This Report not to be cited without prior reference to the Council ${ }^{\text {Fr }}$)

International Council for the Exploration of the Sea
C.M.1977/F:8

Demersal Fish (Northern) Committee

givitokelret

REPORT OF THE NORTH SEA ROUNDFISH WORKING GROUP
Charlottenlund, 2l-25 March 1977

This Report has not yet been approved by the International Council for the Exploration of the Sea; it has therefore at present the status of an internal document and does not represent advice given on behalf of the Council. The proviso that it shall not be cited without the consent of the Council should be strictly observed.

[^0]1. Participation 1
2. Terms of reference 1
3. Total Allowable Catches 1
3.1. Recommended TACs 2
3.2. Relationship between stocks in Sub-Area IV and Division IIIa 2
3.3. Difficulties of controlling fishing mortality by means of a TAC 2
4. State of exploitation 3
5. Biology and distribution with reference to fisheries zones 3
6. Method of determining catch predictions 3
6.1. General 3
6.2. Estimates of discards 4
6.3. Natural mortality rate 4
6.4. Yearclass strength 4
6.5. Numbers landed 4
6.6. Estimates of fishing mortality rate in recent years 4
7. Haddock (Division VIb) 5
8. Fishing Effort 5
9. The effect on fishing mortalities of a TAC being set too high 5
10. Notes on stock assessment and TAC calculations 6
10.1. Cod 6
10.1.1. North Sea (Sub-Area IV) 6
10.1.1.1. VPA 6
10.1.1.2. Yearclass strengths 6
10.1.1.3. Catch predictions 7
10.1.2. West of Scotland - Division VIa 7
10.1.2.1. VPA 7
10.1.2.2. Yearclass strengths 7
10.1.2.3. Catch predictions 7
10.1.3. Irish Sea (Division VIIa) 7
10.1.3.1. VPA 7
10.1.3.2. Yearclass strength 8
10.1.3.3. Catch predictions 8
10.2. Haddock 8
10.2.1. North Sea (Sub-Area IV) 8
10.2.1.1. Total international catch per age group 8
10.2.1.2. Mean weight at age 8
10.2.1.3. VPA 8
10.2.1.4. Yield per recruit 9
10.2.1.5. Catch predictions 9
10.2.2. West of Scotland (IVivision VIa) 10
10.2.2.1. Total international catch per age group 10
10.2.2.2. Mean weight at age 10
10.2.2.3. VPA 10
10.2.2.4. Yield per recruit 10
10.2.2.5. Catch predictions 10
10.2.3. Sub-Area VII 11
10.3. Whiting 11
10.3.1. North Sea (Sub-Area'IV) 11
10.3.1.1. Total international catch per age group 11
10.3.1.2. Mean weight at age 11
10.3.1.3. VPA 11
10.3.1.4. Catch predictions 12
10.3.2. Sub-Area VI 12
10.3.3. Sub-Area VII 13
Tables 1.1. - 6.6. 14-54
Figures $1=7$ 55-61

Note: See also Doc. C.M.1977/F:8-APPENDIX.

1. Participation
D.W. Armstrong
R. de Clerck
N. Daan
J.P. Hillis
A. Hylen
J. Janusz
J. Lahn-Johannessen
R. Jones (Chairman)
H. Knudsen
F. Lamp
G. Lefranc
C.T. Macer
V.P. Ponomarenko
J.G. Pope
P. Sparre
I.G. Tsenker
G. Wagner

UK (Scotland)
Belgium
Netherlands
Ireland
Norway
Poland
Norway UK (Scotland)
Denmark
Germany, Fed. Rep. of
France
UK (England)
USSR
UK (England)
Denmark
USSR
Germany, Fed. Rep. of
V.M. Nikolaev, ICES Statistician, also attended the meeting.

2. Terms of Reference

At the 1976 Statutory Meeting of ICES in Copenhagen, it was decided (C.Res.1976/2:28) that:
"the North Sea Roundfish Working Group should meet at Charlottenlund from 21-25 March 1977 to:
(a) summarise the gadoid data collected from the North Sea Young Herring Surveys;
(b) assess TACs for 1978 for cod, haddock and whiting in Sub-Areas IV, VI and VII."

Also, as a result of a request from NEAFC, the Group was asked to provide information on the distribution, biology and state of exploitation of certain fish stocks with reference to 200 mile fishery zones.
3. Total Allowable Catches (TACS)

Total allowable catches for 1978 for different assumptions about changes in fishing effort are summarised below

TACs for 1978 (in 000 metric tons)
Option A

Sub-Area

IV

VI
VII 20.2(14)

Haddock
112 (190)
$13.4(12)$
8.2(6.5)

Whiting
173(130)
17.8(21)
$25.7(20)$

Sub-Area	Cod	Haddock	Whiting	
IV	220			106
VI	20.4	12.4	161	
VII	19.5	8.2	1.6 .6	
			25.7	

The values in brackets under Option A are the recommended TACs for 1977. Differences between the recommended TACs for 1977 and 1978 are largely due to differences in yearclass strengths.

3.1. Recommended TACs

The TACs given under OptionsA and B were chosen from the predictions as the most appropriate for consideration by management.

Option A gives the TACs that should be adopted if the object is to prevent fishing mortality in 1978 from increasing above its 1976-1977 level.

Option B gives the TAC's that should be adopted, if the object is to reduce fishing mortality in 1978 by 10\% compared to the level in 1976 and 1977.

Because of uncertainties about the state of exploitation of the stocks and because, in an evènt, it would be inadvisable to try to reduce fishing effort too rapidly, it is recommended that TACs be chosen so as to reduce the fishing mortality rate, but by no more than 10% in the first instance (Option B).
3.2. Relationship between stocks in Sub-Area IV and Division IIIa

The Sub-Area IV catch predictions and TACs are for Sub-Area IV only, and do not include Division IIIa.

It was noted however that there is a certain amount of interchange between the stocks of cod, haddock and whiting in the North Sea and those in Division IIIa (see Appendix).
3.3. Difficulties of controlling fishing mortality by means of a TAC

The Working Group wishes to draw attention to the difficulty of controlling fishing mortality by means of a TAC:

1) For years with relatively large variation in recruitment in which the recruiting yearclasses make up a large proportion of the exploitable stock estimates of yearclass strength are an essential part of a catch prediction. Reliable catch predictions are impossible if average yearclass strengths have to be assumed in the assessments.

The case of Division VIa cod for example, the appearance of a good yearclass in 1974. necessitated a revision of the 1977 catch prediction to 21000 tons (Table 6.4). This compared with a value of only 9400 tons calculated in last year's Working Group Report (ICES, C.M.1976/F:9, Table 33), a value that was determined before it was known that the 1974 yearclass was a good one.
2) For fisheries with relatively large variations in discarding, in which the discards make up a significant proportion of the catch, estimates of the rate of discarding are an essential part of a catch prediction. For example, in the case of North Sea haddock and whiting, discarding rates were estimated for the Netherlands and the UK (Scotland). These showed that the quantities discarded could be particularly high at times when good yearclasses are entering Recommendation 4 fisheries. This happened in the North Sea in 1976
and in that year it was estimated that the Netherlands and the UK (Scotland) alone discarded about 40000 tons of haddock and 34000 tons of whiting.

Attention is drawn to a previous report (C.M.1975/F:5) in which an increase in mesh size for vessels fishing for cod, haddock and whiting in the North Sea was recommended.

An increase in mesh size would appear to be particularly appropriate in fisheries in which large-scale discarding is common practice.

4. State of exploitation

It is difficult to quantify the state of exploitation of cod, haddock and whiting stocks in Sub-AreasIV, VI and VII.

This is because criteria based on different assumptions lead to views that cannot easily be reconciled:

1) For some species, F values are greatly in excess of $F_{m a x}$ values on yield per recruit curves (Table 5.4). According to this criterion, a number of the stocks under consideration are all seriously overexploited.
2) Yield per recruit curves are not necessarily the same as total yield curves however. It is therefore not certain to what extent changes in total yield would necessarily be the same as changes in yield per recruit, for changes in fishing mortality.
3) During the 1960's, stocks of cod, haddock and whiting in some areas and particularly in the North Sea and Division VIa increased significantly above their pre-1960 levels.

This was a consequence of good recruitment, and it is not known to what extent this, and other changes that took place in North Sea fish stocks at the time, were the resuat of natural processes or to what extent they were an indirect outcome of fishing.

Updated figures of cod, haddock and whiting nominal catches are given in Tables 1.1. - 1.8 .
5. Biology and Distribution with reference to Fisheries Zones

An account of the distribution and biology of various species has been prepared by members of the Working Group. This is given in the Appendix to the report.
6. Method of Determining Catch Predictions

6.1. General

Catch predictions for each species were calculated using the methods described in the previous report of the Working Group (Anon 1976), i.e., for those stocks for which age composition data were available, an estimate was made of the age composition for 1976 and this was projected forward taking account of available recruitment estimates to determine values for the catches in 1977 and 1978. This method was used for the stocks of cod, haddock and whiting in Sub-Area IV and Division VIa, and also for cod in Division VIIa.

For haddock and whiting in the North Sea, account was taken of Recommendation 2 as well as Recommendation 4 fisheries when preparing the input data for the catch predictions. For the remaining stocks under consideration, precautionary TACs were calculated on the basis of previous catch predictions.

6.2. Estimates of discards

Estimates were available of the numbers of discarded haddock and whiting in SubArea IV by the following countries:

$$
\begin{aligned}
& \text { Haddock - Netherlands, JK(Scotland) } \\
& \text { Whiting - Netherlands, UK(Scotland) }
\end{aligned}
$$

6.3. Natural mortality rate

For cod, haddock and whiting a constant value of $M=0.2$ was used in the assessments.

6.4. Yearclass strength

For North Sea cod, haddock and whiting, estimates of yearclass strength were based on data obtained from the International Young Herring Surveys. These surveys showe that the 1975 yearclass appears to be poor for cod and haddock, and average for whiting. The 1976 yearclass appears to be average for cod and whiting, but poor for haddock. For cod, the 1976 yearclass, although average, is good when considered with the yearclasses prior to 1969. For cod, haddock and whiting in other areas, no direct estimates were available and average yearclass strengths were assumed in the catch predictions.
6.5. Numbers landed

Estimates of the numbers landed at each age or length were provided by the following countries:

Cod Sub-Area IV -

Division VIa - Ireland, UK(England and Scotland)
Division VIIa - Ireland, UK(England and Wales)
Haddock
Sub-Area IV - Belgium, Denmark, Netherlands, Norway, Poland, UK(Fngland and Scotland)
Division VIa - Ireland, UK(England and Scotland)

Whiting

Sub-Area IV - Belgium, Denmark, Netherlands, Norway, Poland, UK(England and Scotland)
Division VIa - UK(Scotland) and Ireland

6.6. Estimates of fishing mortality rate in recent years

A difficulty with the estimation of fishing mortality rates is that VPA does not necessarily provide reliable estimates of these parameters for the 3 or 4 most recent years. To obtain these, additional information or assumptions are required.

One approach was to investigate the long-term relationship between fishing mortality and total international effort. For cod and'whiting, 'the relationship obtained was good (Figs' l \& 2) . For haddock, the relationship between effort and mortality rate was
not very good and it was not possible to say from this investigation that fishing mortality had necessarily changed. (Figure 3).

7. Haddock (Division VIb)

The recorded landings of haddock from Division VIb in 1974, 1975 and 1976 were 49000 , 50000 and 41000 tons respectively. Prior to 1974, haddock landings from this area were about $1000-2000$ tons annually.

The area of Rockall Bank where haddock are normally caught is about 2700 square miles. The catch rates for the years 1974, 1975 and 1976 have therefore been 18.1, 18.5 and 15.2 tons per square mile annually. These catch rates are extremely high when compared with average haddock catch rates in other parts of the North Atlantic, and the Group felt that it would be unwise to continue fishing at so high an intensity。

As a precautionary measure, it is strongly recommended that a TAC of 2000 tons should be adopted.
8. Fishing Effort (Tables 1.9-1.11)

Fishing effort data were available for English and Scottish vessels fishing in the North Sea and to the west of Scotland. English data were also available for the Irish Sea. In addition, other countries had some effort data but only for periods that were too short to give useful indications of trends in catch rate.

Raising the English data to total international fishing effort for cod, haddock and whiting in the North Sea, gave the time series shown in Table l.Il. These are given for the years for which VPA estimates of fishing mortality were also available.

Table l.ll also shows the time series of international fishing effort obtained by raising Scottish effort data to total international catch for cod, haddock and whiting in the North Sea. Obvious relationships between these fishing effort series and the VPA estimates of fishing mortality were observed for North Sea cod. (Figure 1) (for the English series), and for North Sea whiting for both series (Figure 2 shows the result obtained using Scottish data). North Sea haddock (Figure 3) fishing mortalities did not relate well to either the Scottish or English fishing effort series nor with an alternative!series based on Danish industrial fishing effort.

Fishing effort series for cod, haddock and whiting west of Scotland did not relate well to fishing mortalities calculated by VPA, neither did fishing effort for cod in the Irish Sea.

It is possible that the measurement of fishing effort in these various areas could be improved by basing international effort estimates on more homogeneous sectors of national fishing fleets.

The Group recommended that research be carried out to see if more reliable effort series can be constructed.
9. The Effect on Fishing Mortalities of a TAC being set too high

If a TAC is overestimated, the percentage increase in fishing mortality will be greater than the percentage by which the TAC exceeds its correct level.

As an example, the 1978 TAC for the North Sea cod has been assessed at 240000 tons (Option A). Figure 4 shows the relationship between the TAC set in 1978 and the fishing mortality in that year. The fishing mortality in 1978 is expressed as a percentage of the 1976 value. Two possible relationships are shown. The first (lower line) results from the Working Group ${ }^{\text {s }}$ estimates of fishing mortality in 1976. The second (upper line) results from assuming that the 1976 fishing mortality was equal to the average in the period 1963-72. This latter assumption leads to more conservative results than does the Working Group's estimate. The figure shows that if the second relationship is correct, the TAC (for stabilising fishing mortality) should have been set at 211000 tons. Clearly, if the Option A TAC of 240000 tons were caught, this would lead to a 20% increase in fishing mortality in 1978. The effect on fishing mortality in 1978 of other incorrect TAC's, under either assumption, can also be determined from this figure. More generally, such graphs must always pass through the origin and rise asymptotically to a TAC level equal to the exploitable biomass of the stock. Consequently, the effect of successive unit percentage increases in TAC will produce increasingly large percentage increases in the fishing mortality.

10. Notes on Stock Assessment and TAC Calculations
 10.1. Cod

10.1.1. North Sea (Sub-Area IV)
10.1.1.1. VPA (Tables 2.1, 3.1 and 4.1)

Since the fishing mortalities given in the 1975 Working Group report suggest that the change in F values with time might be small, a different approach was tried for determining terminal F values. This was done by calculating the ratios of the catches of each yearclass in consecutive years. If it is assumed that fishing mortalities on consecutive age groups in consecutive years are the same, it follows that

$$
C_{a, t} / C_{a+1, t+1}=\exp (F+M), \text { where } C_{a, t}
$$

is the total catch of age group "a" in year " t ". This permits F to be estimated directly. The average value obtained in this way for 7 year and older cod was 0.55 , and this value has been applied as terminal F value for the oldest age group throughout the years 1963 to 1965. The total international effort for cod, as calculated from English cpue data, also indicated only minor variations over this period, but in 1976 the level of effort had apparently dropped below the average level observed before by some 25% (Figure 1). Since there is a reasonably grod relationship between the F values for age groups $2-8$, and the total international effort, the terminal F values in 1976 were reduced by 25% for all age groups after calculating the average fishing mortalities on each age group during the period 1963-73.

The resulting fishing mortalities from the VPA are relatively higher in the years 1.971, 1972 and 1973, when fishing for cod was extremely profitable as a consequence of the presence of the two exceptionally strong 1969 and 1970 yearclasses. Apparently these yearclasses attracted much fishing effort and experienced a high mortality as a consequence. In recent years the fishing mortality appeared to have declined, as explained above.
10.1.1.2. Yearclass strengths

Predictive regressions of the VPA estimates of yearclass size were significantly correlated with IYHS abundance indices (Table 5.3.). Yearclasses 1975 and 1976 were estimated using this regression as 123×10^{6} and 256×106 l-year-old fish
respectively. The fishing mortality on the 1975 yearclass in 1976 was adjusted to simulate the predicted yearclass strength. Yearclass 1977 entering the fishery in 1978 was assumed to be of average size ($230 \times 10^{6} 1$-year-old fish).
10.1.1.3. Catch predictions (Tables 5.1 and 6.1)

The values of the different parameters used in the catch predictions are given in Table 6.1. Numbers landed are the provisional figures available for 1976. The F values correspond to the VPA input terminal F values. Weight at age data were the same as last year, but an adjustment of -6.26% was made to simulate the actual catch in 1976.

There seems to be no urgent need to reduce exploitation rates drastically, since there is above average recruitment and fishing mortalities are not excessively high. TACs were calculated: a) assuming that the fishing mortalities in 1976 were 25% lower than the average for the period $1963-1975$, b) based on the more pessimistic view that fishing mortalities in 1976 were similar to the average values over the period 1963-1975. A TAC of 220000 tons was selected by the Working Group as the most appropriate one for 1978.

10.1.2. West of Scotland - Division VIa

10.1.2.1. VPA (Tables 2.4, 3.4 and 4.4)

The terminal F value calculated from the catch ratios of 5 years and older cod over the entire period was 0.7. For younger age groups in 1976 the average values for each of these age groups were used.

10.1.2.2. Yearclass strengths

Since no direct estimates were available of the strengths of the yearclasses of 1975 and 1976, average values of the number of l-year-old cod in 1966-73 were used for the catch predictions. From the catch data, the 1974 year class appears to be a particularly strong one.
10.1.2.3. Catch predictions (Tables 5.1 and 6.4)

Weight at age data were adjusted by $+2.85 \%$ to simulate the actual catch in 1976.
) Catch predictions were carried out on the assumption that the average level of fishing mortality applied to the exploitation rate in 1976 and 1977 was at an average level.

The predicted catch for 1977 is 20600 tons, which compares with a prediction in last year's Working Gnoup report of only 9400 tons. This increase is caused by the apparent strength of the 1974 yearclass in the 1976 catches. The latter contributed 16000 tons instead of a predicted value of 9700 tons, which illustrates the difficulties that can arise when assessing TACs without proper estimates of yearclass strength.

A TAC of 19100 tons was recommended for Division VIa cod for 1978 (Table 5.1). For Division VIb cod, a precautionary TAC of 1300 tons was recommended (Table 5.1).

10.1.3. Irish Sea (Division VIIa)

10.1.3.1. VPA (Tables 2.7, 3.7 and 4.7)

Similar procedures as for Division VIa were followed to obtain terminal F values, which were smaller than those obtained in the former Working Group report.

The resulting F estimates indicate that the level of exploitation has been relatively constant over the time period for which data are available.

10.1.3.2. Yearclass strength

K. Brander (personal communication) estimated the size of the 1975 yearclass as 2500000 l-year-old fish. To account for the number of fish of this yearclass taken in 1976 by the Irish fishery using this value, it would be necessary to increase the terminal F value on this age group to 1.4 , which appears to be unrealistic. Therefore, this yearclass, as well as those of 1976 and 1977, was assumed to be of average strength (68660001 year olds).

10.1.3.3. Catch predictions (Tables 5.1 and 6.7)

Weights at age were adjusted by -5.88% to simulate the actual catch in 1976. Subsequent to the 1976 meeting, Brander pointed out that the 1974 yearclass was rather better than its presence in the 1975 catch as 1 year olds had indicated. Consequently, the catch in 1976 was higher than predicted, and as a result, the predicted catches in 1977 and 1978 continue to be better than previously estimated. A TAC of 8600 tons was recommended for Division VIIa for 1978 (Table 5.1.). For Divisions VIIb-k, a precautionary TAC of 10900 tons was recommended (Table 5.1).

10.2. Haddock

10.2.1. North Sea (Sub-Area IV)
10.2.1.1. Total international catch per age group

For the years 1959-71, the data presented in last year's report (ICES, CM1976/F:9, Table 10) were used. The age compositions for these years are based solely on samples from Recommendation 4 fisheries by England, the Netherlands and Scotland, and therefore they probably underestimate the catches of younger age groups. From 1972, the data included the catches from the Recommendation 2 fisheries by Denmark and Norway, and, in addition, Dutch discards. However, as a result of new information on discarding rates, it was decided to revise the data base back to 1972.

In addition to revised Dutch data, new information on discarding by Scottish vessels in 1975 and 1976 was available, and it is believed that similar discarding by these vessels also occurred prior to 1975. Accordingly, estimates were made of Scottish discards from 1972 to 1974, based on the ratio Scottish discards at age in 1975 and 1976 to total numbers at age in international landings. No attempt was made to revise the data prior to 1972.

In the revised data, catches of age groups 1-3 are increased considerably by the inclusion of the discards.

The data for 1976 are provisional.
10.2.1.2. Mean weight at age (Table 6.2)

Data were available for the Danish and Norwegian Recommendation 2 fisheries, for the Scottish discards, and for the Scottish and Polish Recommendation 4 fisheries.
10.2.1.3. VPA (Table 2.2)

The catch at age was derived as described in 10.2.1.1. For natural mortality, a value of $M=0.2$ was assumed for all age groups. A terminal F value of l.l was used for the oldest age group (age 10) in all years. This was derived by inspection of values of survival rates (e^{-z}) for age groups 6-10 in successive years, under
the assumption that fishing mortality is relatively constant in successive years in the older fish.

With reference to F values in 1976, an attempt was made to estimate these by relating past F values to various measures of fishing effort, but no satisfactory relationship could be found (Figure 2). Therefore, for age groups older than 2, mean F values for the period $1970-72$ were used and adjusted to give a smoothed exploitation pattern. For age groups 0 and I, input F values were adjusted to produce population numbers which corresponded to those indicated by the International Young Herring Survey (Table 5.3). However, for age group 2, this procedure was not possible, since the catch had already exceeded the value indicated by the IYHS. For this age group, therefore, a value was obtained from the exploitation pattern by interpolation.

10.2.1.4. Yield per recruit (Table 5.4)

The effect of various F values on yield per recruit was investigated, using the 1976 assumed exploitation pattern and mean weights at age weighted by the numbers caught (Table 6.2). A reduction of about 70% of the present value ($F=1.1$) i.s necessary to achieve the maximum yiej.d per recruit at $F=0.3$. The gain in yield per recruit is 20%.

10.2.1.5. Catch predictions

Input values for the catch predictions are given in Tables 6.2 and 5.5. The starting point was the catch at age in 1976 for the following categories: Rec. 2 landings; Rec.4 landings; and discards. Age compositions for the first two categories were adjusted by sums of products (numbers x mean weight) to agree with preliminary catch data for 1976. Sums of products were used to estimate the weight of discards.

The following predictions were made:
Run 1. Fishing mortality constant 1976-78

$$
\left(F_{76}=F_{77}=F_{78}\right)
$$

Run 2. Here it was assumed that the TAC of 190000 tons for 1977 previously recommended by the Group would be taken.

This would result in an increase in F_{77} of 2.5%. It has been assumed that F_{78} then returns to the 1976 level.

$$
\left(F_{77}=1.25 \times F_{76} ; F_{78}=F_{76}\right)
$$

Run 3. Here it was assumed that the 1977 landings were 190000 tons and that the increased F value was maintained in 1978.

$$
\left(F_{78}=\mathbb{F}_{77}=1.25 \times \mathrm{F}_{76}\right)
$$

Run 4. As for Run 2, except that the TAC in 1978 achieves a reduction of 10% in F compared to 1976.

$$
\left(F_{77}=1.25 \times F_{76} ; F_{78}=0.9 \times F_{76}\right)
$$

Run 5. F constant in 1977 and reduced by 10% in 1978.

$$
\left(\mathrm{F}_{77}=\mathrm{F}_{76} ; \mathrm{F}_{78}=0.9 \times \mathrm{F}_{76}\right)
$$

Run 6. F constant in 1977 and reduced by 20% in 1978.

$$
\left(F_{77}=F_{76} ; F_{78}=0.8 \times F_{76}\right)
$$

Recruitment estimates were obtained from the IYHS data or were assumed to be average for future yearclasses. The average was calculated from yearclasses 1958-72, but excluding the exceptional yearclasses of 1962 and 1967.

The results of the prediction runs are given in Table 6.2.
TACs given in Section 3 of the report were based on Run. 1 (Option A) and Run 5 (Option B).

10.2.2. West of Scotland (Division VIa)

10.2.2.1. Total international catch per age group

The same data base was used as in last year's report (ICES, CM1976/F:9, Table 13). The 1975 age compositions were updated and a provisional 1976 age compositior, was produced.

10.2.2.2. Mean weight at age

These are shown in Table 6.5 and are the same as those used last year.
10.2.2.3. VPA (Tables 2.5, 3.5 and 4.5)

Terminal F values in 1976 were obtained from average values in the period 197073. The exploitation pattern obtained indicated that F decreased on the older age groups and a terminal value of 0.15 was therefore selected for age 8 for all years.

For age groups 1 and 2, F values were adjusted so that population numbers corresponded to estimates of recruitment based on North Sea data.

The relation between effort data and F values was examined, but no satisfactory relations were obtained.

10.2.2.4. Yield per recruit

The same calculations were made as for the North Sea using the weight data and exploitation pattern given in Table 6.5. The present value of $F(0.64)$ is close to that corresponding to $F_{\max }$ with reference to yield per recruit.

10.2.2.5. Catch predictions

The input data for these calculations are given in Table 6.5. The starting point was the catch at age in 1976. Recruitment of l-group fish in 1977 was estimated. from the correlation between recruitment in Division VIa and in Sub-Area IV. Recruitment in 1978 was assumed to be average, based on the yearclasses 1964-72 (excluding the 1967 yearclass).

The following prediction runs were made:
Run 1. No change in fishing mortality

$$
\left(F_{76}=F_{77}=F_{78}\right)
$$

Run 2. Here it was assumed that the TAC of 10000 tons recommended by the Group for 1977 would be taken. This implies a reduction in fishing mortality of 40%, It was then assumed that F returned to the 1976 level. in 1978.

$$
\left(F_{77}=0.6 \times F_{76} ; F_{78}=F_{76}\right)
$$

Run 3. No change in fishing mortality in 1977, but the reduction by 10% in 1978.

$$
\left(F_{77}=F_{76} ; F_{78}=0.9 \times F_{76}\right)
$$

Run 4. F constant in 1977 and reduced by 20% in 1978.

$$
\left.F_{77}=F_{76} ; F_{78}=0.8 \times F_{76}\right)
$$

The results are given in Table 6.5.
TACs given in Table 5.1 were based on Run 1 (Option A) and Run 3 (Option B), and a precautionary TAC of 2000 tons was recomended for Division VIb (Table 5,1).
10.2.3. Sub-Area VII

For Sub-Area VII, a precautionary TAC of 8200 tons was recommended (Table 5.1).
10.3. Whiting
10.3.1. North Sea (Sub-Area IV)
10.3.1.1. Total international catch per age group

Estimates of the number of whiting discarded by Dutch vessels in each age group have been included in the total age composition used for the VPA assessments in earlier reports of the North Sea Roundfish Working Group. However, Dutch discard age compositions have been reassessed by Daan (1976). These new data have been included in the age compositions used during the present meeting of the Working Group.

Scottish discard data were also available at the meeting for 1975 and 1976. Provisional estimates for these 2 years show an average discarding'rate by wejght of 55% of the landed quantities. This rate has been used each year from 1967 to 1974 to calculate the quantity discarded by Scottish vessels. These figures, together with the weight of the Dutch discarded fish, estimated from their length compositions by numbers and a length/weight relation ($W=0.008$ 13) , have been used to raise the Dutch age composition to a total age composition for the Netherlands and Scotiand. Separate age compositions for Scotland and the Netherlands were available for both 1975 and 1976.

10.3.1.2. Mean weight at age

The mean weights at age used for the Recommendation 4 fisheries are based on Scottish landings in the period 1964-73. For the industrial fisheries age groups 0, 1 and 2, values from Danish landings in 1975 were used. The same values were used for the discards. The values in Table 6.3 are based on the numbers in the 3 components.

10.3.1.3. VPA

Based on the relationship between total international effort and F in Figure 2, it was decided to use mean values of fishing mortality for age groups $0-4$ in

1972-73 as F values for 1976 in the VPA. For older age groups, the mean for all ages in the two years (0.85) was used (Table 3.3).

It was : noted that with these values, the VPA estimate of strength of the yearclass 1974 was much higher than the IYHS estimate. However, even an F value of I. 2 for two year olds in 1976 was not sufficient to make" the two estimates agree. No adjustments were made to the F value to try to take account of this factor therefore.

10.3.1.4. Catch predictions

The input data for the catch prediction (Table 6.3) was based on three components in the catches in 1976, i.e., the catch in Recommendation 4 fisheries, the catch in Recommendation 2 fisheries and discards from the Dutch and Scottish Recommendation 4 fisheries (Table 5.6).

The numbers of recruits as 0-group fish were all taken to be 2300×10^{6}.

Predicted catches of each yearclass were reduced by a fraction based on ratios of discarded/total number landed in each age group to arrive at predictions of landings.

Six prediction runs were made as follows:
Run 1. $\mathrm{F}_{76}=\mathrm{F}_{77}=\mathrm{F}_{78}$ (no change in fishing mortality)
Run 2. $\mathrm{F}_{76}=\mathrm{F}_{77} ; \mathrm{F}_{78}=0.9 \times \mathrm{F}_{76}$
Run 3. $\mathrm{F}_{76}=\mathrm{F}_{77} ; \mathrm{F}_{78}=0.8 \times \mathrm{F}_{76}$
Runs 4-6. As Runs 1 - 3, but with a 25% reduction of F_{76}.
The results are given in Table 6.3.
TACs given in Section 3 of the report were based on Run 4 (Option A) and Run 5 (Option B).

10.3.2. Sub-Area VI

In most years the catches from Division VIb were small compared to the catches from Division $V I a$, and the two Divisions were treated together.

For the years 1965 to 1976, age composition data for the Scottish landings were available. For 1976, Irish data were also available.

For the VPA, the exploitation pattern in 1976 was adjusted so that it corresponds to the average at 1971-73 (Table 3.6). The same F values were used for the catch prediction (Table 6.6). The strengths of the yearclasses 1976 and 1977 were taken to be average for the years 1964-73. Three prediction runs were made:

Run 1. No change in fishing mortality.

$$
\left(F_{76}=F_{77}=F_{78}\right)
$$

Run 2. A reduction of fishing mortality in 1978 by 10%.

$$
\left(F_{77}=F_{76} ; F_{78}=0.9 \times F_{76}\right)
$$

Run 3. A reduction of fishing mortality in 1978 by 20%.

$$
\left(F_{77}=F_{76} ; F_{78}=0.8 \times F_{76}\right)
$$

The results are given in Table 6.6.
TACs given in Section 3 of the report were based on Run 1 (Option A) and Run 2 (Option B).
10.3.3. Sub-Area VII

For Sub-Area VII, a precautionary TAC of 25700 tons was recommended (Table 5.1).
Table 1.1
Nominal catch of Cod, Haddock and and

	Sub-Area ${ }^{\text {a }}$	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976 ${ }^{\text {T) }}$
'080	IIIa.	15706	17010	16649	13243	14238	19052	21667	22942	27452	32284	33481
	IV	220033	249803	285314	199258	224745	320564	347055	234466	211247	187692	208884
	VI	18655	25214	25022	24272	13557	10760	17266	12746	14827	13406	13352
	VII	22580	23162	20270	21509	15102	22134	18767	19239	17350	20206	
	IIIa	695	469	582	1056	942	2249	8989	3091	4618	6115	3019
	IV	269205	167408	139469	639195	671833	258220	213556	196079	193640	184003	205654
	VI	31816	21176	21429	27398	35018	46920	50518	32848	67258	63611	59017
	VII	9655	7343	3726	5392	5931	6518	11248	12480	10585	8638	
	IIIa	20306	30157	29497	16544	13130	13989	14652	22547	28842	14690	17127
	IV	157573	91245	144920	215829	181506	113044	109532	141191	188653	153409	190686
	VI	18787	19709	14474	12550	12499	16032	15394	16709	17058	20053	20520
	VII	25873	33123	29691	26821	15710	17836	20845	26655	28203	32433	\cdots

provisional figures.
a) see footnotes on following page

Footnotes to Table 1.1.

Cod in Division IIa

Landings of German, Dem.Rep. in 1966, 1969-72 included in Sub-Area IV. Landings of Sweden in 1966-74 included in Sub-Area IV.
Landings of GermanyFed.Rep. for 1968-70 include miscellaneous products.

Haddock in Division IIIa

Landings of German, Dem.Rep. in 1966, 1969-72 included in Sub-Area IV. Landings of Sweden in 1966, 1968-74 included in Sub-Area IV.

Whiting in Division IIIa

Landings of German, Dem.Rep. in 1966 included in Sub-Area IV. Landings of Sweden in 1966-74 included in Sub-Area IV.

Cod in Sub-Area IV

German, Dem.Rep. landings in 1966, 1969-72 include Division IIIa. Sweden: landings 1966-74 include Division IIIa.
GermanyFed.Rep. landings in 1968-70 include miscellaneous products.
French figures for 1971-75 revised (March 1977).
Norway landings revised for 1974-75.
For Netherlands - not included for 1967-3 369 tons and 1968-1 132 tons.

Haddock in Sub-Area IV

French landings for 1971-75 figures revised.
Landings for Germany, Dem.Rep. for 1966, 1969-72 include Division IIIa.
Landings for Sweden for 1966, 1968-74 include Division IIIa.
Netherlands: Not included for 1967-720 tons and for 1968-306 tons caught mostly in Division IVb, rest in Division IVc.
Norway landings revised for 1974-75.

Whiting in Sub-Area IV

Landings for Germany, Dem.Rep. in 1966 include Division IIIa.
Landings for Sweden for 1966-74 includes Sub-Area IV and Division IIIa. France - figures for 1971-1975 revised (March 1977).
Netherlands: Not included for 1967-913 tons and for 1968-267 tons. Norway landings revised for 1974-75.

Cod in Sub-Area VI

Landings for GermaryFed.Rep. include miscellaneous products. Landings for France 1971-75 revised.

Haddock in Sub-Area VI

French landings for 1.971-75 figures revised.

Whiting in Sub-Area VI

French data for 1971-75 revised.

Footnotes to Thable 1.1 (Continued)

Cod in Sub-Area VII

Landings for France for 1971-75 revised.
Haddock in Sub-Area VII
French landings for 1971-1975 figures revised.
Whiting in Sub-Area VII
French figures for 1971-75 revised.
Table 1. 2 COD Div. IIIa and the Div. of Sub-areas IV, VI and VII

$\text { Area }{ }^{\text {Year }}$	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	$1976^{\text {²) }}$
IIIa	15706	17010	16649	13243	14238	19052	21667	22942	27452	32284	33481
IVa	69.440	89923	74051	56015	79606	67370	80650	69557	72362	59582	56189
IVb	125233	134258	175949	122027	110271	184957	215160	134953	114087	107227	135705
IVc	25360	25622	35314	21216	34868	68237	51245	29956	24798	20883	16990
VIa	17133	23025	24357	21739	12682	10666	14699	12263	13652	13163	11690
VIb	1522	2189	665	2533	875	94	2567	483	1175	243	1662
VIIa	5249	12652	8541	7967	6257	9540	9173	11787	10190	9790	8142
VIIb, c	206	1479	2259	4418	2049	1302	735	1009	405	692	\ldots
VIId, e	1064	3300	4113	3856	2553	5432	3544	2077	3436	5082	...
VIIf	1188	1321	1514	856	925	797	969	976	594	998	...
VIIg-k	14873	4410	3843	4412	3318	5.063	4346	3390	2725	3644	
Total	273974	315189	347255	258282	267642	372510	404755	289393	270876	253588	

[^1]Nominal catch by Divisions in metric tons 1966-1976

Footnotes to Table 1.2.

Division IIIa

German, Dem.Rep. figures for 1966 and 1969-72
Swedish ingures for $1966-74$
Germany Fed.Rep. figures for 1968-70 include miscellaneous products.
Danish figure for 1976 including industrial catch only and is lacking some landings in foreign ports.

Division IVa

Danish figures for 1966-73 included in Division IVb.
German, Dem.Rep. figures for 1966 and 1969-72 include Divisions IIIa and IVb, c. Swedish figures for 1966-74 include Divisions IIIa and IVb.
GermanyFed.Rep. figures for $1968-70$ include miscellaneous products.
French figures for 1971-75 revised (March 1977).
Danish figure for 1976 included in Division IVb.
French figures for 1966 and 1976
Norwegian figures for 1966-68 and 1976 (include Division IVb,c
USSR figures for 1966-73
Norwegian figures for 1969-72 include Division IVb.
Norwegian figures 1974-75 revised (March 1977).
Norwegian figures for 1971 and 1972 not including catches from Recommendation 2 fisheries (1971 = 1314 tons; $1972=1656$ tons).

Division IVb

Danish figures for 1966-73 included in Division IVa.
French fikures for 1971-75 revised (March 1977).
Faroe Islands figure for 1976
French figures for 1966 and 1976
German, Dem.Rep. figures for 1966, 1969-72 and 1976
Norwegian figures for 1966-72 and 1976
Swedish figures for 1966-74
USSR figures for 1966-73
Swedish figure for 1976;
UK (Eng. + Wales) figure for 1976
Netherlands: Not included for 1967 - 3369 tons and 1968-1 132 tons caught mostly in Division IVb, rest in Division IVc.
GermanyFed.Rep. figures for 1968-70 include miscellaneous products.
Swedish figures for 1975 include Division IVa,c.
Danish figure for 1976 includes Division IVa,c. From Recommendation 12 form industrial catch only in Division IVa 988 tons; Division IVb 2529 tons.

Division IVC

French figure for 1966
German, Dem.Rep. figures for 1966, 1969-72 and 1976
Norwegian figures for 1966-69
USSR figures for 1966-73
Germany Fed.Rep. figures for 1968-70 include miscellaneous products.

Footnotes to Table 1.2 (Continued)

Danish figure for 1976
French figure for 1976
Swedish figures for 1975 and 1976
UK (Eng. + Wales) figure for 1976)
French figures for 1971-75 revised.

Division VIa

Swedish figure for 1968 includes Division VIb.
Germany, Fed.Rep. figures for $1968-70$ include miscellaneous products. French figures for 1971-75 revised.

Division VIb

Swedish figure for 1968 included in VIa.
French figures for 1971-75 revised.

Division VIIa

French figures for 1971-75 revised.
French figure for 1966 included in Division VIIg-k.
French figure for 1971 includes Division VIIf.

Division VIIb, c

French figure for 1966 included in Division VIIg-k.
French figure for 1971-75 revised.
Division VIId,e
French figures for 1971-75 revised.
Division VIIf
French figures for 1971-75 revised.
French figure for 1966
Polish figure for 1976) included in Division VIIg-k
French figure for 1971 included in Division VIIa.

Division VIIg-k

French figure for 1971-75 revised.
French figure for 1966 includes Divisions VIIa,b,c and f.
Polish figure for 1976 includes Division VIIf.

Year	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976 ${ }^{\text {(3) }}$
IIIa	695	469	582	1056	942	2249	2989	3091	4618	6115	3019
IVa	197518	122531	75347	271953	455649	197306	135095	131819	128818	120688	161015
IVb	71283	44823	62696	361836	212646	58270	75325	62288	63695	62761	44306
IVc	404	54	1426	5406	3538	2644	3136	1972	1127	554	333
VIa	29881	20302	20526	26273	34178	46299	41044	28830	17970	13683	15698
VIb	1935	874	903	1125	840	621	9474	4018	49288	49928	43319
VIIa	270	2614	611	807	624	1343	1318	2364	697	276	220
VIIb, c	245	787	433	758	1922	1141	1419	931	2090	2565	...
VIId, e	37	111	88	811	421	170	411	359	633	971	...
VIIf	137	66	47	50	77	152	766	1804	594	928	\ldots
VIIg-k	8966	3765	2547	2966	2887	3712	7334	7022	6571	3898	...
Total	311371	196396	165206	673041	713724	313907	278311	244498	276101	262367	

[^2]
Footnotes to Table 1.3.

Division IIIa

German, Dem.Rep. figures for 1966 and 1969-72
Swedish figures for 1966 and $1968-74$
Danish figure includes industrial catch only and is lacking some landings in foreign ports.

Division IVa

Swedish figure for 1975
Danish figures for 1966-73 included in Division IVb.
French figures for 1971-75 revised.
French figure for 1966
German, Dem.Rep. figure for 1976
Norwegian figures for 1966-69 and 1976 include Division IVb, c
USSR figures for 1966-73
German, Dem.Rep. figures for 1966 and 1969-72 include Division IIIa and IVb, c.
Norwegian figures for 1969-72
Swedish figure for 1967 include Division IVb.
Swedish figures for 1966 and 1968-74 include Divisions IIIa and IVb.
Danish figure for 1976 includes Divisions IVb,c - data from Data Form 5. From Recommendation 12 industrial catch only Division IVa - 26 074; IVb - 12 785; IVc - 12 .

French figure for 1976 includes Division IVb, c from Data Form 5, up to November 1976.	Spanish
Swedish	$\quad\{$ figure for 1976 includes Division IVb, c from Data Form 5.

UK (Eng. + Wales)
Faroe Islands figure for 1976 includes Division IVb - the split in areas calculated from logbook retums up to 12 November 1976.
Norwegian figures for 1971 and 1972 not including catches from the Recommendation 2 fisheries ($1971=4512$ tons; $1972=5685$ tons).
Norwegian landings revised for 1974-75.

Division IVb

Danish figures for 1966-73 include Division IVa.
Faroe Islands figure for 1976
French figures for 1966 and 1976
German, Dem.Rep. figures for 1966, 1969-72 and 1976
Norwegian figures for 1966-72 and 1976
Spanish figure for 1976
Swedish figures for 1966-74 and 1976
UK (Fng. + Wales) figure for 1976
USSR figures for 1966-73
included in Division IVa.

Netherlands: Not included for 1967-720 tons and for 1968-306 tons caught mostly in Division IVb, rest in Division IVc.
Swedish figure for 1975 includes Division IVa,c.
Danish figure for 1976 includes Division IVb, c - data from Data Form 5. From Recommendation 12 industrial catch only Division IVa - 26074 tons; IVb - 12 785; IVc - 12 .
French figures for 1971-75 revised.

Footnotes to Table 1.3 (Continued)

Division IVc

French figures for 1966 and 1976
German, Dem.Rep. figures for 1966, 1969-72 and 1976)
Norwegian figures for 1966-68 and 1976
Spanish figure for 1976
Swedish figure for 1976
UK (Eng. + Wales) figure for 1976
USSR figures for 1966-73
Netherlands: Not included for 1967-720 tons and for 1968-306 tons caught mostly in Division IVb, rest in Division IVc.
Swedish figure for 1975 included in Division IVb.
Danish figure for 1976 includes Division IVb, c - data from Data Form 5. From
Recommendation 12 industrial catch only Division IVa - 26 074; Division IVb 12 785; Division IVc - 12.
French figures for 1971-75 revised.

Division VIa

French figures for 1971-75 revised.

Division VIb

French figures for 1971-75 revised.

Division VIIa

French figures for 1971-75 revised.
French figure for 1966 included in Division VIIg-k.
French figure for 1971 includes Division VIIf.

Division VIIb, C

French figures for 1971-75 revised.
French figure for 1966 included in Division VIIg-k.

Divisions VIId,e

French figures for 1971-75 revised.

Division VIIf

French figures for 1971-75 revised.
French figure for 1966 included in Division VIIg-k.
French figure for 1971 included in Division VIIa.

Division VIIg-k

French figures for 1971-75 revised.
French figure for 1966 includes Divisions VIIa,b,c and f.
Table 1.4 WHITING Div. IIIa and the Div. of Sub-areas IV, VI and VII

$\begin{aligned} & \text { Area }{ }^{\text {Year }} \\ & \hline \end{aligned}$	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976 ${ }^{\text {²) }}$
IIIa	20306	30157	29497	16544	13130	13989	14562	22547	28842	19690	17127
IVa	78438	43218	51701	49839	32185	23451	32932	31104	81771	88687	98475
IVb	72704	41449	76928	157568	126024	70728	66789	96678	87842	41930	67010
IVc	6431	6578	16291	8422	23297	18865	9811	13409	19050	22792	25210
VIa	15542	17586	13989	12181	11222	15225	15313	16646	17057	20041	20498
VIb	3245	2123	485	369	1277	807	81	63	1	12	22
VIIa	5803	18902	12875	9724	4804	8383	7680	10337	9819	9832	9421
VIIb, c	276	2246	3249	3595	1507	287	1056	1091	1243	1829	...
VIId, e	1307	5554	6640	5066	4825	3592	3676	5647	8572	11400	\ldots
VIIf	724	1573	1740	2856	2036	315	728	1366	1468	1752	...
VIIg-k	17763	4848	5187	5580	2538	5259	7705	8214	7101	7620	
Total	222539	174234	218582	271744	223845	160901	160333	207102	262766	225585	241786

\#) provisional figures
a) see footnotes on following page

Footnotes to Table 1.4.

Division IIIa

German, Dem.Rep. figure for 1966)
Swedish figures for 1966-74)
included in Division IVa.
Danish figure for 1976 includes industrial catch only and is lacking some landings in foreign ports.

Division IVa
French figures for 1971-75 revised.
German, Dem.Rep. figure for 1966 includes Divisions IIIa and IVb, c.
Danish figures for $1966-73$
Swedish figure for 1975 , included in Division IVb.
French figures for 1966 and 1969
German, Dem.Rep. figure for 1976
Norwegian figures for 1966-69 and 1976)
include Divisions IVb,c.
USSR figures for 1966-73
Swedish figures for 1966-73 include Divisions IIIa and IVb.
Norwegian figures for 1969-72 include Division IVb.
Danish figure for 1976 includes industrial catch only and is lacking some landings in foreign ports.
Faroe Islands figure for 1976 includes Division IVb. The split on areas calculated from logbook returns up to 12 November 1976.
French figure for 1976 included in Division IVc.
Spanish $\{$
Swedish $\{$ figure for 1976 includes Divisions IVb, c - from Data Form 5.
UK (Eng. + Wales))
Norwegian figures for 1971 and 1972 not including catches from the Recommendation 2 fisheries ($1971=1605$ tons $; 1972=2023$ tons).
Norwegian landings revised for 1974-75.
Division IVb
French figures for 1971-75 revised.
Faroe Islands figure for 1976
French figures for 1966 and 1969
German, Dem.Rep. figures for 1966 and 1976
Norwegian figures for 1966-72 and 1976
Spanish figure for 1976
Swedish figures for 1966-74 and 1976
UK (Fing. + Wales) figure for 1976
USSR figures for 1966-73
included in Division IVa.

Danish figures for 1966-73 include Division IVa.
Netherlands: Not included for 1967-913 tons and for 1968-257 tons caught mostly in Division IVb, rest in Division IVc.
Swedish figure for 1975 includes Divisions IVa,c.
Danish figure for 1976 includes industrial catch only and is lacking some landings in foreign ports.
French figure for 1976 included in Division IVa.

Footnotes to Table 1.4 (Continued)

Division IVC

French figures for 1971-75 revised.
French figures for 1966 and 1969
German Dem.Rep. figures for 1966 and 1976
Norwegian figures for 1966-69 and $1976 \quad\{$ included in Division IVa.
Spanish figure for 1976
Swedish figure for 1976
UK (Eng. + Wales) figure for 1976
JSSR figures for 1966-73
Netherlands: Not included for 1967-913 tons and for 1968 - 257 tons caught mostly in Division IVb, rest in Division IVc.
Swedish figure for 1975 included in Division IVb.
Danish figure for 1976 includes industrial catch only and is lacking some landings in foreign ports.
French figure for 1976 includes Division IVa and Division IVb - from Data Form 5, up to November 1976.

Division VIa
French figures for 1971-75 revised.

Division VIb

French figures for 1971-75 revised.
Faroe Islands: The split on areas calculated from logbook returns up to 12 November 1976.

Division VIIa

French figures for 1971-75 revised.
French figure for 1966 included in Division VIIg-k.
French figure for 1971 includes Division VIIf.

Division VIIb, c

) French figures for $1971-75$ revised.
French figure for 1966 included in Division VIIg-k.

Division VIId, e

French figures for 1971-75 revised.

Division VIIf

French figures for 1971-75 revised.
French figure for 1966 included in Division VIIg-k.
French figure for 1971 included in Division VIIa.

Division VIIg-k

French figure for 1971-75 revised.
French figure for 1966 includes Divisions VIIa,b, c and f.
Table 1.5 Nominal catches of Cod (metric tons) from Recommendation 2 fisheries in Sub-area IV (data taken from NEAFC reports)

Table 1.6 Nominal catch of COD for Div. IVa-IVc by country in metric tons, 1971 - 1976 (Bulletin Statistique)

Country	1971	1972	1973	1974	1975	1976 ${ }^{\text {² }}$
Belgium	19334	21133	11741	10253	7566	5957
Denmark	68179	72520	47950	54207	46344	53971
Faroe Islands	1.23	284	803	41.6	732	400
France ${ }^{\text {a }}$)	24769	24038	13247	7275	8667	5646
German Dem.Rep. ${ }^{\text {b }}$)	18	122	343	132	223	69
Germany,Fed.Rep.	46647	49431	21410	17089	16457	21094
Iceland	1.	-	+	+	-	
Netherlands	46614	47634	25758	24029	23263	22924
Norway	$7732^{\text {c }}$)	$4377{ }^{\text {c }}$)	4831	$2437{ }^{\text {d) }}$	$2767^{\text {d }}$)	2913
Poland	178	189	1551	4750	2991	2961
Spain	-	91	90	80	63	
Sweden ${ }^{\text {b }}$)	9062	8769	8074	8168	900	721
J.K. (Engl.\& Wales)	55525	62503	47327	39857	33615	46475
U.K. (Scotland)	37229	55190	48844	39887	37308	39566
U.S.S.R.	5153	774	2497	2667	6796	6187
Total	320564	347055	234466	211247	187692	208884

\#) provisional figures
a) French figures for 1971-1975 revised
b) GDR figures for 19'71-1972 and Swedish figures for 1971-1974 include IIIa
c) Norwegian figures for 1971-1972 do not include cod caught in Recommendation 2 fisheries ($1971=1314 ; 1972=1656$ tons)
d) Norwegian figures for 1974-1975 revised for Div. IVa (March 1977).

Table 1.7 Nominal catch of HADDOCK for Div. IVa-IVc by country in metric tons, 1971-1976 (Bulletin Statistique)

Country	1971	1972	1973	1974	1975	1976 ${ }^{\text {T }}$
Belgium	971	1601	2385	1137	2209	1605
Denmark	31043	34858	13118	44342	32930	46821
Faroe Islands	-	5	1198	435	267	14
France ${ }^{e}$)	8738	7814	4695	4020	4646	3680
German Dem. Rep. ${ }^{\text {a }}$	3	90	22	8	44	20
Germany, Fed. Rep.	3045	4020	4587	3478	2396	3204
Iceland	1	-	-	-	-	
Netherlands	6914	5188	3185	3035	1901	1754
Norway	$1063{ }^{\text {b }}$	$1146^{\text {b }}$	5611	$6165^{\text {d) }}$	$10171{ }^{\text {d }}$	3098
Poland	-	38	2553	3001	1485	1155
Spain ${ }^{\text {c }}$)	-	-	101	210	-	222
Sweden ${ }^{\text {a) }}$	5857	5305	4550	3098	2083	3091
U.K. (Engl.\& Wales)	16648	20827	16586	10798	11499	17238
U.K. (Scotland)	121539	96197	88132	71679	64686	80062
U.S.S.R.	62398	36467	49356	42234	49686	43690
Total	258220	213556	196079	193640	184003	205654

※) provisional figures
a) German Democratic figures for 1971-72 and Swedish figures for 1971-1974 include IIIa
b) Norwegian figures for 1971 and 1972 do not include haddock caught in Recommendation 2 fisheries. (1971 = 4512 tons; $1972=5685$ tons)
c) Spain reported 90 tons caught in 1975
d) Norwegian figures for 1974 and 1975 revised for Div. IVa (March 1977)
e) French figures for 1971-1975 revised.

Table 1.8 Nominal catch of WHITING for Div. IVa-IVc by country in metric tons, 1971-1976

Country	1.971	1972	1973	1974	1975	1976 ${ }^{\text {\# }}$
Belgi.um	2108	2745	3387	3156	3279	2186
Denmark	55618	50109	73928	1.09654	61941	116862
Faroe Islands	-	-	1453	1126	764	6
France ${ }^{\text {a }}$)	16668	19822	20353	19825	20079	12958
German Dem. Rep.	-	-	5	-	3	18
Germany, Fed. Rep.	233	264	403	454	446	359
Iceland	-	-	-	-	-	
Netherlands	6322	7613	881.1	12057	14078	12370
Norway	$25^{\text {b }}$	$28^{\text {b }}$	1527	$5068{ }^{\text {c }}$)	$1.3298{ }^{\text {c }}$)	6072
Poland	-	\cdots	7	1002	888	509
Spain	-	107	119	110	65	73
Swederi ${ }^{\text {d }}$	61.6	596	2328	2440	255	847
U.K. (Fing.1. \& Wal.es)	4158	3789	4592	5519	5246	5680
U.K. (Scotland)	26755	23846	20756	25274	27969	26038
U.S.S.R.	541	613	3522	2978	5098	6708
Total	11.3044	109532	141191	188663	153409	190686

अ) provisional figures
a) French figures for 1971-1975 revised.
b) Norwegian figures for 1971 and 1972 do not include whiting caught in Recommendation 2 fisheries. (1971 = 1605 tons; $1972=2023$ tons) 。
c) Norwegian figures for 1974 and 1.975 revised for Div. IVa (March 1977).
d) Swedish figures for 1971-1974 include IIIa.

Area		1970	1971	1972	1973	1974	1975	1976
North Sea	Hours	819.5	855.1	884.9	852.9	781.3	694.5	725.8
	Av. Tons	56	54	60	56	58	52	59
	Ton-Hours	4589	4618	5309	4776	4532	3611	4282
W. of Scotland	Hours	49.2	33.3	33.6	32.4	31.1	35.8	40.6
	Av. Tons	254	242	445	392	351	307	310
	Ton-Hours	1250	806	1495	1270	1092	1099	1259
Irish Sea	Hours	128.0	151.4	147.9	159.3	119.7	142.8	133.5
	Av. Tons	43 550	41	39 577	43	41	40	42
	Ton-Hours	550	621	577	$\checkmark 85$	491	571	561
Bristol Channel	Hours	44.1	47.4	38.4	37.0	32.2	34.3	27.4
	Av. Tons	56	49	52	57	62	41	45
	Ton-Hours	247	232	200	211	200	141	123

Table l. 10 U.K. (Scotland) Fishing Effort (000's hours fishing) for different Areas

Sub-area	Gear	1967	1968	1969	1970	1971	1972	1973	1974	1975
IV	Trawl	206	203	112	110	149	177	176	179	150
	Light trawl	24	41	54	67	98	109	146	117	160
	Seine	499	537	479	411	399	379	405	350	342
	Total	729	781	645	588	646	665	727	646	654
VI	Trawl	54	50	43	41	42	56	55	44	37
	Light trawl	83	66	105	115	129	142	91	86	129
	Seine	159	150	140	96	99	71	60	56	56
	Total	296	266	288	252	270	269	206	186	222

Provisional figures for 1976 show that 1976 effort in Sub-area IV was about 90% of that in 1975 . In Sub-area VI the 1976 effort was about the same as in 1975
Table l．Il International Effort Data from the North Sea

			OーN゙ －Monco
			Mot ホinminmin
			－oninin t
סo			KNomomoNi
	$\underset{\sim}{\text { M }}$		

$\begin{aligned} & \underset{\sim}{\circ} \\ & \stackrel{\sim}{i} \end{aligned}$	M品 $\underset{H}{N}$
$\begin{aligned} & \text { in } \\ & \stackrel{\sigma}{\Pi} \end{aligned}$	 切先先 $+6 \rightarrow$
$\begin{aligned} & \pm \\ & \underset{\sim}{\prime} \\ & \underset{\sim}{2} \end{aligned}$	にNの○スさNMOにレN
$\begin{gathered} M \\ \underset{\sim}{\sim} \end{gathered}$	－© 告付 MONMHH
$\stackrel{N}{\underset{\sim}{\gamma}}$	 6
$\underset{\underset{\sim}{\lambda}}{\underset{\sim}{\lambda}}$	অ№ño
$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{\alpha} \\ & \stackrel{1}{2} \end{aligned}$	 テN゙い N゚ーけ
$\begin{aligned} & \text { ò } \\ & \stackrel{\rightharpoonup}{-} \end{aligned}$	
$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & - \end{aligned}$	
$\begin{aligned} & \hat{\rightharpoonup} \\ & \stackrel{0}{r} \\ & \stackrel{1}{2} \end{aligned}$	－M গゥ
$\begin{aligned} & 6 \\ & \stackrel{6}{\gamma} \\ & -1 \end{aligned}$	
$\begin{aligned} & \stackrel{i}{0} \\ & \stackrel{\sigma}{\sigma} \end{aligned}$	
$\begin{aligned} & \underset{\sim}{\mathbf{O}} \\ & \underset{\sim}{-1} \end{aligned}$	
$\begin{aligned} & \text { M } \\ & \stackrel{0}{\gamma} \\ & \underset{\sim}{n} \end{aligned}$	```\```
¢	

6 $\stackrel{1}{\circ}$ $\stackrel{-}{\square}$	 サウNONMn $\underset{H}{G}$ にN
$\stackrel{\text { ® }}{\substack{\sim \\ \sim \\ \sim}}$	옹 N N N H－ \sim ↔ N
$\xrightarrow[~+]{\underset{\sim}{\top}}$	
$\stackrel{N}{\stackrel{N}{\sim}}$	
$\stackrel{H}{\stackrel{\sim}{\sim}}$	8888888888 minmyramon $\underset{\sim}{\mathbb{N}} \underset{\sim}{N} \underset{\sim}{N} \underset{\sim}{N} \quad-\quad$
$\xrightarrow{\stackrel{-}{\circ}}$	88～88888ㅇN Mnobonno 6云导年 \sim
8 0 \cdots \cdots	8능ㅇㅇㅇㅇ은 in ${ }^{\circ} \infty$ の「が
$\begin{aligned} & \infty \\ & \stackrel{\infty}{o} \\ & \underset{\sim}{\dagger} \end{aligned}$	
$\begin{aligned} & \hat{\sigma} \\ & \underset{\sim}{1} \end{aligned}$	888888889^{m} o tmicomm
6 $\stackrel{6}{\circ}$ $\stackrel{-}{+}$ \sim	
$\xrightarrow[\substack{6 \\ \underset{\sim}{6} \\ \sim}]{ }$	88888888 은 ○－NomNNN mmombin $_{\text {N }}$
\checkmark $\stackrel{-}{6}$ $\stackrel{1}{2}$	
M \cdots $\underset{\sim}{-}$	
0 80 4	

Table 2.3. Whiting.

Age	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
0	35800	26864	225344	149071	114392	105852	969531	478565	201785	492277	181773	298317
1	80050	267347	187736	425514	513060	486258	208832	642039	538510	873497	602340	274648
2	53023	187031	163927	317412	790117	172353	90844	235436	446112	745235	273809	663190
3	222525	72901	123885	101396	133868	401920	22821	41610	108925	190795	255145	124264
4	61271	188881	28061	48832	30646	34378	115699	6816	18653	32495	60267	69475
5	8466	33896	59486	10730	11183	10568	13065	51901	5905	5000	11 565	14106
6	3873	3226	7714	23612	3807	4051	2241	5971	18094	1779	2487	3402
7	928	1540	923	2190	7248	504	801	843	2638	5409	781	954
8	141	451	150	138	3499	1673	662	575	635	578	1651	154

Age Year	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
1	5	278	516	9311	0	230	2448	590	1208	1970	4861	915
2	1654	359	11419	7387	48921	164	2844	22221	6520	3425	9519	16056
3	84419	1164	1239	3234	5928	71520	6627	2225	15648	9411	2773	12325
4	4697	47424	238	418	1386	3795	91387	2897	263	6131	3427	1403
5	206	1606	18775	586	350	211	590	56846	1147	97	1980	1488
6	169	76	252	11729	576	92	86	612	31836	447	106	911
7	139	30	20	655	3386	98	6	37	139	11488	122	29
8	23	102	28	36	150	453	97	57	114	189	3770	15

Table 2.6. Whiting.
N. Catch in numbers (1000 fish) by year and by age.

Age	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
0	0	0	0	0	0	0	0	0	0	4	54	1
1	2239	1126	4261	7037	684	697	2640	11064	13009	7577	17551	11918
2	4857	12935	25182	18154	25631	2676	7712	9657	27463	42873	18712	45387
3	41177	2454	10755	9729	9753	30312	3936	3447	6758	12215	39477	14329
4	5299	28248	857	3583	2794	4514	30759	1168	1831	2035	3243	15730
5	784	1767	16762	267	1276	818	I 394	12800	469	505	307	1413
6	68	213	803	4772	109	210	- 249	712	5293	68	60	- 104
7	185	36	84	269	1708	14	47	58	273	1387	6	18
8	12	17	23	31	155	392	78	64	33	64	194	1

Table 2.7. Cod.
Division VIIa. Catch in numbers (1000 fish) by year and by age.

Age	1968	1969	1970	1971	1972	1973	1974	1975	1976
1	364	882	905	2	762	777	2	258	462
9	936	1	817						
2	1	563	1	481	1710	2	200	341	1
064	4284	759	2881						
3	1	003	1	050	344	824	832	1792	561
4	456	269	211	179	247	437	392	276	479
5	177	186	229	76	61	172	60	152	39
6	28	76	44	49	39	63	43	33	54
$7+$	2	37	18	19	13	30	9	16	15

Age	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
1	0.22	0.25	0.22	0.31	0.29	0.13	0.07	0.15	0.16	0.08	0.21	0.10	0.11	0.12
2	0.63	0.48	0.69	0.68	0.63	0.69	0.47	0.61	0.97	1.09	0.72	0.61	0.58	0.52
3	0.40	0.60	C． 61	0.63	0.66	0.66	0.67	0.74	0.76	0.89	1.03	0.69	0.41	0.50
4	0.44	0.41	0.56	0.54	0.48	0.64	0.63	0.59	0.67	0.68	0.75	0.25	0.54	0.43
5	0.42	0.41	0.38	0.42	0.52	0.60	0.72	0.68	0.67	0.65	0.59	0.60	0.55	0.41
6	0.74	0.59	0.44	0.42	0.58	0.49	0.71	0.66	0.53	0.78	0.65	0.70	0.48	0.41
7	0.21	0.53	0.36	0.38	0.49	0.42	0.55	0.63	0.58	0.73	0.71	0.71	0.65	0.41
8	0.56	0.53	0.78	0.47	0.54	0.46	0.49	0.31	0.51	1.17	0.59	0.65	0.49	0.41
9	0.18	1.28	0.13	0.52	0.36	0.59	0.49	0.59	0.50	1.19	0.21	0.97	0.74	0.41
10	0.46	0.06	1.08	1.46	0.49	0.46	0.42	0.96	0.46	0.59	0.42	0.67	0.65	0.41
11	0.28	0.15	0.08	1.31	0.14	0.59	1.38	0.77	1.42	0.04	0.93	0.76	0.74	0.41
$12+$	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.41
Mean $\mathrm{F}>2$	$\begin{aligned} & \text { (Sum of } \mathrm{F}^{\prime} \text { s weighted by stocks in numbers) } \\ & 0.57: 0.51: 0.65: 0.64 \quad 0.62 \quad 0.67: 0.60 \\ & 0.64 \end{aligned}$								0.91	1.03	0.86	0.58	0.53	0.51

Table 3.2 ．Haddock． Sub－Area IV．Fishing mortalities by year and by age．

$58^{\circ} 0$	$85^{\circ} 0$	$98^{\circ} 0$	OL•O	$78^{\circ} 0$	$\nabla 6^{\circ} 0$	LT＊T	$L S \cdot 0$	$\nabla \zeta \cdot 0$	$89^{\circ} 0$									UeəJ
OT•T	OT＊	OT•T	OT＊	OT＊	OT•T	OT＊${ }^{\text {L }}$	OT•T	OT•T	OT•T	OT								
OT•L	$25^{\circ} 0$	$\varepsilon 己 \cdot 0$	$50 \cdot 0$	OC•O	$L L^{\circ} \mathrm{T}$	$50 \cdot 0$	70•1	$98^{\circ} \mathrm{L}$	$\zeta S \cdot \tau$	$59 \cdot 0$	9t•己	St•T	カャ・O	$16 \cdot 0$	Oこ・て	LE． L	$16 \cdot 0$	6
OT＊	$60^{\circ} \mathrm{L}$	$8 \nabla^{\circ} 0$	T0＊ 0	$59^{\circ} \mathrm{T}$	$0 S^{\circ} \mathrm{E}$	$60^{\circ} \mathrm{L}$	$5 \square^{\circ} \mathrm{C}$	$\nabla^{\circ} \cdot \mathrm{T}$	90．と	¢8．0	$L T \cdot \varepsilon$	86＊	$\varepsilon \varepsilon \cdot 己$	Gごて	－0．2	$L L \cdot T$	$25 \cdot T$	8
OT•T	$5 ¢^{\circ} \mathrm{T}$	¢0． L	$90^{\circ} 0$	$25 \cdot 0$	$62 \cdot 0$	$60^{\circ} 0$	82・て	$60^{\circ} 0$	こL．T	EL．O	T9 ${ }^{\circ} \mathrm{L}$	$65 \cdot 0$	05•0		$60^{\circ} \mathrm{T}$	¢ $0^{\circ} \mathrm{T}$	$95 \cdot \mathrm{~T}$	L
OT•L	［6．0	$\Sigma 6 \cdot 0$	$60^{\circ} 0$	$65^{\circ} \mathrm{T}$	O2•T	拖•0	85．0	LL．O	と $\downarrow \cdot 0$	［6．${ }^{\circ}$	09＊${ }^{\circ}$	I9＊${ }^{\text {¢ }}$	87＊ 0	St•O	$78^{\circ} 0$	LT＊	EO＊T	9
OT•T	TL．0	80 ${ }^{\circ} \mathrm{T}$	2 $\Sigma^{\circ} \mathrm{T}$	$56^{\circ} \mathrm{T}$	8T•T	Ot＊ 0	$\zeta \Sigma^{\circ} \mathrm{T}$	OE．O	¢8．0	$06^{\circ} 0$	SL．O	$16^{\circ} 0$	OL．O	$95 \cdot 0$	$49^{\circ} 0$	06．0	$6 \chi^{\circ} \mathrm{T}$	G
70＊ T	T 6.0	$80^{\circ} \mathrm{T}$	$5^{\circ}{ }^{\circ} \mathrm{L}$	$60^{\circ} \mathrm{L}$	¢ $0^{\circ} \mathrm{T}$	00＇${ }^{\text {L }}$	SS•乙	$\checkmark 己^{\circ} 0$	05．0	$89^{\circ} 0$	TS．0	tL． 0	TS．0	8L．0	$9{ }^{1} \cdot 0$	$2 L^{\circ} \mathrm{O}$	$86^{\circ} 0$	\checkmark
£6．0	$96^{\circ} 0$	¢8．0	$62^{\circ} \mathrm{L}$	16.0	OL．O	$\downarrow \mathrm{T}^{\bullet} \mathrm{T}$	Tと＊	$L 5 \cdot 0$	ここ・0	19．0	$85^{\circ} 0$	$68^{\circ} 0$	$62^{\circ} 0$	¢9．O	76.0	\checkmark－ 0	$97^{\circ} 0$	ε
$08^{\circ} 0$	Lt＊	$78 \cdot 0$	$60^{\circ} 0$	$75 \cdot 0$	$55^{\circ} 0$	$78^{\circ} 0$	OS．0	$67^{\circ} 0$	$62 \cdot 0$	$62 \cdot 0$	$80^{\circ} 0$	こご0	をE．O	TE．O	$95^{\circ} 0$	$79^{\circ} 0$	$95 \cdot 0$	己
$L 2 \cdot 0$	\＆$\nabla^{\circ} 0$	$55^{\circ} 0$	$\checkmark \mathrm{I}^{\circ} \mathrm{O}$	ヤて・0	$90^{\circ} 0$	L0．0	2E．O	LO． 0	9 ${ }^{\circ} \cdot 0$	$60^{\circ} 0$	$90^{\circ} \mathrm{T}$	¢0．0	$10^{\circ} 0$	¢ $1 \cdot 0$	$\checkmark \underbrace{\circ} 0$	$97^{\circ} \mathrm{O}$	OL．0	t
$92 \cdot 0$	己T•O	9［•0	¢0．0	$\varepsilon \nabla^{\circ} 0$	$00^{\circ} 0$	$00^{\circ} \mathrm{O}$	$00^{\circ} 0$	$00^{\circ} 0$	$00^{\circ} 0$	$00^{\circ} 0$	$00^{\circ} \mathrm{O}$	$00^{\circ} 0$	$00^{\circ} 0$	$00^{\circ} 0$	$00^{\circ} 0$	． $00^{\circ} 0$	$00^{\circ} 0$	0
$916 T$	SL6T	$\rightarrow 26 \tau$	$\varepsilon 26 T$	2L6T	TL6 T	0L6T	696 T	896 T	L96T	996T	$596 T$	796I	¢96T	2965	L96	096T	$656 T$	2.8 V

Table 3.3. Whiting. \#)

Age	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
0	0.04	0.02	0.07	0.15	0.84	0.76	0.40	0.17	0.10	0.18	0.18	0.14
1	0.14	0.47	0.24	0.20	1.05	1.13	0.32	0.50	0.36	0.84	0.34	0.45
2	0.28	0.55	0.60	0.79	0.67	1.40	0.66	0.74	0.80	0.92	0.71	0.77
3	0.46	0.78	0.88	0.97	0.97	0.91	0.69	0.73	0.96	1.00	1.00	0.85
4	0.62	0.91	0.81	1.12	0.92	0.73	0.73	0.46	0.90	0.88	1.10	0.85
5	0.91	0.87	0.84	0.88	0.87	1.00	0.69	0.90	0.93	0.65	0.95	0.85
6	1.00	1.15	0.49	1.02	0.95	0.95	0.60	0.81	0.97	0.83	0.80	0.85
7	0.66	1.72	1.38	0.25	1.08	0.30	0.49	0.47	1.11	0.91	1.19	0.85
8	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Mean F ¢ 3	(Sum of F's weighted by stocks in numbers)											
	0.50	0.88	0.84	0.98	0.96	0.89	0.72	0.78	0.95	0.97	1.01	0.85

Table 3.4. Cod.
Division VIa. Fishing mortalities by year and by age. Age 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1 0.01 0.02 0.04 0.03 0.02 0.04 0.06 0.02 0.08 0.06 0.09 2 0.19 0.16 0.28 0.25 0.14 0.26 0.44 0.18 0.41 0.35 0.27 3 0.50 0.39 0.48 0.59 0.40 0.43 0.57 0.48 0.44 0.53 0.48 4 0.56 0.28 0.73 0.94 0.62 0.59 0.93 0.61 0.72 0.60 0.66 5 0.59 0.33 0.38 0.99 0.60 0.69 0.83 0.82 0.63 0.51 0.70 6 0.34 0.46 0.54 0.75 0.59 0.73 0.70 0.98 0.84 0.32 0.70 7 0.66 0.59 0.66 0.91 0.38 0.70 0.72 0.84 1.06 0.41 0.70 $8+$ 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 Mean F>2 (Sum of Fis weighted by stocks in numbers) .

\#) Scottish and Dutch discards included.
Table 3.5 .

Age	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
1	0.00	0.01	0.02	0.01	0.00	0.03	0.03	0.02	0.08	0.04	0.05	0.042
2	0.22	0.08	0.79	0.31	0.09	0.01	0.53	0.43	0.23	0.34	0.26	0.21
3	0.52	0.24	0.43	0.54	0.44	0.18	0.69	1.08	0.61	0.61	0.50	0.64
4	0.58	0.63	0.07	0.25	0.47	0.57	0.38	0.76	0.34	0.52	0.47	0.51
5	0.30	0.40	0.56	0.24	0.34	0.12	0.16	0.43	0.81	0.20	0.31	0.38
6	0.41	0.17	0.10	0.83	0.40	0.14	0.07	0.25	0.46	0.89	0.35	0.23
7	0.14	0.12	0.06	0.40	0.61	0.11	0.01	0.04	0.08	0.30	0.65	0.15
8	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Mean F>> \boldsymbol{y}	(Sum of F's weighted by stocks in numbers)											

Age	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
1	0.05	0.02	0.08	0.04	0.05	0.04	0.10	0.17	0.08	0.13	0.14	0.10
2	0.63	0.47	0.86	0.57	0.19	0.31	0.67	0.59	0.77	0.41	0.51	0.67
3	0.44	0.77	0.93	1.03	0.69	0.36	1.01	0.74	1.13	1.00	0.83	0.96
4	0.77	0.63	0.69	0.97	1.01	0.83	0.77	1.00	1.22	1.46	0.82	1.00
5	0.94	0.65	1.00	0.48	1.23	0.98	0.67	0.88	1.78	1.60	0.94	1.11
6	0.47	0.74	0.70	0.90	0.37	0.67	0.96	0.89	1.23	2.06	0.87	1.04
7	1.69	0.50	0.75	0.54	1.02	0.07	0.31	0.62	1.12	1.49	1.36	0.71
8	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.90	0.90	0.90	0.90	0.90
Mean $\mathrm{F}>5$ (Sum of F's weighted by stocks in numbers)												
	0.99	0.65	0.98	0.85	1.03	0.78	0.68	0.88	1.26	1.51	0.92	1.10

Table 3.7. Cod.

Age	1968	1969	1970	1971	1972	1973	1974	1975	1976
1	0.12	0.19	0.17	0.30	0.25	0.23	0.19	0.13	0.35
2	0.60	0.93	0.66	0.77	0.69	0.63	0.90	0.56	0.71
3	0.82	1.10	0.57	0.80	0.77	1.10	0.82	1.12	0.86
4	0.86	0.54	0.68	0.67	0.59	1.34	0.77	1.39	0.78
5	0.89	1.14	1.33	0.57	0.51	1.14	0.65	0.80	0.75
6	0.43	1.37	0.97	1.29	0.65	1.77	1.06	0.93	0.75
$7+$	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Mean F> 2	(Sum of Fis weighted by stocks in numbers)								
	0.70	0.95	0.69	0.77		0.95	0.87	0.91	0.73

Table 4．2．

Age	1963	1964	1965	1966	1967	1968	1969
0	85790	140355	179261	937252	7690140	470168	133182
1	3203000	70239	114913	146767	767358	6296160	384941
2	460159	2442310	55701	29372	109609	536361	4815590
3	58491	270647	1612100	42266	18024	66908	268801
4	33580	35752	91246	906208	18776	11787	30888
5	14142	16564	14011	44966	375264	9370	7581
6	1440	5774	5116	5404	14919	133657	5694
7	1118	731	941	842	654	7910	50473
8	1062	557	330	154	332	96	5935
9	31	85	23	11	55	13	17
10	16	16	16	2	5	10	2

$\stackrel{\bullet}{\stackrel{\circ}{-}}$	 がいmが， r
$\stackrel{i n}{\stackrel{i n}{N}}$	かo \sim
$\underset{\underset{\sim}{\mathrm{N}}}{\stackrel{M}{\alpha}}$	 H
$\underset{\underset{\sim}{N}}{\underset{\sim}{N}}$	 $-$
$\underset{\underset{-}{-}}{\underset{\sim}{-1}}$	 $-$
$\stackrel{8}{80}$	

Table 4.3. Whiting.
Sub-Area IV. Stock in numbers (1000 fish) at beginning of year.

Age	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
0	988160	1223190	3441470	1211980	2195170	2165990	3241110	3388710	2258920	3356000	1213750	2513570
1	681856	776720	977208	2614330	857951	778008	829049	1783540	2343350	1667480	2304270	830025
2	237112	486111	396304	631149	I 757310	246792	205708	491134	885049	1345170	587005	1345510
3	664198	146457	230561	177849	233724	732915	49820	87242	192000	326863	438209	236135
4	144319	344301	54895	78456	55448	72335	242338	20408	34291	60328	98060	132021
5	15454	63377	113781	19932	20918	18126	28539	95150	10598	11471	20459	26805
6	6667	5117	21703	40157	6765	7168	5449	11697	31703	3423	4922	6465
7	2102	2016	1329	10857	11899	2152	2265	2457	4254	9868	1217	1813
8	279	892	297	273	6919	3308	1309	1137	1256	1143	3265	305

Table 4．5．$\frac{\text { Haddock．}}{\text { Division }}$

Haddock．${ }_{\text {Division }}$ VIa．

Age	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
1	6329	28100	37554	772051	21780	9491	88237	43061	17449	57409	119193	24528
2	9188	5177	22755	30281	623693	17832	7563	70032	34722	13196	45224	93199
3	227432	6034	3915	84.48	18153	466511	14451	3645	37406	22561	7727	28465
4	11643	110601	3893	2094	4021	9547	317539	5913	1010	16632	10055	3842
5	879	5330	48157	2973	1338	2050	4420	177944	2257	591	8126	5161
6	556	535	2922	22623	1906	781	1488	3087	94703	826	396	4873
7	1137	303	369	2165	8070	1044	557	1141	1977	48995	278	229
8	182	806	221	284	1185	3579	766	450	901	1493	29788	119

$\begin{aligned} & \infty \\ & \stackrel{6}{\square} \\ & \underset{\sim}{2} \end{aligned}$	
$\stackrel{n}{\stackrel{n}{j}}$	
$\begin{gathered} \underset{\sim}{丸} \\ \underset{\sim}{2} \end{gathered}$	
$\stackrel{m}{\underset{\sim}{\lambda}}$	にM－
$\underset{\sim}{N}$	
$\stackrel{\underset{\sim}{\lambda}}{\underset{\sim}{\lambda}}$	N～NongN Ning
$\begin{aligned} & 0 \\ & \stackrel{0}{a} \\ & \end{aligned}$	MAFger
$\begin{aligned} & \underset{o}{0} \\ & \underset{\sim}{-} \end{aligned}$	
$\begin{aligned} & \infty \\ & \stackrel{\infty}{-} \\ & \underset{\sim}{2} \end{aligned}$	呙云心miNRN
$\begin{aligned} & \circ 8 \\ & \stackrel{\circ}{7} \\ & \hline \end{aligned}$	
$\begin{aligned} & \text { ñ } \\ & \underset{\sim}{\circ} \end{aligned}$	
免	－rNMサin6下m

Table 4.7. Cod.

$\stackrel{i n}{\underset{\sim}{\sim}}$	$\underset{\sim}{i} \underset{\sim}{n} \underset{\sim}{\sim}$
$\stackrel{M}{\underset{\sim}{\prime}}$	
$\underset{\sim}{\underset{\sim}{N}}$	
$\stackrel{\text { H}}{\underset{\sim}{A}}$	
$\underset{\underset{\sim}{\mathrm{O}}}{\stackrel{\mathrm{O}}{2}}$	
$\underset{\underset{-}{\circ}}{\substack{\text { on }}}$	
$\begin{aligned} & \infty \\ & \underset{\sim}{-} \\ & \hline \end{aligned}$	
\%	$\rightarrow N M \forall n 6-$

Table 5.1. Predictions of catches and landings in 1978 (1000 tons).

1) Averages for period 1966-1975.
A. Effort in 1978 the same as in 1976 and 1977.
B. Effort in 1978 10\% lower than in 1976 and 1977.
C. Effort in 1978 20\% lower than in 1976 and 1977.

Table 5.2. Revised estimates of yearclass strength.

Yearclass	$$		$\mathrm{M=0.2} \mathrm{M}=0.2$		$\begin{array}{cc} \text { Whiting } \\ \text { Div.IVa, } b, c \\ \begin{array}{cc} \text { IYHS } & \text { VPA } \end{array} \\ \text { IYS }^{2} & M=0.2 \end{array}$	
1958				368		
1959				234		
1960				152		
1961				638		
1962		104		3203		
1963		234		70		
1964		222		115		682
1965		315		147		777
1966	33	283	151	767	803	977
1967	5.6	92	8891	6296	1726	2614
1968	5.9	86	425	385	18	858
1969	59	371	45	109	86	778
1970	125	549	2114	974	296	829
1971	2.6	86	3044	1510	710	1784
1972	38	193	461	273	4272	2343
1973	10	184	3685	1338	703	1667
1974	77	385	1663	2050	1292	2304
1975	6.4		312		1306	
1976	(45)		(375)		(1 030)	

a) Average number per hour fishing during the International Young Herring

Surveys (cf. ICES, C.M.1976/F:20).
b) Millions of fish at age 1 .

Figures in brackets are provisional.
Table 5.3. Predictive regressions of VPA estimates of yearclass size (y) on yearclass

Data	n	B	B_{1}	r	p	Estimated size yearclass (1 year old) 1000000	
						1975	1976
Cod IVa,b, c(M=0.2) - IYHS (1966-1974)	9	100.36	3.47	0.93	$\mathrm{p}<0.01$	6.4	45
Haddock IVa, $\mathrm{b}, \mathrm{c}(\mathrm{M}=0.2)$ - IYHS (1966-1973 ${ }^{\text {T }}$)	7	258.03	0.30	0.86	$\mathrm{p}<0.01$	352	371
Whiting IVa, $\mathrm{b}, \mathrm{c}(\mathrm{M}=0.2)$ - IYHS (1966-1974)	9	956.44	0.56	0.71	$\mathrm{p}<0.05$	1306	1030
\#) Excluding 1967.							
Table 5.4. Percentage change in F values needed to give MSY per recruit. Also percentage gains in yield per recruit for $F=F_{\text {max }}$.							

Species	Area	$\%$ Change in F values	$\%$ Gain in yield per recruit
Cod	IV	-50	+15
	VIa	-45	+7
	VIIa	-65	+20
Haddock	IV	-70	+20
	VIa	0	0
Whiting	IV	-70	$0^{\text {FI }}$
	VIa	-65	$0^{\# 7}$

\# Yield per recruit curve flat-topped.

Table 5.2. Haddock.
Sub-Area IV. Input data for catch prediction. 1976 catch in numbers (1000 fish).

Age	Industrial landings		Other landings		Discards		Total Numbers
	Numbers	Weight	Numbers	Weight	Numbers	Weight	
0	144791	0.025	0	0.000	70	0.041	144861
1	60485	0.064	2150	0.230	28519	0.108	91154
2	157246	0.157	200575	0.280	194452	0.185	552273
3	23849	0.334	173925	0.410	22492	0.246	220266
4	60	0.423	12618	0.580	114	0.253	12792
5	2584	0.556	32704	0.710	75	0.314	35363
6	34	0.666	5544	0.940	0	0.000	5578
7	0	0.000	242	1.210	0	0.000	242
8	0	0.000	83	1.440	0	0.000	83
9	0	0.000	800	1.500	0	0.000	800
10	0	0.000	87	1.600	0	0.000	87
Total	389050		428728		245722		1063500
Total weight 41629				466	44	642	

Table 5.6. Whiting.
Sub-Area IV. Input data for catch prediction. 1976 catch in numbers (1000 fish).

Age	Recommendation 4 Fisheries		Recommendation 2 Fisheries		Discards ' 000
	Catch 1000	Mean weight kg	$\begin{aligned} & \text { Catch } \\ & 1000 \end{aligned}$	$\begin{gathered} \text { Mean } \\ \text { weight } \end{gathered}$ kg	
0			293317	. 020	5000
1	7950	. 187	245162	. 063	21536
2	113425	. 228	433514	. 195	116251
3	57773	. 269	54917	. 269	11574
4	56787	. 322	6759	- 322	5929
5	13423	. 380	272	. 380	411
6	3341	. 468	42	. 468	19
7	939	. 620	13	. 620	2
8	154	. 765	-	. 765	

Table 5.7. North Sea Cod, Haddock and Whiting.
Total numbers (1000) at each length group landed quarterly by Norway in 1976a).

Cod	Quarter				Total
Length group	1	2	3	4	
10-14		24			24
15-19		166	95	47	308
20-24	24	47	47	47	165
25-29	95	71	24	308	498
30-34	95	214	95	379	783
35-39	118	261	236	261	876
40-44	94	118	118	188	518
45-49	47	24	212	94	377
50-54		24	71	70	165
55-59	47		71		118
Total	520	949	969	1394	3832
Haddock					
5-9	5		422	18	445
10-14	211	79	2014	750	3054
15-19	396	2083	528	3513	6520
20-24	519	569	2970	1253	5311
25-29	844	545	1541	1330	4260
30-34	127	147	602	675	1551
35-39	22	47	121	242	432
40-44	9	4	47	45	105
45-49	9		19	5	33
50-54			6	1	7
Total	2142	3474	8270	7832	21718
Whiting					
10-14			5	17	26
15-19	23		18	74	115
20-24	357	100	195	537	1189
25-29	1487	2095	988	4072	8642
30-34	972	1. 535	1197	5670	9374
35-39	389	559	495	1902	3345
40-44	25	50	185	270	530
45-49		33	58	56	147
50-54				2	2
55-59			6		6
Total	3257	4372	3147	12600	23376

a) Measurements from Recommendation 2 fisheries only.

Table 6.1. Cod.
Sub-Area IV. Input data for catch prediction.

Age	1976 Catch 1000	F-values $1976-1977$	Mean weight kg
1	12182	0.115	0.54
2	105109	0.52	0.92
3	22510	0.50	2.02
4	9805	0.43	3.82
5	1550	0.41	5.75
6	2374	0.41	7.64
7	737	0.41	9.11
8	114	0.41	10.37
9	63	0.41	11.24
$10+$	82	0.41	12

a) Assuming F_{76} is 25% below average for the period 1963-75.

Year	Recruitment at age 1 '000	Simulated catches '000 tons			
		$F_{78}=F_{76}$	$F_{78}=0.9 \times F_{76}$	$F_{78}=0.8 \times F_{76}$	
1977	256000	221	221	221	
1978	230000	240	220	200	

b) Assuming F_{76} is the same as the average for the period 1963-75.

Year	Recruitment at age 1 'C00	Simulated catches '000 tons			
		$F_{78}=F_{76}$	$F_{78}=0.9 \times F_{76}$	$F_{78}=0.8 \times F_{76}$	
	256000	195	195	195	
1978	230000	211	195	177	

\#) These values had to be adjusted by -6.26% to yield the actual catch in weight in 1976.
Table 6.2. Haddock.
Sub-Area IV. Input data for catch prediction.

	Input data			Prediction runs							
Age	1976 Catch ' 000s	Mean weight (kg)	F_{76}	Run No.	Ratio of $\mathrm{Fr}^{\text {S }}$			Predicted 77		Predicted 78	
					F_{76}	$: \mathrm{F}_{77}$	$: \mathrm{F}_{78}$	Landings	Catches	Landings	Catches
0	144861	. 029	. 26	1	1	: I	:1.	165	(183)	112	(126)
1	91154	. 086	. 27								
2	552273	. 210	. 80	2	1	:1.25	:1	189	(210)	93	(106)
3	220266	. 396	. 93								
4	12792	. 549	1.04	3	1	: 1.25	:1.25	189	(210)	106	(121)
5	35363	. 704	1.1								
6	5578 242	.940 1.210	1.1	4	1	:1.25	:0.9	189	(210)	87	(99)
8	83	1.440	1.1	5	1	:1	:0.9	165	(183)	106	(118)
9 10	800	1.500 1.600	1.1	6	1	:1	:0.8	165	(183)		
10	87	1.600							(183)	97	(109)

$$
\text { Nos. I } 063500
$$

Weight 251737
$\mathrm{M}=0.2$
Recruitment at age 0
$\begin{array}{ll}648 & 000 \\ 648 & 000 \\ 000\end{array}$
1977
1978

Table 6.3. Whiting.
Sub-Area IV. Input data for catch prediction.

Age	1976 Catch landings + discards 1000	Mean weight kg	F values $\mathrm{M}=0.2$
0	298317	0.020	0.14
1	274648	0.066	0.45
2	663190	0.200	0.77
3	124264	0.069	0.85
4	69475	0.322	0.85
5	14106	0.380	0.85
6	3402	0.468	0.85
7	954	0.620	0.85
8	154	0.765	0.80

Recruitment at age 0 in '000

1976	2	300	000
1977	2	300	000
1978		300	000

Simulated catches (1000 tons) with F values in column 4

Year	Change in F	Catch	Landings (= catch - discards)
1977	$F_{77}=F_{76}$	190	165
1978	$F_{78}=F_{76}$	202	173
	$F_{78}=0.9 \times F_{76}$	187	161
	$F_{78}=0.8 \times F_{76}$	172	148

Simulated catches (1000 tons) with F values in column 4 reduced by 25%.

Year	Change in F	Catch	Landings (= catch - discards)
1977	$\mathrm{~F}_{77}=\mathrm{F}_{76}$	221	191
1978	$\mathrm{~F}_{78}=\mathrm{F}_{76}$	248	214
	$\mathrm{~F}_{78}=0.9 \times \mathrm{F}_{76}$	229	198
	$\mathrm{~F}_{78}=0.8 \times \mathrm{F}_{76}$	208	179

Table 6.4. Cod.
Division VIa. Input data for catch prediction.

Age	1976 Catch 1000	F values $1976-1977$	Mean weight kg F
1	548	0.09	0.58
2	4252	0.27	1.22
3	1542	0.48	2.66
4	688	0.66	4.25
5	256	0.70	5.13
6	169	0.70	6.41
7	65	0.70	8.38
$8+$	15	0.70	9.00

Year	Recruitment at age 1 1000	Simulated catches ' 000 tons		
		$\mathrm{F}_{78}=\mathrm{F}_{76}$	$\mathrm{F}_{78}=0.9 \times \mathrm{F}_{76}$	$\mathrm{F}_{78}=0.8 \times \mathrm{F}_{76}$
1977	6613	21.0	21.0	21.0
1978	6613	20.6	19.1	17.4

Table 6.5. Haddock.
Division VIa. Input data for catch prediction.

Age	1976 Catch 1000	F values $1976-1977$	Mean weight kg
1	922	.042	.230
2	16187	.21	.28
3	12425	.64	.41
4	1.414	.11	.58
5	1500	.38	.71
6	918	.23	.94
7	29	.15	1.21
8	15	.15	1.44
9	3831	.15	1.50

Year	Recruitment at age 1 ' 000	Simulated catches '000 tons
$\begin{aligned} & 1977 \\ & 1978 \end{aligned}$	$\begin{aligned} & 25900 \\ & 31500 \end{aligned}$	$\begin{array}{llll} \text { Rur 1 } & 1977 & 16.3 & \left(F_{77}=F_{76}\right) \\ & 1978 & 11.4 & \left(F_{78}=F_{76}\right) \\ \hline \end{array}$
\#) These values had to be adjusted by $+2.85 \%$ to yield the actual catch in weight in 1976.		$\begin{array}{rlll} \hline \text { Run 2 } & 1977 & 10.8 & \left(\mathrm{~F}_{77}=0.6 \times \mathrm{F}_{76}\right) \\ & 1978 & 13.6 & \left(\mathrm{~F}_{78}=\mathrm{F}_{76}\right) . \end{array}$
		$\begin{array}{llll} \text { Run 3 } & 1977 & 16.3 & \left(\mathrm{~F}_{77}=\mathrm{F}_{76}\right) \\ & 1978 & 10.4 & \left(\mathrm{~F}_{78}=0.9 \times \mathrm{F}_{76}\right) \end{array}$
		$\begin{array}{rrrl} \hline \text { Run 4 } & 1977 & 16.3 & \left(\mathrm{~F}_{77}=\mathrm{F}_{76}\right) \\ & 1978 & 9.5 \quad\left(\mathrm{~F}_{78}=0.8 \times \mathrm{F}_{76}\right) \end{array}$

Table 6.6. Whiting.
Sub-Area VI. Input data for catch prediction.

Age	1976 Catch 1000	F values $M=0.2$	Mean weight kg
1	11918	0.10	0.213
2	45387	0.67	0.241
3	14329	0.96	0.267
4	15730	1.00	0.310
5	1413	1.11	0.377
6	104	1.04	0.471
7	18	0.71	0.563
8	-	0.90	0.690

Year	Recruitment at age 1 ' 000	Simulated catches ' 000 tons		
		$\mathrm{F}_{78}=\mathrm{F}_{76}$	$\mathrm{F}_{78}=0.9 \times \mathrm{F}_{76}$	$F_{78}=0.8 \times F_{76}$
1977	77800	22.4	22.4	22.4
1978	77800	17.8	16.6	15.2

Table 6.7. Cod.
Division VIIa. Input data for catch prediction.

Age	1976 Catch 1000	F values 1976-1977	Mean weight kg $^{\text {IF }}$
1	1817	0.35	0.61
2	2881	0.71	1.66
3	479	0.86	3.33
4	351	0.78	5.09
5	39	0.75	6.19
6	54	0.75	6.76
$7+$	15	0.75	8.30

Year	Recruitment at age 1 1000	Simulated catches 000 tons			
	$F_{78}=F_{76}$	$F_{78}=0.9 \times F_{76}$	$F_{78}=0.8 \times F_{76}$		
	6866	9.8	9.8	9.8	
1978	6866	9.3	8.6	7.9	

*) These values had to be adjusted by -5.88% to yield the actual catch in weight in 1976.

Figure 2. North Sea whiting.

Figure 3. North Sea haddock.

Figure 4. North Sea cod.

Figure 5. North Sea cod in Divisions IVa,b,c.
Predictive regression yearclass strength on IYHS abundance estimates.

[^0]: *) General Secretary, ICES, Charlottenlund Slot, 2920 Charlottenlund, DENMARK

[^1]: provisional figures
 a) see footnotes on following page

[^2]: \#) provisional figures
 a) see footnotes on following page

