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8 A study was conducted to assess the effect of substituting high levels of dietary fish oil (FO) and fishmeal (FM) for vegetable oil (VO) and plant

9 protein (PP) on the intestinal arachidonic acid (AA) cascade in the carnivorous fish species Atlantic salmon. Four diets were fed to salmon over a

10 period of 12 months, including a control FMFO diet, with varying replacements of plant-derived ingredients: 80 % PP and 35 % VO; 40 % PP and

11 70 % VO; 80 % PP and 70 %VO. Subsequently, fish were examined pre- (0 h) and post- (1 h) acute stress for blood parameters and intestinal bio-

12 active lipidic mediators of inflammation (PG). Plasma cortisol responses were greatest in the FMFO group, while 80 % PP and 70 % VO fish exhib-

13 ited increased plasma chloride concentrations. The n-3:n-6 PUFA ratio in intestinal glycerophospholipids from 70 % VO groups significantly

14 decreased in both proximal and distal regions due to elevated levels of 18 : 2n-6 and the elongation/desaturation products 20 : 2n-6 and

15 20 : 3n-6. Increases in n-6 PUFA were not concomitant with increased AA, although the AA/EPA ratio did vary significantly. The 40 % PP

16 and 70 % VO diet produced the highest intestinal AA/EPA ratio proximally, which coincided with a trend in elevated levels of PGF2a, PGE2

17 and 6-keto-PGF1a in response to stress. PGE2 predominated over PGF2a and 6-keto-PGF1a (stable metabolite of PGI2) with comparable concen-

18 trations in both intestinal regions. Cyclo-oxygenase-2 (COX-2) mRNA expression was an order of magnitude higher in distal intestine, compared

19 with proximal, and was significantly up-regulated following stress. Furthermore, the 80 % PP and 70 % VO diet significantly amplified proximal

20 COX-2 induction post-stress. Results demonstrate that high replacements with plant-derived dietary ingredients can enhance COX-2 induction and

21 synthesis of pro-inflammatory eicosanoids in the intestine of salmon in response to acute physiological stress.

22 Cyclo-oxygenase: Eicosanoid: PUFA: PG

23 Limited marine resources dictate the increased use of terres-
24 trial plant-derived proteins and oils in formulated diets for
25 farmed fish species(1). However, feeding essentially vegetable
26 ingredients to carnivorous fish species introduces foreign com-
27 pounds to the gastrointestinal tract, which may or may not be
28 tolerated. In mild cases, plant anti-nutritional factors (ANF)
29 reduce digestibility by direct nutrient binding, inhibition of
30 digestive enzymes or adsorption to the intestinal mucosal epi-
31 thelium(2,3). More severely, certain ANF elicit inflammatory,
32 or enteritis-like, responses that result in abnormal intestinal
33 morphological changes and development of mucosal
34 lesions(2). Observed effects of feeding soyabean meal to
35 Atlantic salmon include shortening of intestinal mucosal
36 folds and brush border microvilli, widening of lamina propria,
37 infiltration of immune cells, reduction in enterocytic supranuc-
38 lear vacuoles and goblet cell hypertrophy and hyperplasia(4 – 8).
39 Furthermore, substituting vegetable oils (VO) for fish oil (FO)
40 ingredients naturally decreases the high n-3:n-6 PUFA ratio of

41a carnivorous fish’s evolutionary consistent diet(9). Alteration
42of the dietary n-3:n-6 PUFA ratio can subsequently affect
43the production of potent bioactive lipidic mediators of inflam-
44mation, termed as ‘eicosanoids’, which are synthesised from
45C20 PUFA in cellular membranes(10).
46In opposition to mammals, EPA (20 : 5n-3) predominates
47over arachidonic acid (AA; 20 : 4n-6) in membrane phospholi-
48pids of salmonid fish, although AA appears to be conserved in
49phosphatidylinositol(11). Although VO contain negligible
50amounts of AA, the situation is complicated further due to
51them being rich in linoleic acid (18 : 2n-6) and linolenic acid
52(18 : 3n-3), which can be converted to dihomo-g-linolenic
53acid (DGLA; 20 : 3n-6) and 20 : 4n-3, respectively, by D6
54desaturase and elongase, and further to AA and EPA, respec-
55tively, by D5 desaturase(12). Consequently, feeding oils rich in
5618 : 2n-6 has resulted in increased levels of AA in membrane
57phospholipids of Atlantic salmon tissues; an effect that
58can be attenuated by including a source of 18 : 3n-3, which
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59 competitively inhibits desaturation/elongation of 18 : 2n-6(13).
60 It has been suggested that pathologies associated with feeding
61 diets low in n-3:n-6 PUFA ratios and increased membrane AA
62 are due to overproduction of AA-derived, or dienoic, eicosa-
63 noids. However, few studies have examined the dual impact
64 of substituting both fishmeal (FM) and FO for plant protein
65 (PP) and VO on the intestine, especially with respect to
66 inflammatory mediators such as eicosanoids. Thus, due to
67 altered fatty acid composition of membranes from VO and
68 ANF from PP, there is potential for a severe inflammatory
69 response in the intestine of salmon.
70 Inflammation is coordinated locally by an array of cyto-
71 kines, chemokines, neuropeptides and eicosanoids in
72 response to acute or chronic tissue insult(14). The prostanoid
73 eicosanoids, which include PG and prostacyclins, particularly
74 affect vascular tone and permeability allowing blood plasma
75 exudation and tissue oedema(15). PG are highly potent auta-
76 coids that are directly synthesised from AA, EPA and
77 DGLA in cellular membranes and provide an important
78 link between lipid nutrition and severity of inflammatory
79 responses(16). The fatty acid composition of cellular mem-
80 branes is significantly influenced by dietary fatty acid com-
81 position thereby determining the species of C20 PUFA
82 available for PG synthesis. Derivatives of AA are by far
83 the most biopotent eicosanoids over EPA and DGLA, and,
84 consequently, the whole sequence from extracellular stimu-
85 lus to liberation of AA from cellular membrane phospholi-
86 pids by phospholipase A2 (PLA2) to synthesis of
87 eicosanoids by cyclo-oxygenase (COX), lipoxygenase and
88 P450 cytochrome enzymes is termed as the ‘AA cascade’(17).
89 However, it is the prostanoids, COX being the first com-
90 mitted step in PG synthesis, which are involved in gastroin-
91 testinal cytoprotection(18).
92 Therefore, the aim of the present study was to examine key
93 steps in the intestinal AA cascade in response to varying repla-
94 cement ratios of plant-derived protein and oils. Additionally,
95 as it is known that physiological stress can also affect the
96 intestine(19), fish were challenged with 15 min of acute
97 stress. In mammals, acute stress influences intestinal barrier
98 function by secreted corticotrophin-releasing factor via the
99 hypothalamic–pituitary–adrenal axis or through secreted
100 acetylcholine and serotonin via the enteric nervous
101 system(20). Neurotransmitters also stimulate mucosal mast
102 cells to produce a variety of inflammatory mediators, includ-
103 ing PG, in response to stress, which stimulate epithelial ion
104 secretion, increase paracellular and transcellular permeability
105 and recruit immune cells(21). Maintenance of intestinal epi-
106 thelial integrity is essential in marine fish, due to continual
107 intake and contact with the aquatic milieu, where proximal
108 and distal regions function to regulate digestion and water/
109 electrolyte balance, respectively(9).

110 Experimental methods

111 Experimental animals, diets and stress

112 Approximately, 6000 Atlantic salmon smolts (355 (SD 92) g)
113 were obtained from AkvaGen A/S (Tingvoll, Norway) and
114 distributed equally between twelve 10 m3 indoor fibreglass
115 tanks at Matre Research Station (Institute of Marine Research,
116 Matredal, Norway). Tanks were supplied continuously with

117seawater (34·9 g/l salinity) at a flow rate of 52 l/min, main-
118tained at a constant temperature of 8·98C (^0·18C) and O2 sat-
119uration of .80 %. Fish were kept under a natural lighting diet
120regimen except during the October to March period where a
12110 h light:14 h dark diet regimen was employed. Both insti-
122tutional and national guidelines for the care and use of animals
123were followed, and all experimental procedures were
124approved by the National Animal Research Authority of
125Norway.
126Four isoenergetic, isolipidic and isoproteic diets were uti-
127lised in the experiment, which included a control diet of
128100 % FM and 100 % FO in addition to three experimental
129diets of varying replacement with PP for FM and VO for
130FO: 80 % PP and 35 % VO; 40 % PP and 70 % VO; 80 %
131PP and 70 % VO (Table 1). A blend of rapeseed oil, palm
132oil and linseed oil (55:30:15, v/v) was utilised as the VO
133source, while a mixture of maize gluten, wheat gluten and
134soya concentrate was utilised as the PP source with a
135minor inclusion of krill meal to enhance palatability and
136feed intake(22). The VO blend was formulated to obtain a
137fatty acid profile of saturated, monounsaturated and n-3
138PUFA as similar as possible to capelin oil (Table 2). Diets
139were produced by Skretting ARC (Stavanger, Norway).
140Fish were fed to satiation twice a day for 12 months by
141automated feeders followed by collection of excess feed
142from the tanks. Fish growth, feed intake, nutrient digestibil-
143ity and utilisation were assessed as previously described and
144reported(23).
145After the 12-month nutritional trial had elapsed, ten fish per
146tank, which had previously been unfed for 24 h, were bulk
147anaesthetised in 0·4 % (w/v) benzocaine and sacrificed by a
148sharp blow to the head. This represented unstressed fish at
1490 h. Immediately after sampling, the water level was lowered
150to 10 cm and the remaining fish chased with a net for
15115 min to represent acute stress. One hour post-stress (1 h),
152the fish were again anaesthetised and sacrificed for analysis.
153The intestine was removed from each fish and the intestinal
154lumen washed with saline. Samples from proximal and
155distal regions were taken for molecular biology and frozen
156in liquid nitrogen. The intestinal mucosa was then collected
157from proximal and distal regions, with the aid of a glass
158slide, and frozen in liquid nitrogen for analysis of cytosolic
159PLA2 (cPLA2) activity, PG content and fatty acid
160composition.

161Blood chemistry analyses

162Immediately after fish were sacrificed, blood was taken from
163the caudal vein of fish using heparinised syringes and needles.
164Haematocrit was measured using heparinised microcapillary
165tubes and a Compur M1100 haematocrit centrifuge. One hun-
166dred microlitres of blood were transferred to Eppendorf tubes
167and frozen in liquid nitrogen for analysis of Hb. Remaining
168blood was centrifuged at 13 000 g for 1 min, and the plasma
169frozen in liquid nitrogen for subsequent assay of cortisol,
170glucose, lactate, chloride and thiobarbituric acid-reactive
171substances concentration in addition to glutamate oxaloacetate
172transaminase, glutamate pyruvate transaminase and alkaline
173phosphatase activity. Blood Hb was quantified using a com-
174mercial kit (QuantiChrom Hemoglobin Assay kit, Universal
175Biologicals Ltd, Cambridge, UK). Plasma glucose, lactate,
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176 chloride, glutamate oxaloacetate transaminase, glutamate pyr-
177 uvate transaminase and alkaline phosphatase were measured
178 using the COBAS C111 autoanalyzer (Roche Diagnostics,
179 Basel, Switzerland). Plasma cortisol was analysed by ELISA
180 (RE52061 IBL-International, Hamburg, Germany) and
181 plasma thiobarbituric acid-reactive substances as previously
182 described(24).

183 Fatty acid analyses

184 Total lipid was extracted from diets and intestinal mucosa by
185 the method of Folch(25). Lipid classes were separated by
186 double-development high-performance TLC using methyl
187 acetate–isopropanol–chloroform–methanol–0·25 % aqueous
188 KCl (25:25:25:10:9, v/v) and hexane–diethyl diethyl ether–
189 acetic acid (80:20:2, v/v) solvent systems(26). Individual lipid
190 classes were identified by spraying the plate with 0·1 %
191 (w/v) 2’,7’-dichlorofluorescein in 95 % methanol containing
192 0·01 % (w/v) butylated hydroxytoluene and visualised under
193 UV light. Total glycerophospholipids, including phosphatidyl-
194 choline, phosphatidylethanolamine, phosphatidylinositol and
195 phosphatidylserine, were collectively isolated from high-per-
196 formance TLC plates and subjected to acid-catalysed transes-
197 terification as described by Christie(27). Resulting fatty acid
198 methyl esters were resuspended in hexane and quantified by
199 GC using a HP 5890 gas chromatograph equipped with a
200 J&N Scientific, Inc. DB-23 fused silica capillary column
201 (30 m £ 0·25 mm inner diameter). Hydrogen was used as carrier
202 gas and temperature programming was 50–1508C (408C/min),
203 150–1808C (1·58C/min) and 180–1928C (0·58C/min), to a final
204 temperature of 2208C (408C/min). Fatty acids were identified

205with reference to authentic standards and peak areas quantified
206by HP Chemstation software.

207PG analysis

208Frozen intestinal mucosa was weighed (approximately 1 g)
209and immediately homogenised in 4 ml of 50 mM 2-amino-2-
210hydroxymethyl-propane-1,3-diol (Tris)–HCl buffer (pH 7·4),
211containing 1 mM EDTA, with thirty up-and-down strokes of
212a Potter–Elveheim homogeniser kept on ice. The resulting
213homogenate was immediately adjusted to 50 % (v/v) metha-
214nol, and 250 ng PGB2-d4 was added as a stable isotope internal
215standard. Samples were centrifuged at 10 000 g for 15 min to
216precipitate protein and mucus. Clear supernatants were acidi-
217fied to pH 3·5 by the addition of 0·1 M acetate buffer to yield a
218final methanol content of 15 % (v/v). Acidified supernatants
219were then applied to 6 ml solid-phase extraction cartridges
220(Waters Corporation, Milford, MA, USA) that had been pre-
221conditioned with 20 ml methanol and 20 ml ddH20. Cartridges
222were subsequently washed with 20 ml of 15 % (v/v) methanol,
22320 ml ddH20 and 10 ml hexane(28). Prostanoids were eluted
224from cartridges with 15 ml methyl formate, evaporated under
225a stream of N2 and stored at 2808C.
226Samples were resuspended in 25ml ethanol and analysed by
227tandem MS coupled to liquid chromatography (LC/electrospray
228ionization-MS/MS). The LC system was an Agilent 1200 Series
229(Agilent Technologies, Inc., Santa Clara, CA, USA) with binary
230pump, variable volume injector and a thermostated autosampler.
231HPLC separation was conducted at 208C using a gradient solvent
232mixture of two mobile phases: mobile phase A was 5 mM

233ammonium acetate (aqueous); mobile phase B was acetonitrile:
2345 mM ammonium acetate (aqueous; 80:20, v/v). Both mobile

Table 1. Formulation and proximate composition of experimental diets

Diet

FMFO 80PP35VO 40PP70VO 80PP70VO

Ingredient (%)
Fishmeal* 56·0 12·0 30·0 12·0
Extracted soyabean meal – 11·0 1·4 11·0
Krill meal† – 5·0 2·5 5·0
Wheat 15·7 12·3 12·7 12·4
Maize gluten – 15·0 15·0 15·0
Wheat gluten – 15·0 9·0 15·0
Fish oil‡ 28·0 18·8 8·4 8·6
Rapeseed oil – 5·6 11·0 11·0
Palm oil – 3·2 6·1 6·1
Linseed oil – 1·8 3·6 3·6
Vitamin and mineral premix§ 0·3 0·3 0·3 0·3

Proximate composition
DM (%) 92·3 92·5 92·4 93·2
Protein (% DM) 42·2 42·4 41·2 42·6
Fat (% DM) 34·3 31·8 33·9 32·8
Starch (% DM) 9·1 8·8 8·1 8·6
Ash (% DM) 6·7 5·4 6·5 5·4
Energy (kJ/g DM) 25·1 25·4 25·4 25·3

FMFO, control diet of 100 % fishmeal and 100 % fish oil; 80PP35VO, 80 % plant protein and 35 % vegetable oil
replacement in diet; 40PP70VO, 40 % plant protein and 70 % vegetable oil replacement in diet; 80PP70VO,
80 % plant protein and 70 % vegetable oil replacement in diet.

* Fishmeal South American LT (Consortio, Peru).
† Krill meal (Aker Seafoods Antartic ASA, Oslo, Norway).
‡ Fish oil Nordic (Nordsildmel, Norway).
§ Vitamin and mineral supplementation is estimated to cover requirements according to NRC, 1993.
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235 phases were adjusted to pH 8·5 with ammonia solution. Five
236 microlitres of the sample were injected onto a Thermo HyPUR-
237 ITY C4 column (5mm, 100 £ 2·1 mm; Thermo Fisher Scientific,
238 Inc., Waltham, MA, USA) at a gradient of: 1 min of 0 % solvent
239 B at flow 0·2 ml/min; 19 min of 0–50 % solvent B at flow
240 0·2 ml/min; 3 min of 100 % solvent B at flow 0·2 ml/min; 5 min
241 of 100 % solvent B at flow 0·8 ml/min; 4 min of 0 % solvent B
242 at flow 1·2 ml/min. The mass spectrometer used was an
243 Agilent 6410 Triple Quad LC/MS (Agilent Technologies, Inc.)
244 equipped with an electrospray ionisation source. Source para-
245 meters included: gas temp 3508C; gas flow 9 l/min; nebuliser
246 40 psi; capillary 4000 V. Multiple reaction monitoring for data
247 acquisition and negative ion detection was used (Table 3).
248 MassHunter software (Agilent Technologies, Inc.) was used
249 for HPLC system control, data acquisition and data processing.

250Phospholipase A2 activity

251Intestinal samples were homogenised as described above and
252diluted in Tris–HCl buffer (pH 7·4), containing 1 mM

253EDTA, to a 10 % (w/v) homogenate followed by centrifu-
254gation at 10 000 g for 15 min at 48C. The supernatant was
255used for determination of cPLA2 activity by a Cayman
256cPLA2 assay kit (Cayman Chemical Company, Ann Arbor,
257MI, USA) and carried out according to the manufacturer’s
258instructions. Protein concentration of supernatants was
259measured using a bicinchoninic acid assay kit (Pierce; Rock-
260ford, IL, USA) using bovine serum albumin as a standard.

261Cyclo-oxygenase-2 gene expression

262Total RNA was extracted from proximal and distal intestinal
263tissues with Tri-reagent (Sigma, St Louis, MO, USA) using
264FastPrep homogenization (Lysing matrix D, MPBio, Solon,
265OH, USA) before subjected to removal of genomic DNA con-
266tamination using a RQ1 RNase-free DNase kit (Promega,
267Madison, WI, USA) in accordance with the manufacturer’s
268instructions. Total RNA (2mg) was reverse transcribed to
269cDNA in a 20ml reaction volume with oligo(dT) primer
270using a SuperScripte III First-strand Synthesis system for
271RT-PCR (Invitrogen, Carlsbad, CA, USA). SYBER Green
272technology was used for performing qRT-PCR. The reaction
273mixture contained SYBER Green PCR Master Mix (Applied
274Biosystem, Foster City, CA, USA) and 625 nmol primers.
275Salmon elongation factor primers were used as a reference
276gene. The primer pairs for COX-2 and elongation factor-1A
277are published elsewhere(29,30). All reactions were run in tripli-
278cate with non-template and non-RT controls on the same
279plates, using a MJ Research Chromo4 Real Time 4-color
280ninety-six-well PCR system. The reaction was incubated
281with cycling conditions as follows: forty cycles of 958C for
28230 s; 568C for 30 s; 728C for 30 s. Relative Cox-II/elongation
283factor-1A expression was quantified using Q-Gene(31).

284Statistical analysis

285All statistical analyses were performed using SPSS software
286for Windows (SPSS, Chicago, IL, USA). Data were checked
287for homogeneity of variances by the Levene’s test and,
288where necessary, transformed via the arcsin function(32).
289Effects of diet and stress treatments on components of the
290AA cascade were assessed by multivariate analysis (two-way
291ANOVA) using standard general linear model methods
292followed, where necessary, by Tukey’s post hoc and t tests.
293Differences in blood parameters and fatty acid composition
294were assessed by one-way ANOVA. All data are given as
295mean values of n 5 individual fish, withdrawn randomly
296from a triplicate tank experimental design, including the stan-
297dard deviation. Significance was accepted at levels of P,0·05,
298,0·01 and ,0·001 as indicated in figure and table legends.

299Results

300Fish growth

301After the 12-month experimental feeding period, mean fish
302weight was significantly higher (P,0·05) in FMFO (3943
303(SD 835) g) and 40 % PP and 70 % VO replacement in diet

Table 2. Fatty acid composition of experimental diets

(% of total fatty acid methyl esters)

Diet

FMFO 80PP35VO 40PP70VO 80PP70VO

14 : 0 6·4 5·0 2·6 2·8
16 : 0 15·2 15·0 16·3 16·1
18 : 0 2·5 2·4 2·8 2·6
20 : 0 0·2 0·3 0·4 0·4
16 : 1n-7 4·7 4·1 1·9 2·1
18 : 1n-7 2·0 2·2 2·4 2·3
18 : 1n-9 9·5 17·6 30·0 28·9
20 : 1n-9 6·7 5·3 3·0 3·3
20 : 1n-11 0·5 0·4 0·2 0·2
22 : 1n-9 0·9 1·1 1·3 1·3
22 : 1n-11 10·4 7·7 3·5 4·1
24 : 1n-9 1·1 0·8 0·5 0·5
18 : 2n-6 2·3 7·5 12·8 12·7
20 : 2n-6 0·3 0·2 0·1 0·1
20 : 3n-6 0·0 0·0 0·0 0·0
20 : 4n-6 0·9 0·5 0·3 0·3
18 : 3n-3 1·4 5·3 9·4 9·3
18 : 4n-3 3·5 2·6 1·2 1·3
20 : 4n-3 0·7 0·5 0·2 0·3
20 : 5n-3 9·8 7·5 3·5 3·9
22 : 5n-3 1·2 0·8 0·4 0·4
22 : 6n-3 13·0 8·5 5·0 4·7
SFA 25·4 23·5 22·8 22·8
MUFA 36·7 39·8 43·3 43·3
n-3 PUFA 30·5 26·0 19·9 20·3
n-6 PUFA 3·4 8·2 13·3 13·1
n-3:n-6 8·9 3·2 1·5 1·6

FMFO, control diet of 100 % fishmeal and 100 % fish oil; 80PP35VO, 80 % plant
protein and 35 % vegetable oil replacement in diet; 40PP70VO, 40 % plant pro-
tein and 70 % vegetable oil replacement in diet; 80PP70VO, 80 % plant protein
and 70 % vegetable oil replacement in diet.

Table 3. Multiple reaction monitoring (MRM) transitions for LC/
electrospray ionization-MS/MS analysis of selected prostanoids

Prostanoid

MRM
quantifier

(m/z)

MRM
qualifier

(m/z)
Fragmentor

(eV)

Collision
energy

(eV)

PGB2-d4 337 ! 179 – 110 18
PGE2 351 ! 271 351 ! 315 110 12
PGF2a 353 ! 193 353 ! 309 160 25
6-Keto-PGF1a 369 ! 163 369 ! 245 80 25
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304 (40PP70VO; 3967 (SD 882) g) groups compared with 80 %
305 PP and 35 % VO replacement in diet (80PP35VO; 3590
306 (SD 766) g) and 80 % PP and 70 % VO replacement in diet
307 (80PP70VO; 3280 (SD 736) g) groups. However, only the
308 specific growth rate of 80PP70VO fish was significantly
309 reduced (0·86 (SD 0·01) %, P,0·05) in contrast to FMFO
310 (0·94 (SD 0·02) %), 80PP35VO (0·90 (SD 0·01) %) and
311 40PP70VO (0·94 (SD 0·02) %) fish.

312 Blood parameters

313 Several biochemical markers of stress were measured in blood
314 from unstressed fish (0 h) and fish 1 h preceding 15 min of
315 acute stress (Table 4). Following stress, highest values for
316 plasma cortisol (236·5 ng/ml), glucose (8·5 mmol/l) and thio-
317 barbituric acid-reactive substances (50·2mM) were observed
318 in blood from FMFO fish, while 80PP70VO fish possessed
319 highest values for blood lactate (21·3 mmol/l) and chloride
320 (154·0 mmol/l). As expected, plasma cortisol levels rose dra-
321 matically following acute stress across all dietary groups
322 with FMFO and 80PP35VO fish possessing the respective
323 highest and lowest values. Blood lactate concentrations also
324 rose appreciably in response to stress, more than doubling in
325 most dietary groups but tripling in 80PP70VO fish (6·7–
326 21·3 mmol/l). Basal levels of blood glucose and chloride
327 remained unaffected by dietary treatment; yet, all groups
328 exhibited more modest, and significant, increases with stress.
329 The greatest increases were observed in FMFO (5·3–
330 8·5 mmol/l) and 80PP70VO (5·0–7·5 mmol/l) groups for glu-
331 cose, whereas only the 80PP70VO diet exacerbated chloride
332 levels following stress (136·4–154·0 mmol/l) compared with
333 other diets. Regarding thiobarbituric acid-reactive substances,
334 an indicator of oxidative stress, levels were unaffected by
335 stress; however, values were significantly lower in
336 80PP70VO fish (25·3/26·3mM at 0 h/1 h) than FMFO controls
337 (42·4/50·2mM at 0 h/1 h). Generally, Hb and haematocrit were
338 unaffected by stress and did not vary considerably with dietary
339 treatment. Alkaline phosphatase and glutamate oxaloacetate
340 transaminase appeared as indeterminate markers of stress or
341 tissue damage due to large inter-individual variation. How-
342 ever, glutamate pyruvate transaminase proved much more
343 reliable with increased presence in blood in response to
344 stress across all dietary groups. However, significant increases
345 in blood glutamate pyruvate transaminase were only seen in

Q2346 FMFO fish (19·0–36·7 U/l).

347 Intestinal phospholipid fatty acid composition

348 The distribution of n-6 and n-3 series PUFA in total glycero-
349 phospholipids, including phosphatidylcholine, phosphatidy-
350 lethanolamine, phosphatidylinositol and phosphatidylserine,
351 from proximal and distal intestinal regions is given in
352 Table 5. Regarding the proximal intestine, the n-3:n-6 PUFA
353 ratio significantly decreased from 5·8 in the FMFO control
354 group to 3·6 in high dietary oil replacement groups (70VO).
355 This was equally due to increased total n-6 PUFA and
356 decreased total n-3 PUFA. In accordance with elevated
357 levels of 18 : 2n-6 in 70VO diets (Table 2), this fatty acid
358 and elongation/desaturation products derived from it such as
359 20 : 2n-6 and DGLA were primarily responsible for increases
360 in total n-6 PUFA. However, such increases in n-6 PUFA T
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Table 5. Distribution of PUFA of the n-6 and n-3 series (% of total fatty acid methyl esters) in total glycerophospholipids from the proximal and distal intestinal mucosa of Atlantic salmon fed the four
respective diets

(Mean values and standard deviations)

Proximal Distal

FMFO SD 80PP35VO SD 40PP70VO SD 80PP70VO SD FMFO SD 80PP35VO SD 40PP70VO SD 80PP70VO SD

SFA 34·7a 1·5 35·1a 0·6 34·8a 1·1 31·0b 1·2 33·2a 0·2 32·4a,b 0·5 33·1a 0·9 31·4b 0·4
MUFA 13·0a 0·6 15·9a 2·4 13·1a 0·6 16·2a 0·7 12·0a 0·5 13·6b 0·5 13·3a,b 0·5 13·8b 0·2
PUFA 52·3a 2·0 49·0a 1·8 52·1a 0·5 52·7a 0·9 54·8a 0·7 54·0a 0·9 53·7a 0·4 54·8a 0·2
18 : 2n-6 1·2a 0·1 3·5b 0·1 4·4b,c 0·8 5·3c 0·4 0·9a 0·1 2·5b 0·1 2·8b 0·4 3·5c 0·1
18 : 3n-6 0·4a 0·0 0·6a 0·3 0·4a 0·1 0·4a 0·3 0·5a 0·0 0·5a 0·3 0·3a 0·0 0·1a 0·0
20 : 2n-6 0·4a 0·1 1·0b 0·1 1·1b 0·0 1·4c 0·1 0·5a 0·1 1·5b 0·2 1·5b 0·1 2·5c 0·2
20 : 3n-6 0·2a 0·0 1·0a,b 0·4 0·8a,b 0·1 1·5b 0·6 0·1a 0·1 0·4b 0·1 0·4b 0·0 0·6b 0·1
20 : 4n-6 4·2a 0·4 2·3b 0·5 3·7a 0·3 2·3b 0·1 3·3a 0·4 2·4b,c 0·2 3·2a,b 0·1 2·0c 0·1
22 : 4n-6 0·3a 0·1 0·0b 0·0 0·3a 0·0 0·1b 0·1 0·3a 0·1 0·2a 0·1 0·3a 0·0 0·2a 0·0
22 : 5n-6 1·1a 0·2 0·5b 0·1 0·9a 0·0 0·5b 0·0 0·8a 0·1 0·5b 0·1 0·7a,c 0·1 0·5b,c 0·0
18 : 3n-3 0·3a 0·0 0·6a,b 0·1 0·8b 0·1 1·4c 0·3 0·2a 0·0 0·6a,b 0·1 1·0b,c 0·2 1·1c 0·1
18 : 4n-3 0·2a 0·1 0·0b 0·0 0·0b 0·0 0·2a 0·1 0·1a 0·0 0·0b 0·1 0·0b 0·0 0·1a 0·0
20 : 3n-3 0·1a 0·0 0·2a,b 0·0 0·3b,c 0·1 0·4c 0·1 0·2a 0·0 0·4b 0·1 0·6c 0·0 0·9d 0·0
20 : 4n-3 0·6a 0·1 1·1a 0·2 0·7a 0·1 1·5a 0·8 0·8a,b 0·1 0·9b 0·1 0·6a 0·1 0·9b 0·1
20 : 5n-3 12·6a 1·6 10·5a 1·8 8·7a 1·5 9·6a 1·3 10·0a 0·3 8·4a,b 1·0 7·2b 0·1 8·4a,b 0·8
22 : 5n-3 2·3a 0·4 2·4a 0·2 2·5a 0·3 2·8a 0·3 3·1a 0·5 3·5a 0·5 2·9a 0·2 5·0b 0·5
22 : 6n-3 28·5a 3·4 25·2a 0·8 27·6a 2·3 25·3a 3·4 34·0a 1·2 32·1a 1·2 32·3a 0·3 28·8b 0·4
n-3 PUFA 44·5a 2·7 40·1a 2·3 40·6a 1·2 41·2a 1·8 48·5a 0·5 45·9b 0·7 44·6b 0·2 45·3b 0·2
n-6 PUFA 7·8a 0·9 8·9a 0·4 11·5b 0·6 11·5b 1·0 6·3a 0·2 8·0b 0·6 9·1b,c 0·3 9·5c 0·0
n-3:n-6 5·8a 1·0 4·5a,b 0·5 3·6b 0·3 3·6b 0·4 7·7a 0·2 5·7b 0·5 4·9c 0·2 4·7c 0·0
AA/EPA 0·3a,b 0·0 0·2a 0·1 0·4b 0·1 0·2a 0·0 0·3a,b 0·0 0·3a 0·0 0·4b 0·0 0·2a 0·0
AA/DGLA 26·1a 2·4 1·8b 0·6 4·5b 0·6 1·7b 0·6 30·0a 0·5 4·8b,c 0·2 7·5b 0·1 3·4c 0·4

FMFO, control diet of 100 % fishmeal and 100 % fish oil; 80PP35VO, 80 % plant protein and 35 % vegetable oil replacement in diet; 40PP70VO, 40 % plant protein and 70 % vegetable oil replacement in diet; 80PP70VO, 80 % plant
protein and 70 % vegetable oil replacement in diet; AA, arachidonic acid; DGLA, dihomo-g-linolenic acid.

a,b,c,d Mean values within each row, with respect to proximal and distal regions, followed by superscripts not sharing a common letter are significantly different (P,0·05) as determined by one-way ANOVA.

B
JN

3
2

7
3

—
1

6
:3

,
1

5
/1

0
/2

0
0

9
—

—
3

5
2

0
0

8

A
.

O
x

ley
et

a
l.

6



0

20

40

60

80

100

0

2

4

6

8

0

2

4

6

8

10

0·0000

0·0005

0·0010

0·0015

0·0020

0·0025

0

2

4

6

8

a a a
a

b

a

a,b b

a a

b b

a

a

a a

a

b,c

c

a,b

FMFO 80PP
35VO

40PP
70VO

80PP
70VO

FMFO 80PP
35VO

40PP
70VO

80PP
70VO

FMFO 80PP
35VO

40PP
70VO

80PP
70VO

FMFO 80PP
35VO

40PP
70VO

80PP
70VO

FMFO 80PP
35VO

40PP
70VO

80PP
70VO

P
G

E
2 

(n
g

/g
 t

is
su

e)

0

20

40

60

80

100

P
G

F 2
α 

(n
g

/g
 t

is
su

e)

0

2

4

6

8

6-
K

et
o

-P
G

F 1
α 

(n
g

/g
 t

is
su

e)

0

2

4

6

8

10

C
O

X
-2

 m
R

N
A

(n
o

rm
al

is
ed

 m
ea

n
 e

xp
re

ss
io

n
)

0·0000

0·0005

0·0010

0·0015

0·0020

0·0025

cP
LA

2 
ac

ti
vi

ty
(n

m
o

l a
ra

ch
id

o
n

yl
-t

h
io

-P
C

/m
in

p
er

 m
g

 p
ro

te
in

)

0

2

4

6

8(a)

(b)

(c)

(d)

(e)

a a a
b*

a

a

a

a

b

a

a
a

*

a,b

a

a,b

b

a,b
a,b

a

b

FMFO 80PP
35VO

40PP
70VO

80PP
70VO

FMFO 80PP
35VO

40PP
70VO

80PP
70VO

FMFO 80PP
35VO

40PP
70VO

80PP
70VO

FMFO 80PP
35VO

40PP
70VO

80PP
70VO

FMFO 80PP
35VO

40PP
70VO

80PP
70VO

Fig. 1. Cytosolic phospholipase A2 (cPLA2) activity, cyclo-oxygenase-2 (COX-2) gene expression and levels of PGE2, PGF2a and 6-keto-PGF1a in the intestine of

Atlantic salmon-fed experimental diets and subjected to no stress (0 h) or sampled 1 h post-acute stress (1 h). FMFO, control diet of 100 % fishmeal and 100 %

fish oil; 80PP35VO, 80 % plant protein and 35 % vegetable oil replacement in diet; 40PP70VO, 40 % plant protein and 70 % vegetable oil replacement in diet;

80PP70VO, 80 % plant protein and 70 % vegetable oil replacement in diet. Vertical bars represent means of triplicate tanks with standard deviations. Results of

a two-way ANOVA regarding significant effect of diet, stress and dietary*stress (D £ S) interactions are displayed. a,b,c Mean values, for the no-stress and stress

conditions combined, with unlike superscript letters were significantly different (P , 0·05; post hoc test). Significant differences with stress within dietary groupsQ3

are indicated by asterisks (*) and were determined by t tests. (a) Proximal: diet, P,0·05; stress, NS; D £ S, NS. B, 0 h; , 1 h. Distal: diet, P,0·001; stress, NS;

D £ S, P,0·001. (b) Proximal: diet, P,0·01; stress, P,0·001; D £ S, P,0·001. B, 0 h; , 1 h. Distal: diet, NS; stress, P,0·01; D £ S, NS. (c) Proximal: diet,

P,0·05; stress, P,0·05; D £ S, NS. B, 0 h; , 1 h. Distal: diet, P,0·01; stress, NS; D £ S, NS. (d) Proximal: diet, P,0·001; stress, P,0·001; D £ S, P,0·001.

B, 0 h; , 1 h. Distal: diet, P,0·001; stress, P,0·05; D £ S, NS. (e) Proximal: diet, P,0·005; stress, NS; D £ S, P,0·05. B, 0 h; , 1 h. Distal: diet, NS; stress,

NS; D £ S, P,0·05.
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361 were not reflected in AA levels. In 80PP35VO and 80PP70VO
362 fish, AA significantly decreased to 2·3 % compared with 4·2 %
363 and 3·7 % observed in respective FMFO and 40PP70VO
364 groups. Dietary groups with lowest levels of AA also pos-
365 sessed the highest levels of the D5 desaturase competitor
366 20 : 4n-3. The AA/DGLA ratio varied considerably from
367 26·1 in FMFO fish to a minimum of 1·7 in 80PP70VO fish.
368 However, the AA/EPA ratio was more conserved with
369 values ranging between 0·4 and 0·2. The highest ratio of 0·4
370 was observed in the 40PP70VO group, which consequently
371 possessed the second highest, after FMFO, AA/DGLA ratio
372 of 4·5. Although there were generally reduced levels of EPA
373 in fish-fed experimental diets, they were non-significant
374 owing to a lack of dietary 18 : 3n-3 precursor retained in phos-
375 pholipids and selective retention of C20 and C22 PUFA.
376 Similar trends in fatty acid composition were noted in the
377 distal intestine as for proximal with respect to dietary treat-
378 ment. Generally, n-3:n-6 ratios were higher in distal intestine
379 ranging from 7·7 in the FMFO group to 4·7 in the 80PP70VO
380 group. Less of dietary abundant 18 : 2n-6 was retained in distal
381 phospholipids of fish-fed high VO replacements; yet,
382 elongation appeared to accumulate as the ‘dead-end’ product
383 20 : 2n-6. ‘True’ elongation–desaturation of 18 : 2n-6 to
384 DGLA appeared to be less significant in the distal intestine.
385 Highest amounts of AA were again observed in the FMFO
386 group (3·3 %) yielding an AA/DGLA ratio of 30·0. However,
387 the highest AA/EPA ratio was observed in the 40PP70VO
388 group (0·4), which consequently possessed the second highest
389 AA/DGLA ratio (7·5). Relative to proximal, the distal region
390 exhibited higher total n-3 PUFA, which was due to increased
391 C22 n-3 PUFA whereas levels of EPA were actually lower.

392 Intestinal arachidonic acid cascade

393 Various stages in the AA cascade are shown in Fig.1 for prox-
394 imal and distal regions of the intestine with respect to dietary
395 treatment and stress. Effects of diet and stress on cPLA2

396 activity were indistinct for both regions of the intestine,
397 although diet appeared to hold greater influence. There was
398 a significant up-regulation of COX-2 in both proximal and
399 distal intestine in response to stress with all dietary treatments.
400 However, COX-2 expression, both pre- and post-stress, was
401 approximately an order of magnitude higher, relative to the
402 reference gene b-actin, in the distal intestine compared with
403 the proximal region. Regarding proximal COX-2, stress
404 usually elicited a twofold increase in expression across all
405 dietary treatments. Furthermore, the degree of inter-individual
406 variability of distal COX-2 expression greatly increased when
407 induced in response to acute stress. Dietary treatment also had
408 a significant effect on proximal COX-2 expression where the
409 80PP70VO diet increased the severity of up-regulation post-
410 stress by an order of magnitude (2·6 £ 1025–2·0 £ 1024 nor-
411 malised mean expression). Despite the disparity in COX-2
412 expression between proximal and distal intestine, PG levels
413 were generally similar between these regions with PGE2

414 being present at approximately a tenfold higher concentration
415 than PGF2a and 6-keto-PGF1. However, in opposition to the
416 dietary effect of 80PP70VO on COX-2 induction, it was the
417 40PP70VO diet that significantly increased PGF2a levels
418 (2·3–5·5 ng/g) in the proximal intestine of fish subjected
419 to stress. This tendency was also observed for PGE2

420(39·8–103·7 ng/g) and 6-keto-PGF1a (2·6–5·4 ng/g) in the
421proximal intestine of fish fed the 40PP70VO diet. No
422clear trends for PG synthesis in response to stress could be
423discerned in the distal intestine, although results indicate a
424general increase in PGE2 and PGF2a with 80PP35VO and
42540PP70VO diets.

426Discussion

427The present study has demonstrated that high substitution with
428VO, in combination with high and low levels of PP, in diets
429for the carnivorous fish species Atlantic salmon can elevate
430COX-2 induction and synthesis of pro-inflammatory PG in
431the proximal intestine in response to acute stress. Furthermore,
432there was a general up-regulation of COX-2 in both regions of
433the intestine 1 h post-stress, but particularly in the distal intes-
434tine where COX-2 expression was an order of magnitude
435higher than proximal. To the authors’ knowledge, this is the
436first evidence that both diet and acute stress can impact the
437AA cascade in the intestine of teleost fish. Furthermore,
438major dienoic series-2 PG, derived from AA, were directly
439quantified by LC/electrospray ionisation-MS/MS. The greatest
440dietary effects on the AA cascade in response to stress were
441observed in the proximal intestine where COX-2 induction
442was greatest with the highest substitutions with PP and VO
443(80PP70VO), while elevated PG levels were observed in fish
444intestinal phospholipids with the highest AA/EPA ratio result-
445ing from the 40PP70VO diet.
446Disturbance of osmoregulatory capacity is a characteristic
447response to stress in fish where, in marine species, a large
448intestinal uptake of seawater and extrusion of Naþ and Cl2

449ions are required(33). Typical indicators of the stress response,
450such as elevated blood cortisol, glucose, lactate and Cl2, were
451present in all fish 1 h post-stress. However, it was the
452FMFO-fed fish that exhibited the highest plasma cortisol
453and glucose levels in reaction to acute stress. The production
454of plasma cortisol, via the hypothalamic–pituitary–interrenal
455axis, and its stimulatory effect on ion-transporting enzymes
456(Naþ–Kþ-ATPase) and glucose production are well documen-
457ted in teleost fish(33). In the present study, the greatest increase
458in plasma cortisol was observed in the FMFO-fed fish, while
459fish fed on replacement diets, with lower n-3:n-6 ratios,
460tended to have a lower plasma cortisol response. Furthermore,
461maximum plasma Cl2 levels were exhibited by fish fed on the
462highest replacement diet (80PP70VO). Similarly, a previous
463study has shown that feeding AA-supplemented diets to gilt-
464head seabream (Sparus aurata) reduced plasma cortisol
465levels in response to acute stress, which was also associated
466with increased plasma Cl2 levels(34). Conversely, dietary n-6
467PUFA have been shown to enhance plasma cortisol levels in
468stressed gilthead seabream larvae and juvenile chinook
469salmon (Oncorhynchus tshawytscha)(35,36). However, the
470effect of plasma cortisol on osmoregulation cannot be con-
471sidered in isolation, as catecholamines, prolactin and vasopres-
472sin also play a role in regulating water and electrolyte
473balance(37). Clearly, there is a balance to be met between
474the dietary n-3:n-6 ratio, elongation/desaturation capacity,
475levels of AA-derived PG and severity of the stress response
476in fish, which is probably species specific.
477The predominant fatty acids in membranes of marine fish,
478present at the sn-2 position of glycerophospholipids, are

BJN 3273—16:3, 15/10/2009——352008

A. Oxley et al.8



479 EPA and DHA of the n-3 PUFA series not AA of the n-6
480 series; a situation that is reversed in mammals(11). Despite
481 this, fish COX-1 and -2 have a pronounced discrimination
482 towards AA and against EPA and DHA(38). Ultimately, the
483 major factor in determining the species of C20 PUFA precur-
484 sors available for eicosanoid synthesis in cellular NEFA pools
485 is the dietary ratio of n-3:n-6 PUFA(10,12,39). Previous dietary
486 studies in Atlantic salmon have described an increased AA/
487 EPA ratio in tissue membrane phospholipids when fed VO
488 containing high levels of 18 : 2n-6(13,40,41). However, this
489 was concomitant with the accumulation of DGLA – an
490 alternative substrate to AA and EPA for eicosanoid synthesis.
491 Concerning the present study, decreasing the dietary n-3:n-6
492 PUFA ratio resulted in a decreased n-3:n-6 PUFA ratio in
493 intestinal phospholipids due to accumulation of 18 : 2n-6 and
494 elongation/desaturation products derived from it such as
495 20 : 2n-6 and DGLA. Little of dietary 18 : 3n-3, or its D6 desa-
496 turase product 18 : 4n-3, was present in phospholipids,
497 although some incorporation of the D6 desaturation/elongation
498 product 20 : 4n-3 did occur. The fact that little 18 : 3n-3 accu-
499 mulated in phosholipids emphasises enterocytes as proficient
500 sites of b-oxidation and/or elongation–desaturation in Atlan-
501 tic salmon(42) with enhanced EPA and DHA in phospholipids,
502 relative to dietary levels, showing desaturases exhibit a
503 marked preference for PUFA of the n-3 series(43).
504 Relative levels of intestinal AA generally decreased in com-
505 parison with the control, except in the 40PP70VO group where
506 the AA/EPA ratio peaked at 0·4. Conversely, the 80PP35VO
507 and 80PP70VO groups possessed the lowest AA/EPA ratios
508 of 0·2 with an apparent inverse correlation between AA and
509 20 : 4n-3 levels in phospholipids. This most likely arose due
510 to differential metabolism and intracellular trafficking of diet-
511 ary 18 : 2n-6 and 18 : 3n-3 towards D6 desaturase, which pos-
512 sesses greater affinity for n-3 series PUFA, consequently
513 increasing production of 20 : 4n-3 that further inhibits the for-
514 mation of AA from DGLA via D5 desaturase(12,13). This is
515 supported by low AA/DGLA ratios in 80PP35VO and
516 80PP70VO groups that correspond to the higher levels of
517 20 : 4n-3 present. Similar trends were observed in the distal
518 intestine, although the major elongation/desaturation product
519 in distal intestine was the dead-end product 20 : 2n-6. Thus,
520 the lack of D6 activity resulted in higher AA/DGLA ratio
521 than proximal. However, C22 n-3 PUFA, including 22 : 5n-3
522 and DHA, appeared to be selectively incorporated into phos-
523 holipids in the distal intestine over C20 n-3 PUFA such as
524 EPA. Thus, due to retention of C22 n-3 PUFA, the n-3:n-6
525 ratio tended to be higher in the distal intestine, although
526 AA/EPA ratios were comparable with proximal.
527 The highest AA/EPA ratio in proximal intestinal phospholi-
528 pids from fish of the 40PP70VO group also coincided with
529 enhanced synthesis of AA-derived PG, such as PGE2, PGF2a

530 and 6-keto-PGF1a (the stable metabolite of PGI2), in response
531 to acute stress. The importance of PG in fish physiology has
532 been demonstrated with roles in ion transport(44,45), vasoactiv-
533 ity(46 – 48) and intestinal muscular tone(49,50). From mammalian
534 literature, the majority of intestinal PG is produced by immune
535 cells of the lamina propria and submucosa, although entero-
536 cytes are capable to a lesser extent(51). Although PG are
537 involved in normal maintenance of intestinal epithelial integ-
538 rity, they perform important roles in ‘adaptive cytoprotection’
539 from aggravating factors such as PG-stimulated secretion of

540HCO2
3 where PG efficacies are in the order: PGE2 .

541PGF2a . PGA2 . PGD2 . PGI2
(15,51). The gastro-protective

542properties of PG were demonstrated in eel (Anguilla anguilla)
543gastric mucosa where exogenously added PG prevented indo-
544methacin/aspirin-induced mucosal erosion by stimulation of
545serosal to mucosal HCO2

3 secretion(52). Reported concen-
546trations of PGE in rainbow trout (Oncorhynchus mykiss) pylo-
547ric caeca and proximal/distal intestine approximate at 150 ng/g
548(w/w)(53), which is more than twice the maximum level of
549PGE2 observed in the present study. Although dienoic PG
550are involved in inflammatory responses(10), no apparent mor-
551phological changes were observed in the intestines of stressed
552fish fed the 40PP70VO diet. However, previous studies in
553salmonid fish have revealed that the proximal intestinal
554epithelium is particularly susceptible to acute stress with sub-
555stantial damage to intercellular junctional complexes appear-
556ing within 1 h post-stress(54,55). A similar response to stress
557is typical in mammalian intestine, via the brain–gut axis,
558which is characterised by increase in epithelial permeability
559to large antigenic molecules, mast cell activation, disruptions
560in osmoregulation and sloughing of mucus(19).
561Acute stress was associated with the up-regulation of
562COX-2 in both regions of the intestine, although COX-2
563expression was an order of magnitude higher in the distal
564intestine compared with proximal. However, contrary to the
565traditional view that COX-2 is induced in response to patho-
566physiological reactions and COX-1 serves as a housekeeping
567enzyme for maintenance of mucosal integrity, recent findings
568indicate that both isoenzymes can act either alone or in concert
569towards mucosal defence(56). Therefore, it would be desirable
570to assess expression of COX-1, in addition to COX-2, in prox-
571imal and distal regions before drawing any firm conclusions.
572The distal intestine in marine fish performs an important
573osmoregulatory function with the transport of Naþ and Cl2

574ions. Similarly, high COX-2 expression has been demon-
575strated in gills especially in response to environmental stress
576such as salinity acclimation where PG regulate NaCl secretion
577in branchial chloride cells(57). However, a study in land-locked
578Atlantic salmon concluded that COX-2 expression may be
579more constitutive, rather than inducible, in osmoregulatory
580organs such as gill(58), which could explain the profound dis-
581parity in COX-2 expression between proximal and distal intes-
582tinal regions. Studies on the euryhaline killifish (Fundulus
583heteroclitus) also inferred that gill COX-2 constitutively
584expressed with acute transfer from freshwater to seawater is
585associated with transient inductions in expression(57). It
586could also account for the more pronounced inflammatory
587effects observed in the distal region of salmon-fed diets con-
588taining ANF(9). Despite the difference in COX-2 expression
589between the two regions, similar concentrations of PG were
590present. However, the situation could be complicated further
591as a second inducible COX-2 orthologue, termed as COX-
5922b, has recently been identified in a related salmonid species,
593rainbow trout (Oncorhyncus mykiss), which exhibits differen-
594tial induction to alternative inducers(59). Regarding the proxi-
595mal intestine, high dietary replacement with both PP and VO
596increased COX-2 induction in response to stress. In fish, acute
597stress is known to increase intestinal permeability in proximal
598regions with distal regions less affected(54,60). Since the
59980PP70VO diet actually reduced the AA/EPA ratio in proxi-
600mal phospholipids, enhanced COX-2 induction points towards
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601 the high PP component rather than high VO. The importance
602 of COX-2 in preventing intestinal pathology in response to
603 dietary antigens has been previously highlighted in mice(61).
604 From mammalian literature, PG are an integral modulatory
605 component in cytoprotection, maintenance of epithelial barrier
606 function and regulation of inflammatory responses in the gas-
607 trointestinal tract. In fish, certain PG have been shown to exert
608 similar effects with additional specialised functions involving
609 osmoregulation in gill and distal intestine. The present study
610 has indicated that these functions could be affected by high
611 levels of plant-derived ingredient inclusion in formulated
612 diets for carnivorous fish – especially in response to acute
613 stress. Previous studies have shown that the proximal intestine
614 is particularly susceptible to stress, while plant ANF cause
615 inflammation distally. Although no enteric morphological
616 changes were detected with dietary treatment (histology not
617 shown), such increases in inflammatory indicators 1 h post-
618 stress could affect nutrient absorption proximally and osmor-
619 egulation distally following acute stress episodes which
620 could impact on fish health and welfare in general.
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