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Abstract: We analysed exploitation of populations that are partly protected in a marine harvest refuge to
prevent their over-harvesting in the remaining unprotected area. We carried out our analysis by introducing
the model of ideal free distribution to the population renewal process. In the model, individuals in the
target population are distributed so that per capita resource availability becomes matched in the harvested
and non-harvested areas. We show that the yield from the harvest effort is strongly affected by the fraction
of area protected from harvesting. The harvest effort maximising the yield depends on the relative size
of the protected area. Maximum yield is independent of the size of the protected area unless the fraction
is > 0.56. If this value is exceeded, annual yield declines rapidly with increasing protected fraction.
However, our major � and somewhat surprising � finding is that protected areas can be established without
any loss to commercial harvesting if harvesting follows reproduction and population densities are balanced
between harvesting seasons according to resource availability.

Key words: spatial population dynamics, habitat selection, spill-over effect, marine reserve, no-take zone,
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INTRODUCTION

Worldwide depletion of many commercially exploited natural populations,
especially in marine habitats (LUDWIG et al. 1993, HUTCHINGS 2000), has led man-
agers and conservation biologists to propose new concepts for saving depleting and
endangered resources. Marine reserves or marine harvest refuges are one method to
protect target populations from over-exploitation (DIAMOND & MAY 1976, GAME

1980, DEMARTINI 1993, BOTSFORD et al. 1997, ROBERTS 1997a, 1998, MANGEL 1998,
2000, HASTINGS & BOTSFORD 1999, LUNDBERG & JONZÉN 1999, ACOSTA 2002,
LOCKWOOD et al. 2002, LUBCHENKO et al. 2003). In this method, a certain fraction
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of the distribution range of the target population is set aside from utilisation, while
harvesting takes place outside this refuge. Marine reserves take an explicit spatial
approach of population ecology to address the problem of population over-exploita-
tion. Hence, it calls for a spatial ecology approach to analyse the usefulness of the
concept.

The ecological basis of marine reserves and other comparable conservation areas
relies on the assumption that a fraction of the target population remains out of reach
of harvesting in the protected areas. One model explaining how individuals should
be distributed in a habitat, where sub-areas may differ in terms of profitability, is
based on the concept of ideal-free distribution, IFD (FRETWELL & LUCAS 1970,
FRETWELL 1972) or the theory of resource/habitat matching (PARKER 1974, MORRIS

1994). IFD models predict that individuals should distribute themselves in a habitat
so that per capita fitness will become equal regardless of the spatial unit an individ-
ual resides in. Under such circumstances accessible resources will be used so that
moving elsewhere will not increase the fitness of an individual. The model is ideal
as the distribution and value of accessible resources are common knowledge and the
individuals are free to choose any sub-area with its resources. The resulting distribu-
tion of individuals, via a fitness-equalising process, is referred to as an ideal free
distribution (FRETWELL & LUCAS 1970).

FRETWELL (1972) introduced also ideal despotic distribution, IDD, to model
population distributions of territorial birds. Here, each bird arriving in an area of
habitable patches differing in resource availability can assess the value of the patch-
es but is not free to settle into those already occupied. Although despotism can be
expected to be common in many natural situations, including fish (e.g., HUNTING-
FORD & TURNER 1987), we do not address this model here. In its simplest form, the
only prediction of IDD that is not common to IFD is that territory ownership will
lead to differential success of otherwise equal competitors (TREGENZA 1995). Thus,
we do not expect IDD to have crucial effect on a spatial scale of marine reserves.

Recently, LUNDBERG & JONZÉN (1999) presented a study that combined the
idea of harvest-free areas with the ecological model of IFD. They divided the area
occupied by a population into two sub-areas: one where the target population was
subject to harvesting (harvested area) and one where harvesting was not allowed
(protected area). They assumed that the driving force behind redistribution of indi-
viduals is fitness-equalisation in the protected and non-protected areas. In this sce-
nario, IFD is reached when individuals both in the protected and harvested area have
equal fitness.

LUNDBERG & JONZÉN (1999) assume that the fitness includes two components:
reproduction at a certain population density and harvesting mortality in the harvest-
ed area. Fish in the protected area do not suffer from harvesting mortality. This scen-
ario leads to a situation where the population density is lower in the harvested area:
lower population density increases reproductive success, thus compensating for the
decreased reproductive success due to harvesting. It is noteworthy that the density
differences between the areas do not tend to decrease between harvesting seasons.
This scenario embeds an important assumption: the individuals in the population are
influenced by harvesting, and consequently, choose their place of residence on the
basis of the density of conspecifics.
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Alternatively, distribution of individuals across a landscape may be conditioned
by resource availability. In the case of harvest refuge, we may argue that the target
population may tend to redistribute between the harvesting seasons (after reproduc-
tion and harvesting, before the next reproductive bout) so that the population densi-
ties become equalised between the harvested and protected areas. Thus, in this case,
the driving force is not in the fitness components as such (in the sense of LUNDBERG

& JONZÉN 1999), but in the distribution of resources necessary for fish, such as
spawning sites, food, space, etc., which are here assumed to be distributed evenly
over space. The outcome, known as resource matching (PARKER 1974, MORRIS 1994),
is that in the beginning of each season, distribution of individuals matches resource
availability in different areas, i.e., areas with rich resources harbour more individ-
uals than resource-lean areas. That fish may distribute according to the resource-
-matching model has been verified in laboratory experiments, e.g., by MILINSKI (1979,
1984), GRAND & GRANT (1994), GRAND (1997) and TYLER & GILLIAM (1995), but
rarely in the field (POWER 1984).

We set out here to study the significance of the protected area when the eco-
logical mechanism behind the dispersal of individuals is based on the concept of
resource matching. As in LUNDBERG & JONZÉN (1999), we divide the distribution
range of the target population into two: an area where harvesting is allowed and a
protected area with no harvesting. The individuals reproduce in both areas, and are
harvested only in the harvested area. However, unlike in LUNDBERG & JONZÉN (1999),
the population densities will be balanced between harvesting seasons according to
resource availability.

MATERIAL AND METHODS

Assume that a population that is a target of commercial harvesting occupies a
distribution range A in a homogenous environment. A fraction c of that range is
protected from harvesting while the fraction (1 � c) is accessible for harvesting. During
reproduction, the population densities are updated according to Ricker dynamics:

(1)

where XR and XH are population densities in the refuge (R) and in the harvested area
(H), respectively; aR and aH are parameters; λR and λH are the population growth rates
in different areas; and E is the harvest effort (LUNDBERG & JONZÉN 1999). The
corresponding population sizes are given as follows:

(2)

We next assume that redistribution of individuals takes place after reproduc-
tion and harvesting, so that the population densities will be balanced according to
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resource matching. Since in our model the resources are evenly distributed over space,
at this point of time the population densities will be updated as follows:

(3)

Equations (1)-(3) define the temporal dynamics of the population densities from
time t to t + 1. At equilibrium, we get

(4)

Assume that aR = aH = a. We have the population density

(5)

and the yield Y is given as

(6)

The fitness in the two areas is determined by the phase of reproduction, fol-
lowed by harvesting mortality. Redistribution does not affect fitness, as neither mor-
tality nor reproduction occurs during this phase. Thus, the fitness in the protected
and harvested areas are given as

(7)

respectively. Since in our model X
R
 = X

H
 and both growth rates (λ�s) and a�s are equal,

the fitness in the harvested area is lower than in the protected area.

RESULTS

It follows from the process of redistribution, eq. (5), that the proportion of the
population in the protected area is not dependent on harvesting but is determined
only by parameter c defining the protected fraction.

Population size in the two areas depends both on the size of the protected area
and the harvest effort, eq. (7). When c = 1 (no harvesting), the population density in
our example (a

R
 = a

H
 = 0.002, λ

R
 = λ

H
 = 2) is ca. 350. When only part of the area is

protected (c < 1) the population density decreases with increasing harvest effort
(Fig. 1A).

     1 = cλ1 exp[−a1X] + (1 − c){λ2 exp[−a2X] − E}.  

( )AEXcÕ −= 1  
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The shape of the yield curve as a function of harvest effort E depends on the
protected fraction of the population. For example, when there is no harvest refuge (c
= 0) the optimal harvest effort is ≈ 0.46. Increasing the size of the reserve area al-
lows a higher fishing effort (Fig. 1B). The proportion of the protected area deter-
mines the harvest effort that maximises the yield. As the proportion of the area where
fishing is not allowed increases, also the effort giving the largest yield increases and
reaches the value of 1 at a threshold value of c ≈ 0.56 (Fig. 1C). Our results also
show that the maximum yield is stable and unaffected by the protected fraction of
the area for small values of c, but at values of c exceeding 0.56, the maximum achiev-
able yield will collapse rapidly (Fig. 1D).

We can summarise our results by stating simply that harvest refuges can be
established without any loss to commercial harvesting. This is, of course, valid if (1)
the size of the protected area in comparison to the size of harvested area is not too
large (i.e., c < 0.56); (2) harvesting follows reproduction; and (3) population densi-
ties are balanced between harvesting seasons according to resource availability.

Fig. 1. (A) Population densities as a function of harvest effort, E. When the reproductive conditions in
each area are homogeneous, ideal free distribution is achieved when the population densities are equal in
each area and fitness is equal to one. (B) The shape of the yield curve as a function of the harvest effort
depends on the size of the protected area, c. (C) The harvest effort maximising the yield depends on the
size of the protected area. (D) The maximum yield is insensitive to small protection fractions but may
decline rapidly for too large protected areas
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DISCUSSION

We have used a new approach using resource-matching IFD to model popula-
tion management where it is possible to protect a part of the population in conserva-
tion areas. It is a fair assumption (often supported with real data, e.g., MILINSKI &
PARKER 1991) that competing animals can disperse in space according to resource
availability. In systems where this kind of distribution is important, we may need to
add ecological knowledge to our understanding of how the populations change over
time. Spatial distribution of animals has been a target of research for a while (e.g.,
BASCOMPTE & SOLÉ 1997, TILMAN & KAREIVA 1997, BJØRNSTAD et al. 1999, DIECK-
MANN et al. 2000). One basic component of spatial population structure is ideal free
distribution, which can largely explain the distribution patterns of animals where areas
differ in profitability. We have acknowledged, however, that driving forces behind
the IFD process may be different. Thus, the choice of a particular IFD model may
depend on the application. It is important to understand that the choice of the IFD
model may affect the qualitative conclusions to be drawn from the analysis.

The importance of the choice of the IFD model is clearly seen when we com-
pare our results with those obtained by LUNDBERG & JONZÉN (1999). They showed
that the proportion of the population in the protected area increases with increasing
fishing effort. (They failed to note, however, that the population size in the protected
area actually remains constant and the difference is due to the depletion of the har-
vested population.) They also showed that optimal harvest effort is independent of
the size of the protected area relative to the harvested area. Our results are different.
In particular, we have shown that the shape of the yield curve as a function of har-
vest effort may crucially depend on the protected fraction of the area. Thus, the harvest
effort maximising the yield may also be strongly dependent on the protected frac-
tion. This will most probably have direct effects on the maximum yield available in
each setting.

A careful reading of the model of LUNDBERG & JONZÉN (1999) reveals that
the fitness component in their model includes fishing mortality. While this is a pro-
found assumption, earlier presented by KAITALA & GETZ (1995), it also implies that
the movements of individuals are affected by harvesting, or there are some evolu-
tionary mechanisms, related to fishing mortality, restricting the movements between
the areas. Furthermore, we can argue that there may be alternative driving forces
behind the IFD, such as redistributing according to food resources or available space,
which may affect the distribution of individuals. In a homogeneous environment, the
latter results in equalisation of population densities among the areas before harvest.
The redistribution of individuals between protected and harvested areas could be
especially likely if there is, for example, an ice cover for a certain period of time
during the year, hindering the harvesting. In such a case, it seems very likely that
individuals would not be affected by harvest pressure when choosing their location,
but redistribute more or less evenly during the non-harvesting period.

Applying IFD models in resource management may be feasible only when there
is a cost-free flow of individuals across the reserve border and when despotic terri-
torial behaviour is not present. This so-called spill-over effect has recently received
some attention (CARR & REED 1993, ROBERTS 1997b, 1998, MCCLANAHAN & KAUN-
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DRA-ARARA 1996, LAUCK et al. 1998, LUNDBERG & JONZÉN 1999). Our model, with
the redistribution of individuals between harvesting seasons, includes the spill-over
effect as individuals spill over also in the harvested area, and do not stay in the pro-
tected area only. If the IFD assumptions used do not apply, the conclusions may
change. Such a case may arise when only a fraction of the population may disperse,
or when dispersal is insufficient to balance sub-populations, or when the animals
behave according to an ideal despotic manner. This would, however, require a con-
siderable spatial heterogeneity in favour of the protected area, or alternatively very
poor reproduction in the protected area.

We have analysed a resource management policy that includes the spatial com-
ponent in terms of conservation areas. Such a policy can be viewed as an alternative
to proportional threshold harvest policies that, by definition, have a conservation
aspect included in it in the form of protecting populations (e.g., KAITALA et al. 2003).
Whether spatial conservation is superior to threshold conservation remains unknown,
mainly due to the underdevelopment of the theory and practice of spatial conserva-
tion policy.
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the topic.
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