Brage IMR Havforskningsinstituttets institusjonelle arkiv

Dette er forfatters siste versjon av den fagfellevurderte artikkelen, vanligvis omtalt som postprint. I Brage IMR er denne artikkelen ikke publisert med forlagets layout fordi forlaget ikke tillater dette. Du finner lenke til forlagets versjon i Brage-posten. Det anbefales at referanser til artikkelen hentes fra forlagets side.
Ved lenking til artikkelen skal det lenkes til post i Brage IMR, ikke direkte til pdf-fil.

Brage IMR -
 Institutional repository of the Institute of Marine Research

This is the author's last version of the article after peer review and is not the publisher's version, usually referred to as postprint. You will find a link to the publisher's version in Brage IMR. It is recommended that you obtain the references from the publisher's site.
Linking to the article should be to the Brage-record, not directly to the pdf-file.

5 Received: 16 November 2009 / Accepted: 17 November 2009
6 © Springer Science+Business Media B.V. 2009

Development of twelve novel microsatellite loci in the European lobster (Homarus gammarus)

Carl André • Halvor Knutsen

Abstract

We developed twelve novel microsatellite loci primers in the European lobster (Homarus gammarus). All markers were obtained from partial genomic DNA libraries enriched for tetranucleotide repeats and characterized in 48 unrelated individuals from one putative population. The number of alleles ranged from 5 to 13, with an average of 8.3 per locus, and the observed heterozygosity ranged from 0.35 to 0.83 (average 0.69). These microsatellite loci can be used as markers in the assessment of connectivity and genetic structure of exploited lobster populations.

Keywords Homarus gammarus • Microsatellite primers • Polymorphism • Population structure

European lobster (Homarus gammarus) is a large decapod species of high importance in commercial and recreational fisheries from northern Norway to the Mediterranean Sea. Since the 1950s, European lobster has been in severe decline and is currently on historical low levels in Norway (Pettersen et al. 2009). While the general biology of European lobster is relatively well known, information about population structure relevant for management is scarce. Tagging studies indicate that adult lobsters are relatively stationary, although they may undertake migrations of several tens of km's (Smith et al. 2001). European lobster has a free-swimming larval stage that is planktonic

[^0]for several weeks, and thus possesses a potential for longrange dispersal. However, little is known about the realized dispersal in natural lobster populations. Earlier genetic studies using allozymes, mtDNA and microsatellites indicate large-scale structure along the European coast (Jørstad and Farestveit 1999; Jørstad et al. 2004; Triantafyllidis et al. 2005). Recently, several studies have shown that many marine species are spatially structured into genetically distinct populations on remarkably fine geographic scales (e.g. Jorde et al. 2007). Knowledge about such small-scale population structure and connectivity relevant for the management of European lobster populations is presently lacking. Here, we present 12 microsatellite loci developed for H. gammarus suitable for the detection of potential population structure in this species.

We employed the company GIS (Genetic Identification Service Inc.) for the development of tetra repeat microsatellite loci. Methods for DNA library construction, enrichment and screening were as described previously (Jones et al. 2002). Genomic DNA was partially restricted with a cocktail of seven blunt-end cutting enzymes (RsaI, HaeIII, Bsr B1, PvuII, StuI, ScaI, Eco RV). Fragments in the size range of $300-750 \mathrm{bp}$ were adapted and subjected to magnetic bead capture (CPG, Inc., Lincoln Park, New Jersey), using biotinylated capture molecules. Libraries were prepared in parallel using Biotin-AAC(12), Biotin-CAG(10), Biotin-CATC(8) and Biotin-TAGA(8) as capture molecules in a protocol provided by the manufacturer. Captured molecules were amplified and restricted with HindIII to remove the adapters. The resulting fragments were ligated into the HindIII site of pUC19. Recombinant molecules were electroporated into E. coli $\mathrm{DH} 5 \alpha$. Recombinant clones were selected at random for sequencing on an ABI 377, using ABI Prism Taq dye terminator cycle sequencing methodology.

	Journal : Large 12686	Dispatch : 21-11-2009	Pages : 4	
Article No. : 9151	\square	LE	\square	TYPESET
	MS Code : COGR226		DP	

Table 1 Primer sequences and characteristics of twelve microsatellite loci in the European lobster (Homarus gammarus)

Locus	GenBank acc no.	$T_{\mathrm{a}}\left({ }^{\circ} \mathrm{C}\right)$	Repeat motif	Primer sequences ($5^{\prime}-3^{\prime}$)	Size range (bp)	$N_{\text {A }}$	$H_{\text {E }}$	H_{O}	$F_{\text {IS }}$	P-value
HGA8	XXXXXXXX	56	$\begin{aligned} & (\mathrm{TATG})_{23}(\mathrm{TTTG})_{4} \\ & (\mathrm{TATG})_{5} \end{aligned}$	F: TTGAACAGCAAAAACGTAGTG R: ACATCACACCACAACTCACTG	269-325	12	0.828	0.744	0.102	0.479
HGB4	XXXXXXXX	56	$(\mathrm{AAAC})_{6}$	F: TTCGCTAGTCCGTCTGTCC	187-231	6	0.676	0.574	0.151	0.162
				R: ACGAAGGATTACGGCACAT						
HGB6	XXXXXXXX	56	$(\mathrm{CCAT})_{12}$	F: AGAAGGGAGGTGGGTGAG R: ATGAACCCGTCTGAGGTTATC	150-190	7	0.791	0.791	-0.000	0.325
HGC6	XXXXXXXX	56	$(\mathrm{TGTA})_{19}$	F: AGGCTGCATAGTTACACGTTTG	274-318	6	0.383	0.354	0.076	0.228
				R: ACCCAGTGTCAAGGAATAGTCC						
HGC103	XXXXXXXX	56	$(\mathrm{GTAT})_{10}$	F: TGGTATTATGGCTACGACAAG	220-254	5	0.686	0.744	-0.085	0.835
				R: CAAAAGACGGGTTTCAATC						
HGC111	XXXXXXXX	56	$(\mathrm{TAGA})_{8}$	F: TGAAGCGTGGAGGACCTT	258-280	10	0.828	0.787	0.050	0.077
				R: CACACCTGTCTGGCTACACC						
HGC118	XXXXXXXX	56	$(\mathrm{TACA})_{10}$	F: TCGTTTCCAATGGTCTCG	262-296	7	0.582	0.659	-0.133	0.457
				R: AAGTTGAAGGAGGTGCTTGAC						
HGC120	XXXXXXXX	56	$(\mathrm{GTAT})_{9}$	F: СССТСТСТСАТСССТСТTATC	251-297	13	0.876	0.833	0.050	0.407
				R: ACCCTTATTCATCCATCCTTC						
HGC129	XXXXXXXX	56	$(\mathrm{GTAT})_{7}$	F: TTGAACGCTATGAACTGAGAC	247-291	6	0.610	0.645	-0.058	0.911
				R: AGGCATACAAATAAACGCAC						
HGC131b	XXXXXXXX	56	$(\mathrm{GTAT})_{21}$	F: CATGGGTGATTAGGATGACC	226-276	12	0.843	0.808	0.042	0.214
				R: TGGCACCATAGGTTCGTATC						
HGD106	XXXXXXXX	56	$(\text { CTAT })_{9}$	F: CATACCGAACCAAGTGTAAAC	139-167	7	0.685	0.760	-0.111	0.239
				R: GCCCACAGTAACAGATAAGAG						
HGD111	XXXXXXXX	56	$(\mathrm{GATA})_{8}$	F: TAAAGGTGATGTTCAGTCCAC	231-275	8	0.619	0.586	0.053	0.571
				R: CTTGACCCGCTACCAATAC						

Size range of fragments (bp), number of alleles $\left(N_{\mathrm{A}}\right)$, expected $\left(H_{\mathrm{E}}\right)$ and observed $\left(H_{\mathrm{O}}\right)$ heterozygosity and deviation from Hardy-Weinberg expectations (F_{IS}), are based on a sample of 48 individuals. Uncorrected P-values for two-sided tests

	Journal : Large 12686	Dispatch : 21-11-2009	Pages : 4	
Article No. : 9151	\square	LE	\square	TYPESET
	MS Code : COGR226		DP	

The optimal amplification reaction mix for all primer pairs consisted of $1 \times$ Biolase $^{\odot}$ Buffer, $2 \mathrm{mM} \mathrm{MgCl}{ }_{2}$, 0.2 mM each dNTP, 6 M each primer (forward primer fluorescent-labelled), $0.025 \mathrm{U}^{-1} \mathrm{l}^{-1}$ Biolase ${ }^{\odot}$ Taq polymerase, and $0.2 \mathrm{ng} \mu \mathrm{l}^{-1}$ template DNA in $50 \mu \mathrm{l}$ final reaction volume. Samples were amplified in a Perkin-Elmer-Cetus thermal cycler by an initial three min of denaturation at $94^{\circ} \mathrm{C}$, followed by 35 cycles of denaturation $\left(94^{\circ} \mathrm{C}, 40 \mathrm{~s}\right)$, annealing $\left(55^{\circ} \mathrm{C}, 40 \mathrm{~s}\right)$, and extension $\left(72^{\circ} \mathrm{C}\right.$, 30 s), with final extension of 4 min at $72^{\circ} \mathrm{C}$.

DNA from eight individuals collected in the Skagerrak Sea was extracted using the PureGene DNA Extraction Kit^{\circledR} kit (Gentra Systems, Minneapolis, MN, USA) following the manufacturers instructions. Microsatellite loci were amplified in $10 \mu \mathrm{l}$ reactions in the following reaction mix: $\mathrm{MgCl}_{2}, 2 \mathrm{mM}$; dNTPs (premixed), 0.2 mM each; primers, $0.3 \mu \mathrm{M}$ each; BioTaq DNA Polymerase ${ }^{\circledR}$ (Bioline USA, Canton, MA, USA), $0.025 \mathrm{U}^{\mu} \mathrm{l}^{-1}$; template DNA, $0.2 \mathrm{ng} \mu^{-1}$. PCR was conducted in a RoboCycler Gradient 96^{\circledR} thermocycler (Stratagene, Inc., La Jolla, CA, USA) by an initial denaturation $\left(94^{\circ} \mathrm{C}, 3 \mathrm{~min}\right)$, followed by 35 cycles of denaturation $\left(94^{\circ} \mathrm{C}, 40 \mathrm{~s}\right)$, annealing ($55^{\circ} \mathrm{C}, 40 \mathrm{~s}$), and extension $\left(72^{\circ} \mathrm{C}, 30 \mathrm{~s}\right)$, and a final extension at $72^{\circ} \mathrm{C}$ for 4 min . PCR products were labelled using one of the conventional sequencing dyes NED, HEX or FAM (Applied Biosystems, Inc.). Amplification products were separated on polyacrylamide gels in an ABA 377 DNA sequencer and sized using Genotyper 2.5 software and Rox 400 HD size markers (Applied Biosystems, Inc., Foster City, CA USA). Four libraries were screened for the microsatellite motifs (AAAC)n, (CATC)n (TACA)n and (TAGA)n. A total of 100 clones were sequenced and 19 primer pairs designed using DesignerPCR, version 1.03 (Research Genetics, Inc.). These 19 primers were tested against 16 additional Skagerrak individuals resulting in twelve polymorphic and reliably amplifying loci.

Population screening of the twelve loci was conducted by analysing 48 individuals collected at Kåvra, Lysekil on the west coast of Sweden $\left(58.33^{\circ} \mathrm{N} ; 11.36^{\circ} \mathrm{E}\right)$. Genomic DNA was isolated using Viogene Blood and Tissue Genomic DNA Extraction Miniprep System (Viogene Inc.) according to manufacturer's protocol. PCR amplifications were carried out in $10 \mu \mathrm{l}$ reaction volumes on Bio-Rad MYCycler, with fluorescently (CY-5) 5'-tagged forward primers (Sigma). The standard reaction composition included $1 \mu \mathrm{l}$ of template DNA, corresponding to $20-40 \mathrm{ng}, 10 \times 15 \mathrm{mM} \mathrm{MgCl} 2$ PCR buffer, 0.4 mM dNTPs, 0.125 mM of forward and reverse primer (Sigma) and 0.06 units $\mu 1^{-1}$ of Taq DNA polymerase (Qiagen. Inc.). Dilutions were done using Eppendorf Molecular Biology Grade Water. Thermal cycling conditions were as follows: An initial denaturation step at $94^{\circ} \mathrm{C}$ for 5 min , followed by 30 cycles of $95^{\circ} \mathrm{C}$ denaturation, annealing at $56^{\circ} \mathrm{C}$ (for all loci, see Table 1)
and $72^{\circ} \mathrm{C}$ synthesis, each for 30 s . A final elongation step at $72^{\circ} \mathrm{C}$ for 15 min completed the amplification.

Allele sizes and genotypes were determined by fragment analysis using Beckman Coulter CEQ 8000 automated sequencer and included software (CEQ8000 Genetic Analysis System, version 8.0). We tested the loci for all individuals to assess gene diversity and evidence for linkage disequilibrium or deviation from Hardy-Weinberg expectations. Gene diversity and $F_{\text {IS }}$ was estimated with GDA (Lewis and Zaykin 2001); significance of $F_{\text {IS }}$ was assessed using the probability tests within GENEPOP on the web (http://wbiomed.curtin.edu.au/genepop/). The software MICROCHECKER (Van Oosterhout et al. 2004) was used to investigate the potential presence of null alleles or other technical artefacts. No locus deviated significantly from Hardy-Weinberg equilibrium (Table 1), or showed evidence of technical artefacts or null-alleles. Three out of 67 (4.4\%) comparisons between pairs of loci displayed significant linkage disequilibrium (tested in GENEPOP), as expected from chance alone.

Acknowledgments This work was supported by the Norwegian government and EU through the INTERREG III A programme (http:// www.imr.no/grensehummer/nb-no). We thank the Swedish Board of Fisheries for lobster samples, and Hanne Sannæs, Anna-Karin Ring and Kate Enersen for technical assistance in the lab. We also thank Mark Todd, Ken Jones, Greg Sadowski and Fred Fernando at GIS for valuable assistance for developing primers and for supervision of the text.

References

Jones KC, Levine KF, Banks JD (2002) Characterization of 11 polymorphic tetranucleotide microsatellites for forensic applications in California elk (Cervus elaphus canadensis). Mol Ecol Notes 2:425-427
Jorde PE, Knutsen H, Espeland SH, Stenseth NC (2007) Spatial scale of genetic structuring in coastal cod Gadus morhua and the geographic extent of local populations. Mar Ecol Prog Ser 343:229-237
Jørstad KE, Farestveit E (1999) Population genetic structure of lobster (Homarus gammarus) in Norway, and implications for enhancement and sea-ranching operation. Aquaculture 173:447-457
Jørstad KE, Prodöhl PA, Agnalta A-L, Hughes M, Apostolidis AP, Triantafyllidis A, Farestveita E, Kristiansen TS, Mercerd J, Svåsand T (2004) Sub-arctic populations of European lobster, Homarus gammarus, in northern Norway. Environ Biol Fish 69:223-231
Lewis PO, Zaykin D (2001) Genetic data analysis: computer program for the analysis of allelic data (version 1.0, d16c) http://lewis. eeb.uconn.edu/lewishome/software.html
Pettersen AR, Moland E, Olsen EM, Knutsen JA (2009) Lobster reserves in coastal Skagerrak-an integrated analysis of the implementation process. In: Dahl E, Moksness E, Støttrup J (eds) Integrated coastal zone management. Wiley, London, pp 178188
Smith IP, Jensen AC, Collins KJ, Mattey EL (2001) Movement of wild European lobsters Homarus gammarus in natural habitat. Mar Ecol Prog Ser 222:177-186

	Journal : Large 12686	Dispatch :	21-11-2009	Pages: 4
	Article No. : 9151 MS Code: COGR226	$\begin{gathered} \square \\ \boldsymbol{V}_{\mathrm{CP}} \end{gathered}$		$\begin{aligned} & \square \text { TYPESET } \\ & \text { DISK } \end{aligned}$

Triantafyllidis A, Apostolidis AP, Katsares V, Kelly E, Mercer J, Hughes M, Jørstad KE, Tsolou A, Hynes R, Triantaphyllidis C (2005) Mitochondrial DNA variation in the European lobster (Homarus gammarus) throughout the range. Marine Biol 146:223-235

Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) 181 Microchecker: software for identifying and correcting genotyp- 182 ing errors in microsatellite data. Mol Ecol Notes 4:535-538

[^0]: A2 Department of Marine Ecology-Tjärnö, University
 A3 of Gothenburg, 452-96 Strömstad, Sweden

 A6 Flødevigen Marine Research Station, Institute of Marine
 C. André ()
 e-mail: carl.andre@marecol.gu.se
 H. Knutsen Research, 4817 His, Norway

