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Two scatterers at similar range give an echo which may appear to be due to a single scatterer.
Methods for determining target strength that depend on resolving single scatterers may fail in this
instance. Statistics associated with the described special case of coincidence are derived and
illustrated by theoretical computation for the SIMRAD EK500 echo sounder system with the ES38B
split-beam transducer resonant at 38 kHz. Connections to angle measurement in radar and swath
bathymetry and to bottom-scattering-strength measurement are noted. ©1996 Acoustical Society
of America.

PACS numbers: 43.30.Sf, 43.30.Gv, 43.20.Fn

INTRODUCTION

Many methods used to measure fish target strengthin
situ depend on resolution of single-target echoes. These in-
clude, for example, indirect methods, in which the effect of
beam pattern is removed statistically,1 and direct methods,
for example, those of dual beams and split beams, in which
the beam pattern effect is removed by means of phase mea-
surement with multiple beams.2

It is generally appreciated that single-target selection cri-
teria must be used with care, if not great care, to avoid ef-
fects due to the presence of multiple targets at similar ranges.
A practical illustration of the effect of selection criteria on
the resultant target strength distribution is obtained by chang-
ing the acceptance limits for echo length. Increasing the up-
per limit often increases the registration of large targets,
while decreasing the same may radically decrease both the
number and magnitude of accepted echoes. This illustration
becomes vivid when fish are loosely concentrated, as during
the process of nighttime dispersion. Dual-beam or split-beam
echo sounding systems, with so-called target strength analyz-
ers, generally continue to deliver target strength data what-
ever the state of concentration.

The interesting question thus arises as to the effect of
multiple targets with coincident or near-coincident echoes,
referred to forthwith simply as coincident echoes, on the ap-
parent single-target target strength distribution. It is re-
marked at the outset that this problem has important antec-
dents both in radar and in swath bathymetry. For radars used
in so-called very-high-precision tracking applications, mul-
tiple targets are known to be a source of error.3 A multiple
target may consist, for example, of two or more facets on the
same target, differing in angle or range with respect to the
transmitting or receiving antenna, or of different targets, such
as two unresolved aircraft flying in formation. It is appreci-
ated that the apparent angular location or range of the target
may be outside the physical region of the target.

In swath bathymetry, interference due to multiple targets
is recognized to be the major cause of depth error.4 Multiple
targets located at the same range on or in the bottom may
cause a phase sample dispersion,5 which is exactly analogous
to the angle error or ‘‘glint’’ in the mentioned radar applica-
tion. It may be significant that none of the methods described
or developed by Masnadi-Shiraziet al.6 is able to resolve

ambiguities due to multiple targets at the same range but
different angles or same angle but different ranges, suggest-
ing the fundamental nature of the problem.

In the present problem, the object of interest is the ap-
parent target strength, determined in part by the angle error.
This contrasts with the problem of angle error in radar and
swath bathymetry applications, where the object of interest is
the angle errorper se. It is consequently necessary to specify
a particular method for determining target strength. For defi-
niteness in numerical computation, this is assumed to be the
target strength analyzer in the SIMRAD EK500 echo
sounder system with split-beam transducer resonant at 38
kHz.7

I. THEORY

A. Beam pattern of a transducer aperture

The transducer is defined as a shaded planar array of
identical square elements. A subset of the elements defines
an aperture. For the particular apertureA, the beam pattern
amplitude factor in the directionk̂ is

DA~ k̂!5 (
jPA

wjE
A
exp~ ik–r !dAj Y (

j 8PA
wj 8 , ~1!

where k is the wave vector,k̂5k/k, wj is the amplitude
weight of thej th transducer element, andr is the position of
the differential surface elementdAj . In rectangular coordi-
nates, k̂5~sinu cosf,sinu sinf,cosu!. Referring r to the
centerr j of the j th transducer element, and integrating over
the area,

DA~ k̂!5D1~ k̂!(
jPA

wj exp~ ik–r j ! Y (
j 8PA

wj 8 , ~2!

where D15sinc~ka sinu cosf!sinc~ka sinu sinf! is the
beam pattern amplitude factor of a single, square array ele-
ment of side lengtha, sinc(x)5sin(x)/x.

B. Echo amplitude due to multiple targets at similar
range

The echo pressure resulting from ensonification of an
ensemble of targets can be expressed by the equation

p5( pjsj~ t22r j /c!, ~3!
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wherepj is the echo amplitude due to thej th target,sj is the
corresponding echo waveform,r j is the range of thej th tar-
get, andc is the speed of sound. For the narrow-band opera-
tion implicit in use of a resonant transducer, the individual
echo waveformssj are essentially identical, say, to the wave-
form

s~ t !5exp~ iv0t !rectS t2t/2

t D ,
wherev05ck is the angular frequency at resonance,t is the
signal duration, and rect(x)51 for uxu< 1

2 and 0 for uxu. 1
2.

For targets at similar, sufficiently large ranges in the trans-
ducer far field, differing by no more than one-half wave-
length,l/2, then to a very good approximation and to within
a constant of proportionality,

pj5bjs j
1/2, ~4!

wherebj5DTjDRj , DTj andDRj are the beam pattern am-
plitude factors of the respective transmit and receive aper-
tures in the direction of thej th target, ands j is the back-
scattering cross section of the same. Substituting in Eq.~3!
and ignoring common factors,

p5( bjs j
1/2 exp~ ic j !, ~5!

wherec j is the phase associated with thej th target, namely
4pr j /l.

In the special case of just two targets, which is the one
considered here, Eq.~5! can be simplified. To within a con-
stant phase factor,

p5b1s1
1/21b2s2

1/2 exp~ ix!, ~6!

wherex is the relative phase.
It is noted here that for the case ofn52 targets, a range

of variation inc j in Eq. ~5! of l/4 is sufficient to encompass
the entire range of possible interferences. In the more general
case ofn.2 targets, a range of variation inc j of l/2 is
sufficient, as is immediately evident by construction of pha-
sor diagrams.

C. Split-beam echo processing

A split-beam transducer is electrically divided into quad-
rants. When transmitting, all quadrants are excited simulta-
neously, forming a single beam. When receiving, each quad-
rant acts independently to generate its own received echo
signal. Half-beams are formed, and the phase difference be-
tween fore-and-aft halves and port-and-starboard halves de-
tected. Knowing these two angles, hence target direction, the
beam pattern is knowna priori. The effect of the beam pat-
tern on the sum-beam echo amplitude can thus be removed,
resulting in an estimate fors j . A mathematical description
follows.

For the assumed complex echo pressurep,

p5upuexp$ i tan21@ Im~p!/Re~p!#%. ~7!

The phase is tan21@Im(p)/Re(p)#. The quadrants of the
transducer are numbered sequentially from the forward star-
board quarter~1!, to forward port~2!, to aft port ~3!, to aft
starboard~4!. The result of combining the echo pressure reg-

istered by quadrants 1 and 2 is the half-beamh12, and so
forth. The angle of the target relative to the transducer in the
fore-and-aft plane is determined from the direction cosine

a5S21$tan21@ Im~h12!/Re~h12!#

2tan21@ Im~h34!/Re~h34!#%, ~8!

whereS is the so-called angle sensitivity factor, which is
used to convert the phase difference to a spatial angle. The
factorS is approximately equal tokd, whered is the effec-
tive distance between the transducer halves. The angle of the
target in the port-and-starboard plane is determined from the
direction cosine

b5S21$tan21@ Im~h14!/Re~h14!#

2tan21@ Im~h23!/Re~h23!#%. ~9!

Equations~8! and ~9! apply in the usual small-angle limit.
In a rectangular coordinate system with origin at the

transducer center,x axis pointing to starboard,y axis for-
ward, andz axis downward,

a5 k̂• ŷ5sin u sin f, ~10a!

b5 k̂• x̂5sin u cosf; ~10b!

hence

u5sin21~a21b2!1/2, ~11a!

f5tan21~a/b!. ~11b!

That is, the target position can be identified in ordinary polar
coordinates based on measurement of half-beam phase dif-
ferences, with immediate computation ofa andb.

Two targets at similar range but generally different an-
gular locations~u1,f1! and ~u2,f2! will produce echoes that
appear to be due to a single scatterer at a third location~u,f!.
If this lies in the main lobe of the split-beam transducer, it
will, under the stated condition of similar range, be perceived
as a single scatterer, and compensation for the apparent beam
pattern loss accordingly applied. Larger apparent target
angles are rejected. A series of measurements in the presence
of multiple targets will thus in general produce a distribution
of apparent single-target target strengths, at least some of
which are spurious.

II. COMPUTATIONAL METHOD

In order to investigate the effect of multiple targets on
the target strength distribution derived by means of split-
beam processing, the two-target case is considered according
to the following model.

A. Split-beam transducer

For definiteness, this is assumed to be the SIMRAD
ES38B transducer. This is a truncated square array of iden-
tical square elements of side length 30 mm and center-to-
center distance along rows and columns of 32 mm, with
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an operating resonant frequency of 38 kHz. The amplitude
weights in the forward starboard quadrant are shown in Fig.
1.

B. Transducer angle sensitivity factor

The nominal figure given by the manufacturer is 21.9.8

For the sound speed assumed here, namely 1470.6 m/s, de-
fined by temperature 5 °C, salinity 35 ppt,pH 8.8, and depth
0 m,9 this factor was determined by the following procedure.
For an assumed value ofS and given target position, the four
half-beams are computed, followed by computation of the
direction cosines in Eqs.~8! and~9!. Computation ofu andf
by Eq. ~11! allows the beam pattern compensation value to
be determined. Comparison with the beam pattern value at
the given target position allows the beam pattern compensa-
tion error to be gauged. Repetition of this computation for
each target position over a grid of points uniformly covering
the transducer beam cross section allows the mean beam pat-
tern compensation error to be determined. The described
computations are repeated for a range of values ofS. The
value that produces no mean beam pattern compensation er-
ror is S523.2. Use of this value ensures that the compensa-
tion method does not introduce a bias into the mean back-
scattering cross section of a single target.

C. Spatial distribution

The target range is assumed to be constant and equal for
the two targets to within one-quarter of the acoustic wave-
length. The targets are assumed to be distributed with equal
probability of occurrence anywhere in the cross section of
the transducer beam within the26-dB level, i.e., within the
angular zone of acceptance for split-beam processing. For
the ES38B transducer and medium sound speed of 1470.6
m/s, this zone is defined by a limiting polar angle that is to a
fair approximation 4.66 deg.

D. Target strength distributions

Each of two distributions is considered through the
probability density function of target strength TS.

~1! Constant target strengths: The respective target
strength distributions are

f 1~TS!5d~TS!

and

f 2~TS!5d~TS1DTS!,

whered is the Dirac delta function, andDTS is the constant
difference in TS.

~2! Normally distributed target strengths: Both target
strengths independently follow the same normal distribution,
namely,

f ~TS!5~2ps2!21/2 exp@2~TS2TS!2/~2s2!#,

where TS ands denote the respective mean and standard
deviation.

E. Echo amplitude

The two-target form is computed according to Eq.~6!,
wheres54p10~TS/10!, andx is uniformly distributed overp
rad. That is,

f ~x!5p21,

where 0<x<p.

F. Simulation of split-beam processing

In addition to computing the sum beam for use with Eq.
~6!, the quadrant-beam responses are also computed. Half-
beams are computed, assumingS523.2, and the alongships
and athwartships angles computed according to Eq.~10!. Use
of the resulting values in Eq.~11! determines the apparent
single-target position~u,f!, thence the sum-beam compensa-
tion factor b̂ if within the limiting angle. For a single real-
ization of the described stochastic model, then, the apparent
backscattering cross section is

ŝ5ub1s1
1/21b2s2

1/2 exp~ ix!u2/b̂2, ~12!

and the corresponding apparent target strength, forŝ in SI
units, is

TŜ510 log
ŝ

4p
. ~13!

G. Apparent target strength distribution

Repeated exercise of the model determines a series of
values for the apparent target strength. In this way the distri-
bution f ~TS! is generated. When simulated on a digital com-
puter, the values are sorted in contiguous TS bins of width
0.5 dB.

H. Numerical parameters

By simulation, two targets are allowed to occupy a range
of paired positions entirely covering the transducer beam
cross section with equal probability of occurrence. This is
done by systematic and uniform variation of the polar angles
u1 and u2 in 50 equal incrementsDu over 4.66 deg. The
azimuthf1 is varied over the range@0,p/4# in six increments
Df15p/24, andf2 is moved over the range@f1,f11p# in
16 increments of sizeDf25p/16. The represented incremen-
tal area thus increases as sinu1 sinu2 Du1 Du2 Df1 Df2. The
phasex is varied uniformly over the range@0,p# rad in 19
increments of sizeDx5p/19. In the first case of constant
target strengths, these are applied directly. In the second case
of normally distributed target strengths, these are indepen-

FIG. 1. Amplitude weights of elements in the forward starboard quadrant of
the SIMRAD ES38B transducer.
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dently drawn from the same distribution for each combina-
tion of valuesu1, u2, f1, andf2. A pseudorandom number
generator of linear congruential type is employed, with
simple realization onFORTRAN compiler f77 as implemented
on SUN computers.

III. RESULTS AND DISCUSSION

Apparent single-target target strength distributions are
shown in Fig. 2 for the case of constant target strengths and
in Fig. 3 for the case of normally distributed target strengths.

In the case of the constant target strengths, shown in Fig.
2, the strongest effect is observed for equal target strengths,
in Fig. 2~a!. With decreasing signal-to-noise ratio~SNR! in
Fig. 2~b!–~d!, the effect of the second, weaker target strength
is seen to be progressively less, evidently serving as a minor
perturbation to the single-target distributionf 1~TS!5d~TS!.
The results are further illustrated by the change in average
backscattering cross section of the apparent single target. For
the distributions shown in Fig. 2~a!–~d!, the corresponding
logarithmic measure is 2.04, 0.91, 0.52, and 0.12 dB, respec-
tively.

In the case of the normally distributed target strengths,
the resultant distributions of apparent target strength in Fig. 3
display characteristics that are consistent with those in Fig. 2
and which can be understood in their light. First, the distri-
bution in Fig. 3~a! closely resembles that in Fig. 2~a!, as
indeed it should since the case of constant and equal target
strengths can be viewed as the limiting case of a normal
distribution with vanishing standard deviation. Second, the
distribution of apparent target strength in Fig. 3~e!, due to the
single-target distributionN(0,10), bears a closer resem-
blance to the original single-target distribution than do any of
the others. With increasing dispersion, the chance of two
values being drawn from the same distribution being very
similar is small, while that of being quite different is large,
hence explaining the smaller effect, as also observed in Fig.
2~d! compared to that in Fig. 2~a!. The mean values of the
apparent single-target distribution, as computed in the inten-
sity ors domain, are 2.04, 5.12, 7.31, 9.45, and 15.33 dB for
the five distributions arranged in order of increasing standard
deviation. The corresponding values of the underlying
single-target distribution are 0, 0.11, 1.00, 2.75, and 10.32
dB, as this distribution is log-normal, with increasing bias
with increasing width.

The several distributions and computations of average
measures include only those echoes that survive the
detected-angle selection criterion, namely, thatu not exceed
4.66 deg. In the cases represented by Fig. 2~a!–~d!, the per-
centage of accepted echoes is 77.9%, 81.8%, 83.6%, and
86.8%, respectively. In the cases represented by Fig. 3~a!–
~e!, the acceptance number is in the range 77.7%–79.3%.

A detailed investigation identifies the nature of the rejec-
tion process for apparent single targets. When the quantities
b1s1

1/2 andb2s2
1/2 in Eq. ~6! are nearly equal, and the phase

factorx is close top, the sum becomes small and the appar-
ent phase angle unstable. Out-of-range values can then result.
These are rejected if greater than the threshold angle 4.66
deg, but other, irregular values not exceeding the threshold

angle wreak their damage on the apparent target strength
distribution.

The particular mean levels of target strength assumed in
the computations do not limit the results. In fact, the constant
value TS150 dB assumed in the computations in Fig. 2 and
mean distribution valueTS5 0 dB assumed for Fig. 3 may
be viewed as arbitrary references. The displayed distributions

FIG. 2. Probability density functions of the apparent single-target target
strength due to coincident echoes from two targets in the main beam of the
SIMRAD ES38B split-beam transducer, with constant target strengths
TS150 dB and TS2 as indicated in parts~a!–~d!. Part~e! is a superposition
of parts~a!–~d! but with the same scale.
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apply to other absolute levels by a simple translation in target
strength domain.

In general, no matter what the application, simultaneous
multiple-frequency measurements can help resolve situations
of ambiguity. The phase is sensitive to frequency, so situa-

tions of multiple scatterers will differentiate themselves from
single-scatterer situations through frequency-dependent
phases. If the apparent target position varies with frequency,
it can be assumed to be due to the presence of multiple
scatterers at similar range, hence rejected.

While the present study involves angle errors due to
interference, a problem common to both radar target-tracking
and swath bathymetry, results for the effect of angle error on
target strength may be directly applied to problems in acous-
tic scattering by the sea bottom. Makris and Berkson present
an empirical histogram of scattering strength with standard
deviation of 7 dB.10 Were this the underlying distribution of
each of two interfering targets, the result of coincidence
would be a broadening of the apparent single-target target
strength distribution to a degree intermediate to those in Fig.
3~d! and~e!, with standard deviations of 5 and 10 dB. Direct
measurements of bottom scattering strength, for example, of
the type reported by Jacksonet al.,11 may be corrupted by
angle errors due to coincident echoes. Methods for determin-
ing seafloor roughness that depend on measurement of echo
strength, for example, Stanton’s method,12 must also be af-
fected by coincidences. Constructing maps of seafloor acous-
tic backscattering strength, mentioned by de Moustier,13 is a
further process that would be sensitive to coincident echoes.

IV. CONCLUSIONS

Clearly, the presence of multiple targets at similar range
can change the character of a target strength distribution as
determined with a split-beam echo sounder. Two conse-
quences are broadening of the distribution and biasing of the
average measure of target strength. The effect of digital sig-
nal processing on split-beam operation, not simulated here, is
to produce a further, slight broadening of the distribution, but
without significant bias.

While the present analysis aims to quantify the effects of
coincidence in two-target echoes on target strength, as de-
rived with a particular split-beam target strength analyzer,
the effects are recognized to be common to other methods of
target strength determination that depend on the resolution of
single targets. Avoidance of multiple-target effects by oper-
ating only under unambiguous conditions of dispersion is the
recommended practice.
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