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Studying the relationship between spatial fish distributions and trawl catches 
 
Verena M. Trenkel, Olav Rune Godø, Nils Olav Handegard and Ruben Patel 
 

We propose an approach for studying the relationship between spatial fish distributions and the 
distribution of numbers in trawl catches. Individual spatial fish distributions are derived from 
acoustics data collected with a drifting buoy by tracking individual fish. The spatial distribution of 
these individual fish is then characterised using Generalised Additive Models (GAM). The catch 
distribution is obtained empirically. A model relating the spatial fish distribution and the catch 
distribution is then developped. This paper concentrates on the first part of the approach, the 
identification of the spatial fish distribution from acoustic data, which is illustrated for a demersal 
example from the Barents sea including mainly cod (Gadus morhua) and haddock 
(Melanogrammus aeglefinus). 
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Introduction 
 
Studying survey trawl catchability is an important topic in the context of survey based stock 
assessments. The main components of trawl catchability are fish availability and trawl efficiency 
(Godø 1998). Fish availability is influenced by factors such as vertical population distributions and 
diurnal activity patterns (Godø 1994; Godø 1994; Walsh 1991) in addition to habitat preferences. 
Trawl efficiency is affected by fish reactions leading to escapees or herding (Engås & Godø 1989; 
Krieger 1992; Ramm & Xiao 1995), but also by population density (Godø et al. 1999). 
 
The relationship between individual spatial distributions and the distribution of numbers per haul 
obtained from trawl fishing are currently poorly understood. However, it is evident that this 
relationship in conjunction with behavioural differences observed between individual fish and fish 
schools when entering a trawl (Godø et al. 1999), are an important part of the variability in trawl 
catchability. Indeed, Trenkel et al. (submitted) found that the relationship between swept area 
density estimates and visual (ROV) density estimates was explained by the type of spatial 
distribution of a species.  
 

The proposed approach consists in comparing spatial individual distributions with the distribution 
of numbers in the catch through a modelling approach. First, individual spatial distributions are 
derived from acoustics data collected with a drifting buoy by tracking individual fish and thus 
determining the distance between individuals and total numbers per unit time or space. This allows 
to characterise the statistical spatial distribution. Second, the catch distribution is obtained directly. 
Conditional on knowing the spatial fish distribution, Trenkel and Skaug (submitted) proposed a 
model for disconvoluting the catch distribution into the underlying spatial fish abundance 
distribution and a random catchability variable. This paper concentrates on the first step, which is 
illustrated for a demersal example from the Barents sea including mainly cod (Gadus morhua) and 
haddock (Melanogramus aeglefinus). 
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Material and Methods 
 
The data was collected in 2001 as part of a study aimed at measuring the behavioural reactions of 
mainly cod and haddock to an approaching trawling vessel (Handegard et al. 2003). The Bergen 
Acoustic Buoy, a free-floating buoy equipped with a split beam echo sounder system, was deployed 
at about 1 pm and recovered at 3:30 am the following morning in an area located off the coast of 
Finnmark (72°N 25°E).  During that period, at seven occasions a trawling vessel came past the buoy 
using a Campelen 1800 bottom trawl. All catch was identified, counted and length measured. The 
drifting path of the buoy is given in Figure 1; it includes the passing times of the trawling vessel as 
well as the locations of the observed individuals (see below for criteria used to identify individuals). 
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Figure 1. Drifting path of Bergen Acoustic Buoy used for data collection and passing times of trawling vessel. Marked 
observations ( ) correspond to identified individuals (see text).    
 
 
Information on individual spatial fish distributions and fish movements was derived from the 
acoustic buoy data in several steps. First, single targets were detected using the Simrad Ek60 built 
in Single Echo Detection algorithm (SED). Second, application of a tracking algorithm allowed to 
connect detected single targets in order to identify individual fish (Handegard 2004). The tracking 
algorithm uses a Kalman filter to predict fish positions and estimates the transducer movement for 
improved individual tracking. Subsequently,  separate linear regression lines are fitted through the 
connected echoes of each tracked fish (Handegard 2004, paper II). The slope of these regression 
lines provides an estimate of linear fish speed (see e.g. Figure 2 in Handegard et al. 2003). This 
estimated speed is denoted “displacement speed” since it may differ from actual swimming speed 
due to currents in the water column. The geographic position (coordinates relative to some 
reference position) of the mean observation time of a track is used as the mean track position. Thus 
for each track or rather detected fish, the available data were: observation time, target strength (TS) 
value for each single echo within the track, mean vertical position in the water column and mean 
georgraphic position, mean displacement velocity and track length. Given the narrow width of the 
area covered by the acoustic beam, the detected fish basically lie on a line. Thus in the further 
analysis it is assumed that the observation field is one-dimensional.  
 
Various exploratory analyses were carried out to study the properties of the identified tracks, in 
particular with the aim to determine whether they can be regarded as representing individual fish. 
For the analysis only tracked targets with target strengths (TS) between –30dB and –10dB were 
used. For cod this should correspond to fish of length 0.3 to 1 m (Nakken and Olsen 1977). If only 
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some echos of a given track had TS values outside this range, those were removed and the 
remainder kept. Unless stated otherwise, analyses of tracked targets were carried out by selecting 
tracks comprised of at least 6 or 15 single echoes (after having removed echos outside the TS 
selection range). The two different levels of track length were studied in order to evaluate the 
impact of track length. Ping based Sv values integrated over 19 cm depth intervals were thresholded 
at -70 and -30 to select for larger species such as cod and haddock.  
 
Individual spatial (horizontal) distributions were characterised using the geographic position of each 
track and then calculating the horizontal distance to the nearest neighbour along the buoy drift path 
(next detected track in time). The distribution of these nearest neighbour distances should follow an 
exponential distribution if individuals were randomly distributed in space and if the identifictication 
and detection of individual fish by the tracking algorithm did not depend on any environmental 
conditions such local fish density or bottom depth. Equivalently if individuals were randomly 
distributed in space, the total detected number of individuals (Ni) along subset i of the observation 
line should follow a Poisson distribution. Given that the buoy drifted at rather constant speed, 
considering numbers per unit distance interval is equivalent to considering numbers per time 
interval. To explore the relationship between the detected number of fish per unit distance interval 
(400 m) and covariates that might either be related to local fish densities or/and the detection 
performance of the tracking algorithm, a generalised additive model (GAM) was fitted. The 
explanatory variables considered were the geographic coordinates (X and Y) corresponding to east-
west and north-south, a continuous time variable and bottom depth. The geographic coordinates 
represent the effects of any local conditions due to for example heterogenous fish density. Given the 
course of the buoy (see Figure 1), it was necessary to model separately the geographic effects in the 
North-South (Y) and East-West (X) directions using an additive model instead of a two-
dimensional model. The time variable allows to model diurnal effects that might occur due to fish 
migrating between the bottom and further up in the water column. Cod has been found to carry out 
such diurnal migrations (Hjellvik et al. 2001). Bottom depth is considered a proxy for detectability 
by the tracking algorithm; separation of individual fish tracks becomes harder with depth due to the 
widening acoustic beam. Note that the time variable and the geographic variables are strongly 
correlated as any geographic location was only sampled once when the buoy drifted past it at a 
particular time. Hence the two models were fitted separately: 

(1)   ln(N) = s(X) + s(Y) + s(depth) 
(2)   ln(N) = s(time) + s(depth) 

 
where s(.) indicates a non-linear function (regression splines). The optimal degree of smoothing of 
the regression splines was estimated by cross-validation (Wood and Augustin 2002). The 
explanatory power of all covariates was tested using a t-test and the explained deviance was used to 
compare model fits. For the GAM model, a log-link function and an overdispersed Poisson error 
distribution were selected. The estimated overdispersion factor is then used to judge whether the 
underlying distribution was really Poisson. In the case of a true Poisson distribution, the 
overdispersion factor is 1, if clustering occurs it is larger than 1 and in the case of avoidance it is 
smaller than 1. In summary, the GAM modelling approach allows to remove systematic covariate 
effects in order to study the form of the underlying error distribution. 
 
In order to explore whether the acoustic Sa values could be used directly to identify the type of 
individual spatial fish distribution without tracking targets and indentifying individual fish, the 
relationship between the number of tracked fish and the acoustic Sa values was studied. A GAM 
with Sa and continous time as additional covariate was fitted. For this analysis the number of tracks 
M per 400 s observation time was used. The acoustic Sa values were integrated over the same time 
interval and for the depth range 4 to 40 m off the sea floor. The models was then 
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(3)   ln(M) = s(time) + s(Sa)  
 
As before a log-link function and an overdispersed Poisson error distribution were chosen. 
 
The empirical distribution of numbers per haul for cod and haddock separately and both together 
were only explored graphically due to the small number of hauls. If fish were distributed randomly 
in space and catchability was close to 1 or constant, numbers per haul should follow again a Poisson 
distribution. If enough hauls were avaible, the distribution could be tested formally.    
 
 
Results  

Target identification: track length and swimming velocity 
 
Track length increased with observation time, which also corresponded to a change from day time 
to night time (Figure 2a) but also with distance off bottom (Figure 2b). Average track length 
reached a maximum at about 10 m from the sea floor and decreased slightly thereafter. Given that 
individual displacement speed was rather independent of the distance off bottom (see below), this 
probably means that targets at distances less than 10 m off bottom were unreliably linked together 
as individual tracks by the tracking algorithm. Hence individual detection can be expected to have 
declined at close distances from the sea floor.   
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Figure 2. Track length as a function of observation time (a) and distance off bottom (b). Continous lines are loess fits. 
 
 
As expected, average individual displacement speed decreased slightly with the length of the track 
from about 1 m/s for short tracks to about 0.5 m/s for tracks consisting of at least 25 observations 
(Figure 3a). For shorter tracks some high displacement speeds (>2 m/s) occured which seem 
unplausible. In contrast, individual displacement speed did not change much with distance from the 
sea floor (Figure 3b). This indicates that some short tracks might be misidentified but that this 
problem is not related to distance from sea floor. 
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Figure 3. Individual displacement speed (m/s) a) as a function of track length (number of observations of same fish) and 
b) distance off bottom. Continuous lines represent loess smooth. 
 
 
Individual displacement speed decreased over time in the bin 1-50 m above the sea floor (Figure 
4a); similarly relative displacement direction changed (Figure 4b). At the same time vertical 
displacement velocity was rather constant (Figure 4c). Most likely these phenomena are of 
biological nature rather than tracking algorithm problems.   
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Figure 4. Temporal changes in fish displacement speed for individuals 1-50 m above the sea floor a) average 
displacement speed; b) average horizontal displacement direction; c) average vertical displacement velocity. Continuous 
lines are loess fits.  
 

Species identification: target strength and catch composition 
 
The target strength (dB) of tracked individuals decreased slightly over the course of the study 
(Figure 5). This might be due to a decreasing number of cod being present, as indicated by the 
composition of bottom trawl catches also shown in figure 5. Alternatively, the tilt angle of 
individuals might have changed as individuals descended to the bottom at the start of the night or at 
least reduced their activity. The observation of decreasing average diplacement speeds might be an 
indication in support of this hypothesis. A negative effect of an increasing body tilt angle on target 
strength has been observed for cod (McQuinn and Winger 2003). Overall cod and haddock 
dominated the catch, hence it seems reasonable to assume that this dominance also applies to the 
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tracked individuals, in particular as tracks were only retained if the target strength was at least -30 
dB. Most cod were larger than 40 cm, while haddock showed a pick below 20 cm. 
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Figure 5. Target strength of tracked fish and catch composition. Vertical lines indicate timing of bottom trawl catches. 
Continuous line gives loess fit. 
 
 

Spatial fish distribution 
 
The overall depth distribution of tracks is given in figure 6a&b. The horizontal and vertical fish 
distributions were then looked at separately. Across the whole study period, the largest number of 
individuals was detected at about 4-5 m from the sea floor, independent on the track length criteria 
applied (Figure 6c&d). A majority of individuals were found at distances up to 20 m (only distances 
up to 50 m were considered). 
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Figure 6. Vertical fish distributions. Track locations and histogram of vertical distance from bottom of tracked 
individuals. a) & c) individuals with tracks lengths >5, b) & d) individuals with track lengths >14. 
 
 
 
Horizontal fish distributions were studied by looking first at the nearest neighbour distance and then 
considering the number of individuals observed in a given distance interval (corresponding roughly 
to a standardised observation area). Nearest neighbour distance was defined as the horizontal 
distance to the nearest neighbour when all fish in the water column 1-50 m are projected onto the 
sea floor. These nearest neighbour distances were strongly skewed indicating overdispersion, 
possibly as a result of clustering or other factors (Figure 7). 
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Figure 7. Histogram of horizontal distances to nearest neighbours, independent of vertical position in water column (1-
50 m off bottom). a) individuals with tracks lengths >5, b) individuals with track lengths >14. 
 
 
Generalized additive models were used to study the factors that might explain the observed non-
randomness of horizontal distances with the aim to remove systematic effects in order to obtain the 
true underlying spatial distribution. The number of tracks per 400 m was best explained, i.e. largest 
explained deviance, by using the spatial coordinates X and Y as explanatory variables (Table 1). 
Bottom depth was not significant. Results were similar for minimum track lengths of 6 or 15. The 
time variable provided a nearly as good fit. The time pattern was a decreasing trend with a sharp 
rise after time 30000, which corresponds to about 9 pm (Figure 8). The estimated overdispersion 
factor was smallest for models using both spatial coordinates and close to 1 indicating that by taking 
account of systematic geographic (or temporal) variations, the remaining variability (residuals) 
indicates randomness of the spatial distribution of tracked fish.  
 
 
Table 1. Results for GAM models for the number of tracks per 400 m considering all tracks 4-40 m from sea floor. s(.) 
indicates that the relationship with the explanatory variable is a smooth function (regression spline). Overdispersion 
factor for Poisson error distribution. 
 
Model Min 

track 
length 

Constant X  
p-value 

Y 
p-value 

time 
p-value 

Deviance 
explained 

Overdispersion 
factor 

s(X)+s(Y) 6 2.02 
(0.067) 

1.7 10-5 1.2 10-5  62.5% 1.45 

 15 1.05 
(0.102) 

0.00009 0.000014  60.9% 1.06 

s(time) 6 2.05 
(0.069) 

  3.28 10-
5 

56.5% 1.63 

 15 1.14 
(0.104) 

  0.001 41.2% 1.32 
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Figure 8. Shape of the nonlinear function time (GAM) of the number of tracks per 400 m for tracks at least 5 (left) and 
15 (right) observations long.  
 
 
The above results were obtained considering all tracks between 4 and 40 m from the sea floor. In 
order to determine the robustness of the results to the water layer considered, the best fitting model, 
ln(Y) = s(X) + s(Y), was fitted repeatedly using data from different water layers. The lower depth 
limit was varied from 1 to 7 m off the sea floor in steps of 1 m. The upper depth limit was varied 
from 10 to 50 m in steps of 10 m. For example, a model fit indicated as 1-10 means that all tracks 
situated between 1 and 10 m off the sea floor were included in the analysis. As before the analysis 
was repeated for tracks with minimum length of 6 and 15 observations. The choice of lower or 
upper depth limit had little impact on the estimated overdispersion factor when using a minimum 
track length limit of 6 (Figure 9). The estimated overdispersion factor was around 1.3 in all cases. In 
contrast, when considering only longer tracks, smaller overdispersion factors indicated that from a 
distance of about 4-5 m, horizontal distributions seemed to become more random. In this case 
estimated overdispersion factors were around 1.  
 

 9



 

1

1

1

1

1

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Overdispersion factor from GAM models 
 min track length 6

lower limit m

ov
er

di
sp

er
si

on
 fa

ct
or

2
2

2

2

2
3 3

3

4 4

4
4 4

4
4

5
5

5

5

5 5

5

1
2
3
4
5

to 10 m
to 20 m
to 30 m
to 40 m
to 50 m

1

1 1

1

1

1

1

1 2 3 4 5 6 7

0.
5

1.
0

1.
5

2.
0

2.
5

Overdispersion factor from GAM models 
 min track length 15

lower limit m

ov
er

di
sp

er
si

on
 fa

ct
or

2

2

2
2

2
2

2

3

3

3
3

3

3
4

4
4

4

4

5
5

5
5

5
5

1

3
4
5

to 10 m
to 20 m
to 30 m
to 40 m
to 50 m

2

 
Figure 9. Overdispersion factors of Poisson error distribution (1= random distributon) from GAM models for different 
water layers: x-axis gives distance from bottom in meters, different data series correspond to upper limit (1=10 m, 2=20 
m, 3=30 m, 4=40 m, 5=50 m). GAM model: tracked number per 400 m s(X) + s(Y) where X and Y are geographic 
coordinates. a) individuals with minimum track lengths 6, b) individuals with minimum track length 15. 

 

Relationship between Sa value and number of tracked individuals 
 
In order to determine whether the Sa values could be used directly to obtain the individual spatial 
distribution, the Sa values were compared with the identified number of tracks. This time the 
number of tracks per 400 s was used and the Sa values were integrated in depth and time. Figure 10 
shows the relationship between the number of tracks and the Sa values. No clear relationship 
appears for small Sa values while it is a clear positive relationhip for larger Sa values. The general 
feature is a large variability of the number of tracks at low Sa values and a clearer relationship at 
higher Sa values. As before a GAM was fitted with covariates time and Sa values ; only the later 
variable was significant, independent of the track length criteria (Table 2). The estimated optimal 
degrees of freedom for the smooth function of Sa values were around 5. This indicates that the 
number of tracks detected is related to the Sa value but not in a simple linear manner. This was 
already evident from Figure 10. 
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Figure 10. Number of tracks vs depth (4-40m above bottom) and time (400 s intervals) integrated Sa values; a) 
minimum track length 6, b) minimum track length 15.  

 
Table 2. Results for GAM models for the number of tracks per 400 m considering all tracks 4-40 m from sea floor as a 
nonlinear function of time and integrated acoustic Sa values. s(.) indicates that the relationship with the explanatory 
variable is a smooth function (regression spline).  Df gives the estimated optimal degrees of freedom for the smooth 
function. Overdispersion factor for Poisson error distribution. 
 

Min 
track 
length 

Constant Time  
p-value  

Time 
df 

Sa  
p-value 

Sa  
df 

Deviance 
explained 

Overdispersion 
factor 

6 1.26  0.9 1 <0.0001 5.4 55.8% 1.17 
15 0.25 0.16 1 <0.001 4.6 47.9% 0.68 

 
 
 
The correlation coefficient for the number of tracked individuals and integrated Sa values was then 
calculated (Figure 11). Again different water layers were considered. Correlations were negative 
when considering the depth ranges included in the range 2-10 m. This means that at higher Sa 
values the tracker cannot separate individuals reliably. Overall the highest positive correlations 
independent of the lower depth limit were obtained when the upper depth limit was 50 m or 40 m 
(for lower limits < 6 m). Thus including a wider depth range seems to compensate to some degree 
for the detection problems near the sea bed.    
 

 11



1

1 1

1 1

1

1 2 3 4 5 6 7

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

lower limit meters above bottom

co
rre

la
tio

n 
co

ef
fic

ie
nt

2

2

2
2

2 2
2

3

3

3 3 3
3

3

4

4

4 4 4

4
4

5

5 5 5 5
5

5

 
Figure 11. Correlations between numbers tracked per 15 min and Sa values integrated over different water depths. 
Integrating up to 10 m all correlations are negative indicating that at higher Sa values the tracker cannot separate 
individuals reliably. Different data series correspond to upper depth limit (1=10 m, 2=20 m, 3=30 m, 4=40 m, 5=50 m). 
 
   
Discussion 
 
In this paper we derived individual spatial fish distributions from acoustics data. In order to increase 
the chances of actually identifying individual fish, data collected from a slowly drifting buoy 
instead of vessel collected acoustics data were used. The data were initially collected for studying 
the behavioural response of cod to an approaching vessel (Handegard 2004). Consequently the 
vertical fish distribution might have been disturbed temporarily seven times during the study period. 
However for this study only the horizontal distribution was of interest for which no obvious 
disturbance effects appeared (see Figure 4c). Thus we assume that no bias was introduced into the 
results.  
 
Extensive exploratory analyses were carried out to validate the indentified targets as individual fish 
and to determine the impact of several technical choices such as minimum track length and depth 
range, but also target strength. The dependence of the results on the minimum track length and the 
importance of the lower depth limit seem to point at a detection problem near the bottom. Detection 
seemd to have been reliable from about 4 m off the sea floor. There are several possible 
explanations for this. As the acoustic beam becomes wider at greater ranges, hence closer to the 
bottom, the probability for the presence of single targets increases, but the detection probability 
decreases. In conjuction with this, population density might be expected to increase closer to the sea 
floor for some species such as cod. Both problems contribute to reducing individual detectability by 
the tracking algorithm. In addition, when individual detection is unreliable, a larger number of short 
tracks is expected to occur. This might explain the finding that track distributions were more 
random, i.e. a smaller dispersion factor was found, when only longer tracks (> 15 echos) were used 
in the analysis (see table 1). Furthermore, the excessive displacement speed for some of the short 
track indicated that a small proportion of the short tracks might be misallocated. However, this 
problem was small and unrelated to the depth range and should not affect the spatial distribution.  
 
The spatial distribution of individual fish was found to be close to a random spatial distribution 
(ignoring any vertical components) in the depth range 4 to 40 m off  the sea floor if and only if 
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systematic effects due to spatial location or time were accounted for. In contrast bottom depth did 
not play a role. This seems to indicate that the underlying fish density varied over the study area (or 
rather study line). As it was not possible to distinguish the tracks of individual species, this change 
in density could be due to changes in one or several species. We tried to limit the number of 
candidate species by selecting data from an area where cod and haddock were predominant in the 
catches and by selecting tracks with strong TS values, however the presence of a mix of species 
cannot be excluded. 
 
Some initial analyses were carried out to study the relationship between the number of individual 
fish tracks and acoustic Sa values. The results are not conclusive and more work would be needed. 
Clarifying this relationship would be of great interest as it would allow to study spatial fish 
distributions using acoustics data routinely collected from survey vessels proceeding at speeds too 
high to allow identifying individual fish reliably.   
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