
International Council for the Exploration of the Sea 

Conseil International pour l’Exploration de la Mer 

Palægade 2–4  DK–1261 Copenhagen K Denmark 

 
 

Mariculture Committee ICES CM 2002/F:03 
 Ref: ACFM, ACME 

 

REPORT OF THE 

WORKING GROUP ON THE APPLICATION OF 
GENETICS IN FISHERIES AND MARICULTURE 

Halifax, Canada 
18–20 March 2002 

 

This report is not to be quoted without prior consultation with the 
General Secretary. The document is a report of an expert group 
under the auspices of the International Council for the Exploration of 
the Sea and does not necessarily represent the views of the Council. 





TABLE OF CONTENTS 

Section Page 

1 INTRODUCTION...................................................................................................................................................... 1 
1.1 Attendance and meeting place ........................................................................................................................ 1 
1.2 Working form.................................................................................................................................................. 1 

2 TERMS OF REFERENCE FOR 2001....................................................................................................................... 1 
2.1 Updated provisions regarding GMOs in the ICES Code of Practice on Introductions 

and Transfers of Non-indigenous Organisms (ToR a) .................................................................................... 1 
2.2 Developments in the use of DNA from archived samples (scales, otoliths, bones) for analysing fish 

populations (ToR c) ........................................................................................................................................ 5 
2.3 Molecular genetic methodologies for assessing the biological effects of contaminants (ToR d) ................. 13 
2.4 Minimal kinship breeding strategy for preserving genetic diversity in hatcheries (ToR e) .......................... 22 
2.5 The possible use of gene array techniques in the detection and quantification of responses in fish to 

pollution (ToR f) ........................................................................................................................................... 26 
3 WORKING GROUP BUSINESS ............................................................................................................................ 27 

3.1 New WGAGFM Chair .................................................................................................................................. 27 
3.2 Discussion of future activities of the WGAGFM in relation to aquaculture 

(with representatives from the WGMAFC) .................................................................................................. 27 
3.3 Discussion of suggestion by WGECO to collaborate in developing practical management options for the 

conservation of genetic diversity in marine fish and shellfish ...................................................................... 27 
3.4 Suggestions for WG ToR and meeting place in 2003 ................................................................................... 27 

ANNEX 1: TERMS OF REFERENCE FOR THE 2002 WGAGFM MEETING............................................................ 28 
ANNEX 2: LIST OF PARTICIPANTS............................................................................................................................ 30 
ANNEX 3: LIST OF MEMBERS OF THE WORKING GROUP ON THE APPLICATION OF GENETICS IN 

FISHERIES AND MARICULTURE, AS OF 27 FEBRUARY 2002...................................................................... 31 
ANNEX 4: RECOMMENDATIONS FOR 2003 ............................................................................................................. 34 
@#

 i 





  

1 INTRODUCTION  

As decided in C.Res.2001/2F03 adopted at the 2001 Annual Science Conference in Oslo, Norway, the Working Group 
on the Application of Genetics in Fisheries and Mariculture (WGAGFM) [Chair M.M. Hansen, Denmark] met at the 
Department of Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth, Canada, March 18–20, 2002 to 
deal with its Terms of Reference for 2002 (Annex 2). 

1.1 Attendance and meeting place   

Eleven persons representing eight countries attended the 2002 WGAGFM meeting in Dartmouth (Annex 3). As in 
previous years, the representation on the quantitative genetics was lower than on the qualitative genetics side, despite 
strong efforts to involve more quantitative geneticists. 

The Bedford Institute of Oceanography, represented by our host, Ellen Kenchington, Benedikte Vercaemer and Patrick 
O’Reilly, offered excellent logistics and facilities for the meeting, including sightseeing and transport back and forth 
between the Bedford Institute of Oceanography and our accommodation. The Working Group would like to thank Ellen 
Kenchington and her colleagues for all the work undertaken to arrange this meeting and for their very kind hospitality.  

1.2 Working form 

Prior to the meeting, small ad hoc working groups, with one main responsible person, had been established to prepare 
position papers related to specific issues in the Terms of Reference, and to chair the respective sessions. During the 
meeting, the position papers were first presented and discussed in plenary. Thereafter, volunteers undertook the task of 
editing and updating position papers according to points raised in the plenary discussions: 

• M.M. Hansen chaired business and general scientific sessions;  
• M.M. Hansen chaired ToR a) Update the provisions regarding GMOs in the ICES Code of Practice on 

Introductions and Transfers of Non-indigenous Organisms and transmit this material to WGITMO; 
• M.M. Hansen and E. Verspoor chaired ToR c) Review and report on developments in the use of DNA from 

archived samples (scales, otoliths bones, etc.) for analysing fish populations; 
• J. Trautner chaired ToR d) Review and report on the utility of molecular genetic methodologies for assessing the 

biological effects of contaminants on fish and shellfish; 
• R. Doyle chaired ToR e) Review and summarize principles for minimizing diversity loss in the early generations of 

a captive broodstock; 
• J. Trautner chaired ToR f) Prepare a position paper for the Working Group on Biological Effects of Contaminants 

on the possible use of gene array techniques in the detection and quantification of responses in fish to pollution. 

It was decided prior to the meeting to cancel ToR b) Assess and evaluate the utility of interspecific comparisons of 
population genetic parameters in understanding population structure in fish species.  This was due to the fact that most 
of the persons involved in this ToR who were supposed to deliver data sets for the “plenary data analyses” were unable 
to attend the meeting, combined with the addition of the labour-intensive ToR a) to the agenda of the 2002 meeting. 

The session Chairs were responsible for leading the plenary sessions and group work, and (in collaboration with their 
respective ad hoc working groups) for preparing the final report text from their sessions. A preliminary version of the 
report was made available on the (external) WGAGFM homepage for final comments by members before submission to 
the ICES Secretariat.   

2 TERMS OF REFERENCE FOR 2002 

2.1 Updated provisions regarding GMOs in the ICES Code of Practice on Introductions and Transfers of 
Non-indigenous Organisms (ToR a) 

Position paper by M.M. Hansen and Pierre Boudry, adopted by WGAGFM in Dartmouth, 2002. 

WGAGFM has been asked to update the provisions regarding GMOs in the “ICES Code of Practice on Introductions and 
Transfers of Non-indigenous Organisms”, which dates back to 1994, and transmit this material to the Working Group 
on Introductions and Transfers of Marine Organisms (WGITMO). WGAGFM has previously addressed issues and 
provided updates on possible environmental effects of escaped/released GMOs in the 1995, 1996, 1997, and 1998 
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WGAGFM reports. Based on the recommendations given in these reports, and recent papers on the issue, WGAGFM 
has revised the section on GMOs in the “ICES Code of Practice on Introductions and Transfers of Non-indigenous 
Organisms”. Below, we first list the recommendations from the 1994 Code of Practice. Next, we give our suggestion for 
a revised section on GMOs, and finally, we give some comments and justifications for our revised recommendations. 

Recommendations regarding GMOs in the 1994 “Code of Practice” 

In the 1994 “Code of Practice” the section regarding GMOs was as follows: 

Recommended procedure for the consideration of the release of genetically modified organisms (GMOs) 

Recognizing that little information exists on the genetic, ecological, and other effects of the release of genetically 
modified organisms into the natural environment (where such releases may result in the mixing of altered and wild 
populations of the same species, and in changes to the environment), the Council urges Member Countries to establish 
strong legal measures1 to regulate such releases, including the mandatory licensing of physical or juridical persons 
engaged in genetically modifying, or in importing, using, or releasing any genetically modified organism. 

Member Countries contemplating any release of genetically modified organisms into open marine and fresh water 
environments are requested at an early stage to notify the Council before such releases are made. This notification 
should include a risk assessment of the effects of this release on the environment and on natural populations. 

It is recommended that, whenever feasible, initial releases of GMOs be reproductively sterile in order to minimize 
impacts on the genetic structure of natural populations. 

Research should be undertaken to evaluate the ecological effects of the release of GMOs. 

Furthermore, it included a definition of GMO: 

Genetically modified organism (GMO): An organism in which the genetic material has been altered 
anthropogenically by means of gene or cell technologies. 

Suggestion for new section on GMOs in the “Code of Practice” 

WGAGFM suggests the following recommended procedure: 

V General considerations regarding the release of genetically modified organisms (GMOs) 

Recognizing that little information still exists on the genetic, ecological, and other effects of the release of genetically 
modified organisms into the natural environment (where such releases may result in the mixing of altered and wild 
populations of the same species, and in changes to the environment), the Council urges Member Countries to establish 
strong legal measures2 to regulate such releases, including the mandatory licensing of physical or juridical persons 
engaged in genetically modifying, or in importing, using, or releasing any genetically modified organism. 

VI Recommended procedure for all GMOs prior to reaching a decision regarding new releases 

a) Member Countries contemplating any release of genetically modified organisms into open marine and fresh water 
environments are requested at an early stage to notify the Council about such releases. This notification should 
include a risk assessment of the effects of this release on the environment and on natural populations. 

b) GMO risk assessment should particularly involve consideration of:  

                                                           

1Such as the European Union “Council Directive of 23 April 1990 on the Deliberate Release into the Environment of 
Genetically Modified Organisms (90/220/EEC)”, Official Journal of European Communities, No. L, 117: 15–27 (1990). 

2Such as the European Economic Community “Council Directive of 12 March 2001 on the Deliberate Release into the 
Environment of Genetically Modified Organisms (2001/18/CE)”, Official Journal of European Communities, No. L 106: 
1–39 (2001). 
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i) the genetic and phenotypic characteristics of the modified organism, i.e., both the traits introduced or 
modified and other secondary phenotypic changes induced by the genetic modification, such as the 
construction and/or vector employed. The significance of the introduced or modified trait in relation to 
the biology of the parental organism should be evaluated; 

ii) characteristics of the ecosystems that the GMO might access; 
iii) possible interactions of the GMO with species of the ecosystems that might be accessed, in order to 

determine if the release of the GMO poses genetic and/or ecological hazards. 

c) If possible, experiments in simulated natural environments are recommended. Such experiments should be 
conducted using secure systems to prevent escapes of GMOs from the experimental facilities at any life stage. The 
following points should be particularly assessed and reported: 

i) phenotypic traits associated with the GMO in a simulated natural environment; 
ii) the behaviour of transgenic marine organisms in a simulated natural environment;  
iii) the competitive advantages/disadvantages of transgenic marine organisms; 
iv) the degree to which transgenic marine organisms are capable of mating with a native population, 

including their reproductive performance in competition with wild conspecifics; 
v) the success of that mating as defined by numbers of offspring; 
vi) the relative fitness of juveniles of pure transgenic crosses, hybrids between native and transgenic 

crosses, and the pure native crosses. 

VII If the decision is taken to proceed with the release, the following action is recommended: 

a) It is recommended that initial releases of transgenic organisms be reproductively sterile in order to avoid transfer 
of the gene construct to wild organisms. However: 

i) mass production of sterile progeny requires the maintenance of fertile transgenic parental stocks. The 
risk assessment of these stocks should also be addressed;  

ii) it should be noted that many current sterilization techniques are not 100 % efficient and that most 
marine species have very high fecundity; 

iii) mass releases of sterile organisms could still negatively impact the ecosystem and affect wild 
populations through competition. 

b) Monitoring should be undertaken to ensure that GMOs, due to their nature, do not negatively affect wild 
populations and ecosystems after the release. 

Definitions 

Genetically modified organism (GMO) 

An organism in which the genetic material has been altered anthropogenically by means of recombinant DNA 
technologies. This definition includes transgenic organisms, i.e., an organism bearing within its genome one or more 
copies of novel genetic constructs produced by recombinant DNA technology, but excludes chromosome manipulated 
organisms (i.e., polyploids), where the number of chromosomes has been changed through cell manipulation 
techniques.  

Release 

Voluntary or accidental dissemination of an organism, or its gametes, outside its controlled area of confinement. 

Justification for recommendations 

V a) It is important to keep this point. Despite some studies on the safety evaluation of transgenic fish (e.g., Duham et 
al., 1999; Guillén et al., 1999), there is clearly still insufficient knowledge about the possible impact of GMOs on wild 
populations and ecosystems, calling for use of the precautionary principle. Recent papers by Muir and Howard (1999, 
2001) and Hedrick (2001) demonstrate the complexity of the problems. They found that if a transgene decreases  the 
viability of an organism, but at the same time has a positive effect on some fitness components (for instance, transgenic 
males with an inserted growth hormone gene causing faster growth/larger size may be superior in spawning competition 
relative to unmanipulated wild conspecifics), then the transgene could spread in wild populations despite the lowered 
viability. This would lead to a decreased mean fitness of the wild populations and could eventually cause their 
extirpation (the “Trojan gene hypothesis”). Very fast growing transgenic Atlantic salmon have recently been developed, 
which stresses the actuality of the “Trojan gene hypothesis” (Reichhart, 2000). 
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VI a) We have kept this recommendation, but have added a sentence stressing that all ICES Member Countries should 
consider risk assessment protocols. 

VI b) We list here the basic points that any risk assessment should address (as described in, e.g., Hallerman and 
Kapuscinski, 1995). 

VI c) We give the recommendation that, if possible, field trials should be undertaken in order to assess a number of 
points that cannot be immediately assessed by considering the phenotype of the GMO, e.g., behaviour of GMOs relative 
to non-GMOs, the fitness of GMOs, wild conspecifics and their offspring at various life stages, etc. (this 
recommendation is taken from the 1997 WGAGFM report). The importance of this recommendation is further stressed 
by the recent publications by Muir and Howard (1999, 2001) and Hedrick (2001). 

VII a) This is an important recommendation that we kept from the 1994 “Code of Practice”. However, we also find it 
important to stress that the production of sterile individuals requires non-sterile parents, that many currently used 
sterilization techniques are not 100 % efficient, and that massive releases of sterile organisms may nevertheless have, at 
least, a short-term negative ecological impact on wild conspecifics and the ecosystem as a whole (also 
recommendations from the 1997 WGAGFM report). 

VII b) We added this point to stress the importance of monitoring the effects of GMOs after they have been released, 
i.e., even despite a positive outcome of risk assessment, follow-up monitoring is required. This is due to the fact that 
negative effects may not be immediately apparent but could occur and accumulate over time (e.g., biological invasions 
after the GMOs have become established).  

Definitions. We have found it important to clarify the definition of GMO used by ICES and make sure that the 
definition is equivalent to other definitions of GMO, for instance, as applied by the EU. We find it important to use a 
definition of “transgenic” that includes organisms manipulated by genes from their own genome, e.g., salmon, where a 
number of its growth hormone genes have been isolated and again inserted in its genome. Chromosome manipulated 
organisms are now clearly not included in this definition. Specific recommendations concerning polyploids were 
presented in the 1999 WGAGFM report. We also propose a definition of release to be added to the definition list of the 
ICES Code of Practice.  
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2.2 Assess and evaluate the utility of interspecific comparisons of population genetic parameters in 
understanding population structure in fish species   

This ToR was cancelled due to the fact that most of the persons involved in the ToR and supposed to deliver data sets 
for the “plenary data analyses” were unable to attend the meeting, combined with the addition of the labor-intensive 
ToR a) to the agenda of the 2002 meeting. 

2.3 Developments in the use of DNA from archived samples (scales, otoliths, bones) for analysing fish 
populations (ToR c) 

Position paper by E.E. Nielsen, adopted by WGAGFM in Dartmouth, 2002. 

DNA from archived samples 

The development of molecular biological methodology in general, and PCR techniques in particular, has led to studies 
of DNA from museum and archaeological samples or so-called “ancient DNA” (Pääbo, 1989; Ellegren, 1991; 
Janczewski et al., 1992; DeSalle et al., 1992). Initially, the main application was for phylogeny reconstruction, but 
subsequently population genetic aspects were included for various species (Taylor et al., 1994; Hardy et al., 1994; 
Zierdt et al., 1996). Besides technical problems related to DNA quality, the main problem with using historical samples 
as a source of DNA for population studies has been that samples were typically not taken with a population genetic 
purpose. Therefore, the number of individuals sampled and knowledge regarding the population to which they belong 
was rather limited. 

An exception to this general rule can be found for many species of fishes. Fish biologists have collected scale and 
otolith samples for more than a century, which have been used for age and growth pattern determination, on a 
population basis, to investigate spatial or temporal differences. In particular, for salmonid fishes and for commercially 
important marine fishes, such as cod and herring, samples are plentiful. This leaves population geneticists working with 
these species with an outstanding opportunity to conduct temporal studies of natural evolutionary processes, as well as 
anthropogenic influences in fish populations, without having to infer changes in levels and distribution of genetic 
variability from contemporary patterns alone. 

In this paper we review the developments in application of archived samples for analysing fish populations and point to 
future directions for use of this unique source of temporal genetic data unmatched by any other group of organisms. 

Extraction and amplification 

The best DNA quality can be achieved from living cells. As soon as an organism dies or DNA is removed from the cell, 
degradation sets in.  Depending on the external environment, DNA has a half-life varying from minutes to thousands of 
years. Bacteria, light and oxygen can degrade DNA and, therefore, the best environment for preservation of DNA is 
sterile, anoxic, dry and cold. Still, depending on the age of the samples, archived DNA material will be somewhat 
degraded, which has to be accounted for in the extraction method and the selection of genetic markers.  

Extraction method  

The two paramount problems when trying to extract DNA from historical material are the small amounts of DNA 
present and the poor DNA quality. For scales and otoliths, it is assumed that the DNA is found predominantly in dried 
cells on the outside and not in the collagen or calcareous matrix of the scales or otoliths, respectively. Therefore, it is 
sufficient to digest the overlying cells with proteinase K (see Nielsen et al., 1999a; Hutchinson et al., 1999). Several 
methods have been employed for the extraction of DNA from scales and otoliths, ranging from simple chelex 
procedures (Estoup et al., 1996; Yue and Orban, 2001) to more expensive and time-consuming methods like the use of 
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microconcentrators described by Nielsen et al. (1999a). The only comparative study of extraction methods for scales (or 
otoliths) by Nielsen et al. (1999a) compared four different methods on salmon scale samples collected from 1913 to the 
present: 1) a phenol/chloroform method with ethanol precipitation as described by Taggart et al. (1992); 2) a modified 
version of this method employing microcon 50 microconcentrators (Amicon) instead of ethanol precipitation (Nielsen et 
al. 1997); 3) a Chelex protocol by Estoup et al. (1996); and 4) a guanidinethiocyanate method described by Gerloff et 
al. (1995). According to this study, the only method which gave consistently good results was method 2. Again, 
according to the authors, this is probably due to the specific qualities of the microconcentrators used. They keep the 
DNA in solution (which minimises loss of DNA during precipitation and reduces danger of contamination) which 
facilitates washing and concentration of the DNA. The results are in line with previous results on “ancient” DNA 
(Pääbo, 1989).  

Fish bones are commonly found along with scales and otoliths in archaeological excavations. Whereas isolation of 
DNA from excavated samples of scales and otoliths is often impossible due to the position of the DNA on the outside, 
DNA is found within bones and has accordingly not been subject to degradation. A recent study (Consuegra et al., in 
press) demonstrates that such samples, although with some difficulty, can be used as a source of DNA for population 
genetic studies. However, very stringent conditions have to be employed, i.e., protocols for extraction of “real” ancient 
DNA (Pääbo, 1989; Kwok and Higuchi,1989; Greenwood et al., 1999).  

Consuegra et al. (in press) reduced the risk of exogenous contamination by carrying out all manipulations prior to PCR 
in a forensic laboratory free of salmon DNA and physically separated from post-PCR procedures. Vertebrae were pre-
treated with UV light before being pulverized. Three different methods of extraction were employed. However, only the 
Geneclean (Bio-101) and concentration with microconcentrators gave successful amplification and not for all samples. 
In conclusion, many methods for extraction of DNA from scales, otoliths and now also bones, have been described and 
applied with success. Before initiating studies of historical collections of scales and otoliths, careful evaluation of the 
age of samples, time available, and financial opportunities should be conducted. However, even though methods 
employing commercial kits such as microconcentrators are expensive and time consuming, they probably provide DNA 
of the highest concentration and quality and can be viewed as a “last resort”. 

Choice of markers 

Since DNA from historical samples is more degraded than DNA from fresh tissue, the choice of genetic markers must 
be made accordingly. Repair of degraded DNA templates is possible and has been done for samples of ancient DNA, 
but is not recommended due to the uncertainty of what is incorporated during the repair process (Pääbo, 1989). 
Therefore, it is of paramount importance to use short DNA segments for PCR amplification, preferably segments not 
spanning much more than 250 base-pairs. 

For mtDNA, primers spanning 2–3 kilobases are commonly employed for population genetic studies of fishes. To 
amplify such large segments of DNA from historical samples is probably unrealistic under most conditions. Instead, 
shorter segments should be amplified. Knox et al. (2002) and Consuegra et al. (in press) designed primers for 
amplification of smaller fragments of the ND1 mtDNA gene in Atlantic salmon known to encompass most of the 
previously known polymorphisms of that gene. Likewise, Adcock et al. (2000) used mtDNA primers spanning less than 
200 bp. for detection of mtDNA polymorphisms in historical samples (50 year old scales) of New Zealand snapper. 

Microsatellites are very well suited for studies employing historical samples, since the amplified segments generally are 
short. Most studies using historical samples of fishes to date have employed microsatellites  (Adcock et al., 2000; 
Hansen, 2002; Heath et al., 2002; Hutchinson et al., 1999; Koskinen et al., 2002; Martinez et al., 2001; Miller and 
Kapuscinski, 1997; Nielsen et al., 1997, 1999a, 1999b, 2001; Ruzzante et al., 2001; Tessier and Bernatchez, 1999). In 
general, the employed loci have been selected according to size, so that loci with small amplification products have 
been preferred (e.g., Nielsen et al., 1999a; Adcock et al., 2000). Further, it has been demonstrated that amplification 
success often is dependent on the age of the samples (e.g., Nielsen et al., 1999a; Ruzzante et al., 2001). Therefore, the 
selection of shorter loci becomes more important as the age of samples increases. Further, loci with large differences in 
allele sizes should be treated with care, since the number of templates of the longer allele will be less than that of the 
shorter allele and could result in the phenomenon of “large allele dropout”. One major disadvantage of using 
microsatellites is the low copy number of nuclear compared to mtDNA genes. However, this is most likely to be of 
importance for “true” ancient DNA collected from archaeological excavations and not for historical collections. 

PCR conditions 

DNA concentration, and especially quality, varies considerably among individuals. This makes it difficult to make 
recommendations for the amount of template DNA to add to the PCR reaction, since the same amount of DNA rarely 
contains the same number of perfect templates. It is advisable not to be too fixed on a specific amount of DNA. 
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Recommendations from Nielsen (1999a; modified from Pääbo, 1989) should be followed. In short, if the amplification 
is not successful but primer-dimers can be observed, more template DNA should be added. If no primer-dimers can be 
observed, the amount of template DNA should be reduced until amplification or primer-dimers can be observed. If these 
procedures do not result in amplification of the desired target sequence, either the number of perfect templates in the 
extracted DNA is too low or the amount of inhibiting substances is too high for amplification. In both cases, a new 
extraction or purification of the extracted DNA should be tried. Another approach when amplification is limited or 
missing is to use more PCR cycles.  

Authenticity 

PCR is a very effective way of amplifying specific segments of interest when the DNA concentration is low. This 
makes PCR based methods the obvious choice for analysis of DNA historical samples. On the other hand, this also 
allows amplification of contaminant DNA, which is a particularly serious problem in cases like this, working with a low 
number of templates. Therefore, it is necessary to set very high standards for laboratory conditions and procedures 
(Kwok and Higuchi, 1989; Greenwood et al., 1999), such as to avoid extraction and PCR amplification of DNA from 
fresh tissue when working with old scales. There are several guidelines, which can be used to assure the authenticity of 
the amplified DNA (modified from Pääbo, 1989):  

• Use several extractions from the same individual; 
• Use control samples without template; 
• Check if there is an inverse relationship between amplification length and effectivity; 
• Unambiguous results (one sequence for mtDNA, maximum two alleles for nuclear DNA); 
• Extract and amplify in a number of labs; 
• Do the results make sense? (e.g., do you get trout sequences when you expect cod!)Applications and case studies 

Temporal stability of population structure 

Knowledge of temporal stability of the population structure is of paramount importance for our understanding of the 
evolution of fishes. It has a major influence on many population genetic parameters such as estimation of historical gene 
flow or genetic drift, which in turn determine the likelihood of adaptive differentiation among populations caused by 
natural or anthropogenic selection. Most studies of archived material have been conducted on a short time scale in an 
evolutionary context. However, in a recent study, Consuegra et al. (2002) investigated mtDNA variation in the late 
Pleistocene (16,000–40,000 years BP) from bones from the Iberian Peninsula to test if this region was a glacial 
refugium for salmon in other European regions. Their study determined the Iberian Peninsula as the most likely origin 
of the most common haplotype in Europe. Furthermore, significant changes of the Iberian refugial stock had taken place 
since the last ice age, demonstrating that caution of inferring evolution from current phylogeographic patterns should be 
exercised. 

Most studies are based on archival material collected by fisheries biologists, i.e., scales and otoliths. Therefore, time 
intervals studied are generally between 50 and 100 years. Several studies focusing on temporal stability have been 
conducted on salmonid fishes (Nielsen et al., 1997, 1999b; Tessier and Bernatchez, 1999; Heath et al., 2002; Hansen, 
2002). Even though many of these populations have suffered from anthropogenic disturbance, the general picture is a 
remarkable temporal stability of population structure (but see Heath et al., 2002). If this is a general phenomenon, then 
population turnover in salmonids is low and therefore not equivalent to a metapopulation structure (Hansen et al., 
submitted). Instead, the stability strengthens the argument for local adaptations in salmonid fishes (Taylor, 1991; 
Adkison, 1995), illustrating that estimates of genetic differentiation and therefore of migration and genetic drift based 
on contemporary samples are valid (see also section on estimating effective population size). 

The only comparable study currently available from marine fish, shows a similar picture of temporal stability. Ruzzante 
et al. (2001) studied the long term (1964–1998) stability of the population structure of cod off the coast of 
Newfoundland. They found that despite population crashes, no component of variance in allele frequencies could be 
attributed to temporal changes.  

These studies demonstrate that, even though most studies of temporal stability of population structure have not been 
conducted on an evolutionary time scale, they can still provide insight on the temporal variation of important population 
parameters. 

Identification of native populations 
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The preservation of native populations is one of the main goals in conservation biology of freshwater fishes (Allendorf 
and Waples, 1996). The reasons for this are to secure large-scale genetic diversity and to preserve possible local 
adaptations (Taylor, 1991). However, in many areas, fish populations have experienced some kind of influence by 
escapes or “stocking”. Consequently, it is of primary importance to identify populations with limited or no introgression 
from foreign conspecifics to ensure a high level of protection for these populations. For this purpose historical 
collections and, in particular, old scales have proven to be a very effective tool and have gained wide application. Most 
of these studies have been conducted on Atlantic salmon. Nielsen et al. (1997) studied scale collections from the 
severely decimated Skjern River population in Denmark, and found that the present population was most likely 
decendants of the original population represented by samples from the 1930s. Tessier and Bernatchez (1999) studied 
three populations of landlocked Atlantic salmon and found that despite population declines and stocking during this 
period, no statistically significant changes in intrapopulation genetic diversity were apparent. Martinez et al. (2001) 
studied a French population of Atlantic salmon from the Nivelle River and found some, but limited, introgression of 
foreign genes into the native gene pool. Similarly, Nielsen et al. (2001) found that despite several years of intensive 
stocking of Danish rivers (where the indigenous populations presumably had died out) with salmon from foreign 
populations, remains of the indigenous populations could still be identified in some rivers. Also for brown trout, there is 
evidence of resilience towards introgression. Hansen (2002) found that, despite decades of intense stocking with 
domesticated trout in one population, there was little evidence of any long-term reproductive success of the hatchery-
reared fish. Instead, the present population was descendants of the indigenous population. However, in a second 
population stocked with domesticated trout from the same strain strong introgression had occurred, stressing the 
difficulties in making general predictions about the outcome of spawning intrusion of non-native stocked fish into wild 
populations.  

In summary, these studies, although limited in number, point to a remarkable resilience of indigenous populations to 
withstand introgression from foreign or hatchery conspecifics. The most likely explanation is local adaptation of the 
native population. This should, however, not be interpreted as a “carte blanche” for releases of non-indigenous fish. 
Even though they have limited success in the long run, they can still impose negative effects on a short time scale by 
hybridisation and ecological interactions reducing the native population (Hindar et al., 1991; Waples, 1991) and they 
impose a genetic load on the wild populations that may result in reduced fitness for many generations (Lynch and 
O’Hely, 2001). 

Estimation of effective population size 

When population size is small, allele frequencies are expected to vary due to the sampling variance of gametes from a 
limited number of parents, i.e., the process of genetic drift. By estimating this variance, it is possible to get an estimate 
of the effective population size (Ne). Several approaches for estimating the temporal drift variance in fish populations 
can be found (see Waples 1989, 1990; Tajima, 1992; Jorde and Ryman, 1995, 1996; Berthier et al., 2002). 
Microsatellite data from old scales collected at intervals should, accordingly, be well suited for estimating historical 
effective population sizes. 

Miller and Kapuscinski (1997) used this approach to estimate effective population size in the northern pike (Esox 
lucius). They compared samples collected from a northern pike population in Lake Escanabe, Wisconsin in 1961 and 
estimated Ne based on variance in allele frequencies at seven microsatellite loci. Even though the variance of the 
estimate was substantial, they were still able to conclude that the effective size of the population in general had been 
low during the whole period. Additionally, the census population size was much higher than the effective size, with a 
low Ne/N relationship. Heath et al. (2002) also used the temporal method to estimate the effective number of breeders 
(Nb) in three large steelhead populations. The estimate was very low compared to the census size. This could, according 
to the authors, be caused by gene flow between populations. These studies provide examples of the opportunities for 
using old scales for estimating historical effective population sizes. However, they also illustrate that there are several 
potential pitfalls, which have to be evaluated before employing these methods. First of all, the method described is very 
sensitive to sampling variance. This means that it is most efficient when effective population size is small (large drift 
variance) and sample size is large (low sampling variance). Obviously, examples of populations with a small effective 
population size and the possibility of getting a large sample are rare. Additionally, variance in allele frequencies can 
have other causes than genetic drift, such as migration as suggested by Heath et al. (2002). Furthermore, non-random 
sampling of individuals with respect to life-stage (adults/juveniles, see Allendorf and Phelps, 1981; Hansen et al., 
1997), location (subpopulation structure within watershed, see Ryman, 1983) and time (different “runs”, Phelps et al., 
1994) are also potential causes of variance. All of the mentioned causes of bias are particularly relevant in relation to 
studies using old scales, since the effects are expected to accumulate over time and exact sampling schemes cannot be 
repeated. This will lead to an underestimation of the effective population size. So, in conclusion, the temporal method 
should be applied with caution when the knowledge of when and where the samples have been taken is limited, if 
migration is possible and sample sizes are small. 

Determination of levels of genetic variation 
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Loss of genetic variation can, on a short time scale, lead to inbreeding and associated inbreeding depression. On a long 
time scale, it is expected that the loss of genetic variation will impair the adaptability of the population. Many fish 
populations have suffered a substantial reduction in number during the last century, due to anthropogenic disturbance 
such as habitat degradation and overexploitation. However, very little empirical evidence on changes in levels of 
genetic variation can be found for fishes. For this reason, historical samples predating the time of disturbance are an 
ideal source of information. Genetic variability can be evaluated both as changes in heterozygosity and/or number of 
alleles, though significant changes in levels of heterozygosity are not expected, except if the genetic bottleneck is very 
severe and/or long lasting. More likely, the bottleneck will reduce the number of rare alleles in the population (Frankel 
and Soulé, 1981). 

Nielsen et al. (1999b) observed a consistently lower number of microsatellite alleles in a recent (1998) sample of 
Atlantic salmon from the Skjern River than from historical samples (1930s) even though the population was still quite 
variable. Heath et al. (2002) were not able to detect any differences in levels of variability for microsatellites over 40 
years in three populations of steelhead (Oncorhynchus mykiss) even though population structure was changed.  

By employing historical collections for evaluation of changes in levels of variability, it is possible to evaluate changes 
using intrapopulation changes instead of making inferences by comparing to other contemporary populations with a 
(suspected) similar history.  

Perspectives (copied from Nielsen et al., 1999a) 

In recent years, genome mapping projects have been initiated for many organisms including fish (see Slettan et al., 
1997; Young et al., 1998; Kocher et al., 1998). Potential “spin-offs” of such projects for population geneticists are 
numerous, but among the most important ones are the increased knowledge of the location and DNA sequence of 
selected loci. This will allow us to take population genetics “one step further”, to genetically based studies of the 
frequency of occurrence and the spatial scale of local adaptations in natural populations. In combination with temporal 
samples of DNA from old scales and neutral markers such as microsatellites, it is possible to study the fate of such 
adaptations in time, including changes induced by anthropogenic disturbance. 

Obvious opportunities lie in the study of enzyme loci, of which many have well-documented kinetic differences 
between allelic variants (see Kirpichnikov, 1992 and references therein for examples). Additionally, natural selection on 
isozymes has often been suggested in wild populations (see Taylor, 1991; Pogson et al., 1995, for examples). 
Identification of sequence divergence between alleles with known kinetic and possibly adaptive differences in 
combination with DNA from old scales allows us to look at temporal changes in allele frequencies in relation to natural 
or man-induced changes of the environment. For instance, how has the building of a dam, which is known to have a 
significant influence on water temperature, affected the distribution of alleles with known different temperature optima?  

For several years, population geneticists have been attracted by the study of genetic variation at MHC (Major 
Histocompatability Complex) genes. The main reason for this interest is the extreme level of variability apparently 
caused by overdominant selection in relation to disease resistance and dissortative mating (Hughes and Nei, 1988; Potts 
et al., 1991). MHC loci have been identified and characterised for salmonid species (Grimholt et al., 1993; Miller et al., 
1997), and evidence of the adaptive value of different MHC genotypes (Grimholt et al., 1994; Miller and Withler, 1996) 
has been demonstrated. Consequently, these loci offer an opportunity to study potential local adaptations caused by 
natural selection. In relation to old scales, the study of MHC variation in time will allow us to get an idea of the 
dynamics of such loci in natural populations by correlating changes in allele distributions with environmental variables 
such as known historical outbreaks of diseases.  

A common denominator of the above-mentioned loci is that they are single genes with an expected major effect. 
However, many traits of adaptive importance are believed to be under the control of many genes, i.e., they are inherited 
quantitatively. Such loci can be identified by constructing a physical map of the location of a large number of 
polymorphic markers on the chromosomes and thereby locate so-called quantitative trait loci (QTL). Due to the high 
variability, microsatellites have often been suggested as the best markers for this purpose (Ferguson and Danzmann, 
1998). Although this application is still in its infancy (see Ferguson and Danzman, 1998 and references therein), its use 
is expected to grow tremendously in the near future, due to large economic value of selecting for traits such as growth, 
spawning time, age at maturity, etc., in aquaculture. Since selection for such traits has been going on for a very long 
time in hatcheries, a very interesting application of old scales and QTL would be to compare hatchery populations with 
their wild source populations and to investigate the speed and magnitude of domestication. 
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Recommendations  

• Appropriate extraction methods, genetic markers, PCR conditions, and authenticity guidelines should be selected 
and followed as discussed here to maximize efficiency and increase the likelihood of achieving success; 

• Historical collections represent unique and irreplacable information on the genetic composition of populations. 
Therefore, processing protocols for hard parts (otoliths, scales, bones) should be adjusted with consideration of the 
potential for DNA analyses, i.e., by avoiding treatments that later make it impossible to extract DNA or, 
alternatively, by keeping unprocessed material that could later be used as a source of DNA. Likewise, current 
genetic analysis of historical collections should be undertaken with consideration of saving parts of the material 
for future studies; 

• Information derived from historical or archived samples for DNA analysis could be compared with other data and 
records on the biology, ecology and life history of various species and populations to aid in interpretation of 
results. In other words, if populations differ in some biological trait over time, DNA analysis of historical material 
could be used for verifying that it is in fact samples from the same population that are being compared. 

2.4 Molecular genetic methodologies for assessing the biological effects of contaminants (ToR d) 

Based on a position paper by J. Trautner, adopted by WGAGFM in Dartmouth, 2002. 

Introduction 

The interactions between contaminant exposure and the genetics of individuals and populations have been the subject of 
a number of investigations. In the past, several different methods have been applied, ranging from classical approaches 
of counting abnormal developments of embryos and larvae, to transgenic reporter genes. Here some important 
molecular genetic methods for assessing the biological effects of contaminants are described and evaluated. The subject 
matter of this report draws extensively from recent reviews in the literature on this subject (Hebert and Luiker, 1996; 
Bickham et al., 2000; Dixon and Wilson, 2000; Belfiore and Anderson, 2001).   

Molecular genetic methods assessing the biological effects of contaminants can be split into two sections: those 
methods assessing the effect on an individual basis and those assessing the effects on populations. The methods 
reviewed are specifically evaluated for their use in field experiments, as for laboratory experiments most of them are 
already known to be efficient. 

Methods for assessing the biological effects of contaminants within individuals 

Methods for detecting DNA adducts 

Some environmental contaminants are known to directly interact with the DNA strand through covalent binding, 
making them genotoxic by inhibiting transcription, replication, or by initiation of mutations. Some methods have been 
developed to detect and quantify the formation of DNA-contaminant formations. 

32P-postlabelling 

By 32P-postlabelling, specific DNA adducts were found and shown to survive for several months after exposure to 
benzo[a]pyrene (Stein et al., 1993; Holbrook et al., 1992). This method has also been used for fish populations where 
there was evidence for association between contaminant exposure and the abundance of adducts (Dunn et al., 1987; 
Varanasi et al., 1989). However, other studies have shown that those DNA adducts also exist in unexposed populations 
with a seasonal variation peaking prior to reproduction (Garg et al., 1992), which makes it difficult to estimate the 
effects of contaminants against this background.  

Chromatography and spectrometry 
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Combined gas chromatography-mass spectrometry and infrared spectrometry allow for recognition of OH- adducts and 
ring openings and show a clear association between DNA damage and contaminant exposure (Malins and Haimanot, 
1991; Malins and Gunselman, 1994). The impact of DNA adducts on DNA replication and function is still uncertain, so 
measuring them might not give an answer to the question of how toxic contaminants are.  

Methods to detect DNA strand breakage/damage 

DNA is continuously maintained in the living cell. This involves partial unwinding and opening of the double strand to 
repair damaged parts, but also to amplify for replication leading to single strand breaks in the DNA. Some chemicals are 
suspected to either directly produce those strand breakages, or form the excision of adducts induced by contaminants 
(Shugart and Theodorakis, 1994). So, quantification of strand breakage could give an estimate on genotoxicity of 
contaminants.  

Alkaline unwinding 

Alkaline unwinding is a method which allows quantifying of DNA fragments due to the fact that at high pH the DNA 
denaturation initiates preferably at single strand breaks (Shugart, 1988). Consequently, it is possible to infer the 
incidence of strand breakage by ascertaining the rate of strand degradation. 

Agarose gel electrophoresis 

Another method is agarose gel electrophoresis, which can be used to directly estimate the size of DNA fragments, thus 
estimating the incidence of strand breakage and even distinguish between single or double strand breaks by using 
denaturing and non-denaturing gels (Theodorakis et al., 1994). These assays have already been used in fish (Di Giulio 
et al., 1993) and have shown that contaminant exposure elevates the strand breaks.  

Comet Assay 

The Comet Assay (Singh et al., 1988) is based on the isolation of nuclei from cells. Nuclei isolated from cells exposed 
to specific chemicals are placed in an electric field, and subsequently the DNA is stained. After this treatment, DNA 
fragments can be seen as a “tail” of a comet (=nucleus) under a fluorescent microscope. The more breaks occurring, the 
larger and brighter the tail becomes. It has been shown that nuclei from fish leukocytes and cultured epithelial cells 
(common carp) show a clear signal when exposed to certain contaminants (Kammann et al., 2001). However, this 
method is extremely dependent on an accurate and standardised screening procedure, as usually the nuclei are 
subdivided into certain classes depending on the magnitude of tail formation. The abundance of class-specific nuclei 
within one sample is then counted and compared to other samples. 

TUNEL assay 

The TUNEL assay, which detects DNA strand breaks in tissue sections, allows quantification of apoptotic cells by 
fluorescence and light microscopy. Common experience seems to be that the TUNEL assay is prone to false positive or 
negative findings. This has been explained by the dependence of the staining kinetics on the reagent concentration, 
fixation of the tissue and the extent of proteolysis. For the TUNEL assay, snap-frozen tissue is sectioned using a 
microtome, sections are fixed in formalin and transferred to slides. To stain for apoptosis, TdT directed FITC-dUTP 
nick-end labelling is performed (Boehringer-Mannheim). For nuclear staining, a solution of propidium iodide is used. 
The significance of apoptosis has mostly been studied with this method (Lacorn et al., 2001).  

Radiolabelling and autoradiography or scintillation counting 

When damaging of DNA occurs, the cellular repair mechanism tries to fix it mostly by synthesis of new DNA.  
Autoradiography or scintillation counting are methods used to report those unscheduled DNA syntheses in fish (Ali et 
al., 1993) through incorporation of radiolabelled nucleotides during DNA synthesis. The test requires the use of tissue-
cultured cells which are exposed to certain contaminants; thereafter, radiolabelled nucleotides are applied and 
incorporated. Efforts have been made to develop combined in vitro/in situ assays (Madle et al., 1994). These methods 
have the disadvantage that not only unscheduled DNA synthesis is measured but also normal DNA replication, which is 
a particularly serious problem if the rate of mitotic cell division is high. Another disadvantage of using unscheduled 
DNA repair as a marker system is that it reports DNA repair rather than damaging. 

Methods detecting cytogenetic effects of contaminants 

2002 WGAGFM Report 14



  

Damages of the DNA strand induced by contaminants can lead to changes at the chromosomal level. The extent of 
damage can be quantified by several cytogenetic methods.  

Micronuclei staining with DNA-specific dye or centromeric probes 

Micronuclei are masses of DNA found in the cytoplasm and typically formed as a result of chromosomal breakage or 
dysfunction of the spindle mechanism (ASTM, 1994). The influence of contaminants on the formation of micronuclei 
can be assessed by staining exposed tissue with DNA-specific dye and subsequent counting of micronuclei under a 
microscope. Another way is staining with centromeric probes (Natarajan, 1994). 

The incidence of micronuclei has been investigated in fish (e.g., Al-Sabti, 1992) and bivalves (Wrisberg et al., 1992). 
The existence and number of micronuclei were shown to vary seasonally (Fernandez et al., 1993) and among 
populations (Wrisberg et al., 1992). As this is the case, the main difficulty with these tests is to distinguish between 
naturally occurring micronuclei and micronuclei formed due to an exposure to contaminants. Hence, Carrasco et al. 
(1990) did not find any linkage between contaminant exposure and micronuclei in fish populations. Nevertheless, other 
studies have reported up to a 3-fold increase in micronuclei frequency, but they mostly failed to exercise sufficient 
control over other possible factors (disease, nutritional status, age and gender of fish) (Hebert and Luiker, 1996). 

5-bromodeoxyuridine labelling 

The event of sister chromatid exchange can be shown by differential labelling of chromatids with 5-bromodeoxyuridine. 
This thymidine analogue is incorporated during replication and quenches the fluorescence of some DNA-specific stains. 
This allows us to distinguish between sister chromatids and to track exchange events. Some contaminants are believed 
to block the movement of the DNA replication fork, leading to a high level of sister chromatid exchange (Tucker et al., 
1993). This method has been used in fish, too (Hooftman and Vink, 1981; Vigfusson et al., 1983). However, as 5-
bromodeoxyuridine itself increases the rate of sister chromatid exchange and creates a serious background, and as the 
reciprocal exchange of sister chromatids does not have a direct effect because they are genetically identical, this method 
may be of limited use for future investigations on the effect of contaminants. 

Staining of chromosomes 

Chromosomal investigations on cells stained by G/C banding or “chromosome painting” will show shifts in ploidy and 
chromosomal aberrations. Most studies on ploidy shifts have concentrated on the occurrence of aneuploidy – the gain or 
loss of chromosomes. However, as it has been shown in human populations that aneuploidy naturally occurs (Ohtaki et 
al. 1994) and shifts caused by chemicals (Mailhes and Marchetti, 1994) vary between gender, data interpretation is 
difficult. Chromosomal aberrations such as deletion, duplication, and rearrangement take place during DNA synthesis. 
In vivo studies have been carried out in fish (Hooftman, 1981; Hooftman and Vink, 1981) showing linkage between 
contaminant exposure and aberrations (Sofuni et al., 1985; Wilcox and Williamson, 1986). Also, a study on American 
oysters (Stiles, 1990) and a combined laboratory and field study on hard clams (Stiles et al., 1991) were performed 
using cytogenetic methods to evaluate the effect of contaminants. Only a few studies have examined the effects of 
contaminants on chromosomal aberrations in nature due to very stringent cytogenetic requirements (McBee et al., 
1987), so that this method might be difficult to apply in field experiments. 

Methods monitoring mutagenesis in the genome 

The mutagenic activity of several contaminants is already known from laboratory experiments, mainly carried out on 
tissue cultures. For mitochondrial DNA 50–600-fold higher binding levels for polycyclic aromatic hydrocarbons in 
relation to nuclear DNA have been reported (Allen and Coombs, 1980; Backer and Weinstein, 1980; Niranjan et al., 
1982). In contrast, it was confirmed that exposure to mutagenic agents induces only a low number of sequence changes 
in mtDNA (Mita et al., 1988). Approaches for determining the magnitude of mutations were greatly improved by the 
invention of the polymerase chain reaction (PCR) technique.   

Natural reporter genes 

Mutants can sometimes be recognised by simple screening of phenotypes. The genes responsible for a particular trait 
that can be scored are called reporter genes. Studies performed on test systems using the APRT (adenine 
phosphoribosyl transferase) and HPRT (hypoxanthine guanine phosphoribosyl transferase) loci as reporter genes in 
mammalian tissue culture systems have shown a significant increase in mutation rates in response to contaminant 
exposure (Bridges et al., 1991; Tates et al., 1991; Perera et al., 1993; Zimmer et al., 1991). Unfortunately, until now no 
reporter genes are known in fish but the extended research on zebrafish gives reason to expect the discovery of such 
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genes in the future. Another remaining problem is the high number of individuals necessary for detection of shifts in 
mutation ratio by contaminant exposure, and the fact that these tests will be restricted to laboratory experiments. 

Transgenic reporter genes 

In mice and rat tissue, foreign DNA has been inserted containing a portion of the lac operon from E. coli and lambda 
phage shuttle vector to ease the recovery of the transgene (Gossen et al., 1989; Kohler et al., 1990). After exposure to 
contaminants, total DNA is extracted and transgenic DNA is recovered by exposing to lambda phage protein extracts, 
which excite the shuttle factor and encapsulate it. These bacteriophages can then be used to infect E. coli lacking a 
complete lac operon. Plating on media containing β-galactoside selects for positive clones and allows discrimination 
between wild type (blue) and mutants (white; lac operon not functioning). This method could also be applied to fish, but 
would require a larger amount of basic work and a long time scale of the experiments due to the longer generation 
cycle.  They would also be restricted to laboratory experiments. 

Monitoring mutagenesis within native genes with denaturing/reannealing techniques 

As the spontaneous mutation ratio is less than one change in 100,000 base pairs, even a 10-fold increase would require 
around 200,000 bp to be sequenced (Hebert et al., 1996). So direct sequencing of target genes is not feasible even with 
automated sequencers. But, as even single base pair mutations change the melting properties of DNA fragments, 
methods have been developed that use this property. Denaturing gradient gel electrophoresis (DGGE) denotes 
electrophoresis coupled with either a temperature gradient (Wartell et al., 1990) or a denaturant gradient (Fischer and 
Lerman, 1983). Heteroduplex analyses (HA) are based on the fact that a mixture of native gene and mutant single-
stranded DNA forms three different complexes after reannealing, which can then be separated using polyacrylamide gel 
electrophoresis (PAGE): one complex double strand native gene, one involving only the mutant gene, and finally, a 
hybrid between the native and mutant gene moving slightly differently in an electric field due to the mismatch at the 
mutation site. These kinds of analyses have already been shown to be very useful in detecting mutations caused by 
contaminants (Cariello et al., 1991). Single nucleotide polymorphisms can also be detected by SSCPs (single strand 
conformation polymorphism) where the different DNA fragments are denatured and run on a PAGE. Due to the 
different weights and conformations of native and mutant DNA single strands, fragments up to 300 bp can be 
distinguished. 

BESS base excision sequence scanning 

Base excision sequence scanning (BESS; Hawkins and Hoffman, 1997, 1999) is a PCR-based mutation scanning 
method that locates and identifies all DNA mutations. The BESS method consists of two procedures that generate “T” 
and “G” ladders analogous to T and G ladders of dideoxy sequencing. The samples are analysed on standard sequencing 
gels or on automated DNA sequencers. The BESS method is versatile, having applications not only for mutation 
detection, but also single nucleotide polymorphism (SNP) discovery and analysis, DNA fingerprinting (including viral 
and bacterial typing), and clone identification. 

DT-PCR (directed termination-PCR) 

Chen and Hebert (1998) developed a method called directed termination-PCR (DT-PCR) to detect mutations. It is based 
on a PCR assay with site-specific primers, where one of the four nucleotides is limited in concentration five to ten times 
relative to the other three nucleotides. During PCR the lower concentration nucleotide causes the reaction to terminate 
prior to the full-length amplification as it becomes the limiting factor in DNA synthesis, increasingly with an increasing 
number of cycles. A specific banding pattern for a defined sequence is the result of this modified PCR reaction that can 
be compared between different template DNA samples. 

CA chemical mismatch cleavage 

This methodology (Cotton et al., 1988) allows detection of point mutations, small insertions, and deletions and was 
extended by the development of a non-isotopic cleavage product detection system using silver staining after gel 
electrophoresis (Saleeba et al., 1992). The complete mutation detection is achieved by use of mutant and wild-type 
DNAs in equimolar quantities in duplex formation, thus any mismatches that are resistant to chemical cleavage (e.g., 
some T.G mismatches) are easily detected by cleavage of the complementary heteroduplex (e.g., A.C mismatch). With 
such a strategy, mutant DNAs can be screened for mutations and polymorphisms.  

Molecular genetic methods to evaluate the effects of contaminants at the population level 
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There have been some studies on the effect of contaminants on genetic patterns in populations. Most of them are 
referred to in an excellent recent review by Belfiore and Anderson (2001). 

For studies investigating the effects of contaminants on gene pools at the population or species level in the field, it is 
important that different exposure levels can be clearly assigned for populations and that the exchange of individuals 
between populations is low enough for a few generations, so that an effect can be established within the population. 
“Before/after” data would be particularly useful, but are probably unlikely to be available except in areas where 
historical data have been collected for other purposes. 

Contaminants can cause changes in the genetic composition of natural populations by induced mortality. The genetic 
diversity can be reduced indirectly by bottlenecking and subsequent loss of genetic variation or by selection. The latter 
option only applies when there is a complete or partial resistance against specific contaminants occurring. Selection for 
a certain genotype, which is resistant or copes best with the contaminant, is likely. As it is unlikely—although not 
impossible—that resistance is based on a single gene and locus, mostly additive effects will be the reason for improved 
performance and fitness. Hence, finding molecular markers to describe those genotypes can be difficult for both 
possibilities. Classical laboratory experiments as used, e.g., in plant research, crossing and back-crossing a resistant and 
non-resistant line/strain and performing bulk-segregant analysis would be a possibility in the case of a single locus 
resistance. For a multi-locus resistance, this approach is very time consuming and the prospect for success is bad. In the 
field, it is much more complicated, if not impossible, to design comparable experiments. The main problem is the 
background noise of natural variation within the genome.  

The genetic effect most likely caused by contaminants is the loss of genetic diversity through induced mortality. All of 
the methods, which can be used to track changes in the genetic composition of populations have been thoroughly 
discussed by this group in previous reports and will not be repeated here. Sustainable methods are: Allozymes, 
microsatellites, minisatellites, RFLPs, AFLPs, RAPDs and direct sequencing. When using these markers to show loss of 
diversity, the same criteria apply to these methods as if they would be used in regular population genetic analyses and 
were discussed detailed in previous WGAGFM reports. 

Co-dominant markers can be used for studying the diversity of exposed populations, as a common observation in 
populations under contaminant stress is the occurrence of a higher number of heterozygous loci per individual (HLWI) 
than in control populations (Roark and Brown, 1996; Kopp et al., 1992) – as common as the observation of 
heterozygote deficiency (Battaglia et al., 1980; Benton et al., 1994; Keklak et al., 1994). The high heterozygosity levels 
are explained by heterosis, the link between heterozygosity level and fitness (Kekklak et al., 1994); deficiencies can be 
explained by a bottleneck model where populations are reduced by contaminant stress.  

Allozymes are proteins, so alterations at the DNA level that do not result in amino acid changes, are not detected. 
Sometimes bands scored as the same allele may actually represent multiple alleles so that allozyme data generally 
underestimate the actual DNA variation. Past work on allozymes showed that there are shifts in gene frequencies within 
populations exposed to contaminants (Gillespie and Gutterman, 1989, 1993; Roark and Brown, 1996; Nevo et al., 
1987), but the response often varies among sites. These findings alone are not sufficient evidence of contaminant 
effects, as the differences in population structure may reflect subdivision of populations caused by other factors. Most 
observations suggest that these findings are indirect consequences of selection rather than single locus selection. The 
main disadvantages of allozyme analyses for this purpose is the fact that it is unlikely that one of the limited number of 
investigated proteins has a direct effect on resistance or is closely linked to it. So when it comes to the effect on specific 
parts of the DNA, e.g., certain genes, then other criteria for the choice of a marker system are important. 

Mini- and microsatellites are better suited for this purpose as they are widely distributed through the genome. Because 
of the possibility to score a high number of loci, the likelihood of finding linkages to genes under selection is higher 
than for allozymes. The establishment of a linkage map for zebrafish, salmon, and oyster based on microsatellites 
supports this. 

RAPD and AFLP analyses are methods which allow the screening of many more loci within the genome in a relatively 
short time and in an inexpensive way. Therefore, these methods are most suitable when looking for markers closely 
linked to genes under selection by the exposure of populations to certain contaminants. Theodorakis and Shugart (1997, 
1998) discovered RAPD bands that were positively correlated to fecundity in contaminant-exposed fish. They also 
found a ten-fold higher heterozygosity level for the allozyme locus NP (nucleoside phosphorylase) (Theodorakis and 
Shugart, 1998; Theodorakis et al., 1999). In contrast, restriction fragment length polymorphism (RFLP) analyses are 
only suitable when there is already some evidence that a certain part of the DNA is under selection. Then specific 
restriction enzymes can show different patterns for a specific allele.   
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To overcome most of the difficulties involved in studies on the influence of contaminants on genetic patterns of 
populations, Belfiore and Anderson (2001) proposed a generalised ideal study design with four major premises: 1) an 
adequate sample size should be chosen, to include several sites for each treatment type to account for the lack of 
uniformity of in situ “treatments”; 2) to incorporate site or tissue chemistry, along with other appropriate measures, such 
as biomarker responses; 3) to estimate contaminant exposure in order to convincingly assign treatment effects; and 4) to 
verify alternate hypotheses that may explain observed patterns. 

The last premise points to the major difficulty one has to deal with when detecting changes in the genetic composition 
of a population suspected to be caused by contaminants. It is very difficult to exclude all the possible alternative 
hypotheses which could explain the changes. The question “how much variation reflects selection and how much 
reflects neutral processes” (Belfiore and Anderson, 2001), which is the question posed by the discussion on genetic 
patterns in populations (Beardmore, 1980; Nevo et al., 1983; Nevo, 1990; Montgomery et al., 2000), has not been 
solved yet. 

Recommendations: 

• Research to investigate the effects of contaminants on fish/shellfish by molecular genetic methods should be 
encouraged; 

• When designing a field study on the effect of contaminants on populations, an adequate sample size has to be 
chosen; 

• The feasibility of the field study should be checked taking into account population migrations and gene flow 
which could mask any possible effects of contaminants; 

• Several contaminated sites should be included and also several control regions to account for the lack of 
uniformity of contamination; 

• The contaminant concentrations should be measured at the site and in the tissue, to estimate contaminant exposure 
in order to convincingly assign treatment effects; 

• Alternate hypotheses that may explain changes in populations have to be verified. 
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2.5 Minimal kinship breeding strategy for preserving genetic diversity in hatcheries (ToR e) 

Position paper by R. Doyle and P. O’Reilly, adopted by the WGAGFM in Dartmouth, 2002. 

A gene bank has been established by the Canadian Department of Fisheries and Oceans, in collaboration with other 
agencies and institutions, to try to save the unique salmon gene pools in the inner Bay of Fundy, Canada. The hatchery 
breeding programme is based on a selection procedure (minimal kinship selection) which is designed to minimize the 
loss of genetic diversity, including quantitative genetic diversity (Doyle et al., 2001). A minimal-kinship criterion 
calculated from microsatellite data is used to select subsets of breeders which represent the maximum number of 
founder lineages (i.e., carry the fewest identical copies of ancestral genes). The procedure differs from marker-assisted 
selection (MAS) in that the markers are used to identify whole lineages or “extended families” rather than chromosome 
segments carrying particular QTLs. Thus, minimal-kinship selection conserves the diversity of quantitative trait loci 
involved in adaptation to the hatchery and natural environments, not just the diversity of microsatellites themselves. 

Hatchery broodstocks used for genetic conservation or aquaculture may have lost much of the genetic diversity which 
existed in the ancestral (wild) gene pool. This is especially likely when the fish used to initiate a broodstock population 
are closely related to each other. Kinship among founders causes the first generation born in the hatchery to diverge 
markedly from the ancestral gene pool, because related founders carry excess copies of the same genes and a deficiency 
of other, usually rare, genes. When an initial loss of diversity caused by founder consanguinity has occurred, the usual 
hatchery strategies for long-term retention of diversity, such as spawning as many fish as possible, reducing the 
variance of family size and equalizing the sex ratio, will not be able to recover it. 

These routine diversity-conserving practices are appropriate when a hatchery has been running for a sufficient number 
of generations to have reached equilibrium, in the sense that every fish has the same probability of carrying a gene from 
any particular founder. They will also be appropriate at the beginning of a hatchery programme if the founding 
broodstock is already in equilibrium, in the sense that each founder has the same probability of carrying any particular 
gene from the ancestral population. The breeding strategy needs to be modified in the early generations, however, if the 
founding broodstock is so small that it is non-representative of the ancestral population and is dominated by a few 
lineages. This is, unfortunately, precisely the situation which is likely to trigger a genetic conservation programme.  

Even when hatchery breeding has continued for some generations, e.g., for stock supplementation, the concern about 
the genetic quality of the stock may be relatively recent. The breeders used to start hatchery programmes decades ago 
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are often known to have been related to each other. McAndrew et al. (1992) cite anecdotal reports of hatchery stocks 
originating from a single mating pair. In salmonids it often happens that there are very few animals left in the wild 
population by the time captive breeding or hatchery supplementation begins (Utter, 1998). These remnant wild animals 
may already be related to each other. Taggart et al. (2001), for example, have uncovered an abundance of interlocking 
half-sib relationships among Atlantic salmon ova collected from spawning redds in a Scottish stream. 

The mating strategy recommended to hatcheries has usually been guided by the concept of effective population 
number, , which is an easily understood theoretical construct when it is applied to a population which has enjoyed a 

constant size and demographic structure for several generations. Maximization of effective population number  by 
equalizing the number of offspring of all matings is strongly recommended to hatchery managers (e.g., Tave, 1993, 
1995), and is in fact adopted whenever possible to reduce inbreeding and genetic erosion.  

eN

eN

The generally accepted objective in other areas of genetic conservation, such as zoos (Ebenhard, 1995; Rodriguez-
Clark, 1999), is to recover some of the diversity in the ancestral population by compensatory mating, in which lineages 
that are under-represented in the founders are mated preferentially so as to increase their contribution. “One of the 
primary goals of any captive-breeding program is the maximization of founder allele survival” (Hedrick and Miller, 
1992). “The goal of maintaining genetic diversity is equivalent to selecting pairings that maximize the retention of the 
founder’s diversity” (Lacy et al., 1995). The usual strategies for long-term maximization of in a fish hatchery, which 
equalize the genetic contribution of all breeders, will merely propagate the distortion caused by a non-representative 
sampling of the ancestral gene pool.  

eN

The consensus is emerging that the minimal kinship ( MK ) procedure for choosing breeders (Ballou and Lacy, 1995; 
Lacy et al., 1995; Montgomery et al., 1997; Caballero and Toro, 2000), which in every generation minimizes the 
overall level of coancestry in the population, is currently the best available procedure for reducing the genetic erosion of 
captive populations due to founder lineage bias and drift. The practice of MK mating requires pedigree analysis and 
consequent decisions about every mating. Mating in MK  managed populations is neither random nor equalized, even 
when the objective is solely to minimize random changes in gene frequencies. 

The difficulty of applying MK in the early generations in hatcheries is that the pedigrees of the founders are not 
available. Doyle et al. (2001) have, however, shown that it is possible to base MK  selection on estimates of  the 
relatedness between pairs of individuals as calculated from microsatellite data, in lieu of pedigrees. 

The coancestry of a pair of individuals is defined by the kinship coefficient , the probability that two alleles taken at 
random from each animal will be identical by descent from a common ancestral gene (Falconer and Mackay, 1996, p. 
85). The mean kinship of the ith individual  is the average of the kinship coefficients between that individual and 
all living individuals including itself: 
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in which is the number of living animals in the population. Animals with low mk  are likely to carry genes which 
are not otherwise represented in the population and are thus particularly valuable in maintaining, or recovering, genetic 
diversity. Animals with high are likely to be carrying genes which have multiple copies elsewhere in the 

population. If hatchery resources are limited, these high mk  animals are relatively dispensable. It has been shown by 

Ballou and Lacy (1995) that a strategy for choosing mated pairs that minimizes the average  (the 
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strategy) maximizes the retention of genetic diversity. Doyle et al. (2001) used Ritland's r̂  estimator to calculate the 
mean relatedness of each animal relative to the other fish in its generation and population (Ritland, 1996a, 1996b). 
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Other estimators of relatedness have been developed, e.g., Queller and Goodnight (1989), Wang (2002), but their utility 
in the present context has not yet been investigated. 

The -maximizing approach to genetic conservation in hatcheries is (usually implicitly) based on the random effects, 
variance-component viewpoint of Weir and Cockerham (1984). This viewpoint cannot be applied consistently from 
beginning to end of a hatchery programme if the hatchery founders consist of sub-subpopulations or lineages that are 
non-representative, and that must be individually identified and managed in the early generations. At this point, the 
model differs dramatically from the hierarchical, random-effects, population genetic model, and the implied optimal 
hatchery procedures differ dramatically from the -maximizing strategy implied by the hierarchical population 
genetic model. 

eN

eN

McAndrew et al. (1992), along with many others, have emphasized the importance of using representative founders in a 
hatchery, if such founders exist. When sufficient numbers do not exist, there may be uncomfortable trade-offs in 
choosing a genetic conservation strategy. In Finland, for instance, one of the primary aims of an Arctic charr stocking 
programme has been to maintain the genetic integrity of natural populations, which is accomplished by only stocking 
fish produced from lake-specific broodstocks (Primmer et al., 1999). In at least one instance (Lake Saimaa), very few 
wild spawners could be caught and the decision was made to use these fish, and risk the loss of genetic variation, rather 
than import breeders from another lake. The tradeoff was genetic diversity vs. local genetic adaptation. The genetic 
variation is now low in Lake Saimaa and several aspects of viability and fecundity are also unusually low, although 
Primmer et al. (1999) are careful to note that there is no proof that inbreeding has been the problem. In any case, this is 
the type of situation in which MK selection might increase diversity and reduce divergence from ancestral populations 
without importing fish, even when few founders are available. 

The goal of conservation in hatcheries should be to maximize the retention of the genetic diversity which existed in the 
last (wild) generation to which the random-effects population genetic model can be credibly applied. The objective is 
not limited to preserving the diversity of the breeders that are collected to found the hatchery. Owing to the possibility 
of consanguinity and non-random sampling of the remnants of a dying population, the early generations of the 
conservation programme should aim to increase the genetic diversity in later generations above that in the founders. 
This is a crucial difference between MK -minimizing strategy and the -maximizing strategy which is generally 
recommend to hatchery managers. 

eN

The concern in a hatchery is often not genetic conservation per se but the accumulation of inbreeding, i.e., loss of 
individual heterozygosity and possible decrease in individual fitness. This is related to , in the simple equilibrium 
case, by the equation: 

eN
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The fixation index  in this equation is a useful predictor of the mean inbreeding in later generations of a hatchery 
(with constant size and demographics) when the imbalance of founder contributions has either been corrected 
by

tF

MK selection or has spread itself equally over all living descendants. However, it is an overly optimistic measure of 
the rate of population-level inbreeding in the early generations when founder contributions are grossly unequal. 

The average mean kinship of the parents will become the average inbreeding of the next generation if mating is random 
but will be less than this if MK selection is employed. The drift of a captive population away from its ancestral genetic 
constitution can be considered either a sampling process or an inbreeding (consanguineous mating) process, because 
both the among-subpopulation variance and the homozygosity within subpopulations increase as a result of finite 
population size. 

The calculation of the relatedness estimator r̂  requires that allele frequencies be independently known and free from 
appreciable sampling error (Ritland, 1996b). As a practical matter, these frequencies will usually be obtained from the 
sample of individuals for which the relatedness is being determined, possibly from the founding broodstock itself. 
Nevertheless, the option exists to provide frequency data from another source. In a captive breeding programme, the 
logical alternative source of frequency information is the ancestral population, which might have yielded data at some 
time in the past while the population was still large (as in brown trout in Denmark, where in some rivers the genetic 
composition of the current population of brown trout, heavily influenced by stocking, is rather different from the 
ancestral composition as found by analysing archived scale samples (Hansen et al., 2000). The animals brought into the 
captive breeding programme when the population has declined nearly to extinction might be too few, or too 
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unrepresentative, to provide the required independent and error-free data for the estimation of r̂ . Archived scale 
samples, which are often available and which can yield usable microsatellite information (Nielsen et al., 1999; Ruzzante 
et al., 2001), may be usable for this purpose. 

We have observed (Doyle et al., 2001) that if the sample of the founding generation is so small that it cannot yield 
reliable allele frequencies, data from the previous generation (i.e., earlier samples from the wild) can, at least in the 
instance examined in that paper, be used to select broodstock so as to minimize kinship.  

Conclusions and recommendations 

• Microsatellite data can be used for minimal kinship selection (MK selection) of broodstock in hatcheries. This 
procedure partially recovers the diversity lost through over-represented and consanguineous founder contributions 
to a captive gene pool; 

• After one or more generations of MK selection, the usual broodstock management procedures (e.g., rotational 
mating and equalized family size) can be adopted. 

References 

Ballou, J.D., and Lacy, R.C. 1995. Identifying genetically important individuals for management of genetic variation in 
pedigreed populations. In Population management for survival and recovery: analytical methods and strategies in 
small populations, edited by J. Ballou, M. Gilpin and T. J. Foose. New York: Columbia University Press. pp. 76–
111. 

Caballero, A., and Toro, M.A. 2000. Interrelations between effective population size and other pedigree tools for the 
management of conserved populations. Genetical Research, 75: 331–343. 

Doyle, R.W., Perez-Enriquez, R., Takagi, M., and Taniguchi, N. 2001. Selective recovery of founder genetic diversity 
in aquacultural broodstocks and captive endangered fish populations. Genetica, 111: 291–304. 

Ebenhard, T. 1995. Conservation breeding as a tool for saving animal species from extinction. Trends in Ecology and 
Evolution, 11: 438–443. 

Falconer, D.S., and Mackay, T.F.C. 1996. Introduction to Quantitative Genetics. 4th ed. Longman, Harlow, UK. 464 pp. 

Hansen, M.M., Ruzzante, D.E., Nielsen, E.E., and Mensberg, K-L.D. 2000. Brown trout (Salmo trutta) stocking impact 
assessment using microsatellite DNA markers. Ecological Applications, 11: 148–160. 

Hedrick, P. W., and Miller, P. S. 1992. Conservation genetics:  techniques and fundamentals. Ecological Applications, 
2: 30–46. 

Lacy, R.C., Ballou, J.D., Princee, F., Starfield, A., and Thompson, E. 1995. Pedigree analysis for population 
management. In Population management for survival and recovery: analytical methods and strategies in small 
populations, edited by J. Ballou, M. Gilpin and T. J. Foose. New York: Columbia University Press. pp. 57–75. 

McAndrew, B.J., Rana, K.J., and Penman, D.J. 1992. Conservation and preservation of genetic variation in aquatic 
organisms. In Recent Advances in Aquaculture IV, edited by J. F. Muir and R. J. Roberts: Blackwell. pp. 298–336. 

Montgomery, M.E., Ballou, J., Nurthen, R.K., England, P.R., Briscoe, D.A., and Frankham, R. 1997. Minimizing 
kinship in captive breeding programs. Zoo Biology, 16: 377–389. 

Nielsen, E.E., Hansen, M.M., and Loeschke, V. 1999. Analysis of DNA from old scale samples: technical aspects, 
applications and perspectives for conservation. Hereditas, 130: 265–276. 

Primmer, C.R, Aho, T., Piironen, J., Estoup, A., Cornuet, J.M., and Ranta, E. 1999. Microsatellite analysis of hatchery 
stocks and natural populations of Arctic charr, Salvelinus alpinus, from the Nordic region: Implications for 
conservation. Hereditas, 130: 277–289. 

Queller, D.C., and Goodknight, K.F. 1989. Estimating relatedness using genetic markers. Evolution, 43: 258–275. 

2002 WGAGFM Report 25 



Ritland, K. 1996a. Estimators for pairwise relatedness and individual inbreeding coefficients. Genet. Res, 67: 175–185. 

Ritland, K. 1996b. A marker-based method for inferences about quantitative inheritance in natural populations. 
Evolution, 50: 1062–1073. 

Rodriguez-Clark, K. 1999 Genetic theory and evidence supporting current practices in captive breeding for 
conservation. In Genetics and the Extinction of Species, edited by L. F. Landweber and A. P. Dobson. Princeton: 
Princeton University Press. pp. 47–73. 

Ruzzante, D.E., Taggart, C.T., Doyle, R.W., and Cook, V. 2001. Stability in the historical pattern of genetic structure of 
Newfoundland cod (Gadus morhua) despite the catastrophic decline in population size from 1964 to 1994. 
Conservation Genetics, 2: 257–269. 

Taggart, J.B., McLaren, I.S., Hay, D.W., Webb, J.H. and Youngson, A.F. 2001. Spawning success in Atlantic salmon 
(Salmo salar L.): a long-term DNA profiling-based study conducted in a natural stream. Mol. Ecol,. 10: 1047–
1060. 

Tave, D. 1993. Genetics for Fish Hatchery Managers. New York: Van Nostrand Reinhold. 415 pp. 

Tave, D. 1995. Selective breeding programmes for medium-sized fish farms. FAO Fisheries Technical Paper No. 352: 
FAO, Rome. 122 pp. 

Utter, F. 1998. Genetic problems of hatchery-reared progeny released into the wild and how to deal with them. Bull. 
Marine Sci, 62: 623–640. 

Wang, J. 2002. An estimator for pairwise relatedness using molecular markers. Genetics, 160: 1203–1215. 

Weir, B.S., and Cockerham, C.C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38: 
1358–1370. 

2.6 The possible use of gene array techniques in the detection and quantification of responses in fish to 
pollution (ToR f) 

Based on a position paper by J. Trautner, adopted by WGAGFM in Dartmouth, 2002. 

The DNA array technique allows binding of a large amount of denatured DNA fragments—preferably cDNA—to a 
matrix where each fragment is bound to a specific spot of the matrix. Then this matrix, the chip or array, can be exposed 
for instance to cDNA (reverse transcribed mRNA) from any tissue. By properly choosing the hybridisation conditions, 
only complementary sequences will bind to the array. With a specialised detector, a specific binding pattern can be 
screened qualitatively. With this technique it is possible to analyse a large amount of genes for expression within a 
single experiment. The main problem lies prior to this step and involves the isolation of genes or DNA segments of 
interest. 

There are two different formats of DNA microarrays, in terms of the property of arrayed DNA sequence with known 
identity: For the first format, probe cDNA (500~5,000 bases long) is immobilised to a solid surface, such as glass, using 
robot spotting. Next, it is exposed to a set of targets, either separately or in a mixture. This method, “traditionally” 
called DNA microarray, is widely considered as developed at Stanford University (Ekins and Chu, 1999). 

The second format consists of an array of oligonucleotide (20~80-mer oligos) or peptide nucleic acid (PNA) probes, 
which is synthesised either in situ (on-chip) or by conventional synthesis followed by on-chip immobilisation. The 
sample DNA is labelled by the incorporation of biotinylised nucleotides. The array is exposed to the labelled sample 
DNA and the identity/abundance of complementary sequences is determined by staining with florescent dye and 
subsequent measurement of fluorescence. This method, “historically” called DNA chips, was developed at Affymetrix, 
Inc. (GeneChip®) but many other companies are manufacturing oligonucleotide-based chips using alternative in situ 
synthesis or depositioning technologies.  

Gene array techniques have not been used in marine fish yet, only in zebra fish (Danio rerio) as a model species (Clark 
et al., 2001). For toxicological research, the keyword is toxicogenomics. The goal of toxicogenomics is to find 
correlation between toxicants and changes in the genetic profiles of the objects exposed to such toxicants (see 
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Nuwaysir, 1999). For toxicological research a toxicogenomic approach has already been initiated: First Preclinical 
Toxicity Application (Toxicology EXPRESS™ database using Gene Logic’s Flow-thru Chip™ technology) 
involving Wyeth-Ayerst Research and Gene Logic. 

To transfer such systems to fishes, it is necessary to define and find the genes of interest. Much work has to be invested 
in setting up cDNA libraries to use this technique. However, once this is done the prospects are good that DNA array 
technology will provide information for toxicological problems related to fish. 

However, considering the problems with the methods listed under ToR (d), it can be suspected that this approach will 
have similar problems when used for field experiments, rather than laboratory experiments. The expression of genes is 
affected in so many ways and by so many factors that clear signals seen in a laboratory experiment might be overlaid by 
other signals occurring in the field. This will make it difficult to establish a clear correlation between contaminant 
exposure and expression patterns. However, it is worthwhile putting some effort into this new approach. Even if it 
might not be useful in the field, DNA array technology is a powerful method for laboratory experiments dealing with 
the basics of the response to contaminants on the gene expression level.  
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3 WORKING GROUP BUSINESS  

3.1 New WGAGFM Chair 

The present Chair was very pleased to announce that Dr Ellen Kenchington, Bedford Institute of Oceanography, Canada 
(and the host of the meeting) has agreed to take over as new Chair of the WGAGFM when the term of the present Chair 
runs out in autumn 2002. Ellen has made very significant contributions to WGAGFM during the past six years, and 
there can be no doubt that it will be in good hands in the years to follow, a sentiment shared by everybody at the 
meeting. 

3.2 Discussion of future activities of the WGAGFM in relation to aquaculture (with representatives from 
the WGMAFC) 

Two representatives, John Castell and Tim Jackson from the Working Group on Marine Fish Culture (WGMAFC), 
attended the meeting in order to discuss future collaboration between the two working groups. More specifically, this 
collaboration involves developing standard culture conditions under which strains, stocks, or species might be tested to 
evaluate their performance. The two working groups agreed to suggest this topic for the ToRs of the 2003 WG meetings 
in the first instance, in order to identify the specific problems that need to be addressed.   

3.3 Discussion of suggestion by WGECO to collaborate in developing practical management options for 
the conservation of genetic diversity in marine fish and shellfish 

WGAGFM discussed a suggestion by the Working Group on Ecosystem Effects of Fishing Activities (WGECO) to 
collaborate in developing practical management options for the conservation of genetic diversity in marine fish and 
shellfish of economic importance. WGAGFM found it important to first identify the scope for collaboration by 
identifying the specific genetic problems (e.g., is it all realistic that low effective population sizes could be a problem in 
marine populations due to overfishing? How can the issue of selective fishing be addressed, etc.?). Dr Ellen 
Kenchington (the new WGAGFM Chair) later participated in the meeting of WGECO in order to further discuss this 
issue. 
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3.4 Suggestions for WG ToR and meeting place in 2003 

During discussions on meeting place in the year 2003, the WG responded positively to a generous invitation from Dr 
Pierre Boudry, IFREMER/RA, La Tremblade, France, to host the 2003 WGAGFM meeting on 10–12 March 2002.  
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ANNEX 1: TERMS OF REFERENCE FOR THE 2002 WGAGFM MEETING 

2F03  The Working Group on the Application of Genetics in Fisheries and Mariculture [WGAGFM] (Chair M. 
Møller Hansen, Denmark) will meet in Halifax, Canada from 18–20 March 2002 to:   

a) update the provisions regarding GMOs in the ICES Code of Practice on Introductions and Transfers of 
Non-indigenous Organisms and transmit this material to WGITMO; 

b) assess and evaluate the utility of interspecific comparisons of population genetic parameters in 
understanding population structure in fish species; 

c) review and report on developments in the use of DNA from archived samples (scales, otoliths bones, etc.) 
for analysing fish populations; 

d) review and report on the utility of molecular genetic methodologies for assessing the biological effects of 
contaminants on fish and shellfish;  

e) review and summarize principles for minimizing diversity loss in the early generations of a captive 
broodstock; 

f) prepare a position paper for the Working Group on Biological Effects of Contaminants  on the possible use 
of gene array techniques in the detection and quantification of responses in fish to pollution. 

WGAGFM will report by 20 April 2002 for the attention of the Mariculture Committee, ACME and ACFM.  

 

Supporting Information 

Priority: WGAGFM is of fundamental importance to ICES. 

Scientific Justification: a) The existing Code of Practice needs urgent updating, particlarly with 
regard to its application to GMOs. This update is a matter of urgency given 
the necessity to have measures to reduce unwanted consequences of 
introductions and transfers. 

b) During the past few years numerous important developments have been 
made in the statistical analysis of genetic data, in particular microsatellite 
DNA, for assessing and describing the genetic structure of populations. 
These new statistical procedures are based on principles such as Markov-
Chain Monte Carlo simulation, Bayesian statistics and coalescence theory 
and will undoubtedly have a profound effect on studies of the genetic 
structure of fish populations. However, there is so far a lack of 
understanding of "what to expect" from these procedures, both in 
comparison to "traditional" population genetics statistics and in relation to 
life history and other biological features of the studied species. Many marine 
species are particularly difficult to work with using "traditional" statistics 
due to weak genetic differentiation among populations, and it would be of 
interest to know how well the newly developed procedures perform in these 
cases.  

c) Analysis of DNA from archived samples, such as otoliths, scales and 
bones, is a new and very promising development in fish population genetics. 
This allows for studying the genetic composition of populations over much 
longer time spans than have previously been possible, to detect genetic 
changes in populations due to anthropogenic influence (e.g. loss of 
variability, allele frequency shifts at loci subject to selection), and to 
determine whether or not populations are indigenous or the result of stocked 
or escaped farmed fish. The WG finds it is important to evaluate the utility 
of archived samples in studies of fish populations and to identify possible 
problems and pitfalls. 

d) This is a ToR resulting from a suggestion by the Working Group on the 
Biological Effects of Contaminants (WGBEC). It is suggested to assess the 
utility of developments in molecular genetics and genomics for studying the 
biological effects of contaminants on fish and shellfish. The ToR builds 
partly on previous ToRs at the 2000 and 2001 meetings on endocrine 
disruptors and selected genes, respectively. 
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e) This ToR addresses the difficulty which arises when a gene bank or 
supplementary broodstock is founded with a few, non-representative 
survivors of a dying natural population. It is often not clear what is supposed 
to be conserved by breeding these remnants in captivity. Standard practices 
for maximising effective population sizes, such as equalizing mating success 
and fecundities, will merely lock in the initial founder distortion. 
Preferentially mating some founders more than others in the early 
generations, e.g., to increase lineage diversity, is likely to be controversial, 
though it is a procedure that is used in zoos. It is important to highlight and 
discuss the fundamental differences, rationales and consequences of these 
different approaches. Also, hatchery procedures, particularly in the initial 
generations, should be rather different in these two cases. This is an 
important question in relation to management and conservation of 
populations and captive broodstocks. At the same time the ToR addresses an 
issue of importance to the maintenance of quantitative genetic variation in 
aquaculture stocks, particularly if aquacultural stocks are included in a 
comprehensive program for genetic conservation of a species. 
f) WGBEC does not have the appropriate expertise and therefore needs 
assistance in this question 

Relation to Strategic Plan: Responds to Objectives 

Resource Requirements: None required other than those provided by the host institute. 

Participants: Quantitative and aquaculture-type geneticists are particularly needed. 

Secretariat Facilities: None required 

Financial: None required 

Linkages to Advisory Committees: ACME 

Linkages to other Committees or 
Groups: 

SIMWG (Delegates drew specific attention to the need to develop this link – 
the Chairs of these two Working Groups should correspond together to 
ensure that there is no unnecessary overlap in their work.) 
WGBEC 

Linkages to other Organisations: HELCOM 

Cost share ICES 100% 
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Geir Dahle Institute of Marine Research 
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GEIR.DAHLE@IMR.NO  
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ANNEX 4: RECOMMENDATIONS FOR 2003  

The Working Group on the Application of Genetics in Fisheries and Mariculture [WGAGFM] (new Chair: E. 
Kenchington, Canada) will meet in La Tremblade, France, from 10–12 March 2003 to: 

a) review and report on the practical use of genome mapping in aquacultured organisms; 
b) discuss, review and report on genetic issues related to escapes of farmed marine fish and shellfish; 
c) discuss and report on management recommendations for Atlantic salmon, developed by the SALGEN EU project ;  
d) discuss and report on genetic aspects of developing standard culture conditions under which different strains of 

aquacultured species can be tested (collaboration with WGMAFC); 
e) discuss and report on issues in relation to practical management options for the conservation of genetic diversity in 

marine fish and shellfish of economic importance. 

WGAGFM will report by 28 March 2003 for the attention of the Mariculture Committee, ACE, and ACME. 

Priority: WGAGFM is of fundamental importance to the ICES advisory process. 

Scientific Justification: a) During the past few years, several genome mapping projects of species of 
importance for aquaculture have been initiated (e.g., salmonids, oyster). 
Such maps are essential for a better knowledge of the genome of these 
species. Recent developments in DNA technology have greatly eased the 
development of such maps. However, the practical application of such maps 
as tools in selective breeding programmes, such as the identification and  use 
of QTL, remains to be demonstrated in aquaculture. The ToR will review 
the present state of development of mapping projects of aquacultural species 
and, further, identify the specific constraints that might slow down their 
developments and potentially limit their use in selective breeding 
programmes. 

b) Escapes of cultured salmonid fishes, particularly Atlantic salmon, and 
their possible genetic impact on wild populations, has been an issue of 
concern for several years. This problem has been subject to a considerable 
number of research projects. More recently, culture of some marine species, 
particularly cod, has reached a level where accidental large-scale escapes 
may soon be anticipated. It is important to discuss how such escapes may 
affect wild conspecific populations. Experiences may to some extent be 
drawn from the research on salmonid species, but there are also some 
important biological differences between many marine species and 
salmonids that may result in different genetic consequences of large-scale 
escapes.  

c) SALGEN (www.salgen.marlab.ac.uk) is a project set up to review genetic 
studies on Atlantic salmon and develop management recommendations for 
the species. WGAGFM has been asked to review and discuss the 
recommendations resulting from this project. 

d) This ToR is the result of a request from WGMAFC concerning 
collaboration on the development of standard protocols for testing 
aquacultured strains. The first task of WGAGFM will be to identify the 
specific problems, which will then be addressed in more detail at 
forthcoming meetings. 

e) This ToR is the result of a request from WGMAFC concerning 
collaboration on developing practical management options for the 
conservation of genetic diversity in marine fish and shellfish of economic 
importance. The first task of the WGAGFM will be to identify the specific 
genetic problems of relevance to marine organisms, which will then be 
addressed in more detail at forthcoming meetings. 
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Relation to Strategic Plan: Responds to Objectives 1 (d), 2 (a, d) and 4 (a). 

Resource Requirements: None required other than those provided by the host institute. 

Participants: WGAGFM members 

Secretariat Facilities: None required 

Financial: None required 

Linkages to Advisory Committees: ACME, ACFM, ACE 

Linkages to other Committees or 
Groups: 

SIMWG (Delegates drew specific attention to the need to develop this link – 
the Chairs of these two Working Groups should correspond together to 
ensure that there is no unnecessary overlap in their work.) 

Linkages to other Organisations:  
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