High prevalence of viral haemorrhagic septicaemia virus (VHSV) in Norwegian spring-spawning herring

Renate Johansen ${ }^{1, *}$, Øivind Bergh ${ }^{2}$, Ingebjørg Modahl ${ }^{1}$, Geir Dahle ${ }^{\mathbf{2}}$, Britt Gjerset ${ }^{1}$, Jens Christian Holst ${ }^{2}$, Nina Sandlund ${ }^{2}$
${ }^{1}$ Norwegian Veterinary Institute, PO Box 750 Sentrum, 0106 Oslo, Norway
${ }^{2}$ Institute of Marine Research, PO Box 1870 Nordnes, 5817 Bergen, Norway

*Email: renate.johansen@vetinst.no

Marine Ecology Progress Series: 478: 223-230 (2013)

Supplement.

Table of all individual results of virus detection both with cell culture and real time RT-PCR (rRT-PCR) from the 5 sampling dates. The 21 pools consist of brain, spleen and kidney from 5 herring and are tested with both cell culture and rRT-PCR. Gills, brain, spleen, kidney and gonads are tested individually from all 105 herring with rRT-PCR and cycle threshold (Ct)-values are provided in the table. Fish with positive detection in internal organs are marked with blue while fish only positive in gills are marked with yellow. N: no detection; NS: not sampled

Date	Pool no.	Cell culture	rRT-PCR	Herring no.	Gills	Brain	Spleen	Kidney	Gonads
25 Feb	1	N	N	1	39.93	N	N	N	N
				2	N	N	N	N	N
				3	37.61	N	N	N	N
				4	N	N	N	N	N
				5	N*	N	N	N	N
	2	N	N	6	N	N	N	N	N
				7	N	N	N	N	N
				8	N*	N	N	N	N
				9	N	N	N	N	N
				10	N*	N	N	N	N
	3	N	35.19	11	39.62*	N	N	N	N
				12	37.5*	31.35	33.73	N	N
				13	N*	N	N	N	N
				14	N*	N	N	N	N
				15	N*	N	N	N	N
	4	N	N	16	N	N	N	N	N
				17	N	N	N	N	N
				18	N	N	N	N	N
				19	N	N	N	N	N
				20	N	N	N	N	N
	5	N	N	21	N	N	N	N	N

				22	N	N	N	N	N
				23	39.86	N	N	N	N
				24	N	N	N	N	N
				25	N	N	N	N	N
				26	N	N	N	N	N
				27	38.31	N	N	N	N
	6	N	37.86	28	N	N	N	N	N
				29	37.75	N	N	N	N
				30	37.17	N	N	N	N
				31	38.48	N	N	N	N
				32	37.92	N	N	N	N
	7	N	N	33	N	N	N	N	N
				34	N	N	N	N	N
				35	N	N	N	N	N
				36	N	N	N	N	N
				37	N	N	N	N	N
	8	N	N	38	38.92	N	N	N	N
				39	N	N	N	N	N
				40	38.17	N	N	N	N
19 March	9	Positive	23.39	41	37.54	N	N	N	N
				42	37.19	N	N	N	N
				43	37.27	N	N	N	N
				44	34.39	N	N	38.19	39.4
				45	24.44	28.05	22.8	18.96	29.31
	10	N	N	46	36.20	N	N	N	N
				47	N	N	N	N	N
				48	38.77	N	N	N	N
				49	37.39	N	N	N	N
				50	36.97	38.49	N	N	N
	11	N	N	51	38.24	N	N	N	N
				52	35.52	N	N	N	N
				53	37.74	N	N	38.64	N
				54	38.85	N	N	N	N
				55	35.92	N	N	N	N
	12	N	31.41	56	36.93	39.48	N	N	N
				57	30.94	28.54	27.97	30.79	N
				58	37.30	N	N	N	N
				59	37.12	N	N	N	N
				60	36.16	N	37.11	36.81	N
12 April	13	N	N	61	33.60	N	N	N	NS
				62	32.12	N	N	N	NS
				63	32.95	N	N	N	NS
				64	32.42	N	N	N	NS
				65	33.88	N	N	N	NS
	14	N	N	66	31.68	37.61	N	N	NS

				67	33.23	N	N	N	NS
				68	32.50	N	N	N	NS
				69	32.79	N	N	N	NS
				70	32.06	N	N	N	NS
				71	31.65	N	N	37.14	NS
				72	32.05	N	N	N	NS
	15	N	N	73	N	N	N	N	NS
				74	33.55	N	N	N	NS
				75	32.35	N	N	38.31	NS
				76	34.49	N	N	N	NS
				77	35.43	N	N	N	NS
	16	N	N	78	37.16	N	N	N	NS
				79	35.23	N	N	N	NS
				80	37.96	N	36.17	N	NS
				81	N	N	N	N	NS
				82	38.00	N	N	N	NS
16 April	17	N	N	83	N	N	N	N	NS
				84	35.13	N	N	N	NS
				85	34.17	N	N	N	NS
				86	37.35	N	N	N	NS
				87	33.75	36.05	34.07	34.85	NS
	18	N	N	88	31.88	N	N	N	NS
				89	34.42	N	N	N	NS
				90	37.62	N	N	N	NS
22 April				91	31.11	37.93	N	N	NS
				92	34.76*	N	N	N	NS
	19	Positive	30.56	93	34.68	38.93	28.95	39.74	NS
				94	34.16	N	N	N	NS
				95	35.67	N	N	N	NS
				96	33.74	N	N	N	NS
				97	35.01*	N	N	N	NS
	20	Positive	22.99	98	28.07*	33.02	31.11	28.87	NS
				99	N*	N	N	N	NS
				100	35.91*	N	37.27	39.44	NS
	21	Positive	20.4	101	31.85	N	33.75	36.7	NS
				102	31.34	37.86	29.26	27.72	NS
				103	32.43	37.94	N	N	NS
				104	33.68	N	38.81	N	NS
				105	24.66	31.34	18.7	23.01	NS

* RNA 20-50 ng $\mu \mathrm{l}^{-1}$

