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Abstract. The migration of large aggregations of animals that sweep through the
landscape is a phenomenon with large consequences in many ecosystems. It has been suggested
that such migrations are mediated by resource depletion. Under this hypothesis it has been
shown that simple foraging rules may generate density-dependent migratory waves (DDMW)
in which the speed and amplitude increase with animal abundance. We tested these predictions
on a 32-year data set of the spatial distribution of the two youngest age groups of a small
pelagic schooling fish, the capelin (Mallotus villosus), by the end of their annual feeding
migration in the Barents Sea. Our data suggest that the two age groups divided the Barents Sea
by forming migratory waves that moved in opposite directions. The aggregation and spatial
displacement of these waves increased with increasing age-specific abundance. However,
possibly through social interactions, migratory pattern was modified by the abundance of the
other age group.
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INTRODUCTION

Massive migration of gregarious animals is a common

phenomenon with large consequences in many ecosys-

tems. Commonly, the species involved fluctuate mark-

edly in abundance, gregariousness, and migratory

pattern. Peaks in abundance are often associated with

increased gregariousness and migratory behavior, re-

sulting in more or less regular episodes of massive

migration. Species with such variable migratory and

gregarious behavior are found in many different

ecosystems and make a highly diverse group, including,

e.g., the desert locust (Schistocerca gregaria; Collett et

al. 1998, Babah and Sword 2004), sea urchins (Stron-

gylocentrotus droebachiensis; Bernstein et al. 1983,

Scheibling et al. 1999), African wildebeest (Connochaetes

taurinus; Musiega and Kazadi 2004), and pelagic

schooling fishes such as herring (Clupea harengus; Ferno

et al. 1998, Corten 2001) and capelin (Mallotus villosus;

Gjøsæter 1998, Carscadden et al. 2001, Fauchald and

Erikstad 2002).

Animal movement and migration may be initiated

and guided by a spatial gradient in food or other

environmental factors (Johnson et al. 1992, Wiens et al.

1993). A group of gregarious animals will, however, by

their own aggregated spatial distribution, create a

spatial gradient in prey with higher levels of resources

towards the outer edges of the aggregation. At high

densities, the result may be a spontaneously initiated

directional migration. The direction of such migrations

may be random or it may depend on inherited or learned

preferences or initial spatial heterogeneity in the

environment. According to foraging theory, an individ-

ual should respond to spatial heterogeneity in a limiting

resource by adjusting its turning rate and searching

speed as a response to local resource density (Kareiva

and Odell 1987). More specifically, an individual should

increase its turning rate and reduce its speed in response

to increased density of the resource. This behavior has

been termed ‘‘area-restricted search,’’ with which the

forager will concentrate its search activity in profitable

areas with high resource levels. During a feeding

migration, individuals that are at the head of the

movement will, according to this theory, slow down

when they experience high densities of food. In contrast,

individuals that lag behind will speed up because they

move through areas that are already depleted of food.

Wilson and Richards (2000) showed that these simple

principles will result in resource-mediated, density-

dependent group formations. In their model, dense

aggregations that swept through the habitat were

formed under high densities. In the following, we term

this phenomenon ‘‘density-dependent migratory waves’’

(DDMW). When a gregarious animal undertakes a

directional feeding migration we expect, according to the

DDMW theory, that the spatial distribution of individ-

uals will form a front that is oriented perpendicular to

the direction of the movement (e.g., Sword 2005). The

aggregation of animals along the front should depend on

the gradient in food density. When the gradient in food

density is steep, differences in search pattern across the

front should increase and the animals should be more
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aggregated towards the frontal edge. When the gradient

is formed by consumption, the spatial distribution of a

gregarious, migrating species should be density-depen-

dent. Under high abundance the depletion of food is

great, the velocity of the migration should be high, and
the animals should be more aggregated along the front

(sensu Wilson and Richards 2000). In other words, the

spatial distribution of the migrating animals should

form a wave with speed and amplitude increasing with

animal abundance.

We tested the predictions of the DDMW theory on a

multiyear data set on the spatial distribution of capelin
in the Barents Sea. Capelin is a small, short-lived,

pelagic schooling fish, removes a considerable amount of

the secondary production in the Barents Sea (Dalpada-

do et al. 2001, Gjøsæter et al. 2002b, Dalpadado et al.

2003), and is an important food item for herring
(Gjøsæter and Bogstad 1998), cod (Cadhus morhua),

seabirds, and marine mammals in the area (Hamre 1994,

Sakshaug et al. 1994). Partly as a consequence of natural

predation and harvesting, the abundance of capelin has

fluctuated considerably in the last three decades
(Gjøsæter and Bogstad 1998). In winter and spring, the

northern and eastern parts of the Barents Sea are

covered by ice (Fig. 1). The melting of sea ice during

summer is followed by a bloom in primary and

secondary production. From a central position in the
Barents Sea in June, capelin make a feeding migration

into the previously ice-covered waters during late

summer and fall (Ozhigin and Luka 1985, Gjøsæter

1998; Fig. 1). Data on the spatial distribution of capelin

were gathered in September, by the end of the yearly

feeding migration, and before the capelin return to the

wintering areas in the central part of the Barents Sea

(Gjøsæter 1998, Gjøsæter et al. 1998). Earlier studies

have shown a negative relationship between the abun-

dance of zooplankton and capelin in the Barents Sea

(Gjøsæter et al. 2002b, Dalpadado et al. 2003). This has

been attributed to grazing pressure, and we predicted

accordingly that the migration of capelin should follow

a DDMW. Specifically, we predicted that capelin should

migrate faster and farther and have a more aggregated

spatial distribution during years of high capelin abun-

dance compared to years of low abundance.

METHODS

Data on abundance, distribution, and demographic

parameters of capelin were gathered during the annual

scientific cruises in the Barents Sea during September

from 1972 to 2003 (Gjøsæter et al. 1998). The cruise

tracks are laid out by regularly spaced east–west

transects, with a distance of ;55 km between transects.

Data from these cruises are used in stock assessments

(Gjøsæter et al. 2002a), and the cruises are intended to

cover the entire stock of capelin in the Barents Sea. The

geographical distribution of capelin was measured

acoustically, and otoliths (i.e., ear stones) were used to

age individuals and construct age frequency distribu-

tions. Biological samples were taken by a pelagic trawl

at regular intervals and whenever the characteristics of

the echogram changed. When capelin were present in the

catches, the length, mass, age, sex, and other character-

istics were recorded for a subsample of 100 individuals.

FIG. 1. (A) Study area and (B) major feeding migration of capelin in the Barents Sea. The geographical grid (18 latitude 3 28
longitude) in which capelin were found at least once during the study period (September) from 1972 to 2003 is indicated. (B) The
shaded area is the main position of capelin in June before the start of the feeding migration (redrawn from Ozhigin and Luka
[1985]). Arrows indicate direction of major feeding migration in late summer and fall. Hatched areas are the mean position of ice
edge (25–50% ice cover) in April (maximum extent) and September (minimum extent) from 1989 to 2003. Ice data are from
Cavalieri et al. (2004).
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Sampling methods are described in detail in Gjøsæter et

al. (1998).

Geographical grid, age groups, and abundance

The Barents Sea was divided into a grid defined by 18

latitude3 28 longitude. The density of capelin from each

age group was assigned to the grid cells based on the

acoustic and biological samples (Gjøsæter et al. 1998).

The study area was defined by the subset of grid cells in

which capelin had been found at least once during the

study period (Fig. 1). Five age groups of capelin were

recorded during the cruises. The two oldest age groups

were not present in all years. When present, the spatial

distribution of the four oldest age groups was similar,

while the spatial distribution of the youngest age group

differed markedly from the others. We therefore present

the results of the analyses of the two youngest age

groups separately (1-yr-old capelin, age group 1; 2-yr-

old capelin, age group 2). Numerically they represented

on average 84% of all capelin recorded. The abundance

of capelin for each age group and year was calculated

from the density estimates from the grid. The abundance

of the two age groups fluctuated markedly (Fig. 2).

Abundance estimates were log10-transformed in all

analyses.

Spatial displacement and spatial gradients

To investigate the interannual variation in spatial

displacement, we calculated the center of the mass of the

distribution (CMD) for each age group and year. The

coordinates (X, Y) of a CMD was calculated as

(Ri xiNi, j/Ri Ni,j, Ri yiNi,j/Ri Ni,j), where xi, yi is the

position of the midpoint of grid cell i in the X and Y

directions of a stereographic projection and Ni,j is the

estimated number of capelin of age group j in grid cell i.

The age-specific main direction in the displacement

between years was found by a principal component

analysis (PCA) with the X and Y coordinates of the

CMDs as variables. We used the value along the

principal axis as a measure of yearly displacement.

Assuming that the feeding migration starts from

approximately the same position along the principal

axis each year (cf. Fig. 1), the yearly displacement in

CMD is a proxy for the speed of the feeding migration.

The DDMW predicts that the speed of the migration

should increase with increasing density. We tested this

prediction by analyzing the relationship between the

spatial displacements in CMDs and the total abundance

of each age group in multiple regressions.

Under a directional feeding migration, we expected

the spatial distribution to be nonstationary. Specifically,

under a DDMW the animals at the frontal edge should

have a lower speed than the animals that lag behind. The

density of animals should accordingly increase in the

migratory direction with the highest density at the front

of the migration. To test for such spatial trends in

density, we performed multiple regression analyses for

each year with the density within all nonzero grid cells as

the dependent variable and the X and Y coordinates as

independent variables. Densities were log10-transformed

to meet the assumption of normality.

Spatial structure

To measure the spatial aggregation of an age group

within a year, we calculated the spatial autocorrelation

in densities between neighboring grid cells. If capelin has

an aggregated spatial distribution and grid cells are

smaller than the scale of aggregation, the correlation

between neighboring cells should be large. We used

Moran’s I as a measure of spatial autocorrelation

(Legendre and Fortin 1989, Fauchald et al. 2000).

Densities were log10(density þ 1)-transformed. The

variance in the log-transformed density increased with

increasing total abundance for both age groups. This

might bias the correlation coefficients. To keep the

variance in density constant between years, irrespective

of total abundance, the data were standardized to mean

zero and standard deviation equal to one before entering

the analyses. We predicted that a directional migration

would affect the spatial orientation of the large-scale

patches of capelin. Specifically, we predicted the spatial

distribution to form a band that was oriented perpen-

dicular to the direction of the migration. To inspect such

direction dependencies, we calculated Moran’s I index

between neighbors in the four directions (south–north,

southwest–northeast, east–west, and northwest–south-

FIG. 2. (A) Estimated total number of individuals of 1-yr-
old (age group 1; open circles) and 2-yr-old (age group 2; solid
circles) capelin within the study area from 1972 to 2003. Note
the log10 scale. (B) Temperature and the spawning stock
biomass (SSB; 1 metric ton ¼ 1000 kg) of cod in the following
year from 1972 to 2003 (data from Anonymous [2004]).
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east) separately. According to the DDMW theory, the

aggregation of animals should increase with total

abundance. We tested this prediction by analyzing the

relationship between the spatial autocorrelation and the

total abundance of each age group in multiple regres-

sions.

Sea temperature, competition, and predation

It has been suggested that the spatial distribution of

capelin in the Barents Sea is determined by sea

temperature (Gjøsæter 1998). Specifically, ocean climate

might affect the position of the start of the feeding

migration and the migration length. Ocean climate was

accordingly included as a confounding variable in the

analyses. The climate fluctuations of the Barents Sea are

partly determined by the advection of warm Atlantic
water and partly by teleconnections of large-scale

atmospheric climate anomalies (Ottersen and Stenseth
2001, Ingvaldsen et al. 2004). These climatic drivers

cause marked and synchronous differences in sea
temperature between years. The ‘‘Kola section’’ is a
monthly, long-term data series of sea temperatures

along a fixed transect (33.58 E and 70.58–72.58 N, 0–
200 m depth) that capture the climatic anomalies of the

Barents Sea (Ottersen and Stenseth 2001). We used Kola
section data from September (Bochkov 1982) to

investigate the effect of sea temperatures on the spatial
distribution of capelin. Using temperature data from

other months or data on the percentage of ice cover
(data from Cavalieri et al. [2004]) gave similar results

and did not alter our conclusions.
Competition between the two age groups might be an

important factor that affects their spatial distribution.
Due to their larger size, age group 2 might for example

dominate age group 1, and a high abundance of age
group 2 might consequently have an impact on the

spatial distribution of age group 1. To control for such
effects, we included the abundance of the other age

group in the analyses.
Predation pressure might affect the spatial distribu-

tion and migration of capelin. Abundance of predators
should accordingly be included as a confounding

variable in the analyses. Cod is the major predator on
capelin (Bogstad and Gjøsæter 2001), and the abun-
dance of this predator has varied considerably the last

decades (Anonymous 2004; Fig. 2). We used the
estimated spawning stock biomass of cod (Anonymous

2004) the following spring as a measure of predation
pressure during the feeding migration of capelin.

RESULTS

Spatial displacement and gradients

The centers of the spatial distribution for each year
and age group are shown in Fig. 3A. One-year-old

capelin had generally a more southerly and easterly
distribution than 2-yr-old capelin. Mean differences in
the positions of CMDs between age groups 1 and 2 were

in the east direction 64 km (120, 9; 95% CL) and in the
north direction �166 km (�136, �197). The main

direction of the spatial displacements, as defined by
the principal axis from the PCA analysis (Fig. 3A), ran

in a northwest–southeast direction for age group 1. This
axis explained 69% of the variation in the position of the

CMDs. For age group 2, the principal axis ran in a
southwest–northeast direction and explained 78% of the

variation (Fig. 3A).
The spatial gradients in density for each year and age

group were investigated by multiple regressions with
density within the grid cells as the predictor variable and

the X and Y coordinates of the grid cells as explanatory
variables. The estimated coefficients for X and Y reflect

the direction and strength of the spatial gradients in

FIG. 3. Spatial distribution, principal displacement axes,
and density gradients of 1- and 2-yr-old capelin (age groups 1
and 2, respectively). Circles are the center of the mass of the
distribution (CMD) of 1-yr-old (open circles) and 2-yr-old
(solid circles) capelin from 1972 to 2003. (A) Dashed and solid
arrows show principal displacement axes of the positions of the
CMDs for age group 1 and age group 2, respectively. (B) Lines
show the direction and strength (length of the lines) of the
spatial gradient in densities (see Results: Spatial displacement
and gradients) for each year.
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density. The mean estimate for the increase in log10
density (original data in number per square kilometer)

per kilometer in the east direction were �0.14 (�0.41,
0.12)3 10�3 for age group 1 and�0.35 (�0.55,�0.15) 3

10�3 for age group 2. Mean estimates in the north

direction were �0.81 (�1.20, �0.43) 3 10�3 and 1.28

(0.91, 1.66) 3 10�3 for age groups 1 and 2, respectively.

Accordingly, the spatial gradients of the two age groups

ran, on average, in different directions (Fig. 3B); while

the densities of 1-yr-old capelin mainly increased

southward, the densities of 2-yr-old capelin increased

toward the northwest.

Abundance and spatial displacement

We used multiple regressions to investigate the

relationships between the displacement of the two age

groups along their principal axes and their total

abundance, sea temperature, and biomass of cod (Table

1). There was a positive correlation between the

abundance of the two age groups (R2 ¼ 0.52). These

two variables were therefore analyzed both alone and

together in the models. The directions of the axes are as

shown in Fig. 3A.

For age group 1, we found a negative relationship

between the displacement along the principal axis and

temperature, meaning that age group 1 was found

further to the northwest in warm years (Table 1).

Increased biomass of cod was marginally associated

with a displacement in the southeast direction. We found

strong relationships between the displacement of age

group 1 and the abundance of the two age groups.

However, these relationships worked in opposite direc-

tions (Table 1, Fig. 4A, B). When entered alone, there

was no significant relationship between the displacement

of age group 1 and its own abundance (P ¼ 0.78).

However, the displacement of age group 1 was

negatively related to the abundance of age group 2 (P

¼ 0.004; Fig. 4A). When this effect of age group 2 on

displacement of age group 1 was controlled for, the

relationship between the displacement of age group 1

and its own abundance became significantly positive

(Table 1, Fig. 4B). Accordingly, age group 1 was

displaced to the southeast when its own abundance

was high. However, that displacement was heavily

influenced by the abundance of age group 2, for which

abundance was positively associated with a displacement

to the northwest.

For age group 2, there was a marginally positive

relationship between the displacement along the princi-

pal axis and temperature (Table 1). We found no

significant relationship between the displacement and

the biomass of cod. Like age group 1, there were strong

but opposite relationships between the displacement and

the abundance of the two age groups (Table 1; Fig.

4C, D). When entered alone, there was a significant

positive relationship between the displacement of age

group 2 and its own abundance (P , 0.001; Fig. 4C).

When also entered alone, the abundance of age group 1

was marginally positively related to the displacement of

age group 2 (P¼ 0.06). However, when this effect of age

group 2 was controlled for, the relationship between the

abundance of age group 1 and displacement of age

group 2 became significantly negative (Table 1, Fig. 4D).

Thus, age group 2 was displaced to the northeast when

its own abundance was high, while high abundance of

the other age group was related to a displacement in the

opposite direction. It should be noted that the abun-

dance of age group 2 was more strongly related to the

spatial distribution of both age groups than the

abundance of age group 1. Thus, the distance between

TABLE 1. Multiple regression analyses of the yearly displacement in the distribution of 1- and 2-yr-old capelin (age groups 1 and 2,
respectively).

Factors

Spatial displacement, CMD (km
Distance, CMD (km)

Age group 1 Age group 2
From age group 1
to age group 2

Estimate (95% CL) P . jtj Estimate (95% CL) P . jtj Estimate (95% CL) P . jtj

Intercept 0.0 (�41.0, 41.0) 1.000 0.0 (�35.0, 35.0) 1.000 222.5 (189.7, 255.4) 0.000
Abundance

Age group 1 167.2 (70.7, 263.7) 0.002 �87.8 (�170.2, �5.4) 0.046 144.8 (67.7, 222.0) 0.001
Age group 2 �231.6 (�321.8, �141.4) ,0.001 217.2 (140.2, 249.2) ,0.001 �141.1 (�213.2, �68.9) 0.001

Environment

Temperature �113.1 (�196.6, �29.6) 0.013 68.1 (�3.2, 139.4) 0.072 �105.8 (�172.6, �39.1) 0.004
Cod standing
stock biomass

173.4 (�21.9, 368.7) 0.093 12.2 (�154.5, 179.0) 0.887 133.6 (�22.6, 289.7) 0.105

Notes: Independent variables are total abundance of the two age groups (log10-transformed), sea temperature (8C), and the
spawning stock biomass of cod in 1000 tons [1 metric ton ¼ 1000 kg] (log10-transformed). Independent variables were
standardized to mean equal to zero. Spatial displacement, CMD is the position in kilometers of the center of the mass of the
distribution (CMD) along the principal displacement axis (cf. Fig. 3A). Distance, CMD is the distance in kilometers between the
CMDs of the two age groups. Statistics indicating fit for the models with all factors included are: spatial displacement, age group
1, R2

adj ¼ 0.48, F4,27¼ 8.05; spatial displacement, age group 2, R2
adj ¼ 0.56, F4,27¼ 10.96; distance from age group 1 to age group 2,

R2
adj ¼ 0.54, F4,27¼ 10.20. Data were gathered during the annual scientific cruises in the Barents Sea during September from 1972

to 2003.
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the CMDs of the age groups increased with increasing

abundance of 1-yr-old capelin, while it decreased with

increasing abundance of 2-yr-old capelin and increasing

temperature (Table 1).

The results are illustrated in Fig. 5 in which the spatial

distributions of the two age groups are shown for three

selected years. In years when the abundance of age

group 2 was high, both age groups migrated deep into

the previously ice-filled areas in the northern part of the

study area, with age group 2 in the lead (e.g., 1974; Fig.

5). In years when the abundances of both age groups

were low, they were found in the central part of the

study area, indicating low migratory activity (e.g., 1986;

Fig. 5). When the abundance of age group 1 was high

relative to age group 2, the age groups were displaced to

the south and southeast, indicating a migration led by

the youngest age group into the southeastern part of the

study area (e.g., 1996; Fig. 5).

Abundance and spatial structure

Spatial aggregation was defined as the autocorrelation

between neighboring cells. The relationship between

spatial aggregation and capelin abundance, environ-

mental variables, and the direction between neighbors

was investigated in a multiple regression (Table 2).

Nonsignificant interactions between direction and the

other variables were removed from the models. For both

age groups, the spatial autocorrelation was positive in

all directions, indicating a patchy spatial distribution.

However, the autocorrelation between neighbors in the

east–west direction was higher than the other directions

for both age groups (Table 2, Fig. 6), suggesting that the

aggregations were elongated in the east–west direction

(cf. Fig. 5). It should be noted, however, that the spacing

between adjacent grid cells differed depending on the

direction. These differences might generate spurious

direction dependencies.

For age group 1, the spatial autocorrelation (i.e.,

aggregation) was negatively related to cod biomass,

while temperature showed a marginally positive rela-

tionship (Table 2). Age group 1 was accordingly less

aggregated under high predation pressure, while it had a

tendency to be more aggregated under high tempera-

tures. Spatial autocorrelation of age group 1 was

positively related to its abundance. This applied to

models in which the abundance was entered alone (P ,

0.001; Fig. 6A) and when it was controlled for the

abundance of age group 2 (Table 2). Entered alone, the

degree of spatial autocorrelation of age group 1 was also

positively related to the abundance of age group 2 (P ,

0.001). However, when controlling for the abundance of

FIG. 4. Spatial distribution of the center of the mass of the distribution of (A, B) 1-yr-old capelin (age group 1, A1) and (C, D)
2-yr-old capelin (age group 2, A2). Each circle represents one year and shows the average distribution of the respective age groups
in a given year (age 1 in A and B; age 2 in C and D). Shading of the circles represents the total abundance estimate (the total
estimated number of capelin in the study area) for each year. The log-transformed total abundance of age 2 capelin [log10(NA2)] is
shown in (A) and (C), and the log-transformed abundance of age 1 capelin relative to the abundance of age 2 capelin [log10(NA1/
NA2)] is shown in (B) and (D). Thus, (A) and (C) show that both age groups are displaced to the north in years of high abundance
of 2-yr-old capelin. On the other hand, (B) and (D) show that both age groups are displaced to the south in years with high relative
abundance of 1-yr-old capelin.
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age group 1, this relationship became marginally

negative (Table 2).

For age group 2, we found no significant relationships

between the environmental parameters and the spatial

autocorrelation (Table 2). Similar to that of age group 1,

the autocorrelation of age group 2 was positively related

to its own abundance both entered alone (P , 0.001;

Fig. 6B) and when controlling for the abundance of age

group 1 (Table 2). When the abundance of age group 1

was entered alone, it was positively related to the

autocorrelation of age group 2 (P , 0.001). However,

when controlling for own abundance, this relationship

became nonsignificant (Table 2).

The results are illustrated in Fig. 5 for three selected

years. In years of high abundance (e.g., 1974 and 1996

for age group 1 and 1974 for age group 2), the age

groups were aggregated in well-defined areas. In years of

low abundance (e.g., 1986 for age group 1 and 1986 and

1996 for age group 2), the age groups had a more

scattered spatial distribution.

DISCUSSION

This study demonstrates a strong relationship be-

tween the abundance and the spatial migratory pattern

of a small pelagic schooling fish. High abundance was

associated with increased aggregation and a longer,

presumably faster, migratory movement. We suggest

FIG. 5. Spatial distribution of 1-yr-old capelin (age group 1; left panels) and 2-yr-old capelin (age group 2; right panels) for
three selected years. Circle size indicates density (no./km2). The year 1974 was one with a high abundance of both age groups, 1986
was a year with generally low abundance, and 1996 was a year with high abundance of age group 1 relative to age group 2.
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that this result is related to food depletion and a

consequence of a behavioral response to differential

food densities across the migratory front (Wilson and

Richards 2000). According to the theory of area-

restricted search (Kareiva and Odell 1987), fish that

lag behind the movement should speed up as they move

through areas of low food densities. In contrast, fish that

are at the head of the movement should slow down as

they experience high food densities. Increased abun-

dance will increase the food gradient and the result is a

density-dependent migratory wave in which the ampli-

tude and velocity increase with abundance (sensu Wilson

and Richards 2000). Our test of the DDMW hypothesis

would have benefited from two additional lines of

evidence that we were unable to collect: estimates of

both prey density and the rate of movement of capelin at

the front and back of the aggregations. Future tests of

the applicability of the DDMW hypothesis in this and

other systems would benefit from such estimates.

Our suggestion that the density-dependent migratory

pattern is mediated through resource depletion is

supported by the fact that there is a close relationship

TABLE 2. Multiple regression analyses of the spatial aggregation of 1- and 2-yr-old capelin (age groups 1 and 2, respectively);
values are estimates and 95% CL of Moran’s I, with significance levels.

Factor

Age group 1 Age group 2

Estimate (95% CL) P . jtj Estimate (95% CL) P . jtj

Direction

E–W 0.725 (0.695, 0.755) ,0.001 0.734 (0.701, 0.767) ,0.001
S–N 0.552 (0.509, 0.594) ,0.001 0.538 (0.491, 0.584) ,0.001
SW–NE 0.556 (0.514, 0.599) ,0.001 0.553 (0.506, 0.600) ,0.001
SE–NW 0.546 (0.503, 0.588) ,0.001 0.523 (0.476, 0.569) ,0.001

Abundance

Age group 1 0.169 (0.134, 0.204) ,0.001 �0.029 (�0.068, 0.010) 0.143
Age group 2 �0.032 (�0.065, 0.001) 0.057 0.185 (0.149, 0.221) ,0.001

Environment

Temperature 0.028 (�0.003, 0.058) 0.078 0.008 (�0.025, 0.042) 0.635
Cod standing stock biomass �0.083 (�0.154, �0.012) 0.024 �0.038 (�0.116, 0.041) 0.346

R2
adj ¼ 0.67 R2

adj ¼ 0.68
F7, 120 ¼ 38.43 F7, 120 ¼ 39.21

Notes: Spatial aggregation was defined as the spatial autocorrelation (Moran’s I) in capelin densities (log10(density þ 1)-
transformed and standardized to mean equal to zero and standard deviation equal to one) between neighboring cells in the east–
west (E–W), south–north (S–N), southwest–northeast (SW–NW), and southeast–northwest (SE–NW) directions. Other
independent variables are the same as in Table 1. Nonsignificant interactions between direction and the other variables have
been removed.

FIG. 6. Spatial aggregation as a function of capelin abundance (log10-transformed) for (A) 1-yr-old capelin (age group 1) and
(B) 2-yr-old capelin (age group 2). Spatial aggregation was defined as the spatial autocorrelation (Moran’s I) between densities of
neighboring grid cells (see Methods: Spatial structure). Different directions between neighbors are indicated by different symbols;
E–W, east–west; S–N, south–north; SW–NE, southwest–northeast; and SE–NW, southeast–northwest.
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between capelin growth, capelin abundance, and zoo-

plankton biomass (Gjøsæter et al. 2002b). Sea temper-

ature had, as expected, an effect on the distribution of

capelin (Gjøsæter 1998). This effect was, however, small

compared to the density-dependent effect. Similarly, we

found a weak negative relationship between the spatial

autocorrelation and the biomass of the major predator

in the area, indicating that high predation pressure was

associated with a less aggregated spatial distribution.

Our results suggest that 1- and 2-yr-old capelin

migrate in opposite directions. This conclusion is based

on the two following findings. First, the spatial gradients

in densities of the two age groups had opposite

directions (Fig. 3A). Secondly, increased abundance of

1-yr-old capelin resulted in a displacement in the

southeast direction while an increased abundance of 2-

yr-old capelin was associated with a displacement in the

northeast direction. A division of the Barents Sea

between the two age groups may be a consequence of

unbalanced competitive abilities and will probably

reduce the adverse effects of intraspecific competition,

especially on the younger age group. Moreover, for both

age groups we found that the abundance of the other age

group had an opposite effect on the spatial displace-

ment. Furthermore, the effect of the abundance of 2-yr-

old capelin on 1-yr-old capelin was stronger than vice

versa. We suggest that this is an effect of dominance and

schooling behavior. When yearlings are outnumbered by

the older age groups, they may be led to follow the

schools of older capelin northeastward and consequently

be unable to initiate their southeastward migration. This

is further supported by the fact that the distance between

the age groups increased with increased abundance of

age group 1 and decreased with increased abundance of

age group 2. Corten (1999) suggested that the migratory

pattern of herring, another pelagic schooling fish, is

influenced by social learning by younger age groups

from older age groups. Once adopted, the migration

pattern tends to remain constant and changes are

usually initiated by a recruiting age group that lacks

the ‘‘guidance’’ of older herring. Similarly, our results

indicate that 1-yr-old capelin have a more variable

migratory pattern and that they are more influenced by

the older age groups than vice versa. The large variation

in age group strength suggests that the major migratory

pattern of capelin may change rapidly and unpredict-

ably. In the Barents Sea, such changes will presumably

have large consequences for ecosystem dynamics.

Capelin are major consumers of the zooplankton

production in the Barents Sea, and under high

abundance they effectively reduce the standing stock

biomass (Gjøsæter et al. 2002b). For an individual

capelin it will, under such circumstances, be advanta-

geous to be close to the front of the feeding migration. A

gregarious behavior will increase the likelihood of being

at the head of the migration and such behavior should

accordingly be favored. This behavior will however

increase the congregation of fish along the front and

consequently increase the food gradient across the front.

The aggregative mechanism due to different foraging
behavior across the front will consequently be rein-

forced. In other words, under high abundance the
migratory wave might be strengthened by a mutual
reinforcement between gregarious behavior and foraging

pattern (Wilson and Richards 2000).
In the model of Wilson and Richards (2000),

migratory waves formed when consumer abundance
was increased. However, at very high consumer abun-

dance the system collapsed and migratory waves failed
to materialize. In this situation the resource gradient

responsible for the migratory waves was not formed
because the resource was quickly consumed and held at

a low and constant density. In the Barents Sea system,
seasonal sea ice dynamics (cf. Fig. 1) ensures a spatial

mismatch between capelin and zooplankton each
summer. This initial mismatch will inevitably result in

a sharp gradient in zooplankton density under very high
capelin abundance, and a DDMW might consequently
be formed. In marine pelagic systems, seasonality and

spatial heterogeneity might be a prerequisite for
DDMWs to occur under high consumer abundance.

Such massive migrations of animals may have large
effects on the ecosystem. Compared to random foraging,

a migratory wave will systematically exploit the avail-
able habitat and will reduce the resources to very low

levels. A migratory wave is consequently a potentially
highly overcompensatory mechanism and might have

strong perturbing effects on populations and ecosys-
tems.
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