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Abstract: Parametric size-selection curves are often combined over hauls to estimate a mean selection curve using a
mixed model in which between-haul variation in selection is treated as a random effect. This paper shows how the
mixed model can be extended to estimate a mean selection curve when smooth nonparametric size-selection curves are
used. The method also estimates the between-haul variation in selection at each length and can model fixed effects in
the form of the different levels of a categorical variable. Data obtained to estimate the size-selection of dab by a
Nordmøre grid are used for illustration. The method can also be used to provide a length-based analysis of catch-
comparison data, either to compare a test net with a standard net or to calibrate two research survey vessels. Haddock
data from an intercalibration exercise are used for illustration.

Résumé : Les courbes paramétriques de sélection de la taille sont souvent combinées dans toutes les récoltes pour obtenir
une courbe de sélection moyenne qui utilise un modèle mixte dans lequel la variation de la sélection entre les récoltes est
considérée comme un effet aléatoire. Notre étude démontre comment le modèle mixte peut être étendu de façon à estimer
une courbe de sélection moyenne en utilisant des courbes lisses de sélection non paramétriques. La méthode estime aussi
la variation de la sélection entre les récoltes pour chacune des longueurs et elle peut modéliser des effets fixes sous forme
de niveaux différents d’une variable catégorique. Un exemple utilise des données obtenues pour estimer la sélection de
taille chez la limande par une grille de Nordmøre. La méthode peut aussi servir à analyser des données de comparaisons
de récoltes d’après la longueur, soit pour comparer un filet expérimental avec un filet standard ou pour calibrer deux navi-
res d’inventaire de recherche. Un exemple utilise des données sur l’aiglefin provenant d’un exercice d’intercalibration.

[Traduit par la Rédaction] Fryer et al. 459

Introduction

It is widely accepted that the size selection of a fishing net
can vary from haul to haul even though the net has not been
changed (Fryer 1991). Such between-haul variation in selec-
tion might arise in response to changes in sea state, towing
direction, fishing grounds, etc. Fryer (1991) showed that
between-haul variation must be accounted for when model-
ling selection data to avoid making incorrect inferences about
the selection of the net. Further, he described a model that
incorporates between-haul variation when the selection of
each haul can be described by a logistic curve. Essentially,
the parameters of the logistic curve for each haul are as-
sumed to vary stochastically about mean selection parame-
ters that characterise the average selection of the net. The
model is an example of a mixed model (e.g., Hocking 1996)
in which hauls are treated as random effects. Fixed effects
such as changes in mesh size can also be modelled. The
mixed-model methodology is easily extended to other para-
metric selection curves (Millar and Fryer 1999) and has been

widely applied (e.g., Reeves et al. 1992; Madsen et al. 1999;
Zuur, G., et al. 2001).

Bootstrapping methods (Efron and Tibshirani 1993) have
been used to incorporate between-haul variation in studies
using nonparametric selection curves. Nonparametric curves
are typically used when parametric curves are not sufficiently
flexible to describe the selection of each haul. For example,
Millar (1993) modelled the selection of a scallop dredge us-
ing four parametric curves, but found the fit of all four
curves to be inadequate. He then switched to isotonic regres-
sion curves. These curves are a series of flat lines with
jumps between them, the only constraint being that selection
must either stay constant or increase as fish size increases. A
mean selection curve was estimated by pooling the data
across hauls and fitting a single isotonic regression curve.
Confidence intervals for summary measures such as the 50%
retention length were then obtained by bootstrapping. Be-
tween-haul variation was incorporated by bootstrapping at
the haul level, i.e., by taking a random sample of hauls (with
replacement). A second stage of bootstrapping was required
to incorporate within-haul variation, i.e., variation at the fish
level. Munro and Somerton (2001) used a different type of
nonparametric curve, the smoothing spline, to model the
footrope selectivity of four species from various trials. Again,
the data were pooled over hauls and a single smoothing
spline was fitted. Pointwise 95% confidence bands around
the fitted curves were then constructed by bootstrapping over
hauls.

The smoothing spline used by Munro and Somerton (2001)
is an example of a linear smoother (Hastie and Tibshirani
1990). Other common examples include running-mean and
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kernel smoothers (Hastie and Tibshirani 1990) and the loess
smoother of Cleveland (1979). Linear smoothers occupy the
middle ground between parametric curves and isotonic re-
gression curves. They are nonparametric in the sense that
their shape is determined, to a large extent, by the data
themselves, although the user controls the amount of
smoothing. On the other hand, in common with parametric
curves, they are amenable to formal statistical inference. For
example, the fit of a smoother can be compared with that of
a linear model (a special case of the smoother), and the pre-
cision of a smoother can be presented as, e.g., pointwise
95% confidence bands. In particular, smoothers provide ex-
actly the same summary information that is used by the
mixed-model methodology to combine parametric selection
curves over hauls. Our first objective in this paper is to show
how we can generalise the mixed-model methodology to ex-
ploit this information and thus combine smooth selection
curves over hauls. The method estimates the mean selection
curve of the net, with pointwise standard errors or confi-
dence bands, and the between-haul variation in selection.
Fixed effects, in the form of the levels of a categorical vari-
able, can also be modelled. The methodology is developed
in the following section and then illustrated using data ob-
tained to estimate the selection of dab (Limanda limanda) by
a Nordmøre selection grid (grate).

Our second objective is to show how the same techniques
can be used to model catch-comparison data, collected either
to compare a test net with a standard net (Briggs 1992;
Armstrong et al. 1998) or to calibrate two research survey
vessels (e.g., Ehrich 1991; Pelletier 1998). Most analyses of
such data have compared catches that have been aggregated
over all lengths or over a wide range of length classes (e.g.,
all lengths above the minimum landing size); see the review
of Pelletier (1998). However, a length-based analysis could
provide more insight into the relative performance of the two
nets or vessels. For example, Warren (1997) modelled catch
ratios from two research vessels as a parametric function of
length. Modelling catch ratios as a function of length is a
means of estimating the relative size selection of the two
nets or vessels. When the data have been collected under a
parallel or alternate haul design, smoothers provide a natural
way of modelling the catch ratios for each paired haul and
can be used when a suitable parametric curve can not be
found. We show how the mixed-model methodology can be
used to combine these smooth curves over paired hauls and
illustrate the methodology using data for haddock (Melano-
grammus aeglefinus) collected in an intercalibration exer-
cise.

Size-selection curves

Parametric curves
We begin by reviewing the mixed-model methodology for

combining parametric size-selection curves. We develop the
theory in the context of a covered cod-end experiment (Wile-
man et al. 1996) in which H replicate hauls are made with
the same test cod-end and we wish to estimate the mean selec-
tion of the cod-end. Generalising to other types of selectivity
experiments, such as trouser-trawl or twin-trawl experiments, is
then straightforward. For simplicity, we leave the theory for
fixed effects — controlled changes such as a change in mesh

size — until later. Full methodological details can be found
in Fryer (1991) and Millar and Fryer (1999).

Suppose that, in haul h of a covered cod-end experiment,
we measure n1hl fish of length l in the cod-end and n2hl fish
in the cover. Often catches are subsampled, so let q1hl and
q2hl be the subsampling fractions of length l fish in the cod-
end and cover, respectively. Assuming that fish escape or are
retained by the cod-end independently of each other, then
conditional on the total numbers of fish measured, the num-
bers of fish measured in the cod-end can be modelled as
having binomial distributions:

(1) n1hl�n1hl + n2hl �Binomial(n1hl + n2hl, φhl)

where

(2) φhl
h hl

h hl h hl

r l q

r l q r l q
=

+ −
( )

( ) ( ( ))
1
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and rh(l) is the selection (retention) curve of the cod-end,
i.e., the probability that a fish of length l is retained by the
cod-end given that it entered the cod-end. Note that φhl is the
probability that a fish is measured in the cod-end, given that
it is measured in either the cod-end or the cover. When there
is no subsampling, or equal subsampling in the cod-end and
cover, φhl simplifies to rh(l).

Now suppose that rh(l) is an m-parameter selection curve
with parameters vh = (vhl,�,vhm)T, where the T superscript
denotes the transpose of a vector. For example, if rh(l) is the
logistic selection curve
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we have m = 2 and vh = (ah, bh)
T. Between-haul variation is

incorporated by assuming that the selection parameters vh
vary randomly from haul to haul about a mean selection curve
according to some probability distribution. Specifically, the vh
are assumed to be (multivariate) normally distributed with
mean � = (θ1,�, θm)T, an m-vector of parameters that charac-
terise the mean selection of the cod-end, and variance D, an
m × m matrix that measures the between-haul variation in
selection, i.e.,

(4) vh � N(�, D)

Variation in selection between hauls is thus treated as a ran-
dom effect.

In the special case of the logistic selection curve, the
mean selection parameters � and the between-haul variance
matrix D can be estimated in a single iterative procedure as
a generalised linear mixed model. (Strictly, this is a random
effects model, because there are no fixed effects at this
stage.) More generally � and D can be estimated in two
stages. First, the selection parameters vh are estimated sepa-
rately for each haul by maximum likelihood. Let �vh be the
maximum likelihood estimator of vh and Rh be the variance
of �vh (conditional on vh). Thus, Rh measures the within-haul
binomial sampling variability from haul h. Assuming that
there are reasonable numbers of fish in haul h, �vh is approxi-
mately unbiased and normally distributed:

(5) �vh�vh � N(vh,Rh)
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Combining eqs. 4 and 5 gives

(6) �vh � N(�, D + Rh)

from which �, its standard error, and D are estimated by re-
sidual maximum likelihood.

Although this methodology was developed for a covered
cod-end experiment, there is nothing that links it specifically
to this type of experiment. It can thus be generalised to any
selectivity experiment in which selection during haul (or de-
ployment) h can be characterised by an m-parameter curve
with parameters vh = (vh1,�,vhm)T and estimates �vh with
variance matrix Rh can be obtained. For example, Zuur, G.,
et al. (2001) describe an experiment to estimate the size se-
lection of a cod-end and a square-mesh panel using covers
over both the cod-end and the panel. Selection on each haul
was modelled using five parameters that were then combined
over hauls.

Smooth curves
We now return to the covered cod-end experiment and

show how the theory can be extended to incorporate smooth
functions of length. Taking the logistic transformation of
eq. 2 gives

(7) logit(φhl) = logit(rh(l)) + log(q1hl/q2hl)

When rh(l) is the logistic curve (eq. 3), this becomes

(8) logit(φhl) = ah + bhl + log(q1hl/q2hl)

and eqs. 1 and 8 form a generalised linear model with binomial
errors, a logistic link, and offset log(q1hl/q2hl) (McCullagh and
Nelder 1989). More generally, we might assume that rh(l) is
an arbitrary smooth function of length sh(l). Equation 7 now
becomes

(9) logit(φhl) = sh(l) + log(q1hl/q2hl)

and eqs. 1 and 9 form a generalised additive model, again
with binomial errors, a logistic link, and offset log(q1hl /q2hl)
(Hastie and Tibshirani 1990). Methods for estimating sh(l)
and the precision of these estimates are described by Hastie
and Tibshirani (1990) and are implemented in several statis-
tical packages such as S-PLUS (Insightful Corp., Seattle,
Wash.) and GenStat (GenStat VSN International Ltd., Herts,
U.K.). We discuss computational and smoothing issues later.
For now it is sufficient to recognise that selection during
each haul can be modelled as a smooth function of length,
thus capturing a wide variety of selection patterns that can-
not be described by a single parametric curve. The next
stage is to combine these smooth functions over hauls to es-
timate mean selection in a way that incorporates between-
haul variation. The random effects model (eq. 6) suggests a
natural way of doing this.

Suppose that the sampled length classes run from 1 to L
and let sh be the L vector of selection probabilities (on the
logistic scale) sh = (sh(1),�, sh(L))T. Now let �sh be the esti-
mate of sh obtained by fitting a smoother to the data for haul
h and let Rh = var(�sh). Assuming an adequate amount of
smoothing, we have approximately

(10) �sh�sh � N(sh,Rh)

Between-haul variation can now be incorporated by assum-
ing that

(11) sh � N(�, D)

where � = (θ1,�, θL)T is an L vector of parameters represent-
ing mean selection at each length and D is an L × L matrix
measuring between-haul variation. Combining eqs. 10 and
11 then gives

(12) �sh � N(�,D + Rh)

the same random effects model as before.
In principle we could estimate � and D by residual maxi-

mum likelihood using the algorithms for combining para-
metric selection curves (e.g., Fryer 1991). However, we have
found numerical difficulties with this approach because the
matrices D and Rh can become quite large and the elements
of �sh can be highly correlated (particularly the elements cor-
responding to adjacent length classes) so that Rh can be
“close to singular”. Our solution, which works well in prac-
tice, is to consider each length class separately in a uni-
variate analysis. Thus, for length class l, we have

(13) � ( ) ~ ( , )s l D Rh l ll hllN θ +

where Dll and Rhll are the lth diagonal elements of D and Rh,
respectively. From this model, we estimate θl, its standard
error, and Dll by residual maximum likelihood using the al-
gorithms for combining parametric selection curves (see Ap-
pendix A). This is then repeated for each length class in
turn. Although the estimation procedure is conducted one
length class at a time, it still leads to an unbiased estimator
of the mean selection curve and gives appropriate pointwise
standard errors (assuming that all of the underlying assump-
tions are met). However, there will clearly be some loss of
efficiency compared with an estimation procedure that uses
the information from all length classes simultaneously.

Again, the random effects model (eq. 12) is not specific to
the covered cod-end experiment, and the theory can there-
fore be generalised to any experiment in which selection
during haul h can be characterised by a smooth curve sh(l)
and �sh with variance matrix Rh can be estimated.

Fixed effects
Fixed effects are usually incorporated by allowing the mean

selection parameters to vary between hauls according to some
design matrix, just as fixed effects are incorporated in linear
regression (e.g., Draper and Smith 1981). Fryer (1991) de-
scribes the approach for selectivity data when parametric se-
lection curves can be used. However, unless the design matrix
has a particularly simple structure, the mean selection pa-
rameters must be estimated simultaneously, rather than one
length class at a time. For smooth selection curves, we there-
fore restrict attention to a particular class of fixed effects
where the design matrix does allow straightforward estima-
tion.

Specifically, we consider the situation in which there are
G groups of hauls and we wish to estimate and compare the
mean selection curve for each group. Often the G groups
will correspond to G different cod-ends. Let sgh(l) be the se-
lection curve (on the logistic scale) for haul h in group g, h =
1,� ,Hg, g = 1,�,G. Further, let sgh = (sgh(1),�, sgh(L))T be
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the vector of selection probabilities for length classes 1 to L,
let �sgh be the smooth estimate of sgh, and let Rgh = var(�sgh).
Assuming that the between-haul variance D is constant over
groups, we have

�sgh � N(�g , D + Rgh)

where �g = (θg1,�, θgL)T is the mean selection curve for
group g. To estimate the mean curves, we again consider
each length class separately in a univariate analysis. Thus,
for length class l, we have

(14) �sgh(l) � N(θgl, Dll + Rghll)

from which we estimate θgl, g = 1,�,G, their standard er-
rors, and Dll by residual maximum likelihood (Appendix A).
This process is then repeated for each length class in turn.

Large differences between the mean curves of each group
are easily recognised by plotting the estimated mean curves
with their pointwise 95% confidence bands. However, more
subtle differences can only be established by formal hypoth-
esis tests. Often we need to compare the hypotheses

H0: �g = �, g = 1,�,G

H1: �g unconstrained

i.e., there are no differences between the mean curves against
some unspecified difference. The natural approach here would
be to use a likelihood ratio test. However, this is not possible
because, by estimating the elements of one length class at a
time, we cannot construct the full likelihood of the data. It is
also unclear how many degrees of freedom are associated
with ��g . Instead, a bootstrap hypothesis test can be used
(Efron and Tibshirani 1993). For this, we need to calculate a
suitable test statistic that measures the difference between
the estimated mean curves and then assess the significance
of the test statistic by comparing it with a bootstrap refer-
ence distribution.

To motivate the test statistic, we again look to the uni-
variate analysis for length class l and suppose that we are in-
terested in comparing the hypotheses

H0: θgl = θl, g = 1,�,G

H1: θgl unconstrained

In the univariate case, there is no difficulty in using a likeli-
hood ratio test. Here, the test statistic Tl is minus twice the
difference in log-likelihood obtained by fitting model 14 un-
der the two hypotheses, and H0 is rejected if T1 is large rela-
tive to a χ2 distribution on G – 1 degrees of freedom. By
combining the test statistics T1 over all length classes, we
can measure the difference between the two mean curves as
a whole. Two candidate test statistics are

Tmax = max
l

Tl

Tave = (1/L) Tl
l

∑
The choice between them will depend on the departures
from H0 that might be expected a priori. Tmax will tend to
have greater power when the mean curves differ in only part
of the length range, whereas Tave will have greater power
when there are differences at all lengths. In practice, both
test statistics might be used.

The bootstrap reference distribution for a test statistic T
(either Tmax or Tave) is constructed by generating b = 1,�, B
data sets that satisfy the null hypothesis and, for each, calcu-
lating the corresponding test statistic, denoted Tb. The values
Tb, b = 1,�, B, are bootstrap realisations of the null distribu-
tion of T and are thought of as “typical” values of T if the
null hypothesis is true. If the observed statistic is similar in
magnitude to the bootstrap realisations, then the observed
data are consistent with the null hypothesis. Conversely, if
the observed statistic is “large” relative to the bootstrap
realisations, then there is evidence against the null hypothe-
sis. The achieved significance level (ASL) is the bootstrap
equivalent of a “p value” and is simply the proportion of
bootstrap realisations that exceed the observed statistic.

The details of the bootstrap procedure are as follows. First,
we generate a data set that satisfies the null hypothesis by
calculating

� � � �*s sgh gh g= − +� �

where �� and ��g are the estimates of �g under the null and al-
ternative hypotheses, respectively. The curves �*sgh have simi-
lar shape and variability to the original curves and satisfy the
null hypothesis because they are centred on the common
curve ��. Each bootstrap realisation is obtained by taking Hg
of the centred curves at random and with replacement from
each group g and calculating the corresponding value of T.

Note that residual maximum likelihood is generally used
to estimate and visualise the mean curves �g , because resid-
ual maximum likelihood gives unbiased estimates of the be-
tween-haul variance D and hence of the standard errors of
��g , whereas ordinary maximum likelihood does not. How-
ever, the residual likelihood can only be used to assess the
significance of random effects, not fixed effects; therefore,
ordinary maximum likelihood should be used in all stages of
the bootstrap hypothesis test.

Computational and smoothing issues
We have used a loess smoother (Cleveland 1979) to im-

plement the methods described above. For normally distrib-
uted data, loess smoothers are constructed by sequentially
fitting a weighted linear regression to the data in a neigh-
bourhood around each length class. As the width of the
neighbourhood increases, so does the smoothness of the fit-
ted line. Hastie and Tibshirani (1990) give a clear descrip-
tion of the fitting process and discuss some of the properties
of loess smoothers. For binomial data, as here, the loess
smoother is again constructed using a series of weighted lin-
ear regressions, but an iterative fitting procedure is now re-
quired (Hastie and Tibshirani 1990).

We chose loess smoothers because they deal naturally with
two practical problems that arise when, as is usually the
case, a different number of length classes is sampled on each
haul. First, it is necessary to ensure that the amount of
smoothing is compatible with the number of sampled length
classes. Within loess, this can be done by fixing the number
of nearest neighbours (i.e., the number of length classes in
the neighbourhood that contribute to each weighted linear
regression) to be the same for all hauls. As a result, the de-
grees of freedom of the smoother increases with the number
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of sampled length classes, that is, the shape of the smoothers
can be more flexible when more length classes are available.

Second, the mean curve � estimated from model 13 (or the
mean curves �g estimated from model 14) can be rather jag-
ged when different length classes are sampled in each haul.
To overcome this, we restrict the estimation to those length
classes that are sampled in at least half of the hauls. In addi-
tion, we interpolate or extrapolate the fitted curves � ( )s lh to
ensure that the selection probability is estimated at each
length class (within the selected length range) for each haul.
Within loess, interpolation is achieved by fitting a locally
weighted straight line at the internal length class. Extrapola-
tion to small (large) lengths is achieved by projecting the lo-
cally weighted straight line fitted at the smallest (largest)
sampled length class, respectively.

The choice of amount of smoothing (i.e., the number of
nearest neighbours) is, to a certain extent, a matter of com-
mon sense and trial and error. In practice, we try several
sizes of neighbourhood and choose the largest neighbour-
hood (i.e., the greatest amount of smoothing) that gives an
adequate fit to the data based on residual plots, while still
leaving some degrees of freedom for the smooth. More for-
mally, one might use Akaike’s information criterion (AIC) to
compare the fits obtained using different neighbourhoods.
(S-PLUS code implementing the methods is available from
the first author.)

Illustration: grid selection

We illustrate the methodology using data collected to in-
vestigate the selection of a Nordmøre grid placed at the en-
trance to the lower tier of a separator trawl (Fig. 1). The
motivation for this gear design comes from the North Sea
trawl fishery for Nephrops norvegicus where the relatively
small minimum mesh size (currently 80 mm) can result in
the by-catch of large quantities of fish. Many of the fish are
below the minimum landing size and must be discarded, but
a significant quantity can be landed and is of economic im-
portance to the fishermen. It would clearly be desirable to
separate the Nephrops and fish catches into two cod-ends
that had different size-selection properties. The separator trawl
(Main and Sangster 1985) attempts to do this by exploiting
behavioural differences between species. The trawl is di-
vided horizontally and attached to two separate cod-ends
with mesh sizes that can be manipulated to suit the species
entering them. The separator trawl is partially successful in
the North Sea Nephrops fishery, with Nephrops tending to
follow the lower portion of the trawl and haddock and whit-
ing (Merlangius merlangus) tending to follow the upper por-
tion. However, cod (Gadus morhua) and flatfish behave
similarly to Nephrops and are typically retained in the lower
cod-end. The Nordmøre grid (Isaksen et al. 1992) is an alter-
native method of separating species and has generally been
used in shrimp and prawn fisheries to reduce levels of un-
wanted by-catch. It consists of a series of longitudinal bars
that act to prevent the passage of “larger” fish while admit-
ting “smaller” shrimps or prawns. The bar spacing deter-
mines the selection properties of the grid in the same way
that the mesh size determines the selection properties of a
cod-end. However, in the North Sea Nephrops fishery, a grid
used in isolation would lose the landed component of the by-

catch as well as the discarded component. Thus, the combi-
nation of grid and separator trawl was designed to partition
the Nephrops and fish by-catch into the lower and upper
cod-ends, respectively. As well as providing “clean” catches,
this arrangement would allow the mesh sizes of the two cod-
ends to be adjusted to reflect the different target species.

Trials with this gear arrangement were conducted on com-
mercial Nephrops grounds in the North Sea in August 1999.
Various grid configurations were investigated. Here, we con-
sider a subset of the data collected using two grids with bar
spacings of 25 and 30 mm, respectively. A gap of 150 mm
was placed in the lower part of each grid (Fig. 1) to prevent
debris from blocking the grid. The upper and lower cod-ends
of the separator trawl were both made of 40-mm mesh to re-
tain all fish and Nephrops that entered them. Reasonable
numbers of Nephrops, haddock, and dab were caught during
the trials, and here we present the results for dab. Full details
of the trials can be found in EU Report FAIR CT-98-4164
(available from the authors upon request).

To formulate an appropriate selection model, we follow
Millar and Fryer (1999) and assume that dab of length l en-
ter the trawl (during haul h) according to a Poisson process
with rate λhl. Let ah(l) be the probability that a dab of length
l is retained in the upper cod-end given that it entered the
trawl. Then the numbers of dab of length l measured in the
upper and lower cod-ends, n1hl and n2hl, respectively, have
Poisson distributions

n1hl �Poisson(λhl ah(l)q1hl)

n2hl �Poisson(λhl(1 – ah(l))q2hl)

where q1hl and q2hl are the subsampling fractions of length l
dab in the upper and lower cod-ends, respectively. Condi-
tioning on the total numbers of dab measured eliminates the
nuisance parameters λhl, giving

n1hl�n1hl + n2hl �Binomial(n1hl + n2hl, φhl)

where

logit(φhl) = logit(ah(l)) + log(q1hl/q2hl)

Note that ah(l) describes the available selection rather than
the contact selection of the grid (cf. Millar and Fryer 1999;
Zuur, G., et al. 2001), because some dab could pass into the
upper cod-end without contacting the grid by always swim-
ming in the upper part of the trawl.

The observed proportions of dab retained in the upper
cod-end generally increased with length (Fig. 2); although
often “large” dab were found in the lower cod-end, presum-
ably because they had passed through the lower gap in the
grid. We fitted a loess smoother to the data for each haul us-
ing a window that gave positive weight to the nine nearest
neighbours around each length class. This resulted in be-
tween 2.0 and 3.2 degrees of freedom for each smooth, de-
pending on the number of sampled length classes (Table 1).
For comparison, we also fitted a linear logistic function of
length. The smooth curves provide a reasonable fit to the
data (Table 1; Fig. 2) and are preferable to the linear logistic
curves that tend to overpredict selection at small and large
lengths (see hauls 5, 6, 10, and 12 in Fig. 2). More formally,
the smooth model is a better fit than the linear logistic model
based on AIC (Table 1). There is some evidence of over-
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dispersion in some hauls (Table 1), so we adjusted the vari-
ance matrices R accordingly (see Millar and Fryer 1999)
whenever the residual deviance exceeded the residual de-
grees of freedom.

The mean selection curves (Figs. 3a, 3b) show that, for
both bar spacings, the proportion of dab retained in the up-

per cod-end increases with length, from less than 30% of 10-
cm dab to more than 75% of 20-cm dab. The mean curve for
the 25-mm bar spacing lies above that for the 30-mm bar
spacing (Fig. 3c), which is plausible because the smaller bar
spacing should force more dab of a given length into the up-
per cod-end. However, pointwise confidence bands (Fig. 3c)
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Fig. 1. Illustration of the test gear, in which the Nordmøre grid was placed at the entrance to the lower tier of the separator trawl. The
grid was 1.1 m high × 0.8 m wide and was made from 30-mm-thick nylon sheet. There was a gap of 150 mm in the lower part of the
grid to prevent blockage by debris. All of the netting was made from 40-mm mesh. The section from the grid to the cod-ends was
~12 m long and the separator panel was ~2 m wide. The upper and lower cod-ends were ~4 and 8 m long, respectively.

Fig. 2. For each haul, the points (solid circles) indicate the numbers at length retained in the upper cod-end, expressed as a proportion
of the total numbers at length that entered the gear. The numbers at length are raised, i.e., the measured numbers at length are divided
by the corresponding subsampling fraction. The fit of the smoother (solid line) with 95% pointwise confidence bands (shaded area)
and the fit of the linear logistic model (broken line) are also shown. Hauls 2–5 used 25-mm bar spacing and hauls 6–12 used 30-mm
bar spacing. The hauls are numbered from 2 to 12 for consistency with the full data set (EU Report FAIR CT-98-4164, available from
the authors upon request).
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suggest that the difference is not statistically significant, a
result confirmed formally by bootstrap hypothesis tests
(Tmax = 3.53, ASL = 0.40; Tave = 1.69, ASL = 0.32). Unfor-
tunately, the tests are likely to have low power because only
11 hauls were possible in total. For example, a simulation
showed that a constant difference between the mean curves
of 0.5 on the logistic scale (cf. Fig. 3c) would only be de-
tected about 30% of the time given 11 hauls and the levels
of between-haul variation observed in the data (Fig. 3d).

The smoothers provide a satisfactory analysis of the data,
but would an improved choice of parametric curve have
done a better job? An obvious contender here is a modified
logistic curve (which can not be expressed conveniently on
the logistic scale)

ah(l) = (1 – γh) exp(ah + bhl)/(1 + exp(ah + bhl))

At small lengths, this curve behaves like a linear logistic
curve. However, at large lengths ah(l) ≈ (1 – γh), where γh
can be loosely interpreted as the proportion of large dab that
pass through the lower gap. The modified logistic gives a
comparable fit to the smoother for many of the hauls in
Fig. 2. However, there are some hauls in the full data set
(EU Report FAIR CT-98-4164, available from the authors
upon request) for which the modified logistic curve cannot
be fitted and others (e.g., hauls 2 and 7 in Fig. 2) for which
the fit of the modified logistic coincides with that of the lin-
ear logistic and a variance matrix Rh cannot be formed (be-
cause �γh = 0 and is on its lower bound). Both of these pose
problems for a parametric analysis that are easily avoided by
the analysis using smoothers.

Catch-comparison curves

Catch-comparison trials are usually conducted to compare
a test net with a standard net or to calibrate two research sur-
vey gears or vessels. Typically, the trials consist of a series

of paired hauls in which the two nets (gears or vessels) are
fished either in parallel or one after the other. In theory, the
same population will be fished throughout a paired haul, al-
lowing the catches of the two nets to be meaningfully com-
pared. Although Warren (1997) and Warren et al. (1997)
have modelled catch ratios as a parametric function of length,
it is often difficult to find a parametric curve that will ade-
quately capture the quite complicated relationships that are
observed. A natural way forward is then to use the flexibility
of smoothers to model the catch ratios as a nonparametric
function of length. A smooth curve can be fitted to the data
for each paired haul and then combined to estimate a mean
curve that measures the relative catch rates of the two nets.

Suppose that we are interested in comparing a test net
with a standard net. During paired haul h, assume that fish
of length l become available to the two nets according to a
Poisson process with rate λhl. Let a1h(l) and a2h(l) be the
probabilities that a fish of length l is retained in the test and
standard nets, respectively, given that it was available to the
two nets. The numbers of fish of length l measured in the
test and standard nets, n1hl and n2hl, respectively, then have
Poisson distributions

n1hl � Poisson(λhl a1h(l)q1hl)

n2hl � Poisson(λhl a2h(l)q2hl)

where q1hl and q2hl are the subsampling fractions of length l
fish in the test and standard nets, respectively. Conditioning
on the total numbers of fish measured gives

(15) n1hl�n1hl + n2hl � Binomial(n1hl + n2hl,φhl)

where

(16) logit(φhl) = log(a1h(l) /a2h(l)) + log(q1hl /q2hl)
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Linear logistic Smooth

Bar
spacing Haul

Length
classes

df of
smooth Residual df Deviance Residual df Deviance

25 mm 2 16 3.0 14 20.1 12.0 15.7
3 15 2.7 13 14.5 11.3 10.3
4 15 2.5 13 28.1 11.5 20.8
5 14 2.5 12 23.7 10.5 13.2

30 mm 6 16 2.9 14 17.7 12.1 9.3
7 12 2.1 10 19.4 8.9 17.2
8 15 2.6 13 22.2 11.4 18.4
9 16 2.7 14 28.3 12.3 20.2

10 14 2.4 12 19.1 10.6 11.1
11 12 2.0 10 7.8 9.0 6.9
12 17 3.2 15 38.5 12.8 18.0

Total 162 28.6 140 239.4 122.4 161.1
AIC 283.4 240.3

Note: The number of sampled length classes, the degrees of freedom (df) associated with the smoother (one degree of
freedom was always associated with the linear logistic fit), and the residual degrees of freedom and residual deviance for the
two model fits are given for each haul. The total Akaike’s information criterion (AIC) for each model, defined as the total
residual deviance plus twice the total number of model parameters, is also given. The smooth model has the lower AIC,
indicating that it gives the better fit.

Table 1. Summary of the linear logistic and smooth model fits to the grid selection data.
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The term log(a1h(l)/a2h(l)) is the log relative catch rate of the
test gear relative to the standard gear. Assuming the log rela-
tive catch rate is a smooth function of length sh(l), eq. 16 be-
comes

(17) logit(φhl) = sh(l) + log(q1hl /q2hl)

and eqs. 15 and 17 form the same generalised additive model
as was obtained for size-selection curves (eqs. 1 and 9).
Smooth curves can be therefore be fitted to the data for each
paired haul and then combined over hauls to estimate a
mean curve � using the techniques described earlier.

Note that the formulation of the catch-comparison model
uses the term “available” in its broadest sense to indicate
that fish are on the fishing grounds and subject to exploita-
tion during the paired haul. Of course, it is likely that the
two nets will trawl through different local aggregations of
fish during a paired haul, particularly with an alternate haul
design. This will affect the relative catch rate of the two nets
for that paired haul. For example, if the test net trawls through
a large patch of fish that is missed by the standard gear, then
the relative catch rate of the test net will be inflated accord-
ingly. However, such effects are assumed to occur at random
and to average out over a series of paired hauls. They are
thus implicitly accommodated, along with all other random
effects, within the matrix D that measures the variation in
relative catch rate between paired hauls. Other approaches

are possible. For example, the model described by Pelletier
(1998) has a component that explicitly describes how differ-
ent numbers of fish become available to the two nets within
a paired haul. However, her approach does not lend itself so
readily to a length-based analysis.

To illustrate the methodology, we use data from an inter-
calibration exercise to compare the research survey vessels
Scotia II and Scotia III. Since the mid-1970s, Scotia II has
taken part in annual groundfish surveys like the International
Bottom Trawl Surveys (ICES 1999). This has involved fish-
ing for 1 h with a Grande Ouverture Verticale (GOV) trawl
(ICES 1999) at a series of designated stations each year. The
time series of data obtained from these surveys plays an im-
portant role in the assessment of commercial groundfish
stocks. Scotia II was replaced by Scotia III in 1998, with the
intention that Scotia III would continue to participate in the
groundfish surveys, again using the GOV trawl, but towing
for only 30 min in line with the current practice of other Eu-
ropean fisheries institutes. To maintain the continuity of the
survey times, a comparative fishing trial was conducted in
April 1998. This consisted of a series of parallel hauls with
Scotia III fishing for 30 min and Scotia II fishing for 1 h. All
things being equal, a 30-min tow with Scotia III would be
expected to catch half as many fish as a 1-h tow with Scotia
II. The hypothesis of interest is therefore whether the rela-
tive catch rate of Scotia III to Scotia II is equal to 0.5 for all
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Fig. 3. Results from fitting the mixed model to the dab grid selection data. (a) The mean selection curve (solid line) with pointwise
95% confidence bands (shaded area) for the grid with 25-mm bar spacing; the individual haul selection curves (broken lines) are also
shown. The mean curve is only estimated at lengths that were sampled in at least six hauls (one-half of the hauls in the trials) and
therefore does not extend as far as some of the individual haul curves. The curves are plotted on the proportion scale for ease of
interpretation (i.e., they have been transformed from the logistic scale on which they were estimated). (b) The corresponding plot for
the grid with 30-mm bar spacing. (c) The mean selection curve for 30-mm bar spacing minus the mean selection curve for 25-mm bar
spacing (solid line) with pointwise 95% confidence bands (shaded area). The negative estimates mean that the 25-mm selection curve
lies above the 30-mm selection curve. The differences are plotted on the logistic scale. (d) The estimates of between-haul variance at
each length (solid line) with approximate 95% confidence bands (shaded area) constructed by profile likelihood methods. The point
estimates are zero at large lengths, but this primarily reflects the small number of dab caught at these lengths because the confidence
bands give due warning that nonnegligible between-haul variation is also consistent with the data.
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length classes. Here, we consider the results for haddock.
Full details of the trials can be found in Zuur, A.F., et al.
(2001).

The relationship between relative catch rate and length
varies widely between paired hauls (Fig. 4) and would be
difficult to capture with a simple parametric curve. We fitted
a loess smoother to the data for each haul, using a window
that gave positive weight to the 13 nearest neighbours around
each length class. This resulted in between 2.6 and 4.2 de-
grees of freedom for each smooth. The smooth curves gener-
ally provided a reasonable fit to the data (Fig. 4). However,
there was some evidence of overdispersion in some fits, so
the variance matrices R were adjusted accordingly (see Millar
and Fryer 1999) whenever the residual deviance exceeded
the residual degrees of freedom.

The mean curve (Fig. 5) shows that a relative catch rate of
0.5 is consistent with the data for lengths up to 35 cm. How-
ever, above 35 cm, there is a suggestion that Scotia III catches
more haddock than might be expected relative to Scotia II.
To formally test this requires a slight modification to the
bootstrap hypothesis test used before. For each length class
l, we now compare the hypotheses

H0: θl = log(0.5)

H1: θl unconstrained

by fitting the model

� ( )s lh � N(θl, Dll + Rhll)

under the two hypotheses and computing a test statistic Tl
given by minus twice the difference in the log-likelihoods.
The test statistics Tl are then combined over all length classes
to give Tmax or Tave as before. To bootstrap, we generate a
data set that satisfies the null hypothesis by calculating

� � �*s sh h= −� + log(0.5)

where �� is the estimate of � under the alternative hypothesis.
Applying the bootstrap hypothesis test reveals only marginal
evidence against the hypothesis of a constant relative catch
rate of 0.5 for all lengths (Tmax = 6.26, ASL = 0.07; Tave =
1.29, ASL = 0.28).

Because of logistic constraints, only 24 paired hauls were
possible during the trials, quite a small number for an inter-
calibration exercise. It is perhaps fortunate that the null hy-
pothesis of a constant relative catch rate of 0.5 was sustained,
or at least not strongly refuted, because the width of the confi-
dence bands in Fig. 5 reveal that the mean curve is not esti-
mated sufficiently precisely to provide acceptable conversion
coefficients. To maintain the continuity of the survey time se-
ries, the pragmatic approach is therefore simply to halve Sco-
tia II catches to provide Scotia III equivalents. This
conversion should be reasonable for lengths up to 35 cm, and
due warning that conversions above 35 cm might be suspect
is illustrated in Fig. 5. The choice of sample size is discussed
further by Pelletier (1998), who tabulates the number of paired
hauls used by other intercalibration studies (range 40–285,
median 72). Pelletier herself used 30 paired hauls, but these
were replicated in four areas. Finally, Warren (1997), who
modelled catch ratios as a parametric function of length,
states that 285 paired hauls gives “confidence intervals that

are, perhaps, acceptably small”, although the catch rates that
he was modelling were much lower than those of Scotia II
and Scotia III.

Discussion

We have used the techniques described here to analyse
several size-selection and catch-comparison trials. We have
found the techniques easy to apply, simple to adapt to ad-
dress specific management questions, and capable of gener-
ating results that are accessible to both gear technicians and
managers. Most importantly, they offer a potential method of
analysis when there are difficulties with a parametric ap-
proach.

The mixed-model approach is not the only way of using
nonparametric curves in a selectivity (or catch-comparison)
analysis. As described earlier, Millar (1993) and Munro and
Somerton (2001) pooled data over hauls, fitted a nonpara-
metric selection curve, and assessed its precision by boot-
strapping. Which approach is better? In our opinion, the two
methods are complementary rather than competitive and the
choice between them will be case specific and, to a large ex-
tent, a matter of personal preference. Both are simple to ap-
ply once the software is in place. The pooling approach
makes fewer distributional assumptions than the mixed model;
however, any concerns about the normality assumptions in
the mixed model can be alleviated by fitting the mean curve
as usual, but then estimating its precision by bootstrapping
rather than by using the standard errors derived from the
maximised residual log-likelihood. The mixed model will
tend to be computationally faster than the pooling approach
because no bootstrapping is involved (unless hypotheses are
to be tested), but computational speed is rarely an issue
these days. Perhaps the most important difference between
the two approaches is that the mixed model provides a natu-
ral framework for hypothesis testing that is not available
with the pooling approach. The mixed model does this by
explicitly defining a population of selection curves that are
distributed about a mean selection curve. Hypotheses can
then be readily expressed in terms of the mean selection
curve. On the other hand, the pooling approach works with a
population of hauls that are characterised not by their selec-
tion, but by the joint distribution of the numbers at length re-
tained in the different compartments of the fishing gear. The
notion of a mean selection curve is only implicit in this pop-
ulation, and it is therefore much harder to formulate and test
hypotheses.

Smooth size-selection curves can easily be fitted to data
from covered cod-end experiments and are likely to be appli-
cable to other selection trials using small mesh covers or
cod-ends to retain all fish that enter the gear (as in the grid
trials described earlier). Smooth size-selection curves are
less likely to be applicable to data collected from a trouser-
trawl or twin-trawl experiment (Wileman et al. 1996). Here,
we have

n1hl�n1hl + n2hl � Binomial(n1hl + n2hl,φhl)

(18) logit(φhl) = log(rh(l)) + logit(ph) + log(q1hl/q2hl)
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where n1hl and n2hl are the numbers of fish of length l mea-
sured in the test and small mesh cod-end, respectively; q1hl
and q2hl are the corresponding subsampling fractions; rh(l) is
the contact-selection curve of the test cod-end; and ph is the
split parameter, i.e., the probability that a fish enters the test
cod-end given that it entered the gear (Millar and Walsh

1992). When the split parameter is known, log(rh(l)) can be
modelled as a smooth function of length. Unfortunately, the
split parameter is usually unknown and must be estimated
from the data, in which case the split parameter and the
smooth function of length become confounded. However,
the techniques described in this paper would still be useful
for trouser-trawl experiments if they were regarded as catch-
comparison rather than size-selection experiments. In this
case, eq. 18 can be rewritten as

logit(φhl) = log(phrh(l)/(1 – ph)) + log(q1hl /q2hl)

The term log(phrh(l)/(1 – ph)) is the log relative catch rate of
the test cod-end relative to the small mesh cod-end and can
be modelled as a smooth function of length sh(l) as before.
Clearly this approach would provide less information than a
parametric analysis that estimates ph and rh(l) separately.
However, it might have advantages if few large fish are
caught during the trials, in which case ph can be confounded
even with parametric selection curves. It might also have ad-
vantages when the selection processes are too complicated to
be modelled by a single parametric curve, for example,
when a panel is inserted in the cod-end and there is selection
by both the panel and the cod-end.

Further work is required to develop efficient and stable
numerical routines that will estimate all the elements of the
mean curve simultaneously rather than one length class at a
time. This would enable the full between-haul variance ma-
trix to be estimated (rather than just the diagonal elements)
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Fig. 4. For each haul, the points (solid circles) indicate the numbers at length retained by Scotia III, expressed as a proportion of the
total numbers at length retained by both Scotia II and Scotia III. The numbers at length are raised, i.e., the measured numbers at
length are divided by the corresponding subsampling fraction. The fit of the smoother (solid line) with 95% confidence bands (shaded
area) is also shown. A constant relative catch rate of 0.5 would mean that one-third of the fish at length would be retained in Scotia
III, as indicated by the broken horizontal line.

Fig. 5. The mean relative catch rate of Scotia III to Scotia II
(solid line) with pointwise 95% confidence bands (shaded area).
The mean relative catch rate was estimated on the log scale but
has been back-transformed for presentation. The broken horizon-
tal line indicates a constant relative catch rate of 0.5.
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and the full log-likelihood to be calculated and would allow
the modelling of a wide range of fixed effects including con-
tinuous covariates. One way of reducing the numerical diffi-
culties involved might be to impose some structure on the
between-haul variance matrix, as is typically done in re-
peated-measures analysis (e.g., Crowder and Hand 1990).
More fundamentally, the formulation of the mixed model
could be improved by making the specification of the mean
curve explicit. At present, the mean curve is constructed as
the average of a population of smooth curves and is there-
fore implicitly a smooth curve in its own right, although all
of its attributes (e.g., smoothness, degrees of freedom) are
derived from the properties of the smooth curves that sur-
round it. However, it would be more acceptable to define the
mean curve explicitly as a smooth curve with a given degree
of flexibility and then to specify how the individual haul
curves are distributed about it. The development of such
models is an area of active research within the statistical
community (e.g., Verbyla et al. 1999) and it will only be a
matter of time before they become generally available.
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Appendix A

Estimating mean selection curves
Appendix B of Fryer (1991) describes both maximum

likelihood and residual maximum likelihood methods for es-
timating the mean selection parameters �, their standard er-
rors, and the between-haul variance matrix D from eq. 6
when � is the mean of a two-parameter selection curve. The
estimation of fixed effects is also described. To generalise
the theory to an m-parameter selection curve, it is only nec-
essary to replace the first term of the log-likelihood (in ap-
pendix B of Fryer (1991)) by mHlog(2π) and the first term
of the residual log-likelihood by (mH – q)log(2π).
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The estimation procedures can be simplified in the special
case of estimating θl, its standard error, and Dll from eq. 13,
or more generally θgl, g = 1,�,G, their standard errors, and
Dll from eq. 14. Let Vgh = Dll + Rghll and Wgh = Vgh

−1, where
both Vgh and Wgh are scalars. Adapting the equations in
Fryer (1991) gives the log-likelihood lM to be

–2lM( �sgh(l)�θgl, Dll) =

H V W s lg gh gh
h

gh gl
h

log( ) log( ) ( � ( ) )2π θ+ + −
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∑

The maximum likelihood estimate of Dll is the value �Dll
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and can be found by a simple one-dimensional search. The
maximum likelihood estimate of θgl is then � � ( � )θ θgl
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The residual log-likelihood lR is given by
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+ −





θ 2

The residual maximum likelihood estimate of Dll is the value
�Dll

R that maximises l s l D DR
gh gl ll ll( � ( )| � ( ), )θ and can again be

found by a simple one-dimensional search. The residual max-
imum likelihood estimate of θgl is then � � ( �θ θgl

R
gl ll

RD= ).
The variances of �θgl

M and �θgl
R are estimated to be

Var( �θgl) = 1 / Wgh
h
∑

where the scalars Wgh are constructed using �Dll
M and �Dll

R, re-
spectively.
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