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Abstract

Aggregation is commonly thought to improve animals’ security. Within aquatic ecosystems, group-living prey can learn
about immediate threats using cues perceived directly from predators, or from collective behaviours, for example, by
reacting to the escape behaviours of companions. Combining cues from different modalities may improve the accuracy of
prey antipredatory decisions. In this study, we explored the sensory modalities that mediate collective antipredatory
responses of herring (Clupea harengus) when in a large school (approximately 60 000 individuals). By conducting a
simulated predator encounter experiment in a semi-controlled environment (a sea cage), we tested the hypothesis that the
collective responses of herring are threat-sensitive. We investigated whether cues from potential threats obtained visually or
from the perception of water displacement, used independently or in an additive way, affected the strength of the
collective avoidance reactions. We modified the sensory nature of the simulated threat by exposing the herring to 4
predator models differing in shape and transparency. The collective vertical avoidance response was observed and
quantified using active acoustics. The combination of sensory cues elicited the strongest avoidance reactions, suggesting
that collective antipredator responses in herring are mediated by the sensory modalities involved during threat detection in
an additive fashion. Thus, this study provides evidence for magnitude-graded threat responses in a large school of wild-
caught herring which is consistent with the ‘‘threat-sensitive hypothesis’’.
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Introduction

Schooling behaviour has been considered primarily as an

adaptation that confers security advantages to gregarious fishes [1–

3] through the action of several mechanisms such as a greater

power of predator detection [4,5], the numerical dilution of risk

and abatement effect [1], predator confusion [6,7] or coordinated

evasive manoeuvres [1,8]. However, making adaptive antipredator

decisions in spatially and heterogeneous environments requires

that prey collect and act upon accurate information. Schooling has

been suggested to allow rapid evasive reactions and significant

effort has been directed at ascertaining the mechanisms that

underlie efficient predator detection in schooling fish [3,5,9].

Schooling fish can learn about immediate threats using visual

[10,11], chemical [12,13] acoustical or hydraulic cues, sensed by

the mechanoreceptors located in the lateral line system, that

emanate from the predator’s swimming movement [14,15] or

indirectly from the sensory information produced by the avoidance

behaviour of risk-aware school members [16,17]. Several studies

have investigated how predator information can spread across a

whole school [18] in such a way that the information transfer

outpaces the speed of an approaching predator [9,18] or the

swimming speed of any fish within the school ensuring a rapid

propagation of predator cues. A rapid transfer of threat

information across a fish aggregation regardless of the size of the

aggregation is a fundamental component of safety-enhancement

for schooling fish. Several mechanisms have been proposed to

explain an efficient transmission of undamped information within

schools: waves of agitation [19–21], fast pressure pulses emitted by

startled fish [22], and also compressional density waves that can

occur over very large distances, e.g. 10’s to 100’s of km [21,23].

In aquatic ecosystems, prey can detect the presence, location,

and the nature of a threat from cues obtained through diverse

sensory channels acting independently or in an additive manner

[24,25]. Under natural conditions, animals may simultaneously

receive multiples sources of sensory information from a potential

threat. Typically, it is assumed that combining cues from multiple

sensory modalities enhances the accuracy of an animal’s decisions

[26]. In particular, animals can combine inputs from several

sensory cues in order to assess risk, thus minimizing the cost of

making erroneous antipredator decisions. Therefore, an animal

able to access multiple cues from a potential threat should improve

its assessment of local risk leading to more accurate antipredatory

responses: the well-documented ‘‘sensory complement’’ hypothesis

[24,27–30] suggests that the integration of multiples sensory inputs
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can interact in an additive or synergistic way. Prey often exhibit

threat-sensitive antipredatory responses, with the strength of

antipredatory responses proportional to the magnitude of the

sensory inputs received in one or several pathways expressed in

one or several sensory modalities [29,31–34]. For example, in an

earlier experiment, Helfman [33] reported that damselfish (Stegastes

planifrons) tune their antipredator responses to the magnitude of the

predatory threat.

Despite the growing body of published results giving support to

the ‘‘threat-sensitive’’ hypothesis, most of these studies have been

conducted either on solitary prey or small prey groups. For

instance, Magurran and Pitcher [35] showed that when in shoals

(up to 50 individuals), minnows (Phoxinus phoxinus) modified their

predator-evasion behaviours when under escalating attack by a

predatory pike (Esox lucius). In addition, by testing juvenile convict

cichlids (Archocentrus nigrofasciatus) in different group sizes (1, 3 and 6

fish), Brown et al. [36] found that group size influences the

strength of threat-sensitive responses in a way that only the larger

groups (6 fish) exhibited graded predator-evasion responses

consistent with the threat-sensitive hypothesis. Even though the

effect of increasing group size on graded avoidance behaviours is

well established for small aggregations, it remains unknown

whether this is applicable to larger aggregations. It is unclear

whether massive aggregations, such as schools of pelagic fishes that

can reach shoal sizes up to several million individuals [37,38],

display threat-sensitive responses. Knowledge of the sensory

mechanisms that mediate collective antipredatory responses in

large schools is very limited mostly due to the difficult task of

observing and quantifying large-scale dynamic behavioural

patterns of fish prey and the interaction with their predators in

natural conditions.

In this study, we explored the sensory modalities that mediate

collective antipredator responses of wild-caught Norwegian Spring

Spawning (NSS) herring (Clupea harengus) when in a large shoal

(approximately 60 000 individuals). We tested the hypothesis that

herring collective responses are threat-sensitive by conducting a

simulated predator encounter experiment in a semi-controlled

environment (sea cage). We investigated whether cues obtained via

different sensory pathways (vision or perception of water

displacement) affected the strength of collective avoidance

reactions. A common antipredator strategy employed by schooling

herring in the wild is to dive when threatened [39–41]. We

observed and quantified the diving behaviour of herring using

acoustics, which is well-suited to quantify this behaviour [42]. We

manipulated the sensory nature of the simulated threat by

presenting 4 predator models that differed in shape and colour

with the assumptions that black-coloured models (V+) would be

more conspicuous against the visual background than transparent

models (V2) and that predator-shaped models would produce a

larger bow-wave (BW+) that can be detected by fish compared to

flattened models which would induce less water displacement

when in motion underwater (BW2). Stronger collective avoidance

responses were expected when both sensory cues were combined

compared to when weaker sensory cues were present.

Material and Methods

NSS herring school and housing facilities
In April 2012, 14 tonnes of adult NSS herring were caught by a

commercial purse-seine fishery vessel as part of the vessel’s fishing

quota, on the west coast of Norway in 2 separate fishing operations

(8 tonnes in Bårsundet 60u00905 N 05u29920 E and 6 tonnes in

Søredvågen 59u57940 N 05u29957 E) and towed using a specially

designed towing pen to the Institute of Marine Research

aquaculture facility located in Austevoll, Norway. The school

was placed in a rectangular sea cage (net pen: 12 m long612 m

wide612 m deep, figure 1a) at the end of a dock located in a

North Sea fjord (60u5920 N 05u15958 E). The fish were held in the

net pen for 3 months prior to the experiments to allow them to

acclimate. They were fed with standard small-sized aquaculture

pellets in addition to any naturally available prey that flowed into

the pen. Prior to the experiment, we measured the body length

and weight of 155 herring caught from the housing sea cage using

a landing net (N = 155; body length = 31.3962.17 cm;

weight = 219.25650.21 g; index of fish condition (1006weight6
body length23) = 0.70260.09; all results are expressed as a mean

6 SD) (similar to [43]). The experiment described in this paper

was conducted between July 9 and July 10 2012.

The Institute of Marine Research is permitted to conduct

experiments at the Austevoll aquaculture facility by the Norwegian

Biological Resource Committee (Biologisk Ressurskomite, BRK)

and the Norwegian Animal Research Committee (Forsøksdyr-

utvalget). NSS herring is not an endangered or protected species

and the Norwegian Directory of Fisheries allocated the fishing

quota used to capture the fish and permitted the holding of herring

in net pens at the Austevoll aquaculture facility. In accordance

with the Norwegian Animal Research Committee’s regulations,

our study did not require a specific prior allowance as no pain or

discomfort was caused to the captive animals. However, our study

was approved by the person in charge of fish welfare (Sjur Åge

Skår) at the Austevoll aquaculture facility who evaluated our

experiment as ethically acceptable.

Apparatus
We used 4 different predator models to simulate attacks of a

solitary predator: 1) a black-coloured predator-shaped model (V+/

BW+); 2) a transparent predator-shaped model (V2/BW+); 3) a

black-coloured flat model (V+/BW2) and finally; 4) a transparent

flat model (V2/BW2). We built the 2 predator-shaped models

from plastic bottles (35 cm long69 cm wide). One bottle was

covered with water resistant black duct tape while the second

bottle was kept transparent. Two other models (35 cm long69 cm

wide61.5 cm thickness) were built from transparent Plexiglas in a

way that approximated the shape of the bottles when flattened.

One model was also covered with black duct tape while the second

flat model was kept transparent. We assumed that the black-

coloured models would provide more visual contrast and be more

visually conspicuous than the transparent ones, and that the two

flat models differed from the predator-shaped models by creating

less water displacement when in motion underwater.

To quantify the transparency of the predator models an

upward-looking high resolution colour LED underwater camera

located at 10 m depth was used (image sensor Sony Super HAD

CCD, PAL: 752 (H)6582 (V), lens monofocal fixed iris 4.3 mm,

shutter speed 1/50,1/100000 sec, 500 TV lines). For each

model, we extracted 4 fixed images in which the model was

distinguishable from the background and converted them to

grayscale intensities (I) using Matlab (Mathworks). The Weber

contrast, defined as (Imodel – Ibackground)/Ibackground, was used to

quantify visibility, where Imodel and Ibackground are the mean pixel

intensities within the model outline and of adjacent pixels where

no fish are present, respectively. When presented to the school, the

models are not running in a straight line leading to visual

stimulation for the fish in front as well as below the model, and we

use the transparency as a measure of visual conspicuousness. We

tested whether the 4 models differed in conspicuousness using a

one-way ANOVA (F3,12 = 37.35, p,.0001; figure 2). In addition,

we used Tukey’s post hoc analyses to identify differences in Weber

Threat-Sensitive Responses in Schooling Herring
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contrast between models (figure 2). No significant difference in

Weber contrast was detected between the two transparent models

(Tukey’s post hoc p = 0.067). Moreover, Weber contrasts for these

two models were lower than those of the two black-coloured

models suggesting that the transparent flat and the transparent

predator-shaped models were less conspicuous than the 2 black-

coloured other models, which were more visible against the visual

background.

The flat model represented a different visual stimulus than the

predator-shaped model. If we assume a uniform yaw angle

(assuming a rectangle, i.e. disregarding the pointy front end), the

mean projected area side aspect projection is expressed as:

Asp ~la
1

p=2

ðp=2

0

cos(a)da~la
2

p
~la0:63

Figure 1. Apparatus located in the experimental net pen. Attacks were simulated using 4 different models. An elastic cord was attached to the
models and the release of tension of the cord induced the motion of the models through the herring school at 1 m depth (a). We measured the
strength of the collective response using an upward-looking 120 kHz split-beam echosounder (Simrad EK 60) placed at the bottom of the pen. (b)
Example of the quantification procedure of the vertical collective response strength from an echogram. Also presented vis a time series of the volume
backscattering coefficient (Sv), expressed in dB re 1 m21 [44], relative to the start of the stimulus.
doi:10.1371/journal.pone.0086726.g001

Threat-Sensitive Responses in Schooling Herring

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e86726



, where l is the length of the model (35 cm) and a is the diameter/

width (9 cm). This suggests than when viewed from the side, the

projected area of the flat model is ,64% of that of the predator-

shaped model. A similar approximation can be used for the front

aspect. The path of the model was not perfectly straight, and from

observations obtained from an imaging sonar (DIDSON, Sound-

metrics, Corp.) recording horizontally on the path of the different

models, the typical off path angle was 615u degrees. By

calculating the maximum forward projected area as

la sin(150)~35 � 9 � sin(150)~82cm2 and assuming a sinusoidal

motion, we computed the mean projected area by integrating and

normalizing over half a period:

Afp ~82
1

p=2

ðp=2

0

cos(t)dt~82 � 2

p
*52cm2

For comparison, the area of the predator-shaped model (without

the sinusoidal motion) was p � 4:52*63cm2. In combination, a

Figure 2. Visibility assessment of the 4 models. Four fixed images, in which the models were distinguishable from the background, were
converted to grayscale intensities (I) using Matlab (Mathworks). We calculated the Weber contrast ((Imodel – Ibackground)/Ibackground) as a metric where
Imodel and Ibackground are the mean pixel intensities within the model outline and of adjacent pixels where no fish are present, respectively.
Transparency was then used as a measure of visual conspicuousness of the 4 models. Table shows the results of Tukey’s post hoc analyses to identify
differences in Weber contrast between models. Significant differences in Weber contrast are presented in bold.
doi:10.1371/journal.pone.0086726.g002
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conservative estimate is that the flattened model had a projected

area of 60% of that of the predator-shaped model. Therefore, the

black-coloured flat model presented, on average, at least less 60%

projected area than the predator-shaped model, and the trans-

parent predator-shaped model had only 19% of the contrast of the

black-coloured predator-shaped model.

To simulate a predator attack, the models were pulled

transversally across the pen at 1 m depth by attaching fishing

line to the model and leading it through a block at the arriving end

of the pen (figure 1a). The fishing line was attached to an elastic

shock cord which was extended to constant length and attached to

a fixed point located 20 m from the net pen. The models were

moved across the school by releasing the shock cord, which moved

the model through the top of the school across the net pen.

Because of their drag differences, the speed of the flat models was

matched up to the speed of the predator-shaped models by

manually towing the model along the same path by walking the

fishing line along the dock. The speeds were recorded by timing

the tow duration (approximately 3.40 m/s) and were consistent

between trials.

We measured the magnitude of the water disturbance caused by

the models in a separate experiment that duplicated the net pen

setup, but on a smaller scale in a tank of water (3 m long61.8 m

wide61.2 m deep). The velocity of water displacement caused by

the motion of two models (V+/BW+ and V+/BW2) was

measured using an Acoustic Doppler Velocimeter (ADV. Nortek

AS, Rud, Norway), sampling at 25 Hz. Measurements of velocity

were taken at a point 177 mm above the surface of the model as it

was pulled past the fixed sensor at a speed of 3.40 m/s and

repeated 10 times for each predator model. Control measurements

were also taken of the apparatus without any model (i.e., fishing

line only). The mean of the maximum observed water velocity for

each run was calculated and used as an indication of the relative

water disturbance caused by the two model shapes. The V+/BW+
model generated an outward flow of water with a mean maximum

magnitude of 0.07360.018 m/s (mean 6 SD) while the V+/

BW2 model generated a flow of 0.03360.017 m/s. The velocities

from control runs were indistinguishable from the background

noise level (mean magnitude of 0.024 m/s).

To measure the strength of the collective diving response, we

mounted an upward-looking 120 kHz split-beam echosounder

with a 7 degree beamwidth (Simrad EK 60, Kongsberg Maritime

AS, Horten, Norway) on a gimbal close to the bottom of the pen.

The data were imported into Echoview 5.2 software (SonarData

Pty. Ltd., Tasmania, Australia), and the extent of the diving

behaviour was estimated by manually identifying the depth of the

perturbation in the echogram (measuring the vertical dimension of

the void: figure 1b). In cases where no perturbation was identified,

the response variable was classified as ‘‘no reaction’’. The response

was then separated into the probability of response, combined

with, in the case of a response, the strength of that response.

The complete experiment consisted of 5 series of measurements

with each series consisting of measurements of the 4 models and a

control treatment (i.e. the fishing line walked down the dock

without a model), for a total of 25 tests. The control treatment

allowed testing whether the noise from the releasing gear, activity

on the dock, and the motion of the fishing line may have caused

fish avoidance responses. During each experimental series, herring

were exposed once to each experimental treatment in random

order. Based on initial observations, we established a 6 minute

interval between successive treatments in the same experimental

series, which was sufficient for the fish to school in a similar fashion

as prior to exposure. We used a paired t-test to compare an

estimate of school density (sv: volume backscattering coefficient

expressed in m21 [44]) before (1 minute) and after (3 minutes) the

exposure to the experimental treatments. We calculated sv values

from Sv estimates (i.e. volume backscattering strength in

logarithmic domain expressed in dB re 1 m21) obtained from

echograms in Echoview using the following relationship:

Sv = log10 (sv), thus sv = 10(Sv/10) [44]. No significant differences

in sv before and after exposure was detected (n = 25, t = 21.017,

df = 24, p = 0.319) suggesting that, after 3 minutes, the school went

back to a similar swimming dynamic and internal structure than

before being exposed to the different models. The volume

backscatter from our experimental herring school (Sv =

233.19 dB re 1 m1) was equivalent to that observed of 2 wild

herring schools in the Norwegian Sea outside the reproduction

and feeding periods (wild school I: Sv = 236.5 dB re 1 m21; wild

school II Sv = 233.2 dB re 1 m21 [45]), which indicates that the

penned herring were under realistic packing densities. We

conducted 3 experimental series on the first day of the experiment

(15 tests) and 2 experimental series on the second day (10 tests)

with consecutive experimental series separated by at least 5 hours.

A primary objective of our study was to investigate the collective

response to multi-sensorial stimuli in herring group sizes that

match the social conditions in the open ocean. This posed

logistical restrictions as it is was not feasible to create smaller

subsets to control for pseudoreplication [46], as is common

practice in smaller scale experiments. However, due to the large

number of herring in our experimental net pen and their highly

dynamic swimming pattern, it is likely that this has created a

substantial mixing of individuals ensuring that different individuals

directly encountered the predator models or the fishing line in

each trial.

Statistical analysis
We tested if the vertical distribution of herring prior to exposure

changed among the experiments using a one-way ANOVA. We

conducted a two-way ANOVA to investigate the effect of the

colour (two levels: black-coloured or transparent) and shape (2

levels: flat or bottle shaped) on the strength of the collective

responses, as well as the interaction between these two factors. We

used Tukey’s post hoc analyses to identify differences between

treatments. All analyses were conducted with Statistica 11

(StatSoft, Inc. Tulsa, Oklahoma, USA). Hereafter, all results are

expressed as a mean and its standard error.

Results

The vertical distribution of fish before in the net pen prior to

each treatment did not vary by treatment type (F4,20 = 0.13,

p = 0.96; table 1) suggesting that initial conditions were similar

across treatments. The probability of a collective avoidance

response differed significantly among the treatments (F4,20 = 16,

p,.0001; table 1). There was a significant effect of both model

shape (F1,16 = 55.72, p,.0001) and colour (F1,16 = 16, p = .007) on

the vertical extent of the diving response. No significant interaction

was detected between model shape and colour (F1,16 = 1.25,

p = .279). Stronger avoidance reactions were observed when the

school was exposed to the black-coloured predator-shaped model

compared to the other 3 models and the control (Tukey’s post hoc

tests: V+/BW+.V2/BW+, p = 0.025; V+/BW+.V+/BW2, p,

.0001; V+/BW+.V2/BW2, p,.0001; V+/BW+.control, p,

.0001; figure 3). Stronger avoidance responses were observed

when the school was exposed to the transparent predator-shaped

model compared to the two flat models and the control (Tukey’s

post hoc tests: V2/BW+ vs. V+/BW2, p = 0.019; vs. V2/BW2,

p = 0.001; vs. control, p,.0001; figure 3). No statistically significant

Threat-Sensitive Responses in Schooling Herring
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difference was found between the response strength induced by the

two flat models (Tukey’s post hoc tests: V+/BW+ vs. V2/BW2

p = 0.51; figure 3). The control treatment never induced avoidance

reactions.

Discussion

Herring exhibited increasing avoidance responses to more

visible models that produced a stronger hydrodynamic stimulus

compared to the flat and/or transparent models. This suggests that

the combination of cues from different sensory modalities elicited

the strongest avoidance reactions. Thus, our results show that

herring collective antipredator responses are mediated by the

sensory modalities involved during threat detection. This study

provides empirical evidence for magnitude-graded threat respons-

es in a large school of herring consistent with the threat-sensitive

hypothesis [33].

Stronger diving responses were observed to the predator-shaped

models than the flattened models. Although the predator-shaped

models generated more water flow and a larger hydrodynamic

signal, they also presented a larger visual target as the flattened

models presented a ,60% lower projected area than the predator-

shaped models. Given that multiple factors were altered simulta-

neously in this case, it is difficult to determine how much of the

increased response to the predator-shaped model compared to the

flat models is attributable to the larger hydrodynamic signal and

how much is attributable to increased visibility. Given that the

black-coloured predator-shaped model elicited a larger response

than the lower-contrast transparent predator-shaped model, one

can deduce that the Weber contrast plays a significant role in the

response. When comparing the flat coloured model to the

transparent predator-shaped model, the predator-shaped model

produced a much larger hydrodynamic signal than the flat model,

but it is unclear if the predator model was also more visually

conspicuous as the transparent predator-shaped model had a

larger projected area but a significantly lower Weber contrast.

Thus, although it cannot be determined precisely, it is likely that

the increased response to the predator models relative to the flat

models is attributable to both the elevated hydrodynamic and

possibly the increased visibility of the predator model.

In the case of reduced hydrodynamic cues produced by the flat

models, avoidance responses did not depend on model coloura-

tion, which may suggest that information obtained visually was

insufficient alone to elicit strong collective avoidance responses in

the schooling herring. Vision is commonly considered as one of the

most efficient modalities for the initial localisation of predators in

aquatic environments [10,34,47], as well as an important sensory

mechanism promoting schooling behaviour [48]. However, the

results of our study suggest that visual cues must be combined with

another sensory modality to increase the strength of the collective

responses. In aquatic habitats, environmental factors, such as

water turbidity, can strongly affect visually mediated predator-prey

interactions. Water turbidity was found to alter transmission of

visual information in fathead minnows (Pimephales promelas) in such

a way that some fishes were unable to observe the antipredator

behaviours of school mates, increasing then their vulnerability to

an attack [49]. It is worth noticing that our study was conducted

during summer where low underwater visibility may have reduced

the efficiency of visual detection. Strong seasonal patterns in

herring antipredator behaviours have been previously reported

[42,50,51] with lower responsiveness to audio-playbacks of

predator calls reported after spawning and during feeding periods

(late spring and summer) compared to winter [52,53]. Conse-

Figure 3. Maximum depth of the collective responses (mean ± SEM) to the different predator models showing magnitude-graded
threats responses. Stronger vertical avoidance responses were observed when the herring school was exposed to the black-coloured predator-
shaped model, which is more visible and produces a stronger hydrodynamic stimulus, compare to when the herring school exposed to the flat and/or
transparent models and to the control.
doi:10.1371/journal.pone.0086726.g003

Threat-Sensitive Responses in Schooling Herring
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quently, seasonal variations in the general tradeoffs between

survival, feeding and reproduction experienced by herring coupled

with changes in environmental factors can affect the sensory

mechanisms at work during predator-prey interactions.

In low visibility conditions, other sensory modalities such as cues

detected by the olfactory system [13,24,25,27,30], the lateral line,

and the auditory system are likely to play an important role during

predator encounters [54]. Even though we observed stronger

collective responses from models which produced stronger stimuli

in multiple sensory modalities, only a fraction of the school

exhibited avoidance responses. A possible explanation may be that

one or several sensory modalities that fish may rely on during their

assessment of risk are weak or absent from the predatory models.

In our study, we only focused on modalities that spread rapidly in

the environment such as visual and hydrodynamic cues [55].

However, we did not consider chemical cues that spread more

slowly, persist over a longer period of time in the environment and

that fish prey also use to locate predators [56,57] and which can

act independently or in synergy with other modalities as vision

[24,25,27,30].

Recent research in collective behaviour provides a mechanistic

explanation for how information can spread among an entire

animal aggregation no matter how large the aggregation is. An

expected property of animal groups is that the flow of collective

information is unconstrained by the group size but may be

achieved by scale-free behavioural correlations [58,59]. This has

been recently used to explain large scale coordinated antipredator

events observed in European starlings flocks (Sturnus vulgaris) [58]

and Gulf menhaden schools (Brevoortia patronus) [60]. The collective

behaviour framework gives an explanation of how a group reacts

as a whole to environmental perturbations and accounts for the

undamped long-range transfer of information among all group

members, even in very large animal aggregations.

While our study revealed graded vertical avoidance reactions,

only a fraction of the school reacted and exhibited avoidance

responses regardless the nature of the threat stimuli presented (see

table 1); a result that contrasts with the scale-free collective

responses [58,61]. Considering the high density of fish in the net

pen, it is likely that as the distance from the model increased, the

direct detection of the model by individual fish decreased, and

that, responses far from the predator model are most likely

induced by neighbouring fish’s reaction [18]. Consequently, the

observed differences in collective responses to the models’

characteristics may reflect differences in information transfer

strength. A plausible explanation is that the extent to which

information is conveyed through the school depends on the initial

number of individual fish that responded to the experimental

stimuli (number of early responders [18]), which may determine

the strength of the collective reactions. It has been shown that the

strength or the characteristics of a stimulus (e.g. orientation or

distance [16]) can affect the perception of the threat level and

hence the strength of the induced responses [62,63]. Yet, to date,

we cannot clearly ascertain whether the responses observed were

triggered by the direct stimuli presented or by the evasive reactions

of neighbouring fish. More efforts towards a finer investigation of

the avoidance responses with a particular focus on the timing of

the individual’s response latency (short-latency vs. long latency

responses similar to [16–18]) are warranted to ascertain the

functional role of information transfer in schooling fish.

The behavioural antipredatory responses of aggregated fish can

affect the outcome of predator-prey interactions with important

subsequent effects on both prey populations and communities.

Acoustics provides an efficient means to address some of these

questions by precisely observing and quantifying large-scale

collective antipredator behaviours in schooling fishes and the

interaction with their predators [60]. By applying these observa-

tion techniques in a controlled setting, we found evidence for

sensory complementation and threat-graded avoidance reactions

in a large school of marine fish, increasing our knowledge of the

mechanisms underlying collective evasive responses in large

animal aggregations.
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Table 1. Mean school vertical distribution prior to stimuli exposure and collective response strength to the 4 predator models.

N
Response
probability

School vertical distribution
before exposure (m) Collective response depth (m)

Model Stimuli Mean Standard error Mean Standard error

Control fishing line 5 0 7.24 0.174 Absence of response

Transparent flat model V2/BW2 5 0.6 7.28 0.122 0.74 0.395

Coloured flat model V+/BW2 5 1 7.31 0.115 1.36 0.295

Transparent predator-
shaped model

V2/BW+ 5 1 7.15 0.221 2.76 0.368

Coloured predator-
shaped model

V+/BW+ 5 1 7.18 0.223 4.09 0.162

The 4 predator models consisted of a black-coloured predator-shaped model (V+/BW+); a transparent predator-shaped model (V2/BW+); a black-coloured flat model
(V+/BW2) and a transparent flat model (V2/BW2).
doi:10.1371/journal.pone.0086726.t001
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