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INTRODUCTION

Many model studies in both physical and biological
oceanography concern the transport and dispersal of
tracers in the ocean. Examples of important processes
are the transport of fish eggs or larvae between spawn-
ing grounds and nursery grounds (e.g. Christensen et
al. 2007, this Theme Section), and the vertical distribu-
tion of fish eggs (e.g. Ådlandsvik et al. 2001, Boyra et al.
2003). Such studies can be done in the Eulerian frame-
work, which models the density of tracers as it evolves
in time, or in the Lagrangian or individual-based frame-
work, which adds single particles or individuals to a
numeric model of the ocean and tracks their motion.
One advantage of the individual-based framework,
which is particularly relevant for early life stages of fish,
is the ease of adding internal states such as condition
or developmental stages. The present paper concerns
individual-based models (see also Thygesen et al.
[2006] for comparisons and connections between the
Eulerian and the individual-based approach).

In many situations, it is important to include turbu-
lent dispersal in the model. Dispersal is typically mod-

eled with diffusion and simulated by means of random
walk schemes (Visser 1997). This is a reasonable
approach when the time scales of interest exceed the
so-called Lagrangian time scale, which measures the
persistency of the velocity of a passive tracer in turbu-
lent flow (U. H. Thygesen & A. W. Visser unpubl.). For
the vertical component, this time scale is on the order
of minutes (Yamazakiet al. 2002), whereas the horizon-
tal component is on the order of days (Garrett 2006). It
is often sufficient to model the vertical coordinate with
a random walk. This is because the horizontal disper-
sal may be dominated by longitudinal, or shear, diffu-
sion (Taylor 1954), i.e. the combined effect of vertical
mixing and the horizontal velocities varying over the
water column, or because horizontal eddies are resolved
by the circulation model. In this paper we, too, will
focus on vertical mixing.

One practical problem with random walk schemes is
that they perform poorly when the eddy diffusivity pro-
file is not smooth; then small time steps are required.
This is problematic in an oceanographic context,
where stratification may impose large local gradients
and curvatures. Moreover, when the eddy diffusivity
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profile is the output of a numerical model, the discrete
data points must be interpolated sufficiently smoothly.
Another issue concerns the boundaries at the surface
and bottom. Here, the standard algorithms implement
reflecting boundaries, but in this case the well-mixed
criterion requires the diffusivity to be constant near
the boundary (Ross & Sharples 2004), which does not
agree with physics. A similar problem arises even with
constant diffusivity when a vertical bias is present,
whether due to buoyancy, sedimentation, or active ver-
tical migration. Thus, the practical use of random walk
schemes for turbulent dispersal in combination with
circulation models is complicated by numerical con-
siderations and statistical verifications that the well-
mixed criterion (Thomson 1987) is met also in practice.
See Brickman & Smith (2002) and references therein
for a discussion of these difficulties.

On the other hand, in the literature of stochastic pro-
cesses (Gardiner 1985, Grimmett & Stirzaker 1992; see
also Csanady 1973, Okubo & Levin 2001), a common
cartoon model of 1-dimensional diffusion is a random
walk on a lattice in discrete time: at each time step, the
particle moves 1 step ‘up’ or ‘down’ with equal proba-
bility. The standard construction goes on to demon-
strate that if the spatial grid size k and the time step h
go to zero such that 2D = k2/h is constant, then the
limiting process is diffusion with diffusivity D.

The aim of the present paper is to point out that this
simple construction generalizes very easily to a situa-
tion in which the diffusivity is neither constant in space
nor in time and the grid is not equidistant. In this situ-
ation, the transition probabilities may be obtained from
a finite-volume discretization (Ferziger & Perić 2002) of
the underlying diffusion equation. Thus, it is straight-
forward to implement the scheme using output from a
circulation model that is discrete in space and time. It
does not require this output to be smooth, so no verti-
cal smoothing of diffusivity profiles is required. By con-
struction, this scheme always satisfies the well-mixed
criterion. This holds regardless of discontinuities and
boundary behavior of the diffusivity profile, and does
not require the time step to be infinitesimal, although
the basic algorithm does have a maximum allowable
time step.

We call the resulting algorithm a binned random walk,
since it does not keep track of the exact position of the
particle, but only models the bin (layer or cell) in which
the particle resides. Thus, if one is willing to settle with
this spatial resolution, then one may avoid the difficulties
with verifying the well-mixed criterion. This allows the
focus to shift towards the accuracy of the transients.

This binned random walk can also be used when a
vertical bias is present, for example, when fish eggs
are non-neutrally buoyant. The results will then be
comparable to the Eulerian finite-volume approach

used by Ådlandsvik et al. (2001) and Boyra et al.
(2003), and has the advantage that it can be used as a
component in a wider particle-tracking or individual-
based framework.

The paper is organized as follows. In the section ‘The
diffusion equation and its finite-volume discretization’,
we consider the diffusion equation, which models
unbiased dispersal and its discretization in space using
finite volumes. In the section ‘Lagrangian simulations’,
we discuss individual-based simulation of dispersal,
using the discretized diffusion equation. The section
‘An idealized example with stratification’ uses a hypo-
thetical example to illustrate dispersal when the rate of
mixing changes abruptly; this serves as an extreme
benchmark test for numerical schemes. The section
‘Biased random walks in the vertical’ includes vertical
bias, e.g. due to the dispersing particles being non-
neutrally buoyant. Finally, the ‘Discussion’ offers some
conclusions and a discussion of the merits, limitations,
and applicability of the scheme.

THE DIFFUSION EQUATION AND ITS
FINITE-VOLUME DISCRETIZATION

The starting point for our analysis is the concentra-
tion field C(z,t) giving the concentration C of a passive
tracer substance, measured in mass or numbers per
volume. Here, t > 0 is the time and z ∈ [0, d ] is the
height over the ocean floor, so that z = 0 corresponds to
the bottom and z = d to the surface. It is governed by
the diffusion equation:

C· =  –J ’  =  (DC ’)’ (1)

with no-flux boundary conditions, i.e. J = –DC ’ van-
ishes at z = 0 and z = d. C

.
indicates the time derivative

∂C/∂t, whereas the prime in, e.g., C ’ denotes the spa-
tial derivative ∂/∂z. J(z,t) = –D(z, t)C ’(z,t) is the vertical
diffusive flux. Note that the eddy diffusivity D may
depend on position and time, i.e. we have D = D(z,t).

To resolve this equation numerically, we pursue a
finite-volume discretization (Ferziger & Perić 2002) of
the vertical dimension, using a grid:

0  =  z0 < z1 < … < zn =  d (2)

while we keep time a continuous variable. The dis-
cretized system uses n control volumes, with volume i
containing the layer between z = zi –1 and z = zi. The
system keeps track of the amount of material mi in
each control volume:

(3)

with i = 1,…, n, but not of how this material is distrib-
uted within the layer. (We will think of mi as a biomass;
it could equally well be measured in numbers of indi-
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viduals). Note the difference between this approach
and a pure finite-difference method, which will model
the concentration of matter at grid points rather than
the amount of matter within grid cells. To pose a
dynamic equation for these amounts mi, we first
rewrite the diffusion equation (Eq. 1) in its integral
form, which is the mass balance equation:

m· (t )  =  J(zi –1,t) – J (zi,t) (4)

To close the system, we must approximate the fluxes
J = –DC’ in terms of the masses mi. To this end, first
note that the average concentration in control volume i
is mi/ki, where ki = zi – zi –1 is the width of layer i. Next,
the distance from the center of layer i to that of the
neighboring layer i + 1 is (ki + ki +1)/2. Combining
these, we obtain a first-order, finite-difference approx-
imation of the spatial derivative C’, which leads to the
approximation:

(5)

of J(zi, t). Here, Di is the diffusivity at the interface
between cells i and i + 1, i.e. at zi. Note that Ji, Di and
mi will depend on time, but that we suppress this
for notational convenience. Combining with the mass
balance of control volume i, we obtain:

m·
i =  pi –1mi –1 – (pi +qi)mi + qi +1mi +1 (6)

where the coefficients are:
(7)

(8)

These equations apply to all inner boundaries
between cells, but at the boundaries at the bottom and
surface there is no flux. This is achieved by setting p0 =
qn+1 = 0.

Note that the scheme is guaranteed to conserve the
total mass or number of tracers, since we are explicitly
modeling the fluxes; this is the advantage of the finite-
volume method. Also, the uniform concentration is
necessarily stationary: if there are no concentration
gradients, then there are no fluxes. These 2 desirable
properties are independent of the grid and also of the
diffusivities Di applied to the interfaces; they may vary
arbitrarily between adjacent cells, and they may be
interpolated from the output of a numerical circulation
model. So while interpolation requires some computa-
tional overhead and may give less accuracy, it does not
jeopardize the well-mixed criterion.

So far we have discussed the numerics of an Eulerian
model. For our development of the particle-following
algorithm, the following interpretation of the balance
equation (Eq. 6) is key: focusing on the term –pimi in

the derivative, we see that in a short time interval h,
there is an amount pimih of matter that is initially in cell
i and moves to cell i + 1. Thus, a fraction pih of the
material that is initially in cell i moves into cell i + 1.
Taking a random tracer molecule that is initially in cell
i, we see that the probability that this molecule moves
to cell i + 1 during the time interval is pih. Similarly, the
term –qimi means that the same random tracer mole-
cule has probability qih of moving into cell i – 1. These
are exactly the probabilities that we need to know
in order to simulate the random motion of a tracer
molecule.

LAGRANGIAN SIMULATIONS

Lagrangian random walk simulations of vertical tur-
bulent dispersal take as a mathematical starting point
the diffusion processes Zt (see Gardiner 1985 for back-
ground material). This is a stochastic process in con-
tinuous time that models the trajectory of a single par-
ticle; Zt is the vertical position at time t. It is connected
with the diffusion equation (Eq. 1), which governs the
transition probabilities of Zt. One characterization of
this process Zt is that it solves the stochastic differential
equation:

dZt =  D’(Zt,t)dt + 1222222D(Zt,t)22dBt (9)

This equation specifies the change dZt in the vertical
position Zt over an infinitesimal time interval dt. Here,
Bt is Brownian motion, i.e. a stochastic process for
which the increment Bt + h – Bt is a Gaussian distributed
random variable with mean 0 and variance h, for any
positive t and h. Note that the physical unit of Bt is the
square root of time, s1/2. Equations such as Eq. (9) allow
several different interpretations (Gardiner 1985), but
to obtain pure diffusion and, in particular, a uniform
steady-state concentration we must use what is known
as the interpretation of Itô. That is to say that Zt can be
approximated in discrete time with the Euler scheme:

Zt +h – Zt =  D’(Zt,t)h +1222222D(Zt,t)22(Bt +h – Bt) (10)

This is a stochastic recursion: given Zt, we may use a
random number generator to simulate Bt+h – Bt from a
Gaussian distribution with mean 0 and variance h, and
thus compute Zt +h. Note the term D’(Zt,t)h; with het-
erogeneous turbulence, this is a biased random walk.
Visser (1997) found that a more careful evaluation of
the square root improved accuracy. It is a result from
the theory for numerical analysis of stochastic differen-
tial equations (Kloeden & Platen 1995) that, as the time
step h goes to 0, the transition probabilities of the
discrete-time recursion converge to the solution of the
diffusion equation (Eq. 1). Fig. 1 gives a schematic
of the first few time points in such a simulation.
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For accuracy, the Euler scheme (Eq. 10) requires that
the relative change in diffusivity over a single time
step is small. To assess this change, we use Itô’s lemma
(Gardiner 1985); this is a stochastic version of the chain
rule of differentiation. We find that the change in diffu-
sivity D(Zt) experienced by the tracer over a small time
step h has mean (�D’�2 + D’’D)h and standard error
�D’�122222(2Dh), to the lowest order in h. Thus, the time step
h must be small relative to both D/(D’)2 and 1/ �D’’�
(compare Thomson 1987, Wilson & Flesch 1993). More
powerful numerical schemes are available (Kloeden &
Platen 1995), but in practical applications, where the
eddy diffusivity is not a theoretical profile but the out-
put from a circulation model, high-order schemes are
not well suited for increasing performance. This is
because the diffusivity is only known at discrete grid
points or as averages over discrete cells. This makes it
difficult to determine the derivatives of the diffusivity
that are needed in the typical higher-order scheme.

Due to these obstacles, we may choose to pursue the
less ambitious goal of just keeping track of which cell
(bin, layer) the particle is in. Recall the interpretation
of the finite-volume scheme (Eq. 6), that in a short time
interval of duration h a fraction pih of the material ini-
tially in cell i moves into cell i + 1, and likewise for the
other terms. For the Lagrangian simulation, this means
that a particle in cell i should, with probability pih,
move into cell i + 1 during the time interval. This leads
to the following discrete-time algorithm:

Binned Random Walk I:
(1) Let i be the number of the cell in which the particle

resides at time t.
(2) Sample a random number U, uniformly distributed

between 0 and 1.
(3) a. If 0 ≤ U < qih, move the particle to cell i – 1.

b. If qih ≤ U < 1 – pih, do not move the particle.
c. If 1 – pih ≤ U < 1, move the particle to cell i + 1.

(4) Advance time t to t + h and go to Step 1.

This algorithm simulates a Markov chain, which
approximates the diffusion process Zt. The transition
probabilities of this Markov chain converge to those of
the diffusion process Zt in the limit as the cell widths
and the time step h go to zero. The scheme requires
that the time step h is smaller than mini 1/(pi + qi),
because it should be impossible to remove more mate-
rial from a cell than is available. As a note, this condi-
tion is also known in the context of numerical analy-
sis of the Eulerian equation (Eq. 6), where it avoids
negative concentrations and guarantees stability of the
explicit time-marching scheme (see e.g. Ferziger &
Perić 2002, p. 145).

The scheme has the advantage that it works robustly
also when the jump rates pi and qi depend on time.
Although we concentrate on the 1-dimensional case,
this makes it possible to apply the scheme also in
3-dimensional situations; we comment briefly on this in
the discussion section. Note that the uniform distribu-
tion, where the probability of the particle residing in
each cell is proportional to the size of the cell, is neces-
sarily stationary in time for any time step below this
upper limit, by the construction of the finite-volume
scheme. Thus, no extra effort is needed to assure or
confirm that the well-mixed criterion is met.

With a uniform grid, constant diffusivity, and the
appropriate time step, the algorithm reduces to a stan-
dard unbiased random walk on a lattice (Csanady
1973, Okubo & Levin 2001). Furthermore, with a uni-
form grid but varying diffusivity, the algorithm
matches exactly the mean and the variance of the dis-
placement of a particle over a short time interval (see
Appendix 1).

When the jump rates pi and qi are constant in time,
we can approximate the diffusion process Zt with a
continuous-time Markov chain, thus eliminating the
fixed time steps and only sampling the process when it
shifts from one cell to another. To this end, we exploit
that the residence time in each cell is a random vari-
able following the exponential distribution with mean
1/(pi + qi) (Grimmett & Stirzaker 1992). We arrive at the
following continuous-time algorithm:

Binned Random Walk II:
(1) Let i be the number of the cell in which the particle

resides at time t.
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Fig. 1. The 3 schemes approximating diffusion, in the dimen-
sionless case, with constant diffusivity D = 0.3. a, the discrete-
time continuous-space Euler scheme (Eq. 10); b, BRW I:
Binned Random Walk I, discrete in space and time, with a
vertical grid size of 1 and a time step of 1; c, BRW II: continu-
ous-time Binned Random Walk II, with a vertical grid size of
1. Note that these are 3 different realizations, so the actual
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(2) Sample random numbers U and I, uniformly
between 0 and 1.

(3) Compute the residence time H in cell i as –(pi +
qi)–1 logU.

(4) a. If 0 ≤ I < qi/(pi + qi), move the particle to cell i – 1.
b. If qi/(pi + qi) ≤ I < 1, move the particle to cell i + 1.

(5) Advance time t to t + H and go to Step 1.

This algorithm avoids errors associated with dis-
cretization in time, which is appealing. However, when
many particles are simulated at once, it will result in a
different sequence of time steps for each particle,
which leads to a slightly more complicated implemen-
tation. When studying idealized flows, one will often
prefer to output the sequence of time steps as well as
the cell number, for each particle. In other situations,
one may choose to simply output the position of each
particle at fixed, regularly-spaced time steps.

Finally, when the jump rates pi and qi are constant,
we can compute the transition probabilities over long
time intervals as exp(Ah). Here, A is a tridiagonal
matrix with elements pi on the first superdiagonal, qi

on the first subdiagonal, and –pi – qi on the diagonal.
In the theory of Markov chains, A is known as the ‘gen-
erator’. Algorithms for computing this matrix exponen-
tial are well known (Moler & Van Loan 2003) and are
available in standard software packages. This allows
us to take arbitrarily long time steps without any error
associated with the time step, and thus also to verify
the effect of using finite time steps.

AN IDEALIZED EXAMPLE WITH STRATIFICATION

We consider vertical dispersion in a stratified water
column, with a total water depth of 50 m, and with per-
fect stratification so that the diffusivity is 0.1 m2 s–1

above the pycnocline at 25 m and 0.02 m2 s–1 below it.
This is not meant to accurately represent the physics
near a pycnocline, where we would expect a much re-
duced diffusivity at the very interface. Rather, it serves
as an extreme benchmark for numerical schemes. The
reason for this is that the gradient of the diffusivity D’
is effectively infinite at the interface and zero every-
where else. Since this gradient term appears in the
Euler scheme (Eq. 10), the scheme cannot be imple-
mented directly; also, the maximum time step as com-
puted in the section ‘Lagrangian simulations’ is zero.
We will see, however, that the binned random walk
performs well even in this extreme case.

We chose a non-regular grid with smaller grid cells
near the interface. This demonstrates that the spacing
in the finite-volume method needs not be regular, but
also increases resolution in the initial phase when par-
ticles are concentrated near the interface. Sufficient
resolution for the plots was obtained with 75 layers;

note that the well-mixed criterion will be met for any
number of layers. The pycnocline itself is in the middle
layer, Number 38.

We release an ensemble of 10 000 tracers at time t = 0
at the pycnocline, i.e. in the central layer. Fig. 2 shows
the vertical distribution during the initial phase of the
dispersion (Fig. 2b), when the effects of bottom and sur-
face are not yet noticeable. In this phase the solution is
analytically available (Appendix 2); note that more than
half the material moves into the zone with high diffusiv-
ity, where the tail is also longer. Fig. 2b also shows histo-
grams of the vertical position of tracers, which move ac-
cording to Binned Random Walk I (see the section
‘Lagrangian simulations’). Fig. 2b demonstrates the good
agreement between the stochastic simulation and the
analytical solution, also during transients.

Fig. 2 also shows the final phase (Fig. 2d–f), when
the material is approaching the final uniform distribu-
tion over the water column. Note that the time scale of
the final transition to uniformity is between 10 000 and
30 000 s; this may be confirmed by computing the half-
time of the slowest mode of the transition rate matrix A,
which is 5790 s.

The dots in Fig. 2d–f are histograms of stochastic
simulations with the naive random walk model Zt+h =
Zt + 1222222D(Zt)2 (Bt+h – Bt), obtained by omitting the bias
term D’(Zt)h in the Euler scheme (Eq. 10) (cf. Visser
1997). (Recall that D’ in our case is zero everywhere
except at the pycnocline where it is infinite). It is well
known (Visser & Thygesen 2003) that this scheme pro-
duces an incorrect steady-state concentration of C(z) ~
1/D(z), compare Fig. 2f. Fig. 2d,e demonstrates that
also the transients are qualitatively wrong, in that
initially the majority of particles move down rather
than up.

Finally, Fig. 2 contains sample paths obtained using
Binned Random Walk I (see the section ‘Lagrangian
simulations’; Fig. 2c).

BIASED RANDOM WALKS IN THE VERTICAL

While the previous derivation was for pure diffusion,
many applications have a vertical bias due to buoy-
ancy, sedimentation, or active vertical migration of
individuals. For example, Ådlandsvik et al. (2001)
derive the dynamics of the vertical distribution of fish
eggs and larvae from their buoyancy. Another example
of such a bias is diel vertical migrations. The starting
point for a simulation of vertical motion is the advec-
tion–diffusion equation:

C· =  –(uC – DC’)’ (11)

Here, u = u(z, t) is the bias, which mathematically
appears as an advective term and which may again
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vary with space and time. The appropriate boundary
conditions are no flux, i.e. that J = uC – DC’ vanishes at
the boundaries z = 0, d. To simulate the motion of a
particle, one may modify the Euler scheme (Eq. 10) to
include the bias term, but, once again, the boundary
behavior causes difficulties. In fact, a simple reflection
scheme with constant diffusivity corresponds to a
boundary condition C’ = 0 rather than uC – DC’ = 0.
This provides another motivation for performing the
simulation using a discrete-space Markov chain rather
than the Euler scheme (Eq. 10).

For a finite-volume discretization of Eq. (11), it is
always possible to use a first-order upwind scheme,
where the net advective flux from cell i to i + 1 is
approximated as:

(12)

Here, we use the shorthand ui = u(zi), i.e. the velocity
is evaluated at the cell boundary. The notation a � b
means min(a, b) and a � b means max(a, b). From the
Lagrangian point of view, it means that the rate of

transition to cell i + 1 for a particle in cell i is now:

(13)

and likewise the rate of transition to cell i – 1 for the
same particle is:

(14)

With these modified transition rates, the simulation
proceeds according to the algorithms of the section
‘Lagrangian simulations’.
Since this is only a first-order scheme, it introduces
numerical diffusion, which leads to poor accuracy. It
is therefore tempting to use a second-order central
scheme, in which the net advective flux from cell i to
cell i + 1 is approximated as:

(15)

This expression is derived by linear interpolation of the
concentrations mi/ki and mi +1/ki +1 from the cell centers
to their interface. This leads to transition rates:
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(16)

This will improve the accuracy, so that fewer levels
may be needed, although the requirement of positive
transition rates leads, in the uniform case, to the con-
straint P < 2, where P = �u�k/D is the cell Peclet number.
This condition is also well known in the field of numer-
ical analysis of partial differential equations; it avoids
oscillations (Vreugdenhil & Koren 1993) and guaran-
tees boundedness (Ferziger & Perić 2002, p. 145] in the
corresponding second-order numerical scheme for the
Eulerian advection–diffusion equation. As for the time
step, whether we use the first-order upwind scheme
or the second-order central scheme, the requirement
(pi + qi)h < 1 in this case incorporates the Courant-
Friedrichs-Levy stability condition for the advection
part. In the uniform case this simplifies to:

(17)

In summary, seen from a numerical perspective, it
is easy to include vertical bias, whether this is due to
non-neutral buoyancy or active vertical behavior:
given an advection–diffusion equation (Eq. 11), which
governs the concentration, we may use the technique
of this section to simulate the motion of an individual.
From a modeling perspective, however, it may not be
trivial to establish the right bias and diffusivity in
Eq. (11). Even for passive but non-neutrally buoyant
particles like fish eggs, the dispersal will differ from
that of a fluid element. When active vertical migration
is present, as may be the case for fish larvae, dispersal
is the result of both turbulence and unpredictable
individual motion. Although statistics may be obtained
from careful observations of individuals (Grünbaum
1999, Visser & Thygesen 2003), the variability in be-
havior is likely to limit the fidelity of the model. In this
situation, there is a limit to the effort that should be
invested in the accuracy of the numeric algorithms.

DISCUSSION

Although the theory of random walk models for
turbulent dispersal is fairly complete, at least in the
single-particle setting, the practical use remains
impaired by difficulties concerning the choice of time
step, the interpolation of eddy diffusivity profiles that
are only available in discrete points, and reflection
laws at the boundaries. These issues may lead to
accumulation of particles in disagreement with the
laws of physics, as may plain omission of the
corrective bias term, and require statistical efforts to
verify that the well-mixed criterion is not seriously

violated. In this situation, we believe that the binned
random walk discussed in this paper is a worthy alter-
native, because it satisfies the well-mixed criterion, by
construction, and is substantially simpler to imple-
ment than any other scheme to our knowledge.

The binned random walk will not deliver vertical
resolution beyond the width of the layers used. This in
itself is no disaster, as it can be argued that the ver-
tical resolution will, in any case, be bounded by the
width of the layers in the underlying circulation
model. Nevertheless, a practical question is how
many layers to include in the binned random walk.
One should at least use the same number as in the
underlying circulation model, but one can easily use
more, although the number of layers is naturally lim-
ited by computational resources. The computational
burden per time step is largely independent of the
number of layers, but the required time step to get
accurate transients will decrease with the number of
layers squared. Thus, the number of layers is a trade-
off between computational resources and the need for
vertical accuracy imposed by the variability of other
fields, e.g. the horizontal flow velocity. These trade-
offs are similar to the choice of time step for a stan-
dard random displacement model; although we have
not done a detailed comparison of numerical perfor-
mance, the 2 methods appear similar in terms of
computing time.

With a fixed discretization of the vertical, the choice
stands between the 2 algorithms described in the sec-
tion ‘Lagrangian simulations’. Binned Random Walk II
is the more efficient in ideal case studies where the
fields do not change with time, whereas Binned Ran-
dom Walk I is able to handle the time-varying fields of
typical realistic cases. With this algorithm, the choice
of time step h still remains. The absolute requirement
for the scheme to be well defined is that h < 1/(pi + qi)
for all i, so that all probabilities are between 0 and 1.
For accuracy, the time step must be small enough so
that >1 state transition in the continuous process is
unlikely. This, it may be shown, requires that h2(pi +
qi)2/2 is small. While this gives some guidance, the
quantitative effect of discretizing time (and, for that
matter, space) is easily analyzed using the Eulerian
counterpart, under frozen conditions, or Binned Ran-
dom Walk II. This should be contrasted with, for exam-
ple, the random walk scheme (Eq. 10), where it is sub-
stantially more difficult to determine even how much
the stationary distribution differs from the uniform one
for a given time step, let alone errors in transients.
Note, however, that the Euler scheme (Eq. 10) does not
have absolute requirements for the time step, only
requirements for accuracy.

One disadvantage of a binned random walk for ver-
tical dispersal is that the vertical position is necessarily
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discrete and, thus, cannot be a continuous function of
underlying parameters. This makes it more difficult to
base sensitivity analysis on individual trajectories
rather than on ensemble statistics, as may be done
with continuous-space, random walk schemes (U. H.
Thygesen & A. W. Visser unpubl.).

We have focused on the vertical dimension. Binned
random walk methods can easily be extended to 2- or
3-dimensional situations. However, for advection-
dominated horizontal flow these methods will suffer
from the same kind of numerical diffusion and dis-
persion problems as the finite-volume/differences
methods from which they are derived. It is therefore
recommended to use ordinary particle tracking in the
horizontal, maintaining the continuous particle posi-
tion. This can be combined with a binned random walk
in the vertical for approximate treatment of mixing,
buoyancy, and/or biological behavior. In this situation,
the vertical jump rates (i.e. the probabilities pi and qi)
will typically vary with both time and horizontal
position.

The oceanographic community generally agrees
that it is of primary importance that Lagrangian sim-
ulations of turbulent dispersal do not display aggre-
gation of particles due to artifacts of models or im-
plementations. In this regard, the formal statement of
the well-mixed criterion (Thomson 1987) was seminal
in that it gave a continuous-time, random-flight pro-
cess governing the motion of a tracer, which dis-
played the correct steady-state statistics and the right
inertial subrange. Unfortunately, the numerical issues
regarding discretization of this process, including
interpolation of gridded data and boundary behavior,
mean that the well-mixed criterion remains a hurdle
for practitioners, also when using random walks. In
the present paper, we have directed attention to the
fact that the well-mixed criterion can be satisfied in
practice, also in discrete time, by using a binned
random walk. Thus, we hope that the focus can shift
towards the accuracy of the transients, which in
many applications is of greater importance than the
steady state.
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Appendix 2. Diffusion with piecewise constant diffusivity

We consider the concentration field C(z,t) of a tracer in an
infinite 1-dimensional space, subject to pure diffusion with
diffusivity D+ for z > 0 and diffusivity D– for z < 0. If a unit
quantity of a tracer substance is released at the interface at
t = 0, then its density at time t is: 

To see that this is the right solution in the presence of the
discontinuity of D at the interface, note that this C satisfies

the integral form of the conservation equation, from which
the diffusion equation (Eq. 1) is derived: 

where a < b are arbitrary and J = –DC’ is the diffusive
flux.
Notice that the tracer substance is not equally divided
between the 2 regions; more material will be present in the
region where the diffusivity is higher.
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Appendix 1. Incremental mean and variance in random walks on grids

Consider first the Euler scheme (Eq. 10) and assume Zt is
given. The mean displacement is E{Zt +h�Zt} = Zt + D’(Zt,t)h,
whereas the variance of the displacement is V{Zt +h�Zt} =
2D(Zt,t)h. For the continuous-time diffusion process given
by the stochastic differential equation (Eq. 9), these expres-
sions are correct to first order in the time increment h (Kloe-
den & Platen 1995). Note also that the mean-square of the
increment coincides with the variance to first order in h,
since the mean is of first order in h.
Next, consider Binned Random Walk I (see section
‘Lagrangian simulations’), assume that the grid is uniform
so that zi – zi –1 = k for all i, and assume that the particle
at time t is in cell i. The mean displacement in the interval
(t, t + h) is:

Since the probability of a displacement of –k is qih, just as
th probability of a displacement of +k is pih. Using the usual
finite-difference approximation of D’, this agrees with D’h
where D’ is evaluated at the midpoint of cell i.
Next, the mean square displacement is: 

k2qih + k2pih =  (Di + Di –1)h

Again, using (Di + Di –1)/2 as an approximation for the diffusiv-
ity at the midpoint of cell i, this agrees with 2Dh. In summary,
the mean and variance of the increment in the Binned Ran-
dom Walk I agree with the underlying diffusion process, to
first order.
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