

Survey Report from the joint Norwegian-Russian Ecosystem Survey in the Barents Sea August - September 2010

Institute of Marine Research - IMR

Polar Research Institute of Marine Fisheries and Oceanography - PINRO

This report should be cited as:

Anon. 2010. Survey report from the joint Norwegian/Russian ecosystem survey in the Barents Sea August-September 2010. IMR/PINRO Joint Report Series, No. 4/2010. ISSN 1502-8828. 108 pp.

SURVEY REPORT

FROM THE JOINT NORWEGIAN/RUSSIAN ECOSYSTEM SURVEY IN THE BARENTS SEA AUGUST – SEPTEMBER 2010

Preface

The 7-th joint survey was carried out during the period 09th of August to 26th of September 2010. The survey plans and tasks were agreed in the annual IMR-PINRO meeting in March 2010 and all joint work was executed according to this plan.

The effort allocated to demersal fish investigation was reduced by 12 % compared to previous years. Other investigations were kept at the same level as in previous years. Consequently, a joint, but somewhat reduced "ecosystem survey" was carried out by IMR and PINRO also in 2010.

The content of this report covers many but not all aspects of the survey. The content will be updated and available in electronic form in the Internet (www.imr.no).

"Potato deck".

Photo: Dmitry Prozorkevich

This report was prepared in Svanhovd, Finmark, Norway 27-30 September and by correspondence, and the following has contributed:

Alexander Trofimov	Oceanography
Bente Røttingen	Pelagic fish stocks estimation, data analyses, map preparation
Bjarte Bogstad	Capelin stock analyses and prognosis (AFWG chairman)
Dmitry Prozorkevich	0-group, pelagic fish (survey coordinator)
Elena Eriksen	0-group indices calculation and map preparation
Harald Gjøsæter	Pelagic fish analyses, methods and descriptions (main editor)
Jaime Alvarez	Pelagic fish stock estimation, data analyses, map preparation
Pavel Murashko	Demersal fish data analyses
Randi Ingvaldsen	Oceanography, pollution (survey and meeting coordinator)
Sigurd Tjelmeland	Capelin stock analyses and prognosis
Tatyana Prokhorova	Sampling information, data fitness checking, fish health
Tor Knutsen	Zooplankton
Padmini Dalpadado	Zooplankton
Emma Orlova	Zooplankton
Lars-Johan Naustvoll	Phytoplankton
Vladimir Zabavnikov	Russian seabird and marine mammals
Mette Skern-Mauritzen	Seabirds and marine mammals
Lis L. Jørgensen	Benthos
Pavel Lubin	Benthos
Hilde Elise Heldal	Pollution

The scientist and technicians taking part onboard the research vessels and executing an enormous work for data collection are listed below:

Alexander Benzik, Alexander Pronuk, Alexandr Urko, Alexey Amelkin, Alexey Semenov, Alexey Astakhov, Andrey Sokolov, Anna Søderlind, Anne Sæverud, Anne-Christine Knag, Anne-Liv Johnsen, Arve Lynghammar, Bente Skjold, Bjarte Kvinge, Bjørn Vidar Svendsen, Bjørnar Ellertsen, Denis Zakharov, Eilert Hermansen, Eli Gustad, Else Holm, Eirik Grønningsæter, Gayantonia Franze, Gunnar Bakke, Gunnar Lien, Gunnar Richardsen, Halvard Larsen, Helga Gill, Hildegunn Mjanger, Ilja Dolgolenko, Iljas Shafikov, Inger Henriksen, Jan Frode Wilhelmsen, Jan Henrik Nilsen, Janicke Skadal, Jarle Kristiansen, Jarle Vedholm, Jon Rønning, Jostein Røttingen, Johanne Fall, Julio Erices, Karl-Erik Karlsen, Lage Drivenes, Laura Rey, Magnar Mjanger, Magnus Johannessen, Maxim Gubanischev, Merete Kvalsund, Mikhail Nosov, Nadezhda Ibragimova, Natalia Zhuravleva, Ole Dyping, Ole Oskar Arnøy, Ole Sverre Fossheim, Olesja Urko, Pavel Krivosheya, Olga Zimina, Pavel Lubin, Penny Lee Liebig, Peter Lawentry, Ronald Pedersen, Sergey Karlin, Silje Seim, Stuart Murray, Tatiana Gavrilik, Terje Haugland, Thomas de Lange Wenneck, Thomas Sivertsen, Tommy Sivertsen, Tor Knutsen, Valentine Anthonypillai, Valery Ignashkin, Veronika Vyaznikova, Viktor Ivshin, Yasmin Hunt

Special thanks to:

Crew of research vessels Johan Hjort, Vilnyus, G.O.Sars, Fridtjof Nansen and Jan Mayen for ensuring the investigation and good work.

Synopsis

The main aim of the ecosystem survey was to collect data about distribution and abundance of all sea organisms on different stages of their life's for estimation, including pelagic and demersal fish species, zooplankton, benthos, seabirds and mammals. An important task was also to collect information about sea environment, pollution etc.

The water temperature below surface in most of the observed areas was somewhat lower than in the same period in 2009 but still higher (0.3-0.9 $^{\circ}$ C) than the long term mean.

The 2010 year-classes of cod and saithe are rich. 0-group of capelin, haddock, redfish and polar cod are near the average level. 0-group of herring and long rough dab were estimated as poor. The year-class of Greenland halibut is uncertain but possibly also poor.

The total capelin stock was estimated at 3.49 million tonnes, which is 7% lower than last year. About 2.0 million tonnes were assumed to be maturing. Estimated maturing stock is 13% below the last year's estimate but above the long term mean level.

The polar cod stock was estimated to be 1.43 million tonnes, which is 36% higher than in 2009 and above the long term mean level.

The number of juvenile Norwegian spring spawning herring in the Barents Sea has decreased considerably and was estimated to be 1.8 billion individuals. Spring spawning herring was not found in the south-eastern part.

Blue whiting of age groups 3 to 13, but mostly age 5 - 6, were observed in the western part of the surveyed area. The biomass of this stock component was estimated to be 0.18 million tonnes, which is lower than in 2009.

Investigations in the area adjacent to the sunken nuclear submarine "Komsomolets" do not indicate a significant leakage from the submarine.

Numbers of Red King Crab in the survey area are considerably reduced. Numbers of Snow crab are also reduced. The benthos biomass distribution in 2010 was generally the same as in previous years.

Numbers of observed marine mammals increased by a factor of 4 relative to 2009. At least part of this increase is likely due to very good observation conditions during the survey. Many baleen whales were observed in association with capelin and polar cod concentrations. The marine mammals were mainly observed within their traditional distribution areas, except for white-beaked dolphins were only few observations were made in the southern and eastern Barents Sea.

The level of fish pathologies is not much (0.18 %) and it was lower than in 2009 (0.7 %).

The man-made pollution of the Barents Sea by garbage on surface and on bottom is quite significant.

CONTENT

1 METHO	DS	9
1.1 Hy	/DROGRAPHY	9
1.2 0 0	GROUP FISH INVESTIGATIONS	9
1.3 Ac	COUSTIC SURVEY FOR PELAGIC FISH	10
1.3.1	Area coverage	10
1.3.2	Computations of the stock sizes	11
1.4 BC	DTTOM TRAWL SURVEY	11
1.4.1	Strata system used	11
1.5 PL	ANKTON INVESTIGATIONS	11
1.6 St	OMACH INVESTIGATIONS	13
1.7 M	ARINE MAMMALS AND SEABIRDS INVESTIGATIONS	13
1.8 BE	NTHOS OBSERVATIONS	13
1.9 PC	LLUTION	14
1.10	FISH PATHOLOGY RESEARCH	14
2 RESULT	S AND DISCUSSION	15
21 Hy	VDROGRAPHICAL CONDITIONS	15
2.1 III	STRIBUTION AND ABUNDANCE OF \hat{D} -GROUP FISH	15
2.2 DI	Canelin (Mallotus villosus)	10
2.2.1	Cod (Gadus morbua)	17
2.2.2	Haddock (Melanogrammus aeglefinus)	17
2.2.3	Herring (Clunea harengus)	18
2.2.7	Polar cod (Boreogadus saida)	18
2.2.6	Saithe (Pollachius virens)	10
2.2.7	Redfish (Sebastes sp.)	19
2.2.8	Greenland halibut (Reinhardtius hippoglossoides)	19
2.2.9	Long rough dab (Hippoglossoides platessoides)	20
2.2.10	Wolffish (Anarhichas sp.)	20
2.2.11	Sandeel (Ammodytes sp.)	20
2.2.12	Blue whiting (Micromesistius poutassou)	20
2.3 DI	STRIBUTION AND ABUNDANCE OF PELAGIC FISH	21
2.3.1	Capelin (Mallotus villosus)	21
2.3.2	Polar cod (Boreogadus saida)	22
2.3.3	Herring (Clupea harengus)	23
2.3.4	Blue whiting (Micromesistius poutassou)	24
2.4 Di	EMERSAL FISH	25
2.4.1	Cod (Gadus morhua)	25
2.4.2	Haddock (Melanogrammus aeglefinus)	25
2.4.3	Saithe (Pollachius virens)	25
2.4.4	Greenland halibut (Reinhardtius hippoglossoides)	26
2.4.5	Golden redfish (Sebastes marinus)	26
2.4.6	Deep-water redfish (Sebastes mentella)	26
2.4.7	Norway redfish (Sebastes viviparus)	26
2.4.8	Long rough dab (Hippoglossoides platessoides)	26
2.4.9	Wolffishes (Anarhichas sp.)	26
2.4.10	Abundance and biomass estimation of the demersal fish	27
2.4.11	Thorny skate (Amblyraja radiata), boreal zoogeographic group	27
2.4.12	Northern skate (Amblyraja hyperborea), boreal zoogeographic group	28

2.4.13 Plaice (Pleuronectes platessa)	
2.4.14 Norway pout (Trisopterus esmarkii)	
2.4.15 New and rare species in the Barents Sea	
2.5 Phytoplankton	
2.6 ZOOPLANKTON	
2.7 MARINE MAMMALS AND SEABIRDS	
2.7.1 Marine mammals	
2.7.2 Seabirds	
2.8 BENTHOS INVESTIGATIONS	
2.8.1 Red King crab (Paralithodes camtschaticus)	
2.8.2 Snow crab (Chionoecetes opilio)	
2.8.3 Northern shrimp (Pandalus borealis)	
2.9 POLLUTION	
2.9.1 The sunken submarine "Komsomolets"	
2.9.2 Garbage	
2.10 FISH PATHOLOGY RESEARCH	
3 REFERENCES	
4 TABLES	
5 FIGURES	
6 APPENDIX	94
Appendix 1	
APPENDIX 2	

1 METHODS

During the survey, data on cruise tracks, hydrography, trawl catches, integrator values etc. were exchanged by e-mail between Norwegian vessels "G.O. Sars", "J. Hjort", "Jan Mayen" and Russian vessel "Vilnyus". Total Russian exchange of survey data were transmitted to the "head" IMR vessel "J. Hjort" before the Russian vessel returned to port after the survey. Final survey data from all vessels were collected during the meeting at Svanhovd after the survey.

1.1 Hydrography

The oceanographic investigations consisted of measurements of temperature and salinity in depth profiles distributed over the total investigated area and along the sections Fugløya-Bear Island, Bear Island-Vest, Kola, and Kanin. For the Vardø-North section, most of this was cut due to short time and only 4 stations between 75°30'N and 74°N were sampled. All vessels used CTD-probes. R/V Jan Mayen deployed 3 current meter moorings during the survey. The moorings were planned deployed on the slope between the Barents Sea and the Arctic Ocean north of Kvitøya, but due to heavy ice conditions the vessel could not reach the area. Instead one mooring was deployed south of Kvitøya and two on the slope just north of Sørkapp. Details of the moorings are given below.

Position of deployed moorings:

Latitude	Longitude	Bottom
		depth (m)
79°40.63'N	31°58.70'E	303
76°25.042'N	14°34.113'E	650
76°25.086'N	13°59.281'E	1000

1.2 0 group fish investigations

Since 1965 surveys in August/September have provided annual information on the abundance and spatial distribution of pelagically distributed 0-group fish of Barents Sea capelin (*Mallotus villosus*), Norwegian spring spawning herring (*Clupea harengus*), Northeast Arctic cod (*Gadus morhua*) and haddock (*Melanogrammus aeglefinus*) as well as several others (polar cod *Boreogadus saida*, long rough dab *Hippoglossus platessoides*, Greenland halibut *Reinhardtius hippoglossus*, redfish *Sebastes* spp. and others).

The distribution and abundance of 0-group fish were based on the catches, and measured in number of fish per square nautical mile. The trawling procedure consisted of pelagic trawl catches from a mid-water trawl with a quadratic mouth opening of 20x20 m. Since 1980 the standard procedure have been used on all vessels and trawling procedure consist of tows covering 3 depths, each over a distance of 0.5 nautical miles, with the headline of the trawl located at 0, 20 and 40 m and with trawling speed of 3 knots. Additional tows at 60, 80 and 100 m, also of 0.5 nm, were made when the 0-group fish layer was recorded deeper than 40 m depth on the echo-sounder.

The history of development of 0-group investigation, assessment methods and recalculation of abundance indices is described in details in earlier versions of the survey report (Anon. 1980, Anon. 1983, Anon. 2007) and in Eriksen et al., 2009.

1.3 Acoustic survey for pelagic fish

The survey area for the acoustic survey was equal to the total survey area covered during the ecosystem survey, i.e. the acoustic method was applied throughout the survey. All regions of the Barents Sea and adjacent areas of the Norwegian Sea were covered, with course lines about 35 nautical miles apart.

All participating vessels used ER-60 echo sounders (with ER-60 software). "G.O. Sars", "J. Hjort" and "Jan Mayen" used LSSS ("Large scale survey system"), while "Vilnyus" and "F. Nansen" used Famas for post processing of acoustic data. "G.O. Sars", "J. Hjort" and "Jan Mayen" were equipped with transducers on adjustable keels that can be lowered in rough weather to avoid the damping effect of bubbles. Echo intensities per nautical mile were integrated continuously, and mean values per 1 nautical mile were recorded for mapping and further calculations. The echograms, with their corresponding s_A -values, were scrutinized every day. Contributions from the seabed, false echoes, and noise were deleted.

The corrected values for integrated echo intensity were allocated to species according to the trace patterns and the frequency responses of the echograms and the composition of the trawl catches. For pelagic species, data from pelagic trawl hauls and bottom trawl hauls considered representative for the pelagic component of the stocks, which is measured acoustically, were included in the stock abundance calculations. For demersal species, mostly bottom trawl stations were used.

The echo sounders were watched continuously, and trawl hauls in addition to the predetermined hauls were carried out whenever the recordings changed their characteristics and/or the need for biological data made it necessary. Trawling was thus carried out both for identification purposes and to obtain biological observations, i.e., length, weight, maturity stage, stomach data, and age.

The vessels gave the s_A -values in absolute terms based on sphere calibrations, that is, as scattering cross section in m² per square nautical mile. The acoustic equipment of the vessels was calibrated by standard spheres.

1.3.1 Area coverage

In 2010 a total coverage of the planned survey area was obtained. The weather conditions were favourable during most of the survey. In mid August "Vilnyus" and "F. Nansen" started surveying in the south-eastern part of the Barents Sea. "F. Nansen" worked only for two weeks, while "Vilnyus" continued to cover the REEZ northwards. From the end of August the three Norwegian vessels joined the survey. "Jan Mayen" covered the Svalbard area, "G.O.Sars" covered the central parts of the NEEZ and "J.Hjort" covered the south-western and western part of the NEEZ. From mid September to the end of the survey at the 26th September, only "J.Hjort" and "Vilnyus" took part in the survey covering the northern areas east of Svalbard. A breakdown of the satellite antenna at "J.Hjort" at 17 September prevented data exchange with "Vilnyus" for the rest of the survey. This was a serious setback for the calculation of stock size estimates and for the production of hydrographic and fish distribution charts, which had to wait till after the survey was finished.

See Fig. 2.1-2.3 for details of the survey tracks.

1.3.2 Computations of the stock sizes

The computations of number of individuals and biomass per length- and age-group of the pelagic fish stocks were done in the same way as in previous years. For details see the 2006 ecosystem survey report (Anon. 2006).

Acoustic registrations of demersal fish were carried out along all cruise tracks, with division of s_A -values by species based on trawl catches data. Acoustic stock size estimates have not been calculated for these species.

1.4 Bottom trawl survey

Less bottom trawl stations were made by the Norwegian vessels in 2010 compared with previous years. The number and biomass of demersal fish per length- and age-group will be calculated from bottom trawl catches using the "swept-area" method. These results will be presented later, since the age determination of demersal fish will be carried out after the survey. In this report, preliminary calculations are shown for the total stocks.

1.4.1 Strata system used

A new strata system was constructed in 2004 (IMR) and 2009 (PINRO) covering the whole Barents Sea to include the total survey area. The new geographic system is also depth stratified using GEBCO depth data.

1.5 Plankton investigations

Data on phytoplankton abundance was obtained in several ways during the joint Russian-Norwegian Survey. On the Norwegian vessels "G.O. Sars", "Johan Hjort" and "Jan Mayen" samples for chlorophyll a were obtained at nearly all CTD stations through filtration of water from water bottles at discrete depths from 0 - 100 m including a surface sample taken using a bucket. The total number of samples varied slightly depending on bottom depth at the specific localities. Sea water samples were filtered using GFC filters, and samples were frozen for later analysis of chl a content at the IMR laboratory. For the vessels mentioned above nutrient samples were obtained from the same water bottles on most CTD stations, at depths from the surface to the bottom according to a predefined scheme as determined for the Ecosystem cruise and specific bottom depth of each station. Normally, onboard "G.O. Sars" a fluorimeter is used as an additional instrument, connected to the CTD, logging chl a fluorescence as a continuous vertical profile along with temperature and salinity for all CTD stations. These data must be calibrated with the help of chl a determined from the water bottle samples obtained at the same stations.

Samples for phytoplankton species composition and abundance have been obtained from the Norwegian vessels "G.O. Sars", "Johan Hjort" and "Jan Mayen". For every second or third station quantitative water samples were obtained from water bottles at 5, 10, 20 and 30 m depth. Immediate upon retrieval of the seawater rosette sampler, one 25 ml phytoplankton sample were taken from each bottle at the above mentioned depths. The samples were pooled in a dark light-protected 100 ml flask adding 2 ml lugol as fixative for later analysis. Slightly less frequent a 10 μ m meshed phytoplankton net with a 0.1 m² opening was vertically operated from 0-30 m to obtain a qualitative phytoplankton sample. After gentle mixing of the water from the net cod-end, one dark light-protected 100 ml flasks was filled with

approximately 80 ml seawater, then adding 2.5 ml 20% formalin for fixation. At some stations a parallel sample was taken and fixated in 2 ml lugol.

On Russian vessels species composition, species diversity, size structure, species abundance and biomass, and vertical and spatial distribution of microalgae were studied. Phytoplankton samples were obtained at the oceanographic stations using seawater rosette sampler from three depths or depth layers: the surface, a layer of 5 meters above the pycnocline, and the bottom layer (only on"Vilnjus"). Samples were preserved with buffered 40 % formalin to a final concentration of 2-4% immediately after sampling.

Zooplankton sampling on all three Norwegian vessels was carried out by WP-2 plankton nets with a 0.25 m² opening and 180 μ m mesh size. Usually two hauls were made at each station; one was taken from the bottom to the surface and the other from 100 m to the surface. In addition stratified sampling was conducted with the Mocness multinet plankton sampler on board "Johan Hjort" and "G.O. Sars". The sampling on the Russian vessel was carried out by Juday-nets with 0.1 m² opening and 180 μ m mesh size. Depth intervals for plankton sampling were the bottom-0m, 100-0m and 50-0m layers.

In addition, sampling of macroplankton were taken by plankton net BR (with a 0.2 m^2 opening and 564 μ m mesh size) connected with bottom trawl on the Russian vessel "Vilnyus", and with a new macroplankton trawl as described in the manual on the Norwegian vessels.

On board the Norwegian vessels samples were normally split in two, one part was fixated in 4% borax neutralized formalin for species analysis and the other one was size-fractioned as follows; >2000 μ m, 2000-1000 μ m and 1000-180 μ m size categories. These size-fractionated samples were weighed after drying at 60°C for 24 hours. For large organisms like medusae and ctenophores their volume fraction were determined by displacement volume. From the >2000 μ m size fraction krill, shrimps, amphipods, fish and fish larvae were counted and their lengths measured separately before drying. Chaetognaths, *Pareuchaeta* sp. and *Calanus hyperboreus* from the >2000 μ m size fraction were determined at the IMR laboratory in Bergen.

Processing of Juday net samples from the Russian vessels included weighing of wet samples to within 0,0001 g, with removal of excessive moisture by a filtering paper for species identification and abundance determination. A more detailed processing of species and stage composition as well as numerical abundance will be undertaken in the laboratory according to standard procedures. Dry weights will be derived using a conversion factor of 0.2. All zooplankton data will be presented as biomass or numbers per 1 m² surface.

Final plankton results will be presented later, since the samples are worked up after the survey.

1.6 Stomach investigations

According to agreement at the Russian-Norwegian meeting in March 2006 capelin and polar cod stomachs were collected at the Norwegian ("G.O. Sars", "J. Hjort" and "Jan Mayen") and Russian ("Vilnyus" and "F. Nansen") vessels in August-September 2010. Also stomach samples of cod were taken according to standard protocol on Norwegian vessels. On board "Vilnyus" and "F. Nansen" the stomach were analyzed both in commercial (cod, haddock, other) and non-commercial fish species. About 10 000 stomachs from different fish species were analyzed or collected during ecosystem survey.

1.7 Marine mammals and seabirds investigations

Marine mammals observations (species and numbers observed) were recorded onboard the Norwegian research vessels "G.O. Sars", "Johan Hjort", "Jan Mayen" and the Russian research vessels "Vilnyus" and "F. Nansen". Seabirds were observed from the same vessels, except for G.O. Sars were no seabirds were recorded.

Onboard the Norwegian vessels visual observations were made by three observers from the vessel bridges; one dedicated sea bird observer and two dedicated marine mammal observers. The marine mammal observers covered approximately the front 90° sector (45° each) and the sea bird observer covering one 90° sector along the ship side. While most species were recorded continuously along the cruise transects when steaming between stations, the ship-following seabird species (northern fulmars and gulls) were counted every hour.

Onboard the Russian research vessel observations of marine mammals and sea birds were carried out by one observer covering a full sector of 180° from the roof of the bridge about 9-10 m above the sea surface level. Observers were recording only along transects between stations. All species were recorded continuously along the transects. The ship-following seabird species (northern fulmars and gulls) were counted every hour.

Both observer activity and observer conditions (Beaufort Sea State, visibility and weather) were recorded continuously. Observer activity was limited by weather conditions. When the weather conditions were not sufficiently good for observations observation effort was stopped.

1.8 Benthos observations

The purpose of the benthos investigation was to monitor benthic habitats and communities in the Barents Sea by analysing the bycatch of the Campelen trawl on all Norwegian and Russian ships. This should lead to criteria for selection of suitable monitoring locations in the Norwegian and Russian EEZ and improved procedures for providing results on benthos relevant for an ecosystem approach to management of marine resources in the Barents Sea.

Bycatch of invertebrates were recorded from all bottom trawl hauls of the Russian "Vilnyus" (down to species-level) and "F. Nansen" (down to species-level) and the Norwegian "G.O. Sars" (down to species-level), "Johan Hjort" (down to species-level), and "Jan Mayen" (down to species-level).

At "Vilnyus", "Johan Hjort", "Jan Mayen", "G.O. Sars", and "F.Nansen" the benthic invertebrate bycatch from all hauls with bottom trawl (Campelen -1800) was processed to

species level onboard. Species difficult to identify was photographed and preserved in alcohol or formalin for later identification.

1.9 Pollution

In 2010, the monitoring of contaminants in the Barents Sea was restricted to the sampling from "Komsomolets", the Russian submarine which sank in international waters in the Norwegian Sea 180-190 km south-southwest of Bear Island at 73°43'16''N 13°16'52'' E. The submarine is lodged 2.5-3 m in muddy sediments at a depth of 1655 m. It was powered by a one pressurized-water reactor and its weapons included two nuclear torpedoes. The reactor and torpedoes are potential sources for radioactive contamination.

Samples of surface water were collected from the seawater intake on the vessel and bottom seawater was collected with large (10 L) water samplers. Sediment samples were collected with a sediment sampler of the type "Smøgen Boxcorer". The samples will be analysed for a range of radionuclides.

During the survey the amount and types of man-made garbage in the survey area were observed. During analysis of trawl catches all types of pollutants (plastic, metal, rubber, wood, etc.) was registered and weighted. The marine mammal observers registered the presence of floating man-made garbage on the sea surface. Type of pollutant and approximate volume were indicated and noted.

1.10 Fish pathology research

The main purpose of the fish pathology research is annual estimation of epizootic state of codfishes, flatfishes and wolffishes. The observations are entered into a databank on fish diseases and pathology. This investigation was begun by PINRO in 1999. In 2010 fish pathology research took place on "Jan Mayen", "G.O. Sars", "Johan Hjort" and "Vilnyus".

Fish pathologies were recorded according to the kinds of pathologies: ulcers, tumors, vertebral deformations, eyes and head pathologies, internal organs pathologies. Special attention was paid to pathology of Red Eyes Syndrome.

2 RESULTS AND DISCUSSION

Altogether, the joint survey included 134 vessel-days, compared to 127 in 2009, 141 in 2008, 210 in 2007, 205 in 2006, 208 in 2005 and 215 in 2004. Altogether, the vessels sailed about 19000 nautical miles with observations of 433000 square nautical miles. In total, the Norwegian vessels carried out 408 trawl hauls and the Russian vessels 302 trawl hauls, so in total 710 hauls were made during the survey (while 754 hauls were made in 2009, 776 in 2008, 1007 in 2007 and 999 hauls – in 2006).

Survey routes with trawl stations; hydrographical and plankton and environmental stations are shown in Fig. 2.1, 2.2 and 2.3, respectively.

2.1 Hydrographical conditions

2.1.1 Standard sections

Fig 2.1.1 shows the temperature and salinity conditions along the oceanographic sections: Fugløya – Bear Island, Bear Island –West, Kola, and Kanin. The mean temperatures in the main parts of these sections are presented in Table 2.1.1, along with historical data back to 1965. Anomalies have been calculated using the long-term mean for the period 1954-1990.

The Fugløya-Bear Island section covers the Atlantic inflow from the Norwegian Sea to the Barents Sea, while the Bear Island West section covers the Atlantic current that continues northward along the western coast of Spitsbergen. The mean temperature in the 50-200 m in the Fugløya-Bear Island sections was 0.4° C higher than the long-term mean for the period 1965-2010 and 0.2° C lower than in 2009. The mean temperature in the Bear Island-West Section was $0.3-0.7^{\circ}$ C higher than the long-term mean increasing westwards and with depth. In the upper 50 m negative temperature anomalies (-0.1° C) were observed.

The Kola and Kanin sections cover the flow of Coastal and Atlantic waters in the southern Barents Sea. At the middle of August 2010, the positive temperature anomalies of 0.6-0.95 where found in the Kola Section. Towards the end of September, the positive temperature anomalies in the inner part of the Kola Section remained unchanged while they decreased in the central and outer part. The decrease is probably due to northerly and north-westerly winds causing more intensive inflow of cold waters from the northern Barents Sea in the upper layers.

The inner part of the Kanin section had positive temperature anomalies of $0.3-0.7^{\circ}C$ at the end of August 2010. The outer part had a positive temperature anomaly of $1.3^{\circ}C$, which is $0.3^{\circ}C$ higher than in 2009.

2.1.2 Horizontal distribution of water masses and Polar Front

Horizontal distribution of temperature and salinity are shown for depths of 0, 50, 100 m and near the bottom in Figs 2.1.2-2.1.9. Anomalies of temperature at the surface and near the bottom are presented in Figs 2.1.10-2.1.11, calculated position of the Polar Front in Fig 2.1.12 and stratification in Figs. 2.1.13 and 2.1.14.

The surface temperatures gradually decrease northwards and it is only in the far northern areas of the Barents Sea temperatures below 0°C were observed. Compared to earlier observations the surface temperatures were both lower than in 2009 (0.5-1.3°C) and lower than the long-term mean (0.1-1.2°C). This shows that the summer heating of the surface this year has been less than normal or extensive downward mixing. The only area with positive surface anomalies (> 0.5°C) was near the Spitsbergen Archipelago and then mainly on the western side (Fig. 2.1.10).

Large decrease in surface temperature was observed northwest of Svalbard (Fig. 2.1.10), and this extended down to 100 m depth. In this area the temperature has decreased by close to 3° C compared to 2009.

Arctic Waters are usually most dominant in 50 m depth, and this year high positive temperature anomalies (0.7-1.6°C) were observed in the Arctic Water north of 76°N. Only small areas in 50 m depth had temperatures below $-1^{\circ}C$ (Fig. 2.1.4).

In 100 m depth and close to bottom, only small areas with temperatures below 1° C was observed (Fig. 2.1.6 and 2.1.8). The calculated position of the Polar Front shows a close to normal location (Fig. 2.1.12). Thus the warm waters north of the Polar Front were not due to shifts in the frontal position. The temperatures in the depths below 100 m were in general lower than in 2009 by 0.2°C, but still above the long-term mean (0.1-0.6°C) in most of the Barents Sea (Fig. 2.1.11).

The high temperature in the Barents Sea is mostly due to the inflow of water masses with high temperatures from the Norwegian Sea. During the last 8 years the inflow to the Barents Sea has been warm.

2.1.3 Stratification

Vertical stratification of the upper 50 m was calculated as the density difference between 50 m and surface (Fig. 2.1.13 and 2.1.14). The stratification was weak (close to 0) in most of the Barents Sea in 2010 (Fig. 2.1.13). Strong stratification was found only in the far northern parts close to the ice edge, and in the far southern and eastern parts due to river runoff. Compared to a long-term mean there is significant reductions in stratification in the northern and the southern areas (Fig. 2.1.14). Weak stratification may generate stronger supply of nutrients from the lower water masses, which is necessary to maintain primary production through the summer season.

2.2 Distribution and abundance of 0-group fish

The distribution of eleven 0-group fish species (capelin, cod, haddock, herring, polar cod, saithe, redfish, Greenland halibut, long rough dab, wolffish, sand eel) are shown in Figs 2.2.1-2.2.11. The density grading in the figures is based on the catches, measured as number of fish per square nautical mile. More intensive colouring indicates denser concentrations. Abundance indices calculated for most ecologically important species (capelin, cod, haddock, herring, polar cod, saithe, redfish, Greenland halibut and long rough dab) from 1980-2010 are shown in Tables 2.2.1 to 2.2.2. Length frequency distributions of the main species are given in Table 2.2.3.

The 2010 the year classes of cod, haddock and saithe can be characterized as abundant. The 2010 year class of capelin is higher than average, while year classes of redfish and polar cod are close to average. Recruitments of herring, Greenland halibut, long rough dab and wolffish are poor.

2.2.1 Capelin (Mallotus villosus)

0-group capelin were distributed over a wide area - from the Norwegian and Russian coast until 77°N and between 15°E and 57°E (Fig. 2.2.1), and the boundary of capelin distribution was found in all directions. Highest densities of 0-group capelin were observed in the central and south-eastern part of the Barents Sea, between 25-35°E and 42-48°E.

Otoliths were taken regularly, and it was easy to separate 0-group fish from older fish due to different lengths of fish this year. The most part of fish were between 3.5 and 5.5 cm, with average of 4.4 cm. Very small fish were found near the Kildin Island (Murman coast) with length about 2 cm, which indicate that summer spawning has taken place in this area.

The calculated density varied from 162 to 8 million fish per square nautical mile. Mean catch per trawl was 1362 fish.

The 2010 year class is weaker than 4 previous year classes (2006-2009), although it is higher than long term average and can be characterized as relatively strong.

2.2.2 Cod (Gadus morhua)

0-group cod were distributed over a wide area, as usually (Fig. 2.2.2). The main dense concentrations were registered in the central part of the sea between $72^{\circ}N - 74^{\circ}N$ and $20^{\circ} - 35^{\circ}E$. Scattered registrations were observed until 77N and along the western and northern coast of the Spitsbergen up to $82^{\circ}N$.

The fish length of 0-group cod were between 4 and 14 cm. Most of the fish were between 7.0 and 9.0 cm, with mean length of 8.6 cm. The mean length is higher than the long term mean, which probably indicate suitable feeding conditions this year.

The highest calculated density was as 5.6 million fish per square nautical mile. Mean catch was 586 fish per trawl haul.

The abundance index of the 2010 year-class is 2 times higher than the long term mean level and the year class of 2010 can be characterized as strong. It is, however, lower than in 2008-2009.

2.2.3 Haddock (Melanogrammus aeglefinus)

The occupation area of 0-group haddock was considerably smaller in comparison with 2009. Haddock were observed mainly in the central parts of the Barents Sea from the 72N up to 73°N and between 19 and 29°E. S cattered concentrations were observed along the western and northern coast of Spitsbergen and along the Norwegian coast (Fig. 2.2.3).

The length of 0-group haddock varied between 4.0 and 14.0 cm and length of most of the fish was between 7.0 and 10.0 cm. Mean length of haddock was 8 cm, which is as higher than the long term mean. Larger fish indicates suitable feeding conditions this year.

The calculated density varied from 138 to 687 thousand fish per square nautical mile. Mean catch per trawl was 103 fish.

In 2005 an extremely good year class was observed, but since then, haddock abundance has varied considerably. The 2010 year class is only half of that in 2009, but higher than the long term level, and can be characterized as relatively strong.

2.2.4 Herring (Clupea harengus)

Since 2004 no strong year classes has been observed in the Barents Sea. The occupation area of herring is much smaller than in previous years. 0-group herring were distributed in the central part of the Barents Sea. A dense concentration of herring was observed between 73-74°N and 31-35°E (Fig.2.2.4). Scattered concentrations were observed in the southern part of the Barents Sea and to the west of Spitsbergen.

Mean length of herring was 7.0 cm, somewhat lower than in previous years. The length of herring varied between 3.5 and 9.5 cm, and most of the fish were 6.5-8.0 cm.

Mean catch per trawl haul was 287 fish, lower than in 2007-2009. The calculated density varied from 75 to 5.3 million fish per square nautical mile.

The 2010 year-class of herring is lower than the average level, and can be characterized as poor.

2.2.5 Polar cod (Boreogadus saida)

In 2010 the distribution of polar cod was continuous, and not split into an eastern and a western component. Polar cod was distributed from the western and southern coast of Novaja Zemlja to Spitsbergen (Fig. 2.2.5). A dense concentration was observed close to the western coast of Novaja Zemlya, while scattered concentrations occurred around Spitsbergen and in the northern parts of the Barents Sea.

The abundance indices were calculated separately for the eastern component and western components of 0-group polar cod. Abundance of both (eastern and western) components were somewhat lower than the long term averages.

The mean length of 0-group polar cod was 3.7 cm, and was much lower than in the last three years and long term mean. Most of the fish had length between 3 and 4 cm.

The 2010 year class of polar cod (summing the two components) seems to be poor. 0-group polar cod distributes further north and east than the surveyed area and only a part of the total distribution was covered during this survey.

2.2.6 Saithe (Pollachius virens)

Distribution of 0-group saithe was much wider than in previous years. Scattered concentrations were observed in the central, southern areas and along the Murman coast west of 43° E (Fig. 2.2.6). The main density was registered between 72-74°N and 25-31°E.

Length of 0-group saithe varied between 5.0 and 13.5 cm, and most of the fish were between 9 and 11 cm. Mean length of saithe was 9.8 cm, which is higher than the long term mean. Larger recruits this year indicate good feeding conditions during their first summer of life.

The maximum calculated density reached 77170 fish per nautical mile and the maximum catch was 458 fish. Both density and catch rates were much higher than in previous years.

Since 2006 abundance indices have continuously decreased, and in 2009 the index was 12 times lower than long term average. The 2010 year class was more than twice as high as the long term mean, and therefore the 2010 year-class of saithe in the Barents Sea may be characterized as strong.

2.2.7 Redfish (Sebastes sp.)

0-group redfish was observed in two components: one was registered in the central part of the Barents Sea between 72-74°N and 20° -32°E, and another to the west and north of Spitsbergen (Fig. 2.2.7). The distribution area of redfish was somewhat smaller, but had higher concentrations than in 2009.

In 2010 the mean fish length was 4.9 cm, which is higher than the long term mean. Larger 0group redfish in this year indicate good feeding conditions during the first months of life.

Mean catch per trawl haul reached 961 fish. The calculated density reached 24.5 million fish per square nautical mile.

The abundance of 0-group redfish is near the long term average. So the 2010 year-class may be characterized as average.

2.2.8 Greenland halibut (Reinhardtius hippoglossoides)

As in the previous four years, 0-group Greenland halibut were found in small areas and in very low densities to the north and west of Spitsbergen (Fig. 2.2.8). Greenland halibut starts to settle to the bottom before the ecosystem cruise is carried out, and there might be a strong variation in the timing of larvae settling. In addition, lack of trawling deeper than 60 m may introduce more uncertainties in abundance estimation. Therefore the calculated 0-group Greenland halibut is probably not reflecting the real year-class strength.

The mean length of fish was 6.3 cm, which is lower than in 2008 and 2009 when it was close to the long term mean. Fish length varied between 3.0 and 8 cm, while most of the fish was between 5.5 and 7.0 cm.

The calculated density reached 1797 fish per square nautical mile.

Greenland halibut increased in 2010, although the 0-group index is only half of the long term average.

2.2.9 Long rough dab (*Hippoglossoides platessoides*)

Long rough dab was distributed in patches in the southern, central and north-western parts of the Barents Sea (Fig.2.2.9). Dense concentrations of 0-group long rough dab were not observed during the survey.

Mean length of fish was low (3.1 cm), which is the same as in the last 5 years. In most catches fish lengths between 2.5 and 4.0 cm dominated.

Mean catch was very low and some catches reached up to 158 fish. The calculated density reached only 28.8 thousand fish per square nautical mile.

The 2010 year-class of long rough dab is approximately 5 times lower than the long term mean. Therefore the year class in 2010, may be characterized as poor as in 2009.

2.2.10 Wolffish (Anarhichas sp.)

In the Barents Sea three species of wolfish are found: Atlantic wolffish (*Anarhichas lupus*), Spotted wolffish (*Anarhichas minor*) and Northern wolffish (*Anarhichas denticulatus*). Due to uncertainty in species identification at the 0-group stage it was decided to combine the species into a larger group (genus) during the 0-group investigations.

0-group wolffish was found at some stations in the central area and south and north of Spitsbergen (Fig. 2.2.10).

The calculated density reached 1620 fish per square nautical mile, which was lower than in 2008-2009. No index is calculated for this species.

2.2.11 Sandeel (Ammodytes sp.)

In the Barents Sea Ammodytidae are represented by *Ammodytes marinus* which is distributed along the Norwegian coast, and *Ammodytes tobianus* which distributed in the southeast and between Novaya Zemlya and Bear Island. Due to uncertainty in species identification at the 0-group stage it was decided to combine species into a larger group (genus).

Some concentrations of 0-group sandeel were found in the central and south-eastern parts of the Barents Sea (Fig. 2.2.11).

Mean catch was 6 fish per trawl haul, which is much lower than in 2008-2009. The calculated density reached 221 thousand fish per square nautical mile. This is lower than in 2008-2009. No index was calculated for this species.

2.2.12 Blue whiting (Micromesistius poutassou)

Only one specimen of 0-group of blue whiting of 59 mm length was registered during the survey (74°04' N 25°54' E).

2.3 Distribution and abundance of pelagic fish

Numbers of fish sampled during the survey are presented in Appendix 1.

2.3.1 Capelin (Mallotus villosus)

2.3.1.1 Distribution

The geographical density distribution of capelin at age 1+ and for the total stock are shown in Figs. 2.3.1 and 2.3.2. The total distribution area of capelin was wider than in last year. It covered most parts of the Barents Sea and the areas to the west of Svalbard, but extended further to the north in the areas east of Svalbard, more resembling the distribution found in 2008. The main dense concentrations were found to the east of the Hopen island and northwards to King Karls Land. Young capelin were mainly found south of 76°N, and dense concentrations were located in the Central Bank area.

Sample echograms of capelin distribution in the northern area are shown in Fig. 2.3.3 and in north-western areas – in Figs. 2.3.4a,b).

2.3.1.2 Abundance estimate and size by age

A detailed stock size estimate is given in Table 2.3.1, and the time series of abundance estimates is summarized in Table 2.3.2. The main results of the abundance estimation in 2010 are summarized in the text table below. The 2009 estimate is shown on a shaded background for comparison.

Year	Year class		Number (10^9)		Mean w	eight (g)	Biomass $(10^3 t)$			
2009	2008	1	247.7	124.0	3.0	3.4	739.8	417.4		
2008	2007	2	127.8	166.4	10.2	10.9	1300.9	1821.8		
2007	2006	3	61.2	61.5	23.4	24.6	1432.0	1510.2		
2006	2005	4	0.9	0.3	26.7	28.4	25.0	7.1		
Total st	tock in:									
2010	2009	1-4	437.6	352.1	8.0	10.7	3498.0	3756.5		
	Based on TS value: 19.1 log L – 74.0, corresponding to $\sigma = 5.0 \cdot 10^7 \cdot L^{1.91}$									

Summary of stock size estimates for capelin

The total stock is estimated at about 3.5 million tonnes. It is about 7% lower than the stock estimated last year but higher than the long term mean level. About 59 % (2.1 million tonnes) of this stock is above 14 cm and considered to be maturing. The 2008 year class (1-group) consists, according to this estimate, of about 248 billion individuals. This estimate is 2 times higher than that obtained for the 1- group last year. The mean weight (3.0 g) is 0.4 g lower than that measured last year, and 0.6 g below the long-term average. The biomass of the 2009 year class is about 0.74 million tonnes, which is 1.8 times higher than one year olds in last year and above the long term mean. It should be kept in mind that, given the limitations of the acoustic method concerning mixed concentrations of small capelin and 0-group fish and near-surface distribution, the 1-group estimate might be more uncertain than that for older capelin.

The estimated number of the 2008 year class (2-group) is about 128 billion, which is about 77% the size of the 2007 year class measured last year. Consequently the biomass of the two years old fish is about 1.3 million tonnes. The mean weight at this age is 10.2 g, which is lower than in last year (10.9 g), but is near the same as the long-term average (Table 2.3.2).

The 2007 year class is estimated at about 61 billion individuals, which is equal to the threeyear-olds last year. This age group with mean weight 23.4 g (about 4.3 g above the long-term average) has a biomass of about 1.4 million tonnes. The 2006 year class (now 4 years old) is estimated at 0.9 billion individuals. With a mean weight of 26.3 g this age group makes up only about 23 thousand tonnes. Practically no capelin older than four years was found.

The capelin stock size estimate is used as input to the stock assessment and prognosis model for capelin (CapTool). The mature part of the stock is basis for the prognosis of spawning stock in spring 2011, where also mortality induced by predation enters into the calculations. The work concerning assessment and quota advice for capelin is dealt with in a separate report that will form part of the ICES Arctic Fisheries Working Group report for 2011.

2.3.1.3 Total mortality calculated from surveys

Table 2.3.3 shows the number of fish in the various year classes, and their "survey mortality" from age one to age two. As there has been no fishing on these age groups, the figures for total mortality constitute natural mortality (M) only. The estimates of M have varied considerably, and within survey uncertainties reflect quite well the predation on capelin. From 2006, the natural mortality started to decrease but increased to 47% in 2009. In 2010 the M was estimated to a small negative value, as it was for the year classes 1992, 1994, and 2006, This shows that either the one-group are underestimated or the two-group is overestimated these years. Knowing that the measurement of the 1-group is more uncertain than the older age groups due to limitations in the acoustic method, the first mentioned possibility is the most probable.

2.3.2 Polar cod (Boreogadus saida)

2.3.2.1 Distribution

As in the previous year, the polar cod distribution in the Barents Sea was almost completely covered. The polar cod stock was widely distributed in the northern and eastern parts of the Barents Sea and adjoining part of the Kara Sea (to the north of Novaja Zemlja). The geographical density distribution for fish at age 1+ and for the total stock are shown in Figs. 2.3.5 and 2.3.6. The main concentrations of adult fish were found along west coast of Novaja Zemlja and young fish in the area between the 77-78°N 52-56°E. The first prespawning schools of polar cod was observed in the local area between 71-72°N and 50-52°E in August 29. A small area of scattered concentrations were observed to the east of Spitsbergen.

Figure 2.3.7 shows a typical acoustic registration of polar cod near the Novaja Zemlja.

2.3.2.2 Abundance estimation

The stock abundance estimate by age, number, and weight was calculated using the same computer program as for capelin.

A detailed estimate is given in Table 2.3.4, and the time series of abundance estimates is summarized in Table 2.3.5. The main results of the abundance in 2010 are summarized in the text table below. The 2009 estimate is shown on a shaded background for comparison.

Year	class	Age	Number (10^9) N		Mean weight (g)		Biomass $(10^3 t)$			
2009	2008	1	27.3	13.3	8.6	7.5	234.2	100.2		
2008	2007	2	18.3	22.2	29.7	22.2	543.1	492.5		
2007	2006	3	13.0	8.3	45.8	33.7	594.6	280.0		
2006	2005	4	1.3	0.34	46.8	48.8	58.6	16.6		
Total stock in										
2010	2009	1-4	59.8	44.1	23.9	20.2	1430.5	889.3		
	Based on TS value: 21.8 log L – 72.7, corresponding to $\sigma = 6.7 \cdot 10^7 \cdot L^{2.18}$									

Summary of stock size estimates for polar cod

The number of individuals in the 2009 year-class (the one-year-olds) is 2 times higher than the one-group measured last year. The mean weight is also higher, and therefore, the biomass of one-year-olds is 2.4 times higher compared to last year. The abundance of the 2008 year class (the two-year-olds) is 18.3 billions. This is almost 18 % lower than the two-group found last year but mean weight was 7.5 g higher. The biomass, therefore, increased significantly compared to the 2007 year-class estimated last year. The three-years-old fish (2007 year class) is about 13 billions, 1.6 times higher than the three-group estimated last year. The mean weight is considerable higher and the biomass of this age group is more than two times higher than that for the corresponding age group during the 2009 survey. The four-year-olds (2006 year class) are scarcely found, but the total numbers estimated are much higher then in last year. No fish of age 5 or higher were found. The total stock, estimated at 1.4 million tonnes, is 1.6 times higher to that found in 2009, due to good recruitment, high individual growth and good survival. The present estimate indicates that the polar cod stock is in good condition now.

2.3.2.3 Total mortality calculated from surveys

Table 2.3.6 shows the "survey-mortality rates" of polar cod in the period 1985 to 2010. The mortality estimates are unstable during the whole period. Although unstable mortalities may indicate errors in the stock size estimation from year to year due to incomplete coverage and other reasons, the impression remains that there is a considerable total mortality on young polar cod. Prior to 1993, these mortality estimates represent natural mortality only, as practically no fishing took place. In the period 1993 to 2006 catches were at a level between 1 and 50 000 tonnes. Since there has been a minimum landing size of 15 cm (from 1998, 13 cm) in that fishery, a considerable amount of this could consist of two- and even one-year-olds, and this may explain some, but only a small part of the high total mortality. From 2003 to 2004, 2006-2007 and 2009-2010 there are negative survey mortalities for age groups 1-2 and in 1998-1999 with 2003-2004 also for age group 2-3, confirming the impression expressed previously that in some years the estimate for various reasons were underestimates. Apart from these years, the survey mortalities have been quite stable in recent period.

2.3.3 Herring (Clupea harengus)

In the Barents Sea only young Norwegian spring spawning (Atlantic) herring is present, although some older herring may be found outside the coast of western Finnmark. At age 3-4 the herring migrates to the Norwegian Sea, where it spends the rest of the adult life. The young herring have very big fluctuation and abrupt changes in numbers in the Barents Sea.

In some cases it is difficult to assess the young herring stock size during autumn. The main problem is in distribution of herring schools close to the surface, above the range of the echo sounders. It is also problematic to get representative sampling of fish schooling near the surface.

2.3.3.1 Distribution

This year, no herring was found in the eastern Barents Sea. In the western part (Figure 2.3.8) herring in age groups 1-11 was registered. This is the first year since 2002 that no young Norwegian spring spawning herring has been distributed in the eastern Barents Sea.

The herring in the western component was very scattered. For the older age groups, the covered area only covers a small part of the distribution area, which stretches westwards into the Norwegian Sea.

2.3.3.2 Abundance estimation

The estimated number and biomass of western and eastern components of Atlantic herring for total age- and length groups are given in Table 2.3.7. The time series of estimates is shown in Table 2.3.8. In the text table below the main results of the abundance estimation in 2010 are summarized for young herring only (1-4 years old). The 2009 estimate is shown on a shaded background for comparison. It is noted that because of insufficient sampling of herring, this estimate divided on age-groups should be considered highly uncertain.

Year	class	Age	Numb	ver (10^9) Mean weight (g) Bi		Number (10^9) Mean weight (g) Biomass (10)		$ss(10^3 t)$		
2009	2008	1	1.047	1.538	32.9	31.4	34.5	48.4		
2008	2007	2	0.315	0.433	106.9	119.5	33.7	51.8		
2007	2006	3	0.234	1.807	157.7	159.0	37.0	287.3		
2006	2005	4	0.251	0.446	191.1	184.7	48.1	82.4		
Total s	Total stock in:									
2010	2009	1-4	1.847	4.224	82.8	111.2	153.3	469.9		
	Based on TS value: 20.0 log L – 71.9, corresponding to $\sigma = 8.1 \cdot 10.7 \cdot L2.00$									

Summary of abundance estimates of the portion of the herring stock found in the Barents Sea

The total abundance of herring aged 1-4 covered during the survey was estimated at $1.8 \cdot 10^9$ specimens (less than half the value estimated in 2009). The biomass of $0.15 \cdot 10^6$ t is more than 3 times lower than what was found in 2008.

Since 1999, young Norwegian spring spawning herring has been estimated in the Barents Sea, all previous years are enclosed in table 2.3.8 for comparison. During most years one and two year olds prevailed. In 2007-2008 three and four year olds dominated in the south eastern area (from Kanin herring mostly). In 2009 and 2010 herring of 3+ year olds were distributed mainly in the south western areas.

2.3.4 Blue whiting (Micromesistius poutassou)

In the western part of the Barents Sea blue whiting were observed as in previous years. The target strength used for blue whiting is uncertain, and the estimate should to a greater extent than the other estimates be considered as a relative quantity only.

2.3.4.1 Distribution

The distribution of blue whiting (all age groups) is shown in Figure 2.3.9. As in previous years the distribution area stretches eastward from the western boarder of the covered area up to $32^{\circ}E$ and from northern coast of Norway up to $77^{\circ}N$ to the west of Spitsbergen.

2.3.4.2 Abundance estimation

The estimated number and biomass of blue whiting per age- and length group is given in Table 2.3.9. Total abundance was estimated to be 0.9×10^9 individual fish and the biomass to $0.183 \cdot 10^6$ t. Since 2004-2005, when more than one million tonnes of blue whiting was found in this area, there has been a steady decrease in biomass (Table 2.3.10), and the age distribution has been shifted towards older fish. The main bulk of this stock component in 2010 consisted of 2001-2005 year-classes at age 5-9. Older fish were found in smaller quantities and only insignificant numbers of fish younger than 4 years old were found.

2.4 Demersal fish

Figs. 2.4.1-2.4.10 shows the distribution of demersal fish. Numbers of fish sampled during the survey are presented in Appendix 1.

2.4.1 Cod (Gadus morhua)

The distribution area of cod in the Barents Sea (Fig. 2.4.1) was completely covered. At this time of the year, towards the end of the feeding period, the distribution of cod is wide. Cod reach the limits of its natural habitat and could spread far north, east and northeast. Total distribution of cod was near the same as last year, but it stretched farther northwards, with high concentrations also in some areas north of 78°N (Fig. 2.4.2). The main concentrations were observed in three areas: one was to the south-west of the Novaja Zemlja archipelago, and the other ones were on Great Bank, and to the north-east of Hopen Island. The main biomass of cod was concentrated in the depth range from 150 m down to 250 m (75%).

2.4.2 Haddock (Melanogrammus aeglefinus)

The haddock distribution (Fig. 2.4.3) was totally covered during the survey. Haddock were distributed in a large area from the coast to 81°N and to east until 57°E. The main consentrations of haddock were found around Bear Island and on shallow sites in the southeast part of the Barents Sea which coincide with the distribution in 2009. Denser concentrations than last year were observed also in Pechora Sea and to the northwest of Spitsbergen. The greatest concentrations (70 % of total) were distributed on depths down to 100 m.

2.4.3 Saithe (Pollachius virens)

The survey has captured only a part of distribution of saithe around northern coast of Norway (Fig. 2.4.4). Essentially, saithe were distributed in the warm water masses along the coast of Norway and Russia between 19-33°E. 95% of the population was found in the depth range 150 to 300 m. The distribution of saithe in 2010 coincides with the distribution in 2009, but

with lower densities. Also in 2010 saithe has been caught to the north of Bear Island where it has not been found in recent years.

2.4.4 Greenland halibut (Reinhardtius hippoglossoides)

During survey mainly young age groups of Greenland halibut were observed (Fig. 2.4.5). The adult part of the stock was distributed outside of the survey area. Foremost concentrations were located in traditional places on slope around Bear Island-Hopen and in the deeper part around Spitsbergen to the Franz Josef Land archipelago and in the northern part of the Kara Sea. The main biomass (62 %) of Greenland halibut has been concentrated in the depth range from 250 m to 450 m. Increasing concentration of Greenland halibut in the deep-water zone in the southeast part of the Barents Sea was the main difference of the distribution in the current year in comparison to 2009.

2.4.5 Golden redfish (Sebastes marinus)

Golden redfish (Fig. 2.4.6) were distributed in the same part of the Barents Sea basin as in previous years. The main densities were detected along the shelf slope to the west of Spitsbergen archipelago and along the shelf slope to the southwest and central part of the Barents Sea. The main part (62 %) was concentrated at depths from 250 down to 350 meters.

2.4.6 Deep-water redfish (Sebastes mentella)

The main dense concentrations of deep-water redfish were distributed in traditional places of dwelling, and were found in western and north-western parts of the Barents Sea (Fig. 2.4.7). Most concentrations were located along the shelf slope off the Bear Islands and to the northwest of Spitsbergen. Mainly young age groups of *Sebastes mentella* were found to the east of Franz Josef Land in Saint Anna trench and in deep-water zone to the east part of the Barents Sea. The main biomass of Deep-water redfish (80 %) was concentrated in the depth range from 300 m down to 450 m.

2.4.7 Norway redfish (Sebastes viviparus)

Norway redfish (Fig. 2.4.8) were distributed in the southwest part of the Barents Sea. The main biomass of Norway redfish (70 %) was concentrated at depths from 250 m down to 350 m.

2.4.8 Long rough dab (Hippoglossoides platessoides)

As in previous years, distribution of long rough dab was wider than the other species. It was found in practically all areas, and the catches were quite high in most cases (Fig. 2.4.9). Catches of long rough dab were taken as far east as 77°E and north as 80°N in area of Saint Anna trench. The greatest catches of long rough dab were to the south from Spitsbergen, near Hopen Island, and on shallow sites in the central part of the Barents Sea. The main biomass of long rough dab (85%) was concentrated in the depth range from 100 m down to 300 m.

2.4.9 Wolffishes (Anarhichas sp.)

All of the three species - Atlantic wolffish (*Anarhichas lupus*), Spotted wolffish (*Anarhichas minor*) and Northern wolffish (*Anarhichas denticulatus*) had approximately the same catch rates.

Compared to 2009 the distribution of Atlantic wolffish was more limited (Fig. 2.4.10) and catches were lower. The greatest catches of Atlantic wolffish were to the south from Spitsbergen, near Bear Island, and on shallow sites in the southeastern part of the Barents Sea. The main biomass of Atlantic wolffish (74%) was concentrated in the depth range from 50 m down to 150 m.

Compared to 2009 Spotted wolffish was distributed more widely (Fig. 2.4.11). The greatest catches of Spotted wolffish were to the east from Bear Island, and on shallow sites in the southeastern and in the central part of the Barents Sea. The main biomass of Spotted wolffish (57%) was concentrated in a range of depths from 100 m down to 200 m.

In current year distribution of Northern wolffish was similar to that observed in 2009 with decreasing in the west Spitsbergen area (Fig. 2.4.12). Most concentrations were located in the central areas. The main part of the catches (70 %) were in the depth range 250-350 m.

2.4.10 Abundance and biomass estimation of the demersal fish

Preliminary estimation of the abundance and biomass of demersal fish was done. Definitive results will be presented after age reading. In the table results of estimation are presented.

	Abundance, 10 ⁶	Biomass, 10^3 t
Atlantic wolffish	16.6	17.1
Spotted wolffish	6.7	36.5
Northern wolffish	3.1	25.1
Long rough dab	2 520.1	355.6
Norway redfish	26.1	2.2
Golden redfish	22.2	4.3
Deep-water redfish	1 075.8	111.6
Greenland halibut	186.3	149.6
Haddock	2 289.1	1 406.0
Saithe	5.4	8.9
Cod	2 231.4	2 801.0

Preliminary estimation of the abundance and biomass of demersal fish.

A list of all fish species sampled during the survey is given in Appendix 1. Some species were chosen as indicator species to demonstrate the distribution patterns of fishes from the different zoogeographic groups: the Thorny skate (*Amblyraja radiata*), Northern skate (*Amblyraja hyperborea*) and Plaice (*Pleuronectes platessa*) (Figs. 2.4.13-2.4.15).

2.4.11 Thorny skate (Amblyraja radiata), boreal zoogeographic group

As in 2009 this species was quite widely distributed in the Barents Sea excluding southeastern and northeastern regions (Fig. 2.4.13). Most large catches were in the central area, around Bear Island and to the west of Spitsbergen and on shallow sites in the southeast corner of the Barents Sea. Catches of thorny skate were taken as far east as 50°E and north as 80°N in the

area of Saint Anna trench. The Thorny skate preferred to stay in a wide range of depths from 50 m down to 150 m (44 % of total was found there).

2.4.12 Northern skate *(Amblyraja hyperborea)*, boreal zoogeographic group

Northern skate was distributed in the northeast part of the Barents Sea and along the shelf slope to the west of Spitsbergen (Fig. 2.4.14). The main catches were from range of depths from 200 m down to 300 m (38 % of total).

2.4.13 Plaice (Pleuronectes platessa)

Plaice was mainly distributed (75 % of total) in the depth range from 50 down to 100 m northwest from Kanin peninsula (Fig. 2.4.15).

2.4.14 Norway pout (Trisopterus esmarkii)

Main dense concentrations of Norway pout were registered in the south-western areas (Fig. 2.4.16). At the same time along the warm Spitsbergen current Norway pout was observed until 79°N. Along the coastal North Cape current Norway pout were distributed eastward to 47°E. The main biomass of Norway pout (69 %) was concentrated in the depth range from 200 m down to 300 m.

2.4.15 New and rare species in the Barents Sea

In the survey there were both new species to the area and recordings for rare species in the area observations (Fig. 2.4.17). Some of these species have their main distribution in the warm waters of the Norwegian Sea (*Petromyzon marinus, Eutrigla gurnardus*) or in the cold waters of the Kara Sea (*Arctogadus glacialis*) bordering the Barents Sea, while others have highly specialized habitats. The greatest quantities of rare species were observed along slope of shelf in deep areas in the eastern part of the Barents Sea.

2.5 Phytoplankton

Data on chlorophyll **a**, nutrients and phytoplankton species composition are now being processed and analyzed at the IMR and PINRO laboratories. A summary and some preliminary results will be presented in an electronic attachment after the data have been worked up in the laboratories.

2.6 Zooplankton

The map of zooplankton sampling localities and sampling gear (Russian and Norwegian vessels) are shown in Fig. 2.2. The main results of the zooplankton observations will be presented in an electronic attachment after the data have been worked up in the laboratories. From Fig. 2.2 and Fig. 2.6.1 it is apparent that the investigated area is covered very well as seen from the number of CTD stations taken. From a total of 261 stations 373 WP2 net hauls were obtained by the Norwegian vessels "G.O. Sars", "Johan Hjort" and "Jan Mayen". For the second time the area north of Spitsbergen was covered with respect to mesozooplankton

distribution and abundance. Stratified sampling targeting slightly larger zooplankton (i.e. krill/amphipods) was conducted with the Mocness system, while a new Macroplankton trawl was operated in a double oblique haul from both "G.O. Sars" and "Johan Hjort", particularly in the central and northern regions of the Barents Sea to obtain integrated samples of krill and amphipods to better assess their population structure. The WP2 vertical net coverage is very satisfactory and comparable to the years 2006, 2007 and 2009. The table below gives an overview of total zooplankton hauls for different types of zooplankton sampling gear during the Ecosystem survey.

Net		Russian ships		
	«G.O.Sars»	«J.Hjort»	«Jan Mayen»	«Vilnyus»
WP-2	117	182	64	-
Juday	-	-	-	263
MOCNESS	13	15	-	-
Macroplankton trawl	5	11		
BR	-	-	-	32

Total number	[•] of zooplankton	net hauls	obtained	during	the	Norwegian	and	Russian
surveys in the	Barents Sea in A	ugust-Sept	tember 20	10.				

A map of the zooplankton biomass distribution based on Norwegian data is shown in Fig 2.6.1. From the Norwegian data, sampled in the western part it is evident that a greater region of the Barents Sea has very low biomass in 2010, hence compares to what was observed in 2008 and 2009. There is however evidence of a higher biomass region in the western Barents Sea. The average zooplankton biomass in 2010, based only on Norwegian data (i.e. the western half of the Barents Sea, excluding the area around Svalbard) is 6.6 g/m², compared to 6.48 g/m² for 2008 and 5.87 g/m² for 2009.

According to the Russian data (i.e. the eastern half of the Barents Sea) the highest biomass were observed in the central parts of the Barents Sea. Preliminary data (as a result of processing of 11 samples) show highly variable (2.9-27.0 g/m^2) zooplankton biomass in the central and north-eastern areas (77-81°N 36-70°E). Maximum (14-27g/m²) were found north of 81°N. Arctic species dominated the zooplankton composition with Metridia longa being the most abundant showing up to 90 ind./m³ in the central ($81^{\circ}N 44^{\circ}E$) and 440 ind./m³ in the north-eastern parts (77°30'N 54°50'E). In both cases the population of this species was represented by copepodid stages I-V. A part of the individuals reproduced, and this occurred most intensively in the north-eastern areas. Also Metridia nauplii were observed, and Pseudocalanus minutus (mainly copepodid stage IV and females) was numerous. Quantitative distribution of Calanus varied as well. In the north-eastern areas Calanus finmarchicus of stages I-V and females (up to 260 ind./m³) dominated followed by C. glacialis and C. hyperboreus (individuals of stage IV and females.. At this site the contribution of C. finmarchicus to the total biomass of Calanus was at a minimum – around 53%, while C. glacialis contributed with 38% and C. hyperboreus with 9%. In the north-central parts the densest concentrations were made up of C. glacialis of stages III-V and females. In this region reproduction of C. glacialis occurred and the ratio of males to females were 9:1. By means of this species around 86% of biomass was formed, which comprised 13.8 g/m^2 . Alongside with *Copepoda*, plankton had abundant representatives of other taxons. In the east the largest concentrations were made up of Oikopleura and juvenile Pteropoda. Sagitta (10-30 mm), Thysanoessa spp. (16-20 mm), Themisto abyssorum (8 mm), Pareuchaeta norvegica occurred in small numbers. The plankton composition was more variable in the central areas with additional *Themisto libellula* (16 mm), *Eukronia hamata* (31-34 mm) and larval *Polychaeta* and *Bivalvia*. *Nauplii of Calanus* spp. were scanty.

From the Norwegian vessel "G.O. Sars" a total of 117 WP-2 hauls (100-0 m and bottom-0 m) were conducted at 59 stations. From the Norwegian vessels no Juday net was deployed during the ecosystem survey in 2010. Hauls conducted west of the 500 m depth contour at the entrance to the Barents Sea as well as 200-0m net hauls where bottom depth significantly exceeds 200 m are not included. On "Johan Hjort" a total of 182 WP-2 hauls (100-0 m and bottom-0 m) were conducted at 102 stations. A total of 183 stations from all three Norwegian ships satisfied the extraction criteria for the bottom-0 m stratum.

Species composition, abundance and biomass from WP2 and Juday nets collected at the same stations in 2004 and 2005 have been partly analyzed and compared. Preliminary analysis has shown a significant variability in stage composition of key species of *Calanus*. Based on data from 2004 and 2005, including Russian data from 2006 when present, a more extensive comparison and analysis are now being undertaken to help quantify this variability. The agreement on comparative collection of zooplankton samples by WP-2 and Juday net on Norwegian and Russian vessels will be followed up by both parties with regard to working up samples, exchange of raw data, analysis and publication in relevant reports, symposia or international refereed journals. It is suggested that current and past effort is strengthened with additional sampling and also new approaches in future surveys with the ultimate goal of a unified sampling approach.

It was recommended for 2007, based on experience during field sampling in 2005 and from preliminary comparisons based on data from 2004 and the agreement outlined above, that a dual net system should be built that can hold both a WP2 and a Juday net for better performance and more efficient comparisons between the sampling gears. This was done during spring-summer 2007 and the new gear was deployed during the latter part of the "G.O. Sars" Barents Sea Ecosystem cruise 6-30 September 2007. Preliminary results from this gear comparison exercise have already been obtained, but a more thorough analysis is still needed. Additional *in situ* comparisons with the dual net system are warranted as the total number of hauls at this stage is low (19) and therefore should be expanded to obtain a data set that can be explored statistically in a reliable manner. Such an approach implies a significant effort for both IMR and PINRO plankton laboratories and their scientists, and it must be carefully evaluated how much time and effort can be dedicated to such future work. Analysis of the currently available data might give answers to this. It should be an aim to present a more complete analysis of the dual-net as electronic attachment to the Joint Ecosystem Survey Report.

2.7 Marine mammals and seabirds

2.7.1 Marine mammals

Marine mammals were observed during parts of the survey in 2010, and the observations are presented in Table **2.7.1**. and Fig. **2.7.1-2.7.3**.

In total 3400 individuals of marine mammals comprising 14 identified species were observed in the Barents Sea during the ecosystem survey in 2010. It is about 4 times the number of marine mammals individual observed in 2009, although the observed species are the same as in 2009.

Like in previous years, the most frequently observed species among marine mammals was white-beaked dolphin (about 36% of the total numbers of observations). In the eastern part, there were fewer white-beaked dolphins this year than in previous years. Most of the eastern white-beaked dolphins were recorded at Persey Hill, such as a group of 120 animals who associated with capelin aggregations. Also, many groups of white-beaked dolphins with 6-25 animals were observed in the central and western Barents Sea, possibly in association with juvenile herring and other fish species. Among the toothed whales, also the harbour porpoises, white whales, killer whales and sperm whales were observed. Small groups of harbour porpoises with 2-4 animals were recorded in the southern Barents Sea (on Fuuley Bank and Kanin Bank) and on the northern slope of Goose Bank. White whales were observed on the Kanin Bank in the southern Barents Sea only. Two groups of killer whales were recorded close to the central Novaya Zemlya (6 animals) and in the western Barents Sea (25 animals in the Kopytov Region). The first group was associated with polar cod aggregations, and the second group appeared to actively migrate northwards. Sperm whales were observed mainly individually and some times as pairs. All individuals were recorded in the western Barents Sea along the shlef edge.

Among the baleen whales, blue whale, fin whale, humpback whale and minke whale were observed. The most frequently observed was the humpback whale (about 19% of the marine mammal observations and more than 60% of baleen whale observations). This species was mostly observed on the Persey Hill and on the Novozemeliskaya Bank. The group sizes varied from 2-4 individuals to a group of 102 individuals north of the Edge Island. Several individuals were also observed close to Franz Jozef Land. Many humpback whales was recorded in capelin aggregations with varying capelin densities. Fin whales were observed in the western Barents Sea in small local groups (no more than 6 individuals). Generally, fin whales were observed in the same areas as humpback whales in the north, but also inhabited areas along the shelf edge in the western and southern Barents Sea. The fin whales were distributed in association with capelin and macro-plankton. As in previous years blue whale was recorded to north-western of West Spitsbergen Island only. Acoustic data from these areas suggest that both juvenile fish and macro-zooplankton were available prey in these areas. Minke whales were observed individually and in pairs in all areas covered by the ecosystem survey. Close to Novaya Zemlya minke whales were recorded in high polar cod densities, and near Franz Jozef Land in mixed aggregations of polar cod and capelin. On Persey Hill and near West Spitsbergen Island some minke whales were observed in capelin aggregations.

Seal species observed during the ecosystem survey were harp, ringed and hooded seals and walrus. Ringed and hooded seals were observed individually near Franz Jozef Land, western Spitsbergen and North-East Land Island. Harp seal was the most frequently observed seal species (25% of the total numbers of marine mammal observations and about 97% of pinnipedia). Harp seals were recorded as separate local groups (from 15 to 150 individuals) close to and along the ice edge. All groups were distributed in areas with capelin or macroplankton. The walruses were observed as groups in the drift ice near the Nort-East Land Island, while one walrus also was observed west of Spitsbergen.

Polar bears were observed in the areas inhabited by the harp seals.

2.7.2 Seabirds

During the ecosystem cruise 50 864 individual birds from 25 species were recorded from the vessels "Vilnius", "Nansen", "Johan Hjort", and "Jan Mayen" (Table 2.7.2). Northern fulmar, kittiwake and Brünnichs guillemot were the single most observed species comprising 69%, 12% and 11% of all observations, respectively.

The alcid seabirds were observed throughout the study area (Fig. 2.7.4), but species abundances and distributions varied geographically. Puffins inhabited the southern areas, common guillemots in the south-east, and Brünnichs guillemots in central and northern areas, although also common in the Pechora Sea. Little auks were numerous in the northern Barents Sea, while black guillemots were observed close to the Svalbard and Franz Josef Land archipelagos. Razorbills inhabited the southern coastal areas.

Northern fulmars, a ship-follower mainly recorded by the Norwegian observers, dominated more or less throughout most the surveyed area (Fig. 2.7.5). Among the tubenosed birds (*Procellariformes*) also 4 sooty shearwaters were observed (Table 2.7.2).

The distributions of the gull species are shown in Figure 2.7.5. Kittiwakes dominated numerically and were widely distributed. Great black-backed gulls and herring gulls inhabited the southern and south-eastern Barents Sea, while glaucous gulls were observed in the central Barents Sea. Six lesser black-backed gulls were observed in the Pechora Sea.

Skuas were abundant in the central, eastern and the northern Barents Sea, and pomarine skua dominated numerically (Fig. 2.7.6). Arctic skua was distributed in the central and eastern Barents Sea, great skua the in southern Barents Sea and around Bear Island, while 11 long-tailed skuas were observed in the central Barents Sea.

More anecdotal observations of other aquatic birds were also registered; Arctic terns were observed in throughout the Barents Sea. Few individuals gannets, purple sandpiper, blakthroated loon and bean goose were also observed (Table 2.7.2).

The observed distributions of birds shown in Figures 2.7.1-.2.7.3 are not effort corrected. Greater observation effort on the vessels Jan Mayen and Johan Hjort (one dedicated seabird observer) than on Vilnius and Nansen(one combined marine mammal and seabird observer) likely bias the observed sea bird densities towards the western Barents Sea. Note also that no seabird observer was on board GO Sars.

The quality and effectiveness of marine mammal and seabird investigations during the ecosystem surveys could be improved by the additional use of Russian aircraft as an airborne observation platform, particularly if covering the areas close to the ice edge. In particular, it is important to identify the distribution of the harp seals this time of year, as harp seals are not observed from the research vessels. Aerial surveys should thus continue as a part of the annual joint Russian-Norwegian ecosystem surveys and research.

2.8 Benthos investigations

Five vessels which were involved in the ecosystem survey in 2010 were recording benthos and shellfish in bottom trawling the Barents Sea. A standardized bottom trawling (Campelentrawl) was used across all the involved research vessels and covered the whole area of the Barents Sea (Fig 2.1). The biomass of invertebrates varied from 1 g to 2000 kg among trawl hauls.

The total biomass of all registered invertebrate catch (except *Pandalus borealis* "deep sea prawn") was summarized per station and is presented in Fig 2.8.1

The benthos biomass distribution in 2010 was generally the same as in previous years. The highest recorded biomass (2 tons of Geodia sponges "Porifera") was located in the northern part of the Kara Sea in the Saint Anna trough. In the south-western part of the Barents Sea there has been recorded up to 4 tons of Geodia (sponges) in previous years. But in this part of the Barents Sea, a dramatically reduction in catches was observed of this animal-group in 2010. This might partly be caused by increased effort to avoid such catches.

The benthos was splitted into eight animal groups – Annelida, Bryozoa, Coelenterata, Crustacea, Echinodermata, Mollusca, Porifera and Varia in order to show their distribution (Fig 2.8.2). This showed that the distribution was in accordance to all previous years and tells that the echinoderms (sea stars, sea urchins, brittle stars, sea cucumbers and sea lilies) make up the largest proportion of the biomass in the central and northern part of the Barents Sea. The crustacean biomass is mainly found in central and eastern parts of the Barents Sea, and, as the crustaceans, the mollusks (bivalves and snails) are present with their largest biomasses in the north-eastern part of the Barents Sea.

2.8.1 Red King crab (*Paralithodes camtschaticus*)

The Ecosystem Survey shows that the distribution area for the red king crab was located between $28-42^{\circ}$ E, and therefore close to the coast (Fig 2.8.3). The westernmost catch was near the Nord cape. The maximal quantity of king crab was 6 specimens per nautical mile.

Compared with previous years, the total area and number of king crab catches on the Ecosystem Surveys has decreased.

2.8.2 Snow crab (Chionoecetes opilio)

The Ecosystem Surveys in the Barents Sea shows an eastern distributed of the snow crab (Fig 2.8.4). This was also shown last year, but the frequency of occurrence of the snow crab has decreased in 2010 compared to earlier years. The snow crab was registered on 53 stations with abundances of 8-10 species in nearly all trawls.

2.8.3 Northern shrimp (Pandalus borealis)

Northern shrimp is widely distributed in the Barents Sea and were registered at 75 % of the stations (Fig 2.8.5). The density ranged between 0 and 124 kg tons/nml. As in previous years, the densest concentrations were found round Svalbard and in the central parts of the Barents Sea. The 2010 result also show relative large (about 50 kg/nml) catches of the Northern shrimp in the St. Anna trough in the northern part of the Kara Sea.

2.9 Pollution

2.9.1 The sunken submarine "Komsomolets"

Samples of sediment, surface and bottom water in the vicinity of "Komsomolets" from 2009 do not indicate a leakage of significance from the submarine, and the levels are comparable to those found in adjacent areas. Analysis of the samples collected in 2010 will be finished in late November 2010.

2.9.2 Garbage

Surface observations showed that floating garbage was found everywhere including ice cover in the northern regions. Areas of intensive fishery and navigation were the most polluted. The type of garbage observed floating at the surface is shown in Figure 2.9.1. Plastic dominates in the southern and central Barents Sea. According to the distribution it is likely that this garbage is brought into the area by the ocean currents.

Several observations of wood were made in the central Barents Sea between $75^{\circ}30'-77^{\circ}20'-N$ and $28^{\circ}10'-44^{\circ}00'$ E. The wood might be brought to the area by ocean currents from the eastern seas because of the timber-rafting from the Siberian rivers, or it might possibly be lost from ships.

Garbage was found in the 13 % of trawls, and plastic was dominant in both the pelagic and the bottom trawls (Figure 2.9.2 and 2.9.3). There were frequent observations of garbage in the eastern Barents Sea (north of the White Sea) and along a line going from the south-western Barents Sea toward northeast. Possibly this garbage was dumped from vessels along these lines.

Because the bottom trawl **catchability** is low for small density polymer materials the amount of the anthropogenic garbage in the Barents Sea may be larger.

Dangerous and potential dangerous objects were seldom presented in the observations. In the majority of cases only inactive objects were found, which do not have a direct harmful effect on the environment.

2.10 Fish pathology research

Fish health investigations were made onboard the Russian R/V "Vilnyus" and Norwegian R/V "Jan Mayen", "J Hjort" and "G.O. Sars". Of the 150 000 specimens observed during the survey only 289 (0.18 %) had pathologies. Fishes with different pathologies (ulcers, tumours, vertebral deformations, eyes and head pathologies, internal organs pathologies) were evenly distributed over the survey area (Figure 2.10.1).

Most pathologies were found on cod (0.46 % of cod), polar cod (0.31 %), haddock (0.19 %) and capelin (0.15 %).

More than half of all the registered pathologies (73.7 %) were "red eyes syndrome". This pathology was found among polar cod (42.7 % of polar cod with pathologies), cod (24.4 %) and capelin (22.1 %).

In the central part of the Barents Sea 0.22 % of 0-group cod had tumors of an abdominal cavity side because of parasites inside cells (Figure 2.10.2). In the rest of the Barents Sea tumors were found only in 0.06 % of the 0-group cod.

In general, the level of fish pathologies (0.18 %) was lower than in 2009 (0.7 %).

3 REFERENCES

- Anon., 1980. Preliminary report of the International 0-group fish survey in the Barents Sea and adjacent waters in August/September 1978. Annals biol., Copenh., 35:237-280.
- Anon., 1983. Preliminary report of the International 0-group fish survey in the Barents Sea and adjacent waters in August/September 1980. Annals biol., Copenh., 37:259-266.
- Anon., 2006. Survey report from the joint Norwegian/Russian ecosystem survey in the Barents Sea in August-October 2006 (vol.1). IMR/PINRO Joint Report Series, No.2/2006.ISSN 1502-8828.90 pp.
- Anon., 2007. Survey report from the joint Norwegian/Russian ecosystem survey in the Barents Sea in August-September 2007 (vol.1). IMR/PINRO Joint Report Series, No.4/2007.ISSN 1502-8828.97 pp.
- Eriksen, E., Prozorkevich, D. V. and Dingsør, G. E. 2009. An evaluation of 0-group abundance indices of Barents Sea Fish Stocks. The Open fish Science Journal, 2: 6-14.
- NRPA, 2009. Radioactivity in the Marine Environment 2007. Results from the Norwegian National Monitoring Programme (RAME). StrålvernRapport 2009:15. Østerås: Norwegian Radiation Protection Authority.

4 TABLES

Table 2.1.1. Mean water temperatures in the main parts of standard oceanographic sections in the Barents Sea and adjacent waters in August-September 1965-2010. The sections are: Kola (70°30'N – 72°30'N, 33°30'E), Kanin S (68°45'N – 70°05'N, 43°15'E), Kanin N (71°00'N – 72°00'N, 43°15'E), North Cape – Bear Island (NCBI, 71°33'N, 25°02'E – 73°35'N, 20°46'E), Bear Island – West (BIW, 74°30'N, 06°34'E – 15°55'E), Vardø – North (VN, 72°15'N – 74°15'N, 31°13'E) and Fugløya – Bear Island (FBI, 71°30'N, 19°48'E – 73°30'N, 19°20'E).

				Section and	l layer (dept	h in metres)		-	
Year	Kola	Kola	Kola	Kanin S	Kanin N	NCBI	BIW	VN	FBI
	0-50	50-200	0-200	0-bot.	0-bot.	0-200	0-200	50-200	50-200
1965	6.7	3.9	4.6	4.6	3.7	5.1	-	3.8	5.2
1966	6.7	2.6	3.6	1.9	2.2	5.5	3.6	3.2	5.3
1967	7.5	4.0	4.9	6.1	3.4	5.6	4.2	4.4	6.3
1968	6.4	3.7	4.4	4.7	2.8	5.4	4.0	3.4	5.0
1969	6.7	3.1	4.0	2.6	2.0	6.0	4.2	3.8	6.3
1970	7.8	3.7	4.7	4.0	3.3	6.1	-	4.1	5.6
1971	7.1	3.2	4.2	4.0	3.2	5.7	4.2	3.8	5.6
1972	8.7	4.0	5.2	5.1	4.1	6.3	3.9	4.6	6.1
1973	7.7	4.5	5.3	5.7	4.2	5.9	5.0	4.9	5.7
1974	8.1	3.9	4.9	4.6	3.5	6.1	4.9	4.3	5.8
1975	7.0	4.6	5.2	5.6	3.6	5.7	4.9	4.5	5.7
1976	8.1	4.0	5.0	4.9	4.4	5.6	4.8	4.4	5.8
1977	6.9	3.4	4.3	4.1	2.9	4.9	4.0	3.6	4.9
1978	6.6	2.5	3.6	2.4	1.7	5.0	4.1	3.2	4.9
1979	6.5	2.9	3.8	2.0	1.4	5.3	4.4	3.6	4.7
1980	7.4	3.5	4.5	3.3	3.0	5.7	4.9	3.7	5.5
1981	6.6	2.7	3.7	2.7	2.2	5.3	4.4	3.4	5.3
1982	7.1	4.0	4.8	4.5	2.8	5.8	4.9	4.1	6.0
1983	8.1	4.8	5.6	5.1	4.2	6.3	5.1	4.8	6.1
1984	7.7	4.1	5.0	4.5	3.6	5.9	5.0	4.2	5.7
1985	7.1	3.5	4.4	3.4	3.4	5.3	4.6	3.7	5.6
1986	7.5	3.5	4.5	3.9	3.2	5.8	4.4	3.8	5.5
1987	6.2	3.3	4.0	2.7	2.5	5.2	3.9	3.5	5.1
1988	7.0	3.7	4.5	3.8	2.9	5.5	4.2	3.8	5.7
1989	8.6	4.8	5.8	6.5	4.3	6.9	4.9	5.1	6.2
1990	8.1	4.4	5.3	5.0	3.9	6.3	5.7	5.0	6.3
1991	7.7	4.5	5.3	4.8	4.2	6.0	5.4	4.8	6.2
1992	7.5	4.6	5.3	5.0	4.0	6.1	5.0	4.6	6.1
1993	7.5	4.0	4.9	4.4	3.4	5.8	5.4	4.2	5.8
1994	7.7	3.9	4.8	4.6	3.4	6.4	5.3	4.8	5.9
1995	7.6	4.9	5.6	5.9	4.3	6.1	5.2	4.6	6.1
1996	7.6	3.7	4.7	5.2	2.9	5.8	4.7	3.7	5.7
1997	7.3	3.4	4.4	4.2	2.8	5.6	4.1	4.0	5.4
1998	8.4	3.4	4.7	2.1	1.9	6.0	-	3.9	5.8
1999	7.4	3.8	4.7	3.8	3.1	6.2	5.3	4.8	6.1
2000	7.6	4.5	5.3	5.8	4.1	5.7	5.1	4.2	5.8
2001	6.9	4.0	4.7	5.6	4.0	5.7	4.9	4.2	5.9
2002	8.6	4.8	5.8	4.0	3.7	-	5.4	4.6	6.5
2003	7.2	4.0	4.8	4.2	3.3	-	-	4.7	6.2
2004	9.0	4.7	5.7	5.0	4.2	-	5.8	4.8	6.4
2005	8.0	4.4	5.3	5.2	3.8	6.7	-	5.0	6.2
2006	8.3	5.3	6.1	6.1	4.5	-	5.8	5.3	6.9
2007	8.2	4.6	5.5	4.9	4.3	6.9	5.6	4.9	6.5
2008	6.9	4.6	5.2	4.2	4.0	6.2	5.1	4.8	6.4
2009	7.2	4.3	5.0	-	4.3	-	-	5.2	6.4
2010	7.8	4.7	5.5	4.9	4.5	-	5.4	-	6.2
Average	7.5	4.0	4.8	4.4	3.4	5.8	4.8	4.3	5.8
ECOSYSTEM SURVEY OF THE BARENTS SEA AUTUMN 2010

TABLES

		nce limit	701273	363283	148528	311432	130227	785044	184194	34755	190675	24595	136922	83751	36494	13543	121547	20246	47	272	1487	79	16826	10	241	495	1766	24034	31671	273436	20828	103706	129669	
lfich	IICITE	Confider	0	0	63753	33352	36137	40510	0	12740	23378	7589	52658	0	0	0	0	3386	8	0	23	14	0	1	20	0	0	631	10057	44882	0	29636	3114	
Rei	Abundance	index	277873	153279	106140	172392	83182	412777	91621	23747	107027	16092	94790	41499	13782	5458	52258	11816	28	132	755	46	7530	9	130	216	849	12332	20864	159159	9962	66671	66392	64800
		ice limit	8	8	506	61589	10697	13827	15	5	14048	9669	23943	119121	52690	120131	31270	2182	86299	70455	114778	30229	95982	1511	34564	41653	171826	51532	110880	40405	27353	29582	36636	
rina	9	Confiden	1	0	0	19526	1930	646	0	0	3325	1396	0	43230	21675	2885	0	434	28040	21160	44207	1632	3246	177	12144	15504	94873	1132	22759	4556	4477	8249	4099	
Her	Abundance	index	4	ŝ	202	40557	6313	7237	7	2	8686	4196	9508	81175	37183	61508	14884	1308	57169	45808	79492	15931	49614	844	23354	28579	133350	26332	66819	22481	15915	18916	20367	28314
		se limit	81	22	812	1809	1653	992	817	176	618	228	1450	4807	2083	2092	2566	675	1316	780	8128	1906	3962	2299	2410	12063	25638	42190	15289	3866	4655	18093	10005	
Jock	woon	Confidenc	38	L	486	904	937	397	367	76	157	117	847	2907	1150	911	825	269	782	420	3800	368	1851	1113	1276	3757	12649	24377	7553	1787	830	7988	4529	
Had	Abundance	index	59	15	649	1356	1295	695	592	126	387	173	1148	3857	1617	1502	1695	472	1049	600	5964	1137	2907	1706	1843	7910	19144	33283	11421	2826	2742	13040	7267	4144
		ce limit	105	64	835	6609	7679	23365	2599	249	718	1030	9651	13888	64437	60086	31375	111401	89488	84634	9890	2442	38068	1663	27300	24383	24328	28331	12061	13527	74111	71846	60963	
, po		Confiden	38	33	466	1749	2889	7603	1509	86	296	404	3573	7860	24730	15944	11980	38459	42607	49487	4209	135	14287	152	11015	10225	13987	14732	3658	5887	31839	37311	20307	
	Abundance	index	72	48	651	3924	5284	15484	2054	167	507	717	6612	10874	44583	38015	21677	74930	66047	67061	7050	1289	26177	908	19157	17304	19157	21532	7860	9707	52975	54579	40635	20550
		ce limit	262883	175888	300982	143759	92794	40896	22721	1983	35427	301861	48578	90007	1835	534	10915	1812	66089	86922	46277	125346	78556	85901	28205	148676	30862	71300	230050	228456	398738	266379	125914	
- niler		Confiden	131674	71852	35275	56325	43308	1638	98	435	3821	201110	24372	24772	105	125	0	0	22447	22682	21406	45266	1069	0	10648	41128	2541	12316	102749	87370	178860	113154	57545	
Car	Abundance	index	197278	123870	168128	100042	68051	21267	11409	1209	19624	251485	36475	57390	970	330	5386	862	44268	54802	33841	85306	39813	33646	19426	94902	16701	41808	166400	157913	288799	189767	91730	78158
	Year		1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	Mean

Table 2.2.1 0-group abundance indices (in millions) with 95% confidence limits, not corrected for capture efficiency

TABLES

Table 2.2.1 Continued

od (west)		Confidence limit	0 20622	1956 8345	0 3298	0 20851	737 5628	0 1628	180 4081	31 117	0 9889	2182 33931	0 70847	0 110568	1591 18365	1359 15148	0 12032	1 49	0 12235	623 14563	0 23358	407 5288	14924 30556	0 28796	4184 51322	0 3643	125 610	1269 5162	464 3693	0 5134	0 183	5642 37223	0 4153	
Polar c	Abundance	index	9650	5150	1187	9693	3182	808	2130	74	4634	18056	31939	38709	9978	8254	5455	25	4902	7593	10311	2848	22740	13490	27753	1627	367	3216	2078	2532	91	21433	1500	
	:	nce limit	48132	963	2725	2501	303	33451	23521	17552	757	423	699	136727	15873	96068	384078	2	97072	48371	15597	177023	164652	6736	136378	16323	55271	9884	42036	43273	12453	37479	49032	
od (east)		Confide	9784	226	144	0	0	4989	2355	0	6	0	129	39856	0	0	151917	0	43196	18788	6849	82936	67589	658	57530	6100	19040	3196	9666	8494	845	9661	13644	
Polar c	Abundance	index	28958	595	1435	1246	127	19220	12938	7694	383	199	399	88292	7539	41207	267997	1	70134	33580	11223	129980	116121	3697	96954	11211	37156	6540	26016	25883	6649	23570	31338	
		ce limit	1664	813	1328	577	77	420	8752	1197	297	260	84	131	218	87	2309	419	79	150	42	210	346	246	1121	110	52	292	983	478	1502	179	241	
ugh dab	ł	Confiden	883	300	698	264	43	110	4941	411	113	100	26	49	25	25	1083	39	0	44	13	1	120	78	342	45	20	109	437	45	410	51	19	
Long re	Abundance	index	1273	556	1013	420	60	265	6846	804	205	180	55	90	121	56	1696	229	41	97	27	105	233	162	731	78	36	200	710	262	956	115	130	517
		ice limit	187	101	68	59	45	67	164	47	13	ω	2	7	17	7	93	24	9	7	12	21	69	83	112	34	113	14	20	0	13	10	21	
alibut	ł	Confider	35	46	11	22	18	29	60	23	б	0	0	0	0	0	0	5	m	ω	e	8	17	20	0	0	28	4	1	1	0	4	8	
Gr h	Abundance	index	111	74	39	41	31	48	112	35	8	1	1	1	6	4	39	15	9	5	8	14	43	51	51	13	70	9	11	1	9	7	14	00
		ce limit	9	0	371	394	2271	23	2	1	30	ŝ	20	9	233	913	5	229	204	120	133	204	301	46	968	146	1930	73	224	96	69	46	678	
ithe	į	Confiden	0	0	0	83	407	1	0	0	4	0	0	0	86	0	0	68	57	37	39	68	111	0	108	0	860	36	60	9	22	0	126	
Sai	Abundance	index	Э	0	143	239	1339	12	1	1	17	1	11	4	159	366	2	148	131	78	86	136	206	20	553	65	1395	55	142	51	45	22	402	100
	Year		1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	Man

TABLES

	Cap	selin		Co	p		Hado	łock		Her	ring	
											þ	
Year	Abundance index	Confider	nce limit	Abundance index	Confidence	ce limit	Abundance index	Confiden	nce limit	Abundance index	Confider	nce limit
1980	740289	495187	985391	276	131	421	265	169	361	77	12	142
1981	477260	273493	681026	289	201	377	75	34	117	37	0	86
1982	599596	145299	1053893	3480	2540	4421	2927	2200	3655	2519	0	5992
1983	340200	191122	489278	19299	9538	29061	6217	3978	8456	195446	69415	321477
1984	275233	161408	389057	24326	14489	34164	5512	3981	7043	27354	3425	51284
1985	63771	5893	121648	66630	32914	100346	2457	1520	3393	20081	3933	36228
1986	41814	642	82986	10509	7719	13299	2579	1621	3537	93	27	160
1987	4032	1458	6607	1035	504	1565	708	432	984	49	0	111
1988	65127	12101	118153	2570	1519	3622	1661	630	2693	60782	20877	100687
1989	862394	690983	1033806	2775	1624	3925	650	448	852	17956	8252	27661
1990	115636	77306	153966	23593	13426	33759	3122	2318	3926	15172	0	36389
1991	169455	74078	264832	40631	29843	51419	13713	10530	16897	267644	107990	427299
1992	2337	250	4423	166276	92113	240438	4739	3217	6262	83909	48399	119419
1993	952	289	1616	133046	58312	207779	3785	2335	5236	291468	1429	581506
1994	13898	70	27725	70761	39933	101589	4470	2354	6586	103891	0	212765
1995	2869	0	6032	233885	114258	353512	1203	686	1720	11018	4409	17627
1996	136674	69801	203546	280916	188630	373203	2632	1999	3265	549608	256160	843055
1997	189372	80734	298011	294607	218967	370247	1983	1391	2575	463243	176669	749817
1998	113390	70516	156263	24951	15827	34076	14116	9524	18707	476065	277542	674589
1999	287760	143243	432278	4150	944	7355	2740	1018	4463	35932	13017	58848
2000	140837	6551	275123	108093	58416	157770	10906	6837	14975	469626	22507	916746
2001	90181	0	217345	4150	798	7502	4649	3189	6109	10008	2021	17996
2002	67130	36971	97288	76146	42253	110040	4381	2998	5764	151514	58954	244073
2003	340877	146178	535575	81977	47715	116240	30792	15352	46232	177676	52699	302653
2004	53950	11999	95900	65969	47743	84195	39303	26359	52246	773891	544964	1002819
2005	148466	51669	245263	72137	50662	93611	91606	67869	115343	125927	20407	231447
2006	515770	325776	705764	25061	11469	38653	28505	18754	38256	294649	102788	486511
2007	480069	272313	687825	42628	26652	58605	8401	5587	11214	144002	25099	262905
2008	995101	627202	1362999	234144	131081	337208	9864	1144	18585	201046	68778	333313
2009	673027	423386	922668	185457	123375	247540	33339	19707	46970	104233	31009	177458
2010	318569	201973	435166	135355	68199	202511	23669	14503	32834	117087	32045	202129
Mean	268582			78552			11644			167484		

0-group abundance indices (in millions) with 95% confidence limits, corrected for capture efficiency Table 2.2.2

TABLES

Table 2.2.2 Continued

	Sai	the		Polar c	od (east)		Polar co	d (west)	
					~				
Year	Abundance index	Confidenc	se limit	Abundance index	Confide	nce limit	Abundance index	Confide	nce limit
1980	21	0	47	203226	86869	336554	82871	0	176632
1981	0	0	0	4882	1842	7922	46155	17810	74500
1982	296	0	669	1443	154	2731	10565	0	29314
1983	562	211	912	1246	0	2501	87272	0	190005
1984	2577	725	4430	871	0	2118	26316	6097	46534
1985	30	7	53	143257	39633	246881	6670	0	13613
1986	4	0	9	102869	16336	189403	18644	125	37164
1987	4	0	10	64171	0	144389	631	265	966
1988	32	11	52	2588	59	5117	41133	0	89068
1989	10	0	23	1391	0	2934	164058	15439	312678
1990	29	4	55	2862	879	4846	246819	0	545410
1991	6	4	14	823828	366924	1280732	281434	0	799822
1992	326	156	495	49757	0	104634	80747	12984	148509
1993	1033	0	2512	297397	0	690030	70019	12321	127716
1994	7	1	12	2139223	1230225	3048220	49237	0	109432
1995	415	196	634	6	0	14	195	0	390
1996	430	180	679	588020	368361	807678	46671	0	116324
1997	341	162	521	297828	164107	431550	62084	6037	118131
1998	182	91	272	96874	59118	134630	95609	0	220926
1999	275	139	411	1154149	728616	1579682	24015	3768	44262
2000	851	446	1256	916625	530966	1302284	190661	133249	248072
2001	47	0	106	29087	5648	52526	119023	0	252146
2002	2112	134	4090	829216	496352	1162079	215572	36403	394741
2003	286	0	631	82315	42707	121923	12998	0	30565
2004	4779	2810	6749	290686	147492	433879	2892	986	4796
2005	176	115	237	44663	22890	66436	25970	9987	41953
2006	280	116	443	182713	73645	291781	15965	3414	28517
2007	286	Э	568	191111	57403	324819	22803	0	46521
2008	142	68	216	42657	5936	79378	619	25	1212
2009	62	0	132	168990	70509	267471	154687	37022	272351
2010	1066	362	1769	267430	111697	423162	12045	0	33370
Mean	538			291012			71432		

ECOSYSTEM SURVEY OF THE BARENTS SEA AUTUMN 2010

Table 2.2.3 L	ength dis	stribution ((%) of 0-g	roup fish i	n the Bare	nts Sea an	d adjacent	waters, Aug	gust-Septe	ember 2010
Length, mm	Cod	Haddock	Capelin	Herring	Saithe	Redfish	Polar cod	Gr. halibut	LRD	Sandeel
10 - 14 mm										
15 - 19 mm						0.03			1.17	
20 - 24 mm			0.15			0.11	0.28		0.38	
25 - 29 mm			1.60			0.36	5.93		38.41	2.98
30 - 34 mm			7.26			1.03	22.92	1.37	23.81	3.23
35 - 39 mm		0.00	15.07	0.01		4.26	26.51		29.27	16.48
40 - 44 mm	0.01	0.14	23.68	0.07		15.55	26.49	1.59	6.80	36.17
45 - 49 mm	0.17	0.12	23.10	0.39		24.79	14.19		0.16	7.71
50 - 54 mm	0.31	0.12	14.95	1.68	0.11	33.58	3.67	6.10		7.77
55 - 59 mm	0.92	0.65	9.99	6.94	1.68	17.82		26.99		1.04
60 - 64 mm	2.56	2.04	4.09	9.48	0.37	2.46		16.26		3.75
65 - 69 mm	4.63	4.15	0.09	19.24	0.45			28.85		0.85
70 - 74 mm	8.49	9.56	0.03	32.44	2.95			12.86		0.58
75 - 79 mm	10.78	10.18	0.00	20.67	2.67			2.23		0.38
80 - 84 mm	15.08	14.07		7.37	4.54			3.74		2.37
85 - 89 mm	16.95	15.94		1.68	9.63					6.12
90 - 94 mm	15.01	14.35		0.02	11.84					5.57
95 - 99 mm	11.97	12.84			20.33					3.50
100 - 104 mm	7.50	5.74			12.34					1.31
105 - 109 mm	3.18	4.68			14.08					0.12
110 - 114 mm	1.75	2.76			7.70					0.07
115 - 119 mm	0.41	1.82			6.83					
120 - 124 mm	0.25	0.39			1.55					
125 - 129 mm	0.02	0.25			1.46					
130 - 134 mm	0.00	0.17			1.46					
135 - 139 mm	0.01	0.00								
140 - 144 mm		0.00								
145 - 149 mm		0.02								
150 - 154 mm										
155 - 159 mm										
Mean length, cm	8.6	8.7	4.4	7.0	9.8	4.9	3.7	6.3	3.1	5.1
Long term mean	7.5	9.0	4.8	7.1	9.3	3.8	4.0	6.2	3.4	5.6
Icligul, CIII										

			Age gro	oups / year c	lass				
Length (cm)	Γ	1	2	3	4	5+	Sum	Biomass	Mean
	Γ	2009	2008	2007	2006	2005-	(10^9)	$(10^3 t)$	weight (g)
5.0 - 5	.5								
5.5 - 6	0.0	2.805	0.000	0.000	0.000	0.000	2.805	2.8	1.0
6.0 - 6	.5	7.761	0.000	0.000	0.000	0.000	7.761	7.8	1.0
6.5 - 7	0.	10.184	0.000	0.000	0.000	0.000	10.184	10.2	1.0
7.0 - 7	.5	9.517	0.000	0.000	0.000	0.000	9.517	9.5	1.0
7.5 - 8	0.	13.194	0.000	0.000	0.000	0.000	13.194	18.5	1.4
8.0 - 8	.5	16.785	0.000	0.000	0.000	0.000	16.785	31.9	1.9
8.5 - 9	0.0	28.983	0.000	0.000	0.000	0.000	28.983	60.9	2.1
9.0 - 9	.5	34.387	0.054	0.000	0.000	0.000	34.441	89.5	2.6
9.5 - 10	0.0	30.392	0.000	0.000	0.000	0.000	30.392	91.2	3.0
10.0 - 10	.5	40.408	0.066	0.000	0.000	0.000	40.474	145.7	3.6
10.5 - 11	.0	20.679	0.948	0.000	0.000	0.000	21.627	95.2	4.4
11.0 - 11	.5	19.719	2.290	0.000	0.000	0.000	22.009	110.0	5.0
11.5 - 12	.0	8.885	8.089	0.000	0.000	0.000	16.974	101.8	6.0
12.0 - 12	.5	2.000	13.431	0.000	0.000	0.000	15.431	104.9	6.8
12.5 - 13	.0	1.838	20.823	0.111	0.000	0.000	22.772	175.3	7.7
13.0 - 13	.5	0.066	23.318	0.860	0.000	0.000	24.244	215.8	8.9
13.5 - 14	0.	0.069	16.326	0.763	0.000	0.000	17.158	175.0	10.2
14.0 - 14	.5	0.024	20.600	2.538	0.000	0.000	23.162	268.7	11.6
14.5 - 15	.0	0.000	8.477	2.679	0.000	0.000	11.156	151.7	13.6
15.0 - 15	.5	0.000	5.476	7.070	0.004	0.000	12.550	197.0	15.7
15.5 - 16	0.0	0.000	3.257	6.503	0.041	0.000	9.801	175.4	17.9
16.0 - 16	5.5	0.000	1.334	8.745	0.242	0.000	10.321	217.8	21.1
16.5 - 17	0.	0.000	2.349	8.252	0.069	0.000	10.670	250.7	23.5
17.0 - 17	.5	0.000	0.470	8.378	0.185	0.000	9.033	246.6	27.3
17.5 - 18	0.	0.000	0.073	6.403	0.303	0.000	6.779	204.0	30.1
18.0 - 18	.5	0.000	0.208	4.437	0.057	0.007	4.709	157.8	33.5
18.5 - 19	0.0	0.000	0.077	2.841	0.013	0.000	2.931	109.6	37.4
19.0 - 19	.5	0.000	0.096	1.335	0.023	0.000	1.454	59.6	41.0
19.5 - 20	0.0	0.000		0.264		0.000	0.264	11.8	44.6
20.0 - 20	.5	0.000		0.025		0.000	0.025	1.2	47.0
20.5 - 21	.0	0.000				0.000	0.000	0.0	52.0
TSN (10 ⁹)		247.696	127.762	61.204	0.937	0.007	437.606		
TSB $(10^{3} t)$		739.8	1300.9	1432.0	25.0	0.2		3498.0	
Mean length (cm)		9.38	13.51	16.56	17.17	18.25	11.61		
Mean weight (g)		3.0	10.2	23.4	26.7	33.5			8.0
$SSN(10^9)$		0.02	42.417	59.470	0.937	0.007	102.855		
SSB $(10^{3} t)$		0.28	610.7	1415.7	25.0	0.2		2052.0	

Table 2.3.1. Barents Sea capelin. Acoustic estimate in August-September 2010

Age	1		2		3	3	4	ł	5	5	Sum 1-5
Year	В	AW	В	AW	В	AW	В	AW	В	AW	В
1973	1.69	3.2	2.32	6.2	0.73	18.3	0.41	23.8	0.01	30.1	5.16
1974	1.06	3.5	3.06	5.6	1.53	8.9	0.07	20.8	+	25	5.72
1975	0.65	3.4	2.39	6.9	3.27	11.1	1.48	17.1	0.01	31	7.80
1976	0.78	3.7	1.92	8.3	2.09	12.8	1.35	17.6	0.27	21.7	6.41
1977	0.72	2	1.41	8.1	1.66	16.8	0.84	20.9	0.17	22.9	4.80
1978	0.24	2.8	2.62	6.7	1.20	15.8	0.17	19.7	0.02	25	4.25
1979	0.05	4.5	2.47	7.4	1.53	13.5	0.10	21	+	27	4.15
1980	1.21	4.5	1.85	9.4	2.83	18.2	0.82	24.8	0.01	19.7	6.72
1981	0.92	2.3	1.83	9.3	0.82	17	0.32	23.3	0.01	28.7	3.90
1982 ¹	1.22	2.3	1.33	9	1.18	20.9	0.05	24.9			3.78
1983	1.61	3.1	1.90	9.5	0.72	18.9	0.01	19.4			4.24
1984	0.57	3.7	1.43	7.7	0.88	18.2	0.08	26.8			2.96
1985	0.17	4.5	0.40	8.4	0.27	13	0.01	15.7			0.85
1986	0.02	3.9	0.05	10.1	0.05	13.5	+	16.4			0.12
1987 ²	0.08	2.1	0.02	12.2	+	14.6	+	34			0.10
1988	0.07	3.4	0.35	12.2	+	17.1					0.42
1989	0.61	3.2	0.20	11.5	0.05	18.1	+	21			0.86
1990	2.66	3.8	2.72	15.3	0.44	27.2	+	20			5.82
1991	1.52	3.8	5.10	8.8	0.64	19.4	0.04	30.2			7.30
1992	1.25	3.6	1.69	8.6	2.17	16.9	0.04	29.5			5.15
1993	0.01	3.4	0.48	9	0.26	15.1	0.05	18.8			0.80
1994	0.09	4.4	0.04	11.2	0.07	16.5	+	18.4			0.20
1995	0.05	6.7	0.11	13.8	0.03	16.8	0.01	22.6			0.20
1996	0.24	2.9	0.22	18.6	0.05	23.9	+	25.5			0.51
1997	0.42	4.2	0.45	11.5	0.04	22.9	+	26.2			0.91
1998	0.81	4.5	0.98	13.4	0.25	24.2	0.02	27.1	+	29.4	2.06
1999	0.16	4.2	1.01	13.6	0.27	26.9	0.09	29.3			1.53
2000	1.70	3.8	1.59	14.4	0.95	27.9	0.08	37.7			4.32
2001	0.37	3.3	2.40	11	0.81	26.7	0.04	35.5	+	41.4	3.62
2002	0.23	3.9	0.92	10.1	1.04	20.7	0.02	35			2.21
2003	0.20	2.4	0.10	10.2	0.20	18.4	0.03	23.5			0.53
2004	0.20	3.8	0.29	11.9	0.12	21.5	0.02	23.5	+	26.3	0.63
2005	0.10	3.7	0.19	14.3	0.04	20.8	+	25.8			0.33
2006	0.29	4.8	0.35	16.1	0.14	24.8	0.01	30.6	+	36.5	0.79
2007	0.93	4.2	0.85	15.5	0.10	27.5	+	28.1			1.88
2008	0.97	3.1	2.80	12.1	0.61	24.6	0.05	30.0			4.43
2009	0.42	3.4	1.82	10.9	1.51	24.6	0.01	28.4			3.76
2010	0.74	3.0	1.30	10.2	1.43	23.4	0.03	26.7	+	26.7	3.50
Average	0.67	3.60	1.35	10.76	0.85	19.41	0.22	24.85	0.07	28.05	3.00

Table 2.3.2. Barents Sea capelin. Acoustic estimates of the stock by age in autumn. Biomass (B) in 10^6 tonnes, average weight (AW) in grams. All estimates based on TS = 19.1Log L - 74.0 dB

 ¹ Computed values based on the estimates in 1981 and 1983
 ² Combined estimates from multispecies survey and succeeding survey with "Eldjarn"

Voor	Voor class	$A = 1 (10^9)$	$A_{00} 2 (10^{9})$	Total mort %	Total mart 7
1004 1005	1092	Age 1 (10)	Age 2 (10)		
1984-1985	1983	154.8	48.3	69	1.10
1985-1986	1984	38.7	4.7	88	2.11
1986-1987	1985	6.0	1.7	72	1.26
1987-1988	1986	37.6	28.7	24	0.27
1988-1989	1987	21.0	17.7	16	0.17
1989-1990	1988	189.2	177.6	6	0.06
1990-1991	1989	700.4	580.2	17	0.19
1991-1992	1990	402.1	196.3	51	0.72
1992-1993	1991	351.3	53.4	85	1.88
1993-1994	1992	2.2	3.4	-	-
1994-1995	1993	19.8	8.1	59	0.89
1995-1996	1994	7.1	11.5	-	-
1996-1997	1995	81.9	39.1	52	0.74
1997-1998	1996	98.9	72.6	27	0.31
1998-1999	1997	179.0	101.5	43	0.57
1999-2000	1998	155.9	110.6	29	0.34
2000-2001	1999	449.2	218.7	51	0.72
2001-2002	2000	113.6	90.8	20	0.22
2002-2003	2001	59.7	9.6	84	1.83
2003-2004	2002	82.4	24.8	70	1.20
2004-2005	2003	51.2	13.0	75	1.39
2005-2006	2004	26.9	21.7	19	0.21
2006-2007	2005	60.1	54.8	9	0.09
2007-2008	2006	221.7	231.4	-	-
2008-2009	2007	313.0	166.4	47	0.63
2009-2010	2008	124.0	127.8	-	-

 Table 2.3.3. Barents Sea capelin. Survey mortalities from age 1 to age 2

				1	Age/Yearclas	S				Maan
Ler	ıgth (cm)	1	2	3	4		Sum	Biomass	Mean
	U V		2009	2008	2007	2006		(10^{6})	$(10^3 t)$	weigt(g)
6.5	_	7.0	2					2	0	2.3
7.0	-	7.5	137					137	0.4	2.8
7.5	-	8.0	464					464	0.9	2
8.0	-	8.5	873					873	3.3	3.8
8.5	_	9.0	1613					1613	6.8	4.2
9.0	_	95	3853					3853	20.5	53
9.5	_	10.0	3902					3902	24.3	6.2
10.0	_	10.5	3863					3863	26.7	6.9
10.5	_	11.0	4328	2				4330	36.9	8.5
11.0	_	11.0	2118	403				2521	26.7	10.6
11.5	_	12.0	1837	371				2208	28.4	12.9
12.0	_	12.0	1864	36	3			1902	26.1	14.2
12.0	_	13.0	1297	22	1			1319	20.5	16.4
13.0	_	13.5	790	161	1			951	16.3	17.1
13.5		14.0	337	463	1			801	16.5	20.9
13.5	_	14.0	337	805	1			808	16.7	20.5
14.0	_	15.0	5	1302	154			1456	32.2	20.0
15.0	_	15.5	2	1952	178			2135	54.1	25.3
15.5	_	16.0	2	2370	88			2457	68 3	23.5
16.0	_	16.5	2	3762	285			4049	118.2	29.2
16.5	_	17.0	2	3485	407			3892	133.1	34.2
17.0	_	17.5		1050	2167	546		3763	144 7	38.4
17.5	_	18.0		1059	2621	510		3679	155	42.1
18.0	_	18.5		712	1532	255		2499	110.4	44.2
18.5	_	19.0		297	2282	200		2580	125.3	48.6
19.0	_	19.5		1	1342	1		1345	73.5	54.7
19.5	_	20.0		1	405	375		781	42.1	54
20.0	_	20.5		_	549			549	32.3	58.9
20.5	_	21.0			360	1		361	20.2	56
21.0	_	21.5			316			316	19.6	62
21.5	-	22.0		1	263			264	20.3	76.9
22.0	-	22.5			15			15	1	71.5
22.5	_	23.0			4			4	0.4	88.1
23.0	-	23.5				76		76	6	80
23.5	-	24.0			5			5	0.2	52
24.0	-	24.5			5			5	0.4	78
24.5	-	25.0						0	0	
25.0	-	25.5			1			1	0	78
TSN(1	0^{6})		27285	18257	12982	1253		59777		
TSB(10	$(0^{3}t)$		234.2	543.1	594.6	58.6			1430.5	
Mean l	ength	n (cm)	10.5	15.9	18.3	18.6			14.0	
Mean v	veigh	ıt (g)	8.6	<u> </u>	45.8	46.8				23.9
					Based on 7	S value: 2	1.8 log L - 7	72.7. corresp	onding to σ	$= 6.7 \ 10^{-7}$

 Table 2.3.4. Barents Sea polar cod. Acoustic estimate in August-September 2010

Year	Age	e 1	Ag	e 2	Age	3	Age	4+	Tot	al
rear	TSN	TSB	TSN	TSB	TSN	TSB	TSN	TSB	TSN	TSB
1986	24038	169.6	6263	104.3	1058	31.5	82	3.4	31441	308.8
1987	15041	125.1	10142	184.2	3111	72.2	39	1.2	28333	382.8
1988	4314	37.1	1469	27.1	727	20.1	52	1.7	6562	86.0
1989	13540	154.9	1777	41.7	236	8.6	60	2.6	15613	207.8
1990	3834	39.3	2221	56.8	650	25.3	94	6.9	6799	127.3
1991	23670	214.2	4159	93.8	1922	67.0	152	6.4	29903	381.5
1992	22902	194.4	13992	376.5	832	20.9	64	2.9	37790	594.9
1993	16269	131.6	18919	367.1	2965	103.3	147	7.7	38300	609.7
1994	27466	189.7	9297	161.0	5044	154.0	790	35.8	42597	540.5
1995	30697	249.6	6493	127.8	1610	41.0	175	7.9	38975	426.2
1996	19438	144.9	10056	230.6	3287	103.1	212	8.0	33012	487.4
1997	15848	136.7	7755	124.5	3139	86.4	992	39.3	28012	400.7
1998	89947	505.5	7634	174.5	3965	119.3	598	23.0	102435	839.5
1999	59434	399.6	22760	426.0	8803	286.8	435	25.9	91463	1141.9
2000	33825	269.4	19999	432.4	14598	597.6	840	48.4	69262	1347.8
2001	77144	709.0	15694	434.5	12499	589.3	2271	132.1	107713	1869.6
2002	8431	56.8	34824	875.9	6350	282.2	2322	143.2	52218	1377.2
2003	15434	114.1	2057	37.9	2038	63.9	1545	64.4	21074	280.2
2004	99404	627.1	22777	404.9	2627	82.2	510	32.7	125319	1143.8
2005	71675	626.6	57053	1028.2	3703	120.2	407	28.3	132859	1803.3
2006	16190	180.8	45063	1277.4	12083	445.9	698	37.2	74033	1941.2
2007	29483	321.2	25778	743.4	3230	145.8	315	19.8	58807	1230.1
2008	41693	421.8	18114	522.0	5905	247.8	415	27.8	66127	1219.4
2009	13276	100.2	22213	492.5	8265	280.0	336	16.6	44090	889.3
2010	27285	234.2	18257	543.1	12982	594.6	1253	58.6	59777	1430.5
Average	32011	254.1	16191	371.5	4865	183.6	592	31.3	53701	842.7

Table 2.3.5. Barents Sea polar cod. Acoustic estimates by age in August-September. TSN and TSB is total stock numbers (10^6) and total stock biomass (10^3 tonnes) respectively. Numbers based on TS = 21.8 Log L - 72.7 dB

		9			
Year	Year class	Age 1 (10^{2})	Age 2 (10^{2})	Total mort. %	Total mort Z
1986-1987	1985	24.0	10.1	58	0.86
1987-1988	1986	15.0	1.5	90	2.30
1988-1989	1987	4.3	1.8	58	0.87
1989-1990	1988	13.5	2.2	84	1.81
1990-1991	1989	3.8	4.2	-	-
1991-1992	1990	23.7	14.0	41	0.53
1992-1993	1991	22.9	18.9	17	0.19
1993-1994	1992	16.3	9.3	43	0.56
1994-1995	1993	27.5	6.5	76	1.44
1995-1996	1994	30.7	10.1	67	1.11
1996-1997	1995	19.4	7.8	59	0.91
1997-1998	1996	15.8	7.6	52	0.73
1998-1999	1997	89.9	22.8	75	1.37
1999-2000	1998	59.4	20.0	66	1.09
2000-2001	1999	33.8	15.7	54	0.77
2001-2002	2000	77.1	34.8	55	0.80
2002-2003	2001	8.4	2.1	75	1.38
2003-2004	2002	15.4	22.7	-	-
2004-2005	2003	99.4	57.1	43	0.56
2005-2006	2004	71.7	45.1	37	0.48
2006-2007	2005	16.2	25.8	_	_
2007-2008	2006	29.5	18.1	39	0.50
2008-2009	2007	41.7	22.2	47	0.63
2009-2010	2008	13.2	18.3	-	-
Year	Year class	Age 2 (10^9)	Age 3 (10^9)	Total mort. %	Total mort Z
1986-1987	1984	6.3	3.1	51	0.71
1987-1988	1985	10.1	0.7	93	2.67
1988-1989	1986	1.5	0.2	87	2.01
1989-1990	1987	1.8	0.7	61	2.57
1990-1991	1988	2.2	1.9	14	0.15
1991-1992	1989	4.2	0.8	81	1.66
1992-1993	1990	14.0	3.0	78	1.54
1993-1994	1991	18.9	5.0	74	1.33
1994-1995	1992	9.3	1.6	83	1.76
1995-1996	1993	6.5	3.3	51	0.68
1996-1997	1994	10.1	3.1	69	1.18
1997-1998	1995	7.8	4.0	49	0.67
1998-1999	1996	7.6	8.8	-	-
1999-2000	1997	22.8	14.6	36	0.44
2000-2001	1998	20.0	12.5	38	0.47
2001-2002	1999	15.7	6.4	59	0.90
2002-2003	2000	34.8	2.0	94	2.86
2003-2004	2001	2.1	2.6	-	-
2004-2005	2002	22.8	3.7	84	1.83
2005-2006	2003	51.7	12.1	77	1.50
2006-2007	2004	45.1	3.2	93	2.64
2007-2008	2005	25.8	5.9	77	1.50
2008-2009	2006	18.1	8.3	54	0.78
2009-2010	2007	22.2	13.0	41	0.52

Table 2.3.6. Barents Sea polar cod. Survey mortalities from age 1 to age 2, and from age 2 to age 3

-

Length (cm) 1 2 3 4 5 6 7+ (10 ⁵) (11 ⁶) <th></th> <th></th> <th></th> <th>Age</th> <th>Sum</th> <th>Biomass</th> <th>Mean</th>				Age	Sum	Biomass	Mean				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Length (cm)	1	2	3	4	5	6	7+	(10^{6})	$(10^3 t)$	weight (g)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2009	2008	2007	2006	2005	2004	2003-			
	12.5 - 13.0	31							31	0.5	15.6
	13.0 - 13.4	143							143	2.5	17.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13.5 - 13.9	70							70	1.4	19.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14.0 - 14.4	148							148	3.3	22.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14.5 - 14.9	62							62	1.6	25.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15.0 - 15.4	96							96	2.6	27.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.5 - 15.9	72							72	2.0	27.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.0 - 16.4	79							79	2.6	32.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.5 - 16.9	75							75	2.6	34.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.0 - 17.4	24							24	1.0	41.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17.5 - 17.9	15							15	0.7	43.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.0 - 18.4	24							24	1.2	48.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18.5 - 18.9	31							31	1.7	53.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19.0 - 19.4	85							85	4.9	57.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	19.5 - 19.9	31							31	1.8	60.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.0 - 20.4	17	17						17	1.1	65.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.5 - 20.9	17	17						34	2.4	69.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21.0 - 21.4	25	25						50	3.8	/6.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21.5 - 21.9		38						38	3.1	82.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.0 - 22.4		27						27	2.3	85.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.3 - 22.9		38						38	3.7	96.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23.0 - 23.4		41						41	4.5	105.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25.5 - 25.9		19	5					19	2.0	105.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24.0 - 24.4 24.5 - 24.0		26) 16					2 42	0.7	125.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24.3 - 24.9 25.0 - 25.4		20	10					42	3.2	123.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25.0 - 25.4		14	10					52 19	4.2	132.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25.3 - 25.9 26.0 - 26.4		22	20	1				40	0.0	137.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.0 - 20.4		55 15	23 91	1				07	9.7	143.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.3 - 20.9 27.0 27.4		15	01	27				37	13.4	157.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27.0 - 27.4 27.5 - 27.9			0 27	50				55 76	13.1	158.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27.3 - 27.9 28.0 - 28.4			27	50	10			70 61	11.1	171.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28.0 - 28.4			1	30 40	10			40	77	102.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.3 - 20.9			0	34				34	6.9	202.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29.5 - 29.9			1	27	10			34	7.5	202.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30.0 - 30.4			13	25	10			13	3.0	210.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30.5 - 30.9			15	13				13	2.9	216.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31.0 - 31.4				12	4			15	2.9 4 1	257.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31.0 - 31.9				12		17		17	4.8	275.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32.0 - 32.4						23		23	6.7	289.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32.0 - 32.9					5	14	9	33	10.3	309.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33.0 - 33.4					5	19	6	32	10.1	319.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33.5 - 33.9						11	6	20	67	340.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34.0 - 34.4						7	13	20	6.9	350.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34.5 - 34.9						2	6	20	2.7	355.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35.0 - 35.4						-	2	2	0.6	370.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35.5 - 35.9							-	-	010	2,010
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36.0 - 36.4							3	3	1.2	413.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	36.5 - 36.9							5	2	0.7	468.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TSN (106)	1047	315	234	251	29	93	56	2025	/	
Mean length (cm)15.923.526.728.729.932.833.721.4Mean weight (g)32.9106.9157.7191.1228.0307.7334.8102.3TS=20.0* log(L) - 71.9	TSB(103 t)	34.5	33.7	37.0	48.1	6.5	28.7	18.9		207.3	
Mean weight (g) 32.9 106.9 157.7 191.1 228.0 307.7 334.8 102.3 TS=20.0* log(L) - 71.9	Mean length (cm)	15.9	23.5	26.7	28.7	29.9	32.8	33.7	21.4		
TS=20.0* log(L) - 71.9	Mean weight (g)	32.9	106.9	157.7	191.1	228.0	307.7	334.8			102.3
					T	S=20.0*1	og(L) -	71.9			-

Table 2.3.7. Norwegian spring spawning herring. Acoustic estimate in the Barents Sea in August-September 2010

Age	1		2		3		4+		Sum	
Year	TSN	TSB	TSN	TSB	TSN	TSB	TSN	TSB	TSN	TSB
1999	48758.6	715.9	985.9	31.0	50.7	2.0			49795.2	748.9
2000	14731.0	382.6	11499.0	560.3					26230.0	942.9
2001	524.5	12.0	10544.1	604.3	1714.4	160.0			12783.0	776.3
2002		Herring	area	was not	covered					
2003	99785.7	3090.3	4335.7	220.1	2475.6	325.5			106596.9	3636.4
2004	14265.0	406.4	36495.0	2725.3	901.0	106.6			51717.0*	3251.9*
2005	46380.0	983.7	16167.0	1054.5	6973.0	795.2			69520.0	2833.4
2006	1618.0	34.2	5535.0	398.4	1620.0	210.5			8773.0	643.0
2007	3941.0	147.5	2595.0	217.5	6378.0	810.1	250.0	45.7	13164.0	1220.9
2008	29.6	0.6	1626.4	76.9	3987.0**	287.3**	3222.6**	373.1**	8865.6	737.9
2009	1538	48.4	433.0	51.8	1807	287.3	1686.0	393.0	5577.0	814.8
2010	1047.0	34.5	315.0	33.7	234.0	37.0	428.0	104.2	2025.0	207.3
Average	21147.1	532.4	8230.1	543.1	2614.1	302.2	1042.4	137.3	32277.0	1437.6
1999-2010										

Table 2.3.8. Norwegian spring spawning herring. Acoustic estimates by age in autumn1999-2010. TSN and TSB are total stock numbers (10^6) and total stock biomass $(10^3 t)$

* - including older age groups not shown in the table

** - including Kanin herring

Age/Yearclass								Sum	Biomass	Mean				
Len	gth (c	cm)	1	2	3	4	5	6	7	8	9+	(10^{6})	$(10^3 t)$	weigt(g)
			2009	2008	2007	2006	2005	2004	2003	2002	2001		· ·	
23.0	-	23.5										0	0	95.4
23.5	-	24.0										0	0	
24.0	-	24.5										0	0	
24.5	-	25.0										0	0	
25.0	-	25.5										0	0	
25.5	-	26.0										0	0	99.0
26.0	-	26.5										0	0.1	120.0
26.5	-	27.0				1		4				5	0.5	108.5
27.0	-	27.5					2	2				4	0.6	142.5
27.5	-	28.0					2	2				5	0.6	137.3
28.0	-	28.5					1	1	1	1		5	0.7	149.8
28.5	-	29.0							4	5		9	1.4	155.4
29.0	-	29.5					3	6	2	29		40	6.8	169.4
29.5	-	30.0					21	10	2	21		55	9.1	166.2
30.0	-	30.5						77	5			82	14.6	178.6
30.5	-	31.0				2		14		61		77	14.2	183.8
31.0	-	31.5					75		33			108	20.6	190.8
31.5	-	32.0			9	18	4	63				94	20.1	214.7
32.0	-	32.5						8	7	27	66	109	22.1	203.2
32.5	-	33.0			2		52	15			25	95	21.0	221.0
33.0	_	33.5			2		30	4			57	93	21.1	227.6
33.5	_	34.0			-	3	20	14	12		16	44	10.1	229.3
34.0	_	34.5				2	1	13	2	3	3	25	6.0	240.8
34.5	_	35.0				-		17	8	U	Ũ	25	6.5	261.2
35.0	_	35.5				2		2	0			5	1.2	256.9
35.5	_	36.0				2		2	4	1	1	6	1.2	267.4
36.0	_	36.5								1	1	0	0.1	323.0
36.5	_	37.0							1	5	2	8	2.2	268.3
37.0	_	37.5							1	5	1	1	0.3	200.5
37.5	_	38.0									1	0	0.3	445.0
38.0	_	38.5										0	0.2	775.0
28.5	_	30.0										0	0	
30.0	-	39.0									1	1	0.2	347.0
39.0	-	40.0									1	1	0.2	547.0
39.5 40.0	-	40.0									2	0	0.5	208.0
40.0	-	41.0									2		0.5	298.0
40.5	-	41.0										0	0	
41.0	-	41.3										0	0	
41.5	-	42.0										0	0 1	412.0
$\frac{42.0}{\text{TOM}(10^6)}$	- 5\	42.5			1.2	20	102	252	01	157	172	0	0.1	413.0
15N(10))				13	28	192	253	81	15/	1/3	897	102 (
1 SB(10 Maan 1-	l) north ((2000)			2.8	0.1	20.3 21.7	21 5	10./	29.2	20.2	21.0	182.0	
Magn -	ngth ((cm)			32.1	32.2	31./ 201.1	31.3 201.2	32.1 205.5	30.9	32.8	31.8		202.5
wiean we	eight	(g)			210.3	210./	201.1	201.3	205.5	180.0	21/.1		l	203.5
	TS=21.8* lg(L) - 72.7													

Table 2.3.9. Blue whiting. Acoustic estimate in the Barents Sea in August-September

Age	1		2		3		4+		Sum	
Year	TSN	TSB								
2004	5787	219.1	3801	285.5	2878	264.8	4780	606.5	17268	1376.8
2005	4871	132.0	2770	180.0	4205	363.0	3213	409.8	15058	1084.1
2006	371	21.2	2227	158.8	2665	238.1	2491	330.6	7754	748.8
2007	3	0.1	245	23.2	2934	292.2	2221	315.1	5666	657.6
2008	3	0.1	2	0.1	11	1.1	604	95.4	620	96.9
2009	2	0.1	2	0.2	2	0.2	1513	260.8	1519	261.4
2010	0	0.0	0	0.0	13	2.8	884	179.3	897	182.6
Average	1576.7	53.2	1292.4	92.5	1815.4	166.0	2243.7	313.9	6968.9	629.7
2004-2010										

Table 2.3.10. Blue whiting. Acoustic estimates by age in autumn 2004-2010. TSN and TSB are total stock numbers (10^6) and total stock biomass (10^3)

Table 2.7.1. Number of marine mammal individuals observed from the research vessels J.Hjort, Jan Mayen, G.O. Sars, Vilnuys and F. Nansen during the ecosystem survey 2010.

Order /	Name of species (english)	Johan Hiort	Jan Mayen	G.O.Sars	Vilnus	F. Nansen	Total	%
Cetacea/	Blue whale	-	4	_	_		4	0.12
Baleen	Fin whale	57	106	15	2	3	183	5.38
whales	Humpback whale	181	352	1	110	-	644	18.94
	Minke whale	31	107	10	25	5	178	5.24
	Unidentified whale	39	7	-	1	-	47	1.38
Cetacea/	Sperm whale	20	5	1	-	-	26	0.76
Toothed	Killer whale	25	-	-	6	-	31	0.91
whales	Harbour porpoise	4	-	-	11	-	15	0.44
	White-beaked dolphin	55	218	872	39	37	1221	35.91
	Lagenorhynchus spp.	77	57	37	-	-	171	5.03
	White whale	-	-	-	3	-	3	0.09
Pinnipedia	Harp seal	-	241	-	609	-	850	25.00
	Ringed seal	-	2	-	1	-	3	0.09
	Walrus	4	15	-	1	-	20	0.59
	Hooded seal	_	1	-	_	-	1	0.03
Other	Polar bear	-	1	-	2	-	3	0.09
Total sum		493	1116	936	810	45	3400	100

Species	Latin name	No. of ind.
Little auk	Alle alle	871
Razorbill	Alca torda	8
Brünnich guillemot	Uria lomvia	5540
Common guillemot	Uria aalge	13
Black guillemot	Cepphus grylle	58
Puffin	Fratercula arctica	198
Uria spp.	Uria spp.	33
Fulmar	Fulmarus glacialis	35041
Sooty Shearwater	Puffinus griseus	4
Glaucous gull	Larus hyperboreus	1795
Great Black-backed gull	Larus marinus	463
Herring gull	Larus argentatus	896
Kittiwake	Rissa tridactyla	6059
Ivory gull	Pagophila eburnea	7
Great skua	Stercorarius skua	26
Long-tailed skua	Stercorarius longicaudus	11
Arctic skua	Stercorarius parasiticus	82
Pomarine skua	Stercorarius pomarinus	199
Unid. skua	Stercorarius sp.	7
Arctic tern	Sterna paradisaea	67
Gannet	Morus bassanus	3
Purple sandpiper	Calidris maritima	11
Black-throated loon	Gavia arctica	3
Bean goose	Anser fabalis	5

Table 2.7.2. Number of seabirds observed by species during the Joint Norwegain/Russian Ecosystem Survey 2010

5 FIGURES

Figure 2.1 Trawl stations for "G.O. Sars" "Johan Hjort", "Jan Mayen", "F. Nansen" and "Vilnyus", August – September.

Figure 2.2 Hydrograhy and plankton stations for "G.O. Sars" "Johan Hjort", "Jan Mayen", "F. Nansen" and "Vilnyus", August - September 2010

Figure 2.3 Environmental stations for "Johan Hjort", and "Vilnyus", August - September 2010.

Figure 2.1.1. Temperature (°C, left panels) and salinity (right panels) along standard oceanographic sections in August 2010.

Figure 2.1.2. Distribution of surface temperature (°C), August-September 2010.

Figure 2.1.3. Distribution of surface salinity, August-September 2010.

Figure 2.1.4. Distribution of temperature (°C) at the 50 m depth, August-September 2010.

Figure 2.1.5. Distribution of salinity at the 50 m depth, August-September 2010.

Figure 2.1.6. Distribution of temperature (°C) at the 100 m depth, August-September 2010.

Figure 2.1.7. Distribution of salinity at the 100 m depth, August-September 2010.

Figure 2.1.8. Distribution of temperature (°C) at the bottom, August-September 2010.

Figure 2.1.9. Distribution of salinity at the bottom, August-September 2010.

Figure 2.1.10. Surface temperature anomalies (°C), August-September 2010.

Figure 2.1.11. Temperature anomalies (°C) at the bottom, August-September 2010.

Figure 2.1.12. Frontal structures as calculated by temperature gradients in 100 m depth in August-September 2010. High values indicate stronger frontal structures. Only values above 0.03°C/km are plotted.

20°E 30°E 40°E 50°E Figure 2.1.13. Stratification in the upper layer calculated as density difference 0-50 m in August-September 2010.

Figure 2.1.14. Stratification anomalies in August-September 2010 (compared to the long-term mean for the period 1970-2009).

Figure 2.2.1 Distribution of 0-group capelin, August-September 2010

Figure 2.2.2 Distribution of 0-group cod, August-September 2010

Figure 2.2.3 Distribution of 0-group haddock, August-September 2010

Figure 2.2.4 Distribution of 0-group herring, August-September 2010

Figure 2.2.5 Distribution of 0-group polar cod, August-September 2010

Figure 2.2.6 Distribution of 0-group saithe, August-September 2010

Figure 2.2.7 Distribution of 0-group redfish, August-September 2010

Figure 2.2.8 Distribution of 0-group Greenland halibut, August-September 2010

Figure 2.2.9 Distribution of 0-group long rough dab, August-September 2010

Figure 2.2.10 Distribution of 0-group wolffish, August-September 2010

Figure 2.2.11 Distribution of 0-group sandeel, August-September 2010

Figure 2.3.1 Estimated density distribution of one-year-old capelin (t/nautical mile²), August- September 2010

Figure 2.3.2 Estimated total density distribution of capelin (t/nautical mile²), August-September 2010

Figure 2.3.3 Echo-records of capelin (schools) in the far northern area, 18.09.2010 (80°15′ N, 44°48′ E)

Figure 2.3.4 a) Echo-records of capelin, 19.09.2010 (77°56' N, 34°31' E)

Figure 2.3.4 b) Echo-records of capelin, 22.09.2010 (79°01' N, 29°47' E)

Figure 2.3.5 Estimated density distribution of one year old polar cod (t/nautical mile²), August-September 2010

Figure 2.3.6 Estimated total density distribution of polar cod (t/nautical mile²), August-September 2010

Figure 2.3.7 Echo-records of large size polar cod in south-eastern Barents Sea, 29.08.2010 (71°18' N, 50°48' E)

Figure 2.3.8 Estimated total density distribution of herring (t/nautical mile²), August-September 2010

Figure 2.3.9 Estimated total density distribution of blue whiting (t/nautical mile²), August-September 2010

Figure 2.4.1 Distribution of cod (Gadus morhua morhua), August-September 2010

Figure 2.4.2 Echo-records of cod (A, 3 tonnes) and polar cod (B, 600 tonnes) in north-eastern Barents Sea, 14.09.2010 (77°50′ N, 52°53′ E)

Figure 2.4.3 Distribution of haddock *(Melanogrammus aeglefinus)*, August-September 2010

Figure 2.4.4 Distribution of saithe (Pollachius virens), August-September 2010

Figure 2.4.5 Distribution of Greenland halibut *(Reinhardtius hippoglossoides)* (WCPUE, based on weight of fish), August- September 2010

Figure 2.4.6 Distribution of golden redfish (Sebastes marinus), August-September 2010

Figure 2.4.7 Distribution of deep-water redfish (Sebastes mentella), August-September 2010

Figure 2.4.8 Distribution of Norway redfish (Sebastes viviparus), August-September 2010

Figure 2.4.9 Distribution of long rough dab (*Hippoglossoides platessoides*), August-September 2010

Figure 2.4.10 Distribution of Atlantic wolffish (Anarhichas lupus), August-September 2010

Figure 2.4.11 Distribution of spotted wolffish (Anarhichas minor), August-September 2010

Figure 2.4.12 Distribution of northern wolffish (Anarhichas denticulatus), August-September 2010

Figure 2.4.13 Distribution of thorny skate (Amblyraja radiata), August-September 2010

Figure 2.4.14 Distribution of northern skate (Amblyraja hyperborea), August-September 2010

Figure 2.4.15 Distribution of plaice (*Pleuronectes platessa*), August-September 2010

2.4.16 Distribution of Norway pout (Trisopterus Esmarkii), August-September 2010

Figure 2.4.17 Distribution of some rare species in the survey area, August-September 2010

Figure 2.6.1 Zooplankton biomass during the Barents Sea Ecosystem cruise in August-September 2010. Norwegian data from vertically operated 180 µm meshed WP2 net (bottom-0 m).

Figure 2.7.1 Distribution of toothed whales observed in August-September 2010

Figure 2.7.2 Distribution of baleen whales observed in August-September 2010

Figure 2.7.3 Distribution of seals and polar bear observed in August-September 2010

Figure 2.7.4 Distribution of alcid seabirds observed during the Joint Norwegein/Russian Ecosystem Survey 2010

Figure 2.7.5 Distribution of fulmars and gulls observed during the Joint Norwegein/Russian Ecosystem Survey 2010

Figure 2.7.6 Distribution of skuas observed during the Joint Norwegein/Russian Ecosystem Survey 2010

Figure 2.8.1 The recorded biomass (extrapolated) of the benthos (except *Pandalus borealis* ") from Campelen bottom trawl haul in the Ecosystem Survey in August-September 2010. The black dots are sampled stations.

Figure 2.8.2 The relative distribution of main benthic animal groups presented as quantitative circles at each sampled station with Campelen trawl in August-September 2010.

Figure 2.8.3 The catch of the Red King Crab (*Paralithodes camtschaticus*) in Campelen bottom trawl on the Ecosystem Survey in August-September 2010.

Figure 2.8.4 The catch of the Snow crab (*Chionoecetes opilio*) in Campelen bottom trawl on the Ecosystem Survey in August-September 2010.

Figure 2.8.5 The catch of the Northern shrimp (*Pandalus borealis*) in Campelen bottom trawl on the Ecosystem Survey in August-September 2010.

Figure 2.9.1 Type of garbage visible at surface (m³)

Figure 2.9.2 Type of garbage collected in pelagic and bottom trawl (g) (symbols with contour – in pelagic trawl, symbols without contour – in bottom trawl)

Figure 2.9.3 Some types of garbage collected in survey area.

Figure 2.10.1 Different type of the fish pathologies registered during the survey, August-September 2010

Figure 2.10.2 Tumors of an abdominal cavity side for 0-group cod

6 APPENDIX

Appendix 1

Sampling of fish in ecosystem survey 2010

Family	Latin name/ English name	Norwegian vessels	Russian vessels	Sum
Agonidae	Leptagonus decagonus/ Atlantic poacher			
	No of stations with samples	87	104	191
	Nos. length measured	551	559	1110
	Nos. aged	-	61	61
Agonidae	Ulcina olrikii/ Arctic alligatorfish	nameNorwegian vesselsRussian vesselstitic poacher		
	No of stations with samples	1	20	21
	Nos. length measured	1	152	153
	Nos. aged	-	1	1
Ammodytidae	Ammodytes marinus/ Lesser sandeel			
	No of stations with samples	18	-	18
	Nos. length measured	58	-	58
	Nos. aged	-	-	-
Ammodytidae	Ammodytes sp./ Sandeels			
	No of stations with samples	11	-	11
	Nos. length measured	17	-	17
	Nos. aged	-	-	-
Ammodytidae	Ammodytes tobianus/ Small sandeel			
	No of stations with samples	1	27	28
	Nos. length measured	1	478	479
	Nos. aged	-	-	-
Anarhichadidae	Anarhichas sp./ Catfishes			
	No of stations with samples	7	7	14
	Nos. length measured	14	7	21
	Nos. aged	-	-	-
Anarhichadidae	Anarhichas denticulatus/ Northern			
	wolffish			
	No of stations with samples	18	2	20
	Nos. length measured	24	2	26
	Nos. aged	-	1	1
Anarhichadidae	Anarhichas lupus/ Atlantic wolffish			
	No of stations with samples	37	10	47
	Nos. length measured	107	49	156
	Nos. aged	-	3	3
Anarhichadidae	Anarhichas minor/ Spotted wolffish			
	No of stations with samples	29	14	43
	Nos. length measured	57	16	73
	Nos. aged	-	2	2
Argentinidae	Argentina silus/ Greater argentine			
	No of stations with samples	16	-	16
	Nos. length measured	113	-	113
	Nos. aged	-	-	-
Clupeidae	Clupea harengus/ Atlantic herring			
	No of stations with samples	70	14	84
	Nos. length measured	2743	175	2918
	Nos. aged	174	7	181
Clupeidae	Clupea harengus/ Kanin herring			
	No of stations with samples	-	13	13
	Nos. length measured	-	491	491
	Nos. aged	-	147	147
Cottidae	Artediellus atlanticus/ Atlantic hookear sculpin			
	No of stations with samples	104	100	204

	Nos. length measured	1090	1180	2270
	Nos. aged	-	15	15
Cottidae	Artediellus scaber/ Rough hamecon			
	No of stations with samples	-	3	3
	Nos length measured	_	4	4
	Nos aged	_	_	 _
Cottidae	Cottidae a sn / Bullheads and Sculnins			
Connuae	No of stations with samples	7	24	31
	Nos length measured	10	124	142
-	Nos. rengui measured	19	124	145
Cattidaa	Nos. aged	-	-	-
Connuae	Gymnocantnus tricuspis/ Arctic stagnorn			
	Scuipin No of stations with somelas		17	17
	No of stations with samples	-	1/	207
	Nos. lengui measured	-	207	207
01	Nos. aged	-	14	14
Cottidae	Icelus bicornis/ Iwohorn sculpin	10	0	10
	No of stations with samples	10	9	19
	Nos. length measured	16	36	52
	Nos. aged	-	-	-
Cottidae	Icelus spatula/ Twohorn sculpin			
	No of stations with samples	-	20	20
	Nos. length measured	-	95	95
	Nos. aged	-	3	3
Cottidae	Myoxocephalus aenaenus/ Little sculpin			
	No of stations with samples	-	1	1
	Nos. length measured	-	1	1
	Nos. aged	-	-	-
Cottidae	Myoxocephalus scorpius/ Shorthhorn			
	sculpin			
	No of stations with samples	11	-	11
	Nos. length measured	88	-	88
	Nos. aged	-	-	-
Cottidae	Triglops murravi/ Moustache sculpin			
	No of stations with samples	33	6	39
	Nos. length measured	153	32	185
	Nos aged	-	10	10
Cottidae	Triglons nyhelini/ Bigeve sculnin		10	10
Connado	No of stations with samples	25	73	98
	Nos length measured	378	1821	2199
	Nos. aged	576	61	61
Cottidae	Triglons ningoli/ Dibbod soulnin	-	01	01
Connuac	No of stations with samples	5	19	22
	Nos length measured	5	10	126
	Nos. rengui measured	40	30	2
Cattidae	INOS. aged	-	<u> </u>	<i>L</i>
Conidae		7	10	22
	No of stations with samples	/	16	23
	Nos. length measured	134	119	253
a 1 1 1	Nos. aged	-	-	-
Cyclopteridae	Cyclopterus lumpus/ Lumpsucker	- · ·		
	No of stations with samples	81	24	105
	Nos. length measured	198	34	232
	Nos. aged	-	-	-
Cyclopteridae	Eumicrotremus derjugini/ Leatherfin lumpsucker			
	No of stations with samples	-	2	2
	Nos. length measured	-	14	14
	Nos. aged	-	10	10
Cyclopteridae	Eumicrotremus spinosus/ Atlantic spiny			
	No of stations with samples	5	7	12
	Nos length measured	8	9	17
·	1 too. tengui meusuleu	0	1	± /

	Nee		2	2
	Nos. aged	-	3	5
Gadıdae	Arctogadus glacialis/ Arctic cod			
	No of stations with samples	1	6	7
	Nos. length measured	2	8	10
	Nos. aged	-	4	4
Gadidae	Boreogadus saida/ Polar cod			
	No of stations with samples	109	189	298
	Nos length measured	2937	26674	29611
	Nos. aged	676	774	1400
Cadidaa	Ciliata mustala/ Fiveheard reakling	020	//4	1400
Gadidae	Cinata mustera/ Fivebeard Focking	2		2
	No of stations with samples	2	-	2
	Nos. length measured		-	1
	Nos. aged	-	-	-
Gadidae	Eleginus nawaga/ Atlantic navaga			
	No of stations with samples	-	5	5
	Nos. length measured	-	1127	1127
	Nos. aged	-	200	200
Gadidae	Gadiculus argenteus/ Silvery pout			
	No of stations with samples	13	-	13
-	Nos. length measured	50	-	50
	Nos aged	-	_	-
Gadidae	Gadus morhua/ Atlantic cod			
Gaalaac	No of stations with samples	264	212	177
	No of stations with samples	12242	12401	477
	Nos. length measured	12343	13401	23/44
0.111	Nos. aged	8//	2207	3084
Gadidae	Melanogrammus aeglefinus/ Haddock			
	No of stations with samples	170	76	246
	Nos. length measured	6015	7414	13429
	Nos. aged	338	718	1056
Gadidae	Merlangius merlangius/ Whiting			
	No of stations with samples	1	1	2
	Nos. length measured	1	1	2
	Nos. aged	-	-	-
Gadidae	Micromesistius poutassou/ Blue whiting			
	No of stations with samples	45	1	46
	Nos length measured	933	1	934
-	Nos aged	110	1	111
Gadidae	Pollachius virons/ Saitha	110	1	111
Gauldae	I officiations with some los	1.1	22	67
	No of stations with samples	44	23	0/
	Nos. length measured	370	84	454
	Nos. aged	-	4	4
Gadidae	Trisopterus esmarkii/ Norway pout			
	No of stations with samples	49	11	60
	Nos. length measured	1189	487	2676
	Nos. aged	-	40	40
Gasterosteidae	Gasterosteus aculeatus/ Three-spined stickleback			
	No of stations with samples	8	10	18
-	Nos. lenoth measured	44	145	189
<u> </u>	Nos aged	-	-	107
Liparidae	Caroprostus micropus/	-	-	
ыраниас	No of stations with second		7	7
	INO OF Stations with samples	-	/	/
	Nos. length measured	-	9	9
	Nos. aged	-	3	3
Liparidae	Careproctus ranula/ Scotian snailfish			
	No of stations with samples	-	4	4
	Nos. length measured	-	5	5
	Nos. aged	-	-	-
Liparidae	Careproctus reinhardii/ Sea tadpole			
	No of stations with samples	14	18	32
	Nos. length measured	22	53	75
			-	-

	Nos aged		6	6
	INOS. ageu	-	6	0
Liparidae	Liparis fabricii/ Gelatinous snailfish			
	No of stations with samples	14	74	88
	Nos. length measured	64	2059	2123
	Nos. aged	-	25	25
Liparidae	Linaris gibbus/ Variagated snailfish			
Lipuliau	No of stations with samples	2	10	12
	Nos length measured	10	10	27
	Nos. lengui measureu	10	17	21
-· · ·	Nos. aged	-	4	4
Liparidae	Liparis liparis/ Striped sea snail			
	No of stations with samples	2	1	3
	Nos. length measured	2	2	4
	Nos. aged	-	2	2
Liparidae	Liparis montague/ Montagu's sea snail			
1	No of stations with samples	-	1	1
-	Nos length measured	_	4	4
	Nos. agad	-	т	7
T''1	Nos. ageu	-	-	-
Liparidae	Liparis sp./ Sea snalls		10	
	No of stations with samples	27	19	46
	Nos. length measured	492	113	605
	Nos. aged	-	-	-
Liparidae	Paraliparis bathybius/ Threadfin seasnail			
	No of stations with samples	1	-	1
	Nos, length measured	1	-	1
	Nos aged	-	-	-
Lotidae	Brosme brosme/ Cusk			
Londae	No of stations with samples	0	1	10
	No of stations with samples	20	1	22
	inos. lengui measured	32	1	
	Nos. aged	1	1	2
Lotidae	Enchelyopus cimbrius/ Fourbeard			
	No of stations with some las	5	1	6
	No of stations with samples	3	1	0
	Nos. length measured	8	1	9
	Nos. aged	-	1	l
Macrouridae	Caelorinchus caelorinchus/ Blackspot grenadier			
	No of stations with samples	1	-	1
	Nos. length measured	3	-	3
-	Nos. aged	_	-	-
Macrouridae	Macrourus berglax/ Rough rattail			
1110010 ui i uu	No of stations with samples	3	-	3
	Nos length measured	3		3
	Nos. agad	5	-	5
Maaatauhidaa	Nos. ageu	-	-	-
Myctophidae	Bentnosema giaciale / Giacier lanterniish	20	22	40
	No of stations with samples	20	22	42
	Nos. length measured	146	95	241
	Nos. aged	-	-	-
Myctophidae	Lampanyctus sp./			
	No of stations with samples	-	3	3
	Nos. length measured	-	3	3
	Nos. aged	-	-	-
Osmeridae	Mallotus villosus/ Capelin			
	No of stations with samples	245	216	461
	Nos length measured	16703	17688	34301
	Nos. rengui medsured	2785	1080	1865
Osmaridas	nos. ageu	5705	1000	+00J
Osmeridae	Osmerus eperianus/ European smelt		~	-
	No of stations with samples	-	5	5
	Nos. length measured	-	40	40
	Nos. aged	-	34	34
Paralepididae	Arctozenus risso/ White barracudina			
	No of stations with samples	17	1	18

	Nos. length measured	49	1	50
	Nos. aged	-	-	-
Petromyzontidae	Petromyzon marinus/ Sea lampray			
-	No of stations with samples	1	-	1
	Nos. length measured	1	-	1
	Nos. aged	-	-	-
Pleuronectidae	Hippoglossoides platessoides/ Long rough			
	No of stations with samples	159	162	321
	Nos. length measured	5904	7508	13412
	Nos. aged	-	379	379
Pleuronectidae	Hippoglossus hippoglossu/ Atlantic			
	No of stations with samples	1	-	1
	Nos. length measured	1	-	1
	Nos. aged	1	-	1
Pleuronectidae	Limanda limanda/ Dab			_
Tituroneenaat	No of stations with samples	1	3	4
	Nos. length measured	12	28	40
	Nos. aged	-	-	-
Pleuronectidae	Pleuronectes glacialis/ Arctic flounder			
	No of stations with samples	-	3	3
	Nos. length measured	-	4	4
	Nos aged	_	3	3
Pleuronectidae	Pleuronectes platessa/ Europeian plaice			5
Tieuroneettaae	No of stations with samples		17	17
	Nos length measured	_	241	241
	Nos aged		83	83
Pleuronectidae	Reinhardtius hippoglossoides/ Greenland		00	05
	No of stations with samples	92	70	162
	Nos. length measured	503	1801	2304
	Nos. aged	-	1062	1062
Psychrolutidae	Cottunculus microps/ Polar sculpin			
	No of stations with samples	7	15	22
	Nos. length measured	7	31	38
	Nos. aged	-	2	2
Psychrolutidae	Cottunculus sadko/ Sadko sculpin			
	No of stations with samples	-	5	5
	Nos. length measured	-	9	9
	Nos. aged	-	1	1
Rajidae	Amblyraja hyperborean/ Arctic skate			
	No of stations with samples	5	16	21
	Nos. length measured	13	20	33
	Nos. aged	-	-	-
Rajidae	Amblyraja radiate/ Thorny skate			
	No of stations with samples	61	35	96
	Nos. length measured	119	105	224
	Nos. aged	-	-	-
Rajidae	Bathyraja spinicauda/ Spinetail ray			
	No of stations with samples	3	-	3
	Nos. length measured	3	_	3
	Nos. aged	-	-	-
Rajidae	Rajella fyllae/ Round ray			
	No of stations with samples	3	-	3
	Nos. length measured	3	-	3
	Nos. aged	-	-	-
Scorpaenidae	Sebastes marinus/ Golden redfish			
	No of stations with samples	19	2	21
	Nos. length measured	150	12	162
	Nos. aged	-	-	-

Scorpaenidae	Sebastes mentella/ Deepwater redfish			
-	No of stations with samples	100	67	167
	Nos. length measured	3335	875	4210
	Nos. aged	-	65	65
Scorpaenidae	Sebastes sp./ Redfishes			
	No of stations with samples	112	7	119
	Nos. length measured	4035	46	4081
	Nos. aged	-	-	-
Scorpaenidae	Sebastes viviparus/ Norway redfish			
	No of stations with samples	12	-	12
	Nos. length measured	183	-	183
~	Nos. aged	-	-	-
Squalidae	Somniosus microcephalus/ Greenland shark			
	No of stations with samples	-	1	1
	Nos. length measured	-	1	1
	Nos. aged	-	-	-
Sternoptychidae	Maurolicus muelleri/ Pearlside			
	No of stations with samples	14	4	18
	Nos. length measured	74	6	80
	Nos. aged	-	-	-
Stichaeidae	Anisarchus medius/ Stout eelblenny			
	No of stations with samples	8	6	14
	Nos. length measured	13	55	68
	Nos. aged	-	-	-
Stichaeidae	Leptoclinus sp., Lumpenus sp./			
	No of stations with samples	1	10	11
	Nos. length measured	6	151	157
	Nos. aged	-	-	-
Stichaeidae	Leptoclinus maculates/ Daubed shanny	114	06	210
	No of stations with samples	114	96	210
	Nos. rengui measured	839	/90	1033
Stichaeidae	I umponus fabricii/ Slondor colblonny	-	-	-
Sticilaeitae	No of stations with samples		2	2
	Nos length measured	-	36	36
	Nos. aged	-	-	-
Stichaeidae	Lumpenus lampretaeformis/Snake blenny			
Strenderdae	No of stations with samples	59	17	76
	Nos. length measured	233	77	310
-	Nos. aged	-	1	1
Triglidae	Eutrigla gurnardus/ Grey gurnard			
	No of stations with samples	2	-	2
	Nos. length measured	2	-	2
	Nos. aged	-	-	-
Zoarcidae	Gymnelus knipowitschi/ Halvbarred pout			
	No of stations with samples	-	2	2
	Nos. length measured	-	3	3
	Nos. aged	-	-	-
Zoarcidae	Gymnelus retrodorsalis/ Aurora unernak			
	No of stations with samples	1	-	1
	Nos. length measured	1	-	1
7 1	Nos. aged	-	-	-
Zoarcidae	Gymnelus viridis/ Fish doctor		1	1
	No of stations with samples	-	1	1
	Nos. length measured	-	2	2
Zaaraidaa	Nos. aged	-	-	-
Zoarcidae	Lycodes esmarkli/ Esmark's eelpout	2		2
	Nos length massured	3 72	-	3
	Nos. rengui measured	23	-	23
1	inos. aged	-	-	-

Zoarcidae	Lycodes eudipleurostictus/ Double line eelpout			
	No of stations with samples	3	6	9
	Nos. length measured	5	13	18
	Nos. aged	-	9	9
Zoarcidae	Lycodes gracilis/ Vahl's eelpout			
	No of stations with samples	47	11	58
	Nos. length measured	225	31	256
	Nos. aged	-	29	29
Zoarcidae	Lycodes luetkenii/ Lutken's eelpout			
	No of stations with samples	-	2	2
	Nos. length measured	-	2	2
	Nos. aged	-	-	-
Zoarcidae	Lycodes pallidus/ Pale eelpout			
	No of stations with samples	12	28	40
	Nos. length measured	47	90	137
	Nos. aged	-	7	7
Zoarcidae	Lycodes polaris/ Canadian eelpout			
	No of stations with samples	-	12	12
	Nos. length measured	-	44	44
	Nos. aged	_	12	12
Zoarcidae	Lycodes reticulates/ Arctic eelpout			
	No of stations with samples	13	32	45
	Nos. length measured	22	152	174
	Nos. aged	-	38	38
Zoarcidae	Lycodes rossi/ Threespot eelpout			
	No of stations with samples	13	8	21
	Nos. length measured	29	14	43
	Nos. aged	-	-	-
Zoarcidae	Lycodes seminudus/ Longear eelpout			
	No of stations with samples	13	21	34
	Nos. length measured	46	50	96
	Nos. aged	-	10	10
Zoarcidae	Lycodes squamiventer/ Scalebelly eelpout			
	No of stations with samples	1	3	4
	Nos. length measured	5	6	11
	Nos. aged	-	2	2
Zoarcidae	Lycenchelys kolthoffi/ Checkered wolfeel			
	No of stations with samples	1	2	3
	Nos. length measured	1	7	8
	Nos. aged	-	-	-
Zoarcidae	Lychenchelus sarsii/ Sars wolf eel			
	No of stations with samples	1	-	1
	Nos. length measured	1	-	1
	Nos. aged	-	-	-

Length measurements include 0-group samples. Demersal fishes will be aged after the survey.

Appendix 2

List of identified species of the bottom invertebrates and frequency character at the stations through the Barents sea ecosystem survey in 2010

Phylum	Class	Order	Family	Synonim	Author, ye	ar	GS	JH	JM	VI	FN	
Porifera	Calcarea	Calcarea	Sycettidae	Sycon sp.				1	1	1		
	Demospon	g Astrophorida	Geodiidae	Geodia barretti	Hentschel,	1929		11	12			3
	iae			Geodia macandrewii	Bowerbank	, 1858		2	14	4		1
				Geodia sp.					3			
			Pachastrellida	Thenea cf. muricata	(Bowerbank	k, 1858)				4		
			e	Thenea muricata	(Bowerbank	k, 1858)		20	4149	3		
			Tetillidae	Tetilla cranium	(O.F. Muell	ler, 1776)		1	5	4		67
				Tetilla polyura	Schmidt, 18	870		152	99	8		81
				Tetilla sp.							132	
		Axinellida	Axinellidae	Axinella ventilabrum	(Johnston, 1	1842)		2				
		Hadromerida	Polymastiidae	Polymastia mammillaris	(Mueller, 1	806)					2	
				Polymastia sp.					8		379	
				Polymastia thielei	Koltun, 196	54			3	4		
				Polymastia uberrima	(Schmidt, 1	870)			21	4		40
				Radiella grimaldi	(Topsent, 1	1913)		76	89		211	1
				Radiella hemisphaericur	m(Sars, 1872))		18	92	3		
				Sphaerotylus borealis	(Swarchevs	ky, 1906)		1				
			Tentorium semisuberites	s (Schmidt, 1	870)		3	8	17	2	4	
		Stylocordylida	Stylocordyla borealis	(Loven, 186	56)		5			64		
			e Suberitidae	Suberites ficus	(Johnston, 1	1842)		5	8	5	20	12
			Tethyidae	Tethya aurantium	(Pallas, 176	66)			7			
				Tethya norvegica	Bowerbank	, 1872		9				
		Halichondrida	Axinelliidae	Phakellia bowerbanki	Vosmaer, 1	885		2				
				Phakellia cribrosa	(Miklucho-	Maclay, 1	870)	1				
				Phakellia sp.					2			1
		Haplosclerida	Haliclonidae	Haliclona cinerea		(Grant, 1	827)		1			
				Haliclona sp.				1	2	7		
				Haliclona ventilabrum	(Fristedt, 18	887)		6		3		
		Poecilosclerida	Microcionidae	e Antho dichotoma	(Esper,1794	4)		1				
			Mycalidae	Mycale sp.					8			
			Myxillidae	Artemisina apollinis		(Ridley	& Dendy,	1				
				Myxilla brunnea		Hansen,	1885	2				
				Myxilla incrustans		(Johnstor	n, 1842)	19	4	22		2
				Myxilla sp.				3	39			
			Tedaniidae	Tedania suctoria		Schmidt,	1870	28	16	8		1
				Porifera g. sp.				82	33	3	84	14
Cnidaria	Anthozoa	Actiniaria	Actiniidae	Urticina felina		(L., 1767)	21				
			Actinostolidae	Anthosactis ianmaeni		Danielsse	en. 1890		6	2		

			Stomphia coccinea	(O.F. Mue	eller, 1776)		1			
		Hormathiidae	Hormathia digitata	(O.F.	Mueller,	140	97	37	218	61
			Hormathia sp.	1776)				4		
		Metridiidae	Metridium senile	(L., 1767)			16	1		
			Actiniaria g. sp.				8		1299	19
	Alcyonacea	Clavulariidae	Clavularia arctica	(M. Sars,	1860)	2				
		Nephteidae	Drifa glomerata	(Verrill, 1	869)	42	24	17	2	3
			Duva florida	(Rathke, 1	806)	3	3	1		
			Gersemia fruticosa	(M. Sars,	1860)		49	39		
			Gersemia rubiformis	(Ehrenber	g, 1834)	181	10	7	401	
	Pennatulacea	Umbellulidae	Umbellula encrinus	(L., 1758)					5458	
	Zoanthacea	Epizoanthidae	Epizoanthus incrustatus	(Dueben	& Koren,	4				
			Epizoanthus sp.	1847)			77		377	
			Anthozoa g. sp.						11135	
Hydrozoa	Athecata	Eudendriidae	Eudendrium capillare	Alder, 185	56		2			
			Eudendrium vaginatum	Norman, 1	864			1		
		Tubulariidae	Tubularia sarsii (medusa)				4			
	Thecaphora	Campanularii	Campanularia volubilis	(L., 1758)				83		
		dae	Obelia longissima	(Pallas, 17	766)			44		
			Orthopyxis integra	(McGilliv	ray, 1842)			14		
			Rhizocaulus verticillatus	(L., 1758)				7		
		Campanulinid	Calycella syringa	(L., 1767)				8		
		ae	Lafoeina maxima	Levinsen,	1893		1	5		
		Haleciidae	Halecium beanii	(Johnston,	1838)		1	3		
			Halecium labrosum	Alder, 185	59		1			
			Halecium marsupiale	Bergh, 18	87			4		
			Halecium muricatum	(Ellis & S	olander, 1786)		2	17		
		Lafoeidae	Grammaria immersa	Nutting, 1	901		1	1		
			Lafoea fruticosa	(M. Sars,	1850)		7	25		
		Laodiceidae	Ptychogena lactea	A. Agassiz	z, 1865		20			
			Ptychogena lactea (medusa)	A. Agassiz	z, 1865		61	1		
		Sertulariidae	Abietinaria abietina	(L., 1758)				26		
			Abietinaria filicula	(Ellis & S	olander, 1786)			1		
			Hydrallmania falcata	(L., 1758)				15		
			Sertularella gigantea	Mereschko	owsky, 1878			22		
			Sertularia mirabilis	(Verrill, 1	873)			12		
			Sertularia plumosa	(Clark, 18	76)			2		
			Symplectoscyphus tricuspidatus	(Alder, 18	56)		3	9		
			Thuiaria breitfussi	(Kudelin,	1914)			13		
			Thuiaria carica	Levinsen,	1893			1		
			Thuiaria cupressoides	(Lepechin	, 1781)			1		
			Thuiaria lonchitis	Naumov,	1960		11	3		
			Thuiaria obsoleta	(Lepechin	, 1781)			4		
		Tiarannidae	Modeeria plicatile	(M. Sars,	1863)		2	1		

				Hydroidea g. sp).		8				
				Hydrozoa g. sp.				4			
	Scyphozoa	Semaeostomeae	Cyaneidae	Cyanea capillata	a	(L., 1758)		25	14		
				Scyphozoa g. sp	p.						
Plathelmin	tTurbellaria	a		Turbellaria g. sj	p.			2			
hes Nemertini	Nemertini			Nemertini g. sp			4	5	5	80	
Annelida	Polychaeta	Amphinomida	Euphrosinidae	Euphrosine bor	ealis	Oersted, 1843				67	
		Capitellida	Maldanidae	Maldane sarsi		Malmgren, 1867	2				
		Chaetopterida	Chaetopterida	Spiochaetopteru	us typicus	M. Sars, 1856	93	572	7	3	
		Eunicida	e Eunicidae	Eunice sp.			1				
			Lumbrinerida	Lumbriconeris	sp.			2			
			e Onuphidae	Nothria hyperbo	orea	(Hansen, 1878)		14			
		Flabelligerida	Flabelligerida	eBrada granulata	ı	Malmgren, 1867	2	392	12	10	19
				Brada granulosa	a	Hansen, 1880				34	
				Brada inhabilis		(Rathke, 1843)	151	43	5	391	
				Brada sp.						2	
				Brada villosa		(Rathke, 1843)	7	2		2	
		Opheliida	Scalibregmida	Polyphisia sp.				3			
		Phyllodocida	e Aphroditidae	Aphrodita sp.			3	3	4		
				Aphroditidae g.	sp.						2
			Nephtyidae	Nephtyidae g. s	sp.		1	3			
				Nephtys sp.			2	3	1	27	
			Nereididae	Nereis sp.			3				
			Polynoidae	Harmothoe sp.			59	61	11	304	22
				Polynoidae g. s	p.		1				
			Syllidae	Syllinae g. sp.			1				
		Sabellida	Sabellidae	Sabellidae g. sp).		9	54			
			Serpulidae	Serpulidae g. sp).		1				
		Terebellida	Pectinariidae	Pectinaria hype	rborea	(Malmgren, 1865)	1	89			1
			Terebellidae	Pista maculata		(Dalyell, 1853)		11	2		
				Terebellinae g.	sp.		40				
				Polychaeta g. sj	p.		3	40	9	480	
Sipuncula	Sipunculid	e Golfingiiformes	Golfingiidae	Golfingia sp.			5				
	a			Nephasoma ere	mita	(M. Sars, 1851)			1		
			Phascolionida	Phascolion	strombu	s(Montagu, 1804)	21	5	1		
				strombus Sipunculidea g.	sp.		7			125	1
Echiura	Echiurida	Echiuroinea	Bonelliidae	Hamingia arctic	ca	Danielssen & Koren, 1881	8	5		2	2
Cephalorh	Priapulida	Priapulomorpha	Priapulidae	Priapulopsis bic	caudatus	(Danielssen, 1868) van der Land, 1970		1		56	
yncha				Priapulus cauda	itus	Lamarck, 1816			1		1
Arthropod	Cirripedia	Thoracica	Balanomorph	Balanus balanus	s	(L., 1758)		1	8		
a			-	Balanus sp.						12	
				Semibalanus ba	lanoides	(L., 1766)		36	51		
	Malacostra	Amphipoda	Acanthonotoz	Acanthonotozo	ma	(Ross, 1835)	1				
	ca		matidae	cristatum Acanthostenbei	a	(Goes. 1866)	12			121	
						()					

		malmgreni							
	Amathillopsid	Amathillopsis spinigera	Heller, 18	875			1	10	
	ae Calliopiidae	Cleippides quadricuspis	Heller, 1	875			1	322	
	Epimeriidae	Epimeria loricata	G.O. Sar	s, 1879	23	39	39	3	
		Paramphithoe hystrix	(Ross, 18	35)	17	6	7	16	
	Eusiridae	Eusirus holmi	Hansen,	1887				22	
		Rhachotropis aculeata	(Lepechi	n, 1780)	4	15	8	63	6
		Rhachotropis helleri	A. Boeck	, 1871		7			
	Gammaridae	Gammaridae g. sp.				1		5	
		Gammarus sp.				1			
	Hyperiidae	Hyperia galba	(Montagu	ı, 1813)			1		
		Hyperiidea g. sp.				2			
		Themisto libellula (Lichtenstein,1882)				441			
	Liljeborgiidae	Lilljeborgia fissicornis	(M. Sars,	1858)			2		
	Lysianassidae	Anonyx nugax	(Phipps,	1774)	16		148		
		Anonyx sp.				10	12	87	
		Eurythenes gryllus	(Lichtens	tein, 1822)			3	1	
	Pleustidae	Leucothoe spinicarpa	(Abilgaan	rd, 1789)		17	2		
	Stegocephalid	a Stegocephalidae g. sp.				7			
	e	Stegocephalus inflatus	Kroeyer,	1842	32	8	1	209	
		Stegocephalus sp.				4			4
		Amphipoda g. sp.					23		
Cumacea	Diastylidae	Diastylis goodsiri		(Bell, 1855)	2			2	
Decapoda	Crangonidae	Pontophilus norvegicus		M. Sars, 1861	91	64	12		
		Sabinea sarsi		Smith, 1879	9	3	6		
		Sabinea septemcarinata		(Sabine, 1821)	6345	1455	971	22228	78
		Sclerocrangon boreas		(Phipps, 1774)		19	20	352	
		Sclerocrangon ferox		(G.O. Sars, 1821)	445	185	85	2956	
	Galatheidae	Munida bamffica		(Pennant, 1777)	5	27			
	Hippolitydae	Bythocaris biruli		(Kobjakova, 1964)				155	
		Bythocaris payeri		(Heller, 1875)				143	
		Eualus gaimardi		(Milne-Edwards, 1837)		14		2283	22
		Lebbeus polaris		(Sabine, 1821)	339	126	351	3035	
		Spirontocaris spinus		(Sowerby, 1802)	151	26	72	40	
	Lithodidae	Lithodes maja		(L., 1758)		1			
		Paralithodes camtschaticus	3	(Tilesius, 1815)	1			5	6
	Majidae	Chionoecetes opilio		(Fabricius, 1788)	47			389	
		Hyas araneus		(L., 1758)	4	16	7	293	
		Hyas coarctatus		Leash, 1815	3	21	2	2	1
	Paguridae	Pagurus bernhardus		(L., 1758)		11			
		Pagurus pubescens		(Kroeyer, 1838)	9		3	255	2
	Pandalidae	Pandalus borealis		Kroeyer, 1837	151490	41137	56076	213456	14272
		Pandalus montagui		Leach, 1814	29			2	
		Pandalus sp.						5	

Mollusca

		Pasiphaeidae	Pasiphaea multidentata	Esmark, 1886	52	2		84	
			Pasiphaea sivado	(Risso, 1816)			883	211	
			Pasiphaea tarda				715		
		Sergestidae	Sargestes arcticus	Kroeyer, 1855		54	12	40	
	Euphausiacea	Euphausiidae	Euphausiidae g. sp.			4215			
			Meganyctiphanes norvegica	(M. Sars, 1857)		609			
			Thysanoessa inermis	(Kroeyer, 1846)		79			
	Isopoda	Aegidae	Aega psora	L., 1758		1			
			Aega sp.			4			
		Eurycopidae	Munnopsurus giganteus	(G.O. Sars, 1877)	1				
		Idotheidae	Saduria sabini	(Kroeyer, 1849)	24	33		453	1
		Ilyarachnidae	Ilyarachna hirticeps	G.O. Sars, 1870		5			
			Ilyarachna sp.			1			
Pycnogon	id Pantopoda	Ammotheidae	Ascorhynchus abyssi	G.O. Sars, 1877			1		
a		Callipallenida	eCordylochele malleolata	(G.O. Sars, 1879)		8			
			Pseudopallene circularis	(Goodsir, 1842)		22	20		
			Pseudopallene sp.		5				
			Pseudopallene spinipes	(Goodsir, 1842)		1	13		
		Colossendeida	Colossendeis angusta	G.O. Sars, 1877		20			3
		e	Colossendeis proboscidea	(Sabine, 1824)					7
			Colossendeis sp.			18		712	
		Nymphonidae	Boreonymphon robustum	(Bell, 1855)	58	59			
			Nymphon elegans				1		
			Nymphon hirtum	(Fabricius, 1780)		61			
			Nymphon leptocheles	G.O. Sars, 1888			3		
			Nymphon longitarse	Kroeyer, 1845		1	3		
			Nymphon microrhynchum				1		
			Nymphon sp.		231				8
			Nymphon stroemi stroemi	Kroeyer, 1845	36				
			Nymphonidae g. sp.						12
			Pycnogonida g. sp.			137		3466	
Bivalvia	Cardiiformes	Cardiidae	Clinocardium ciliatum	(Fabricius, 1780)	88	19	8	372	1
			Serripes groenlandicus	(Bruguiere, 1789)				1	
		Myidae	Mya sp.					14	
			Mya truncata	L., 1767				1	
		Tellinidae	Macoma calcarea	(Gmelin, 1791)	1				
	Cuspidariiforme	es Cuspidariidae	Cuspidaria arctica	(M. Sars, 1859)	1	3		45	
	Luciniformes	Astartidae	Astarte borealis	Schumacher, 1817				52	
			Astarte crenata	(Gray, 1842)		43	9	706	25
			Astarte sp.		41			1	
		Hiatellidae	Hiatella arctica	(L., 1767)	8	16	9	79	
			Hiatella sp.				1		
	Mytiliformes	Arcidae	Bathyarca glacialis	(Gray, 1842)	302	101	12	574	5
		Mytilidae	Musculus discors	(L., 1767)		4			

			Mytilus edulis	L., 1758			7		
	Nuculiformes	Nuculanidae	Nuculana pernula	(Mueller, 1779)		1			
		Nuculidae	Leionucula tenuis	(Montagu, 1808)	2				
		Yoldiidae	Yoldia hyperborea	(Torell, 1859)	5		1	2	
			Yoldiella lenticula	(Moeller, 1842)				1	
			Yoldiella sp.					22	
	Pectiniformes	Anomiidae	Anomia squamula	(L., 1767)	52				
		Limidae	Limatula hyperborea	(Jensen, 1905)				120	
		Pectinidae	Chlamys islandica	(O.F. Mueller,	21	27	17	193	5
			Chlamys sulcata	(O.F. Mueller, 1776)		12			18
			Pseudamussium septemra	diatum (Mueller, 1776)	12		1		
		Propeamussii	d Arctinula greenlandica	(Sowerby, 1842)	2312	21	5	1013	1
		ae	Bivalvia g. sp.			1		4	
Cephalopo	Octopoda	Bathypolypodi Bathypolypus arcticus		(Prosch, 1849)	2			8	
da		nae	Benthoctopus sp.				1	10	
			Octopoda g. sp.			6			
	Sepiida	Sepiolidae	Rossia palpebrosa	Owen, 1834	8	2		14	
			Rossia sp.					1	
	Teuthida	Gonatidae	Gonatus fabricii	(Lichtenstein, 1818)	5	32	16	11	
			Todarodes sagittatus (de Lamarck, 1798)				3		
			Todaropsis eblanae	(Ball, 1841)			19		
			Cephalopoda g. sp.				2		
Gastropod	a Bucciniformes	Beringiidae	Beringius (Friele,	1879)		2	1	2	
		Buccinidae	Buccinidae g. sp.					2	2
			Buccinum angulosum	Gray, 1839				6	
			Buccinum ciliatur	m(Fabricius, 1780)	2			4	
			Buccinum ciliatur	mHancock, 1846				1	
			sericatum Buccinum elatior	(Middendorff, 1849)	9	8	2	38	4
			Buccinum fragile	Verkruezen in G.O. Sars, 1878		17	3	39	
			Buccinum glaciale	L., 1761				19	
			Buccinum hydrophanum	Hancock, 1846	5	41		97	
			Buccinum maltzani	Pfeiffer, 1886				2	
			Buccinum micropoma	Jensen in Thorson, 1944				2	
			Buccinum nivale	Friele, 1882		1		3	
			Buccinum sp.		10			2	3
			Buccinum undatum	L., 1758				2	
			Colus altus	(S. Wood, 1848)				5	
			Colus holboelli	(Moeller,1842)		2		5	
			Colus islandicus	(Mohr, 1786)		12	1	5	3
			Colus kroyeri	(Moeller,1842)		1	1		
			Colus pubescens	(Verrill, 1882)	4	14	1		
			Colus sabini	(Gray, 1824)	82	11	1	303	1
			Colus sp.		8	1		11	
			Colus turgidulus	(Jeffreys, 1877)		15	1	40	

				Eggs Buccinidae g. sp.						23	
				Mohnia mohni	(Friele, 1877)			3			
				Neptunea communis	(Middendorff, 190	1)				5	
				Neptunea denselirata	Brogger, 1901		3	1		4	
				Neptunea despecta	(L., 1758)					1	1
				Neptunea sp.							2
				Turrisipho lachesis	(Moerch, 1869)		4	7		47	
				Turrisipho voeringi	Bouchet et Waren,	1985		2		1	
				Volutopsis norvegicus	(Gmelin, 1790)		3	1		4	1
			Muricidae	Boreotrophon truncatus	(Stroem, 1767)					4	
		Cephalaspidea	Philinidae	Philine finmarchica	G.O. Sars, 1878			112		166	
				Philinidae g. sp.			25	11	17		
			Scaphandrida	eScaphander punctostriatus	s (Mighels & Adams	, 1842)		3	1	1	49
				Scaphander sp.							2
		Cerithiiformes	Naticidae	Bulbus smithi	Brown, 1839			1			
				Cryptonatica affinis	(Gmelin, 1791)		14	7	5	31	1
				Eggs Naticidae g. sp.						1	
				Lunatia pallida	(Broderip & Sower	by, 1829)		3		16	
			Velutinidae	Limneria undata	(Brown, 1838)		3			4	1
				Onchidiopsis glacialis	(M. Sars, 1851)			1	3	5	
				Onchidiopsis sp.				1			
		Epitoniiformes	Epitoniidae	Boreoscala groenlandica	(Moeller, 1842)			1			1
		Nudibranchia	Dendronotidae	eDendronotus frondosus	(Ascanius, 1774)					1	
				Dendronotus robustus	Verrill, 1870					4	
				Dendronotus sp.						1	
				Nudibranchia g. sp.			7	1	1	26	4
		Patelliformes	Lepetidae	Lepeta coeca		(O.F. Mueller,	1				
			Tecturidae	Capulacmaea radiata		(M. Sars, 1851)		1		2	
		Pneumodermatif	Clionidae	Clione limacina		(Phipps, 1774)		15	2		
		ormes Trochiformes	Trochidae	Margarites costalis		(Gould, 1841)		3	1	84	
				Margarites groenlandicus	groenlandicus	(Gmelin,	3	4	1	8	
				Margarites groenlandicus	umbilicalis	1790) (Broderip & Sowe	erby, 182	9)		3	
				Margarites sp.						5	
				Eggs Gastropoda g. sp.			3				
				Gastropoda g. sp.						6	3
Echinoder	Asteroidea	Forcipulatidae	Asteriidae	Asterias rubens		L., 1758		2	3	17	1
mata				Icasterias panopla		(Stuxberg, 1879)	73	51	5	334	14
				Leptasterias muelleri		(M. Sars, 1846)		2		1	
				Leptasterias sp.						316	1
				Urasterias linckii		(Mueller	121	67	5	239	1
		Notomyotida	Benthopectini	Pontaster tenuispinus		Troschel, 1842) (Dueben	304	395	1	3250	17
		Devillogida	Latron settint -	Pathybiostor vovillife-		a Koren, 1846) (W. Thomson 19	72)	1		10	
		1 axinosida	Asu opecunida	Ballyblaster vexiliner		(w. 1101115011, 18	13)	1		10	

		e							
			Leptychaster arcticus	(M. Sars, 1851)		4			
		Ctenodiscidae	Ctenodiscus crispatus	(Retzius,	2875	3151	83	6284	513
	Spinulosida	Echinasteridae	eHenricia sp.	1805)	17	39	4	646	49
	Valvatida	Goniasteridae	Ceramaster granularis granularis	(Retzius, 1783)		13			
			Hippasteria phrygiana phrygiana	(Parelius,	4	1			8
			Pseudarchaster parelii	(Dueben & Koren,	2				
		Poraniidae	Poraniomorpha bidens	1846) Mortensen, 1932	2		1		
			Poraniomorpha hispida	(Sars,	1	2			
			Poraniomorpha tumida	(Stuxberg,	2	10		99	
			Tylaster willei	10/0)				1	
	Velatida	Korethrasteric	Korethraster hispidus	W. Thomson, 18	73	2			
		ae Pterasteridae	Hymenaster pellucidus	W. Thomson, 1873	2	14		69	
			Pteraster militaris	(O.F. Mueller, 1776)	17	8	1	303	1
			Pteraster obscurus	(Perrier, 1891)		2	1	40	
			Pteraster pulvillus	M. Sars, 1861	4	15	5	8	
		Solasteridae	Crossaster papposus	(L., 1768)	13	14	6	1129	1
			Lophaster furcifer	(Dueben & Koren, 1846)	11	4	2	165	
			Solaster endeca	(L., 1771)	4		6		
			Solaster glacialis	(Danielssen & K	(Danielssen & Koren, 1881)			2	
			Solaster sp.					49	
			Solaster syrtensis	Verrill,	3	3	1		
Crinoidea	Comatulida	Antedonidae	Heliometra glacialis	(Owen, 1833)	136	244	26	5984	
Echinoidea	Echinoida	Strongylocenti	Strongylocentrotus droebachiensis	O.F. Mueller, 17	76	31	1	62	
		otique	Strongylocentrotus pallidus	(G.O. Sars, 1871)	635	200	306	14595	1
			Strongylocentrotus sp.	10/1)	1				
	Pourtalesioida	Pourtalesiidae	Pourtalesia jeffreysi	Thomson, 1872				2	
	Spatangoida	Spatangidae	Brisaster fragilis	(Dueben & Koren, 1846)	16	4			1
Holothuroi dea	Apodida	Myriotrochida	Myriotrochus rinkii	Steenstrup	14	45		1706	
uea	Aspidochirotida	e Stichopodidae	Stichopus tremulus	(Gunnerus	3	15			
	Dendrochirotida	Cucumariidae	Cucumaria frondosa	(Gunnerus, 1867)		330	287	1
	Molpadiida		Pentamera calcigera	(Stimpson, 1851)			1	
		Phyllophorida	Thyonidium sp.					16	
		e Psolidae	Psolus phantapus	Strussenfe	4			112	
		Molpadiidae	Molpadia arctica	von Marenzeller	, 1878	36	3	85	
			Molpadia borealis	(M. Sars, 1859)	150	33	1	245	20
			Holothuroidea g. sp.	1057)					6
Ophiuroide									
я	Euryalida	Gorgonocepha lidae	Gorgonocephalus arcticus	(Leach, 1819)	114	71	44	800	

Troschel,
					1842)					
				Gorgonocephalus lamarcki	(Mueller &	Troschel,	1	6		
				Gorgonocephalus sp.	1842)	4			3	
		Ophiurida	Amphiuridae	Amphiura sundevalli	(Mueller & T	Froschel, 1842	2)	1		
			Ophiacanthida	aOphiacantha bidentata	(Retzius,	734	2113	24	46181	39
			e Ophiactidae	Ophiopholis aculeata	(L., 1767)	131	308	32	7153	13
			Ophiomyxidae	Ophioscolex glacialis	Mueller & Troschel,	33	216	1	5056	
			Ophiuridae	Ophiocten sericeum	(Forbes,	5	77	9	6689	
				Ophiopleura borealis	1852) Danielsse n &	3	307	2	16261	
					Koren, 1877					
				Ophiura robusta	(Ayers, 1851)		4		
				Ophiura sarsi	Luetken, 1855	275	71	20	1008	54
Bryozoa				Ophiuridae g. sp.	1000				5	
				Stegophiura nodosa	(Luetken, 18	54)			2	
	Gymnolae mata	Cheilostomida	Bicellariidae	Dendrobeania fruticosa	Packard,	1				
				Dendrobeania sp.	1805		3	5		
			Celleporidae	Cellepora sp.		4	12	3	9	
			Flustridae	Flustra sp.			55	28	1	
			Membranipor	i Electra pilosa	(L., 1768)			1		
			dae Myriaporidae Reteporidae Schizoporellid	Leieschara sp.			7	5		
				Myriapora coarctata	(M. Sars,	1				
				Myriapora sp.	1863)			2		
				Retepora beaniana	King, 1846		11			
				Retepora sp.		1				
				Sertella septentrionalis	Jullen,	5		3		1
				Myriozoella sp.	1933		1			
			ae Scrupariidae Scrupocellarii dae Smittinidae	Eucratea loricata	(L., 1758)		14	3		
				Scrupocellaria scabra	(Van Benede	en, 1848)		5		
				Parasmittina ieffrevsii	(Norman.	1				1
				Porella sn	1903)	2		1		-
			Alcyonidiidae	Alcoonidium disciforme	(Smitt	-		1	1	
				Alcyonidium gelatinosum	(5) 1878) (L 1767)	1	745	232	549	
				Alevonidium sp	(L., 1707)		/45	232	1	
			Crisiidaa	Crisia aburnea	(1 1758)		3		1	
			Diastonoridae	Diplocolon intrioorius	(E., 1758)	6	2			
			Horneridae Horneridae Lichenoporida e		1872)	0	2		51	
				Hornera sp.	(1 1750)		10		51	1
				Stegonornera lichenoides	(L., 1758)	6	19			2
				Lichenopora hispida	(Fleming, 1828)	3				
_				Bryozoa g. sp.			9	6	37	
Brachiopo a	dRhynchone lata	IRhynchonellida	Hemithyridida e	Hemithyris psittacea	(Gmelin, 1790)	4	3	11	136	1
		Terebratulida	Cancellothyric idae	Terebratulina retusa	(L., 1758)	19	8	2		
			Macandreviid ae	Macandrevia cranium	(Mueller, 1776)	6	1503			

7

Chaetognat	tSagittoidea	Ctenodontina	Sagittidae	Parasagitta elegans	(Verrill, 1873)		5	1	
na Chordata	Ascidiacea	Aplousobranchia	Polyclinidae	Synoicum tirgens	Phipps, 1774		75	19	
		Phlebobranchia	Ascidiidae	Ascidia prunum	(Mueller,	27	10		
			Cionidae	Ciona intestinalis	(L., 1767)	12			1044
		Stolidobranchia	Pyuridae	Boltenia echinata	(L., 1767)				44
				Microcosmus glacialis	(M. Sars, 1859)			2	
			Styelidae	Styela rustica	(L., 1767)			5	2
				Ascidiacea g. sp.		491	35	537	194
				Udonella murmanica				1	

Institute of Marine Research Nordnesgaten 50, 5817 Bergen Norway

Polar Research Institute of Marine Fisheries and Oceanography (PINRO) 6 Knipovich Street, 183763 Murmansk Russia