 23 

examined by immunohistochemistry, using absorbed polyclonal antisera. The O2α serotype 24 

was pathogenic to all three species whereas the O1 serotype was pathogenic to halibut and 25 
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cod. The immunohistochemical examinations revealed differences in histopathology. The O1 26 

serotype caused a more severe and developed histopathology compared to O2α. In larvae 27 

exposed to O1 histopathology and bacterial cells were seen in dermis, gastrointestinal tract, 28 

brain and eye area while in larvae exposed to the O2α serotype pathology was scarce and 29 

limited to the gastrointestinal tract. These results could imply that there are unknown 30 

differences in the immunity among the species or that these pathogens are host specific even 31 

to early life stages of fish. The O2β strain did not cause a significant increase in mortality.   32 

 33 

Key words: Turbot, halibut, cod, yolk-sac larvae, Bath challenge experiment, 34 

Immunohistochemistry, Vibrio anguillarum, Vibriosis  35 

 36 

 37 

INTRODUCTION  38 

Turbot Scophthalmus maximus, halibut Hippoglossus hippoglossus and cod Gadus morhua 39 

are increasingly important species in European aquaculture. The production has however been 40 

limited by unstable production of juveniles due to high mortalities during the larval stages. 41 

Vibriosis has been and still is one of the major disease problems of the aquaculture industry. 42 

Vibrio anguillarum, Vibrio salmonicida, Vibrio ordalii and Vibrio vulnificus are among the 43 

pathogens causing the greatest losses in aquaculture worldwide (Reviewed by Toranzo et al. 44 

2005). Good vaccines developed in the late 1980-ties early 1990-ties has minimized the 45 

problem in salmonid farming, but vaccines developed for cod are not providing sufficient 46 

protection (Reviewed by Sommerset et al. 2005, Bricknell et al. 2006, Samuelsen et al. 2006), 47 

hence vibriosis in marine fish farming is still causing severe losses. 48 
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The pathogen Vibrio salmonicida is the causative agent of “cold water vibriosis”, a disease 49 

usually breaking out during winter or at temperatures below 15° C (Egidius et al. 1986). It is 50 

known to be a problem in farming of salmonid fish, but little information is available 51 

concerning V. salmonicida in marine fish species (Reviewed by Bricknell et al. 2006). Vibrio 52 

splendidus has been described as pathogenic to fish (Thomson et al. 2005, Bergh & 53 

Samuelsen 2007) and bivalves (Gómez-León et al. 2005, Sandlund et al. 2006). 54 

The greatest losses to vibriosis in the aquaculture industry are caused by V. anguillarum, a 55 

species  consisting of 23 O known serotypes (Pedersen et al. 1999). The various serotypes are 56 

often associated with certain species of fish and not all are considered pathogenic. Serotypes 57 

associated with disease in farmed fish are O1, O2 and O3 (Reviewed by Toranzo et al. 2005). 58 

The O2 serotype has been divided into two subserotypes O2α and O2β. Whilst O2α is isolated 59 

from both salmonid and marine fish, O2β is mostly isolated from cod and other non-salmonid 60 

fish (Mikkelsen et al. 2007). In turbot farming O1 is the dominant serotype (Larsen et al. 61 

1994) while both serotypes O1 and O2 cause disease in halibut (Bergh et al. 1997, Bricknell 62 

et al. 2000, Hoare et al. 2002). O3 serotype is rare compared to the other two and usually 63 

isolated from eel (Reviewed by Toranzo et al. 2005).  64 

In spite of all the published work on the bacteria listed above, little is known when it comes to 65 

infections during the early life stages. In addition the aspects concerning host differences in 66 

susceptibility to a pathogenic agent are of interest. As new species emerge in the aquaculture 67 

industry it is likely that pathogens are transferred among the species. Although species may 68 

not develop disease, they may serve as reservoirs of the pathogen. The purpose of this work 69 

was to perform a comparative challenge study of turbot, halibut and cod larvae comparing 70 

susceptibility to different serotypes of V. anguillarum, an atypical strain of V. salmonicida 71 

and a V. splendidus strain.  72 
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 73 

 74 

MATERIALS AND METHODS  75 

Broodstock, eggs and larvae. Fish eggs were provided from the broodstock at Institute of 76 

Marine Research, Austevoll Research Station, Storebø, Norway, and incubated as described 77 

by Bergh et al. (1997) and Bergh (2000).  78 

Bacterial strains. The bacterial strains used were Vibrio anguillarum strain HI-610 serotype 79 

O2α, strain HI-618 serotype O2β, strain HI-644 serotype O1, Vibrio salmonicida strain HI-80 

651 (Wiik et al. 1995) from the Institute of Marine Research and Vibrio splendidus strain HI-81 

1576 originally provided by the National Veterinary Institute, Norway. Strain HI-610 and HI-82 

618 were originally isolated from diseased cod, HI-644 was isolated from diseased turbot, HI-83 

651 and HI-1576 were originally isolated form diseased halibut fry. All bacterial strains were 84 

stored at –80ºC in a 20 % glycerol/marine broth (MB, Difco 2216, Difco, Detroit, MI, USA) 85 

stock. They were incubated at 15ºC and grown on Petri dishes with Difco 2216 marine agar 86 

(MA) for 48 h. Colonies of the bacteria were transferred to Erlenmeyer flasks with MB (Difco 87 

2216) and shaken at 80 rpm in a shaking incubator (INFORS AG CH-4103 Bottmingen, 88 

Switzerland) for 48 h at 10 C. The bacterial cultures were harvested by centrifugation 89 

(Heraeus Sepathec Megafuge 1.0 R) at 2772 G for 10 min at 4ºC, washed twice phosphate-90 

buffered saline (PBS) and suspended in PBS. 91 

It should be noted that bacterial suspensions used for challenging turbot larvae were grown at 92 

15°C. 93 

All three species were challenged with all five bacterial strains. Two different challenge doses 94 

were used, equivalent to a bath challenge concentration in wells of approximately 10
6
 (high) 95 
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and 10
4
 CFU ml

-1 
(low), respectively. Unchallenged larvae were used as control. Mortality of 96 

the larvae was recorded daily. The challenge protocols are modified from (Bergh et al. 1992, 97 

1997). 98 

The eggs are fragile and that resulted in some of the eggs being damaged during the handling 99 

of the eggs. This is the cause for the challenge groups containing different amount of larvae.   100 

Challenge experiment with turbot, Scophthalmus maximus, larvae. The turbot, 101 

Scophthalmus maximus, eggs and larvae were incubated as described by Bergh et al. (1997) 102 

held in 24-wells multi dishes at   15°C in an air conditioned room. These challenge groups 103 

contained 72, 71, 70 or 69 larvae, as larvae damaged through treatment were killed and 104 

discarded from the experiment. The eggs were challenges one day prior to hatching. The 105 

experiments lasted for five days post hatch (d.p.h.).  106 

Challenge experiment with halibut, Hippoglossus hippoglossus, larvae. Challenge 107 

experiment with halibut, Hippoglossus hippoglossus, larvae were performed in darkness in an 108 

air conditioned room at 6°C as described by Bergh et al. (1992, 1997). The eggs were 109 

challenged four days prior to hatching. One day after hatching, the wells were washed, as the 110 

water and remains of the eggshell was removed, and 10 ml of sterile seawater was added. 111 

These challenge groups contained either 60 or 58 larvae. The halibut larvae were only 112 

exposed to the highest challenge dose. Halibut larvae have a long yolk-sac stage and this 113 

experiment lasted for 23 d.p.h.  114 

Challenge experiment with cod, Gadus morhua, larvae. Cod, Gadus morhua, eggs and 115 

larvae were incubated and challenged as described by Bergh (2000). In this experiment, 24-116 

well multi dishes were used, with 2 ml sterile seawater and one egg per well The eggs were 117 

incubated at 6°C.  These challenge groups contained 72 and 69 larvae. The eggs were 118 
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challenged seven days prior to hatching. The experiments lasted for 10 d.p.h. Two separate 119 

larval batches were challenged in order to verify the reproducibility of the experimental 120 

protocol.   121 

Antisera. Antisera were made for Vibrio anguillarum strain HI-610 and HI-644 according to 122 

the method described by Oeding (1957). Formaldehyd-killed, washed bacteria were 123 

administrated by intravenous injection to the rabbits. The polyclonal antisera were absorbed 124 

as described by Knappskog et al. (1993), to minimize the possibility of cross-reaction. The 125 

anti-V. anguillarum serum was absorbed against the other serotypes used in this experiment, 126 

meaning the O2α serotype serum was absorbed against serotype O2  and serotype O1 strain 127 

HI-644. Each of the absorbed antisera was testes for cross-reaction with bacterial strains and 128 

tissue samples prior to the immunohistochemistry. The dilution used on tissue samples was 129 

determined after testing a range of antiserum dilutions on tissue samples. 130 

Immunohistochemistry. To provide material for immunohistological examinations, 131 

additional multiwall dishes were set up within the different treatments. Two to three larvae 132 

were taken from each treatment group daily during periods of mortality throughout the 133 

experiment. Larval samples were fixed in 4% phosphate-buffered formaldehyde, dehydrated 134 

in ethanol and embedded in paraffin. Larvae were sectioned at 3 µm (Leica Jung Biocut 135 

2035), incubated at 58ºC for 30 min, dewaxed in xylene (Chemi-Teknik AS, Oslo Norway), 136 

rehydrated in a series of ethanol baths and washed in running water. The absorbed polyclonal 137 

antisera, anti-V. anguillarum 610 and 644 were diluted in Tris-hydroxymethyl-aminomethane 138 

(TRIS) – buffered saline (TBS) with 2.5% bovine serum albumin (BSA). To prevent non-139 

specific antibody binding, sections were blocked by using 5% BSA in Tris-buffered 140 

formaldehyde for 20 min. Avidin-biotin-alkaline phosphatase complex (ABComplex/AP) 141 

reaction kit (DAKO A/S, Denmark) and New Fuchsin Substrate system (Dako) were used to 142 
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stain all samples. A positive staining appeared with red coloration. Shandon’s haematoxylin 143 

was used for counterstaining, which gave the tissue a blue coloration. Unchallenged larvae 144 

were used as a negative control, and bacterial smears on microscope slides were used as a 145 

positive control. All incubations were performed at room temperature (20 C) in a humidity 146 

chamber. 147 

Statistical analyses. Since the survival and mortality data are not normally distributed, non-148 

parametric tests were used. A 2 x 2 contingency table (p < 0.01) Bonferroni correction for 149 

multiple independent tests), performed in Statistica v 7.0 (StatSoft), was used to test for 150 

mortality differences among the treatment and control groups. Since multiple independent 151 

tests were used to test differences in mortality rate among all challenged larval groups and the 152 

three larval control groups, a Bonferroni correction was applied (to minimize the possibility 153 

of doing a type II error) (Rice 1989). We thus tested for 5 bacterial strains, and the p value 154 

was corrected by 5 (p = 0.05/5 = 0.01): see (Rice 1989). Yates correction was used since there 155 

was only one degree of freedom (df).  156 

 157 

 158 

RESULTS 159 

Challenge experiments 160 

All undamaged eggs hatched normally and none of the control groups suffered from high 161 

mortality. 162 

The cumulative mortality and statistical analysis showed that turbot, Scophthalmus maximus, 163 

larvae suffered the highest mortality when challenged with Vibrio anguillarum serotype O2α 164 
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(Fig. 1). Mortality was found to be significantly different from the control group two days 165 

post hatching (p.h.) in both challenges dose groups (table 1 & 2, p< 0.01 Bonferroni 166 

correction). Towards the end of the experiment, at day four and five p.h., the larval group 167 

challenge with the low dose of Vibrio splendidus and Vibrio salmonicida respectively, 168 

experienced mortality significantly different from the control group (table 2).  169 

Halibut, Hippoglossus hippoglossus, larvae were most susceptible to V. anguillarum serotype 170 

O2α and serotype O1 (Fig. 2). The statistical analysis showed that mortality in these challenge 171 

groups was significantly different from the control group from day seven post hatch and 172 

onwards (table 3, p< 0.01 Bonferroni correction).  173 

The cumulative mortality observed in the two separate groups of cod, Gadus morhua, larvae 174 

were similar (data not shown), hence cumulative mortality and statistical analysis are only 175 

shown for one of the groups (Fig. 3, table 4 & 5). Cod larvae showed equal susceptibility to 176 

the high challenge dose of V. anguillarum serotype O1 and O2α (Fig. 3). The statistical 177 

analysis showed that the mortality among these challenge groups were significantly different 178 

from the control group at day three and four p.h. and onwards, respectively (table 4, p< 0.01 179 

Bonferroni correction). For the low challenge dose groups there were only observed 180 

significantly difference in mortality between the control and the group challenged with V. 181 

anguillarum serotype O2α at day seven p.h. and onwards (table 5). Although the cumulative 182 

mortality reached 35% in the high dose challenge group of V. anguillarum serotype O2β (Fig. 183 

3), this was only significantly different from the control around day seven and eight p.h. (table 184 

4, p< 0.01 Bonferroni correction).   185 

Immunohistochemistry. Immunohistochemical examinations were used for verification 186 

instead of re-isolation of bacteria, hence performed on larval groups suffering the highest 187 
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mortality compared to the larval control group. No control larvae were positively 188 

immunostained with either of the antisera (Fig. 4).  189 

The immunohistochemical findings in turbot larvae challenged with V. anguillarum serotype 190 

O2α showed bacterial cells in the gastrointestinal tract, the abdominal cavity, urine bladder 191 

(Fig. 5, arrow) and kidney.  192 

In halibut and cod however, the immunohistochemical findings were not always consistent 193 

with the observed mortality. Differences in histopathology were observed in halibut larvae 194 

challenged with V. anguillarum serotype O1 and O2α (Figs. 6 and 7, respectively). The most 195 

severe tissue damages were found in larvae challenged with the O1 serotype. Large quantities 196 

of bacteria were seen in the dermis and brain area (Fig. 6, arrow) and necrotic cells were seen 197 

in the muscle tissue (data not shown). Necrotic tissue and bacterial cells were also observed in 198 

the yolk-sac area, the gastrointestinal tract and in the area around the brain and eyes (data not 199 

shown). In larvae challenged with the O2α serotype, histopathology was limited to some 200 

necrotic cells in dermis and positive staining in the head area (Fig. 7). In addition bacterial 201 

cells were observed in the gastrointestinal tract (data not shown).  202 

In cod larvae, the histopathology was scarce in spite of high mortality (Figs. 8 and 9). Larvae 203 

challenged with the O1 serotype had bacteria in dermis and head region (Fig. 8, arrow). 204 

Bacterial cells were observed in the oesophagus and gastrointestinal tract in larvae challenged 205 

with the O2α serotype (Fig. 9, arrow).   206 

 207 

 208 

 209 
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DISCUSSION  210 

The results revealed differences in susceptibility among turbot Scophthalmus maximus, 211 

halibut Hippoglossus hippoglossus and cod Gadus morhua to various serotypes of Vibrio 212 

anguillarum. The high challenge dose of V. anguillarum serotypes O2α and O1 had a 213 

significantly negative effect on all three species, except for O1 in the turbot experiments. This 214 

could imply differences in the immune system among the three species or that the bacterium 215 

has a preference towards one specific host. The unspecific immune system has to some extent 216 

been studied in cod (Lange et al. 2004, reviewed by Falk-Petersen 2005) and halibut larvae 217 

(Lange et al. 2006, reviewed by Falk-Petersen 2005). In cod larvae the complement 218 

component C3 was detected one day post hatch (d.p.h.) and found in most organs at 15 d.p.h 219 

(Lange et al. 2004). I halibut the C3 factor was found 30 d.p.h. (Lange et al. 2006), however 220 

this was the earliest sampling in that particular study. In turbot the spleen and thymus appears 221 

at the end of the yolk-sac stage (reviewed by Falk-Pedersen 2005), indicating that the specific 222 

immune response can be expected after this stage. A recent study by Corripio-Miyar et al. 223 

(2007) studying immunoglobulin M (IgM) development in haddock Melanogrammus 224 

aeglefinus, suggest the immune system begins developing around 25-29 d.p.h. Considering 225 

the absence of a well developed specific immune system in cod and halibut at this stage 226 

(Schrøder et al. 1998, Lange et al. 2006), it will be interesting to pursue the results from this 227 

present study to understand the role of immune response to various antigens.  228 

Preference towards a host has to some extent been found among V. anguillarum strains tested 229 

on different species of fish mucus (Larsen et al. 2001). The same study showed an overall 230 

preference towards rainbow trout mucus rather than mucus from cod, common bream 231 

Abramis brama and flounder Platichtys flesus. Differences in host susceptibility has also been 232 

shown for Mycobacterium marinum (Wolf & Smith 1999). The study showed great 233 
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differences in inflammatory response between striped bass, Morone saxatilis, and the tilapia 234 

hybrid (Oreochromis niloticus x O. mossambicus x O. aureus). The striped bass that 235 

experienced the highest mortality also displayed the most severe clinical signs (granulomas 236 

with necrosis) and inflammation. Difference in virulence has also been shown in experiments 237 

involving various species of bivalves exposed to different Vibrio strains (Nicolas et al. 1992, 238 

1996, Luna-González et al. 2002).  239 

As previously described V. anguillarum serotype O2β is most frequently associated with 240 

disease in cod and non-salmonid fish (Mikkelsen et al. 2007). The O2β isolate used in this 241 

present study did however not cause any negative effects on any of the three species. 242 

Difference in virulence (between the O2α and the O1 serotype) was also verified in terms of 243 

challenge dose. The low challenge dose (tested with cod and turbot only) of O2α serotype was 244 

pathogenic to turbot and cod larvae while the low challenge dose of the O1 serotype did not 245 

cause any increase in mortality. Variations in virulence among V. anguillarum strains have 246 

been reported on several occasions (Larsen et al. 1988, Reviewed by Toranzo & Barja 1990, 247 

Lemos et al. 1991, Pedersen et al. 1997).  248 

The increase in mortality started at various days post hatch among the three species (Figs. 1-249 

3). In the halibut group mortality increased at day seven post hatching, while in the turbot 250 

group it started at day two and in the cod group at day three-four. This can partly be related to 251 

rearing temperature. Halibut and cod were reared at 6°C, compared to 15°C for turbot, which 252 

may slow bacterial growth and delay infection. In addition, the ontogenetic development is 253 

faster in turbot than in halibut, whereas cod may be viewed as an intermediate in this respect. 254 

The immunohistochemical examinations revealed differences in the infection caused by the V. 255 

anguillarum serotypes O1 and O2α. The overall histopathological observations in all three 256 

species challenged with the O1 serotype were more extensive and wide-spread (Figs. 6 & 8) 257 
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compared to the infection seen in larvae challenged with the O2α serotype (Figs. 5, 7 & 9). 258 

The infection was more widely spread throughout the larvae and larval tissues. These are 259 

similar findings to the study by Engelsen et al. (in press). In that study cod yolk-sac larvae 260 

challenged with the V. anguillarum O2 α strain experienced high mortality and the 261 

histopathological observations were scarce. These findings indicate the bacterial strains to use 262 

different infection mechanisms. It has been shown that V. anguillarum serotype O2 does not 263 

adhere to mucus as many other fish pathogenic bacteria (Knudsen et al. 1999). Engelsen et al. 264 

(in press) suggested excretion of toxins as a possible cause of death. 265 

The Vibrio splendidus and Vibrio salmonicida strains tested in this present experiment are 266 

most likely avirulent strains. Only at the end of the turbot experiment V. splendidus 267 

challenged larvae experienced a significantly higher mortality compared to the control. This 268 

could be caused by the lack of feeding when the yolk-sac stage is coming to an end. No 269 

increased mortality was detected in the other larval groups challenge with the same bacterium. 270 

As reviewed by (Thompson et al. 2004) V. splendidus was originally described as a non-271 

pathogenic strain isolated from the aquatic environment. Avirulent strains of V. splendidus 272 

have previously been reported in challenge experiments performed on halibut larvae (Verner-273 

Jeffreys et al. 2003) and turbot (60g) (Farto et al. 1999). V. salmonicida is associated with 274 

mortality at low temperatures and regarded as non-pathogenic to salmon above 10°C (Enger 275 

et al. 1991). The temperatures used in the halibut and cod experiments should be optimal for 276 

virulence studies including this bacterium. In the turbot study performed on 15°C the 277 

temperature could have been too high to cause disease. 278 

 279 

 280 

 281 
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Table 1. Yates-corrected Chi-square (χ
2
) values

 
and p-values (p < 0.01 Bonferonni correction) for 2 x 2 

contingency table control vs bacterial strains used in challenge of turbot, Scophthalmus maximus. Challenge dose 

10
6
.
 
All significant p-values in bold. V. ang 610 = Vibrio anguillarum strain 610 serotype O2α, V. ang 618 = 

Vibrio anguillarum strain 618 serotype O2β, V. ang 644 = Vibrio anguillarum strain 644 serotype O1, V. salm 

651 = Vibrio salmonicida strain 651, V. spl 1576 = Vibrio splendidus strain 1576. D.p.h = days post-hatch. Day 

0 = the day the eggs hatched. 

 

  V. ang 610 V. ang 618 V. ang 644 V. salm 651 V. spl 1576 

D.p.h χ
2
 p-value χ

2
 p-value χ

2
 p-value χ

2
 p-value χ

2
 p-value 

0  1.51 .2192 .00 1.0000 .52 .4697  1.36 .2439  1.51 .2192 

1 .00 .9678 .66 .4174 .21 .6492  1.22 .2694 .44 .5095 

2 .52 .0030  2.42 .1201 .05 .8285 .71 .4005 .00 .9693 

3 37.68 .0000  5.06 .0244 .66 .4174 .35 .5567 .00 .9678 

4 48.24 .0000  5.85 .0156 1.00 .3162 .01 .9066 .21 .6469 

5 50.55 .0000  5.85 .0156  1.42 .2342 .01 .9066 .21 .6469 

  

Table 2. Yates-corrected Chi-square (χ
2
) values

 
and p-values (p < 0.01 Bonferonni correction) for 2 x 2 

contingency table control vs bacterial strains used in challenge of turbot, Scophthalmus maximus. Challenge dose 

10
4
.
 
All significant p-values in bold. V. ang 610 = Vibrio anguillarum strain 610 serotype O2α, V. ang 618 = 

Vibrio anguillarum strain 618 serotype O2β, V. ang 644 = Vibrio anguillarum strain 644 serotype O1, V. salm 

651 = Vibrio salmonicida strain 651, V. spl 1576 = Vibrio splendidus strain 1576. D.p.h = days post-hatch. Day 

0 = the day the eggs hatched. 

  V. ang 610 V. ang 618 V. ang 644 V. salm 651 V. spl 1576 

D.p.h χ
2
 p-value χ

2
 p-value χ

2
 p-value χ

2
 p-value χ

2
 p-value 

0 .05 .8231 .07 .7978 1.43 .2312 .01 .9127 .00 .9708 

1  1.42 .2342 .00 .9678 .77 .3812 .01 .9066 .03 .8592 

2 20.18 .0000 .21 .6469 .25 .6161 .11 .7362  1.53 .2162 

3 31.11 .0000 .43 .5097 2.16 .1413 .30 .5855  6.12 .0134 

4 34.70 .0000 .43 .5097 2.16 .1413 .56 .4540  7.89 .0050 

5 40.49 .0000 .73 .3921  7.61 .0058 .90 .3433  8.84 .0030 

 

 

 

 

 

 

 

 

 



Table 3. Yates-corrected Chi-square (χ
2
) values

 
and p-values (p < 0.01 Bonferonni correction) for 2 x 2 

contingency table control vs bacterial strains used in challenge of halibut, Hioppoglossus hippoglossus. 

Challenge dose 10
6
.
 
All significant p-values in bold. V. ang 610 = Vibrio anguillarum strain 610 serotype O2α, 

V. ang 618 = Vibrio anguillarum strain 618 serotype O2β, V. ang 644 = Vibrio anguillarum strain 644 serotype 

O1, V. salm 651 = Vibrio salmonicida strain 651, V. spl 1576 = Vibrio splendidus strain 1576. D.p.h = days 

post-hatch. 

  V. ang 610 V. ang 618 V. ang 644 V. salm 651 V. spl 1576 

D.p.h χ
2
 p-value χ

2
 p-value χ

2
 p-value χ

2
 p-value χ

2
 p-value 

1 .26 .6111 .00 .9864 .30 .5870 .00 .9933 .00 1.0000 

3 .18 .6753 .00 .9763 .21 .6443 .24 .6230 .00 1.0000 

5 3.60 .0577 .22 .6353 .68 .4089 .19 .6599 .00 1.0000 

7 7.62 .0058 .00 .9691 10.38 .0013 .19 .6599 .00 1.0000 

9 12.26 .0005 2.07 .1498 24.23 .0000 .19 .6599 .18 .6753 

11 23.13 .0000 3.84 .0501 34.32 .0000 .19 .6599 .18 .6753 

13 38.13 .0000 3.84 .0501 43.95 .0000 .64 .4225 .18 .6753 

15 59.26 .0000 3.84 .0501 59.70 .0000 1.26 .2615 .18 .6753 

17 72.16 .0000 3.84 .0501 62.21 .0000 2.82 .0930 .18 .6753 

19 74.97 .0000 3.84 .0501 67.43 .0000 3.72 .0538 .18 .6753 

21 71.51 .0000 3.35 .0674 66.74 .0000 2.41 .1205 .00 1.0000 

23 64.70 .0000 4.05 .0443 62.79 .0000 .71 .3996 .11 .7412 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Yates-corrected Chi-square (χ
2
) values

 
and p-values (p < 0.01 Bonferonni correction) for 2 x 2 

contingency table control vs bacterial strains used in challenge of cod, Gadus morhua. Challenge dose 10
6
.
 
All 

significant p-values in bold. V. ang 610 = Vibrio anguillarum strain 610 serotype O2α, V. ang 618 = Vibrio 

anguillarum strain 618 serotype O2β, V. ang 644 = Vibrio anguillarum strain 644 serotype O1, V. salm 651 = 

Vibrio salmonicida strain 651, V. spl 1576 = Vibrio splendidus strain 1576. D.p.h = days post-hatch. Day 0 = the 

day the eggs hatched. 

  V. ang 610 V.ang 618 V. ang 644 V. salm 651 V. spl 1576 

D.p.h χ
2
 p-value χ

2
 p-value χ

2
 p-value χ

2
 p-value χ

2
 p-value 

0 .26 .6121 .17 .6767 .16 .6895 1.36 .2433 .00 1.0000 

1 .00 1.0000 .00 1.0000 .16 .6895 1.36 .2433 .00 1.0000 

2 1.57 .2095 .97 .3254 1.64 .2007 1.36 .2433 .97 .3254 

3 3.88 .0490 2.27 .1317 7.87 .0005 1.57 .2095 2.27 .1317 

4 14.50 .0001 2.18 .1396 7.19 .0074 3.57 .0589 1.07 .3016 

5 20.25 .0000 2.01 .1566 9.76 .0018 4.05 .0442 .57 .4497 

6 23.05 .0000 2.63 .1049 16.77 .0000 4.05 .0442 .97 .3247 

7 29.09 .0000 7.49 .0062 19.40 .0000 4.05 .0442 .97 .3247 

8 37.53 .0000 7.49 .0062 20.77 .0000 4.84 .0278 .97 .3247 

9 33.57 .0000 3.93 .0474 14.91 .0001 1.55 .2125 .00 1.0000 

10 36.57 .0000 4.33 .0375 13.10 .0003 1.00 .3162 .00 1.0000 

 

 

 

Table 5. Yates-corrected Chi-square (χ
2
) values

 
and p-values (p < 0.01 Bonferonni correction) for 2 x 2 

contingency table control vs bacterial strains used in challenge of cod. Gadus morhua. Challenge dose 10
4
.
 
All 

significant p-values in bold. V. ang 610 = Vibrio anguillarum strain 610 serotype O2α, V. ang 618 = Vibrio 

anguillarum strain 618 serotype O2β, V. ang 644 = Vibrio anguillarum strain 644 serotype O1, V. salm 651 = 

Vibrio salmonicida strain 651, V. spl 1576 = Vibrio splendidus strain 1576, D.p.h = days post-hatch. Day 0 = the 

day the eggs hatched. 

  V. ang 610 V. ang 618 V. ang 644 V. salm 651 V. spl 1576 

D.p.h χ
2
 p-value χ

2
 p-value χ

2
 p-value χ

2
 p-value χ

2
 p-value 

0 .22 .6425 .24 .6220 1.36 .2433 .00 1.0000 .00 1.0000 

1 .00 .9614 .24 .6220 1.36 .2433 .00 1.0000 1.36 .2433 

2 .57 .4502 1.01 .3141 .00 1.0000 .97 .3254 .26 .6121 

3 1.11 .2918 1.64 .2007 .00 1.0000 1.57 .2095 .26 .6121 

4 .13 .7147 .10 .7574 .00 1.0000 .30 .5853 1.19 .2751 

5 .73 .3932 .00 .9772 .09 .7630 .07 .7909 1.90 .1685 

6 3.01 .0830 .09 .7680 .09 .7630 .27 .6055 1.90 .1685 

7 17.68 .0000 .30 .5840 .00 1.0000 .97 .3247 1.90 .1685 

8 21.86 .0000 .30 .5840 .08 .7785 .97 .3247 1.90 .1685 

9 36.53 .0000 .00 .9443 .57 .4497 .00 1.0000 5.41 .0200 

10 34.10 .0000 .18 .6755 .48 .4871 .00 1.0000 5.70 .0170 

 



 

 

Figure 1. Scophthalmus maximus. Cumulative mortality percentage of turbot larvae 

challenged with the bacterial strais: HI-610 = Vibrio anguillarum strain 610 serotype O2α, 

HI-618= Vibrio anguillarum strain 618 serotype O2β, HI-644 = Vibrio anguillarum strain 644 

serotype O1, HI-651 = Vibrio salmonicida strain 651 and HI-1576 = Vibrio splendidus strain 

1576. high = challenge dose 10
6
, low = challenge dose 10

4
. Control = unchallenged larvae 
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Figure 2. Hippoglossus hippoglossus. Cumulative mortality percentage of halibut larvae 

challenged with the bacterial strains: HI-610 = Vibrio anguillarum strain 610 serotype O2α, 

HI-618= Vibrio anguillarum strain 618 serotype O2β, HI-644 = Vibrio anguillarum strain 644 

serotype O1, HI-651 = Vibrio salmonicida strain 651 and HI-1576 = Vibrio splendidus strain 

1576. Challenge dose 10
6
. Control = unchallenged larvae. 
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Figure 3. Gadus morhua. Cumulative mortality percentage of cod larvae challenged with the 

bacterial strais: HI-610 = Vibrio anguillarum strain 610 serotype O2α, HI-618= Vibrio 

anguillarum strain 618 serotype O2β, HI-644 =Vibrio anguillarum strain 644 serotype O1, 

HI-651 = Vibrio salmonicida strain 651 and HI-1576 = Vibrio splendidus strain 1576. High = 

challenge dose 10
6
, low = challenge dose 10

4
. Control = unchallenged larvae. Day 0 = day of 

hatching.  
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Figs. 4 to 9. Scophthalmus maximus, Hippoglossus hippoglossus, Gadus morhua. Immunohistochemical staining 

of paraffin sections from larvae. Avidin-biotin-alkaline phosphatase method, rabbit anti Vibrio anguillarum 

strain HI-610 and Vibrio anguillarum HI-644 serum and Shandon haematoxylin counterstained. Postive 

immunohistochemistry is visualized by red colour. Counterstaining gives tissue different tones of blue. Fig 4. 

Turbot, Scophthalmus maximus control larvae. No positive immunostaining observed, Magnification 100x, scale 

bar 100 µm. Fig 5. Turbot larvae challenged with V. anguillarum HI-610. Positive immunostaining of bacterial 

cells in urine bladder (arrow). Magnification 1000x, Scale bar 10 µm. Fig 6. Halibut, Hippoglossus 

hippoglossus, challenged with V. anguillarum HI-644, head and brain area. Bacterial cells are seen in between 

the brain and dermis (arrow). Magnification 1000x, scale bar 10µm. Fig. 7. Halibut challenged with V. 

anguillarum HI-610. Head area. Magnification 1000x, scale bar 10 µm. Fig. 8. Cod, Gadus morhua, challenged 

with V. anguillarum HI-644. Positive immunostaining in dermis and muscle tissue (arrow). Magnification 400x, 

scale bar 50 µm. Fig. 9. Cod challenged with V. anguillarum HI-610. Positive immunostaining of bacterial cells 

in intestine (arrow). Magnification 1000x, scale bar 10 µm.  




