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Normal Protein (NP) and High Protein (HP) diets were provided to rainbow trout families from juvenile to maturity. Muscle
protein concentration increased during growth and the protein to lipid (P/L) ratio was doubled at late stage with respect to the
dietary P/L ratio. The HP-diet fish showed higher protein deposition in body and white muscle, and had lower condition factor
due to protein deposition associated more with body length than body weight. Fish growth rates were decreased at maturation, and
the HP-diet fish showed lower growth rate including the activity ratio of trypsin to chymotrypsin (T/C ratio) and feed efficiency.
Trypsin and chymotrypsin specific activities were related to dietary protein levels, and the T/C ratio was related to intestinal weight
and growth rate independent of the enzymes specific activity levels. The families with high growth capacity could double increase
white muscle P/L ratio levels, compared to low and medium growth families, if they were fed on HP-diet. The digestive enzyme
extracts from high growth families resulted in higher in vitro protein digestibility for all diets. The effect of dietary P/L ratio on
digestion, skeletal growth (length) and the white muscle P/L ratio in fish with different growth capacities is illustrated.

Copyright © 2009 Krisna Rungruangsak-Torrissen et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. Introduction

One of the principal goals in contemporary aquaculture
is the dual optimisation of growth efficiency and protein
content through a process of selective culture. The growth
efficiency of several fish species has been studied through
variation of dietary protein levels, and the results have
shown not only the relationships between dietary protein
concentration and physiological parameters of consumption,
growth, and protein content in body or muscle, but also
shown certain increased levels of dietary protein limited
consumption and growth of the fish recently, that is, [1–
9]. Increased growth is usually not associated with an
increase in protein deposition rate, that is, [10–12], but
rather an increase in lipid deposition rate, that is, [8, 13].
Traditionally in aquaculture, dietary protein and lipid are

varied throughout the life cycle to optimise the economic
return. In the current work, we aim to understand a
basic knowledge on long-term protein growth by investi-
gating the effects of maintaining dietary protein and lipid
concentrations throughout the fish life cycle on digestive
efficiency and protein growth using a unique combination of
techniques recently described by Rungruangsak-Torrissen’s
research team [11, 12, 14]. In addition, we also aim to study
the potential for maximising protein growth efficiency in
rainbow trout (Oncorhynchus mykiss Walbaum) families with
differences in growth capacity by varying the concentrations
of dietary protein and lipid.

The current work was a part of a European Union
project assessing the potential for genetic selection of protein
and growth efficiency traits in salmonids. The work was
performed in different families of rainbow trout divided into
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Table 1: Compositions on wet weight basis of the experimental diets, normal protein (NP) and high protein (HP) diets.

Experimental
diets

Moisture
[%]

Crude
protein (P)

[%]

Crude
lipid (L)

[%]
P/L ratio

Crude fibre
[%]

Ash
[%]

Nitrogen
free extract

[%]

Phosphorus
[%]

Energy
[kJ g−1]

NP (3 mm) 2.1 44.9 30.5 1.5 0.73 7.4 15.1 1.21 23.6

NP (6 mm) 1.5 44.6 30.3 1.5 0.72 7.7 15.9 1.27 26.0

NP (7 mm) 4.0 39.5 33.4 1.2 1.00 6.7 15.4 0.96 25.9

HP (3 mm) 2.3 56.4 20.7 2.7 0.44 9.6 11.1 1.55 25.6

HP (6 mm) 1.7 56.3 20.6 2.7 0.48 9.5 11.9 1.54 24.0

HP (7 mm) 7.2 49.4 23.8 2.1 1.30 8.3 10.0 1.18 23.3

two groups fed on two levels of dietary protein to lipid
(P/L) ratio during a two-year life span from juvenile to
maturity, and subdivided according to differences in growth
capacities. Feed intake was measured by X-ray method using
diets labelled with radio-opaque markers [15]. The in vitro
protein digestibility of formulated fish feeds was determined
using fish crude enzyme extracts, as it has been correlated
with the feed efficiency [11, 16] and the chemical properties
of dietary proteins, positively with the levels of reactive
sulphydryl group and negatively with the levels of disulphide
bond and D-aspartic acid [16]. Fish digestive efficiency
[trypsin specific activity and the protease activity ratio of
trypsin to chymotrypsin (T/C ratio)] was measured because
of their known positive associations with fish growth rate
[10–12, 14, 17, 18]. The effects of dietary protein and P/L
ratio levels on the protein and lipid compositions as well
as the P/L ratios of the body and white muscle were also
determined. The P/L ratio is important as both protein and
lipid levels in the diets affect the levels of both protein and
lipid in fish where the variations may not be observed if either
protein or lipid level is studied alone. Although both protein
and lipid deposition are important but the in vitro lipid
digestibility was not determined because it has never been
shown to associate with feed efficiency and the quality of the
lipid itself [19], and in vitro protein digestibility is the key
factor for feed quality even in the herbivore like mussel [19,
20]. This work was designed to illustrate the effects of dietary
P/L ratio levels on fish digestive ability and the quality of
fish growth performance (condition factor and composition
of P/L ratio in the body and white muscle) in families of
rainbow trout with different growth capacities throughout
the life history. The digestive efficiency was studied at the
end of the experiment at the late stage of life cycle. It is
advantageous to use the different methods simultaneously,
as they could precisely provide practical important biological
informations between fish groups with differences in genetics
(growth capacity) and environmental impacts (diet quality)
that could not be explained by using growth parameter alone,
especially when feeding regime were not completely under
control see [11, 12, 14].

2. Materials and Methods

2.1. Experimental Design. The experiment was performed
on rainbow trout from an on-going selection programme

at the Finnish Game and Fisheries Research Institute, Tervo,
Finland. One-year old trout from 45 families selected were
tagged with PIT-transponders (Trovan Inc., Germany) and
equally distributed into eight 3 m3 tanks (340 fish per tank)
at the end of January 2002. Further details of the genetic
design of the experiment have been described [21, 22]. From
hatching to the initiation of the experiment, all fish were
fed commercial rainbow trout diets, Raisio Nutra Starter
[52% crude protein and 20% crude lipid (P/L ratio 2.6)] and
Raisio Nutra Parr [50% crude protein and 23% crude lipid
(P/L ratio 2.2)] (Rehuraisio Inc., Finland) using automatic
feeders. In May 2002, two diet treatments were initiated.
Four tanks (average fish weight 141.2± 2.2 g) were provided
an experimental normal protein (NP-) diet, and the other
four (average fish weight 143.9 ± 2.2 g) were provided an
experimental high protein (HP-) diet. The experimental NP-
and HP-diets were manufactured by Rehuraisio Inc., Fin-
land. The diets were formulated using standard ingredients
for rainbow trout in Finnish aquaculture, consisting of fish
meal, fish oil, wheat meal, wheat starch, and supplemented
for vitamins and minerals according to the National Research
Council [23]. The compositions of the experimental diets
are shown in Table 1. To avoid restricted growth, a slight
over-feeding regime was applied. In June 2002, the fish were
transferred to larger tanks (20 m3) and reared through until
the end of the experiment in November 2003. Fish density
was maintained below 20 kg m−3. Oxygen concentration
in the water was maintained above 6 mg L−1. The fish
experienced ambient seasonal temperature regimes during
the experimental period, fluctuating from below 5◦C during
winters to around 20◦C in summers. Individual fish weight
and fork length were recorded in May and September 2002,
and in May, September, and November 2003. Individual
feed consumption was measured using the X-ray method
[15] involving both NP- and HP-diets labelled with radio-
opaque markers (more details in [21]). Nine estimates of feed
intake were calculated during the three-week X-ray sessions
performed during May-June 2002, September-October 2002,
and September 2003. Feed efficiency was estimated, as weight
gained per weight dry feed consumed in each session, and
averaged across all three sessions. To estimate white muscle
and whole body compositions, samples were collected in
November 2002 and November 2003.

Of the 45 families, 16 families were sorted with represen-
tatives of both diets available for each family selected. Three
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different growth capacity groups were divided, 6 families for
high (H), 5 families for medium (M), and 5 families for low
(L) growth capacity, based on the body weight measurements
recorded in September 2003 (altogether 120 individuals).
At the end of the experiment in November 2003, pyloric
caeca samples were collected (3–5 fish per family per diet).
Intestinal, gonad, and carcass weights were measured. In
vitro protein digestibility of the experimental feeds and fish
digestive efficiency were analysed, using the pyloric caecal
enzyme extracts. Only these 120 fish were studied in the
current work. As thermal growth coefficient [24] did not
provide different interpretations from specific growth rate
(SGR) in this experiment, the simple SGR was chosen and
calculated [25]:

SGR(% day−1) = 100[eg − 1], (1)

where g = (lnW2− lnW1)/(t2− t1), and W2 =Weight at day
t2, W1 =Weight at day t1.

The condition factor was calculated [26]

Condition factor = 100×W/L3, (2)

where W = Live body weight (g) and L = Body fork length
(cm).

2.2. Determinations of White Muscle and Body Composition.
About 10 g of epaxial white muscle was dissected from
individual fish in November 2002 and November 2003.
The remainder of the fish was used for determination of
whole body composition. All tissue samples were stored at
−80◦C and homogenised before analyses. The compositions
of protein, lipid, and dry matter were estimated for the white
muscle and whole body. The white muscle in November
2002 and the whole body samples in November 2003 were
determined using FMA2001 Milk Analyser (Miris AB, Swe-
den) with mid-infrared transmittance, after homogenisation
in standard solvent Mirasolve with Losmixer (Miris AB,
Sweden). Due to later technical complications, the body
composition in November 2002 and the white muscle
composition in November 2003 were analysed using an
INFRATEC Food & Feed Analyser (Tecator, Sweden) with
near-infrared transmittance. To calibrate between the meth-
ods, approximately 50 samples were coanalysed by both
analysers (more details in [27]).

The results from INFRATEC Food & Feed Analyser
were estimated using The Unscrambler, software for mul-
tivariate data analysis (CAMO Process AS, Norway) with
multiregression models standardised by the values from 50
white muscle samples and 50 whole body samples analysed
chemically. The moisture content of the standards was
determined by drying a known amount (about 3 g) of
homogenised sample at 105◦C for 24 hours to constant
weight. The lipid concentration was determined from the
dry matter by extracting with 15 mL ethylacetate for 60
minutes on a mixing plate, and the lipid-ethylacetate extract
was subsequently dried gradually at 65–105◦C, cooled in
desiccator, and then weighed [20, 28–30]. The protein
concentration of the standards was determined using TRIzol

reagent (Life Technologies, NY, USA) to obtain complete
solubilisation of protein, as described in Rungruangsak-
Torrissen [11] modified from Sunde et al. [10, 18].

Protein deposition (protein growth) was expressed as the
composition ratio of protein to lipid (P/L ratio) in the body
and white muscle.

2.3. Determination of Digestive Efficiency. Pyloric caeca
sampled from 120 individuals were analysed for trypsin
specific activity and protease activity ratio of trypsin to
chymotrypsin (T/C ratio), as indicators for digestive effi-
ciency that have been related with fish growth rate [10–
12, 14, 16, 18]. All samples were kept frozen at −80◦C
prior to analyses. The samples were homogenised and the
enzymes were extracted using 1 mM HCl. After centrifuga-
tion at 15 000 × g for 60 minutes at 4◦C, the supernatants
were kept frozen at −80◦C until analyses. Trypsin and
chymotrypsin activities were determined, using benzoyl-L-
arginine-p-nitroanilide as trypsin substrate and N-succinyl-
Ala-Ala-Pro-Phe-p-nitroanilide as chymotrypsin substrate,
according to Rungruangsak-Torrissen [11] based on Sunde
et al. [10, 18] and Rungruangsak-Torrissen et al. [16].
The concentration of protein in the crude enzyme extract
was determined by the Lowry method [31] using the Bio-
Rad DC (Detergent Compatible) Protein Assay (Bio-Rad
Laboratories, Calif, USA). The enzyme specific activities were
expressed as μmol p-nitroaniline produced h−1 mg protein−1.
The protease activity ratio of trypsin to chymotrypsin (T/C
ratio) was directly calculated from each individual, and the
slope T/C ratio was obtained from the regression between
trypsin (y-axis) and chymotrypsin (x-axis) specific activities
at each sampling period [32].

2.4. In Vitro Digestibility Study. The in vitro protein
digestibility of experimental feeds was performed ac-
cording to Rungruangsak-Torrissen [11], modified from
Rungruangsak-Torrissen et al. [16] and Bassompierre et
al. [33]. Due to limited amount of pyloric caecal sample
collected from each fish, the pyloric caecal crude enzyme
extracts were pooled per family per diet (16 samples for each
diet) after determination of the trypsin and chymotrypsin
specific activities in each individual. The pooled crude
enzyme extracts were dialysed using a Pierce Slide-A-Lyzer
Dialysis Cassette (Pierce Chemical Company, Ill, USA) and
concentrated using an Amicon Ultra-15 centrifugal filter
device 10 K NMWL (Millipore Corporation, Mass, USA)
before use. In vitro protein digestibility was measured in a
commercial control (C) diet [Raisio Royal Response with
47% crude protein and 23% crude lipid (P/L ratio 2.0),
Rehuraisio Inc., Finland] and the experimental NP (40%
crude protein with P/L ratio 1.2) and HP (49% crude protein
with P/L ratio 2.1) diets (7 mm, see Table 1). In vitro protein
digestibility of control C-diet, and experimental NP-diet and
HP-diet were performed using crude enzyme extracts from
the 16 families selected, divided into low (n = 34), medium
(n = 36), and high (n = 41) growth capacity family groups.

Digestion of a known amount of feed (about 20 mg
in 40 mL of 50 mM phosphate buffer pH 8.2 and 0.2 mL
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Figure 1: Weight and condition factor of rainbow trout fed
normal protein (NP) and high protein (HP) diets during the entire
experimental period. The values with asterisk (∗) are significantly
different (P < .05) between the dietary groups.

of 0.5% chloramphenicol) by enzyme extract (0.5 mL) was
performed in triplicate at 15◦C for 24 hours [11] for each
diet and each dialysed pooled crude enzyme extract. The
reactive amino groups of peptides produced after digestion
were determined using the trinitrobenzene sulphonic acid
(TNBS) assay and calculated using DL-alanine as a standard,
as described in Rungruangsak-Torrissen [11], modified from
Bassompierre et al. [33] based on Ihekoronye [34]. The in
vitro protein digestibility value was expressed as μmol DL-
alanine equivalent liberated reactive amino group of cleaved
peptides per mg feed sample after standardising trypsin
activity in each dialysed pooled crude enzyme extract to
300 μmol p-nitroaniline produced h−1 mL−1.

2.5. Statistical Analysis. The statistical procedures were per-
formed using the SAS software package (v. 8.02 for Windows,
SAS Institute Inc., NC, USA). Relationships, on an individual
basis, between different diets, families, and growth capacity
groups were studied using the general linear model (glm)
procedure. This analysis included individual continuous
variables (covariates: e.g., white muscle P/L ratio or SGR).
In cases where class-by-covariate interaction was significant,
the analysis was broken down and performed per class (e.g.,
per diet or per growth capacity group). All results are given as
the least squares means±standard error. Differences between
means were tested by t-test. The difference was set at 95%
significance level.

3. Results

3.1. Fish Growth and Feed Efficiency. Due to some uncertain
labelling, only 111 out of 120 fish were used for the analyses.
Paired comparison indicated that the HP-diet fish had lower
condition factor than the NP-diet fish during the entire
experimental period (P < .05; Figure 1). The differences in
condition factor were enhanced during autumn to winter,
especially the last period from September to November 2003

(P < .01; Figure 1 and Table 2). This was due to differences in
body length between the diet treatments (P < .03; Table 2).
There were no significant differences in body weight between
the two dietary groups although the HP-diet fish seemed to
have a relatively higher body weight than the NP-diet fish
before maturation (P > .05). During maturation in the last
two months, fish growth rates were reduced in both dietary
groups, and the HP-diet fish showed a higher decrease in
SGR (P < .001) with the body weight changed (P > .05) from
a relatively higher in September 2003 to a relatively lower
in November 2003, compared to the NP-diet fish (Figure 1
and Table 2). The HP-diet fish also had lower feed efficiency
(FE) than the NP-diet fish (P < .05; Table 2). Individual feed
intake in September 2003 was not correlated with FE but
showed a positive correlation with SGR during the last two
months (R2 = 0.11, P < .05).

There were relationships between body weight and
carcass weight, and between body weight and intestinal
weight (R2 = 0.49–0.98, P < .0001). The relationships
between SGR with carcass weight and between SGR with
intestinal weight were also observed (R2 = 0.08–0.29, P <
.0001). This was consistent for both dietary treatments.
However, intestinal weight was lower in the HP-diet fish (P <
.0001; Table 2), due to reduction in lipid deposits around
the intestine (observed visually). No differences in carcass
and gonad weights (Table 2) were observed between the two
dietary groups.

Maturation rate seemed to be higher in the HP-diet than
the NP-diet fish in all growth capacity groups, varied from
64.7–84.2% in the HP-diet fish compared to 52.9–70.6% in
the NP-diet fish.

3.2. Digestive Proteases in the Pyloric Caeca. At maturity in
November 2003, rainbow trout fed on HP-diet had higher
specific activities of the protease enzymes trypsin (P < .02)
and chymotrypsin (P < .01), and lower T/C ratio (P <
.03), than those fed on NP-diet (Table 2). When the fish
were grouped according to family growth capacity, the same
trends were also observed within each growth capacity group,
but the difference was only significant in the chymotrypsin
specific activity between the fish fed HP- and NP-diets in the
high growth capacity families (P < .05; Table 2).

Trypsin (P < .002; Figure 2(a)) and chymotrypsin (P <
.003; Figure 2(b)) specific activities were inversely correlated
with the intestinal weight. In contrast, the T/C ratio was
positively correlated with the intestinal weight (P < .03;
Figure 2(c)). Similarly, the specific activities of trypsin (R2 =
0.05, P < .002) and chymotrypsin (R2 = 0.04, P < .05)
were inversely correlated with body weight, and the T/C ratio
showed a trend of positive correlation with fish body weight
although insignificant (data not shown). Among the protease
parameters measured, only the specific activity of trypsin was
inversely correlated with SGR (R2 = 0.04, P < .04) during
maturation, regardless of dietary type (data not shown).
Within each dietary group, these relationships were not
significant, except for the negative correlation in the HP-diet
group between intestinal weight and trypsin specific activity
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Table 2: Different biological parameters in rainbow trout fed the experimental normal protein (NP) and high protein (HP) diets, in vitro
protein digestibility was expressed as μmol DL-alanine equivalent liberated reactive amino group of cleaved peptides per mg feed after
standardising trypsin activity in each dialysed pooled crude enzyme extract to 300 μmol p-nitroaniline produced h−1 mL−1, and the values
with asterisk (∗) are significantly different (P < .05).

Parameters NP-diet group (n = 56) HP-diet group (n = 55)

Initial weight in May 2002 [g] 140± 5 148± 5

September 2003

Weight [g] 2120± 55 2151± 44

Length [cm] 47.9± 0.37∗ 49.0± 0.34∗

Condition factor [g cm−3] 1.91± 0.02∗ 1.82± 0.02∗

November 2003

Final weight [g] 2622± 73 2560± 60

Final length [cm] 51.0± 0.4 51.6± 0.4

Final condition factor [gcm−3] 1.96± 0.03∗ 1.85± 0.03∗

Specific growth rate (Sept–Nov 2003) [%day−1] 0.50± 0.02∗ 0.40± 0.02∗

Feed efficiency [daily-gain in g per g feed-intake]

Average of all three X-ray sessions 1.73± 0.13∗ 1.31± 0.09∗

Trypsin specific activity [μmol p-nitroaniline h−1 mg protein−1] 28.7± 2.2∗ 41.0± 4.5∗

low growth capacity group 30.1± 4.5 (n = 17) 39.3± 7.9 (n = 17)

medium growth capacity group 27.7± 3.3 (n = 17) 40.2± 7.0 (n = 19)

high growth capacity group 28.3± 3.7 (n = 22) 43.4± 8.8 (n = 19)

Chymotrypsin specific activity [μmol p-nitroaniline h−1 mg protein−1] 102± 9∗ 143± 12∗

Low growth capacity group 108± 19 (n = 17) 139± 20 (n = 17)

Medium growth capacity group 103± 17 (n = 17) 138± 15 (n = 19)

High growth capacity group 96± 13∗ (n = 22) 151± 24∗ (n = 19)

Protease activity ratio of trypsin to chymotrypsin (T/C ratio) 0.32± 0.02∗ 0.27± 0.01∗

Low growth capacity group 0.31± 0.02 (n = 17) 0.25± 0.02 (n = 17)

Medium growth capacity group 0.33± 0.04 (n = 17) 0.28± 0.03 (n = 19)

High growth capacity group 0.32± 0.03 (n = 22) 0.29± 0.03 (n = 19)

In vitro digestibility [μmol DL-alanine equivalent mg feed−1]

Control diet 4.25± 0.45 (n = 16) 4.61± 0.69 (n = 16)

NP–diet 4.24± 0.45 (n = 16) 4.80± 0.75 (n = 16)

HP–diet 4.92± 0.48 (n = 16) 5.49± 0.80 (n = 16)

In vitro digestibility regardless of diet type

Low growth capacity group 4.32± 0.44 (n = 15) 3.85± 0.48 (n = 15)

Medium growth capacity group 4.17± 0.39 (n = 15) 3.91± 0.43 (n = 15)

High growth capacity group (P < .06) 4.85± 0.37 (n = 18) 6.77± 0.49 (n = 18)

Intestinal weight [g] 340± 12∗ 279± 9∗

Gonad weight [g] 60± 7 72± 7

Carcass weight [g] 2191± 60 2196± 50

Proximate composition [% on wet weight basis]

Muscle protein 22.9± 0.4∗ 24.8± 0.4∗

Muscle lipid 8.6± 0.3∗ 6.3± 0.3∗

Muscle ratio of protein to lipid (P/L ratio) 2.92± 0.14∗ 4.44± 0.22∗

Body protein 15.7± 0.07∗ 16.4± 0.07∗

Body lipid 22.1± 0.17∗ 20.2± 0.19∗

Body ratio of protein to lipid (P/L ratio) 0.71± 0.01∗ 0.82± 0.01∗

(P < .03; Figure 2(a)) and between final weight and trypsin
specific activity (R2 = 0.09, P < .03). The observations of
similarity in slope T/C ratio (Figure 3) between the HP-diet
(0.222) and the NP-diet (0.212) groups, and the lack of the

relationship between trypsin specific activity and the T/C
ratio (see details in [12, 14]) indicated that the fish were at
a similar steady growth phase at sampling at the end of the
experiment.
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Figure 2: Relationships between intestinal weight with trypsin
specific activity [a], chymotrypsin specific activity [b], and protease
activity ratio of trypsin to chymotrypsin (T/C ratio) [c]. The
protease specific activities were expressed as μmol p-nitroaniline
produced h−1 mg protein−1.

3.3. White Muscle and Body Compositions. SGR correlated
positively with lipid concentration (P < .0001) in the white
muscle, and negatively with moisture (P < .0001) and
protein (P < .02) concentrations (Figure 4). This resulted
in an inverse relationship between SGR and the composition
ratio of protein to lipid (P/L ratio) in the white muscle (P <

Tr
yp

si
n

sp
ec

ifi
c

ac
ti

vi
ty

0

20

40

60

80

100

120

140

160

180

200

Chymotrypsin specific activity

0 100 200 300 400 500 600 700 800 900

y = 0.212x + 6.971

R2 = 0.785,n = 56,P < .0001

y = 0.222x + 5.134

R2 = 0.73,n = 55,P < .0001

HP-diet
Linear (HP-diet)

NP-diet
Linear (NP-diet)

Figure 3: Relationships between trypsin (T) and chymotrypsin
(C) specific activities showing the slope T/C ratios (bold values) of
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at sampling at the end of the experiment in November 2003.

.001; Figure 4). Within each dietary group, the relationships
were significant only in the NP-diet fish (P < .02), except for
protein concentration that no correlations were observed in
both dietary groups (Figure 4).

At successive measurements, protein concentration
increased significantly in the white muscle (P < .0001)
from November 2002 (20.50 ± 0.08%) to November 2003
(24.34 ± 0.12%). Lipid concentration (7.48 ± 0.19 vs 7.71 ±
0.08%), P/L ratio (3.53± 0.09 vs 3.62± 0.05) also increased,
albeit insignificant. Moisture concentration, on the other
hand, decreased (P < .0001) from November 2002 (72.12 ±
0.21%) to November 2003 (70.14±0.05%). At the end of the
experiment, the moisture concentration in the white muscle
was significantly higher in fish fed on HP-diet than those
fed on NP-diet (71.0 ± 0.2 vs 69.7 ± 0.2%, P < .0001).
The concentration of protein (P < .004) and the P/L ratio
(P < .0001) in the white muscle were also higher and the lipid
concentration was lower (P < .0001) in the fish fed the HP-
diet than the NP-diet (Table 2). According to the dietary P/L
ratio levels in the HP (2.1–2.7) and the NP (1.2–1.5) diets
(Table 1), rainbow trout at late stage seemed to double the
P/L ratios in the white muscle (HP-diet fish: 4.44± 0.22; NP-
diet fish: 2.92 ± 0.14) (Table 2) with respect to the P/L ratio
of the diet consumed.

For whole body composition, SGR also showed positive
correlation with lipid concentration (R2 = 0.09, P < .002),
and negative correlation with protein concentration (R2 =
0.10, P < .001), resulting in an inverse relationship with
the P/L ratio (R2 = 0.11, P < .001). Similar to white
muscle composition, whole body concentrations of protein
(November 2002: 9.94 ± 0.14%; November 2003: 16.04 ±
0.06%), lipid (17.98± 0.08 vs 21.14 ± 0.16%), and P/L ratio
(0.56 ± 0.01 vs 0.77 ± 0.01) increased between successive
measurement periods (P < .0001). At the end of the
experiment, fish fed on HP-diet had higher concentrations of
whole body protein (16.44± 0.07 vs 15.65± 0.07%) and P/L
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Figure 4: Relationships between specific growth rate (SGR) with
white muscle composition and white muscle ratio of protein to
lipid (P/L ratio). Regardless of dietary group, the regressions are
y = −4.0641x + 72.166 (R2 = 0.1579, n = 111, P < .0001 for
moisture), y = −5.0925x + 26.137 (R2 = 0.0553, n = 111, P < .02
for protein), y = 6.1719x + 4.636 (R2 = 0.1444, n = 111, P < .0001
for lipid) and y = −3.4688x + 5.2283 (R2 = 0.1053, n = 111,
P < .001 for P/L ratio).

ratio (0.82 ± 0.01 vs 0.71 ± 0.01), and lower concentration
of whole body lipid (20.15 ± 0.19 vs 22.10 ± 0.17%) than
the NP-diet fish (P < .0001; Table 2). Moreover, there was a
significant inverse relationship between body P/L ratio and
the condition factor, regardless of dietary group (P < .0003;
Figure 5). Within the dietary groups, the relationship was
significant only in the NP-diet fish (P < .004; Figure 5).

Among different composition parameters studied, white
muscle protein concentration was the only factor that
significantly correlated with feed efficiency, with a negative
relationship (R2 = 0.11, P < .05), regardless of dietary type.

3.4. In Vitro Digestibility and Comparisons between Different
Growth Capacity Groups. Low growth capacity families had
lower final weight (2253 ± 63 g) than those from medium
(2684± 63 g) and high (2791± 85 g) growth capacities (P <
.0001). Within each growth capacity group, no differences
in weight (Figure 6(a)) and the T/C ratio (Figure 6(b)) were
observed between the fish fed NP-diet and HP-diet. Feed
efficiency was significantly different between the two dietary
treatments only in the medium growth capacity families
(P < .01; Figure 6(c)). The P/L ratio in the white muscle
was higher in the HP-diet than the NP-diet fish in all growth
groups (P < .02; Figure 6(d)). Interestingly in the high
growth families, the white muscle P/L ratio of the HP-diet
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Figure 5: Relationship between body P/L ratio and condition
factor.

fish increased 80% more than the NP-diet fish, whereas
the increase was only 40% in the low and medium growth
families (P < .03; Figure 6(d)).

The digestive ability was different among different
growth capacity groups (Figure 7). The enzyme extracts from
families with high growth capacity resulted in relatively
higher in vitro protein digestibility values for C-diet (P <
.05), NP-diet (P < .05), and HP-diet (P > .05) than those
from low and medium growth capacity families (Figure 7).
Paired comparison indicated significantly higher in vitro
protein digestibility of the HP-diet than the C-diet and the
NP-diet, regardless of the enzyme extracts used (P < .0001).
Within each growth capacity family, a tendency of higher
in vitro protein digestibility was observed in the enzyme
extracts from fish fed HP-diet, albeit insignificant (Table 2).
A significant inverse relationship between in vitro protein
digestibility values and SGR (R2 = 0.18, P < .02) was
observed at maturity in November 2003, regardless of dietary
type.

3.5. Analysis of Covariance. The continuous variable white
muscle P/L ratio was included as covariate in the models in
order to study its effect on growth together with fish growth
capacity group or family fed on the different diets. Due to
class-by-covariate interaction being significant (P < .05), the
statistical analysis was performed separately per class. The
effects on the growth parameters (final weight, condition
factor, and SGR) by growth capacity group and muscle P/L-
ratio, and by family and muscle P/L-ratio, were studied
separately for each dietary group (Table 3). Differences in
fish growth capacity significantly affected final body weight
for both diets but did not affect condition factor and SGR.
Family influenced fish SGR for both diets, and the growth
of the fish fed on NP-diet was highly affected by family and
muscle P/L ratio compared to the HP-diet fish. The results
clearly indicated that the differences in fish growth capacity
among different families and the level of P/L ratio in the
white muscle affected fish growth, and their effects varied
according to the dietary P/L ratio.



8 Scholarly Research Exchange
Fi

n
al

w
ei

gh
t

(g
)

0

500

1000

1500

2000

2500

3000

3500

Low growth Medium growth High growth

a

b
b

(a)

T
/C

ra
ti

o

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Low growth Medium growth High growth

(b)

Fe
ed

effi
ci

en
cy

0

0.5

1

1.5

2

2.5

Low growth Medium growth High growth

a

b

NP-diet
HP-diet

(c)

M
u

sc
le

P
/L

ra
ti

o

0

1

2

3

4

5

6

Low growth Medium growth High growth

a

b

a

b

a

c

NP-diet
HP-diet

(d)
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In order to study the association between SGR, dietary
quality, and digestive abilities of different growth capacity

groups, the continuous variable SGR was included as
covariate in the models. Similarly, the class-by-covariate
interaction was significant (P < .05); thus, the statistical
analysis was also performed separately per class. The effects
on specific activities of trypsin and chymotrypsin, T/C ratio,
and in vitro protein digestibility of diet, by dietary P/L
ratio and SGR were studied for each growth capacity group
(Table 4). The results indicated an effect of the diet on the
T/C ratio of the low growth capacity group. There was an
indication of the associations between SGR and the specific
activities of trypsin and chymotrypsin. Trypsin specific
activity was affected in the high growth capacity group,
whereas chymotrypsin specific activity was affected in the
low growth capacity group. There was an association between
SGR and in vitro protein digestibility of the experimental
diets in the high growth capacity group.

The analyses of covariance (Tables 3 and 4) indicated
the associations between dietary P/L ratio, fish digestive
ability (trypsin and chymotrypsin specific activity, T/C
ratio, in vitro protein digestibility), white muscle P/L
ratio, growth parameters (fish weight, condition factor,
SGR), and variations in growth capacity of different family
memberships.
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Table 3: Analysis of covariance showing the effects of fish growth capacity (Group) or family and white muscle ratio of protein to lipid (P/L
ratio) as covariate, on final weight, condition factor, and specific growth rate (SGR) during September–November 2003. Due to class-by-
covariate interaction was significant (P < .05); the statistical analysis was performed separately for the experimental normal protein (NP)
and high protein (HP) diets. Probabilities with significant effects are shown by the P values < .05 (bold values).

(a)

Covariance effect df
Final weight Condition factor SGR

NP HP NP HP NP HP

Group 2 0.0003 0.0022 0.4151 0.8453 0.9703 0.7316

Muscle P/L ratio 1 0.0012 0.1776 0.0033 0.7162 0.0125 0.1689

Family 15 0.0038 0.0961 <0.0001 0.1680 0.0079 0.0465

Muscle P/L ratio 1 0.0031 0.1033 0.0089 0.4514 0.0067 0.2924

(b)

NP HP

Group
Final weight R2 = 0.389 (P < .0001) R2 = 0.224 (P < .005)

Condition factor R2 = 0.186 (P < .015) R2 = 0.013 (P = .883)

SGR R2 = 0.117 (P = .089) R2 = 0.066 (P = .321)

Family
Final weight R2 = 0.606 (P < .0005) R2 = 0.407 (P = .107)

Condition factor R2 = 0.725 (P < .0001) R2 = 0.370 (P = .195)

SGR R2 = 0.560 (P < .0025) R2 = 0.467 (P < .035)

4. Discussion

Fish growth was affected by dietary P/L ratio and by the
inherent growth capacity of the fish as well as by white muscle
P/L ratio (Table 3) and by genetic differences in protease
digestive ability (Table 4). At late stage, rainbow trout seemed
to double their white muscle P/L ratio with respect to the
dietary P/L ratio (Tables 1 and 2). Increased dietary protein
concentration resulted in elevated protein and reduced lipid
concentrations in fish body ([1, 6, 35], current work).
In the white muscle, increased dietary protein resulted in
elevation of both protein and moisture contents [current
work]. Dietary protein concentration is also inversely cor-
related with protein efficiency ratio and productive lipid
value [3]. Increasing dietary protein concentration has been
associated with increased muscle protein in salmonids ([35],
current work), channel catfish Ictalurus punctatus [2] and
grass carp Ctenopharyngodon idella [4], and increased fillet
mass and decreased liver and adipose tissue mass in the
abdominal cavity in African catfish Clarias gariepinus [7]. In
addition, fish fed high protein diets tend to have lower total
lipids, triglycerides, and cholesterol in fillets, with higher
percentage of polyunsaturated fatty acids (PUFAs) and lower
saturated fatty acids [7]. Thus, increasing protein in the diet
could result in improved fillet quality. Moreover, HP-diet
appeared to promote an increase in length rather than weight
during growth (Figures 1 and 5). Our work illustrates the
importance of dietary protein level not only on fillet quality
but also on skeletal growth. Deformities in juvenile tench
(Tinca tinca L.) with significantly elevated whole body lipid
have been reported [36]. Increased growth in Atlantic salmon
(Salmo salar L.) stimulated by continuous light, which is not
caused by increased protein deposition [10] but by increased

lipid deposition [13], results in reduced mechanical strength
and growth of the vertebrae in Atlantic salmon postsmolts
[37]. Thus, stimulating fish growth without concerning with
appropriate dietary P/L ratio and P/L ratio deposition in
muscle or body may affect the strength of skeletal growth
and cause deformities. Fish growth could be explained not
only by body weight but also by body length illustrated
as condition factor ([26], current work). Therefore, the
conventional study for dietary protein requirement through
optimal weight gain in fish (recently, i.e., [1, 3, 5, 6, 8])
should probably instead indicate the effect of optimal dietary
protein level on the change of fish growth performance to
greater increase in length than weight.

It is interesting to note that fish with different growth
capacities [current work] and trypsin phenotypes [14, 38]
have different protease digestive abilities. Fish from high
growth group had a relatively higher digestive ability for all
feed types, compared to those from low and medium growth
groups (Figure 7). There were associations between growth
and protein digestibility (Table 4) as well as between growth
and muscle P/L ratio (Table 3). The high growth capacity
families had higher capacity to increase their growth through
increase in white muscle protein deposition (Figure 6(d)).
In addition, white muscle fibre size was also significantly
larger in the high growth capacity fish compared to the
medium and low growth capacity groups (pooled data,
P < .01), irrespective of the diet (unpublished data).
Furthermore, genetic correlations between percent white
muscle area and protein percent in rainbow trout cutlets
were very high on both diets, 0.76 in NP-diet and 0.92 in
HP-diet groups [39]. These results indicate the advantage
of high growth capacity in protein growth performance
quality. For more understanding on the effect of dietary P/L
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Table 4: Analysis of covariance showing the effects of dietary P/L ratio level (Diet) and specific growth rate (SGR) during September–
November 2003 as covariate, on the expression of trypsin and chymotrypsin (expressed as μmol p-nitroaniline h−1 mg protein−1), the activity
ratio of trypsin to chymotrypsin (T/C ratio), and in vitro protein digestibility (expressed as μmol DL-alanine equivalent per mg feed after
standardising trypsin activity to 300 μmol p-nitroaniline produced h−1 mL−1). Due to class-by-covariate interaction was significant (P <
.05); the statistical analysis was performed separately for low (L), medium (M), and high (H) growth capacity groups. Probabilities with
significant effects are shown by the P values <.05 (bold values).

(a)

Covariance
effect

df
Trypsin Chymotrypsin T/C ratio In vitro digestibility

L M H L M H L M H L M H

Diet 1 0.1796 0.3276 0.4905 0.1033 0.3647 0.2035 0.0458 0.4864 0.4471 0.3286 0.6938 0.4804

SGR 1 0.1059 0.1055 0.0320 0.0174 0.0854 0.0905 0.9705 0.1826 0.7424 0.4403 0.4807 0.0403

(b)

L M H

Trypsin R2 = 0.111 (P = .163) R2 = 0.139 (P = .085) R2 = 0.173 (P < .03)

Chymotrypsin R2 = 0.205 (P < .035) R2 = 0.147 (P = .078) R2 = 0.169 (P < .03)

T/C ratio R2 = 0.131 (P = .123) R2 = 0.092 (P = .213) R2 = 0.015 (P = .746)

In vitro digestibility R2 = 0.041 (P = .523) R2 = 0.016 (P = .764) R2 = 0.163 (P < .035)

ratio on muscle composition and growth, if possible, other
parameters such as cellular growth should be investigated
in the future in order to study the insight effect of genetics
and nutrition on fish growth. Growth rate was correlated
with feed intake but was not correlated with feed efficiency
(FE), as FE reduces when consumption increases beyond a
threshold level [11, 21]. The inverse relationship observed
between FE and white muscle protein concentration (not
with body protein concentration) was probably due to a
limited capacity to deposit muscle protein. Differences in FE
have been associated with variations in the levels of total free
amino acids in the plasma and white muscle as well as in the
ratio of essential to nonessential free amino acids, and with
variations in free hydroxyproline and RNA concentrations
in the white muscle [18]. In addition, relationships have
been observed between T/C ratio in the pyloric caeca and
concentration ratios of essential to nonessential free amino
acids in plasma and white muscle as well as between T/C
ratio with free hydroxyproline and RNA concentrations
in the white muscle [10]. Moreover, a significant positive
relationship between FE and T/C ratio has been observed in
fish fed diets varying in dietary quality [11, 16]. The current
work further emphasises these associations between FE, T/C
ratio, and levels of protein and lipid utilisation for deposition
in the white muscle. High protein concentration in the white
muscle of maturing rainbow trout, as high as 30% with 24±
0.1% on total average observed in the current study (Table 2)
compared to normal values of 15–20% reported [40], was
probably due to complete solubilisation of protein by using
the newly developed method, as higher protein solubility
resulted in higher percentage protein measurements. The
high white muscle protein concentration might as well
be a characteristic of maturing salmonids, as it has also
been observed in maturing Atlantic salmon [11], which
is probably due to mobilisation of muscle lipid as energy
for reproduction. The highest muscle protein concentration
observed in maturing Atlantic mackerel (Scomber scombrus

L.) was only 24% with 14 ± 1% on average [12]. Whilst it
was 20% with 17 ± 0.1% on average in Atlantic salmon of
about 250 g [11], and 25% with 21 ± 0.1% on average in
rainbow trout of about 1 kg [current work]. During the final
year of the experiment, the composition of body and white
muscle successively changed with concentration of protein
increasing and moisture concentration decreasing.

Higher dietary protein induced increases in protease
specific activities of trypsin and chymotrypsin in the pyloric
caeca (Table 2). In a previous experiment using the same feed
but varying rearing conditions, both trypsin specific activity
and T/C ratio were related to growth rate [10], whereas in the
current work varying in feed quality, only the T/C ratio was
positively associated with growth rate (Table 2). Thus, the
T/C ratio has an effect on growth efficiency independent of
the specific activity level of the proteases. This has also been
observed in Atlantic salmon [32] and gene manipulated fish
[10, 41]. A reduction in T/C ratio in the HP-diet fish, relative
to NP-diet fish, caused by a greater increase in the activity of
chymotrypsin over trypsin confirmed a reduction in growth
rate (Table 2). This has been reported in several works [11,
12, 14, 18, 32]. The confirmation is also strengthened by the
observed associations between trypsin specific activity and
high growth and between chymotrypsin specific activity and
low growth (Table 4). In vitro protein digestibility values of
different diets (Figure 7 and Table 4) were influenced by fish
growth capacity and the levels of protease expression in fish
enzyme extracts. The in vitro protein digestibility of diets has
been affected by genetic differences in trypsin phenotypes
[33, 38], and different trypsin phenotypes affected variations
in the protease activity expression levels [14] and FE [42].
At sampling in November 2003, the fish were at a similar
steady growth phase showing by similar slope T/C ratio
(Figure 3) (details in [32]) and no correlation between
trypsin specific activity and the T/C ratio (data not shown)
(details in [12, 14]). At steady growth phase, utilization
of protein for deposition and growth would be reduced
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to a maintenance level that should be steady irrespective
of diet. This is confirmed by the observed higher rate of
nitrogen excretion in the HP-diet fish than the NP-diet fish
with similar absolute nitrogen retention between the two
dietary groups at the end of the experiment (D. Tobin,
personal communication). If the fish had been at a growing
phase, lower nitrogen excretion per kg of fish growth in
rainbow trout fed diet with higher protein content [43]
and increased nitrogen retention with increased protein
deposition [35] would have been observed in the HP-
diet fish. Growth status of the fish is very important for
interpreting biological parameters. At present, the slope T/C
ratio and the relationship between trypsin specific activity
and the T/C ratio in the pyloric caeca seem to be the only
indicators available for predicting relative growth level and
growth status of the fish at sampling, respectively, without
knowing fish history see [12, 14, 32]. Our results suggest
the association between the diet dependent in vitro protein
digestibility value and protein growth in fish, whereas the
T/C ratio is associated with fish growth regardless of protein
or lipid growth. In vitro digestibility by protein digestion
is the key factor for diet quality, not only in carnivores
but also in herbivores where carbohydrate digestion (the
second important digestion factor in herbivores after protein
digestion) is also related to dietary protein levels [19, 20]
while lipid digestion is not related to any diet quality [19].
A high protein diet may limit feed efficiency, weight, and
growth rate of the fish, as they become mature. Analyses
of covariance also indicate the associations among genetic
differences in protease digestive efficiency, the dietary P/L
ratio, and fish growth (Table 4), and showing the influence
of white muscle P/L ratio on the SGR (Table 3).

The T/C ratio (directly calculated from the enzyme
activities) and the slope T/C ratio (obtained as shown in
Figure 3) are the suitable factors for comparison of growth
efficiency between fish groups over a period of 1-2 months
and at sampling, respectively, regardless of either protein
or lipid growth or the protease specific activity levels ([10–
12, 14, 18, 32], current work). It is important to calculate
the T/C ratio and slope T/C ratio in the pyloric caeca
for comparison instead of using trypsin specific activity
alone. If fish are needed alive, biopsy of pyloric caeca could
be performed [44], or the T/C ratio in faeces could also
be used for comparison of digestive and growth efficiency
but not for predicting growth status [11]. Most observed
relationships between key factors have very low correlation
coefficients [10, 14, 45], current work). This is due to their
indirect interaction in a series of biological mechanisms. The
phenomenon is common, as many factors being involved in
biological processes.

The dietary protein concentration of ≥50% used in this
work is not actually practical in the production of large fish
due to high cost. It was purely intended to act as a challenge
environment to optimising the genetic response of traits such
as protein and growth efficiency in salmonids [21, 22, 27].
However, as a long-term study, it has enabled us to investigate
the effect of dietary protein on skeletal growth (length),
which is important knowledge for future production of fish
with high growth performance quality [32] as well as for

future growth study in natural ecosystems where protein
deposition is the main cause [12].

5. Conclusions

Dietary P/L ratio affected the level of digestion and utilisation
of protein and lipid for deposition in the white muscle
that influenced feed efficiency and growth of the fish.
Muscle protein concentration increased between successive
measurement periods, and older larger fish had higher
concentration than younger smaller fish. Fish with higher
growth capacity had better chance to deposit higher protein.
Protein deposition was associated more with body length
than body weight, resulting in lower condition factor. Fish
with higher protein growth had lower feed efficiency and
SGR during maturation. Genetic effect of protease digestive
efficiency on fish growth is evident ([14, 38], current work).
In vitro protein digestibility of experimental diets using fish
crude enzyme extract and standardised by trypsin activity is
useful not only for comparison and prediction of biological
quality of different diets [11, 16], but also for comparison of
genetic differences in fish digestive efficiency ([33], current
work) and fish growth capacity [current work]. Specific
activity levels of trypsin and chymotrypsin were related to
dietary protein concentrations. The T/C ratio and slope T/C
ratio were related to growth efficiency over a period of 1-2
months and at sampling, respectively, regardless of protein or
lipid growth or the specific activity levels of the two enzymes
([10, 32], current work). A relatively higher increase in chy-
motrypsin over trypsin activity, resulting in lower T/C ratio,
affected a reduction in growth rate and indicated the associ-
ations between trypsin specific activity and high growth and
between chymotrypsin specific activity and low growth ([12,
14, 32], current work). The associations of all parameters
studied by the analyses of covariance (Tables 3 and 4) indicate
the influences of both external (dietary P/L ratio) and
internal (variations in inherent growth capacity of different
family memberships) factors on fish growth, through biolog-
ical changes in digestive ability (trypsin and chymotrypsin
specific activity, T/C ratio, in vitro protein digestibility)
and white muscle P/L ratio. High dietary protein results in
similar weight, but higher growth in length (skeletal growth)
and better fillet quality that would nutritionally benefit
to consumers, compared to high dietary lipid. The work
shows the advantage of using the unique combination of
the practical methods for growth performance quality study
that could be performed in any uncontrolled condition,
such as in the natural ecosystem where protein deposition
is important and study on biological responses to environ-
mental changes for survival has been ignored. It also provides
more knowledge on dietary protein affecting skeletal growth
as well as the interaction between genetics and nutrition
affecting digestive ability and growth performance quality of
the animal.
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