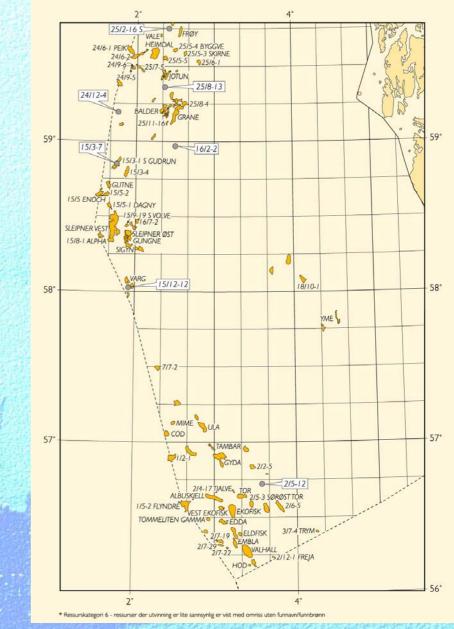
#### ICES CM 2004/Z:09


## assessing the impact of effluents from offshore activities by their biological effects – local and regional scales

Ketil Hylland (NIVA, Norway) Steinar Sanni (RF-Akvamiljø, Norway) Jarle Klungsøyr (IMR, Norway)



# the issue

- major inputs of chemicals from offshore activities
  - drilling
  - production
- impacts virtually the entire North Sea to some extent
- ecological impacts not really established
- laboratory data suggest effects, but at levels higher than those generally found
- how can we assess the risk of produced water effluents?





## risk assessment

- inputs from many sources need to be considered
  - adjacent production areas
  - drilling in relation to production
  - chemicals change over time
- risk assessment by way of models (DREAM)
  - exposure (3-D model using real-time data)
  - effect (PNECs derived from laboratory tests)
- assessment of biological effects in the field validation of model or contributions to risk assessment?



# effects in the water column

- complementary approaches
  - in situ extracts can be tested for mechanisms of toxicity
  - caging provides direct link to local exposure
  - field sampling provides ecological relevance
- which effect methods?
  - identifiable threshold or dose-response level(s)
  - methods should be used in combination
  - quality assurance of methods is essential
- which species/systems?
  - there are no "universal" species, even in a limited area such as the North Sea
  - unresolved problems for the use of fish (migration, exposure)
  - have to be able to separate zooplankton species during sampling



| approach                                                             | pro's                                                                                                                                                                        | con's                                                                                                                                                                                                                |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| field sampling                                                       | ecological relevance                                                                                                                                                         | difficult to assess area<br>integrated (but large); high<br>natural variability (needs<br>large sample numbers)                                                                                                      |
| caging                                                               | reflects local exposure<br>(history); can use<br>organisms with desirable<br>properties (e.g. blue<br>mussel and fish)                                                       | "semi-natural" exposure<br>situation; food availability<br>unknown; limited to<br>selected species<br>(relevance in relation to<br>local species); exposure<br>at one point (does not<br>integrate over larger area) |
| <i>in situ</i><br>extracts/bioassays<br>(can be extended<br>to TIE*) | identify specific mechanisms<br>and substances; sensitive<br>and reproducible;<br>possible to test systems<br>not otherwise included<br>(e.g. early lifes stages in<br>fish) | not possible to extrapolate<br>directly to ecological<br>impact                                                                                                                                                      |



# activities

• WCM 1999-2000 caging (passive samplers, blue mussels) DREAM development BECPELAG field-collection caging extracts modelling • WCM 2003 caging (cod, blue mussels) few locations regional monitoring 2002-2003 field-collection haddock, saithe, cod, pelagic species - a range of endpoints



# activities

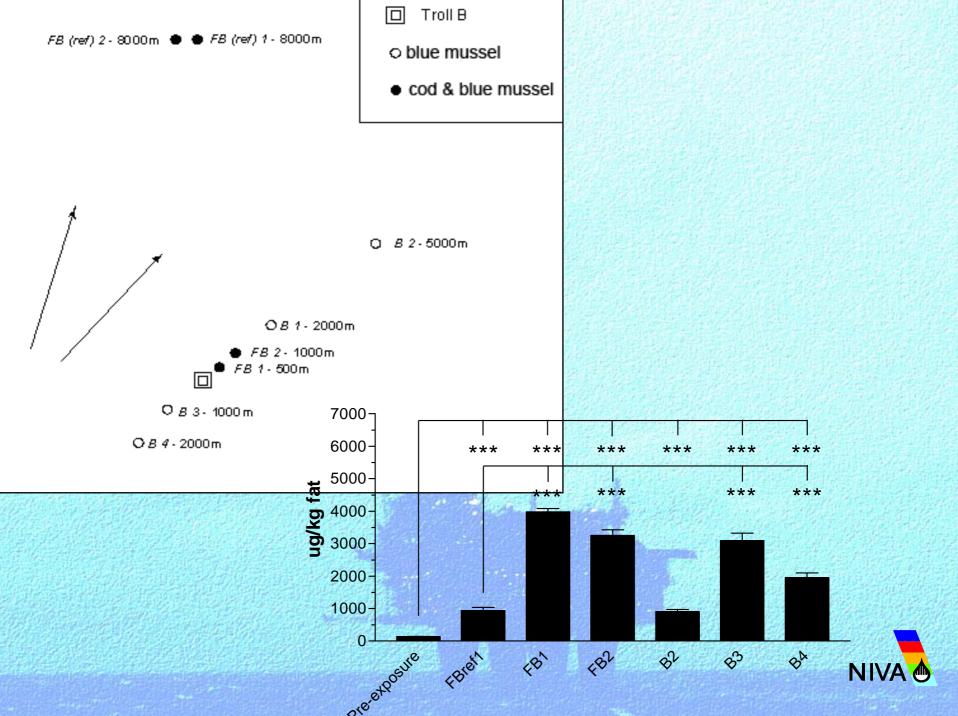
#### • WCM 1999-2000

- caging (passive samplers, blue mussels)
- DREAM development
- BECPELAG
  - field-collection, caging, extracts, modelling
  - many methods
- WCM 2003
  - caging (cod, blue mussels)
  - few locations
  - histopathology and biomarkers
- regional monitoring 2002-2003
  - field-collection
    - haddock, saithe, cod, pelagic species
    - a range of endpoints



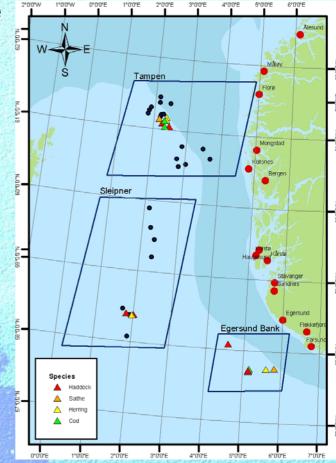
# indications that there may be effects - BECPELAG

BECPELAG


- gradient for PAH exposure away from platforms – predominantly 2-/3-ring
- clear responses in caged blue mussels
- histopathological changes in both caged and field-collected fish; no obvious effects for biomarkers
- more responses in caged organisms (cod, blue mussel) than in field-collected organisms
- limited responses in bioassays of SPMD extracts



# the follow-up: WCM 2003


- Troll field
- caged blue mussels, cod
- blue mussels
  - PAH
  - histopathology
  - BaPH
  - lysosomal stability (on board)
- cod
  - PAH-metabolites
  - histopathology
  - vtg
  - EROD
  - GST





# regional studies: what is this?

- different fish species sampled in three areas:
  - Tampen (high input)
  - Sleipner (low input)
  - Egersund banken (reference)
- haddock, saithe, cod, herring, ++
- endpoints included
  - alkylphenols and PAHs in muscle and liver
  - PAH metabolites in bile
  - a range of biomarkers including phase-I, phase-II enzymes, antioxidant enzymes and DNA adducts
  - lipid composition of muscle
- results indicated
  - differences between areas with regard to:
    - some PAH metabolites
    - phase-I enzymes, antioxidant responses
    - lipid composition
    - DNA adducts





# risk assessment?

- risk assessment models predict effects near platforms, but not in larger areas
- have we detected all ecologically relevant impacts?
- which options are available?
  - revise model with new data
  - combined modelling and field measurements
  - rely more heavily on field measurements (needs larger resources)



### summary and the future

- risk assesssment models are probably not sufficiently predictive of environmental impacts from produced water inputs
- it is difficicult to separate impacts from specific activities (drilling, production) or effluents from different production areas
- a link should be established between the risk assessment models and field data ("validation")
- a large-scale "inventory" of possible effects in the North Sea from offshore activities is needed (research on ecologically relevant endpoints)



## acknowledgements

participants, crews and the steering group of the BECPELAG workshop

colleagues at NIVA (Knut-Erik Tollefsen) and Rogaland Research (Jan Fredrik Børseth) involved in the 2003 WCM programme

project collaborators on the regional monitoring programme: Lennart Balk, Marc Berntssen, Jonny Beyer, Alf Melby

the Research Council of Norway, OLF and Norwegian oil companies for funding

