REPORT OF THE

Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$

ICES Headquarters

12-21 March 2002

This report is not to be quoted without prior consultation with the General Secretary. The document is a report of an expert group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.

International Council for the Exploration of the Sea
Conseil International pour l'Exploration de la Mer

TECHNICAL MINUTES

ACFM Subgroup Review of Herring Assessment Working Group (HAWG) Report

ACFM Meeting May, 2002

Subgroup Chair: Steve Cadrin
Working Group Chair: Else Torstensen
Reviewers: Bengt Sjòstrand, Denis Rivard
Others: Nils Hammer, Ciaran Kelley, Eskild Kirkegaard, Georges Kornilovs, Martin Pastoors, Henrik Sparholt

General Comments:

- The Subgroup complemented the Working Group on a well-produced report.
- It was noted that some herring jargon (e.g., "ringers") is used extensively. The Subgroup was concerned that year classes can easily be confused and may produce assessment errors. The Subgroup recommends that cohorts are consistently labelled throughout the text, tables and figures. Whatever convention is used by the Working Group, an explanation with a schematic time line of spawning in introduction would help to present the report as a whole.
- Quality control sheets indicate a general tendency to overestimate SSB in the terminal year in all assessments.
- The results from otolith exchanges and problems with species identification suggests that more work on general biology is needed.
- The general practice of using acoustic surveys as relative indices was noted. The Working Group chair explained that target strengths and resulting biomass estimates may not be accurate due to variation in fish behaviour and distribution. Others noted that using acoustic surveys as absolute biomass estimates has been problematic in the past.
- The Subgroup encouraged the Working Group to estimate variance for all assessments to allow risk analysis and evaluation of uncertainty.
- In general, the Subgroup advises the Working Group and ICES to provide stochastic short-term projections in the form of risk analyses so that information from some provisional assessments can be used in advise.

North Sea Autumn Spawning Herring (IV, VIId, IIIa; HAWG sec.2, p27; ACFM sec. 3.5.8)

- Input Data:
-Substantial catch data revisions were not included in this assessment. The Working Group proposed to ICES that a more comprehensive revision of catch data is needed. The Working Group plans to revise the assessment after all changes are made to the catch data.
-A reviewer asked what the affect of low sample intensity for some components of the catch is. A Working Group member described sensitivity analyses that suggested catch at age estimates were not substantially changed with different data, but the analyses assumed that the total catch estimate was correct. Changes in overall catch estimates may change the sensitivity to sampling.
-Catches of Norwegian spring spawners in the North Sea are not considered in the catch statistics. The Subgroup noted that all herring catches in the NS should be reported, (similar to the way Western Baltic spring spawners are considered.
-The Subgroup questioned why historical catches were not revised with the new stock splitting procedures. A Working Group member replied that reconstruction of historic data requires more detailed catch data than currently available.
- A reviewer noted that mean weights for ages 4-6 in 2001were extremely low, particularly in IVb. The Subgroup noted that this pattern may reflect the decrease in sampling intensity.
- The Subgroup found the use of labels like "the 1998 year class" to be confusing, and noted that the cohort should be labelled "the 1998-99 year class or simply " 1 ringers in 2000."

- Assessment:

-There was a change in the VPA calibration. The 2001 assessment assumed a 4 -year separability period and applied equal weighting. The 2002 assessment assumed a 5 -year separability period and applied inverse variance weighting and down-weighting of 0-1 catch.
-The Working Group reported a sensitivity of the SSB estimate to the weighting scheme. A sensitivity analysis was presented to the Subgroup by H. Sparholt with a recommendation to reconsider the weighting scheme. The analysis indicated that inverse variance weighting was not appropriate because the MLAI index is modelled to agree with SSB from the VPA. A response to the recommendation by J. Simmonds defended the use of inverse variance weighting because it was advocated by SGHAP as an improvement over equal weighting, sampling variance (not structural variance) was used as a weighting criterion, and evaluation of recruitment and F are improved through inverse variance weighting. The Subgroup agreed that the Working Group assessment was acceptable because inverse variance weighting uses more information for the assessment (i.e., information on sampling variance), but noted that revised evaluation of sampling variance (particularly for the MLAI index) may be needed for future assessments. Furthermore, the Subgroup suggested that evaluation of catch bias should also be included in estimates of catch variance.
-As a background to the issue of down-weighting age $0-1$ catches, a Working Group member explained that surveys are currently more reliable for predicting recruitment than catches because of recent management actions. Human consumption fisheries are affected by TACs, but other fisheries are affected by by-catch restrictions.
-The Subgroup noted the substantial retrospective error and historical error (from quality control sheets) with a tendency to overestimate SSB. Similarly, it was noted that the perception of strength of the 1998/99 year class has decreased by approximately 10%.

- Short-term Projections:
-A new methodology was used based on ACFM feedback and SGHAP conclusions that the more complex methods used in 2001 were not performing well.
- The Subgroup discussed the relative merits of assuming status quo F or catch in 2002. Assuming a catch constraint implies a 34% decrease in F , which was not considered to be realistic. Therefore, the Subgroup decided to report the projections that assume status quo F in2002.

PA Reference Points:

- The Subgroup asked if changes to earlier estimates of SSB will affect our perception of $\mathbf{B}_{\text {lim }}$. Working Group members replied that changes were slight and should have little affect on the estimate of $\mathbf{B}_{\text {lim }}$.
- Downs Component:
- The Subgroup noted that partial F by area would be helpful for management and requested that they be explored by the Working Group. Working Group members responded that planned research on otolith microstructure and genetics may help to estimate partial catches.
- Response to 2001 ACFM comments:
-The Working Group responded to ACFM feedback by simplifying short-term projection methodology and providing a status quo F projection.
- Species composition in Danish fleet and associated level of sampling were reported. However, the Subgroup concluded that species composition needs to be sampled and reported by fleet.
- Advice:
-In order to monitor compliance with the management plan, the summary sheet needs to list both fully-recruited and juvenile F. Therefore, the format of Table 3.5.8.7 in the ACFM report needs to be revised.
-A reviewer noted that although the 1998-99 year class and the 2000-01 year class appear to be very strong in all the surveys, they have are not been well represented in the catches.
-Consideration of retrospective errors in advice was discussed. The Subgroup decided that more information on the relative performance of adjusted and unadjusted projections is needed before advise can be based on adjustments for retrospective error.
-To allow complete accounting of catches, the Working Group and Subgroup would like Table 3.5.81 n the ACFM report to be in the same format of Table 2.1.6 in Working Group report.
- The improvement in status of North Sea autumn spawning herring and the advice for substantial reductions in F for Western Baltic spring spawners, a shift is needed in the focus of management in which NSAS are managed in accordance with the objectives for WBSS.

Western Baltic Spring Spawning Herring (IIIa, 22-24; HAWG sec.3, p139; ACFM sec. 3.4.7)

- Input Data:
-The Working Group concluded that there was a considerable improvement in the assessment data. For such a short assessment series, 1991-2001, each additional year should improve the reliability of the assessment. There was approximately a doubling in the number of age observations. However some patterns in mean weights at age in 2001 may indicate that some sampling errors persist.
-The Subgroup felt that the revised method for splitting stock components is an improvement.
-The Working Group concluded that discards were not substantial, because there was a market for all sizes. The Subgroup was concerned that discards may still be a problem.
- The Subgroup recommended that information on data quality (e.g., measurements of precision, sampling adequacy, survey variance) would help to determine the adequacy of input data for stock assessment modelling.
- Assessment:
-Last year the assessment was not considered to be reliable enough to provide projections. This year the assessment was very consistent with the provisional assessment in 2001. The Subgroup considered the 2002 assessment and associated projections to be a reliable basis for management advice.
-A reviewer noted that the criteria used to choose among alternative model runs should be described. The Working Group chair responded that the choice was based on residual analyses. The Subgroup noted that the final run also had the greatest precision in the estimate of F .
- The Subgroup noted that the solution was not very precise, but is adequate to conclude that F is too high, because the lower 95% confidence limit of F was greater than $\mathbf{F}_{\text {max }}$.
- Short-term Projections:
- The Subgroup requested a projection at $\mathbf{F}_{\text {max }}$.

Medium-term Projections: Medium-term projections were not performed. The Subgroup concluded that the timeseries of stock and recruitment does not provide an adequate basis for predicting recruitment in the medium term.

- PA Reference Points:
-PA reference points were not proposed, because this is the first year that the assessment was accepted
-The Working Group concluded that the current level of F is not sustainable in the long-term.
- Subgroup members concluded that current F is greater than any candidate \mathbf{F}_{pa}, based on experience with other herring stocks.
- Advice:
-Taking into account the uncertainty in the assessment, there is greater than 95% probability that 2001 F was greater than $\mathbf{F}_{\text {max }}$.
- The improvement in status of North Sea autumn spawning herring and the advice for substantial reductions in F for Western Baltic spring spawners, a shift is needed in the focus of management in which NSAS are managed in accordance with the objectives for WBSS.

Herring West of Scotland (VIa north; HAWG sec.5.1, p.257; ACFM sec. 3.7.8a)

- Input Data:
-Some sampling problems persist, but the observed maturity of the 1999 cohort is still within the observed range.
- Unlike other years when maturity and size at age were correlated, in 2001 maturity at age increased and weight at age decreased.
- Assessment:
- The Subgroup agreed that instability in terminal recruitment estimates among alternative runs justifies the replacement of 1 and 2 ring abundance in 2002 with the geometric means, but including recruitment in retrospective analysis would also help to justify the replacement.
- Projections: The Working Group chair clarified that mean maturity at age 1999-2001 were assumed.
- PA Reference Points:
-The Subgroup endorsed the proposal for \mathbf{F}_{pa} and the approach used to estimate \mathbf{F}_{pa}, noting that it is greater than $\mathbf{F}_{0.1}$, but is within the range of \mathbf{F}_{pa} used for other herring stocks.
- The Subgroup noted that \mathbf{F}_{pa} should be based on long-term projections, but trajectories appear to approach equilibrium at the end of the medium term
- Advice: Stock status and advice were phrased in the context of the proposed PA reference points.

Clyde Herring (VIa; HAWG sec.5.2, p.263; ACFM sec. 3.7.8b)

- The Subgroup concurred with the proposal to not review this stock in Plenum.

North Sea Sprat (IV; HAWG sec.8, p.373; ACFM sec.3.5.9)

- Input Data:
-Unlike the assessment in previous years, the Working Group decided to include the 1989 survey observation (which had a relatively high survey index and low catch) in the regression this year, because there was no a priori or statistical basis for the removal. The Subgroup agreed with the Working Group decision.
- A Subgroup member noted that some western Baltic catches were included in the catch distribution figures.
- Assessment:
- The Working Group based their advice on a Schaefer production model. However, the Subgroup rejected the model results as a basis for management advice, because the solution was highly imprecise and unstable. For example a different version of the CEDA software found a different solution
- Contrary to the proposal to not review this stock in Plenum, the Subgroup felt this stock should be reviewed, because the Subgroup made a different determination than the Subgroup.

VIId,e Sprat (HAWG sec.9, p.400; ACFM sec.3.9.10)

- The Subgroup concurred with the proposal to not review this stock in Plenum.

IIIa Sprat (HAWG sec.10, p.404; ACFM sec.3.4.8)

- The Subgroup concurred with the proposal to not review this stock in Plenum.

Celtic Sea Herring (VIIj; HAWG sec.4, p.205; ACFM sec.3.9.9)

- Input Data:
-The recent change in perception of the stock was discussed. Prior to 1999, approximately half the catch was $3+$ ringers, but the proportion of $3-5$ ringers was variable in the survey. In 2000 there were very few adults in the catch and in the survey. The assessment was rejected, because the survey had limited geographic range and was considered to have not completely sampled the population of adults. In 2001, more adults were in the catch, but nearly as much as prior to 1999.
-The Subgroup noted that the July 1999 and January 2001 were excluded from the assessment because they did not agree with the age composition in the past. Given the subsequent changes in perception of age structure, the Subgroup recommends that the Working Group include all surveys in future exploratory analyses.
-The Subgroup noted that catch sampling improvement in 2002.
-The issue of stock identification and the movement of some juveniles to the Irish Sea was noted as a source of uncertainty in the assessment.
- The Subgroup recommended that the Working Group monitor effort in the fishery to corroborate trends in F from the assessment.
- Assessment:
-The assessment used the same configuration as last year. A Working Group member noted an error in 4.5.1 where the "run as 2001 Working Group" assumes geometric mean recruitment but the other runs do not.
-Used 2000 survey, but not 1999 survey in calibration.
-The replacement of estimated recruitment with geometric mean recruitment greatly affected the perception of 2002 SSB with respect to \mathbf{B}_{pa}.
-A reviewer noted that large interannual variations in F may not be realistic for a licensed fishery with stable effort.
-The Subgroup recommended that a weighted F that excludes untuned ages may perform better for monitoring F .
-The Subgroup requested that an uncertainty analysis (e.g., bootstrapping) be applied to measure precision.
- The Subgroup concluded that the assessment did not provide a reliable basis for management advice
- Advice:
-The suggestion of truncated age structure from the catch and surveys was noted.
-ICES provided advice earlier this month that 2002 F be less than 0.35 for remainder of 2002 season based on the Working Group assessment.
- If catch forecasts were stochastic, such provisional assessments could be considered along with their uncertainty.

Herring West of Ireland (VIa south, VIIb,c; HAWG sec.6, p.311; ACFM sec.3.10.3)

- Input Data:
-The Subgroup noted that sampling has improved.
- No survey data were available, but groundfish data is being considered. Acoustic data have been explored in the past for tuning indices.
- Assessment:
-The solution was considered to be imprecise, based on the relatively flat objective function.
-The substantial retrospective error remains a large source of uncertainty in this assessment.
-The Subgroup concluded that the assessment can only be used for illustrative purposes. The trend in stock size until 1995 appears to be stable, but recent estimates are unreliable.
- Tuning indices and estimates of variance are needed to improve the assessment.

Advice: The assessment was considered provisional and advice was based on low catches and more older fish in the catch.

Irish Sea Herring (VIIa; HAWG sec.7, p.341; ACFM sec.3.8.7)

- Input Data:
-A reviewer noted that mean weights at age in 2001 were record low for several ages, but sampling was relatively intense.
- Large uncertainty in the magnitude of catch continues to be a major source of uncertainty for this assessment.
- Assessment:
-Assessment results are substantially inconsistent with recent assessments.
-Model estimates have very high variance.
- The Subgroup agrees with Working Group decision that the assessment does not provide a reliable basis for management advice.

Advice: The Subgroup noted that the 95% confidence interval of 2001 F is $0.19-0.68$, which is not informative for management.

TABLE OF CONTENTS

1 INTRODUCTION 1
1.1 Participants. 1
1.2 Terms of Reference 1
1.3 Study Group on the Evaluation of Herring Assessment Procedures report 2
1.3.1 ICA assessment review 2
1.3.2 Use of AMCI for assessment of North Sea herring 2
1.3.3 Review of the use of the split factor in short term predictions 3
1.3.4 Fleet review 3
1.3.5 Harvest control of reference points 3
1.4 Working Group on Methods on Fish Stock Assessments (WGMG) 3
1.5 Study Group on the Further Development of the Precautionary Approach to Fisheries Management 4
1.6 Summary of the Report of the Planning Group for Herring Surveys (PGHERS) 4
1.6.1 Review of larvae surveys 4
1.6.2 Review of the acoustic surveys in 2001 5
1.6.3 Co-ordination of surveys in 2002/2003 5
1.6.4 Quality control 5
1.6.5 Biological parameters 6
1.6.6 Other issues 7
1.7 HAWG Recommendations 7
1.7.1 Data provision, manipulation, transparency and storage. 7
1.7.2 The Planning Group of Herring Surveys 7
1.7.3 Other recommendations on surveys 8
1.7.4 Degradation of spawning grounds 8
1.7.5 Sprat 8
1.7.6 Study groups 8
1.8 Summary of the report of the Planning Group on Commercial catch, Discards and Biological Sampling (PGCCDBS) 10
1.9 Summary of the Report of the Study Group on the Incorporation of Process Information into stock- recruitment models (SGPRISM) 12
1.10 Commercial Catch Data Input, Quality Control, and Long-term Data Storage 13
1.11 Comments on the ICES quality control handbook 15
1.12 Fleet Descriptions 15
1.13 Reference Points 15
1.14 Overview 16
Table 1.10.1 17
Figures 1.3.1-1.14.3 18
2 NORTH SEA HERRING 27
2.1 The Fishery 27
2.1.1 ACFM advice and management applicable to 2001 and 2002 27
2.1.2 Catches in 2001 27
2.2 Biological Composition of the catch 28
2.2.1 Catch in numbers-at-age 28
2.2.2 Spring-spawning herring in the North Sea 29
2.2.3 Data revisions 29
2.2.4 Quality of catch and biological data. 30
2.3 Recruitment 31
2.3.1 The IBTS index of 1-ringer recruitment 31
2.3.2 The MIK index of 0-ringer recruitment 31
2.3.3 Relationship between the MIK 0 -ringer and the IBTS 1 -ringer indices 31
2.3.4 Trends in recruitment as estimated by the assessment 31
2.3.5 Separate recruitment index of the Downs herring. 31
2.4 Acoustic Surveys in the VIa north and the North Sea July 2000 32
2.5 Larvae Surveys 33
2.6 International Bottom Trawl Survey (IBTS) 33
2.7 Mean weights-at-age and maturity-at-age. 34
2.7.1 Mean weights-at-age. 34
2.7.2 Maturity Ogive 34
2.8 Stock Assessment. 34
2.8.1 Data exploration and preliminary modeling 34
2.8.2 Stock assessment. 37
2.9 Herring in Division IVc and VIId 39
2.10 Short-term Projection by Fleets 40
2.10.1 Method 40
2.10.2 Input data 40
2.10.3 Prediction for 2002 and management option tables for 2003 41
2.10.4 Comments on the short-term projections 42
2.11 Medium-term Analysis 42
2.12 Biological Reference Points 43
2.13 Quality of the Assessment. 43
2.14 Management considerations 44
Tables 2.1.1-2.12.1 46
Figures 2.1.1-2.12.1 105
3 HERRING IN DIVISION IIIA AND SUBDIVISIONS 22-24 139
3.1 The Fishery 139
3.1.1 ACFM advice and management applicable to 2001 and 2002. 139
3.1.2 Total landings 139
3.2 Stock Composition 140
3.2.1 Treatment of spring-spawning herring in the North Sea 141
3.2.2 Treatment of autumn spawners in Division IIIa. 141
3.2.3 Autumn spawners in the fishery in Subdivisions 22 and 24 141
3.2.4 Accuracy and precision in stock identification 141
3.3 Catch in Numbers and Mean Weights-at-age 142
3.4 Quality of Catch Data and Biological Sampling Data 143
3.5 Fishery-Independent Estimates 143
3.5.1 German bottom trawl surveys in subdivisions 22 and 24 143
3.5.2 International Bottom Trawl Survey in Division IIIa 143
3.5.3 Summer acoustic survey in division IIIa 144
3.5.4 October acoustic survey in western Baltic and the southern part of Division IIIa (Kattegat). 144
3.5.5 Larvae surveys 145
3.6 Recruitment Estimates 145
3.7 Data Exploration 145
3.7.1 Input data 145
3.7.2 ICA settings 146
3.7.3 Exploration by individual survey indices 146
3.7.4 Exploration by combined survey indices 148
3.7.5 The final run 148
3.8 Stock and Catch Projection 149
3.9 Quality of Assessment 150
3.10 Status of the Stock 150
3.11 Management Considerations 150
Tables 3.1.1-3.8.2 152
Figures 3.6.1-3.9.2 187
4 CELTIC SEA AND DIVISION VIIJ HERRING 205
4.1 Introduction 205
4.2 The Fishery in 2001-2002 205
4.2.1 Advice and management applicable to 2001-2002 205
4.2.2 The fishery in 2000/2001 205
4.2.3 The catch data 205
4.2.4 Quality of catch and biological data. 206
4.2.5 Distribution of juvenile fish 206
4.2.6 Catches in numbers-at-age 206
4.3 Mean weights \& maturity-at-age 206
4.4 Surveys. 206
4.4.1 Acoustic Surveys 206
4.4.2 Summer programme to examine stock distribution and age structure 207
4.4.3 Bottom trawl surveys 208
Section Page
4.5 Stock Assessment. 208
4.5.1 Preliminary data exploration 208
4.5.2 Results of the assessment 209
4.5.3 Comments on the assessment. 209
4.5.4 Recruitment estimates 209
4.6 Short-term Projection. 209
4.6.1 Biological reference points and management considerations 210
4.6.2 Quality of the assessment. 211
4.6.3 Management considerations 211
Tables 4.2.1-4.6.5 212
Figures 4.2.1-4.6.1 243
PART 2
5 WEST OF SCOTLAND HERRING 257
5.1 Division VIa(North) 257
5.1.1 ACFM advice applicable to 2001 and 2002 257
5.1.2 The fishery 257
5.1.3 Landings estimates and allocation of catches to area 257
5.1.4 Age-composition of commercial catches 258
5.1.5 Larvae surveys 258
5.1.6 Acoustic survey. 258
5.1.7 Mean weights-at-age 258
5.1.8 Maturity ogive. 259
5.1.9 Data exploration and preliminary modelling 259
5.1.10 Stock assessment 259
5.1.11 Projections 259
5.1.12 Quality of the assessment 261
5.1.13 Management considerations 261
5.1.14 Reference points 262
5.2 Clyde Herring. 263
5.2.1 Advice and management applicable to 2001 and 2002 263
5.2.2 The fishery in 2001 263
5.2.3 Weight-at-age and stock composition 263
5.2.4 Surveys 263
5.2.5 Stock assessment 263
5.2.6 Stock and catch projections 263
5.2.7 Management considerations 263
Tables 5.1.1-5.2.4 264
Figures5.1.1-5.1.23 296
6 HERRING IN DIVISIONS VIA (SOUTH) AND VIIB,C 311
6.1 The fishery 311
6.1.1 Advice and management applicable to 2001 and 2002 311
6.1.2 Catch data 311
6.1.3 The fishery in 2001 311
6.1.4 Catch in numbers-at-age 311
6.1.5 Quality of the catch and biological data. 311
6.2 Mean Weights-at-age 312
6.3 Ground fish Surveys 312
6.4 Acoustic Surveys 312
6.5 Stock Assessment 312
6.5.1 Date exploration \& preliminary assessments 313
6.5.2 Results of the assessment 313
6.5.3 Stock forecasts and catch predictions 314
6.6 Quality of the Assessment 314
6.7 Management Considerations 314
6.8 Medium Term Projections and Management Considerations 314
Tables 6.1.1- 6.5.3.3 315
Figures 6.1.1-6.5.2.1 334
Section Page
7 IRISH SEA HERRING (DIVISION VIIA, NORTH) 341
7.1 The Fishery 341
7.1.1 Advice and management applicable to 2001 and 2002 341
7.1.2 The fishery in 2001 341
7.1.3 Quality of catch and biological data 341
7.1.4 Catch in numbers 341
7.2 Mean Length, Weight, Maturity and Natural Mortality at Age 341
7.3 Research Surveys 342
7.3.1 Acoustic surveys 342
7.3.2 Larvae surveys 342
7.3.3 Groundfish surveys of Area VIIa(N) 343
7.3.4 Analysis of otolith microstructure of juveniles 343
7.4 Data exploration and Preliminary Modelling 343
7.5 Stock Assessment 344
7.6 Stock and Catch Projection 344
7.7 Medium-term Predictions of Stock Size 345
7.8 Management Considerations 345
7.8.1 Precision of the assessment 345
7.8.2 Reference points 345
7.8.3 Spawning and juvenile fishing area closures 345
Tables 7.1.1-7.6.3 346
Figures 7.1.1-7.5.8 364
8 SPRAT IN THE NORTH SEA 373
8.1 The Fishery 373
8.1.1 ACFM advice applicable for 2000 and 2001 373
8.1.2 Total landings in 2001 373
8.2 Catch Composition 373
8.2.1 By-catches in the North Sea sprat fishery 373
8.2.2 Catches in number 373
8.2.3 Mean weight-at-age 374
8.2.4 Quality of catch and biological data 374
8.2.5 Maturity-at-age 374
8.3 Recruitment 374
8.4 Acoustic Survey 375
8.5 State of the Stock 375
8.5.1 Catch-survey data analysis 375
8.6 Projections of Catch and Stock 375
8.7 Quality of the Assessment 376
8.8 Management Considerations 376
Tables 8.1.1-8.6.1 377
Figures 8.1.1a-8.6.3 386
$9 \quad$ SPRAT IN DIVISIONS VIID,E 400
9.1 The Fishery 400
9.1.1 ACFM advice applicable for 2001 400
9.1.2 Catches in 2001 400
9.1.3 Catch composition 400
Tables 9.1.1-9.2.2 401
10 SPRAT IN DIVISION IIIA 404
10.1 The Fishery 404
10.1.1 ACFM advice applicable for 2001 and 2002 404
10.1.2 Landings 404
10.1.3 Fleets 404
10.2 Catch Composition 404
10.2.1 Catches in number and weight-at-age 404
10.2.2 Quality of catch and biological data 404
10.3 Recruitment 405
Section Page
10.4 Acoustic Survey 405
10.5 State of the Stock 405
10.6 Projection of Catch and Stock 405
10.7 Management Considerations 405
Tables 10.1.1-10.6.1 406
Figure 10.6.1 413
11 REFERENCES 414
12 WORKING DOCUMENTS 416
APPENDIX I 417

1.1 Participants

Patricia Reglero Barón	Denmark
Max Cardinale	Sweden
Jørgen Dalskov	Denmark
Mark Dickey-Collas	UK
Tomas Gröhsler	Germany
Emma Hatfield	UK
Graham Johnston	Ireland
Ciarán Kelly	Ireland
Henrik Mosegaard	Denmark
Peter Munk (part time)	Denmark
Richard Nash	UK
Martin Pastoors	The Netherlands
Gerjan Piet (part time)	The Netherlands
Beatriz Roel	UK
Norbert Rohlf (part time)	Germany
John Simmonds	UK
Dankert Skagen	Norway
Else Torstensen (Chair)	Norway
Lotte Askgaard Worsøe	Denmark
Christopher Zimmermann	Germany

Contact details for each participant are given in Appendix I.

Invited speaker:
Deirdre Brophy Ireland

1.2 Terms of Reference

The Herring Assessment Working Group for the Area South of $\mathbf{6 2}{ }^{\circ} \mathbf{N}$ [HAWG] (Chair: E. Torstensen, Norway) will meet at ICES Headquarters from 12-21 March 2002 to:
a) assess the status of and provide catch options (by fleet where possible) for 2003 for the North Sea autumnspawning herring stock in Division IIIa, Subarea IV, and Division VIId (separately, if possible, for Divisions IVc and VIId), for the herring stocks in Division VIa and Subarea VII, and the stock of spring-spawning herring in Division IIIa and Subdivisions 22-24 (Western Baltic); in the case of North Sea autumn-spawning herring the forecasts should be provided by fleet for a range of fishing mortalities that have a high probability of rebuilding or maintaining the stock above 1.3 mill tonnes by spawning time in 2002;
b) assess the status of and provide catch options for 2003 for the sprat stocks in Subarea IV and Divisions IIIa and VIId, e;
c) consider the results of SGEHAP;
d) provide specific information on possible deficiencies in the assessments including at least: Major inadequacies in the data on catches, effort, or discards; major inadequacies, if any, in research vessel surveys data and major difficulties if any in model formulation; including inadequacies in available software. The Group should clarify the consequences from these deficiencies for a) assessment of the status of the stocks and b) for the projection;
e) for stocks for which a full analytical assessment is presented, comment on this meeting's assessments compared to the last assessment of the same stock;
f) consider the results presented in the reports of the WGMG and the SGPA with a view to applying these in the assessments;
g) review the draft Quality Handbook.

HAWG will report by 22 March 2002 for the attention of ACFM.
In addition, HAWG was asked to consider a request from the EU Commission, to review the state of the herring stock in VIIghjk (Celtic stock) and appropriate catch:

- To evaluate any new relevant information concerning the state of the stock;
- To review the catch advice provided for the year 2002.

The group has evaluated relevant information and then reviewed the state of the stock and catch advice, as seen in Sections 4.5 and 4.6.

1.3 Study Group on the Evaluation of Herring Assessment Procedures report

The SGEHAP report provides an extensive review of North Sea herring assessment input data, assessment, and prediction methods (ICES 2001/ACFM:22).

1.3.1 ICA Assessment Review

The impact of sampling uncertainty in catch and survey indices were investigated extensively. Assessments were carried out using bootstrap realisations of all the variable assessment data (i.e., catch numbers, catch weights, stock weights, proportion mature, and survey indices). The following weighting methods were examined: (a) the previous WG weighting, (b) inverse variance weighting, and (c) adaptive weighting. This investigation provides an objective basis for selecting a weighting method for the different indices in the assessment of North Sea herring. The inverse variance weighting method within ICA reduces the CV on the assessment and on all the main management parameters to the greatest extent (Figure 1.3.1). The use of adaptive weighting, based on the residuals within the assessment model, gives poorer results than using the inverse variance weighting method, in which residuals are derived from the input data.

Some inconsistencies between catch data and survey data are apparent from the retrospective performance of the different assessments. The estimated SSB and F_{2-6} from three assessments $(2001,1999,1996)$ are shown in Figures 1.3.2 and 1.3.3 respectively. The 1996 assessment of SSB agrees quite well with the converged VPA and the two 2001 assessments using the different weighting methods ((a) and (b) described above). There are more differences with intermediate assessments. The 1999 assessment is shown in Figures 1.3.2 and 1.3.3 to provide an example of these differences. The intermediate assessment results are very sensitive to the choice of both number and length of independent separable periods, and the way these are used in the assessment model. In particular the way in which the catches on either side of 1996 (a year in which a management change occurred) are fitted in the separable model. The intermediate assessments were carried out using the choice of separable periods as used in the HAWG. However, it was not possible to simulate exactly the WG model as this used a specific version of ICA to allow a single separable period for 4-9+ ringers and two different separable periods for 0-3 ringers. These issues do not affect either the 2001 or the 1996 assessments. The WG has previously used arbitrarily selected weights for indices. The evaluation presented here gives an objective method for deciding between a range of possible alternatives.

1.3.2 Use of AMCI for assessment of North Sea herring

One possible way to improve assessment and prediction for North Sea herring discussed by the SGEHAP was to extend the AMCI software to incorporate multiple areas, and use that both as a tool for historic assessment and to provide fleetwise stochastic predictions in the short term. Earlier versions of this program have been used as a support for the assessment of several stocks, notably mackerel (ICES CM 2001/ACFM: 06), and (as version 1.4) for the final assessment of blue whiting in 2001 (ICES CM 2001/ACFM: 17). The software has recently been extended to allow for multiple areas. Some trial runs with this data set were presented. A brief description of the program is given in the SGEHAP report.

A limited number of trial runs were made using two areas and the standard fleets $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D . The parameters indicating the fraction of the stock-at-age in each area were either estimated by the model, or fixed at the adopted values of the split-factor as used by the HAWG.

Attempting to estimate the split-factors within the model gave clear signals of over-parameterisation, as indicated by a singular Hessian matrix and extremely slow convergence of the optimisation of the objective function. Using input split-factors ameliorated some of these problems, but some fishing mortalities with very large variances were produced,
and there were strong correlations between parameters, in particular between the various fleets with respect to fishing mortalities.

The impression from these studies was that doing the assessment by areas to get a basis for area-based predictions cannot be expected to improve the predictions, because the estimates of the split and of the local catches are too imprecise to provide more information than noise.

1.3.3 Review of the use of the Split factor in short-term predictions

During the 1990's the HAWG introduced a method for predicting catch (partial F's) that included the variability in proportions of 0 and 1 ringers in the North Sea and IIIa. The proportion of North Sea 0 and 1 ringers that occur in Division IIIa varies between years depending on the size of the year class. Annual split factors have been used for shortterm predictions for the North Sea autumn-spawning stock to distinguish the proportions of the North Sea Autumn spawners present in the North Sea and in Division IIIa. Some of the split factors have been directly estimated from surveys, other values have been estimated from a general linear model (GLM), which relates the proportion of 1-ringers in Division IIIa to the MIK index of 0-ringers. The SGEHAP was asked to review the use of these split factors in these predictions.

Introducing local partial F's produces a conflict between the introduction of noise by estimating those local F's and the advantages of taking into account the local supply of fish for the fishery. These local partial F's are obtained from the combination of local population data and data on local catches, by applying a split-factor in each year. The investigation attempted to evaluate whether or not the increase in complexity of a split-factor delivered improved estimates of catch per fleet and population numbers-at-age. The investigation suggested that most of the errors in predicting catch were common to both methods (with and without the split-factor, Figure 1.3.4). For some years and some fleets there were indications of improved prediction with the inclusion of a split, however, in the majority of cases there was no improvement or a small degradation in prediction when including the split. There did not seem to be any obvious pattern in the instances where the predictions were improved so the conclusion was that increased complexity did not deliver any overall gain in the quality of the prediction. Given the current levels of uncertainty of both catch and population distribution it is recommended that the simpler method for short-term prediction (i.e., without a split) should be used. However, it is important that the issue of the inclusion or exclusion of a split-factor is kept under consideration. If there are changes in distribution of herring, or the data on catch or population distribution change, this issue should be reviewed again.
N.B. It should be remembered that the analysis here only investigated the facility for the use of year-class dependent distributions of North Sea herring in fleet-based predictions. This should not be confused with the need to separate North Sea and Western Baltic Spring-spawning herring in the fishery and in the surveys for the stock assessment of these stocks.

1.3.4 Fleet Review

A review of the procedures used for generating fleet-based selection patterns suggested these are performing satisfactorily. The fleets are administratively and physically distinct and operate separately. All fleets operate in separate areas with the possible exception of fleet C , which may have area misreporting between IV and area IIIa but probably exploits the same part of the North Sea stock in either area. The fishery by fleet C and D are also important for the assessment of Western Baltic Spring-spawning herring. However, this year there are indications that sampling in the B fleet fishery has not been adequate to provide sufficient data on the age structure in the catch for this fleet (section 2.2.4).

1.3.5 Harvest control of reference points

Following the work presented above the basis for the biological reference points implemented in the management plan for North Sea autumn-spawning herring were discussed. The work carried out under this study group has not changed the current perception of the biological reference points and the appropriate management plan for North Sea herring.

1.4 Working Group on Methods in Fish Stock Assessments (WGMG)

The WG was requested to consider the report of the WGMG, which met in December 2001. The main issue at that meeting was retrospective bias in the assessments. It was recognised that this to a large extent is a problem with data and their interpretation. Generic properties of the models may also cause bias, but hardly to the extent often experienced in practise.

Candidate causes for retrospective bias that were identified by the WGMG included creeping of effective effort in the fishery as well as in surveys and trends in misreporting, discards and in natural mortality. Diagnostics that were suggested included careful scrutinising of residuals and experimenting with changing data that are suspected of creating problems to see whether the changes needed to remove retrospective bias can be realistic. It was also recommended to concentrate on a limited number of reliable surveys rather than using all possible tuning series.

The HAWG considered these points. CPUE data are not used in any assessment by this WG. Trends in the efficiency in surveys were discussed, but the general perception was that such trends were unlikely, except when going back to years that are not included in the assessments. Misreporting by stock does occur, but is largely accounted for in the catch numbers. Other misreporting and discards remains a matter of concern, although it is not perceived to be a major problem with respect to the assessments.

Retrospective runs are made routinely for most stocks. For North Sea herring, where retrospective bias has been a problem, an extensive study of retrospective error with various model formulation and data sources was made. The results of these studies, and the fact that the juvenile fishery is regulated independently of the adult fishery, led to downweighting of the catches of juveniles in the objective function. The assessment this year gives somewhat higher values for the stock abundance in recent years than last years assessment.

1.5 Study Group on the Further Development of the Precautionary Approach to Fisheries Management

This study group, which met the week before the HAWG, has outlined a time schedule for a revision of the precautionary reference points, and discussed possible extensions of the precautionary approach as applied by ICES.

The WG took note of this development, but concluded that no specific action would be required by the WG this year.

1.6 Summary of the report of the Planning Group for Herring Surveys (PGHERS)

PGHERS met at the Institute for Sea Fisheries, in Hamburg, Germany, from 10-14 December 2001, to:
a) co-ordinate the timing, area allocation and methodologies for acoustic and larval surveys for herring in the North Sea, Divisions VIa and IIIa and the Western Baltic in 2002;
b) combine the survey data from 2001 to provide estimates of abundance for the population within the area;
c) examine consistency in the measurement of biological parameters, specifically:
I. verification of maturity stage measurements of herring and sprat;
II. age reading of herring and sprat;
d) investigate the effect of time of day on the detection of herring during the acoustic survey.

1.6.1 Review of larvae surveys

At the time of the PG-meeting, three of the six surveys in the North Sea were still to be carried out in December 2001 and January 2002. Final results were presented to the HAWG, see Sec. 2.5.

Estimates from Western Baltic larvae survey in the Greifswalder Bodden area were given for the years 1992-2000.
Outcome of double area coverage on larvae abundance estimation: In the 2000 period, certain areas of the North Sea were sampled twice. The assumption that double sampling would result in a more stable estimate of LAI was not valid in this particular case due to the absence of newly hatched larvae in the second survey. As a general conclusion survey effort should be spent to cover the whole spawning period and to sample the major peaks of spawning instead of double sampling within the same period.

North Sea, west of Scotland and Western Baltic, June/July

Herring

Six acoustic surveys were carried out during late June and July 2001 covering the North Sea and west of Scotland. A small part of the area was not surveyed in 2001. Abundance in this area was estimated from a linear interpolated value from adjacent rectangles. The total combined estimate of North Sea spawning stock biomass (SSB) were 2.4 million t , an increase from 1.7 million t in 2000. The survey had exceptional numbers of 2-ring herring (the 1998 yearclass). The estimate of Western Baltic Spring-spawning herring SSB was $99,000 \mathrm{t}$, a decrease since $2000(196,000 \mathrm{t})$. The west of Scotland SSB estimate was $327,500 \mathrm{t}$ (down from $443,850 \mathrm{t}$). The surveys are reported individually in Appendix II of the PGHERS report.

Sprat

Data on sprat were only available from RV Solea, RV Tridens and RV Dana. The total sprat biomass estimated was $200,000 \mathrm{t}$ in the North Sea and $8,000 \mathrm{t}$ in the Kattegat. The entire stock was not covered by the survey as abundances of fish were still high at the southern boundary. The group recommends that the coverage in the south at least be maintained, as it expects this to be a precondition for a sprat index in the future. It was concluded that if the southern coverage was not maintained, it would not be possible to develop an acoustic abundance index. Hence, the southern coverage should be maintained.

Western Baltic acoustic survey, September-October

A joint German-Danish acoustic survey was carried out with RV Solea from 28 September to 15 October in the Western Baltic. The total number of herring was 9,800 million and the total for sprat 8,700 million. A full survey report is given in Appendix III of the PGHERS report.

1.6.3 Co-ordination of Surveys in 2002/2003

Larvae Surveys for 2002/2003

In the 2002 period, the Netherlands and Germany will undertake 7 larvae surveys in the North Sea from 1 September 2002 to 31 January 2003. The herring larvae survey in the Greifswalder Bodden (Baltic Sea) will be conducted from 23 April to 28 June using the RV Clupea.

Co-ordination of acoustic surveys in 2002

Six acoustic surveys will be carried out in the North Sea and west of Scotland in 2002 between 21 June and 26 July. RV Scotia and RV G.O. Sars will survey an overlapping area to the east of Shetland. RV Walther Herwig III and RV Tridens will have an intercalibration exercise. A survey of the western Baltic and southern part of Kattegat will be carried out by RV Solea from 26 September to 17 October.

1.6.4 Quality Control

Intercalibration between RV Solea and RV Walter Herwig III

These fisheries research vessels conducted an intercalibration of acoustic equipment on 11 July 2001. The targets were very small, and these were dense shoals of sprat. Acoustic values for the two vessels were not significantly different, suggesting that the systems on board these ships are not operating in an inconsistent manner.

Survey overlap between RV Scotia and RV Michael Sars

A provisional analysis of acoustic data from an extended area of overlap of survey by these vessels indicated that the Scotland/Norway ratio of acoustic values allocated to herring in these areas was about 2.0 in the northern area and 1.5 in the southern area. This is most likely due to differences in allocation of traces, as the two sets of results are based on data from different fishing patterns. Additional survey overlaps will take place in the Shetland area in 2002 to conduct an intercalibration of pelagic and bottom trawls.

Future planning of acoustic surveys in the North Sea

In recent years participating nations in the North Sea acoustic survey have been restricted to national waters or areas close by. As a result, some areas have a much higher biomass to sampling ratio than others. The survey should be redesigned to make the best use of the vessel resources available and the first implementation should be in the summer of 2003. In addition, it was noted that areas not surveyed in recent years may actually need to be covered in 2002 due to the substantial expansion of the stock.

1.6.5 Biological parameters

Maturity determination

There are at least two different maturity scales used by participants in the North Sea acoustic survey: an 8 and a 4-point scale. Small mistakes in maturity determination highlighted the need for consistent measurements between participants. In the 2001 surveys digital photographs of herring were collected to show the various maturity stages, but images were only comparable under ideal conditions. The best approach to harmonising maturity determination would be by means of a workshop.

Herring otolith exchange

A herring otolith exchange was carried out with at least 150 otoliths circulated among 8 readers from 6 nations. The measured ages were analysed using modal length as the reference age with no prior allocation of reader performance and equal weight for all readers. The accuracy revealed relatively good results: while there were statistically significant differences between readers there was only one reader with statistically significant differences between the modal age and estimated age. Intra-national variation was very much less than the inter-national variation, suggesting that there is scope for improvement by increasing the contact between staff who age herring.

In a separate exercise, 717 herring otoliths were circulated among 7 readers from 4 nations with the objective of verifying the species. Uniform agreement on the species origin of the otolith occurred for only 67% of otoliths.

Sprat otolith exchange

A sprat otolith exchange is in progress and some preliminary results of readings were presented. There are indications of disagreements in the ageing of larger and older sprat and it is recommended that age readings of sprat otoliths be part of a combined herring/sprat age-reading workshop in 2002.

The effect of time of day on the acoustic detection of herring

In the North Sea during summer, herring generally occur as schools by day near the seabed and at night disperse, rising into surface waters. Image analysis of six years of acoustic data from the Orkney-Shetland survey was used to extract the number of schools and descriptors such as length and height. A model describing how these parameters vary with time of day was devised. The times of school dispersal (upward migration) and school aggregation (downward migration) derived from the model were within 7 minutes of sunset and sunrise times (respectively) calculated from astronomical algorithms. The survey data were truncated to contain only values collected when the herring were identifyable to the survey and the abundance recalculated. The results indicate that the behaviour does not have a consistent effect on the estimation of abundance from the survey. Examination of the acoustic data attributed to herring reveals that herring can be detected in those hours adjacent to the start and end of the daily vertical migration (DVM), although at these times values are lower than average. More such analyses are required and PGHERS will carry this item onto next years meeting by which time other participants will prepare similar analyses on their acoustic data.

Measurement of the band filter delay of the EK500

During the 2001 survey of RV Walther Herwig III the filter delay of the Simrad EK500 echosounder was measured. The study demonstrates that the necessary delays have not been introduced to the EK500 despite previous identification and assurance that they would be dealt with by the manufacturers. This issue remains one of concern and merits further thought and investigation by PGHERS over the course of the coming year.

CLUPEA.NET: The clupea website (http://www.clupea.net) has been updated with stock specific data for north east Atlantic stocks following the ACFM spring session. A new brief Biology section was also added. A number of additions are planned.

Acoustic survey manual revision: The current acoustic survey annual is attached as Appendix IV of the PGHERS report.

HERSUR database: An update on the status of the HERSUR project was presented to the group. During 2001 the conversion of data from national acoustic survey formats to HERSUR formats was carried out and data have now been uploaded to the HERSUR database. It is now possible to send data by e-mail. The HERSUR website has been restructured and the exchange format has been revised. A number of report types are now available (sample reports are given in Appendix V of the PGHERS report).

1.7 HAWG Recommendations

1.7.1 Data provision, manipulation, transparency, and storage

The HAWG recommends:

a) that ICES develops an input database application as an urgently required service to all working groups. The quality of the input data from commercial sampling is considered to be crucial for the quality of the whole assessment procedure. The future format should provide an opportunity to clearly track changes of official landings made by WG members to compensate misreported or unallocated landings or discards. Detailed information on the functionality of such an application is available in various documents produced over the last years and made available to ICES.
b) to search for national catch and sampling data from previous years either within ICES or at the national institutes (see Section 1.9: official catches and WG estimates by rectangle, sampling level and sampling details catch in numbers-at-age, mean weights-at-age - by area as defined in Figure 1.10.1). Files should be send to Chris Zimmermann, Hamburg, intersessionally, or provided to next year's WG. This is especially needed for Denmark, Norway and the Netherlands.
c) that national labs provide information of commercial catch and sampling by fishery, especially if by-catches in non-directed fisheries occur, and/or if there are indications that the age structure in the catches differ between fisheries.
d) that a directory be allocated on the ICES server to store relevant documentations and the most recent version of exchange sheets and programmes used to aggregate the data, and that these items be available over the open-access ICES web server.
e) that the Report-CD sent out to HAWG members also contains a copy of the "Working documents" and "Presentations" folder from the network drive.

1.7.2 The Planning Group of Herring Surveys

Planning Group of Herring Surveys [PGHERS] should meet, at a venue to be decided, from 21 to 24 January 2003 chaired by P.G. Fernandes (UK, Scotland) to:
a) combine the 2002 survey data to provide estimates of abundance for the population within the area;
b) consider a re-allocation of effort by participating countries in the acoustic survey of the North Sea and adjacent waters in 2003;
c) co-ordinate the timing, area allocation and methodologies for acoustic and larvae surveys for herring and sprat in the North Sea, Division VIa and IIIa and Western Baltic in 2003;
d) evaluate the outcome of a maturity staging workshop with a view to harmonising the determination of maturity in herring and sprat;
e) evaluate investigations on the effect of time of day on the allocation of herring to acoustic data.

1.7.3 Other recommendations on surveys

a) Strong efforts should be made to exchange staff between nations in the North Sea acoustic survey.
b) An area overlap between RV Scotia and RV G.O. Sars should be surveyed in 2002 to include ICES rectangles $49 \mathrm{E} 9,49 \mathrm{~F} 0,50 \mathrm{E} 9$ and 50 F 0 with a spacing between tracks to be of no more than $7.5 \mathrm{n} . \mathrm{mi}$.
c) The determination of maturity in herring and sprat should be standardised (perhaps through a workshop).
d) Due consideration should be given to establishing a sprat, herring 0 -ring and herring 1-ring index from the acoustic survey.
e) A review should be made of existing documentation on practical aspects of larvae survey methods.
f) A workshop to determine the age of herring and sprat from otoliths should be held in summer 2002. HAWG considers it of value to invite other interested parties (e.g. Republic of Ireland and Northern Ireland).

1.7.4 Degradation of spawning grounds

The Working Group recommends that gravel extraction or dumping of dredge spoils or silt or the location of fish farms should not be permitted in areas that are known to contain herring spawning grounds.

1.7.5 Sprat

a) That IBTS time-series data on sprat (catch rates, weight-at-length and -at-age, maturity-at-length and -at-age), and from the catch (where collected), for the first and third quarter be made available before the meeting of the next HAWG.
b) That an intersessional study be carried out to evaluate the apparent different recruitment patterns shown between the first and third quarter in North Sea sprat.
c) That a review of the criteria used for ageing sprat be undertaken.
d) That consideration be given to alternative assessment models for sprat, including those that account for recruitment variability, once a realistic recruitment index becomes available.

1.7.6 Study groups

A Study Group on the Revision of Data for North Sea Herring [SGREDNOSE] will be established under the chair of Chris Zimmerman to meet at a venue to be decided, in late 2002, to re-evaluate the current data used for the stock assessment of North Sea Autumn-spawning herring.

The group will:
a) collate the revised Norwegian catch data for 1997- to date;
b) use the revised data on the splitting of North Sea Autumn Spawners caught in Division. IIIa (1991-1998);
c) collate the revised biological sampling data for The Netherlands (based on a retrospective analysis of the national raising procedure and changes resulting from this analysis);
d) thoroughly examine the catch table information and correct it where necessary;
e) transfer historic catch and sampling information into the new database (minimum 1997-to date);
f) re-run the allocation and raising procedures for this time frame;
g) update all relevant input data for the assessment of North Sea Autumn-spawners and make them available to the Herring Assessment WG.

Priority:	The work of the study group is essential to improving the precision and transparency of the assessment of North Sea Autumn-spawning Herring
Scientific justification:	An number of significant revisions have been made during the last two years to sub-sets of data used for the assessment of North Sea Autumn-spawning herring. Due to time constraints, the assessment WG using the data felt unable to revise all data, starting with reallocations of commercial catch information, within a WG meeting. Additionally, the group is expected to implement a long-term data storage and handling system still to be developed for the basic input data and explore different approaches to the reallocation of sampling information.
Relation to Strategic Plan:	This specifically addresses the remit of Goal 1- increase knowledge of the life history, stock structure, dynamics, and trophic relationships of living marine resources, Goal 4- improve the assessment of fish stocks.
Resource requirements:	A new database must be operational.
Participants:	Include scientists working on herring biology and assessment in the North Sea.
Secretariat Facilities:	None.
Financial:	No financial implications.
Linkages to advisory committees:	An obvious and close link to ACFM activities.
Linkages to other committees or groups:	The correction of the catch time-series of North Sea herring has clear links with many other groups that use the output of fish assessments in their remit.
Linkages to other organisations:	The work of the group is closely aligned to other organisations with an interest in stock assessments and the dynamics of living marine resources.

A Study Group on Herring in the Irish and Celtic Seas [SGHICS], will be established under the chair of Richard Nash to meet in Dublin, December 2002 to:
a) re-evaluate the current data used for the stock assessment of Irish Sea and Celtic Sea herring by re-compilation of long-term data sets.
b) evaluate the long-term variation in biological parameters (weights-at-age, length-at-age, maturity and condition) of Irish Sea and Celtic Sea herring.
c) carry out an otolith exchange of Irish and Celtic Sea herring, the results of which will be assessed by the study group.

Priority:	The work of the study group is essential to improving the precision of the assessment of herring in divisions VIIa and Celtic Sea VIIg and j as requested by ACFM.
Scientific justification:	In 2001, ACFM technical minutes questioned the failure to apply the re-calculated weights- at-age and maturities at age to the stock assessment of VIIa(N) herring. This could not be done, as the sampling was not apportioned to appropriate catches. The proposed study group would use data sets held at relevant institutes to recompile the catch data for herring in the Irish and Celtic Seas. There is no transparency or record as to how the catch-at-age numbers and weights-at-age for the stock (or combination of Manx and Mourne stocks prior to 1982) were determined. This is needed to provide a full and accountable record of the assessment of the development and dynamics of herring to the east and south of Ireland. There has not been an otolith exchange since 1995 for either Irish or Celtic Sea herring, otolith exchanges are required frequently to ensure consistency in ageing between institutes and between stocks stock that share geographic distributions at certain life stages.
Relation to Strategic Plan:	This specifically addresses the remit of Goal 1- increase knowledge of the life history, stock structure, dynamics, and trophic relationships of living marine resources, Goal 4- improve the assessment of fish stocks.
Resource requirements	The research programmes which provide the main input to this group are already underway, and resources committed. The additional resource required to undertake additional activity in the framework of this group is negligible.
Participants:	Include scientists working on herring biology and assessment in the Irish and Celtic Seas.
Secretariat Facilities:	None.
Financial:	No financial implications.
Linkages to advisory committees:	An obvious and close link to ACFM activities.
Linkages to other committees or groups:	The construction of a clear and comprehensive data set of catch by age and biological characteristics for herring around Ireland is of use to the proposed SGGROMAT.
Linkages to other organisations:	The work of the group is closely aligned to other organisations with an interest in stock assessments and the dynamics of living marine resources.

1.8 Summary of the report of the Planning Group on Commercial catch, Discards and Biological Sampling (PGCCDBS)

The Planning Group on Commercial Catch, Discards and Biological Sampling PGCCDBS met in Lisbon at IPIMAR from 5-8 February 2002 to:
a) evaluate the commercial catch (landings), discard and biological sampling programmes being implemented in the Baltic Sea, North Sea, Western and Southern waters, and assess whether or how these require ICES coordination;
b) evaluate the need for developing sampling methodology, calculation methodology, data storage procedures, and software for aggregating national catch-at-age data to international catch-at-age data in a form suitable for assessment working groups, and prepare relevant proposals and work plans.

The ICES fisheries advice critically depends on the quality of data from the commercial fisheries. The quality of these data has not in all cases been satisfactory and ICES has raised this point repeatedly. For the last 6-8 years, the EU Commission has financially supported several projects, whose objectives have been to support the Common Fisheries Policy CFP.

Most of these projects have been carried out in co-operation between different national fisheries research institutes and through this co-operation international coordination of the work including data collection has been achieved. The current initiative by the EU Commission (DG FISH) in providing financial support for the collection of fisheries data is much welcomed. But, as the financial support is given to national data collection programmes the existing element of international coordination may be missed and may cause inappropriate or missing data collection of certain species. In order to provide focal points for coordinating sampling activities and strategies among ICES member countries this Planning Group was established.

The PG divided the work in three sub-topics:
$>$ Landings (tonnes).
$>$ Discards and biological sampling, including sampling and calculation methodology.
$>$ Data storage procedures and software for data aggregation.

Concerning landings, the general view was that the assessments carried out by ICES are using the best landings data available to ICES. These data are not necessarily identical with the official statistics and where appropriate, include estimates of unreported landings as well as corrections for misallocation of landings by area and species. Despite considerable effort exerted on this problem, there is no guarantee that all instances of misreporting are identified.

The opinion of the PG was that most problems cannot be resolved in the short term but two issues should addressed almost immediately:
$>$ The chairs of the relevant ICES Working Groups will be approached and asked to review Commission Regulation (EC) No 1639/2001 to ascertain whether the levels of stratification outlined in Appendices I and XII to the Commission Regulation are sufficient for their purposes.
$>$ Introduce the use of standard templates to enable each ICES Assessment Working Group to provide an evaluation of the quality of the data for each species/stock. The completed templates should be returned to PGCCDBS. This will highlight any particular weaknesses and provide a basis for action at the next meeting of the PGCCDBS.

For discards and biological sampling, including sampling and calculation methodology, the PG considered the need for co-ordination for following topics:
$>$ Length \& Age Sampling of Commercial Landings
$>$ Sampling of other biological data (SWALMF, ie. Sex, Weight, Age, Length, Maturity and Fecundity)
$>$ Length \& Age Sampling of Discarded Catch
Some areas where international co-ordination is needed were highlighted:
> Co-ordinate sampling to ensure adequate spatial and temporal sampling coverage
$>$ Review methodologies for collection of data
$>$ Agree on otolith exchange programmes
$>$ Agree on mechanisms for evaluation of input data
Suggestions for TOR for future PGCCDBS meetings to include:
$>$ evaluating sampling in the previous year in terms of:

- Spatial \& Temporal Coverage
- Precision levels (including age reading)
> establishing quality assurance protocols for assessment data.

PGCCDBS meetings will also provide an opportunity to organise exchange of otolith reading between countries.
PG recognized that members of the assessment working groups are probably best placed to identify the problems in data quality affecting their assessments. PGCCDBS agreed it would not be realistic to ask assessment working groups to take on the additional task of international co-ordination and planning of sampling.

The PG considered the option of undertaking the task of international co-ordination within the PGCCDBS. It was agreed that such an arrangement would retain the flexibility to convene sub-groups of PGCCDBS to work on matters of international co-ordination both inter-sessionally and at the PGCCDBS.

Some of the recommendations from PGCCDBS are listed below:

> ICES Assessment Working Groups participate in the attempts to secure adequate data for stock assessment purposes by highlighting any particular weaknesses in the quality of the data and providing a basis for action at the next meeting of this Planning Group.
$>$ Identify on a regional basis, the stocks and species requiring improved ageing.
> To examine the possibility of sharing / transferring otoliths between laboratories.
$>$ In general, the country into which fish are landed should process data sampled from the foreign fleet to produce assessment inputs which can be scaled to any level of landings. These data, and length distributions and age estimates, should then be provided to the flag country or country of fleet origin.
$>$ In cases where this is not practical, the country into which fish are landed should process data sampled from the foreign fleet to produce length distributions and ensure that ageing occurs. These data should then be provided to the flag country or country of fleet origin.
$>$ That regional planning occurs in the collection of biological data to ensure that minimum requirements for data collection are met.
$>$ The available data should be reviewed on a regional basis to ensure that sampling coverage reflects the relative impact of each fishery in each area.
$>$ DIFRES be requested to develop a test version of VPAbase (see section 1.9.1), using a range of WG data.
$>$ ICES should establish and maintain standard codes (definitions) for data to minimize problems associated with data exchange.
$>$ Data exchange formats should be based on text files (delimited or XML), and variables should be clearly described and in agreement with the standard codes.

The draft report of the PGCCBDS was made available to the working group (ICES 2001/ACFM:26).

1.9 Summary of the Report of the Study Group on the Incorporation of Process Information into StockRecruitment Models (SGPRISM)

ICES Study Group on the Incorporation of Process Information into Stock-Recruitment Models [SGPRISM] held its final meeting in January 2002. The three meetings of the study group considered environmental forcing of recruitment processes and its predictability, spatial models and projections and biological processes, and management. It commented that the general problem at present is the very few process studies that have been directly undertaken with the intention of input to the assessment and management process. In general process studies are aimed at understanding what has happened in the past, and hence the models they use are detailed and descriptive, and are often based on multiple-regression-type approaches. These models are not usually suitable for use in projections, partly because of the need to forecast a large number of variables which have poor predictability, and partly because they generate undesirable dynamics at low stock and recruitment levels. The Study Group examined the use of process information in the north-east Arctic, Baltic Sea, North Sea and Bay of Biscay. Part of its remit was to consider the further development of projection tools. Methods that use time-series characteristics of recruitment, weights-at-age and proportion mature-atage are being investigated as potential tools. The group recommended the formation of a Study Group on Growth, Maturity and Condition in Stock Projections [SGGROMAT], to report to the Methods Working Group and further develop these projection tools.

Input spreadsheet and initial data processing

Since 1999 (catch data 1998), the working group members have used a spreadsheet to provide all necessary landing and sampling data, which was developed originally for the Mackerel Working Group (WGMHSA) and further adapted to the special needs of the Herring Assessment Working Group. The current version used for reporting the 2001 catch data was v1.4.1. The majority of commercial catch data of multinational fleets was again provided on these spreadsheets and further processed with the SALLOCL-application (Patterson et al., 1997). This program gives the needed standard outputs on sampling status and biological parameters. It also clearly documents any decisions made by the species coordinators for filling in missing data and raising the catch information of one nation/quarter/area with information from another data set. This allows recalculation of data in the future, choosing the same (subjective) decisions made today. Ideally, all data for the various areas should be provided on the standard spreadsheet and processed similarly, resulting in a single output file for all stocks covered by this working group.

The input format provided was used by all but one nation, and the quality of the input data has significantly improved over the last years. Unlike the uncomfortable handling of the exchange workbook, no major problems appeared during the transmission of data to the species co-ordinators. On the co-ordinators side, problems occurred only when nations filled in unsampled metiers themselves, as the SALLOCL application cannot handle these and filling-in decisions are not properly documented any more. The deadline for delivering the data was met by most nations. However, in contrast to last year's procedure and recommendation, the time-consuming data verification and procedures relevant to the splitting of North Sea Autumn-spawners and Western Baltic Spring-spawners in Division IIIa have not been done during a separate meeting prior to the WG meeting. The WG again had to wait for the results of the splitting procedure before initial assessments could be conducted. It is therefore necessary that the splitting data is made available on the first day of the WG.

Quality of sampling for the whole area. The working group this year produced a map indicating the level of catch sampling by area for all stocks covered by HAWG (Figure 1.10.1). The map indicates that the sampling level (in terms of fraction of catch sampled and number of age readings per 1000 t catch) is very different for the various areas. Further details of the sampling quality can be found by stock in the respective sections (Sec. 2.2.4 for North Sea herring, 3.4 for Western Baltic Spring Spawners, 4.2.4 for Celtic Sea and VIIj herring, 5.1.3 and 5.1.4 for VIa(N) herring, 6.1.5 for $\mathrm{VIa}(\mathrm{S})$ and VIIb,c herring, 7.1.2 for Irish Sea herring).

Transparency of data handling by the Working Group

The current practice of data handling by the Working Group is that the data received by the co-ordinators is available in a folder called "archive". These high-resolution data are not reproduced in the report. The archived data contains the disaggregated dataset (disfad), the allocations of samples to unsampled catches (alloc), the aggregated dataset (sam.out) and (in some cases) a document describing any problems with the data in that year. It is the intention of the Working Group that in the interim period until the standard database is developed (see below) the previous years archived data will be copied over to the current year directory and updated at the working group. Thus the archive for each year will contain the complete dataset available. Information on official, area misreported, unallocated, discarded and sampled catches are recorded on the WG-data exchange sheet (MS Excel). However only sampled, official, WG and discards are available in the file Sam.out.

Current methods of compiling fisheries assessment data. As mentioned above each species co-ordinator is responsible for compiling the national data to produce the input data for the assessments. In addition to checking the major task involved is to allocate samples of catch numbers, mean length and mean weight-at-age to unsampled catches. There are at present no defined criteria on how this should be done, but the following general process is implemented by the species co-ordinators. Searches are made for appropriate samples by gear (fleet) area quarter, if an exact match is not available the search will move to a neighbouring area if the fishery extends to this area in the same quarter. More than one sample may be allocated to an unsampled catch, in this case a straight mean or weighted mean of the observations may be used. If there are no samples available the search will move to the closest non-adjacent area by gear (fleet) and quarter, but not in all cases. In this context, national data submitters are again strongly encouraged to provide as much as possible details of their sampling and filling-in procedures in the respective field of the exchange spreadsheet (sheet 2) instead of filling in unsampled metiers themselves.

Future developments

Still a number of problems were encountered with the input data, some of them attributable to the notorious error-prone handling of spreadsheets. E.g., it was found that the direction of transfers and target area(s) of misreported or
unallocated catches could not be clearly stated in the present format. A future input application should allow multiple entries for the same area, to cover each fraction of misreported catches (fractions that are transferred to a specific area) reported in a separate line.

For the third time, the Working Group repeats its opinion that an input file based on a stand-alone database application would be most preferable, because it is less error-prone than a spreadsheet, and results can easily be interpreted. As the quality of the input data from commercial sampling proved to be crucial for the quality of the whole assessment procedure, the WG again strongly recommends to develop an input application for the 2003 Working Group meeting by ICES, which has the advantage of a general usage by all working groups. Any future format should provide an opportunity to clearly track changes of official landings made by WG members to compensate misreported or unallocated landings or discards. Reference is made here again to a number of documents addressing this issue (e.g. Pastoors, 1999 WD to HAWG; Zimmermann et al. 2000 WD to WGMHSA, EMAS Project report 2001).
$\boldsymbol{V P A}$ Base. In response to the suggestions of different WGs on this issue, a MS Visual Basic application VPABASE was developed by DIFRES and presented to WGMHSA, at the ICES Annual Science Conference, and now to HAWG. VPABASE is a prototype for storage and processing of Working Group input data for fish stock assessment. Input data are total catches by fleet and country combined with age distribution samples. The processing of data applies the available age distribution samples to convert the national catches into age compositions. The national data are summed to give total stock age composition, which is the input to the VPA. The database will maintain records on the processing of data. The database uses MS Access 2000/Excel and has a user-friendly interface. The database was developed as a part of the EU-funded project EMAS (CFP Study Project 98/075). Further description is available in ICES CM 2001/P:23. The prototype was made available to the WG and effort will be put into further development, and hopefully the software will be tested by WGMHSA.

However, if a database input is again not available for next year's WG, the spreadsheet will be used again for the interim period. Obvious errors will be omitted intersessionally, but there will be no more general developments on this sheet. The reason for this is that it would represent a duplication of effort in light of the intention of ICES to develop a standard platform for the collection storage of disaggregated fisheries assessment data.

The Working Group recommends that a directory be allocated on the ICES server to store relevant documentation and the most recent versions of exchange sheets and programmes used to aggregate the data, and that these items be available over the ICES web server.

The Working Group acknowledges the effort some members have made to provide "corrected" data, which in some cases differ significantly from the officially reported catches. Most of this valuable information is gathered on the basis of personal knowledge of the fishery and good relations between the scientist responsible and the fishermen. The WG is aware of the problem that this knowledge might be lost if the scientist leaves, and asks the national laboratories to ensure continuity in data provision. In addition the Working Group recognises and would like to highlight the inherent conflict of interest in obtaining details of unallocated catches by country and increasing the transparency of data handling by the Working Group. This issue will have to be carefully considered in light of any future development by ICES of a standard platform to store all fisheries disaggregated data, particularly with regard to confidentiality.

The WG considered the need of a long-term data storage for commercial catches and sampling, and the documentation of any primary data processing of these data. From 2000 on (catch data for 1999), the latest (consistency checked) versions of the input files together with standard outputs and a documentation of filling-in decisions made by the co-ordinators, ideally in the SALLOC-formats, are stored in a separate "archive" folder. This is updated yearly, and the complete collection (which is supposed to be kept confidential as it will contain data on misreporting and unallocated catches) will be available for WG members on request. As there was very little historical information available, WG members were asked to provide as much as possible national catch and historical data sets in any available format. National data provided in this year is stored in a " \sim historic" folder within "Archive"; they will be consistency checked and transferred into a database system as soon as this is available. Table 1.10 .1 gives an overview over data available so far, and the source of the data. Members are encouraged to use the latest-version input spreadsheets if it is needed to re-enter catch data. Figure 1.10.2 shows the separation of areas as used for the long-term storage of data.

Most of the issues raised her have also been addressed by the Planning Group on Commercial Catch, Discard and Biological Sampling (see Section 1.8.).

1.11

The WG was again asked to comment on the ICES quality control handbook (see Terms of reference: g). In the light of the little development the QC handbook has undergone in the last year, and that ACFM has been unable to review the comments of the different working groups, HAWG decided not to comment on this issue again. However, the group is prepared to revisit the topic whenever significant progress is visible.

1.12 Fleet Descriptions

No new data on the fleets operation for herring and sprat fishing were available to the WG. It was agreed that new data should be made available at the 2003 HAWG. The data to be provided next year is:

Per area for herring and sprat respectively:

Mesh size group	$8-31 \mathrm{~mm}$	$32-40$
Trawlers	No vessels/tonnes	
Purse seiners		
Gill-netters		
Others vessels		

The data on fleets shall be forwarded to the species co-ordinators prior to the HAWG-meeting in 2003.

1.13 Reference Points

Reference points for herring and sprat stocks south of $62^{\circ} \mathrm{N}$ were taken from the ACFM Report, May 2000, and updated by the WG2002. These are summarised in the text table below:

STOCK	LIMIT	PRECAUTIONARY
North Sea Herring	$\mathbf{B}_{\text {lim }} \text { is } 800000 \mathrm{t} .$ Technical basis: Below this value poor recruitment has been experienced. $\mathbf{F}_{\text {lim }}$ is not defined.	$\mathbf{B}_{\mathrm{pa}}=1.3 \mathrm{mill} \mathrm{t.}$ Technical basis: Part of a harvest control rule based on simulations. \mathbf{F}_{pa} be set at $\mathrm{F}_{\text {ages 0-1 }}=0.12$; at $\mathrm{F}_{\text {ages 2-6 }}=0.25$. Technical basis: Part of a harvest control rule based on simulations.
Sub-div 22-24 \& Div IIIa	Not specified	
Celtic Sea	$\mathbf{B}_{\text {lim }}$ is 26000 t . Technical basis: The lowest stock observed. $\mathbf{F}_{\text {lim }}$ is not defined	\mathbf{B}_{pa} be set at 44000 t . Technical basis: Reduced probability of low recruitment.
West of Scotland	Not specified	\mathbf{B}_{pa} suggested at 75500 t Technical basis: $1.5 * \mathbf{B}_{\text {lim }}$ $\mathbf{F}_{\mathrm{pa}}=$ suggested at 0.28 Technical basis: 10% risk of \mathbf{B}_{pa} $\mathbf{B}_{\text {lim }}$ suggested at 50000 t Technical basis: $\mathbf{B}_{\text {loss }}$ $\mathbf{F}_{\text {lim }}$ suggested at 0.42 Technical basis: $1.5 * \mathbf{F}_{\mathrm{pa}}$
Div. VIaS \& VIIb,c	$\mathbf{B}_{\lim } \text { is } 81000 \mathrm{t} \text {. }$ Technical basis: Lowest reliable estimated SSB. $\mathbf{F}_{\text {lim }} \text { is } 0.33$	\mathbf{B}_{pa} be set at 110000 t . Technical basis: Approximately 1.4 B $_{\text {lim }}$. \mathbf{F}_{pa} be set at 0.22
Irish Sea	$\mathbf{B}_{\text {lim }}$ is 6000 t . Technical basis: Lowest observed SSB. $\mathbf{F}_{\text {lim }}$ is not defined	$\mathbf{B}_{\mathrm{pa}}=9500 \mathrm{t} .$ Technical basis: $\mathbf{B}_{\text {lim }}{ }^{*} 1.58$; still under consideration. \mathbf{F}_{pa} under review; 0.36 proposed in 1999, not adopted.
Sprat North Sea	Not specified	Not specified
Sprat in div VIId, e	Not specified	Not specified
Sprat in div IIIa	Not specified	Not specified

An overview of landings, SSB and mean fishing mortalities of the stocks assessed in this WG is presented in Figures 1.14.1-1.14.3. It was found that several stocks exhibit a strong increase in SSB in 2001 (North Sea herring, Celtic Sea herring and herring in VIaN. Landings have generally declined since the beginning of the 1990s.

Table 1.10.1: Available disaggregated data for the HAWG per March 2002
X: Multiple spreadsheets (usually xls); W: WG-data national input spreadsheets (xls); D: Disfad and Alloc-outputs (ascii/txt)
Stock
Catchyear Format Comments
X W D

Baltic Sea: IIIa and her_3a22
Celtic Sea and VIIj her irls

raw data, provided by Jørgen Dalskov, Mar. 2001, splitting revised
$\begin{array}{ccc}1991-2000 & \text { X } & \text { raw data, provided by Jørgen Dalskov, Mar. 2001, splittin } \\ 1998 & \text { X } & \text { provided by Jørgen Dalskov, Mar. 2001, splitting revised }\end{array}$
1999 X provided by Jørgen Dalskov, Mar. 2001, splitting revised, catch data revised
2000 X provided by Jørgen Dalskov, Mar. 2001
2001 X provided by Jørgen Dalskov, Mar. 2002
Celtic Sea and VIIj
1999 X provided by Ciarán Kelly, Mar. 2000
2000 X provided by Ciarán Kelly, Mar. 2001
2001 D provided by Ciarán Kelly, Mar. 2002

Clyde	2001		D provided by Ciaran Kelly, Mar. 2002
her_clyd	1999	X	provided by Mark Dickey-Collas, Mar. 2000 provided by Emma Hatfield, Mar. 2001, included in VIaN 2000
		provided by Emma Hatfield, Mar. 2002, included in VIaN	

North Sea
her_47d3, her_nsea
West of Scotland (VIa(N))
her_vian

1991	X	provided by Yves Verin, Feb. 2001
1992	X	provided by Yves Verin, Feb. 2001
1993	X	provided by Yves Verin, Feb. 2001
1994	X	provided by Yves Verin, Feb. 2001
1995	X	provided by Yves Verin, Feb. 2001
1996	X	provided by Yves Verin, Feb. 2001
1997	X	provided by Yves Verin, Feb. 2001
1998	X W	provided by Yves Verin, Mar. 2000
1999	W D provided by Christopher Zimmermann, Mar. 2000	
2000	W D provided by Christopher Zimmermann, Mar. 2001	
2001	W D provided by Christopher Zimmermann, Mar. 2002	
1997	X	provided by Ken Patterson, Mar. 2002
1998	X	provided by Ken Patterson, Mar. 2002
1999	W D provided by Paul Fernandes, Mar. 2000, W included in North Sea	
2000	W D provided by Emma Hatfield, Mar. 2001, W included in North Sea	
2001	W D provided by Emma Hatfield, Mar. 2002, W included in North Sea	

Figure 1.3.1 Comparison of the precision of ICA assessment of North Sea herring in 2001 using different weighting for input data. $\mathrm{WG}=$ equal weighting for each survey index, IV1 = inverse variance weighting, IV2 inverse variance with reduced weighting on MIK, ADP1= ICA weights adaptively selected on all assessments. ADP2 = One set of ICA adaptive weights used on all assessments.

Figure 1.3.2 Comparison of SSB retrospective patterns in three assessments of North Sea herring (2001, 1999, 1996) using ICA with bootstrapped survey indices, and catch input data using two different data weighting methods (a) equal weighted indices (WG method 1994-2001) and (b) inverse variance weighted input data. The box and whisker plots show the median, quartiles and limits of results. The retrospective pattern shows good agreement with the 1996 assessment with either weighting method but with slightly better agreement with the WG weighting method. The intermediate retrospective pattern at 1999 is closer using the WG weighting method. The inverse variance weighting method gives a more precise estimate. The retrospective is very sensitive to choice of separable period. Both methods give the same results in 2001.

Figure 1.3.3 Comparison of F_{2-6} retrospective patterns in three assessments of North Sea herring (2001, 1999, 1996) using ICA with bootstrapped survey indices, and catch input data using two different data weighting methods (a) equal weighted indices (WG method 1994-2001) and (b) inverse variance weighted input data. The box and whisker plots show the median, quartiles and limits of results. The retrospective pattern shows good agreement with the 1996 assessment with either weighting method but a greater variability with the WG weighting method. The intermediate retrospective pattern at 1999 is closer using the WG weighting method. The 1996 value illustrates clearly that the inverse variance weighting method gives a more precise estimate. The retrospective is very sensitive to choice of separable period. Both methods give the same results in 2001.

Figure 1.3.4: Percentage Average Absolute Difference between predicted and observed numbers caught by fleet and in the population 'with' and 'without' the split-factor, for projections one and two years ahead.

Figure 1.10.1 Herring south of $62^{\circ} \mathrm{N}$: Sampling level per ICES areas for the whole year and all fleets. Circle diameter is proportional to working group catch; share of sampled catch (black) is indicated. Numbers give the numbers of age readings per 1000 t catch. For the allocation of areas to stocks, see Fig. 1.10.2

Figure 1.10.2: ICES areas as used for the assessment of herring stocks south of $62^{\circ} \mathrm{N}$. Area names in italics indicate the separation used for long term storage of commercial catch and sampling data. "Transfer area" refers to the transfer of Spring Spawners caught in the North Sea to the Western Baltic Spring Spawner Assessment.

Figure 1.14.1 Overview of herring landings from different stocks.

Figure 1.14.2 Overview of herring SSB from different stocks.

Figure 1.14.3 Overview of fishing mortalities of different herring stocks.

2.1.1 ACFM advice and management applicable to 2001 and 2002

In 1996, the total allowable catches (TACs) were changed mid-year with the intention of reducing the fishing mortality by 50% for the adult part of the stock and by 75% for the juveniles. For 1997 , the regulations were altered again to reduce the fishing mortality on the adult stock to 0.25 and for juveniles to less than 0.1 with the aim of rebuilding the SSB up to 1.1 million t in 1998.

According to the EU and Norway agreement adopted in December 1997, efforts should be made to maintain the SSB above the MBAL (Minimum Biologically Acceptable Level) of 800,000 tonnes. An SSB reference point of 1.3 million has been set above which the TACs will be based on an $\mathrm{F}=0.25$ for adult herring and $\mathrm{F}=0.12$ for juveniles. If the SSB falls below 1.3 million tonnes, other measures will be agreed and implemented taking account of scientific advice.

In recent years, the SSB has been below the precautionary level of 1.3 million tonnes $\left(\mathbf{B}_{\mathrm{pa}}\right)$, and since 1998 other measures taken have consisted of an adoption of a F_{2-6} of 0.2 and a $\mathrm{F}_{0-1}<0.1$ to allow the rebuilding of the spawning biomass to above \mathbf{B}_{pa}.

ACFM recommended for 2002 that the management for 2001 should be continued to ensure the rebuilding of the spawning stock biomass. It was expected that fishing at a status quo level would lead to an increase in the SSB to almost \mathbf{B}_{pa} in 2001, mainly due to a strong incoming yearclass.

The final TACs adopted by the management bodies for 1999, 2000 and 2001 were 265,000 t for Divisions IV and VIId, whereof not more than $25,000 \mathrm{t}$ should be caught in Div. IVc and VIId. For 2002, the sub-TAC set for Div. IVc and VIId was raised to $42,000 \mathrm{t}$ but the total TAC for herring caught in the North Sea was kept constant. Catches of herring in the Thames estuary are not included in the TAC. The bycatch ceiling set for fleet B in the North Sea was $36,000 \mathrm{t}$ for 2000 and 2001 and kept constant for 2002. As North Sea autumn spawners are also caught in Div. IIIa, regulations for the fleets operating in this area have to be taken into account for the management of the stock (see Sec. 3).

2.1.2 Catches in 2001

Total landings and estimated catches are given in the Table 2.1.1 for the North Sea and for each Division in Tables 2.1.2 to 2.1.5. Total working group catches per statistical rectangle and quarter are shown in Figures 2.1.1 a-d, the total for the year in Figure 2.1.1e. All nations provided most of their catch data (either official landings or working group catch) by statistical rectangle.

The catch figures in Tables 2.1.1-2.1.5 are mostly official landings, but for some nations catch estimates are given by Working Group members, including unallocated or misreported catches. These figures can therefore not be used for management purposes. For corrections applied to and inconsistencies in previous year's data see Sections 2.2.3 and 2.2.4. As in previous years, only one EU nation (Denmark) provided information on by-catches of herring (in the smallmesh fishery, fleet B). By-catches in the Norwegian fishery are not reported separately but included within the official statistics. Catch estimates of herring taken as by-catch in other small-mesh fisheries in the North Sea may be an underestimate. The total catch in 2001 as used by the Working Group amounted to 323,200 t. It decreased again slightly (by about 2\%) as compared to last year's catch. By area, catches decreased in Division IVa (West) by about 17 \%, increased in Div. IVa (East) by 44% and remained almost constant in all other areas.

Landings of herring taken as by-catch in the Danish small meshed fishery were again much lower than the by-catch ceiling set for Denmark ($34,450 \mathrm{t}$), but have increased since 1997 to $20,000 \mathrm{t}$ (Table 2.2.6). In 2001, the Danish sprat fishery was carried out mainly in the second half of the year with by-catches of herring of about 8% (less than $14,000 \mathrm{t}$). Herring bycatches in the Danish Norway pout fishery were estimated to be less than 5%, and less than 1% in the sandeel fishery.

Misreporting of landings taken in the North Sea but reported from other areas such IIa, IIIa and VIa (North) is still substantial, but the estimates of the amount of misreporting out of the area have again decreased compared to the previous years (to about $37,000 \mathrm{t}$).

TACs in Sub-area IV and Division VIId, for the human consumption fishery, have been significantly exceeded in several years. This excess for the years 1995 to 2001 is shown in the table below. Since the introduction of yearly bycatch ceilings, implemented in 1996, these ceilings have never been exceeded. In the table below (adapted from Table
2.1.6) the landings figures under the legend "Official" landings include for some countries official landings and for other countries landing estimates provided by working group members.

Year	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$
TAC HC $\left({ }^{\prime} 000 \mathrm{t}\right)$	440	156	159	254	265	265	265
"Official" landings HC $\left({ }^{\prime} 000 \mathrm{t}\right){ }^{1}$	436	163	157	250	271	268	276
Working Group catch HC ('000 t)	$\mathbf{5 0 1}$	$\mathbf{2 2 8}$	$\mathbf{2 2 1}^{\mathbf{2}}$	$\mathbf{3 1 4}$	$\mathbf{3 2 1}$	$\mathbf{3 1 1}$	$\mathbf{3 0 3}$
Excess of landings over TAC HC $(‘ 000 \mathrm{t})$	61	72	62	60	56	46	39
By-catch ceiling ('000 t)		44	24	22	30	36	36
Reported by-catches ('000 t) ${ }^{3}$	65	38	13	14	15	18	20
Working Group catch North Sea ('000 t)	$\mathbf{5 6 6}$	$\mathbf{2 6 6}$	$\mathbf{2 3 4}^{\mathbf{2}}$	$\mathbf{3 2 9}$	$\mathbf{3 3 6}$	$\mathbf{3 2 9}$	$\mathbf{3 2 3}$

$\mathrm{HC}=$ human consumption fishery
1 "Official" landings might be provided by WG members; they do not in all cases correspond to official catches and cannot be used for management purposes.
${ }_{3}^{2}$ figure altered in 2000 on the basis of a re-evaluation of misreported catches from VIa North.
${ }^{3}$ provided by Denmark only.

2.2 Biological composition of the catch

Biological information (numbers, weight, length, catch (SOP) at age and relative age composition) on the catch as obtained by sampling of commercial catches is given for the whole year and per quarter in Tables 2.2 .1 to 2.2 .5 . Where available, data are displayed separately for herring caught in the North Sea (including a minor amount of Western Baltic Spring-spawners taken in IVa East), IVa East (total; Western Baltic Spring-spawners (WBSS) only - see Section 2.2.2; North Sea Autumn-spawners only), IVa West, IVb, VIId/IVc as well as for North Sea Autumn-spawners (NSAS) caught in Div. IIIa, and the total NSAS stock, including catches made in IIIa.

Biological information for North Sea Autumn-spawners caught in Division IIIa was obtained using splitting procedures described in Sec. 3.2. The total catches of NSAS (SOP figures), mean weights and numbers-at-age by fleet are given in Table 2.2.6. Data on catch numbers-at-age and SOP catches are shown for the period 1990-2001 in Tables 2.2.7 (herring caught in the North Sea), 2.2.8 (WBSS taken in the North Sea, see below), 2.2.9 (NSAS caught in Div. IIIa) and 2.2.10 (total numbers of NSAS). Mean weights-at-age are given for 1991-2001 separately for the different Divisions where NSAS are caught (Tab. 2.2.11). Note that Tables 2.2.9, 2.2.10 and the IIIa-part of Table 2.2.11 have been updated this year for the years 1991-1998 based on last year's revision of the splitting between NSAS and WBSS. However, data corrections prior to 1999 have not been included in this year's assessment for NSAS.

2.2.1 Catch in numbers-at-age

North Sea catches in numbers-at-age over the years 1990-2001 are given in Table 2.2.7. The total number of herring taken in the North Sea in 2001 (3 billion) has slightly increased as compared to last year; the numbers of North Sea Autumn-spawners have increased by 6%. Catches of 0 -ringer NSAS have increased by 65%, while those of 1 -ringers have almost halved. This is again likely to be caused by high catches of the strong incoming yearclass. 0 - and 1-ringers contributed almost half of the total catch in numbers of North Sea autumn spawners in 2001. Fig. 2.2.1. shows the relative proportions on the total catch numbers for different periods (1960-2001, 1980-2001 for the total area, and 2001 for different Divisions).

The following table summarises the total catch in tonnes of North Sea autumn spawners. After the splitting of the North Sea Autumn-spawners in Div. IIIa and the Western Baltic Spring Spawners caught in the North Sea, and the removal of local Spring-spawners in the Western part of the North Sea, the amount of the total catch used for the assessment of North Sea Autumn-spawners was 364,000 tonnes:

Area	Allocated	Unallocated	Discards	Total
IVa West	113,735	17,578	1,386	132,699
IVa East	76,160	0	-	76,160
IVb	81,896	$-12,878$	-	69,018
IVc/VIId	24,174	21,149	-	45,323
	Total catch in the North Sea	323,200		
	Autumn Spawners caught in Div. IIIa (SOP)	48,375		
	Baltic Spring Spawners caught in the North Sea (SOP)	$-6,449$		
	Other Spring Spawners	$-1,097$		
	Total Catch NSAS used for the assessment		$\mathbf{3 6 4 , 0 2 9}$	

Note that 193 t reported to be taken by UK/England and Wales during all quarters in Divisions VIIe and VIIf are not included in any herring assessment.

2.2.2 Spring-spawning herring in the North Sea

Norwegian Spring-spawners are taken in Div. IVa (East) close to the Norwegian coast under a separate TAC. These catches are not included in the catch tables. Coastal Spring Spawners in the southern North Sea (e.g. Thames estuary) are caught in small quantities regulated by a local TAC. The Netherlands report increasing catches of Spring Spawners in the Western Part of the North Sea, which are included in the national catch figures and subtracted from the total catch used for the assessment of North Sea Autumn Spawners. These catches are given in Table 2.1.1 to 2.1.5.

Western Baltic and Division IIIa Spring-spawners (WBSS) are taken in the eastern North Sea during the summer feeding migration. These catches are included in Table 2.1.1 and listed as IIIa type. Table 2.2.8 specifies the estimated catch numbers of WBSS caught in the North Sea, which are transferred from the North Sea assessment to the assessment of Division IIIa/Western Baltic in 1990-2001.

The method of separating these fish, using vertebral counts as described in former reports of this Working Group (ICES 1990/ Assess:14) assumes that for Autumn-spawners, the mean vertebral count is 56.5 and for Spring-spawners 55.80. The fractions of Spring-spawners (fsp) are estimated from the formula ($56.50-\mathrm{v}$) $/ 0.7$, where v is the mean vertebral count of the (mixed) sample. The method is quite sensitive to within-stock variation (e.g. between year classes) in mean vertebral counts. The same method has been applied to separate the two components in the Norwegian part of the summer acoustic survey.

To calculate the proportion of Spring-spawners caught in the transfer area, the 1-ringers caught in the first and second quarter were all split by otolith microstructure (see section 3.2) according to the average proportion for the transfer area in the third quarter. For herring age groups 2 -ringers, 3 -ringers, and $4+$-ringers mean vertebral counts by ICES rectangle were used. Samples from the Norwegian catches that have been taken in May and June 2001 were used for the second quarter. For the third quarter, samples taken in July were used (Figure 2.2.2).

The resulting proportion of Spring-spawners and the quarterly catches of these in the transfer area in 2001 are as follows:

Quarter	1 ringers $(\%)$	2 ringers $(\%)$	3 ringers $(\%)$	4+ ringers $(\%)$	Catch in the transfer area (t)	Catch of WBSS in the North Sea (t)
Q 2	32%	15%	30%	41%	10,277	3,312
Q 3	32%	47%	34%	53%	6,832	3,137
total					17,109	6,449

The quarterly age distribution in Sub-division IVa East was applied to the catches of the second and third quarters in the whole area. The numbers of Spring-spawners by age were obtained by applying the estimated proportion by age.

2.2.3 Data revisions

The numbers-at-age and mean weights-at-age in the catch were revised for Div. IIIa for 1991-1999, which required updating of a number of tables for North Sea Autumn-spawners and Western Baltic Spring-spawners (see Section 3). The revision was due to corrections in proportions of catches by fleets of the Swedish landings. A revision of the historic data caused by the application of new splitting factors for catches in Div. IIIa was thought to have minor
influence on the North Sea Autumn-spawner assessment. Nevertheless, most of the tables have been updated, but the changes for the years 1991-1998 have not been implemented in the NSAS assessment.

A revision of the catch tables (Tables 2.1.1 to 2.1.6) showed significant discrepancies between the data used in the assessment and updated figures from official databases, which could not be attributed to misreported or unallocated catches. e.g. the catch figure for UK/England and Wales for 1993, IVc and VIId, had to be reduced by 7851 t . On the other hand, Norway has increased its official landings for 1997 by 54815 t and for 1998 by 29196 t . Norwegian catch statistics for 1999 and 2000 are still preliminary and could change as well. While catch tables could be corrected, catch numbers and mean weights could not be revised during this WG meeting. However, these changes will most likely have a significant influence on the perception of the stock.

An analysis of the changes of mean weights and numbers-at-age in the catch showed a significant variability caused by the current procedure for raising national catch data by the Netherlands. Currently, catches are raised on a monthly basis, which increased the number of metiers and reduced the biological information in some metiers to as little as four age readings/weightings. In the data for 2001 (Tab. 2.2.1-2, 2.2.11), at least three examples have been found where the weights are thought to be highly biased and the distribution of numbers-at-age were based on very few fish. If the raising procedure was changed to a quarterly treatment of sampling and catches, e.g. a reduction of mean weight-at-age for 1-ringers caught in VIb in one quarter from 119 to 82 g and a reduction of the numbers-at-age 8 in the same area from 20,000 to 6,000 individuals was obtained. In the light of these findings, the Netherlands have agreed to rework their raising scheme. These data have a significant influence on the total North Sea catch, as they are usually used to raise the unsampled catches of Germany, France and UK/England and Wales. The catches of these 4 fleets contribute more than 40% to the total catch of herring in the North Sea.

The Working Group felt that it would require a major effort to correct all these data from different sources, and this could not be done during this year's meeting. In the light of the urgent need for the development of a new system to collate and handle commercial catch and sampling data (see Sec. 1.9), and due to time constraints during the WG sessions, the WG recommends to set up a study group to deal with the issues related to data revisions as soon as the new data base is set up.

2.2.4 Quality of catch and biological data

As in previous years, some nations provided information on misreported and unallocated catches of herring in the North Sea and adjacent areas. Catches made in IVa were mainly misreported to VIa North, IIIa and IIa, but misreporting also occurred within Area IV and from VIId to IVb.

Only Scotland provided estimates of discards, which amounted to less than 4%. Estimations of discards in the Dutch fleet were this year included in "unallocated". However, discards are known to occur in the fisheries of most countries and their impact is unknown, and hence they are not included in the assessment.

The Working Group catch, which includes estimates of discards and misreported or unallocated catches (see Section 1.9), was estimated to exceed the official catch significantly (by more than 20%, range $12-25 \%$). If the mean rate of misreporting and unallocated catch for nations reporting this is applied to the whole North Sea catch, this would give a total catch for the human consumption fleet of $340,000 \mathrm{t}$ (compared to $277,000 \mathrm{t}$ official landings and $303,000 \mathrm{t}$ used here). In some areas of the North Sea, there was a WG catch of up to 300% of the official catch. These estimates corroborate recent suggestions of the Study Group for Herring Assessment Procedures (ICES 2001/ACFM:22), that a significant uncertainty of the total catch figure exists since the reopening of the fishery in 1980.

In general, sampling of commercial landings for age, length and weight has deteriorated compared to last year (Table 2.2.12). If unallocated and misreported catches are taken into account, the recommended level of one sample per 1000 t catch is met only for 10 out of 93 metiers. For age readings (recommended level >25 ageings per 1000 t catch) this is worse: only 6 metiers are sampled sufficiently (by The Netherlands (3 metiers), Scotland (2) and Norway (1)). In this respect, there is still a need to improve the quality of the catch data for the North Sea herring.

Germany, France, UK/England and Wales, Sweden, UK/Northern Ireland and the Faroese (combined share 25\% of the total North Sea catch) have not sampled any of their North Sea herring catches. The sampling level was slightly worse than last year for The Netherlands and Norway, deteriorated dramatically for the Danish industrial fleet (to one tenth of the age readings), but improved slightly for the Danish human consumption fleet and UK/Scotland. As it is known that by-catches of herring in other fisheries occur and most of the countries have not implemented a sampling scheme for monitoring these fisheries, Table 2.2.12 can not be used alone to judge whether a country has met the recommended sampling levels or not. The WG recommends that all countries conducting small-mesh fisheries in the North Sea sample and report their herring bycatch in these fisheries.

It should be observed that "sampled catch" refers to the proportion of the reported catch to which sampling was applied. This figure is limited to 100% but might in fact exceed the official landings due to sampling of discards, unallocated and misreported catches. It is not possible to judge the quality of the sampling from this figure alone. Of 93 different reported metiers (each combination of fleets/nations/areas/quarters), only 26 were sampled. This introduces uncertainties in the biological composition of the catches, which affects the quality of the assessment. The Working Group repeats that there is a need for an increased sampling effort, especially to assure that catches landed abroad are reasonably sampled. The new EU directive for the sampling of commercial catch is expected to improve the sampling level at least for EU member states in the course of the next few years.

$2.3 \quad$ Recruitment

2.3.1 The IBTS index of 1-ringer recruitment

The 1-ringer index of recruitment is based on the IBTS, $1^{\text {st }}$ quarter (trawl catches at daytime February 2002). The index, calculated for the entire survey area (ICES 1995), is used as an estimate of the strength of year classes 1977 to 2000 (Table 2.3.1). The temporal trend in indices is illustrated in Figure 2.3.1. The estimate of the 2000 year class (3948) indicates a strong recruitment, among the highest during the period.

Figure 2.3.2 illustrates the spatial distribution of 1-ringers as estimated by the trawling in February during 2000, 2001 and 2002. In 2002 the primary concentrations of 1 -ringers were found in the Central North Sea and in the Skagerrak/Kattegat area. (div. IIIa), however, abundances were generally high in most of the south-eastern areas of the North Sea.

2.3.2 The MIK index of 0-ringer recruitment

The 0 -ringer index is based on night-time catches by a fine-meshed ring net (the MIK) during the February survey of the IBTS. Data was not available in 12 standard rectangles because of low gear catchability by one of the participants in the IBTS. Index values are calculated as described in the WG report of 1996 (ICES 1996/Assess:10). The index value indicating the abundance of 0 -ringers in 2002, the 2001 year class, is estimated at 161.8 (Table 2.3.2).

This estimate of the 2001 year class indicates an above average recruitment. Year class strength is not as high as predicted for the 2000 year class, and in contrast to the preceding year class, 0 -ringers were widespread across the North Sea, with major concentrations of 0 -ringers in the central parts. This easterly displacement of 0 -ringer concentrations was also observed in 1999, while the general trend during the last decade has been 0 -ringers concentrated in the northwesterly parts of the North Sea.

2.3.3 Relationship between the MIK 0-ringer and the IBTS 1-ringer indices

The relationship between the two indices is illustrated in Figure 2.3.4 and described by the fitted linear regression. Last years prediction of a large 2000 year class was confirmed by this year's IBTS 1-ringer index of the year class, and their relative sizes are in accordance with the overall relationship.

2.3.4 Trends in recruitment as estimated by the assessment

The long-term trend in recruitment of 1-ringers to the stock of North Sea autumn spawners is illustrated by Figure 2.3.5. Recruitment estimates are based on the present 2002 ICA assessment. The figure illustrates the decline during the sixties and the seventies, followed by a marked increase in the early eighties. After the strong 1985 year class a new decline was observed, followed by relatively strong year classes in the most recent years. ICA estimates of recent 1ringer recruitment are 17.3 and 30.1 billions for year classes 1999 and 2000 respectively, while the estimates for 0 ringers are 48.3, 83.5 and 61.1 billions for year classes 1999, 2000 and 2001 respectively.

2.3.5 Separate recruitment index of the Downs herring

The Downs herring hatch later than the other autumn-spawned herring and generally appears as a smaller sized group during the $1^{\text {st }}$ quarter IBTS. A recruitment index of smaller-sized 1-ringers is calculated, based on abundance estimates of herring smaller than 13 cm (see discussion of procedures in earlier reports, ICES 2000, and ICES 2001b).

Table 2.3.3. includes abundance estimates of 1-ringer herring smaller than 13 cm , based on a standard retrieval of the IBTS database, i.e. the standard index is in this case calculated for herring $<13 \mathrm{~cm}$ only. Indices for these small 1ringers are given either for the total area or the area excluding Division IIIa, and their relative proportions are indicated.

The proportion of 1 -ringers in the total catches that are smaller than 13 cm is in the order of 20%, with a maximum proportion of 57% for year class 1996 (Table 2.3.3). The contribution of small 1-ringers from Division IIIa also varies significantly, for example two prominent peaks in the abundance estimates (year classes 1986 and 1991) are due to high relative abundance in IIIa.

This year's group of 1-ringers has a large component of small herring in the total area of IBTS coverage (38\%), of which only a minor part is found in the IIIa area.

2.4 Acoustic surveys in the VIa north and the North Sea July 2000

Six surveys were carried out during late June and July covering most of the continental shelf north of $54^{\circ} \mathrm{N}$ in the North Sea and $56^{\circ} \mathrm{N}$ to the west of Scotland to a northern limit of $62^{\circ} \mathrm{N}$. The eastern edge of the survey area is bounded by the Norwegian, Danish and German coasts, and to the west by the shelf edge at approximately 200 m depth. The individual surveys and the methods surveys are reported in the report of the Planning Group for Herring Surveys (ICES, 2002/G:12). The vessels, areas and dates of cruises are given below and in Figure 2.4.1:

Vessel	Dates	Area Surveyed	Days
RV Taits	10-30 July	$56^{\circ}-60^{\circ} \mathrm{N}, 4^{\circ}-10^{\circ} \mathrm{W}$	21
M. Sars	29 June - 24 July	$57^{\circ} 61^{\circ}-30^{\circ} \mathrm{N}, 2^{\circ}-8^{\circ} \mathrm{E}$	27
Scotia	3 July - 23 July	$58^{\circ} 61^{\circ}-30^{\circ} \mathrm{N}, 4^{\circ} \mathrm{W}-2^{\circ} \mathrm{E}$	21
Tridens	25 June - 20 July	$54^{\circ} 30^{\circ}-58^{\circ} \mathrm{N}$, west of $3^{\circ} \mathrm{E}$	26
Solea	29 June -20 July	$54^{\circ}-57^{\circ} \mathrm{N}$, east of $3^{\circ} \mathrm{E}$	22
Dana	30 June -11 July	North of $57^{\circ} \mathrm{N}$, east of $6^{\circ} \mathrm{E}$	13

The data has been combined to provide an overall estimate. The areas covered and dates of surveys are shown in Figure 2.4.1. Estimates of numbers-at-age, maturity stage and mean weights-at-age are calculated as weighted means of individual survey estimates by ICES statistical rectangle. The weighting applied is proportional to the survey track for each vessel that has covered each statistical rectangle. The data has been combined and the estimate of the stock surveyed is shown in Tables 2.4.1-3 by ICES Subarea for North Sea Autumn-spawning herring.

Combined Acoustic Survey Results

The estimates of North Sea Autumn herring SSB in 2001 has risen from 1.7 to 2.6 million tonnes or from 8,750 to 16,198 million individuals of which 9,400 are 2 wr herring (Table 2.4.1). This data series is used as an index in the assessment of North Sea herring because the TS relationship for herring used is not known precisely, and the absolute abundance cannot be obtained reliably. The North Sea survey is consistent with previous years, giving a total adult mortality of about 0.4 in each of the last 2 years, which is similar to the estimates from the assessment (0.5). The survey shows the exceptional high numbers of 2 ring herring, 1998 year class, in the North Sea, which is consistent with the observation of an exceptionally large year class observed in the Acoustic, MIK and IBTS surveys in previous years (ICES 2001/ACFM:12). The acoustic survey indicates that the abundance of this year class is 4 times the preceding (1997) year class. The numbers and biomass of adult autumn-spawning herring can be seen in Figure 2.4.2, the numbers at 1,2 and $3+$ rings in Figure 2.4.3. The spatial distribution of mean weight at 1 and 2 ring, and fraction mature at 2 and 3 ring are given in Figure 2.4.4. These show considerable spatial trend which is observed each year, with larger, more mature fish found in the North and smaller, less mature fish found in the south and particularly the eastern North Sea. The relative spatial distributions of adult and juvenile autumn-spawning herring can be seen in Figures 2.4.5 and 2.4.6 respectively.

Revision of acoustic survey data for 1989 to 2000

The HAWG in 2001 noted some small discrepancies between the historic data in the archive and the summary table and requested PGHERS to examine the historic data archive from the acoustic survey for the North Sea prior to 1996. In reviewing this it was found that there were 9% discrepancies in the 1999 and 2000 Scottish surveys due to calibration error with the change of transducer with the new SCOTIA. The details of these revisions are presented in the report of the combined herring acoustic survey report ICES herring surveys (WD3 2002). Early surveys were combined with equal weight; more recent surveys had been combined using weighting based on the amount of survey effort. The older surveys were recalculated using this weighted method. The revisions to the database have been made and the revised estimates for the North Sea Autumn-spawning herring are given in Table 2.4.5. An assessment was carried out using the 2001 assessment settings with the revised time-series. The influence of the revision expressed as $\%$ change in Recruitment, Stock, SSB and F can be seen in Table 2.4.6. The recruitment is not affected and changes in 2001 are less than 3%, but there are a few historic revisions of up to 5%.

Use of 1 ring data from the survey in the assessment of NS herring

The acoustic survey has been providing estimates of 1 ring herring since 1995. These have not been included in the assessment in previous years. Table 2.4.7 indicates the correlations between the data used to tune the assessments and the assessment in 2001. The 1 ring herring index from the acoustic survey has a correlation of 0.85 similar to the IBTS estimate of 1 ring of 0.86 . However, this correlation for the Acoustic survey 1 ring index is independent of the assessment. The correlation between the 1 group index and subsequent estimates of the same year class as 2 wr is 0.5 for the IBTS and 0.66 for the Acoustic survey. This suggests that the information should be considered for inclusion in the assessment. The ratio of abundance at 1 ring to 2 ring is a lower estimate than the ratio observed in years 1997 to 2001 as the area surveyed was increased and survey methodology became more stable during this period. So initially only 1997 onwards should be tested in the assessment.

2.5 Larvae Surveys

Internationally co-ordinated herring larvae surveys have been conducted in the North Sea and adjacent waters since 1972. Last year only the Netherlands and Germany continued to participate in this program. Five cruises covering six survey units were carried out in the 2001/2002 period. The data coordination and analysis were carried out by IfM Kiel and BFA Hamburg/Rostock.

The traditional LAI and LPE (Larval Production Estimates) rely on a complete coverage of the survey areas. Due to the substantial decline in ship time and sampling effort since the end of the 1980s, these indices have not been calculated in this form since 1994. Instead, a multiplicative model was used for calculating a Multiple Larvae Abundance Index (MLAI, Patterson \& Beveridge, 1995). In this approach, the larvae abundances are calculated for a series of sampling units. The total time-series of data is used to estimate the year and sampling unit effects on the abundance values. The unit effects are used to fill unsampled units so that an abundance index can be estimated for each year.

The unit effects are normalised such that the first sampling unit is used as a reference (Orkney/Shetland 01-15.09.72) and the parameters for the other sampling units are redefined as \log differences from the reference unit.

There were no modifications to the methods. Newly hatched larvae less than 10 mm in length (11 mm for the Southern North Sea) were used to calculate larval abundance. Each larvae abundance index (LAI) unit is defined for area and time. To estimate larval abundance, the mean number of larvae per m^{2} obtained from the ichthyoplankton hauls for each 30×30 nautical mile rectangles was estimated and raised by the corresponding surface area of the rectangle. Rectangle estimates are summed to give unit abundance. Estimates of larval abundance by sampling unit and time are given in Table 2.5.1.

Compared to 2000, a strong increase in abundance was observed in the Orkney/Shetland area where the abundance was approximately four times higher than last year's estimate. In the Buchan area the LAI increased but was still below the long-term mean. The situation in the Central North Sea (CNS) showed continuously rising LAI estimates over the last four years, representing a recovery from very low records to the long term mean of this unit. In the Southern North Sea (SNS) the abundance did not change substantially and was comparable to last year's estimate. Both years showed high larvae abundances and indicated a higher SSB of the Downs component.

The MLAI-model was fitted to the \log difference in abundance of larvae. The analysis of variance and the parameter estimates are given in Table 2.5.2, including year effects and standard errors. The updated normalised log MLAI, the rescaled, un-logged and un-logged/100 MLAI used in the assessment are shown in Table 2.5.3.

Both the LAI per unit as well as the MLAI from the larvae surveys in period 2001/2002 indicate that the SSB has increased and almost doubled when compared to last years WG estimate.

2.6 International Bottom Trawl Survey (IBTS)

The International Bottom Trawl Survey (IBTS) started out as a young herring fish survey in 1966 with the objective of obtaining annual recruitment indices for the combined North Sea herring stocks. It has been carried out every year since and it was realised that the survey could provide recruitment indices not only for herring, but for roundfish species as well. Further examinations of the catch data from the $1^{\text {st }}$ quarter IBTS showed that these surveys also gave indications of the abundances of the adult stages of herring. Thus, the IBTS herring catches are used for estimation of agedisaggregated indices, as 1 ringers, discussed in section 2.3 on recruitment, and indices of 2-5+ ringers.

Fishing gear and survey practices were standardised from 1983, and abundance estimates of 2-5+ ringers from 1983 onwards have shown the most consistent results in assessments of these age groups. This series is therefore used in the North Sea herring assessment. Table 2.6 .1 shows the time-series of abundance estimates of $2-5+$ ringers from the $1^{\text {st }}$ quarter IBTS for the period 1983-2002, while Table 2.6.2 contains area-disaggregated information on the IBTS indices for year 2002.

2.7 Mean weights-at-age and maturity-at-age

2.7.1 Mean weights-at-age

The mean weights-at-age of fish in the catches in 2001 (weighted by the numbers caught) are presented by ICES division and by quarter in Table 2.2.11.

Table 2.7.1 presents the mean weights-at-age in the North Sea stock during the 3rd quarter in Divisions IVa and IVb and IIIa for 1991 to 2001. These values are obtained from the acoustic survey. The data for 2001 are from Table 2.4.4. In this quarter most fish are approaching their peak weights just prior to spawning. For comparison the mean weights in the catch from the last ten years are also shown in the Table 2.7.1 (from section 2.2 for the 2001 values). The mean weights in the catch are generally close to but lower than the long-term mean, except for the weight of 1 ringers which are very high. This high value is partly due to generally high weights found in the area, but is also sensitive to low levels of sampling, see Section 2.2. Similarly the mean weights-at-age in stock from the acoustic survey in 2001 are mostly in the lower quartile of the last 9 years for all ages, except for 2 ringers which is close to the long-term mean. The 1 ringer mean weight in the stock is not seen to be unusually high, suggesting the high weight in the catch may not be typical for the whole stock.

2.7.2 Maturity ogive

The percentage of North Sea autumn-spawning herring (at age) that spawned in 2001 was estimated from the acoustic survey. This was determined from samples of herring from the research vessel catches examined for maturity stage, and raised by the local abundance. All herring at maturity stage between 3 and 6 inclusive in June or July were assumed to spawn in the autumn. The method and justification for the use of values derived from a single years data was described fully in ICES (1996/Assess:10). The maturity in 2001 was higher than the long-term mean (over the last 12 years) for 2 ring herring. This is 11% higher than last year. The proportion of mature 3 ring was close to the long-term mean for the period. The percentages are given in Table 2.7.2.

$2.8 \quad$ Stock assessment

2.8.1 Data exploration and preliminary modeling

Catch-at-age data

Catch-numbers-at-age (Section 2.2) were available for the period 1947-2001. The year range 1960 to 2001 was chosen for the assessment, because of large discrepancies in the sum of products in earlier years. The official landings reported by Norway for 1997 and 1998 were revised upwards this year with substantial amounts (Section 2.2.3). These changes could not be taken into account for the current assessment but will be incorporated next year.

Survey indices available

The following survey indices were available:

- MIK 0-ringer index. Available and used since 1977 as a recruitment index (Section 2.3).
- Acoustic 2-9+ ringer index. Available since 1984, used since 1989 (Section 2.4). In addition the 1-ringer acoustic index was made available to the WG. This index is also available as a biomass index but is not used as such in the assessment.
- IBTS 1-5+ ringer index. Available since 1971. Separated into a 1 ringer index (used since 1979) and a 2-5+ ringer index which is used since 1983 (see sections 2.3 and 2.6).
- Multiplicative larvae abundance index (MLAI). Available since 1973, used since 1979 as an SSB index (section 2.5).

Data exploration

The available survey indices are shown in Figures 2.8 .1 for age-based indices up to age 5 and 2.8.2 for SSB indices. Recruitment indices (MIK 0-ringer and IBTS 1-ringer) and indices for ages 4 and higher (not shown) are fairly consistent. However, the IBTS and Acoustic indices for 2 and 3-ringer are not very consistent. The 1985 year class shows up very strong in the IBTS 2 ringer index, whereas in the 3-ringer index it appears to be the 1984 year class, which indicates that there may be a problem with ageing. The available SSB indices show the same dynamics over time, although the absolute level has tended to diverge since 1990. Both indices indicate a high spawning stock biomass in 2001, comparable to the level of the early 1990s.

In previous working groups the weighting of the survey indices in the tuning process has always been set on a more or less arbitrary basis. All survey indices were assumed to have correlated errors and each survey received a weighting of one in the tuning. Because the IBTS 1 -ringer was used as a separate index it received a separate weighting. The Study Group on the Evaluation of the Herring Assessment Procedures (ICES 2000d) has provided an objective procedure to estimate the weighting of the different component of the model. Both the catch-at-age data in the separable period and the survey indices received weighting that was the inverse of the variance of the data series as estimated from bootstrap analysis (See Section 1.3). The weighting was corrected for correlations between ages. The following weighting was explored in the WG:

age (rings)	catch	MLAI	Acou	IBTS	MIK
0	3.13				2.05
1	4.07		0.74	0.67	
2	3.17		0.75	0.24	
3	2.65		0.64	0.06	
4	1.94		0.27	0.03	
5	1.31		0.14	0.03	
6	0.97		0.13		
7	0.75		0.12		
8	0.55		0.07		
9	0.54		0.07		
SSB		0.65			

Two sets of comparisons were carried out using the ICA model:

- Comparison of the effects of weighting the model components and the addition of the 1-ringer index in the acoustic survey.
- Comparison of the contribution of the survey indices separately.

The comparison between the different weighting options is presented in Figure 2.8.3. In this case the comparison has been between a weighting as used in WG 2001, a weighting based on the SGEHAP inverse variance weighting and a similar option but with down-weighting of the juvenile catches of 0 -ringer and 1 -ringer. The latter option is presented as the final run in section 2.8.2. It was found that the addition of the acoustic 1-ringer index (which only covers 5 years) had little impact on the estimate of the spawning stock, but that it did contribute to the recruitment estimates. It was further noted that using the inverse variance weighting resulted in the highest weighting being applied to the 0 - and 1group. The estimates of recruitment will therefore be heavily dependent on what has been seen in the catches. Since the TAC for the industrial fisheries is set independently of the TAC for adult herring, it was considered that the assumption of separability between the human consumption and the industrial fleet may not hold. Therefore the catches of juveniles were down-weighted (to an arbitrary value of 0.1) in the exploration.

The comparison between different weighting schemes shows that the estimate of SSB in 2001 is sensitive to the weighting applied. SSB in 2001 can be between 1.1 million tonnes (weighting as WG 2001), 1.2 million tonnes (inverse variance weighting), or 1.4 million tonnes (inverse variance, but down-weighting juveniles).

The effects on the catch residuals in the separable period between the two inverse variance weighted runs are shown in the text table below. When using all the inverse variance weighting there is a high negative residual on the 1998 year class in 2001 (2 ringer). This is a strong year class in all the surveys, but has not shown up as expected in the landings. Therefore, the catches will result in a lower estimate of the size of this year class. If the juvenile catches are downweighted, the model is allowed to fit the adult catches more freely, and the estimates of the recruitment in the most recent years is mainly determined by the survey information. This causes the residuals on the 1998 year class to be lower and the residuals on the juveniles to be higher, since the model is allowed to fit with higher residuals for the juveniles.
$\begin{array}{llllll}1 & -0.1488 & -0.4876 & 0.1872 & 0.1949 & 0.2495\end{array}$
| -0.3076 0.4276-0.0552 -0.0455-0.0475
$\begin{array}{llllll}1 & 0.2283 & 0.0160 & -0.1311 & 0.2653 & -0.4395\end{array}$
| $0.0983-0.2769 \quad 0.0836-0.37670 .2872$
| $0.1625-0.1388-0.0586 \quad 0.1212-0.1526$
$\begin{array}{lllll}\mid-0.0042 & -0.1228 & -0.1752 & -0.0413 & 0.0897\end{array}$
। $0.01230 .1910-0.1749-0.1058-0.1106$
| $0.1204-0.0001-0.0716-0.3383-0.1717$
$-0.0084-0.0340-0.2005-0.2793 \quad 0.4386$

INVERSE VARIANCE WEIGHTING

| rings \| 1997 | 1998 | 1999 | 2000 | 2001 |
| :--- | :--- | :--- | :--- | :--- | :--- |

DOWNWEIGHTING 0- and 1 ringer

Because the catch of juveniles cannot be regarded as a reliable indicator of the year class strength, the WG decided to apply a down-weighting of 0.1 to the catches of 0 - and 1 -ringers. This implies that the estimates of the youngest age in the most recent years are predominantly determined by the survey data.

To evaluate the contribution of the individual survey indices in the assessment model, runs were carried out whereby the catch-at-age data was tuned by one single index at a time. All model runs were carried out with the appropriate inverse variance weighting for both the indices and the catches. Results are shown in Figure 2.8.3 and indicate that all the surveys are consistent in the predicted SSB in the recent years.

Period of separable constraint

The ICA model includes the assumption of the exploitation pattern being constant over a number of years. The changes in the regulations in 1996 have affected the various components of the fishery differently. The TACs for the human consumption fleet in the North Sea and Division IIIa were reduced to 50%. By-catch ceilings for the small meshed fleets were implemented, corresponding to a reduction in fishing mortality of 75% compared to 1995 . These fleets exploit juvenile herring as by-catch. As a result a single separability assumption is likely to be violated if it extends further back in time than 1997.

At recent meetings of this WG, the separable period has been split up into two different periods: 1992-1996 and 1997 onwards. In the WG 2001 it was considered that the number of years after the change in selection was long enough to use only a single separable period of four years. In this WG, a selection period of 5 years was used.

Retrospective analysis

The impact of the different model options were examined through retrospective analysis with assessment years 1995 to 2002. These were run under a number of different separable assumptions and input data weighting methods. The three different data weighting procedures were:

- The inverse variance weighting suggested from the evaluation of index precision presented in the SGEHAP report (ICES 2001/G:02)
- The inverse variance weighting with 0 and 1 ringer catch down-weighted to 0.1
- The 2001 HAWG weighting which is an arbitrary weighting method, giving a weighting of 1 to each index and a weighting of 1 to each year in the catch. An overview of the weighting options are presented in Table 2.8.1.

Two different separable periods were tested:

- A five year separable period covering the period immediately preceding the terminal year
- The historic separable period used by the WG, which varies in both duration and number of independent periods and is given in Table 2.8.1 for recent years and the 1998 assessment WG report (ICES 1998/ACFM/14).

Four scenarios were explored:
A) Inverse variance weighting for input data with historic WG separable periods,
B) Inverse variance weighting for input data and down-weighting 0 and 1 ringer catch, and 5-year separable periods,
C) Inverse variance weighting for input data and down-weighting 0 and 1 ringer catch and historic WG separable periods,
D) HAWG 2001 input data weighting and historic WG separable periods.

The results of the four scenarios are shown in Figure 2.8 .4 giving estimates of SSB and F_{2-6} for the years 1990 to 2000 evaluated for assessment years 1995 to 2002. The results may be summarised by considering the change in the estimates of three parameters from one terminal year to another over the period: F2-6, Recruitment and SSB. Change is measured as the difference between the parameter estimate in one year to the estimate of the following year expressed as an absolute value (i.e. without sign). Two criteria are selected,

- The $1^{\text {st }}$ year change (1 YC)---the change in the terminal value of the parameter when the assessment year is increased by one.
- The average annual change (AAC) --- the mean of all the changes of each of the parameters during the period 1994 to 2002 .

The results are given in Table 2.8.2, which together with Figure 2.8.4 show that:

- the changes in all the retrospective patterns between 2002 and 2001 assessments are small for all the scenarios,
- the differences between the converged VPA from the current assessment (WG 2002) and the assessment in 1994 are small for all scenarios (though a little larger for scenario A), indicating that retrospective patterns in recent years occurred over the period of management- and fishery change,
- there is considerable reduction in the AAC from scenario A to scenario B when the inverse variance weighting is used with the 0 and 1 ringer catch down-weighted,
- there are only small differences between scenario B (the fixed separable period) and scenario C (the varying WG separable periods),
- Both the 1 YC and AAC for F is lowest for scenario B (inverse variance weighting with 0 and 1 ringer catch downweighted) (Table 2.8.2),
- The 1YC for recruitment is lowest with scenario B,
- The AAC for recruitment is lowest for scenario C, but this is only marginally lower than scenario B,
- Both the 1YC and AAC for SSB were lowest with scenario D.

Conclusions from explorations

In summary, the following indices were used in the final assessment:

- acoustic survey 1989-2001 (1-9+ ringer)
- IBTS 1983-2002 (2-5+ ringer)
- IBTS 1979-2002 (1-ringer)
- MIK 1977-2002 (0-ringer)
- MLAI<10mm 1979-2001 (biomass index).

The above indices have been used for the assessment during the last seven years.
The use of inverse variance weighting provides a more precise estimate of all parameters than the WG 2001 weighting method (ICES 2001/ACFM:12, see also Section 1.3). In addition, the use of down-weighting of 0 and 1 ringer catches in the separable period provided the most repeatable estimates of F and recruitment in the retrospective analysis. However, the use of WG 2001 weighting and multiple separable periods provided the least changes of SSB. It is not possible to find a solution that satisfies all management parameters at the same time. The weighting scheme selected for the final run then was the inverse variance weighting for both the catches and the survey indices, except for the catches of juveniles ($0-$ and 1 ringer), which were down-weighted to an arbitrary weighting of 0.1 .

2.8.2 Stock assessment

Assessment of the stock was carried out by fitting the integrated catch-at-age model (ICA), including a separable constraint over a five-year period as explained above (Patterson, 1998, Needle 2000).

Details on input parameters and model set-up for the final ICA assessment are presented in Tables 2.8 .1 and 2.8.3. Input data are given in Tables 2.8.4-2.8.10. The ICA program operates by minimising the following general objective function:

$$
\sum \lambda_{c}(C-\hat{C})^{2}+\sum \lambda_{i}(l-\hat{i})^{2}+\sum \lambda_{r}(R-\hat{R})^{2}
$$

which is the sum of the squared differences for the catches (separable model), the indices (catchability model) and the stock-recruitment model.

The final objective function chosen for the stock assessment model was:

$$
\begin{aligned}
& \sum_{a=0, y=1997}^{a=8, y=2001} \lambda_{a}\left(\ln \left(\hat{C}_{a, y}\right)-\ln \left(C_{a, y}\right)\right)^{2}+ \\
& \sum_{y=1979}^{y=2001} \lambda_{\text {mlai }} \cdot\left(\ln \left(q_{\text {mlai }} \cdot S \hat{S} B_{y}^{K}\right)-\ln \left(\text { MLAI }_{y}\right)\right)^{2}+ \\
& \sum_{a=2, y=1983}^{a=5+,=2020} \lambda_{a, i b s s a}\left(\ln \left(q_{a, i b s a} \cdot \hat{N}_{a, y}\right)-\ln \left(\text { IBTS }_{a, y}\right)\right)^{2}+ \\
& \sum_{y=1979}^{y=2022} \lambda_{i b s y y}\left(\ln \left(q_{i b s y} \cdot \hat{N}_{l, y}\right)-\ln \left(I B T S_{l, y}\right)\right)^{2}+ \\
& \sum_{a=1, y=1989}^{a=9+y=2000} \lambda_{a, \text { acoust }}\left(\ln \left(q_{a, a c o u s t} \cdot \hat{N}_{a, y}\right)-\ln \left(\text { ACOUST }_{a, y}\right)\right)^{2}+ \\
& \sum_{y=1977}^{y=2002} \lambda_{m i k}\left(\ln \left(q_{m i k} \cdot \hat{N}_{o, y}\right)-\ln \left(M I K_{y}\right)\right)^{2}+ \\
& \sum_{y=1960}^{y=2001} \lambda_{s s r}\left(\ln \left(\hat{N}_{0, y+1}\right)-\ln \left(\frac{\alpha S \hat{S} B_{y}}{\beta+S \hat{S} B_{y}}\right)\right)^{2}
\end{aligned}
$$

with the following variables:

a,y	age and year
C	Catch-at-age
\hat{C}	Estimated catch-at-age in the separable model
\hat{N}	Estimated population numbers
SSBB	Estimated spawning stock size
MLAI	MLAI index (biomass index)
ACOUST	Acoustic index (age disaggregated)
IBTSA	IBTS index (2-5+ ringers)
IBTSY	IBTS index (1 ringers)
MIK	MIK index (0-ringers)
q	Catchability
k	power of catchability model
α, β	parameters to the Beverton stock-recruit model
λ	Weighting factor

Results

The ICA output is presented in Tables 2.8.11-2.8.20 and Figures 2.8.5-2.8.11. The standard graphical output of ICA is not shown. Rather a small program was written that could plot the result for each variable on the same page, so that comparisons can be made between indices. This was also motivated by technical difficulties with output from the ICAVIEW program. Uncertainty analysis of the final assessment is presented in Figure 2.8.12. Long-term trends in yield, fishing mortality, spawning stock biomass and recruitment are given in Figure 2.8.13.

The spawning stock at spawning time 2001 is estimated at 1.43 million tonnes. Around 45% of the estimated SSB in 2001 consists of the 1998 year class. However, the 2000 year class is also estimated to be very strong, so that in the near
future the stock is expected to increase further. The estimates of SSB in earlier years are higher than in previous assessments. This is due to the use of the inverse variance weighting scheme and the down-weighting of the juvenile catches. For further discussion, see also quality of assessment (section 2.12).

Fishing mortality on 2-6 ringer herring in 2001 is estimated at around 0.24 , and on $0-1$ ringer herring at 0.04 .

Geometric mean recruitment over the period 1983-1998 (the period after the recovery of the collapse) is estimated as 49.0 billion and over the whole time-series as 30.0 billion. The year classes 1998 and 2000 are now estimated as respectively 75.8 and 83.5 billion fish and are expected to contribute to a further increase of the spawning stock. The first estimate of the 2001 year class is 61.1 billion, which is based on the MIK index only.

Sensitivity

The sensitivity of the assessment was explored using a covariance matrix method where 1000 random draws were taken from the parameter-distributions of the ICA model. Using these random parameter vectors, the historical assessment uncertainty was calculated and plotted in Figure 2.8.12. Estimates of fishing mortality at 2-6 ringer and recruitment at 0ringer are highly sensitive to the parameter estimates. There appears to be a relatively good agreement between the point estimates of the final assessment and the median values of the Monte Carlo evaluations.

$2.9 \quad$ Herring in Divisions IVc and VIId

The estimation and evaluation of the stock component of herring in Divisions IVc and VIId (Downs component) is based on the assessment results of North Sea herring and an algorithm that calculates the proportion of Downs herring in each year class from the $1^{\text {st }}$ quarter IBTS 1-ringer recruitment indices (see Section 2.3).

The observed pattern is corroborated by patterns in abundance of herring larvae in the southern North Sea (see Section 2.5) and the mean age of the Dutch December catch in Division VIId. Periods of high Downs herring SSB should coincide with high abundance of herring larvae and a larger proportion of older fish and hence higher mean age in the catch.

Spawning stock biomass

The IBTS 1-ringer index was used to distinguish the fraction $\left(\mathrm{P}_{\mathrm{a}, \mathrm{y}}\right)$ of Downs herring for the corresponding year classes per age group (Figure 2.9.1). The Downs component was assumed to consist of the proportion of the stock smaller than 13 cm (Figure 2.9.1, see Section 2.3.5 and ICES 2001/ACFM:12). The spawning stock biomass at age and year ($\mathrm{SSB}_{\mathrm{a}, \mathrm{y}}$) of Downs herring was calculated as:
$\mathrm{SSB}_{\mathrm{a}, \mathrm{y}}=\Sigma \mathrm{N}_{\mathrm{a}, \mathrm{y}} * \mathrm{~W}_{\mathrm{a}, \mathrm{y}} * \mathrm{P}_{\mathrm{a}, \mathrm{y}} * \mathrm{O}_{\mathrm{a}, \mathrm{y}} * \exp { }^{\left(-\mathrm{F}_{\mathrm{a}, \mathrm{y}} * \mathrm{PF}-\mathrm{M}_{\mathrm{a}, \mathrm{y}} * \mathrm{PM}\right)}$
where N is numbers, W is weight per individual, P is proportion of Downs, O is the proportion of fish spawning, F is fishing mortality, M is natural mortality, and PF and PM are the proportion of F and M that occur before spawning.

It was assumed that weight-at-age, maturity-at-age, fishery mortality and natural mortality of Downs herring were similar to that of the North Sea stock. This approach resulted in a calculated proportion of Downs in the SSB that varied between 18 and 41% (Figure 2.9.2).

Based on the larvae surveys in the southern North Sea and Eastern Channel (see Table 2.5.1) an abundance index was calculated for the southern North Sea only. Mean age of the herring caught in Division VIId can be calculated by weighting the age-at-length with the numbers catch-at-length.

For an evaluation of the estimated SSB of Downs herring in the North Sea stock a comparison could be made with the larval abundance index in the southern North Sea and the mean age in the Dutch December catches in Division VIId, both of which are presented in Figure 2.9.3. All series show a similar pattern, i.e. an increase in the second half of the eighties followed by a decrease to a minimum around 1995 or 1996, after which the level increased again. Although the observed fluctuations in SSB are not exactly in phase with those in larval abundance and mean age, the overall impression is that the present level of the stock is near the high level observed in the late 1980s and early 1990s.

However, the strong increase in SSB in the North Sea stock in 2001 is not mirrored in the Downs component.

Recruitment

The trends in estimated recruitment of 1-ringers of the Downs component are shown in Figure 2.9.1 and show an increase in recruitment in recent years. There is no 0-ringer Downs index presently available because the survey coverage of the MIK does not allow a separation into North Sea and Downs components.

Catch separation

Catches of Downs herring cannot be separated from catches of other North Sea components at present. However, the possibility of using otolith microstructure will be explored in the EU-funded HERGEN project (2002-2004) that would possibly allow for stock separation of winter and autumn-spawners from the entire stock.

2.10
 Short-term projection by fleets

2.10.1 Method

As explained in Section 1.3.3, the WG decided to abandon the previous practise of projecting the stock forwards by area, using local partial fishing mortalities. Instead, the WG decided to give predictions by fleet assuming that the fleetwise partial fishing mortalities apply to the stock as a whole. Thus, a multifleet prediction with 4 fleets is provided.

The standard tool that is currently available (the MFDP program) has some limitations with regard to management options that should be covered. In particular, when varying the fishing mortality for one fleet, the fishing mortalities for the other fleets are assumed constant at status quo F. To allow for exploring a wider range of options, a short-term prediction program (MFSP) was developed during the meeting.

This program, which is written in Fortran, can assume a catch constraint or an F-constraint for each fleet in the intermediate year, and screen over a range of fishing mortalities for each fleet independently in the prediction year. Fishing mortalities by fleet and total fishing mortality for the ages $0-1$ and $2-6$, as well as catches by fleet and SSB in the prediction year are printed for each set of fishing mortalities. Comparative runs with MFDP confirmed that the results were the same for the intermediate year and for selected combinations of fishing mortalities in the prediction year that could be produced by the MFDP program. A copy of the program can be found in the HAWG WG files (Software directory).

Input to the new MFSP program is stock numbers-at-age at the start of the intermediate year, selection pattern for each of the fleets, weights and maturities-at-age and proportion of mortality realised before spawning. The MFDP program was used to generate fleetwise selections-at-age, weights-at-age and maturities-at-age, taking averages over the last two years, as well as status quo fleetwise partial fishing mortalities.

2.10.2 Input data

Fleet definitions

The fleet definitions are the same as last year. The fleet definitions are:

North Sea

Fleet A: Directed herring fisheries with purse seiners and trawlers
Fleet B: All other vessels where herring is taken as by-catch

Division IIIa

Fleet C : Directed herring fisheries with purse seiners and trawlers
Fleet D: By-catches of herring caught in the small-mesh fisheries

Input data for short-term projections

All the input data for the short-term projections are summarised in Table 2.10.1.

The starting point for the projection is the stock of North Sea autumn-spawners in the North Sea and Division IIIa combined at 1 January 2002.

Stock numbers:

For the start of 2002 the total stock number was taken from ICA (Population abundance year 2002, Table 2.8.12).
For 0 -ringers in 2003, the stock number was set to 49000 million, which is the geometric mean of the recruitments in the period 1983 - 1998. This value is somewhat larger that the value used in previous years, to reflect the present perception of the recent recruitments and that the stock now appears to be increasing.

Fishing mortalities: Selection by fleet-at-age was calculated using the MFDP software based on the catches-at-age by fleet, by taking the fishing mortalities-at-age from Table 2.8.11 and split them by fleet proportional to the catches-at-age by fleet from Table 2.2.6. The selections were the averages of these mortalities over the last two years.

Mean weights-at-age in the stock: The averages of the last 2 years' mean weights (2000 and 2001) were used (Table 2.8.5). Note that weights used in the assessment are already smoothed.

Maturity-at-age: The average maturity-at-age for 2000 and 2001 was used (Table 2.8.7)
Mean weights in the catch by fleet: A weighted mean of the last two years was taken i.e., 2000 and 2001 (Table 2.2.6).

Natural Mortality: Unchanged from last year. Table 2.8.6.

Proportion of \mathbf{M} and \mathbf{F} before spawning: Unchanged from last year at 0.67 .

The input file to the prediction program is shown as Table 2.10.1.

2.10.3 Prediction for 2002 and management option tables for 2003

Assumptions and predictions for 2002

Two alternative options were used for the fishery in 2002, either $\mathrm{F}_{\text {status quo }}=\mathrm{F}_{2001}$, or a catch constraint. As in recent years, there has been some overshoot of the overall TAC for North Sea autumn spawners. The TACs for 2002 are the same as for 2001. Hence, the catches in 2001 were used for catch constraints for 2002, implying that the same overshoot as in 2001 was assumed. The values appear in Table 2.10.3.

Management option tables for 2003

The EU-Norway agreement specifies fishing mortalities for juveniles (F_{0-1}) and for adults (F_{2-6}). With four fleets there are innumerable combinations of fleetwise fishing mortalities and catches that satisfy this constraint.

The options table (Tables 2.10.2 and 2.10.3) shows some of these combinations.

A projection assuming F status quo for all fleets is presented. This implies an F on adults close to 0.25 , but a low fishing mortality on juveniles.

Two runs are included where the fishing mortality of the C and D fleets varies in proportion to the B fleet, maintaining the ratios between these fleets as in the status quo fishing mortalities. The examples have F_{2-6} close to 0.2 , but different fishing mortalities for the 0-1 ringers.

In the remaining examples, some combinations of fishing mortalities for the four fleets that give an F_{0-1} close to 0.12 and F_{2-6} close to 0.25 are shown. The combinations in addition satisfy constrains that the catch by the C fleet shall be close to either 30, 50 or 70 thousand tonnes, and the catch of the D fleet close to either 10,20 or 30 thousand tonnes.

All scenarios indicate a rapid increase in spawning biomass and in yield. This is mainly caused by the 1998 year class, which is estimated to be strong, and the 2000 year class, which also appears strong in the surveys.

2.10.4 Comments on the short-term projections

Assuming $\mathrm{F}_{\text {status quo }}$ for 2002 leads to larger catches in 2002 and lower catches and biomasses for 2003 than assuming catches in 2002 as estimated for 2001. This is because the stock is expected to increase so that keeping the catch constant from 2001 to 2002 will imply a reduced fishing mortality in 2002 compared to 2001.

The work by the SGEHAP leads to abandoning the area-based predictions. Making fleetwise predictions for 4 fleets that are more or less independent remains problematic, however, both due to the lack of software that has the necessary flexibility, and in terms of presenting results. The software solution applied here was an ad hoc solution, which should be regarded as provisional, and further development should be done with such software.

Presenting results that allow managers to overview the range of possible trade-offs between fleets remains a challenge. The examples presented here intend to indicate the range of catches that are possible for the A and B fleets within the constraints set by the EU-Norway agreement, and with plausible levels of the catches in Division IIIa. In order to make precise estimates of the correspondence between catches by the A and B fleets, extensions of the present software are needed, in particular implementation of catch constraints for some fleets in the prediction year. Due to time constraints, this could not be done during the meeting, but it is intended to amend the program before the report is presented to ACFM.

2.11 Medium-term analysis

The method used to calculate medium-term projections was that described in ICES (1996/ACFM:10); a Monte-Carlo method was used, with a conventional stock projection being used for each iteration. The generation of pseudo-data sets for the projections was performed separately for the population parameters derived from the stock assessment and for the generation of future recruitments. Population parameters (vector of abundance at age in 2002, fishing mortality at reference age in 2002, selection at age) were drawn from a multivariate normal distribution with mean equal to the values estimated in the stock assessment model, and with covariance as estimated in the same model fit. Recruitment, however, is treated differently. A Beverton-Holt stock-recruit relationship with no autocorrelation is fitted (Figure 2.11.1). A non-parametric bootstrap method was used to generate recruitments in the pseudo-data sets used for the projections: Uncertainty in future recruitments around the stock-recruitment relationship was modelled by randomly drawing values from the historic time-series of log residuals. The ICP program (Version 1.4w) was used to implement the method.

Two medium-term projections were carried out with the following assumptions about the fishing mortality from 2002 onwards.

1. $\quad \mathbf{F}(\mathbf{0}-\mathbf{1})=\mathrm{F}(0-1)_{2001}=0.044, \mathbf{F}(\mathbf{2 - 6})=\mathrm{F}(2-6)_{2001}=0.24$
2. $\quad \mathbf{F}(\mathbf{0}-\mathbf{1})=\mathbf{F}_{\mathrm{pa}}(0-1)=0.12, \mathbf{F}(\mathbf{2}-\mathbf{6})=\mathbf{F}_{\mathrm{pa}}(2-6)=0.25$

The input to the medium-term analysis was taken from the short-term analysis:

- The mean maturity ogive as measured in 2000-2001 has been assumed to hold for the years 2002 and thereafter.
- The natural mortality that was used for the assessment has been assumed to hold for the years 2002 and thereafter.
- The proportions of F and M before spawning in the projections were as used in the assessment.
- The weight-at-age in the stock were taken as the mean values from 2000 and 2001.
- The weights-at-age in the catches by fleet were taken as the mean values from 2000 and 2001.
- The projections start from the populations on 1 January 2002 (ages 1-9+) and recruitment on 1 January 2002 (age 0) calculated in the assessment procedure.
- The overall exploitation pattern generated by ICA, was assumed to hold for 2002 and thereafter.
- The relative fishing mortality by fleet and at age as estimated for 2000 and 2001 was assumed to hold in future years.

An example of the projection file (for run 1) is provided as Table 2.11 . The medium-term projection scenarios modelled are given in detail in Figures 2.11.1-2.11.2.

A strong increase in SSB is expected in all scenarios. This is due to the strong 1998 and 2000 year classes which are expected to contribute to the rebuilding of the stock. Once the predicted stock is at a high level, the stock recruitment
relationship will then tend to keep the predicted SSB at high levels. The risk of SSB falling below $\mathbf{B}_{\text {lim }}$ (0.8 million tonnes) or below \mathbf{B}_{pa} (1.3 million tonnes) is very small when fishing at F status quo or according to the EU-Norway agreement.

It should be emphasized that the predictions are conditional on the stock recruitment relationship which drives the catches proportional to the assumed recruitment. The absolute levels estimated from the medium-term analysis are not considered appropriate for management purposes.

2.12 Biological reference points

Biological reference points were estimated using the PA software. Input for the estimation was identical to the input to the short-term forecast (Table 2.12.1). Resulting estimates of biological reference points are shown in the text table below and the uncertainty of the estimates in Figure 2.12.1.

Fmax	F0.1	Flow	Fmed	Fhigh	F35\%SPR	Floss
0.43	0.13	0.23	0.68	1.48	0.13	2.28

2.13 Quality of the assessment

The assessment data and assessment methodology for North Sea herring have been evaluated extensively, first within the study group SGEHAP (ICES 2001/ACFM 22) and then during HAWG 2002.

SGEHAP evaluated the impact of sampling uncertainty in catch and survey indices. Assessments were carried out using bootstrap realisations of all the variable assessment data, i.e., the catch numbers, catch weights, stock weights, proportion mature, and all the survey indices. The variance of the input data was evaluated using the same methodology for all the data sets and followed the bootstrap methodology developed by O' Brien et al. (2002). A number of weighting methods were evaluated including the previous WG weighting, inverse variance weighting and ICA adaptive weighting. This investigation provided an objective basis for selecting a weighting method for the different input data in the assessment of North Sea herring. The inverse variance weighting method provided the lowest variance estimates for the management parameters in the terminal year of the 2001 assessment. A brief review is included in Section 1.3 and a more detailed evaluation can be obtained in the Study Group report (ICES 2001/ACFM22).

The WG considered the influence of the separable period on the assessment, and in particular the estimation of 0,1 and 2 ringers in the final assessment year. There was considerable conflict between the survey data and the indications from the catch. However, there is also conflict between catch of the same year classes in different years and thus the assumption of a separable period. In contrast the survey estimates of year classes in recent years were in relatively good agreement. This can be seen, for example, in Figure 2.3 .4 where the successive estimates of year class strength estimated at 0 and 1 ring in the MIK and IBTS are compared. The $1997-2000$ year classes are all close to the fitted line. This aspect is discussed extensively within section 2.8 .1 . The WG concluded that it was preferable to give more weight to survey data than to the catch data for these age groups. The influence of this was evaluated through a retrospective analysis, presented within section 2.8.1. The extent of annual revision of F, Recruitment and SSB was evaluated for different models and weighting options. This evaluation concluded that the best overall option was to select inverse variance weights, with down-weighting for catch of 0 and 1 ring in a five-year separable model.

There have been some minor revisions to the catch data, weights-at-age in the stock, and the acoustic survey index at age. The results of these changes were found to be small (see for example Table 2.4.6).

In this year's assessment, the different surveys were all found to display the same substantial upward trend in SSB, though with different magnitudes, when used as a single tuning index with the catch-at-age data (Figure 2.8.3).

The current assessment revises the estimate of SSB in 2000 upward by about 20% from $772,000 \mathrm{t}$ to $946,000 \mathrm{t}$. In addition, the 1999 SSB is also revised upward by about 15%, from 815,000 to $937,000 \mathrm{t}$; this is now in better agreement with the WG 2000 estimate at $906,000 \mathrm{t}$. It is believed that more consistent results are obtained by giving more weighting to the survey data compared to the 0 and 1 ringer catch data within the separable model.

While there is unequivocal evidence that the 2001 SSB has increased substantially from SSB in 2000, the exact scale of this increase and the size of the future recruiting year classes are still uncertain. The three incoming year classes are not yet well known. The 2000 year class is estimated in good agreement with two surveys (MIK and IBTS1) but the catch in 2001 gives a higher estimate. For the 1999 year class the Acoustic survey 1 ring, MIK 0 ring, IBTS 1 ring, and catch at 1 ring are all in close agreement contrasting with the catch at 0 ring, which tends to overestimate this year class. For
the 1998 year class, which is thought to be 77% mature and contribute 45% of the current SSB, there are a number of sources of information, some with quite substantial sources of conflict; the MIK, IBTS 1-2 ring, and Acoustic 2 indices all agree. The catch at 1 and 2 ring moderately under estimate, the acoustic 1 ring tends to overestimate, while the IBTS 3 ring underestimates by more. Uncertainty in abundance or proportion mature of this 1998 year class influences the precision of the assessment. While we believe that the current assessment is the best evaluation of the current state of the stock it is likely that the size of these three years classes will be revised in future.

While the choices between assessment model settings influence the estimate of SSB and F in 2001, there is less influence on the future development of the stock. The current choice of model, compared with one without downweighting of 0 and 1 ring in the catch, decreases the apparent abundance of 2 ringers but in compensation elevates the older ages. It also decreases the estimate of the 2000 year class by about 25%. The result is a similar perception of SSB in two years time.

The current estimate of SSB is $1,428,000 t$; this can be compared to the prediction in 2001 of $1,244,000 \mathrm{t}$. However, this prediction was from a lower baseline of $772,000 \mathrm{t}$; following the revision in the model settings this year the SSB in 1999 is now closer to the 2000 assessment. The prediction for SSB in 2001, from the 2000 WG , assuming a TAC overshoot, was given as $1,470,000 \mathrm{t}$. This compares well with the current estimate.

The short-term prediction method has been substantially modified. Following the review by SGEHAP (ICES 2001/ACFM22), which recommended that a simple multi-fleet method would be preferable, the complex split-factor method used over the last few years has not been used this year. A multi-fleet, multi-option, deterministic short-term prediction programme has been written and used to provide a range of fleet-wise catch options for 2003; the results of these are given in section 2.11. To validate the calculations in the multi-option programme a multi-fleet F status quo run was carried out using both this programme and MDFP and the results were the same. This programme is still under development. The current short prediction is that the North Sea autumn-spawning herring stock SSB in 2003 will be around 2.2 Mt .

Medium-term predictions have been carried out for two scenarios, status quo $\mathrm{F}\left(\mathrm{F}_{0-1}=0.044, \mathrm{~F}_{2-6}=0.24\right)$, which gives a stock of about 3.3 Mt and the EU-Norway agreement ($\mathrm{F}_{0-1}=0.12, \mathrm{~F}_{2-6}=0.25$), which gives a stock of about 2.5 Mt in ten years. Both of these predictions should be viewed with caution, they assume that the fishery will be constrained by the TAC to the required F , the recruitment is dependant on the assumption of a Beverton and Holt recruitment model which provides high levels of recruitment at the predicted stock size. There is insufficient data to support the estimates of recruitment at these stock sizes.

2.14 Management considerations

The current assessment suggests that the spawning stock biomass is now increasing rapidly, and is expected to increase further in the coming year. The point estimate of the spawning stock biomass at spawning time in 2001 was 1.43 million tonnes, and in 2002 it is expected to increase to approximately 1.7 million tonnes.

According to the harvest control rule agreed by EU and Norway, the fishing mortality at spawning stock biomass above 1.3 million tonnes should be constrained by $\mathrm{F}=0.12$ for the ages 0 to 1 and to $\mathrm{F}=0.25$ for the ages $2-6$. This rule is considered to be in accordance with the precautionary approach by ACFM.

The encouraging perception of the state of the stock relies heavily on the strong 1998 year class. This year class has appeared to be strong in all surveys so far, but has not appeared in the fishery for adults as one might expect. Furthermore, the 2000 year class also appears to be very strong in the surveys, and the indications for the 2001 year class is that it is also above average. In general, recruitment of herring is the last 3 years is well above average and similar to the high level in the mid-1980s.

The assessments in previous years have tended to overestimate the stock abundance and underestimate the fishing mortality. This has been attributed to the estimation problems created by the change in exploitation of juveniles in 1996, which implied a shift in the selection pattern. This year's assessment estimates a somewhat larger stock and lower mortality in the recent past than in last years assessment, suggesting that last year's assessment may have underestimated the stock. Whether this implies that the problem has been solved remains to be seen.

The current adult stock is dominated by one large year class. The aim of the harvest control regime is to provide an adult stock with a broader age composition, giving a buffer stock to withstand variations in recruitment. In this sense, the stock is still in a rebuilding phase. At least in the medium term it is therefore mandatory that the fishing mortality is kept at a moderate level, as defined in the EU-Norway agreement, to allow establishing a better balance between young and old fish in the stock.

The agreed harvest control rule allows for some outtake of juvenile herring, at a predefined fishing mortality. The information of the year classes that enter this fishery is sparse when quota decisions are taken, However, more information becomes available at the time when the fishery takes place. Thus, regulations of this juvenile fishery face the same challenges as regulating fisheries on short-lived species. Some kind of in-year adaptation of the TAC as new information comes in may be necessary to set quotas that take the recruitment variation properly into account.

The medium-term predictions (see Section 2.11) are extremely optimistic about the development of the stock with different scenarios of fishing mortality. However, it should be recognized that the results are very dependent on the stock-recruitment curve that underlies the simulation. The WG considered that the absolute values in medium-term analysis using the Beverton and Holt stock recruitment relationship were unrealistic and should not be used for management purposes.

Misreporting of catches in several parts of the North Sea and adjacent areas is still a major source of uncertainty. The WG has included the patterns of misreporting within the short-term projections. Catches taken in the period 1984 to 2001 in Division IV, VIId and reported in areas VIa North, IIa and IIIa, were included in the catch-in-numbers used for the assessment of this stock. However, there is little hard evidence for the extent of this misreporting and the catch reallocation is carried out with limited confidence. Permission for scientists in all countries to get access to VMS data could improve the estimation of the amount of misreporting.

The level of discards and slippage is largely unknown, and the discard estimates supplied are thought to be an underestimate of the total discards. Several discard sampling programs have recently been started to address this issue.

The Downs component of the North Sea herring stock is managed separately because this component is believed to be very susceptible to intense fishing pressure during spawning (in IVc and VIId) in the winter months. In line with the reduction in TAC for the North Sea herring fishery in the middle of 1996, the TAC for IVc and VIId was reduced to 25,000 tonnes and has been kept fixed until 2002, when it was increased to 42000 t . In general the catches estimated by the WG have overshot the agreed TAC's considerably. In the last five years, catches were about twice as high as the TAC (Figure 2.13.1). Considerable catches taken in Divisions IVc and VIId were misreported to other Divisions. Although it is not possible to estimate separate fishing mortalities for the Downs component (because the catches occur mixed with the North Sea herring during a large part of the year), there are at least indications of the relative change of the Downs component SSB. The available information indicates that the stock component has increased over the last 4 to 5 years and is presently at around the high level of the late 1980s. However, the strong increase in SSB in the North Sea stock in 2001 is not mirrored in the Downs component.

Table 2.1.1 HERRING caught in the North Sea (Sub-area IV and Division VIId).
Catch in tonnes by country, 1992-2001. These figures do not an all cases correspond to the official statistics and cannot be used for management purposes.

Country	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$
Belgium	242	56	144	12	-
Denmark	193968	164817	121559	153363	9
Faroe Islands	-	-	-	237496	9
France	16587	12623	27941	29499	9
Germany, Fed.Rep	42665	41619	9	38394	43798
Netherlands	75683	79190	76155	78491	3500
Norway 4	116863	122815	125522	131026	43739
Sweden	4939	5782	5425	5017	3090
USSR/Russia				-	-
UK (England)	11314	12002	10	14216	14676
UK (Scotland)	56171	55532	49919	44813	17473
UK (N.Ireland)	-	-	-	-	-
Unallocated landings	25867	18410	5749	33584	9
Misreporting from VIaN	22594	24397	30234	32146	3875
Total landings	566892	537243	9,10	495258	566656
Discards	4950	3470	2510	-	263399
Total catch	$\mathbf{5 7 1 8 4 2}$	$\mathbf{5 4 0 7 1 3}$	$\mathbf{9 , 1 0}$	$\mathbf{4 9 7 7 6 8}$	$\mathbf{5 6 6 6 5 6}$

Estimates of the parts of the catches which have been allocated to spring-spawning stocks						
IIIa type (WBSS)	7854	8928	13228	10315	855	
Thames estuary 5	202	201	215	203	168	
Country	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	1	$\mathbf{2 0 0 1}$
Belgium	1	1	2	1	-	
Denmark 7	38431	58924	61268	64123	67096	
Faroe Islands	-	25	1977	915	1082	
France	14524	20783	26962	20952	24515	
Germany	13381	22259	26764	26687	29779	
Netherlands	35129	50654	54318	54382	52390	
Norway 4	38745	13	68523	13	70718	72844
Sweden	2253	3221	3241	3046	75089	
Russia	1619	-	-	-	3695	
UK (England)	3421	7635	10598	11179	14582	
UK (Scotland)	22914	32403	29911	30033	26719	
UK (N.Ireland)	-	-	-	915	1018	
Unallocated landings	27583	27722	21653	37707	12	25849
Misreporting from VIaN	29763	6	32446	23625		8
Total landings	227763	324596	331036	322784	321814	
Discards	6005	3918	4769	6354	12	1386
Total catch	$\mathbf{2 3 3 7 6 9}$	$\mathbf{6}$	$\mathbf{3 2 8 5 1 4}$	$\mathbf{3 3 5 8 0 5}$	$\mathbf{3 2 9 1 3 8}$	$\mathbf{3 2 3 2 0 0}$
Estimates of the parts of the catches which have been allocated to spring-spawning stocks						
IIIa type (WBSS)	979	7833	4732	6649	6449	
Thames estuary 5	202	88	88	76	107	
Others 11				378	1097	

${ }_{1}$ Preliminary.
4Catches of Norwegian spring spawners removed (taken under a separate TAC).
5 Landings from the Thames estuary area are included in the North Sea catch figure for UK (England).
6Altered in 2000 based on revised estimates of misreporting into VIa (North).
${ }_{7}$ Including any bycatches in the industrial fishery.
${ }_{8}$ Catches misreported into VIaN could not be separated, they are included in unallocated.
${ }_{9}$ Figure altered in 2001.
${ }_{10}$ Figure altered in 2002 (was 7851 t higher before).
${ }_{11}$ Caught in the whole North Sea, included in the catch figure for The Netherlands.
12 Figure altered in 2002.
13 not in accordance with official final catch figures, should be corrected prior to next year's working group.

Table 2.1.2: HERRING, catch in tonnes in Division IVa West. These figures do not in all cases correspond to the official statistics and cannot be used for management purposes.

Country	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$
Denmark	10751	10604	20017	17748	3237
Faroe Islands	-	-	-	-	-
France	4714	4	3362	11658	10427
Germany	21836	17342	4	18364	17095
Netherlands	29845	28616	16944	24696	2167
Norway	39244	33442	56422	56124	22187
Sweden	985	1372	2159	1007	2398
UK (England)	4916	4742	3862	3091	2391
UK (Scotland)	39269	36628	4	44687	40159
UK (N. Ireland)	-	-	-	-	12762
Unallocated landings	4855	-8271	5	32149	26018
Misreporting from VIa North	22593	24397	30234	32146	38254
Total Landings	179008	152234	207561	228511	99510
Discards	850	825	550	-	356
Total catch	$\mathbf{1 7 9 8 5 8}$	$\mathbf{1 5 3 0 5 9}$	$\mathbf{2 0 8 1 1 1}$	$\mathbf{2 2 8 5 1 1}$	$\mathbf{9 9 8 6 6}$

Country	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$
$\mathbf{1}$					
Denmark 7	2667	4634	15359	25530	17770
Faroe Islands	-	25	1977	205	192
France	361	4757	6369	3210	8164
Germany	-	7752	11206	5811	17753
Netherlands	6904	9	11851	17038	15117
Norway	16485	12	27218	12	30585
	32895	11472	10		
Sweden	1617	245	859	1479	1418
Russia	1619	-	-	-	-
UK (England)	-	4306	7163	8859	12283
UK (Scotland)	17120	30552	28537	29055	25105
UK (N. Ireland)	-	-	-	996	1018
Unallocated landings	7574	15952	3889	30581	11
Misreporting from VIa North	29763	6	32446	23625	

${ }_{1}$ Preliminary.
4Including IVa East.
${ }_{5}$ Negative unallocated catches due to misreporting from other areas.
6 Altered in 2000 on the basis of a Bayesian assessment on misreporting into VIa (North).
7 Including any bycatches in the industrial fishery.
${ }_{8}$ Catches misreported into VIaN could not be separated, they are included in unallocated.
${ }_{9}$ Figure altered in 2001.
10 Including 1057 t of local spring spawners.
11 Figure altered in 2002.
12 not in accordance with official final catch figures, should be corrected prior to next year's working group.

Table 2.1.3: HERRING, catch in tonnes in Division IVa East. These figures do not in all cases correspond to the official statistics and cannot be used for management purposes.

Country	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$
Denmark 5	53692	43224	43787	45257	19166
Faroe Islands	-	-	-	-	-
France	-3	4	14	+	-
Germany	-3	-3	-	-	-
Netherlands	-	-	-	-	-
Norway 2	61379	56215	40658	62224	18256
Sweden	508	711	1010	2081	
UK (Scotland)	196	-3	-	-	693
Unallocated landings	-	-	-	-	-
Total landings	115775	100154	85469	109562	38115
Discards	-	-	-	-	-
Total catch	$\mathbf{1 1 5 7 5}$	$\mathbf{1 0 0 1 5 4}$	$\mathbf{8 5 4 6 9}$	$\mathbf{1 0 9 5 6 2}$	$\mathbf{3 8 1 1 5}$

Country	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1} \mathbf{1}$
Denmark 5	22882	25750	18259	11300	18466
Faroe Islands	-	-	-	710	890
France	3	-	115	-	-
Germany	4576	-	-	29	-
Netherlands	-	-	1965	38	-
Norway 1	184906	41260	6	37433	39696
Sweden	427	1259	772	1177	56287
Unallocated landings	-	-	-19654	-44	0
Total landings	46378	68269	56579	52946	76160
Discards	-	-	-	-	-
Total catch	$\mathbf{4 6 3 7 8}$	$\mathbf{6 8 2 6 9}$	$\mathbf{5 6 5 7 9}$	$\mathbf{5 2 9 4 6}$	$\mathbf{7 6 1 6 0}$

${ }_{1}$ Preliminary
${ }_{2}$ Catches of Norwegian spring-spawning herring removed (taken under a separate TAC).
3 Included in IVa West.
4Negative unallocated catches due to misreporting into other areas.
${ }_{5}$ Including any bycatches in the industrial fishery.
6 not in accordance with official final catch figures, should be corrected prior to next year's working group

Table 2.1.4: HERRING, catch in tonnes in Division IVb. These figures do not in all cases correspond to the official statistics and cannot be used for management purposes.

Country	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6} \mathbf{6}$
Belgium	13	-	-	-	-
Denmark 4	125229	109994	55060	87917	43749
Faroe Islands	-	-	-	2318	-
France	2313	2086	5492	7639	2373
Germany	20005	23628	14796	21707	11052
Netherlands	26987	31370	39052	30065	18474
Norway	16240	33158	28442	12678	3296
Sweden	3446	3699	2256	1929	-
UK (England)	3026	3804	7337	9688	2757
UK (Scotland)	16707	18904	5101	4654	4449
Unallocated landings 3	-13637	-16415	-26988	-108319	-8826
Total landings	200329	210228	130548	165677	77324
Discards 1	1900	245	460	-	592
Total catch	$\mathbf{2 0 2 2 2 9}$	$\mathbf{2 1 0 4 7 3}$	$\mathbf{1 3 1 0 0 8}$	$\mathbf{1 6 5 6 7 7} \mathbf{9}$	$\mathbf{7 7 9 1 6}$

Country	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1} \mathbf{1}$
Belgium	-	-	1	-	-
Denmark 4	11636	26667	26211	26825	30277
Faroe Islands	-	1	-	-	-
France	6069	8944	7634	10863	7601
Germany	7456	13591	13529	18818	8340
Netherlands	14697	27408	22825	26845	24160
Norway	3770	45	2700	253	7330
Sweden	209	1717	1610	390	1760
UK (England)	2033	1767	1641	669	814
UK (Scotland)	5461	1851	1374	978	1614
Unallocated landings 3	-1615	-11270	-313	-13769	-12878
Total landings	49716	70720	77212	71872	69018
Discards 1	1855	1188	873	317	-2
Total catch	$\mathbf{5 1 5 7 1}$	$\mathbf{7 1 9 0 8}$	$\mathbf{7 8 0 8 5}$	$\mathbf{7 2 1 8 9}$	$\mathbf{6 9 0 1 8}$

${ }_{1}$ Preliminary.
2Discards partly included in unallocated.
${ }_{3}$ Negative unallocated catches due to misreporting from other areas.
4Including any bycatches in the industrial fishery.
8 Figure inserted in 2001.
9Figure altered in 2001.

Table 2.1.5: HERRING, catch in tonnes in Divisions IVc and VIId. These figures do not in all cases correspond to the official statistics and cannot be used for management purposes.

Country	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$
Belgium	229	56	144	12	-
Denmark	4296	995	2695	2441	1344
France	9560	7171	10777	11433	6950
Germany	824	649	4964	4996	997
Netherlands	18851	19204	20159	23730	13824
UK (England)	3372	3456	10	3016	1896
UK (Scotland)	-	-	131	-	1733
Unallocated landings	34649	43096	29792	18397	262
Total landings	71781	66776	10	71678	62905
Discards 1	2200	2400	2400	-	49044
Total catch	$\mathbf{7 3 9 8 1}$	$\mathbf{6 9 1 7 6}$	$\#$	$\mathbf{7 4 0 7 8}$	$\mathbf{6 2 9 0 5}$
Coastal spring spawners	202	201	215	$\mathbf{2 0 3}$	$\mathbf{4 9 5 6 5}$
included above 2					

Country	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1} \mathbf{1}$
Belgium	1	1	1	1	-
Denmark	1246	1873	1439	468	583
France	8091	7081	12844	6879	8750
Germany	1349	916	2029	2029	3686
Netherlands	13528	11395	12490	12348	9670
UK (England)	1388	1562	1794	1537	1485
UK (Scotland)	333	-	-	-	-
Unallocated landings	21624	23040	20042	20966	21149
Total landings	47559	45868	50639	44228	45323
Discards	3012	2000	3242	196	-3
Total catch	$\mathbf{5 0 5 7 1}$	$\mathbf{4 7 8 6 8}$	$\mathbf{5 3 8 8 1}$	$\mathbf{4 4 4 2 4}$	$\mathbf{4 5 3 2 3}$
Coastal spring spawners	143	88	88	76	147
included above 2					

${ }_{1}$ Preliminary.
2Landings from the Thames estuary area are included in the North Sea catch figure for UK (England).
${ }_{3}$ Discards partly included in unallocated.
9Figure altered in 2001
${ }_{10}$ Figure altered in 2002 (was 7851 t higher before).
11 Thames/Blackwater herring landings: 107 t , others included in the catch figure for the Netherlands.

Table 2.1.6 ("The Wonderful Table"): HERRING in Sub-area IV, Division VIId and Division IIIa. Figures in thousand tonnes.

Year	1989	1990	1991	1992	1993	1994	199518	1996	1997	1998		1999		2000	2001	2002
Sub-Area IV and Division VIId: TAC (IV and VIId)																
Recommended Divisions IVa, b 1	484	373, 332	3636	352	2907	2967	38911	156	159	254		265		265	265	265
Recommended Divisions IVc, VIId	30	30	50-60 6	54	50	50	50	-14	- 14	-	14	-	14	-14	- 14	-14
Expected catch of spring spawners				10	8											
Agreed Divisions IVa,b 2	484	385	3706	380	380	390	390	263;13113	134	229		240		240	240	223
Agreed Div. IVc, VIId	30	30	506	50	50	50	50	50; 2513	25	25		25		25	25	42
Bycatch ceiling in the small mesh fishery									24	22		30		36	36	36
CATCH (IV and VIId)																
National landings Divisions IVa, b 3	639	499	495	481	463	421	456	176	144	241		255		263	272	
Unallocated landings Divisions IVa,b	-2	14	30	14	-1	6	47	39	36	37		25		16	5	
Discard/slipping Divisions IVa,b 4	3	4	2	3	1	1	0	1	316	2		2		6	1	
Total catch Divisions IVa,b 5	638	516	527	498	463	428	503	216	18316	281		282		285	278	
National landings Divisions IVc, VIId 3	30	24	42	37	40	42	45	25	26	23		31		23	24	
Unallocated landings Divisions IVc,VIId	48	32	16	35	43	30	18	24	22	23		20		21	21	
Discard/slipping Divisions IVc, VIId	1	5	3	2	2	2	-	1	3	2		3		0.2	0	
Total catch Divisions IVc, VIId	79	61	61	74	85	74	63	50	51	48		54		44	45	
Total catch IV and VIId as used by ACFM 5	717	578	588	572	548	498	566	266	23416	329		336		329	323	
CATCH BY FLEET/STOCK (IV and VIId) 10																
North Sea autumn spawners directed fisheries (Fleet A)	N.a.	N.a.	446	441	438	447	506	226	22016	306		316		304	295	
North Sea autumn spawners industrial (Fleet B)	N.a.	N.a.	134	124	101	38	65	38	13	14		15		18	20	
Baltic-IIIa-type spring spawners	20	8	8	8	9	13	10	0.9	0.9	8		5		7	6	
Coastal-type spring spawners	2.3	1.1	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.1		0.1		0.1	1	
North Sea autumn spawners in IV and VIId total	696	569	580	564	539	485	559	265	23316	320		331		322	308	
Division IIIa: TAC (IIIa)																
Predicted catch of autumn spawners			96	153	102	77	98	48	35	58		43		53	67	63
Recommended spring spawners	84	67	91	90	93-113	-9	-12	- 12	- 15	-	15	-	15	-15	- 15	-15
Recommended mixed clupeoids	80	60	0	0	0	-	-	-	-	-		-		-	-	-
Agreed herring TAC	138	120	104.5	124	165	148	140	120	80	80		80		80	80	80
Agreed mixed clupeoid TAC	80	65	50	50	45	43	43	43								
Bycatch ceiling in the small mesh fishery									20	17		19		21	21	21
CATCH (IIIa)																
National landings	192	202	188	227	214	168	157	115	83	120	16	86		108	90	
Catch as used by ACFM	162	195	191	227	214	168	157	115	83	105	16	86		108	90	
CATCH BY FLEET/STOCK (IIIa) 10																
Autumn spawners human consumption (Fleet C)	N.a.	N.a.	26	47	44	42	21	23	34	54		31	17	37	36	
Autumn spawners mixed clupeoid (Fleet D) 19	N.a.	N.a.	13	23	25	12	6	12	4	5		8	17	13	12	
Autumn spawners other industrial landings (Fleet E)	N.a.	N.a.	38	82	63	32	43	7	2							
Autumn spawners in IIIa total	91	778	77	152	132	86	70	42	40	59		39	17	50	48	
Spring spawners human consumption (Fleet C)	N.a.	N.a.	68	53	68	59	59	69	34	43		44	17	53	39	
Spring spawners mixed clupeoid (Fleet D) 19	N.a.	N.a.	5	2	1	1	2	1	1	3		3	17	5	3	
Spring spawners other industrial landings (Fleet E)	N.a.	N.a.	40	20	12	24	29	3	1							
Spring spawners in IIIa total	71	118	113	75	81	84	90	73	37	46		47	17	58	42	
North Sea autumn spawners Total as used by ACFM	787	646	657	716	671	571	629	307	27316	380		370	17	372	364	

1 Includes catches in directed fishery and catches of 1-ringers in small mesh fishery up to 1992.2 IVa,b and EC zone of IIa. 3 Provided by Working Group members. 4 One country only. 5 Includes spring spawners not included in assessment. 6 Revised during 1991. 7 Based on $\mathrm{F}=0.3$ in directed fishery only; TAC advised for IVc, VIId subtracted. 8 Estimated. 9 130-180 for spring spawners in all areas. 10 Based on sum-of-products (number x mean weight-at-age). 11 Status quo F catch for fleet A. 12 The catch should not exceed recent catch levels. 13 During the middle of 1996 revised to 50% of its original agreed TAC. 14 Included in IVa,b. 15 Managed in accordance with autumn spawners. 16 Figure altered in 2000 . 17 Figure altered in 2001. 18 Data for 1995 show some inconsistencies and need to be revised intersessionally. 19 Fleet D and E are merged from 1999 onwards.

Table 2.2.1: North Sea Autumn-spawning Herring (NSAS), and Western Baltic Spring Spawners (WBSS) caught in the North Sea 2001. Catch in numbers (millions) at age (CANUM), by quarter and division

	IIIa	IVa(E)	IVa(E)	IVa(E)	IVa(W)	IVb	IVc	VIId	IVa \&	IVc \&	Total
	NSAS	all	WBBS	NSAS					IVb	VIId	NSAS
WR				only					NSAS		caught in the

Quarters: 1-4												
0	807.8	0.0	0.0	0.0	0.0	1008.8	16.1	0.0	1008.8	16.1	1832.7	1024.9
1	563.6	5.5	0.5	5.0	5.3	67.5	4.8	0.0	77.9	4.8	646.3	83.1
2	150.0	172.9	11.3	161.6	365.9	98.3	4.4	74.2	625.8	78.6	854.4	715.7
3	17.2	135.7	10.2	125.5	133.0	85.2	4.0	129.9	343.8	133.9	494.9	487.9
4	1.4	72.9	6.1	66.8	89.8	48.5	1.2	62.6	205.0	63.8	270.2	275.0
5	0.3	80.0	7.2	72.9	124.8	63.8	1.6	31.1	261.5	32.7	294.4	301.3
6	0.5	22.5	2.7	19.8	37.2	12.1	0.5	5.5	69.1	5.9	75.5	77.7
7	0.0	14.2	1.6	12.6	16.1	9.8	0.2	1.5	38.5	1.7	40.3	41.8
8	0.0	3.6	0.4	3.2	9.8	24.6	0.2	0.8	37.6	1.0	38.6	39.0
9+	0.0	0.4	0.0	0.4	1.9	0.2	0.0	0.0	2.4	0.0	2.4	2.5
Sum	1540.8	507.7	39.9	467.8	783.9	1418.7	32.8	305.7	2670.4	338.5	4549.7	3048.9

Quarter: 1

0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	232.8	0.0	0.0	0.0	0.1	8.7	4.7	0.0	8.7	4.7	246.2	13.4
2	73.6	22.8	0.0	22.8	16.4	12.2	3.4	0.9	51.5	4.3	129.4	55.8
3	4.2	17.3	0.0	17.3	8.6	6.8	2.6	13.1	32.7	15.8	52.6	48.4
4	0.1	20.7	0.0	20.7	7.7	5.2	0.4	4.6	33.6	5.0	38.7	38.7
5	0.0	20.9	0.0	20.9	8.7	4.5	1.3	13.2	34.1	14.5	48.7	48.6
6	0.0	2.6	0.0	2.6	5.6	0.1	0.5	4.8	8.3	5.2	13.6	13.5
7	0.0	2.1	0.0	2.1	1.1	0.2	0.1	1.5	3.4	1.7	5.1	5.1
8	0.0	1.1	0.0	1.1	0.7	0.2	0.1	0.8	2.0	0.9	2.9	2.9
9+	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.1
Sum	310.8	87.6	0.0	87.6	48.9	37.9	13.2	39.0	174.4	52.1	537.4	226.6

Quarter: 2												
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	87.0	5.5	0.5	5.0	3.8	28.5	0.1	0.0	37.4	0.1	124.4	37.9
2	40.6	75.9	2.9	73.0	60.7	31.7	0.1	0.0	165.4	0.1	206.1	168.4
3	5.6	82.1	6.3	75.8	37.9	23.3	0.0	0.1	137.0	0.1	142.6	143.4
4	0.2	34.0	3.6	30.4	9.8	10.0	0.0	0.0	50.1	0.1	50.4	53.8
5	0.1	41.1	4.3	36.8	8.4	12.3	0.1	0.1	57.5	0.1	57.8	62.0
6	0.1	14.7	1.6	13.2	2.5	4.0	0.0	0.0	19.6	0.0	19.7	21.2
7	0.0	8.4	0.9	7.5	0.9	2.3	0.0	0.0	10.7	0.0	10.7	11.6
8	0.0	1.8	0.2	1.6	0.9	1.0	0.0	0.0	3.6	0.0	3.6	3.8
9+	0.0	0.3	0.0	0.3	0.2	0.2	0.0	0.0	0.7	0.0	0.7	0.7
Sum	133.6	263.8	20.3	243.5	125.2	113.2	0.3	0.2	481.9	0.5	616.0	502.7
Quarter: 3												
0	791.8	0.0	0.0	0.0	0.0	268.9	1.1	0.0	268.9	1.1	1061.7	269.9
1	165.7	0.0	0.0	0.0	1.4	30.3	0.1	0.0	31.7	0.1	197.4	31.8
2	26.9	31.2	8.4	22.8	275.8	40.3	0.0	0.2	339.0	0.2	366.0	347.6
3	4.6	19.7	3.9	15.8	78.5	31.1	0.0	0.3	125.5	0.3	130.4	129.7
4	0.9	8.4	2.5	5.9	60.1	24.5	0.0	0.1	90.5	0.2	91.6	93.2
5	0.1	9.3	2.8	6.5	104.8	36.7	0.0	0.0	147.9	0.1	148.1	150.8
6	0.3	3.7	1.1	2.6	28.8	3.8	0.0	0.0	35.2	0.0	35.5	36.3
7	0.0	2.2	0.7	1.5	13.8	5.3	0.0	0.0	20.7	0.0	20.7	21.3
8	0.0	0.6	0.2	0.4	8.1	22.9	0.0	0.0	31.4	0.0	31.4	31.6
9+	0.0	0.0	0.0	0.0	1.7	0.0	0.0	0.0	1.7	0.0	1.7	1.7
Sum	990.2	75.2	19.6	55.5	573.0	463.8	1.3	0.6	1092.3	1.9	2084.5	1113.9

Quarter: 4												
0	16.0	0.0	0.0	0.0	0.0	740.0	15.0	0.0	740.0	15.0	771.0	755.0
1	78.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	78.2	0.0
2	8.9	43.0	0.0	43.0	12.9	14.0	0.8	73.2	69.9	74.0	152.8	143.9
3	2.8	16.5	0.0	16.5	8.1	24.1	1.3	116.5	48.7	117.8	169.2	166.5
4	0.2	9.8	0.0	9.8	12.1	8.8	0.7	57.9	30.8	58.5	89.5	89.3
5	0.0	8.7	0.0	8.7	3.0	10.3	0.2	17.7	22.0	17.9	39.9	39.9
6	0.1	1.5	0.0	1.5	0.3	4.2	0.0	0.7	6.0	0.7	6.7	6.7
7	0.0	1.5	0.0	1.5	0.4	1.9	0.0	0.0	3.8	0.0	3.8	3.8
8	0.0	0.1	0.0	0.1	0.1	0.5	0.0	0.0	0.6	0.0	0.6	0.6
9+	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sum	106.2	81.1	0.0	81.1	36.8	803.8	18.1	265.9	921.8	283.9	1311.9	1205.7

Table 2.2.2: North Sea Autumn-spawning Herring (NSAS), and Western Baltic Spring Spawners (WBSS) caught
in the North Sea 2001. Mean weight-at-age (kg) in the catch (WECA), by quarter and division

WR	$\begin{array}{r} \text { IIIa } \\ \text { NSAS } \end{array}$	$\begin{array}{r} \mathrm{IVa}(\mathbf{E}) \\ \text { all } \end{array}$	$\begin{gathered} \hline \text { IVa(E) } \\ \text { WBSS } \end{gathered}$	IVa(W)	IVb	IVe	VIId	$\begin{array}{r} \text { IVa \& } \\ \text { IVb } \\ \text { all } \\ \hline \end{array}$	$\begin{gathered} \text { IVc \& } \\ \text { VIId } \end{gathered}$	$\begin{array}{r} \text { Total } \\ \text { NSAS } \end{array}$	Herring caught in the North Sea
Quarters: 1-4											
0	0.009	0.000	0.000	0.000	0.014	0.015	0.000	0.014	0.015	0.012	0.014
1	0.049	0.079	0.079	0.080	0.061	0.027	0.000	0.064	0.027	0.051	0.061
2	0.075	0.121	0.127	0.134	0.102	0.055	0.117	0.125	0.113	0.116	0.124
3	0.108	0.148	0.151	0.161	0.143	0.103	0.139	0.152	0.138	0.147	0.148
4	0.130	0.165	0.178	0.190	0.165	0.149	0.167	0.176	0.166	0.173	0.174
5	0.147	0.177	0.188	0.221	0.176	0.139	0.165	0.197	0.164	0.194	0.194
6	0.219	0.197	0.198	0.231	0.192	0.149	0.155	0.214	0.155	0.210	0.209
7	0.176	0.219	0.221	0.264	0.190	0.168	0.168	0.230	0.168	0.228	0.228
8	0.198	0.261	0.269	0.281	0.188	0.182	0.180	0.219	0.180	0.218	0.218
9+	0.000	0.238	0.238	0.294	0.275	0.000	0.000	0.284	-	0.285	0.284

Quarter: 1

Quarter: $\mathbf{l l l l l l l l l l l}$											
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-	-	$\mathbf{0 . 0 0 0}$	$\mathbf{0 . 0 0 0}$
1	0.028	0.000	0.000	0.076	0.025	0.025	0.000	0.025	0.025	$\mathbf{0 . 0 2 8}$	$\mathbf{0 . 0 2 5}$
2	0.060	0.095	0.000	0.097	0.065	0.038	0.076	0.088	0.046	$\mathbf{0 . 0 7 1}$	$\mathbf{0 . 0 8 5}$
3	0.100	0.137	0.000	0.159	0.112	0.081	0.089	0.137	0.088	$\mathbf{0 . 1 2 0}$	$\mathbf{0 . 1 2 1}$
4	0.177	0.140	0.000	0.173	0.137	0.112	0.112	0.147	0.112	$\mathbf{0 . 1 4 3}$	$\mathbf{0 . 1 4 3}$
5	0.194	0.155	0.000	0.182	0.148	0.128	0.128	0.161	0.128	$\mathbf{0 . 1 5 1}$	$\mathbf{0 . 1 5 1}$
6	0.184	0.186	0.000	0.146	0.212	0.148	0.148	0.160	0.148	$\mathbf{0 . 1 5 5}$	$\mathbf{0 . 1 5 5}$
7	0.175	0.211	0.000	0.228	0.214	0.168	0.168	0.216	0.168	$\mathbf{0 . 2 0 1}$	$\mathbf{0 . 2 0 1}$
8	0.194	0.243	0.000	0.242	0.235	0.180	0.180	0.242	0.180	$\mathbf{0 . 2 2 2}$	$\mathbf{0 . 2 2 2}$
$9+$	0.000	0.238	0.000	0.284	0.000	0.000	0.000	0.245	-	$\mathbf{0 . 2 4 5}$	$\mathbf{0 . 2 4 5}$

Quarter: 2

Qun	0.000	0.000	0.000	0.000	0.000	0.000	0.000	-	-	$\mathbf{0 . 0 0 0}$	$\mathbf{0 . 0 0 0}$
1	0.034	0.079	0.079	0.075	0.034	0.085	0.000	0.045	0.085	$\mathbf{0 . 0 3 7}$	$\mathbf{0 . 0 4 5}$
2	0.080	0.123	0.123	0.115	0.099	0.103	0.076	0.116	0.100	$\mathbf{0 . 1 0 8}$	$\mathbf{0 . 1 1 6}$
3	0.107	0.148	0.148	0.139	0.139	0.145	0.089	0.144	0.108	$\mathbf{0 . 1 4 3}$	$\mathbf{0 . 1 4 4}$
4	0.147	0.171	0.171	0.172	0.154	0.168	0.112	0.168	0.145	$\mathbf{0 . 1 6 8}$	$\mathbf{0 . 1 6 8}$
5	0.169	0.186	0.186	0.188	0.188	0.165	0.128	0.186	0.143	$\mathbf{0 . 1 8 6}$	$\mathbf{0 . 1 8 6}$
6	0.169	0.198	0.198	0.205	0.190	0.210	0.148	0.197	0.151	$\mathbf{0 . 1 9 7}$	$\mathbf{0 . 1 9 7}$
7	0.177	0.221	0.221	0.217	0.207	0.169	0.168	0.218	0.168	$\mathbf{0 . 2 1 8}$	$\mathbf{0 . 2 1 8}$
8	0.204	0.261	0.261	0.230	0.224	0.184	0.180	0.243	0.184	$\mathbf{0 . 2 4 1}$	$\mathbf{0 . 2 4 2}$
$9+$	0.000	0.238	0.238	0.270	0.275	0.000	0.000	0.257	-	$\mathbf{0 . 2 5 8}$	$\mathbf{0 . 2 5 7}$

Quarter: 3

Quarter: $\mathbf{3}$											
0	0.008	0.000	0.000	0.000	0.012	0.012	0.000	0.012	0.012	$\mathbf{0 . 0 0 9}$	$\mathbf{0 . 0 1 2}$
1	0.071	0.000	0.000	0.090	0.097	0.077	0.000	0.096	0.077	$\mathbf{0 . 0 7 5}$	$\mathbf{0 . 0 9 6}$
2	0.102	0.129	0.129	0.141	0.110	0.108	0.117	0.136	0.115	$\mathbf{0 . 1 3 4}$	$\mathbf{0 . 1 3 6}$
3	0.111	0.157	0.157	0.174	0.147	0.145	0.145	0.165	0.145	$\mathbf{0 . 1 6 3}$	$\mathbf{0 . 1 6 5}$
4	0.125	0.189	0.189	0.206	0.172	0.170	0.171	0.195	0.171	$\mathbf{0 . 1 9 5}$	$\mathbf{0 . 1 9 5}$
5	0.095	0.192	0.192	0.228	0.170	0.165	0.193	0.212	0.178	$\mathbf{0 . 2 1 2}$	$\mathbf{0 . 2 1 2}$
6	0.228	0.198	0.198	0.250	0.188	0.210	0.204	0.238	0.207	$\mathbf{0 . 2 3 9}$	$\mathbf{0 . 2 3 8}$
7	0.160	0.220	0.220	0.271	0.173	0.169	0.000	0.241	0.169	$\mathbf{0 . 2 4 2}$	$\mathbf{0 . 2 4 1}$
8	0.000	0.277	0.277	0.291	0.185	0.184	0.000	0.214	0.184	$\mathbf{0 . 2 1 4}$	$\mathbf{0 . 2 1 4}$
$9+$	0.000	0.000	0.000	0.298	0.000	0.000	0.000	0.298	-	$\mathbf{0 . 2 9 8}$	$\mathbf{0 . 2 9 8}$

Quarter: 4											
0	0.022	0.000	0.000	0.000	0.015	0.015	0.000	0.015	0.015	0.015	0.015
1	0.084	0.000	0.000	0.090	0.000	0.000	0.000	0.090	-	0.084	0.090
2	0.099	0.124	0.000	0.125	0.118	0.117	0.117	0.123	0.117	0.119	0.120
3	0.119	0.151	0.000	0.131	0.152	0.145	0.145	0.148	0.145	0.145	0.146
4	0.125	0.174	0.000	0.141	0.175	0.171	0.171	0.161	0.171	0.167	0.168
5	0.000	0.176	0.000	0.187	0.191	0.193	0.193	0.185	0.193	0.188	0.188
6	0.231	0.193	0.000	0.234	0.197	0.204	0.204	0.197	0.204	0.199	0.198
7	0.000	0.217	0.000	0.238	0.213	0.000	0.000	0.217	-	0.217	0.217
8	0.000	0.347	0.000	0.293	0.244	0.000	0.000	0.267	-	0.267	0.267
$\underline{9+}$	0.000	0.000	0.000	0.299	0.000	0.000	0.000	0.299	-	0.299	0.299

Table 2.2.3: North Sea Autumn-spawning Herring (NSAS), and Western Baltic Spring Spawners (WBSS) caught in the North Sea 2001. Mean length-at-age (cm) in the catch, by quarter and division.

WR	$\begin{array}{r} \text { IIIa } \\ \text { NSAS } \end{array}$	$\begin{array}{r} \text { IVa(E) } \\ \text { all } \end{array}$	$\begin{gathered} \hline \text { IVa(E) } \\ \text { WBSS } \end{gathered}$	IVa(W)	IVb	IVc	VIId	$\begin{array}{r} \hline \text { IVa \& } \\ \text { IVb } \\ \text { all } \\ \hline \end{array}$	$\begin{array}{r} \hline \text { IVc \& } \\ \text { VIId } \end{array}$	Herring caught in the North Sea
Quarters: 1-4										
0	n.d.	0.0	n.d.	0.0	13.4	13.9	0.0	13.4	13.9	13.4
1	n.d.	20.0	n.d.	20.9	18.3	14.7	0.0	18.6	14.7	18.4
2	n.d.	24.0	n.d.	24.7	22.7	19.4	23.7	24.2	23.4	24.1
3	n.d.	25.3	n.d.	26.0	25.2	23.5	25.1	25.6	25.1	25.4
4	n.d.	26.6	n.d.	27.5	26.5	26.2	26.4	27.0	26.4	26.9
5	n.d.	27.2	n.d.	28.7	26.9	26.5	27.1	27.8	27.1	27.7
6	n.d.	27.6	n.d.	29.2	27.8	27.7	27.7	28.5	27.7	28.4
7	n.d.	29.2	n.d.	30.5	27.6	27.9	28.0	29.3	28.0	29.3
8	n.d.	31.3	n.d.	31.2	27.4	28.3	29.2	28.8	29.1	28.8
$\underline{9+}$	n.d.	30.6	n.d.	31.8	31.8	0.0	0.0	31.6	-	31.6
Quarter: 1										
0	n.d.	0.0	n.d.	0.0	0.0	0.0	0.0	-	-	0.0
1	n.d.	0.0	n.d.	20.5	14.6	14.6	0.0	14.6	14.6	14.6
2	n.d.	23.6	n.d.	23.2	20.8	18.2	22.7	22.8	19.1	22.5
3	n.d.	26.2	n.d.	26.4	24.5	22.6	23.8	25.9	23.6	25.2
4	n.d.	26.6	n.d.	27.2	26.6	25.7	25.7	26.7	25.7	26.6
5	n.d.	27.3	n.d.	27.6	27.2	26.4	26.4	27.3	26.4	27.1
6	n.d.	28.2	n.d.	27.1	29.5	27.7	27.7	27.5	27.7	27.6
7	n.d.	29.6	n.d.	29.8	29.8	28.0	28.0	29.7	28.0	29.2
8	n.d.	31.4	n.d.	30.9	31.2	29.2	29.2	31.2	29.2	30.6
9+	n.d.	30.6	n.d.	31.2	0.0	0.0	0.0	30.7	-	30.7
Quarter: 2										
0	n.d.	0.0	n.d.	0.0	0.0	0.0	0.0	-	-	0.0
1	n.d.	20.0	n.d.	20.4	16.5	20.3	0.0	17.4	20.3	17.4
2	n.d.	23.6	n.d.	23.3	22.2	22.4	22.7	23.2	22.5	23.2
3	n.d.	24.9	n.d.	24.8	24.7	24.9	23.8	24.8	24.2	24.8
4	n.d.	26.2	n.d.	26.4	25.8	26.4	25.7	26.2	26.1	26.2
5	n.d.	27.1	n.d.	27.1	27.5	25.9	26.4	27.2	26.2	27.2
6	n.d.	27.6	n.d.	27.4	27.6	28.2	27.7	27.6	27.7	27.6
7	n.d.	29.2	n.d.	28.6	28.5	26.4	28.0	29.0	27.2	29.0
8	n.d.	31.4	n.d.	28.9	29.0	27.2	29.2	30.1	27.4	30.1
9+	n.d.	30.6	n.d.	30.8	31.8	0.0	0.0	31.0	-	31.0
Quarter: 3										
0	n.d.	0.0	n.d.	0.0	11.8	11.8	0.0	11.8	11.8	11.8
1	n.d.	0.0	n.d.	22.3	21.2	19.7	0.0	21.2	19.7	21.2
2	n.d.	24.1	n.d.	25.1	23.2	22.8	23.7	24.8	23.5	24.8
3	n.d.	25.6	n.d.	26.7	25.2	24.9	25.3	26.2	25.3	26.2
4	n.d.	27.0	n.d.	28.0	26.7	26.5	26.5	27.6	26.5	27.6
5	n.d.	27.2	n.d.	29.0	26.3	25.9	27.6	28.2	26.7	28.2
6	n.d.	27.4	n.d.	29.8	27.7	28.2	27.8	29.3	28.0	29.3
7	n.d.	28.7	n.d.	30.7	26.6	26.4	0.0	29.5	26.4	29.5
8	n.d.	30.9	n.d.	31.5	27.3	27.2	0.0	28.4	27.2	28.4
9+	n.d.	0.0	n.d.	32.0	0.0	0.0	0.0	32.0	-	32.0
Quarter: 4										
0	n.d.	0.0	n.d.	0.0	14.0	14.0	0.0	14.0	14.0	14.0
1	n.d.	0.0	n.d.	22.4	0.0	0.0	0.0	22.4	-	22.4
2	n.d.	24.6	n.d.	25.0	24.2	23.7	23.7	24.6	23.7	24.1
3	n.d.	25.9	n.d.	25.5	25.8	25.3	25.3	25.8	25.3	25.4
4	n.d.	27.4	n.d.	26.5	26.8	26.5	26.5	26.9	26.5	26.6
5	n.d.	27.5	n.d.	28.3	27.8	27.6	27.6	27.8	27.6	27.7
6	n.d.	27.3	n.d.	29.1	28.0	27.8	27.8	27.9	27.8	27.9
7	n.d.	28.9	n.d.	30.2	28.7	0.0	0.0	28.9	-	28.9
8	n.d.	31.3	n.d.	31.4	30.0	0.0	0.0	30.4	-	30.4
$\underline{9+}$	n.d.	0.0	n.d.	32.0	0.0	0.0	0.0	32.0	-	32.0

Table 2.2.4: North Sea Autumn-spawning Herring (NSAS), and Western Baltic Spring Spawners (WBSS)
caught in the North Sea 2001. Catches (tonnes) at age (SOP figures), by quarter and division.

WR	$\begin{array}{r} \text { IIIIa } \\ \text { NSAS } \end{array}$	$\begin{array}{r} \hline \mathrm{IVa}(\mathbf{E}) \\ \text { all } \end{array}$	$\begin{gathered} \hline \text { IVa(E) } \\ \text { WBSS } \end{gathered}$	$\begin{array}{r} \hline \text { IVa(E) } \\ \text { NSAS } \\ \text { only } \end{array}$	IVa(W)	IVb	IVe	VIId	$\begin{gathered} \hline \text { IVa \& } \\ \text { IVb } \\ \text { NSAS } \end{gathered}$	$\begin{gathered} \hline \text { IVc \& } \\ \text { VIId } \end{gathered}$	$\begin{array}{r} \hline \text { Total } \\ \text { NSAS } \end{array}$	Herring caught in the North Sea
Quarters: 1-4												
0	7.0	0.0	0.0	0.0	0.0	14.3	0.2	0.0	14.3	0.2	21.6	14.6
1	27.8	0.4	0.0	0.4	0.4	4.1	0.1	0.0	4.9	0.1	32.9	5.1
2	11.3	20.8	1.4	19.4	49.1	10.0	0.2	8.6	78.5	8.9	98.7	90.3
3	1.9	20.1	1.5	18.6	21.4	12.2	0.4	18.1	52.2	18.5	72.5	73.8
4	0.2	12.0	1.1	10.9	17.1	8.0	0.2	10.4	36.0	10.6	46.8	48.8
5	0.0	14.2	1.3	12.8	27.6	11.2	0.2	5.1	51.6	5.3	57.0	59.7
6	0.1	4.4	0.5	3.9	8.6	2.3	0.1	0.8	14.8	0.9	15.8	16.8
7	0.0	3.1	0.3	2.8	4.3	1.9	0.0	0.3	8.9	0.3	9.2	9.9
8	0.0	0.9	0.1	0.8	2.8	4.6	0.0	0.2	8.2	0.2	8.4	8.6
9+	0.0	0.1	0.0	0.1	0.6	0.0	0.0	0.0	0.7	0.0	0.7	0.7
Sum	48.4	76.1	6.4	69.7	131.7	68.7	1.5	43.6	270.1	45.1	363.6	328.1
Quarter: 1												
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	6.5	0.0	0.0	0.0	0.0	0.2	0.1	0.0	0.2	0.1	6.8	0.3
2	4.4	2.2	0.0	2.2	1.6	0.8	0.1	0.1	4.5	0.2	9.2	4.7
3	0.4	2.4	0.0	2.4	1.4	0.8	0.2	1.2	4.5	1.4	6.3	5.9
4	0.0	2.9	0.0	2.9	1.3	0.7	0.1	0.5	4.9	0.6	5.5	5.5
5	0.0	3.2	0.0	3.2	1.6	0.7	0.2	1.7	5.5	1.9	7.3	7.3
6	0.0	0.5	0.0	0.5	0.8	0.0	0.1	0.7	1.3	0.8	2.1	2.1
7	0.0	0.4	0.0	0.4	0.2	0.0	0.0	0.3	0.7	0.3	1.0	1.0
8	0.0	0.3	0.0	0.3	0.2	0.0	0.0	0.2	0.5	0.2	0.7	0.7
9+	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sum	11.4	11.9	0.0	11.9	7.1	3.3	0.8	4.6	22.3	5.3	39.0	27.6
Quarter: 2												
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	3.0	0.4	0.0	0.4	0.3	1.0	0.0	0.0	1.7	0.0	4.7	1.7
2	3.3	9.3	0.4	9.0	7.0	3.1	0.0	0.0	19.1	0.0	22.4	19.8
3	0.6	12.2	0.9	11.2	5.3	3.2	0.0	0.0	19.7	0.0	20.4	21.6
4	0.0	5.8	0.6	5.2	1.7	1.5	0.0	0.0	8.4	0.0	8.5	9.7
5	0.0	7.6	0.8	6.8	1.6	2.3	0.0	0.0	10.7	0.0	10.8	12.4
6	0.0	2.9	0.3	2.6	0.5	0.7	0.0	0.0	3.9	0.0	3.9	4.5
7	0.0	1.9	0.2	1.7	0.2	0.5	0.0	0.0	2.3	0.0	2.3	2.7
8	0.0	0.5	0.0	0.4	0.2	0.2	0.0	0.0	0.9	0.0	0.9	1.0
9+	0.0	0.1	0.0	0.1	0.1	0.0	0.0	0.0	0.2	0.0	0.2	0.2
Sum	6.9	40.7	3.3	37.4	16.8	12.7	0.0	0.0	66.9	0.1	73.9	73.6
Quarter: 3												
0	6.7	0.0	0.0	0.0	0.0	3.2	0.0	0.0	3.2	0.0	9.9	3.2
1	11.8	0.0	0.0	0.0	0.1	2.9	0.0	0.0	3.1	0.0	14.8	3.1
2	2.7	4.0	1.1	2.9	38.9	4.4	0.0	0.0	46.3	0.0	49.0	48.5
3	0.5	3.1	0.6	2.5	13.7	4.6	0.0	0.0	20.7	0.0	21.3	22.0
4	0.1	1.6	0.5	1.1	12.4	4.2	0.0	0.0	17.7	0.0	17.8	18.7
5	0.0	1.8	0.5	1.2	23.9	6.2	0.0	0.0	31.4	0.0	31.4	32.5
6	0.1	0.7	0.2	0.5	7.2	0.7	0.0	0.0	8.4	0.0	8.5	8.9
7	0.0	0.5	0.1	0.3	3.7	0.9	0.0	0.0	5.0	0.0	5.0	5.3
8	0.0	0.2	0.1	0.1	2.3	4.2	0.0	0.0	6.7	0.0	6.7	6.8
9+	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.5	0.0	0.5	0.5
Sum	21.9	11.9	3.1	8.7	102.7	31.5	0.0	0.1	143.0	0.1	165.0	149.4
Quarter: 4												
0	0.4	0.0	0.0	0.0	0.0	11.1	0.2	0.0	11.1	0.2	11.7	11.3
1	6.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.6	0.0
2	0.9	5.3	0.0	5.3	1.6	1.7	0.1	8.6	8.6	8.7	18.1	17.2
3	0.3	2.5	0.0	2.5	1.1	3.7	0.2	16.9	7.2	17.1	24.6	24.3
4	0.0	1.7	0.0	1.7	1.7	1.5	0.1	9.9	5.0	10.0	15.0	15.0
5	0.0	1.5	0.0	1.5	0.6	2.0	0.0	3.4	4.1	3.5	7.5	7.5
6	0.0	0.3	0.0	0.3	0.1	0.8	0.0	0.1	1.2	0.1	1.3	1.3
7	0.0	0.3	0.0	0.3	0.1	0.4	0.0	0.0	0.8	0.0	0.8	0.8
8	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.2	0.0	0.2	0.2
9+	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sum	8.2	11.7	0.0	11.7	5.1	21.3	0.7	38.9	38.1	39.6	85.8	77.6

Table 2.2.5: North Sea Autumn-spawning Herring (NSAS), and Western Baltic Spring Spawners (WBSS) caught in the North Sea 2001.
Percentage age composition (based on numbers, $3+$ group summarised), by quarter and division.

	$\begin{array}{r} \text { IIIa } \\ \text { NSAS } \end{array}$											
WR		$\begin{array}{r} \mathrm{IVa}(\mathbf{E}) \\ \text { all } \end{array}$	$\begin{gathered} \text { IVa(E) } \\ \text { WBSS } \end{gathered}$	$\begin{array}{r} \text { IVa(E) } \\ \text { NSAS } \\ \text { only } \\ \hline \end{array}$	IVa(W)	IVb	IVe	VIId	$\begin{array}{r} \text { IVa \& } \\ \text { IVb } \\ \text { NSAS } \\ \hline \end{array}$	 VIId	$\begin{array}{r} \text { Total } \\ \text { NSAS } \end{array}$	Herring caught in the North Sea
Quarters: 1-4												
0	52.4\%	0.0\%	0.0\%	0.0\%	0.0\%	71.1\%	49.0\%	0.0\%	37.8\%	4.8\%	40.3\%	33.6\%
1	36.6\%	1.1\%	1.1\%	1.1\%	0.7\%	4.8\%	14.6\%	0.0\%	2.9\%	1.4\%	14.2\%	2.7\%
2	9.7\%	34.1\%	28.4\%	34.5\%	46.7\%	6.9\%	13.3\%	24.3\%	23.4\%	23.2\%	18.8\%	23.5\%
3	1.1\%	26.7\%	25.6\%	26.8\%	17.0\%	6.0\%	12.2\%	42.5\%	12.9\%	39.6\%	10.9\%	16.0\%
4	0.1\%	14.4\%	15.3\%	14.3\%	11.5\%	3.4\%	3.6\%	20.5\%	7.7\%	18.8\%	5.9\%	9.0\%
5	0.0\%	15.8\%	17.9\%	15.6\%	15.9\%	4.5\%	4.8\%	10.2\%	9.8\%	9.6\%	6.5\%	9.9\%
6	0.0\%	4.4\%	6.7\%	4.2\%	4.7\%	0.9\%	1.4\%	1.8\%	2.6\%	1.8\%	1.7\%	2.5\%
7	0.0\%	2.8\%	3.9\%	2.7\%	2.1\%	0.7\%	0.5\%	0.5\%	1.4\%	0.5\%	0.9\%	1.4\%
8	0.0\%	0.7\%	0.9\%	0.7\%	1.3\%	1.7\%	0.5\%	0.3\%	1.4\%	0.3\%	0.8\%	1.3\%
9+	0.0\%	0.1\%	0.1\%	0.1\%	0.2\%	0.0\%	0.0\%	0.0\%	0.1\%	0.0\%	0.1\%	0.1\%
Sum 3+	1.3\%	64.9\%	70.5\%	64.4\%	52.6\%	17.2\%	23.1\%	75.7\%	35.9\%	70.6\%	26.7\%	40.2\%
Quarter: 1												
0	0.0\%	0.0\%	-	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
1	74.9\%	0.0\%	-	0.0\%	0.1\%	22.9\%	35.6\%	0.0\%	5.0\%	9.0\%	45.8\%	5.9\%
2	23.7\%	26.0\%	-	26.0\%	33.6\%	32.2\%	26.1\%	2.3\%	29.5\%	8.3\%	24.1\%	24.6\%
3	1.4\%	19.8\%	-	19.8\%	17.6\%	17.8\%	19.9\%	33.7\%	18.7\%	30.2\%	9.8\%	21.4\%
4	0.0\%	23.6\%	-	23.6\%	15.8\%	13.7\%	3.4\%	11.8\%	19.3\%	9.7\%	7.2\%	17.1\%
5	0.0\%	23.9\%	-	23.9\%	17.7\%	11.9\%	9.8\%	34.0\%	19.5\%	27.9\%	9.1\%	21.5\%
6	0.0\%	3.0\%	-	3.0\%	11.4\%	0.4\%	3.5\%	12.2\%	4.8\%	10.0\%	2.5\%	6.0\%
7	0.0\%	2.4\%	-	2.4\%	2.2\%	0.6\%	1.1\%	3.9\%	2.0\%	3.2\%	1.0\%	2.2\%
8	0.0\%	1.2\%	-	1.2\%	1.5\%	0.5\%	0.6\%	2.2\%	1.2\%	1.8\%	0.5\%	1.3\%
9+	0.0\%	0.1\%	-	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	0.0\%	0.0\%	0.0\%
Sum 3+	1.4\%	74.0\%	-	74.0\%	66.3\%	44.9\%	38.4\%	97.7\%	65.5\%	82.7\%	30.1\%	69.5\%
Quarter: 2												
0	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
1	65.1\%	2.1\%	2.2\%	2.1\%	3.1\%	25.2\%	22.1\%	0.0\%	7.8\%	12.6\%	20.2\%	7.5\%
2	30.4\%	28.8\%	14.4\%	30.0\%	48.5\%	28.0\%	17.8\%	2.3\%	34.3\%	11.2\%	33.5\%	33.5\%
3	4.2\%	31.1\%	31.2\%	31.1\%	30.3\%	20.5\%	12.6\%	33.7\%	28.4\%	21.6\%	23.2\%	28.5\%
4	0.2\%	12.9\%	17.7\%	12.5\%	7.8\%	8.8\%	12.7\%	11.8\%	10.4\%	12.3\%	8.2\%	10.7\%
5	0.1\%	15.6\%	21.4\%	15.1\%	6.7\%	10.9\%	17.9\%	34.0\%	11.9\%	24.8\%	9.4\%	12.3\%
6	0.0\%	5.6\%	7.7\%	5.4\%	2.0\%	3.5\%	0.5\%	12.2\%	4.1\%	5.5\%	3.2\%	4.2\%
7	0.0\%	3.2\%	4.4\%	3.1\%	0.7\%	2.0\%	2.8\%	3.9\%	2.2\%	3.3\%	1.7\%	2.3\%
8	0.0\%	0.7\%	0.9\%	0.7\%	0.8\%	0.9\%	13.6\%	2.2\%	0.7\%	8.7\%	0.6\%	0.8\%
9+	0.0\%	0.1\%	0.2\%	0.1\%	0.2\%	0.1\%	0.0\%	0.0\%	0.1\%	0.0\%	0.1\%	0.1\%
Sum 3+	4.5\%	69.1\%	83.4\%	68.0\%	48.4\%	46.8\%	60.1\%	97.7\%	57.9\%	76.2\%	46.3\%	59.0\%
Quarter: 3												
0	80.0\%	0.0\%	0.0\%	0.0\%	0.0\%	58.0\%	81.0\%	0.0\%	24.6\%	56.1\%	50.9\%	24.2\%
1	16.7\%	0.0\%	0.0\%	0.0\%	0.3\%	6.5\%	4.8\%	0.0\%	2.9\%	3.4\%	9.5\%	2.9\%
2	2.7\%	41.6\%	42.9\%	41.1\%	48.1\%	8.7\%	3.0\%	27.5\%	31.0\%	10.6\%	17.6\%	31.2\%
3	0.5\%	26.2\%	19.8\%	28.5\%	13.7\%	6.7\%	2.3\%	43.8\%	11.5\%	15.1\%	6.3\%	11.6\%
4	0.1\%	11.2\%	12.9\%	10.5\%	10.5\%	5.3\%	2.3\%	21.8\%	8.3\%	8.3\%	4.4\%	8.4\%
5	0.0\%	12.4\%	14.3\%	11.7\%	18.3\%	7.9\%	3.3\%	6.7\%	13.5\%	4.3\%	7.1\%	13.5\%
6	0.0\%	4.9\%	5.6\%	4.6\%	5.0\%	0.8\%	0.1\%	0.3\%	3.2\%	0.1\%	1.7\%	3.3\%
7	0.0\%	3.0\%	3.4\%	2.8\%	2.4\%	1.1\%	0.5\%	0.0\%	1.9\%	0.4\%	1.0\%	1.9\%
8	0.0\%	0.8\%	1.0\%	0.8\%	1.4\%	4.9\%	2.5\%	0.0\%	2.9\%	1.8\%	1.5\%	2.8\%
9+	0.0\%	0.0\%	0.0\%	0.0\%	0.3\%	0.0\%	0.0\%	0.0\%	0.2\%	0.0\%	0.1\%	0.1\%
Sum 3+	0.6\%	58.4\%	57.1\%	58.9\%	51.6\%	26.8\%	11.1\%	72.5\%	41.5\%	30.0\%	22.0\%	41.7\%
Quarter: 4												
0	15.1\%	0.0\%	-	0.0\%	0.0\%	92.1\%	83.1\%	0.0\%	80.3\%	5.3\%	58.8\%	62.6\%
1	73.7\%	0.0\%	-	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	6.0\%	0.0\%
2	8.4\%	53.0\%	-	53.0\%	35.1\%	1.7\%	4.6\%	27.5\%	7.6\%	26.1\%	11.6\%	11.9\%
3	2.6\%	20.4\%	-	20.4\%	21.9\%	3.0\%	7.4\%	43.8\%	5.3\%	41.5\%	12.9\%	13.8\%
4	0.2\%	12.1\%	-	12.1\%	32.9\%	1.1\%	3.7\%	21.8\%	3.3\%	20.6\%	6.8\%	7.4\%
5	0.0\%	10.7\%	-	10.7\%	8.2\%	1.3\%	1.1\%	6.7\%	2.4\%	6.3\%	3.0\%	3.3\%
6	0.1\%	1.8\%	-	1.8\%	0.7\%	0.5\%	0.0\%	0.3\%	0.6\%	0.2\%	0.5\%	0.6\%
7	0.0\%	1.8\%	-	1.8\%	1.0\%	0.2\%	0.0\%	0.0\%	0.4\%	0.0\%	0.3\%	0.3\%
8	0.0\%	0.1\%	-	0.1\%	0.2\%	0.1\%	0.0\%	0.0\%	0.1\%	0.0\%	0.0\%	0.1\%
9+	0.0\%	0.0\%	-	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
Sum 3+	2.9\%	47.0\%	-	47.0\%	64.9\%	6.2\%	12.2\%	72.5\%	12.1\%	68.7\%	23.6\%	25.4\%

1998	Fleet A		Fleet B		Fleet C		Fleet D+E		TOTAL	
Total Winter rings	Numbers	Mean Weight								
0			208.2	0.018	18.8	0.029	34.79	0.027	261.9	0.020
1	19.2	0.073	231.6	0.032	649.5	0.060	105.65	0.033	1,005.9	0.051
2	1024.6	0.120	32.8	0.058	141.2	0.082	22.11	0.064	1,220.7	0.113
3	497.3	0.146	1.7	0.134	25.6	0.119	1.28	0.096	525.9	0.144
4	252.7	0.184	4.5	0.131	18.2	0.163	1.11	0.157	276.5	0.182
5	157.3	0.221	0.8	0.198	2.7	0.178	0.32	0.193	161.2	0.220
6	81.5	0.237	0.6	0.210	3.1	0.196	0.00	0.127	85.2	0.236
7	15.1	0.250	0.1	0.232	1.2	0.179	0.00	0.258	16.4	0.245
8	9.4	0.275	0.2	0.285	0.5	0.226	0.00	0.205	10.0	0.273
9+	9.5	0.286							9.5	0.286
TOTAL	2,066.7		480.4		860.8		165.3		3,573.2	
SOP catch		306.5		14.3		58.6		6.3		385.6

1999	Fleet A		Fleet B		Fleet C		Fleet D		TOTAL	
Total Winter rings	Numbers	Mean Weight								
0	0.9	0.009	968.3	0.009	42.0	0.018	554.0	0.010	1,565.2	0.009
1	36.9	0.066	44.1	0.039	180.6	0.054	68.4	0.023	329.9	0.047
2	479.7	0.124	21.0	0.067	129.3	0.091	17.4	0.065	647.4	0.114
3	1004.7	0.153	20.4	0.128	50.2	0.118	2.0	0.080	1,077.2	0.151
4	280.7	0.170	4.3	0.149	13.0	0.139	0.4	0.073	298.4	0.168
5	130.9	0.208	1.0	0.178	6.0	0.159	0.2	0.088	138.2	0.205
6	66.6	0.233	0.8	0.174	1.2	0.191	0.0	0.026	68.6	0.232
7	25.8	0.244	0.2	0.200	0.4	0.202	0.1	0.095	26.5	0.243
8	8.5	0.264			0.4	0.210	0.0	0.066	8.9	0.260
9+	3.3	0.292							3.3	0.292
TOTAL	2,038.0		1,060.1		423.2		642.5		4,163.7	
SOP catch		315.8		15.2		31.2		8.4		370.6

Figures for the C and D fleet have been revised in 2001

2000	Fleet A		Fleet B		Fleet C		Fleet D	
Total		Mean		Mean		Mean	Mean	TOTAL
Winter rings	Numbers	Weight						
:---:								
0								

2001	Fleet A		Fleet B		Fleet C		Fleet D		TOTAL	
Total Winter rings	Numbers	Mean Weight	Numbers	Mean Weight						
0			1,024.9	0.015	16.1	0.025	791.7	0.008	1,832.7	0.012
1	35.6	0.104	47.0	0.029	344.0	0.066	219.7	0.023	646.3	0.051
2	682.4	0.126	21.9	0.050	140.9	0.076	9.1	0.058	854.4	0.116
3	469.2	0.149	8.6	0.096	16.6	0.108	0.5	0.099	494.9	0.147
4	258.2	0.175	10.7	0.126	1.4	0.130	0.0	0.133	270.2	0.173
5	293.0	0.194	1.1	0.121	0.3	0.147	0.0	0.149	294.4	0.194
6	70.2	0.216	4.8	0.122	0.5	0.221	0.0	0.155	75.5	0.210
7	39.7	0.229	0.5	0.154	0.0	0.179	0.0	0.166	40.3	0.228
8	38.6	0.218	0.1	0.251	0.0	0.211	0.0	0.184	38.6	0.218
9+	2.4	0.285							2.4	0.285
TOTAL	1,889.3		1,119.6		519.8		1,021.0		4,549.7	
SOP catch		295.3		20.4		36.1		12.3		364.0

Table 2.2.7: Catch-at-age (numbers in millions) of herring caught in the North Sea, 1990-2001.

Year/WR	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9 +}$
$\mathbf{1 9 9 0}$	888	1557	616	784	872	386	82	56	29	12
$\mathbf{1 9 9 1}$	1658	1301	801	568	563	507	207	40	26	13
$\mathbf{1 9 9 2}$	7874	705	995	424	344	351	370	149	39	24
$\mathbf{1 9 9 3}$	7254	1385	792	614	315	222	230	191	88	42
$\mathbf{1 9 9 4}$	3834	497	1438	504	355	117	98	78	71	46
$\mathbf{1 9 9 5}$	6795	583	1486	919	259	126	59	43	55	73
$\mathbf{1 9 9 6}$	1796	738	549	600	197	60	21	11	8	18
$\mathbf{1 9 9 7}$	364	175	472	426	248	89	23	11	9	$\mathbf{5 6 3 4}$
$\mathbf{1 9 9 8}$	208	251	1068	512	269	165	85	16	10	10
$\mathbf{1 9 9 9}$	969	81	504	1039	291	136	69	27	9	3
$\mathbf{2 0 0 0}$	873	185	506	475	590	184	78	28	17	3
$\mathbf{2 0 0 1}$	1025	83	716	488	275	301	78	42	39	$\mathbf{1 0 3 9}$

Table 2.2.8: Catch-at-age (numbers in millions) of Baltic Spring-spawning Herring taken in the North Sea, and transfered to the assessment of the spring-spawning stock in IIIa, 1990-2001.

Year/WR	0	1	2	3	4	5	6	7	8	9+	Total
1990			12.4	14.7	21.8	3.6	3.0	2.1	0.7	0.4	58.7
1991			6.7	15.1	18.0	9.1	3.1	0.8	0.3		53.0
1992			0.3	9.9	11.1	8.4	8.6	2.5	0.7	0.6	42.1
1993			4.2	10.8	12.3	8.4	5.9	4.7	1.7	1.0	49.0
1994			8.8	28.2	16.3	11.0	8.6	3.4	3.2	0.7	80.2
1995			22.4	11.0	14.9	4.0	2.9	1.9	0.5	0.2	57.8
1996			0.0	2.8	0.8	0.4	0.1	0.1	0.1	0.2	4.4
1997			2.2	1.3	1.5	0.4	0.2	0.1	0.1	0.1	5.9
1998			11.0	13.0	11.8	6.6	3.2	0.4	0.4	0.5	47.1
1999			3.3	14.3	5.6	3.6	1.4	0.6	0.4	0.1	29.3
2000			8.2	9.8	10.2	5.7	2.5	0.6	0.7	0.1	37.6
2001		0.5	11.3	10.2	6.1	7.2	2.7	1.6	0.4	0.0	39.9

Table 2.2.9: Catch-at-age (numbers in millions) of North Sea Autumn Spawners taken in IIIa, and transfered to the assessment of North Sea Autumn Spawners, 1990-2001. Figures for 1999 were altered in 2001, those for 1991-1998 in 2002 but the latter still not used in the assessment.

Year/WR	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8 +}$	Total
$\mathbf{1 9 9 0}$	398	1424	284						$\mathbf{2 1 0 6}$	
$\mathbf{1 9 9 1}$	677	748	298	52	8	5	1	0	0	$\mathbf{1 7 9 1}$
$\mathbf{1 9 9 2}$	2298	1409	220	22	10	7	3	1	0	$\mathbf{3 9 7 1}$
$\mathbf{1 9 9 3}$	2795	2033	238	27	8	4	3	2	1	$\mathbf{5 1 0 9}$
$\mathbf{1 9 9 4}$	482	1087	201	27	6	3	2	0	0	$\mathbf{1 8 0 7}$
$\mathbf{1 9 9 5}$	1145	1189	162	13	3	1	1	0	0	$\mathbf{2 5 1 4}$
$\mathbf{1 9 9 6}$	516	961	161	17	3	2	1	0	0	$\mathbf{1 6 6 2}$
$\mathbf{1 9 9 7}$	68	305	132	21	2	1	0	0	0	$\mathbf{5 2 9}$
$\mathbf{1 9 9 8}$	51	745	162	27	19	3	3	1	0	$\mathbf{1 0 1 2}$
$\mathbf{1 9 9 9}$	599	303	149	47	13	6	1	0	0	$\mathbf{1 1 1 9}$
$\mathbf{2 0 0 0}$	235	984	116	22	23	8	3	1	0	$\mathbf{1 3 9}$
$\mathbf{2 0 0 1}$	808	564	150	17	1	0	0	0	0	$\mathbf{1 5 4 1}$

Table 2.2.10: Catch-at-age (numbers in millions) of the total North Sea Autumn-spawning stock 1990-2001. Figures for 1999 were altered in 2001, those for 1991-1998 in 2002 but the latter still not used in the assessment.

Year/WR	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9 +}$
$\mathbf{1 9 9 0}$	1286	2982	888	769	850	383	79	54	29	12
$\mathbf{1 9 9 1}$	2405	2198	1157	500	537	493	203	39	25	13
$\mathbf{1 9 9 2}$	10390	2470	1342	445	376	368	383	156	40	23
$\mathbf{1 9 9 3}$	10280	4160	1305	577	295	210	221	184	86	41
$\mathbf{1 9 9 4}$	4437	1890	1839	449	332	103	88	74	68	45
$\mathbf{1 9 9 5}$	9096	1533	1555	894	241	121	55	41	54	73
$\mathbf{1 9 9 6}$	2544	1516	706	644	192	58	20	11	8	18
$\mathbf{1 9 9 7}$	483	573	759	546	269	99	26	12	11	$\mathbf{7 5 3 1}$
$\mathbf{1 9 9 8}$	256	921	1209	525	276	161	85	16	10	10
$\mathbf{1 9 9 9}$	1562	276	646	1082	298	138	69	27	9	3
$\mathbf{2 0 0 0}$	1110	1169	613	487	603	186	79	28	17	2
$\mathbf{2 0 0 1}$	1833	646	854	495	270	294	76	40	39	$\mathbf{1 3}$

Table 2.2.11: Comparison of mean weights (kg) at age in the catch of adult herring in the
the North Sea and North Sea Autumn Spawners caught in Div IIIa in 1991-2001.

Div.	Year	Age (Winter Rings)							
		2	3	4	5	6	7	8	9+
IIIa*	1991	0.073	0.097	0.136	0.150	0.156	0.160	0.177	-
	1992	0.073	0.097	0.136	0.150	0.156	0.160	0.177	-
	1993	0.080	0.141	0.132	0.233	0.239	0.181	0.203	-
	1994	0.083	0.111	0.138	0.159	0.185	0.199	0.214	-
	1995	0.088	0.146	0.166	0.205	0.212	0.236	0.244	-
	1996	0.080	0.127	0.165	0.186	0.216	0.216	0.239	-
	1997	0.069	0.124	0.171	0.185	0.189	0.189	0.192	-
	1998	0.080	0.118	0.163	0.180	0.197	0.179	0.226	-
	1999	0.088	0.114	0.137	0.156	0.188	0.187	0.199	-
	2000	0.076	0.109	0.163	0.190	0.184	0.189	0.200	-
	2001	0.075	0.108	0.130	0.147	0.219	0.176	0.198	-
IVa	1991	0.146	0.164	0.181	0.198	0.214	0.231	0.263	0.275
	1992	0.149	0.184	0.189	0.208	0.223	0.240	0.243	0.285
	1993	0.133	0.156	0.193	0.210	0.234	0.249	0.268	0.319
	1994	0.135	0.171	0.201	0.223	0.246	0.258	0.278	0.295
	1995	0.142	0.172	0.208	0.220	0.260	0.253	0.284	0.290
	1996	0.133	0.162	0.200	0.213	0.239	0.253	0.254	0.291
	1997	0.126	0.159	0.197	0.234	0.241	0.245	0.232	0.304
	1998	0.125	0.161	0.192	0.226	0.242	0.254	0.274	0.291
	1999	0.125	0.156	0.180	0.212	0.235	0.249	0.253	0.291
	2000	0.129	0.156	0.184	0.204	0.224	0.254	0.283	0.263
	2001	0.130	0.154	0.179	0.204	0.218	0.243	0.276	0.285
IVa(E)	1998	0.115	0.147	0.171	0.199	0.218	0.236	0.269	0.232
	1999	0.124	0.143	0.162	0.191	0.207	0.225	0.233	0.272
	2000	0.130	0.155	0.174	0.199	0.204	0.217	0.267	0.256
	2001	0.121	0.148	0.165	0.177	0.197	0.219	0.261	0.238
IVa(W)	1998	0.129	0.170	0.206	0.244	0.263	0.263	0.284	0.300
	1999	0.126	0.161	0.189	0.224	0.247	0.256	0.266	0.294
	2000	0.129	0.157	0.186	0.208	0.234	0.268	0.294	0.265
	2001	0.134	0.161	0.190	0.221	0.231	0.264	0.281	0.294
IVb	1991	0.119	0.173	0.196	0.220	0.225	0.277	0.257	0.263
	1992	0.081	0.179	0.198	0.213	0.232	0.255	0.272	0.313
	1993	0.102	0.146	0.199	0.220	0.236	0.261	0.275	0.306
	1994	0.122	0.150	0.177	0.205	0.237	0.251	0.255	0.245
	1995	0.135	0.174	0.197	0.205	0.261	0.266	0.272	0.282
	1996	0.106	0.178	0.213	0.238	0.243	0.268	0.270	0.263
	1997	0.122	0.153	0.201	0.228	0.245	0.227	0.270	0.296
	1998	0.116	0.151	0.182	0.218	0.230	0.220	0.299	0.277
	1999	0.120	0.152	0.154	0.214	0.227	0.205	0.286	0.345
	2000	0.125	0.173	0.191	0.220	0.232	0.258	0.222	0.268
	2001	0.102	0.143	0.165	0.176	0.192	0.190	0.188	0.275
IVa \& IVb	1991	0.131	0.167	0.184	0.203	0.217	0.239	0.262	0.272
	1992	0.100	0.183	0.191	0.209	0.224	0.243	0.250	0.290
	1993	0.116	0.152	0.195	0.212	0.234	0.251	0.269	0.317
	1994	0.131	0.164	0.192	0.218	0.245	0.258	0.277	0.292
	1995	0.140	0.173	0.205	0.216	0.260	0.256	0.283	0.289
	1996	0.126	0.165	0.203	0.219	0.240	0.258	0.259	0.281
	1997	0.125	0.157	0.198	0.232	0.243	0.236	0.236	0.302
	1998	0.122	0.159	0.191	0.224	0.241	0.250	0.275	0.290
	1999	0.123	0.155	0.177	0.213	0.233	0.247	0.262	0.291
	2000	0.128	0.162	0.185	0.206	0.225	0.254	0.267	0.263
	2001	0.125	0.152	0.176	0.197	0.214	0.230	0.219	0.284
IVe \& VIId		0.123	0.165	0.184	0.200	0.212	0.196	0.237	0.161
	1992	0.100	0.183	0.191	0.209	0.224	0.243	0.250	0.290
	1993	0.113	0.139	0.152	0.174	0.182	0.191	0.211	0.216
	1994	0.117	0.145	0.172	0.191	0.209	0.224	0.229	0.218
	1995	0.114	0.130	0.161	0.177	0.203	0.208	0.184	0.241
	1996	0.118	0.140	0.154	0.178	0.181	0.201	0.186	0.250
	1997	0.099	0.133	0.159	0.180	0.156	0.193	0.165	0.158
	1998	0.125	0.161	0.192	0.226	0.242	0.254	0.274	0.291
	1999	0.113	0.142	0.155	0.188	0.209	0.214	-	-
	2000	0.109	0.137	0.154	0.185	0.202	0.209	-	-
	2001	0.113	0.138	0.166	0.164	0.155	0.168	0.180	-
Total	1991	0.130	0.166	0.184	0.203	0.217	0.235	0.259	0.271
North Sea	1992	0.103	0.175	0.189	0.207	0.223	0.237	0.249	0.287
Catch	1993	0.115	0.145	0.189	0.204	0.228	0.244	0.256	0.310
	1994	0.130	0.159	0.181	0.214	0.240	0.255	0.273	0.281
	1995	0.136	0.167	0.196	0.200	0.247	0.249	0.278	0.287
	1996	0.123	0.160	0.192	0.207	0.211	0.252	0.255	0.281
	1997	0.115	0.147	0.192	0.228	0.230	0.228	0.224	0.297
	1998	0.118	0.146	0.183	0.220	0.237	0.250	0.275	0.286
	1999	0.122	0.153	0.169	0.207	0.233	0.243	0.262	0.291
	2000	0.125	0.160	0.180	0.200	0.219	0.244	0.267	0.263
	2001	0.124	0.148	0.174	0.194	0.209	0.228	0.218	0.284

[^0]Table 2.2.12: Sampling of commercial landings of Herring in the North Sea (Div. IV and VIId) in 2001 by quarter. Sampled catch means the proportion of the reported catch to which sampling was applied. It is limited to 100% but might exceed the official landings due to sampling of discards, unallocated and misreported catches. It is not possible to judge the quality of the sampling by this figure alone. Note that only one nation provided information on by-catches (Denmark, fleet B). Metiers are each reported combination of nation/fleet/area/quarter.

Country (fleet)	Quarter	No of metiers	Metiers sampled	Sampled Catch \%	Official Catch	No. of samples	No. fish aged	No. fish measured	>1 sample per 1 kt catch
Denmark (A)	1	3	1	54\%	17835	3	154	743	n
Denmark (A)	2	3	0	0\%	1415	0	0	0	n
Denmark (A)	3	3	3	100\%	15005	4	200	995	n
Denmark (A)	4	3	1	16\%	12488	2	100	474	n
	total	12	5	57\%	46743	9	454	2212	n
Denmark (B)	1	4	3	85\%	2200	10	29	31	y
Denmark (B)	2	2	1	100\%	1085	16	11	229	y
Denmark (B)	3	4	1	96\%	3637	3	55	106	n
Denmark (B)	4	3	2	98\%	13431	5	20	89	n
	total	13	7	96\%	20353	34	115	455	y
England and Wales	1	2	0	0\%	46	0	0	0	n
England and Wales	2	4	0	0\%	1200	0	0	0	n
England and Wales	3	3	0	0\%	11916	0	0	0	n
England and Wales	4	2	0	0\%	1420	0	0	0	n
	total	11	0	0\%	14582	0	0	0	n
Faroe IsI	2	1	0	0\%	108	0	0	0	n
Faroe IsI	4	2	0	0\%	974	0	0	0	n
	total	3	0	0\%	1082	0	0	0	n
France	1	3	0	0\%	1387	0	0	0	n
France	2	4	0	0\%	1326	0	0	0	n
France	3	4	0	0\%	14163	0	0	0	n
France	4	3	0	0\%	7639	0	0	0	n
	total	14	0	0\%	24515	0	0	0	n
Germany	1	1	0	0\%	92	0	0	0	n
Germany	2	2	0	0\%	5089	0	0	0	n
Germany	3	2	0	0\%	14968	0	0	0	n
Germany	4	3	0	0\%	9631	0	0	0	n
	total	8	0	0\%	29779	0	0	0	n
Netherlands	1	2	1	90\%	4003	7	175	1435	y
Netherlands	2	2	1	47\%	2806	8	200	1659	y
Netherlands	3	2	2	100\%	24999	37	900	5273	y
Netherlands	4	2	2	100\%	19482	11	275	1706	n
	total	8	6	100\%	51290	63	1550	10073	y
Northern Ireland	3	1	0	0\%	1003	0	0	0	n
Northern Ireland	4	1	0	0\%	15	0	0	0	n
	total	2	0	0\%	1018	0	0	0	n
Norway	1	2	0	0\%	2108	0	0	0	n
Norway	2	3	3	100\%	52831	28	2521	2701	n
Norway	3	2	1	63\%	14649	1	100	100	n
Norway	4	2	0	0\%	5501	0	0	0	n
	total	9	4	83\%	75089	29	2621	2801	n
Scotland	2	2	2	100\%	1544	6	420	1080	y
Scotland	3	2	1	100\%	25014	83	4122	20040	y
Scotland	4	1	0	0\%	161	0	0	0	n
	total	5	3	100\%	26719	95	4737	23435	y
Sweden	2	3	0	0\%	2588	0	0	0	n
Sweden	3	3	0	0\%	1064	0	0	0	n
Sweden	4	1	0	0\%	43	0	0	0	n
	total	7	0	0\%	3695	0	0	0	n
Period total	1	19 (17)	5	55\%	27671	20	358	2209	n
Period total	2	27 (26)	7	81\%	69991	58	3152	5669	n
Period total	3	28 (27)	9	75\%	126418	134	5572	28829	n
Period total	4	24 (23)	5	59\%	70785	18	395	2269	n
Total for stock 2001		98 (93)	26	71\%	294865	230	9477	38976	n
Human Cons. only		85 (78)	19	69\%	274512	196	9362	38521	n
total for stock 2000		90	30	97\%	285117	314	11797	41692	y

Table 2.3.1 North Sea herring. IBTS 1-ringer indices ($1^{\text {st }}$ quarter)

Year class	Year of sampling	1-ringer index
1977	1979	156
1978	1980	342
1979	1981	518
1980	1982	799
1981	1983	1231
1982	1984	1469
1983	1985	2083
1984	1986	2593
1985	1987	3734
1986	1988	4470
1987	1989	2187
1988	1990	1025
1989	1991	1180
1990	1992	1204
1991	1993	2989
1992	1994	1644
1993	1995	1215
1994	1996	1728
1995	1997	3993
1996	1998	2067
1997	1999	715
1998	2000	3639
1999	2001	2496
2000	2002	3948

Table 2.3.2. North Sea herring. Density and abundance estimates of 0-ringers caught in February during the IBTS. Values given for year classes by areas are density estimates in numbers per square metre. Total abundance is found by multiplying density by area and summing up.

Area	North west	North east	Central west	Central east	South west	South east	Division IIIa	South Bight	0-ringers abundance
Area $\mathrm{m}^{2} \times 10^{9}$	83	34	86	102	37	93	31	31	no. in 10^{9}
Year class									
1976	0.054	0.014	0.122	0.005	0.008	0.002	0.002	0.016	17.1
1977	0.024	0.024	0.050	0.015	0.056	0.013	0.006	0.034	13.1
1978	0.176	0.031	0.061	0.020	0.010	0.005	0.074	0.000	52.1
1979	0.061	0.195	0.262	0.408	0.226	0.143	0.099	0.053	101.1
1980	0.052	0.001	0.145	0.115	0.089	0.339	0.248	0.187	76.7
1981	0.197	0.000	0.289	0.199	0.215	0.645	0.109	0.036	133.9
1982	0.025	0.011	0.068	0.248	0.290	0.309	0.470	0.140	91.8
1983	0.019	0.007	0.114	0.268	0.271	0.473	0.339	0.377	115.0
1984	0.083	0.019	0.303	0.259	0.996	0.718	0.277	0.298	181.3
1985	0.116	0.057	0.421	0.344	0.464	0.777	0.085	0.084	177.4
1986	0.317	0.029	0.730	0.557	0.830	0.933	0.048	0.244	270.9
1987	0.078	0.031	0.417	0.314	0.159	0.618	0.483	0.495	168.9
1988	0.036	0.020	0.095	0.096	0.151	0.411	0.181	0.016	71.4
1989	0.083	0.030	0.040	0.094	0.013	0.035	0.041	0.000	25.9
1990	0.075	0.053	0.202	0.158	0.121	0.198	0.086	0.196	69.9
1991	0.255	0.390	0.431	0.539	0.500	0.369	0.298	0.395	200.7
1992	0.168	0.039	0.672	0.444	0.734	0.268	0.345	0.285	190.1
1993	0.358	0.212	0.260	0.187	0.120	0.119	0.223	0.028	101.7
1994	0.148	0.024	0.417	0.381	0.332	0.148	0.252	0.169	126.9
1995	0.260	0.086	0.699	0.092	0.266	0.018	0.001	0.020	106.2
1996	0.003	0.004	0.935	0.135	0.436	0.379	0.039	0.032	148.1
1997	0.042	0.021	0.338	0.064	0.178	0.035	0.023	0.083	53.1
1998	0.100	0.056	1.150	0.592	0.998	0.265	0.280	0.127	244.0
1999	0.045	0.011	0.799	0.200	0.514	0.220	0.107	0.026	137.1
2000	0.284	0.011	1.052	0.197	1.156	0.376	0.063	0.006	214.8
2001	0.080	0.019	0.566	0.473	0.567	0.247	0.209	0.226	161.8

Table 2.3.3 North Sea herring. Indices of 1-ringers, estimation of the small sized component (Downs herring)."North Sea" = total area of sampling minus IIIa.

Year class	Year of sampling	All 1-ringers (no/hour)	Small<13cm 1-ringers in total area (no/hour)	Proportion of small in total area vs. all sizes	Small<13cm 1-ringers in North Sea (no/hour)	Proportion of small in North Sea vs. all sizes	Proportion of small in IIIa vs small in total area
1977	1979	156	11.07	0.07	11.87	0.08	0
1978	1980	342	112.85	0.33	112.47	0.33	0.07
1979	1981	518	57.57	0.11	48.34	0.09	0.22
1980	1982	799	175.36	0.22	184.03	0.23	0.02
1981	1983	1231	188.6	0.15	180.2	0.15	0.11
1982	1984	1469	330.25	0.23	278.5	0.19	0.21
1983	1985	2082	295.46	0.14	276.2	0.13	0.13
1984	1986	2593	585.93	0.23	372.45	0.15	0.41
1985	1987	3734	640.27	0.17	526.85	0.14	0.23
1986	1988	4470	2365.73	0.52	697.49	0.15	0.72
1987	1989	2187	548.79	0.24	488.36	0.21	0.17
1988	1990	1025	69.01	0.07	60.07	0.06	0.19
1989	1991	1180	299.97	0.26	305.38	0.26	0.05
1990	1992	1204	120.9	0.10	125.44	0.11	0.03
1991	1993	2989	754.89	0.26	163.09	0.06	0.8
1992	1994	1644	266.99	0.16	224.91	0.13	0.21
1993	1995	1215	386.34	0.33	379.98	0.32	0.08
1994	1996	1728	537.1	0.31	408.92	0.24	0.29
1995	1997	3993	1179.9	0.29	932.95	0.23	0.26
1996	1998	2067	1168.12	0.57	1231.57	0.60	0.02
1997	1999	715	141.15	0.20	138.77	0.19	0.08
1998	2000	3639	1062.18	0.29	936.11	0.26	0.18
1999	2001	2696	322.57	0.12	302.19	0.11	0.06
2000	2002	3948	1510.9	0.38	1427.64	0.36	0.12

Table 2.4.1 North Sea herring numbers (millions) at age and maturity by ICES Subarea

ICES A	IIIa	IVa	IVb
0	169.74	0.00	13882.93
1 i	998.85	1585.19	4250.88
1 m	0.00	0.00	2.16
2 i	157.94	1799.68	887.72
2 m	10.09	7751.61	1683.45
3 i	41.41	188.17	16.52
3 m	4.14	2293.66	538.88
4	8.82	1320.83	132.28
5	2.14	1614.05	59.86
6	0.53	433.29	15.83
7	0.00	153.86	15.73
8	0.00	91.09	6.62
$9+$	0.00	50.20	8.68
Immature	1367.94	3573.03	19038.05
Mature	25.71	13708.59	2463.49
Total	1393.66	17281.62	21501.55

Table 2.4.2 North Sea herring biomass (thousands of tonnes) at age and maturity by ICES Subarea

ICES A	IIIa	Iva	IVb
0	1.43	0.00	111.55
1 I	54.33	85.31	203.26
1 m	0.00	0.00	0.11
2 i	14.87	192.09	76.60
2 m	0.97	1084.92	192.11
3 i	4.49	24.19	1.98
3 m	0.45	392.43	75.53
4	0.85	276.56	21.53
5	0.28	371.21	9.97
6	0.07	103.78	2.91
7	0.00	40.34	2.85
8	0.00	26.72	1.17
$9+$	0.00	16.70	0.62
Immature	75.12	301.60	393.40
Mature	2.61	2312.66	306.80
Total	77.73	2614.25	700.19

Table 2.4.3 North Sea herring mean weight (g) at age and maturity by ICES Subarea

ICES A	IIIa	IVa	IVb
0	8.41		8.04
1 i	54.40	53.82	47.82
1 m			49.00
2 i	94.18	106.74	86.29
2 m	96.48	139.96	114.12
3 i	108.34	128.57	120.12
3 m	108.34	171.09	140.16
4	95.81	209.38	162.73
5	128.87	229.99	166.55
6	131.15	239.51	184.01
7		262.17	180.99
8		293.38	177.40
$9+$		332.67	71.93
Mean (i)	54.92	84.41	20.66
Mean (m)	101.56	168.70	124.54
Mean (all)	55.78	151.27	32.56

Table 2.4.4 North Sea autumn-spawning herring in the area surveyed in the acoustic surveys July 2001. Total numbers (millions) and biomass (thousands of tonnes) with mean weights (g) and fraction mature by winter ring.

North Sea	Numbers	Biomass	Maturity	mean weight	Mean length
	(millions)	Tonnes $* 10^{3}$	(fraction)	(cm)	(cm)
0	14052.7	113.0	0.00	8	10.6
1	6837.1	343.0	0.00	50	18.4
2	12290.5	1561.6	0.77	127	24.1
3	3082.8	499.1	0.92	162	25.9
4	1461.9	298.9	1.00	204	27.8
5	1676.1	381.5	1.00	228	28.7
6	449.6	169.6	97.7	43.2	1.00
7	58.9	27.9	1.00	23.0	29.7
7	23979.0	17.3	1.00	255	30.6
$9+$	16197.8	770.1		286	31.6
Immature	20176.8	3322.1		294	
Mature					
Total					

Table 2.4.5 North Sea autumn-spawners, estimates of (millions) at age from acoustic surveys, and SSB (thousands of tonnes) 1984-2001. For 1984-1986 the estimates are the sum of those from the Division IVa summer survey, the Division IVb autumn survey, and the Divisions IVc, VIId winter survey. The 1987 to 2000 estimates are from the summer survey in Divisions IVa,b, and IIIa excluding estimates of Division IIIa/Baltic spring spawners. For 1999 \& 2000 the Kattegat was excluded from the results because it was not surveyed. The 1996 to 1999 surveys have been revised due to changes in methods for calculating mean weight and proportion adult. The earlier surveys have been revised in 2002 following recent reorganisation of archive, removal of a 9\% calibration error on Scottish survey 1999-2000.

Numbers (millions)																		
Year	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
Age (ring)																		
1	551	726	1,639	13,736	6,431	6,333	6,249	3,182	6,351	10,399	3,646	4,202	6,198	9,416	4,449	5,087	24,735	6,837
2	3,194	2,789	3,206	4,303	4,202	3,726	2,971	2,834	4,179	3,710	3,280	3,799	4,557	6,363	5,747	3,078	2,922	12,290
3	1,005	1,433	1,637	955	1,732	3,751	3,530	1,501	1,633	1,855	957	2,056	2,824	3,287	2,520	4,725	2,156	3,083
4	394	323	833	657	528	1,612	3,370	2,102	1,397	909	429	656	1,087	1,696	1,625	1,116	3,139	1,462
5	158	113	135	368	349	488	1,349	1,984	1,510	795	363	272	311.0	692.1	982.4	506.4	1,006	1,676
6	44	41	36	77	174	281	395	748	1,311	788	321	175	98.7	259.2	445.2	313.6	482.5	449.6
7	52	17	24	38	43	120	211	262	474	546	238	135	82.8	78.6	170.3	138.6	266.4	169.6
8	39	23	6	11	23	44	134	112	155	178	220	110	132.9	78.3	45.2	54.3	120.4	97.7
9+	41	19	8	20	14	22	43	56	163	116	132	84	206.0	158.3	121.4	87.2	97.2	58.9
Total	5,478	5,484	7,542	20,165	13,496	16,377	18,262	12,781	17,173	19,326	13,003	11,220	18,786	22,028	16,104	15,107	34,928	26,124
Z (2+/3+)		0.92	0.57	1.02	0.81	0.11	0.11	0.57	0.37	0.74	1.21	0.53	0.43	0.40	0.76	0.60	0.34	0.37
Smoothed $\mathrm{Z}(2+/ 3+)$		0.78	0.70	0.82	0.46	0.13	0.32	0.44	0.53	0.92	0.91	0.57	0.45	0.50	0.91	0.46	0.22	0.45
$\begin{aligned} & \begin{array}{l} \text { SSB } \\ (‘ 000 t) \end{array} \\ & \hline \end{aligned}$	807	697	942	817	897	1,637	2,174	1,874	1,545	1,216	1,035	1,082	1446.2	1,780	1,792	1,534	1,833	2,622

Table 2.4.6 North Sea Autumn-spawning herring, percentage change in Recruitment, Stock, SSB and F due to revision of acoustic time-series, Terminal values are changed by less than 3%.

Year	Recruits	Stock	SSB	F2-6
1981	0.01%	0.03%	0.13%	-0.20%
1982	0.01%	0.03%	0.10%	-0.11%
1983	0.01%	0.02%	0.09%	-0.09%
1984	0.01%	0.47%	-2.58%	-0.09%
1985	0.01%	0.02%	0.06%	-0.08%
1986	0.01%	-1.98%	-3.33%	-0.10%
1987	0.01%	-2.06%	-3.17%	-0.09%
1988	0.01%	-1.61%	-3.07%	-0.09%
1989	0.02%	0.03%	0.07%	-0.11%
1990	-0.04%	-0.07%	-0.17%	-0.11%
1991	0.01%	-3.12%	-1.55%	-0.08%
1992	0.03%	-4.41%	-0.99%	-0.05%
1993	0.04%	-5.87%	-0.14%	-0.07%
1994	0.17%	-2.00%	2.17%	-0.03%
1995	0.31%	0.89%	1.46%	0.01%
1996	0.32%	0.55%	0.80%	0.06%
1997	0.37%	1.29%	0.55%	-0.89%
1998	0.54%	1.10%	0.99%	-1.54%
1999	0.55%	1.11%	1.57%	-2.22%
2000	0.48%	2.95%	2.15%	-2.43%

Table 2.4.7 North Sea Autumn-spawning herring, correlation between survey data and assessment in 2001 and between estimates of cohorts in the same survey in subsequent years.

	MLAI	IBTS/MIK	Acoustic	Age 1	Age 2	IBTS/MIK	Acoustic
SSB	0.907411						
0		0.83		0	1	0.80	
1	0.86	0.85	1	2	0.50	0.66	
2		0.59	0.87	2	3	0.34	0.73
3		0.70	0.75	3	4	0.46	0.91
4		0.79	0.85	4	5	0.84	0.88
5		0.86	0.95	5	6		0.90
6		0.94	6	7		0.92	
7		0.92	7	8		0.82	
8		0.80	8	$9+$		0.26	
9		0.27					

Table 2.5.1: North Sea herring. Estimated abundances of herring larvae $<10 \mathrm{~mm}$ long (11 mm for the Southern North Sea), by standard sampling area and time periods. The number of larvae are expressed as mean number per ICES rectangle * 10^{9}.

Table 2.5.2: North Sea herring. Parameter estimates obtained on fitting the multiplicative model to the estimates of larval abundance by area and time-period. Model fitted to abundances of larvae $<10 \mathrm{~mm}$ in length (11 mm for the Southern North Sea).

a) Analysis of variance of the model fit

	DF	Sum of Squares	Mean Square	F Value	P
Model	39	150,1	3,85	8,006	0,0001
Error	213	102,4	0,4807		
C Total	252	252,5			

b) Estimates of parameters

Reference Mean

Estimate	Standard Error	
6,8194	0,5637	Reference: 1972, Orkney/Shetland 09/01-09/15

Year Effects

Year	Estimate	Standard Error	Year	Estimate	Standard Error
1973	0,3787	0,7008	1988	2,7247	0,6057
1974	$-0,1388$	0,7508	1989	2,6889	0,6198
1975	$-1,2079$	0,7630	1990	2,9253	0,6429
1976	$-1,3127$	0,7488	1991	2,2881	0,6967
1977	$-0,4007$	0,7179	1992	1,5169	0,7363
1978	$-0,2094$	0,7287	1993	1,2124	0,7128
1979	0,5051	0,7015	1994	0,8032	0,7511
1980	0,1201	0,6983	1995	0,9511	0,7407
1981	0,5343	0,6954	1996	1,6521	0,7802
1982	0,8608	0,6309	1997	1,8596	0,7318
1983	1,1168	0,6469	1998	2,1599	0,6878
1984	1,7169	0,6281	1999	1,9889	0,6918
1985	2,1396	0,6059	2000	1,5673	0,7071
1986	1,4769	0,6259	2001	2,6950	0,7200
1987	2,0307	0,6176			

Sampling Unit Effects

Sampling Unit	Estimate	Standard Error
Or/Shet 16-30 Sep	$-0,6515$	0,3359
Buchan 01-15 Sep	$-1,8225$	0,4265
Buchan 16-30 Sep	$-2,5583$	0,3737
CNS 01-15 Sep	$-1,6535$	0,4129
CNS 16-30 Sep	$-1,4814$	0,3687
CNS 01-15 Oct	$-2,0955$	0,3956
CNS 16-31 Oct	$-4,1683$	0,5370
SNS 12-31 Dec	$-1,8640$	0,4001
SNS 01-15 Jan	$-2,4991$	0,3448
SNS 16-31 Jan	$-3,7295$	0,3896

Table 2.5.3: North Sea herring. Updated MLAI time-series obtained from a multiplicative model.
Reference:
6.819394
(Orkney/Shetland, 1st-15th September 1972)

Year	MLAI	MLAIrefer	un-logged	div 100
1973	0.3787	7.1981	1336.9	13.4
1974	-0.1388	6.6806	796.8	8.0
1975	-1.2079	5.6115	273.6	2.7
1976	-1.3127	5.5067	246.3	2.5
1977	-0.4007	6.4187	613.2	6.1
1978	-0.2094	6.6100	742.5	7.4
1979	0.5051	7.3245	1517.1	15.2
1980	0.1201	6.9395	1032.2	10.3
1981	0.5343	7.3537	1561.9	15.6
1982	0.8608	7.6802	2165.0	21.7
1983	1.1168	7.9362	2796.7	28.0
1984	1.7169	8.5363	5096.3	51.0
1985	2.1396	8.9590	7777.6	77.8
1986	1.4769	8.2963	4009.1	40.1
1987	2.0307	8.8501	6974.8	69.7
1988	2.7247	9.5441	13962.1	139.6
1989	2.6889	9.5083	13471.3	134.7
1990	2.9253	9.7447	17063.3	170.6
1991	2.2881	9.1075	9023.0	90.2
1992	1.5169	8.3363	4172.7	41.7
1993	1.2124	8.0318	3077.1	30.8
1994	0.8032	7.6226	2043.9	20.4
1995	0.9511	7.7705	2369.6	23.7
1996	1.6521	8.4715	4776.7	47.8
1997	1.8596	8.6790	5878.2	58.8
1998	2.1599	8.9793	7937.0	79.4
1999	1.9889	8.8083	6689.4	66.9
2000	1.5673	8.3867	4388.2	43.9
2001	2.6950	9.5143	13552.7	135.5

Table 2.6.1. North Sea herring. Indices of 2-5+
ringers from the $1^{\text {st }}$ quarter IBTS.

	$\mathbf{2} \mathbf{w r}$	$\mathbf{3} \mathbf{~ w r}$	$\mathbf{~ w r}$	$\mathbf{5} \mathbf{w r}$
$\mathbf{1 9 8 3}$	137.4	46.4	15.3	28.5
$\mathbf{1 9 8 4}$	169.9	67.0	30.0	10.8
$\mathbf{1 9 8 5}$	748.1	301.5	47.6	31.2
$\mathbf{1 9 8 6}$	820.1	288.9	84.1	28.5
$\mathbf{1 9 8 7}$	946.3	124.0	63.2	53.6
$\mathbf{1 9 8 8}$	4725.8	915.0	65.4	28.0
$\mathbf{1 9 8 9}$	933.9	401.2	111.8	10.5
$\mathbf{1 9 9 0}$	482.1	312.9	292.7	77.1
$\mathbf{1 9 9 1}$	821.0	288.4	258.7	174.3
$\mathbf{1 9 9 2}$	410.1	195.1	68.5	109.4
$\mathbf{1 9 9 3}$	840.8	225.1	46.9	68.6
$\mathbf{1 9 9 4}$	1176.5	214.4	68.4	43.0
$\mathbf{1 9 9 5}$	1263.1	251.0	33.2	6.2
$\mathbf{1 9 9 6}$	209.0	46.6	13.5	9.1
$\mathbf{1 9 9 7}$	526.6	204.1	42.8	24.3
$\mathbf{1 9 9 8}$	799.7	96.4	22.0	20.7
$\mathbf{1 9 9 9}$	456.8	547.8	109	40.3
$\mathbf{2 0 0 0}$	232.2	169.3	65.5	9.7
$\mathbf{2 0 0 1}$	1228.1	337.0	106.8	79.0
$\mathbf{2 0 0 2}$	666.2	323.9	22.8	19.2

Table 2.6.2. North Sea herring. Estimates of mean number per hour per statistical rectangle from $1^{\text {st }}$ quarter IBTS 2002. Means for age groups in "Roundfish areas" and in all areas.

Area	Total	Mean per statistical rectangle										
		Age group (wr)										
								1	2	3	4	$5+$
All areas	779038	3948.2	666.2	323.9	22.8	19.2						
RF1	23798	21.3	248.6	265.8	26.2	25.7						
RF2	83314	744.0	1583.0	884.9	53.4	67.3						
RF3	24509	512.7	647.4	185.7	2.9	0.1						
RF4	40189	2350.2	1137.6	290.5	20.1	7.3						
RF5	17790	1494.5	261.7	214.5	0	3.7						
RF6	262191	7598.0	632.2	200.5	21.5	0						
RF7	111570	8142.9	218.9	23.9	3.0	0						
RF8	58008	8557.8	356.3	93.3	19.3	8.8						
RF9	171051	33768.3	1207.5	839.7	71.5	48.1						

Table 2.7.1:
Herring in the North Sea: Mean weight-at-age in the third quarter, in Divisions IVa and IVb and IIIa.

$\begin{gathered} \text { Age } \\ \text { (WR) } \end{gathered}$	Mean weights-at-age (winter rings) in the catch (g)																			
	Third quarter mean weights in catch (Divisions IVa and IVb)										July acoustic Survey									
	1992	1993	1994	1995	1996	1997	19981	9\#	2000\#	2001\#	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
1	51	53	55	52	10	38	42	62	54	75	78	69	60	58	45	45	52	52	46	50
2	127	145	131	151	126	125	132	130	126	134	142	115	138	132	119	120	109	118	118	127
3	200	161	164	190	165	157	172	164	169	163	209	147	209	180	196	168	198	171	180	162
4	215	179	192	221	203	198	208	193	198	194	219	202	220	200	253	233	238	207	218	204
5	235	199	218	231	219	232	240	229	225	212	243	225	251	195	262	256	275	236	232	228
6	252	221	245	277	240	243	262	251	237	238	255	277	289	228	299	245	307	267	261	237
7	276	239	258	276	258	236	270	262	265	241	272	286	315	257	306	265	289	272	295	255
8	286	240	277	316	259	236	288	276	274	214	312	305	323	302	325	269	308	230	300	286
9+	330	283	292	316	281	302	315	292	271	298	311	340	346	324	335	329	363	260	280	294

\# Weights-at-age in the catch for 1999, 2000 and 2001 have been revised to include North Sea herring in IIIa which compares better with the area covered by the acoustic survey. Mean weights-at-age in earlier years cannot be revised as data by separate areas
Since these are not available in the catch archive.

Table 2.7.2 Maturity at 2,3 and $4+$ ring for Autumn-spawning herring in the North Sea. The values are derived from the acoustic survey. The acoustic survey data archive has been revised this year and the values for maturity updated. No changes in maturity (to 3 significant figures) were found and no values in this table were changed.

Year \backslash Age (W ring)	2	3	>3
1988	65.6	87.7	100
1989	78.7	93.9	100
1990	72.6	97.0	100
1991	63.8	98.0	100
1992	51.3	100	100
1993	47.1	62.9	100
1994	72.1	85.8	100
1995	72.6	95.4	100
1996	60.5	97.5	100
1997	64.0	94.2	100
1998	64.0	89.0	100
1999	81.0	91.0	100
2000	66.0	96.0	100
2001	77.0	92.0	100

Table 2.8.1. North Sea herring. Input parameters of the final ICA assessments for the years 1998-2002.

Assessment year	2002	2001	2000	1999	1998
First data year Last data year No of years for separable constraint Reference age for separable constraint Constant selection pattern S on last age Shrink final population	1960 2001 5 4 yes 1.0 no	1960 2000 4 4 yes 1.0 no	1960 1999 8 4 s1 (92-96), s2(97-99)- constrained $1 / 1$ no	1960 1998 7 4 s1 (92-96), s2(97-98)- constrained $1 / 1$ no	1960 1997 6 4 s1 (92-95), s2(96-97)- constrained $1 / 1$ no

Tuning indices	survey	age (WR)					
Year ranges for survey indices	MLAI Acoustic survey Acoustic survey IBTSA IBTSY MIK	$\begin{aligned} & 1-9+ \\ & 2-9+ \\ & 2-5+ \\ & 1 \\ & 0 \end{aligned}$	$1979-2001$ $1989-2001$ $1983-2002$ $1979-2002$ $1977-2002$	1979-2000 $1989-2000$ $1983-2001$ $1979-2001$ $1977-2001$	$\begin{aligned} & 1979-1999 \\ & 1989-1999 \\ & 1983-2000 \\ & 1979-2000 \\ & 1977-2000 \end{aligned}$	$\begin{array}{\|l} \hline 79-98 \\ 89-98 \\ 83-99 \\ 79-99 \\ 77-99 \end{array}$	$\begin{aligned} & 77-96 \\ & 89-97 \\ & 83-98 \\ & 79-98 \\ & 77-98 \end{aligned}$
Catchability models	MLAI Acoustic survey IBTSA IBTSY MIK	$\begin{array}{\|l} 2-9+ \\ 2-5+ \\ 1 \\ 0 \end{array}$	power linear linear linear linear	power linear linear linear linear	power linear linear linear linear	power linear linear linear linear	power linear linear linear linear

Model weighting

Weights in the catch at age	Catch Catch	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	0.10 0.10 3.17 2.65 1.94 1.31 0.97 0.75 0.55 0.54	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\left[\begin{array}{l} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}\right.$	1 1 1 1 1 1 1 1 1 1 1 1
	Catch	years	all 1				
Total weight catch at age matrix			60.4	36	72	63	54
Survey indices weights	MLAI		0.65	1.0	1.0	1.0	1.0
	Acoustic survey	1	0.74	NA	NA	NA	NA
	Acoustic survey	2	0.75	0.125	0.125	0.125	0.125
	Acoustic survey	3	0.64	0.125	0.125	0.125	0.125
	Acoustic survey	4	0.27	0.125	0.125	0.125	0.125
	Acoustic survey	5	0.14	0.125	0.125	0.125	0.125
	Acoustic survey	6	0.13	0.125	0.125	0.125	0.125
	Acoustic survey	7	0.12	0.125	0.125	0.125	0.125
	Acoustic survey	8	0.07	0.125	0.125	0.125	0.125
	Acoustic survey	9+	0.07	0.125	0.125	0.125	0.125
	IBTSA	2	0.24	0.25	0.25	0.25	0.25
	IBTSA	3	0.06	0.25	0.25	0.25	0.25
	IBTSA	4	0.03	0.25	0.25	0.25	0.25
	IBTSA	5+	0.03	0.25	0.25	0.25	0.25
	IBTSY	1	0.67	1.0	1.0	1.0	1.0
	MIK	0	2.05	1.0	1.0	1.0	1.0
Total weight survey indices			6.7	5	5	5	5
Stock recruitment weight			0.1	0.1	0.1	0.1	0.1
Parameters to be estimated			45	42	57	55	53
Number of observations			354	324	338	313	289

Table 2.8.2 North Sea herring. Absolute annual change in annual estimates of F2-6, Recruitment and SSB over the period 1995 to 2001. Expressed as average change over the period (AAC) and average absolute change in the first year (1YC) for the four modelling and weighting methods shown in Figure 2.8.4. The smallest change for each management parameter is shown in bold.

Method	Criteria	F 2-6	Recr 0	SSB	
A	IV weight, WG Sep	absolute revision 1995-2002	0.044	4922000	52991
		absolute revision Ist year	0.057	10100000	96257
B	IV weight, 5year Sep 0,1dw	absolute revision 1995-2002	$\mathbf{0 . 0 2 4}$	3890000	38840
		absolute revision Ist year	$\mathbf{0 . 0 4 3}$	$\mathbf{2 9 0 0 0 0 0}$	85643
C	IV weight WG Sep 0,1dw	absolute revision 1995-2002	0.029	$\mathbf{3 4 6 1 1 4 3}$	36809
		absolute revision Ist year	0.043	2907143	72314
D	WG 2001 weight WG Sep	absolute revision 1995 -2002	0.036	3736857	$\mathbf{2 5 5 9 4}$
		absolute revision Ist year	0.069	6290000	$\mathbf{6 0 2 2 9}$

Table 2.8.3 North Sea herring. Log file of the run-time commands for the final ICA assessment.

```
Integrated Catch-at-age Analysis, Version 1.4 w
-------------------------------------------------
    Enter the name of the index file -->index
canum
weca
    Stock weights in 2002 used for the year 2001
west
    Natural mortality in 2002 used for the year 2001
natmor
    Maturity ogive in 2002 used for the year 2001
matprop
    Name of age-structured index file (Enter if none) : -->fleet
    Name of the SSB index file (Enter if none) -->ssb
    No of years for separable constraint ?--> 5
    Reference age for separable constraint ?--> 4
    Constant selection pattern model (Y/N) ?-->y
    S to be fixed on last age ?--> 1.0000000000000000
    First age for calculation of reference F ?--> 2
    Last age for calculation of reference F ?--> 6
    Use default weighting (Y/N) ?-->n
Enter relative weights-at-age
    Weight for age 0--> 0.1000000000000000
    Weight for age 1--> 0.100000000000000
    Weight for age 2--> 3.170000000000000
    Weight for age 3--> 2.650000000000000
    Weight for age 4--> 1.940000000000000
    Weight for age 5--> 1.3100000000000000
    Weight for age 6--> 0.970000000000000
    Weight for age 7--> 0.750000000000000
    Weight for age 8--> 0.550000000000000
    Weight for age 9--> 0.540000000000000
Enter relative weights by year
    Weight for year 1997--> 1.000000000000000
    Weight for year 1998--> 1.000000000000000
    Weight for year 1999--> 1.000000000000000
    Weight for year 2000--> 1.000000000000000
    Weight for year 2001--> 1.000000000000000
Enter new weights for specified years and ages if needed
    Enter year, age, new weight or -1,-1,-1 to end. -1 -1 -1
    Is the last age of Acoustic survey 2-9+ wr Acou a plus-group (Y--> y
    Is the last age of IBTSA: 2-5+ wr a plus-group (Y/N) ?--> y
    Is the last age of IBTSY 1-wr a plus-group (Y/N) ?--> n
    Is the last age of MIK 0-wr a plus-group (Y/N) ?--> n
You must choose a catchability model for each index.
    Model for MLAI is to be A/L/P ?-->p
    Model for Acoustic survey 2-9+ wr Acou is to be A/L/P ?-->L
    Model for IBTSA: 2-5+ wr is to be A/L/P ?-->L
    Model for IBTSY 1-wr is to be A/L/P ?-->L
    Model for MIK 0-wr is to be A/L/P ?-->L
    Fit a stock-recruit relationship (Y/N) ?-->y
Enter the time lag in years between spawning and the stock size
    of fish aged 0 years on 1 January.
This will probably be 0 unless the stock is an autumn-spawning herring
    in which case it will probably be 1 years.
    Enter the lag in years (rounded up)--> 1
    Enter lowest feasible F--> 5.0000000000000003E-02
    Enter highest feasible F--> 1.000000000000000
Mapping the F-dimension of the SSQ surface
\begin{tabular}{|c|c|}
\hline F & SSQ \\
\hline 0.05 & 135.0628273943 \\
\hline 0.10 & 66.2406995757 \\
\hline etc. & \\
\hline 0.95 & 34.1795083325 \\
\hline 1.00 & 35.8108327557 \\
\hline
\end{tabular}
```


Table 2.8.3 Continued.

```
Lowest SSQ is for F = 0.365
No of years for separable analysis : 5
Age range in the analysis : 0 . . . 9
Year range in the analysis : 1960 . . . 2001
Number of indices of SSB : 1
Number of age-structured indices : 4
Stock-recruit relationship to be fitted.
Parameters to estimate : 45
Number of observations : 354
Conventional single selection vector model to be fitted.
Survey weighting to be Manual (recommended) or Iterative (M/I) ?-->M
    Enter weight for MLAI--> 0.650000000000000
    Enter weight for Acoustic survey 2-9+ wr Acou at age 1--> 0.740000000000000
    Enter weight for Acoustic survey 2-9+ wr Acou at age 2--> 0.750000000000000
    Enter weight for Acoustic survey 2-9+ wr Acou at age 3--> 0.640000000000000
    Enter weight for Acoustic survey 2-9+ wr Acou at age 4--> 0.270000000000000
    Enter weight for Acoustic survey 2-9+ wr Acou at age 5--> 0.1400000000000000
    Enter weight for Acoustic survey 2-9+ wr Acou at age 6--> 0.130000000000000
    Enter weight for Acoustic survey 2-9+ wr Acou at age 7--> 0.120000000000000
    Enter weight for Acoustic survey 2-9+ wr Acou at age 8--> 7.0000000000000007E-02
    Enter weight for Acoustic survey 2-9+ wr Acou at age 9--> 7.0000000000000007E-02
    Enter weight for IBTSA: 2-5+ wr at age 2--> 0.240000000000000
    Enter weight for IBTSA: 2-5+ wr at age 3--> 5.99999999999999998E-02
    Enter weight for IBTSA: 2-5+ wr at age 4--> 2.9999999999999999E-02
    Enter weight for IBTSA: 2-5+ wr at age 5--> 0.6700000000000000
    Enter weight for IBTSY 1-wr at age 1--> 0.670000000000000
    Enter weight for MIK 0-wr at age 0--> 2.050000000000000
    Enter weight for stock-recruit model--> 0.1000000000000000
Enter estimates of the extent to which errors
in the age-structured indices are correlated
across ages. This can be in the range 0 (independence)
to 1 (correlated errors).
    Enter value for Acoustic survey 2-9+ wr Acou--> 0.0000000000000000EE+000
    Enter value for IBTSA: 2-5+ wr--> 0.0000000000000000E+000
    Enter value for IBTSY 1-wr--> 0.0000000000000000E+000
    Enter value for MIK 0-wr--> 0.0000000000000000E+000
    Do you want to shrink the final fishing mortality (Y/N) ?-->N
Seeking solution. Please wait.
SSB index weights
    0.650
Aged index weights
Acoustic survey 2-9+ wr cllllrlll
    Wts : 0.740 0.750 0.640 0.270 0.140 0.130 0.120 0.070 0.070
IBTSA: 2-5+ wr
    Age : 
    Wts : 0.240 0.060 0.030 0.670
IBTSY 1-wr
    Age : 1
    Wts : 0.670
MIK 0-wr
    Age : 0
    Wts : 2.050
    Stock-recruit weight 0.100
F in 2001 at age 4 is 0.342621 in iteration 1
    Detailed, Normal or Summary output (D/N/S)-->D
    Output page width in characters (e.g. 80..132) ?--> }13
    Estimate historical assessment uncertainty ?-->y
    Sample from Covariances or Bayes MCMC (C/B) ?-->C
    Use default percentiles (Y/N) ?-->y
    How many samples to take ?--> 1000
    Enter SSB reference level (e.g. MBAL, B}\mp@subsup{B}{pa}{\prime..) [t]--> 8.00000000000000000E+05
Succesful exit from ICA
```

Table 2.8.4 North Sea herring. Catch number at age (millions).

AGE	1	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	
0	\|	195.	1269.	142.	443.	497.	157.	375.	645.	839.	112.	898.	
1	\|	2393.	336.	2147.	1262.	2972.	3209.	1383.	1674.	2425.	2503.	1196.	
2	I	1142.	1889.	270.	2961.	1548.	2218.	2570.	1172.	1795.	1883.	2003.	
3	\\|	1967.	480.	797.	177.	2243.	1325.	741.	1365.	1494.	296.	884.	
4	\|	166.	1456.	335.	158.	148.	2039.	450.	372.	621.	133.	125.	
5	\|	168.	124.	1082.	81.	149.	145.	890.	298.	157.	191.	50.	
6	\|	113.	158.	127.	230.	95.	152.	45.	393.	145.	50.	61.	
7	\|	126.	61.	145.	22.	256.	118.	65.	68.	163.	43.	8.	
8	\|	129.	56.	86.	42.	26.	413.	96.	82.	14.	27.	12.	
9	I	142.	88.	87.	51.	58.	78.	236.	173.	92.	25.	12.	

x 10 ^ 6

AGE	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981
0	684.	750.	289.	996.	264.	238.	257.	130.	542.	1263.	9520.
1	4379.	3341.	2368.	846.	2461.	127.	144.	169.	159.	245.	872.
2	1147.	1441.	1344.	773.	542.	902.	45.	5.	34.	134.	284.
3	663.	344.	659.	362.	260.	117.	186.	6.	10.	92.	57.
4	208.	131.	150.	126.	141.	52.	11.	5.	10.	32.	40.
5	27.	33.	59.	56.	57.	35.	7.	0.	2.	22.	29.
6	31.	5.	31.	22.	16.	6.	4.	0.	0.	2.	23.
7	27.	0.	4.	5.	9.	4.	2.	0.	1.	1.	19.
8	0.	1.	1.	2.	3.	1.	1.	0.	1.	0.	6.
9	12.	0.	1.	1.	1.	0.	0.	0.	0.	0.	1.

$\times 10 \wedge 6$

AGE	\\|	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
0	\|	11957.	13297.	6973.	4211.	3725.	8229.	3165.	3058.	1303.	2387.	10331.
1	\|	1116.	2449.	1818.	3253.	4801.	6836.	7867.	3146.	3020.	2139.	2303.
2	।	299.	574.	1146.	1326.	1267.	2137.	2233.	1594.	899.	1133.	1285.
3	।	230.	216.	441.	1182.	841.	668.	1091.	1364.	779.	557.	443.
4	\|	34.	105.	202.	369.	466.	467.	384.	809.	861.	549.	362.
5	\|	14.	26.	81.	125.	130.	246.	256.	212.	388.	501.	361.
6	I	7.	23.	23.	44.	62.	75.	128.	124.	80.	205.	376.
7	\|	8.	13.	25.	20.	21.	24.	38.	61.	54.	39.	152.
8	\|	4.	11.	11.	13.	14.	8.	15.	20.	29.	26.	39.
9	\|	1.	12.	19.	16.	15.	8.	9.	9.	12.	13.	23.

AGE	\|	1993	1994	1995	1996	1997	1998	1999	2000	2001
0	\|	10265.	4499.	8426.	2429.	457.	258.	1565.	1109.	1833.
1	\|	3827.	1785.	1635.	1608.	527.	959.	330.	1169.	646.
2	\|	1176.	1783.	1573.	709.	738.	1214.	647.	613.	854.
3	।	609.	489.	898.	629.	527.	525.	1077.	487.	495.
4	I	306.	348.	242.	196.	285.	276.	298.	603.	270.
5	\|	216.	109.	121.	59.	107.	161.	138.	186.	294.
6	I	226.	92.	55.	20.	28.	85.	69.	79.	76.
7	\|	188.	76.	41.	11.	12.	16.	27.	28.	40.
8	\|	87.	70.	54.	8.	11.	10.	9.	17.	39.
9	।	42.	47.	72.	18.	12.	10.	3.	2.	2.

$\mathrm{x} 10 \wedge 6$

Table 2.8.5 North Sea herring. Weight in the catch (kg).

AGE		1993	1994	1995	1996	1997	1998	1999	2000	2001
0		0.01000	0.00600	0.00900	0.01600	0.01600	0.02000	0.00900	0.01500	0.01200
1	I	0.03300	0.05600	0.04800	0.01000	0.03200	0.04900	0.04700	0.03300	0.05100
2		0.11500	0.13000	0.13600	0.12300	0.10400	0.11300	0.11400	0.11600	0.11600
3		0.14500	0.15900	0.16700	0.16000	0.14600	0.14400	0.15100	0.15700	0.14700
4		0.18900	0.18100	0.19600	0.19200	0.19400	0.18200	0.16800	0.18000	0.17300
5		0.20400	0.21400	0.20000	0.20700	0.22800	0.22000	0.20500	0.19900	0.19400
6		0.22800	0.24000	0.24700	0.21100	0.22900	0.23600	0.23200	0.21800	0.21000
7	\|	0.24400	0.25500	0.24900	0.25200	0.22800	0.24500	0.24300	0.24400	0.22800
8		0.25600	0.27300	0.27800	0.25400	0.22600	0.27300	0.26000	0.26700	0.21800
9		0.31000	0.28100	0.28700	0.28100	0.29600	0.28600	0.29200	0.26200	0.28500

Table 2.8.6 North Sea herring. Weight in the stock (kg).

AGE	1993	1994	1995	1996	1997	1998	1999	2000	2001
0	0.00700	0.00600	0.00600	0.00500	0.00500	0.00600	0.00600	0.00600	0.00700
1	0.06000	0.05700	0.05400	0.04900	0.04800	0.05100	0.05100	0.05100	0.04800
2	0.12700	0.13000	0.13000	0.12300	0.11600	0.11600	0.11500	0.12100	0.12300
3	0.19200	0.18600	0.19900	0.18300	0.18700	0.18000	0.18400	0.17200	0.17100
4	0.21400	0.21100	0.22700	0.23000	0.24100	0.22600	0.22100	0.21000	0.21100
5	0.24000	0.22400	0.23400	0.23700	0.26500	0.25600	0.24800	0.23200	0.23000
6	0.27500	0.26800	0.27400	0.25700	0.28400	0.27300	0.27900	0.25500	0.24900
7	0.29100	0.29300	0.30100	0.28000	0.28700	0.27600	0.28600	0.27500	0.27500
8	0.30900	0.31800	0.32400	0.30300	0.30100	0.27000	0.28100	0.27400	0.29400
9	0.33800	0.34600	0.34400	0.33500	0.34200	0.31800	0.30300	0.28000	0.28900

Table 2.8.7 North Sea herring. Natural mortality, proportion F and M before spawning.

AGE	1	1960	1961	1962	1963		1996	1997	1998	1999	2000	2001	
0	1	1.0000	1.0000	1.0000	1.0000		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
1	I	1.0000	1.0000	1.0000	1.0000		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
2	1	0.3000	0.3000	0.3000	0.3000		0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	
3	।	0.2000	0.2000	0.2000	0.2000		0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	
4	1	0.1000	0.1000	0.1000	0.1000		0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	
5	I	0.1000	0.1000	0.1000	0.1000		0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	
6	\|	0.1000	0.1000	0.1000	0.1000		0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	
7	\\|	0.1000	0.1000	0.1000	0.1000		0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	
8	1	0.1000	0.1000	0.1000	0.1000		0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	
9	I	0.1000	0.1000	0.1000	0.1000		0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	

[^1]Table 2.8.8 North Sea herring. Proportion mature at age.

Proportion of fish spawning

AGE	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

AGE	I	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	
0	\|	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
1	\\|	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
2	\|	1.0000	0.8200	0.8200	0.8200	0.8200	0.8200	0.8200	0.8200	0.8200	0.8200	0.8200	
3	\\|	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
4	\|	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
5	I	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
6	I	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
7	I	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
8	\|	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	
9	।	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	

AGE	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	0.8200	0.8200	0.8200	0.7000	0.7500	0.8000	0.8500	0.8200	0.9100	0.8600	0.5000
3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9300	0.9400	0.9700	0.9900	0.9900
4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

AGE	1993	1994	1995	1996	1997	1998	1999	2000	2001
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	0.4700	0.7300	0.6700	0.6100	0.6400	0.6400	0.6900	0.6700	0.7700
3	0.6100	0.9300	0.9500	0.9800	0.9400	0.8900	0.9100	0.9600	0.9200
4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Table 2.8.9 North Sea herring. Tuning indices.

AGE-STRUCTURED INDICES

AGE	\|	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
1	I									9361.	4449.	5087.
2	।	4090.	3306.	2634.	3734.	2984.	3185.	3849.	4497.	5960.	5747.	3078.
3	।	3903.	3521.	1700.	1378.	1637.	839.	2041.	2824.	2935.	2520.	4725.
4	I	1633.	3414.	1959.	1147.	902.	399.	672.	1087.	1441.	1625.	1116.
5	\|	492.	1366.	1849.	1134.	741.	381.	299.	311.	601.	982.	506.
6	I	283.	392.	644.	1246.	777.	321.	203.	99.	215.	445.	314.
7	I	120.	210.	228.	395.	551.	326.	138.	83.	46.	170.	139.
8	\|	44.	133.	94.	114.	180.	219.	119.	133.	78.	45.	54.
9	\|	22.	43.	51.	104.	116.	131.	93.	206	$159 .$	121.	87.
AGE	\|	2000	2001									
1	\|	24736.	6837.									
2	I	$2923 .$	$12290 .$									
3	\|	2156.	3083.									
4	\|	3140.	$1462 .$									
5	I	1007.	1676.									
6	\|	483.	450.									
7	\|	266.	170.									
8	I	$120 .$	$98 .$									
9	I	97.	59.									

Table 2.8.9 Continued.

IBTSY 1-wr

Table 2.8.10 North Sea herring. Weighting factors for the catches in number.

```
Weighting factors for the catches in number
```

AGE	\|	1997	1998	1999	2000	2001
0	\|	0.1000	0.1000	0.1000	0.1000	0.1000
1	\|	0.1000	0.1000	0.1000	0.1000	0.1000
2	\|	3.1700	3.1700	3.1700	3.1700	3.1700
3	\|	2.6500	2.6500	2.6500	2.6500	2.6500
4	\|	1.9400	1.9400	1.9400	1.9400	1.9400
5	\|	1.3100	1.3100	1.3100	1.3100	1.3100
6	\|	0.9700	0.9700	0.9700	0.9700	0.9700
7	\|	0.7500	0.7500	0.7500	0.7500	0.7500
8	\|	0.5500	0.5500	0.5500	0.5500	0.5500

Table 2.8.11 North Sea herring. Predicted catch in number.

AGE	1	1997	1998	1999	2000	2001
0	\|	696.2	579.4	1420.1	824.3	1070.2
1	\|	1345.4	786.0	560.4	1479.0	715.1
2	\|	681.0	1287.0	651.3	506.5	1134.0
3	I	537.4	629.0	1042.5	585.9	395.3
4	I	279.0	296.2	304.4	569.3	280.1
5	1	119.4	161.5	150.7	174.8	286.4
6	\|	31.2	65.0	77.1	81.2	82.4
7	I	12.0	15.1	27.5	36.7	33.5
8	।	11.3	9.2	10.2	20.8	24.1

Table 2.8.12 North Sea herring. Fishing mortality (per year).
Fishing Mortality (per year)

AGE	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970
0	0.0257	0.0186	0.0049	0.0148	0.0126	0.0071	0.0215	0.0256	0.0348	0.0082	0.0351
1	0.2558	0.1293	0.0897	0.1241	0.3084	0.2461	0.1852	0.2980	0.3002	0.3291	0.2680
2	0.4328	0.6169	0.2500	0.2975	0.3890	0.7753	0.5920	0.4222	1.3270	0.7843	0.9728
3	0.3249	0.3484	0.6266	0.2752	0.4123	0.7390	0.7082	0.8045	1.8717	0.9120	1.2667
4	0.3331	0.4023	0.4146	0.2268	0.3697	0.7765	0.5719	0.9244	1.0711	0.8736	1.3283
5	0.2608	0.3950	0.5214	0.1472	0.3074	0.6582	0.8342	0.8281	1.2340	1.0530	0.8742
6	0.3085	0.3707	0.7898	0.1756	0.2312	0.5188	0.3886	1.0087	1.1766	1.9008	1.0768
7	0.5789	0.2450	0.6067	0.2688	0.2699	0.4388	0.3871	1.5133	1.5934	1.3070	4.1162
8	0.5338	0.4878	0.5625	0.3114	0.5097	0.7972	0.6800	1.0622	1.5581	1.3024	1.7963
9	0.5338	0.4878	0.5625	0.3114	0.5097	0.7972	0.6800	1.0622	1.5581	1.3024	1.7963

AGE	।	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981
0	\|	0.0340	0.0583	0.0461	0.0748	0.1557	0.1461	0.0972	0.0454	0.0836	0.1256	0.4817
1	।	0.6021	0.5781	0.6738	0.4514	0.6870	0.2462	0.2956	0.1992	0.1662	0.1131	0.2851
2	\|	0.8825	0.8120	1.0218	1.0281	1.3095	1.3336	0.2218	0.0241	0.0942	0.3625	0.3238
3	\|	1.2146	0.8012	1.3329	0.9722	1.5016	1.4273	1.3897	0.0418	0.0661	0.4166	0.2741
4	\|	1.2257	0.7994	0.9870	0.9919	1.3694	1.7224	0.4244	0.1010	0.0921	0.2950	0.3009
5	।	1.0791	0.5488	0.9508	1.1834	1.8678	1.5832	1.1614	0.0164	0.0506	0.2597	0.4085
6	।	2.5882	0.5121	1.3731	1.0766	1.2662	1.0473	0.7170	0.0725	0.0123	0.0649	0.4192
7	।	2.6510	0.0953	0.7891	0.7653	2.0135	1.4623	0.7015	0.0585	0.4025	0.1003	0.9121
8	,	1.9255	0.9280	1.4474	1.2557	1.9408	1.5637	0.8809	0.1631	0.2225	0.3203	0.6094
9	\|	1.9255	0.9280	1.4474	1.2557	1.9408	1.5637	0.8809	0.1631	0.2225	0.3203	0.6094

AGE	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
0	0.3342	0.3993	0.2262	0.0852	0.0619	0.1625	0.1261	0.1319	0.0593	0.1172	0.2889
1	0.2249	0.2515	0.2050	0.3825	0.3156	0.3722	0.5858	0.4370	0.4599	0.3111	0.3845
2	0.2602	0.3019	0.3142	0.4038	0.4589	0.4059	0.3555	0.4050	0.3853	0.5898	0.5813
3	0.5075	0.3239	0.4291	0.6702	0.5214	0.5046	0.4003	0.4099	0.3787	0.4702	0.5217
4	0.2457	0.4354	0.5358	0.7360	0.5803	0.5870	0.5801	0.5548	0.4671	0.4751	0.6064
5	0.1527	0.2734	0.6247	0.6606	0.5517	0.6135	0.6598	0.6527	0.4985	0.4829	0.5818
6	0.1431	0.3400	0.3561	0.7237	0.7251	0.6309	0.6685	0.6916	0.4875	0.4756	0.7197
7	0.2207	0.3849	0.6797	0.5480	0.8020	0.6006	0.6815	0.6943	0.6628	0.4161	0.6907
8	0.3831	0.4847	0.5963	0.8178	0.7808	0.7565	0.8760	0.8062	0.7399	0.6713	0.8369
9	0.3831	0.4847	0.5963	0.8178	0.7808	0.7565	0.8760	0.8062	0.7399	0.6713	0.8369

AGE	\|	1993	1994	1995	1996	1997	1998	1999	2000	2001
0	\|	0.3529	0.2161	0.3454	0.0705	0.0353	0.0353	0.0300	0.0273	0.0204
1	I	0.4066	0.2258	0.2708	0.2431	0.1161	0.1160	0.0987	0.0897	0.0672
2	\|	0.6605	0.6405	0.5898	0.3173	0.2677	0.2676	0.2275	0.2069	0.1551
3	\|	0.6586	0.6993	0.8731	0.5381	0.4535	0.4533	0.3855	0.3506	0.2627
4	\|	0.8006	0.9695	0.8793	0.4426	0.4610	0.4608	0.3919	0.3564	0.2670
5	\|	0.7959	0.6623	0.9916	0.4830	0.4698	0.4696	0.3993	0.3632	0.2721
6	\|	0.7895	0.8489	0.7491	0.3824	0.4476	0.4475	0.3805	0.3460	0.2593
7	\|	0.8728	0.5976	1.0753	0.2819	0.3613	0.3612	0.3072	0.2793	0.2093
8	\|	0.9900	0.8524	0.9964	0.5327	0.4610	0.4608	0.3919	0.3564	0.2670
9	\|	0.9900	0.8524	0.9964	0.5327	0.4610	0.4608	0.3919	0.3564	0.2670

Table 2.8.13 North Sea herring. Population abundance (1 January, billions).
Population Abundance (1 January)

AGE	\|	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	
0	\\|	12.10	108.87	46.27	47.66	62.79	34.90	27.86	40.26	38.70	21.58	41.08	
1	I	16.42	4.34	39.31	16.94	17.27	22.81	12.75	10.03	14.44	13.75	7.87	
2	I	3.72	4.68	1.40	13.22	5.50	4.67	6.56	3.90	2.74	3.93	3.64	
3	\|	7.78	1.79	1.87	0.81	7.27	2.76	1.59	2.69	1.89	0.54	1.33	
4	\\|	0.61	4.60	1.03	0.82	0.50	3.94	1.08	0.64	0.98	0.24	0.18	
5	\\|	0.77	0.40	2.79	0.62	0.59	0.31	1.64	0.55	0.23	0.31	0.09	
6	\\|	0.45	0.53	0.24	1.50	0.48	0.39	0.15	0.64	0.22	0.06	0.10	
7	\\|	0.30	0.30	0.33	0.10	1.14	0.35	0.21	0.09	0.21	0.06	0.01	
8	\\|	0.33	0.15	0.21	0.16	0.07	0.78	0.20	0.13	0.02	0.04	0.01	
9	\|	0.36	0.24	0.21	0.20	0.15	0.15	0.50	0.28	0.12	0.04	0.02	

AGE	I	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981
0	\|	32.31	20.86	10.11	21.72	2.86	2.74	4.35	4.62	10.62	16.75	37.89
1	\|	14.59	11.49	7.24	3.55	7.41	0.90	0.87	1.45	1.62	3.59	5.43
2	I	2.22	2.94	2.37	1.36	0.83	1.37	0.26	0.24	0.44	0.51	1.18
3	\|	1.02	0.68	0.97	0.63	0.36	0.17	0.27	0.15	0.17	0.30	0.26
4	\|	0.31	0.25	0.25	0.21	0.20	0.07	0.03	0.05	0.12	0.13	0.16
5	I	0.04	0.08	0.10	0.08	0.07	0.05	0.01	0.02	0.04	0.10	0.09
6	\|	0.03	0.01	0.04	0.04	0.02	0.01	0.01	0.00	0.02	0.04	0.07
7	I	0.03	0.00	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.02	0.03
8	\|	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
9	I	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

AGE	।	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
0	।	64.80	61.86	53.50	80.98	97.64	85.64	41.84	38.73	35.59	33.81	63.63
1	I	8.61	17.07	15.27	15.70	27.36	33.76	26.78	13.57	12.49	12.34	11.06
2	I	1.50	2.53	4.88	4.58	3.94	7.34	8.56	5.48	3.22	2.90	3.33
3	\|	0.63	0.86	1.39	2.64	2.26	1.84	3.62	4.44	2.71	1.62	1.19
4	I	0.16	0.31	0.51	0.74	1.11	1.10	0.91	1.99	2.41	1.52	0.83
5	I	0.11	0.11	0.18	0.27	0.32	0.56	0.55	0.46	1.03	1.37	0.85
6	I	0.05	0.08	0.08	0.09	0.13	0.17	0.27	0.26	0.22	0.57	0.76
7	\|	0.04	0.04	0.05	0.05	0.04	0.06	0.08	0.13	0.12	0.12	0.32
8	\|	0.01	0.03	0.03	0.02	0.03	0.02	0.03	0.04	0.06	0.05	0.07
9	।	0.00	0.03	0.04	0.03	0.03	0.02	0.02	0.02	0.02	0.03	0.04

AGE	\|	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
0	\|	53.07	35.98	44.38	56.12	31.66	26.36	75.81	48.33	83.50	61.09
1	\|	17.53	13.72	10.67	11.56	19.24	11.24	9.36	27.07	17.30	30.10
2	\|	2.77	4.30	4.03	2.99	3.33	6.30	3.68	3.12	9.10	5.95
3	I	1.38	1.06	1.68	1.65	1.61	1.89	3.57	2.17	1.88	5.77
4	\|	0.58	0.58	0.43	0.57	0.79	0.84	0.98	1.99	1.25	1.18
5	\|	0.41	0.24	0.20	0.16	0.33	0.45	0.48	0.60	1.26	0.87
6	\|	0.43	0.17	0.11	0.07	0.09	0.19	0.26	0.29	0.38	0.87
7	\|	0.34	0.18	0.06	0.05	0.04	0.05	0.11	0.16	0.19	0.26
8	\|	0.14	0.13	0.09	0.02	0.03	0.03	0.03	0.07	0.11	0.14
9	\|	0.07	0.08	0.12	0.05	0.03	0.03	0.01	0.01	0.01	0.08

$\mathrm{x} 10 \wedge 9$

Table 2.8.14 North Sea herring. Predicted index values.
MLAI

	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
1	16.88	11.37	5.43	5.18	3.09	4.31	7.37	9.16	14.10	20.62	33.20

	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
1	54.00	55.77	54.04	73.30	99.46	103.87	97.26	78.26	53.84	34.27	38.74

	1995	1996	1997	1998	1999	2000	2001
1	36.89	37.17	45.62	62.54	75.98	76.71	120.27

	Acoustic survey 2-9+ wr					Aco Predicted						
AGE	।	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
1	\|									9891.	5780.	4859.
2	।	5677.	3374.	2712.	3125.	2493.	3907.	3766.	3251.	3722.	7037.	4204.
3	,	5714.	3544.	2021.	1440.	1545.	1163.	1671.	1982.	2026.	2372.	4655.
4	1	2669.	3402.	2130.	1085.	679.	624.	484.	819.	1118.	1187.	1444.
5	I	654.	1593.	2130.	1259.	537.	331.	236.	252.	522.	707.	780.
6	,	382.	359.	944.	1112.	605.	227.	157.	118.	153.	318.	447.
7	,	180.	169.	200.	453.	433.	265.	75.	83.	71.	89.	191.
8	1	59.	96.	94.	114.	210.	199.	128.	37.	62.	51.	66.
9	,	44.	66.	80.	112.	166.	220.	285.	142.	105.	87.	36.

AGE	2000	2001
1	14117.	9137.
2	3602.	10812.
3	2887.	2620.
4	2978.	1971.
5	999.	2201.
6	519.	709.
7	281.	345.
8	149.	233.
9	30.	39.

x 10 ^ 3

Table 2.8.14 Continued

IBTSY 1-wr Predicted

AGE	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
1	192.6	429.3	635.5	1014.8	2004.7	1803.5	1813.7	3187.6	3906.3	3016.7	1557.1
AGE	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
1	1429.0	1438.6	1278.1	2020.0	1616.6	1249.7	1358.9	2298.5	1343.2	1120.7	3243.9
AGE	2001	2002									
1	2079.6	3617.5									

AGE	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
0	11.42	12.19	27.90	43.77	94.74	165.03	156.26	138.09	212.75	257.26	222.83
AGE	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
0	109.35	101.15	93.81	88.48	162.96	134.84	93.00	112.86	147.71	83.70	69.68
AGE	1999	2000	2001	2002							
0	200.55	127.90	221.16	161.80							

Table 2.8.15 North Sea herring. Fitted selection pattern.
Fitted Selection Pattern

AGE	\|	1993	1994	1995	1996	1997	1998	1999	2000	2001
0	\|	0.4408	0.2229	0.3928	0.1593	0.0766	0.0766	0.0766	0.0766	0.0766
1	I	0.5078	0.2329	0.3080	0.5493	0.2518	0.2518	0.2518	0.2518	0.2518
2	\|	0.8250	0.6606	0.6707	0.7170	0.5807	0.5807	0.5807	0.5807	0.5807
3	I	0.8227	0.7213	0.9929	1.2157	0.9837	0.9837	0.9837	0.9837	0.9837
4	I	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
5	I	0.9940	0.6831	1.1277	1.0912	1.0191	1.0191	1.0191	1.0191	1.0191
6	\|	0.9860	0.8756	0.8519	0.8639	0.9710	0.9710	0.9710	0.9710	0.9710
7	\|	1.0902	0.6163	1.2229	0.6369	0.7838	0.7838	0.7838	0.7838	0.7838
8	।	1.2366	0.8792	1.1331	1.2036	1.0000	1.0000	1.0000	1.0000	1.0000
9	\|	1.2366	0.8792	1.1331	1.2036	1.0000	1.0000	1.0000	1.0000	1.0000

Table 2.8.16 North Sea herring. Stock summary. This table is taken directly from ICA.OUT except that a column for mean fishing mortality for juveniles has been added!

Year	Recruits Age 0 thousands	Total Biomass tonnes	Spawning Biomass tonnes	Landings tonnes	Yield /SSB ratio	$\begin{aligned} & \text { Mean } F \\ & \text { Ages } \\ & 0-1 \end{aligned}$	$\begin{gathered} \text { Mean F } \\ \text { Ages } \\ 2-6 \end{gathered}$	$\begin{aligned} & \text { SoP } \\ & (\%) \end{aligned}$
1960	12097900	3778955	1911811	696200	0.3642	0.141	0.3320	84
1961	108865820	4387806	1684621	696700	0.4136	0.074	0.4267	88
1962	46272650	4419877	1136203	627800	0.5525	0.047	0.5205	85
1963	47657610	4648231	2207286	716000	0.3244	0.069	0.2245	116
1964	62788650	4813525	2046742	871200	0.4257	0.161	0.3419	93
1965	34896680	4357548	1462521	1168800	0.7992	0.127	0.6936	86
1966	27860680	3325185	1289112	895500	0.6947	0.103	0.6190	93
1967	40257670	2817910	923195	695500	0.7534	0.162	0.7976	85
1968	38699260	2522428	414076	717800	1.7335	0.168	1.3361	79
1969	21583200	1905778	424520	546700	1.2878	0.169	1.1048	103
1970	41077280	1922103	374758	563100	1.5026	0.152	1.1038	103
1971	32312470	1849816	266324	520100	1.9529	0.318	1.3980	93
1972	20862860	1549902	288554	497500	1.7241	0.318	0.6947	108
1973	10113630	1156502	233666	484000	2.0713	0.360	1.1331	104
1974	21719920	912842	162321	275100	1.6948	0.263	1.0504	103
1975	2857050	681720	82110	312800	3.8095	0.421	1.4629	107
1976	2739360	360318	78696	174800	2.2212	0.196	1.4228	104
1977	4351920	212560	48797	46000	0.9427	0.196	0.7829	83
1978	4615780	227349	66361	11000	0.1658	0.122	0.0512	82
1979	10616800	384694	108857	25100	0.2306	0.125	0.0631	99
1980	16745490	633405	133007	70764	0.5320	0.119	0.2798	91
1981	37893580	1162085	197901	174879	0.8837	0.383	0.3453	99
1982	64802850	1847388	281046	275079	0.9788	0.280	0.2619	102
1983	61862590	2724667	435943	387202	0.8882	0.325	0.3349	92
1984	53498420	2870295	682523	428631	0.6280	0.216	0.4520	94
1985	80979990	3468522	703223	613780	0.8728	0.234	0.6389	95
1986	97640080	3478147	683046	671488	0.9831	0.189	0.5675	87
1987	85641680	3937023	904630	792058	0.8756	0.267	0.5484	98
1988	41837460	3570910	1198630	887686	0.7406	0.356	0.5329	85
1989	38728880	3291174	1247511	787899	0.6316	0.284	0.5428	96
1990	35593590	2949417	1174169	645229	0.5495	0.260	0.4434	95
1991	33814610	2686998	960957	658008	0.6847	0.214	0.4987	98
1992	63627580	2422438	680708	716799	1.0530	0.337	0.6022	100
1993	53073310	2547324	448835	671397	1.4959	0.380	0.7410	97
1994	35983550	2096133	502526	568234	1.1308	0.221	0.7641	95
1995	44377750	1963441	480400	639146	1.3304	0.308	0.8166	98
1996	56121940	1739867	483788	306157	0.6328	0.157	0.4327	99
1997	31660860	2107773	584344	272627	0.4666	0.076	0.4199	100
1998	26359460	2189692	781524	380178	0.4865	0.076	0.4198	99
1999	75812270	2464359	935096	372341	0.3982	0.064	0.3569	100
2000	48332960	3118870	943389	372420	0.3948	0.059	0.3246	98
2001	83504000	3590636	1428052	364029	0.2549	0.044	0.2433	99

```
No of years for separable analysis : 5
Age range in the analysis : 0 . . . 9
Year range in the analysis : 1960 . . . 2001
Number of indices of SSB : 1
Number of age-structured indices : 4
Stock-recruit relationship to be fitted.
Parameters to estimate : 45
Number of observations : 354
```

Conventional single selection vector model to be fitted.

Table 2.8.17 North Sea herring. Parameter estimates.

Table 2.8.17 Continued.

```
IBTSY 1-wr
Linear model fitted. Slopes at age :
    42 & .1373E-03 6 .1286E-03 .1681E-03 .1373E-03 .1574E-03 .1474E-03
MIK 0-wr
Linear model fitted. Slopes at age :
    43 0 Q .3009E-05 3.2897E-05 .3381E-05 .3009E-05 .3255E-05 . 3132E-05
Parameters of the stock-recruit relationship
    44 1 a . 8482E+08 39.5820E+08 .2710E+09.8482E+08 . 1859E+09.1356E+09
    45 1 b .6773E+06 66 .3585E+06 .4816E+07 . 6773E+06 . 2549E+07 . 1637E+07
```

Table 2.8.18 North Sea herring. Residuals about the model fit.

Age	1997	1998	1999	2000	2001
0	-0.4206	-0.8090	0.0973	0.2965	0.5379
1	-0.9374	0.1987	-0.5300	-0.2354	-0.1011
2	\| 0.0805	-0.0584	-0.0059	0.1912	-0.2831
3	\| -0.0199	-0.1806	0.0328	-0.1839	0.2248
4	\| 0.0212	-0.0699	-0.0199	0.0572	-0.0360
5	\| -0.1099	-0.0028	-0.0866	0.0603	0.0276
6	\| -0.1054	0.2699	-0.1165	-0.0334	-0.0876
7	\| 0.0160	0.0801	-0.0372	-0.2777	0.1831
8	\| -0.0331	0.0800	-0.1332	-0.2145	0.4698

SPAWNING BIOMASS INDEX RESIDUALS

AGE-STRUCTURED INDEX RESIDUALS

Aco												
Age	I	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
1	\|	*******	******	******	******	******	******	******	******	-0.055	-0.262	0.046
2	I	-0.328	-0.020	-0.029	0.178	0.180	-0.204	0.022	0.324	0.471	-0.202	-0.312
3	I	-0.381	-0.006	-0.173	-0.044	0.058	-0.326	0.200	0.354	0.371	0.060	0.015
4	I	-0.491	0.004	-0.084	0.056	0.284	-0.447	0.327	0.283	0.254	0.314	-0.257
5	I	-0.285	-0.154	-0.142	-0.104	0.322	0.139	0.239	0.210	0.141	0.329	-0.433
6	1	-0.301	0.087	-0.382	0.114	0.251	0.348	0.257	-0.173	0.342	0.335	-0.354
7	1	-0.408	0.216	0.133	-0.138	0.241	0.205	0.616	-0.006	-0.429	0.647	-0.319
8	।	-0.293	0.330	-0.005	0.002	-0.153	0.096	-0.070	1.272	0.228	-0.120	-0.207
9	1	-0.684	-0.421	-0.444	-0.075	-0.359	-0.517	-1.120	0.375	0.416	0.335	0.884

Age	\\|	2000	2001
1	I	0.561	-0.290
2	\|	-0.209	0.128
3	\|	-0.292	0.163
4	\|	0.053	-0.299
5	I	0.008	-0.273
6	।	-0.073	-0.454
7	1	-0.055	-0.707
8	I	-0.217	-0.866
9	\|	1.186	0.420

Table 2.8.18. Continued.

Age	।	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993
2	I	-1.003	-1.446	0.112	0.361	-0.125	1.323	0.153	0.021	0.684	-0.148	0.763
3	,	-0.672	-0.771	0.119	0.212	-0.431	0.879	-0.148	0.094	0.535	0.461	0.476
4	1	-0.255	-0.058	0.055	0.200	-0.079	0.143	-0.104	0.653	0.994	0.285	0.292
5	I	0.973	-0.208	0.681	0.430	0.649	-0.149	-1.076	0.424	0.844	0.442	0.386
Age	I	1994	1995	1996	1997	1998	1999	2000	2001	2002		
2	\|	0.658	0.787	-0.749	0.061	-0.158	-0.186	-0.699	-0.111	-0.298		
3	I	0.694	0.415	-1.297	0.194	-0.714	0.378	-0.303	0.519	-0.642		
4	\|	0.682	0.250	-0.989	-0.154	-0.880	0.554	-0.664	0.276	-1.202		
5	I	0.470	-1.131	-0.279	0.267	-0.235	0.248	-1.424	0.122	-1.437		

Age	1999	2000	2001	2002
0	0.196	0.069	-0.029	0.000

Table 2.8.19 North Sea herring. Parameters of distributions.

PARAMETERS OF THE DISTRIBUTION OF ln(CATCHES-AT-AGE)

Separable model fitted from 1997	to 2001
Variance	0.0684
Skewness test stat.	-1.0792
Kurtosis test statistic	0.8783
Partial chi-square	0.1096
Significance in fit	0.0000
Degrees of freedom	20

PARAMETERS OF DISTRIBUTIONS OF THE SSB INDICES

DISTRIBUTION STATISTICS FOR	MLAI
Power catchability relationship assumed	
Last age is a plus-group	
Variance	0.1075
Skewness test stat.	-0.2289
Kurtosis test statistic	-0.7825
Partial chi-square	1.3338
Significance in fit	0.0000
Number of observations	29
Degrees of freedom	27
Weight in the analysis	0.6500

PARAMETERS OF THE DISTRIBUTION OF THE AGE-STRUCTURED INDICES

DISTRIBUTION STATISTICS FOR Acoustic survey 2-9+ wr
Linear catchability relationship assumed

DISTRIBUTION STATISTICS FOR IBTSY $1-w r$	
Linear catchability relationship assumed	
Age	1
Variance	0.0559
Skewness test stat.	0.4464
Kurtosis test statisti	-0.9315
Partial chi-square	0.1754
Significance in fit	0.0000
Number of observations	24
Degrees of freedom	23
Weight in the analysis	0.6700

DISTRIBUTION STATISTICS FOR MIK 0-wr	
Linear catchability relationship assumed	
Age	0
Variance	0.3790
Skewness test stat.	-1.3256
Kurtosis test statisti	1.5818
Partial chi-square	2.2375
Significance in fit	0.0000
Number of observations	26
Degrees of freedom	25
Weight in the analysis	2.0500

Table 2.8.20 North Sea herring. Analysis of variance.

```
ANALYSIS OF VARIANCE
```

Unweighted Statistics

Variance	SSQ	Data	Parameters d.f. Variance		
Total for model	75.2779	354	45	309	0.2436
Catches-at-age	3.2791	45	25	20	0.1640
SSB Indices					
\quad MLAI	4.4665	29	27	0.1654	
Aged Indices				100	0.1479
Acoustic survey 2-9+ wr	31.6397	109	76	0.4163	
IBTSA: 2-5+ wr	1.9201	24	1	23	0.0835
IBTSY 1-wr	4.6225	26	1	25	0.1849
MIK 0-wr	14.5579	41	2	39	0.3733
Stock-recruit model					

Weighted Statistics
Variance
Total for model
Catches-at-age
SSB Indices
MLAI
Aged Indices
Acoustic survey 2-9+ wr
IBTSA: 2-5+ wr
IBTSY 1-wr
MIK 0-wr
Stock-recruit model
SSQ
39.7617
1.3677
1.8871
1.1403
0.5208
0.8619
19.4259
14.5579

Data	Parameters	d.f. Variance	
354	45	309	0.1287
45	25	20	0.0684
29	2	27	0.0699
109	9	100	0.0114
80	4	76	0.0069
24	1	23	0.0375
26	1	25	0.7770
41	2	39	0.3733

Table 2.10.1. Input file for the short-term prediction programme for North Sea herring.

```
North sea herring downw
0 9
4
126
2 0 1
3 0 1
4 1
Init numbers
0 61090
1 30098
2 5951.2
3 5774.6
4 1183.2
5 868.14
6 868.81
7 264.17
8 136.67
9 82.36
recruitments
49000
4 9 0 0 0
selection by age and fleet
0}00.0001 0.0132 0.0007 0.0061
1 0.0057 0.0065 0.0329 0.0212
2 0.1190 0.0046 0.0277 0.0029
30.2469 0.0040 0.0109 0.0003
4 0.2533 0.0047 0.0078 0.0006
5 0.2629 0.0014 0.0084 0.0002
60.2494 0.0054 0.0055 0.0003
70.2056 0.0013 0.0020}00.001
8 0.2552 0.0073 0.0051 0
90.2685 0 0 0
natmor at age
0 1.0
1 1.0
20.3
30.2
40.1
50.1
6 0.1
70.1
8.1
90.1
weca by fleet
0 0.0085 0.0140 0.0235 0.0145
1 0.0905 0.0320 0.0535 0.0195
2 0.1265 0.0620 0.0770 0.0570
30.1545 0.1130 0.1080 0.1130
4 0.1775 0.1330 0.1470 0.1455
50.1970 0.1165 0.1690 0.1585
6 0.2170 0.0610 0.2020 0.1720
7 0.2360 0.0770 0.1955 0.1680
8 0.2450 0.2250 0.2045 0.1805
9 0.2735 0 0 0 0
```

Table 2.10.1. cont.

```
west
0.0065
1 0.0495
20.1220
30.1715
4 0.2105
5 0.2310
6 0.2520
70.2750
8 0.2840
90.2845
maturity
0 0
1 0
2 0.72
30.94
4 1
5 1
6 1
7
8 1
9 1
props
0.67 0.67
intermediate year
f
0.2263
f
0.0099
f
0.0168
f
0.0137
```

Table 2.10.2

Nิิ	F2-6	F0-1	F0-1	F0-1	F 0-1	F 2-6	Yield 2002						SSB 2002
	A	B	C	D			A	B	C	D	B-D	Total	
	0.226	0.01	0.017	0.014	0.043	0.243	403	16	52	12	80	483	1699

F for fleets B-D maintain proportion from 2002

Table 2.10.3
Short-term prediction table for North Sea herring.

Assume Catch constraints in 2002

$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	F2-6 F0-1 F0-1 F0-1				F 0-1	F 2-6	Yield 2002						SSB 2002
	A	B	C	D			A	B	C	D	B-D	Total	
	0.165	0.013	0.011	0.013	0.04	0.179	302	20	36	12	68	370	1772

F for fleets B-D maintain proportion from 2002

F2-6	F0-1	F0-1	F0-1	F 0-1	F 2-6	Yield 2003						SSB 2003
A	B	c	D			A	B	c	D	B-D	Total	
0.195	0.004	0.004	0.004	0.014	0.2	458.1	6.2	11.5	3.3	21	479.1	2388.5
0.15	0.044	0.04	0.047	0.133	0.2	351.4	66.7	121.8	34.1	223	574	2376

Combinations of catches by the various fleets that give F0-1 $=0.12$ and $F 2-6=0.25$

	$\begin{gathered} \hline \text { F2-6 } \\ \hline \mathrm{A} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { F0-1 } \\ \hline B \end{gathered}$	$\begin{gathered} \mathrm{F} 0-1 \\ \mathrm{C} \end{gathered}$	$\begin{gathered} \hline F 0-1 \\ \hline \mathrm{D} \\ \hline \end{gathered}$	F 0-1	F 2-6	Yield 2003						SSB 2003
							A	B	c	D	B-D	Total	
ÒO	0.205	0.097	0.01	0.013	0.123	0.253	470	145	31	10	185	655	2303
	0.21	0.082	0.01	0.027	0.122	0.252	481	123	30	20	173	654	2304
	0.215	0.067	0.01	0.041	0.121	0.252	493	101	30	30	161	654	2305
	0.2	0.087	0.017	0.014	0.121	0.249	459	131	52	10	193	651	2308
	0.205	0.071	0.017	0.027	0.118	0.248	470	107	52	20	178	649	2310
	0.215	0.058	0.016	0.041	0.118	0.253	492	87	49	30	166	658	2303
	0.2	0.078	0.023	0.014	0.118	0.249	459	117	70	10	197	656	2307
	0.205	0.069	0.023	0.028	0.123	0.251	470	104	70	20	194	663	2303
	0.21	0.051	0.024	0.042	0.12	0.251	481	77	73	31	180	661	2305

F status quo in 2003

F2-6	F0-1	F0-1	F0-1	F 0-1	F 2-6	Yield 2003						SSB 2003
A	B	C	D			A	B	c	D	B-D	Total	
0.226	0.01	0.017	0.014	0.043	0.243	521	15.2	51.8	10.3	2216.3	598.3	2320.6

Table 2.11.1 North Sea herring. Input to the medium term analysis (fmult.dat)
Projection input file, North Sea herring19/03/2002 19:57
Number of Fleets and projection years
410
Mean Catch Ratio by Fleet (2000-2001)

	A		C	D
0	0.0049	0.6399	0.0269	0.3283
1	0.0714	0.0760	0.4568	0.3958
2	0.7938	0.0276	0.1659	0.0127
3	0.9476	0.0134	0.0379	0.0010
4	0.9574	0.0154	0.0238	0.0034
5	0.9803	0.0038	0.0157	0.0001
6	0.9462	0.0301	0.0214	0.0023
7	0.9840	0.0068	0.0045	0.0047
8	0.9750	0.0233	0.0015	0.0002
9	1.0000	0.0000	0.0000	0.0000

Retention Ogive for each fleet by age valid for all years

0	1	1	1	1
1	1	1	1	1
2	1	1	1	1
3	1	1	1	1
4	1	1	1	1
5	1	1	1	1
6	1	1	1	1
7	1	1	1	1
8	1	1	1	1
9	1	1	1	1

Exploitation Constraint by Year (-ve values: F-constraints; +ve values, Catch constraints)

2002	-1	-1	-1	-1
2003	-1	-1	-1	-1
2004	-1	-1	-1	-1
2005	-1	-1	-1	-1
2006	-1	-1	-1	-1
2007	-1	-1	-1	-1
2008	-1	-1	-1	-1
2009	-1	-1	-1	-1
2010	-1	-1	-1	-1
2011	-1	-1	-1	-1

Mean Weight-at-age in the catches of each fleet

0	0.0085	0.014	0.0235	0.0145
1	0.0905	0.032	0.0535	0.0195
2	0.1265	0.062	0.077	0.057
3	0.1545	0.113	0.108	0.113
4	0.1775	0.133	0.147	0.1455
5	0.197	0.1165	0.169	0.1585
6	0.217	0.061	0.202	0.172
7	0.236	0.077	0.1955	0.168
8	0.245	0.225	0.2045	0.1805
9	0.2735	0.225	0.2045	0.1805

Mean weights-at-age in the discard by fleet

0	0.0085	0.014	0.0235	0.0145
1	0.0905	0.032	0.0535	0.0195
2	0.1265	0.062	0.077	0.057
3	0.1545	0.113	0.108	0.113
4	0.1775	0.133	0.147	0.1455
5	0.197	0.1165	0.169	0.1585
6	0.217	0.061	0.202	0.172
7	0.236	0.077	0.1955	0.168
8	0.245	0.225	0.2045	0.1805
9	0.2735	0.225	0.2045	0.1805

First year for F -constraint 2003

Table 2.11.1 continued.

Target Multiplier by fleet	and by year			
2003	-1.0	-1.0	-1.0	-1.0
2004	-1.0	-1.0	-1.0	-1.0
2005	-1.0	-1.0	-1.0	-1.0
2006	-1.0	-1.0	-1.0	-1.0
2007	-1.0	-1.0	-1.0	-1.0
2008	-1.0	-1.0	-1.0	-1.0
2009	-1.0	-1.0	-1.0	-1.0
2010	-1.0	-1.0	-1.0	-1.0
2011	-1.0	-1.0	-1.0	-1.0
	of	Target	F-Multipliers	
CV				
2003	0.0001	0.0001	0.0001	0.0001
2004	0.0001	0.0001	0.0001	0.0001
2005	0.0001	0.0001	0.0001	0.0001
2006	0.0001	0.0001	0.0001	0.0001
2007	0.0001	0.0001	0.0001	0.0001
2008	0.0001	0.0001	0.0001	0.0001
2009	0.0001	0.0001	0.0001	0.0001
2010	0.0001	0.0001	0.0001	0.0001
2011	0.0001	0.0001	0.0001	0.0001

Table 2.11.2 North Sea herring. Logfile of the ICP program (status quo run).

```
Medium-Term Projections: ICP
Written December }1997\mathrm{ for ICA v1.4 w
==========================================
Enter Random-Number seed--> 120
    Change any of the populations (Y/N) ?-->n
    Enter the name of the projection file -->fmult.dat
Population parameters for the projections are set by taking a mean over a
number of the last years of the data set.
    Use mean natural mortality from 2001 back to--> 1998
    Use mean maturity ogive from 2001 back to--> 2000
    Use mean weight-at-age in the stock from 2001 back to--> 2000
    Enter the reference spawning stock size (e.g. MBAL, B}\mp@subsup{\boldsymbol{B}}{\textrm{pa}}{}\mathrm{ )--> 8.00000000000000000E+05
    Enter the maximum allowable F-multiplier--> 10.000000000000000
Choose type of stock recruit relation :
S - Shepherd R = a.SSB/(1+SSB/b)^c
B - Beverton-Holt R = a.SSB/(1+SSB/b)
R - Ricker R = a.SSB.exp (-b.SSB)
O - Ockham R = GM over observed SSB range
                                    then linear to origin
N - None R = Historic Geometric Mean R
    Enter your choice (S/B/R/O/N) ?-->b
    Enter first year of data for stock-recruit model--> 1960
    Enter last year of data for stock-recruit model--> 1998
    Autocorrelated or Independent errors (I/A)-->i
    Use ICA or SRR (I/S) model value for recruitment in 2001-->i
    Use ICA or SRR (I/S) model value for recruitment in 2002-->i
    Use default percentiles (Y/N) ?-->y
    Use ICA-derived resamples ?-->y
```

Table 2.12.1 North Sea herring. Input to the estimation of biological reference points.

Age/WR	N	M	CWt	SWt	Mat	F	FPreSpwnhPreSpwn
0	107130000	1	0.012	0.006	0	0.066	$0.67 \quad 0.67$
1	18847695	1	0.044	0.050	0	0.180	
2	8965928	0.3	0.115	0.120	0.71	0.576	
3	1454673	0.2	0.152	0.176	0.93	1.014	
4	1191881	0.1	0.174	0.214	1	1.000	
5	963059	0.1	0.199	0.237	1	1.069	
6	321060	0.1	0.220	0.261	1	0.994	
7	158652	0.1	0.238	0.279	1	0.783	
8	94346	0.1	0.248	0.283	1	1.000	
9	9175	0.1	0.280	0.291	1	1.000	
FbarMinAge	2						
FbarMaxAge	6						
M year CV	0.1						

NCV	MCV	CWtCV	SWtCV	MatCV	FCV
0.140	0	0.250	0.091	0	0.273
0.114	0	0.216	0.035	0	0.254
0.098	0	0.010	0.035	0.1	0.252
0.095	0	0.033	0.041	0.1	0.247
0.104	0	0.035	0.028	0	0.000
0.124	0	0.028	0.042	0	0.284
0.155	0	0.051	0.061	0	0.318
0.193	0	0.038	0.023	0	0.379
0.229	0	0.107	0.036	0	0.000
0.229	0	0.056	0.040	0	0.000

Herring catches 2001, 1st Quarter

Figure 2.1.1: Herring catches in the North Sea (in tonnes) in 2001 by statistical rectangle. Working group estimates (if available). a.: 1 st quarter

Herring catches 2001, 2nd Quarter

Figure 2.1.1: Herring catches in the North Sea (in tonnes) in 2001 by statistical rectangle. Working group estimates (if available). b.: 2nd quarter

Herring catches 2001, 3rd Quarter

Figure 2.1.1: Herring catches in the North Sea (in tonnes) in 2001 by statistical rectangle. Working group estimates (if available). c.: 3 rd quarter

Herring catches 2001, 4th Quarter

Figure 2.1.1: Herring catches in the North Sea (in tonnes) in 2001 by statistical rectangle. Working group estimates (if available). d.: 4th quarter

Herring catches 2001, all quarters

Figure 2.1.1: Herring catches in the North Sea (in tonnes) in 2001 by statistical rectangle. Working group estimates (if available). e.: all quarters

Figure 2.2.1: Proportions of age groups (numbers) in the total catch of herring in the North Sea (upper, 1960-2001, and middle panel, 1980-2001), and in the total catch of North Sea Autumn Spawners in 2001(lower panel).

Figure 2.2.2: Mean vertebrae counts of 2 (upper number), 3 (middle) and $4+$ herring in the North Sea and Div. IIIa as obtained by Norwegian sampling in the 2nd and 3rd quarter 2001. The transfer area, where a fraction of the total catch is assumed to be Western Baltic Spring-spawners and transferred to the assessment of IIIa herring, is indicated.

Time series of recruitment indices

Figure 2.3.1. North Sea herring. Time-series of the 0 -ringer and the 1 -ringer indices, 0 -ringers are illustrated by filled squares, 1 -ringers by open circles.

Figure 2.3.2. North Sea herring. Distribution of 1-ringer herring, year classes 1998-2000. Abundance estimates of 1-ringers within each statistical rectangle are based on GOV catches during IBTS in February. Areas of filled circles illustrate numbers per hour, the area of a circle extending to the border of a rectangle represents 45000 .

Figure 2.3.3. North Sea herring. Distribution of 0-ringer herring, year classes 1999-2001. Abundance estimates of 0-ringers within each statistical rectangle are based on MIK catches during IBTS in February. Areas of filled circles illustrate densities in no m^{-2}, the area of a circle extending to the border of a rectangle represents $1 \mathrm{~m}^{-2}$.

Relationship between herring recruitment indices

Figure 2.3.4. North Sea herring. Regression between the MIK 0-ringer index and the IBTS 1-ringer indices for year classes 1977 to 2000. Numbers in symbols indicate year class

Trend in recruitment, year classes 1958-2000

Figure 2.3.5. North Sea herring. Recruitment of 1-ringer North Sea autumn spawners. Estimates from the ICA assessment in 2002.

Figure 2.4.1. Herring survey area layouts and dates for all participating vessels in the 2001 acoustic survey of the North Sea and adjacent areas. Shaded areas indicate areas of overlap.

Figure 2.4.2 Autumn-spawning herring abundance from combined acoustic survey July 2001. Numbers (millions) (upper figure), and biomass (thousands of tonnes) (lower figure).

Figure 2.4.3 Autumn-Spawning herring numbers (millions) from combined acoustic survey July 2001. 1 ring (upper figure), 2 ring (centre figure), $3+$ (lower figure).

Figure 2.4.4 Autumn-spawning herring, mean weight \& maturity from combined acoustic survey July 2001. Fraction mature (upper): 2 ring (left), 3 ring (right); mean weights (lower): 1 ring (left), 2 ring (right); 0 indicates measured fraction mature, + indicates surveyed with zero abundance, blank indicates unsurveyed rectangle.

Figure 2.4.5 Autumn-spawning herring, abundance of mature autumn-spawning herring from combined acoustic survey July 2001. Numbers of herring.

Figure 2.4.6 Autumn-spawning herring, abundance of immature autumn-spawning herring from combined acoustic survey July 2001 . Numbers of herring.

Figure 2.8.1 North Sea herring. Abundance indices by age (WR): MIK, IBTS and Acoustic index.

Figure 2.8.2. North Sea herring. Available SSB indices: MLAI and Acoustic index (latter not used as an SSB index in the assessment, but as an age-based index).

Figure 2.8.3 North Sea herring. SSB estimates from different settings of the assessment model (left) and indices separately (right). Note: the comparison with indices separately was carried out with a run with full inverse variance weighting and is thus not equal to the final run.

Figure 2.8.4 North Sea herring. Retrospective analysis showing SSB (left) and F_{2-6} (right) under different separable assumptions and weighting methods. A) Inverse variance weights with historic WG separable periods, B) Inverse variance weights, and 5-year separable periods , C) Inverse variance and historic WG separable periods, D) 2001 assessment weights and historic WG separable periods (note the scale change required on the F diagram for the 2001 WG method).

Figure 2.8.5 North Sea herring. Sum of squares (SSQ) surfaces for the tuning indices from a separable analysis.
Log catch residuals

Figure 2.8.6. North Sea herring. Contour plot of unweighted catch residuals.

Selection pattern

Figure 2.8.7. North Sea herring. Estimated selection pattern (+/- SD).

Figure 2.8.8 North Sea herring. Scatterplot and fitted catchability model (line) from the fitted populations and the tuning index observations (dots).

Figure 2.8.9 North Sea herring. Observed (dots) and predicted (line) values for the indices.

Figure 2.8.10 North Sea herring. Residuals as $[\ln ($ observed index) $-\ln ($ expected index) $]$ plotted against expected values from the fitted populations.

Figure 2.8.11 North Sea herring. Residuals as $[\ln ($ observed index $)-\ln ($ expected index $)]$ plotted against time.

Figure 2.8.12 North Sea herring. Evaluation of assessment uncertainty using a covariance matrix method with 1000 random draws from the estimated parameter distribution. Summary of landings, estimated mean fishing mortality (age 2-6), recruitment of 0 -ringers and spawning biomass. Shown are the 5 , $25,50,75$ and 95 percentiles.

Figure 2.8.13 North Sea autumn-spawning herring. Long-term trends in catches (top left), recruitment as 0 -ringers (bottom left), fishing mortality on ages $2-6$ and $0-1$ (bottom left) and spawning stock biomass (bottom right). Note that two different PA values are set for the fishing mortality, both for juveniles and adults.

Figure 2.9.1. North Sea herring. Index (numbers per hour) of small ($<13 \mathrm{~cm}$) 1-ringers in the North Sea area, and proportion of small 1-ringers versus all sizes in the North Sea area. See Table 2.3.3.

Figure 2.9.2. North Sea herring. Estimates of SSB distinguishing a Downs component (divisions VIId+IVc).

Figure 2.9.3 North Sea herring. Larval Abundance Index (LAI) in the southern North Sea and mean age (winter-ring) in catch.

Figure 2.11.1 North Sea herring. Medium-term forecast using a Beverton and Holt stock recruitment relationship. F multiplier of 1 on all fleets.

Figure 2.11.2 North Sea herring. Medium-term forecast using a Beverton and Holt stock recruitment relationship. F multiplier of 1 on fleet $\mathrm{A}\left(\mathrm{F}_{2-6}=0.24\right)$ and 2.74 on fleets B-D ($\mathrm{F}_{0-1}=0.12$).

Figure 2.12.1 North Sea herring. Estimates of uncertainty of biological reference points.

3.1 The Fishery

3.1.1 ACFM advice and management applicable to 2001 and 2002

At the ACFM (May) meeting in 2001, it was stated that the state of the stock was uncertain. However, the available information provided reasons for concern, as the fishing mortality appeared stable at a high level during the last 4 years while the catches have declined over the same period.

ACFM recommended that the fisheries on herring in Division IIIa should continue to be managed in accordance with the management advice given on autumn-spawning herring in the North Sea. If a catch limit is required in Subdivisions $22-24$, ACFM advised that it should not exceed recent catches in that area in the order of 50,000 t.

The EU and Norway agreement on a herring TACs set for 2001 and 2002 was $80,000 \mathrm{t}$ in Division IIIa for the human consumption fleet and a by-catch ceiling of $21,000 \mathrm{t}$ to be taken in the small mesh fishery.

As in previous years the International Baltic Sea Fishery Commission (IBSFC) on the stock component in the Western Baltic area set no special TAC for 2001. For the Baltic there was for 2001 a TAC of $300,000 \mathrm{t}$ for the Subdivisions 2229South and 32. The TAC was reduced to 200,000 t for the same area in 2002.

3.1.2 Total landings

Herring caught in Division IIIa are a mixture of North Sea autumn spawners and Baltic spring-spawners. Springspawning herring in the eastern part of the North Sea, Skagerrak, Kattegat and Subdivisions 22, 23 and 24 are considered to be one stock. This section gives the landings of both North Sea autumn spawners and Baltic springspawners, but the stock assessment applies only to the spring-spawners.

Landings from 1985 to 2001 are given in Table 3.1.1. In 2001 the total landings decreased to $152,500 \mathrm{t}$ in Division IIIa and Subdivisions 22-24 compared to 2000 where the landings were $162,000 \mathrm{t}$, resulting in a landing figure for 2001 at the mean level for the period 1997-2000. In 2001, $35,000 \mathrm{t}$ were taken in the Kattegat, about $55,300 \mathrm{t}$ from the Skagerrak and 62,200 t from Subdivisions 22-24. These landings represent a decrease of 9,500 t compared to 2000 .

Misreporting of fishing area still occurs. Some of the Danish landings of herring for human consumption reported in Division IIIa may have been taken in the adjacent waters of the North Sea. These landings are included in the values for the North Sea. A part of the Swedish landings have been misreported as caught in the triangle (an area in the southern Kattegat, which is a part of the Baltic area: Gilleleje, DK - Kullen, S - Helsingborg, S - Helsingør, DK). This amount is included in the values for Kattegat and Skagerrak. Some Danish landings, reported as taken in this triangle, may have been taken outside this area. These landings are listed under Kattegat. The Norwegian landings reported as having been taken in Skagerrak may have been caught in the North Sea. This figure is listed under Skagerrak.

No estimates of discards were available to the Working Group. The magnitude of discarding in Skagerrak may, in some periods and some years, be at a high level, especially in the summer period where there is a special demand for high quality herring for the Dutch market. Due to high prices for most herring landings in 2001, the amount of discards are regarded as being insignificant.

In 2001 the landing data are calculated by fleet according to the fleet definitions used when setting TACs. In the autumn of 1998 the EU and Norway have agreed on setting TACs for only two fleets, and this agreement was also in force for 2001. Therefore, HAWG in 1998 decided to merge Fleet D and Fleet E and only present data according to these new fleet definitions for fisheries in Division IIIa (ICES 1999/ACFM:12)).

The fleet definitions used for 1998 and 1999 and henceforth are:

- Fleet C: directed fishery for herring in which trawlers (with 32 mm minimum mesh size) and purse seiners participate.
- Fleet D+E, now described as Fleet D: All fisheries in which trawlers (with mesh sizes less than 32 mm) and small purse seiners, fishing for sprat along the Swedish coast and in the Swedish fjords, participate. For most of the landings taken by this fleet, herring is landed as by-catch.

All Norwegian landings for 2001 and all landings from fisheries with minimum mesh sizes of 32 mm are categorised in Fleet C. Danish and Swedish by-catches of herring from the sprat fishery and the Norway pout and blue whiting fisheries are listed under fleet D.

In Subdivisions 22-24 most of the catches are taken in a directed fishery for herring and some as by-catch in a directed sprat fishery. All landings from Subdivisions 22-24 are treated as one fleet. The landings of the autumn spawning component in Division IIIa plus the entire spring-spawning stock could therefore be split into three fleets:

- C: Fleet using 32 mm mesh size in Division IIIa.
- D: Fleets using mesh size less than 32 mm in Division IIIa.
- F: Landings from Subdivisions 22-24.

In the table below the landings are given for 1996 to 2001 in thousands of tonnes by fleet and quarter. The landings figures in the text table below are SOP figures. Fleet C and D refer to Division IIIa, and fleet F to Subdivisions 22-24.

Herring landings by fleet (‘000 t)	Div. IIIa	SD 22-24	Div. IIIa+ SD 22-24

Year	Quarter	Fleet C	Fleet D	Fleet F	Total
1996	1	13.9	12.1	9.3	35.3
	2	12.5	2.2	23.9	38.6
	3	46.2	3.2	10.1	39.5
	4	19.4	8.3	13.5	41.2
	Total	92.0	25.8	56.8	174.6
1997	1	11.7	2.5	17.4	31.6
	2	16.9	1.3	27.2	45.4
	3	22.6	1.1	7.8	31.5
	4	21.7	4.2	15.1	41.0
	Total	72.9	9.1	67,5	149.5
1998	1	17.6	3.1	18.5	39.2
	2	8.2	0.9	16.9	26.0
	3	44.2	2.0	14.7	60.9
	4	34.3	2.6	13.6	50.5
	Total	104.3	8.6	63.7	176.6
1999	1	17.9	4.0	20.6	42.5
	2	15.5	0.2	13.4	29.1
	3	28.7	3.6	5.3	37.6
	4	13.1	3.3	10.8	27.2
	Total	75.2	11.1	50.1	136.4
2000	1	16.0	6.9	23.9	46.8
	2	18.3	0.4	15.8	34.5
	3	34.8	3.2	3.4	40.7
	4	20.8	7.4	10.7	36.7
	Total	89.9	17.9	53.8	161.6
2001	1	20.1	3.8	20.1	44.0
	2	18.7	1.9	20.1	40.7
	3	25.0	7.9	7.4	40.3
	4	11.1	1.7	14.3	27.1
	Total	74.9	15.3	61.9	152.1

The landings from fleets C-F are SOP figures.

3.2 Stock Composition

Catches of herring in the Kattegat, the Skagerrak and the Eastern part of the North Sea are taken from a mixture of two main spawning stocks (ICES 1991/Assess:15): mainly 2+ ringers of the Western Baltic spring-spawners and 0-2-ringers from the North Sea autumn-spawners, including winter-spawning Downs herring. In addition, several local spawning stocks have been identified with unassessed importance to the herring fisheries (ICES 2001/ACFM 12).

Experience within the Herring Assessment Working Group has shown that separation procedures based on size distributions often have failed. On the other hand, comparison between separation methods using frequency distributions of vertebral counts and otolith microstructure showed reasonable correspondence. Using this information the years from 1991 to 1996 have been reworked, applying common splitting keys for all years by using a combination of the vertebral count and otolith microstructure methods (ICES 2001/ACFM:12). For the present year the otolith-based method has been applied (see the following Sections 3.2.1 and 3.2.2).

3.2.1 Treatment of spring-spawning herring in the North Sea

The split was performed on age classes 2,3 , and $4+$ WR using proportion of spring-spawners $f(s p)$ calculated from VScounts from samples of Norwegian commercial landings using the equation:

$$
\mathrm{f}(\mathrm{sp})=[56.5-\mathrm{VS}(\text { sample })] /[56.5-55.8]
$$

where VS (sample) was the sample mean vertebral count (ICES 1992/H:5). For age 1 WR the split was performed by otolith microstructure from Danish samples. For the total commercial landings in May, June and July from the North Sea in 2001, the proportion of spring-spawners was calculated using samples from split by age, ICES rectangle and month, and then raised to total number using the overall mean weight-at-age in the landings. For the actual split see Section 2.2.2.

3.2.2 Treatment of autumn spawners in Division IIIa

For commercial landings in 2001 the split of the Swedish and Danish landings was conducted using an age-class stratified random sub-sample of herring where analysis of individual otolith microstructure determined the spawning type (Mosegaard and Popp-Madsen, 1996). A total of 2604 otoliths from the year 2001 were analysed for spawning type in Division IIIa. The estimation of the proportion spring and autumn spawners in the landings from Division IIIa was performed on the basis of totally 2012 Danish and 592 Swedish otolith microstructure analyses in 2001. Data were disaggregated by area (Kattegat and Skagerrak), age group ($0-4+$ WR) and quarter (1-4). The proportions of analysed numbers were given in column " n " (Table 3.2.1).

Despite a reasonable coverage of the fishery, the proportion for several age, area and season combinations had to be estimated from adjacent areas, age groups or seasons. These data are indicated in the column "source" in Table 3.2.1. No changes in earlier years' split data were made in the present HAWG 2002 year's assessment. For the 2001 split of catches samples from commercial landings were used primarily, and for quarter 3 in Division IIIa these were supplemented by samples from the Danish acoustic survey in July.

3.2.3 Autumn spawners in the fishery in Subdivisions 22 and 24

After the introduction of otolith microstructure analysis in 1996 it was discovered that in the western Baltic a small percentage of the herring landings might consist of autumn-spawned individuals. Compared to the 1997 years assessment (ICES 1998/ACFM:14) the magnitude of the problem in later years appears minor. In 2001 only the herring by-catches from landings in Subdivision 22 were analysed for otolith microstructure, and among the small number of individuals analysed $(\mathrm{n}=18)$ no juvenile autumn-spawned herring were found in the samples. The existence of varying proportions of autumn spawners in Subdivisions 22-24 in different years however, indicates a potential problem for the assessment that should be kept in mind.

3.2.4 Accuracy and precision in stock identification

Stock identification and splitting methods

During the last decade the HAWG has encountered a series of difficulties in the assessment of the Western Baltic Spring-spawning (WBSS) stock. It was impossible to separate the WBSS from a North Sea stock component (autumn spawner) in Division IIIa (Skagerrak, Kattegat, Sound), where both stocks mix. The introduction of otolith microstructure analysis in 1996-97 enables an accurate and precise split between three groups, autumn, winter and spring-spawners; however, different populations with similar spawning periods are not resolved with the present level of analysis. Different stock components not easily distinguished by their otolith microstructure (OM) are considered to have different mean vertebral counts (vs) as, e.g., winter-spawning Downs herring: 56.6 (Hulme, 1995), and the small local stocks, the Skagerrak winter/spring-spawners: 57 (Rosenberg and Palmén, 1981). Further, the estimated stock specific mean vs count varies somewhat among different studies; North Sea: 56.53, Western Baltic Sea: 55.6 (Gröger and Gröhsler, 2000a) and North Sea: 56.5, Western Baltic Sea: 55.8 (ICES 1992/ACFM:5).

From the Swedish individual determination of spawning type also vs counts were made. Based on spring spawned and autumn/winter spawned components in the Kattegat and Skagerrak mean vs were calculated for each of the four components by age group. Significant differences between observed and expected mean vs for spring-spawners (WBSS vs $=55.8$) of age groups 3 and $4+$ in the $1^{\text {st }}$ quarter in Skagerrak were found, indicating that at this time of year local spring-spawners are an important component. In the same quarter age 1 and 2 WR of autumn spawners in the Kattegat had a small, but significant difference in mean vs count from expected values (NSAS vs=56.5), also indicating some local influence.

In an EU CFP study project (EC study 98/026) different methods of identifying herring stocks in the Division IIIa and Subdivisions 22-24 were evaluated. The study involved several intercalibration sessions between microstructure readers in the different laboratories involved with the WBSS herring. Initial comparisons showed high deviations between readers but improved during the exercise. After the exercise was finished a close collaboration concerning reader interpretations was kept between the Danish and Swedish laboratories. Sub-samples of the 2001 Danish and Swedish microstructure analyses were double checked by the same Danish reader for consistency in interpretation. The overall impression was that readers were in good agreement.

A high number of Swedish and Danish commercial samples from Kattegat $1^{\text {st }}$ quarter 2001 allowed a comparison between proportions of spring-spawners in the landings from the two countries. A high degree of correspondence was found (no significant overall difference between Swedish and Danish proportions CHI-Square $8.44, \mathrm{df}=4 \mathrm{p}>0.05$):

Proportion of spring-spawners in the Kattegat in the 1st quarter 2001

	1WR	2WR	3WR	4+WR	n
Swedish	2%	58%	100%	100%	403
Danish	6%	57%	67%	100%	164
n	282	257	23	5	567

This analysis shows a reasonable robustness towards the combined sources of bias from the different fisheries and the different laboratories working up samples.

3.3 Catch in Numbers and Mean Weights-at-age

The level of sampling of the landings for human consumption and the industrial landings was generally acceptable in the Skagerrak and Kattegat and Subdivisions 22-24. Where sampling was missing in areas and quarters on national landings, sampling from either other nations or adjacent areas and quarters were used to estimate catch in numbers and mean weight-at-age (see Table 3.4.2).

Tables 3.3.1, 3.3.2 shows the total catch (autumn and spring-spawners) in numbers and mean weight-at-age for herring by quarter and fleet landed from Skagerrak and Kattegat, respectively. The total numbers and mean weights-at-age for herring landed from the Kattegat, Skagerrak and Subdivisions 22-24 by fleets is shown in Table 3.3.9.

Based on the proportions of spring and autumn spawners (see Section 3.2.3) in the landings, number and mean weights by age and spawning stock are calculated. The total numbers and mean weight of North Sea autumn-spawners herring landed from Skagerrak and Kattegat by quarter and fleet is shown in Tables 3.3.3 and 3.3.4. The total numbers and mean weight of Baltic spring-spawning herring landed from Skagerrak and Kattegat by quarter and fleet is shown in Tables 3.3.5 and 3.3.6.

The total numbers and mean weight of North Sea autumn spawners by quarter and fleet landed from Division IIIa is shown in Table 3.3.7 and Baltic spring-spawning herring in Table 3.3.8.

The total catch in numbers of BSS in Division IIIa and the North Sea is shown in Tables 3.3.10 and 3.3.13 (see also Tables 2.2.1-2.2.5). The landings of spring-spawners taken in Division IIIa and the North Sea in 2001 were estimated to be about 48,000 tons (Table 3.3.14) compared to about $64,000 \mathrm{t}$ in 2000 and $50,000 \mathrm{t}$ in 1999. This decrease in landings was mainly due to a decrease in total landings in Skagerrak. Some of this decrease was compensated by an increase in landings in Subdivisions 22-24 of 8,000 tonnes. The landings of North Sea autumn spawners in Division IIIa amounted to 48,000 tonnes compared to $50,000 \mathrm{t}$ in 2000 and $41,000 \mathrm{t}$ in 1999 (Table 3.3.12). The total catch in number and mean weight-at-age of Baltic spring-spawners in the North Sea, Division IIIa and in Subdivisions 22-24 for 1991-2001 are given in Tables 3.3.13 and 3.3.14. Mean weights-at-age in 2001 were, in general, comparable to the mean weights in 2000 for the ages 2 to $8+$, but variable for 0 and 1 ringers.

The sampling intensity of the landings in 2001 was acceptable and above the recommended level. Danish landings were sampled in the most important quarters for the Skagerrak, the Kattegat and for Subdivisions 22 and 24. In 2001 no sampling was carried out from the limited fishery in Subdivision 23 (800 t) except for one Swedish sample in the quarter 4.

Table 3.4.1 shows the number of fish aged by country, area, fishery and quarter. The total landings from Divisions IIIa, IIIb and IIIc were $152,500 \mathrm{t}$ from which 220 samples were taken, 43,000 fish measured and 15,000 aged compared to 2000, where the landings were $162,000 \mathrm{t}$ from which 255 samples were taken, 70,800 fish were measured and 15,100 fish were aged. Despite the high sampling level, the sampling coverage can still be improved.

Swedish landings from the human consumption and the small meshed fishery were sampled in most quarters from the Skagerrak and the Kattegat. As mentioned in Section 3.1.2 some of the Swedish landings taken in Skagerrak may have been misreported to the Baltic.

Sampling of the Danish landings for industrial purposes were at the same high level in 2001 as in the three previous years. The number of samples and number of fish investigated were considered to be adequate. Again in 2001 there have been difficulties in getting samples from the Danish directed herring human consumption fishery in Skagerrak. There is uncertainty about where the Danish landings for human consumption, reported from Division IIIa were actually taken. Some of the landings from quarter 1, 2 and 4 are supposed to have been taken in the North Sea and were therefore transferred to the North Sea. Some Danish landings, reported as taken in this triangle, may have been taken outside this area. These landings are listed under Kattegat.

The Norwegian landings from quarter 2 were sampled. However, there may be a misreporting of Norwegian landings listed as being taken in Skagerrak but possibly taken in adjacent areas in the North Sea. These landings are listed under Skagerrak.

As the herring market conditions were very good in 2001, discards of herring caught in Division IIIa, and Subdivisions 22-24 are regarded as being insignificant.

There is an unknown effect of variability in the stock composition in Division IIIa due to uncertainty of the splitting factor between the North Sea autumn spawners and the Baltic spring-spawners. There is at present no information about the importance of local herring stocks in relation to the fisheries (i.e. the Kattegat autumn spawners and the Skagerrak winter spawners) and their possible influence on the stock assessment. Although the overall sampling meets the recommended level of one sample per 1000 t landed per quarter, there is an unequal coverage of some areas and times of the year.

3.5 Fishery-Independent Estimates

3.5.1 German bottom trawl surveys in Subdivisions 22 and 24

From 2001 onwards a new standardised bottom trawl was used within the frame of the 'Baltic International Trawl Surveys'. This new bottom trawl is only catching herring to a low extent. In consequence no fishery-independent estimates based on German bottom trawl surveys will be available in the future.

Abundance indices for $0,1,2$, and $3+$ ringed herring obtained by bottom-trawl surveys carried out in November/ December of each year in Subdivisions 22 and 24 until 2000 are given in Tables 3.5.1 and 3.5.2.

Combined estimates for the total area are calculated by weighting each single survey estimate by the survey areas of each Subdivision. The resulting time index series is shown in Table 3.5.3.

Abundance indices for 1 to $8+$ ringed herring from bottom-trawl surveys conducted each year in January/February in Subdivision 24 until 2000 are given in Table 3.5.4.

3.5.2 International Bottom Trawl Survey in Division IIIa

The IBTS in Division IIIa (the Skagerrak and the Kattegat) has been conducted annually in the $1^{\text {st }}$ quarter since 1977. From 1983 and onwards the survey was standardised with a standard bottom trawl and fishing and sampling protocols
as recommended by the ICES International Young Herring Survey Working Group. The later established IBTS WG issues regularly updated manuals with instructions for standardised fishing and sampling practices (current version V, ICES 1996/H:1). The survey was intended for and is still used to obtain recruitment estimates for herring stocks in the Division IIIa (e.g. Section 2.3). In later years relative abundance was also calculated for older age groups, and from 1991 up to 1995 the survey was also performed during the $2^{\text {nd }}$ and $3^{\text {rd }}$ quarters. The $3^{\text {rd }}$ quarter surveys were not carried out in 2000 but conducted in 2001. Around 45 hauls have been taken within each quarterly survey from 1991 to 2002.

The IBTS survey in Division IIIa was designed as a depth stratified survey. Herring abundance by winter rings 1 to 3 was calculated from fixed trawl stations that represented relative depth strata between 10 and 150 m depths. During the HAWG 2002 the survey data was revised for the $1^{\text {st }}$ and available $3^{\text {rd }}$ quarters from 1990 to 2002. Historical catch rates are heavily skewed and therefore the survey indices by winter rings $1-5$ were calculated as geometric means from observed abundances at trawl stations within the Skagerrak and the Kattegat. The survey indices were further decomposed into spring- and autumn-spawning components by microstructure analysis of otoliths (Section 3.2) except for 2001, third quarter, and 2002, first quarter, where vertebrae counting methods was used. The new estimates for the relative abundance by age and the spring-spawning component by age are presented in Tables 3.5 .5 and 3.5.6, respectively.

The survey estimates for spring-spawners showed a consistent pattern between quarters and between areas. As an illustration, the overall abundances were separated into spring and autumn spawners by the observed mean proportions by age, area and quarter over the years 1990 to 2002. The results indicate that the variability within year classes 1990 to 1999 are less in the $3^{\text {rd }}$ quarter in the Kattegat than in the $1^{\text {st }}$ quarter in the Skagerrak. The annual CV of the survey estimates are high (33% to 60%) but considerably lower than if estimated by applying depth stratification. The average instantaneous mortality of the year classes 1990 to 1996 (over 1 to 4 year) exceeds 1.0 in both areas but increases with years.

3.5.3 Summer acoustic survey in Division IIIa

This survey is part of an annual survey covering the North Sea and Division IIIa in July-August. R/V "DANA" conducted the survey in Division IIIa. The echo integration survey from 28 June to 11 July 2001 covered the area in the Skagerrak and the Kattegat. In principal the survey design were planned with north-south survey tracks in the area west of $10^{\circ} \mathrm{E}$. Due to the fixed time periods for fishing this design could not be implemented fully, resulting in a nonstandard survey track in the western part of Skagerrak.

Further details of the survey are given in the 'Report of the Planning Group for Herring Surveys' (ICES 2002/G:02).
For each subarea the mean back-scattering cross section was estimated for herring, sprat, gadoids and mackerel by the TS relationships given in the Manual for Herring Acoustic Surveys in ICES Division III, IV, and IVa (ICES 2000/G:02). For the spring-spawning herring the following maturity key was estimated:

W-ring	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8 +}$
\% mature	0	10	36	69	85	92	100	100	100

Approximately 1155 nautical miles were surveyed and 33 trawl hauls were conducted.
The total stock size of Western Baltic spring-spawning herring in 2001 was estimated by combining the results from the Danish (Division IIIa) and Norwegian Acoustic Survey (Subareas IVa and IVb). The result is summarised in Table 3.5.7. The total stock estimate of $164,200 t$ is the lowest estimate in the time-series since 1989.

3.5.4 October acoustic survey in western Baltic and the southern part of Division IIIa (Kattegat)

A joint German-Danish acoustic survey was carried out with R/V "SOLEA" from 28 September to 15 October 2001 in the Western Baltic. This survey is traditionally coordinated by the International Acoustic Survey for Pelagic Fish Stocks in the Baltic Sea. It was planned to cover the whole of Subdivisions 21-24, however, permission to enter the Swedish 12-mile zone was not given despite early application. As a result Subdivision 23 and parts of Subdivisions 21 and 24 could not be surveyed. As in previous years, the survey was carried out during the night. Subdivision 23 was surveyed after the present German-Danish survey in November by Sweden with RV "ARGOS".

A full survey report is given in the 'Report of the Planning Group for Herring Surveys' (ICES 2002/G:02).

The result for 2001, including the Swedish estimates for Subdivision 23, is presented in Table 3.5.8. In 2001 the total estimated stock size of herring in Subdivisions 22-24 was $347,000 t$, which represents the third highest estimate in the time-series since 1990.

3.5.5 Larvae surveys

The German herring larvae monitoring started in 1977 and takes place every year from March/April to June in the main spawning grounds of the spring-spawning herring in the Western Baltic. These are the Greifswalder Bodden and adjacent waters.

For the calculation of the number of larvae per station and area unit, the methods of Smith and Richardson (1977) and Klenz (1993) were used and projected to length-classes.

Further details concerning the surveys and the treatment of the samples are given in Brielmann (1989), Müller and Klenz (1994) and Klenz (2001). The estimated numbers of larvae for the period 1977 to 2001 are summarised in Table 3.5.9. The last year's estimate is only about half of the whole time-series' average.

3.6 Recruitment Estimates

Indices of 0 -ringer abundance were available from larval surveys during the spawning season on the main spawning area (Table 3.5.9). German Bottom Trawl Survey (GBTS) was not carried out in 2001 and Sweden RV Argos does not cover the area 22-24 (Table 3.5.3 and 3.5.4). Thus, indices of 0 -ringer abundance for 2001 were available only from The acoustic survey (September/October) on the spring-spawning herring in Subdivisions 22-24. Log-transformed indices were compared by year class in Figure 3.6.1 The larval 0-ringer and GBTS-Q4 0-ringer indices for the year classes 1977 to 2000 show similar year-to-year variability (correlation $\mathrm{R}^{2}=0.44$). For the year classes 1978 to 1999 the GBTS-Q4 0 -ringer and the GBTS-Q1 1-ringer showed co-variation (correlation $\mathrm{R}^{2}=0.34$), whereas the GBTS-Q3 0ringer and the GBTS-Q4 1-ringer indices showed no significant co-variation. The indices illustrated in Figure 3.6.1 show the following general time trends: Poor recruitment of year classes 1980-82 was followed by an increase to a high level of recruitment for year classes 1983-88. From year class 1990 the recruitment declined until 1992 when recruitment was low. An increase in year classes 1993-1994 is indicated. The year class 1996 was below average, but the estimates for 1998 and 1999 are comparable to historical high levels of recruitment. The high larval indices of the 1998 and 1999 year classes were followed by high values of in the subsequent 0 -ringer GBTS-Q4 and the 1 -ringer GBTS-Q1 indices. The very consistent signal of historical high recruitment of the 1998 and 1999 year classes is further supported by 0 -ringer and 1 -ringer indices in the acoustic survey in Subdivisions 22-24 (Table 3.5.8). After the 19981999 year-class peak there is an indicated significant drop in recruitment of the 2000 year class. Both the larval index and the subsequent GBTS-Q4 and the acoustic survey in Subdivisions 22-24, 0 -ringer indices are far below average. The 2001 indices showed that the 0 -ringer index was slightly larger than 2000 year class but still far below average. The 1 -ringer index was similar to the 2000 year class.

3.7 Data Exploration

3.7.1 Input data

Catch in numbers by age for spring-spawners in Division IVe, Division IIIa and Subdivisions 22-24 were available for 1991 to 2001 (Table 3.7.1). Mean weights-at-age in the landings for spring-spawning herring are found in Table 3.7.2. Mean weights-at-age in the catch in the $1^{\text {st }}$ quarter were used as stock weights (Table 3.7.3).

The maturity ogive used and proportions of F and M before spawning was assumed constant between years. F-prop was set to be 0.1 and M-prop 0.25 for all age groups. The maturity ogive used was the same as that used at the HAWG in 2001:

W-rings	0	1	2	3	4	5	6	7	$8+$
Maturity	0.00	0.00	0.20	0.75	0.90	1.00	1.00	1.00	1.00

Natural mortality was assumed constant at 0.2 for all years and $2+$ ringers. A predation mortality of 0.10 and 0.20 was added to the 0 and 1 ringers, which resulted in an increase in their natural mortality to 0.3 and 0.5 , respectively (Table
3.7.4). The estimates of predation mortality were derived as a mean for the years 1977-1995 from the Baltic MSVPA (ICES 1997/J:2).

Available survey indices were:
a) Hydroacoustic survey in Division IIIa, July 1989-2001, 0-8+ ringers
b) Hydroacoustic survey in Subdivisions 22, 23 and 24, Oct. 1989-2001, 0-8+ ringers
c) Larvae survey in Subdivision 24 (Greifswalder Bodden), March-June 1977-2001
d) German bottom trawl survey (GBTS) in Subdivision, Nov. 1979-00, 0-3+ ringers
e) German bottom trawl survey (GBTS) in Subdivision 24, Nov. 1978-00, 0-3+ ringers
f) German bottom trawl survey (GBTS) in Subdivision 24, Feb. 1979-00, 1-8+ ringers
g) IBTS in Div. IIIa, Quarter 1, 1991-2002, 1-5 ringers
h) IBTS in Div. IIIa, Quarter 3, 1991-2001, 1-5 ringers

All are age-structured indices with c) being calculated as an index of recruiting 0 -ringers.
None of the indices covered the total spatial distribution of the WBSS stock and the indices covered the following quarters and areas:

Survey area	Quarter 1	Quarter 2	Quarter 3	Quarter 4
Div. IIIa	Index g		Index a,h	
SDs 22-24	Index c,f			Index b,d,e

Subsets of these data series representing certain Subdivisions or selected age groups were constructed to give a better representation of the stock.

3.7.2 ICA settings

The following ICA settings were used:

- One separable period from 1997 to 2001 was selected (Assessment 2001: 1997 to 2000). The period represents a fishery with a different selectivity pattern than before the international regulation in 1996.
- \quad The weighing factor to all indices (lambda $=1$).
- A linear catchability model for all indices.
- The reference F set at age 4 and the selection 1 for oldest age.
- No shrinkage applied.

3.7.3 Exploration by individual survey indices

The following individual survey time-series were used to tune catches in the different exploratory runs. Although data was available in some indices starting from years earlier than 1991, all series selected were taken with 1991 because of the catch date and the spawning type proportions had only been revised that far back.

- FLT 9: DK Hydroacoustic survey in Division IIIa, July 1991-2001, 0-8+ ringers
- FLT 28: DK Hydroacoustic survey in Division IIIa, July 1991-2001, 2-8+ ringers
- FLT 29: DK Hydroacoustic survey in Division IIIa, July 1991-2001, excl. 1991-1995 and 1999, 2-8+ ringers
- FLT 33: DK Hydroacoustic survey in Division IIIa, July 1991-2001, excl. 1999, 2-8+ ringers

FLT 9, 28, 29, and 33 are different subsets of the Danish hydroacoustic suvey in Division IIIa in July. In FLT 28 the 0 and 1-ringers were excluded since only a small fraction of the WBSS have migrated to the Division IIIa at these ages, FLT29 was a subset of FLT28 with only the part of the time-series where spring-spawners had been individually identified by otolith microstructure, and FLT33 was another subset of FLT28, leaving out the 1999 cruise due to only partial coverage of the area, a different method (vs count) of stock identification, a different research vessel (the Norwegian R/V GO Sars), and a different acoustic set up.

- FLT 4: GER Hydroacoustic survey in Subdivisions 22, 23 and 24, Oct. 1991-2001, 0-8+ ringers
- FLT 27: GER Hydroacoustic survey in Subdivisions 22, 23 and 24, Oct. 1991-2001, 0-5 ringers

FLT 4 contains all age-classes in the German hydroacoustic survey in the Western Baltic (Subdivisions 22-24) and is adjusted into FLT27 by excluding the oldest age classes.

- FLT 3: Larval survey in Subdivision 24 (Greifswalder Bodden), March-June 1991-2001

FLT3 is the German larval survey conducted in Subdivision 24 on intermediate to large larvae to give an estimate of the recruitment from the Rügen spawning grounds.

- FLT 1: German bottom trawl survey (GBTS) in Subdivision 24, Nov. 1991-2000, 0-3+ ringers

FLT1 is the Subdivision 24 part of the quarter 4 German Bottom trawl survey. The survey has stopped after 2000 but until then covered the Subdivision 24. In FLT1 old age-classes are combined into a 3+ WR group, assuming that older age groups are primarily migrating from Division IIIa for wintering in Subdivision 23.

- FLT 23: IBTS in Kattegat, Quarter 1, 1991-2002, 1-5 ringers

FLT23 is the Kattegat part of the $1^{\text {st }}$ quarter Swedish IBTS survey missing data from 2001 due to lack of updated separation of stock components.

- FLT 22: IBTS in Kattegat, Quarter 3, 1991-2001, 1-5 ringers

FLT22 is the Kattegat part of the $3^{\text {rd }}$ quarter Swedish IBTS survey missing data from 2000 due to lack of survey. Old age-classes are very poorly represented in these IBTS surveys and therefore excluded from the selected indices.

Individual exploratory runs of catch data with single combinations of each of these indices were performed using the general ICA-setting mentioned earlier (Section 3.7.2). A summary of the results from these runs are presented in Figure 3.7.1a.

The hydroacoustic survey indices in Division IIIa, (FLT9 and FLT28) and the IBTS in Kattegat Q3 (FLT22) indices suggest high Fs of between $0.6-0.8$, while the larval (FLT3) and German trawl surveys in Subdivision 24 (FLT1) suggest considerably lower values $(=<0.2)$.

The hydroacoustic surveys 1991-2001 in Division IIIa showed high residuals for younger ages and outstanding high negative residuals for age $2+$ in 1999. These high residuals coincide with the deviation from the standard survey procedure in that single year (the area was covered incompletely and by a different vessel). A change in this index leaving out 1999 (FLT33) or leaving out both 1999 and earlier surveys before 1996 (FLT29), gave similar results in both cases with a substantial reduction in residual trends and an overall reduction from 0.79 to about 0.24 in the unweighted variance.

The hydroacoustic survey in Subdivisions 22-24 showed large oscillating residuals for older ages (5 to $8+$) in the timeseries (FLT4) due to the poor coverage of the age-groups in the survey. This effect was removed in FLT27 by only including ages $0-5$, resulting in a substantial reduction in unweighted variances. Both FLT4 and FLT27 indicated that the year-class strength for 2001 was larger than in 2000.

The IBTS $3{ }^{\text {rd }}$ quarter survey in the Kattegat showed varying fishing mortalities somewhat above 0.5 for the recent seven years and a SSB levelling out at about $120,000 \mathrm{t}$ during the latest five years. Compared to other indices in the present assessment of the WBSS, residuals for FLT22 were relatively low and the unweighted variance was intermediate among the conducted index runs.

The German bottom trawl survey in the $4^{\text {th }}$ quarter indicated recent declining fishing mortalities down to 0.2 and concurrent increases in SSB to a level of more than 350,000 tonnes in 2001. The survey time-series was stopped in 2000 due to a change in the survey design. It was felt that this index (FLT1) performed badly due to poor coverage of the stock.

The IBTS $1^{\text {st }}$ quarter survey in the Kattegat gave very unstable residuals for most age-classes and especially for the 2 WR , probably reflecting the intermittent occurrence of these groups during their migration through the area. Year class
specific comparisons between this index (FLT23) and the German acoustic (FLT27) index showed none or negative correlations. The IBTS $1^{\text {st }}$ quarter survey in the Kattegat was therefore left out from further exploratory combined survey indices.

The German larval survey in Subdivision 24 (FLT3) suggested a dramatic change in the recent fishery and in the stock reaching very low fishing mortalities (0.05) and a correspondingly very high SSB in 2001 ($1,400,000$ t). The inconsistencies both within and between this and other indices lead the group to decide to exclude this index (FLT3) from further exploratory combined indices.

3.7.4 Exploration by combined survey indices

A series of combined ICA runs based on the definitions of FLTs in Section 3.7.3:

- Run 6: FLT4, FLT9 and FLT22
- Run 10: FLT 1, FLT22, FLT27 and FLT28
- Run 11: FLT1, FLT22, FLT27 and FLT28 as Run 10, but with 0-WR in the catches down-weighted to 0.1
- Run 13: FLT22, FLT27 and FLT28
- Run 18: FLT22, FLT27 and FLT29
- Run 21: FLT22, FLT27 and FLT29 as Run 18, but with new maturity ogives for 1996-2001
- Run 22: FLT22, FLT27 and FLT33 with 0-WR in the catches down-weighted to 0.1

Run 6 was based on the entire age range of the two time-series of the $4^{\text {th }}$ quarter German Hydroacoustic survey in Subdivisions 22, 23 and 24, and the $3^{\text {rd }}$ quarter Danish Hydroacoustic survey in Division IIIa, plus the $0-5$ WR in the $3^{\text {rd }}$ quarter Swedish IBTS in the Kattegat. The run showed the same type of deficiencies as the runs with the same individual indices.

Run 10 included four indices: the $4^{\text {th }}$ quarter German Bottom Trawl Survey, the $0-5$ WR in the $3^{\text {rd }}$ quarter Swedish IBTS in the Kattegat, the 0-5 WR in the $4^{\text {th }}$ quarter German Hydroacoustic survey in Subdivisions 22, 23 and 24, and the $2-8+$ WR in the $3^{\text {rd }}$ quarter Danish Hydroacoustic survey in Division IIIa.

Run 11 repeated the set-up from run 10 with a down-weighting of the $0-W R$ in the catches with 0.1 . The downweighing had little effect except on the last year's recruitment index, which for 2001 was reduced to about 60% of the one from Run 10.

Run 13 is similar to Run 10 but with FLT1 taken out, after the initial combined runs had shown persistent problems with large residual patterns in this index. The same large negative residual pattern for year 1999 was found in individual runs with FLT28.

Run 18 was performed as Run 13 but with FLT29 instead of FLT28 (with years 1991-1995 and 1999 excluded). The exercise resulted in stabilising the residual pattern in the Division IIIa acoustic survey, although it was felt that the whole time-series without 1999 would be more informative.

Run 21 was an exploratory run with the new maturity ogive from the German investigations applied (Gröhsler and Müller, WD 6) but otherwise the same as Run 18. The only change in the output was a change to a 20 thousand tons lower level of SSB in the last five years, but since the revision of the maturity ogive will be continued this combination was not pursued further.

Run 22 was similar to Run 18 but with FLT33 instead of FLT29 bringing back the early years but still excluding 1999. One further change was a down-weighting of the $0-W R$ in the catches due to their large between-year variation.

3.7.5 The final run

Run 22 was chosen as the final run.

The ICA input data (years 1991-2001, Ages 0-8+ ringers) are given in Tables 3.7.1-3.7.4:

- Catch in number (Tble 3.7.1):
- Weight in catch (Table 3.7.2)
- Weight in stock (Table 3.7.3)
- Natural mortality (Table 3.7.4)
- Maturity (see text table in section 3.7.1)

The following surveys were included (Tables 3.7.5a-c):

- FLT 22: IBTS in Kattegat, Quarter 3, 1991-2001, 1-5 ringers
- FLT 27: GER Hydroacoustic survey in Subdivisions 22, 23 and 24, Oct 1991-2001, 0-5 ringers
- FLT 33: DK Hydroacoustic survey in Division IIIa, July 1991-2001, excl. 1999, 2-8+ ringers

The final model settings were (Table 3.7.6):

- The period for the separable constraint: 5 years (1997-2001).
- The weighting factor to all indices (lambda $=1$).
- A linear catchability model for all indices.
- The reference F set at age 4 and the selection 1 for oldest age.
- No shrinkage applied.
- The catch data were down-weighted to 0.1 for 0 -ringer herring.

The output data are given in Tables 3.7.7-3.7.16. The assessment results in an SSB for 2001 of 138,000 tonnes and a mean fishing mortality (ages 3-6) of 0.535 (Table 3.7.9).

The model diagnostics (Tables 3.7.10 to 3.7.16 and Figures 3.7.2 to 3.7.7g) show a somewhat flat SSQ response-curve, however, all three indices are pointing in the same direction. The F (3-6) values in the recent 5 years are at a flat level varying between 0.42 and 0.54 . The SSB shows a stable levelling out over the recent years after a marked decline in the early 1990s.

The marginal totals of residuals between the catch and the separable model by age are relatively small except for age 4 and reasonably trend-free for the separable period (1997-2001). The catch-at-age variance component is between twenty and thirty percent of the individual survey variance components. Among the survey indices the IBTS has the largest variance component with the two acoustic indices showing variances of about sixty percent of the trawl survey.

The fit of the surveys to the population number is relatively similar between the Division IIIa and Subdivisions 22-24 acoustic surveys (FLT27 and FLT33), whereas the Kattegat Q3 IBTS-index (FLT22) does not show such a clear picture. Age-specific catchabilities and their residuals showed the best performance for older age-groups in the IBTS.

The reason for the poorer performance of the $3^{\text {rd }}$ quarter Kattegat IBTS survey may be the migration pattern of mature age-classes quickly passing through the area on their way to the wintering area of Subdivision 23.

3.8 Stock and Catch Projection

Short-term predictions were carried out using MFDP v1a software. ICA estimates of population numbers and fishing mortalities were used except for the numbers of 0 -ringers in 2001-2003, where a geometric mean of the recruitment over the period 1991-1999 was taken, and for the numbers of 1-ringers in 2002, where the geometric mean over the period 1991-2000 was used. Mean weights-at-age in the catch and in the stock were taken as a mean for the years 1999-2001. The relevant ICA estimates of F (0.498) at age were taken as the mean of 1999-2001 and this was assumed to be the status quo fishing mortality. Input data for catch predictions are presented in Table 3.8.1.

The management option table is given in Table 3.8.2. The F status quo catches for 2002 and 2003 were predicted to be $107,000 \mathrm{t}$, which is close to the current catch level of $110,000 \mathrm{t}$. The SSB in 2004 is predicted to be at a level of 136,000 t.

It was discussed whether a prediction for 2003 with a catch constraint for 2002 should be explored or not. The WG did not consider this useful as the catches in Subdivisions 22-24 are managed jointly with the catches in Subdivisions 25-32 (only one TAC is set for the whole area). The TAC set for Subdivisions 22-32 for 2001 was $300,000 \mathrm{t}$ and for 2002 reduced to $200,000 \mathrm{t}$.

Yield per recruit

The assessment was used to provide a yield per recruit plot for herring in Division IIIa and Subdivisions 22-24 (Figure 3.8.1). The values for $\mathbf{F}_{0.1}$ and $\mathbf{F}_{\max }$ are 0.20 and 0.37 respectively.

3.9 Quality of Assessment

There have been no further revisions of the catch-at-age data since last year and the assessment model seems to perform generally well under the five-years-separable assumption. However, the 0 -ringers are not well represented in the catches and down-weighting of this group resulted in an improved fit of the separable model. Further revision of the maturity at age data may result in a different perception of SSB in the future, once new estimates replace the current mean values.

Sensitivity to noisy years in the surveys was explored, and it was found that excluding 1999 from the Danish acoustic series, which had different coverage, vessel used and splitting method applied from the rest, resulted in considerable reduction of the variance associated with this survey. Examination of the age-structured indices residuals suggest that lack of consistency in the methodology applied to splitting autumn and spring-spawners result in noisy survey years, i.e. 2001 IBTS.

A comparison of the estimates of SSB based on the information from the individual surveys and the combination of all three is illustrated in Figure 3.9.1. A similar signal in relation to SSB is picked up from all indices. Estimates of annual Fs for the separable period appear to be quite precise, CVs of the order of 12-15\%, and reinforce the perception of high fishing pressure on this stock, which was suggested by previous year's analyses.

Only three years retrospective patterns were investigated as the separable period cannot be extended beyond 1997 because a change of management system took place that year. No patterns in F or SSB were observed (Figure 3.9.2). Despite there being no robust recruitment index (see Figure 3.6.1) no retrospective pattern in the estimated 0 - ringers recruitment was apparent.

3.10 Status of the Stock

For the first time the HAWG in the 2002 agreed an analytical assessment for the Western Baltic Spring-spawning herring stock. Based on outputs from the ICA model runs and general observations on catch and biological samples the stock size did not decrease since 1996.

During the 1990s the total landings have decreased except for a small increase in 2000. The estimated recruitment shows a peak in 1999 and suggests an average year class in 2001. The combined index runs indicate that the SSB and mean F of the Western Baltic stock has stabilised. However, the flat SSQ-curve of the total model makes a precise estimate of F and SSB from this year's assessment difficult.

The assessment results however, give reason for concern. Fishing mortalities in the Western Baltic appear to be stable at a higher level ($0.42-0.54$) than in the North Sea during the last 5 years, while catches have declined over the same period. A temporary improvement is expected, however, when the large 1999 year class enters the human consumption fishery in the coming years.

The short-term predictions with status quo F indicate a stable SSB although the Working Group stresses that the present level of fishing mortality may not be sustainable in the long term.

The Working Group also underlines that, if fishing mortality for North Sea autumn spawners is allowed to increase due to the predicted increase in SSB of the North Sea autumn spawners, fishing mortalities on spring-spawners in Division IIIa may also increase. This is an additional cause for concern.

3.11 Management Considerations

For the first time the HAWG has carried out a successful analytical assessment for the Western Baltic Spring-spawning herring. This assessment shows that the Baltic Spring-spawning herring biomass in 2001 was $138,000 \mathrm{t}$, which is in line with the SSB estimates for the previous 5 years (2002 assessment). Mean F for the adult part of the population (3-6 ringers) is estimated to vary between 0.42 and 0.54 . The total landings for the same period are also stable at a level of $115,000 \mathrm{t}$.

The stock in Division IIIa is at present managed in accordance with the North Sea herring stock because a considerable proportion of the juveniles of that stock are present in Division IIIa. The herring fishery in Subdivisions 22-24 is managed in accordance with the whole Baltic area as only one TAC is set for that area.

As described in Section 3.3 and Table 3.3.9 most of the juvenile herring is caught in Subdivisions 22-24 by the human consumption fishery. The estimated F's for the juveniles ($0-1$ ringers) have varied between 0.19 and 0.25 for the period 1996-2000. F for the juveniles in 2001 is estimated at 0.24 .

A short-term prediction has been carried out (see section 3.8) and with a status quo F equals 0.498 (mean of 1999-2001) in 2002 and 2003. Total landing in 2002 and 2003 will be $107,000 \mathrm{t}$ with an estimated SSB of $136,000 \mathrm{t}$ in 2004

There is misreporting of catches from the North Sea to Skagerrak and from Skagerrak to the Baltic (Subdivisions 2528). The HAWG has estimated the amounts of this misreporting and has taken these catches into account for the last 810 years.

If discarding and slippage occur it will probably only be in the Skagerrak and the consequences for the Baltic Springspawning herring are expected to be minor.

Landings in thousands of tonnes.
(Data provided by Working Group members 2001).

Year	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
Skagerrak										
Denmark	88.2	94.0	105.0	144.4	47.4	62.3	58.7	64.7	87.8	44.9
Faroe Islands	0.5	0.5								
Norway	4.5	1.6	1.2	5.7	1.6	5.6	8.1	13.9	24.2	17.7
Sweden	40.3	43.0	51.2	57.2	47.9	56.5	54.7	88.0	56.4	66.4
Total	133.5	139.1	157.4	207.3	96.9	124.4	121.5	166.6	168.4	129.0
Kattegat										
Denmark	69.2	37.4	46.6	76.2	57.1	32.2	29.7	33.5	28.7	23.6
Sweden	39.8	35.9	29.8	49.7	37.9	45.2	36.7	26.4	16.7	15.4
Total	109.0	73.3	76.4	125.9	95.0	77.4	66.4	59.9	45.4	39.0
Sub. Div. 22+24										
Denmark	15.9	14.0	32.5	33.1	21.7	13.6	25.2	26.9	38.0	39.5
Germany	54.6	60.0	53.1	54.7	56.4	45.5	15.8	15.6	11.1	11.4
Poland	16.7	12.3	8.0	6.6	8.5	9.7	5.6	15.5	11.8	6.3
Sweden	11.4	5.9	7.8	4.6	6.3	8.1	19.3	22.3	16.2	7.4
Total	98.6	92.2	101.4	99.0	92.9	76.9	65.9	80.3	77.1	64.6
Sub. Div. 23										
Denmark	6.8	1.5	0.8	0.1	1.5	1.1	1.7	2.9	3.3	1.5
Sweden	1.1	1.4	0.2	0.1	0.1	0.1	2.3	1.7	0.7	0.3
Total	7.9	2.9	1.0	0.2	1.6	1.2	4.0	4.6	4.0	1.8
Grand Total	349.0	307.5	336.2	432.4	286.4	279.9	257.8	311.4	294.9	234.4

Year	1995	1996	1997	1998	1999	2000	$2001{ }^{1}$
Skagerrak							
Denmark	43.7	28.7	14.3	10.3	10.1	16.0	16.2
Faroe Islands							
Norway	16.7	9.4	8.8	8.0	7.4	9.7	8.3
Sweden	48.5	32.7	32.9	46.9	36.4	45.8	30.8
Total	108.9	70.8	56.0	65.2	53.9	71.5	55.3
Kattegat							
Denmark	16.9	17.2	8.8	23.7	17.9	18.9	18.8
Sweden	30.8	27.0	18.0	29.9	14.6	17.3	16.2
Total	47.7	44.2	26.8	53.6	32.5	36.2	35.0
Sub. Div. 22+24							
Denmark	36.8	34.4	30.5	30.1	32.5	32.6	28.3
Germany	13.4	7.3	12.8	9.0	9.8	9.3	9.9
Poland	7.3	6.0	6.9	6.5	5.3	6.6	9.3
Sweden	15.8	9.0	14.5	4.3	2.6	4.8	13.9
Total	73.3	56.7	64.7	49.9	50.2	53.3	61.4
Sub. Div. 23							
Denmark	0.9	0.7	2.2	0.4	0.5	0.9	0.6
Sweden	0.2	0.3	0.1	0.3	0.1	0.1	0.2
Total	1.1	1.0	2.3	0.7	0.6	1.0	0.8
Grand Total	231.0	172.7	149.8	169.4	137.2	162.0	152.5

[^2]Table 3.2.1 Proportion of North Sea autumn spawners and Baltic spring-spawners given in \% in Skagerrak and Kattegat by age and quarter.

Year: 2001

Quarter	W-rings	Skagerrak		n	source	Kattegat		n	source
		North Sea autumn SP	Baltic Spring SP			North Sea autumn SP	Baltic Spring SP		
1	1	80.0\%	20.0\%	85		96.1\%	3.9\%	282	
	2	61.1\%	38.9\%	18		41.6\%	58.4\%	257	
	3	15.0\%	85.0\%	20		8.7\%	91.3\%	23	
	4	1.1\%	98.9\%	90		0.0\%	100.0\%	5	
	5	1.1\%	98.9\%	0		0.0\%	100.0\%	0	
	6	1.1\%	98.9\%	0		0.0\%	100.0\%	0	
	7	1.1\%	98.9\%	0		0.0\%	100.0\%	0	
	8	1.1\%	98.9\%	0		0.0\%	100.0\%	0	
2	1	92.3\%	7.7\%	52		95.0\%	5.0\%	20	
	2	55.9\%	44.1\%	0	1	22.7\%	77.3\%	20	2
	3	12.3\%	87.7\%	0	1	30.0\%	70.0\%	14	2
	4	1.1\%	98.9\%	0	3	0.0\%	100.0\%	0	
	5	1.1\%	98.9\%	0		0.0\%	100.0\%	0	
	6	1.1\%	98.9\%	0		0.0\%	100.0\%	0	
	7	1.1\%	98.9\%	0		0.0\%	100.0\%	0	
	8	1.1\%	98.9\%	0		0.0\%	100.0\%	0	
3	0	90.3\%	9.7\%	93		83.4\%	16.6\%	380	
	1	98.2\%	1.8\%	220		80.1\%	19.9\%	196	
	2	50.7\%	49.3\%	201		18.0\%	82.0\%	128	
	3	9.6\%	90.4\%	166		16.7\%	83.3\%	60	
	4	18.7\%	81.3\%	166		11.4\%	88.6\%	35	
	5	18.7\%	81.3\%	0		11.4\%	88.6\%	0	
	6	18.7\%	81.3\%	0		11.4\%	88.6\%	0	
	7	18.7\%	81.3\%	0		11.4\%	88.6\%	0	
	8	18.7\%	81.3\%	0		11.4\%	88.6\%	0	
4	0	90.3\%	9.7\%	0	5	83.4\%	16.6\%	0	6
	1	90.0\%	10.0\%	20		88.9\%	11.1\%	18	
	2	33.3\%	66.7\%	12		22.2\%	77.8\%	18	
	3	25.0\%	75.0\%	4		16.7\%	83.3\%	1	7
	4	18.7\%	81.3\%	0	8	11.4\%	88.6\%	0	
	5	18.7\%	81.3\%	0		11.4\%	88.6\%	0	
	6	18.7\%	81.3\%	0		11.4\%	88.6\%	0	
	7	18.7\%	81.3\%	0		11.4\%	88.6\%	0	
	8	18.7\%	81.3\%	0		11.4\%	88.6\%	0	

1 Average between Q1 and Q3, Age=2 sd=20
2 Estimated from split of length distribution based on subsample of OM identified NSAS and WBSS
3 Taken from the OM Age $=4 \mathrm{Q}=1 \mathrm{sd}=20$
4 Taken from the OM Age $=4 \mathrm{Q}=1 \mathrm{sd}=21$
5 Taken from the OM Age $=0 \mathrm{Q}=3 \mathrm{sd}=20$
6 Taken from the OM Age $=0 \mathrm{Q}=3 \mathrm{sd}=21$
7 Taken from the OM Age $=3 \mathrm{Q}=3 \mathrm{sd}=21$
8 Taken from the OM Age $=4 \mathrm{Q}=3 \mathrm{sd}=20$
9 Taken from the OM Age $=4 \mathrm{Q}=3 \mathrm{sd}=21$

Table 3.2.2 Proportion of Baltic spring-spawning herring in the Skagerrak and the Kattegat by year, age and quarter for the years 1991-2001. These proportions were applied to revise the split of commercial landings.

		Average of WBSS-Spl																	
		Skagerra									atteg								
		Winter-rings																	
Year		0		2	3														
1991		$0.080 .370 .410 .500 .500 .500 .500 .50 \mid 0000.280 .670 .970 .950 .950 .9$																	
		0.980 .980 .98									0.000 .120 .631 .001 .001 .001								
		$\left\|\begin{array}{llllllll}0.00 & 0.10 & 0.78 & 0.96 & 0.95 & 0.95 & 0.95 & 0.95 \\ 0.00 & 0.95 \\ 0.00 & 0.49 & 0.94 & 0.99 & 0.99 & 0.99 & 0.99 & 0.99\end{array}\right\|$									0.000 .550 .960 .980 .990 .990 .990 .990 .99 0.520 .560 .971 .001 .001 .001 .001 .001 .00								
	4																		
19		0.000 .080 .370 .410 .500 .500 .500 .500 .50									0.000 .280 .670 .970 .950 .950 .950 .950 .9								
											0.000 .120 .631 .001 .001 .001.								
											$\left\lvert\, \begin{array}{lllllllll} 0.00 & 0.55 & 0.96 & 0.98 & 0.99 & 0.99 & 0.99 & 0.99 & 0.99 \\ 0.52 & 0.56 & 0.97 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \end{array}\right.$								
		$\left\|\begin{array}{lllllllll} 0.00 & 0.10 & 0.78 & 0.96 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\ 0.00 & 0.00 & 0.49 & 0.94 & 0.99 & 0.99 & 0.99 & 0.99 & 0.99 \end{array}\right\|$																	
1993		0.000 .080 .370 .410 .500 .500 .500 .500 .50									0.000 .280 .670 .970 .950 .950 .950 .950 .95								
		$\left\|\begin{array}{lllllllll}0.00 & 0.00 & 0.13 & 0.68 & 0.98 & 0.98 & 0.98 & 0.98 & 0.98 \\ 0.00 & 0.10 & 0.78 & 0.96 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95\end{array}\right\|$									0.000 .120 .631 .001 .001 .001 .001 .00								
	3										0.000 .550 .960 .980 .990 .990 .990 .990 .99 0.520 .560 .971 .001 .001 .001 .001 .001 .00								
	4	$\left\|\begin{array}{lllllllll} 0.00 & 0.10 & 0.78 & 0.96 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\ 0.00 & 0.00 & 0.49 & 0.94 & 0.99 & 0.99 & 0.99 & 0.99 & 0.99 \end{array}\right\|$																	
19		0.000 .080 .370 .410 .500 .500 .500 .500 .50																	
	2	0.00 0.00 0.13 0.68 0.98 0.98 0.98 0.98 0.98 0.00 0.10 0.78 0.96 0.95 0.95 0.95 0.9 0.95									0.000 .120 .631 .001 .001 .001								
	3										$\begin{array}{llllllllll}0.00 & 0.55 & 0.96 & 0.98 & 0.99 & 0.99 & 0.99 & 0.99 & 0.99 \\ 0.52 & 0.56 & 0.97 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00\end{array}$								
	4	$\left\|\begin{array}{lllllllll} 0.00 & 0.10 & 0.78 & 0.96 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\ 0.00 & 0.00 & 0.49 & 0.94 & 0.99 & 0.99 & 0.99 & 0.99 & 0.99 \end{array}\right\|$																	
1995		0.000 .080 .370 .410 .500 .500 .500 .500 .50																	
	2	$\left\|\begin{array}{lllllllll}0.00 & 0.00 & 0.13 & 0.68 & 0.98 & 0.98 & 0.98 & 0.98 & 0.98 \\ 0.00 & 0.10 & 0.78 & 0.96 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95\end{array}\right\|$									0.000 .120 .631 .001 .001 .001 .001 .00								
	3										$\left\lvert\, \begin{array}{llllllllllll} 0.00 & 0.55 & 0.96 & 0.98 & 0.99 & 0.99 & 0.99 & 0.99 & 0.99 \\ 0.52 & 0.56 & 0.97 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ \hline \end{array}\right.$								
	4	$\left\|\begin{array}{lllllllll}0.00 & 0.10 & 0.78 & 0.96 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\ 0.00 & 0.00 & 0.49 & 0.94 & 0.99 & 0.99 & 0.99 & 0.99 & 0.99\end{array}\right\|$																	
19		0.000 .080 .370 .410 .500 .500 .500 .500 .50																	
	2	$\left\|\begin{array}{lllllllll}0.00 & 0.00 & 0.13 & 0.68 & 0.98 & 0.98 & 0.98 & 0.98 & 0.98 \\ 0.00 & 0.10 & 0.78 & 0.96 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95\end{array}\right\|$									0.000 .120 .631 .001 .001 .001 .001								
	3										0.000 .550 .960 .980 .990 .9								
	4	$\left\|\begin{array}{lllllllll} 0.00 & 0.10 & 0.78 & 0.96 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\ 0.00 & 0.00 & 0.49 & 0.94 & 0.99 & 0.99 & 0.99 & 0.99 & 0.99 \end{array}\right\|$									0.520 .560 .971 .001 .001 .001 .001 .00								
1997	1	$\left\|\begin{array}{llllllllll} 0.00 & 0.13 & 0.13 & 0.75 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ 0.00 & 0.12 & 0.61 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 \end{array}\right\|$									0.000 .460 .450 .891 .001 .001 .001 .00								
	2										0.000 .120 .631 .001 .001 .001 .001 .001 .00 0.000 .070 .760 .890 .970 .970 .970 .970 .97								
	3	$\left\|\begin{array}{lllllllll} 0.00 & 0.12 & 0.61 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 & 0.97 \\ 0.00 & 0.07 & 0.55 & 0.81 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 \end{array}\right\|$																	
	4	0.070 .170 .671 .000 .940 .940 .940 .940 .94									0.520 .560 .971 .001 .001 .001 .001 .00								
19	1	0.000 .000 .230 .070 .070 .070 .070 .070 .07									0.000 .290 .830 .981 .001 .001 .001 .00								
	2	0.00 0.41 0.56 0.71 0.95 0.95 0.95 0.95 0.95 0.00 0.05 0.73 0.92 0.97 0.97 0.97 0.97 0.97									0.000 .760 .570 .900 .990 .990 .990 .990 .9								
	3										$\left\|\begin{array}{lllllll} 0.61 & 0.43 & 0.92 & 0.99 & 0.92 & 0.92 & 0.92 \\ 0.57 & 0.92 & 0.92 \\ 0.32 & 0.86 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 \\ 0.95 \end{array}\right\|$								
	4	$\left\|\begin{array}{llllllll} 0.00 & 0.05 & 0.73 & 0.92 & 0.97 & 0.97 & 0.97 & 0.97 \\ 0.25 & 0.13 & 0.21 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 \end{array}\right\|$																	
199	1	$\|$0.00 0.00 0.23 0.57 0.64 0.64 0.64 0.64 0.64 0.00 0.36 0.71 0.53 0.82 0.82 0.82 0.82 0.82 0.00 0.05 0.22 0.62 0.61 0.61 0.61 0.61 0.61 0.00 0.04 0.82 0.92 0.00 0.00 0.00 0.00 0.00																	
	2																		
	3																		
	4																		
20	1																		
	2																		
	3																		
	4																		
2001	1	0.000 .200 .390 .850 .990 .990 .990 .990 .99 0.000 .080 .440 .880 .990 .990 .990 .990 .99 0.100 .020 .490 .900 .810 .810 .810 .810 .81 0.100 .100 .670 .750 .810 .810 .810 .810 .8									$\begin{array}{\|lllllllllll} \hline 0.00 & 0.04 & 0.58 & 0.91 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ 0.00 & 0.05 & 0.77 & 0.70 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\ 0.17 & 0.20 & 0.82 & 0.83 & 0.89 & 0.89 & 0.89 & 0.89 & 0.89 \\ 0.17 & 0.11 & 0.78 & 0.83 & 0.89 & 0.89 & 0.89 & 0.89 & 0.89 \\ \hline \end{array}$								
	2																		
	3																		
	4																		

Table 3.3.1 Landings in numbers (mill.), mean weight (g.) and SOP (t) by age,
quarter and fleet.

Division:		Skagerrak		Year:	2001	Country:	All
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
1	1	14.98	42	13.31	17	28.29	30
	2	26.33	72	0.47	56	26.80	72
	3	8.04	126	2.25	117	10.28	124
	4	4.57	183	0.59	133	5.16	177
	5	3.67	198	0.38	149	4.04	194
	6	1.47	207	1.17	155	2.64	184
	7	0.40	198	0.94	166	1.34	175
	8+	0.26	236	1.14	184	1.40	194
	Total	59.72		20.24		79.96	
	SOP		5,549		1,200		6,749
Quarter	W-rings	Fleet C		Fleet D+E		Total	
		 Numbers Fleet C Mean W.		Numbers	Mean W.	Numbers	Mean W.
2	1	18.95	64	41.58	22	60.53	35
	2	62.99	83	4.60	70	67.59	82
	3	37.55	114	0.28	55	37.83	113
	4	18.14	147			18.14	147
	5	12.83	169			12.83	169
	6	5.44	169			5.44	169
	7	2.53	177			2.53	177
	8+	0.99	204			0.99	204
	Total	159.41		46.46		205.87	
	SOP		17,130		1,246		18,375
Quarter	W-rings	Fleet C		Fleet D+E		Total	
		Numbers Mean W.		Numbers	Mean W.	Numbers	Mean W.
3	0	2.53	30	466.28	8	468.81	8
	1	107.43	98	43.32	5	150.75	71
	2	40.21	108			40.21	108
	3	27.95	119			27.95	119
	4	3.41	129			3.41	129
	5	0.11	177			0.11	177
	6	1.70	228			1.70	228
	7	0.01	160			0.01	160
	8+						
	Total	183.35		509.60		692.95	
	SOP		19,167		3,744		22,911
Quarter	W-rings			Fleet D+E		Total	
		Fleet C Numbers Mean W.		Numbers	Mean W.	Numbers	Mean W.
4	0	0.76	30			0.76	30
	1	31.98	98	22.25	72	54.23	87
	2	11.74	108			11.74	108
	3	8.17	119			8.17	119
	4	0.97	128			0.97	128
	5						
	6	0.49	231			0.49	231
	7						
	8+						
	Total	54.12		22.25		76.37	
	SOP		5,649		1,595		7,244
Quarter	W-rings			Fleet D+E		Total	
		Fleet C Numbers Mean W		Numbers	Mean W.	Numbers	Mean W.
Total	0	3.29	30	466.28	8	469.57	8
	1	173.34	90	120.46	24	293.80	63
	2	141.27	90	5.07	69	146.34	90
	3	81.71	117	2.52	110	84.24	117
	4	27.09	150	0.59	133	27.68	150
	5	16.61	176	0.38	149	16.99	175
	6	9.10	190	1.17	155	10.27	186
	7	2.94	180	0.94	166	3.88	176
	8+	1.24	211	1.14	184	2.38	198
	Total	456.59		598.54		1,055.14	
	SOP		47,495		7,784		55,279

Table 3.3.2 Landings in numbers (mill.), mean weight (g.) and SOP (t) by age, quarter and fleet.

Quarter	Division: Kattegat			Year:	2001	Country:	ALL
		Flee	et C	Fle	et D	Tota	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
1	1	125.81	33	92.89	20	218.70	28
	2	123.62	57	13.90	53	137.52	57
	3	29.68	87	1.08	61	30.75	86
	4	5.41	121	0.02	69	5.44	121
	5	0.17	97			0.17	97
	6						
	7						
	8+						
	Total	284.69		107.89		392.58	
	SOP		14,515		2,648		17,163
Quarter		Fleet C		Fleet E		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
2	1	14.68	36	18.04	31	32.72	33
	2	11.01	53	1.35	51	12.36	53
	3	2.93	75	0.13	83	3.06	76
	4	1.17	98	0.11	109	1.28	99
	5	0.74	117	0.09	123	0.83	118
	6	0.32	125	0.04	126	0.36	125
	7	0.08	103	0.01	108	0.09	103
	8+	0.06	147	0.00	169	0.06	148
	Total	30.99		19.76		50.75	
	SOP		1,597		666		2,264
Quarter		Fleet C		Fleet E		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
3	0			441.53	9	441.53	9
	1	21.15	70	0.89	37	22.03	69
	2	35.53	82	0.44	56	35.98	81
	3	11.46	98			11.46	98
	4	2.35	115			2.35	115
	5	0.71	75			0.71	75
	6						
	7						
	$8+$						
	Total	71.21		442.85		514.06	
	SOP		5,833		4,142		9,974
Quarter		Fleet C		Fleet E		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
4	0	15.72	24	2.62	10	18.34	22
	1	32.02	79	1.09	63	33.10	78
	2	22.31	93	0.25	80	22.56	92
	3	4.25	120	0.04	101	4.29	119
	4	0.16	95			0.16	95
	5						
	6						
	7						
	8+						
	Total	74.45		4.00		78.45	
	SOP		5,488		119		5,607
Quarter		Fleet C		Fleet E		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
$\begin{aligned} & \text { - } \\ & \underset{\sim}{\ddot{\#}} \end{aligned}$	0	15.72	24	444.15	9	459.87	10
	1	193.65	45	112.90	22	306.55	37
	2	192.47	65	15.95	53	208.42	65
	3	48.32	92	1.24	64	49.56	91
	4	9.10	116	0.13	102	9.23	116
	5	1.63	97	0.09	123	1.72	98
	6	0.32	125	0.04	126	0.36	125
	7	0.08	103	0.01	108	0.09	103
	8+	0.06	147	0.00	169	0.06	148
	Total	461.35		574.50		1,035.85	
	SOP		27,433		7,575		35,008

Table 3.3.3 Landings in numbers (mill.), mean weight (g.) and SOP (t) by age,
quarter and fleet.
North Sea Autumn spawners

		Division:	Skagerrak	Year:	2001	Country:	All
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
1	1	11.98	42	10.65	17	22.63	30
	2	16.09	72	0.29	56	16.38	72
	3	1.21	126	0.34	117	1.54	124
	4	0.05	183	0.01	133	0.06	177
	5	0.04	198	0.00	149	0.04	194
	6	0.02	207	0.01	155	0.03	184
	7	0.00	198	0.01	166	0.01	175
	8+	0.00	236	0.01	184	0.02	194
	Total	29.40		11.32		40.71	
	SOP		1,839		247		2,086
Quarter	W-rings	Fleet C		Fleet D+E		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
2	1	17.49	64	38.38	22	55.87	35
	2	35.23	83	2.57	70	37.80	82
	3	4.63	114	0.03	55	4.66	113
	4	0.20	147			0.20	147
	5	0.14	169			0.14	169
	6	0.06	169			0.06	169
	7	0.03	177			0.03	177
	8+	0.01	204			0.01	204
	Total	57.79		40.99		98.78	
	SOP		4,649		1,020		5,669
Quarter		Fleet C		Fleet D+E		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
3	0	2.29	30	421.16	8	423.44	8
	1	105.48	98	42.53	5	148.00	71
	2	20.41	108			20.41	108
	3	2.69	119			2.69	119
	4	0.64	129			0.64	129
	5	0.02	177			0.02	177
	6	0.32	228			0.32	228
	7	0.00	160			0.00	160
	8+						
	Total	131.84		463.68		595.52	
	SOP		13,126		3,397		16,523
Quarter		Fleet C		Fleet D+E		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
4	0	0.68	30			0.68	30
	1	28.79	98	20.03	72	48.81	87
	2	3.91	108			3.91	108
	3	2.04	119			2.04	119
	4	0.18	128			0.18	128
	5						
	6	0.09	231			0.09	231
	7						
	8+						
	Total	35.70		20.03		55.73	
	SOP		3,563		1,435		4,999
Quarter		Fleet C		Fleet D+E		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
Total	0	2.97	30	421.16	8	424.13	8
	1	163.73	91	111.58	24	275.32	63
	2	75.64	89	2.86	69	78.50	88
	3	10.57	118	0.37	111	10.94	117
	4	1.07	134	0.01	133	1.08	134
	5	0.20	176	0.00	149	0.21	175
	6	0.48	221	0.01	155	0.50	219
	7	0.03	179	0.01	166	0.04	176
	8+	0.01	211	0.01	184	0.03	198
	Total	254.72		536.02		790.74	
	SOP		23,178		6,099		29,277

Table 3.3.4 Landings in numbers (mill.), mean weight (g.) and SOP (t) by age, quarter and fleet.

North Sea Autumn spawners

Quarter		Division:	Kattegat	Year:	2001	Country:	All
	W-rings	Fleet C		Flee	et D	Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
1	1	120.90	33	89.27	20	210.17	28
	2	51.47	57	5.79	53	57.26	57
	3	2.58	87	0.09	61	2.67	86
	4						
	5						
	6						
	7						
	8+						
	Total	174.95		95.15		270.10	
	SOP		7,201		2,085		9,286
Quarter		Fleet C		Fleet D+E		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
2	1	13.94	36	17.14	31	31.08	33
	2	2.50	53	0.31	51	2.80	53
	3	0.88	75	0.04	83	0.92	76
	4						
	5						
	6						
	7						
	8+						
	Total	17.32		17.48		34.80	
	SOP		702		549		1,251
Quarter		Fleet C		Fleet D+E		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
3	0			368.33	9	368.33	9
	1	16.94	70	0.71	37	17.65	69
	2	6.38	82	0.08	56	6.46	81
	3	1.91	98			1.91	98
	4	0.27	115			0.27	115
	5	0.08	75			0.08	75
	6						
	7						
	8+						
	Total	25.59		369.11		394.70	
	SOP		1,935		3,438		5,373
Quarter		Fleet C		Fleet D+E		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
4	0	13.11	24	2.19	10	15.30	22
	1	28.46	79	0.97	63	29.42	78
	2	4.96	93	0.06	80	5.01	92
	3	0.71	120	0.01	101	0.71	119
	4	0.02	95			0.02	95
	5						
	6						
	7						
	8+						
	Total	47.25		3.22		50.47	
	SOP		3,102		88		3,190
Quarter		Fleet C		Fleet D+E		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
Total	0	13.11	24	370.51	9	383.63	10
	1	180.24	44	108.08	22	288.32	36
	2	65.31	62	6.23	53	71.54	61
	3	6.08	93	0.14	68	6.22	92
	4	0.29	114			0.29	114
	5	0.08	75			0.08	75
	6						
	7						
	8+						
	Total	265.11		484.96		750.07	
	SOP		12,940		6,159		19,100

Table 3.3.5 Landings in numbers (mill.), mean weight (g.) and SOP (t) by age,
quarter and fleet.
Baltic Spring-spawners

Quarter	W-rings	Division:	Skagerrak	Year:	2001	Country:	All
		Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
1	1	3.00	42	2.66	17	5.66	30
	2	10.24	72	0.18	56	10.42	72
	3	6.83	126	1.91	117	8.74	124
	4	4.52	183	0.58	133	5.10	177
	5	3.62	198	0.37	149	4.00	194
	6	1.46	207	1.16	155	2.61	184
	7	0.40	198	0.93	166	1.33	175
	8+	0.25	236	1.13	184	1.38	194
	Total	30.32		8.92		39.24	
	SOP		3,710		953		4,663
Quarter	W-rings	Fleet C		Fleet D+E		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
2	1	1.46	64	3.20	22	4.66	35
	2	27.76	83	2.03	70	29.79	82
	3	32.93	114	0.24	55	33.17	113
	4	17.94	147			17.94	147
	5	12.69	169			12.69	169
	6	5.38	169			5.38	169
	7	2.50	177			2.50	177
	8+	0.98	204			0.98	204
	Total	101.62		5.47		107.09	
	SOP		12,480		226		12,706
Quarter		Fleet C		Fleet D+E		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
3	0	0.25	30	45.12	8	45.37	8
	1	1.95	98	0.79	5	2.74	71
	2	19.81	108			19.81	108
	3	25.26	119			25.26	119
	4	2.77	129			2.77	129
	5	0.09	177			0.09	177
	6	1.38	228			1.38	228
	7	0.01	160			0.01	160
	8+						
	Total	51.51		45.91		97.42	
	SOP		6,041		347		6,388
Quarter		Fleet C		Fleet D+E		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
4	0	0.07	30			0.07	30
	1	3.20	98	2.23	72	5.42	87
	2	7.83	108			7.83	108
	3	6.13	119			6.13	119
	4	0.79	128			0.79	128
	5						
	6	0.40	231			0.40	231
	7						
	8+						
	Total	18.42		2.23		20.64	
	SOP		2,086		159		2,245
Quarter		Fleet C		Fleet D+E		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
Total	0	0.32	30	45.12	8	45.44	8
	1	9.60	76	8.87	31	18.48	54
	2	65.63	92	2.21	69	67.84	91
	3	71.15	117	2.15	110	73.30	117
	4	26.02	151	0.58	133	26.60	150
	5	16.40	176	0.37	149	16.78	175
	6	8.61	188	1.16	155	9.77	184
	7	2.90	180	0.93	166	3.84	176
	8+	1.23	211	1.13	184	2.36	198
	Total	201.87		62.53		264.40	
	SOP		24,317		1,685		26,002

Table 3.3.6 Landings in numbers (mill.), mean weight (g.) and SOP (t) by age, quarter and fleet.

Baltic Spring-spawners

		Division:	Kattegat	Year:	2001	Country:	All
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
1	1	4.91	33	3.62	20	8.53	28
	2	72.15	57	8.11	53	80.27	57
	3	27.10	87	0.98	61	28.08	86
	4	5.41	121	0.02	69	5.44	121
	5	0.17	97			0.17	97
	6						
	7						
	8+						
	Total	109.74		12.74		122.49	
	SOP		7,313		564		7,877
Quarter	W-rings	Fleet C		Fleet D+E		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
2	1	0.73	36	0.90	31	1.64	33
	2	8.52	53	1.04	51	9.56	53
	3	2.05	75	0.09	83	2.14	76
	4	1.17	98	0.11	109	1.28	99
	5	0.74	117	0.09	123	0.83	118
	6	0.32	125	0.04	126	0.36	125
	7	0.08	103	0.01	108	0.09	103
	8+	0.06	147	0.00	169	0.06	148
	Total	13.68		2.28		15.95	
	SOP		895		117		1,013
Quarter		Fleet C		Fleet D+E		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
3	0			73.20	9	73.20	9
	1	4.21	70	0.18	37	4.38	69
	2	29.15	82	0.36	56	29.51	81
	3	9.55	98			9.55	98
	4	2.08	115			2.08	115
	5	0.63	75			0.63	75
	6						
	7						
	8+						
	Total	45.62		73.74		119.36	
	SOP		3,897		704		4,601
Quarter		Fleet C		Fleet D+E		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
4	0	2.61	24	0.44	10	3.04	22
	1	3.56	79	0.12	63	3.68	78
	2	17.35	93	0.19	80	17.54	92
	3	3.54	120	0.03	101	3.57	119
	4	0.14	95			0.14	95
	5						
	6						
	7						
	8+						
	Total	27.20		0.78		27.98	
	SOP		2,387		31		2,417
Quarter		Fleet C		Fleet D+E		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
Total	0	2.61	24	73.64	9	76.24	10
	1	13.41	57	4.82	24	18.23	48
	2	127.16	67	9.72	54	136.88	66
	3	42.24	92	1.10	63	43.35	91
	4	8.81	116	0.13	102	8.94	116
	5	1.55	98	0.09	123	1.63	99
	6	0.32	125	0.04	126	0.36	125
	7	0.08	103	0.01	108	0.09	103
	8+	0.06	147	0.00	169	0.06	148
	Total	196.24		89.54		285.78	
	SOP		14,492		1,416		15,908

Table 3.3.7 Landings in numbers (mill.), mean weight (g.) and SOP (t) by age, quarter and fleet.

North Sea Autumn spawners

		Division:	IIIa	Year:	2001	Country:	All
Quarter	W-rings	Fleet C		Fleet D		Total	
		Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
1	1	132.88	34.2	99.91	19.6	232.80	27.9
	2	67.56	60.6	6.07	53.2	73.63	60.0
	3	3.79	99.5	0.43	104.4	4.22	100.0
	4	0.05	182.6	0.01	133.4	0.06	177.0
	5	0.04	198.4	0.00	148.9	0.04	193.8
	6	0.02	207.1	0.01	155.0	0.03	184.1
	7	0.00	197.6	0.01	165.9	0.01	175.3
	8+	0.00	236.2	0.01	184.1	0.02	193.7
	Total	204.35		106.46		310.81	
	SOP		9,040		2,331		11,371
Quarter		Fleet C		Fleet D+E		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
2	1	31.43	51.5	55.52	24.6	86.95	34.4
	2	37.72	81.4	2.88	68.2	40.60	80.4
	3	5.50	107.5	0.07	69.6	5.58	107.0
	4	0.20	146.9			0.20	146.9
	5	0.14	169.3			0.14	169.3
	6	0.06	169.3			0.06	169.3
	7	0.03	177.0			0.03	177.0
	8+	0.01	204.2			0.01	204.2
	Total	75.10		58.47		133.57	
	SOP		5,351		1,569		6,920
Quarter		Fleet C		Fleet D+E		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
3	0	2.29	30.0	789.48	8.4	791.77	8.4
	1	122.42	94.5	43.24	5.2	165.66	71.2
	2	26.79	101.7	0.08	56.0	26.87	101.5
	3	4.61	110.6			4.61	110.6
	4	0.90	124.6			0.90	124.6
	5	0.10	95.4			0.10	95.4
	6	0.32	228.4			0.32	228.4
	7	0.00	160.0			0.00	160.0
	8+						
	Total	157.43		832.80		990.22	
	SOP		15,061		6,835		21,896
Quarter		Fleet C		Fleet D+E		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
4	0	13.80	24.0	2.19	9.9	15.98	22.1
	1	57.24	88.7	20.99	71.3	78.24	84.0
	2	8.87	99.4	0.06	80.3	8.93	99.3
	3	2.75	119.3	0.01	101.0	2.76	119.3
	4	0.20	124.8			0.20	124.8
	5						
	6	0.09	231.0			0.09	231.0
	7						
	8+						
	Total	82.95		23.24		106.20	
	SOP		6,665		1,523		8,188
Quarter		Fleet C		Fleet D+E		Total	
	W-rings	Numbers	Mean W.	Numbers	Mean W.	Numbers	Mean W.
Total	0	16.08	24.8	791.67	8.4	807.75	8.7
	1	343.98	66.3	219.66	23.0	563.64	49.4
	2	140.95	76.4	9.09	58.1	150.03	75.3
	3	16.65	108.5	0.51	99.4	17.16	108.2
	4	1.36	130.1	0.01	133.4	1.36	130.1
	5	0.29	147.1	0.00	148.9	0.29	147.1
	6	0.48	220.8	0.01	155.0	0.50	219.1
	7	0.03	178.8	0.01	165.9	0.04	175.8
	8+	0.01	210.8	0.01	184.1	0.03	198.1
	Total	519.83		1,020.97		1,540.80	
	SOP		36,118		12,258		48,376

Table \quad 3.3.8 Landings in numbers (mill.), mean weight (g.) and SOP (t) by age, quarter and fleet.

Baltic Spring-spawners

Table \quad 3.3.9 Landings in numbers (mill.), mean weight (g.) and SOP (t) by age
and quarter.
Division: 22-24 Year: 2001 Country: ALL

Quarter	W-rings	Subdivision 22		Subdivision 23		Subdivision 24		Total	
		Numbers	Mean W.						
1	1	191.74	14			61.00	22	252.74	16
	2	13.10	44	2.90	60	57.64	40	73.64	42
	3	2.50	56	2.60	90	45.33	66	50.42	66
	4	0.62	141	0.50	130	31.18	104	32.30	105
	5					23.15	165	23.15	165
	6					8.11	173	8.11	173
	7					4.88	165	4.88	165
	8+					0.77	156	0.77	156
	Total	207.96		6.00		232.05		446.02	
	SOP		3,538		472		16,053		20,063
Quarter		Subdivision 22		Subdivision 23		Subdivision 24		Total	
	W-rings	Numbers	Mean W.						
2	1	82.65	22			69.18	21	151.83	22
	2	65.02	44	0.42	60	56.13	40	121.57	42
	3	30.67	57	0.37	90	32.45	67	63.50	62
	4	4.78	83	0.07	130	19.61	94	24.46	92
	5	0.55	120			14.14	153	14.69	151
	6					12.58	154	12.58	154
	7					5.50	163	5.50	163
	8+					2.23	166	2.23	166
	Total	183.67		0.86		211.82		396.35	
	SOP		6,897		68		13,104		20,069
Quarter		Subdivision 22		Subdivision 23		Subdivision 24		Total	
	W-rings	Numbers	Mean W.						
3	0	44.02	16			2.50	17	46.52	16
	1	33.78	41			13.21	39	46.99	40
	2	8.84	41	0.05	163	23.05	47	31.94	45
	3	0.88	49	0.41	170	13.92	64	15.21	66
	4			0.05	196	13.78	70	13.83	71
	5			0.14	197	5.92	85	6.05	87
	6			0.09	197	5.93	81	6.01	83
	7					2.42	78	2.42	78
	8+			0.01	248	0.87	112	0.89	114
	Total	87.51		0.75		81.60		169.86	
	SOP		2,490		136		4,774		7,400
Quarter		Subdivision 22		Subdivision 23		Subdivision 24		Total	
	W-rings	Numbers	Mean W.						
4	0	559.11	13			9.68	16	568.79	13
	1	12.95	44			20.60	45	33.55	45
	2	16.48	50	0.06	163	35.03	71	51.57	65
	3			0.49	170	15.75	102	16.24	104
	4			0.07	196	4.15	67	4.22	69
	5			0.16	197	1.14	119	1.30	129
	6			0.11	197	0.57	85	0.68	102
	7					0.60	63	0.60	63
	8+			0.02	248	0.10	63	0.12	$\square 89$
	Total	588.53		0.90		87.63		677.07	
	SOP		8,438		163		5,700		14,301
Quarter		Subdivision 22		Subdivision 23		Subdivision 24		Total	
	W-rings	Numbers	Mean W.						
	0	603.12	13			12.18	17	615.31	13
	1	321.12	20			163.99	26	485.12	22
	2	103.44	45	3.43	63	171.85	47	278.72	47
	3	34.04	56	3.87	108	107.45	71	145.37	69
	4	5.40	90	0.69	142	68.72	92	74.81	93
	5	0.55	120	0.30	197	44.35	149	45.19	149
	6			0.19	197	27.19	142	27.38	143
	7					13.40	144	13.40	144
	8+			0.03	248	3.98	150	4.01	150
	Total	1,067.67		8.51		613.11		1,689.30	
	SOP		21,363		839		39,630		61,832

Table 3.3.10 Landings in numbers (mill.), mean weight (g.) and SOP (t)
by age and quarter from. (values from the North
Sea, see Table 2.2.1-2.2.5)
Western Baltic Spring-spawners
Division: IV + IIIa + Year:

> 22-24

		Division IV		Division IIIa		Subdivision 22-24		Total	
Quarter	W-rings	Numbers	Mean W.						
1	1			14.19	29	252.74	16	266.93	17
	2			90.69	58	73.64	42	164.33	51
	3			36.82	95	50.42	66	87.24	79
	4			10.54	148	32.30	105	42.84	116
	5			4.17	190	23.15	165	27.32	169
	6			2.61	184	8.11	173	10.72	176
	7			1.33	175	4.88	165	6.20	167
	8+			1.38	194	0.77	156	2.15	180
	Total	0.00		161.73		446.02		607.75	
	SOP		0		12,540		20,063		32,603
		Division IV		Division IIIa		Subdivision 22-24		Total	
Quarter	W-rings	Numbers	Mean W.						
2	1	0.45	79.00	6.29	35	151.83	22	158.57	22
	2	2.91	123.00	39.35	75	121.57	42	163.83	52
	3	6.33	148.20	35.31	111	63.50	62	105.13	84
	4	3.59	171.10	19.21	144	24.46	92	47.26	119
	5	4.34	185.90	13.52	166	14.69	151	32.55	162
	6	1.55	198.20	5.74	166	12.58	154	19.87	161
	7	0.89	221.10	2.59	175	5.50	163	8.98	172
	8+	0.22	257.60	1.04	201	2.23	166	3.49	182
	Total	20.28		123.05		396.35		539.68	
	SOP		3,312		13,718		20,069		37,100
		Division IV		Division IIIa		Subdivision 22-24		Total	
Quarter	W-rings	Numbers	Mean W.						
3	0			118.57	9	46.52	16	165.09	11
	1	0.00	0.00	7.13	70	46.99	40	54.12	44
	2	8.43	129.00	49.32	92	31.94	45	89.68	79
	3	3.90	156.50	34.81	114	15.21	66	53.92	103
	4	2.54	188.60	4.85	123	13.83	71	21.22	97
	5	2.81	192.20	0.72	88	6.05	87	9.58	118
	6	1.11	198.30	1.38	228	6.01	83	8.50	121
	7	0.67	220.40	0.01	160	2.42	78	3.10	109
	8+	0.19	276.90			0.89	114	1.08	143
	Total	19.65		216.78		169.86		406.30	
	SOP		3,137		10,989		7,400		21,526
		Division IV		Division IIIa		Subdivision 22-24		Total	
Quarter	W-rings	Numbers	Mean W.						
4	0			3.11	22	568.79	13	571.90	13
	1			9.10	84	33.55	45	42.65	53
	2			25.37	97	51.57	65	76.94	75
	3			9.70	119	16.24	104	25.95	110
	4			0.94	123	4.22	69	5.15	79
	5					1.30	129	1.30	129
	6			0.40	231	0.68	102	1.07	150
	7					0.60	63	0.60	63
	$8+$					0.12	89	0.12	89
	Total	0.00		48.62		677.07		725.69	
	SOP		0		4,662		14,301		18,963
		Division IV		Division IIIa		Subdivision 22-24		Total	
Quarter	W-rings	Numbers	Mean W.						
Total	0			121.68	9	615.31	13	736.99	12
	1	0.45	79	36.71	51	485.12	22	522.28	24
	2	11.34	127	204.72	75	278.72	47	494.79	60
	3	10.22	151	116.64	107	145.37	69	272.23	88
	4	6.12	178	35.54	142	74.81	93	116.47	112
	5	7.15	188	18.41	168	45.19	149	70.76	158
	6	2.66	198	10.13	182	27.38	143	40.17	156
	7	1.56	221	3.92	175	13.40	144	18.88	157
	$8+$	0.41	267	2.42	197	4.01	150	6.84	174
	Total	39.93		550.18		1,689.30		2,279.41	
	SOP		6,450		41,910		61,832		110,192

Table 3.3.11 Total catch in numbers (mill) and mean weight (g), SOP (tonnes)of Western Baltic Spring-spawners in Division IIIa and the North Sea in the years 1991-2001.

W-rings									8	Total
Year										
1991 Numbers	100.00	157.43	382.91	394.77	166.97	112.35	21.86	7.33	3.15	1,346.77
Mean W.	33.0	48.6	69.5	99.9	135.7	146.2	166.9	179.7	193.2	
SOP	3,300	7,656	26,614	39,455	22,657	16,430	3,648	1,318	609	121,687
1992 Numbers	109.08	246.00	321.85	174.02	154.47	78.33	55.83	17.91	8.53	1,166.03
Mean W.	13.9	44.1	87.0	112.9	136.2	166.3	183.5	194.4	203.6	
SOP	1,516	10,841	27,986	19,653	21,035	13,030	10,243	3,481	1,737	109,523
1993 Numbers	161.25	371.50	315.82	219.05	94.08	59.43	40.97	21.71	8.22	1,292.03
Mean W.	15.1	25.9	81.4	127.5	150.1	171.1	195.9	209.1	239.0	
SOP	2,435	9,612	25,696	27,936	14,120	10,167	8,027	4,541	1,966	104,498
1994 Numbers	60.62	153.11	261.14	221.64	130.97	77.30	44.40	14.39	8.62	972.19
Mean W.	20.2	42.6	94.8	122.7	150.3	168.7	194.7	209.9	220.2	
SOP	1,225	6,524	24,767	27,206	19,686	13,043	8,642	3,022	1,898	106,013
1995 Numbers	50.31	302.51	217.81	129.64	108.89	35.33	23.77	14.62	7.69	890.57
Mean W.	17.9	41.5	101.0	148.2	167.0	199.9	212.0	229.6	235.2	
SOP	902	12,551	22,001	19,218	18,188	7,062	5,040	3,356	1,809	90,127
1996 Numbers	166.23	228.05	320.21	87.44	53.54	34.80	14.97	7.71	6.01	918.96
Mean W.	10.5	27.6	90.5	140.8	175.8	190.1	207.6	211.5	220.0	
SOP	1,748	6,296	28,984	12,309	9,412	6,615	3,107	1,631	1,323	71,426
1997 Numbers	25.97	73.43	167.53	192.51	42.69	18.20	6.22	2.09	3.22	531.85
Mean W.	19.2	49.7	79.2	130.9	171.8	187.7	194.2	203.1	211.4	
SOP	498	3,648	13,269	25,208	7,335	3,416	1,207	425	681	55,686
1998 Numbers	36.26	177.52	347.41	102.36	60.57	13.01	9.26	2.30	2.30	750.99
Mean W.	27.8	51.3	73.3	109.4	143.5	172.6	194.5	187.0	229.6	
SOP	1,009	9,110	25,458	11,200	8,692	2,246	1,800	431	529	60,475
1999 Numbers	38.53	137.13	168.86	138.58	47.79	23.99	4.87	3.26	2.74	565.76
Mean W.	11.6	42.0	85.6	116.7	123.2	147.8	173.0	130.1	160.5	
SOP	446	5,764	14,450	16,176	5,889	3,547	843	425	440	47,979
2000 Numbers	117.66	318.92	316.80	113.84	66.44	26.18	9.86	1.60	1.54	972.85
Mean W.	22.6	31.9	70.3	113.2	146.0	170.2	160.7	191.1	211.4	
SOP	2,662	10,185	22,266	12,886	9,701	4,454	1,585	306	327	64,372
2001 Numbers	121.68	37.16	216.07	126.87	41.66	25.56	12.79	5.48	2.83	590.11
Mean W.	9.0	51.7	77.3	111.0	147.0	174.0	185.4	187.8	206.9	
SOP	1,096	1,921	16,707	14,076	6,125	4,448	2,372	1,029	585	48,359

Table 3.3.12 Transfers of North Sea autumn spawners from Division IIIa to the North Sea
Numbers (mill) and mean weight, SOP in (tonnes) 1991-2001.

Year ${ }^{\text {W-Rings }}$		0	1	2	3	4	5	6	7		Total
1991	Number	677.1	748.3	298.3	52.4	7.7	5.1	1.1	0.4	0.1	1,790.6
	Mean W.	25.6	40.5	72.9	97.2	135.8	149.7	155.7	159.8	176.8	
	SOP	17,314	30,336	21,744	5,098	1,049	771	178	59	26	76,575
1992	Number	2,298.4	1,408.8	220.3	22.1	10.4	6.6	2.9	1.0	0.4	3,970.9
	Mean W.	12.3	51.8	84.2	131.4	162.0	173.4	185.3	198.4	201.2	
	SOP	28,159	72,985	18,557	2,907	1,683	1,143	533	200	84	126,251
1993	Number	2,795.4	2,032.5	237.6	26.5	7.7	3.6	2.7	2.2	0.7	5,109.0
	Mean W.	12.5	28.6	79.7	141.4	132.3	233.4	238.5	180.6	203.1	
	SOP	34,903	58,107	18,939	3,749	1,016	850	647	390	133	118,734
1994	Number	481.6	1,086.5	201.4	26.9	6.0	2.9	1.6	0.4	0.2	1,807.5
	Mean W.	16.0	42.9	83.4	110.7	138.3	158.6	184.6	199.1	213.9	
	SOP	7,723	46,630	16,790	2,980	831	460	287	75	37	75,811
1995	Number	1,144.5	1,189.2	161.5	13.3	3.5	1.1	0.6	0.4	0.3	2,514.4
	Mean W.	11.2	39.1	88.3	145.7	165.5	204.5	212.2	236.4	244.3	
	SOP	12,837	46,555	14,267	1,940	573	225	133	86	65	76,680
1996	Number	516.1	961.1	161.4	17.0	3.4	1.6	0.7	0.4	0.3	1,661.9
	Mean W.	11.0	23.4	80.2	126.6	165.0	186.5	216.1	216.3	239.1	
	SOP	5,697	22,448	12,947	2,151	565	307	145	77	66	44,403
1997	Number	67.6	305.3	131.7	21.2	1.7	0.8	0.2	0.1	0.1	528.7
	Mean W.	19.3	47.7	68.5	124.4	171.5	184.7	188.7	188.7	192.4	
	SOP	1,304	14,571	9,025	2,643	285	146	40	16	25	28,057
1998	Number	51.3	745.1	161.5	26.6	19.2	3.0	3.1	1.2	0.5	1,011.6
	Mean W.	27.4	56.4	79.8	117.8	162.9	179.7	197.2	178.9	226.3	
	SOP	1,409	41,994	12,896	3,137	3,136	547	608	211	108	64,045
1999	Number	598.8	303.0	148.6	47.2	13.4	6.2	1.2	0.5	0.5	1,119.4
	Mean W.	10.4	50.5	87.7	113.7	137.4	156.5	188.1	187.3	198.8	
	SOP	6,255	15,297	13,037	5,369	1,841	974	230	90	92	43,186
2000	Number	235.3	984.3	116.0	21.9	22.9	7.5	3.3	0.6	0.1	1,391.8
	Mean W.	21.3	28.5	76.1	108.8	163.1	190.3	183.9	189.4	200.2	
	SOP	5,005	28,012	8,825	2,377	3,731	1,436	601	114	13	50,115
2001	Number	807.8	563.6	150.0	17.2	1.4	0.3	0.5	0.0	0.0	1,540.8
	Mean W.	8.7	49.4	75.3	108.2	130.1	147.1	219.1	175.8	198.1	
	SOP	7,029	27,849	11,300	1,856	177	43	109	8	5	48,376

Corrections for the years 1991-1998 was made in WG2001, but are NOT included in the North Sea assessment.

Table 3.3.13 Total catch in numbers (mill) of spring-spawners in Division IIIa and the North Sea + in Subdivisions 22-24 in the years 1991-2001

W-rings	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8 +}$	Total
Year Area										
$\mathbf{1 9 9 1}$ Div. IV+Div. IIIa	100.0	157.4	382.9	394.8	167.0	112.4	21.9	7.3	3.2	1246.8
Sub-div. 22-24	19.0	668.5	158.3	169.7	112.8	65.1	24.6	5.9	1.8	1206.8
$\mathbf{1 9 9 2}$ Div. IV+Div. IIIa	109.1	246.0	321.9	174.0	154.5	78.3	55.8	17.9	8.5	1056.9
Sub-div. 22-24	36.0	210.7	280.8	190.8	179.5	104.9	84.0	34.8	14.0	1099.5
1993 Div. IV+Div. IIIa	161.3	371.5	315.8	219.0	94.1	59.4	41.0	21.7	8.2	1130.8
Sub-div. 22-24	44.9	159.2	180.1	196.1	166.9	151.1	61.8	42.2	16.3	973.7
1994 Div. IV+Div. IIIa	60.6	153.1	261.1	221.6	131.0	77.3	44.4	14.4	8.6	911.6
Sub-div. 22-24	202.6	96.3	103.8	161.0	136.1	90.8	74.0	35.1	24.5	721.6
$\mathbf{1 9 9 5}$ Div. IV+Div. IIIa	50.3	302.5	217.8	129.6	108.9	35.3	23.8	14.6	7.7	840.3
Sub-div. 22-24	491.0	$1,358.2$	233.9	128.9	104.0	53.6	38.8	20.9	13.2	1951.5
$\mathbf{1 9 9 6}$ Div. IV+Div. IIIa	166.2	228.1	320.2	87.4	53.5	34.8	15.0	7.7	6.0	752.7
Sub-div. 22-24	4.9	410.8	82.8	124.1	103.7	99.5	52.7	24.0	19.5	917.1
$\mathbf{1 9 9 7}$ Div. IV+Div. IIIa	26.0	73.4	167.5	192.5	42.7	18.2	6.2	2.1	3.2	505.9
Sub-div. 22-24	350.8	595.2	130.6	96.9	45.1	29.0	35.1	19.5	21.8	973.2
1998 Div. IV+Div. IIIa	36.3	177.5	347.4	102.4	60.6	13.0	9.3	2.3	2.3	714.7
Sub-div. 22-24	513.5	447.9	115.8	88.3	92.0	34.1	15.0	13.2	12.0	818.4
$\mathbf{1 9 9 9}$ Div. IV+Div. IIIa	38.5	137.1	168.9	138.6	47.8	24.0	4.9	3.3	2.7	527.2
Sub-div. 22-24	528.3	425.8	178.7	123.9	47.1	33.7	11.1	6.5	3.7	830.5
2000 Div. IV+Div. IIIa	117.7	318.9	316.8	113.8	66.4	26.2	9.9	1.6	1.5	855.2
Sub-div. 22-24	37.7	616.3	194.3	86.7	77.8	53.0	30.1	12.4	9.3	1079.9
2001 Div. IV+Div. IIIa	121.7	37.2	216.1	126.9	41.7	25.6	12.8	5.5	2.8	590.1
Sub-div. 22-24	615.3	485.1	278.7	145.4	74.8	45.2	27.4	13.4	4.0	1689.3

Table 3.3.14 Mean weight (g) and SOP (tons) of spring-spawners in Division IIIa + the North Sea and in Subdivisions 22-24 in the years 1991-2001

	W-rings	0	1	2	3	4	5	6	7	8+	SOP
Year Area											
1991	Div. IV+Div. IIIa	33.0	48.6	69.5	99.9	135.7	146.2	166.9	179.7	193.2	121,687
	Sub-div. 22-24	11.5	31.5	60.4	83.2	105.2	126.6	145.6	160.0	163.7	69,886
1992	Div. IV+Div. IIIa	13.9	44.1	87.0	112.9	136.2	166.3	183.5	194.4	203.6	109,523
	Sub-div. 22-24	19.1	23.3	44.8	77.4	99.2	123.3	152.9	166.2	184.2	84,888
1993	Div. IV+Div. IIIa	15.1	25.9	81.4	127.5	150.1	171.1	195.9	209.1	239.0	104,498
	Sub-div. 22-24	16.2	24.5	44.5	73.6	94.1	122.4	149.4	168.5	178.7	80,512
1994	Div. IV+Div. IIIa	20.2	42.6	94.8	122.7	150.3	168.7	194.7	209.9	220.2	106,013
	Sub-div. 22-24	12.9	28.2	54.2	76.4	95.0	117.7	133.6	154.3	173.9	66,425
1995	Div. IV+Div. IIIa	17.9	41.5	101.0	148.2	167.0	199.9	212.0	229.6	235.2	90,127
	Sub-div. 22-24	9.3	16.3	42.8	68.3	88.9	125.4	150.4	193.3	207.4	74,157
1996	Div. IV+Div. IIIa	10.5	27.6	90.5	140.8	175.8	190.1	207.6	211.5	220.0	71,426
	Sub-div. 22-24	12.1	22.9	45.8	74.0	92.1	116.3	120.8	139.0	182.5	56,817
1997	Div. IV+Div. IIIa	19.2	49.7	79.2	130.9	171.8	187.7	194.2	203.1	211.4	55,686
	Sub-div. 22-24	30.4	24.7	58.4	101.0	120.7	155.2	181.3	197.1	208.8	67,513
1998	Div. IV+Div. IIIa	27.8	51.3	73.3	109.4	143.5	172.6	194.5	187.0	229.6	60,475
	Sub-div. 22-24	13.3	26.3	52.2	78.6	103.0	125.2	150.0	162.1	179.5	51,911
1999	Div. IV+Div. IIIa	11.6	42.0	85.6	116.7	123.2	147.8	173.0	130.1	160.5	47,979
	Sub-div. 22-24	11.1	26.9	50.4	81.6	112.0	148.4	151.4	167.8	161.0	50,060
2000	Div. IV+Div. IIIa	22.6	31.9	70.3	113.2	146.0	170.2	160.7	191.1	211.4	64,372
	Sub-div. 22-24	16.5	22.2	42.8	80.4	123.5	133.2	143.4	155.4	151.4	53,904
2001	Div. IV+Div. IIIa	9.0	51.7	77.3	111.0	147.0	174.0	185.4	187.8	206.9	48,359
	Sub-div. 22-24	12.9	22.2	46.6	68.7	92.7	149.0	142.7	143.7	150.3	61,832

Table 3.4.1 Herring in Division IIIa, IIIb and IIIc.
Samples of commercial landings by quarter and area for 2001 available to

Table 3.4.2 Herring in Division IIIa.
Samples of landings by quarter and area for 2001 available to estimation of mean weight at age.

	Country	Quarter	Fleet	Sampling used to estimate mean weight at age.
Skagerrak	Denmark	1	C	Danish sampling in Q1
		2	C	Danish sampling in Q1
		3	C	Danish sampling in Q4
		4	C	Danish sampling in Q4
	Norway	1	C	Norwegian sampling i Q2
		2	C	Norwegian sampling i Q2
		3	C	Norwegian sampling i Q2
		4	C	No landings
	Sweden	1	C	Swedish sampling in Q1
		2	C	Swedish sampling in Q2
		3	C	Swedish sampling in Q3
		4	C	Danish sampling in Q4
Kattegat	Denmark	1	C	Danish sampling in Q1
		2	C	Swedish sampling in Q2
		3	C	Danish sampling in Q3
		4	C	Danish sampling in Q4
	Sweden	1	C	Swedish sampling in Q1
		2	C	Swedish sampling in Q2
		3	C	Danish sampling in Q3
		4	C	Swedish sampling in Q4
Skagerrak	Denmark	1	D	Danish sampling in Q1
		2	D	Danish sampling in Q2
		3	D	Danish sampling in Q3
		4	D	Danish sampling in Q4
	Sweden	1	D	Swedish sampling in Q1
		2	D	Swedish sampling in Q2
		3	D	Danish sampling in Q3
		4	D	Danish sampling in Q4
Kattegat	Denmark	1	D	Danish sampling in Q1
		2	D	Danish sampling in Q2
		3	D	Danish sampling in Q3
		4	D	Danish sampling in Q4
	Sweden	1	D	Swedish sampling in Q1
		2	D	Swedish sampling in Q2
		3	D	Swedish sampling in Q3
		4	D	Swedish sampling in Q4

Fleet $\mathbf{C}=$ Human consumption, Fleet $\mathbf{D}=$ Industrial landings.

Table 3.4.2 continued
Herring in Division IIIb and IIIc.
Samples of landings by quarter and area for 2001 available for estimation of mean weight-at-age.

	Country	Quarter	Fleet	Sampling used to estimate mean weight at age
Subdivision 22	Denmark	1	F	Danish sampling in Q1
		2	F	Danish sampling in Q2
		3	F	Danish sampling in Q3
		4	F	Danish sampling in Q4
	Germany	1		Danish sampling in Q1
		2	F	Danish sampling in Q2
		3	F	Danish sampling in Q3
		4	F	Danish sampling in Q4
Subdivision 23	Denmark	1	F	Danish sampling in Q1 in Kattegat
		2		Danish sampling in Q1 in Kattegat
		3	F	Swedish sampling in Q4
		4		Swedish sampling in Q4
	Sweden	1	F	Danish sampling in Q1 in Kattegat
		2		No landings
		3	F	Swedish sampling in Q4
		4	F	Swedish sampling in Q4
Subdivision 24	Denmark	1	F	Danish sampling in Q1
		2		Danish sampling in Q2
		3	F	No landings
		4		Danish sampling in Q4
	Germany	1	F	German sampling in Q1
		2	F	German sampling in Q2
		3	F	Danish sampling in Q4
		4	F	
	Poland	1	F	No information on sampling available
		2	F	No information on sampling available
		3	F	No information on sampling available
		4	F	No information on sampling available
	Sweden	1	F	Swedish sampling in Q1
		2	F	Danish sampling in Q2
		3	F	Swedish sampling in Q3
		4	F	Swedish sampling in Q4

Fleet $\mathrm{C}=$ Human consumption, Fleet $\mathrm{D}=$ Industrial landings.

Table 3.5.1 German Bottom Trawl Survey in Sub-Div. 24.
Young Fish survey in November/December
Mean Herring catch-at-age in numbers per haul.

Year	Month	Winter rings					Total numbers		Mean catch $\mathbf{(k g)}$
		$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3 +}$				
1979	Nov.	$8,665.90$	240.47	103.36	10.33	$9,020.06$	89.61		
1981	Nov.	332.63	96.79	60.05	21.30	510.77	16.36		
1982	Dec.	695.71	108.21	70.63	34.72	909.27	24.57		
1983	Dec.	$1,995.97$	387.11	63.71	46.11	$2,492.90$	46.68		
1984	Nov.	$1,581.66$	377.15	88.03	24.26	$2,071.10$	39.79		
1985	Nov.	$3,085.64$	340.92	169.95	74.76	$3,671.27$	45.99		
1986	Dec.	$2,984.47$	368.35	46.41	69.30	$3,468.53$	44.42		
1989	Nov.	$2,881.81$	319.38	48.99	55.12	$3,305.30$	47.76		
1990	Nov.	103.92	14.79	21.69	32.90	173.30	7.09		
1991	Nov.	117.38	134.20	103.14	144.63	499.35	27.16		
1992	Nov.	233.85	88.05	57.15	113.58	492.63	19.86		
1993	Nov.	$1,116.34$	25.09	50.01	476.29	$1,667.30$	53.97		
1994	Nov.	$1,020.49$	13.21	73.47	583.23	$1,690.40$	79.34		
1995	Nov.	635.09	33.22	47.97	324.98	$1,041.27$	47.53		
1996	Nov.	514.52	36.12	49.04	349.44	949.12	25.82		
1997	Nov.	627.20	66.33	93.57	126.50	913.60	18.30		
1998	Nov.	$4,651.43$	273.67	146.42	563.65	$5,635.18$	88.85		
1999	Nov.	$2,629.67$	310.92	62.25	43.34	$3,046.18$	49.36		
2000	Nov.	175.83	86.09	85.35	95.74	445.67	21.89		

Table 3.5.2 German Bottom Trawl Survey in Sub-Div. 22.
Young Fish survey in November/December
Mean Herring catch-at-age in numbers per haul.

Year	Month	Winter rings				Total numbers	Mean catch $(\mathbf{k g})$
		$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3 +}$	86.91	
1979	Nov.	$3,561.79$	$1,358.84$	137.11	7.68	$5,065.42$	17.69
1981	Nov.	$1,033.40$	118.85	28.35	9.10	$1,189.70$	19.97
1982	Dec.	354.00	239.45	44.50	26.20	664.15	117.51
1983	Dec.	$7,917.00$	834.70	80.10	29.50	$8,861.30$	147.45
1984	Nov.	$6,596.32$	$1,830.32$	150.47	40.47	$8,617.58$	83.38
1985	Nov.	$3,506.20$	958.80	219.80	25.25	$4,710.05$	54.18
1986	Nov.	$6,863.75$	175.35	16.55	5.60	$7,061.25$	176.53
1989	Nov.	$10,587.70$	$1,444.50$	117.75	76.45	$12,226.40$	13.13
1992	Nov.	572.68	87.68	19.16	17.26	696.78	301.71
1993	Nov.	$8,419.70$	$1,644.05$	$1,293.70$	898.10	$12,255.55$	135.65
1994	Nov.	$2,158.10$	317.35	$1,588.45$	326.35	$4,390.25$	31.17
1995	Nov.	$1,226.63$	158.75	29.00	123.31	$1,537.69$	15.23
1996	Nov.	8.76	193.71	101.24	57.76	361.47	209.24
1997	Nov.	$11,289.45$	$2,196.45$	257.75	159.90	$13,903.55$	70.79
1998	Nov.	$3,042.10$	597.05	113.40	112.50	$3,865.05$	25.62
1999	Nov.	$1,060.72$	76.91	76.22	128.08	$1,341.93$	127.39
2000	Nov.	$2,406.89$	$2,146.21$	54.74	14.53	$4,622.37$	10

Table 3.5.3 German Bottom Trawl Survey in Sub-Div. 22 and 24.
Young Fish survey in November/December
Mean Herring catch-at-age in numbers per haul.
Sum weighted by area of Subdivision :

Area of 24 is	2325 sq.nm
Area of 22 is	485 sq.nm
Total	$\mathbf{2 8 1 0}$ sq. $\mathbf{n m}$

Year	Month	Winter rings				Total	
		$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3 +}$	Mean catch	
		numbers	(kg)				
$\mathbf{1 9 7 9}$	Nov.	7784.9	433.5	109.2	9.9	8337.5	89.1
$\mathbf{1 9 8 1}$	Nov.	453.6	100.6	54.6	19.2	628.0	16.6
$\mathbf{1 9 8 2}$	Dec.	636.7	130.9	66.1	33.2	867.0	23.8
$\mathbf{1 9 8 3}$	Dec.	3017.9	464.4	66.5	43.2	3592.1	58.9
$\mathbf{1 9 8 4}$	Nov.	2447.2	628.0	98.8	27.1	3201.0	58.4
$\mathbf{1 9 8 5}$	Nov.	3158.2	447.6	178.6	66.2	3850.6	52.4
$\mathbf{1 9 8 6}$	Nov.	3654.0	335.0	41.3	58.3	4088.6	46.1
$\mathbf{1 9 8 9}$	Nov.	4211.8	513.6	60.9	58.8	4845.1	70.0
$\mathbf{1 9 9 2}$	Nov.	292.3	88.0	50.6	97.0	527.9	18.7
$\mathbf{1 9 9 3}$	Nov.	2376.9	304.5	264.7	549.1	3494.8	96.7
$\mathbf{1 9 9 4}$	Nov.	1216.8	65.7	335.0	538.9	2156.4	89.1
$\mathbf{1 9 9 5}$	Nov.	737.2	54.9	44.7	290.2	1127.0	44.7
$\mathbf{1 9 9 6}$	Nov.	427.2	63.3	58.0	299.1	847.7	24.0
$\mathbf{1 9 9 7}$	Nov.	2467.5	434.0	121.9	132.3	3155.6	51.3
$\mathbf{1 9 9 8}$	Nov.	4373.7	329.5	140.7	485.8	5329.7	85.7
$\mathbf{1 9 9 9}$	Nov.	2358.9	270.5	64.7	58.0	2752.0	45.3
$\mathbf{2 0 0 0}$	Nov.	560.9	441.7	80.1	81.7	1166.6	40.1

Table 3.5.4
German Bottom Trawl Survey in January/February in Sub-Div. 24. Mean catch-at-age in numbers per haul.

Year		Winter rings								
	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8 +}$	
numbers										

Table 3.5.5 International Bottom Trawl Survey in the Kattegat in quarter 1.
Mean catch of spring-spawning herring at age in number per haul.

Year	Winter rings				
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1 9 9 0}$	416	681	65	43	11
$\mathbf{1 9 9 1}$	190	206	144	25	20
$\mathbf{1 9 9 2}$	588	82	33	21	13
$\mathbf{1 9 9 3}$	3140	554	81	35	50
$\mathbf{1 9 9 4}$	1380	256	112	22	31
$\mathbf{1 9 9 5}$	781	132	30	42	24
$\mathbf{1 9 9 6}$	1312	1405	160	42	22
$\mathbf{1 9 9 7}$	3267	229	119	15	18
$\mathbf{1 9 9 8}$	407	853	165	74	8
$\mathbf{1 9 9 9}$	309	66	43	21	14
$\mathbf{2 0 0 0}$	1933	219	28	10	7
$\mathbf{2 0 0 1}$	-	-	-	-	-
$\mathbf{2 0 0 2}$	2335	178	222	23	7

Table 3.5.6 International Bottom Trawl Survey in the Kattegat in quarter 3.
Mean catch of spring-spawning herring at age in number per haul.

Year	Winter rings				
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{1 9 9 1}$	141	83	101	41	24
$\mathbf{1 9 9 2}$	372	108	70	63	25
$\mathbf{1 9 9 3}$	404	159	42	36	25
$\mathbf{1 9 9 4}$	265	229	154	49	36
$\mathbf{1 9 9 5}$	687	192	113	99	29
$\mathbf{1 9 9 6}$	631	322	31	17	11
$\mathbf{1 9 9 7}$	52	122	33	8	13
$\mathbf{1 9 9 8}$	118	86	22	27	5
$\mathbf{1 9 9 9}$	292	116	71	34	14
$\mathbf{2 0 0 0}^{\mathbf{2}}$	-	-	-	-	-
$\mathbf{2 0 0 1}$	313	190	72	18	2

[^3]Table 3.5.7 Acoustic surveys on the Spring-spawning HERRING in the North Sea / Division IIIa in 1989-2001 (July).

Year	1989	1990	1991	1992*	1993*	1994*	1995*	1996*	1997	1998	1999**	2000	2001
Numbers in millions													
W-rings													
0		31		3,853	372	964							
1		135		277	103	5	2,199	1,091	128	138	1367	1509	66
2	1,105	1,497	1,864	2,092	2,768	413	1,887	1,005	715	1,682	1143	1891	641
3	714	549	1,927	1,799	1,274	935	1,022	247	787	901	523	674	452
4	317	319	866	1,593	598	501	1,270	141	166	282	135	364	153
5	81	110	350	556	434	239	255	119	67	111	28	186	96
6	51	24	88	197	154	186	174	37	69	51	3	56	38
7	16	10	72	122	63	62	39	20	80	31	2	7	23
8+	4	5	10	20	13	34	21	13	77	53	1	10	12
Total	2,288	2,680	5,177	10,509	5,779	3,339	6,867	2,673	2,088	3,248	3,201	4,696	1,481
3+ group	1,183	1,017	3,313	4,287	2,536	1,957	2,781	577	1,245	1,428	691	1,295	774

Biomass ('000 tonnnes)

W-rings													
0		0.5		34.3	1	8.7							
1		6.8		26.8	7	0.4	77.4	52.9	4.7	7.1	74.8	61.4	3.5
2	86.2	122.8	177.1	169.0	139	33.2	108.9	87.0	52.2	136.1	101.6	138.1	55.8
3	83.5	59.8	219.7	206.3	112	114.7	102.6	27.6	81.0	84.8	59.5	68.8	51.2
4	54.2	41.2	116.0	204.7	69	76.7	145.5	17.9	21.5	35.2	14.7	45.3	21.5
5	16.0	15.8	51.1	83.3	65	41.8	33.9	17.8	9.8	13.1	3.4	25.1	17.9
6	11.4	3.8	19.0	36.6	26	38.1	27.4	5.8	9.8	6.9	0.5	10.0	6.9
7	3.4	1.8	13.0	24.4	16	13.1	6.7	3.3	14.9	4.8	0.3	1.4	4.7
8+	0.9	0.8	2.0	5.0	2	7.8	3.8	2.7	13.6	9.0	0.1	1.3	2.7
Total	255.7	252.7	597.9	756.1	436.5	325.8	506.2	215.1	207.5	297.0	254.9	351.4	164.2
3+ group	169.5	123.2	420.9	560.3	291.0	292.3	319.9	75.2	150.6	153.7	78.5	151.9	104.9

Mean weight (g)

W-rings													
0		17		8.9	4.0	9.0							
1		50		96.8	66.3	80.0	35.2	48.5	36.9	51.9	54.7	40.7	54.0
2	78	82	95	80.8	50.1	80.3	57.7	86.6	73.0	80.9	88.9	73.1	87.0
3	117	109	114	114.7	87.9	122.7	100.4	111.9	103.0	94.1	113.8	102.2	113.2
4	171	129	134	128.5	116.2	153.0	114.6	126.8	129.6	124.7	109.1	124.4	140.5
5	198	144	146	149.8	149.9	175.1	132.9	149.4	145.0	118.7	120.0	135.4	185.2
6	211	159	216	185.7	169.6	205.0	157.2	157.3	143.1	135.8	179.9	179.2	182.6
7	215	176	181	199.7	256.9	212.0	172.9	166.8	185.6	156.4	179.9	208.8	206.3
8+	226	156	200	252.0	164.2	230.3	183.1	212.9	178.0	168.0	181.7	135.2	226.9
Total	111.6	95.8	115.6	123.9	75.8	100.2	73.7	80.5	99.4	91.4	78.5	74.8	110.9

[^4]Table 3.5.8 Acoustic survey on the Spring-spawning Herring in Subdivisions 22-24 in 1989-2001 (September/October).

Year		1989	1990	1991^{1}	$\mathbf{1 9 9 2}^{1}$	1993^{1}	1994^{1}	1995^{1}	1996^{1}	1997^{1}	1998^{1}	1999^{1}	2000	2001^{3}
Numbers in millions														
W-rings														
	0	3,825	21,157	7,180	2,876	768	4,383	4,001	1,418	2,608	2,179	4,821	1,021	1,831
	1	2,137	1,785	2,864	1,961	345	412	1,163	1,084	1,389	451	1,145	1,208	1,314
	2	213	892	1,418	1,051	354	823	307	541	492	557	246	477	1,761
	3	161	146	$1,403$	588	485	540	332	413	343	364	187	348	1,013
	4	102	79	472	283	381	433	342	282	151	232	129	206	357
	5	23	19	241	86	121	182	247	283	112	99	44	81	92
	6	4	8	85	40	52	56	124	110	92	51	8	39	55
	7	3	4	13	9	28	22	40	44	32	23	1	5	5
	8+	1	2	28	9	13	2	27	18	46	9	2	4	0
	Total	6,469	24,092	$13,705$	6,902	$2,547$	6,854	6,583	$4,193$	5,265	3,966	6,582	3,389	6,428
	+ group	294	258	2,243	1,014	1,080	1,235	1,112	1,151	775	778	370	682	1,522

Biomass ('000 tonnnes)													
W-rings													
0	2	287.7	76.3	41.3	11.3	49.3	41.1	12.3	25.6	20.4	54.2	12.8	21.4
1	2	65.9	121.4	71.4	12.3	14.3	39.6	32.9	49.4	18.2	42.3	47.5	59.1
2	2	56.2	111.1	64.7	15.7	38.1	19.8	26.8	29.2	41.4	18.8	29.7	118.7
3	2	12.3	141.3	53.8	29.7	39.2	28.5	29.3	31.9	32.9	22.0	29.0	93.4
4	2	7.6	59.6	34.7	23.5	41.3	39.1	20.0	21.0	27.5	13.1	24.1	34.2
5	2	1.9	35.5	13.0	12.3	22.9	26.7	33.9	16.0	11.3	5.6	9.2	11.6
6	2	0.9	12.7	6.3	6.7	11.5	14.7	14.7	13.2	6.1	0.8	5.6	7.6
7	2	0.4	1.7	1.8	2.2	4.9	8.8	5.7	5.1	3.7	0.2	1.1	0.9
8+	2	0.2	3.8	2.2	2.3	0.6	6.6	2.7	10.2	2.2	0.4	0.7	0.0
Total	2	438.5	563.3	289.3	116.0	222.1	224.9	178.4	201.7	163.5	157.5	159.7	346.9
3+ group	2	23.4	254.5	111.8	76.7	120.4	124.5	106.3	97.4	83.5	42.1	69.6	147.7

Mean weight (g)

W-rings													
0	2	13.6	10.6	14.4	14.7	11.2	10.3	8.7	9.8	9.4	11.2	12.6	11.7
1	2	36.9	42.4	36.4	35.7	34.7	34.0	30.4	35.6	40.3	37.0	39.3	45.0
2	2	63.0	78.4	61.6	44.3	46.3	64.5	49.6	59.4	74.3	76.4	62.3	67.4
3	2	84.5	100.7	91.5	61.3	72.6	85.9	70.8	93.1	90.4	117.6	83.3	92.3
4	2	96.6	126.4	122.7	61.6	95.5	114.5	71.1	139.2	118.3	101.8	117.1	95.7
5	2	101.4	147.3	151.3	101.3	125.9	108.0	119.7	142.3	114.0	127.5	114.1	126.0
6	2	112.2	148.2	159.1	129.6	204.0	118.1	133.5	143.4	120.5	107.2	143.0	137.0
7	2	100.6	126.6	205.7	80.2	222.6	222.0	128.5	161.6	158.1	231.1	202.9	175.7
8+	2	102.5	132.5	259.2	172.7	269.6	241.1	154.7	222.2	232.9	219.1	180.9	-
Total	2	18.2	41.1	41.9	45.5	32.4	34.2	42.5	38.3	41.2	23.9	47.1	54.0

[^5]Table 3.5.9 Estimation of the herring 0-Group (TL $>=30 \mathrm{~mm}$) Greifswalder Bodden and adjacent waters (March/April to June)

Year	Number in Millions
1977	2000^{1}
1978	100^{1}
1979	2200^{1}
1980	360^{1}
1981	200^{1}
1982	180^{1}
1983	1760^{1}
1984	290^{1}
1985	1670^{1}
1986	1500^{1}
1987	1370^{1}
1988	1223^{2}
1989	63^{2}
1990	57^{2}
1991	236^{3}
1992	18^{4}
1993	199^{4}
1994	788^{4}
1995	171^{4}
1996	31^{4}
1997	54^{4}
1998	2553^{4}
1999	1945^{4}
2000	151^{4}
2001	421^{4}

${ }^{1}$ Brielmann 1989
${ }^{2}$ Klenz 1999 Inf.Fischwirtsch. Fischereiforsch. 46(2), 1999: 15-17
${ }^{3}$ Müller \& Klenz 1994
${ }^{4}$ Klenz 2001 Inf.Fischwirtsch. Fischereiforsch. 48(4), 2001: 164-165

Table. 3.7.1 WESTERN BALTIC HERRING. Input to ICA.
Catch in number (millions)

AGE	।	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	
0	,	119.0	145.1	206.1	263.2	541.3	171.1	376.8	549.8	569.6	155.4	737.0	
1	,	826.0	456.7	530.7	249.4	1660.7	638.9	668.6	625.5	617.1	935.2	522.3	
2	\\|	541.2	602.6	495.9	365.0	451.8	403.1	298.2	463.2	349.4	511.1	494.8	
3	\|	564.4	364.9	415.1	382.6	258.5	211.5	289.4	190.7	257.6	200.6	272.2	
4	\\|	279.8	334.0	260.9	267.0	212.9	157.3	87.8	152.5	94.9	144.2	116.5	
5	I	177.5	183.2	210.5	168.1	88.9	134.3	47.2	47.1	57.7	79.1	70.8	
6	I	46.5	139.8	102.8	118.4	62.6	67.7	41.4	24.3	15.9	39.9	40.2	
7	\|	13.2	52.7	63.9	49.5	35.5	31.7	21.6	15.5	9.7	14.0	18.9	
8	\\|	4.9	22.6	24.5	33.1	20.9	25.5	25.0	14.3	6.4	10.9	6.8	

Table. 3.7.2 WESTERN BALTIC HERRING. Input to ICA.
Mean weight in catch (kg)

AGE	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001

$\begin{array}{llllllllllll}0 & 0.03000 & 0.01500 & 0.01500 & 0.01500 & 0.01000 & 0.01100 & 0.03000 & 0.01400 & 0.01100 & 0.02100 & 0.01200\end{array}$ $1 \quad \mid \quad 0.035000 .034000 .025000 .03700 \quad 0.021000 .02500 \quad 0.02700 \quad 0.03300 \quad 0.03400 \quad 0.02600 \quad 0.02400$ $\quad 10.067000 .067000 .068000 .083000 .071000 .081000 .070000 .068000 .068000 .06000 \quad 0.06000$ 10.095000 .094000 .102000 .103000 .108000 .102000 .121000 .095000 .099000 .099000 .08800 10.123000 .116000 .114000 .122000 .129000 .121000 .146000 .119000 .118000 .134000 .11200 10.139000 .142000 .136000 .141000 .155000 .135000 .168000 .138000 .148000 .145000 .15800 $\begin{array}{lllllllllllll}1 & 0.15600 & 0.16500 & 0.16800 & 0.15600 & 0.17400 & 0.14000 & 0.18300 & 0.16700 & 0.15800 & 0.14800 & 0.15600\end{array}$ 10.171000 .176000 .182000 .170000 .208000 .157000 .198000 .166000 .155000 .160000 .15700 0.183000 .192000 .199000 .186000 .218000 .191000 .209000 .188000 .161000 .160000 .17400

Table. 3.7.3 WESTERN BALTIC HERRING. Input to ICA .
Mean weight in stock (kg)

AGE		1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
0		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
1	I	0.03100	0.02000	0.01600	0.01900	0.01300	0.01800	0.01300	0.02200	0.02100	0.01400	0.01700
2	I	0.05300	0.04500	0.04000	0.05300	0.04600	0.05500	0.05100	0.05600	0.05700	0.04300	0.05100
3	I	0.07900	0.08200	0.09700	0.08400	0.07100	0.09100	0.10600	0.08300	0.08700	0.08500	0.07900
4		0.10400	0.10800	0.10800	0.10800	0.13300	0.11700	0.13300	0.11300	0.10800	0.12700	0.11600
5	\|	0.12400	0.13100	0.14100	0.13900	0.16700	0.12000	0.16600	0.13400	0.14800	0.14500	0.16900
6	I	0.14500	0.15900	0.16700	0.15700	0.18900	0.15400	0.19400	0.16800	0.16000	0.16300	0.17600
7	\|	0.15900	0.17100	0.18300	0.17700	0.21000	0.14700	0.20900	0.16800	0.14400	0.16600	0.16700
8		0.16400	0.18700	0.18900	0.20300	0.23400	0.12800	0.22600	0.18400	0.15000	0.18400	0.18000

Table. 3.7.4 WESTERN BALTIC HERRING. Input to ICA . Natural mortality

AGE	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
0	0.30000	0.30000	0.30000	0.30000	0.30000	0.30000	0.30000	0.30000	0.30000	0.30000	0.30000
1	0.50000	0.50000	0.50000	0.50000	0.50000	0.50000	0.50000	0.50000	0.50000	0.50000	0.50000
2	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000
3	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000
4	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000
5	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000
6	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000
7	10.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000
8	10.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000	0.20000

Table. 3.7.5 a WESTERN BALTIC HERRING. Input to ICA.
AGE - STRUCTURED INDICES.
FLT27: Acoustic Survey in SD 22-24, Ages 0-5 (Catch: Number in millions)

AGE	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
0	7180.0	2876.0	768.0	4383.0	4001.0	1418.0	2608.0	2179.0	4821.0	1021.0	1831.0
1	2864.0	1961.0	345.0	412.0	1163.0	1084.0	1389.0	451.0	1145.0	1208.0	1314.0
2	1418.0	1051.0	354.0	823.0	307.0	541.0	492.0	557.0	246.0	477.0	1761.0
3	1403.0	588.0	485.0	540.0	332.0	413.0	343.0	364.0	187.0	348.0	1013.0
4	472.0	283.0	381.0	433.0	342.0	282.0	151.0	232.0	129.0	206.0	357.0
5	241.0	86.0	121.0	182.0	247.0	283.0	112.0	99.0	44.0	81.0	92.0

Table. 3.7.5 b WESTERN BALTIC HERRING. Input to ICA.
AGE - STRUCTURED INDICES.
FLT33: Acoustic Survey in Div. IIIa+IVaE, Ages 2-8+ (Catch: Number in millions)

AGE	\|	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	
2	\|	1864.0	2092.0	2768.0	413.0	1887.0	1005.0	715.0	1682.0	*******	1891.1	641.2	
3	।	1927.0	1799.0	1274.0	935.0	1022.0	247.0	787.0	901.0	*******	673.6	452.3	
4	।	866.0	1593.0	598.0	501.0	1270.0	141.0	166.0	282.0	*******	363.9	153.1	
5	\\|	350.0	556.0	434.0	239.0	255.0	119.0	67.0	111.0	*******	185.7	96.4	
6	\|	88.0	197.0	154.0	186.0	174.0	37.0	69.0	51.0	*******	55.6	37.6	
7	I	72.0	122.0	63.0	62.0	39.0	20.0	80.0	31.0	*******	6.9	23.0	
8	।	10.0	20.0	13.0	34.0	21.0	13.0	77.0	53.0	*******	9.6	11.9	

Table. 3.7.5 c WESTERN BALTIC HERRING. Input to ICA.
AGE - STRUCTURED INDICES.
FLT22: IYFS in Kattegat, Quarter 3, Ages 1-5 (Catch: Number)

AGE	\|	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
1	\|	141.21	371.52	403.96	264.55	687.33	631.33	52.37	117.53	292.00	*	313.00
2	\|	83.21	107.60	158.74	229.37	191.54	321.79	122.16	85.82	116.29	*******	190.00
3	\|	100.87	69.92	41.93	154.22	113.17	30.78	33.19	22.35	71.17	*******	72.00
4	\|	41.17	62.96	36.03	48.96	99.09	17.50	8.36	27.32	33.64	*******	18.00
5	\|	23.84	24.69	25.13	35.66	29.36	11.28	13.19	4.96	14.30	*	2.00

Table 3.7.6 WESTERN BALTIC HERRING
Input parameters for ICA FINAL Run 22
Integrated Catch-at-age Analysis

$$
\text { Version } 1.4 \text { w }
$$

K.R.Patterson

Fisheries Research Services Marine Laboratory

Aberdeen
24 August 1999
Type * to change language
Enter the name of the index file -->index
canum
weca
Stock weights in 2002 used for the year 2001
west
Natural mortality in 2002 used for the year 2001
natmor
Maturity ogive in 2002 used for the year 2001
matprop
Name of age-structured index file (Enter if none) : -->fleet
Name of the SSB index file (Enter if none) -->
No indices of spawning biomass to be used.
No of years for separable constraint ?--> 5
Reference age for separable constraint ?--> 4
Constant selection pattern model (Y/N) ?-->y
S to be fixed on last age ?--> 1.000000000000000
First age for calculation of reference F ?--> 3
Last age for calculation of reference F ?--> 6
Use default weighting (Y/N) ?-->n
Enter relative weights-at-age
Weight for age 0--> 0.100000000000000
Weight for age 1--> 1.000000000000000
Weight for age 2--> 1.000000000000000
Weight for age 3--> 1.000000000000000
Weight for age 4--> 1.000000000000000
Weight for age 5--> 1.000000000000000
Weight for age 6--> 1.000000000000000
Weight for age 7--> 1.000000000000000
Weight for age 8--> 1.000000000000000
Enter relative weights by year
Weight for year 1997--> 1.000000000000000
Weight for year 1998--> 1.000000000000000
Weight for year 1999--> 1.000000000000000
Weight for year 2000--> 1.000000000000000
Weight for year 2001--> 1.000000000000000
Enter new weights for specified years and ages if needed
Enter year, age, new weight or $-1,-1,-1$ to end. $-1-1$-1.000000000000000
Is the last age of FLT22: IYFS Katt/Quarter 3/Age groups 1- a plus-group (Y-->n
Is the last age of FLT27: Acoustic Survey in Sub div 22-24 a plus-group (Y/-->n
Is the last age of FLT33: Acoustic Survey in Div IIIa+IVaE a plus-group (Y/-->y
You must choose a catchability model for each index.
Models: A Absolute: Index = Abundance . e
L Linear: Index $=$ Q. Abundance . e
P Power: Index $=$ Q. Abundance ${ }^{\wedge} \mathrm{K}$. e
where Q and K are parameters to be estimated, and
e is a lognormally-distributed error.
Model for FLT22: IYFS Katt/Quarter 3/Age groups 1- is to be A/L/P ?-->L
Model for FLT27: Acoustic Survey in Sub div 22-24 is to be A/L/P ?-->L
Model for FLT33: Acoustic Survey in Div IIIa+IVaE is to be A/L/P ?-->I
Fit a stock-recruit relationship (Y/N) ?-->n
Enter lowest feasible F--> $5.0000000000000003 \mathrm{E}-02$
Enter highest feasible $\mathrm{F}-->\quad 1.000000000000000$
Mapping the F -dimension of the SSQ surface
F SSQ

0.05	34.5274960936
0.10	20.8655515904
0.15	15.5343883491
0.20	12.9169535819
0.25	11.4390704088
0.30	10.5326784383
0.35	9.9547343188
0.40	9.5859162598
0.45	9.3607820897
0.50	9.2399183534
0.55	9.1977404017
0.60	9.2168010306
0.65	9.2845167691
0.70	9.3916507420
0.75	9.5312167119
0.80	9.6978823523
0.85	9.8874628997
0.90	10.0967185324
0.95	10.3231674492
1.00	10.5648726694
liser	F

Table 3.7.6
continued

No of years for separable analysis : 5
Age range in the analysis : 0 . . . 8
Year range in the analysis : 1991 . . . 2001
Number of indices of SSB : 0
Number of age-structured indices : 3
Parameters to estimate : 41
Number of observations : 226
Conventional single selection vector model to be fitted.

[^6]Table. 3.7.7 WESTERN BALTIC HERRING. Output from ICA Run 22. FISHING MORTALITY (per year)

AGE	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
0	0.02707	0.04430	0.07815	0.05127	0.15837	0.05053	0.11240	0.11636	0.09871	0.12848	0.12693
1	0.25278	0.16855	0.27842	0.15678	0.65309	0.35239	0.32134	0.33267	0.28220	0.36731	0.36288
2	0.31303	0.35914	0.33658	0.38227	0.57766	0.39551	0.39964	0.41374	0.35097	0.45682	0.45132
3	0.40962	0.36012	0.45097	0.47202	0.51408	0.59246	0.45071	0.46662	0.39582	0.51520	0.50899
4	0.38052	0.45510	0.47476	0.59185	0.52691	0.68923	0.45115	0.46707	0.39620	0.51571	0.50949
5	0.34322	0.46180	0.58467	0.64791	0.39944	0.75988	0.49543	0.51291	0.43509	0.56631	0.55949
6	0.20972	0.49929	0.51382	0.78540	0.53645	0.60672	0.49788	0.51545	0.43724	0.56912	0.56226
7	10.33357	0.38843	0.44918	0.50295	0.57673	0.57754	0.45115	0.46707	0.39620	0.51571	0.50949
8	10.33357	0.38843	0.44918	0.50295	0.57673	0.57754	0.45115	0.46707	0.39620	0.51571	0.50949

Table. 3.7.8 WESTERN BALTIC HERRING. Output from ICA Run 22. POPULATION ABUNDANCE (millions)- 1 January

AGE	1	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
0	\|	5153.0	3870.9	3167.2	6087.8	4260.8	4014.9	3749.8	5081.0	5928.2	3393.1	4446.5	4607.7
1	,	4650.3	3715.5	2743.3	2169.9	4284.5	2694.2	2827.7	2482.6	3350.6	3978.9	2210.6	2901.4
2	\|	2210.3	2190.6	1904.0	1259.6	1125.2	1352.5	1148.8	1243.8	1079.6	1532.6	1671.5	932.7
3	1	1840.4	1323.3	1252.4	1113.3	703.6	517.0	745.6	630.7	673.3	622.3	794.6	871.4
4	1	969.2	1000.3	755.8	653.2	568.6	344.5	234.1	389.0	323.8	371.0	304.4	391.1
5	1	670.2	542.4	519.6	384.9	295.9	274.8	141.6	122.0	199.6	178.4	181.4	149.7
6	\|	270.2	389.3	279.8	237.1	164.9	162.5	105.2	70.6	59.8	105.8	82.9	84.9
7	1	51.2	179.3	193.5	137.0	88.5	78.9	72.5	52.4	34.5	31.6	49.0	38.7
8	I	19.1	76.9	74.3	91.6	52.2	63.5	75.5	42.0	21.5	29.5	18.7	33.3

Table. 3.7.9 WESTERN BALTIC HERRING. Output from ICA Run 22.

Year	Recruits \|	Total \|	Spawning	Landings \|	Yield \| M	Mean F \| S	SoP	
!	Age 0	Biomass	Biomass		\| / SSB	Ages i	,	
,	thousands	tonnes	tonnes	tonnes	\| ratio		3-6 i	1 (\%)
1991	5152960	641045	327477	191573	0.5850	0.3358	99	
1992	3870880	567424	342905	194411	0.5670	0.4441	100	
1993	3167210	492581	316405	185010	0.5847	0.5061	100	
1994	6087790	405618	251977	172438	0.6843	0.6243	100	
1995	4260820	344390	205460	164284	0.7996	0.4942	99	
1996	4014880	287969	146638	128243	0.8745	0.6621	99	
1997	3749770	281659	159142	123199	0.7741	0.4738	100	
1998	5080980	265318	124774	112386	0.9007	0.4905	100	
1999	5928180	272766	123367	101573	0.8233	0.4161	100	
2000	3393080	275404	134518	118278	0.8793	0.5416	99	
2001	4446510	277710	137931	110192	0.7989	0.5351	100	

Table. 3.7.10 WESTERN BALTIC HERRING. Output from ICA Run 22. PARAMETER ESTIMATES

Table. 3.7.10

continued

Table. 3.7.11 WESTERN BALTIC HERRING. Output from ICA Run 22. Age-structured index catchabilities
FLT22: IYFS Katt/Quarter 3/Age groups 1-
Linear model fitted. Slopes at age :
241 Q .1433E-03 $16.1228 \mathrm{E}-03$.2304E-03 .1433E-03 .1975E-03 .1704E-03

| 25 | 2 | Q | $.1457 \mathrm{E}-03$ | 15 | $.1249 \mathrm{E}-03$ | $.2338 \mathrm{E}-03$ | $.1457 \mathrm{E}-03$ | $.2005 \mathrm{E}-03$ | $.1731 \mathrm{E}-03$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 26 | 3 | Q | $.1020 \mathrm{E}-03$ | 15 | $.8753 \mathrm{E}-04$ | $.1637 \mathrm{E}-03$ | $.1020 \mathrm{E}-03$ | $.1404 \mathrm{E}-03$ | $.1212 \mathrm{E}-03$ |
| 27 | 4 | Q | $.1000 \mathrm{E}-03$ | 15 | $.8579 \mathrm{E}-04$ | $.1606 \mathrm{E}-03$ | $.1000 \mathrm{E}-03$ | $.1377 \mathrm{E}-03$ | $.1189 \mathrm{E}-03$ |
| 28 | 5 | Q | $.7768 \mathrm{E}-04$ | 16 | $.6656 \mathrm{E}-04$ | $.1251 \mathrm{E}-03$ | $.7768 \mathrm{E}-04$ | $.1072 \mathrm{E}-03$ | $.9244 \mathrm{E}-04$ |

FLT27: Acoustic Survey in Sub div 22-24
Linear model fitted. Slopes at age :

| 29 | 0 | Q | $.7694 \mathrm{E}-03$ | 17 | $.6518 \mathrm{E}-03$ | $.1283 \mathrm{E}-02$ | $.7694 \mathrm{E}-03$ | $.1087 \mathrm{E}-02$ | $.9284 \mathrm{E}-03$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 30 | 1 | Q | $.6318 \mathrm{E}-03$ | 16 | $.5375 \mathrm{E}-03$ | $.1040 \mathrm{E}-02$ | $.6318 \mathrm{E}-03$ | $.8848 \mathrm{E}-03$ | $.7584 \mathrm{E}-03$ |
| 31 | 2 | Q | $.6682 \mathrm{E}-03$ | 16 | $.5688 \mathrm{E}-03$ | $.1098 \mathrm{E}-02$ | $.6682 \mathrm{E}-03$ | $.9345 \mathrm{E}-03$ | $.8014 \mathrm{E}-03$ |
| 32 | 3 | Q | $.9296 \mathrm{E}-03$ | 16 | $.7914 \mathrm{E}-03$ | $.1527 \mathrm{E}-02$ | $.9296 \mathrm{E}-03$ | $.1300 \mathrm{E}-02$ | $.1115 \mathrm{E}-02$ |
| 33 | 4 | Q | $.1004 \mathrm{E}-02$ | 16 | $.8541 \mathrm{E}-03$ | $.1650 \mathrm{E}-02$ | $.1004 \mathrm{E}-02$ | $.1404 \mathrm{E}-02$ | $.1204 \mathrm{E}-02$ |
| 34 | 5 | Q | $.8138 \mathrm{E}-03$ | 16 | $.6915 \mathrm{E}-03$ | $.1344 \mathrm{E}-02$ | $.8138 \mathrm{E}-03$ | $.1142 \mathrm{E}-02$ | $.9781 \mathrm{E}-03$ |

FLT33: Acoustic Survey in Div IIIa+IVaE
Linear model fitted. Slopes at age :

| 35 | 2 | Q | $.1240 \mathrm{E}-02$ | 18 | $.1034 \mathrm{E}-02$ | $.2167 \mathrm{E}-02$ | $.1240 \mathrm{E}-02$ | $.1808 \mathrm{E}-02$ | $.1524 \mathrm{E}-02$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 36 | 3 | Q | $.1488 \mathrm{E}-02$ | 18 | $.1242 \mathrm{E}-02$ | $.2599 \mathrm{E}-02$ | $.1488 \mathrm{E}-02$ | $.2169 \mathrm{E}-02$ | $.1828 \mathrm{E}-02$ |
| 37 | 4 | Q | $.1324 \mathrm{E}-02$ | 18 | $.1105 \mathrm{E}-02$ | $.2314 \mathrm{E}-02$ | $.1324 \mathrm{E}-02$ | $.1931 \mathrm{E}-02$ | $.1628 \mathrm{E}-02$ |
| 38 | 5 | Q | $.1093 \mathrm{E}-02$ | 18 | $.9108 \mathrm{E}-03$ | $.1915 \mathrm{E}-02$ | $.1093 \mathrm{E}-02$ | $.1596 \mathrm{E}-02$ | $.1345 \mathrm{E}-02$ |
| 39 | 6 | Q | $.8452 \mathrm{E}-03$ | 19 | $.7031 \mathrm{E}-03$ | $.1491 \mathrm{E}-02$ | $.8452 \mathrm{E}-03$ | $.1240 \mathrm{E}-02$ | $.1043 \mathrm{E}-02$ |
| 40 | 7 | Q | $.7700 \mathrm{E}-03$ | 19 | $.6385 \mathrm{E}-03$ | $.1372 \mathrm{E}-02$ | $.7700 \mathrm{E}-03$ | $.1138 \mathrm{E}-02$ | $.9539 \mathrm{E}-03$ |
| 41 | 8 | Q | $.6504 \mathrm{E}-03$ | 19 | $.5411 \mathrm{E}-03$ | $.1147 \mathrm{E}-02$ | $.6504 \mathrm{E}-03$ | $.9542 \mathrm{E}-03$ | $.8024 \mathrm{E}-03$ |

Table. 3.7.12 WESTERN BALTIC HERRING. Output from ICA Run 22.
RESIDUALS ABOUT THE MODEL FIT Separable Model Residuals
(log(Observed Catch) $-\log ($ Expected Catch))

Age	\| 1997	1998	1999	2000	2001
0	\| 0.0871	0.1283	0.1658	-0.8248	0.4727
1	\| 0.0760	0.1096	-0.0610	-0.0439	-0.0285
2	\| -0.1468	0.1859	0.1817	-0.0042	-0.1137
3	\| 0.1582	-0.1191	0.2492	-0.1327	-0.0622
4	\| 0.1236	0.1403	-0.0183	0.0538	0.0477
5	\| -0.0693	0.0518	-0.1080	0.1147	-0.0048
6	\| 0.0922	-0.0679	-0.1938	-0.0507	0.2084
7	\| -0.1095	-0.1402	-0.0580	0.1858	0.0542

Table. 3.7.13 WESTERN BALTIC HERRING. Output from ICA Run 22. Aged Index Residuals: \log (Observed Index) - \log (Expected Index)

FLT22: IYFS Katt/Quarter 3/Age groups 1-

Age	\|	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
1	\|	-1.081	0.058	0.514	0.249	0.834	1.025	-1.533	-0.587	-0.008	*******	0.527
2	\|	-1.032	-0.738	-0.223	0.587	0.642	0.863	0.060	-0.364	0.043	*******	0.159
3	I	-0.240	-0.308	-0.707	0.726	0.901	-0.043	-0.423	-0.641	0.408	*	0.324
4	I	-0.494	-0.054	-0.319	0.206	1.010	-0.122	-0.623	0.063	0.410	*******	-0.082
5	\|	-0.442	-0.121	0.017	0.706	0.619	-0.038	0.616	-0.202	0.316	*******	-1.478

FLT27: Acoustic Survey in Sub div 22-24

Age		1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
0		0.855	0.240	-0.852	0.215	0.566	-0.498	0.229	-0.251	0.374	-0.596	-0.284
1	\|	0.577	0.355	-0.992	-0.677	0.078	0.231	0.405	-0.580	0.011	-0.039	0.629
2	I	0.370	0.116	-0.850	0.443	-0.274	-0.037	0.035	0.091	-0.635	-0.239	0.976
3		0.289	-0.290	-0.355	-0.113	-0.107	0.482	-0.183	0.057	-0.731	0.064	0.883
4	I	-0.259	-0.742	-0.149	0.219	0.070	0.508	0.079	0.013	-0.447	-0.020	0.723
5		-0.382	-1.106	-0.623	0.135	0.505	1.003	0.528	0.567	-0.798	0.030	0.135

FLT33: Acoustic Survey in Div IIIa+IVaE

Age		1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
2		-0.065	0.089	0.495	-0.966	0.788	-0.140	-0.314	0.471	*	0.406	-0.766
3	\|	0.030	0.260	0.027	-0.152	0.422	-0.641	0.063	0.376	*******	0.129	-0.518
4	I	-0.031	0.594	-0.093	-0.051	0.977	-0.619	-0.218	-0.186	*******	0.147	-0.525
5		-0.399	0.350	0.222	-0.035	0.137	-0.326	-0.402	0.262	*******	0.431	-0.246
6		-0.697	-0.076	0.017	0.541	0.682	-0.807	0.182	0.290	*******	0.006	-0.146
7		0.935	0.244	-0.455	-0.092	-0.073	-0.626	0.767	0.154	*	-0.814	-0.052
8		0.117	-0.549	-0.907	-0.122	0.006	-0.670	0.856	1.079	**	-0.244	0.420

Table. 3.7.14 WESTERN BALTIC HERRING. Output from ICA Run 22. PARAMETERS OF THE DISTRIBUTION OF \ln CATCHES-AT-AGE

Separable model fitted from 1997	to
Variance	001
Skewness test stat.	0.0345
Kurtosis test statistic	0.7116
Partial chi-square	0.9657
Significance in fit	0.0507
Degrees of freedom	0.0000
	17

DISTRIBUTION STATISTICS FOR FLT22: IYFS Linear catchability relationship assumed					
Age	1	2	3	4	5
Variance	0.1381	0.0739	0.0634	0.0443	0.0844
Skewness test stat.	-0.8200	-0.3010	0.4072	1.0308	-1.3608
Kurtosis test statisti	-0.4761	-0.5952	-0.7963	0.1604	0.4613
Partial chi-square	0.2230	0.1302	0.1410	0.1169	0.3273
Significance in fit	0.0000	0.0000	0.0000	0.0000	0.0000
Number of observations	10	10	10	10	10
Degrees of freedom	9	9	9	9	9
Weight in the analysis	0.2000	0.2000	0.2000	0.2000	0.2000

DISTRIBUTION STATISTICS FOR FLT27: Acoustic Survey in Sub div 22-24
Linear catchability relationship assumed

Age	0	1	2	3	4	5
Variance	0.0470	0.0476	0.0428	0.0318	0.0280	0.0716
Skewness test stat.	-0.0926	-0.8510	0.1819	0.6085	0.0041	-0.3462
Kurtosis test statisti	-0.7295	-0.5693	-0.1572	-0.0228	-0.2083	-0.6844
Partial chi-square	0.0607	0.0697	0.0660	0.0526	0.0500	0.1463
Significance in fit	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Number of observations	11	11	11	11	11	11
Degrees of freedom	10	10	10	10	10	10
Weight in the analysis	0.1667	0.1667	0.1667	0.1667	0.1667	0.1667

DISTRIBUTION STATISTICS FOR FLT33: Acoustic Survey in Div IIIa+IVaE
Linear catchability relationship assumed

Age	2	3	4	5	6	7	8
Variance	0.0461	0.0176	0.0330	0.0148	0.0324	0.0448	0.0593
Skewness test stat.	-0.4971	-0.8946	1.0152	-0.1073	-0.5067	0.3505	0.4149
Kurtosis test statisti	-0.5976	-0.3811	-0.0553	-1.0233	-0.4299	-0.5191	-0.5952
Partial chi-square	0.0590	0.0247	0.0493	0.0258	0.0637	0.1205	0.1705
Significance in fit	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Number of observations	10	10	10	10	10	10	10
Degrees of freedom	9	9	9	9	9	9	9
Weight in the analysis	0.1429	0.1429	0.1429	0.1429	0.1429	0.1429	0.1429

Table. 3.7.16 WESTERN BALTIC HERRING. Output from ICA Run 22. ANALYSIS OF VARIANCE TABLE

Unweighted Statistics
Variance

Total for model	51.3840	226	41	185	0.2778
Catches-at-age	1.4463	40	23	17	0.0851
Aged Indices					
FLT22: IYFS Katt/Quarter 3/Age groups	18.1838	50	45	0.4041	
FLT27: Acoustic Survey in Sub div 22-2	16.1285	66	6	60	0.2688
FLT33: Acoustic Survey in Div IIIa+IVa	15.6254	70	7	63	0.2480

[^7]Variance
Total for model

SSQ	Data	Parameters	d.f.	Variance
2.0808	226	41	185	0.0112
0.5866	40	23	17	0.0345
0.7274	50	5	45	0.0162
0.4480	66	6	60	0.0075
0.3189	70	7	63	0.0051

Table 3.8.1
WESTERN BALTIC HERRING. Input table for short-term predictions.

MFDP version 1a
Run: WBSS
Time and date: 16:04 19/03/02
Fbar age range: 3-6

2002

Age	N	M	Mat	PF	PM	SWt	Sel	CWt
0	4490961	0.3	0	0.1	0.25	0.000	0.118	0.015
1	3195800	0.5	0	0.1	0.25	0.017	0.337	0.028
2	932700	0.2	0.2	0.1	0.25	0.050	0.420	0.062
3	871400	0.2	0.75	0.1	0.25	0.084	0.473	0.096
4	391100	0.2	0.9	0.1	0.25	0.117	0.474	0.121
5	149700	0.2	1	0.1	0.25	0.154	0.520	0.151
6	84900	0.2	1	0.1	0.25	0.166	0.523	0.154
7	38700	0.2	1	0.1	0.25	0.159	0.474	0.157
8	33300	0.2	1	0.1	0.25	0.171	0.474	0.165

2003

Age		N	M	Mat	PF	PM	SWt	Sel

2004

| Age | | N | M | Mat | PF | PM | SWt | Sel |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | CWt

[^8]MFDP version 1a
Run: WBSS
Western Baltic Herring (combined sex; plus group)
Time and date: 16:04 19/03/02
Fbar age range: 3-6

2002 Biomass	SSB	FMult	FBar	Landings
270242	139690	1.0000	0.4976	107394

2003 Biomass	SSB	FMult	FBar	Landings	Biomass	SSB
270737	140505	0.0000	0.0000	0	394446	224223
.	139829	0.1000	0.0498	12763	379714	213227
.	139156	0.2000	0.0995	25018	365589	202776
.	138487	0.3000	0.1493	36784	352045	192842
.	137820	0.4000	0.1990	48084	339058	183399
.	137157	0.5000	0.2488	58937	326602	174423
.	136497	0.6000	0.2985	69363	314657	165890
.	135841	0.7000	0.3483	79378	303199	157779
.	135187	0.8000	0.3981	89002	292207	150069
.	134537	0.9000	0.4478	98249	281663	142738
.	133890	1.0000	0.4976	107137	271547	135770
.	133246	1.1000	0.5473	115680	261840	129145
.	132605	1.2000	0.5971	123894	252525	122846
.	131967	1.3000	0.6468	131791	243586	116858
.	131332	1.4000	0.6966	139385	235006	111164
.	130701	1.5000	0.7464	146689	226770	105751
.	130072	1.6000	0.7961	153715	218864	100604
.	129446	1.7000	0.8459	160474	211274	95710
.	128824	1.8000	0.8956	166978	203986	91057
.	128204	1.9000	0.9454	173238	196988	86632
.	127587	2.0000	0.9952	179262	190267	82424

[^9]

Figure 3.6.1 WESTERN BALTIC HERRING. Recruitment indices (natural log) adjusted to year-class, versus time. (GBTS = German Bottom Traw Survey)

WESTERN BALTIC HERRING HAWG 2002

Fleet No.	Survey	Area	Quarter	Ages	$\begin{array}{r} \hline \text { Mean F } \\ 2001 \end{array}$	Lower 95\% CL	$\begin{aligned} & \text { Upper } \\ & 95 \% \text { CL } \end{aligned}$	$\begin{aligned} & \hline \text { SSB } \\ & 2001 \end{aligned}$
4	FLT4: GER Acou. Ages 0-8+	SD 22, 23, 24	4	0-8+	0.51	0.33	0.78	151376
27	FLT27: GER Acou. Ages 0-5	SD 22, 23, 24	4	0-5	0.45	0.30	0.67	170268
9	FLT9: DK Acoustic Ages 0-8+	Div. Illa incl. Katt.	3	0-8+	0.69	0.39	1.21	119292
28	FLT28: DK Acoustic Ages 2-8+	Div. Illa incl. Katt.	3	2-8+	0.73	0.46	1.18	110020
29	FLT29:DK Acou.Ages 2-8+ \#91-95,99	Div. Illa incl. Katt.	3	2-8+	0.56	0.35	0.88	134745
33	FLT33: DK Acou. Ages 2-8+ \#1999	Div. Illa incl. Katt.	3	2-8+	0.61	0.42	0.87	122721
3	FLT3: GER Larval, 0-group	SD 24	1-2	0	0.05	0.01	0.29	1479850
23	FLT23: IBTS Q 1, Ages 1-5	Kattegat	1	1-5	0.44	0.23	0.84	164989
22	FLT22: IBTS Q 3, Ages 1-5	Kattegat	3	1-5	0.68	0.38	1.20	122026
1	FLT1: GBTS Nov., Ages 0-3+	SD 24	4	0-3+	0.20	0.09	0.46	358073

Figure 3.7.1a WESTERN BALTIC HERRING. Estimates of mean F and SSB by ICA runs by individual fleets and catch at age data for 1991-2001
WESTERN BALTIC HERRING HAWG 2002

Run No.	Fleet No.	Survey	Area	Quarter	Ages	$\begin{array}{r} \hline \text { Mean F } \\ 2001 \end{array}$	$\begin{gathered} \text { Lower } \\ 95 \% \mathrm{CL} \end{gathered}$	$\begin{gathered} \text { Upper } \\ 95 \% \mathrm{CL} \end{gathered}$	$\begin{aligned} & \hline \text { SSB } \\ & 2001 \\ & \hline \end{aligned}$
6	4+9+22	Run 6: GER Acou.+DK Acou.+IYFS Q3	Div. Illa+ Katt.+SD 22, 23, 24	3+4	0-8+	0.60	0.42	0.86	132671
	1+22+27+28	Run 10: GER Acou.+DK Acou.+IYFS Q3+GBTS SD 24Q4	Div. Illa+ Katt.+SD 22, 23, 24	3+4	0-8+	0.57	0.39	0.84	147597
	1+22+27+28	Run 11: as Run 10+0-Group downw.	Div. Illa+ Katt.+SD 22, 23, 24	3+4	0-8+	0.56	0.38	0.82	145512
13	22+27+28	Run 13: GER Acou.0-5+DK Acou.2-8+ +IYFS Q3	Div. Illa+ Katt.+SD 22, 23, 24	3+4	0-8+	0.60	0.43	0.84	131767
18	22+27+29	Run 18: as Run 13 but DK Acou.\#91-95,99	Div. Illa+ Katt.+SD 22, 23, 24	3+4	0-8+	0.50	0.36	0.71	147550
22	22+27+33	Final Run 22: GER Acou.0-5+DK Acou.2-8+,\#99+IYFS Q3+ 0 downw.	Div. Illa+ Katt.+SD 22, 23, 24	3+4	0-8+	0.51	0.38	0.69	137931
21	22+27+29	Run 21: as Run 18 + new maturity ogives	Div. Illa+ Katt.+SD 22, 23, 24	3+4	0-8+	0.50	0.36	0.71	128895

[^10]

Figure 3.7.2 Western Baltic Herring. Output from ICA Run 22:
Index sum of squares of deviations between model and observations (survey index) as a function of the reference F in 2001.
INDEX 22: IYFS in Kattegat, Quarter 3, Ages 1-5
INDEX 27: Acoustic Survey, Subdivisions 22-24, Sept./Oct., Ages 0-5
INDEX 33: Acoustic Survey, Div. IIIa+IvaE, July, Ages 2-8+

Stock Summary

Figure 3.7.3 Western Baltic Herring. Out put from ICA Run 22: Stock Summary

Figure 3.7.4 Western Baltic Herring. Out put from ICA Run 22:
Separable Model Diagnostics

FLT22: IYFS Katt/Quarter 3/Age groups 1-
Age 1

Figure 3.7.5a Western Baltic Herring. Output from ICA Run 22: Tuning Diagnostics. Index 22: IYFS, Kattegat, Quarter 3, Age 1

Stock Numbers	Catchabilitu
Year Index Prediction $+/-$ sd \qquad UPA	Index Ualue \triangle Index Observation Fitted Line
A Index Observation	Index Observation

Figure 3.7.5b Western Baltic Herring. Output from ICA Run 22: Tuning Diagnostics. Index 22: IYFS, Kattegat, Quarter 3, Age 2

FLT22: IYFS Katt/Quarter 3/Age groups 1-
Age 3

Figure 3.7.5c Western Baltic Herring. Output from ICA Run 22: Tuning Diagnostics. Index 22: IYFS, Kattegat, Quarter 3, Age 3

Figure 3.7.5d Western Baltic Herring. Output from ICA Run 22: Tuning Diagnostics. Index 22: IYFS, Kattegat, Quarter 3, Age 4

FLT22: IYFS Katt/Quarter 3/Age groups 1- Age 5

stack Numbers	Catchabilitu
\triangle Index Prediction + /- sd - UPA	\triangle Index Observation - Fitted Line
\triangle Index Observation	\triangle Index Observation

Figure 3.7.5e Western Baltic Herring. Output from ICA Run 22: Tuning Diagnostics. Index 22: IYFS, Kattegat, Quarter 3, Age 5

Figure 3.7.6a Western Baltic Herring. Output from ICA Run 22: Tuning Diagnostics.

```
FLT27: Acoustic Survey in Sub div 22-24 Age 1
```

Stock Numbers	Catchabilitu
Year \triangle Index Prediction $+/-$ sd - UPA	Index Ualue \triangle Index Observation \quad Fitted Line
A Index Observation	A Index Observation

Index 27: Acoustic Survey, SD 22-24, Sep./Oct., Age group 0

Figure 3.7.6b Western Baltic Herring. Output from ICA Run 22: Tuning Diagnostics.
Index 27: Acoustic Survey, SD 22-24, Sep./Oct., Age group 1

Figure 3.7.6c
Western Baltic Herring. Output from ICA Run 22: Tuning Diagnostics. Index 27: Acoustic Survey, SD 22-24, Sep./Oct., Age group 2

FLT27: Acoustic Survey in Sub div 22-24
Age 3

Stack Numbers	Datchability
 A Index Observation	 \triangle Index Observation

Figure 3.7.6d
Western Baltic Herring. Output from ICA Run 22: Tuning Diagnostics.
Index 27: Acoustic Survey, SD 22-24, Sep./Oct., Age group 3

Figure 3.7.6e Western Baltic Herring. Output from ICA Run 22: Tuning Diagnostics. Index 27: Acoustic Survey, SD 22-24, Sep./Oct., Age group 4

FLT27: Acoustic Surves in Sub div 22-24

Index Observation

Age 5

Figure 3.7.6f Western Baltic Herring. Output from ICA Run 22: Tuning Diagnostics. Index 27: Acoustic Survey, SD 22-24, Sep./Oct., Age group 5

Stack Numbers \triangle Index Prediction +/- sd — UPA	Datchabilitu
\triangle Index Observation	\triangle Index Observation

Figure 3.7.7a Western Baltic Herring. Output from ICA Run 22: Tuning Diagnostics. Index 33: Acoustic Survey, Division IIIa+IvaE, July, Age group 2

FLT33: Acoustic Surves in Div IIIa+IUaE
Age 3

Figure 3.7.7b Western Baltic Herring. Output from ICA Run 22: Tuning Diagnostics. Index 33: Acoustic Survey, Division IIIa+IvaE, July, Age group 3

Figure 3.7.7c Western Baltic Herring. Output from ICA Run 22: Tuning Diagnostics. Index 33: Acoustic Survey, Division IIIa+IvaE, July, Age group 4

FLT33: Acoustic Survey in Div IIIa+IUaE Age 5

Figure 3.7.7d Western Baltic Herring. Output from ICA Run 22: Tuning Diagnostics. Index 33: Acoustic Survey, Division IIIa+IvaE, July, Age group 5

stack Numbers \triangle Index Prediction $+/-$ sd - UPA	Catchability Andex Observation - Fitted Line

Figure 3.7.7e Western Baltic Herring. Output from ICA Run 22: Tuning Diagnostics. Index 33: Acoustic Survey, Division IIIa+IvaE, July, Age group 6

Figure 3.7.7f Western Baltic Herring. Output from ICA Run 22: Tuning Diagnostics. Index 33: Acoustic Survey, Division IIIa+IvaE, July, Age group 7

Figure 3.7.7g Western Baltic Herring. Output from ICA Run 22: Tuning Diagnostics. Index 33: Acoustic Survey, Division IIIa+IVaE July, Age group 8+

Figure 3.8.1 WESTERN BALTIC HERRING. Long and short term yield and SSB, derived by MFYPR v2a

Figure 3.9.1 Western Baltic herring. SSB estimates from ICA model with separate indices and with all indices combined.

Figure 3.9.2 WESTERN BALTIC HERRING: Restrospective Analysis

4.1 Introduction

The herring fisheries to the south of Ireland in the Celtic Sea and in Division VIIj have been considered to exploit the same stock. For the purpose of stock assessment and management these areas have been combined since 1982. The areas for which the assessments are now made, together with the area for which the TAC is set by the EU are shown in Figure 1.5.1. It should be noted that, although the management unit covers all of Divisions VIIg,h,j and k and the southern part of Division VIIa, the Irish catch which constitutes over 95% of the total catch is taken from the inshore waters along the Irish coast. This year for the first time the only real catches taken in the area were from the Irish fleet.

4.2 The Fishery in 2001-2002

4.2.1 Advice and management applicable to 2001-2002

In 2001 ACFM considered the status of this stock to be unknown. ACFM stated that it was difficult to give appropriate management advice for 2002 because of the uncertainty about the current stock size. ACFM recommended that catches be restricted to $8,000 \mathrm{t}$ for the first half of 2002. ACFM further stated that advice for the second half of 2002 would be given in June 2002 subsequent to the assessment and evaluation of new data to be carried out by the HAWG in March 2002.

The fishery for the $2001 / 2002$ season was opened on the $30^{\text {th }}$ September 2001. The spawning box closure system implemented was in VIIg during November 2001, However, the enforcement was not as strict as in previous years. A further closure was instigated by an Industry initiative and was strictly observed. This area closure was in place from $16^{\text {th }}$ January 2002 to the end of the fishing season on the $23^{\text {rd }}$ February 2002 and applied to an area east of a line from $52^{\circ} 30^{\prime} \mathrm{N} 6^{\circ} \mathrm{W}$, north to the land.

The total Irish quota was subdivided into boat quotas on a week-by-week basis. All vessels were again regulated by licences which restrict landings to specific ports and to specific times. The total catch that was permitted to be taken in the Irish fishery was $8,000 \mathrm{t}$ in the January - February (2001) period and the remainder of the national quota $(9,290 \mathrm{t})$ in the October to December (2001) period.

4.2.2 The fishery in 2000/2001

As has been the case for a number of years the majority of the catch in this area was taken by the Irish fishery during the spawning season, which normally lasts from October to February. There were some small catches misreported from outside the Celtic Sea. The landings in this fishery since 1958 are shown in Figure 4.2.1.

Similar to last season marketing conditions remained favourable throughout the season with some herring being processed for fillets. The number of vessels participating in the fishery increased. The average number participating during the 2000/2001 season was about 33, compared with an average of 30 in the previous season. Over 100 vessels participated in this fishery during the early sixties.

The start of the 2001/2002 fishery in October was marked by a low volume of landings, and vessels from the eastern part of the Celtic Sea did not begin fishing until three weeks after the opening of the season. The fish landed from the western part of the Celtic Sea were of mixed sizes. However,, this situation was markedly different on the Eastern side of the Celtic Sea (VIIa(S)), where two types of shoal were observed: shoals consisting of mainly large fish, found 5 or more miles offshore, and those found closer inshore, referred to as 'river fish' by the fishermen. These 'river fish' were targeted by some boats as, although they made less when sold, they were easier to find and catch than other shoals. This fishery lasted for a period of about three weeks, before a voluntary closure was put in place to protect the smaller fish (see section 4.2.1 above).

A map of the locations mentioned in the text is given in Figure 4.2.2.

4.2.3 The catch data

The estimated national catches from 1988-2002 for the combined areas by year and by season (1 April-31 March) are given in Tables 4.2.1 and 4.2.2 respectively. The total catches for the fishery over the longer period from 1958 to 2002 are shown in Figure 4.2.1. The reported catch, taken during the $2001 / 2002$ season was about $15,200 \mathrm{t}$ compared with $17,800 \mathrm{t}$ during the previous season.

Discards

The level of discards in this fishery is believed to have decreased considerably in recent years with the decline in the demand for "roe" fish for the Japanese market. There were no reports of any discarding from the fishery in the 2001/2002 season. This may have been due to the buoyant market for all grades of fillets, which prevailed throughout the season

4.2.4 Quality of catch and biological data

Since 1997 there has been a major increase in the monitoring of landings from this fishery and the management measures were again tightly enforced throughout the season. As a result the accuracy of the landing figures is good for this period. In addition the industry has begun to provide samples of the landings, which have greatly augmented the existing sampling programme.

Biological sampling of the catches throughout the area has greatly increased and the number of fish measured and fish aged per tonne has doubled. Details of the sampling data per quarter are shown in Table 4.2.3, while the length distributions of the catches taken by the Irish fleet per quarter are shown in Table 4.2.4.

4.2.5 Distribution of juvenile fish

A recent study on herring otolith microstructure has elucidated several points with respect to the natal origin of juvenile herring in the Irish and Celtic Seas (Brophy, 2002). Variation in mean length-at-age 0 rings was observed between nursery areas for both winter- and autumn-spawned fish (Celtic Sea > East Irish Sea > West Irish Sea). Herring, spawning as 1 ringer in the Celtic Sea, had larger "O1" measurements (otolith size at onset of 1st winter ring) than herring spawning as 2 or 3 ringers in the same areas. Back-calculation of fish length from O 1 measurements showed that juveniles $<11.5 \mathrm{~cm}$ at the end of the first growing season were unlikely to recruit to the spawning population until they are 2 ringers. These results show that juvenile distribution affects length-at-age for 0 ring fish and subsequently influences age at recruitment.

4.2.6 Catches in numbers-at-age

The total catches in numbers-at-age, including discards, per season from 1958 to 2002 are shown in Table 4.2.5. The age composition in 2001/2002 was again dominated by 2 ringers (1998/99 year class), which constituted 48% of the catch. 3 ringers (1997/98 year class) constituted 29% of the catch. The numbers of 4 ring and older fish remain relatively low. The numbers of 1 ringers constituted 12% of the catch in numbers which is above the average since the fishery was fully re-opened in 1983. These young fish were mainly taken in the catches from VIIa (S).

4.3 Mean Weights \& Maturity-at-Age

As the major portion of the catch from this fishery continues to be taken during the spawning season the mean weights-at-age in the catches have traditionally been taken as the mean weights in the stock at spawning time (1 October). The mean weights during 2001/2002 were lower than previous years for 1 to 3 ringers and similar to previous years for 4 ringers and older (Table 4.2.5). These low mean weights may be due to the apparent high abundance of these year classes in the population.

The maturity-at-age for this stock has been assumed to be constant throughout the whole time period (50% of 1 ring fish are assumed to be mature at age 1 and 100% mature at 2 ring). This maturity ogive reflects the current rate of maturation of fish caught in the Celtic Sea, However, it is understood that a proportion of $1 \& 2$ ringers present in the Irish Sea recruit to the Celtic Sea and in Division VIIj stock. This may have an effect on the maturity ogive and this still needs to be investigated before biological reference points are finalised.

$4.4 \quad$ Surveys

4.4.1 Acoustic surveys

A series of acoustic surveys have been carried out on this stock from 1990-1996. The series was interrupted in 1997 when no surveys were possible but was resumed in 1998 and has been continued since. A summary of these surveys is given in ICES (2001/ACFM:12).

Acoustic surveys for the 2000/2001 season were carried out in September 2000 and January 2001. The first survey in September was carried out several weeks earlier than in previous years and designed to run further offshore, in an effort to cover the stock during the peak spawning period. This survey was curtailed in the western area due to bad weather and at the southern edge due to lack of time. The concentrations of herring encountered on this survey were very sparse, However, the biomass estimate was based on clear herring marks and there is confidence that this is an accurate estimate of the biomass of herring in the area at the time. There is a possibility that part of the stock was outside the survey area at the time, and this is consistent with reports from the fishery that spawning occurred earlier in 2000 than in previous years. The SSB estimate from the September/October 2000 survey was 18,765t.

The timing of the survey in January 2001 appeared to be consistent with a peak spawning period of the winter-spawning component. There were some indications that the stock was not contained within the survey area, but there was no conflict between the age and maturity distributions of fish observed during the survey and in the fishery. The survey did not cover any ground west of the Old Head of Kinsale (Figure 4.2.2) as there had been no landings of fish from this area since December 2000. A repeat survey was conducted concentrating on the inshore ground. This survey produced a considerably different biomass for the Baginbun area than a survey completed 2 days previously. Information from the fishery suggested that shoals of fish were dispersed during the first survey due to prevailing SE winds, and as the wind direction changed before the second survey the shoals of fish had aggregated during this period. The two surveys gave SSB estimates of $5,300 t$ and 14,400 t. Therefore it was decided to average the estimate of the Baginbun area between the two surveys. The estimate of SSB from the January survey for the Celtic Sea and Division VIIj was 12,385 t.

The age-structured index, corresponding to a low SSB determined by the acoustic survey in 2000/2001, had a significant effect on the perception of the stock, whereby it appeared that there had been a large increase in F and decrease in SSB from 1999/2000 to 2000/2001. In addition problems in the acoustic index over the past several years have led to uncertainty in the assessment in the recent period. In 2001, in an effort to improve the acoustic survey index, a programme was initiated to monitor the distribution and age structure of the population over the summer months, so the acoustic survey could be successfully directed temporally and spatially. As a result of the summer programme (described in Section 4.4.2), acoustic surveys were carried out from the $2^{\text {nd }}$ week in September to the $3^{\text {rd }}$ week in October. The coverage of these surveys is shown in Figures 4.4.1a and b. The surveys were focused on those areas where the concentrations of herring had been located during the scientific surveys carried out during July and August and areas where herring had been located by white fish trawlers. By September shoals had appeared to migrate nearer to shore in comparison to July and August and concentrations were located in a number of areas throughout VIIg. Post plots showing the distribution of S_{A} values attributed to herring are shown in Figures 4.4.2a and b. These surveys did not encounter problems with area coverage as in previous years. Information gathered throughout the summer suggests that reasonable confidence can be held that the stock was contained within the survey. The age composition of samples taken from the acoustic survey, and the commercial catch data show very similar patterns (Figure 4.4.3).

The age distribution of the stock from all acoustic surveys carried out since 1990 is shown in Table 4.4.1.

4.4.2 Summer programme to examine stock distribution and age structure

A new scientific programme carried out by the Irish Marine Institute, working with the local Southwest Pelagic Management Committee (SWPMC) was aimed at obtaining information on:

1. The abundance of the stock, which appeared to be unusually low in 2000 , based on the most recent acoustic surveys.
2. The age composition and the distribution of the adult stock. Following from the absence of older fish in the catches in 2000 it was felt that if the older herring were still present in the stock they may be distributed in the off shore areas.

The programme was carried out in four main phases:

- A questionnaire was distributed to "white fish" trawlers working throughout the Celtic Sea and Division VIIj and Division VIIj to obtain information on where herring shoals were observed and to obtain samples from catches. This information was to be used to design the acoustic surveys and also to obtain biological information.
- A fishing survey was carried out during July and August using a pair of dedicated herring midwater trawlers in each month, equipped with automatic data loggers and working on a pre-determined grid, with scientific observers on board.
- An acoustic survey was carried out, using a commercial herring vessel, for two weeks during September 2001.
- An acoustic survey using the RV Celtic Voyager was started on 4 October 2001.

Results

- White fish trawlers. Some information was obtained on herring distribution from this part of the programme and samples were obtained from the area off the Smalls and south of Dunmore East (Figure 4.2.2).
- Fishing Survey. During the scientific survey samples were obtained from a number of areas and retained for biological examination. A total of 875 herring were aged and over 3,000 fish were measured from 78 trawl stations. Good concentrations of herring were located in a number of areas, particularly in the central area of the Celtic Sea (Division VIIg), Figure 4.4.4. The age composition of these herring is shown in the Table 4.4.2 and a comparison with the commercial catch data from last season is shown in Figure 4.4.5. Herring appeared to be scarce throughout the western parts of Div VIIj. No herring were located in the eastern part of the Celtic Sea (Division VIIa(S)) despite a large area being covered. Herring usually taken from the northern part of this area are thought to be those that migrate down from the Irish Sea (Div VIIaN) and are usually young fish.
- In addition to the samples obtained from the scientific survey age, compositions are also available from catches taken in a small-scale experimental fishery carried out for "Matje" herring in June throughout Divisions VIIg and VIIj. This age composition, based on 240 herring age readings and 1,200 length measurements, is also shown in Table 4.4.2. The age composition of the catches taken from the 2000/2001 fishery is also shown.

4.4.3 Bottom trawl surveys

In 2000 some information from a UK bottom trawl survey in the first quarter was made available to the HAWG. This information was useful in examining for major changes in Z in the previous year as indicated by the 1999/2000 acoustic survey index. While there was no updated information from this survey series available to the WG in 2001, it was made available, along with data from 2001, to this year's WG. While the time-series is still short it is hoped that its usefulness as an index may be investigated in the future.

4.5 Stock Assessment

4.5.1 Preliminary data exploration

Recent WG's have used the results of the acoustic surveys in the ICA programme but stated that the results of the 1996/97 surveys and 1998/99 surveys should be taken as minimum estimates. In 1998 the WG decided to use the agedisaggregated data but only over the 2-5 ringers as a relative index in the ICA programme. It was clear that the 1996 survey had failed to estimate the older fish in the population because of the small proportion of older fish recorded by the survey relative to the catch. The surveys, which are used as a relative index of numbers for 2-5 ringers, appear to perform well as indicators of mortalities over these age groups. However, it is apparent that the time-series of these surveys is noisy and that the SSB estimates from these surveys do not track well the perceived abundance of the stock over the time period (Figure 4.5.1). A table is given below showing the options used in the assessment since 1998.

Working Group	Age structured acoustic index (ages 2-5)	Shrinkage	Separable period
1998	$1990-1996$	No	$1992-1997$
1999	$1990-1996$, November 1998	No	$1993-1998$
2000	$1990-1996$, November 1998	Yes (5yr)	$1994-1999$
2001	$1990-1996$, November 1998,2000	No	$1995-2000$
2002	$1990-1996$, November $1998,2000-2001$	No	$1996-2001$

This year some options were run to test the sensitivity of the model to assumptions on the period of separable constraint, and to the down-weighting of 2 ringers in the catch (in addition to the down-weighting of 1 ringers which is traditionally applied). The results of these exploratory runs show that the assessment is not sensitive to these assumptions (Figure 4.5.1). However, it is evident that the best fit produces very high estimates of recruitment at age 1. As these are poorly estimated by the model, the group decided to replace the number of 1 ringers in 2001 with the value of the geometric mean calculated over the period (1958-1999). This replacement dramatically alters the perception of the biomass in the final year. However, this perception is consistent with a conservative approach, given the uncertainty in the current estimation of stock size.

The run log of this year's assessment is shown in Table 4.5.2.1. The results of the assessment and the diagnostics are shown in Table 4.5.2.2 and Figures 4.5.2.1-4.5.2.7. The current perception of a declining SSB is strongly influenced by the replacement of the number of 1 ringers (in 2001) by the geometric mean recruitment over the period 1958-1999. Replacing the number of recruits in 2001 with the geometric mean (1958-1999), alters the estimate of SSB in the final year from 69,276 t to 42,816 t. Given the uncertainty in recruitment perhaps a more useful indication of the status of this stock is shown by the sharp decline in F_{2-7} from 2000. The value of F_{2-7} in 2001 is 0.44 , which is below the long-term average for this stock (0.51). This figure reflects the relatively large numbers of 2 and 3 ringers in the 2001 catches which make up the bulk of the catch.

The value of F estimated for 2001 is 0.44 , and for 2000 is 0.76 . Estimates of F estimated by the 2001 WG were 0.94 for 2000 and 0.95 and 1999. Plots of the stock trajectory from this year's assessment are presented in Figure 4.5.2.8 along with the trajectories from the final runs in 2001 and 2000. All these plots have been corrected for geometric mean recruitment.

The number of 1 ringers in the stock indicate that recruitment was below average in the period 1996 - 1998, but recruitment appears to have been above average for the past 3 years.

4.5.3 Comments on the assessment

Figure 4.5.2.8 shows the trajectories of SSB, F, and recruitment according to this year's assessment. For comparison the final run from the last 2 years are also included. The estimates of SSB in the period 1999-2000 are revised upwards, but the estimate of SSB in the final year is highly uncertain as it was not possible to carry out uncertainty analyses in ICA as the data set is too noisy. It is very difficult to assess the SSB of this stock in the final year because, although it comprised 12% of the total catch (in $2001 / 2002$) the recruiting 1 ringers are poorly selected by the fishery. This age group is down-weighted in the assessment and there is only a single catch data point for 1 ringers. Therefore there is relatively small contribution to the SSQ (and thus the model fit) for this age group. However, according to the maturity ogive used, 50% of this age class are mature and thus they have a significant contribution to the SSB. The problem becomes compounded when a short-term deterministic prediction is run, as the geometric mean recruitment and their survivors (age 2 in beginning 2002/2003 season) account for around 50% of the spawning stock in numbers.

4.5.4 Recruitment estimates

At present there are no recruitment estimates for this stock that can be used for predictive purposes. The numbers of 1 ringers estimated from the ICA model suggest that recruitment during the period 1996-1998 may have been below average, but that recruitment may be above average since 1999. This may explain the low numbers of 3-5 ringers in the population and the relatively high number of 1 and 2 ringers.

In this stock a proportion of juvenile fish are present in the Irish Sea and do not recruit to the Celtic Sea and Division VIIj until they are mature. Therefore, neither the numbers of 1 ringers in the stock as estimated from the acoustic surveys nor the numbers in the catches give a reliable indication of year-class strength. The relationship between the numbers of 1 ringers taken per hour in the Northern Irish ground fish surveys in the Irish Sea and the numbers of 1 ringers estimated by ICA for the Celtic Sea and Division VIIj was examined in a working document presented to the 1999 WG (Armstrong et al., 1999), and the results suggest that these surveys may become a useful indicator of recruitment to the Celtic Sea and Division VIIj when a longer time-series is established. Recent information on mean length of 0 group herring (measured in October) in the eastern and western Irish Sea suggests that the proportion of juvenile herring from the Celtic Sea and Division VIIj stock in the Irish Sea may be relatively low.

4.6 Short Term Projection

Because of the uncertainty about the current stock size and the lack of information on recruitment it was decided that projections over a medium or long-term basis would be unrealistic. A short-term projection was carried out under the following assumptions.

The number of 1 ringers was based on the geometric mean from 1958 to 1999. This value was 412 million fish. This method was the same as applied last year but in contrast to previous years, where the geometric mean was calculated over the more recent period (1982-1998). Given the uncertainty about the current stock size it was considered more appropriate to use the entire period, including a period of recruitment failure. This value is similar to last year and about 150 million lower than that used by the 2000 WG.

The mean weights used in the catches and in the stock were based on average values over the period 1996 - 2001. The input data used for the predictions are shown in Table 4.6.1.

Results of Predictions

A single option management table based on \mathbf{F}_{sq} is given in Table 4.6.2. A management option table based on \mathbf{F}_{sq} in 2002 with options for 2003 is given in Table 4.6.3. The calculated SSB for 2002 comes to 48,800 t. The overall results of the predictions are strongly influenced by the number of recruits in 2001 and, concomitantly, the survivors at age 2 in 2002. If fishing in 2002 remains at \mathbf{F}_{sq} the catch in 2002 will be $13,192 \mathrm{t}$ and the SSB in 2003 will rise to $50,100 \mathrm{t}$. Continued fishing at this effort will yield catches of $13,900 \mathrm{t}$ and the SSB will rise slightly to $50,700 \mathrm{t}$ in 2004.

A single option management table based on a catch constraint of 8,000 t is given in Table 4.6.4. This catch is based on the current TAC, which applies only to the first six months of 2002. If the landings in 2002 are constrained to 8,000 t the SSB will rise to $50,000 \mathrm{t}$ and the F in 2002 will fall 0.25 . A management option table based on \mathbf{F}_{sq} in 2002 with options for 2003 is given in Table 4.6.5. Continued fishing at this effort in 2003 will yield catches of about $9,000 \mathrm{t}$ in 2003 and the SSB will rise to around $60,000 \mathrm{t}$ in 2004.

It is very difficult to suggest appropriate catch options for 2002, given that predictions are heavily dependent on the recruitment of 1 ringers in 2001 and that these are poorly estimated by the assessment. Nonetheless, using the conservative estimate based on the geometric mean (1958-2000) would suggest that only catches in excess of 27,000 t would reduce the SSB below \mathbf{B}_{pa} in 2002. Using an F option suggests that fishing at \mathbf{F}_{sq} would maintain SSB above \mathbf{B}_{pa}. These options are summarised below and presented in the management option tables.

Basis	F_{2002}	SSB in 2002	Catch in 2002	Comments
TAC Freeze	0.25	50,087	$8,000 \mathrm{t}$	Rising SSB
$\mathrm{F}_{2002}=\mathbf{F}_{\mathrm{sq}}$	0.44	48,809	$13,192 \mathrm{t}$	Rising SSB

Plots of yield per recruit and short-term yield are given in Figure 4.6.1.

4.6.1 Biological reference points and management considerations

Biological reference points were discussed in detail in the 2000 WG report (ICES 2000/ACFM:12) and in the report of the previous years (ICES 1999/ACFM:12, ICES 1998/ACFM:14). The following paragraphs are a summary of this information.

There has been a period of recruitment failure in the stock from around 1970 to the early 1980 's, when recruitments were in the order of 100 million- 300 million individuals, as opposed to 400 million to 1000 million in most other years. This recruitment failure apparently was not induced by a low SSB. Rather, it started when the SSB was at a high level and recruitment returned to normal while the SSB was at its lowest. Overall, the recruitment does not appear to be strongly dependent on the SSB.

In the periods with good recruitment, the fishing mortalities have mostly been in the range of $0.35-0.6$, and the stock seems to have tolerated this fishing mortality well. This fishing mortality is higher than that which most herring stocks will tolerate. The background for this may be partly because the recruits per SSB are quite high, except in the period with poor recruitment, and partly because the fishery is almost exclusively on mature fish, which gives a favourable SSB per recruit.

The 1998 Working Group suggested a $\mathbf{B}_{\text {lim }}$ at 26,000 tonnes, which is the lowest SSB observed and is just below the biomass level which gave rise to the first strong year classes after the collapse. Assuming a $30 \% \mathrm{CV}$ on the current SSB estimates leads to a \mathbf{B}_{pa} of $40,000 \mathrm{t}$. The Working Group also proposed an $\mathbf{F}_{\mathrm{pa}}=0.4$ as being appropriate to the present position where the stock was at a reasonably high level. The $\mathbf{B}_{\mathrm{pa}}=40,000 \mathrm{t}$ was accepted by ACFM, but it considered that the $\mathbf{F}_{\mathrm{pa}}=0.4$ was too high and it proposed that it should be equal to F med $=0.29$.

The 1999 Working Group re-examined the \mathbf{F}_{pa} and suggested that it might be appropriate to have different \mathbf{F}_{pa} for periods of high and low recruitments. On this basis it was suggested that an $\mathbf{F}_{\mathrm{pa}}=0.3$ would be appropriate for a period of high recruitment and an $\mathbf{F}_{\mathrm{pa}}=0.2$ for a period of low recruitment. It was also pointed out that the mean weights-at-age should be re-evaluated for the earlier time period, and that values of F lower than the proposed $\mathbf{F}_{\mathrm{pa}}=0.29$ had only been
evident in 4 years out of 40 years in the time-series. ACFM did not accept the proposal of two different \mathbf{F}_{pa} and asked that the biological reference points be re-evaluated after the examination of the weight-at-age data.

The 2001 Working Group therefore re-examined the stock recruit relationship over the 1958 to 1999 period using the new SSB estimated on the revised stock weights for the 1958 to 1983 period. It was concluded that the revised stock weights have had no effect on the stock recruitment relationship.

It has also been suggested that the catches of juvenile fish taken in the industrial fishery in the Irish Sea (Div. VIIa North) may also have had an effect on the stock recruit relationship. This is because these catches contained an unknown proportion of Celtic Sea and Division VIIj recruits and these have never been included in the catch in number at age for the Celtic Sea. The 2000 Working Group examined the numbers-at-age taken in the industrial fishery which were presented in an earlier Working Group report (ICES 1980/H:4). It was concluded that the numbers, although substantial in some years, were unlikely to have had any major effect on the Celtic Sea and Division VIIj recruitment. However, it was decided to examine the stock recruitment relationship over the period after the industrial fishery ceased, and when the Celtic Sea and Division VIIj stock had recovered, after the collapse that caused its closure from 1977 to 1982. Accordingly, a new stock recruitment plot was calculated over the period 1982 to 1999. The F med for this period is very different from that calculated for the earlier period (1958-1997) and was estimated as $\mathrm{F}=0.44$. This is very similar to the value proposed by the 1998 Working Group of 0.40 . This would imply that an $\mathbf{F}_{\mathrm{pa}}=0.44$ would be appropriate for periods when the stock is high as a result of good recruitments. It would also imply that, as suggested by earlier working groups, the biological characteristics of this stock are such that it can withstand higher rates of fishing mortality than other stocks. This is partially due to the fact that 50% of the age 1 fish are mature and these spawning fish are not fully selected by the fishery. As the period of low recruitment is strongly correlated with the juvenile fishery in the Irish Sea and appears to be atypical of the 40 years history of the stock the inclusion of this period for the management of the stock in its current state seems inappropriate. While a $\mathbf{F}_{\mathrm{pa}}=0.44$ seems high, an $\mathbf{F}_{\mathrm{pa}}=0.29$ is rather low and fishing mortalities below this value have only been observed in 3 out of the 40 years time period.

As there is no new information and as the current assessment is unstable, the WG did not propose any change to the reference points suggested by last years WG. No suggestions or proposals to the precautionary reference points have been provided by the WG since 2000.

4.6.2 Quality of the assessment

This assessment has become unstable in recent years due to problems with acoustic survey and an apparent change in the recruitment levels between 1996 and 1998, which was not detected by the assessments in those years. As 50% of the recruiting 1 ringers are mature, the development of this stock in the short term is more strongly influenced by recruitment than by any other factor. Without an independent measure of this there is very little information in the assessment about the current levels of recruitment.

4.6.3 Management considerations

The most recent assessment shows that fishing mortality has decreased significantly in the past year and that fishing mortality in 2000 was overestimated by last years assessment. However, the point estimate of SSB in 2001 is very imprecise and is greatly influenced by the number of age 1 recruits assumed in 2001. If a conservative view of recruitment in 2001 is taken, the trajectory of the stock biomass shows a decreasing trend since 1996. This may be due to poor recruitment in the period 1996-1998. Projections based on this perception of the stock are naturally sensitive to recruitment. However, recruitment in the most recent years appears to be above average (although these data points are relatively poorly estimated). When conservative recruitment estimates are used, fishing at the current effort will stabilise the SSB in 2003 and 2004. If the current recruitment is an underestimate then the SSB will rise. Following the 2000-2001 fishery it was decided by the Irish fishing industry (who account for the vast majority of the catches) to form a Pelagic Management Committee. Among the aims of the Committee was: To put in place a programme that would help to obtain scientific information that might explain the unusual features of the recent herring fishery; and to obtain sufficient information that would enable the stock to be exploited in such a way that the maximum benefit could be obtained for all stake holders on a long-term basis. In addition, the Committee drew up a management policy for the fishery that states: "The South and West Pelagic Management Committee have agreed to manage this herring stock according to the best available scientific advice. It is the policy of the Committee to maintain the stock at a level whereby it can sustain annual catches of around 20,000 t. In the event of the stock falling below the level at which these catches can be sustained the Committee will take appropriate rebuilding measures. The Committee will also introduce such measures as are necessary to prevent landings of small and juvenile herring including closed areas, and/or appropriate time closures. It is an objective of the Committee that all landings of herring should contain at least 50% of individual fish above 23 cm . Spawning Box closures, as are at present in operation, should be retained and may, if necessary, be expanded both in time and area".

Because of concerns about the small size of herring throughout Div VIIg, in the first quarter of 2002, this policy was successfully put into effect, by the closure of an area south of Dunmore (see section 4.2.1). One pair of boats was allowed to fish for a small catch on two occasions to monitor the size composition of fish in the area. The herring sampled showed no improvement in size distribution. However, the skipper did report that substantial quantities of herring were spawning on the traditional spawning grounds south off Dunmore East during late February. Notwithstanding the fact that 2,000 t of quota had yet to be taken the Committee recommended a closure in mid-January 2002, and the fishery was closed by statute for the area for the remainder of the season.

The stock is so dependent on recruitment that the Working Group stresses the importance of obtaining and evaluating all recruitment information that is available from surveys in the area. It is also essential that the acoustic surveys should be maintained.

Protection of Spawning Grounds

The main Irish fishery takes place on the spawning grounds along the Irish coast. The spawning grounds are well known and are mainly located in shallow inshore waters. In recent years a number of these spawning grounds have come under threat from possible extraction of gravel, dumping of harbour silt and dredge spoil, and from the location of fish farms. It is extremely important for the survival of the stock that these spawning grounds are adequately protected.

The Working Group therefore recommends that gravel extraction or dumping of dredge spoils or silt or the location of fish farms should not be permitted in areas that are known to contain herring spawning grounds.

Table 4.2.1 Celtic Sea and Division VIIj herring landings by calendar year (t), 1988-2001. (Data provided by Working Group members.) These figures may not in all cases correspond to the official statistics and cannot be used for management purposes.

Year	France	Germany	Ireland	Netherlands	U.K.	Unallocated	Discards	Total
1988	-	-	-	16,800	-	-	-	2,400
1989	+	-	-	16,000	1,900	-	1,300	3,500
1990	+	-	1,000	200	700	2,500	22,700	
1991	+	100	19,400	1,600	-	600	1,900	23,600
1992	500	-	18,000	100	+	2,300	2,100	23,000
1993	-	-	19,000	1,300	+	$-1,100$	1,900	21,100
1994	+	200	17,400	1,300	+	$-1,500$	1,700	19,100
1995	200	200	18,000	100	+	-200	700	19,000
1996	1,000	0	18,600	1,000	-	$-1,800$	3,000	21,800
1997	1,300	0	18,000	1,400	-	$-2,600$	700	18,800
1998	+	-	19,300	1,200	-	-200	0	20,300
1999		200	17,900	1300	+	-1300	0	18,100
2000	573	228	18,038	44	1	-617	0	18,267
2001	1,359	219	17,729	-	-	-1578	0	17,729

Table 4.2.2 Celtic Sea \& Division VIIj herring landings (t) by season (1 April-31 March) 1988/1989-2001/2002. (Data provided by Working Group members.) These figures may not in all cases correspond to the official statistics and cannot be used for management purposes.

Year	France	Germany	Ireland	Netherlands	U.K.	Unallocated	Discards	Total
$1988 / 1989$	-	-	17,000	-	-	-	3,400	20,400
$1989 / 1990$	+	-	15,000	1,900	-	2,600	3,600	23,100
$1990 / 1991$	+	-	15,000	1,000	200	700	1,700	18,600
$1991 / 1992$	500	100	21,400	1,600	-	-100	2,100	25,600
$1992 / 1993$	-	-	18,000	1,300	-	-100	2,000	21,200
$1993 / 1994$	-	-	16,600	1,300	+	$-1,100$	1,800	18,600
$1994 / 1995$	+	200	17,400	1,300	+	$-1,500$	1,900	19,300
$1995 / 1996$	200	200	20,000	100	+	-200	3,000	23,300
$1996 / 1997$	1,000	-	17,900	1,000	-	$-1,800$	750	18,800
$1997 / 1998$	1,300	-	19,900	1,400	-	-2100	0	20,500
$1998 / 1999$	+	-	17,700	1,200	-	-700	-0	18,200
$1999 / 2000$		200	18,300	1300	+	-1300	0	18,500
$2000 / 2001$	573	228	16,962	44	1	-617	0	17,191
$2001 / 2002$	-	-	15,236	-	-	-	0	15,236

Table 4.2.3 Celtic Sea \& Division VIIj (2001-2002). Sampling intensity of commercial catches.

Country	Catch (t)	No. of samples	No. of age readings	No. of fish measured	Aged per 1000	Estimates of	
Ireland	Q 2 2001	323	11	118	1073	365	No
	Q 4 2001	9,934	65	1619	9907	163	No
	Q 1 2002	4,979	53	977	9250	196	No

Table 4.2.4. Celtic Sea and Division VIIj. Length distribution of Irish catches/quarter (thousands) 2000/2001.

Q2 2001		Q4 2001			Q1 2002		
Length	VIIj	VIIaS	VIIg	VIIj	VIIaS	VIIg	VIIj
15.5	2						
16.0	0						
16.5	0						
17.0	0						
17.5	0						
18.0	14				1		
18.5	7	8			0		
19.0	86	8	14	6	0	7	
19.5	107	75	14	58	0	0	
20.0	162	359	229	28	4	20	46
20.5	95	451	330	178	16	93	31
21.0	102	1043	1032	410	53	253	61
21.5	88	1427	2079	874	102	633	215
22.0	102	1719	2882	1136	224	1420	307
22.5	124	1527	3097	1316	315	2233	353
23.0	171	2019	4244	1400	498	3266	461
23.5	188	1560	4287	1394	524	3766	261
24.0	254	1644	4717	1317	468	4172	353
24.5	295	1394	4315	1414	346	4019	231
25.0	268	1485	4602	1395	228	3832	138
25.5	159	1302	4344	1349	174	3672	292
26.0	126	1110	3341	1085	131	2886	323
26.5	78	651	2194	936	58	1659	384
27.0	55	459	1362	830	42	1166	369
27.5	31	284	1061	620	23	766	154
28.0	26	250	487	630	14	620	31
28.5	2	83	315	456	4	287	61
29.0	7	67	100	265	4	187	31
29.5		25	43	74	0	47	46
30.0			14	57	1	53	
30.5				14			
31.0				3			
31.5							
Totals:	2549	18950	45104	20477	3232	35056	4150

Table 4.2.5(a) Celtic Sea and Division VIIj. Catch-at-age 1958-2001, predicted catch for the separable period (OUTPUT from ICA).

Output Generated by ICA Version 1.4
Herring Celtic VIIj (run: Final 2002 WG)
Catch in Number

AGE	1958	1959	1960	1961	1962	1963	1964	1965
1	1.64	1.20	2.84	2.13	0.77	0.30	7.53	0.06
2	3.74	25.72	72.25	16.06	18.57	51.94	15.06	70.25
3	33.09	2.27	24.66	32.04	19.91	13.03	17.25	9.37
4	25.75	19.26	3.78	5.63	48.06	4.18	6.66	15.76
5	12.55	11.02	13.70	2.03	8.07	20.69	1.72	3.40
6	23.95	5.83	4.43	5.07	3.58	2.69	8.72	4.54
7	16.09	17.82	6.10	2.83	8.59	1.39	1.30	12.13
8	9.38	3.75	4.38	1.52	3.81	2.49	0.58	1.38
9	5.58	7.35	4.15	4.95	5.32	2.79	2.19	7.49

AGE	1966	1967	1968	1969	1970	1971	1972	1973
1	7.09	7.60	12.20	9.47	1.32	12.66	8.42	23.55
2	19.56	39.99	54.79	93.28	37.26	23.31	137.69	38.13
3	59.89	20.06	39.60	55.04	50.09	37.56	17.86	55.80
4	9.92	49.11	11.54	33.15	26.48	41.90	15.84	7.01
5	13.21	9.22	22.60	12.22	18.76	18.76	14.53	9.65
6	5.60	9.44	4.93	17.84	7.85	10.44	4.64	5.32
7	3.59	3.94	4.17	4.76	6.35	4.28	3.01	3.35
8	8.75	6.51	1.31	2.17	2.17	4.94	2.37	2.33
9	3.84	6.76	4.94	3.47	3.37	2.24	1.02	1.21

Table 4.2.5(a) Continued

Catch in Number

AGE	1982	1983	1984	1985	1986	1987	1988	1989
1	15.34	13.54	19.52	17.92	4.16	5.98	2.31	8.26
2	42.73	102.87	92.89	57.05	56.75	67.00	82.03	42.41
3	8.73	26.99	41.12	36.26	42.88	43.08	30.96	68.40
4	4.82	3.23	16.04	16.03	32.93	23.01	9.40	19.60
5	1.50	1.86	2.45	2.31	8.79	14.32	5.96	8.21
6	1.89	0.33	1.08	0.23	1.13	2.72	3.05	3.84
7	1.67	0.37	0.38	0.09	0.10	1.18	0.87	2.59
8	0.34	0.93	0.23	0.17	0.03	0.30	0.30	0.77
9	0.60	0.31	0.18	0.13	0.01	0.46	0.09	0.68

AGE	11990	1991	1992	1993	1994	1995	1996	1997
1	12.70	1.91	10.41	1.61	12.13	9.45	3.48	3.85
2	141.76	63.85	26.75	94.06	35.77	79.16	61.92	37.44
3	\| 24.63	38.34	35.02	9.37	61.74	22.59	38.24	53.04
4	135.26	16.92	27.59	10.22	3.29	36.54	7.94	31.44
5	1 8.12	28.41	10.14	4.49	3.02	3.69	16.11	8.32
6	13.81	4.87	18.06	2.79	4.77	3.42	2.08	6.14
7	11.67	2.59	3.02	5.93	1.71	2.65	1.59	1.15
8	10.69	0.95	6.29	0.85	1.71	1.86	1.51	0.83
9	10.46	0.59	0.69	0.51	0.47	0.84	1.02	0.60

AGE	1998	1999	2000	2001
1	5.82	14.27	9.95	15.72
2	41.51	34.07	77.38	60.25
3	27.10	36.09	18.95	36.13
4	28.27	14.64	12.06	6.00
5	13.18	15.52	5.23	4.25
6	3.75	8.88	6.23	1.82
7	2.67	1.86	2.32	1.25
8	0.60	2.01	0.66	0.47
9	0.39	0.55	0.58	0.39

x -------------
$\times 10$ ^ 6

Predicted Catch in Number

AGE	1	1996	1997	1998	1999	2000	2001
1	,	3810.	5777.	3987.	13000.	9705.	15716.
2	\|	67301.	36151.	43219.	42213.	77464.	43179.
3	I	39829.	56265.	22787.	37508.	18445.	27433.
4	\|	9702.	27921.	29323.	16223.	12962.	5300.
5	\|	11842.	7690.	16416.	23045.	6201.	4230.
6	\|	2281.	8083.	3842.	10812.	7149.	1695.
7	1	1427.	1144.	2941.	1902.	2425.	1381.
8	।	1507.	919.	545.	1926.	595.	631.

$x 10 \wedge 3$

Table 4.2.5(b) Celtic Sea and Div. Viij. Weights-at-age in the catch.

```
Weights-at-age in the catches (Kg)
```

AGE	1958	1959	1960	1961	1962	1963	1964	1965
1	0.09600	0.08700	0.09300	0.09800	0.10900	0.10300	0.10500	0.10300
2	0.11500	0.11900	0.12200	0.12700	0.14600	0.13900	0.13900	0.14300
3	0.16200	0.16600	0.15600	0.15600	0.17000	0.19400	0.18200	0.18000
4	0.18500	0.18500	0.19100	0.18500	0.18700	0.20500	0.21500	0.21200
5	0.20500	0.20000	0.20500	0.20700	0.21000	0.21700	0.22500	0.23200
6	0.21700	0.21000	0.20700	0.21200	0.22700	0.23000	0.23000	0.24300
7	0.22700	0.21700	0.22000	0.22000	0.23200	0.23700	0.23700	0.24300
8	0.23200	0.23000	0.22500	0.23500	0.23700	0.24500	0.24500	0.25600
9	0.23000	0.23100	0.23900	0.23500	0.24000	0.25100	0.25300	0.26000

AGE	1966	1967	1968	1969	1970	1971	1972	1973
1	0.12200	0.11900	0.11900	0.12200	0.12800	0.11700	0.13200	0.12500
2	0.15400	0.15800	0.16600	0.16400	0.16200	0.16600	0.17000	0.17400
3	0.19100	0.18500	0.19600	0.20000	0.20000	0.20000	0.19400	0.20500
4	0.21200	0.21700	0.21500	0.21700	0.22500	0.22500	0.22000	0.21500
5	0.23700	0.24300	0.23500	0.23700	0.24000	0.24500	0.24500	0.24500
6	0.24800	0.25100	0.24800	0.24500	0.25300	0.25300	0.25900	0.26200
7	0.24000	0.25600	0.25600	0.26400	0.26400	0.26200	0.26400	0.26200
8	0.25300	0.25900	0.26200	0.26400	0.27600	0.26700	0.27000	0.28500
9	0.25700	0.26400	0.26600	0.26200	0.27200	0.28300	0.28500	0.28500

AGE	1974	1975	1976	1977	1978	1979	1980	1981
1	0.14100	0.13700	0.13700	0.13400	0.12700	0.12700	0.11700	0.11500
2	10.18000	0.18700	0.17400	0.18500	0.18900	0.17400	0.17400	0.17200
3	10.21000	0.21500	0.20500	0.21200	0.21700	0.21200	0.20700	0.21000
4	10.22500	0.24000	0.23500	0.22200	0.24000	0.23000	0.23700	0.24500
5	10.23700	0.25100	0.25900	0.24300	0.27900	0.25300	0.25900	0.26700
6	10.25900	0.26000	0.27000	0.26700	0.27600	0.27300	0.27600	0.27600
7	10.26200	0.27000	0.27900	0.25900	0.29100	0.29100	0.27000	0.29700
8	10.28800	0.27900	0.28800	0.29200	0.29700	0.27900	0.27000	0.30900
9	10.27000	0.28400	0.29300	0.29800	0.30200	0.28400	0.27500	0.31500

AGE	1982	1983	1984	1985	1986	1987	1988	1989
1	0.11500	0.10900	0.09300	0.10400	0.11200	0.09600	0.09700	0.10600
2	0.15400	0.14800	0.14200	0.14000	0.15500	0.13800	0.13200	0.12900
3	0.19400	0.19800	0.18500	0.17000	0.17200	0.18600	0.16800	0.15100
4	0.23700	0.22000	0.21300	0.20100	0.18700	0.19200	0.20300	0.16900
5	0.26200	0.27600	0.21300	0.23400	0.21500	0.20400	0.20900	0.19400
6	0.27300	0.28200	0.24500	0.24800	0.24800	0.23100	0.21500	0.19900
7	0.27900	0.27600	0.24600	0.25600	0.27600	0.25500	0.23700	0.21000
8	0.28800	0.31900	0.26300	0.26000	0.28400	0.26700	0.25700	0.22100
9	0.29300	0.32500	0.26200	0.26300	0.33200	0.28400	0.28300	0.24000

Table 4.2.5(b) continued

AGE	1990	1991	1992	1993	1994	1995	1996	1997
1	0.09900	0.09200	0.09600	0.09200	0.09700	0.08800	0.08800	0.09300
2	0.13700	0.12800	0.12300	0.12900	0.13500	0.12600	0.11800	0.12400
3	0.15300	0.16800	0.15000	0.15500	0.16800	0.15100	0.14700	0.14100
4	0.16700	0.18200	0.17700	0.18000	0.17900	0.17800	0.15900	0.15700
5	0.18800	0.19000	0.19100	0.20100	0.19000	0.18800	0.18500	0.17200
6	0.20800	0.20600	0.19400	0.20400	0.21000	0.19800	0.19600	0.19200
7	0.20900	0.22900	0.21200	0.21000	0.21800	0.20700	0.20700	0.20600
8	0.22900	0.23600	0.22800	0.22500	0.21700	0.22700	0.21900	0.21600
9	0.25100	0.25100	0.24800	0.24000	0.22700	0.22700	0.23100	0.22000

Table 4.2.5(c) Celtic Sea and Div. VIIj. Weights-at-age in the stock

AGE	\| 1958	1959	1960	1961	1962	1963	1964	1965
1	0.09600	0.08700	0.09300	0.09800	0.10900	0.10300	0.10500	0.10300
2	10.11500	0.11900	0.12200	0.12700	0.14600	0.13900	0.13900	0.14300
3	\| 0.16200	0.16600	0.15600	0.15600	0.17000	0.19400	0.18200	0.18000
4	\| 0.18500	0.18500	0.19100	0.18500	0.18700	0.20500	0.21500	0.21200
5	10.20500	0.20000	0.20500	0.20700	0.21000	0.21700	0.22500	0.23200
6	10.21700	0.21000	0.20700	0.21200	0.22700	0.23000	0.23000	0.24300
7	10.22700	0.21700	0.22000	0.22000	0.23200	0.23700	0.23700	0.24300
8	10.23200	0.23000	0.22500	0.23500	0.23700	0.24500	0.24500	0.25600
9	10.23000	0.23100	0.23900	0.23500	0.24000	0.25100	0.25300	0.26000

AGE	1966	1967	1968	1969	1970	1971	1972	1973
1	0.12200	0.11900	0.11900	0.12200	0.12800	0.11700	0.13200	0.12500
2	0.15400	0.15800	0.16600	0.16400	0.16200	0.16600	0.17000	0.17400
3	0.19100	0.18500	0.19600	0.20000	0.20000	0.20000	0.19400	0.20500
4	0.21200	0.21700	0.21500	0.21700	0.22500	0.22500	0.22000	0.21500
5	0.23700	0.24300	0.23500	0.23700	0.24000	0.24500	0.24500	0.24500
6	0.24800	0.25100	0.24800	0.24500	0.25300	0.25300	0.25900	0.26200
7	0.24000	0.25600	0.25600	0.26400	0.26400	0.26200	0.26400	0.26200
8	0.25300	0.25900	0.26200	0.26400	0.27600	0.26700	0.27000	0.28500
9	0.25700	0.26400	0.26600	0.26200	0.27200	0.28300	0.28500	0.28500

Table 4.2.5(c) Continued

Weights-at-age in the stock (Kg)								
AGE	1974	1975	1976	1977	1978	1979	1980	1981
1	0.14100	0.13700	0.13700	0.13400	0.12700	0.12700	0.11700	0.11500
2	0.18000	0.18700	0.17400	0.18500	0.18900	0.17400	0.17400	0.17200
3	0.21000	0.21500	0.20500	0.21200	0.21700	0.21200	0.20700	0.21000
4	0.22500	0.24000	0.23500	0.22200	0.24000	0.23000	0.23700	0.24500
5	0.23700	0.25100	0.25900	0.24300	0.27900	0.25300	0.25900	0.26700
6	0.25900	0.26000	0.27000	0.26700	0.27600	0.27300	0.27600	0.27600
7	0.26200	0.27000	0.27900	0.25900	0.29100	0.29100	0.27000	0.29700
8	0.28800	0.27900	0.28800	0.29200	0.29700	0.27900	0.27000	0.30900
9	0.27000	0.28400	0.29300	0.29800	0.30200	0.28400	0.27500	0.31500

AGE	1982	1983	1984	1985	1986	1987	1988	1989
1	0.11500	0.10900	0.09300	0.10400	0.11200	0.09600	0.09700	0.10600
2	0.15400	0.14800	0.14200	0.14000	0.15500	0.13800	0.13200	0.12900
3	0.19400	0.19800	0.18500	0.17000	0.17200	0.18600	0.16800	0.15100
4	0.23700	0.22000	0.21300	0.20100	0.18700	0.19200	0.20300	0.16900
5	0.26200	0.27600	0.21300	0.23400	0.21500	0.20400	0.20900	0.19400
6	0.27300	0.28200	0.24500	0.24800	0.24800	0.23100	0.21500	0.19900
7	0.27900	0.27600	0.24600	0.25600	0.27600	0.25500	0.23700	0.21000
8	0.28800	0.31900	0.26300	0.26000	0.28400	0.26700	0.25700	0.22100
9	0.29300	0.32500	0.26200	0.26300	0.33200	0.28400	0.28300	0.24000

AGE	11990	1991	1992	1993	1994	1995	1996	1997
1	0.09900	0.09200	0.09600	0.09200	0.09700	0.08800	0.08800	0.09300
2	0.13700	0.12800	0.12300	0.12900	0.13500	0.12600	0.11800	0.12400
3	0.15300	0.16800	0.15000	0.15500	0.16800	0.15100	0.14700	0.14100
4	0.16700	0.18200	0.17700	0.18000	0.17900	0.17800	0.15900	0.15700
5	0.18800	0.19000	0.19100	0.20100	0.19000	0.18800	0.18500	0.17200
6	0.20800	0.20600	0.19400	0.20400	0.21000	0.19800	0.19600	0.19200
7	0.20900	0.22900	0.21200	0.21000	0.21800	0.20700	0.20700	0.20600
8	10.22900	0.23600	0.22800	0.22500	0.21700	0.22700	0.21900	0.21600
9	0.25100	0.25100	0.24800	0.24000	0.22700	0.22700	0.23100	0.22000

Weights-at-age in the stock (Kg)

AGE	1998	1999	2000	2001
1	0.09900	0.09000	0.09200	0.08200
2	0.12100	0.12000	0.11100	0.10700
3	0.15300	0.14900	0.14800	0.13900
4	0.16300	0.16700	0.16800	0.16200
5	0.17300	0.18000	0.18500	0.17700
6	0.18500	0.18300	0.18700	0.19000
7	0.19900	0.20200	0.19700	0.18500
8	0.20400	0.20900	0.21000	0.20400
9	0.22500	0.20800	0.22400	0.22000

Table 4.2.5(d) Celtic Sea and Div. VIIj. Natural mortality (constant for all years)
Natural Mortality (per year)

AGE	\|	1958	1959	1960	1961	1962	1963	1964	1965
1	\|	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	I	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000
3	\|	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000
4	I	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
5	\|	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
6	I	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
7	।	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
8	I	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
9	\|	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000

Natural Mortality (per year

AGE	\|	1966	1967	1968	1969	1970	1971	1972	1973
1	\|	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	I	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000
3	I	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000
4	\|	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
5	।	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
6	\|	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
7	I	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
8	,	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
9	,	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000

Natural Mortality (per year)

AGE	1982	1983	1984	1985	1986	1987	1988	1989
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000	0.3000
3	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000	0.2000
4	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
5	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
6	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
7	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
8	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
9	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000

Table 4.2.5(d) continued

Natural Mortality (per year)

Natural Mortality (per year)

AGE	1998	1999	2000	2001
1	1.0000	1.0000	1.0000	1.0000
2	0.3000	0.3000	0.3000	0.3000
3	0.2000	0.2000	0.2000	0.2000
4	0.1000	0.1000	0.1000	0.1000
5	0.1000	0.1000	0.1000	0.1000
6	0.1000	0.1000	0.1000	0.1000
7	0.1000	0.1000	0.1000	0.1000
8	0.1000	0.1000	0.1000	0.1000
9	0.1000	0.1000	0.1000	0.0000

Table 4.2.5(e) Celtic Sea and Div. VIIj. Maturity-at-age (constant for all years)

AGE	1958	1959	1960	1961	1962	1963	1964	1965
1	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Proportion of fish spawning

AGE	1966	1967	1968	1969	1970	1971	1972	1973
1	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Table 4.2.5(e) continued

Proportion of fish spawning

AGE	\|	1974	1975	1976	1977	1978	1979	1980	1981
1	\|	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
2	\|	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
3	\|	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4	\|	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
5	\|	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
6	\|	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
7	\|	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
8	\|	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	\|	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

AGE	\|	1982	1983	1984	1985	1986	1987	1988	1989
1	\|	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
2	\|	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
3	\|	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4	\|	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
5	\|	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
6	\|	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
7	।	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
8	\|	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	\|	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

AGE	1990	1991	1992	1993	1994	1995	1996	1997
1	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
3	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
4	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
6	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
7	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
8	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Table 4.4.1 Celtic Sea \& Division VIIj. Total stock numbers-at-age $\left(10^{6}\right)$ estimated using combined acoustic surveys

Age (Rings)	$1990 / 91$	$1991 / 92$	$1992 / 93$	$1993 / 94$	$1994 / 95$	$1995 / 96$	1996^{*}	1998^{*}	July1999	Jan 2000
0	204.8	213.8	141.8	258.8	41.3	5.1	2.8	-	13.2	-
1	131.6	62.6	426.9	217.1	38.0	279.5	133.6	21.43	397.6	22.87
2	249.0	195.2	117.0	437.9	127.2	550.7	757.0	157.13	207.6	96.6
3	108.6	94.7	87.8	58.7	160.3	138.4	249.9	149.62	48.2	85.13
4	152.5	54.0	49.6	63.4	10.5	93.5	50.6	201.48	8.0	16.25
5	32.4	84.8	22.2	26.0	10.6	7.9	41.9	108.53	0.9	21.37
6	14.9	22.1	24.2	16.3	6.5	9.2	1.1	31.71	1.2	7.65
7	6.1	5.3	9.6	24.6	1.6	8.4	14.2	29.80	0.1	1.61
8	2.5	6.1	1.8	2.3	2.6	9.2	0.5	3.95	0.1	0.86
$9+$	1.5	-	1.1	1.7	0.5	4.7	1.8	1.28	0.0	0.04
Total	903.9	738.6	882.0	$1,106.8$	399.1	1106.5	$1,253.4$	704.9	676.9	252.38
Total Biomass (000't)	103.0	84.4	88.5	104.0	51.8	134.6	151.3	110.9	58.0	29,7
SSB										
(000't)										

- November survey only, likely to be an underestimate of stock size.

Age (Rings)	$2000 / 01$	$2001 / 02$
0	22.75	19
1	17.58	30.25
2	142.66	160.37
3	36.17	175.72
4	18.67	39.83
5	6.56	43.54
6	3.28	22.59
7	1.72	17.29
8	0.26	10.67
$9+$	0.50	23.18
Total	250.17	542.37
Total Biomass (000't)	33.34	79.53
SSB (000't)	31.79	73.66

Table 4.4.2. Celtic Sea \& Division VIIA. Age Composition of Summer Survey Herring
Age (ringers)

Source	1	2	3	4	5	6	7	8	9
2000/2001 Canum	7.5	58	14.2	9	3.9	4.7	1.7	05	
"Matje" fishery June	12.4	33.4	27.5	16.6	6.7	2.8	0.3	0.4	
Div VIIg Jul/Aug	7.4	37.1	24.9	11.7	8.7	4.1	2.4	2.1	1.6
Div VIIj Jul/Aug	27.6	21.2	27.5	7.2	9.5	3.3	1.6	1.6	0.5

Table 4.5.2.1 Run Log of the assessment in 2002

```
Integrated Catch-at-age Analysis
            Version 1.4 w
            K.R.Patterson
    Fisheries Research Services
            Marine Laboratory
                    Aberdeen
```

 24 August 1999
    ```
    Type * to change language
    Enter the name of the index file -->index
canum
weca
    Stock weights in 2002 used for the year 2001
west
    Natural mortality in 2002 used for the year 2001
natmor
    Maturity ogive in 2002 used for the year 2001
matprop
    Name of age-structured index file (Enter if none) : -->fleet.txt
    Name of the SSB index file (Enter if none) -->
No indices of spawning biomass to be used.
    No of years for separable constraint ?--> 6
    Reference age for separable constraint ?--> 3
    Constant selection pattern model (Y/N) ?-->y
    S to be fixed on last age ?--> 1.0000000000000000
    First age for calculation of reference F ?--> 2
    Last age for calculation of reference F ?--> 7
    Use default weighting (Y/N) ?-->n
Enter relative weights-at-age
    Weight for age 1--> 0.100000000000000
    Weight for age 2--> 1.000000000000000
    Weight for age 3--> 1.000000000000000
    Weight for age 4--> 1.000000000000000
    Weight for age 5--> 1.000000000000000
    Weight for age 6--> 1.000000000000000
    Weight for age 7--> 1.000000000000000
    Weight for age 8--> 1.000000000000000
    Weight for age 9--> 1.000000000000000
Enter relative weights by year
    Weight for year 1996--> 1.000000000000000
    Weight for year 1997--> 1.000000000000000
    Weight for year 1998--> 1.000000000000000
    Weight for year 1999--> 1.000000000000000
    Weight for year 2000--> 1.000000000000000
    Weight for year 2001--> 1.000000000000000
Enter new weights for specified years and ages if needed
```


Table 4.5.2.1 (Continued)

Enter year, age, new weight or -1,-1,-1 to end. -1 1 1.000000000000000
Is the last age of FLTO2: celtic combined acc data (Catch: a plus-group (Y/-->n
You must choose a catchability model for each index.

| Models: | A Absolute: | Index $=$ Abundance . e |
| :--- | :--- | :--- | :--- |
| | L Linear: | Index $=Q$. Abundance $\cdot e$ |
| | P Power: | Index $=Q$. Abundance $\mathrm{K} . e$ |

where Q and K are parameters to be estimated, and e is a lognormally-distributed error.

Model for FLTO2: celtic combined acc data (Catch: is to be A/L/P ?-->L
Fit a stock-recruit relationship (Y/N) ?-->n
Enter lowest feasible F--> $5.0000000000000003 \mathrm{E}-02$
Enter highest feasible F--> 1.500000000000000
Mapping the F-dimension of the SSQ surface

| F | SSQ |
| :---: | :---: |
| 0.05 | 10.0019614358 |
| 0.13 | 5.1305062994 |
| 0.20 | 3.5820971828 |
| 0.28 | 2.8934462948 |
| 0.36 | 2.5790750153 |
| 0.43 | 2.4670579430 |
| 0.51 | 2.4794575001 |
| 0.58 | 2.5757916061 |
| 0.66 | 2.7332876246 |
| 0.74 | 2.9386298797 |
| 0.81 | 3.1841038818 |
| 0.89 | 3.4656884534 |
| 0.97 | 3.7821371378 |
| 1.04 | 4.1346670196 |
| 1.12 | 4.5271341447 |
| 1.19 | 4.9667800377 |
| 1.27 | 5.4658971180 |
| 1.35 | 6.0453342975 |
| 1.42 | 6.7423170282 |
| 1.50 | 7.4520956645 |

```
Lowest SSQ is for F = 0.461
```

No of years for separable analysis : 6
Age range in the analysis : 1 . . . 9
Year range in the analysis : 1958 . . . 2001
Number of indices of SSB : 0
Number of age-structured indices : 1
Parameters to estimate : 29
Number of observations : 88

Conventional single selection vector model to be fitted.

```
    Survey weighting to be Manual (recommended) or Iterative (M/I) ?-->M
    Enter weight for FLT02: celtic combined acc data (Catch: at age 2-->
1.000000000000000
    Enter weight for FLT02: celtic combined acc data (Catch: at age 3-->
1.000000000000000
```


Table 4.5.2.1 (Continued)

```
    Enter weight for FLT02: celtic combined acc data (Catch: at age 4-->
1.000000000000000
    Enter weight for FLT02: celtic combined acc data (Catch: at age 5-->
1.0000000000000000
Enter estimates of the extent to which errors
in the age-structured indices are correlated
across ages. This can be in the range 0 (independence)
to 1 (correlated errors).
    Enter value for FLT02: celtic combined acc data (Catch:-->
0.5000000000000000
    Do you want to shrink the final fishing mortality (Y/N) ?-->N
Seeking solution. Please wait.
Aged index weights
FLT02: celtic combined acc data (Catch:
    Age : 2 3 4 5
    Wts : 0.625 0.625 0.625 0.625
F in 2001 at age 3 is 0.400320 in iteration 1
    Detailed, Normal or Summary output (D/N/S)-->D
    Output page width in characters (e.g. 80..132) ?--> 80
```

Table 4.5.2.2 Celtic Sea \& Division VIIj. Output from the assessment.

Output Generated by ICA Version 1.4

Herring Celtic VIIj (Final 2002 WG)

```
--------------------------------------
```

AGE-STRUCTURED INDICES

| AGE | 1958 | 1959 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.0081 | 0.0018 | 0.0128 | 0.0135 | 0.0025 | 0.0017 | 0.0115 | 0.0002 |
| 2 | \| 0.1186 | 0.2883 | 0.2380 | 0.1561 | 0.2664 | 0.3975 | 0.1843 | 0.2410 |
| 3 | \| 0.3471 | 0.1038 | 0.5303 | 0.1670 | 0.3136 | 0.3231 | 0.2355 | 0.1770 |
| 4 | \| 0.4984 | 0.3311 | 0.2375 | 0.2071 | 0.3813 | 0.0947 | 0.2580 | 0.3321 |
| 5 | \| 0.3816 | 0.3650 | 0.3687 | 0.1738 | 0.4526 | 0.2499 | 0.0462 | 0.1817 |
| 6 | \| 0.4776 | 0.2727 | 0.2182 | 0.2015 | 0.4601 | 0.2367 | 0.1419 | 0.1484 |
| 7 | \| 0.7243 | 0.6982 | 0.4491 | 0.1886 | 0.5400 | 0.2892 | 0.1548 | 0.2667 |
| 8 | \| 0.3821 | 0.3207 | 0.3218 | 0.1708 | 0.3689 | 0.2609 | 0.1670 | 0.2173 |
| 9 | \| 0.3821 | 0.3207 | 0.3218 | 0.1708 | 0.3689 | 0.2609 | 0.1670 | 0.2173 |

Table 4.5.2.2 Continued - Celtic Sea \& Division VIIj

| Fishing Mortality (per year) | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE | \| | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 |
| 1 | \| | 0.0649 | 0.1400 | 0.1059 | 0.0766 | 0.0331 | 0.0780 | 0.0802 | 0.1623 |
| 2 | \| | 0.6409 | 0.4644 | 0.3027 | 0.2349 | 0.3001 | 0.4009 | 0.5539 | 0.6704 |
| 3 | \| | 0.6555 | 0.6587 | 0.4472 | 0.4347 | 0.3932 | 0.5389 | 0.7622 | 1.1652 |
| 4 | \| | 0.7122 | 0.6206 | 0.5625 | 0.6470 | 0.5308 | 0.5207 | 0.5851 | 0.9862 |
| 5 | \| | 0.4247 | 0.6145 | 0.4664 | 0.2097 | 0.3590 | 0.5118 | 0.2828 | 0.8936 |
| 6 | । | 0.5099 | 0.6659 | 0.6893 | 0.5686 | 0.2745 | 0.5059 | 0.8256 | 0.5803 |
| 7 | \| | 0.6809 | 0.3911 | 0.8848 | 0.2743 | 0.2762 | 0.3612 | 1.0552 | 0.7175 |
| 8 | \| | 0.5832 | 0.5307 | 0.5101 | 0.3644 | 0.3379 | 0.4436 | 0.6385 | 0.7946 |
| 9 | \| | 0.5832 | 0.5307 | 0.5101 | 0.3644 | 0.3379 | 0.4436 | 0.6385 | 0.7946 |

| Fishing Mortality (per year) | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| 1 | 0.0372 | 0.0296 | 0.0555 | 0.0490 | 0.0123 | 0.0092 | 0.0086 | 0.0252 |
| 2 | 0.4797 | 0.6897 | 0.5194 | 0.4008 | 0.3783 | 0.4986 | 0.2882 | 0.3751 |
| 3 | 0.7059 | 0.6943 | 0.7204 | 0.4216 | 0.6470 | 0.5959 | 0.4878 | 0.4438 |
| 4 | 0.8495 | 0.5868 | 1.1850 | 0.6571 | 0.8080 | 0.8442 | 0.2337 | 0.6244 |
| 5 | 0.7060 | 0.8482 | 1.1007 | 0.4508 | 0.8262 | 0.9093 | 0.4794 | 0.2929 |
| 6 | 1.1352 | 0.2857 | 1.9179 | 0.2329 | 0.3679 | 0.5791 | 0.4307 | 0.5747 |
| 7 | 0.5493 | 0.6181 | 0.5435 | 0.7080 | 0.1332 | 0.7153 | 0.3256 | 0.7019 |
| 8 | 0.6711 | 0.6001 | 0.8813 | 0.4579 | 0.4927 | 0.6417 | 0.3464 | 0.4700 |
| 9 | 0.6711 | 0.6001 | 0.8813 | 0.4579 | 0.4927 | 0.6417 | 0.3464 | 0.4700 |

Table 4.5.2.2 Continued - Celtic Sea \& Division VIIj

| AGE | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.0095 | 0.0162 | 0.0189 | 0.0077 | 0.0265 | 0.0195 | 0.0178 | 0.0225 |
| 2 | 0.2943 | 0.5875 | 0.5960 | 0.4155 | 0.4125 | 0.4243 | 0.3246 | 0.4100 |
| 3 | 0.4169 | 0.5172 | 0.8316 | 0.4620 | 0.5716 | 0.5369 | 0.4207 | 0.5314 |
| 4 | 0.4099 | 0.5349 | 0.8391 | 0.5875 | 0.2758 | 0.7606 | 0.4415 | 0.5577 |
| 5 | 0.5061 | 0.5986 | 0.6314 | 0.2712 | 0.3040 | 0.4985 | 0.5259 | 0.6643 |
| 6 | 0.1920 | 0.5737 | 0.8549 | 0.3125 | 0.4546 | 0.5848 | 0.5827 | 0.7361 |
| 7 | 0.4686 | 0.1732 | 0.7560 | 0.6756 | 0.2863 | 0.4360 | 0.4569 | 0.5772 |
| 8 | 0.3606 | 0.4734 | 0.7036 | 0.4374 | 0.3673 | 0.5056 | 0.4207 | 0.5314 |
| 9 | 0.3606 | 0.4734 | 0.7036 | 0.4374 | 0.3673 | 0.5056 | 0.4207 | 0.5314 |

| AGE | 1998 | 1999 | 2000 | 2001 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0.0225 | 0.0350 | 0.0297 | 0.0170 |
| 2 | 0.4093 | 0.6384 | 0.5418 | 0.3089 |
| 3 | 0.5304 | 0.8274 | 0.7021 | 0.4003 |
| 4 | 0.5567 | 0.8684 | 0.7369 | 0.4202 |
| 5 | 0.6631 | 1.0343 | 0.8778 | 0.5004 |
| 6 | 0.7348 | 1.1462 | 0.9727 | 0.5546 |
| 7 | 0.5762 | 0.8988 | 0.7627 | 0.4349 |
| 8 | 0.5304 | 0.8274 | 0.7021 | 0.4003 |
| 9 | 0.5304 | 0.8274 | 0.7021 | 0.4003 |

| Population Abundance (1 January) | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE | \| | 1958 | 1959 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 |
| 1 | \| | 323.4 | 1069.0 | 352.7 | 251.5 | 494.5 | 280.7 | 1037.9 | 370.6 |
| 2 | \| | 38.6 | 118.0 | 392.6 | 128.1 | 91.3 | 181.5 | 103.1 | 377.4 |
| 3 | \| | 123.8 | 25.4 | 65.5 | 229.2 | 81.2 | 51.8 | 90.3 | 63.5 |
| 4 | \| | 68.6 | 71.6 | 18.7 | 31.6 | 158.8 | 48.6 | 30.7 | 58.4 |
| 5 | \| | 41.4 | 37.7 | 46.5 | 13.4 | 23.2 | 98.1 | 40.0 | 21.5 |
| 6 | \| | 66.0 | 25.6 | 23.7 | 29.1 | 10.2 | 13.4 | 69.2 | 34.5 |
| 7 | \| | 32.6 | 37.1 | 17.6 | 17.2 | 21.5 | 5.8 | 9.5 | 54.3 |
| 8 | \| | 31.0 | 14.3 | 16.7 | 10.2 | 12.9 | 11.4 | 3.9 | 7.4 |
| 9 | \| | 18.4 | 28.1 | 15.8 | 33.1 | 18.1 | 12.7 | 15.0 | 40.2 |

Table 4.5.2.2 Continued - Celtic Sea \& Division VIIj

| Population Abundance (1 January) | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| AGE | \\| | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| 1 | \| | 662.8 | 733.6 | 569.0 | 589.8 | 536.9 | 1032.7 | 426.4 | 524.6 |
| 2 | I | 128.3 | 234.9 | 262.0 | 198.0 | 206.6 | 195.1 | 376.4 | 155.5 |
| 3 | \| | 18.8 | 58.8 | 87.3 | 115.5 | 98.3 | 104.8 | 87.8 | 209.0 |
| 4 | \| | 8.8 | 7.6 | 24.0 | 34.8 | 62.0 | 42.1 | 47.3 | 44.1 |
| 5 | \| | 3.1 | 3.4 | 3.8 | 6.7 | 16.3 | 25.0 | 16.4 | 33.9 |
| 6 | \| | 2.9 | 1.4 | 1.3 | 1.2 | 3.8 | 6.5 | 9.1 | 9.2 |
| 7 | \| | 4.1 | 0.8 | 0.9 | 0.2 | 0.8 | 2.4 | 3.3 | 5.4 |
| 8 | \| | 0.7 | 2.2 | 0.4 | 0.5 | 0.1 | 0.7 | 1.1 | 2.1 |
| 9 | \\| | 1.3 | 0.7 | 0.3 | 0.4 | 0.0 | 1.0 | 0.3 | 1.9 |

Table 4.5.2.2 Continued - Celtic Sea \& Division VIIj

| Population Abundance (1 January) | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 |
| 1 | 450.0 | 187.7 | 878.0 | 332.1 | 731.9 | 772.8 | 340.8 | 409.9 |
| 2 | 188.2 | 164.0 | 68.0 | 317.0 | 121.2 | 262.2 | 278.8 | 123.1 |
| 3 | 79.2 | 103.9 | 67.5 | 27.7 | 155.0 | 59.5 | 127.1 | 149.3 |
| 4 | 109.8 | 42.7 | 50.7 | 24.1 | 14.3 | 71.6 | 28.5 | 68.3 |
| 5 | 21.4 | 65.9 | 22.6 | 19.8 | 12.1 | 9.8 | 30.3 | 16.6 |
| 6 | 22.9 | 11.7 | 32.8 | 10.9 | 13.7 | 8.1 | 5.4 | 16.2 |
| 7 | 4.7 | 17.1 | 5.9 | 12.6 | 7.2 | 7.9 | 4.1 | 2.7 |
| 8 | 2.4 | 2.6 | 13.0 | 2.5 | 5.8 | 4.9 | 4.6 | 2.3 |
| 9 | 1.6 | 1.6 | 1.4 | 1.5 | 1.6 | 2.2 | 3.1 | 1.5 |

| AGE | 1998 | 1999 | 2000 | 2001 | 2002 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 283.4 | 595.4 | 522.6 | 1476.6 | 529.3 |
| 2 | 147.4 | 101.9 | 211.5 | 186.6 | 534.1 |
| 3 | 60.5 | 72.5 | 39.9 | 91.1 | 101.5 |
| 4 | 71.8 | 29.2 | 26.0 | 16.2 | 50.0 |
| 5 | 35.4 | 37.3 | 11.1 | 11.2 | 9.6 |
| 6 | 7.7 | 16.5 | 12.0 | 4.2 | 6.2 |
| 7 | 7.0 | 3.3 | 4.7 | 4.1 | 2.2 |
| 8 | 1.4 | 3.6 | 1.2 | 2.0 | 2.4 |
| 9 | 1.0 | 1.0 | 1.2 | 1.2 | 2.0 |

Table 4.5.2.2 Continued - Celtic Sea \& Division VIIj
Predicted Age-Structured Index Values

| | FLT02: celtic combined acc data (Catch: Predicted | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 |
| 2 | 280.75 | 182.43 | 74.97 | 418.88 | 160.72 | 343.48 | 403.49 | $\star * * * * * *$ |
| 3 | 136.88 | 162.46 | 77.09 | 45.85 | 229.55 | 91.18 | 218.91 | ******* |
| 4 | 183.02 | 62.83 | 55.02 | 33.57 | 27.27 | 84.09 | 45.96 | ******* |
| 5 | 29.33 | 82.46 | 27.40 | 34.39 | 20.31 | 13.58 | 40.74 | $\star * * * * * *$ |

Table 4.5.2.2 Continued - Celtic Sea \& Division VIIj

| AGE | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.0990 | 0.2126 | 0.2368 | 0.1761 | 0.0842 | 0.1448 | 0.1052 | 0.1393 |
| 2 | 0.9776 | 0.7050 | 0.6769 | 0.5404 | 0.7634 | 0.7439 | 0.7267 | 0.5753 |
| 3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 4 | 1.0864 | 0.9422 | 1.2578 | 1.4884 | 1.3502 | 0.9662 | 0.7677 | 0.8464 |
| 5 | 0.6478 | 0.9329 | 1.0429 | 0.4825 | 0.9131 | 0.9498 | 0.3710 | 0.7669 |
| 6 | 0.7779 | 1.0109 | 1.5413 | 1.3080 | 0.6981 | 0.9389 | 1.0832 | 0.4980 |
| 7 | 1.0386 | 0.5938 | 1.9784 | 0.6309 | 0.7026 | 0.6704 | 1.3845 | 0.6158 |
| 8 | 0.8897 | 0.8057 | 1.1406 | 0.8382 | 0.8595 | 0.8232 | 0.8377 | 0.6820 |
| 9 | 0.8897 | 0.8057 | 1.1406 | 0.8382 | 0.8595 | 0.8232 | 0.8377 | 0.6820 |

| AGE | \| 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.0527 | 0.0426 | 0.0771 | 0.1163 | 0.0190 | 0.0154 | 0.0176 | 0.0567 |
| 2 | \| 0.6795 | 0.9933 | 0.7210 | 0.9505 | 0.5848 | 0.8368 | 0.5909 | 0.8452 |
| 3 | \| 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 4 | \| 1.2034 | 0.8451 | 1.6450 | 1.5586 | 1.2489 | 1.4167 | 0.4791 | 1.4069 |
| 5 | \| 1.0001 | 1.2216 | 1.5280 | 1.0691 | 1.2771 | 1.5260 | 0.9828 | 0.6600 |
| 6 | \| 1.6081 | 0.4114 | 2.6623 | 0.5525 | 0.5687 | 0.9717 | 0.8829 | 1.2951 |
| 7 | \| 0.7781 | 0.8902 | 0.7545 | 1.6793 | 0.2059 | 1.2004 | 0.6675 | 1.5817 |
| 8 | \| 0.9507 | 0.8644 | 1.2234 | 1.0861 | 0.7616 | 1.0769 | 0.7100 | 1.0591 |
| 9 | 0.9507 | 0.8644 | 1.2234 | 1.0861 | 0.7616 | 1.0769 | 0.7100 | 1.0591 |

Table 4.5.2.2 Continued - Celtic Sea \& Division VIIj

| AGE | \| | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | \| | 0.0229 | 0.0314 | 0.0227 | 0.0166 | 0.0464 | 0.0363 | 0.0424 | 0.0424 |
| 2 | \| | 0.7058 | 1.1360 | 0.7167 | 0.8994 | 0.7216 | 0.7902 | 0.7716 | 0.7716 |
| 3 | 1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 4 | \| | 0.9831 | 1.0343 | 1.0089 | 1.2717 | 0.4824 | 1.4166 | 1.0496 | 1.0496 |
| 5 | 1 | 1.2138 | 1.1574 | 0.7592 | 0.5870 | 0.5317 | 0.9284 | 1.2501 | 1.2501 |
| 6 | \| | 0.4605 | 1.1092 | 1.0280 | 0.6765 | 0.7954 | 1.0892 | 1.3853 | 1.3853 |
| 7 | \| | 1.1239 | 0.3348 | 0.9091 | 1.4625 | 0.5009 | 0.8120 | 1.0863 | 1.0863 |
| 8 | \| | 0.8649 | 0.9154 | 0.8461 | 0.9469 | 0.6426 | 0.9417 | 1.0000 | 1.0000 |
| 9 | \| | 0.8649 | 0.9154 | 0.8461 | 0.9469 | 0.6426 | 0.9417 | 1.0000 | 1.0000 |

| AGE | 1998 | 1999 | 2000 | 2001 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0.0424 | 0.0424 | 0.0424 | 0.0424 |
| 2 | 0.7716 | 0.7716 | 0.7716 | 0.7716 |
| 3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 4 | 1.0496 | 1.0496 | 1.0496 | 1.0496 |
| 5 | 1.2501 | 1.2501 | 1.2501 | 1.2501 |
| 6 | 1.3853 | 1.3853 | 1.3853 | 1.3853 |
| 7 | 1.0863 | 1.0863 | 1.0863 | 1.0863 |
| 8 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 9 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |

Table 4.5.2.2 Continued - Celtic Sea \& Division VIIj

STOCK SUMMARY

No of years for separable analysis : 6
Age range in the analysis : 1 . . . 9
Year range in the analysis : 1958 . . . 2001
Number of indices of SSB : 0
Number of age-structured indices : 1
Parameters to estimate : 29
Number of observations : 88
Conventional single selection vector model to be fitted.

* Adjusted for Geometric Mean, recruitment
Adjusted
for Geometric $=411981$

SSB
2001
42874.

Table 4.5.2.2 Continued - Celtic Sea \& Division VIIj

PARAMETER ESTIMATES

| ${ }^{3}$ Parm | | Maximum | 3 | 3 | | | | Mean of |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | 3 | Likelh. | ${ }^{3} \mathrm{CV}$ | Lower | Upper | -s.e. | +s.e. | Param. |
| 3 | 3 | Estimat | 3 (\%) | 95\% CL ${ }^{3}$ | 95\% CL | | | Distrib. ${ }^{3}$ |
| Separable model : F by year | | | | | | | | |
| 1 | 1996 | 0.4207 | 16 | 0.3029 | 0.5841 | 0.3558 | 0.4973 | 0.4266 |
| 2 | 1997 | 0.5314 | 15 | 0.3896 | 0.7247 | 0.4536 | 0.6225 | 0.5381 |
| 3 | 1998 | 0.5304 | 15 | 0.3924 | 0.7170 | 0.4548 | 0.6186 | 0.5367 |
| 4 | 1999 | 0.8274 | 14 | 0.6246 | 1.0961 | 0.7168 | 0.9551 | 0.8360 |
| 5 | 2000 | 0.7021 | 16 | 0.5074 | 0.9715 | 0.5949 | 0.8287 | 0.7118 |
| 6 | 2001 | 0.4003 | 22 | 0.2595 | 0.6175 | 0.3209 | 0.4994 | 0.4102 |
| Separable Model: Selection (S) by age | | | | | | | | |
| 7 | 1 | 0.0424 | 47 | 0.0168 | 0.1065 | 0.0265 | 0.0678 | 0.0473 |
| 8 | 2 | 0.7716 | 18 | 0.5419 | 1.0987 | 0.6443 | 0.9241 | 0.7843 |
| 1.0000 Fixed : Reference Age | | | | | | | | |
| 9 | 4 | 1.0496 | 17 | 0.7505 | 1.4678 | 0.8845 | 1.2454 | 1.0650 |
| 10 | 5 | 1.2501 | 15 | 0.9158 | 1.7065 | 1.0666 | 1.4652 | 1.2660 |
| 11 | 6 | 1.3853 | 14 | 1.0390 | 1.8469 | 1.1962 | 1.6042 | 1.4003 |
| 12 | 7 | 1.0863 | 15 | 0.8083 | 1.4598 | 0.9342 | 1.2631 | 1.0987 |
| | 8 | 1.0000 | | xed : Las | true ag | | | |
| Separable model: Populations in year 2001 | | | | | | | | |
| 13 | 1 | 1476617 | 112 | 162635 | 13406700 | 479142 | 4550624 | 2781918 |
| 14 | 2 | 186631 | 27 | 109935 | 316833 | 142467 | 244485 | 193560 |
| 15 | 3 | 91143 | 20 | 61269 | 135582 | 74425 | 111615 | 93033 |
| 16 | 4 | 16177 | 18 | 11159 | 23451 | 13385 | 19551 | 16470 |
| 17 | 5 | 11242 | 18 | 7892 | 16012 | 9385 | 13465 | 11426 |
| 18 | 6 | 4164 | 20 | 2795 | 6203 | 3397 | 5103 | 4251 |
| 19 | 7 | 4098 | 24 | 2556 | 6570 | 3221 | 5214 | 4218 |
| 20 | 8 | 2001 | 26 | 1193 | 3356 | 1537 | 2605 | 2072 |
| Separable model: Populations at age | | | | | | | | |
| 21 | 1996 | 4594 | 34 | 2328 | 9067 | 3248 | 6499 | 4879 |
| 22 | 1997 | 2332 | 26 | 1384 | 3929 | 1787 | 3043 | 2416 |
| 23 | 1998 | 1385 | 23 | 872 | 2199 | 1094 | 1753 | 1424 |
| 24 | 1999 | 3570 | 20 | 2365 | 5388 | 2894 | 4404 | 3649 |
| 25 | 2000 | 1231 | 22 | 789 | 1921 | 981 | 1545 | 1263 |

Age-structured index catchabilities
FLTO2: celtic combined acc data (Catch:

```
Linear model fitted. Slopes at age :
\begin{tabular}{lllllllllll}
26 & 2 & Q & \(.2703 \mathrm{E}-02\) & 13 & \(.2370 \mathrm{E}-02\) & \(.4053 \mathrm{E}-02\) & \(.2703 \mathrm{E}-02\) & \(.3554 \mathrm{E}-02\) & \(.3128 \mathrm{E}-02\) \\
27 & 3 & Q & \(.3204 \mathrm{E}-02\) & 13 & \(.2813 \mathrm{E}-02\) & \(.4786 \mathrm{E}-02\) & \(.3204 \mathrm{E}-02\) & \(.4202 \mathrm{E}-02\) & \(.3703 \mathrm{E}-02\) \\
28 & 4 & Q & \(.2775 \mathrm{E}-02\) & 13 & \(.2436 \mathrm{E}-02\) & \(.4148 \mathrm{E}-02\) & \(.2775 \mathrm{E}-02\) & \(.3641 \mathrm{E}-02\) & \(.3208 \mathrm{E}-02\) \\
29 & 5 & Q & \(.2514 \mathrm{E}-02\) & 13 & \(.2204 \mathrm{E}-02\) & \(.3776 \mathrm{E}-02\) & \(.2514 \mathrm{E}-02\) & \(.3309 \mathrm{E}-02\) & \(.2912 \mathrm{E}-02\)
\end{tabular}
```

Table 4.5.2.2 Continued - Celtic Sea \& Division VIIj

| Separable Model Residuals | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
| 1 | -0.0916 | -0.4061 | 0.3780 | 0.0935 | 0.0253 | 0.0000 |
| 2 | -0.0833 | 0.0350 | -0.0404 | -0.2143 | -0.0011 | 0.3331 |
| 3 | -0.0406 | -0.0590 | 0.1734 | -0.0386 | 0.0271 | 0.2755 |
| 4 | -0.2000 | 0.1188 | -0.0364 | -0.1025 | -0.0721 | 0.1240 |
| 5 | 0.3080 | 0.0785 | -0.2197 | -0.3956 | -0.1704 | 0.0058 |
| 6 | -0.0936 | -0.2746 | -0.0253 | -0.1972 | -0.1380 | 0.0717 |
| 7 | 0.1058 | 0.0033 | -0.0947 | -0.0198 | -0.0443 | -0.0978 |
| 8 | 0.0000 | -0.1058 | 0.0903 | 0.0438 | 0.1064 | -0.3007 |

AGE-StRUCTURED INDEX RESIDUALS

| Age | \| | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | \| | -0.120 | 0.068 | 0.445 | 0.044 | -0.234 | 0.472 | 0.629 | ******* |
| 3 | \| | -0.231 | -0.540 | 0.130 | 0.247 | -0.359 | 0.417 | 0.132 | ******* |
| 4 | \| | -0.182 | -0.152 | -0.104 | 0.636 | -0.954 | 0.106 | 0.096 | ******* |
| 5 | । | 0.100 | 0.028 | -0.210 | -0.280 | -0.650 | -0.542 | 0.028 | ******* |

PARAMETERS OF THE DISTRIBUTION OF ln(CATCHES-AT-AGE)

| Separable model fitted from 1996 to | 2001 |
| :--- | ---: |
| Variance | 0.0451 |
| Skewness test stat. | -1.1188 |
| Kurtosis test statistic | 0.6177 |
| Partial chi-square | 0.1144 |
| Significance in fit | 0.0000 |
| Degrees of freedom | 23 |

Table 4.5.2.2 Continued - Celtic Sea \& Division VIIj

PARAMETERS OF THE DISTRIBUTION OF THE AGE-STRUCTURED INDICES

DISTRIBUTION STATISTICS FOR FLTO2: celtic combined acc data (Catch:

Linear catchability relationship assumed

| Age | 2 | 3 | 4 | 5 |
| :--- | ---: | ---: | ---: | ---: |
| Variance | 0.1061 | 0.0766 | 0.1578 | 0.2125 |
| Skewness test stat. | 0.2153 | -0.2296 | -0.4716 | 1.0856 |
| Kurtosis test statisti | -0.7661 | -0.8493 | -0.3249 | -0.3422 |
| Partial chi-square | 0.1746 | 0.1480 | 0.3947 | 0.6386 |
| Significance in fit | 0.0000 | 0.0000 | 0.0000 | 0.0001 |
| Number of observations | 10 | 90 | 10 | 10 |
| Degrees of freedom | 9 | 9 | 9 | 9 |
| Weight in the analysis | 0.6250 | 0.6250 | 0.6250 | 0.6250 |

ANALYSIS OF VARIANCE

Unweighted Statistics

Variance

| | SSQ | Data | Parameters d.f. Variance | |
| :--- | :--- | :--- | ---: | ---: |
| Total for model | 9.2925 | 88 | 29 | 59 |
| Catches-at-age | 1.3299 | 48 | 25 | 23 |
| | | | 0.1575 | |
| Aged Indices | | | | |
| FLT02: celtic combined acc data (Catch | 7.9625 | 40 | 4 | 36 |

Weighted Statistics

| | SSQ | Data | Parameters | d.f. | Variance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Total for model | 4.1473 | 88 | 29 | 59 | 0.0703 |
| Catches-at-age | 1.0369 | 48 | 25 | 23 | 0.0451 |
| Aged Indices | | | | | |
| FLTO2: celtic combined acc data (Catch | 3.1104 | 40 | 4 | 36 | 0.0864 |

Table 4.6.1 Celtic Sea and Division VIIj - Input data for short-term predictions.

MFDP version 1a
Run: adj surv age 2
Time and date: 11:46 18/03/02
Fbar age range: 2-7

| 2002 | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | N | M | Mat | PF | PM | | SWt | Sel | CWt |
| | 1 | 411981 | 1 | 0.5 | 0.2 | 0.5 | $9.07 \mathrm{E}-02$ | 0.016957 | $9.07 \mathrm{E}-02$ |
| | 2 | 151560 | 0.3 | 1 | 0.2 | 0.5 | 0.116833 | 0.3089 | 0.116833 |
| | 3 | 101520 | 0.2 | 1 | 0.2 | 0.5 | 0.146167 | 0.40032 | 0.146167 |
| | 4 | 50005 | 0.1 | 1 | 0.2 | 0.5 | 0.162667 | 0.42017 | 0.162667 |
| | 5 | 9616.6 | 0.1 | 1 | 0.2 | 0.5 | 0.178667 | 0.50044 | 0.178667 |
| | 6 | 6167.7 | 0.1 | 1 | 0.2 | 0.5 | 0.188833 | 0.55455 | 0.188833 |
| | 7 | 2164.5 | 0.1 | 1 | 0.2 | 0.5 | 0.199333 | 0.43486 | 0.199333 |
| | 8 | 2401.2 | 0.1 | 1 | 0.2 | 0.5 | 0.210333 | 0.40032 | 0.210333 |
| | 9 | 2014.7 | 0.1 | 1 | 0.2 | 0.5 | 0.222833 | 0.40032 | 0.222833 |
| 2003 | | | | | | | | | |
| Age | N | M | Mat | PF | PM | | SWt | Sel | CWt |
| | 1 | 411981 | 1 | 0.5 | 0.2 | 0.5 | $9.07 \mathrm{E}-02$ | 0.016957 | $9.07 \mathrm{E}-02$ |
| | 2. | | 0.3 | 1 | 0.2 | 0.5 | 0.116833 | 0.3089 | 0.116833 |
| | 3. | | 0.2 | 1 | 0.2 | 0.5 | 0.146167 | 0.40032 | 0.146167 |
| | 4. | | 0.1 | 1 | 0.2 | 0.5 | 0.162667 | 0.42017 | 0.162667 |
| | 5. | | 0.1 | 1 | 0.2 | 0.5 | 0.178667 | 0.50044 | 0.178667 |
| | 6. | | 0.1 | 1 | 0.2 | 0.5 | 0.188833 | 0.55455 | 0.188833 |
| | 7. | | 0.1 | 1 | 0.2 | 0.5 | 0.199333 | 0.43486 | 0.199333 |
| | 8. | | 0.1 | 1 | 0.2 | 0.5 | 0.210333 | 0.40032 | 0.210333 |
| | 9. | | 0.1 | 1 | 0.2 | 0.5 | 0.222833 | 0.40032 | 0.222833 |

| 2004 | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | N | M | Mat | PF | PM | | Wt | el | Wt |
| | 1 | 411981 | 1 | 0.5 | 0.2 | 0.5 | $9.07 \mathrm{E}-02$ | 0.016957 | $9.07 \mathrm{E}-02$ |
| | 2. | | 0.3 | 1 | 0.2 | 0.5 | 0.116833 | 0.3089 | 0.116833 |
| | 3 . | | 0.2 | 1 | 0.2 | 0.5 | 0.146167 | 0.40032 | 0.146167 |
| | 4. | | 0.1 | 1 | 0.2 | 0.5 | 0.162667 | 0.42017 | 0.162667 |
| | 5. | | 0.1 | 1 | 0.2 | 0.5 | 0.178667 | 0.50044 | 0.178667 |
| | 6. | | 0.1 | 1 | 0.2 | 0.5 | 0.188833 | 0.55455 | 0.188833 |
| | 7. | | 0.1 | 1 | 0.2 | 0.5 | 0.199333 | 0.43486 | 0.199333 |
| | 8. | | 0.1 | 1 | 0.2 | 0.5 | 0.210333 | 0.40032 | 0.210333 |
| | 9. | | 0.1 | 1 | 0.2 | 0.5 | 0.222833 | 0.40032 | 0.222833 |

Input units are thousands and kg - output in tonnes

Table 4.6.2. Celtic Sea and Division VIIj. Single option prediction table with TAC constraint.

MFDP version 1a
Run: adj surv age 2
Time and date: 11:46 18/03/02
Fbar age range: 2-7

| Year:
 Age | | 2002 F multiplier: | | | 1 Fbar: | | 0.4365 | | SSB(Jan) | SSNos(ST) | SSB(ST) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | F | | Nos | Yield | | StockNos | Biomass | SSNos(Jan) | | | |
| | 1 | 0.017 | 4385 | | 398 | 811981 | 37353 | 205991 | 18676 | 124517 | 11290 |
| | 2 | 0.3089 | 35065 | | 4097 | 7151560 | 17707 | 151560 | 17707 | 122634 | 14328 |
| | 3 | 0.4003 | 30556 | | 4466 | 66101520 | 14839 | 101520 | 14839 | 84791 | 12394 |
| | 4 | 0.4202 | 16382 | | 2665 | 550005 | 8134 | 50005 | 8134 | 43732 | 7114 |
| | 5 | 0.5004 | 3618 | | 646 | 69617 | 1718 | 9617 | 1718 | 8276 | 1479 |
| | 6 | 0.5546 | 2510 | | 474 | 46168 | 1165 | 6168 | 1165 | 5251 | 992 |
| | 7 | 0.4349 | 729 | | 145 | 52165 | 431 | 2165 | 431 | 1887 | 376 |
| | 8 | 0.4003 | 756 | | 159 | 92401 | 505 | 2401 | 505 | 2108 | 443 |
| | 9 | 0.4003 | 635 | | 141 | 12015 | 449 | 2015 | 449 | 1769 | 394 |
| Total | | | 94636 | | 13192 | -737431 | 82301 | 531440 | 63625 | 394966 | 48809 |
| Year: | | 2003 F | tiplier: | | | 1 Fbar: | 0.4365 | | | | |
| Age | F | | Nos | Yield | | StockNos | Biomass | SSNos(Jan) | SSB(Jan) | SSNos(ST) | SSB(ST) |
| | 1 | 0.017 | 4385 | | 398 | 8411981 | 37353 | 205991 | 18676 | 124517 | 11290 |
| | 2 | 0.3089 | 34475 | | 4028 | - 149011 | 17409 | 149011 | 17409 | 120571 | 14087 |
| | 3 | 0.4003 | 24814 | | 3627 | 782441 | 12050 | 82441 | 12050 | 68856 | 10064 |
| | 4 | 0.4202 | 18247 | | 2968 | 855698 | 9060 | 55698 | 9060 | 48711 | 7924 |
| | 5 | 0.5004 | 11184 | | 1998 | 829724 | 5311 | 29724 | 5311 | 25581 | 4571 |
| | 6 | 0.5546 | 2147 | | 405 | 5275 | 996 | 5275 | 996 | 4491 | 848 |
| | 7 | 0.4349 | 1080 | | 215 | 53205 | 639 | 3205 | 639 | 2795 | 557 |
| | 8 | 0.4003 | 399 | | 84 | 41268 | 267 | 1268 | 267 | 1113 | 234 |
| | 9 | 0.4003 | 843 | | 188 | 82678 | 597 | 2678 | 597 | 2351 | 524 |
| Total | | | 97573 | | 13911 | 1741280 | 83682 | 535290 | 65005 | 398986 | 50098 |

| $\begin{aligned} & \text { Year: } \\ & \text { Age } \end{aligned}$ | | 2004 F multiplier: | | 1 Fbar: | | 0.4365 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | F | | Nos | Yield | kNos | Biomass | SSNos(Jan) | SSB(Jan) | SSNos(ST) | SSB(ST) |
| | 1 | 0.017 | 4385 | 398 | 411981 | 37353 | 205991 | 18676 | 124517 | 11290 |
| | 2 | 0.3089 | 34475 | 4028 | 149011 | 17409 | 149011 | 17409 | 120571 | 14087 |
| | 3 | 0.4003 | 24397 | 3566 | 81054 | 11847 | 81054 | 11847 | 67698 | 9895 |
| | 4 | 0.4202 | 14818 | 2410 | 45230 | 7357 | 45230 | 7357 | 39556 | 6435 |
| | 5 | 0.5004 | 12457 | 2226 | 33108 | 5915 | 33108 | 5915 | 28494 | 5091 |
| | 6 | 0.5546 | 6635 | 1253 | 16306 | 3079 | 16306 | 3079 | 13882 | 2621 |
| | 7 | 0.4349 | 923 | 184 | 2741 | 546 | 2741 | 546 | 2391 | 477 |
| | 8 | 0.4003 | 591 | 124 | 1877 | 395 | 1877 | 395 | 1648 | 347 |
| | 9 | 0.4003 | 754 | 168 | 2392 | 533 | 2392 | 533 | 2100 | 468 |
| Total | | | 99434 | 14357 | 743701 | 84436 | 537710 | 65760 | 400857 | 50709 |

Input units are thousands and kg - output in tonnes

Table 4.6.3. Celtic Sea \& Division VIIj - Short-term predictions with management options.

MFDP version 1a
Run: adj surv age 2
Celtic Sea 2001Projection index file Tuesday 18th March 2002.
Time and date: 11:46 18/03/02
Fbar age range: 2-7

| 2002 | | FMult | FBar | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Biomass | SSB | | | | Landings |
| 82301 | 48809 | | 1 | 0.4365 | 13192 |

| 2003 | | | | | 2004 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Biomass | SSB FMult | | | Landings | Biomass | SSB |
| 83682 | 53262 | 0 | 0 | 0 | 98615 | 67251 |
| . | 52934 | 0.1 | 0.0437 | 1638 | 96936 | 65235 |
| . | 52609 | 0.2 | 0.0873 | 3215 | 95322 | 63310 |
| . | 52287 | 0.3 | 0.131 | 4733 | 93770 | 61473 |
| . | 51966 | 0.4 | 0.1746 | 6196 | 92277 | 59717 |
| . | 51649 | 0.5 | 0.2183 | 7604 | 90840 | 58041 |
| . | 51334 | 0.6 | 0.2619 | 8961 | 89459 | 56439 |
| . | 51021 | 0.7 | 0.3056 | 10268 | 88129 | 54908 |
| . | 50711 | 0.8 | 0.3492 | 11528 | 86851 | 53445 |
| . | 50403 | 0.9 | 0.3929 | 12741 | 85620 | 52047 |
| . | 50098 | 1 | 0.4365 | 13911 | 84436 | 50709 |
| . | 49795 | 1.1 | 0.4802 | 15039 | 83297 | 49431 |
| . | 49495 | 1.2 | 0.5238 | 16125 | -82200 | 48208 |
| . | 49197 | 1.3 | 0.5675 | 17173 | 81144 | 47038 |
| . | 48901 | 1.4 | 0.6112 | 18183 | 80128 | 45919 |
| . | 48607 | 1.5 | 0.6548 | 19157 | 79150 | 44848 |
| . | 48316 | 1.6 | 0.6985 | 20097 | 78209 | 43823 |
| . | 48027 | 1.7 | 0.7421 | 21003 | 77302 | 42841 |
| . | 47740 | 1.8 | 0.7858 | 21877 | 76429 | 41901 |
| . | 47456 | 1.9 | 0.8294 | 22721 | 75588 | 41001 |
| | 47174 | 2 | 0.8731 | 23535 | -74778 | 40138 |

Input units are thousands and kg - output in tonnes

Table 4.6.4. Celtic Sea \& Division VIIj herring. Single option prediction table with catch constraint.

MFDP version 1a
Run: Catch constraint 8,000 t
Time and date: 10:06 20/03/02
Fbar age range: 2-7

| Year:
 Age | | 2002 F multiplier: | | 0.5624 Fbar: | | 0.2455 | | SSB(Jan) | SSNos(ST) | SSB(ST) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | F | | CatchNos | Yield Stor | StockNos | Biomass | SSNos(Jan) | | | |
| | 1 | 0.0095 | 2473 | 224 | 411981 | 37353 | 205991 | 18676 | 124702 | 11306 |
| | 2 | 0.1737 | 20970 | 2450 | 151560 | 17707 | 151560 | 17707 | 125995 | 14720 |
| | 3 | 0.2251 | 18617 | 2721 | 101520 | 14839 | 101520 | 14839 | 87815 | 12836 |
| | 4 | 0.2363 | 10034 | 1632 | 50005 | 8134 | 50005 | 8134 | 45371 | 7380 |
| | 5 | 0.2814 | 2250 | 402 | 9617 | 1718 | 9617 | 1718 | 8647 | 1545 |
| | 6 | 0.3119 | 1577 | 298 | 6168 | 1165 | 6168 | 1165 | 5512 | 1041 |
| | 7 | 0.2445 | 448 | 89 | 2165 | 431 | 2165 | 431 | 1961 | 391 |
| | 8 | 0.2251 | 461 | 97 | 2401 | 505 | 2401 | 505 | 2184 | 459 |
| | 9 | 0.2251 | 387 | 86 | 2015 | 449 | 2015 | 449 | 1832 | 408 |
| Total | | | 57218 | 8000 | 737431 | 82301 | 531440 | 63625 | 404017 | 50087 |
| Year: | | 2003 F | F multiplier: | | Fbar: | 0.4365 | | | | |
| Age | F | | CatchNos | Yield S | StockNos | Biomass | SSNos(Jan) | SSB(Jan) | SSNos(ST) | SSB (ST) |
| | 1 | 0.017 | 4385 | 398 | 411981 | 37353 | 205991 | 18676 | 124517 | 11290 |
| | 2 | 0.3089 | 34732 | 4058 | 150121 | 17539 | 150121 | 17539 | 121469 | 14192 |
| | 3 | 0.4003 | 28406 | 4152 | 94375 | 13794 | 94375 | 13794 | 78823 | 11521 |
| | 4 | 0.4202 | 21741 | 3537 | 66363 | 10795 | 66363 | 10795 | 58038 | 9441 |
| | 5 | 0.5004 | 13441 | 2402 | 35725 | 6383 | 35725 | 6383 | 30746 | 5493 |
| | 6 | 0.5546 | 2672 | 505 | 6567 | 1240 | 6567 | 1240 | 5591 | 1056 |
| | 7 | 0.4349 | 1376 | 274 | 4086 | 814 | 4086 | 814 | 3563 | 710 |
| | 8 | 0.4003 | 483 | 102 | 1534 | 323 | 1534 | 323 | 1347 | 283 |
| | 9 | 0.4003 | 1005 | 224 | 3190 | 711 | 3190 | 711 | 2801 | 624 |
| Total | | | 108241 | 15650 | 773940 | 88952 | 567950 | 70276 | 426894 | 54610 |

| Year:
 Age | 2004F multiplier: | | | 1 Fbar: | | 0.4365 | | SSB(Jan) | SSNos(ST) | $\mathrm{SSB}(\mathrm{ST})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | F | | Nos | Yield | StockNos | Biomass | SSNos(Jan) | | | |
| | 1 | 0.017 | 4385 | 398 | 411981 | 37353 | 205991 | 18676 | 124517 | 11290 |
| | 2 | 0.3089 | 34475 | 4028 | 149011 | 17409 | 149011 | 17409 | 120571 | 14087 |
| | 3 | 0.4003 | 24578 | 3593 | 81658 | 11936 | 81658 | 11936 | 68202 | 9969 |
| | 4 | 0.4202 | 16963 | 2759 | 51777 | 8422 | 51777 | 8422 | 45282 | 7366 |
| | 5 | 0.5004 | 14842 | 2652 | 39447 | 7048 | 39447 | 7048 | 33950 | 6066 |
| | 6 | 0.5546 | 7975 | 1506 | 19597 | 3701 | 19597 | 3701 | 16685 | 3151 |
| | 7 | 0.4349 | 1149 | 229 | 3413 | 680 | 3413 | 680 | 2976 | 593 |
| | 8 | 0.4003 | 754 | 159 | 2393 | 503 | 2393 | 503 | 2101 | 442 |
| | 9 | 0.4003 | 902 | 201 | 2864 | 638 | 2864 | 638 | 2515 | 560 |
| Total | | | 106023 | 15524 | 762142 | 87691 | 556152 | 69015 | 416799 | 53523 |

Input units are thousands and kg - output in tonnes

Table 4.6.5. Celtic Sea \& Division VIIj herring. Short-term predictions with TAC constraint and management options.

MFDP version 1a
Run: Catch constraint 8,000 t
Celtic Sea 2001Projection index file Tuesday 18th March 2002.
Time and date: 10:06 20/03/02
Fbar age range: 2-7

| 2002 | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Biomass | SSB | FMult | FBar | Landings |
| 82301 | 50087 | 0.5624 | 0.2455 | 8000 |

| 2003 | | | | | | 2004 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Biomass | SSB | FMult | | | Landings | Biomass | SSB |
| 88952 | 58183 | | 0 | 0 | 0 | 103631 | 72017 |
| . | 57813 | | 0.1 | 0.0437 | 1847 | 101740 | 69756 |
| . | 57445 | | 0.2 | 0.0873 | 3624 | 99922 | 67599 |
| . | 57081 | | 0.3 | 0.131 | 5335 | 98175 | 65540 |
| . | 56719 | | 0.4 | 0.1746 | 6981 | 96495 | 63576 |
| . | 56361 | | 0.5 | 0.2183 | 8566 | 94880 | 61701 |
| . | 56005 | | 0.6 | 0.2619 | 10092 | 93327 | 59911 |
| . | 55652 | | 0.7 | 0.3056 | 11561 | 91834 | 58202 |
| . | 55302 | | 0.8 | 0.3492 | - 12975 | 90399 | 56570 |
| . | 54955 | | 0.9 | 0.3929 | - 14338 | 89019 | 55012 |
| . | 54610 | | 1 | 0.4365 | -15650 | 87691 | 53523 |
| . | 54268 | | 1.1 | 0.4802 | -16914 | 86414 | 52100 |
| . | 53929 | | 1.2 | 0.5238 | -18131 | 85186 | 50741 |
| . | 53593 | | 1.3 | 0.5675 | -19304 | -84005 | 49442 |
| . | 53259 | | 1.4 | 0.6112 | 20435 | 82868 | 48200 |
| . | 52928 | | 1.5 | 0.6548 | - 21524 | 81774 | 47012 |
| . | 52599 | | 1.6 | 0.6985 | - 22574 | 80722 | 45876 |
| . | 52273 | | 1.7 | 0.7421 | 23586 | 79710 | 44790 |
| . | 51950 | | 1.8 | 0.7858 | - 24562 | 78736 | 43750 |
| . | 51629 | | 1.9 | 0.8294 | - 25502 | 77798 | 42756 |
| . | 51311 | | 2 | 0.8731 | 26410 | - 76895 | 41804 |

Input units are thousands and kg - output in tonnes

Figure 4.2.1 Celtic Sea \& Division VIIj - Estimated herring landings per year.

51-
50.5-
-10.5
-9.5
-8.5
Longitude

-6.5

Figure 4.2.2. Celtic Sea \& Division VIIj. Map of locations mentioned in the text.

Figure 4.4.1a. Celtic Sea \& Division VIIj. Cruise track and haul positions from acoustic survey - September 2001.

Figure 4.4.1b. Celtic Sea \& Division VIIj. Cruise track and haul positions from acoustic survey - October 2001.

Figure 4.4.2a. Celtic Sea \& Division VIIj herring. Post plot showing the distribution of total herring SA values obtained during the September 2001 acoustic survey.

Figure 4.4.2b. Celtic Sea \& Division VIIj herring. Post plot showing the distribution of total herring SA values obtained during the October 2001 acoustic survey.

Figure 4.4.3 Celtic Sea \& Division VIIj herring. Comparison of Catch-at-age from CANUM 2002 and acoustic survey.

Figure 4.4.4. Celtic Sea \& Division VIIj. Positions of "Definite", "Probable" and "Possible" herring marks as recorded by survey, July - September 2001.

Figure 4.4.5: Celtic Sea \& Division VIIj Herring. Comparison of porportions at age from 2001 data.

Figure 4.5.1. Celtic Sea \& Division VIIj - Comparison of Runs.

Figure 4.5.2.1 Herring in Celtic Sea and Division VIIj. SSQ for the baseline assessment.
stock summary n, or any other key to continue

Figure 4.5.2.2. Herring in Celtic Sea and Division VIIj. Results of baseline assessment. Summary of estimates of landings, fishing mortality at age 3 , recruitment age 1 , stock size on Jan. 1 and spawning stock size at spawning time.

Figure 4.5.2.3 Herring in the Celtic Sea and Division VIIj. Results of the baseline assessment. Selection pattern diagnostics. Top left, contour plot of selection pattern residuals. Top right, estimated selection (relative to age 3) $+/-$ standard deviation. Bottom, marginal totals of residuals by year and age.

Figure 4.5.2.4. Herring in the Celtic Sea and Division VIIj. Results of the baseline assessment. Diagnostics of the fit of the acoustic survey index at age 2 against the estimated spawning biomass. Top left, spawning biomass from the fitted populations (line), and predictions of spawning biomass in each year made from the index observations and estimated catchability (triangles $+/$ - standard deviation), plotted by year. Top right, scatter plot and fitted relationship of spawning biomass from the fitted populations and larvae survey index observations. Bottom, residuals, as \ln (observed index) \ln (expected index) plotted against expected values and time.

Figure 4.5.2.5 Herring in the Celtic Sea and Division VIIj. Results of the baseline assessment. Diagnostics of the fit of the acoustic survey index at age 3 against the estimated spawning biomass. Top left, spawning biomass from the fitted populations (line), and predictions of spawning biomass in each year made from the index observations and estimated catchability (triangles $+/$ - standard deviation), plotted by year. Top right, scatter plot and fitted relationship of spawning biomass from the fitted populations and larvae survey index observations. Bottom, residuals, as \ln (observed index) \ln (expected index) plotted against expected values and time.

FLTO2: celtic costieen, agf dillaotretciey to contqnge 4

Figure 4.5.2.6 Herring in the Celtic Sea and Division VIIj. Results of the baseline assessment. Diagnostics of the fit of the acoustic survey index at age 4 against the estimated spawning biomass. Top left, spawning biomass from the fitted populations (line), and predictions of spawning biomass in each year made from the index observations and estimated catchability (triangles $+/$ - standard deviation), plotted by year. Top right, scatter plot and fitted relationship of spawning biomass from the fitted populations and larvae survey index observations. Bottom, residuals, as \ln (observed index) \ln (expected index) plotted against expected values and time.

| 3tack Numbers
 Index | Catchabilitu
 Index
 Observation Fitted Line |
| :---: | :---: |
| Index Observation | Index Observation |

Figure 4.5.2.7 Herring in the Celtic Sea and Division VIIj. Results of the baseline assessment. Diagnostics of the fit of the acoustic survey index at age 5 against the estimated spawning biomass. Top left, spawning biomass from the fitted populations (line), and predictions of spawning biomass in each year made from the index observations and estimated catchability (triangles $+/$ - standard deviation), plotted by year. Top right, scatter plot and fitted relationship of spawning biomass from the fitted populations and larvae survey index observations. Bottom, residuals, as \ln (observed index) \ln (expected index) plotted against expected values and time.

Figure 4.5.2.8. Celtic Sea \& Division VIIj - Comparison of stock trajectories from the past 3 assessments.

MFYPR version 2a
Run: first run
Time and date: 14:19 18/03/02

| Reference point | F multiplier | Absolute \mathbf{F} |
| :--- | :---: | :---: |
| Fbar(2-7) | 1.0000 | 0.4365 |
| F $_{\text {max }}$ | $>=1000000$ | |
| F $_{0.1}$ | 0.3890 | 0.1698 |
| F35\%SPR | 0.4609 | 0.2012 |
| F $_{\text {low }}$ | 0.2261 | 0.0987 |
| F $_{\text {med }}$ | 0.6016 | 0.2626 |
| F $_{\text {high }}$ | 2.5823 | 1.1273 |

Weights in kilograms

Figure 4.6.1. Yield per recruit and short-term yield for Celtic Sea and VIIj Herring.

MFDP version 1a
Run: adj surv age 2
Celtic Sea 2001Projection index file Tuesday 18th March 2002.
Time and date: 11:46 18/03/02
Fbar age range: 2-7

Input units are thousands and kg - output in tonnes

5.1 Division VIa(North)

5.1.1 ACFM advice applicable to 2001 and 2002

ACFM reported in 2001 that the state of the stock was uncertain although all the indications are that the stock is lightly exploited. Consequently, ACFM recommended that catches in 2002 should not exceed the average of the 1991-1999 period, which was about $30,000 \mathrm{t}$.

The agreed TAC for 2002 is $33,000 \mathrm{t}$ compared with a TAC in 2001 of $36,360 \mathrm{t}$.

There are no explicit management objectives for this stock and because of uncertainties about the historical catch data, the size of the biomass, and about estimates of recruitment and fishing mortality, no biological reference points have been proposed for this stock.

5.1.2 The fishery

Catches are taken from this area by three fisheries. The Scottish domestic pair trawl fleet and the Northern Irish fleet operate in shallower, coastal areas, principally fishing in the Minches and around the Island of Barra in the south; younger herring are found in these areas. In 2001 there was an Irish pair trawl fishery operating in shelf waters. The Scottish and Norwegian purse seine fleets target herring mostly in the northern North Sea, but also operate in the northern part of VIa (N). An international freezer-trawler fishery has historically operated in deeper water near the shelf edge where older fish are distributed; these vessels are mostly registered in the Netherlands, Germany, France and England. In recent years the catch of these fleets has become more similar and has been dominated by the younger adults in the stock. Catch-at-age data this year indicate that the catches are similar in age composition.

As a result of perceived problems of misreporting, Scotland introduced a new fishery regulation in 1997 aiming to improve reporting accuracy. Under this regulation, Scottish vessels fishing for herring are required to hold a license either to fish in the North Sea or in the west of Scotland area (VIa (N)). Only one of these options can be held at any one time. During the months of the peak of the Shetland fishery, vessels requiring west of Scotland licenses are required to collect them from ports on the west coast of Scotland, and vice versa for the North Sea.

5.1.3 Landings estimates and allocation of catches to area

Serious problems with misreporting of catches from this stock have occurred, with many examples of vessels operating and landing herring catches distant from VIa (N) but reporting catches from that area. Fishery-independent information confirmed that large catches were being reported from areas with low abundances of fish, and informal information from the fishery and from other sources confirmed that most catches of fish recorded between $4^{\circ} \mathrm{W}$ and $5^{\circ} \mathrm{W}$ were most probably misreported North Sea catches. The problem was particularly acute during the peak months of the Shetland herring fishery (August to October). Such misreporting is believed to have been significant since 1984. In 1997 new legislation was introduced to correct this (see above). In 1998 it was assumed that there was no misreporting by Scotland. In 1999 this conclusion was questioned, as misreporting in 1998 was thought to be similar to 1996 levels. Misreporting for 1997 was then estimated by Bayesian assessment (ICES 1999/ACFM:12) and the catch was thought to be $33,000 \mathrm{t}$. Recent investigations of the 1997 fishery have indicated that the behaviour of the Scottish fleet was not affected by changes in legislation. The extent of area misreporting in 1997 is difficult to estimate. The value of 33,000 t used in the 2000 assessment is an acceptable point estimate of the total catch in 1997, since it reflects a similar assumption about the level of misreporting in 1996.

Improved information from the fishery in 1998-2001 has allowed for re-allocation of many catches due to area misreporting (principally from VIa (N) to IVa (W)). This information has been obtained from some, though not all, of the fleets.

For 2001, the preliminary report of official catches corresponding to the VIa (N) herring stock unit total 35,411 t compared with the TAC of $36,360 \mathrm{t}$. The Working Group's estimates of area misreported catches are $10,437 \mathrm{t}$. No herring has been reported as discarded.

The Working Group's best estimate of removals from the stock in 2001 is $24,974 \mathrm{t}$. Details of estimated national catches from 1981 to 2001 are given in Table 5.1.1.

5.1.4 Age-composition of commercial catches

Age composition data for the commercial catches for 2001 were available from Scotland (quarters 3 and 4), Northern Ireland (quarter 3) and the Netherlands (quarter 3). The number of samples used to allocate an age-distribution for the Scottish catches decreased from 36 in 2000 to 19 in 2001. However, 20 samples were available from the Northern Irish fishery. A single sample was again available from the offshore freezer-trawl fishery comprising 25 fish, a decrease of 50 fish from 2000. These vessels often land in foreign ports and do not, therefore, get sampled. Catch and sampling effort information by country and by quarter is given in Table 5.1.2. Comparison of the age structure of the Scottish, Northern Irish and Netherlands samples indicated that there was no difference in the age structure of the catch for these fleets in 2001. Concern was raised in the 2001 ACFM technical minutes that samples were being missed from the analysis of catch because no samples were evident from Ireland. However, in practice, the national allocation does not reflect the location of the sampling but the flag of the vessel being sampled, and therefore the flag of the catch being raised. In this particular case, the samples taken in Ireland were from Scottish vessels. They were therefore included in the Scottish sampling information. This year, the Scottish quarter 4 samples were provided by Ireland, from Scottish catch landed into Ireland, and included as Scottish samples.

Unsampled catches were allocated a mean age-structure (weighted by the sampled catch) of either the Scottish/Northern Irish or the Netherlands sampled fleets in the same quarter, or in adjacent quarters if no samples were available in the corresponding quarter. If no sampling data were available for a quarter, a mean age-structure of all samples from adjacent quarters was used. The allocation of age-structures to unsampled catches, and the calculation of total international catch-at-age and mean weight-at-age in the catches were made using the 'sallocl' programme (Patterson, 1998).

New and historic catch in number-at-age information is given in Table 5.1.3.

In the past concern has been raised over the quality of sampling of commercial catch. It was suggested in the 2001 ACFM technical minutes that an analysis of catch by quarter and country might shed some light on the variability in the catch information. In practice the fishery is often dominated by a single quarter catch, and a single country dominates sampling. Thus such an analysis is impossible. However, section 5.1.12 presents an analysis of the sensitivity of the assessment to missing catch information.

5.1.5 Larvae surveys

Larvae surveys for this stock have been discontinued since 1994. The historical time-series has however been reproduced for convenience (Table 5.1.4). The inclusion of the larval SSB index in the assessment was investigated. This index has no influence on the assessment and has not been used this year. Documentation of this survey timeseries is given in ICES (1994/H:3).

5.1.6 Acoustic survey

The survey in 1997 recorded an unexpectedly low estimate of abundance. Interpretation of survey results is not straightforward because the survey was completed one month earlier than other surveys in the historical time-series. Therefore, the 1997 survey has been excluded from the stock assessment calculation, as for last year's assessment.

The 2001 acoustic survey was carried out from 10-30 July using a chartered commercial fishing vessel (MFV Taits). The total biomass estimate obtained was lower than that from the previous year ($359,200 \mathrm{t}$ this year compared to $500,500 \mathrm{t}$ in 2000). Biomass estimated from the acoustic survey tends to be variable. Herring were found in similar areas, namely south of the Hebrides off Barra Head, west of the Hebrides off Galan Head, and along the shelf edge. Further details are available in the Report of the Planning Group for Herring Surveys (ICES 2002/G:02). A retrospective analysis of biomass estimates in the assessment is presented in Section 5.1.12 (Quality of the assessment). Estimates of abundance by age and in aggregate spawning stock biomass for 2001 and for previous years are given in Table 5.1.5.

5.1.7 Mean weights-at-age

Weights-at-age in the catches and from acoustic surveys are given in Table 5.1.6. Due to the different timing of the acoustic survey in 1997 the estimates of weight-at-age in the stock in that year are not consistent with previous estimates (Section 5.1.6). To maintain historically consistent estimates of spawning biomass these values were not used for assessment purposes, instead mean values over the period 1992 to 1996 were used for 1997. The weights-at-age in
the stock appear to be similar to the long-term mean for ages 1-2 ring, but are generally lower for 3 ring and older herring.

Catch weights-at-age for 2001 are generally lower than the long-term average, especially 1 ring. Catch of 1 ring herring is very low in the fishery and down-weighted in the assessment.

5.1.8 Maturity ogive

The maturity ogive is obtained from the acoustic survey. The earlier timing of the acoustic survey in 1997 also occasioned lower values of maturity to be recorded (Table 5.1.7). As for the weights-at-age, these values were not used for assessment purposes and a mean value over the years 1992-1996 was used for 1997 and for years prior to 1991. In 2001 the proportion of 2 and 3 ringers is high relative to the long-term mean, but not above previously observed high values.

5.1.9 Data exploration and preliminary modelling

Assessment of the stock was carried out by fitting an integrated catch-at-age model (ICA version 1.4w) (Patterson, 1998, Needle, 2000), including a separable constraint. An aged-structured index was available from the acoustic survey from 1987, 1991-1996 and 1998-2000 (Section 5.1.6). Indices of spawning stock biomass were available from the larval survey from 1976-1991 and 1993 (Section 5.1.5).

The inclusion of the larval SSB index in the assessment was investigated. The survey providing this index was last carried out nine years ago, in 1993. This index had no influence on the assessment and has not been used.

The appropriate usage of period of separable constraint was investigated. Assessments were run with different periods of separable constraint, from four to eight years. A period longer than eight years was not considered for two reasons. Inclusion of years prior to 1994 showed a distinct shift in residuals, resulting from the distinct change in the pattern of catch-at-age from 1993 to 1994. Additionally, it was thought unrealistic to expect the fishery to maintain a consistent selection pattern for more than eight years. Examination of the pattern of residuals for each separable period showed no distinct differences in both catch and acoustic surveys. The stock summary data for the final three years of the assessment for the three different separable periods (Table 5.1.8) show that, overall, differences between the assessments are small. There is a spread of 2% (a negligible difference) for the terminal F value and approximately 12% for SSB. A six-year separable period was chosen as a compromise between dependence on uncertain catches over a short period and forcing a consistent pattern over a longer period.

5.1.10 Stock assessment

The run \log for the assessment is shown in Table 5.1.9. The period for the separable constraint is 6 years. The catch and survey data were down-weighted for 1 ring herring (see last year's Working Group assessment report (ICES 2001/ACFM:12b). The input data are given in Tables 5.1.10 to 5.1.16. The output data are given in Tables 5.1.17 to 5.1.26. The assessment results in an SSB for 2001 of 140,331 tonnes and a mean fishing mortality (ages 3-6) of 0.197 (Table 5.1.22). The model diagnostics (Tables 5.1.23 to 5.1.26 and Figures. 5.1.1 to 5.1.12) show that the marginal totals of residuals by age and year between the catch and the separable model are reasonably trend-free and small. The acoustic survey residual pattern is trend-free by year but shows some trend in the age pattern (largest at ages 8 and 9). The acoustic survey residuals are larger than the catch model residuals. The assessment SSB estimate of $140,000 \mathrm{t}$ is the second highest in the time-series. Both catch and acoustic survey data indicate a large recruitment of 2 ringers to the population. Maturity-at-age for 2 ringers is also one of the highest values in the time-series, adding to the increase in SSB. Figure 5.1 .13 shows the trajectories of $5,25,50,75$ and 95 percentiles from the estimates of historical uncertainty of F, SSB and recruits produced in the final assessment. These are based on 1000 samples. Uncertainty is considerably reduced from previous years, reflecting the stability of the input data over the last two or three years. The greatest uncertainty in F is in 1997/98. Discussion of the precision of the assessment is presented in Section 5.1.12 below.

5.1.11 Projections

Deterministic short-term projections

Area misreporting of the $2001 \mathrm{TAC}(36,360 \mathrm{t})$ for $\mathrm{VIa}(\mathrm{N})$ was approximately 30%. This proportion was taken in other areas, leading to a low F of 0.197 in area VIa (N). Two scenarios for deterministic short-term projections are presented: status quo F for 2002, which is consistent with the current level of misreporting, and a catch constraint of $33,000 \mathrm{t}$, which is consistent with the TAC for 2002. Multiple options tables are available for 2003 (Tables 5.1.29 and 5.1.31).
$\left.\begin{array}{|l|l|l|l|}\hline \text { Scenario } & 2002 & 2003 & 2004 \\ \hline \text { 1- status quo } \mathrm{F} & \mathrm{F}_{2002}=\mathrm{F}_{2001}=0.197 & \mathrm{~F}=1.42 * \mathrm{~F}_{2001}=0.28 & \mathrm{~F}=1.42 * \mathrm{~F}_{2001}=0.28 \\ & \begin{array}{l}\text { Status quo } \mathrm{F} \\ \text { Catch Eq. }=28,000 \mathrm{t}\end{array} & \begin{array}{l}\mathrm{F}=\text { suggested } \mathbf{F}_{\mathrm{pa}} \\ \text { Catch Eq. }\end{array}=40,000 \mathrm{t}\end{array} \quad \begin{array}{l}\mathrm{F}=\text { suggested } \mathbf{F}_{\mathrm{pa}} \\ \text { Catch Eq. }=39,000 \mathrm{t}\end{array}\right]$

Input data are stock numbers on $1^{\text {st }}$ January in 2002 from the 2002 ICA assessment (Section 5.1.10, Table 5.1.19), with geometric mean replacing recruitment at 1 and 2 ring in 2002 and 1 ring in 2001. In the assessment information on 1 ring herring is poor and the fishery variable; for this reason 1 ring herring were down-weighted in both the catch and the survey. This led to a spuriously low estimate of 1 ring numbers in the final year of the assessment (2001) and consequently a low value in the survivors (January $1^{\text {st }} 2002$), which are taken forward into the projection. These values were replaced by geometric mean values. The selection pattern used is the fishery in 2001 (Table 5.1.21). For the projections, data for maturity, natural mortality, mean weights-at-age in the catch and in the stock are means of the three previous years (i.e., 1999-2001) (Table 5.1.27).

The results of the short-term projections can be seen in Tables 5.1.28-31. Tables 5.1.28 and 5.1.30 show single option predictions for 2003 and 2004 for the two scenarios respectively. Tables 5.1.29 and 5.1.31 show the multiple options for 2003. The short-term forecast for landings and SSB at different levels of F under scenario 1 is shown in Figure 5.1.15. Under both scenarios, SSB remains at about $138,000 \mathrm{t}$ in 2002 and decreases towards its long-term equilibrium level of around $125,000 \mathrm{t}$ (see medium-term projections), reaching $130,000 \mathrm{t}$ in 2004. The reason for the current increase in abundance is due to the large year class of 2 ringers recruiting to the fishery in 2001.

Yield per recruit

The assessment was used to provide a yield per recruit plot for VIa(N) (Figure 5.1.15). The values for $\mathbf{F}_{0.1}$ and $\mathbf{F}_{\text {med }}$ are 0.168 and 0.32 respectively. These may be compared with the current F (2002 assessment) of 0.197 . The yield per recruit relationship suggests that at, geometric mean recruitment (914 million) a yield of approximately 38,400 t is possible at $\mathrm{F}=$ suggested $\mathbf{F}_{\mathrm{pa}}=0.28$.

Stochastic medium-term projections

No biological reference points are currently available for this stock. Possible values for \mathbf{F}_{pa} and \mathbf{B}_{pa} for this stock are presented in Section 5.1.14. Medium-term projections, to assist with the evaluation of these reference points, were carried out on the basis of exploitation at suggested \mathbf{F}_{pa}, with a preliminary year in 2002 at status quo F . The method used to calculate medium-term projections was that described in ICES (1996/ACFM:10); a Monte-Carlo method was used, with a conventional stock projection being used for each iteration. The generation of pseudo-data sets for the projections was performed separately for the population parameters derived from the stock assessment and for the generation of future recruitments. Population parameters (vector of abundance at age in 2002, fishing mortality at reference age in 2002, selection at age) were drawn from a multivariate normal distribution with mean equal to the values estimated in the stock assessment model, and with covariance as estimated in the same model fit. Pseudorecruitments for subsequent years were generated by calculating a simple geometric mean recruitment because of the failure to identify a useable stock-recruit relationship, and by re-sampling randomly from the residuals according to a conventional non-parametric bootstrap method (Figure 5.1.16). Weights-at-age in the catch were calculated as the mean weights-at-age from 1999-2001. Weights-at-age in the stock, maturity ogives and natural mortality were as given in section 5.1.10. The procedure was implemented using the ICP program; the input parameters are summarised in Table 5.1.32 and the run log is given in Table 5.1.33. Only one scenario is presented, based on the assessment using the 6year separable period (Figure 5.1.14). Target multipliers were given a value of 1 in 2002 and 1.42 in subsequent years to give an $\mathrm{F}=$ suggested $\mathbf{F}_{\mathrm{pa}}=0.28$.

The results of the stochastic medium-term projection are given in Figure 5.1.17. Given a constant F exploitation pattern, catches and SSB rise initially due to the large 1998 year class, SSB stabilises at 125,000 tonnes with $\mathrm{F}=$ suggested \mathbf{F}_{pa}. Landings rise to $45,000 \mathrm{t}$ in 2003 and settle to around $40,000 \mathrm{t}$ in the longer term. The suggested \mathbf{B}_{pa} is 75,500 tonnes, and the risk of the stock falling below \mathbf{B}_{pa} is less than 10% for the period (Figure 5.1.18). This suggests consistency between the suggested \mathbf{F}_{pa} and \mathbf{B}_{pa} reference points.

5.1.12 Quality of the assessment

There has been concern about the annual revision of the perception of the stock, in particular sensitivity to poor sampling of catch, over the last 4 or 5 years. The current assessment seems to be more stable and not particularly sensitive to any uncertainty in the input data. To evaluate the sensitivity of the current situation the assessment has been inspected for a number of possible sources of perturbation.
a) Sensitivity to choice of length of separable period.

This aspect is discussed in Section 5.1.9. The plot of separable model residuals (Figure 5.1.19) shows that pattern of the residuals is insensitive to the choice of period although the amplitude changes very slightly, decreasing with a shorter separable period. Table 5.1 .8 shows that the estimated F is insensitive to the separable period and the biomass is changed by about $\pm 7 \%$.
b) Sensitivity to a small number of isolated large cohort estimates in the acoustic survey.

In 2001 ACFM noted that there appeared to be two values with high leverage in the catchability factors for the acoustic survey. These values were identified as the 1995 year class for 3 ringers and 4 ringers in 1999 and 2000 respectively. To test the influence of these points they were removed, individually and together, in three assessment runs. Table 5.1 .34 shows that the catchabilities are not sensitive to these points. ICA effectively fits the catchability through the origin and the mean of all the observations, thus large values influence the result but do not have particularly increased leverage.
c) Sensitivity to missing catch-at-age data.

Over the last few years sampling for age of catch has been patchy and there are different fleets that have exploited large and small herring at different times. To test the effect of uncertainty in estimates of proportions at age in these two fleets, two groups of ages were identified, 1-4 ringers and 4-9+ ringers. Data on the proportions at age in each group were assumed unknown in each year of the 6 year separable period, giving 12 different scenarios. Figure 5.1.20 shows box and whisker plots of the range and quartiles from the 12 assessments. The F values in 1997 and 1998 are shown to be particularly sensitive to availability of data. However, the estimate of F in the current assessment is relatively insensitive to availability of catch-at-age information. Though the range of SSB is quite large all the estimates are well above the suggested \mathbf{B}_{pa} of $75,500 \mathrm{t}$.

In addition to the above sensitivity analyses retrospective analyses of the assessment from 1999 to 2002 were carried out. Figure 5.1.21 shows the F_{3-6} and SSB from ICA assessments with a 6-year separable period for assessments in 2000 to 2002 and 5 years in 1999. The separable period in 1999 is reduced from 6 to 5 years to exclude catch in 1993 that appears to have a different selection. These retrospective analyses show very stable estimation of F but more variable estimates of SSB, giving recent estimates both above and below the current trajectory, although all are above the suggested \mathbf{B}_{pa} of $75,500 \mathrm{t}$.

The current assessment seems very robust for estimation of F and very reasonable for estimation of SSB, given the sensitivity analysis and the retrospective patterns observed. The retrospective analysis indicates that the problems in estimating catch-at-age in both 1997 and 1998 are now causing little influence to the current assessment. All of the analyses demonstrate that the current F_{3-6} is very close to 0.2 and that the SSB is well above the suggested \mathbf{B}_{pa}.

5.1.13 Management considerations

The assessment presented here is less uncertain due to the improvements in the quality of the catch-at-age input data and the longer time-series for the acoustic survey. Current F_{3-6} is very close to 0.2 and SSB is well above the suggested \mathbf{B}_{pa}. Though the SSB is more uncertain than F_{3-6}, this assessment provides a sound basis for assuming that the stock is currently lightly exploited and able to sustain the current fishery. The yield per recruit and the short-term and mediumterm projections all indicate that a fishery at the same or slightly higher level is sustainable, with only limited risk of the stock falling below \mathbf{B}_{pa} in the medium-term.

5.1.14

 Reference pointsThe assessment provided this year and the retrospective pattern suggests that the current assessment may be reasonably reliable. The main reason for the lack of assessment in previous working groups has been uncertainty in the catch data, particularly 1996-98, coupled with noise in the acoustic survey data and a missing survey in 1997. As the assessment now looks more stable it may be useful to consider provisionally the possible reference points for this stock. The stock data have been entered in PASoft and the results are presented in Figure 5.1.22. As the current assessment appears reasonably reliable it has been used as the basis for the suggestion of biological reference points for this stock. Examination of the stock recruit plot (Figure 5.1.22) indicates there is no evidence of any stock recruit relationship for this stock at these biomass levels.

The estimated value of $\mathbf{B}_{\text {loss }}$ from the assessment is 49,880 , the lowest observed biomass which is near the beginning of the series in the converged part of the VPA and would therefore be unlikely to change in the future. The value for $\mathbf{B}_{\lim }$ is therefore $\mathbf{B}_{\text {loss }}=50,000 \mathrm{t}$. Given $\mathbf{B}_{\text {lim }}$ then \mathbf{B}_{pa} could be suggested as $75,500 \mathrm{t}$ based on the relationship:

$$
\mathbf{B}_{\mathrm{pa}}=\mathbf{B}_{\mathrm{lim}} \mathrm{e}^{-1.645 * \mathrm{~s}}
$$

where s is given as the mid-range value 0.25 .
Given the suggested \mathbf{B}_{pa} of 75,500 the history of the exploitation was examined and there are 22 years when SSB is above the \mathbf{B}_{pa}. Fishing was at a mean F_{3-6} of 0.28 for 90% of these years, suggesting that this fishing mortality would be a candidate value of \mathbf{F}_{pa} and that this value would be compatible with a suggested \mathbf{B}_{pa} of $75,500 \mathrm{t}$. The medium-term projections described in Section 5.1.11. show that at an exploitation rate of $\mathrm{F}=$ suggested $\mathbf{F}_{\mathrm{pa}}=0.28$ the risk of the biomass falling below \mathbf{B}_{pa} would be 10% in the medium-term (Figure 5.1.18). This supports the contention that an \mathbf{F}_{pa} of 0.28 would be compatible with the suggested \mathbf{B}_{pa}.

A compatible $\mathbf{F}_{\text {lim }}$ would be:

$$
\mathbf{F}_{\lim }=\mathbf{F}_{\mathrm{pa}} \mathrm{e}^{1.645^{*} \mathrm{~s}}=\mathbf{F}_{\mathrm{lim}}=0.42
$$

Where s is given the mid range value of 0.25
The reference limits and the historic stock trajectory are shown in Figure 5.1.23 and show that the stock is currently within the suggested precautionary limits and that these suggested values are compatible with a reasonable part of the history of the stock.

The suggested values are tabulated below:

Suggested Precautionary Approach reference points:

| $\mathbf{B}_{\text {lim }}$ is $50,000 \mathrm{t}$ | \mathbf{B}_{pa} be set at $75,500 \mathrm{t}$ |
| :--- | :--- |
| $\mathbf{F}_{\text {lim }}$ is 0.42 | \mathbf{F}_{pa} be set at 0.28 |

Technical basis:

| $\mathbf{B}_{\text {lim }}:$ Lowest reliable estimated SSB | $\mathbf{B}_{\mathrm{pa}}:$ Approximately $1.5 \mathbf{B}_{\mathrm{lim}}$ |
| :--- | :--- |
| $\mathbf{F}_{\text {lim: }}: 1.5 * \mathbf{F}_{\mathrm{pa}}$ | \mathbf{F}_{pa} is the F for a 10% risk of stock falling below \mathbf{B}_{pa} |

5.2.1 Advice and management applicable to 2001 and 2002

Management of herring in the Clyde is complicated by the presence of two stocks that are not separated currently; a resident spring-spawning population and the immigrant autumn-spawning component. Management strategies have been directed towards rebuilding the highly depleted spring-spawning component to historical levels.

The measures which remain in force in order to protect the indigenous spring-spawning stock are:

- A complete ban on herring fishing from 1 January to 30 April;
- A complete ban on all forms of active fishing from 1 February to 1 April, on the Ballantrae Bank spawning grounds, to protect the demersal spawn and prevent disturbance of the spawning shoals;
- A ban on herring fishing between 00:00 Saturday morning and 24:00 Sunday night;
- The TACs in 2001 and 2002 were maintained at the same level as in recent years (1,000 tonnes).

5.2.2 The fishery in 2001

Annual landings from 1955 to 2001 are presented in Table 5.2.1. Landings in 2001 were 480 t . The proportions of spring and autumn spawners in these landings could not be estimated. The sampling levels of the local fishery have been reduced in recent years (Table 5.2.2). They are still above recommended levels but should not go any lower.

5.2.3 Weight-at-age and stock composition

The catch in numbers-at-age for the period 1970 to 2001 is given in Table 5.2.3. Weights-at-age are given in Table 5.2.4. Mean weights in the stock have not been available from research vessel surveys since 1991, therefore the weights in the stock used are the weights-at-age in the catches.

5.2.4 Surveys

No demersal egg surveys on the Ballantrae Bank and Brown Head spawning sites, no acoustic surveys in the Clyde and no spring trawl surveys were carried out in 2001. Historical estimates from these surveys are tabulated in (ICES 1995/ACFM:13).

5.2.5 Stock assessment

The structure of the stock in the Clyde remains uncertain. No survey data are available from recent years, therefore no assessment could be attempted.

5.2.6 Stock and catch projections

In the absence of an analytical assessment no stock projections can be provided.

5.2.7 Management considerations

The management of this fishery is made difficult by the presence of a mixture of a severely depleted spring-spawning component and autumn spawners from Division VIa. The management objectives for these two components are necessarily distinct. The absence of fishery-independent data from surveys further compounds the problem. Historically the spring-spawning stock supported a fishery with catches up to $15,000 \mathrm{t}$ per year in the 1960 's. Landings began to decline through the 1970's and 1980's. In 1991 there was a dramatic drop in both landings and effort and since then landings have fluctuated at, or more usually below, $1,000 \mathrm{t}$.

In the absence of surveys and with no stock separation of the catches, nothing is currently known about the state of the spring-spawning stock. All the management measures, currently in force, need to remain. Catches should remain at a low level until more is known about the dynamics of this stock.

Table 5.1.1. Herring in VIa(N). Catch in tonnes by country, 1981-2001. These figures do not in all cases correspond to the official statistics and cannot be used for management purposes.

| Country | $\mathbf{1 9 8 1}$ | $\mathbf{1 9 8 2}$ | $\mathbf{1 9 8 3}$ | $\mathbf{1 9 8 4}$ | $\mathbf{1 9 8 5}$ | $\mathbf{1 9 8 6}$ | $\mathbf{1 9 8 7}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | | | | | | | |
| Denmark | 1580 | | | 96 | | 40 | |
| Faroes | | 74 | 834 | 954 | 104 | 400 | 18 |
| France | 1243 | 2069 | 1313 | | 20 | 136 | |
| Germany | 3029 | 8453 | 6283 | 5564 | 5937 | 2188 | 1711 |
| Ireland | | | | | | 6000 | 6800 |
| Netherlands | 5602 | 11317 | 20200 | 7729 | 5500 | 5160 | 5212 |
| Norway | 3850 | 13018 | 7336 | 6669 | 4690 | 4799 | 4300 |
| UK | 31483 | 38471 | 31616 | 37554 | 28065 | 25294 | 26810 |
| Unallocated | 4633 | 18958 | -4059 | 16588 | -502 | 37840 | 18038 |
| Discards | | | | | | | |
| Total | | | | | | | -19142 |

[^11]Table 5.1.2. Herring in VIa(N). Catch and sampling effort by nation participating in the fishery

QUARTER : 1

| Country | Sampled Catch | Official Catch | No. of samples | No.
 measured | $\begin{aligned} & \text { No. } \\ & \text { aged } \end{aligned}$ | $\underset{\%}{\mathrm{SOP}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Germany | 305.00 | 305.00 | 2 | 1241 | 316 | 100.12 |
| Ireland | 0.00 | 834.00 | 0 | 0 | 0 | 0.00 |
| Netherlands | 0.00 | 169.00 | 0 | 0 | 0 | 0.00 |
| Scotland | 0.00 | 41.00 | 0 | 0 | 0 | 0.00 |
| Period Total | 305.00 | 1349.00 | 2 | 1241 | 316 | 100.12 |
| Sum of Offical Catches : Unallocated Catch :
 Working Group Catch : | | $\begin{array}{r} 1349.00 \\ 55.00 \\ 1404.00 \end{array}$ | | | | |
| | | | | |
| | | | | |

QUARTER : 2

| Country | Sampled
 Catch | Official
 Catch | No. of
 samples | No.
 measured | No.
 aged |
| :--- | :---: | :---: | :---: | :---: | :---: |
| England \& Wales | 0.00 | 2059.00 | 0 | 0 | 0 |

QUARTER : 3

| Country | Sampled
 Catch | Official
 Catch |
| :--- | ---: | ---: |
| France | 0.00 | 760.00 |
| Germany | 0.00 | 3012.00 |
| N. Ireland | 3000.00 | 3000.00 |
| Netherlands | 588.00 | 3405.00 |
| Scotland | 10603.00 | 16623.00 |
| Period Total | 14191.00 | 26800.00 |
| | | |
| \quad Sum of Offical Catches : | 26800.00 | |
| \quad Unallocated Catch : | -8837.00 | |
| \quad Working Group Catch : | 17963.00 | |

QUARTER : 4

| Country | Sampled Catch | $\begin{aligned} & \text { Official } \\ & \text { Catch } \end{aligned}$ | No. of samples | No.
 measured | $\begin{aligned} & \text { No. } \\ & \text { aged } \end{aligned}$ | $\begin{gathered} \text { SOP } \\ \frac{\circ}{\circ} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ireland | 0.00 | 3477.00 | 0 | 0 | 0 | 0.00 |
| Netherlands | 0.00 | 947.00 | 0 | 0 | 0 | 0.00 |
| Scotland | 19.00 | 19.00 | 1 | 138 | 50 | 100.26 |
| Period Total | 19.00 | 4443.00 | 1 | 138 | 50 | 100.26 |
| Sum of Offical Catches : Unallocated Catch : Working Group Catch : | | $\begin{array}{r} 4443.00 \\ -1642.00 \\ 2801.00 \end{array}$ | | | | |
| | | | | | |
| | | | | | |

Table 5.1.3. Herring in VIa(N). Estimated catch numbers-at-age (thousands), 1976-2001.

| Age | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 69053 | 34836 | 22525 | 247 | 2692 | 36740 | 13304 | 81923 | 2207 | 40794 | 33768 |
| 2 | 319604 | 47739 | 46284 | 142 | 279 | 77961 | 250010 | 77810 | 188778 | 68845 | 154963 |
| 3 | 101548 | 95834 | 20587 | 77 | 95 | 105600 | 72179 | 92743 | 49828 | 148399 | 86072 |
| 4 | 35502 | 22117 | 40692 | 19 | 51 | 61341 | 93544 | 29262 | 35001 | 17214 | 118860 |
| 5 | 25195 | 10083 | 6879 | 13 | 13 | 21473 | 58452 | 42535 | 14948 | 15211 | 18836 |
| 6 | 76289 | 12211 | 3833 | 8 | 9 | 12623 | 23580 | 27318 | 11366 | 6631 | 18000 |
| 7 | 10918 | 20992 | 2100 | 4 | 8 | 11583 | 11516 | 14709 | 9300 | 6907 | 2578 |
| 8 | 3914 | 2758 | 6278 | 1 | 1 | 1309 | 13814 | 8437 | 4427 | 3323 | 1427 |
| 9 | 12014 | 1486 | 1544 | 0 | 0 | 1326 | 4027 | 8484 | 1959 | 2189 | 1971 |
| | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 |
| 1 | 19463 | 1708 | 6216 | 14294 | 26396 | 5253 | 17719 | 1728 | 266 | 1952 | 1193 |
| 2 | 65954 | 119376 | 36763 | 40867 | 23013 | 24469 | 95288 | 36554 | 82176 | 37854 | 55810 |
| 3 | 45463 | 41735 | 109501 | 40779 | 25229 | 24922 | 18710 | 40193 | 30398 | 30899 | 34966 |
| 4 | 32025 | 28421 | 18923 | 74279 | 28212 | 23733 | 10978 | 6007 | 21272 | 9219 | 31657 |
| 5 | 50119 | 19761 | 18109 | 26520 | 37517 | 21817 | 13269 | 7433 | 5376 | 7508 | 23118 |
| 6 | 8429 | 28555 | 7589 | 13305 | 13533 | 33869 | 14801 | 8101 | 4205 | 2501 | 17500 |
| 7 | 7307 | 3252 | 15012 | 9878 | 7581 | 6351 | 19186 | 10515 | 8805 | 4700 | 10331 |
| 8 | 3508 | 2222 | 1622 | 21456 | 6892 | 4317 | 4711 | 12158 | 7971 | 8458 | 5213 |
| 9 | 5983 | 2360 | 3505 | 5522 | 4456 | 5511 | 3740 | 10206 | 9787 | 31108 | 9883 |
| | 1998 | 1999 | 2000 | 2001 | | | | | | | |
| 1 | 9092 | 7635 | 4511 | 147 | | | | | | | |
| 2 | 74167 | 35252 | 22960 | 82214 | | | | | | | |
| 3 | 34571 | 93910 | 21825 | 15295 | | | | | | | |
| 4 | 31905 | 25078 | 51420 | 9490 | | | | | | | |
| 5 | 22872 | 13364 | 15505 | 24896 | | | | | | | |
| 6 | 14372 | 7529 | 9002 | 9493 | | | | | | | |
| 7 | 8641 | 3251 | 3898 | 6785 | | | | | | | |
| 8 | 2825 | 1257 | 1836 | 4271 | | | | | | | |
| 9 | 3327 | 1089 | 576 | 1015 | | | | | | | |

Table 5.1.4. Herring in VIa(N). Larval abundance indices (LAI - numbers in billions), larval mortality rates (Z/K), fecundity estimate ($10^{5} \mathrm{eggs} / \mathrm{g}$). Larval production estimate (LPE - biomass estimate in thousands of tonnes).

| Year | LAI | $\begin{array}{r} \hline 10 \% \text { Trim } \\ \text { LAI } \end{array}$ | Z/K | LPE | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Larvae | Fecundity | SSB |
| 1973 | 2442 | 46.49 | 0.74 | 318 | (1.39) | 229 |
| 1974 | 1186 | 17.44 | 0.42 | 238 | (1.39) | 171 |
| 1975 | 878 | 22 | 0.46 | 157 | 1.46 | 108 |
| 1976 | 189 | 11.04 | - | 60 | 1.23 | 49 |
| 1977 | 787 | 25 | - | 223 | 1.49 | 150 |
| 1978 | 332 | 32.8 | - | 132 | 1.37 | 109 |
| 1979 | 1071 | 26.94 | | 118 | 1.49 | 79 |
| 1980 | 1436 | 26.33 | 0.39 | 287 | 2.04 | 141 |
| 1981 | 2154 | 35.61 | 0.34 | 448 | 2.12 | 211 |
| 1982 | 1890 | 32.58 | 0.39 | 267 | 1.95 | 137 |
| 1983 | 668 | 24.55 | - | 112 | 1.88 | 60 |
| 1984 | 2133 | 45.99 | 0.57 | 253 | 1.75 | 145 |
| 1985 | 2710 | 50.03 | 0.37 | 418 | (1.86) | 225 |
| 1986 | 3037 | 45.36 | 0.24 | 907 | (1.86) | 488 |
| 1987 | 4119 | 45.47 | 0.53 | 423 | (1.86) | 227 |
| 1988 | 5947 | 75.13 | 0.47 | 781 | (1.86) | 420 |
| 1989 | 4320 | 82.68 | 0.40 | 752 | (1.86) | 404 |
| 1990 | 6525 | 86.2 | 0.64 | 426 | (1.86) | 229 |
| 1991 | 4430 | 63.06 | 0.60 | 632 | (1.86) | 340 |
| 1992 | 12252 | 41.79 | 0.66 | 463 | (1.86) | 248 |
| 1993 | 2941 | 65.01 | 0.56 | 538 | (1.86) | 289 |

Table 5.1.5. Herring in VIa(N). Estimates of abundance from Scottish acoustic surveys. Thousands of fish at age and spawning biomass (SSB, tonnes).

| Age | $\mathbf{1 9 8 7}$ | $\mathbf{1 9 9 1}$ | $\mathbf{1 9 9 2}$ | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 4}$ | $\mathbf{1 9 9 5}$ | $\mathbf{1 9 9 6}$ | $\mathbf{1 9 9 7}^{\#}$ | $\mathbf{1 9 9 8}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 249100 | 338312 | 74310 | 2760 | 494150 | 441240 | 41220 | 792320 | 1221700 |
| 2 | 578400 | 294484 | 503430 | 750270 | 542080 | 1103400 | 576460 | 641860 | 794630 |
| 3 | 551100 | 327902 | 210980 | 681170 | 607720 | 473220 | 802530 | 286170 | 666780 |
| 4 | 353100 | 367830 | 258090 | 653050 | 285610 | 450270 | 329110 | 167040 | 471070 |
| 5 | 752600 | 488288 | 414750 | 544000 | 306760 | 152970 | 95360 | 66100 | 179050 |
| 6 | 111600 | 176348 | 240110 | 865150 | 268130 | 187100 | 60600 | 49520 | 79270 |
| 7 | 48100 | 98741 | 105670 | 284110 | 406840 | 169080 | 77380 | 16280 | 28050 |
| 8 | 15900 | 89830 | 56710 | 151730 | 173740 | 236540 | 78190 | 28990 | 13850 |
| $9+$ | 6500 | 58043 | 63440 | 156180 | 131880 | 201500 | 114810 | 24440 | 36770 |
| SSB: | 273000^{*} | 452000 | 351460 | 866190 | 533740 | 452120 | 370300 | 140910 | 375890 |

| Age | $\mathbf{1 9 9 9}$ | $\mathbf{2 0 0 0}$ | $\mathbf{2 0 0 1}$ |
| :--- | ---: | ---: | ---: |
| 1 | 534200 | 447600 | 313100 |
| 2 | 322400 | 316200 | 1062000 |
| 3 | 1388800 | 337100 | 217700 |
| 4 | 432000 | 899500 | 172800 |
| 5 | 308000 | 393400 | 437500 |
| 6 | 138700 | 247600 | 132600 |
| 7 | 86500 | 199500 | 102800 |
| 8 | 27600 | 95000 | 52400 |
| $9+$ | 35400 | 65000 | 34700 |
| SSB: | 460200 | 500500 | 359200 |

[^12]Table 5.1.6. Herring in VIa(N). Mean weights-at-age (g).

| Weight in the catch | | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age,
 Rings | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
| 1 | 69 | 113 | 73 | 80 | 82 | 79 | 84 | 91 | 89 | 83 | 105 | 81 | 89 | 97 | 76 | 83 | 49 |
| 2 | 103 | 145 | 143 | 112 | 142 | 129 | 118 | 122 | 128 | 142 | 142 | 134 | 136 | 138 | 130 | 137 | 140 |
| 3 | 134 | 173 | 183 | 157 | 145 | 173 | 160 | 172 | 158 | 167 | 180 | 178 | 177 | 159 | 158 | 164 | 163 |
| 4 | 161 | 196 | 211 | 177 | 191 | 182 | 203 | 194 | 197 | 190 | 191 | 210 | 205 | 182 | 175 | 183 | 183 |
| 5 | 182 | 215 | 220 | 203 | 190 | 209 | 211 | 216 | 206 | 195 | 198 | 230 | 222 | 199 | 191 | 201 | 192 |
| 6 | 199 | 230 | 238 | 194 | 213 | 224 | 229 | 224 | 228 | 201 | 213 | 233 | 223 | 218 | 210 | 215 | 196 |
| 7 | 213 | 242 | 241 | 240 | 216 | 228 | 236 | 236 | 223 | 244 | 207 | 262 | 219 | 227 | 225 | 239 | 205 |
| 8 | 223 | 251 | 253 | 213 | 204 | 237 | 261 | 251 | 262 | 234 | 227 | 247 | 238 | 212 | 223 | 281 | 224 |
| 9+ | 231 | 258 | 256 | 228 | 243 | 247 | 271 | 258 | 263 | 266 | 277 | 291 | 263 | 199 | 226 | 253 | 271 |

| | Weight in the stock from Acoustic surveys | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: | ---: |
| (Age, Rings) | Historical | $\mathbf{1 9 9 2}$ | $\mathbf{1 9 9 3}$ | $\mathbf{1 9 9 4}$ | $\mathbf{1 9 9 5}$ | $\mathbf{1 9 9 6}$ | $\mathbf{1 9 9 7}$ | $\mathbf{1 9 9 8}$ | $\mathbf{1 9 9 9}$ | $\mathbf{2 0 0 0}$ | $\mathbf{2 0 0 1}$ |
| 1 | 90 | 68 | 75 | 52 | 45 | 45 | 57 | 65 | 54 | 62 | 62 |
| 2 | 164 | 152 | 162 | 150 | 144 | 140 | 150 | 138 | 137 | 141 | 132 |
| 3 | 208 | 186 | 196 | 192 | 191 | 180 | 189 | 177 | 166 | 173 | 170 |
| 4 | 233 | 206 | 206 | 220 | 202 | 209 | 209 | 193 | 188 | 183 | 190 |
| 5 | 246 | 232 | 226 | 221 | 225 | 219 | 225 | 214 | 203 | 194 | 198 |
| 6 | 252 | 252 | 234 | 233 | 226 | 222 | 233 | 226 | 219 | 204 | 212 |
| 7 | 258 | 271 | 254 | 241 | 247 | 229 | 248 | 234 | 225 | 211 | 220 |
| 8 | 269 | 296 | 260 | 270 | 260 | 242 | 266 | 225 | 235 | 222 | 236 |
| $9+$ | 292 | 305 | 276 | 296 | 293 | 263 | 287 | 249 | 245 | 230 | 254 |

\# The 1997 survey is not on the same basis as the other years, it was conducted in June (all other surveys were carried out in July) and it is not used for assessment purposes.

Table 5.1.7 Herring in $\operatorname{VIa}(\mathrm{N})$. Maturity ogive used in estimates of spawning stock biomass taken from acoustic surveys. Values measured in 1997 were measured in June whilst other values are measured in July. The mean value 9296 is used in the assessment for the years 1976-1991 and 1997.

| Year \Age (W ring) | 2 | 3 | >3 |
| :--- | :--- | :--- | :--- |
| Mean 92-96 | 0.57 | 0.96 | 1.00 |
| 1992 | 0.47 | 1.00 | 1.00 |
| 1993 | 0.93 | 0.96 | 1.00 |
| 1994 | 0.48 | 0.92 | 1.00 |
| 1995 | 0.19 | 0.98 | 1.00 |
| 1996 | 0.76 | 0.94 | 1.00 |
| $1997^{\#}$ | 0.41 | 0.88 | 1.00 |
| 1998 | 0.85 | 0.97 | 1.00 |
| 1999 | 0.57 | 0.98 | 1.00 |
| 2000 | 0.45 | 0.92 | 1.00 |
| 2001 | 0.93 | 0.99 | 1.00 |

\# The 1997 survey is not on the same basis as the other years, it was conducted in June (all other surveys were carried out in July) and it is not used for assessment purposes.

Table 5.1.8. Herring in VIa(N). ICA Assessment: comparison using a 4, 6 or 8 year period of separable constraint showing the stock summary table for the final 3 years.

| | 4 yr separable | | | 6 yr separable | | | 8 yr separable | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1999 | 2000 | 2001 | 1999 | 2000 | 2001 | 1999 | 2000 | 2001 |
| Recruits '000 | 527040 | 2006410 | 42550 | 516800 | 2004690 | 76750 | 473080 | 1801980 | 104470 |
| Biomass t | 167124 | 252090 | 199554 | 154413 | 241452 | 192023 | 153346 | 226961 | 182130 |
| SSB t | 96559 | 89470 | 149696 | 86602 | 79944 | 140331 | 88368 | 79786 | 131328 |
| Landings t | 29736 | 23163 | 24974 | 29736 | 23163 | 24974 | 29736 | 23163 | 24974 |
| Yield/SSB | 0.308 | 0.259 | 0.167 | 0.343 | 0.290 | 0.178 | 0.337 | 0.290 | 0.190 |
| mean F_{3-6} | 0.236 | 0.194 | 0.179 | 0.258 | 0.216 | 0.197 | 0.230 | 0.204 | 0.193 |
| SoP | 99 | 100 | 99 | 99 | 100 | 99 | 99 | 100 | 99 |

Table 5.1.9. Herring in VIa(N). ICA run log for the maximum-likelihood ICA calculation for the 6 year separable period.

```
Integrated Catch-at-age Analysis
    Version 1.4 w
    K.R.Patterson
    Fisheries Research Services
        Marine Laboratory
            Aberdeen
```

```
Enter the name of the index file -->index.dat
canum.dat
weca.dat
    Stock weights in 2002 used for the year 2001
west.dat
    Natural mortality in 2002 used for the year 2001
natmor.dat
    Maturity ogive in 2002 used for the year 2001
matprop.dat
    Name of age-structured index file (Enter if none) : -->fleet.dat
    Name of the SSB index file (Enter if none) -->
No indices of spawning biomass to be used.
    No of years for separable constraint ?--> 6
    Reference age for separable constraint ?--> 4
    Constant selection pattern model (Y/N) ?-->y
    S to be fixed on last age ?--> 1.000000000000000
    First age for calculation of reference F ?--> 3
    Last age for calculation of reference F ?--> 6
    Use default weighting (Y/N) ?-->n
Enter relative weights-at-age
    Weight for age 1--> 0.100000000000000
    Weight for age 2--> 1.000000000000000
    Weight for age 3--> 1.000000000000000
    Weight for age 4--> 1.000000000000000
    Weight for age 5--> 1.000000000000000
    Weight for age 6--> 1.000000000000000
    Weight for age 7--> 1.000000000000000
    Weight for age 8--> 1.000000000000000
    Weight for age 9--> 1.000000000000000
Enter relative weights by year
    Weight for year 1996--> 1.000000000000000
    Weight for year 1997--> 1.000000000000000
    Weight for year 1998--> 1.000000000000000
    Weight for year 1999--> 1.000000000000000
    Weight for year 2000--> 1.000000000000000
    Weight for year 2001--> 1.000000000000000
Enter new weights for specified years and ages if needed
    Enter year, age, new weight or -1,-1,-1 to end. -1 -1 -1.0000000000000000
    Is the last age of FLTO1: West Scotland Summer Acoustic Sur a plus-group (Y-->y
You must choose a catchability model for each index.
Models: A Absolute: Index = Abundance . e
    L Linear: Index = Q. Abundance . e
    P Power: Index = Q. Abundance^ K .e
    where Q and K are parameters to be estimated, and
    e is a lognormally-distributed error.
    Model for FLT01: West Scotland Summer Acoustic Sur is to be A/L/P ?-->L
    Fit a stock-recruit relationship (Y/N) ?-->n
    Enter lowest feasible F--> 2.0000000000000000E-02
    Enter highest feasible F--> 0.500000000000000
```

Table 5.1.9. continued.
Mapping the F-dimension of the SSQ surface

| F | SSQ |
| :---: | :---: |
| 0.02 | 14.6137464782 |
| 0.05 | 10.2083574135 |
| 0.07 | 8.7840203404 |
| 0.10 | 8.3476283908 |
| 0.12 | 8.3006503723 |
| 0.15 | 8.4238822885 |
| 0.17 | 8.6259825085 |
| 0.20 | 8.8653387509 |
| 0.22 | 9.1216400825 |
| 0.25 | 9.3845268065 |
| 0.27 | 9.6485845603 |
| 0.30 | 9.9110122345 |
| 0.32 | 10.1704199568 |
| 0.35 | 10.4262231310 |
| 0.37 | 10.6783325868 |
| 0.40 | 10.9269288219 |
| 0.42 | 11.1724188581 |
| 0.45 | 11.4153283195 |
| 0.47 | 11.6562991243 |
| 0.50 | 11.8960977965 |

No of years for separable analysis : 6
Age range in the analysis : 1 . . . 9
Year range in the analysis : 1976 . . . 2001
Number of indices of SSB : 0
Number of age-structured indices : 1
Parameters to estimate : 34
Number of observations : 147
Conventional single selection vector model to be fitted.

```
Survey weighting to be Manual (recommended) or Iterative (M/I) ?-->M
    Enter weight for FLT01: West Scotland Summer Acoustic Sur at age 1-->
    Enter weight for FLTO1: West Scotland Summer Acoustic Sur at age 2-->
    Enter weight for FLT01: West Scotland Summer Acoustic Sur at age 3-->
    Enter weight for FLTO1: West Scotland Summer Acoustic Sur at age 4-->
    Enter weight for FLTO1: West Scotland Summer Acoustic Sur at age 5-->
    Enter weight for FLTO1: West Scotland Summer Acoustic Sur at age 6-->
    Enter weight for FLT01: West Scotland Summer Acoustic Sur at age 7-->
    Enter weight for FLTO1: West Scotland Summer Acoustic Sur at age 8-->
    Enter weight for FLT01: West Scotland Summer Acoustic Sur at age 9-->
        0.1000000000000000
        1.000000000000000
        1.000000000000000
        1.000000000000000
        1.000000000000000
        1.000000000000000
        1.000000000000000
        1.000000000000000
        1.000000000000000
Enter estimates of the extent to which errors
in the age-structured indices are correlated
across ages. This can be in the range 0 (independence)
to 1 (correlated errors).
    Enter value for FLT01: West Scotland Summer Acoustic Sur--> 1.0000000000000000
    Do you want to shrink the final fishing mortality (Y/N) ?-->N
Seeking solution. Please wait.
Aged index weights
FLT01: West Scotland Summer Acoustic Sur
FAge : : 
    Wts : 0.011 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
F in 2001 at age 4 is 0.183666 in iteration 1
    Detailed, Normal or Summary output (D/N/S)-->D
    Output page width in characters (e.g. 80..132) ?--> 80
    Estimate historical assessment uncertainty ?-->y
    Sample from Covariances or Bayes MCMC (C/B) ?-->C
    Use default percentiles (Y/N) ?-->y
    How many samples to take ?--> 1000
    Enter SSB reference level (e.g. MBAL, B}\mp@subsup{B}{pa}{\prime..) [t]--> 0.00000000000000000E+000
Successful exit from ICA
```

Table 5.1.10. Herring in VIa(N). Catch number-at-age (millions)

Herring VIa (north)
Catch in Number

Table 5.1.11. Herring in VIa(N). Weight in the catch (kg)


```
l------+--------------------
```

 \(1 \mid 0.083400 .04900\)
 \(2 \mid 0.137300 .13960\)
 \(3 \mid 0.163700 .16270\)
 \(4 \quad \mid \quad 0.182900 .18260\)
 5 | 0.201400 .19200
 \(6 \mid 0.214700 .19570\)
 \(7 \quad 0.239400 .20450\)
 \(8 \quad 0.281200 .22440\)
 \(9 \mid 0.25260 \quad 0.27130\)
 Table 5.1.12. Herring in VIa(N). Weight in the stock (kg)

Table 5.1.13. Herring in $\operatorname{VIa}(\mathrm{N})$. Natural mortality
Natural Mortality (per year)

| AGE | 1976 | 1977 | 1978 | \ldots | 1998 | 1999 | 2000 | 2001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.0000 | 1.0000 | 1.0000 | | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 2 | 0.3000 | 0.3000 | 0.3000 | | 0.3000 | 0.3000 | 0.3000 | 0.3000 |
| 3 | 0.2000 | 0.2000 | 0.2000 | | 0.2000 | 0.2000 | 0.2000 | 0.2000 |
| 4 | 0.1000 | 0.1000 | 0.1000 | | 0.1000 | 0.1000 | 0.1000 | 0.1000 |
| 5 | 0.1000 | 0.1000 | 0.1000 | | 0.1000 | 0.1000 | 0.1000 | 0.1000 |
| 6 | 0.1000 | 0.1000 | 0.1000 | ... | 0.1000 | 0.1000 | 0.1000 | 0.1000 |
| 7 | 0.1000 | 0.1000 | 0.1000 | ... | 0.1000 | 0.1000 | 0.1000 | 0.1000 |
| 8 | 0.1000 | 0.1000 | 0.1000 | | 0.1000 | 0.1000 | 0.1000 | 0.1000 |
| 9 | 0.1000 | 0.1000 | 0.1000 | \ldots | 0.1000 | 0.1000 | 0.1000 | 0.1000 |

Table 5.1.14. Herring in VIa(N). Proportion mature
Proportion of fish spawning

| AGE | \| | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | \| | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 2 | \| | 0.5700 | 0.5700 | 0.5700 | 0.5700 | 0.5700 | 0.5700 | 0.5700 | 0.5700 |
| 3 | \| | 0.9600 | 0.9600 | 0.9600 | 0.9600 | 0.9600 | 0.9600 | 0.9600 | 0.9600 |
| 4 | \| | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 5 | \| | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 6 | \| | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 7 | \| | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 8 | \| | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 9 | \| | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |

| AGE | \| | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | \| | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 2 | \| | 0.5700 | 0.5700 | 0.5700 | 0.5700 | 0.5700 | 0.5700 | 0.5700 | 0.5700 |
| 3 | । | 0.9600 | 0.9600 | 0.9600 | 0.9600 | 0.9600 | 0.9600 | 0.9600 | 0.9600 |
| 4 | \| | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 5 | \| | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 6 | \| | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 7 | \| | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 8 | । | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 9 | \| | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |

| AGE | | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | \| | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 2 | I | 0.4700 | 0.9300 | 0.4800 | 0.1900 | 0.7600 | 0.5700 | 0.8500 | 0.5700 |
| 3 | \| | 1.0000 | 0.9600 | 0.9200 | 0.9800 | 0.9400 | 0.9600 | 0.9700 | 0.9800 |
| 4 | \| | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 5 | \| | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 6 | \| | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 7 | I | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 8 | | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 9 | | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |

Table 5.1.15. Herring in $\mathrm{VIa}(\mathrm{N})$. Tuning indices
AGE-STRUCTURED INDICES

| AGE | 1 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | \| | 249.1 | ******* | ******* | ******* | 338.3 | 74.3 | 2.8 | 494.2 |
| 2 | I | 578.4 | ******* | ******* | ******* | 294.5 | 503.4 | 750.3 | 542.1 |
| 3 | \| | 551.1 | ******* | ******* | ******* | 327.9 | 211.0 | 681.2 | 607.7 |
| 4 | \| | 353.1 | ******* | ******* | ******* | 367.8 | 258.1 | 653.0 | 285.6 |
| 5 | \| | 752.6 | ******* | ******* | ******* | 488.3 | 414.8 | 544.0 | 306.8 |
| 6 | \| | 111.6 | ******* | ******* | ******* | 176.3 | 240.1 | 865.2 | 268.1 |
| 7 | 1 | 48.1 | ******* | ******* | ******* | 98.7 | 105.7 | 284.1 | 406.8 |
| 8 | \| | 15.9 | ******* | ******* | ******* | 89.8 | 56.7 | 151.7 | 173.7 |
| 9 | 1 | 6.5 | ******* | ******* | ******* | 58.0 | 63.4 | 156.2 | 131.9 |

| AGE | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 460.6 | 41.2 | ******* | 1221.7 | 534.2 | 447.6 | 313.1 |
| 2 | 1085.1 | 576.5 | ******* | 794.6 | 322.4 | 316.2 | 1062.0 |
| 3 | 472.7 | 802.5 | ******* | 666.8 | 1388.0 | 337.1 | 217.7 |
| 4 | 450.2 | 329.1 | ******* | 471.1 | 432.0 | 899.5 | 172.8 |
| 5 | 153.0 | 95.4 | ******* | 179.1 | 308.0 | 393.4 | 437.5 |
| 6 | 187.1 | 60.6 | ******* | 79.3 | 138.7 | 247.6 | 132.6 |
| 7 | 169.2 | 77.4 | ******* | 28.1 | 86.5 | 199.5 | 102.8 |
| 8 | 236.6 | 78.2 | ******* | 13.8 | 27.6 | 95.0 | 52.4 |
| 9 | 201.5 | 114.8 | ******* | 36.8 | 35.4 | 65.0 | 34.7 |

Table 5.1.16. Herring in $\operatorname{VIa}(\mathrm{N})$. Weighting factors for the catch in numbers

| AGE | \| | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | \| | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 |
| 2 | । | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 3 | \| | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 4 | \| | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 5 | I | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 6 | \| | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 7 | I | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 8 | \| | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |

Table 5.1.17. Herring in VIa(N). Predicted catch in number.

Table 5.1.18. Herring in VIa(N). Fishing mortality (per year)

| AGE | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.1928 | 0.0915 | 0.0395 | 0.0003 | 0.0048 | 0.0354 | 0.0276 | 0.0439 |
| 2 | 0.7680 | 0.3489 | 0.2918 | 0.0005 | 0.0007 | 0.3207 | 0.6575 | 0.3896 |
| 3 | 1.2130 | 0.5975 | 0.2648 | 0.0007 | 0.0004 | 0.4290 | 0.5969 | 0.5920 |
| 4 | 1.0773 | 0.9315 | 0.5210 | 0.0003 | 0.0006 | 0.3953 | 0.8036 | 0.4899 |
| 5 | 0.8860 | 0.9380 | 0.7540 | 0.0002 | 0.0002 | 0.3034 | 0.7119 | 0.9652 |
| 6 | 1.0528 | 1.4281 | 1.0574 | 0.0015 | 0.0002 | 0.3075 | 0.5607 | 0.7675 |
| 7 | 1.0777 | 0.8401 | 0.9289 | 0.0022 | 0.0016 | 0.3055 | 0.4504 | 0.7291 |
| 8 | 0.9878 | 0.7815 | 0.5729 | 0.0008 | 0.0006 | 0.3438 | 0.6344 | 0.6162 |
| 9 | 0.9878 | 0.7815 | 0.5729 | 0.0008 | 0.0006 | 0.3438 | 0.6344 | 0.6162 |
| AGE | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| 1 | 0.0030 | 0.0547 | 0.0611 | 0.0147 | 0.0030 | 0.0117 | 0.0520 | 0.1194 |
| 2 | 0.2294 | 0.2080 | 0.5467 | 0.2803 | 0.1984 | 0.1361 | 0.1658 | 0.1872 |
| 3 | 0.4995 | 0.3025 | 0.4638 | 0.3242 | 0.3064 | 0.2997 | 0.2331 | 0.1548 |
| 4 | 0.4412 | 0.3036 | 0.4000 | 0.2967 | 0.3274 | 0.2104 | 0.3235 | 0.2379 |
| 5 | 0.4416 | 0.3101 | 0.5588 | 0.2606 | 0.2687 | 0.3186 | 0.4494 | 0.2400 |
| 6 | 0.6562 | 0.3181 | 0.6428 | 0.4628 | 0.2077 | 0.1404 | 0.3632 | 0.3859 |
| 7 | 0.5709 | 0.9711 | 0.1757 | 0.5192 | 0.2894 | 0.1441 | 0.2441 | 0.3228 |
| 8 | 0.4428 | 0.3632 | 0.4719 | 0.3403 | 0.2604 | 0.2048 | 0.2805 | 0.2398 |
| 9 | 0.4428 | 0.3632 | 0.4719 | 0.3403 | 0.2604 | 0.2048 | 0.2805 | 0.2398 |
| AGE | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
| 1 | 0.0107 | 0.0490 | 0.0032 | 0.0006 | 0.0041 | 0.0092 | 0.0086 | 0.0053 |
| 2 | 0.2673 | 0.4834 | 0.2303 | 0.3550 | 0.1281 | 0.2900 | 0.2718 | 0.1669 |
| 3 | 0.3376 | 0.3591 | 0.4142 | 0.3247 | 0.1699 | 0.3849 | 0.3607 | 0.2214 |
| 4 | 0.2026 | 0.2314 | 0.1768 | 0.3814 | 0.1842 | 0.4172 | 0.3910 | 0.2400 |
| 5 | 0.2607 | 0.1495 | 0.2167 | 0.2123 | 0.2132 | 0.4828 | 0.4525 | 0.2777 |
| 6 | 0.3154 | 0.2527 | 0.1152 | 0.1641 | 0.2236 | 0.5064 | 0.4746 | 0.2913 |
| 7 | 0.2803 | 0.2642 | 0.2558 | 0.1585 | 0.2491 | 0.5640 | 0.5286 | 0.3245 |
| 8 | 0.2742 | 0.3081 | 0.2381 | 0.2800 | 0.1842 | 0.4172 | 0.3910 | 0.2400 |
| 9 | 0.2742 | 0.3081 | 0.2381 | 0.2800 | 0.1842 | 0.4172 | 0.3910 | 0.2400 |

| AGE | 2000 | 2001 |
| :---: | :---: | :---: |
| 1 | 0.0044 | 0.0041 |
| 2 | 0.1397 | 0.1277 |
| 3 | 0.1854 | 0.1695 |
| 4 | 0.2010 | 0.1837 |
| 5 | 0.2326 | 0.2126 |
| 6 | 0.2439 | 0.2230 |
| 7 | 0.2717 | 0.2483 |
| 8 | 0.2010 | 0.1837 |
| 9 | 0.2010 | 0.1837 |

Table 5.1.19. Herring in $\mathrm{VIa}(\mathrm{N})$. Population abundance (1 January, millions)

| AGE | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 613.1 | 625.9 | 918.2 | 1218.2 | 891.3 | 1664.1 | 772.3 | 3010.0 |
| 2 | 677.2 | 186.0 | 210.1 | 324.7 | 448.0 | 326.3 | 590.9 | 276.4 |
| 3 | 156.4 | 232.8 | 97.2 | 116.3 | 240.4 | 331.6 | 175.4 | 226.8 |
| 4 | 56.1 | 38.1 | 104.9 | 61.1 | 95.1 | 196.8 | 176.8 | 79.1 |
| 5 | 44.7 | 17.3 | 13.6 | 56.3 | 55.2 | 86.0 | 119.9 | 71.6 |
| 6 | 122.1 | 16.7 | 6.1 | 5.8 | 51.0 | 50.0 | 57.5 | 53.2 |
| 7 | 17.2 | 38.5 | 3.6 | 1.9 | 5.2 | 46.1 | 33.2 | 29.7 |
| 8 | 6.5 | 5.3 | 15.1 | 1.3 | 1.7 | 4.7 | 30.7 | 19.2 |
| 9 | 20.0 | 2.9 | 3.7 | 9.6 | 9.8 | 4.8 | 9.0 | 19.3 |

| AGE | 2000 | 2001 | 2002 |
| :---: | :---: | :---: | :---: |
| 1 | 2004.7 | 76.8 | 916.0 |
| 2 | 189.1 | 734.2 | 28.1 |
| 3 | 126.2 | 121.8 | 478.7 |
| 4 | 208.8 | 85.8 | 84.2 |
| 5 | 67.4 | 154.6 | 64.6 |
| 6 | 42.2 | 48.4 | 113.1 |
| 7 | 26.3 | 29.9 | 35.0 |
| 8 | 11.0 | 18.1 | 21.1 |
| 9 | 3.3 | 6.3 | 18.4 |

Table 5.1.20. Herring in $\mathrm{VIa}(\mathrm{N})$. Predicted index values

| FLT01: West Scotland Summer Acoustic Su Predicted | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 |
| 1 | 635.4 | ******* | ******* | ******* | 104.6 | 236.0 | 172.7 | 261.0 |
| 2 | 645.6 | ******* | ******* | ******* | 340.2 | 251.5 | 529.7 | 437.4 |
| 3 | 607.6 | ******* | ******* | ******* | 715.9 | 319.5 | 225.1 | 417.0 |
| 4 | 529.0 | ******* | ******* | ******* | 583.9 | 578.1 | 233.7 | 168.0 |
| 5 | 900.8 | ******* | ******* | ******* | 733.3 | 392.0 | 419.1 | 161.2 |
| 6 | 86.2 | ******* | ******* | ******* | 167.0 | 514.5 | 281.9 | 341.7 |
| 7 | 62.6 | ******* | ******* | ******* | 106.3 | 102.9 | 330.2 | 187.0 |
| 8 | 38.8 | ******* | ******* | ******* | 109.0 | 59.6 | 57.7 | 193.7 |
| 9 | 67.2 | ******* | ******* | ******* | 71.6 | 77.2 | 46.5 | 165.1 |

| AGE | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 229.0 | 247.8 | ******* | 166.9 | 156.6 | 607.7 | 23.3 |
| 2 | 630.6 | 627.0 | ******* | 1179.1 | 445.6 | 425.0 | 1660.9 |
| 3 | 405.6 | 601.2 | ******* | 548.8 | 1135.2 | 458.9 | 447.0 |
| 4 | 271.5 | 306.2 | ******* | 386.9 | 395.4 | 890.1 | 369.2 |
| 5 | 119.1 | 175.2 | ******* | 239.1 | 240.1 | 269.3 | 624.0 |
| 6 | 124.1 | 88.9 | ******* | 107.5 | 154.3 | 172.1 | 199.4 |
| 7 | 254.5 | 86.1 | ******* | 57.1 | 62.1 | 99.7 | 115.1 |
| 8 | 107.7 | 161.3 | ******* | 23.8 | 29.7 | 36.2 | 60.1 |
| 9 | 134.2 | 653.0 | ******* | 32.4 | 17.5 | 11.1 | 21.4 |

Table 5.1.21. Herring in $\mathrm{VIa}(\mathrm{N})$. Fitted selection pattern

| AGE | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.1790 | 0.0982 | 0.0757 | 0.9812 | 8.4946 | 0.0897 | 0.0343 | 0.0895 |
| 2 | 0.7129 | 0.3745 | 0.5602 | 1.5485 | 1.2795 | 0.8111 | 0.8182 | 0.7954 |
| 3 | 1.1259 | 0.6414 | 0.5082 | 2.2357 | 0.7737 | 1.0852 | 0.7428 | 1.2085 |
| 4 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 5 | 0.8224 | 1.0070 | 1.4472 | 0.7416 | 0.4388 | 0.7674 | 0.8859 | 1.9703 |
| 6 | 0.9773 | 1.5332 | 2.0296 | 4.4548 | 0.3292 | 0.7780 | 0.6977 | 1.5666 |
| 7 | 1.0004 | 0.9019 | 1.7829 | 6.6921 | 2.8606 | 0.7729 | 0.5605 | 1.4882 |
| 8 | 0.9169 | 0.8390 | 1.0996 | 2.4851 | 1.0742 | 0.8698 | 0.7895 | 1.2580 |
| 9 | 0.9169 | 0.8390 | 1.0996 | 2.4851 | 1.0742 | 0.8698 | 0.7895 | 1.2580 |

Table 5.1.22. Herring in VIa(N). Stock summary

STOCK SUMMARY

No of years for separable analysis : 6
Age range in the analysis : 1 . . . 9
Year range in the analysis : 1976 . . . 2001
Number of indices of SSB : 0
Number of age-structured indices : 1
Parameters to estimate : 34
Number of observations : 147

Conventional single selection vector model to be fitted.

Table 5.1.23. Herring in $\mathrm{VIa}(\mathrm{N})$. Parameter estimates

PARAMETER ESTIMATES

Age-structured index catchabilities
FLTO1: West Scotland Summer Acoustic Survey
Linear model fitted. Slopes at age :

| 26 | 1 | Q | .5240 | 75 | .2533 | 4.931 | .5240 | 2.383 | 1.489 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 27 | 2 | Q | 2.856 | 24 | 2.249 | 5.968 | 2.856 | 4.699 | 3.779 |
| 28 | 3 | Q | 4.487 | 24 | 3.541 | 9.316 | 4.487 | 7.351 | 5.921 |
| 29 | 4 | Q | 5.022 | 24 | 3.967 | 10.39 | 5.022 | 8.207 | 6.617 |
| 30 | 5 | Q | 4.787 | 24 | 3.782 | 9.897 | 4.787 | 7.820 | 6.305 |
| 31 | 6 | Q | 4.916 | 24 | 3.881 | 10.19 | 4.916 | 8.044 | 6.482 |
| 32 | 7 | Q | 4.649 | 24 | 3.661 | 9.705 | 4.649 | 7.644 | 6.148 |
| 33 | 8 | Q | 3.870 | 25 | 3.039 | 8.152 | 3.870 | 6.402 | 5.138 |
| 34 | 9 | Q | 3.929 | 24 | 3.097 | 8.191 | 3.929 | 6.455 | 5.194 |

Table 5.1.24. Herring in VIa(N). Residuals about the model fit

| Age | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -0.072 | -2.017 | 1.109 | 1.487 | -0.218 | -0.289 |
| 2 | 0.270 | -0.162 | -0.454 | 0.273 | 0.071 | 0.075 |
| 3 | 0.283 | -0.409 | -0.282 | 0.490 | 0.117 | -0.121 |
| 4 | -0.214 | -0.153 | 0.025 | 0.263 | 0.350 | -0.369 |
| 5 | -0.057 | 0.165 | -0.026 | -0.064 | 0.150 | -0.125 |
| 6 | -0.500 | 0.373 | 0.286 | -0.218 | 0.032 | 0.030 |
| 7 | -0.002 | 0.473 | 0.241 | -0.315 | -0.425 | 0.078 |
| 8 | 0.080 | 0.013 | 0.129 | -0.402 | -0.041 | 0.488 |

AGE-STRUCTURED INDEX RESIDUALS

| Age | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -0.936 | ******* | ******* | ******* | 1.174 | -1.155 | -4.136 | 0.638 |
| 2 | -0.110 | ******* | ******* | ******* | -0.144 | 0.694 | 0.348 | 0.215 |
| 3 | -0.098 | ******* | ******* | ******* | -0.781 | -0.415 | 1.107 | 0.377 |
| 4 | -0.404 | ******* | ******* | ******* | -0.462 | -0.806 | 1.028 | 0.531 |
| 5 | -0.180 | ******* | ******* | ******* | -0.407 | 0.056 | 0.261 | 0.643 |
| 6 | 0.259 | ******* | ******* | ******* | 0.054 | -0.762 | 1.121 | -0.243 |
| 7 | -0.264 | ******* | ******* | ******* | -0.074 | 0.026 | -0.150 | 0.777 |
| 8 | -0.892 | ******* | ******* | ******* | -0.194 | -0.049 | 0.967 | -0.109 |
| 9 | -2.336 | ******* | ******* | ******* | -0.209 | -0.196 | 1.211 | -0.225 |

| Age | \| | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | \| | 0.699 | -1.794 | ******* | 1.991 | 1.227 | -0.306 | 2.599 |
| 2 | \| | 0.543 | -0.084 | ******* | -0.395 | -0.324 | -0.296 | -0.447 |
| 3 | \| | 0.153 | 0.289 | ******* | 0.195 | 0.201 | -0.308 | -0.719 |
| 4 | \| | 0.506 | 0.072 | ******* | 0.197 | 0.089 | 0.010 | -0.759 |
| 5 | \| | 0.251 | -0.608 | ******* | -0.289 | 0.249 | 0.379 | -0.355 |
| 6 | \| | 0.410 | -0.384 | ******* | -0.305 | -0.107 | 0.364 | -0.408 |
| 7 | \| | -0.408 | -0.106 | ******* | -0.711 | 0.331 | 0.693 | -0.113 |
| 8 | \| | 0.787 | -0.724 | ******* | -0.541 | -0.073 | 0.965 | -0.136 |
| 9 | \| | 0.406 | -1.738 | ******* | 0.127 | 0.706 | 1.769 | 0.485 |

Table 5.1.25. Herring in $\mathrm{VIa}(\mathrm{N})$. Parameters of distributions

```
PARAMETERS OF THE DISTRIBUTION OF ln(CATCHES-AT-AGE)
PARAMEIERSOF THE DISTRIBUTION OF ln(CATCHES-AT-AGE)
Separable model fitted from 1996 to 2001
    Variance
Skewness test stat. -0.3009
Kurtosis test statistic -0.8587
Partial chi-square 0.4094
Significance in fit 0.0000
Degrees of freedom 23
```

 PARAMETERS OF THE DISTRIBUTION OF THE AGE-STRUCTURED INDICES
 DISTRIBUTION STATISTICS FOR FLTO1: West Scotland Summer Acoustic Survey
 Linear catchability relationship assumed
 | Age | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| Variance | | | | | | | |
| 0.04130 .0170 | 0.0329 | 0.0361 | 0.0170 | 0.0298 | 0.0221 | 0.0464 | 0.1569 |
| Skewness test stat. | | | | | | | |
| -0.9808 0.7839 | 0.4453 | 0.1888 | 0.0065 | 0.9528 | 0.6178 | 0.5426 | -0.8604 |
| Kurtosis test statistic | | | | | | | |
| -0.0240-0.6998 | -0.1468 | -0.5574 | -0.7837 | 0.0657 | -0.3428 | -0.6973 | -0.1199 |
| Partial chi-square | | | | | | | |
| $0.0353 \quad 0.0129$ | 0.0257 | 0.0284 | 0.0137 | 0.0240 | 0.0191 | 0.0425 | 0.1434 |
| Significance in fit | | | | | | | |
| 0.00000 .0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| Number of observations | | | | | | | |
| 1111 | 11 | 11 | 11 | 11 | 11 | 11 | 11 |
| Degrees of freedom | | | | | | | |
| 1010 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| Weight in the analysis | | | | | | | |
| 0.01110 .1111 | 0.1111 | 0.1111 | 0.1111 | 0.1111 | 0.1111 | 0.1111 | 0.1111 |

Table 5.1.26. Herring in $\mathrm{VIa}(\mathrm{N})$. Analysis of variance

Weighted Statistics

| Variance | | | | | |
| :--- | :--- | ---: | ---: | ---: | ---: |
| | SSQ | Data | Parameters d.f. Variance | | |
| Total for model | 4.1364 | 147 | 34 | 113 | 0.0366 |
| Catches-at-age | 3.7338 | 48 | 25 | 23 | 0.1623 |
| | | | | | |
| Aged Indices | | 99 | 9 | 90 | 0.0045 |

Table 5.1.27. Herring in $\operatorname{VIa}(\mathrm{N})$. Input data for short-term predictions, numbers-at-age from the assessment with ages 1 and 2 replaced by geometric mean values - natural mortality (M), proportion mature (Mat), proportion of fishing mortality prior to spawning (PF), proportion of natural mortality prior to spawning (PM), mean weights-at-age in the stock (SWt), selection pattern (Sel), mean weights-at-age in the catch (CWt). All biological data are taken as mean of the last 3 years. $\operatorname{VIa}(\mathrm{N})$ herring appears to have considerable annual variability in mean weights and in fraction mature. Last years values are not applicable.

| 2002 | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | N | | Mat | | PF | SWt | | Sel | CWt |
| | 1 | 913633 | 1 | 0 | 0.67 | 0.67 | 5.93E-02 | 0.004595 | $6.95 \mathrm{E}-02$ |
| | 2 | 323817 | 0.3 | 0.65 | 0.67 | 0.67 | 0.136667 | 0.144753 | 0.135633 |
| | 3 | 478720 | 0.2 | 0.963333 | 0.67 | 0.67 | 0.169667 | 0.192087 | 0.161467 |
| | 4 | 84201 | 0.1 | 1 | 0.67 | 0.67 | 0.187 | 0.208207 | 0.180167 |
| | 5 | 64619 | 0.1 | 1 | 0.67 | 0.67 | 0.198333 | 0.240947 | 0.1948 |
| | 6 | 113080 | 0.1 | 1 | 0.67 | 0.67 | 0.211667 | 0.252747 | 0.2068 |
| | 7 | 35017 | 0.1 | 1 | 0.67 | 0.67 | 0.218667 | 0.281497 | 0.222967 |
| | 8 | 21135 | 0.1 | 1 | 0.67 | 0.67 | 0.231 | 0.208207 | 0.242867 |
| | 9 | 18420 | 0.1 | 1 | 0.67 | 0.67 | 0.243 | 0.208207 | 0.249967 |

2003

| Age | N | M | | at | PM | | SWt | Sel | CWt |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 913633 | 1 | 0 | 0.67 | 0.67 | 5.93E-02 | 0.004595 | $6.95 \mathrm{E}-02$ |
| | 2 | | 0.3 | 0.65 | 0.67 | 0.67 | 0.136667 | 0.144753 | 0.135633 |
| | 3 | | 0.2 | 0.963333 | 0.67 | 0.67 | 0.169667 | 0.192087 | 0.161467 |
| | 4 | | 0.1 | 1 | 0.67 | 0.67 | 0.187 | 0.208207 | 0.180167 |
| | 5 | | 0.1 | 1 | 0.67 | 0.67 | 0.198333 | 0.240947 | 0.1948 |
| | 6 | | 0.1 | 1 | 0.67 | 0.67 | 0.211667 | 0.252747 | 0.2068 |
| | 7 | | 0.1 | 1 | 0.67 | 0.67 | 0.218667 | 0.281497 | 0.222967 |
| | 8 | | 0.1 | 1 | 0.67 | 0.67 | 0.231 | 0.208207 | 0.242867 |
| | 9 | | 0.1 | 1 | 0.67 | 0.67 | 0.243 | 0.208207 | 0.249967 |

2004

Table 5.1.28. Herring in VIa(N). Short-term prediction single option table, scenario 1-status quo F.

Table 5.1.29. Herring in VIa (N). Short-term prediction multiple option table, scenario 1 - status quo F.

| 2002 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Biomass | SSB | FMult | | FBar | Landings |
| 249199 | 139181 | | 1 | 0.1972 | 28050 |

| 2003 | | FMult | FBar | Landings | 2004 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Biomass | SSB | | | | Biomass | SSB |
| 251080 | 144986 | 0.92 | 0.1814 | 27179 | 256530 | 149193 |
| . | 144100 | 0.97 | 0.1912 | 28532 | 255140 | 147150 |
| . | 143220 | 1.02 | 0.2011 | 29872 | 253763 | 145137 |
| . | 142345 | 1.07 | 0.211 | 31200 | 252399 | 143155 |
| . | 141475 | 1.12 | 0.2208 | 32516 | 251047 | 141203 |
| . | 140611 | 1.17 | 0.2307 | 33821 | 249707 | 139281 |
| . | 139753 | 1.22 | 0.2405 | 35114 | 248379 | 137387 |
| . | 138900 | 1.27 | 0.2504 | 36396 | 247064 | 135522 |
| . | 138052 | 1.32 | 0.2602 | 37666 | 245760 | 133684 |
| - | 137210 | 1.37 | 0.2701 | 38925 | 244468 | 131875 |
| . | 136373 | 1.42 | 0.28 | 40172 | 243188 | 130092 |
| . | 135541 | 1.47 | 0.2898 | 41409 | 241920 | 128337 |
| . | 134715 | 1.52 | 0.2997 | 42635 | 240663 | 126607 |
| . | 133894 | 1.57 | 0.3095 | 43850 | 239417 | 124904 |
| . | 133077 | 1.62 | 0.3194 | 45054 | 238183 | 123226 |
| . | 132266 | 1.67 | 0.3293 | 46247 | 236960 | 121573 |
| . | 131461 | 1.72 | 0.3391 | 47430 | 235748 | 119945 |
| . | 130660 | 1.77 | 0.349 | 48602 | 234546 | 118341 |
| . | 129864 | 1.82 | 0.3588 | 49764 | 233356 | 116761 |
| . | 129073 | 1.87 | 0.3687 | 50916 | 232177 | 115205 |
| . | 128287 | 1.92 | 0.3785 | 52057 | 231008 | 113672 |

Table 5.1.30. Herring in VIa(N). Short-term prediction single option table, scenario 2 - TAC for 2002, catch $=33,000$ t.

| Year: | | 2004 | | 1.42 | Fbar: | 0.28 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | | | multiplier: CatchNos | Yield | StockNos | Biomass | SSNos(Jan) | SSB(Jan) | SSNos(ST) | SSB(ST) |
| | 1 | 0.0058 | 3316 | 230 | 913633 | 54209 | 0 | 0 | 0 | 0 |
| | 2 | 0.1813 | 48094 | 6523 | 334178 | 45671 | 217216 | 29686 | 157340 | 21503 |
| | 3 | 0.2406 | 40225 | 6495 | 206698 | 35070 | 199120 | 33784 | 148219 | 25148 |
| | 4 | 0.2608 | 29017 | 5228 | 132532 | 24783 | 132532 | 24783 | 104072 | 19461 |
| | 5 | 0.3018 | 55451 | 10802 | 223099 | 44248 | 223099 | 44248 | 170442 | 33804 |
| | 6 | 0.3166 | 10596 | 2191 | 40923 | 8662 | 40923 | 8662 | 30956 | 6552 |
| | 7 | 0.3526 | 8478 | 1890 | 29894 | 6537 | 29894 | 6537 | 22074 | 4827 |
| | 8 | 0.2608 | 10912 | 2650 | 49838 | 11513 | 49838 | 11513 | 39136 | 9040 |
| | 9 | 0.2608 | 7978 | 1994 | 36441 | 8855 | 36441 | 8855 | 28615 | 6954 |
| Total | | | 214067 | 38004 | 1967236 | 239548 | 929062 | 168068 | 700853 | 127290 |

Table 5.1.31. Herring in VIa(N). Short-term prediction multiple option table, scenario $2-$ TAC for 2002, catch $=$ 33,000 t.

| 2002 | | FMult | FBar | Landings | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Biomass | SSB | | | | | |
| 249199 | 135943 | 1.1962 | 0.2358 | 33000 | | |
| 2003 | | | | | 2004 | |
| Biomass | SSB | FMult | FBar | Landings | Biomass | SSB |
| 245988 | 140853 | 0.92 | 0.1814 | 26399 | 252515 | 145884 |
| . | 139994 | 0.97 | 0.1912 | 27712 | 251165 | 143895 |
| . | 139141 | 1.02 | 0.2011 | 29014 | 249827 | 141937 |
| . | 138292 | 1.07 | 0.211 | 30305 | 248500 | 140007 |
| . | 137450 | 1.12 | 0.2208 | 31584 | 247186 | 138107 |
| . | 136612 | 1.17 | 0.2307 | 32851 | 245884 | 136235 |
| . | 135780 | 1.22 | 0.2405 | 34108 | 244594 | 134392 |
| . | 134953 | 1.27 | 0.2504 | 35353 | 243315 | 132576 |
| . | 134131 | 1.32 | 0.2602 | 36587 | 242048 | 130787 |
| . | 133315 | 1.37 | 0.2701 | 37810 | 240792 | 129025 |
| . | 132503 | 1.42 | 0.28 | 39023 | 239548 | 127290 |
| . | 131697 | 1.47 | 0.2898 | 40224 | 238315 | 125580 |
| . | 130895 | 1.52 | 0.2997 | 41416 | 237093 | 123896 |
| . | 130099 | 1.57 | 0.3095 | 42596 | 235882 | 122237 |
| . | 129308 | 1.62 | 0.3194 | 43766 | 234682 | 120603 |
| . | 128522 | 1.67 | 0.3293 | 44926 | 233493 | 118994 |
| . | 127740 | 1.72 | 0.3391 | 46075 | 232314 | 117408 |
| . | 126964 | 1.77 | 0.349 | 47215 | 231147 | 115846 |
| . | 126192 | 1.82 | 0.3588 | 48344 | 229989 | 114307 |
| . | 125425 | 1.87 | 0.3687 | 49463 | 228843 | 112791 |
| . | 124664 | 1.92 | 0.3785 | 50573 | 227706 | 111298 |

Table 5.1.32. Herring in $\mathrm{VIa}(\mathrm{N})$. Medium-term projection input control data.

| Age | Fleet
 Catch
 Ratio | Retention
 Ogive | Mean wt at
 age | Year | F multiplier | CV on target
 multiplier |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0.0694 | 2002 | 1.00 | 0.0001 |
| 2 | 1 | 1 | 0.126 | 2003 | 1.42 | 0.0001 |
| 3 | 1 | 1 | 0.161 | 2004 | 1.42 | 0.0001 |
| 4 | 1 | 1 | 0.180 | 2005 | 1.42 | 0.0001 |
| 5 | 1 | 1 | 0.195 | 2006 | 1.42 | 0.0001 |
| 6 | 1 | 1 | 0.207 | 2007 | 1.42 | 0.0001 |
| 7 | 1 | 1 | 0.223 | 2008 | 1.42 | 0.0001 |
| 8 | 1 | 1 | 0.243 | 2009 | 1.42 | 0.0001 |
| $9+$ | 1 | 1 | 0.250 | 2010 | 1.42 | 0.0001 |
| | | | | 2011 | 1.42 | 0.0001 |

Table 5.1.33. Herring in $\operatorname{VIa}(\mathrm{N})$. Medium-term projections control file
Programme ICP K.R. Patterson SOAEFD Marine Laboratory,Aberdeen
Written December 1997 for ICA v1.4 w
Revision March 1999
Enter Random-Number seed--> 120
Enter the no. of years between spawning and recruitment at age--> 1
Change any of the populations (Y / N) ?-->n
Enter the name of the projection file -->fmult.dat
Population parameters for the projections are set by taking a mean over a
number of the last years of the data set.
Use mean natural mortality from 2001 back to--> 1999
Use mean maturity ogive from 2001 back to--> 1999
Use mean weight-at-age in the stock from 2001 back to--> 1999
Enter the reference spawning stock size (e.g. MBAL, \mathbf{B}_{pa})--> $7.5254000000000000 \mathrm{E}+04$
Enter the maximum allowable F-multiplier--> 10.000000000000000
Choose type of stock recruit relation :
S - Shepherd $\quad \mathrm{R}=\mathrm{a} . \mathrm{SSB} /(1+\mathrm{SSB} / \mathrm{b})^{\wedge} \mathrm{c}$
B - Beverton-Holt $\mathrm{R}=\mathrm{a} . \mathrm{SSB} /(1+\mathrm{SSB} / \mathrm{b})$
R - Ricker $\quad \mathrm{R}=\mathrm{a} . \mathrm{SSB} \cdot \exp (-\mathrm{b} . \mathrm{SSB})$
O - Ockham $\quad \mathrm{R}=\mathrm{GM}$ over observed SSB range then linear to origin
N - None $\quad \mathrm{R}=$ Historic Geometric Mean R
Enter your choice (S/B/R/O/N) ?-->n
Enter first year of data for stock-recruit model--> 1976
Enter last year of data for stock-recruit model--> 1999
Autocorrelated or Independent errors (I/A)-->i
Use ICA or SRR (I/S) model value for recruitment in 2001-->s
Use ICA or SRR (I/S) model value for recruitment in 2002-->S
Use default percentiles (Y / N) ?-->y
Use ICA-derived resamples ?-->y

Table 5.1.34. Herring in VIa (N). Sensitivity of the assessment to large values in some ages in the acoustic survey. Comparison of catchability coefficients (Q) in the acoustic survey for the final assessment, compared with assessments with 19993 ringers and 20004 ringers removed individually and together. The catchabilities are not sensitive to the presence of these values.

| age | Q | final assessment | 99
 down-weighted | 004 ringers
 down-weighted |
| :--- | :---: | :---: | :---: | :---: |
| 1 | 0.524 | 0.525 | 0.524 | both
 down-weighted |
| 2 | 2.856 | 2.863 | 2.856 | 2.525 |
| | 4.487 | 4.405 | 4.488 | 4.406 |
| | 4 | 5.022 | 5.034 | 5.017 |
| | 4.787 | 4.798 | 4.787 | 5.026 |
| 5 | 4.916 | 4.925 | 4.917 | 4.799 |
| 6 | 4.649 | 4.657 | 4.649 | 4.626 |
| 7 | 3.870 | 3.876 | 3.871 | 3.877 |
| 8 | 3.929 | 3.936 | 3.930 | 3.937 |

Table 5.1.35. Herring VIa (N) Input data for Pa plots (Figure 5.1.22). For stock summary data see Table 5.1.22

| Age | Number | Nat Mortality | Catch Weights | Stock Weights | Maturity | Fleet Selection Pattern |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 13.7 | 1 | 0.069 | 0.059 | 0.00 | 0.022 |
| 2 | 734220.7 | 0.3 | 0.136 | 0.137 | 0.65 | 0.695 |
| 3 | 121833.0 | 0.2 | 0.161 | 0.170 | 0.96 | 0.923 |
| 4 | 85811.8 | 0.1 | 0.180 | 0.187 | 1.00 | 1.000 |
| 5 | 154564.6 | 0.1 | 0.195 | 0.198 | 1.00 | 1.157 |
| 6 | 48364.7 | 0.1 | 0.207 | 0.212 | 1.00 | 1.214 |
| 7 | 29940.5 | 0.1 | 0.223 | 0.219 | 1.00 | 1.352 |
| 8 | 18112.6 | 0.1 | 0.243 | 0.231 | 1.00 | 1.000 |
| $9+$ | 6347.6 | 0.1 | 0.250 | 0.243 | 1.00 | 1.000 |
| Coefficients of Variation | | | | | | |
| Age | Number | Nat Mortality | Catch Weights | Stock Weights | Maturity | Fleet Selection Pattern |
| 1 | 0.0357 | 0.0000 | 0.2607 | 0.0778 | 0.0000 | 0.7904 |
| 2 | 0.3456 | 0.0000 | 0.0370 | 0.0330 | 0.1000 | 0.3309 |
| 3 | 0.2800 | 0.0000 | 0.0188 | 0.0207 | 0.1000 | 0.3082 |
| 4 | 0.2480 | 0.0000 | 0.0248 | 0.0193 | 0.0000 | 0.0000 |
| 5 | 0.2313 | 0.0000 | 0.0295 | 0.0227 | 0.0000 | 0.2795 |
| 6 | 0.2271 | 0.0000 | 0.0479 | 0.0355 | 0.0000 | 0.2627 |
| 7 | 0.2276 | 0.0000 | 0.0787 | 0.0324 | 0.0000 | 0.2588 |
| 8 | 0.2412 | 0.0000 | 0.1367 | 0.0338 | 0.0000 | 0.0000 |
| 9+ | 0.2412 | 0.0000 | 0.0911 | 0.0499 | 0.0000 | 0.0000 |

Table 5.2.1. HERRING from the Firth of Clyde. Catch in tonnes by country, 1955-2001. Spring and autumn-spawners combined.

| Year | 1955 | 1956 | 1957 | 1958 | 1959 | 1960 | 1961 | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 |
| :--- |
| All Catches | | | | | | | | | | | | | | | | | |
| Total | 4,050 | 4,848 | 5,915 | 4,926 | 10,530 | 15,680 | 10,848 | 3,989 | 7,073 | 14,509 | 15,096 | 9,807 | 7,929 | 9,433 | 10,594 | 7,763 | 4,088 |

| Year | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| All Catches | | | | | | | | | |
| Total | 4,226 | 4,715 | 4,061 | 3,664 | 4,139 | 4,847 | 3,862 | 1,951 | 2,081 |

| Year | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Scotland | 2,506 | 2,530 | 2,991 | 3,001 | 3,395 | 2,895 | 1,568 | 2,135 | 2,184 | 713 | 929 |
| Other UK | - | 273 | 247 | 22 | - | - | - | - | - | - | - |
| Unallocated 1 | 262 | 293 | 224 | 433 | 576 | 278 | 110 | 208 | 75 | 18 | -2 |
| Discards | 1,253 | 1,265 | $2,308^{3}$ | $1,344^{3}$ | 679^{3} | 439^{4} | 245^{4} | -2 | -2 | -2 | -2 |
| Agreed TAC | | | 3,000 | 3,000 | 3,100 | 3,500 | 3,200 | 3,200 | 2,600 | 2,900 | 2,300 |
| Total | 4,021 | 4,361 | 5,770 | 4,800 | 4,650 | 3,612 | 1,923 | 2,343 | 2,259 | 731 | 929 |

| Year | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Scotland | 608 | 392 | 598 | 371 | 779 | 16 | 1 | 78 |
| Other UK | - | 194 | 127 | 475 | 310 | 240 | 0 | 392 |
| Unallocated ${ }^{1}$ | - | - | - | - | - | - | - | |
| Discards | - | - | - | - | - | - | | |
| Agreed TAC | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 | 1,000 |
| Total | 608 | 586 | 725 | 846 | 1089 | 256 | 1 | 480 |

${ }^{1}$ Calculated from estimates of weight per box and in some years estimated by-catch in the sprat fishery $\quad{ }^{3}$ Based on sampling.
${ }^{2}$ Reported to be at a low level, assumed to be zero, for 1898-1995.

[^13]Table 5.2.2. HERRING from the Firth of Clyde. Sampling levels 1988-2001.

| Year | Reported catch
 (tonnes) | No. of
 samples | No. of fish
 measured | No. of fish
 aged | Discards |
| :--- | :---: | :---: | ---: | ---: | :--- |
| 1988 | 1,568 | 41 | 5,955 | 2,574 | Based on local reports |
| 1989 | 2,135 | 45 | 8,368 | 4,152 | " |
| 1990 | 2,184 | 37 | 5,926 | 3,803 | " |
| 1991 | 713 | 29 | 4,312 | 2,992 | No information |
| 1992 | 929 | 23 | 4,604 | 1,579 | No information |
| 1993 | 853 | 16 | 3,408 | 798 | No information |
| 1994 | 608 | 16 | 3,903 | 1,388 | No information |
| 1995 | 586 | 16 | 2,727 | 1,073 | No information |
| 1996 | 725 | 9 | 1,915 | 679 | No information |
| 1997 | 846 | 3 | 650 | 383 | No information |
| 1998 | 1089 | 3 | 462 | 196 | |
| 1999 | 256 | 3 | 251 | 126 | |
| 2000^{1} | 1 | 1 | 105 | 96 | |
| 2001 | 480 | 3 | 799 | 143 | |

${ }^{1}$ One sample collected in first quarter, but not applied to catch, which was taken in third quarter.

Table 5.2.3. HERRING from the Firth of Clyde. Catch in numbers-at-age. Spring- and autumn-spawners combined. Thousands of fish.

| Age(Rings) | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 |
| 1 | 5008 | 2207 | 1351 | 9139 | 53081 | 2694 | 6194 | 1041 | 14123 | 507 | 333 |
| 2 | 7551 | 6503 | 8983 | 5258 | 8841 | 1876 | 10480 | 7524 | 1796 | 4859 | 5633 |
| 3 | 10338 | 1976 | 3181 | 4548 | 2817 | 2483 | 913 | 6976 | 2259 | 807 | 1592 |
| 4 | 8745 | 4355 | 1684 | 1811 | 2559 | 1024 | 1049 | 1062 | 2724 | 930 | 567 |
| 5 | 2306 | 3432 | 3007 | 918 | 1140 | 1072 | 526 | 1112 | 634 | 888 | 341 |
| 6 | 741 | 1090 | 1114 | 1525 | 494 | 451 | 638 | 574 | 606 | 341 | 204 |
| 7 | 760 | 501 | 656 | 659 | 700 | 175 | 261 | 409 | 330 | 289 | 125 |
| 8 | 753 | 352 | 282 | 307 | 253 | 356 | 138 | 251 | 298 | 156 | 48 |
| 9 | 227 | 225 | 177 | 132 | 87 | 130 | 178 | 146 | 174 | 119 | 56 |
| 10+ | 117 | 181 | 132 | 114 | 59 | 67 | 100 | 192 | 236 | 154 | 68 |
| Age(Rings) | | | | | | | | | | | |
| | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| 1 | 312 | 220 | 314 | 4156 | 1639 | 678 | 508 | 0 | 845 | 716 | 42 |
| 2 | 2372 | 11311 | 10109 | 11829 | 2951 | 4574 | 1376 | 1062 | 1523 | 1004 | 615 |
| 3 | 2785 | 4079 | 5232 | 5774 | 4420 | 4431 | 3669 | 1724 | 9239 | 839 | 472 |
| 4 | 1622 | 2440 | 1747 | 3406 | 4592 | 4622 | 4379 | 2506 | 876 | 7533 | 703 |
| 5 | 1158 | 1028 | 963 | 1509 | 2806 | 2679 | 3400 | 2014 | 452 | 576 | 1908 |
| 6 | 433 | 663 | 555 | 587 | 2654 | 1847 | 1983 | 1319 | 252 | 359 | 169 |
| 7 | 486 | 145 | 415 | 489 | 917 | 644 | 1427 | 510 | 146 | 329 | 92 |
| 8 | 407 | 222 | 189 | 375 | 681 | 287 | 680 | 234 | 29 | 119 | 113 |
| 9 | 74 | 63 | 85 | 74 | 457 | 251 | 308 | 66 | 16 | 49 | 22 |
| 10+ | 18 | 53 | 38 | 80 | 240 | 79 | 175 | 16 | 5 | 16 | 9 |
| Age(Rings) | | | | | | | | | | | |
| | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | |
| 1 | 145 | 3 | 399 | 118 | 494 | 275 | 323 | 123 | 0 | 0 | |
| 2 | 411 | 418 | 964 | 1425 | 1962 | 2005 | 2731 | 418 | 3 | 1427 | |
| 3 | 493 | 261 | 964 | 186 | 1189 | 429 | 1779 | 318 | 2 | 67 | |
| 4 | 385 | 268 | 358 | 189 | 273 | 346 | 667 | 393 | 1 | 20 | |
| 5 | 1947 | 1305 | 534 | 149 | 544 | 18 | 344 | 122 | 1 | 406 | |
| 6 | 333 | 327 | 319 | 130 | 183 | 52 | 77 | 36 | 0 | 40 | |
| 7 | 91 | 78 | 76 | 66 | 208 | 0 | 55 | 36 | 0 | 0 | |
| 8 | 69 | 111 | 57 | 35 | 127 | 5 | 35 | 13 | 0 | 22 | |
| 9 | 32 | 38 | 16 | 15 | 52 | 61 | 55 | 19 | 0 | 0 | |
| 10+ | 10 | 0 | 17 | 1 | 9 | * | | | | | |

[^14]Table 5.2.4. HERRING in the Firth of Clyde. Mean weights-at-age in the catch and stock (g).

| Age | Weight in | the catch | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (rings) | 1970-81 | 1982-85 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
| 1 | - | - | - | - | - | - | - | - | - | - | - | 102 | 90 | 112 | 103 | 87 | 97 | - |
| 2 | 225 | 149 | 166 | 149 | 156 | 149 | 170 | 143 | 141 | 141 | 92 | 151 | 146 | 142 | 148 | 152 | 140 | 136 |
| 3 | 270 | 187 | 199 | 194 | 194 | 174 | 186 | 163 | 187 | 174 | 157 | 174 | 184 | 174 | 174 | 169 | 162 | 156 |
| 4 | 290 | 228 | 224 | 203 | 207 | 203 | 202 | 188 | 188 | 198 | 184 | 201 | 203 | 192 | 189 | 184 | 180 | 201 |
| 5 | 310 | 253 | 253 | 217 | 211 | 221 | 216 | 192 | 216 | 213 | 212 | 226 | 233 | 231 | 204 | 197 | 194 | 196 |
| 6 | 328 | 272 | 265 | 225 | 222 | 227 | 237 | 198 | 227 | 216 | 249 | 241 | 255 | 228 | 218 | 202 | 213 | 235 |
| 7 | 340 | 307 | 297 | 236 | 230 | 235 | 234 | 210 | 206 | 229 | 248 | 249 | 257 | 189 | 229 | 220 | 242 | - |
| 8 | 345 | 291 | 298 | 247 | 225 | 237 | 234 | 222 | 218 | 261 | 240 | 252 | 255 | 286 | 240 | 229 | 249 | 288 |
| 9 | 350 | 300 | 298 | 255 | 244 | 219 | 257 | 200 | 201 | 233 | 249 | 242 | 284 | 218 | 246 | 241 | 256 | - |
| 10+ | 350 | 300 | 321 | 258 | 230 | 254 | 272 | 203 | 221 | 254 | 294 | 270 | 239 | * | | | | |
| * chang | $9+$ in 19 | | | | | | | | | | | | | | | | | |

Figure 5.1.1. Herring in $\mathrm{VIa}(\mathrm{N})$. SSQ surface for the deterministic calculation of the 6 -year separable period. Agex1age disaggregated acoustic estimates.

Figure 5.1.2. Herring in $\operatorname{VIa}(\mathrm{N})$. Illustration of stock trends from deterministic calculation (6-year separable period). Summary of estimates of landings, fishing mortality at age 4, recruitment at age 1 , stock size on 1 January and spawning stock at spawning time.

Figure 5.1.3. Herring in $\operatorname{VIa}(\mathrm{N})$. Illustration of selection patterns diagnostics, from deterministic calculation (6-year separable period). Top left, a contour plot of selection pattern residuals. Top right, estimated selection (relative to age 4) +/- standard deviation. Bottom, marginal totals of residuals by year and age.

Figure 5.1.4. Herring in VIa(N). Illustration of residuals from deterministic calculation (6-year separable period). Diagnostics of the fit of the age 1 index against from acoustic surveys. Top left, fitted populations (line), and predictions of abundance in each year made from the index observations and estimated catchability (triangles $+/-$ standard deviation), plotted by year. Top right, scatter plot and fitted relationship of abundance from fitted populations of age 1 acoustic surveys. Bottom, residuals, as \ln (observed index) $-\ln$ (expected index) plotted against expected values and against time. N.B. 1 ringers are down-weighted in the catch and survey in the assessment.

Figure 5.1.5. Herring in $\operatorname{VIa}(\mathrm{N})$. Illustration of residuals from deterministic calculation (6-year separable period). Diagnostics of the fit of the age 2 index against from acoustic surveys. Top left, fitted populations (line), and predictions of abundance in each year made from the index observations and estimated catchability (triangles +/standard deviation), plotted by year. Top right, scatter plot and fitted relationship of abundance from fitted populations of age 2 acoustic surveys. Bottom, residuals, as \ln (observed index) - \ln (expected index) plotted against expected values and against time.

Figure 5.1.6. Herring in $\operatorname{VIa}(\mathrm{N})$. Illustration of residuals from deterministic calculation (6-year separable period). Diagnostics of the fit of the age 3 index against from acoustic surveys. Top left, fitted populations (line), and predictions of abundance in each year made from the index observations and estimated catchability (triangles +/standard deviation), plotted by year. Top right, scatter plot and fitted relationship of abundance from fitted populations of age 3 acoustic surveys. Bottom, residuals, as \ln (observed index) - \ln (expected index) plotted against expected values and against time.

Figure 5.1.7. Herring in VIa(N). Illustration of residuals from deterministic calculation (6-year separable period). Diagnostics of the fit of the age 4 index against from acoustic surveys. Top left, fitted populations (line), and predictions of abundance in each year made from the index observations and estimated catchability (triangles +/standard deviation), plotted by year. Top right, scatter plot and fitted relationship of abundance from fitted populations of age 4 acoustic surveys. Bottom, residuals, as \ln (observed index) $-\ln$ (expected index) plotted against expected values and against time.

| stack Numbers | Catchabilitu |
| :---: | :---: |
| Year Δ Index Prediction $+/-$ sd \quad UPA | Index Ualue \triangle Index Observation -Fitted Line |
| | |
| | |
| \triangle Index Observation | \triangle Index Observation |

Figure 5.1.8. Herring in $\mathrm{VIa}(\mathrm{N})$. Illustration of residuals from deterministic calculation (6-year separable period). Diagnostics of the fit of the age 5 index against from acoustic surveys. Top left, fitted populations (line), and predictions of abundance in each year made from the index observations and estimated catchability (triangles +/standard deviation), plotted by year. Top right, scatter plot and fitted relationship of abundance from fitted populations of age 5 acoustic surveys. Bottom, residuals, as \ln (observed index) - \ln (expected index) plotted against expected values and against time.

Figure 5.1.9. Herring in $\operatorname{VIa}(\mathrm{N})$. Illustration of residuals from deterministic calculation (6-year separable period). Diagnostics of the fit of the age 6 index against from acoustic surveys. Top left, fitted populations (line), and predictions of abundance in each year made from the index observations and estimated catchability (triangles +/standard deviation), plotted by year. Top right, scatter plot and fitted relationship of abundance from fitted populations of age 6 acoustic surveys. Bottom, residuals, as $\ln ($ observed index) $-\ln ($ expected index) plotted against expected values and against time.

Figure 5.1.10. Herring in $\mathrm{VIa}(\mathrm{N})$. Illustration of residuals from deterministic calculation (6-year separable period). Diagnostics of the fit of the age 7 index against from acoustic surveys. Top left, fitted populations (line), and predictions of abundance in each year made from the index observations and estimated catchability (triangles $+/-$ standard deviation), plotted by year. Top right, scatter plot and fitted relationship of abundance from fitted populations of age 7 acoustic surveys. Bottom, residuals, as \ln (observed index) $-\ln$ (expected index) plotted against expected values and against time.

Figure 5.1.11. Herring in $\operatorname{VIa}(\mathrm{N})$. Illustration of residuals from deterministic calculation (6-year separable period). Diagnostics of the fit of the age 8 index against from acoustic surveys. Top left, fitted populations (line), and predictions of abundance in each year made from the index observations and estimated catchability (triangles +/standard deviation), plotted by year. Top right, scatter plot and fitted relationship of abundance from fitted populations of age 8 acoustic surveys. Bottom, residuals, as \ln (observed index) $-\ln$ (expected index) plotted against expected values and against time.

Figure 5.1.12. Herring in $\mathrm{VIa}(\mathrm{N})$. Illustration of residuals from deterministic calculation (6-year separable period). Diagnostics of the fit of the age 9 index against from acoustic surveys. Top left, fitted populations (line), and predictions of abundance in each year made from the index observations and estimated catchability (triangles +/standard deviation), plotted by year. Top right, scatter plot and fitted relationship of abundance from fitted populations of age 9 acoustic surveys. Bottom, residuals, as \ln (observed index) - \ln (expected index) plotted against expected values and against time.

Figure 5.1.13. Herring in VIa(N). Trajectories of 5, 25, 50, 75 and 95 percentiles from the estimates of historical uncertainty of F , SSB and recruits produced in the final assessment. These were based on 1000 samples.

Figure 5.1.14. Herring in VIa(N). Stock-recruit relationship. (assessment years 1996 to 1999). $\mathbf{F}_{\text {low }}=0.13 \mathbf{F}_{\text {med }}=0.32, \mathbf{F}_{\text {high }}=0.78$

MFYPR version 1
Run: vian ypr1
Time and date: 18:38 16/03/2002

| Reference point | F multiplier | Absolute F |
| :--- | :---: | :---: |
| Fbar(3-6) | 1.0000 | 0.1972 |
| FMax | | |
| F0.1 | 0.8494 | 0.1675 |
| F35\%SPR | 0.7767 | 0.1532 |
| Flow | 0.6561 | 0.1294 |
| Fmed | 1.6247 | 0.3204 |
| Fhigh | 3.9472 | 0.7784 |
| FSPR(4) | 0.3879 | 0.0765 |

MFDP version 1a
Run: vian 3fpa
Herring Vla (north) (run: ICAPGF08/I08)
Time and date: 18:21 16/03/2002
Fbar age range: 3-6
Input units are thousands and kg - output in tonnes

Weights in kilograms
Figure 5.1.15. Herring in VIa(N). Yield per recruit and short-term forecast. (Note that $\mathbf{F}_{\text {low }}, \mathbf{F}_{\text {med }}$ and $\mathbf{F}_{\text {high }}$ were calculated from the stock and recruit data using the correct time lag of two years for autumn-spawning herring).

Figure 5.1.16. Herring in $\mathrm{VIa}(\mathrm{N})$. Stock-recruit data for input to medium-term projections.

Figure 5.1.17. Herring in VIa(N). Medium-term projections with exploitation at status quo F in 2002 and $F=$ proposed \mathbf{F}_{pa} 2003-2011. The large 2 ringer year class seen in 2002 assessment gives an initial rise in stock which stabilises at about 130,000 tonnes.

Figure 5.1.18. Herring in $\mathrm{VIa}(\mathrm{N})$. Medium-term and risk to SSB decreasing below proposed \mathbf{B}_{pa} with exploitation at $\mathbf{F}_{\text {pa }}$.

Figure 5.1.19. Herring in $\mathrm{VIa}(\mathrm{N})$. Residual plots for three assessments with separable periods of 8,6 and 4 years respectively to show the consistency between the residual patterns in the overlapping periods.

Figure 5.1.20. Herring in VIa (N). Sensitivity of the assessment to estimates of numbers-at-age in the catch. Historically catch-at-age in old ages or young ages has been uncertain due to poor sampling. Ages 1-4rings or 4-9+rings were set unknown in the 6 years of the separable period one group at a time (12 groups). The box and whisker plots show the range and quartiles in the 12 assessments. The F in 1997 and 1998 are shown to be particularly sensitive to availability of data but the 2002 assessment is relatively insensitive to availability of catch-at-age information.

Figure 5.1.21. Herring in VIa (N). Retrospective analysis of the assessment 1999 to 2002. F_{3-6} and SSB from ICA assessment with 6-year separable period for assessments in 2000 to 2002 and 5 years in 1999, excluding catch in 1993 which appears to have a different selection pattern from later years. Suggested \mathbf{F}_{pa} and \mathbf{B}_{pa} are included on the graphs.

Figure 5.1.22. Herring in VIa (N). PA plots for the assessment period 1976-2001: Recruitment versus SSB, S/R versus Fbar, SSB versus Fbar and Yield / Fbar.

Vla north herring

Figure 5.1.23. Herring in VIa (N). Mean F_{3-6} against SSB for the period 1976 to 2001 with proposed Lim and Pa reference points.

6.1 The Fishery

6.1.1 Advice and management applicable to 2001 and 2002

The TAC for this area for 2001 was $13,900 \mathrm{t}$. This was the same TAC as in the previous year. The TAC in 1999 was reduced to $21,000 \mathrm{t}$ from the previous "precautionary" TAC of $28,000 \mathrm{t}$, which was based on the historical catches.

In 2001 ACFM considered the state of the stock to be unknown but that the SSB was likely to be below the proposed \mathbf{B}_{pa}. ACFM considered the current F to be in excess of the proposed \mathbf{F}_{pa} but acknowledged that fishing mortality had decreased from a very high level, and that a management and a rebuilding plan were in place. ACFM therefore advised that the catches in 2001 should not exceed 14,000t. The TAC set by the EU for 2002 was again $13,900 \mathrm{t}$.

6.1.2 Catch data

The main landings from this fishery in 2001 are given in Table 6.1.1. Fleet-based estimates have shown that misreporting has decreased significantly in recent years and is now well below 1,000 . The total catch recorded for 2001, was about $14,000 \mathrm{t}$, which is a decrease of almost $1,000 \mathrm{t}$ on the total for 2000.

The total amount of unallocated catches in 2001 was about 700 t , compared with $3,600 \mathrm{t}$ in 2000 and almost $8,000 \mathrm{t}$ in 1999. The overshoot of the TAC was negligible.

The main reason for the decrease in the total catch was a decrease in the quota, coupled with the decrease in misreported catches.

The catches and landings recorded by each country fishing in this area from 1988-2001 are shown in Table 6.1.1 and the total catches from 1970 to 2000 are shown in Figure 6.1.1. There were no estimates of discards reported for 2001 and there are no indications that discarding is a major problem in this fishery even though substantial catches in recent years have been taken in a "roe" fishery.

6.1.3 The fishery in 2001

The number of Irish vessels that participated in the fishery was the same as in recent years. There were very few landings of fish from Division VIIb after November, as the fish were scarce. This was the same pattern as last year. Winter/spring-spawning herring were fished off the north coast (Malin Head to Tory Island) and persistent concentrations of shoals were fished in the area north of Lough Swilly from December. During 2001 the Irish fishery was again divided into two periods with no directed fishing taking place from February to September. After scientific advice on the state of the stock, the Irish directed fishery was closed early in February 2001 by the Irish Northwest Pelagic Management Committee.

A map of the locations mentioned in the text is given in Figure 6.1.3.1.

6.1.4 Catch in numbers-at-age

The catches-at-age for this fishery since 1970 are shown in Table 6.1.2. In recent years the catches in numbers-at-age have been derived mainly from Irish sampling data. The age distributions in the catch were different to last year with proportionally more $5 \& 6$ ringers in the catches than in recent years.

6.1.5 Quality of the catch and biological data

The management of the Irish fishery in recent years has tightened considerably and the accuracy of reported catches in recent years is believed to have improved. The numbers of samples and the biological data are shown in Table 6.1.3. The length distributions of the catches taken per quarter by the Irish fleet are shown in Table 6.1.4. Sampling of catches throughout 2001 was maintained at a satisfactory level, although no samples were obtained from very small bycatches in the $2^{\text {nd }} \& 3^{\text {rd }}$ quarter.

The mean weights (kg) at age in the catches in 2001 are based on Irish \& Dutch samples taken throughout the year and are lighter than 2000 for 1 to 3 ringers (Table 6.2.1).

The mean weights in the stock at spawning time have been calculated from Irish samples taken during the main spawning period that extends from October to February (Table 6.2.2). For 1-3 ringers these fish are also lighter than in 2000.

6.3 Ground Fish Surveys

Ground fish surveys have been carried out during November along the west coast of Ireland since 1993. More than 60 stations have been sampled each year with a bottom trawl fitted with fine mesh liner. Although these surveys are designed to obtain an abundance index for demersal fish it is hoped that they will also provide recruitment indices for herring. However,, the data have not yet been properly evaluated.

6.4 Acoustic surveys

Acoustic surveys were carried out on this stock during the period 1994-1996. The results from these surveys were always difficult to interpret and have not been used by previous working groups as realistic estimates of stock sizes. There were no surveys in $1997 \& 1998$.

Acoustic surveys were undertaken in 1999 and annually since. Details of these surveys are given in Molloy and Kelly WD 2000.

In November 2001 an acoustic survey was carried out in Divisions VIa(S) and VIIbc. This survey had fewer problems with gear and area coverage than in previous years. However, it still failed to produce a realistic estimate of SSB. The survey track and post plots from this survey are shown in Figure 6.4.1a,b. It can be seen from this that a high proportion of the marks attributed to herring were at the northern limit of the survey. However, a large proportion of these fish was juvenile and did not contribute to the SSB estimate. In addition, the survey failed to detect significant shoals of herring, which provided the basis of the fishery in Q4 2001. These shoals appeared north of Lough Swilly the week after the survey had covered this area. In order to provide a more accurate estimate of spring-spawning herring a further survey was carried out in March 2002, However, the results of this survey will not be available to the HAWG until 2003.

Analysis of the commercial catch data over the past six years indicates that an increasing proportion of the catch is taken in the spring. In the absence of a second survey to estimate the biomass of the spring-spawning component of this stock, the current survey should not be used as an index of total stock size. Therefore the results of this survey are inconclusive.

6.5 Stock Assessment

Tuned assessments have not been carried out on this stock for a number of years because of the absence of a useable index. Recent WGs have therefore only carried out VPA analyses to study the development of the stock and only tentative stock projections have been made. The stock was considered to comprise of two spawning components, both of which spawn along the Irish coast. A historical examination of the fishery indicates that the winter/spring-spawning component dominated the catches in the early part of the last century, but the autumn spawners dominated in the sixties and seventies. In recent years both components have been present, but increasing catches have been made on the winter/spring spawners. An analysis of the development of the two components that constitute the stock was carried out in 1999 and this concluded that there may not in fact be two separate stock components because of the similarities in recruitment and age distributions. It was believed, therefore, that the increase in the winter/spring spawners could be due to a gradual change in spawning time rather than the emergence of a new spawning component.

In an effort to provide some objectivity to the selection of terminal F the 2001 Working Group carried out some preliminary modelling with ISVPA. This model is designed specifically to assess stocks where only catch-at-age data are available. Instead of assuming the fishing mortality to be separable, it considers the instantaneous mortality:
phi $(a, y)=C(a, y) /(N(a, y) * \exp (-M(a, y) / 2)$
and regards phi as separable:
$p h i(a, y)=G(y){ }^{*} s(a)^{*}$

In addition, it puts constraints on the matrix of phi residuals. The standard constraint is that all row sums and all column sums in the matrix of phi residuals is zero, but other constraints are possible. The objective function, which is minimised, is the median of the squared \log catch residuals. Using the median instead of the sum renders the estimate more robust to outliers in the data (Kizner and Vasilyev 1997, Vasilyev, et al 2000).

6.5.1 Date exploration \& preliminary assessments

Given the continuing absence of an acoustic index, the ISVPA model was again used this year to provide some objectivity in the selection of terminal F. Since this model relies strongly on the separable hypothesis some exploratory runs were compared which varied the period of the separable constraint. Comparisons of the objective function profiles are shown in Figure 6.5.1.1. Initial runs showed that the data was sensitive to the choice of minimisation function. Last year the minimisation function used was median (residuals) ${ }^{2}$ where the residual is given by $(\ln C-\ln C e s t)$. However, this year the model was unstable with this function and several local minima were found. In order to overcome this problem a more robust minimisation function of abs [residual-median residual] was used. Using this minimisation function the model proved very stable to the separable period and the age groups used in the analysis. The text table below shows the value of $G(y)$ at the minimum and corresponding Fbar (3-6) in the final year for the different runs:

| Separable period | Age range used | G(y) at the minimum
 Instantaneous mortality rate parameter | Fbar(3-6) in 2001 |
| :--- | :--- | :--- | :--- |
| 31 years (entire data series) | $1-9$ | 1.174 | 0.142 |
| 8 years | $2-9$ | 1.161 | 0.181 |
| 6 years | $2-9$ | 1.224 | 0.167 |
| 5 years | $2-9$ | 1.05 | 0.145 |

Plots of the minimisation profiles and the selection pattern of these runs are shown in Figure 6.5.1.1 and 6.5.1.2. Mortality (phi) and catch residuals from runs at either extreme of the separable period are given in Figures 6.5.1.3 and 6.5.1.4. There are some strong year-class effects in the residual patterns, which are particularly evident when the longer time period is used. This type of pattern suggests that the fleet is targeting particular year classes over time, and that is not surprising. However, when trying to estimate selectivity for 8 or 9 ages with no auxiliary information it is a better practice to use a longer time period. Even though the selectivity of the fishery may have changed over time, these changes are not as great as the influence of errors in the data when a shorter period is used (D. Vasilyev pers com). Figure 6.5.1.5 shows the F trajectory from several runs. A comparison with an SVPA run using a terminal F_{3-6} of 0.2 is also shown. The ISVPA runs produce estimates of F_{3-6} in the final year of 0.14 to 0.18 . In an effort to remain consistent with previous years it was decided to produce a run using a traditional separable VPA model assuming a F_{3-6} in 2001 rounded up to 0.2 . This was considered to be consistent with a conservative approach, given the uncertainty about the state of this stock.

6.5.2 Results of the assessment

As an example of the current development of the stock, the Working Group carried out a separable VPA using a terminal F value of 0.2 . The period of separable constraint was fixed for 6 years and the selection on the oldest age groups was set equal to that on the reference age 4 . Consistent with previous years' assessments the weight of the 1 ringers was reduced to account for poor selectivity at this age. The assessment output is given in Tables 6.5.2.1 and 6.5.2.2.

The general development of the stock is similar in the past 3 assessments (Figure 6.5.2.1.). This development shows a spawning stock which has declined from 1988 to 1996 and which now appears to have increased and may still be increasing. The SSB may be currently around $90,000 \mathrm{t}$. The values of F fluctuated between 1970 and 1996. F increased in the late 80 's to a high in 1998 and has subsequently decreased to a level, which is amongst the lowest in the time-

[^15]series in 2001. Recruitment patterns show two very strong year classes, those of 1981 and 1985, and recruitment in recent years is similar to that early in the time-series (1970-1980).

6.5.3 Stock forecasts and catch predictions

The present assessment is based on a crude analysis, therefore the WG felt that it was not useful to present short term predictions. However, for illustrative purposes only a short-term prediction using the TAC in 2002 as a catch constraint is provided. Tables for the inputs and single option and management options are given in Tables 6.5.3.1, 6.5.3.2 and 6.5.3.3 respectively.

6.6 Quality of the assessment

The exploration of the stock status presented here does not constitute a tuned assessment. The only data used for this exploration is the catch in numbers-at-age. In the absence of a tuning index it is impossible to scale the SSB or F's to an independent measure. Therefore caution should be applied when referring to specific values of F or SSB .

6.7 Management Considerations

The results of the non-tuned assessment suggest that the spawning stock, which had declined considerably in recent years may now be beginning to showing signs of recovery. Even though it appears that no large year classes have recruited to the stock in recent years, F now appears to be at a relatively low level and similar to that in the early part of the time-series. Traditionally the fisheries in this area, which were extremely important in the early part of the last century, were all based on winter/spring-spawning herring compared with the situation that prevailed in the 60's and 70's when the fisheries mainly exploited an autumn-spawning component. Over the past several years the fishery has shifted to the winter/spring period again. For the first time in 2002 an acoustic survey in the Spring has been carried out and it is hoped that it will be possible to present a more precise assessment on this stock in the future. An index of recruitment could be made available as soon as the ground fish surveys carried out by Ireland have been properly evaluated. The management of the Irish fishery (which takes most of the catch) has improved over the past year and catches have been considerably reduced since 1999. The Irish fishery is operated on a closed season basis and individual boat quota are applied. The Irish fishery was closed in early in February 2002 by the Irish Northwest Pelagic Management Committee (NWPMC), on scientific advice. The Irish NWPMC has stated the following management objectives: "As regards the herring stock in this area the management policy of the North West Pelagic Management Committee is to rebuild the stock to above the $\boldsymbol{B}_{p a}$ level of $110,000 t\left(\boldsymbol{B}_{p a}\right.$ is the minimum safe stock size). The time period over which this rebuilding process can be achieved will depend on annual catches and recruitment. In the longer term it is the policy of the committee to further rebuild the stock to the level at which it can sustain annual catches of around $25,000 t$. This rebuilding process will base on scientific advice. In the event of the stock remaining below the required level additional conservation measures will be implemented. It is the policy of the committee to ensure that adequate research is carried out, including sampling and surveys, to enable an accurate assessment of the stock".

Precautionary reference points

As this assessment is still uncertain there was no revision of the precautionary reference points. The precautionary reference points for this stock were discussed in the 1999 Working Group Report (ICES 1999/ACFM:12). The 1999 WG showed that recruitment does not show any clear dependence on the SSB that apart from the very high 1985 year class has been quite stable, but at a much lower level. The suggested $\mathbf{F}_{\text {loss }}$ value is about 0.33 and the \mathbf{F}_{pa} may be about 0.22 . The present analysis, although it is uncertain, presents a similar picture of the stock as that shown in recent years. The stock may be still below $\mathbf{B}_{\mathrm{pa}}(110,000 \mathrm{t})$; however, the fishing mortality has been reduced and may now be as low as in the early part of the time-series.

6.8 Medium-Term Projections and Management Considerations

It has not been possible to carry out medium-term projections for this stock because of the absence of information. A management plan is currently being implemented to rebuild this stock. More specific advice will not be possible until more information becomes available on stock sizes.

Table 6.1.1. VIa(S) \& VIIb,c. Estimated herring catches in tonnes, 1988-2001. These figures do not in all cases correspond to the official statistics and cannot be used for management purposes.

| Country | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| France | - | - | + | - | - | - |
| Germany, Fed.Rep. | - | - | - | - | 250 | - |
| Ireland | 15,000 | 18,200 | 25,000 | 22,500 | 26,000 | 27,600 |
| Netherlands | 300 | 2,900 | 2,533 | 600 | 900 | 2,500 |
| UK (N.Ireland) | - | - | 80 | - | - | - |
| UK (England + Wales) | - | - | - | - | - | - |
| UK Scotland | - | + | - | + | - | 200 |
| Unallocated | 13,800 | 7,100 | 13,826 | 11,200 | 4,600 | 6,250 |
| Total landings | 29,100 | 28,200 | 41,439 | 34,300 | 31,750 | 36,550 |
| Discards | - | 1,000 | 2,530 | 3,400 | 100 | 250 |
| Total catch | 29,100 | 29,200 | 43,969 | 37,700 | 31,850 | 36,800 |
| Country | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
| France | - | - | - | - | - | - |
| Germany, Fed.Rep. | - | 11 | - | - | - | - |
| Ireland | 24,400 | 25,450 | 23,800 | 24,400 | 25,200 | 16,325 |
| Netherlands | 2,500 | 1,207 | 1,800 | 3,400 | 2,500 | 1,868 |
| UK (N.Ireland) | - | - | - | - | - | - |
| UK (England + Wales) | 50 | 24 | - | - | - | - |
| UK (Scotland) | - | - | - | - | - | - |
| Unallocated | 6,250 | 1,100 | 6,900 | -700 | 11,200 | 7,916 |
| Total landings | 33,200 | 27,792 | 32,500 | 27,100 | 38,900 | 26,109 |
| Discards | 700 | - | - | 50 | - | - |
| Total catch | 33,900 | 27,792 | 32,500 | 27,150 | 38,900 | 26,109 |

| Country | 2000 | 2001 |
| :--- | :---: | :---: |
| France | - | - |
| Germany | - | - |
| Ireland | 10,164 | 11,278 |
| Netherlands | 1,234 | 2,088 |
| UK | - | - |
| Unallocated | 3,607 | 695 |
| Total landings | 15,005 | 14,060 |
| Discards | - | - |
| Total catch | 15,005 | 14,060 |

Table 6.1.2 VIa(S) \& VIIb,c herring. Catch in numbers-at-age (ringers) from 1970 to 2001

| Age 1 | Age 2 | Age 3 | Age 4 | Age 5 | Age 6 | Age 7 | Age 8 | Age 9 | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1970 | 135 | 35114 | 26007 | 13243 | 3895 | 40181 | 2982 | 1667 | 1911 |
| 1971 | 883 | 6177 | 7038 | 10856 | 8826 | 3938 | 40553 | 2286 | 2160 |
| 1972 | 1001 | 28786 | 20534 | 6191 | 11145 | 10057 | 4243 | 47182 | 4305 |
| 1973 | 6423 | 40390 | 47389 | 16863 | 7432 | 12383 | 9191 | 1969 | 50980 |
| 1974 | 3374 | 29406 | 41116 | 44579 | 17857 | 8882 | 10901 | 10272 | 30549 |
| 1975 | 7360 | 41308 | 25117 | 29192 | 23718 | 10703 | 5909 | 9378 | 32029 |
| 1976 | 16613 | 29011 | 37512 | 26544 | 25317 | 15000 | 5208 | 3596 | 15703 |
| 1977 | 4485 | 44512 | 13396 | 17176 | 12209 | 9924 | 5534 | 1360 | 4150 |
| 1978 | 10170 | 40320 | 27079 | 13308 | 10685 | 5356 | 4270 | 3638 | 3324 |
| 1979 | 5919 | 50071 | 19161 | 19969 | 9349 | 8422 | 5443 | 4423 | 4090 |
| 1980 | 2856 | 40058 | 64946 | 25140 | 22126 | 7748 | 6946 | 4344 | 5334 |
| 1981 | 1620 | 22265 | 41794 | 31460 | 12812 | 12746 | 3461 | 2735 | 5220 |
| 1982 | 748 | 18136 | 17004 | 28220 | 18280 | 8121 | 4089 | 3249 | 2875 |
| 1983 | 1517 | 43688 | 49534 | 25316 | 31782 | 18320 | 6695 | 3329 | 4251 |
| 1984 | 2794 | 81481 | 28660 | 17854 | 7190 | 12836 | 5974 | 2008 | 4020 |
| 1985 | 9606 | 15143 | 67355 | 12756 | 11241 | 7638 | 9185 | 7587 | 2168 |
| 1986 | 918 | 27110 | 24818 | 66383 | 14644 | 7988 | 5696 | 5422 | 2127 |
| 1987 | 12149 | 44160 | 80213 | 41504 | 99222 | 15226 | 12639 | 6082 | 10187 |
| 1988 | 0 | 29135 | 46300 | 41008 | 23381 | 45692 | 6946 | 2482 | 1964 |
| 1989 | 2241 | 6919 | 78842 | 26149 | 21481 | 15008 | 24917 | 4213 | 3036 |
| 1990 | 878 | 24977 | 19500 | 151978 | 24362 | 20164 | 16314 | 8184 | 1130 |
| 1991 | 675 | 34437 | 27810 | 12420 | 100444 | 17921 | 14865 | 11311 | 7660 |
| 1992 | 2592 | 15519 | 42532 | 26839 | 12565 | 73307 | 8535 | 8203 | 6286 |
| 1993 | 191 | 20562 | 22666 | 41967 | 23379 | 13547 | 67265 | 7671 | 6013 |
| 1994 | 1709 | 56156 | 31225 | 16877 | 21772 | 13644 | 8597 | 31729 | 10093 |
| 1995 | 284 | 34471 | 35414 | 18617 | 19133 | 16081 | 5749 | 8585 | 14215 |
| 1996 | 4776 | 24424 | 69307 | 31128 | 9842 | 15314 | 8158 | 12463 | 6472 |
| 1997 | 7458 | 56329 | 25946 | 38742 | 14583 | 5977 | 8351 | 3418 | 4264 |
| 1998 | 7437 | 72777 | 80612 | 38326 | 30165 | 9138 | 5282 | 3434 | 2942 |
| 1999 | 2392 | 51254 | 61329 | 34901 | 10092 | 5887 | 1880 | 1086 | 949 |
| 2000 | 3101 | 26133 | 29430 | 23216 | 10090 | 2068 | 1107 | 522 | 1211 |
| 2001 | 2207 | 20694 | 20754 | 16707 | 17581 | 9484 | 1659 | 979 | 484 |

Table 6.1.3. Divisions VIa (S) and VIIb,c. Sampling intensity of herring catches in 2001.

| Country | Q | Catch | No. of
 samples | No. of age
 readings | No. of fish
 measured | Aged per
 1000 t. | Estimate of
 discards |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ireland | 1 | 7,458 | 7 | 243 | 1,508 | 32 | No |
| | 2 | 14 | 0 | 0 | 0 | 0 | No |
| | 3 | 10 | 0 | 0 | 0 | 0 | No |
| | 4 | 4,467 | 26 | 590 | 7,053 | 132 | No |
| Netherlands | 3 | 2088 | 3 | 75 | 424 | 36 | No |

Table 6.1.4 VIa(S) and Division VIIb,c herring. Length distribution of Irish catches/quarter (thousands) 2001.

| | VIIb | | VIaS | |
| :---: | :---: | :---: | :---: | :---: |
| Length | Q1 2001 | Q4 2001 | Q1 2001 | Q4 2001 |
| 19.0 | | | | 43 |
| 19.5 | | 6 | | 55 |
| 20.0 | | 12 | | 123 |
| 20.5 | | 6 | 84 | 295 |
| 21.0 | | 41 | 126 | 560 |
| 21.5 | | 70 | 168 | 640 |
| 22.0 | | 146 | 462 | 831 |
| 22.5 | | 58 | 378 | 658 |
| 23.0 | | 116 | 504 | 1132 |
| 23.5 | | 204 | 378 | 1551 |
| 24.0 | 10 | 373 | 925 | 3145 |
| 24.5 | 14 | 361 | 1345 | 3243 |
| 25.0 | 34 | 378 | 3741 | 3342 |
| 25.5 | 51 | 320 | 4329 | 2259 |
| 26.0 | 99 | 378 | 5296 | 2142 |
| 26.5 | 89 | 553 | 5338 | 1908 |
| 27.0 | 136 | 937 | 7317 | 1939 |
| 27.5 | 174 | 1042 | 6305 | 1895 |
| 28.0 | 174 | 961 | 5464 | 2086 |
| 28.5 | 85 | 722 | 2816 | 1428 |
| 29.0 | 48 | 338 | 2354 | 862 |
| 29.5 | 27 | 134 | 1051 | 332 |
| 30.0 | 20 | 58 | 294 | 142 |
| 30.5 | 0 | 12 | 504 | 31 |
| 31.0 | 10 | | 462 | 43 |
| 31.5 | 7 | | 420 | 0 |
| 32.0 | 7 | | 715 | 6 |
| 32.5 | 0 | | 210 | |
| 33.0 | 3 | | 168 | |
| 33.5 | | | 0 | |
| 34.0 | | | 0 | |
| 34.5 | | | 0 | |
| 35.0 | | | 42 | |
| Totals: | 990 | 7225 | 51197 | 30691 |

Table 6.2.1 $\operatorname{VIa}(\mathrm{S}) \& \mathrm{VIIb}, \mathrm{c}$ herring. Mean weight-at-age in the catch.

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1970 | 0.11 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1971 | 0.11 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1972 | 0.11 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1973 | 0.11 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1974 | 0.11 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1975 | 0.11 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1976 | 0.11 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1977 | 0.11 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1978 | 0.11 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1979 | 0.11 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1980 | 0.11 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1981 | 0.11 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1982 | 0.11 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1983 | 0.09 | 0.129 | 0.165 | 0.191 | 0.209 | 0.222 | 0.231 | 0.237 | 0.241 |
| 1984 | 0.106 | 0.141 | 0.181 | 0.21 | 0.226 | 0.237 | 0.243 | 0.247 | 0.248 |
| 1985 | 0.077 | 0.122 | 0.161 | 0.184 | 0.196 | 0.206 | 0.212 | 0.225 | 0.23 |
| 1986 | 0.095 | 0.138 | 0.164 | 0.194 | 0.212 | 0.225 | 0.239 | 0.208 | 0.288 |
| 1987 | 0.085 | 0.102 | 0.15 | 0.169 | 0.177 | 0.193 | 0.205 | 0.215 | 0.22 |
| 1988 | 0 | 0.098 | 0.133 | 0.153 | 0.166 | 0.171 | 0.183 | 0.191 | 0.201 |
| 1989 | 0.08 | 0.13 | 0.141 | 0.164 | 0.174 | 0.183 | 0.192 | 0.193 | 0.203 |
| 1990 | 0.094 | 0.138 | 0.148 | 0.16 | 0.176 | 0.189 | 0.194 | 0.208 | 0.216 |
| 1991 | 0.089 | 0.134 | 0.145 | 0.157 | 0.167 | 0.185 | 0.199 | 0.207 | 0.23 |
| 1992 | 0.095 | 0.141 | 0.147 | 0.157 | 0.165 | 0.171 | 0.18 | 0.194 | 0.219 |
| 1993 | 0.112 | 0.138 | 0.153 | 0.17 | 0.181 | 0.184 | 0.196 | 0.229 | 0.236 |
| 1994 | 0.081 | 0.141 | 0.164 | 0.177 | 0.189 | 0.187 | 0.191 | 0.204 | 0.22 |
| 1995 | 0.08 | 0.14 | 0.161 | 0.173 | 0.182 | 0.198 | 0.194 | 0.206 | 0.217 |
| 1996 | 0.085 | 0.135 | 0.172 | 0.182 | 0.199 | 0.209 | 0.22 | 0.233 | 0.237 |
| 1997 | 0.093 | 0.135 | 0.155 | 0.181 | 0.201 | 0.217 | 0.217 | 0.231 | 0.239 |
| 1998 | 0.095 | 0.136 | 0.145 | 0.173 | 0.191 | 0.196 | 0.202 | 0.222 | 0.217 |
| 1999 | 0.106 | 0.144 | 0.145 | 0.163 | 0.186 | 0.195 | 0.2 | 0.216 | 0.222 |
| 2000 | 0.102 | 0.129 | 0.154 | 0.172 | 0.18 | 0.184 | 0.204 | 0.203 | 0.204 |
| 2001 | 0.086 | 0.122 | 0.139 | 0.167 | 0.183 | 0.188 | 0.222 | 0.222 | 0.213 |
| | | | | | | | | | |
| 102 | | | | | | | | | |

Table 6.2.2 Mean weight in the stock for herring in VIaS and VIIb,c.

| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1970 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1971 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1972 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1973 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1974 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1975 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1976 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1977 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1978 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1979 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1980 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1981 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1982 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1983 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1984 | 0.120 | 0.169 | 0.210 | 0.236 | 0.260 | 0.273 | 0.283 | 0.290 | 0.296 |
| 1985 | 0.100 | 0.150 | 0.196 | 0.227 | 0.238 | 0.251 | 0.252 | 0.269 | 0.284 |
| 1986 | 0.098 | 0.169 | 0.209 | 0.238 | 0.256 | 0.276 | 0.280 | 0.287 | 0.312 |
| 1987 | 0.097 | 0.164 | 0.206 | 0.233 | 0.252 | 0.271 | 0.280 | 0.296 | 0.317 |
| 1988 | 0.097 | 0.164 | 0.206 | 0.233 | 0.252 | 0.271 | 0.280 | 0.296 | 0.317 |
| 1989 | 0.138 | 0.157 | 0.168 | 0.182 | 0.200 | 0.217 | 0.227 | 0.238 | 0.245 |
| 1990 | 0.113 | 0.152 | 0.170 | 0.180 | 0.200 | 0.217 | 0.225 | 0.233 | 0.255 |
| 1991 | 0.102 | 0.149 | 0.174 | 0.190 | 0.195 | 0.206 | 0.226 | 0.236 | 0.248 |
| 1992 | 0.102 | 0.144 | 0.167 | 0.182 | 0.194 | 0.197 | 0.214 | 0.218 | 0.242 |
| 1993 | 0.118 | 0.166 | 0.196 | 0.205 | 0.214 | 0.220 | 0.223 | 0.242 | 0.258 |
| 1994 | 0.098 | 0.156 | 0.192 | 0.209 | 0.216 | 0.223 | 0.226 | 0.230 | 0.247 |
| 1995 | 0.090 | 0.144 | 0.181 | 0.203 | 0.217 | 0.226 | 0.227 | 0.239 | 0.246 |
| 1996 | 0.086 | 0.137 | 0.186 | 0.206 | 0.219 | 0.234 | 0.233 | 0.249 | 0.253 |
| 1997 | 0.094 | 0.135 | 0.169 | 0.194 | 0.210 | 0.224 | 0.231 | 0.230 | 0.239 |
| 1998 | 0.095 | 0.136 | 0.145 | 0.173 | 0.191 | 0.196 | 0.202 | 0.222 | 0.217 |
| 1999 | 0.104 | 0.145 | 0.154 | 0.174 | 0.200 | 0.222 | 0.230 | 0.240 | 0.246 |
| 2000 | 0.100 | 0.134 | 0.157 | 0.177 | 0.197 | 0.207 | 0.217 | 0.230 | 0.245 |
| 2001 | 0.091 | 0.125 | 0.150 | 0.172 | 0.191 | 0.200 | 0.203 | 0.203 | 0.216 |

Table 6.5.2.1. VIa(S) and Division VIIb, c herring. Outputs from the separable VPA with F2001=0.2.

Run title : Herring VIa(S) VIIbc (run: PRE wg 2002)
At 19/03/2002 23:34

| | | Table YEAR, | 8 | $\begin{aligned} & \text { Fishing } \\ & \text { 1982, } \end{aligned}$ | $\begin{gathered} \text { mortality } \\ 1983, \end{gathered}$ | $\begin{aligned} & \text { (F) at } \\ & 1984, \end{aligned}$ | age 1985, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE | | | | | | | | | | | | | |
| | | 1, | | . 0017 , | . 0011 , | . 0048 , | . 0126 , | . 0016 , | . 0061 , | . 0000 , | . 0047 , | . 0018 , | . 0021, |
| | | 2, | | . 0897 , | . 2205, | . 1195, | . 0529, | . 0739, | . 1614, | . 0294 , | . 0468 , | . 1098, | . 1470, |
| | | 3, | | .1668, | . 3978 , | . 2340 , | . 1452 , | . 1217, | . 3438 , | . 2695 , | . 1096 , | .1905, | . 1818, |
| | | 4, | | . 2239, | . 3774 , | . 2305 , | .1472, | .1975, | . 2898 , | . 2808 , | . 2278, | . 3004 , | .1693, |
| | | 5, | | . 2303, | . 3739 , | .1557, | .1989, | . 2244 , | . 4463 , | . 2349 , | . 2080, | . 3056 , | . 2956 , |
| | | 6 , | | . 3040 , | . 3376 , | . 2264 , | . 2202, | .1898, | . 3409 , | . 3376 , | . 2081, | . 2741 , | . 3432 , |
| | | 7, | | . 2361 , | . 3907 , | .1566, | . 2244 , | . 2270, | . 4536, | . 2294 , | . 2773, | . 3253 , | . 2968 , |
| | | 8 , | | . 3849 , | . 2739, | .1729, | . 2714 , | .1793, | . 3572 , | . 1334 , | . 1898 , | . 1235 , | . 3489 , |
| | | +gp, | | . 3849 , | . 2739, | . 1729 , | . 2714 , | .1793, | . 3572 , | . 1334 , | . 1898 , | . 1235 , | . 3489 , |
| 0 | FBAR | 3- | 6, | . 2312 , | . 3717 , | . 2116 , | .1779, | .1833, | . 3552, | . 2807 , | .1884, | . 2676 , | . 2475 , |

Table 6.5.2.1 (Continued)

Run title : Herring VIa(S) VIIbc (run: PRE wg 2002)
At 19/03/2002 23:34

| Table 9 | Relative | F at age |
| :---: | :---: | :---: |
| YEAR, | 1970, | 1971, |
| AGE | | |
| 1, | . 0028 , | . 0103, |
| 2, | 2.0602, | . 2973, |
| 3 , | 1.3077, | . 7809 , |
| 4 , | . 9632 , | . 8692 , |
| 5, | . 9181, | . 9424 , |
| 6 , | . 8110, | 1.4075, |
| 7, | 1.0757 , | 1.2091 , |
| 8 , | 1.2483, | 1.2546 , |
| +gp, | 1.2483, | 1.2546, |
| REFMEAN, | . 1865 , | . 1662 , |

| $\begin{aligned} & \text { Table } 9 \\ & \text { YEAR, } \end{aligned}$ | $\begin{aligned} & \text { Relative } \\ & \text { 1972, } \end{aligned}$ | $\begin{aligned} & F \text { at age } \\ & 1973, \end{aligned}$ | 1974, | 1975, | 1976, | 1977, | 1978, | 1979, | 1980, | 1981, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE | | | | | | | | | | |
| 1, | . 0104 , | . 0665 , | . 0201 , | . 0657 , | . 0775 , | . 0383 , | . 0578 , | . 0351 , | . 0217 , | . 0120, |
| 2, | . 5675 , | . 6546 , | . 4277, | . 5690, | . 5168, | . 7373 , | . 9402 , | . 5969, | . 3521 , | . 4510, |
| 3, | 1.1725, | 1.0538, | . 7044 , | .6102, | . 8046 , | . 6052 , | . 8902 , | . 6972, | . 8916, | . 7053 , |
| 4, | . 7374 , | 1.0508, | 1.0955, | . 8496 , | . 9492 , | . 9660 , | 1.0799, | . 9500 , | . 9848 , | . 8628, |
| 5 , | . 9340 , | . 8500, | 1.1867, | 1.0837, | 1.1351, | 1.1618, | 1.0907, | 1.0888, | 1.1495, | . 9873 , |
| 6 , | 1.1561, | 1.0454 , | 1.0134, | 1.4565, | 1.1111, | 1.2670, | . 9392 , | 1.2641, | . 9741 , | 1.4446, |
| 7, | 1.8116, | 1.0984, | .9301, | 1.2760, | 1.3192, | 1.1371, | 1.0358, | 1.3969, | 1.2047, | . 8346 , |
| 8, | 1.6218, | . 9169, | 1.3683, | 1.5711, | 1.4103, | . 9918 , | 1.4643, | 1.6423, | 1.3485, | . 9775 , |
| +gp, | 1.6218, | . 9169, | 1.3683, | 1.5711, | 1.4103, | . 9918 , | 1.4643, | 1.6423, | 1.3485, | . 9775 , |
| REFMEAN, | . 2076 , | . 2912 , | . 4563 , | . 4432 , | . 5070, | . 3250 , | . 2682 , | . 2775, | . 4002 , | . 3219 , |

Run title : Herring VIa(S) VIIbc (run: PRE wg 2002)
At 19/03/2002 23:34

| $\begin{aligned} & \text { Table } \\ & \text { YEAR, } \end{aligned}$ | $\begin{aligned} & \text { Relative } \\ & \text { 1992, } \end{aligned}$ | $\begin{aligned} & \text { F at age } \\ & 1993, \end{aligned}$ | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, | MEAN 99-** |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE | | | | | | | | | | | |
| 1, | .0359, | . 0014 , | . 0641 , | .0020, | . 0142, | . 0226 , | . 0161, | .0100, | . 0251 , | .0160, | .0171, |
| 2, | . 3694 , | . 4815, | .9312, | . 3015 , | . 3102 , | . 4115, | . 2831 , | . 4369 , | .5429, | . 3612 , | .4470, |
| 3, | 1.0536, | . 6366 , | 1.2520, | . 8007 , | . 9024 , | . 5988 , | . 6229 , | . 7432 , | . 9423 , | . 6567 , | . 7807 , |
| 4, | . 9235, | 1.3857, | . 6902 , | 1.0304, | 1.1505, | 1.1258, | 1.0544, | .9409, | 1.0499, | . 7803 , | .9237, |
| 5, | . 8404 , | . 9259, | 1.2552, | .8910, | . 8247 , | 1.2715, | 1.2156, | 1.2142, | 1.0111, | 1.1548, | 1.1267, |
| 6 , | 1.1825, | 1.0518, | . 8026 , | 1.2779, | 1.1224, | 1.0039, | 1.1071, | 1.1018, | . 9967 , | 1.4083, | 1.1689, |
| 7, | . 8844 , | 1.3999, | 1.0591, | .3483, | 1.1334, | 1.5078, | 1.1688, | .9690, | . 7872, | 1.1543, | .9702, |
| 8, | . 8621, | . 9069, | 1.1335, | 1.4579, | 1.0041, | 1.0630, | . 8313, | 1.0843, | 1.0076, | . 9636 , | 1.0185, |
| +gp, | . 8621 , | . 9069 , | 1.1335, | 1.4579, | 1.0041, | 1.0630, | .8313, | 1.0843, | 1.0076, | . 9636 , | |
| REFMEAN, | .2747, | . 3515 , | .3554, | .4797, | .5672, | .5092, | .8954, | .5049, | .2142, | . 2052 , | |

Table 6.5.2.1 (Continued)

Run title : Herring VIa(S) VIIbc (run: PRE wg 2002)
At 19/03/2002 23:34

| Table 10 | Stock numb | | -at-age | (start of year) | | | Numbers*10**-3 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1970, 1971, | | | | | | | | | |
| AGE | | | | | | | | | | |
| 1, | 4029 | 09, 814 | 11, | | | | | | | |
| 2, | 1261 | 97, 148 | 14, | | | | | | | |
| 3 , | 13205 | 54, 63 | 665, | | | | | | | |
| 4, | 845 | 11, 84 | 719 , | | | | | | | |
| 5, | 259 | 73, 638 | 96, | | | | | | | |
| 6 , | 3004 | 60, 198 | 03, | | | | | | | |
| 7, | 172 | 11, 233 | 710, | | | | | | | |
| 8, | 841 | 18, 127 | 742 , | | | | | | | |
| +gp, | 965 | 50, 120 | 40, | | | | | | | |
| TOTAL, | 110738 | 84, 1452 | 730, | | | | | | | |
| Table 10 | Stock | number-a | -age (st | rt of ye | | | Numbers*1 | **3 | | |
| YEAR, | 1972, | 1973, | 1974, | 1975, | 1976, | 1977, | 1978, | 1979, | 1980, | 1981, |
| AGE | | | | | | | | | | |
| 1, | 730378, | 529389, | 584763, | 405023, | 679554, | 572762, | 1043880, | 964773, | 521046, | 666446, |
| 2, | 298945, | 268110, | 191019, | 213160, | 144726, | 240356, | 208100, | 378110, | 351478, | 190021, |
| 3, | 104457, | 196853, | 164151, | 116417, | 122713, | 82501, | 140118, | 119806, | 237352, | 226152, |
| 4, | 45780, | 67048, | 118579, | 97451, | 72727, | 66812, | 55484, | 90355, | 80836, | 136006, |
| 5, | 66347, | 35545, | 44675, | 65083, | 60508, | 40668, | 44165, | 37581, | 62811, | 49318, |
| 6 , | 49434, | 49453, | 25110, | 23520, | 36427, | 30792, | 25225, | 29827, | 25138, | 35876, |
| 7, | 14182, | 35187, | 33003, | 14308, | 11159, | 18764, | 18458, | 17743, | 19004, | 15402, |
| 8 , | 172975, | 8810, | 23122, | 19534, | 7354, | 5173, | 11733, | 12650, | 10896, | 10617, |
| +gp, | 15783, | 228108, | 68766, | 66714, | 32113, | 15784, | 10720, | 11698, | 13379, | 20264, |
| TOTAL, | 1498282, | 1418502, | 1253188, | 1021210, | 1167281, | 1073611, | 1557883, | 662544, | 321939 | 350102, |

Run title : Herring VIa(S) VIIbc (run: PRE wg 2002)
At 19/03/2002 23:34

| Table 10 | Stock number-at-age (start of year) | | | | | Numbers*10**-3 | | | 1990, | 1991, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1982, | 1983, | 1984, | 1985, | 1986, | 1987, | 1988, | 1989, | | |
| AGE | | | | | | | | | | |
| 1, | 691900, | 2271353, | 927372, | 1210275, | 929701, | 3181307, | 475488, | 757149, | 791267, | 505803, |
| 2, | 244229, | 254101, | 834703, | 339536, | 439650 , | 341485, | 1163270, | 174922, | 277236, | 290581 |
| 3 , | 121748, | 165413, | 150986, | 548702, | 238566, | 302497 , | 215263, | 836807, | 123660, | 184022, |
| 4, | 147546, | 84361, | 90977, | 97828, | 388542, | 172948, | 175617, | 134605, | 614029, | 83685 |
| 5, | 93219, | 106723, | 52337, | 65376, | 76404, | 288552, | 117121, | 120004, | 96980, | 411451 |
| 6 , | 32474, | 67000, | 66441 , | 40529, | 48484, | 55235, | 167098, | 83788, | 88195, | 64645 |
| 7, | 20389, | 21682, | 43254, | 47937, | 29423, | 36287, | 35543, | 107872, | 61569, | 60673 |
| 8 , | 10653, | 14568, | 13273, | 33465, | 34658, | 21217, | 20861, | 25568, | 73970, | 40240 |
| +gp, | 9427, | 18603, | 26573, | 9563, | 13596, | 35538, | 16507, | 18425, | 10213, | 27251 |
| TOTAL, | 1371585, | 3003805, | 2205917, | 2393210, | 2199024, | 4435066 , | 2386769, | 2259141, | 2137118, | 1668352 |

| | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE | | | | | | | | | | | | | |
| 1, | 417898, | 622215, | 820997, | 474617, | 940203, | 1028046, | 821948, | 750725, | 914682, | 1060103, | 0, | 750979, | 851107, |
| 2, | 185683, | 152229, | 228789, | 295226, | 174437, | 343103, | 373860, | 298054, | 274785, | 334689, | 388708, | 266864, | 305649, |
| 3, | 185846, | 124283, | 95216, | 121732, | 189256, | 108374, | 206127, | 214949, | 177095, | 181222, | 230231, | 165432, | 194656, |
| 4, | 125619, | 113922, | 81356, | 49957, | 67879, | 92871 , | 65410, | 96611, | 120929, | 118497, | 129666, | 101188, | 122802, |
| 5, | 63928, | 88199, | 63338, | 57599, | 27574, | 31981, | 47370, | 23024, | 54363, | 87388, | 91356 , | 63478, | 80925, |
| 6, | 277025, | 45920, | 57636, | 36685, | 33990, | 15628, | 15145, | 14433, | 11286, | 39613, | 62388 , | 44354, | 62047, |
| 7 , | 41502, | 181148, | 28709, | 39209, | 17981, | 16271, | 8482 , | 5085 , | 7488 , | 8249 , | 26847, | 28086, | 41705, |
| 8, | 40800, | 29454, | 100212, | 17828, | 30019, | 8554, | 6832, | 2695 , | 2821, | 5724, | 5890, | 17914, | 27630, |
| +gp, | 31265, | 23088, | 31877, | 29520, | 15589, | 10672, | 5853, | 2355, | 6545, | 2830, | 6352, | | |
| total, | 1369567, | 1380458, | 1508131, | 1122374, | 1496928, | 1655500, | 1551027, | 1407934, | 1569994, | 1838315, | 941439, | | |

Run title : Herring VIa(S) VIIbc (run: PRE wg 2002)
At 19/03/2002 23:34

Table 6.5.2.1 (Continued)

| Table 11 | Spawning | stock | number-at | ge (sp | ng ti | | mbers*10 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1972, | 1973, | 1974, | 1975, | 1976, | 1977, | 1978, | 1979, | 1980, | 1981, |
| AGE | | | | | | | | | | |
| 1, | 0 , | 0 , | 0, | 0 , | 0 , | 0, | 0 , | 0 , | 0 , | O |
| 2, | 225954, | 192999, | 137084, | 147242, | 99313, | 167430, | 143751, | 276776, | 261574, | 141014 |
| 3 , | 77612, | 140169, | 115749, | 84942, | 81656, | 63245, | 104431, | 92044, | 163442, | 169877 |
| 4, | 38641, | 51080, | 79331, | 70813, | 49267, | 50629 , | 42737, | 70818, | 58052, | 105595 |
| 5, | 54490, | 28161, | 29066, | 44116, | 38481, | 29531, | 33952, | 28705, | 43158, | 37275 |
| 6 , | 39364, | 37715, | 17226, | 14272, | 23356, | 21853, | 19927, | 22052, | 18105, | 24568 |
| 7, | 10309, | 26559, | 23225, | 9160, | 6667, | 13699, | 14330, | 12798, | 12866, | 12031 |
| 8, | 129102, | 6890, | 14231, | 11457, | 4259, | 3898, | 8434, | 8718, | 7098, | 8042 |
| +gp, | 11780, | 178381, | 42324, | 39129, | 18600, | 11894, | 7706, | 8061 , | 8715, | 15349 |

Run title : Herring VIa(S) VIIbc (run: PRE wg 2002)
At 19/03/2002 23:34

| AGE | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1, | 0 , | 0 , | 0, | 0 , | 0 , | 0 , | 0, | 0 , | 0 , | 0 |
| 2, | 188111, | 179283, | 630175, | 268034, | 342223, | 250670, | 932897, | 138654, | 210670, | 215383, |
| 3 , | 95218, | 110818, | 112891, | 435416, | 192316, | 210135, | 157164, | 680069, | 95194, | 142487, |
| 4, | 118762, | 61267, | 72908, | 82898, | 318321, | 133198, | 136072, | 108060, | 469565, | 69870, |
| 5 , | 74715, | 77689, | 44097, | 53510, | 61477, | 200108, | 93580, | 97629, | 73903, | 315655, |
| 6 , | 24774, | 49974, | 53389, | 32703, | 39928, | 41109, | 124632, | 68159, | 68644, | 48038 , |
| 7, | 16277, | 15607, | 36422, | 38573, | 23635, | 25042, | 28504, | 83777, | 46303, | 46508 , |
| 8, | 7698, | 11340, | 11056, | 26092, | 28743, | 15620, | 17841, | 21056, | 63684, | 29788 |
| +gp, | 6812, | 14481, | 22133, | 7456, | 11275, | 26162, | 14118, | 15174, | 8793, | 20173, |

| AGE | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1, | 0, | 0, | 0, | 0, | 0, | 0, | 0, | 0, | 0, | 0 |
| 2, | 141890, | 111163, | 149912, | 219167, | 126806, | 243871, | 258024, | 210289, | 207907, | 260484, |
| 3, | 133890, | 93566, | 61807, | 82309, | 117464, | 77269, | 124060, | 146206, | 135298, | 144811, |
| 4, | 99117, | 76877, | 64552, | 33548, | 40997, | 59154, | 32496, | 65722, | 97276, | 99545 |
| 5, | 51218, | 66324, | 43930, | 40452, | 18849, | 19382, | 21365, | 14280, | 43974, | 69726 |
| 6 , | 208408, | 33522, | 44524, | 22752, | 20749, | 10377, | 7290, | 9299, | 9148, | 30525 |
| 7, | 32983, | 121834, | 20864, | 32785, | 10931, | 9097, | 3934, | 3427, | 6255, | 6582 |
| 8, | 32558, | 22248, | 71547, | 10435, | 19168, | 5567, | 3880, | 1747, | 2283, | 4689 |
| , | 24949, | 174 | 227 | 172 | 9954 | 69 | 3324 | 1526 | 5297 , | 2318 |

Run title : Herring VIa(S) VIIbc (run: PRE wg 2002)
At 19/03/2002 23:34

Table 6.5.2.1 (Continued)

Table 6.5.2.1 (Continued)

| | Table 13 | Spawning | stock | biomass at | age (sp | ning ti | | Tonnes | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | YEAR, | 1972, | 1973, | 1974, | 1975, | 1976, | 1977, | 1978, | 1979, | 1980, | 1981, |
| AGE | | | | | | | | | | | |
| | 1, | 0 , | 0, | 0, | 0 , | 0, | 0 , | 0 , | 0, | 0, | 0, |
| | 2, | 38186, | 32617, | 23167, | 24884, | 16784, | 28296, | 24294, | 46775, | 44206, | 23831, |
| | 3, | 16299, | 29435, | 24307, | 17838, | 17148, | 13281, | 21931, | 19329, | 34323, | 35674, |
| | 4, | 9119, | 12055, | 18722, | 16712, | 11627, | 11949, | 10086, | 16713, | 13700, | 24920, |
| | 5, | 14167, | 7322, | 7557, | 11470, | 10005, | 7678, | 8827, | 7463, | 11221, | 9692, |
| | 6, | 10746, | 10296, | 4703, | 3896, | 6376, | 5966, | 5440, | 6020, | 4943, | 6707, |
| | 7, | 2917, | 7516, | 6573, | 2592, | 1887, | 3877, | 4055, | 3622, | 3641, | 3405, |
| | 8 , | 37439, | 1998, | 4127, | 3322, | 1235, | 1130, | 2446, | 2528, | 2058, | 2332, |
| | | 3487 , | 52801, | 12528, | 11582, | 5506, | 3521, | 2281, | 2386, | 2580, | 4543, |
| 0 | TOTSPBIO, | 132361, | 154040, | 101684, | 92297, | 70568, | 75698, | 79360, | 104837, | 116672, | 111105, |
| 1 | | | | | | | | | | | |
| Run title : Herring VIa(S) VIIbc (run: PRE wg 2002) | | | | | | | | | | | |
| At 19/03/2002 23:34 | | | | | | | | | | | |

| Table 13 | Spawning | stock | biomass at | age (sp | ning t | | Tonnes | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1982, | 1983, | 1984, | 1985, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, |
| AGE | | | | | | | | | | |
| 1, | 0, | 0, | 0, | 0 , | 0, | 0 , | 0, | 0, | 0 , | 0 , |
| 2, | 31791, | 30299, | 106500, | 40205, | 57836, | 41110, | 152995, | 21769, | 32022, | 32092, |
| 3 , | 19996, | 23272, | 23707, | 85342, | 40194, | 43288, | 32376, | 114252, | 16183, | 24793, |
| 4 , | 28028, | 14459, | 17206, | 18818, | 75760, | 31035, | 31705, | 19667, | 84522, | 13275, |
| 5, | 19426, | 20199, | 11465, | 12735, | 15738, | 50427, | 23582, | 19526, | 14781, | 61553, |
| 6 , | 6763, | 13643, | 14575, | 8208, | 11020, | 11140, | 33775, | 14790, | 14896, | 9896, |
| 7, | 4606 , | 4417, | 10307, | 9720, | 6618, | 7012, | 7981, | 19017, | 10418, | 10511, |
| 8, | 2232, | 3289, | 3206, | 7019, | 8249, | 4623, | 5281, | 5011, | 14838, | 7030, |
| +gp, | 2016, | 4286, | 6551, | 2117, | 3518, | 8293, | 4475, | 3718, | 2242, | 5003, |
| TOTSPBIO, | 114859, | 113863, | 193518, | 184165, | 218933, | 196929, | 292170, | 217750, | 189902, | 164152, |

| | Table 13 | Spawning | stock biomass at age (spawning time) | | | | | Tonnes | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | YEAR, | 1992, | 1993, | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, |
| | AGE | | | | | | | | | | |
| | 1, | 0 , | 0, | 0, | 0 , | 0 , | 0 , | 0, | 0 , | 0 , | 0 , |
| | 2, | 20432, | 18453, | 23386, | 31560, | 17372, | 32923, | 35091, | 30492, | 27859, | 32561, |
| | 3, | 22360, | 18339, | 11867, | 14898, | 21848, | 13059, | 17989, | 22516, | 21242, | 21722, |
| | 4, | 18039, | 15760, | 13491, | 6810, | 8445, | 11476, | 5622, | 11436, | 17218, | 17122, |
| | 5, | 9936, | 14193, | 9489, | 8778, | 4128, | 4070, | 4081, | 2856, | 8663, | 13318, |
| | 6 , | 41056, | 7375, | 9929, | 5142, | 4855, | 2324, | 1429, | 2064, | 1894, | 6105, |
| | 7, | 7058, | 27169, | 4715, | 7442, | 2547, | 2101, | 795, | 788, | 1357, | 1336, |
| | 8 , | 7098, | 5384, | 16456, | 2494, | 4773, | 1280, | 861, | 419, | 525, | 952, |
| | +gp, | 6038, | 4499, | 5622, | 4251, | 2518, | 1660, | 721, | 375, | 1298, | 501, |
| 0 | TOTSPBIO, | 132017, | 111172, | 94955, | 81375, | 66487, | 68893, | 66589, | 70946, | 80056, | 93615, |

Run title : Herring VIa(S) VIIbc (run: PRE wg 2002)
At 19/03/2002 23:34

Table 6.5.2.1 (Continued)

| | Table 14 | Stock | biomass at | age with | SOP (st | rt of ye | | Tonnes | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | YEAR, | 1972, | 1973, | 1974, | 1975, | 1976, | 1977, | 1978, | 1979, | 1980, | 1981, |
| | AGE | | | | | | | | | | |
| | 1, | 78659, | 64553, | 68500, | 54613, | 85395, | 74080, | 127288, | 123457, | 60247, | 82468, |
| | 2, | 45342, | 46043, | 31513, | 40479, | 25613, | 43781, | 35737, | 68142, | 57235, | 33115, |
| | 3 , | 19687, | 42007, | 33650, | 27471, | 26986, | 18673, | 29900, | 26829, | 48027, | 48973, |
| | 4, | 9696, | 16079, | 27318, | 25843, | 17974, | 16995, | 13306, | 22739, | 18382, | 33098, |
| | 5 , | 15482, | 9391, | 11339, | 19014, | 16474, | 11396, | 11668, | 10420, | 15736, | 13222, |
| | 6 , | 12112, | 13719, | 6692, | 7215, | 10414, | 9060, | 6998, | 8683, | 6612, | 10099, |
| | 7, | 3602, | 10119, | 9117, | 4550, | 3307, | 5724, | 5308, | 5355, | 5182, | 4495, |
| | 8 , | 45019, | 2596, | 6546, | 6365, | 2233, | 1617, | 3457, | 3912, | 3045, | 3175, |
| | $\stackrel{+g \mathrm{c}}{\text { + }}$ | 4193, | 68611, | 19870, | 22189, | 9954, | 5036, | 3224, | 3692, | 3816, | 6185, |
| 0 | TOTALBIO, | 233791, | 273118, | 214544, | 207738, | 198351, | 186363, | 236887, | 273230, | 218282, | 234831, |

At 19/03/2002 23:34

| | Table 14 | Stock | biomass at | age with | SOP (st | t of y | | Tonnes | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | YEAR, | 1982, | 1983, | 1984, | 1985, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, |
| | AGE | | | | | | | | | | |
| | 1, | 85524, | 273705, | 107815, | 119164, | 91125, | 292780, | 46088, | 104588, | 89469, | 51445, |
| | 2, | 42516, | 43123, | 136666, | 50146, | 74313, | 53135, | 190633, | 27490, | 42166, | 43173, |
| | 3, | 26336, | 34882, | 30718, | 105890, | 49868, | 59123, | 44311, | 140721, | 21035, | 31929, |
| | 4, | 35868, | 19993, | 20801, | 21865, | 92488, | 38233, | 40888, | 24522, | 110594, | 15855, |
| | 5, | 24966, | 27864, | 13183, | 15320, | 19563, | 68990, | 29492, | 24024, | 19408, | 80004, |
| | 6 , | 9132, | 18368, | 17573, | 10016, | 13384, | 14202, | 45249, | 18200, | 19150, | 13279, |
| | 7, | 5944 , | 6162, | 11859, | 11894, | 8240, | 9640, | 9944, | 24511, | 13862, | 13673, |
| | 8, | 3182, | 4243, | 3729, | 8863, | 9948, | 5959, | 6170, | 6091, | 17246, | 9470, |
| | +gp, | 2874, | 5530, | 7620, | 2674, | 4243, | 10688, | 5229, | 4519, | 2606, | 6739, |
| 0 | TOTALBIO, | 236341, | 433870, | 349965, | 345833, | 363171, | 552750, | 418005, | 374665, | 335534, | 265565, |

| | Table 14 | Stock biomass at age with SOP (start of year) | | | | | | Tonnes | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | YEAR, | 1992, | 1993, | 1994, | 1995, | 1996, | 1997, | 1998, | 1999, | 2000, | 2001, |
| | AGE | | | | | | | | | | |
| | 1, | 42416, | 73859, | 80296, | 44958, | 80494, | 96793, | 77988, | 78216, | 91570, | 96350, |
| | 2, | 26607, | 25421, | 35620, | 44744, | 23790, | 46394, | 50782, | 43296, | 36862, | 41784, |
| | 3 , | 30884, | 24505, | 18245, | 23190, | 35043, | 18345, | 29851, | 33162, | 27835, | 27150, |
| | 4, | 22750, | 23493, | 16969, | 10674, | 13920, | 18046, | 11302, | 16841, | 21428, | 20356, |
| | 5, | 12341, | 18987, | 13654, | 13155, | 6012, | 6727, | 9036, | 4613, | 10721, | 16670, |
| | 6 , | 54306 , | 10163, | 12827, | 8726, | 7918, | 3506, | 2965, | 3210, | 2339, | 7913, |
| | 7, | 8838, | 40637, | 6475, | 9368, | 4171, | 3765, | 1711, | 1172, | 1627, | 1673, |
| | 8, | 8851, | 7170, | 23003, | 4485, | 7441 , | 1971, | 1515, | 648, | 650, | 1161, |
| | +gp, | 7529, | 5992, | 7858, | 7643, | 3926, | 2555, | 1269, | 580, | 1605, | 611, |
| 0 | TOTALBIO, | 214521, | 230227, | 214947, | 166943, | 182715, | 198101, | 186418, | 181738, | 194636, | 213668, |

Run title : Herring VIa(S) VIIbc (run: PRE wg 2002)
At 19/03/2002 23:34

| Table $15 \quad$ Spawning stock biomass with | |
| :--- | :--- | :--- |
| YEAR, | $1970, ~(s p a w n i n g ~ t i m e) ~ T o n n e s ~$ |

| | | |
| ---: | ---: | ---: |
| AGE | 0, | 0, |
| 1, | 12093, | 17250, |
| 2, | 18471, | 9333, |
| 3, | 14830, | 14779, |
| 4, | 5050, | 12180, |
| 5, | 62161, | 3764, |
| 6, | 3571, | 47074, |
| 7, | 1752, | 2617, |
| 8, | 2050, | 2524, |
| 4, | 119977, | 109520, |

Table 6.5.2.1 (Continued)

Table 6.5.2.1 (Continued)

Run title : Herring VIa(S) VIIbc (run: PRE wg 2002)
At 19/03/2002 23:34
Table 16 Summary (without SOP correction)

| , | RECRUITS, | TOTALBIO, | TOTSPBIO, | LANDINGS, | YIELD / SSB, | FBAR | 3-6, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , | Age 1 | | | | | | |
| 1970, | 402909 , | 216299 , | 133790, | 20306, | . 1518 , | | . 1865 , |
| 1971, | 814011, | 251499 , | 125781, | 15044 , | . 1196 , | | . 1662 , |
| 1972, | 730378, | 260501 , | 132361 , | 23474 , | . 1773 , | | . 2076 , |
| 1973, | 529389, | 268775, | 154040, | 36719 , | . 2384 , | | . 2912, |
| 1974, | 584763 , | 219780, | 101684 , | 36589, | . 3598 , | | . 4563 , |
| 1975, | 405023, | 184877, | 92297, | 38764 , | . 4200, | | . 4432 , |
| 1976, | 679554 , | 189411, | 70568, | 32767 , | . 4643 , | | . 5070, |
| 1977, | 572762 , | 172907, | 75698 , | 20567 , | . 2717 , | | . 3250 , |
| 1978, | 1043880 , | 233122, | 79360 , | 19715, | . 2484 , | | . 2682 , |
| 1979, | 964773 , | 256223 , | 104837 , | 22608, | . 2156 , | | . 2775 , |
| 1980, | 521046, | 226538 , | 116672, | 30124 , | . 2582 , | | . 4002 , |
| 1981, | 666446 , | 227729, | 111105, | 24922 , | . 2243, | | . 3219, |
| 1982, | 691900, | 229443 , | 114859, | 19209, | . 1672 , | | . 2312, |
| 1983, | 2271353, | 432058, | 113863, | 32988 , | . 2897 , | | . 3717 , |
| 1984, | 927372, | 361229, | 193518, | 27450 , | . 1418 , | | . 2116, |
| 1985, | 1210275, | 351240, | 184165, | 23343, | . 1268, | | . 1779, |
| 1986, | 929701, | 363113 , | 218933, | 28785, | . 1315 , | | . 1833 , |
| 1987, | 3181307 , | 582592, | 196929, | 48600 , | . 2468 , | | . 3552 , |
| 1988, | 475488, | 418319 , | 292170, | 29100, | . 0996 , | | . 2807 , |
| 1989, | 757149 , | 374300 , | 217750, | 29210, | . 1341 , | | . 1884 , |
| 1990, | 791267, | 335327 , | 189902, | 43969 , | . 2315, | | . 2676 , |
| 1991, | 505803 , | 266325, | 164152, | 37700 , | . 2297, | | . 2475 , |
| 1992, | 417898 , | 215581, | 132017, | 31856 , | . 2413, | | . 2747 , |
| 1993, | 622215, | 228862 , | 111172, | 36763, | . 3307 , | | . 3515, |
| 1994, | 820997 , | 215378, | 94955, | 33908 , | . 3571 , | | . 3554 , |
| 1995, | 474617 , | 158616, | 81375, | 27792 , | . 3415 , | | . 4797 , |
| 1996, | 940203, | 183541, | 66487 , | 32534 , | . 4893 , | | . 5672 , |
| 1997, | 1028046 , | 197781, | 68893, | 27225 , | . 3952 , | | . 5092 , |
| 1998, | 821948 , | 186651 , | 66589, | 38895 , | . 5841 , | | . 8954 , |
| 1999, | 750725, | 181411, | 70946 , | 26109, | . 3680 , | | . 5049 , |
| 2000, | 914682, | 194421, | 80056 , | 15005 , | . 1874 , | | . 2142 , |
| 2001, | 1060103, | 213932, | 93615 , | 14061 , | . 1502 , | | . 2052 , |
| Arith. | | | | | | | |
| Mean | , 859625, | 262431 , | 126579, | 28941 | . 2623 , | | . 3351 , |
| 0 Units, | (Thousands), | (Tonnes), | (Tonnes), | (Tonnes), | | | |
| Run title : Herring VIa(S) VIIbc (run: PRE wg 2002) | | | | | | | |

At 19/03/2002 23:34
Table 17 (with SOP correction)

Table 6.5.2.2. VIa(S) \& DIvision VIIb,c herring. Residuals from the separable VPA with F2001=0.21.
Title : Herring VIa(S) VIIbc (run: PRE wg 2002)
At 19/03/2002 23:33
Separable analysis
from 1970 to 2001 on ages 1 to 8
with Terminal F of .200 on age 4 and Terminal S of 1.000
Initial sum of squared residuals was 507.954 and
final sum of squared residuals is 73.486 after 142 iterations
Matrix of Residuals

| Years,
 Ages | $1970 / 71$, |
| ---: | ---: | ---: |
| 1/ 2, | -1.685, |
| 2/ 3, | 1.557, |
| 3/ 4, | .513, |
| $4 / 5$, | -.162, |
| 5/ 6, | -.643, |
| 6/ 7, | -.628, |
| 7/ 8, | -.468, |
| TOT, | .000, |
| WTS , | .001, |

Years, $\quad 1971 / 72,1972 / 73,1973 / 74,1974 / 75,1975 / 76,1976 / 77,1977 / 78,1978 / 79,1979 / 80,1980 / 81$,

| 1/ 2, | -. 602, | -1.034, | 1.250, | -.029, | 1.187, | . 939, | .031, | . 831, | . 810, | .091, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2/ 3, | -.511, | -.057, | . 495, | . 339 , | . 336 , | . 395 , | . 483, | . 943, | . 220, | -.145, |
| 3/ 4, | .509, | . 304 , | . 209, | .127, | -. 230, | -. 005 , | -. 361, | .164, | -. 143, | . 262, |
| 4/ 5, | . 153, | -.291, | -.137, | .167, | -. 290, | -. 275, | -. 122, | -.007, | -.196, | -.023, |
| 5/ 6, | -.013, | -. 279, | -. 326, | -.026, | -.050, | -.194, | . 158, | -.189, | . 027, | -. 216, |
| 6/ 7, | .055, | -.072, | -.011, | -. 122, | . 219, | -.124, | .188, | -.432, | .042, | . 049 , |
| 7/ 8, | -.132, | .497, | -. 354, | -.483, | -. 105, | .109, | -.348, | -. 562, | -.031, | . 063 , |
| тот | . 000, | . 000, | . 000, | . 000, | . 000, | . 000, | . 000, | . 000, | . 000, | . 000, |
| WTS | .001, | .001, | .001, | . 001 , | . 0001 , | . 001 , | . 001 , | . 001 , | .001, | . 001 , |

Years, $\quad 1981 / 82,1982 / 83,1983 / 84,1984 / 85,1985 / 86,1986 / 87,1987 / 88,1988 / 89,1989 / 90,1990 / 91$,

| 1/ 2, | -. 202, | -1.161, | -2.220, | . 667, | 1.458, | -.769, | 1.084, | -3.832, | . 327, | -1.251, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2/ 3, | . 267, | -. 326, | -.041, | . 364 , | -.179, | -. 192, | -.313, | -. 782 , | -.503, | 093, |
| 3/ 4, | . 058, | -.058, | . 214, | .679, | . 028, | .055, | . 065 , | . 472 , | -. 443, | 319, |
| 4/ 5, | -.011, | . 007, | . 224 , | . 130, | -.325, | -.039, | -. 258, | . 340, | . 077 , | . 066 , |
| 5/ 6, | -. 164, | .059, | -.198, | -. 456, | . 093, | . 261, | -.124, | . 074 , | . 006 , | -.107, |
| 6/ 7, | . 529, | . 264 , | .028, | -. 048 , | .058, | -.148, | -.103, | . 250, | -.129, | -.098, |
| 7/ 8, | -.658, | .171, | -.005, | -. 736, | .178, | .140, | . 625, | .030, | . 958, | -.148, |
| TOT | . 000, | . 000, | . 000, | . 000, | . 000, | . 000, | . 000, | . 000, | . 000, | . 000 , |
| WTS | .001, | .001, | .001, | .001, | .001, | .001, | .001, | .001, | .001, | .001, |

Selection-at-age (S)

Table 6.5.2.2 (Continued)

Run title : Herring VIa(S) VIIbc (run: PRE wg 2002)
At 19/03/2002 23:33
Traditional vpa Terminal populations from weighted Separable populations
Fishing mortality residuals
YEAR, 1970, 1971,
AGE

| 1, | -.0033, | -.0011, |
| :--- | ---: | ---: |
| 2, | .2915, | -.0177, |
| 3, | .0690, | .0033, |
| 4, | -.0533, | -.0241, |
| 5, | -.0769, | -.0229, |
| 6, | -.0989, | .0529, |
| 7, | -.0557, | .0154, |
| 8, | -.0001, | .0399, |

| Fishing
 YEAR, | $\begin{gathered} \text { Eality } \\ 1972, \end{gathered}$ | $\begin{aligned} & \text { siduals } \\ & \text { 1973, } \end{aligned}$ | 1974, | 1975, | 1976, | 1977, | 1978, | 1979, | 1980, | 1981, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE | | | | | | | | | | |
| 1, | -.0021, | .0139, | . 0013 , | . 0206 , | .0292, | . 0063 , | .0105, | . 0048 , | .0020, | -. 0012 , |
| 2, | .0140, | .0598, | . 0065 , | . 0478 , | . 0171, | . 0905 , | . 1311, | . 0461 , | -.0213, | .0238, |
| 3, | . 0477 , | .0602, | -.0343, | -.1149, | -.0540, | -. 0845 , | .0105, | -.0320, | .0509, | -. 0017 , |
| 4, | -. 1077, | -. 0226 , | .0260, | -. 1368 , | -. 1342, | -. 0607 , | -. 0144 , | -. 0367 , | -. 0134 , | -.0271, |
| 5, | -. 0838 , | -. 1025 , | . 0367 , | -. 0664 , | -. 0800 , | -.0215, | -.0313, | -.0178, | .0260, | -. 0068 , |
| 6 , | -. 0400 , | -. 0484 , | -. 0465 , | . 0943, | -. 0975 , | . 0094 , | -. 0746 , | .0282, | -. 0478 , | .1377, |
| 7, | .0891, | -.0418, | -. 0971, | . 0006 , | -. 0084 , | -. 0428 , | -. 0568 , | .0571, | .0336, | -. 0668 , |
| 8, | .0759, | -.0616, | .1505, | .1830, | .0996, | -. 0524, | .0887, | .1554, | .1321, | .0099, |

Run title : Herring VIa(S) VIIbc (run: PRE wg 2002)
At 19/03/2002 23:33
Traditional vpa Terminal populations from weighted Separable populations

Table 6.5.3.1. Division VIa(S) and VII b,c herring. Input data for short term projections, based on separable VPA with $\mathrm{F}=0.2$.

MFDP version 1a
Run: $\mathbf{F}_{\text {sq }}$
Time and date: 15:27 20/03/02
Fbar age range: 3-6

2003

2004

Input units are thousands and kg - output in tonnes

Table 6.5.3.2. Divisions VIa(S) and VIIb,c herring. Single option short-term projection based on VPA with $\mathrm{F}=0.2$.

MFDP version 1a
Run: TAC constraint
Time and date: 15:46 20/03/02
Fbar age range: 3-6

| $\begin{aligned} & \text { Year: } \\ & \text { Age } \end{aligned}$ | F | 2002 F multiplier: | | 0.7491 Fbar: | | 0.1537 | | SSB(Jan) | SSNos(ST) | $\mathrm{SSB}(\mathrm{ST})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | CatchNos | Yield | StockNos | Biomass | SSNos(Jan) | | | |
| | 1 | 0.0025 | 1203 | 114 | 750979 | 71343 | 0 | 0 | 0 | 0 |
| | 2 | 0.0557 | 12528 | 1673 | 267116 | 36150 | 267116 | 36150 | 210469 | 28483 |
| | 3 | 0.1108 | 21918 | 3324 | 230231 | 36875 | 230231 | 36875 | 186957 | 29944 |
| | 4 | 0.1608 | 18357 | 3176 | 129666 | 23686 | 129666 | 23686 | 108875 | 19888 |
| | 5 | 0.1736 | 13874 | 2636 | 91356 | 18393 | 91356 | 18393 | 76055 | 15312 |
| | 6 | 0.1698 | 9283 | 1840 | 62388 | 13341 | 62388 | 13341 | 52072 | 11135 |
| | 7 | 0.1779 | 4170 | 879 | 26847 | 5888 | 26847 | 5888 | 22286 | 4888 |
| | 8 | 0.1495 | 779 | 172 | 5890 | 1349 | 5890 | 1349 | 4983 | 1141 |
| | 9 | 0.1495 | 840 | 187 | 6352 | 1499 | 6352 | 1499 | 5374 | 1268 |
| Total | | | 82953 | 14000 | 1570825 | 208524 | 819846 | -137181 | 667071 | 112060 |
| Year: | | 2003 F | F multiplier: | | Fbar: | 0.2052 | | | | |
| Age | F | | CatchNos | Yield | StockNos | Biomass | SSNos(Jan) | SSB(Jan) | SSNos(ST) | SSB (ST) |
| | 1 | 0.0034 | 1606 | 152 | 750979 | 71343 | 0 | 0 | 0 | 0 |
| | 2 | 0.0744 | 17103 | 2283 | 275570 | 37294 | 275570 |) 37294 | 214431 | 29020 |
| | 3 | 0.1479 | 23371 | 3545 | 187156 | 29976 | 187156 | 29976 | 148248 | 23744 |
| | 4 | 0.2147 | 31081 | 5377 | 168735 | 30822 | 168735 | 30822 | 136657 | 24963 |
| | 5 | 0.2317 | 19701 | 3743 | 99896 | 20112 | 99896 | - 20112 | 79987 | 16104 |
| | 6 | 0.2266 | 13434 | 2662 | 69489 | 14859 | 69489 | - 14859 | 55832 | 11939 |
| | 7 | 0.2375 | 9603 | 2025 | 47637 | 10448 | 47637 | 710448 | 37996 | 8334 |
| | 8 | 0.1996 | 3506 | 775 | 20333 | 4656 | 20333 | 4656 | 16635 | 3809 |
| | 9 | 0.1996 | 1645 | 365 | 9539 | 2251 | 9539 | 2251 | 7804 | 1842 |
| Total | | | 121051 | 20927 | 1629333 | 221762 | 878354 | 450419 | 697590 | 119754 |

| Year:
 Age | 2004F multiplier: | | | 1 Fbar: | | 0.2052 | | SSB(Jan) | SSNos(ST) | $\mathrm{SSB}(\mathrm{ST})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | F | | Nos | Yield | ockNos B | Biomass | SSNos(Jan) | | | |
| | 1 | 0.0034 | 1606 | 152 | 750979 | 71343 | 0 | 0 | 0 | 0 |
| | 2 | 0.0744 | 17089 | 2281 | 275336 | 37262 | 275336 | 37262 | 214249 | 28995 |
| | 3 | 0.1479 | 23665 | 3589 | 189508 | 30353 | 189508 | 30353 | 150111 | 24043 |
| | 4 | 0.2147 | 24346 | 4212 | 132171 | 24143 | 132171 | 24143 | 107044 | 19553 |
| | 5 | 0.2317 | 24292 | 4616 | 123177 | 24800 | 123177 | 24800 | 98629 | 19857 |
| | 6 | 0.2266 | 13860 | 2747 | 71693 | 15330 | 71693 | 15330 | 57602 | 12317 |
| | 7 | 0.2375 | 10105 | 2130 | 50127 | 10994 | 50127 | 10994 | 39982 | 8769 |
| | 8 | 0.1996 | 5862 | 1296 | 33991 | 7784 | 33991 | 7784 | 27810 | 6368 |
| | 9 | 0.1996 | 3818 | 848 | 22139 | 5225 | 22139 | 5225 | 18113 | 4275 |
| Total | | | 124642 | 21871 | 1649121 | 227234 | 898142 | 155891 | 713540 | 124178 |

Input units are thousands and kg - output in tonnes

Table 6.5.3.3 Divisions VIa(S) and VIIb,c herring. Multiple options of short-term projections based on VPA with F=0.2

MFDP version 1a
Run: TAC constraint
VIaS VIIbc Sea 2002 Projection index file Wednesday 20th March 2002.
Time and date: 15:46 20/03/02
Fbar age range: 3-6

| 2002 | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Biomass | SSB | FMult | FBar | Landings |
| 208524 | 112060 | 0.7491 | 0.1537 | 14000 |

| 2003 | | FMult | FBar | | 2004 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Biomass | SSB | | | | Landings | Biomass | SSB |
| 221762 | 134481 | | 0 | 0 | 00 | 249527 | 160270 |
| . | 132920 | | 0.1 | 0.0205 | - 2275 | 247099 | - 156119 |
| . | 131379 | | 0.2 | 0.041 | 14507 | 244717 | 152100 |
| . | 129859 | | 0.3 | 0.0616 | 66698 | 242381 | 148208 |
| . | 128358 | | 0.4 | 0.0821 | 1 8847 | 240090 |) 144438 |
| . | 126877 | | 0.5 | 0.1026 | -10956 | 237843 | -140788 |
| . | 125415 | | 0.6 | 0.1231 | 13026 | 235639 | -137251 |
| . | 123972 | | 0.7 | 0.1437 | 15057 | 233477 | 733826 |
| . | 122548 | | 0.8 | 0.1642 | - 17051 | 231356 | -130508 |
| . | 121142 | | 0.9 | 0.1847 | 19007 | 229275 | - 127293 |
| . | 119754 | | 1 | 0.2052 | 20927 | 227234 | -124178 |
| . | 118385 | | 1.1 | 0.2257 | - 22812 | 225232 | - 121160 |
| . | 117033 | | 1.2 | 0.2463 | 24662 | 223268 | 118235 |
| . | 115699 | | 1.3 | 0.2668 | 26478 | 221341 | 115400 |
| . | 114382 | | 1.4 | 0.2873 | - 28260 | 219450 | 112653 |
| . | 113082 | | 1.5 | 0.3078 | 30010 | 217595 | 109989 |
| . | 111798 | | 1.6 | 0.3284 | 431728 | 215775 | -107407 |
| . | 110532 | | 1.7 | 0.3489 | - 33414 | 213990 |) 104904 |
| . | 109281 | | 1.8 | 0.3694 | 435069 | 212237 | 102477 |
| . | 108047 | | 1.9 | 0.3899 | 36694 | 210518 | 100123 |
| . | 106828 | | 2 | 0.4105 | - 38290 | 208831 | 97841 |

Input units are thousands and kg - output in tonnes

Figure 6.1.1. VIa(S) \& VIIb,c herring catches from 1970-2001.

Figure 6.1.3.1. VIa(S) \& Division VIIb,c herring. Map of locations mentioned in the text.

Figure 6.4.1a VIa(S) \& VIIb,c herring. Tracks and trawl positions of acoustic survey, November 2001.

Figure 6.4.1b VIaS \& VIIb,c herring. Post plot showing distribution of herring S_{A} values during November 2001 survey.

Figure 6.5.1.1. Herring in VIa(S) and VIIb,c. Comparison of objective function profiles for runs using a range of years of separability and including or excluding 1 ringers.

Selection pattern

Figure 6.5.1.2 Herring in $\mathrm{VIa}(\mathrm{S})$ and VIIb,c. Selection patterns as estimated by the ISVPA runs.

Figure 6.5.1.3 Division VIa(S) and VIIb,c. Residuals in catches and instantaneous mortality phi, with ISVPA for the period 1996 to 2001 and ages 2-9.

Figure 6.5.1.4 Division VIa(S) and VIIb,c. Residuals in catches and instantaneous mortality phi, with ISVPA for the period 1970 to 2001 and ages 1-9.

Figure 6.5.1.5. Herring in $\operatorname{VIa}(\mathrm{S})$ and VIIb,c. Comparison of $\operatorname{Fbar}(3-6)$ trajectories for the ISVPA runs with various separable periods. A retrospective run for 2000 using a 6 -year period and the minimisation function used this year, and a traditional SVPA run with $\mathrm{F}_{2001}=0.2$ are also shown for comparison.

Figure 6.5.2.1 Herring in $\mathrm{VIa}(\mathrm{S})$ and VIIb,c. Comparison of SSB trajectories from the past 3 years assessments and F and recruitment developments from this year.

7.1 The Fishery

7.1.1 Advice and management applicable to 2001 and 2002

In 1998 and 1999 the shrinkage option in ICA was applied due to the instability in the assessment. The model estimate of F was shrunk to the mean of the ten previous years. In 1999, ACFM commented that F was still above $\mathbf{F}_{\mathrm{pa}}=0.36$, and should be reduced. This resulted in a TAC of $5,350 \mathrm{t}$ for 2000 . In 2000, there was uncertainty concerning the actual catches, so three scenarios with differing catches were presented. ACFM recommended a catch of $5,100 \mathrm{t}$, and hence a TAC of $6,900 \mathrm{t}$ was adopted for 2001 reflecting status quo F (0.26).

In the 2001 assessment, there was again uncertainty in the size of the catches and the assessment was based on the official catches with the proviso that the SSB estimates were uncertain due to the unreliability of the size of the catch. ACFM felt that the HAWG 2001 assessment was too different from previous perceptions of the stock, thus a catch based on the mean of the last five years was recommended (4,800 tonnes) for 2002. This was partitioned 3550 to the UK and 1250 t to the Republic of Ireland.

In 2001 the UK fishery opened in July and the Republic of Ireland boats fished in the third quarter. Closed areas for herring fishing in the Irish Sea along the east coast of Ireland and within 12 nautical miles of the west coast of Britain were maintained throughout the year. The traditional September gillnet fishery on the Mourne herring, which has a derogation to fish within the Irish closed box, did not take place in 2001. The area to the east of the Isle of Man, encompassing the Douglas Bank spawning ground (described in ICES 2000, ACFM:10), was closed from 21September to 15 November. Boats from the Republic of Ireland are not permitted to fish east of the Isle of Man.

7.1.2 The fishery in 2001

The catches reported from each country for the period 1985 to 2001 are given in Table 7.1.1, and total catches from 1967 to 2001 in Figure 7.1.1. Reported landings for the Irish Sea amounted to 5,460t. The size of the actual catch from the Irish Sea (VIIaN) is still uncertain. In 2001, the Republic of Ireland took some of their quota of 860 t from Division VIIa (N). The number of vessels that target herring in the Irish Sea in 2001 increased compared to recent years as Republic of Ireland, Manx and Scottish boats all reported catches from VIIa (N). According to the reported landings all of the catch was taken in the $3^{\text {rd }}$ and $4^{\text {th }}$ quarters. There were no landings from the Mourne gillnet fishery. $1,500 \mathrm{t}$ of herring reportedly from VIIa (N) were landed outside of the Irish Sea in Londonderry, Northern Ireland.

7.1.3 Quality of catch and biological data

There are still no estimates of discarding or slippage of herring in the Irish Sea fisheries that target herring. Estimates of discarding by other fleets active in the Irish Sea suggest that approximately 2% of the total catch is discarded (DickeyCollas et al., 2002 WD 1). Working Group landing statistics are assumed to be accurate up to 1997, However, there are no reliable estimates of landings from 1998 to 2001. It is likely that the landings lie between 2,000 and 7,000 tonnes. The data in the Tables 7.1.1 and 7.1.3 for 1998 to 2001 should be treated as highly unreliable. Biological sampling of this fishery remains fairly high (Table 7.1.2).

7.1.4 Catch in numbers

Catches in numbers-at-age are given in Table 7.1.3 for the years 1972 to 2001. The official catches were used for 1998 to 2001. The predominant year class in 2001 was the 4-rings (1996 year class), which was prevalent in 1999 and 2000. The catch in numbers at length is given in Table 7.1.4 for 1988 to 2001. In 2001 the mode was similar to that in 2000 (see Table 7.1.3) reflecting the increased prevalence of 4 and 5-rings in the catches and in the acoustic estimates (see Sectiion 7.3.1).

7.2 Mean Length, Weight, Maturity and Natural Mortality at Age

Mean lengths-at-age were calculated for the 3rd and 4th quarters using the Northern Ireland data and are given for the years 1985 to 2001 in Table 7.2.1. In general, mean lengths are smaller than previously recorded.

Mean weights-at-age in the catch are given in Table 7.2.2. Mean weights-at-age of the younger fish in 2001 were the lowest since 1992, while older fish weights were comparable with previous years. There has been a change in mean weight over the time period 1961 to the present (HAWG 2001). Mean weights-at-age increased between the early 1960s
and the late 1970s whereupon there was been a steady decline to the early 1990s. From the early 1990s to the present, mean weights-at-age have been relatively stable. In the assessment, mean weights-at-age for the period 1972 to 1984 are taken as an unchanging.

Mean weights-at-age in the third-quarter catches have been used as estimates of stock weights at spawning time.

Previous examinations of the historical time-series of maturity-at-age suggest that there may have been substantial variations over time (HAWG 2001). To present stock-specific, annually changing, maturity ogives it will be necessary to combine data sets from the Isle of Man and Northern Ireland. Since the samples were obtained from fisheries targeting different parts of the population a more detailed examination of the historical data sets needs to be undertaken before these data can be used in the assessment. Therefore the maturity ogive used since 1994 (ICES 1994/H:5) was used again: 0.08 for 1 -rings, 0.85 for 2-rings and 1.00 for $3+$-rings.

As in previous years, natural mortality per year was assumed to be 1.0 on 1-rings, 0.3 on 2 -rings, 0.2 on 3 -rings and 0.1 on all older age classes. These are based on the natural mortality rates determined for herring in the North Sea.

7.3 Research Surveys

7.3.1 Acoustic surveys

The information on the time-series of acoustic surveys in the Irish Sea is given in Table 7.3.1.

The acoustic survey was carried out from 10 to 18 September 2001, using a survey design of stratified, systematic transects. Distribution maps prepared regularly by herring fishermen showed herring schools at the end of August and beginning of September to be concentrated in the coastal waters of the Isle of Man, with some marks off the Irish and Scottish coasts. This is the expected pattern for autumn. Hence, survey effort was maximised in strata around the Isle of Man to improve precision of estimates of adult herring biomass. This resulted in relatively low effort employed around the periphery of the Irish Sea, where the acoustic targets comprise mainly extended school groups of sprats and 0-group herring. Although this survey design yields high-precision estimates for small clupeoids due to their extended distribution, the probability of encountering highly aggregated and patchy schools of larger herring remains low around the periphery of the Irish Sea compared with around the Isle of Man. The survey followed the methods described in Armstrong et al., WD 2). Targets were identified where possible by midwater trawling, and appropriate ALKs constructed from catch samples. The survey was terminated early due to damage of the towed body. Data from the missed strata (north Wales and English coasts) were collected during a subsequent groundfish survey (8-24 October, Armstrong et al., WD2).

Well-defined schools of herring, comprising mainly 1-ringer and older fish ($>18 \mathrm{~cm}$ length), were found in coastal waters around the Isle of Man and the Mull of Galloway (Fig. 7.3.1). Herring on the spawning grounds to the east of the Isle of Man were in relatively low abundance compared to previous years. An extensive school of mixed adult and juvenile fish was detected off the west coast of the Isle of Man. No herring schools were detected in the area immediately north of the Isle of Man, despite the occurrence of early-stage larvae in this area in November. The estimated SSB of herring in VIIa (N) was $15,300 \mathrm{t}$ (Table 7.3.1), near the mean of the series. Sprat and 0 -ringer herring were abundant around the periphery of the Irish Sea and off the west coast of the Isle of Man. The estimated biomass of sprats (approximately $300 \times 10^{3} \mathrm{t}$) was similar to recent years. The age structure of herring from the acoustic survey is given in Table 7.3.2. The $1+$ herring form a large component of the total biomass estimate and reflect the large biomass of mixed juveniles and adult fish off the NW of the Isle of Man.

7.3.2 Larvae surveys

A larvae survey was undertaken by Northern Ireland in 2001. This followed the methods and design of previous surveys in the time-series. Poor weather prevented any Douglas Bank larval herring surveys being carried out by Port Erin Marine Laboratory. The production estimate for 2001 in the NE Irish Sea was the second highest in the series, the highest since 1994 and had an average CV (Table 7.3.3).

The estimated spawning time of Irish Sea herring in 2001, determined by length distributions of the larvae, was just prior to the mean of the series of Northern Ireland surveys. The mean spawning date for the survey was around 25 September, compared with an average of 1 October over the series. Over 80% of the spawning was estimated to have occurred during a 2 -week period, commencing the week after the period of the Northern Ireland acoustic survey of the NE Irish Sea (see Section 7.3.1).

Once again, there were very few Mourne larvae caught in the Northern Irish survey and spawning to the north of the Isle of Man was sizeable (Armstrong et al., WD2).

A survey of the north-eastern Irish Sea was also completed in December by the Port Erin Marine Laboratory. Since there is now a two-year gap in the survey index and the series is not used for tuning purposes, the results will only be reported next year.

7.3.3 Groundfish surveys of Area VIIa(N)

Groundfish surveys, carried out by Northern Ireland since 1991 in the Irish Sea, were used by the 1996 to 1999 Herring Assessment Working Groups to obtain indices for 0 and 1-ring herring in the Irish Sea (Table 7.3.4). The ground fish survey index, based on these data and used by the 1997 to 1999 Working Groups was a variance weighted mean abundance of each year class across the surveys. In 2000 the Working Group analysed these data and decided that the arithmetic mean abundance data (within strata) of 0 ringer and 1 ringer fish were more suitable as a prospective index of recruitment strength (Table 7.4.1). The stanNorthern Ireland errors are generally high over the series (coefficients of variation $\pm 50 \%$). There is no consistent pattern between indices from the western and eastern Irish Sea and further investigations are required into the dynamics of juvenile abundance and distribution in the seas around Ireland. Both of the series (October and March) show an increase in the number of juvenile fish from 1994 to the present day. The March series in particular suggests a ten-fold increase in juvenile abundance.

7.3.4 Analysis of otolith microstructure of juveniles

Separation of autumn- and winter-spawned juveniles in the Irish Sea was achieved using otolith microstructure measurements of larval growth (Brophy 2002). These results confirmed that there was considerable movement of winter-spawned herring, probably of Celtic sea origin, into the Irish Sea in 1999 and 2000. In general, nursery grounds on the western Irish Sea predominately housed winter spawned fish, while autumn-spawned juveniles were found on the eastern Irish Sea. Relative proportions of the two spawning types varied between years. Otolith microstructure analysis of 1 and 2 ringer fish from the same year classes showed that winter-spawned herring (Celtic sea stock) remained in the Irish Sea throughout the juvenile phase.

7.4 Data Exploration and Preliminary Modelling

This year, the preliminary modelling used catch-at-age data derived from the official landings. New data were added to the Northern Irish larvae series (NINEL), the Northern Irish acoustic survey (AC-VIIa(N), and ACAGE), October and March groundfish surveys for the east, west and combined areas (Table 7.4.1). No new data were added to the Douglas Bank larvae series (DBL). The Division VIIa (N) acoustic survey estimates are not considered as absolute because of discrepancies between acoustic estimates and tuned SSB estimates seen in other stocks.

The following survey series were available for inclusion in an assessment using the ICA package:

1. Larval production estimates from the Northern Ireland surveys in the north-east Irish Sea: 1993-2001 (NINEL).
2. Larval production estimates from Douglas Bank surveys to provide an SSB index: 1989-1999 (DBL).
3. The arithmetic mean abundance data (within strata) of 0 ringer and 1 ringer fish from October surveys in the northern Irish Sea as a prospective index of recruitment strength of 1 and 2 ringer fish, 1993-2003 (GFS-0cttot).
4. The arithmetic mean abundance data (within strata) of 1 ringer fish from March surveys in the northern Irish Sea as a prospective index of recruitment strength, 1992-2001 (GFS-martot).
5. Age-disaggregated acoustic estimates for the SSB of herring in Division VIIa (N) in September 1994-2001 (ACAGE, Table 7.3.2).
6. Age-aggregated acoustic estimates for the SSB of herring in Division VIIa (N) in September 1994-2001 (AC_VIIa(N)).

Initial fits within integrated catch-at-age analysis (ICA) including a separable constraint (Deriso et al. 1985), were found in 2002 with all indices. The ICA model was fitted using each survey series (1-7). The following input values were used:

- Separable constraint over last 6 years (weighting $=1.0$ for each year)
- Reference age $=4$
- Constant selection pattern model
- Selectivity on oldest age $=1.0$
- First age for calculation of mean $\mathrm{F}=2$
- Last age for calculation of mean $F=6$
- Weighting on 1-rings $=0.1 ;$ all other age classes $=1.0$
- Weighting for all years $=1.0$
- All indices treated as linear
- No S/R relationship fitted
- Lowest and highest feasible $\mathrm{F}=0.05$ and 2.0
- All survey weights fitted by hand i.e., 1.0 with the 1 ringers in the acoustic survey weighted to 0.1
- Correlated errors assumed i.e., $=1.0$
- No shrinkage applied

In general, the acoustic indices (ACAGE and AC_VIIa(N)) indicated higher F at reference age 4 (0.466 and 0.474 respectively) than either the larvae indices (NINEL and DBL, 0.330 and 0.242 respectively) or the two groundfish surveys (GFS-octtot and GFS-martot, $0.197,0.079$ respectively, Figure 7.4.1). The precision in F was greater for the age-disaggregated acoustic index and GFS-martot. In an attempt to explore further the performance of these tuning indices, some of the indices were combined. The combinations that were tested included the indices that were used last year (NINEL, DBL and ACAGE) for 6 and 8 separable periods and the exclusion of DBL since there were no new data for 2001. The use of 6 or 8 years separable periods had no significant effect on the estimates of F (Figure 7.4.1).

Due to the variable presence of Celtic Sea juveniles in the Irish Sea and the lack of correspondence between year classes in the surveys, the groundfish surveys were thought not appropriate as tuning indices for recruitment. This situation could be rectified when suitable methods based on length analysis, otoliths or hydrodynamic modelling identify the source of juveniles in the catch. The indices used in last years assessment appeared to give the best performance in terms of precision of the estimates and patterns in the residuals. These were chosen for the final assessment.

There was still no resolution of the questions raised in 2001 concerning the differences between the 2001 and 2000 assessments. It is clear that the shorter a survey series, the greater the chance of instability in the estimation of catchabilities. Hence short series will introduce a source of uncertainty into the assessment. Explorations were made on the retrospective use of the three tuning series (NINEL, DBL and ACAGE). In each case a 6-year separable constraint was used and the years back-stepped annually from 2002 to 1999 to recreate the perception of $\mathrm{SSB}, \mathrm{F}_{(2-6)}$ and recruitment for each assessment year (Figure 7.4.2). The present perception of the stock was similar to that for 2001. The acoustic survey (ACAGE) was too short to give a robust assessment in 1999.

There is still doubt concerning the actual landings. However,, since the extent of any misreporting is still uncertain (this was investigated in HAWG 2000, official landings were used for all runs.

7.5 Stock assessment

The results of the baseline model fit (with ACAGE, NINEL and DBL) are shown in Figures 7.5.1-7.5.5. The run log is given in Table 7.5.1. Some of the plots for the indices are not shown due to problems encountered with using two SSB indices in IcaView, the residuals and fitted values are given in Table 7.5.2. The SSQ surface for the index shows a minimum at a low level of fishing mortality (Figure 7.5.1). The estimate for $\mathrm{F}_{(2-6)}$ for 2001 using the official landing data was 0.36 (Table 7.5 .2) with a corresponding SSB estimate of approximately $11,500 \mathrm{t}$. The assessment shows estimated fishing mortality and SSB in the last few years to be similar to previous estimates. The historical uncertainty in SSB was estimated (Figure 7.5.6) and takes into account the uncertainty within the parameter estimates of the model. The historical uncertainty does not reflect the uncertainty in the official landings (see 7.1.2). The estimation of the stock for the period 1994 to 1997 is very poor. This coincides with changes in the fishery when a few large vessels dominated it. The standard fish stock summary plots are shown in Figure 7.5.7 and the stock recruitment plot with $\mathbf{F}_{\text {low }}$ (0.17), $\mathbf{F}_{\text {med }}(0.37)$ and $\mathbf{F}_{\text {high }}(0.65)$ in Figure 7.5.8.

7.6 Stock and Catch Projection

Short-term predictions were carried out using all the ICA estimates of population numbers and fishing mortalities (Section 7.5) using MFDP ver.1a. These projections are for illustrative purposes only as the Working Group is very unsure of the actual status of this stock. The numbers of 1-ringers in 2001-2003 were assumed to be a geometric mean of the recruitment over the period 1972-2000 (Table 7.6.1). Mean weights in the catch and in the stock were taken as a mean for the years 1999-2001. The relevant ICA estimates of F at age in (mean 1999-2001) were used for the exploitation pattern.

There is still uncertainty in the actual catches; however, the official statistics are taken as the landings. In 2001, the UK took its full quota and vessels from the Republic of Ireland joined the fishery. One option table is presented based on the TAC being taken in 2002.

The Management Option Table is given in Table 7.6.2. The Single Option Table, giving age-disaggregated information, is given in Table 7.6.3. A summary is given below:

| Year | $\mathbf{F}_{(2-6)}$ | Landings | SSB (t) | Comment | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2002 | 0.27 | 4800 | 13,946 | | |
| 2003 | $0.28=\mathrm{F}_{(2001)}$ | 5148 | 15,153 | Rising SSB | |
| 2004 | $0.28=\mathrm{F}_{(2001)}$ | 5421 | 15,957 | Rising SSB | Table 7.6.3 |

7.7 Medium-term Predictions of Stock Size

The Working Group decided that there was no real basis for undertaking a meaningful medium term projection of stock size as the assessment is still not stable and the level of catches is uncertain. The current state of herring recruitment to VIIaN is unclear, considering the imprecision in the assessments and the variable mixing of Celtic Sea and western Irish Sea juveniles. Also the historical assessments of recruitment have incorporated both Manx and Mourne components and the contribution of the Mourne component is now thought to be negligible.

7.8 Management Considerations

7.8.1 Precision of the assessment

The current time-series of survey data are short and are prone to providing variable perceptions of stock development due to variability in catchabilities of the indices. The current SSB is slightly larger to that perceived by the Working Group in 2001 and previous assessments lie within the 95% confidence limits of the current SSB estimates. There have probably been changes in this stock since the early 1990s, with reductions in weights-at-age and changes in spawning behaviour. Spawning sites have varied with notable spawning to the north of the Isle of Man and the reduction in the Mourne component. This change in stock dynamics and the variability in the tuning data imply that assessments on this stock should continue to be treated with caution. It is likely, However,, that the SSB has stabilised over recent years.

There is considerable between-year variation in SSB indices and the relevant 2001 data are generally close to the mean of each series. Therefore, maintaining catch levels, in the short term, of approximately $5,000 \mathrm{t}$ should not be detrimental to the stock.

7.8.2 Reference points

Due to uncertainties in the catch data and the assessment the Working Group decided not to revisit the estimation of \mathbf{B}_{pa}. There were no new points to add to the discussions and deliberations presented in 2000 (ICES 2000/ACFM:10). Candidate F reference points are given in Figure 7.5.7.

7.8.3 Spawning and juvenile fishing area closures

The arrangement of closed boxes in Division VIIa (N) prior to 1999 are discussed in detail in ICES (ICES 1996/ACFM:10) with a change to the closed area to the east of the Isle of Man being altered in 1999 (see ICES 2001(ACFM:10). The closed areas consist of: all-year juvenile closures along part of the east coast of Ireland, and the west coast of Scotland, England and Wales; spawning closures along the east coast of the Isle of Man from 21st September- 15 th November, and along the east coast of Ireland all year round. The Working Group recommends that any alterations to the present closures are considered carefully, in the context of this report, to ensure protection for all components of this stock.

Table 7.1.1 Irish Sea herring Division VIIa(N). Official catch in tonnes by country, 1985-2001. The total catch does not in all cases correspond to the official statistics and cannot be used for management purposes.

| Country | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Ireland | 1,000 | 1,640 | 1,200 | 2,579 | 1,430 | 1,699 | 80 | 406 | 0 |
| UK | 4,077 | 4,376 | 3,290 | 7,593 | 3,532 | 4,613 | 4,318 | 4,864 | 4,408 |
| Unallocated | 4,110 | 1,424 | 1,333 | - | - | - | - | - | - |
| Total | 9,187 | 7,440 | 5,823 | 10,172 | 4,962 | 6,312 | 4,398 | 5,270 | 4,408 |
| | | | | | | | | | |
| Country | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | |
| Ireland | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 862 | |
| UK | 4,828 | 5,076 | 5,180 | 6,651 | 4,905 | 4,127 | 2002 | 4599 | |
| Unallocated | - | - | 22 | - | - | - | - | - | |
| Total | 4,828 | 5,076 | 5,302 | 6,651 | $4,905^{*}$ | $4,127^{*}$ | 2002^{*} | 5461^{*} | |

* Reliability uncertain.

Table 7.1.2 Irish Sea herring Division VIIa (N). Sampling intensity of commercial landings in 2001.

| Quarter | Country | Landings (t) | No. samples | No. fish measured | No. aged | fish | Estimation of discards |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Ireland | 0 | - | - | | - | - |
| | UK (N. Ireland) | 0 | - | - | | - | - |
| | UK (Isle of Man) | 0 | - | - | | - | - |
| | UK (Scotland) | 0 | - | - | | - | - |
| | UK (England \& Wales) | 0 | - | - | | - | - |
| 2 | Ireland | 0 | - | - | | - | - |
| | UK (N. Ireland) | 0 | - | - | | - | - |
| | UK (Isle of Man) | 0 | - | - | | - | - |
| | UK (Scotland) | 0 | - | - | | - | - |
| | UK (England \& Wales) | 0 | - | - | | - | - |
| 3 | Ireland | 862 | 8 | 1031 | | 222 | - |
| | UK (N. Ireland) | 2970 | 22 | 2751 | | 1099 | Yes** |
| | UK (Isle of Man) | 86 | - | - | | - | - |
| | UK (Scotland) | 687 | 2* | 419 | | 137 | - |
| | UK (England \& Wales) | 0 | - | - | | - | - |
| 4 | Ireland | 0 | - | - | | - | - |
| | UK (N. Ireland) | 816 | 1 | 164 | | 50 | No |
| | UK (Isle of Man) | 0 | - | - | | - | - |
| | UK (Scotland) | 40 | - | - | | - | - |
| | UK (England \& Wales) | 0 | - | - | | - | - |

* not used, Scottish catches raised using NI sampling.
** estimates for NI whitefish and Nephrops fleets

Table 7.1.3 Irish Sea herring Division VIIa(N). Catch in numbers (thousands) by year.

| Year | Age 1 | Age 2 | Age 3 | Age 4 | Age 5 | Age 6 | Age 7 | Age 8+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1972 | 40640 | 46660 | 26950 | 13180 | 13750 | 6760 | 2660 | 1670 |
| 1973 | 42150 | 32740 | 38240 | 11490 | 6920 | 5070 | 2590 | 2600 |
| 1974 | 43250 | 109550 | 39750 | 24510 | 10650 | 4990 | 5150 | 1630 |
| 1975 | 33330 | 48240 | 39410 | 10840 | 7870 | 4210 | 2090 | 1640 |
| 1976 | 34740 | 56160 | 20780 | 15220 | 4580 | 2810 | 2420 | 1270 |
| 1977 | 30280 | 39040 | 22690 | 6750 | 4520 | 1460 | 910 | 1120 |
| 1978 | 15540 | 36950 | 13410 | 6780 | 1740 | 1340 | 670 | 350 |
| 1979 | 11770 | 38270 | 23490 | 4250 | 2200 | 1050 | 400 | 290 |
| 1980 | 5840 | 25760 | 19510 | 8520 | 1980 | 910 | 360 | 230 |
| 1981 | 5050 | 15790 | 3200 | 2790 | 2300 | 330 | 290 | 240 |
| 1982 | 5100 | 16030 | 5670 | 2150 | 330 | 1110 | 140 | 380 |
| 1983 | 1305 | 12162 | 5598 | 2820 | 445 | 484 | 255 | 59 |
| 1984 | 1168 | 8424 | 7237 | 3841 | 2221 | 380 | 229 | 479 |
| 1985 | 2429 | 10050 | 17336 | 13287 | 7206 | 2651 | 667 | 724 |
| 1986 | 4491 | 15266 | 7462 | 8550 | 4528 | 3198 | 1464 | 877 |
| 1987 | 2225 | 12981 | 6146 | 2998 | 4180 | 2777 | 2328 | 1671 |
| 1988 | 2607 | 21250 | 13343 | 7159 | 4610 | 5084 | 3232 | 4213 |
| 1989 | 1156 | 6385 | 12039 | 4708 | 1876 | 1255 | 1559 | 1956 |
| 1990 | 2313 | 12835 | 5726 | 9697 | 3598 | 1661 | 1042 | 1615 |
| 1991 | 1999 | 9754 | 6743 | 2833 | 5068 | 1493 | 719 | 815 |
| 1992 | 12145 | 6885 | 6744 | 6690 | 3256 | 5122 | 1036 | 392 |
| 1993 | 646 | 14636 | 3008 | 3017 | 2903 | 1606 | 2181 | 848 |
| 1994 | 1970 | 7002 | 12165 | 1826 | 2566 | 2104 | 1278 | 1991 |
| 1995 | 3204 | 21330 | 3391 | 5269 | 1199 | 1154 | 926 | 1452 |
| 1996 | 5335 | 17529 | 9761 | 1160 | 3603 | 780 | 961 | 1364 |
| 1997 | 9551 | 21387 | 7562 | 7341 | 1641 | 2281 | 840 | 1432 |
| 1998 | 3069 | 11879 | 3875 | 4450 | 6674 | 1030 | 2049 | 451 |
| 1999 | 1810 | 16929 | 5936 | 1566 | 1477 | 1989 | 444 | 622 |
| 2000 | 1221 | 3743 | 5873 | 2065 | 558 | 347 | 251 | 147 |
| 2001 | 2713 | 11473 | 7151 | 13050 | 3386 | 936 | 650 | 803 |

Table 7.1.4 Irish Sea herring Division VIIa (N). Catch at length for 1988-2001. Numbers of fish in thousands

| Length | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | 1 | | | | | | | | | | | | | |
| | 1 | | | | | | | | | | | | | |
| 15 | 1 | | | | 95 | | | | | | | | | |
| | 10 | | | | 169 | | | | | | | 10 | | |
| 16 | 13 | | 6 | | 343 | | | 21 | 21 | 17 | | 19 | 12 | 9 |
| | 16 | | 6 | 2 | 275 | | | 55 | 51 | 94 | | 53 | 49 | 27 |
| 17 | 29 | | 50 | 1 | 779 | | 84 | 139 | 127 | 281 | 26 | 97 | 67 | 53 |
| | 44 | 24 | 7 | 4 | 1,106 | | 59 | 148 | 200 | 525 | 30 | 82 | 97 | 105 |
| 18 | 46 | 44 | 224 | 31 | 1,263 | | 69 | 300 | 173 | 1,022 | 123 | 145 | 115 | 229 |
| | 85 | 43 | 165 | 56 | 1,662 | | 89 | 280 | 415 | 1,066 | 206 | 135 | 134 | 240 |
| 19 | 247 | 116 | 656 | 168 | 1,767 | 39 | 226 | 310 | 554 | 1,720 | 317 | 234 | 164 | 385 |
| | 306 | 214 | 318 | 174 | 1,189 | 75 | 241 | 305 | 652 | 1,263 | 277 | 82 | 97 | 439 |
| 20 | 385 | 226 | 791 | 454 | 1,268 | 75 | 253 | 326 | 749 | 1,366 | 427 | 218 | 109 | 523 |
| | 265 | 244 | 472 | 341 | 705 | 57 | 270 | 404 | 867 | 1,029 | 297 | 242 | 85 | 608 |
| 21 | 482 | 320 | 735 | 469 | 705 | 130 | 400 | 468 | 886 | 1,510 | 522 | 449 | 115 | 1086 |
| | 530 | 401 | 447 | 296 | 597 | 263 | 308 | 782 | 1,258 | 1,192 | 549 | 362 | 138 | 1201 |
| 22 | 763 | 453 | 935 | 438 | 664 | 610 | 700 | 1,509 | 1,530 | 2,607 | 1354 | 1261 | 289 | 1748 |
| | 1,205 | 497 | 581 | 782 | 927 | 1,224 | 785 | 2,541 | 2,190 | 2,482 | 1099 | 2305 | 418 | 1763 |
| 23 | 2,101 | 612 | 2,400 | 1,790 | 1,653 | 2,016 | 1,035 | 4,198 | 2,362 | 3,508 | 2493 | 4784 | 607 | 2670 |
| | 3,573 | 814 | 1,908 | 1,974 | 1,156 | 2,368 | 1,473 | 4,547 | 2,917 | 3,902 | 2041 | 4183 | 951 | 2254 |
| 24 | 5,046 | 1,183 | 3,474 | 2,842 | 1,575 | 2,895 | 2,126 | 4,416 | 3,649 | 4,714 | 3695 | 4165 | 1436 | 3489 |
| | 5,447 | 1,656 | 2,818 | 2,311 | 2,412 | 2,616 | 2,564 | 3,391 | 4,077 | 4,138 | 2769 | 3397 | 1783 | 4098 |
| 25 | 5,276 | 2,206 | 4,803 | 2,734 | 2,792 | 2,207 | 3,315 | 3,100 | 4,015 | 5,031 | 2625 | 2620 | 2144 | 5566 |
| | 4,634 | 2,720 | 3,688 | 2,596 | 3,268 | 2,198 | 3,382 | 2,358 | 3,668 | 3,971 | 2797 | 1817 | 1791 | 4785 |
| 26 | 4,082 | 3,555 | 4,845 | 3,278 | 3,865 | 2,216 | 3,480 | 2,334 | 2,480 | 3,871 | 3115 | 1694 | 1349 | 3814 |
| | 4,570 | 3,293 | 3,015 | 2,862 | 3,908 | 2,176 | 2,617 | 1,807 | 2,177 | 2,455 | 2641 | 1547 | 840 | 2243 |
| 27 | 4,689 | 2,847 | 3,014 | 2,412 | 3,389 | 2,299 | 2,391 | 1,622 | 1,949 | 1,711 | 2992 | 1475 | 616 | 1489 |
| | 4,124 | 2,018 | 1,134 | 1,449 | 2,203 | 2,047 | 1,777 | 990 | 1,267 | 1,131 | 1747 | 867 | 479 | 644 |
| 28 | 3,406 | 1,947 | 993 | 922 | 1,440 | 1,538 | 1,294 | 834 | 906 | 638 | 1235 | 276 | 212 | 496 |
| | 2,916 | 1,586 | 582 | 423 | 569 | 944 | 900 | 123 | 564 | 440 | 170 | 169 | 58 | 179 |
| 29 | 2,659 | 1,268 | 302 | 293 | 278 | 473 | 417 | 248 | 210 | 280 | 111 | 61 | 42 | 10 |
| | 1,740 | 997 | 144 | 129 | 96 | 160 | 165 | 56 | 79 | 59 | 92 | | 12 | 0 |
| 30 | 1,335 | 801 | 146 | 82 | 70 | 83 | 9 | 40 | 32 | 8 | 84 | | 6 | 9 |
| | 685 | 557 | 57 | 36 | 36 | 15 | 27 | 5 | 0 | 5 | 3 | | | |
| 31 | 563 | 238 | 54 | 12 | 2 | 4 | | 1 | 2 | | | | | |
| | 144 | 128 | 31 | 3 | | | | | | | | | | |
| 32 | 80 | 57 | 29 | | | | | | | | | | | |
| | 7 | 7 | | | | | | | | | | | | |
| 33 | 2 | 5 | | | | | | | | | | | | |
| | 1 | 6 | | | | | | | | | | | | |
| 34 | | 0 | | | | | | | | | | | | |
| | | 5 | | | | | | | | | | | | |

Table 7.2.1 Irish Sea herring Division VIIa (N). Mean length-at-age.

| Year | Lengths-at-age (cm) | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Age (rings) | | | | | | | |
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | $8+$ | |
| 1985 | 22.1 | 24.3 | 26.1 | 27.6 | 28.3 | 28.6 | 29.5 | 30.1 | |
| 1986 | 19.7 | 24.3 | 25.8 | 26.9 | 28.0 | 28.8 | 28.8 | 29.8 | |
| 1987 | 20.0 | 24.1 | 26.3 | 27.3 | 28.0 | 29.2 | 29.4 | 30.1 | |
| 1988 | 20.2 | 23.5 | 25.7 | 26.3 | 27.2 | 27.7 | 28.7 | 29.6 | |
| 1989 | 20.9 | 23.8 | 25.8 | 26.8 | 27.8 | 28.2 | 28.0 | 29.5 | |
| 1990 | 20.1 | 24.2 | 25.6 | 26.2 | 27.7 | 28.3 | 28.3 | 29.0 | |
| 1991 | 20.5 | 23.8 | 25.4 | 26.1 | 26.8 | 27.3 | 27.7 | 28.7 | |
| 1992 | 19.0 | 23.7 | 25.3 | 26.2 | 26.7 | 27.2 | 27.9 | 29.4 | |
| 1993 | 21.6 | 24.1 | 25.9 | 26.7 | 27.2 | 27.6 | 28.0 | 28.7 | |
| 1994 | 20.1 | 23.9 | 25.5 | 26.5 | 27.0 | 27.4 | 27.9 | 28.4 | |
| 1995 | 20.4 | 23.6 | 25.2 | 26.3 | 26.8 | 27.0 | 27.6 | 28.3 | |
| 1996 | 19.8 | 23.5 | 25.3 | 26.0 | 26.6 | 27.6 | 27.6 | 28.2 | |
| 1997 | 19.6 | 23.6 | 25.1 | 26.0 | 26.5 | 27.1 | 27.7 | 28.2 | |
| 1998 | 20.8 | 23.8 | 25.2 | 26.1 | 27.0 | 26.8 | 27.2 | 28.7 | |
| 1999 | 19.8 | 23.6 | 25.0 | 26.1 | 26.5 | 27.1 | 27.2 | 28.0 | |
| 2000 | 19.7 | 23.8 | 25.3 | 26.3 | 27.1 | 27.7 | 27.7 | 28.1 | |
| 2001 | 20.0 | 22.9 | 24.8 | 25.7 | 26.2 | 26.9 | 27.5 | 27.8 | |

Table 7.2.2 Irish Sea herring Division VIIa (N). Mean weights-at-age.

| Year | Weights-at-age (g) | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Age (rings) | | | | | | | |
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | $8+$ |
| 1985 | 87 | 125 | 157 | 186 | 202 | 209 | 222 | 258 |
| 1986 | 68 | 143 | 167 | 188 | 215 | 229 | 239 | 254 |
| 1987 | 58 | 130 | 160 | 175 | 194 | 210 | 218 | 229 |
| 1988 | 70 | 124 | 160 | 170 | 180 | 198 | 212 | 232 |
| 1989 | 81 | 128 | 155 | 174 | 184 | 195 | 205 | 218 |
| 1990 | 77 | 135 | 163 | 175 | 188 | 196 | 207 | 217 |
| 1991 | 70 | 121 | 153 | 167 | 180 | 189 | 195 | 214 |
| 1992 | 61 | 111 | 136 | 151 | 159 | 171 | 179 | 191 |
| 1993 | 88 | 126 | 157 | 171 | 183 | 191 | 198 | 214 |
| 1994 | 73 | 126 | 154 | 174 | 181 | 190 | 203 | 214 |
| 1995 | 72 | 120 | 147 | 168 | 180 | 185 | 197 | 212 |
| 1996 | 67 | 116 | 148 | 162 | 177 | 199 | 200 | 214 |
| 1997 | 64 | 118 | 146 | 165 | 176 | 188 | 204 | 216 |
| 1998 | 80 | 123 | 148 | 163 | 181 | 177 | 188 | 222 |
| 1999 | 69 | 120 | 145 | 167 | 176 | 188 | 190 | 210 |
| 2000 | 64 | 120 | 148 | 168 | 188 | 204 | 200 | 213 |
| 2001 | 67 | 106 | 139 | 156 | 168 | 185 | 198 | 205 |

Table 7.3.1 Irish Sea herring Division VIIa (N): Summary of acoustic survey information for the period 1989-2001. Small clupeoids include sprat and 0-ring herring unless otherwise stated. CVs are approximate. Biomass in t. All surveys carried out at 38 kHz except December 1996, which was at 120 kHz .

| Year | Area | Dates | $\begin{array}{r} \text { herring } \\ \text { biomass } \\ (1+\text { years }) \end{array}$ | CV | herring biomass (SSB) | CV | small clupeoids biomass | CV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1989 | Douglas Bank | 25-26 Sept | | | 18000 | - | - | - |
| 1990 | Douglas Bank | 26-27 Sept | | | 26,600 | - | - | - |
| 1991 | Western Irish Sea | 26 July - 8 Aug | 12,760 | 0.23 | | | 66,000 ${ }^{1}$ | 0.20 |
| 1992 | Western Irish Sea
 + IOM east coast | 20-31 July | 17,490 | 0.19 | | | 43,200 | 0.25 |
| 1994 | Area VIIa(N) | 28 Aug - 8 Sep | 31,400 | 0.36 | 26,190 | - | 68,600 | 0.10 |
| | Douglas Bank | 22-26 Sept | | | 28200 | - | | |
| 1995 | Area VIIa(N) | 11-22 Sept | 38,400 | 0.29 | 19,900 | - | 348,600 | 0.13 |
| | Douglas Bank | 10-11 Oct | | | 9,840 | - | - | - |
| | Douglas Bank | 23-24 Oct | | | 1,750 | 0.51 | - | - |
| 1996 | Area VIIa(N) | 2-12 Sept | 24,500 | 0.24 | 23,390 | 0.25 | 49,120 | 0.13 |
| | Eastern Irish Sea (closed box) | 9-12 Dec | 12,800 | 0.49 | 11,880 | 0.49 | 6,810 | 0.13 |
| 1997 | Area VIIa(N)-reduced | 8-12 Sept | 20,100 | 0.28 | 11,300 | 0.28 | 46,600 | 0.20 |
| 1998 | Area VIIa(N) | 8-14 Sept | 21,200 | 0.15 | 7,760 | 0.18 | 228,000 | 0.11 |
| 1999 | Area VIIa(N) | 6-17 Sept | 31,600 | 0.59 | 21,970 | 0.75 | 272,200 | 0.10 |
| 2000 | Area VIIa(N) | 11-21 Sept | 40,200 | 0.26 | 33,750 | 0.32 | 234,700 | 0.11 |
| 2001 | Area VIIa(N) | 10-18 Sept | 35,400 | 0.40 | 15,300 | 0.42 | 299,700 | 0.08 |

${ }^{1}$ sprat only

Table 7.3.2 Irish Sea herring Div. VIIa (N). Age-disaggregated acoustic estimates of herring abundance from the Northern Ireland surveys in September.

| Age (rings) | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 66.8 | 319.1 | 11.3 | 134.1 | 110.4 | 157.8 | 78.5 | 387.6 |
| 2 | 68.3 | 82.3 | 42.4 | 50.0 | 27.3 | 77.7 | 103.4 | 93.4 |
| 3 | 73.5 | 11.9 | 67.5 | 14.8 | 8.1 | 34.0 | 105.3 | 10.1 |
| 4 | 11.9 | 29.2 | 9.0 | 11.0 | 9.3 | 5.1 | 27.5 | 17.5 |
| 5 | 9.3 | 4.6 | 26.5 | 7.8 | 6.5 | 10.3 | 8.1 | 7.7 |
| 6 | 7.6 | 3.5 | 4.2 | 4.6 | 1.8 | 13.5 | 5.4 | 1.4 |
| 7 | 3.9 | 4.9 | 5.9 | 0.6 | 2.3 | 1.6 | 4.9 | 0.6 |
| $8+$ | 10.1 | 6.9 | 5.8 | 1.9 | 0.8 | 6.3 | 2.4 | 2.2 |

Table 7.3.3 Irish Sea herring Division VIIa (N). Larval production (10^{11}) indices for the Manx component.

| Year | DateDouglas Bank
 Isle of Man
 Production | | SE | North East Irish Sea | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| | | | Date | Isle of Man Production | SE | Date | Northern Ireland Production | SE |
| 1989 | 26 Oct | 3.39 | | 1.54 | | | | | | |
| 1990 | 19 Oct | 1.92 | 0.78 | | | | | | |
| 1991 | 15 Oct | 1.56 | 0.73 | | | | | | |
| 1992 | 16 Oct | 15.64 | 2.32 | 20 Nov | 128.9 | | | | |
| 1993 | 19 Oct | 4.81 | 0.77 | 22 Nov | 1.1 | | 17 Nov | 38.3 | 18.4 |
| 1994 | 13 Oct | 7.26 | 2.26 | 24 Nov | 12.5 | | 16 Nov | 71.2 | 8.4 |
| 1995 | 19 Oct | 1.58 | 1.68 | | | | 28 Nov | 15.1 | 9.3 |
| 1996 | | | | 26 Nov | 0.3 | | 19 Nov | 4.7 | 1.4 |
| 1997 | 15 Oct | 5.59 | 1.25 | 1 Dec | 35.9 | | 4 Nov | 29.1 | 3.2 |
| 1998 | 6 Nov | 2.27 | 1.43 | 1 Dec | 3.5 | | 3 Nov | 5.8 | 5.9 |
| 1999 | 25 Oct | 3.87 | 0.88 | | | | 9 Nov | 16.7 | 9.5 |
| 2000 | | | | | | | 11 Nov | 35.5 | 4.4 |
| 2001 | | | | 11 Dec | 198.6 | | 7 Nov | 55.3 | 30.4 |

SE = StanNorthern Ireland error

Table 7.3.4 Irish Sea herring Division VIIa (N). Northern Ireland groundfish survey indices for herring (Nos. per 3 miles.)
(a) 0-ring herring: October survey

| Survey | Western Irish Sea | | | Eastern Irish Sea | | | Total Irish Sea | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Mean | N.obs | SE | Mean | N.obs. | SE | Mean | N. obs | SE |
| 1991 | 54 | 34 | 22 | | | | | | |
| 1992 | 210 | 31 | 99 | 240 | 8 | 149 | 177 | 46 | 68 |
| 1993 | 633 | 26 | 331 | 498 | 10 | 270 | 412 | 44 | 155 |
| 1994 | 548 | 26 | 159 | 8 | 7 | 5 | 194 | 41 | 55 |
| 1995 | 67 | 22 | 23 | 35 | 9 | 18 | 37 | 35 | 11 |
| 1996 | 90 | 26 | 58 | 131 | 9 | 79 | 117 | 42 | 50 |
| 1997 | 281 | 26 | 192 | 68 | 9 | 42 | 138 | 43 | 70 |
| 1998 | 980 | 26 | 417 | 12 | 9 | 10 | 347 | 43 | 144 |
| 1999 | 389 | 26 | 271 | 90 | 9 | 29 | 186 | 43 | 96 |
| 2000 | 202 | 24 | 144 | 367 | 9 | 190 | 212 | 38 | 89 |
| 2001 | 553 | 26 | 244 | 236 | 11 | 104 | 284 | 45 | 93 |

(b) 1-ring herring: March Surveys

| Survey | Western Irish Sea | | | Eastern Irish Sea | | | Total Irish Sea | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Mean | N.obs | SE | Mean | N.obs. | SE | Mean | N.obs | SE |
| 1992 | 392 | 20 | 198 | 115 | 10 | 73 | 190 | 34 | 77 |
| 1993 | 1755 | 27 | 620 | 175 | 10 | 66 | 681 | 45 | 216 |
| 1994 | 2472 | 25 | 1852 | 106 | 9 | 51 | 923 | 39 | 641 |
| 1995 | 1299 | 26 | 679 | 73 | 8 | 32 | 480 | 42 | 235 |
| 1996 | 1055 | 22 | 638 | 285 | 9 | 164 | 487 | 39 | 230 |
| 1997 | 1473 | 26 | 382 | 260 | 9 | 96 | 612 | 43 | 137 |
| 1998 | 3953 | 26 | 1331 | 250 | 9 | 184 | 1472 | 43 | 466 |
| 1999 | 5845 | 26 | 1860 | 736 | 9 | 321 | 2308 | 42 | 655 |
| 2000 | 2303 | 26 | 853 | 546 | 10 | 217 | 1009 | 44 | 306 |
| 2001 | 3518 | 26 | 916 | 1265 | 11 | 531 | 1763 | 45 | 381 |

(c) 1-ring herring: October Surveys

| Survey | Western Irish Sea | | | Eastern Irish Sea | | | Total Irish Sea | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Mean | N.obs | SE | Mean | N.obs. | SE | Mean | N.obs | SE |
| 1991 | 102 | 34 | 34 | n / a |
| 1992 | 36 | 31 | 18 | 20 | 8 | 11 | 21 | 46 | 8 |
| 1993 | 122 | 26 | 66 | 4 | 10 | 2 | 44 | 44 | 23 |
| 1994 | 490 | 26 | 137 | 17 | 6 | 10 | 176 | 40 | 47 |
| 1995 | 153 | 22 | 61 | 3 | 9 | 1 | 55 | 35 | 21 |
| 1996 | 30 | 26 | 13 | 2 | 9 | 1 | 11 | 42 | 5 |
| 1997 | 612 | 26 | 369 | 0.2 | 9 | 0.2 | 302 | 43 | 156 |
| 1998 | 39 | 26 | 15 | 13 | 9 | 10 | 53 | 43 | 35 |
| 1999 | 81 | 26 | 41 | 104 | 9 | 95 | 74 | 43 | 40 |
| 2000 | 455 | 24 | 250 | 74 | 9 | 52 | 579 | 38 | 403 |
| 2001 | 1412 | 26 | 641 | 5 | 11 | 3 | 513 | 45 | 223 |

Table 7.4.1 Irish Sea herring Division VIIa (N). Tuning indices used for the assessment. Values and CVs are given.

| Year | GFS-octeast 1 | | GFS-octtot 1 | | GFS-martot 2 | DBL 3 | NINEL 3 | AC_VIIa(N) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Age 1 | Age 2 | Age 1 | Age 2 | Age 1 | SSB | SSB | SSB |
| 1989 | | | | | | $3.39(1.54)$ | | - |
| 1990 | | | | | | $1.92(0.78)$ | | - |
| 1991 | | | | | | $1.56(0.73)$ | | - |
| 1992 | | | | | 190 | $15.64(2.32)$ | | - |
| 1993 | 240 | 20 | 177 | 21 | 681 | $4.81(0.77)$ | $38.3(0.48)$ | - |
| 1994 | 498 | 4 | 412 | 44 | 923 | $7.30(2.26)$ | $71.2(0.12)$ | $26190(\mathrm{na})$ |
| 1995 | 8 | 17 | 194 | 176 | 480 | $1.58(1.68)$ | $15.1(0.62)$ | $19900(\mathrm{na})$ |
| 1996 | 35 | 3 | 37 | 55 | 487 | - | $4.7(0.30)$ | $23390(0.25)$ |
| 1997 | 131 | 2 | 117 | 11 | 612 | $5.59(1.25)$ | $29.1(0.11)$ | $11300(0.28)$ |
| 1998 | 68 | 0 | 138 | 302 | 1472 | $2.27(1.43)$ | $5.8(1.02)$ | $7760(0.18)$ |
| 1999 | 12 | 13 | 347 | 53 | 2308 | $3.87(0.88)$ | $16.7(0.57)$ | $21,970(0.75)$ |
| 2000 | 90 | 104 | 186 | 74 | 1009 | | $35.5(0.12)$ | $33,750(0.32)$ |
| 2001 | 367 | 74 | 212 | 579 | 1763 | | $55.3(0.55)$ | $15,300(0.42)$ |
| 2002 | 236 | 5 | 284 | 513 | | | | |

1. Mean abundance of juveniles (within strata) per 3 nm trawl, surveyed when aged 0 in September and 1 in the following September and used as indices for the following years, for either the eastern Irish Sea or total northern Irish Sea.
2. Mean abundance of juveniles (within strata) per 3nm trawl, aged 1 in March from the eastern Irish Sea.
3. Numbers of larvae at $6 \mathrm{~mm} \times 10^{11}$, a size weighted index.
4. Biomass of SSB, tonnes from acoustic surveys of the northern Irish Sea.
na- not available. GFS-Ground fish survey. DBL- Douglas Bank Larvae. NINEL- North East Larvae. AC- Acoustic.

Table 7.5.1. Herrring in Division VIIa(N). Run log of HAWG 2002, Irish Sea VIIa(N) final run.

Integrated Catch-at-age Analysis

Enter the name of the index file -->index canum weca
Stock weights in 2002 used for the year 2001 west
Natural mortality in 2002 used for the year 2001 natmor
Maturity ogive in 2002 used for the year 2001 matprop
Name of age-structured index file (Enter if none) : -->fleet
Name of the SSB index file (Enter if none) -->ssb
No of years for separable constraint ?-> 6 Reference age for separable constraint ?--> 4
Constant selection pattern model (Y/N) ?-->y S to be fixed on last age ?--> 1.00
First age for calculation of reference F ?--> 2 Last age for calculation of reference F ?--> 6
Use default weighting (Y/N) ?-->n
Enter relative weights-at-age
Weight for age $1-->\quad 0.10 \quad$ Weight for age $2-->\quad 1.0$
Weight for age $3-->\quad 1.0 \quad$ Weight for age $4-->1.0$
Weight for age 5--> $\quad 1.0 \quad$ Weight for age 6--> $\quad 1.0$
Weight for age $7-->\quad 1.0 \quad$ Weight for age 8--> $\quad 1.0$
Enter relative weights by year
Weight for year 1996--> 1.0 Weight for year 1997--> 1.0
Weight for year 1998--> $1.0 \quad$ Weight for year 1999--> 1.0
Weight for year 2000--> $1.0 \quad$ Weight for year 2001--> 1.0
Enter new weights for specified years and ages if needed
Enter year, age, new weight or $-1,-1,-1$ to end. $-1-1-1.00$
Is the last age of FLTO1: Northern Ireland acoustic surveys a plus-group (Y-->y
Model for INDEX1 is to be $A / L / P$? $->L$ Model for INDEX2 is to be $A / L / P$?-->L
Model for FLT01: Northern Ireland acoustic surveys is to be A/L/P ?-->L
Fit a stock-recruit relationship (Y/N) ?-->n
Enter lowest feasible $F->\quad 0.05$ Enter highest feasible $F-->\quad 2.0$
Mapping the F-dimension of the $S S Q$ surface

| 0.05 | 26.3812111347 |
| :---: | :---: |
| 0.15 | 18.7257520463 |
| 0.26 | 17.4579269370 |
| 0.36 | 17.4703861338 |
| 0.46 | 17.9620307337 |
| 0.56 | 18.6933723113 |
| 0.67 | 19.5758603381 |
| 0.77 | 20.5876745624 |
| 0.87 | 21.7776335457 |
| 0.97 | 22.7410425858 |
| 1.08 | 23.5653422426 |
| 1.18 | 24.3832619097 |
| 1.28 | 25.1962506036 |
| 1.38 | 26.0082742633 |
| 1.49 | 26.8275396489 |
| 1.59 | 27.5734391445 |
| 1.69 | 28.1445343250 |
| 1.79 | 28.6878337265 |
| 1.90 | 29.2043949814 |
| 2.00 | 29.6952585435 |

Lowest $S S Q$ is for $F=0.300$
No of years for separable analysis : 6 Age range in the analysis : 1 . . . 8
Year range in the analysis : 1972 . . . 2001 Number of indices of $\operatorname{SSB}: 2$
Number of age-structured indices : 1 Parameters to estimate : 33 Number of observations : 1
Conventional single selection vector model to be fitted.
Survey weighting to be Manual (recommended) or Iterative (M/I) ?-->M
Enter weight for INDEX1-> 1.0 Enter weight for INDEX2--> 1.0
Enter weight for age $1-\gg \quad 0.10$ Enter weight for age $2-->1.00$
Enter weight for age $3-->\quad 1.00$ Enter weight for age $4-->1.00$
Enter weight for age 5--> 1.00 Enter weight for age 6--> 1.00
Enter weight for age $7-->\quad 1.00$ Enter weight for age 8--> 1.00
Enter estimates of the extent to which errors in the age-structured indices are correlated
across ages. This can be in the range 0 (independence) to 1 (correlated errors).
Enter value for FLTO1: Northern Ireland acoustic surveys--> 1.00
Do you want to shrink the final fishing mortality (Y/N) ?-->N
$\begin{array}{lccccccc}\text { SSB index weights } 1.00 & 1.00 & & & \\ \text { Aged index weights } & \text { Age } & : & 1 & 2 & 4 & 6\end{array}$

F in 2001 at age 4 is 0.358187 in iteration 1
Detailed, Normal or Summary output (D/N/S)-->D Output page width in characters (e.g. 80..132) ?-->
80
Estimate historical assessment uncertainty ?-->n Succesful exit from ICA

Table 7.5.2. Herring Irish Sea VIIa(N). ICA assessment of Irish Sea herring catches from official landings. Output generated by ICA Version 1.4

| AGE | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 40.64 | 42.15 | 43.25 | 33.33 | 34.74 | 30.28 | 15.54 | 11.77 |
| 2 | 46.66 | 32.74 | 109.55 | 48.24 | 56.16 | 39.04 | 36.95 | 38.27 |
| 3 | 26.95 | 38.24 | 39.75 | 39.41 | 20.78 | 22.69 | 13.41 | 23.49 |
| 4 | 13.18 | 11.49 | 24.51 | 10.84 | 15.22 | 6.75 | 6.78 | 4.25 |
| 5 | 13.75 | 6.92 | 10.65 | 7.87 | 4.58 | 4.52 | 1.74 | 2.20 |
| 6 | 6.76 | 5.07 | 4.99 | 4.21 | 2.81 | 1.46 | 1.34 | 1.05 |
| 7 | 2.66 | 2.59 | 5.15 | 2.09 | 2.42 | 0.91 | 0.67 | 0.40 |
| 8 | 1.67 | 2.60 | 1.63 | 1.64 | 1.27 | 1.12 | 0.35 | 0.29 |
| AGE | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 |
| 1 | 5.84 | 5.05 | 5.10 | 1.30 | 1.17 | 2.43 | 4.49 | 2.23 |
| | 25.76 | 15.79 | 16.03 | 12.16 | 8.42 | 10.05 | 15.27 | 12.98 |
| 3 | 19.51 | 3.20 | 5.67 | 5.60 | 7.24 | 17.34 | 7.46 | 6.15 |
| 4 | 8.52 | 2.79 | 2.15 | 2.82 | 3.84 | 13.29 | 8.55 | 3.00 |
| 5 | 1.98 | 2.30 | 0.33 | 0.45 | 2.22 | 7.21 | 4.53 | 4.18 |
| 6 | 0.91 | 0.33 | 1.11 | 0.48 | 0.38 | 2.65 | 3.20 | 2.78 |
| 7 | 0.36 | 0.29 | 0.14 | 0.26 | 0.23 | 0.67 | 1.46 | 2.33 |
| 8 | 0.23 | 0.24 | 0.38 | 0.06 | 0.48 | 0.72 | 0.88 | 1.67 |
| AGE | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| 1 | 2.61 | 1.16 | 2.31 | 2.00 | 12.14 | 0.65 | 1.97 | 3.20 |
| 2 | 21.25 | 6.38 | 12.84 | 9.75 | 6.88 | 14.64 | 7.00 | 21.33 |
| 3 | 13.34 | 12.04 | 5.73 | 6.74 | 6.74 | 3.01 | 12.16 | 3.39 |
| 4 | 7.16 | 4.71 | 9.70 | 2.83 | 6.69 | 3.02 | 1.83 | 5.27 |
| 5 | 4.61 | 1.88 | 3.60 | 5.07 | 3.26 | 2.90 | 2.57 | 1.20 |
| 6 | 5.08 | 1.25 | 1.66 | 1.49 | 5.12 | 1.61 | 2.10 | 1.15 |
| 7 | 3.23 | 1.56 | 1.04 | 0.72 | 1.04 | 2.18 | 1.28 | 0.93 |
| 8 | 4.21 | 1.96 | 1.61 | 0.81 | 0.39 | 0.85 | 1.99 | 1.45 |
| AGE | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | | |
| 1 | 5.33 | 9.55 | 3.07 | 1.81 | 1.22 | 2.71 | | |
| 2 | 17.53 | 21.39 | 11.88 | 16.93 | 3.74 | 11.47 | | |
| 3 | 9.76 | 7.56 | 3.88 | 5.94 | 5.87 | 7.15 | | |
| 4 | $\frac{1}{3} \cdot 16$ | 7.34 | 4.45 | 1.57 | 2.06 | 13.05 | | |
| 5 | 3.60 | 1.64 | 6.67 | 1.48 | 0.56 | 3.39 | | |
| 6 | 0.78 | 2.28 | 1.03 | 1.99 | 0.35 | 0.94 | | |
| 7 8 | 0.96 1.36 | 0.84 1.43 | 2.05 0.45 | 0.44 0.62 | 0.25 0.15 | 0.65 0.80 | | |
| | | | | | | 0.80 | | |

Predicted Catch in Number

| AGE | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2061 | 4442. | 8877. | 2347. | 1161. | 4194. |
| 2 | 10904. | 12083. | 18671. | 22409. | 4162. | 14249. |
| 3 | 9732. | 7847. | 5724. | 5196. | 4943. | 7052. |
| 4 | 1946. | 8245. | 4385. | 1894. | 1366. | 9870. |
| 5 | 3666. | 1743. | 4847. | 1539. | 536. | 2919. |
| 6 | 827. | 2697. | 836. | 1366. | 350. | 942. |
| 7 | 992. | 727. | 1565. | 287. | 373. | 725. |

Weights-at-age in the catches (Kg)

| AGE | 1972-80 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.07400 | 0.07400 | 0.07400 | 0.07400 | 0.07600 | 0.08700 | 0.06800 | 0.05800 |
| 2 | 0.15500 | 0.15500 | 0.15500 | 0.15500 | 0.14200 | 0.12500 | 0.14300 | 0.13000 |
| 3 | 0.19500 | 0.19500 | 0.19500 | 0.19500 | 0.18700 | 0.15700 | 0.16700 | 0.16000 |
| 4 | 0.21900 | 0.21900 | 0.21900 | 0.21900 | 0.21300 | 0.18600 | 0.18800 | 0.17500 |
| 5 | 0.23200 | 0.23200 | 0.23200 | 0.23200 | 0.22100 | 0.20200 | 0.21500 | 0.19400 |
| 6 | 0.25100 | 0.25100 | 0.25100 | 0.25100 | 0.24300 | 0.20900 | 0.22800 | 0.21000 |
| 7 | 0.25800 | 0.25800 | 0.25800 | 0.25800 | 0.24000 | 0.22200 | 0.23900 | 0.21800 |
| 8 | 0.27800 | 0.27800 | 0.27800 | 0.27800 | 0.27300 | 0.25800 | 0.25400 | 0.22900 |
| AGE | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| | 0.07000 | 0.08100 | 0.09600 | 0.07300 | 0.06200 | 0.08900 | 0.07000 | 0.07500 |
| 2 | 0.12400 | 0.12800 | 0.14000 | 0.12300 | 0.11400 | 0.12700 | 0.12300 | 0.12100 |
| 3 | 0.16000 | 0.15500 | 0.16600 | 0.15500 | 0.14000 | 0.15700 | 0.15300 | 0.14600 |
| 4 | 0.17000 | 0.17400 | 0.17500 | 0.17100 | 0.15500 | 0.17100 | 0.17000 | 0.16400 |
| 5 | 0.18000 | 0.18400 | 0.18700 | 0.18100 | 0.16500 | 0.18200 | 0.18000 | 0.17600 |
| 6 | 0.19800 | 0.19500 | 0.19500 | 0.19000 | 0.17400 | 0.19100 | 0.18900 | 0.18100 |
| 7 | 0.21200 | 0.20500 | 0.20700 | 0.19800 | 0.18100 | 0.19800 | 0.20200 | 0.19300 |
| 8 | 0.23200 | 0.21800 | 0.21800 | 0.21700 | 0.19700 | 0.21200 | 0.21200 | 0.20700 |
| AGE | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | | |
| | 0.06700 | 0.06400 | 0.08000 | 0.06900 | 0.06400 | 0.06700 | | |
| 2 | 0.11600 | 0.11800 | 0.12300 | 0.12000 | 0.12000 | 0.10600 | | |
| 3 | 0.14800 | 0.14600 | 0.14800 | 0.14500 | 0.14800 | 0.13900 | | |
| 4 | 0.16200 | 0.16500 | 0.16300 | 0.16700 | 0.16800 | 0.15600 | | |
| 5 | 0.17700 | 0.17600 | 0.18100 | 0.17600 | 0.18800 | 0.16800 | | |
| 6 | 0.19900 | 0.18800 | 0.17700 | 0.18800 | 0.20400 | 0.18500 | | |
| 7 8 | 0.20000 | 0.20400 | 0.18800 | 0.19000 | 0.20000 | 0.19800 | | |
| 8 | 0.21400 | 0.21600 | 0.22200 | 0.21000 | 0.21300 | 0.20500 | | |

Table 7.5.2. continued. Herring Irish Sea VIIa(N).
Weights-at-age in the stock (Kg)

| AGE | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.07400 | 0.07400 | 0.07400 | 0.07400 | 0.07400 | 0.07400 | 0.07400 | 0.07400 |
| 2 | 0.15500 | 0.15500 | 0.15500 | 0.15500 | 0.15500 | 0.15500 | 0.15500 | 0.15500 |
| 3 | 0.19500 | 0.19500 | 0.19500 | 0.19500 | 0.19500 | 0.19500 | 0.19500 | 0.19500 |
| 4 | 0.21900 | 0.21900 | 0.21900 | 0.21900 | 0.21900 | 0.21900 | 0.21900 | 0.21900 |
| 5 | 0.23200 | 0.23200 | 0.23200 | 0.23200 | 0.23200 | 0.23200 | 0.23200 | 0.23200 |
| 6 | 0.25100 | 0.25100 | 0.25100 | 0.25100 | 0.25100 | 0.25100 | 0.25100 | 0.25100 |
| 7 | 0.25800 | 0.25800 | 0.25800 | 0.25800 | 0.25800 | 0.25800 | 0.25800 | 0.25800 |
| 8 | 0.27800 | 0.27800 | 0.27800 | 0.27800 | 0.27800 | 0.27800 | 0.27800 | 0.27800 |
| AGE | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 |
| 1 | 0.07400 | 0.07400 | 0.07400 | 0.07400 | 0.07600 | 0.08700 | 0.06800 | 0.05800 |
| 2 | 0.15500 | 0.15500 | 0.15500 | 0.15500 | 0.14200 | 0.12500 | 0.14300 | 0.13000 |
| 3 | 0.19500 | 0.19500 | 0.19500 | 0.19500 | 0.18700 | 0.15700 | 0.16700 | 0.16000 |
| 4 | 0.21900 | 0.21900 | 0.21900 | 0.21900 | 0.21300 | 0.18600 | 0.18800 | 0.17500 |
| 5 | 0.23200 | 0.23200 | 0.23200 | 0.23200 | 0.22100 | 0.20200 | 0.21500 | 0.19400 |
| 6 | 0.25100 | 0.25100 | 0.25100 | 0.25100 | 0.24300 | 0.20900 | 0.22900 | 0.21000 |
| 7 | 0.25800 | 0.25800 | 0.25800 | 0.25800 | 0.24000 | 0.22200 | 0.23900 | 0.21800 |
| 8 | 0.27800 | 0.27800 | 0.27800 | 0.27800 | 0.27300 | 0.25800 | 0.25400 | 0.22900 |
| AGE | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| | 0.07000 | 0.08100 | 0.07700 | 0.07000 | 0.06100 | 0.08800 | 0.07300 | 0.07200 |
| 2 | 0.12400 | 0.12800 | 0.13500 | 0.12100 | 0.11100 | 0.12600 | 0.12600 | 0.12000 |
| 3 | 0.16000 | 0.15500 | 0.16300 | 0.15300 | 0.13600 | 0.15700 | 0.15400 | 0.14700 |
| 4 | 0.17000 | 0.17400 | 0.17500 | 0.16700 | 0.15100 | 0.17100 | 0.17400 | 0.16800 |
| 5 | 0.18000 | 0.18400 | 0.18800 | 0.18000 | 0.15900 | 0.18300 | 0.18100 | 0.18000 |
| 6 | 0.19800 | 0.19500 | 0.19600 | 0.18900 | 0.17100 | 0.19100 | 0.19000 | 0.18500 |
| 7 | 0.21200 | 0.20500 | 0.20700 | 0.19500 | 0.17900 | 0.19800 | 0.20300 | 0.19700 |
| 8 | 0.23200 | 0.21800 | 0.21700 | 0.21400 | 0.19100 | 0.21400 | 0.21400 | 0.21200 |
| AGE | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | | |
| 1 | 0.06700 | 0.06300 | 0.07300 | 0.06800 | 0.06300 | 0.06600 | | |
| 2 | 0.11500 | 0.11900 | 0.12100 | 0.12100 | 0.12000 | 0.10500 | | |
| 3 | 0.14800 | 0.14800 | 0.15000 | 0.14500 | 0.14900 | 0.13900 | | |
| 4 | 0.16200 | 0.16700 | 0.16600 | 0.16800 | 0.17100 | 0.15600 | | |
| 5 | 0.17700 | 0.17800 | 0.17900 | 0.17800 | 0.18800 | 0.16700 | | |
| 6 | 0.19500 | 0.18900 | 0.19000 | 0.18900 | 0.20400 | 0.18300 | | |
| 7 | 0.19900 | 0.20600 | 0.20000 | 0.19900 | 0.20500 | 0.19900 | | |
| 8 | 0.21200 | 0.21400 | 0.23000 | 0.21400 | 0.21500 | 0.20500 | | |

| AGE | 1972-96 | 1997 | 1998 | 1999 | 2000 | 2001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 2 | 0.3000 | 0.3000 | 0.3000 | 0.3000 | 0.3000 | 0.3000 |
| 3 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 |
| 4 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 |
| 5 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 |
| 6 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 |
| 7 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 |
| 8 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 |

Proportion of fish spawning

| AGE | 1972-96 | 1997 | 1998 | 1999 | 2000 | 2001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.0800 | 0.0800 | 0.0800 | 0.0800 | 0.0800 | 0.0800 |
| 2 | 0.8500 | 0.8500 | 0.8500 | 0.8500 | 0.8500 | 0.8500 |
| 3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 4 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 5 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 6 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 7 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| 8 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |

INDICES OF SPAWNING BIOMASS

Table 7.5.2. continued. Herring Irish Sea VIIa(N). Fishing Mortality (per year)

| AGE | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.1662 | 0.1043 | 0.2140 | 0.1523 | 0.2298 | 0.1583 | 0.1039 | 0.1439 |
| 2 | 0.3617 | 0.3442 | 0.8248 | 0.7523 | 0.7927 | 0.8582 | 0.5379 | 0.7574 |
| 3 | 0.5221 | 0.6144 | 1.0129 | 0.9073 | 0.9766 | 0.9963 | 0.9266 | 0.8726 |
| 4 | 0.5328 | 0.4182 | 1.0050 | 0.8249 | 1.1017 | 0.9953 | 0.9139 | 0.8375 |
| 5 | 0.6125 | 0.5249 | 0.7560 | 0.9540 | 0.9115 | 1.0777 | 0.6678 | 0.7687 |
| 6 | 0.6323 | 0.4230 | 0.7960 | 0.6809 | 0.9933 | 0.7443 | 1.0086 | 0.9993 |
| 7 | 0.5350 | 0.4683 | 0.8887 | 0.8279 | 0.9633 | 0.9385 | 0.8211 | 0.8563 |
| 8 | 0.5350 | 0.4683 | 0.8887 | 0.8279 | 0.9633 | 0.9385 | 0.8211 | 0.8563 |
| AGE | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 |
| 1 | 0.0621 | 0.0378 | 0.0363 | 0.0091 | 0.0144 | 0.0266 | 0.0429 | 0.0132 |
| 2 | 1.0895 | 0.4199 | 0.2778 | 0.1924 | 0.1249 | 0.2844 | 0.4070 | 0.2890 |
| 3 | 1.3497 | 0.3882 | 0.2777 | 0.1561 | 0.1776 | 0.4322 | 0.3776 | 0.3032 |
| 4 | 0.8963 | 0.6596 | 0.4647 | 0.2055 | 0.1450 | 0.5351 | 0.3732 | 0.2425 |
| 5 | 1.1188 | 0.5690 | 0.1308 | 0.1458 | 0.2213 | 0.3901 | 0.3106 | 0.2805 |
| 6 | 0.7528 | 0.4806 | 0.5258 | 0.2566 | 0.1603 | 0.3950 | 0.2669 | 0.2836 |
| 7 | 1.0502 | 0.5046 | 0.3420 | 0.1937 | 0.1661 | 0.4104 | 0.3506 | 0.2824 |
| | 1.0502 | 0.5046 | 0.3420 | 0.1937 | 0.1661 | 0.4104 | 0.3506 | 0.2824 |
| AGE | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| | 0.0381 | 0.0125 | 0.0321 | 0.0481 | 0.1029 | 0.0157 | 0.0157 | 0.0444 |
| 2 | 0.2887 | 0.2093 | 0.3230 | 0.3182 | 0.4084 | 0.3010 | 0.4120 | 0.4118 |
| 3 | 0.5837 | 0.2804 | 0.3128 | 0.2991 | 0.4060 | 0.3353 | 0.4709 | 0.3841 |
| 4 | 0.6534 | 0.3967 | 0.3621 | 0.2383 | 0.5152 | 0.3035 | 0.3314 | 0.3631 |
| 5 | 0.6252 | 0.3117 | 0.5289 | 0.2906 | 0.4175 | 0.3908 | 0.4050 | 0.3356 |
| 6 | 0.5694 | 0.3039 | 0.4423 | 0.3857 | 0.4719 | 0.3322 | 0.4825 | 0.2855 |
| 7 | 0.5463 | 0.3019 | 0.3939 | 0.3098 | 0.4475 | 0.3342 | 0.4251 | 0.3594 |
| 8 | 0.5463 | 0.3019 | 0.3939 | 0.3098 | 0.4475 | 0.3342 | 0.4251 | 0.3594 |
| AGE | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | | |
| | 0.0352 | 0.0516 | 0.0557 | 0.0327 | 0.0120 | 0.0335 | | |
| 2 | 0.3646 | 0.5340 | 0.5769 | 0.3379 | 0.1245 | 0.3470 | | |
| 3 | 0.3573 | 0.5233 | 0.5654 | 0.3312 | 0.1220 | 0.3401 | | |
| 4 | 0.3763 | 0.5512 | 0.5955 | 0.3488 | 0.1285 | 0.3582 | | |
| 5 | 0.4101 | 0.6008 | 0.6490 | 0.3802 | 0.1400 | 0.3904 | | |
| 6 | 0.3623 | 0.5307 | 0.5733 | 0.3358 | 0.1237 | 0.3449 | | |
| 7 | 0.3763 | 0.5512 | 0.5955 | 0.3488 | 0.1285 | 0.3582 | | |
| 8 | 0.3763 | 0.5512 | 0.5955 | 0.3488 | 0.1285 | 0.3582 | | |

Population Abundance (1 January)

| AGE | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 414.12 | 667.49 | 349.05 | 368.65 | 262.74 | 323.05 | 246.92 | 137.34 |
| 2 | 176.34 | 129.01 | 221.23 | 103.67 | 116.46 | 76.81 | 101.45 | 81.87 |
| 3 | 72.48 | 90.98 | 67.74 | 71.84 | 36.20 | 39.05 | 24.12 | 43.89 |
| 4 | 33.38 | 35.20 | 40.30 | 20.14 | 23.74 | 11.16 | 11.80 | 7.82 |
| 5 | 31.39 | 17.73 | 20.97 | 13.35 | 7.99 | 7.14 | 3.73 | 4.28 |
| 6 | 15.08 | 15.39 | 9.49 | 8.91 | 4.65 | 2.90 | 2.20 | 1.73 |
| 7 | 6.72 | 7.25 | 9.12 | 3.87 | 4.08 | 1.56 | 1.25 | 0.73 |
| 8 | 4.22 | 7.28 | 2.89 | 3.04 | 2.14 | 1.92 | 0.65 | 0.53 |
| AGE | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 |
| 1 | 152.58 | 214.47 | 225.68 | 227.06 | 128.70 | 146.05 | 168.62 | 268.27 |
| 2 | 43.76 | 52.75 | 75.97 | 80.06 | 82.77 | 46.67 | 52.32 | 59.43 |
| 3 | 28.44 | 10.90 | 25.68 | 42.63 | 48.93 | 54.12 | 26.02 | 25.80 |
| 4 | 15.01 | 6.04 | 6.05 | 15.93 | 29.86 | 33.55 | 28.76 | 14.60 |
| 5 | 3.06 | 5.54 | 2.82 | 3.44 | 11.73 | 23.37 | 17.77 | 17.92 |
| 6 | 1.80 | 0.91 | 2.84 | 2.24 | 2.69 | 8.51 | 14.32 | 11.79 |
| 7 | 0.58 | 0.77 | 0.51 | 1.52 | 1.57 | 2.08 | 5.19 | 9.92 |
| 8 | 0.37 | 0.63 | 1.37 | 0.35 | 3.28 | 2.25 | 3.11 | 7.12 |
| AGE | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| 1 | 109.95 | 146.98 | 115.36 | 67.11 | 194.88 | 65.60 | 199.92 | 116.34 |
| 2 | 97.40 | 38.94 | 53.40 | 41.10 | 23.53 | 64.69 | 23.76 | 72.40 |
| 3 | 32.97 | 54.06 | 23.40 | 28.64 | 22.15 | 11.59 | 35.46 | 11.66 |
| 4 | 15.60 | 15.06 | 33.44 | 14.01 | 17.39 | 12.08 | 6.78 | 18.13 |
| 5 | 10.37 | 7.34 | 9.16 | 21.06 | 9.99 | 9.40 | 8.07 | 4.41 |
| 6 | 12.25 | 5.02 | 4.87 | 4.89 | 14.25 | 5.95 | 5.75 | 4.87 |
| 7 | 8.03 | 6.27 | 3.35 | 2.83 | 3.01 | 8.05 | 3.86 | 3.21 |
| 8 | 10.47 | 7.87 | 5.20 | 3.21 | 1.14 | 3.13 | 6.02 | 5.04 |
| AGE | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | |
| 1 | 93.93 | 139.12 | 257.80 | 115.23 | 153.43 | 200.62 | 138.62 | |
| 2 | 40.94 | 33.36 | 48.60 | 89.70 | 41.03 | 55.77 | 71.37 | |
| 3 | 35.53 | 21.06 | 14.49 | 20.22 | 47.40 | 26.84 | 29.20 | |
| 4 | 6.50 | 20.35 | 10.22 | 6.74 | 11.89 | 34.35 | 15.64 | |
| 5 | 11.41 | 4.04 | 10.61 | 5.10 | 4.30 | 9.46 | 21.72 | |
| 6 | 2.85 | 6.85 | 2.00 | 5.02 | 3.15 | 3.38 | 5.79 | |
| 7 | 3.31 | 1.80 | 3.65 | 1.02 | 3.25 | 2.52 | 2.17 | |
| 8 | 4.56 | 3.53 | 1.05 | 2.21 | 1.28 | 2.79 | 3.36 | |

Table 7.5.2. continued. Herring Irish Sea VIIa(N).
Weighting factors for the catches in number

| AGE | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | | | |
| 2 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | |
| 3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | |
| 4 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | |
| 5 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | |
| 6 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | |
| 7 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | |
| Predicted SSB Index Values | | | | | | | | | |
| INDEX1 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | |
| 1 | 553.02 | 508.29 | 445.18 | 306.33 | 406.11 | 337.96 | 378.30 | 357.54 | |
| | 1997 | 1998 | 1999 | 2000 | 2001 | | | | |
| 1 | 283.92 | 263.44 | 389.14 ******* ******* | | | | | | |
| INDEX2 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
| 1 | 24130. | 20080. | 22477. | 21244. | 16870. | 15653. | 23122. | 28581. | 26483.rvey Pr |
| x 10 ${ }^{\text {x }}$-3 ${ }^{\text {Predicted Age-Structured Index Values FLT01: Northern Ireland acoustic }}$ | | | | | | | | | |
| | | | | | | | | | |
| AGE | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | ey Pr |
| 1 | 143.25 | 81.59 | 66.33 | 97.03 | 179.26 | 81.52 | 110.24 | 141.84 | |
| 2 | 31.28 | 95.35 | 55.86 | 40.09 | 56.56 | 124.86 | 67.03 | 77.10 | |
| 3 | 36.83 | 12.92 | 40.18 | 21.03 | 14.02 | 23.32 | 63.94 | 30.74 | |
| 4 | 7.53 | 19.64 | 6.97 | 19.15 | 9.30 | 7.38 | 15.36 | 37.35 | |
| 5 | 9.01 | 5.18 | 12.69 | 3.89 | 9.86 | 5.80 | 5.86 | 10.68 | |
| 6 | 5.62 3.27 | 5.52 2.86 | 3.05 2.91 | 6.46 1.38 | 1.83 2.72 | 5.48 0.92 | 4.04 3.43 | 3.67 2.24 | |
| 8 | 7.21 | 6.34 | 5.66 | 3.85 | 1.11 | 2.81 | 1.91 | 3.52 | |
| $\begin{aligned} & \mathrm{x} 10 \hat{3} \\ & \text { Fitted Selection Pattern } \end{aligned}$ | | | | | | | | | |
| AGE | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | |
| 1 | 0.3120 | 0.2494 | 0.2129 | 0.1846 | 0.2086 | 0.1590 | 0.1137 | 0.1718 | |
| 2 | 0.6789 | 0.8231 | 0.8207 | 0.9120 | 0.7195 | 0.8622 | 0.5886 | 0.9043 | |
| 3 | 0.9799 | 1.4692 | 1.0079 | 1.0998 | 0.8864 | 1.0010 | 1.0139 | 1.0419 | |
| 4 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
| 5 | 1.1496 | 1.2550 | 0.7522 | 1.1565 | 0.8273 | 1.0828 | 0.7308 | 0.9178 | |
| 6 | 1.1867 1.0040 | 1.0114 | 0.7921 0.8843 | 0.8254 | 0.9016 0.8744 | 0.7478 | 1.1036 0 | 1.1932 1.0224 | |
| 8 | 1.0040 | 1.1198 | 0.8843 | 1.0036 | 0.8744 | 0.9429 | 0.8984 | 1.0224 | |
| AGE | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | |
| | | | | | | | | | |
| 2 | 1.2156 | 0.6366 | 0.5978 | 0.9360 | 0.8613 | 0.5314 | 1.0907 | 1.1920 | |
| 3 | 1.5059 | 0.5886 | 0.5976 | 0.7595 | 1.2242 | 0.8077 | 1.0119 | 1.2503 | |
| 4 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
| 5 6 | 1.2483 0.8399 | 0.8626 0.7287 | 0.2815 1.1314 | 0.7095 1.2485 | 1.5260 1.1053 | 0.7289 0.7382 | 0.8324 0.7151 | 1.1567 1.1697 | |
| 7 | 1.1717 | 0.7651 | 0.7360 | 0.9428 | 1.1453 | 0.7670 | 0.9396 | 1.1647 | |
| 8 | 1.1717 | 0.7651 | 0.7360 | 0.9428 | 1.1453 | 0.7670 | 0.9396 | 1.1647 | |
| AGE | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | |
| 1 | 0.0583 | 0.0315 | 0.0888 | 0.2017 | 0.1997 | 0.0517 | 0.0474 | 0.1222 | |
| 2 | 0.4418 | 0.5276 | 0.8918 | 1.3353 | 0.7928 | 0.9920 | 1.2434 | 1.1342 | |
| 3 | 0.8934 | 0.7070 | 0.8637 | 1.2549 | 0.7882 | 1.1048 | 1.4209 | 1.0580 | |
| 4 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
| 5 6 | 0.9569 0.8716 | 0.7857 0.7661 | 1.4605 1.2214 | 1.2196 1.6186 | 0.8104 0.9160 | 1.2879 1.0947 | 1.2220 1.4560 | 0.9244 0.7864 | |
| 7 | 0.8716 0.8361 | 0.7661 0.7612 | 1.2214 1.0878 | 1.6186 1.3000 | 0.9160 0.8687 | 1.0947 | 1.4560 1.2827 | 0.7864 0.9900 | |
| 8 | 0.8361 | 0.7612 | 1.0878 | 1.3000 | 0.8687 | 1.1012 | 1.2827 | 0.9900 | |
| AGE | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | | | |
| 1 | 0.0936 | 0.0936 | 0.0936 | 0.0936 | 0.0936 | 0.0936 | | | |
| 2 | 0.9688 | 0.9688 | 0.9688 | 0.9688 | 0.9688 | 0.9688 | | | |
| 3 | 0.9494 | 0.9494 | 0.9494 | 0.9494 | 0.9494 | 0.9494 | | | |
| 4 | 1.0000 1.0899 | 1.0000 1.0899 | 1.0000 1.0899 | 1.0000 1.0899 | 1.0000 1.0899 | 1.0000 1.0899 | | | |
| 6 | 0.9628 | 0.9628 | 0.9628 | 0.9628 | 0.9628 | 0.9628 | | | |
| 7 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | |
| 8 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | |

Table 7.5.2. continued. Herring Irish Sea VIIa(N).

SSB Index catchabilities
INDEX1 Linear model fitted. Slopes at age
24 1

Age-structured index catchabilities FLTOI: Northern Ireland acoustic survey
Linear model fitted. Slopes at age :

| inear model fitted. Slopes at age | f | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 26 | 1 | Q | 1.535 | 140 | 3979 | 98.58 | 1.535 | 25.56 | 16.83 |
| 27 | 2 | Q | 2.246 | 45 | 1.448 | 8.704 | 2.246 | 5.609 | 3.941 |
| 28 | 3 | Q | 1.718 | 45 | 1.109 | 6.615 | 1.718 | 4.272 | 3.005 |
| 29 | 4 | Q | 1.533 | 45 | .9895 | 5.919 | 1.533 | 3.819 | 2.686 |
| 30 | 5 | Q | 1.630 | 46 | 1.045 | 6.414 | 1.630 | 4.113 | 2.882 |
| 31 | 6 | Q | 1.513 | 47 | .9593 | 6.171 | 1.513 | 3.912 | 2.723 |
| 32 | 7 | Q | 1.255 | 49 | .7830 | 5.377 | 1.255 | 3.355 | 2.315 |
| 33 | 8 | Q | 1.775 | 47 | 1.125 | 7.241 | 1.775 | 4.590 | 3.195 |

RESIDUALS ABOUT THE MODEL Separable Model Residuals

| Age | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.951 | 0.766 | -1.062 | -0.260 | 0.050 | -0.436 |
| 2 | 0.475 | 0.571 | -0.452 | -0.280 | -0.106 | -0.217 |
| 3 | 0.003 | -0.037 | -0.390 | 0.133 | 0.172 | 0.014 |
| 4 | -0.517 | -0.116 | 0.015 | -0.190 | 0.413 | 0.279 |
| 5 | -0.017 | -0.061 | 0.320 | -0.041 | 0.041 | 0.148 |
| 6 | -0.058 | -0.167 | 0.209 | 0.376 | -0.007 | -0.006 |
| 7 | -0.031 | 0.144 | 0.270 | 0.436 | -0.395 | -0.109 |

Table 7.5.2. continued. Herring Irish Sea VIIa(N). SPAWNING BIOMASS INDEX RESIDUALS

| INDEX1 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -0.489 | -0.974 | -1.049 | 1.630 | 0.169 | 0.770 | -0.873 | 0.295 | |
| | 1997 | 1998 | 1999 | 2000 | 2001 | | | | |
| 1 | 0.677 | -0.149 | -0.006 | ****** | ***** | | | | |
| INDEX2 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
| 1 | 0.462 | 1.266 | -0.398 | -1.509 | 0.545 | -0.993 | -0.325 | 0.217 | 0.736 |

| Age | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | -0.762 | 1.364 | -1.766 | 0.324 | -0.485 | 0.660 | -0.339 | 1.005 |
| 2 | 0.781 | -0.147 | -0.276 | 0.221 | -0.728 | -0.474 | 0.434 | 0.192 |
| 3 | 0.691 | -0.082 | 0.518 | -0.351 | -0.548 | 0.377 | 0.499 | -1.104 |
| 4 | 0.455 | 0.396 | 0.250 | -0.556 | 0.000 | -0.370 | 0.584 | -0.759 |
| 5 | 0.032 | -0.119 | 0.735 | -0.798 | -0.417 | 0.575 | 0.321 | -0.326 |
| 6 | 0.294 | -0.456 | 0.313 | -0.350 | -0.016 | 0.902 | 0.297 | -0.984 |
| 7 | 0.167 | 0.539 | 0.709 | -0.884 | -0.166 | 0.558 | 0.356 | -1.277 |
| 8 | 0.339 | 0.085 | 0.027 | -0.701 | -0.325 | 0.809 | 0.209 | -0.441 |

PARAMETERS OF THE DISTRIBUTION OF In (CATCHES-AT-AGE)
Separable model fitted from 1996 to 2001

Variance

 0.1447Skewness test stat.
0.7399

Kurtosis test statistic -0.5501
Partial chi-square 0.3463
Significance in fit
Degrees of freedom 0.0000

PARAMETERS OF DISTRIBUTIONS OF THE SSB INDICES
DISTRIBUTION STATISTICS FOR INDEX1
Linear catchability relationship assumed
Last age is a plus-group
Variance
. 6897
Skewness test stat. 0.5627
Kurtosis test statistic -0.4056
$\begin{array}{ll}\text { Partial chi-square } & 1.1697\end{array}$
Significance in fit 0.0004
Number of observations
Degrees of freedom
${ }_{11}^{11}$
Weight in the analysis 1.0000

DISTRIBUTION STATISTICS FOR INDEX2
Linear catchability relationship assumed
Variance
0.7784

Skewness test stat. $\quad-0.4282$
Kurtosis test statistic -0.5320
$\begin{array}{ll}\text { Partial chi-square } & 2.0733 \\ \text { Significance in fit } & 0.0043 \\ \end{array}$
Number of observations
Degrees of freedom
Weight in the analysis
1.0000

PARAMETERS OF THE DISTRIBUTION OF THE AGE-STRUCTURED INDICES

DISTRIBUTION STATISTICS FOR FLTO1: Northern Ireland acoustic survey
Linear catchability relationship assumed

Age

| | | | |
| ---: | ---: | ---: | ---: |
| 0.0133 | 0.0310 | 0.0498 | 4 |
| -0.3575 | 0.0828 | -0.6361 | -0.0319 |
| -0.5029 | -0.5851 | -0.5583 | -0.8179 |
| 0.0082 | 0.0200 | 0.0337 | 0.0229 |
| 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 8 | 8 | 8 | 8 |
| 7 | 7 | 7 | 7 |
| 0.0125 | 0.1250 | 0.1250 | 0.1250 |

| 5 | 6 |
| ---: | ---: |
| 0.0341 | 0.0426 |
| 0.0032 | -0.2411 |
| -0.6395 | -0.3664 |
| 0.0271 | 0.0354 |
| 0.0000 | 0.0000 |
| 8 | 8 |
| 7 | 7 |
| 0.1250 | 0.1250 |

| 7 | 8 |
| ---: | ---: |
| 0.0661 | 0.0288 |
| -0.9368 | 0.1801 |
| -0.4763 | -0.4290 |
| 0.0609 | 0.0251 |
| 0.0000 | 0.0000 |
| 8 | 8 |
| 7 | 7 |

Skewness test stat.
Partial chi-square
Significance in fit
Number of observations
Degrees of freedom
Weight in the analysis
ANALYSIS OF VARIANCE
ANALYSIS OF VARIANCE
Unweighted Statistics
Unweighte
Variance
Total for model

| SSQ | Data | Parameters | d.f. | Variance |
| :--- | ---: | ---: | ---: | ---: |
| 41.8420 | 126 | 33 | 93 | 0.4499 |
| 5.3391 | 42 | 23 | 19 | 0.2810 |
| | | | | |
| 6.8969 | 11 | 1 | 10 | 0.6897 |
| 6.2273 | 9 | 1 | 8 | 0.7784 |
| 23.3788 | 64 | 8 | 56 | 0.4175 |

Catches-at-age
SSB Indices
INDEX1
INDEX2
Aged Indices
FLTO1: Northern Ireland acoustic surve 23.3788
Weighted Statistics
Variance
Total for model

| SSQ | Data | Parameters | d.f. | Variance |
| :--- | ---: | ---: | ---: | ---: |
| 16.1229 | 126 | 33 | 93 | 0.1734 |
| 2.7489 | 42 | 23 | 19 | 0.1447 |
| | | | | |
| 6.8969 | 11 | 1 | 10 | 0.6897 |
| 6.2273 | 9 | 1 | 8 | 0.7784 |
| 0.2499 | 64 | 8 | 56 | 0.0045 |

Table 7.6.1 Herring VIIa(N). Input table for short-term predictions.

| 2003 | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | N | M | Mat | PF | PM | SWt | Sel | CWt |
| 1 | 182000 | 1 | 0.08 | 0.9 | 0.75 | 0.066 | 0.026 | 0.067 |
| 2. | | 0.3 | 0.85 | 0.9 | 0.75 | 0.115 | 0.270 | 0.115 |
| 3. | | 0.2 | 1 | 0.9 | 0.75 | 0.144 | 0.264 | 0.144 |
| 4. | | 0.1 | 1 | 0.9 | 0.75 | 0.165 | 0.279 | 0.164 |
| 5. | 0.1 | 1 | 0.9 | 0.75 | 0.178 | 0.304 | 0.177 | |
| 6. | | 0.1 | 1 | 0.9 | 0.75 | 0.192 | 0.268 | 0.192 |
| 7. | 0.1 | 1 | 0.9 | 0.75 | 0.201 | 0.279 | 0.196 | |
| 8. | | 0.1 | 1 | 0.9 | 0.75 | 0.211 | 0.279 | 0.209 |

| 2004 | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | N | M | Mat | PF | PM | SWt | Sel | CWt |
| 1 | 182000 | 1 | 0.08 | 0.9 | 0.75 | 0.066 | 0.026 | 0.067 |
| 2. | | 0.3 | 0.85 | 0.9 | 0.75 | 0.115 | 0.270 | 0.115 |
| 3. | | 0.2 | 1 | 0.9 | 0.75 | 0.144 | 0.264 | 0.144 |
| 4. | | 0.1 | 1 | 0.9 | 0.75 | 0.165 | 0.279 | 0.164 |
| 5. | 0.1 | 1 | 0.9 | 0.75 | 0.178 | 0.304 | 0.177 | |
| 6. | | 0.1 | 1 | 0.9 | 0.75 | 0.192 | 0.268 | 0.192 |
| 7. | | 0.1 | 1 | 0.9 | 0.75 | 0.201 | 0.279 | 0.196 |
| 8. | | 0.1 | 1 | 0.9 | 0.75 | 0.211 | 0.279 | 0.209 |

Input units are thousands and kg - output in tonnes

Table 7.6.2. Herring VIIa(N). Management option table for 2003, assuming TAC is taken in 2002.

MFDP version $1 \quad$ Run: TAC constraint Fbar age range: 2-6

Irish Sea 2002Projection index file Sunday, 17 March 2002.

2002
Biomass SSB FMult FBar Landings

| 33095 | 13946 | 0.9889 | 0.2738 | 4800 |
| :--- | :--- | :--- | :--- | :--- |

Input units are thousands and kg - output in tonnes

Table 7.6.3 Herring VIIa(N). Single option table for TAC taken in 2002 and $\mathrm{F}_{\text {status quo }}$ in 2003.
MFDP version $1 \quad$ Run: TAC constraint Fbar age range: 2-6

| Year:
 Age | F | 2002F multiplier: CatchNos | | 0.9889 Fbar: | | 0.2738 | | SSB(Jan) | SSNos(ST) | SSB(ST) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Yield | Nos | Biomass | SSNos(Jan) | | | |
| | 1 | 0.0258 | 2934 | 196 | 182000 | 11951 | 14560 | 956 | 6720 | 441 |
| | 2 | 0.2668 | 14536 | 1676 | 71370 | 8231 | 60665 | 6997 | 38100 | 4394 |
| | 3 | 0.2615 | 6116 | 881 | 29200 | 4215 | 29200 | 4215 | 19862 | 2867 |
| | 4 | 0.2754 | 3591 | 588 | 15640 | 2581 | 15640 | 2581 | 11324 | 1869 |
| | 5 | 0.3002 | 5373 | 953 | 21720 | 3859 | 21720 | 3859 | 15380 | 2733 |
| | 6 | 0.2652 | 1286 | 247 | 5790 | 1112 | 5790 | 1112 | 4231 | 812 |
| | 7 | 0.2754 | 498 | 98 | 2170 | 436 | 2170 | 436 | 1571 | 316 |
| | 8 | 0.2754 | 772 | 162 | 3360 | 710 | 3360 | 710 | 2433 | 514 |
| Total | | | 35107 | 4800 | 331250 | 33095 | 153105 | 20865 | 99622 | 13946 |

Year: 2003F multiplier: 1Fbar: 0.2769

| Age | F | CatchNos | | Yield | StockNos | Biomass | SSNos(Jan) | SSB(Jan) | SSNos(ST) | SSB(ST) |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | 1 | 0.0261 | 2966 | 198 | 182000 | 11951 | 14560 | 956 | 6718 | 441 |
| | 2 | 0.2698 | 13420 | 1548 | 65250 | 7526 | 55463 | 6397 | 34740 | 4007 |
| | 3 | 0.2644 | 8565 | 1233 | 40490 | 5844 | 40490 | 5844 | 27469 | 3965 |
| | 4 | 0.2785 | 4268 | 698 | 18406 | 3037 | 18406 | 3037 | 13290 | 2193 |
| | 5 | 0.3035 | 2684 | 476 | 10745 | 1909 | 10745 | 1909 | 7585 | 1348 |
| | 6 | 0.2681 | 3265 | 628 | 14557 | 2795 | 14557 | 2795 | 10609 | 2037 |
| 7 | 0.2785 | 932 | 183 | 4019 | 808 | 4019 | 808 | 2902 | 583 | |
| | 8 | 0.2785 | 881 | 184 | 3799 | 803 | 3799 | 803 | 2743 | 580 |
| Total | | | 36980 | 5148 | 339266 | 34672 | 162038 | 22548 | 106057 | 15153 |

| Year:
 Age | | 2004F multiplier: CatchNos | | 1 Fbar:
 Yield
 StockNos | | 0.2769 | | SSB(Jan) | SSNos(ST) | SSB(ST) | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | F | | | Biomass | SSNos(Jan) | | | |
| | 1 | 0.0261 | 2966 | | | 198 | 182000 | 11951 | 14560 | 956 | 6718 | 441 |
| | 2 | 0.2698 | 13416 | 1547 | 65231 | 7523 | 55447 | 6395 | 34730 | 4006 |
| | 3 | 0.2644 | 7807 | 1124 | 36908 | 5327 | 36908 | 5327 | 25039 | 3614 |
| | 4 | 0.2785 | 5900 | 966 | 25448 | 4199 | 25448 | 4199 | 18375 | 3032 |
| | 5 | 0.3035 | 3148 | 558 | 12606 | 2240 | 12606 | 2240 | 8899 | 1581 |
| | 6 | 0.2681 | 1610 | 310 | 7177 | 1378 | 7177 | 1378 | 5231 | 1004 |
| | 7 | 0.2785 | 2336 | 458 | 10074 | 2025 | 10074 | 2025 | 7274 | 1462 |
| | 8 | 0.2785 | 1241 | 260 | 5354 | 1132 | 5354 | 1132 | 3866 | 817 |
| Total | | | 38425 | 5421 | 344798 | 35775 | 167573 | 23651 | 110132 | 15957 |

Input units are thousands and kg - output in tonnes

Figure 7.1.1 Herring VIIa(N). Landings of herring from VIIa(n) from 1967 to 2001.

Figure 7.3.1 Irish Sea Herring VIIa(N). DARD acoustic survey. Density distribution of (A) herring schools (mainly 1 -ring and older) and (B) sprats and 0 -group herring. Size of elipses is proportional to square root of the S_{A} value for each 15 -minute interval (same scale for figures A and B). Crosses indicate starting positions for 15 -minute EDSUs. Acoustic survey strata are indicated.

Figure 7.4.1 Irish Sea Herring VIIa(N). Results in terms of reference F (age 4), of the preliminary modelling with ICA of survey indices described in Table 7.4.1. Error bars show the upper and lower 95% confidence limits.

Irish Sea herring with aged acoustics and larvae (PEML and DARD)

Figure 7.4.2. Herring VIIA (N). Retrospective analysis of the performance of DBL, NINEL and ACAGE series as tuning indices in the assessments of 2000 to 2002. Bar denotes period of acoustic surveys.

Figure 7.5.1. Herring in $\mathrm{VIIa}(\mathrm{N})$. SSQ surface for the deterministic calculation of the 6 -year separable period. SSBx1DBL, SSBx2-NINEL, Agex1- ACAGE (see Table 7.4.1).

Mey Puwamint screos. Or any other bey to conti

Figure 7.5.2 Herring in VIIa(N). Illustration of stock trends from deterministic calculation (6-year separable period). Summary of estimates of landings, fishing mortality at age 4 , recruitment at age 1 , stock size on 1 January and SSB at spawning.

Figure 7.5.3. Herring in VIIa(N). Illustration of selection patterns diagnostics, from deterministic calculation (6-year separable period). Top left, a contour plot of selection pattern residuals. Top right, estimated selection (relative to age $4)+/-$ standard deviation. Bottom, marginal totals of residuals by year and age

Figure 7.5.4. Herring VIIa(N). Fitted SSB (line) and predicted SSB from indices and estimated catchability. Indices described in Table 7.4.1.

Figure 7.5.5. Herring VIIa(N). Fitted numbers-at-age (line) and predicted numbers from acoustic estimates of age and estimated catchability.

Figure 7.5.6. Herring VIIa(N). Estimates of historical uncertainty of the SSB from 1972 to 2001. Light lines denote 25% and 75% confidence interval and dotted lines denote 5% and 95% confidence intervals.

| MFYPR version 1 Run: final nirs ypr | | |
| :---: | :---: | :---: |
| Reference point | F multiplier | Absolute F |
| Fbar(2-6) | 1.0000 | 0.2769 |
| FMax | >=1000000 | |
| F0.1 | 0.5995 | 0.1660 |
| F35\%SPR | 0.5037 | 0.1395 |
| Flow | 0.6211 | 0.1720 |
| Fmed | 1.3323 | 0.3689 |
| Fhigh | 2.3398 | 0.6479 |

MFDP version 1

Irish Sea 2001Projection index file Saturday, 17 March 2001
Time and date: 15:05 16/03/2002
Fbar age range: 2-6
Input units are thousands and kg - output in tonnes

Weights in kilograms
Figure 7.5.7. Herring VIIa(N). Long- and short-term yield and SSB, derived from MFDP V1a.

Figure 7.5.8. Herring VIIa(N). Recruitment to SSB plot for herring from 1972 to 1999. Lines donate the locations of $\mathbf{F}_{\text {high }}, \mathbf{F}_{\text {med }}$ and $\mathbf{F}_{\text {low }}$.

8.1 The Fishery

8.1.1 ACFM advice applicable for 2000 and 2001

ACFM advised that based on the historic relationship between the IBTS (February) survey index and catch, the 2001 survey values indicates that a catch of $225,000 \mathrm{t}$ in 2001 would allow the SSB to remain stable or increase. The TAC set by management was $225,000 \mathrm{t}$ for 2000 [Subarea IV(EU zone) + Division IIa (EU zone)] and 232,000 t for 2001. For 2002, the TAC agreed between the EU and Norway was set at 257,000t.

8.1.2 Total landings in 2001

Landing statistics for sprat for the North Sea by area and country are presented in Table 8.1.1 for 1987-2001. As in previous years, sprats from the fjords of western Norway are not included in the landings for the North Sea. Landings from the fjords are presented separately (Table 8.1.2) due to their uncertain stock identity. Table 8.1.3 shows the landings for 1994-2001 by year, quarter, and area in the North Sea.

The landings in 2001 were lower, $170,000 \mathrm{t}$, compared to 2000 where the landings were $196,000 \mathrm{t}$. This reduction was caused by a reduction in the Danish fishery, from 190,000 tonnes to 157,000 tonnes. An increase in the Norwegian sprat fishery from $2,700 \mathrm{t}$ in 2001 to $9,500 \mathrm{t}$ in 2001 could not counteract the decrease in the Danish fishery. The Danish fishery had high landings in January, September and October (37,000; 27,000 and 33,000 tonnes respectively). In November and December the sprat stock was more widely spread according to reports from the Danish fishing industry and therefore, the small meshed fishing fleet moved towards Norway pout instead. Neither Denmark nor Norway took their quota in 2001.

The quarterly and annual distributions of catches by rectangle for Subarea IV are shown in Figures 8.1.1-8.1.2.

The Norwegian sprat fishery is carried out by purse seiners. A closure of the Norwegian fishery was introduced for the second and third quarter in 1999 and this management regime is still in force. On top of this management regime, a maximum quota (900 t .) per vessel is set for the Norwegian vessels which are not allowed to fish in Norwegian waters in the period where fishery in EU-waters is open.

8.2 Catch Composition

8.2.1 By-catches in the North Sea sprat fishery

As requested by ACFM, data on the species composition of the by-catch of the Danish sprat fishery since 1998 is shown in Table 8.2.1. In general, more than 80% of the catches are sprat. The amount of herring caught as by-catch in the sprat fishery is in general less than 8% of the total catch although there is a slight increase in the total landings of herring in 2001 compared to previous years. No Norwegian landings by the purse seiners have been sampled in 2001.

The abundance of 0 and 1 ringer herring at the beginning of the year was plotted against 0 and 1 ringer herring in the Danish by-catch respectively over 1989-1995 when no by-catch ceiling was imposed to the sprat fishery (Figures 8.2.1. and 8.2.2.). There was an increasing by-catch of 0 ringer herring with increasing abundance of 0 ringer herring at the beginning of the year, thus herring abundance at the beginning of the year seems to be a good predictor of by-catches of 0 ringer herring by the sprat fishery. In contrast, no similar trend was found between abundance of 1 ringer herring and 1 ringer herring in the by-catches. By-catches of 0 and 1 ringer herring and sprat IBTS index of abundance during 19891995 are presented in Figure 8.2.3. The highest by-catch of herring was observed in 1992 when the sprat abundance was relatively low. However, the same pattern did not hold for 1990 and 1991 when sprat abundances were the lowest observed, but the abundance of 0 ringer herring was also relatively low. Although a relationship may be expected between sprat abundance and herring by-catch, the data suggest that this relationship is dependent on other processes too.

8.2.2 Catches in number

The estimated quarterly catch-at-age in numbers by country for the years 1995 to 2001 is presented in Table 8.2.2. Denmark provided age composition data of commercial landings in 2001 for quarters 1 to 3 . The same age composition as in quarter 3 was used to estimate the Danish landings in numbers during the fourth quarter. Data on age composition
of the Norwegian landings were reported in the first quarter. Danish samples were use to raise the Norwegian catches during the fourth quarter and the Swedish catches.

There is a predominance of age 1 sprat in the catches over all the years although the absolute composition varies from year to year, being higher in 1998-2000 compared to 2001. In contrast, age 0 sprat catches in 2001 were the highest reported since 1995, representing around 10% of the whole catch. During the second quarter Danish landings are very low.

8.2.3 Mean weight-at-age

Mean weights (g) at age in the catches during 2001 are presented by quarter in Table 8.2.3. The table includes mean weights-at-age for 1995-2000 for comparison.

8.2.4 Quality of catch and biological data

The sampling intensity for biological samples, i.e., age and weight-at-age, is given in Table 8.2.4. The sampling level in 2001 is lower than in previous years. The recommended level of one sample per $1,000 \mathrm{t}$ landed was not reached, but as the fishery was carried out in a limited area, the sampling level can be regarded as adequate.

The Danish monitoring schemes for management purposes for species composition in the Danish small meshed fisheries has again in 2001 worked well. A total of 2471 samples were collected from landings by Danish vessels taken in the North Sea. The sampling figure for 2000 was 1209 samples. The total landings from the Danish small mesh fishery in 2001 was $893,000 \mathrm{t}$ (all species) compared to $936,000 \mathrm{t}$ in 2000 . The recommended sampling levels for species composition were achieved. The species composition in the Danish sprat fishery is shown in Table 8.2.4.

No samples for species composition were taken from the Norwegian North Sea sprat fishery.

No sprat was reported as by-catch in the landings from the Norwegian small meshed fishery targeted at sandeel and Norway pout.

8.2.5 Maturity-at-age

During the Working Group, data on maturity and age were compiled from the Danish commercial catches during quarters 1,3 and 4 in 2001. Data on maturity were provided from the German acoustic surveys in June-July during 1996-2001. The data has not been further analysed during the Working Group but will be considered in the next Working Group together with data from 2002. No other countries contributed with data on maturity. No data was available from the IBTS survey during the third quarter in 2001.

8.3 Recruitment

The IBTS (February) sprat indices (no. per hour) in IVb (sprat standard area) are used as an index of abundance. The historical data were revised in 1995 (ICES 1995/Assess:13) and 1999 (ICES 1999/ACFM:12). The IBTS Working Group redefined the sprat index to be calculated as an area weighted mean over means by rectangles for the entire North Sea sprat stock. Based on this, the IBTS WG asked ICES Secretariat to carry out new calculations 2001(ICES 2000/D:07), which are the ones used in the present report. The fishing method (gear) in the IBTS-survey was standardised in 1983 and the data series from 1984 are comparable. The IBTS-indices for 1984-2002 are shown in Table 8.3.1 for age groups $1-4,5+$ and total, along with the number of rectangles sampled and the number of hauls considered. The index of 1-group increased and is now above the mean of the time-series. The abundance of the 1998year class was not detectable as higher than average and is as 4 -group below the average. The total-abundance index shows a small decrease compared to 2001, but is still well above average for the whole time-series. The old IBTSindices are available in ICES 2001/ACFM:12.

The IBTS data by rectangle are given in Figure 8.3.1a-c for age groups 1, 2 and 3+. Age 1-group was again found to be concentrated in the south-eastern areas of Division IVb and Division IVc. The mean lengths (mm) of age group 1 by rectangle are presented in Figure 8.3.2.

The acoustic surveys for the North Sea herring in June-July have estimated sprat abundance since 1996. In June-July 1998, sprat was mainly detected west of $1^{\circ} \mathrm{W}$ (R/V Tridens) (Simmonds et al, 1999). The acoustic estimates of sprat biomass in 1996-1999 were in the range of $40,000 \mathrm{t}$ to $210,000 \mathrm{t}$. In 1999 the acoustic estimate of sprat was very low. The low value was not thought to be representative mainly due to inappropriate coverage of the south-eastern area (ICES 2000), the area expected to have the highest abundance of sprat in the North Sea. In 2000 the survey was extended by $30 \mathrm{n} . \mathrm{mi}$ to the south and covered for the first time the south-eastern area considered to have the highest abundance of sprat in the North Sea. By doing so, the estimate of sprat was significantly increased. The distribution pattern demonstrates, However,, that the southern distribution border was still not reached. The total sprat biomass estimated was $200,000 \mathrm{t}$, while $98,000 \mathrm{t}$ were estimated in the south-eastern part of the North Sea (ICES/2002:G:02).

8.5 State of the Stock

8.5.1 Catch-survey data analysis

As has also been demonstrated by previous Working Groups (see ICES 1998/ACFM:14), the IBTS surveys do not fully reflect strong and weak cohorts for sprat. This may be due to difficulties in age reading and/or a possible prolonged spawning and recruitment season. However,, the IBTS-survey may still be a useful indicator of the level of the stock biomass used as such in production models.

The Biomass dynamic model (Schaefer model) was fitted using the Catch and Effort Data Analysis (CEDA) program, ver.1.01, (see ICES 1993/ACFM:13 and Holden et al., 1995), assuming that the sprat in the North Sea belongs to one stock. The annual landings for 1972-2001 and the IBTS (February) abundance indices for 1984 to 2001 were used as input data. Mean weights-at-age for age groups 1 to $4+$ calculated from the biological data from commercial landings in $1^{\text {st }}$ quarter of 1995-2001 were used to compute a total IBTS-biomass index to be fitted by the model (Table 8.5.1).

The level of the initial proportion, i.e. the ratio of stock size at the start of catch data to unexploited stock size (K), is a fixed parameter in the fit. It is difficult to decide on what value to use for the initial proportion as the initial, unexploited stock size is not known and the catches were exceptionally high at that time. This year's analysis was performed using 0.8 as an initial proportion based on the results from sensitivity tests carried out by the WG in 2001. The model fits the data reasonably well, as shown in Figure 8.5.1. Point estimates and 95% confidence intervals for the model parameters K, r (stock intrinsic growth rate) and q (catchability) are shown below.

| Parameter | Estimate (95\% CI) |
| :---: | :---: |
| R | $1,777 \mathrm{E} 3(1643 \mathrm{E} 3-2395 \mathrm{E} 3)$ |
| Q | $3.423 \mathrm{E}-5(7.5 \mathrm{E}-6-4.41 \mathrm{E}-5)$ |
| R | $0.71(0.42-0.81)$ |

Preliminary runs were performed using CEDA program ver. 2.01 as this version has a better user inter-face than version 1.01 and has apparently incorporated improved techniques for non-linear minimisation. However,, comparison of results from both versions showed significant differences in the point estimates of the parameters. That resulting in similar trends in biomass but, in the case of V 2.01, in a higher biomass level throughout the period considered. The WG decided to use version 1.01 for this assessment based on the fact that it gave consistent results for the past two years. An explanation for the observed differences in parameter estimates will be sought before the 2003WG meeting.

8.6 Projections of Catch and Stock

The regressions of the total catches and the total IBTS indices for 1984-2001 are given in Figure 8.6.1 $\left(r^{2}=0.368\right)$. From this a predicted yield for 2002 is about $180,000 \mathrm{t}$. The TAC set for 2002 is $225,000 \mathrm{t}$.

The SHOT- approach (Shepherd, 1991) was used to estimate the 2002 landings. Using the total IBTS abundance index and the annual exploitation ratio based on the CEDA assessment estimates of biomass; the predicted landings for 2002 are 181,000 tonnes (Table 8.6.1).

Three year forward biomass projections, obtained by means of the CEDA package (v 1.01), for five scenarios of annual catches: $175,000 \mathrm{t}, 200,000 \mathrm{t}, 225,000 \mathrm{t}, 250,000 \mathrm{t}$ and $300,000 \mathrm{t}$, are illustrated in Figure 8.6.2. Those scenarios were based on the current catch level and the projections from the regression and the SHOT-estimate. The biomass trajectories suggest that the stock would remain stable or increase under those catch levels, However, the 95%
confidence levels as estimated from the model include a wide range of biomass levels (roughly between 200,000$1800,000 \mathrm{t}$) for the lower catch level considered (Figure 8.6.3).

The biomass dynamic model has some attractions over the SHOT method for stock projections. First, the biomass dynamic model is based on a production function (the Schaefer function, in this case) with parameters (r, K), which are interpretable in terms of population dynamics. The SHOT procedure, although also based on the concept of production, is more ad-hoc, and the estimated parameters are not as easily interpreted. Second, the biomass dynamic model projections give useful indications of how the stock may evolve under different future catches, and the estimated stock dynamics. Nonetheless, young fish dominates the sprat catches and the population is strongly driven by recruitment. Most of the production of the stock is therefore likely to be due to recruitment and the growth of recruits rather than the growth of post-recruits. Care should therefore be taken not to over-interpret the biomass dynamic model.

8.7 Quality of the Assessment

Trends in the mean weights-at-age during the first quarter used to compute the biomass index from the IBTS have been reviewed. No trend was observed in the mean weights-at-age over time, therefore an average over all the years was used. Problems with the IBTS abundance index were highlighted. Problems associated with the underestimation of the autumn-hatched sprat in the IBTS (February) survey used as an abundance index were discussed. No data was provided to the W.G. from the IBTS survey conducted during the third quarter. If this data were available prior to W.G. in 2003 a comparison between both indices could be performed with the aim of combining both indices and ultimately to obtain an index of abundance of age 1 sprat. Further, examination on maturity at length and at age, available from the IBTS conducted in the $3^{\text {rd }}$ quarter, could provide important insight into the maturity dynamics during the autumn, resulting in a better understanding of the spawning and recruitment processes.

Alternative assessment methods for this stock were considered by the WG. Age-structured models are not an option because of fundamental problems associated with ageing the stock. Delay-difference models that would fit both an index of total biomass and an index of abundance of age-1 sprat could capture the dynamics of the stock more precisely than the basic biomass dynamic model used at present.

8.8 Management Considerations

The sprat stock shows signs of being in good condition as both catch and biomass appear to increase and there is indication from the IBTS (February)-2002-survey of a good 2001 year class recruiting to the 2002 fishery. The natural inter-annual variability in stock abundance, mainly driven by recruitment variability, is high and does not appear to be strongly influenced by fishing effort. A TAC for 2002 could lie within a range of 200-250 000 tonnes. Because the fishery in a given year is very dependent on that year's incoming year class, the Working Group is not able to predict catches for 2003. The sprat fishery is also controlled by the amount of herring caught as by-catch, and in some periods the sprat fishery has been closed due to high proportions of herring in the catch. High by-catch of 0 and 1 ringer herring is expected to occur during the third and the forth quarter in 2002 as herring in-coming year classes are estimated to be relatively strong. Therefore, the sprat fishery in 2002 may be driven by the herring by-catch rather than by the actual sprat TAC.

Attempts to assess this stock have highlighted the need for a better survey coverage of the S-SE areas of the North Sea and for the collection of age data. Also, a need to gain understanding of the spawning and recruitment processes, focusing on autumn-spawning, has been noted. Data from the IBTS in the third quarter together with data of maturity around the year could be used for that purpose. Therefore, the group recommends that countries involved in IBTS analyse data on maturity-at-age of sprat and make available the results prior to the 2003 WG meeting. There are indications that larvae from autumn-spawning over-winter as larvae and metamorphose the year after without forming a winter-ring during the first winter (Alshuth, 1988). A fraction of the population may be incorrectly allocated to a year class as a result, producing cumulative errors in the ageing as reported by Torstensen (2002, WD5). The group recommends a review of the criteria used for ageing sprat and further validation of the formation of winter rings and allocation to year classes.

Table 8.1.1 Sprat catches in the North Sea (' 000 t) 1987-2001. Catch in fjords of western Norway excluded. (Data provided by Working Group members except where indicated). These figures do not in all cases correspond to the official statistics and cannot be used for management purposes.

| Country | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Division IVa West (North Sea) stock | | | | | | | | | | | | | | | |
| Denmark | 0.2 | 0.1 | | | | 0.3 | 0.6 | | | | | | 0.7 | | 0.1 |
| Netherlands | | | | | | | | | | | | | | | |
| Norway | | | | | 0.1 | | | | | | | | | | |
| Sweden | | | | | | | | | | | | | | | 0.1 |
| UK(Scotland) | | | | | | | | 0.1 | | | | | | | |
| Total | 0.2 | 0.1 | | | 0.1 | 0.3 | 0.6 | 0.1 | | | | | 0.7 | | 0.2 |
| Division IVa East (North Sea) stock | | | | | | | | | | | | | | | |
| Denmark | | | | | | | | | | 0.3 | | | | | |
| Norway | | | | | | 0.5 | 2.5 | | 0.1 | | | | | | |
| Sweden | | | | | 2.5 | | | | | | | | | | |
| Total | | | | | 2.5 | 0.5 | 2.5 | | 0.1 | 0.3 | | | | | |
| Division IVb West | | | | | | | | | | | | | | | |
| Denmark | 3.4 | 1.4 | 2.0 | 10.0 | 9.4 | 19.9 | 13.0 | 19.0 | 26.0 | 1.8 | 82.2 | 21.1 | 13.2 | 18.8 | 11.1 |
| Norway | | 3.5 | 0.1 | 1.2 | 4.4 | 18.4 | 16.8 | 12.6 | 21.0 | 1.9 | 2.3 | | | | 0.9 |
| UK(Engl.\&Wales) | | | | | | 0.5 | 0.5 | | | | | | | | |
| UK(Scotland) | 0.1 | | | | | | 0.5 | | | | | | 0.8 | | |
| Total | 3.5 | 4.9 | 2.1 | 11.2 | 13.8 | 38.8 | 30.8 | 31.6 | 47.0 | 3.7 | 84.5 | 21.1 | 14.0 | 18.8 | 12.0 |
| Division IVb East | | | | | | | | | | | | | | | |
| Denmark | 28.0 | 80.7 | 59.2 | 59.2 | 67.0 | 66.6 | 136.2 | 251.7 | 283.2 | 74.7 | 10.9 | 98.2 | 147.1 | 144.1 | 132.9 |
| Germany | | | | | | | | | | | | | | | |
| Norway | | 0.6 | | 0.6 | 25.1 | 9.5 | 24.1 | 19.1 | 14.7 | 50.9 | 0.8 | 15.3 | 13.1 | 0.9 | 5.0 |
| Sweden | | | | + | + | | | | 0.2 | 0.5 | | 1.7 | 2.1 | | 1.4 |
| UK(Scotland) | | | | | | | | | | | | | 0.6 | | |
| Total | 28.0 | 81.3 | 59.2 | 59.8 | 92.1 | 76.1 | 160.3 | 270.8 | 298.1 | 126.1 | 11.7 | 115.2 | 162.9 | 145.0 | 139.3 |
| Division IVe | | | | | | | | | | | | | | | |
| Denmark | | 0.1 | 0.5 | 1.5 | 1.7 | 2.5 | 3.5 | 10.1 | 11.4 | 3.9 | 5.7 | 11.8 | 3.3 | 28.2 | 13.1 |
| France | | | | | | | | | + | | | | | | |
| Netherlands | | 0.4 | 0.4 | | | | | | | | | | 0.2 | | |
| Norway | | | | | | | 0.4 | 4.6 | 0.4 | | 0.1 | 16.0 | 5.7 | 1.8 | 3.6 |
| UK(Engl.\&Wales) | 0.7 | 0.6 | 0.9 | 0.2 | 1.8 | 6.1 | 2.0 | 2.9 | 0.2 | 2.6 | 1.4 | 0.2 | 1.6 | 2.0 | 2.0 |
| Total | 0.7 | 1.1 | 1.8 | 1.7 | 3.5 | 8.6 | 5.9 | 17.6 | 12.0 | 6.5 | 7.2 | 28.0 | 10.8 | 32.0 | 18.7 |
| Total North Sea | | | | | | | | | | | | | | | |
| Denmark | 31.6 | 82.3 | 61.7 | 70.7 | 78.1 | 89.2 | 153.3 | 280.8 | 320.6 | 80.7 | 98.8 | 131.1 | 164.3 | 191.1 | 157.2 |
| France | | | | | | | | | + | | | | | | |
| Germany | | | | | | | | | | | | | | | |
| Netherlands | | 0.4 | 0.4 | | | | | | | | | | 0.2 | | |
| Norway | | 4.1 | 0.1 | 1.8 | 29.6 | 28.4 | 43.8 | 36.3 | 36.2 | 52.8 | 3.2 | 31.3 | 18.8 | 2.7 | 9.5 |
| Sweden | | | | | 2.5 | | | | | | | | 2.7 | | 1.4 |
| UK(Engl.\&Wales) | 0.7 | 0.6 | 0.9 | 0.2 | 1.8 | 6.6 | 2.5 | 2.9 | 0.2 | 2.6 | 1.4 | 0.2 | 1.6 | 2.0 | 2.0 |
| UK(Scotland) | 0.1 | | | | | | 0.5 | 0.1 | | | | | 0.8 | | |
| Total | 32.4 | 87.4 | 63.1 | 72.7 | 112.0 | 124.3 | 200.1 | 320.1 | 357.0 | 136.1 | 103.4 | 162.6 | 188.4 | 195.9 | 170.1 |

Table 8.1.2. Sprat catches (' 000 t) in the fjords of western Norway, 1985-2001.

| 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 7,1 | 2,2 | 8,3 | 5,3 | 2,4 | 2,7 | 3,2 | 3,8 | 1,9 | 5,3 | 3,7 | 3,3 | 3,1 | 2,5 | 3,3 |

${ }^{1}=$ preliminary
Table 8.1.3 Sprat catches (tonnes) in the North Sea by quarter. Catches in fjords of Western Norway excluded.

| Year Quarter | Area | | | | | Total | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | IVaE | IVbW | IVbE | IVc | |
| 1994 | 1 | | 42 | 2.616 | 17.227 | 16.081 | 35.966 |
| | 2 | | | 242 | 10.857 | - 1 | 11.100 |
| | 3 | | | 10.479 | 184.747 | | 195.226 |
| | 4 | 109 | | 18.224 | 57.959 | 1.503 | 77.796 |
| Total | | 109 | 42 | 31.561 | 270.790 | 17.586 | 320.088 |
| 1995 | 1 | | | 17.752 | 16.900 | 7.324 | 41.976 |
| | 2 | | | 1.138 | 5.752 | - 1 | 6.891 |
| | 3 | | 86 | 25.305 | 183.500 | 6 | 208.897 |
| | 4 | | 5 | 2.826 | 92.054 | 4.693 | 99.578 |
| Total | | | 91 | 47.021 | 298.206 | 12.024 | 357.342 |
| 1996 | 1 | | 459 | 2.471 | 81.020 | 6.103 | 90.053 |
| | 2 | | | 615 | 2.102 | 18 | 2.735 |
| | 3 | | | 242 | 6.259 | | 6.501 |
| | 4 | | 353 | 411 | 36.273 | 386 | 37.423 |
| Total | | | 812 | 3.739 | 125.654 | 6.507 | 136.712 |
| 1997 | 1 | | | 1.025 | 147 | 7.089 | 8.261 |
| | 2 | | | 189 | 1.054 | | 1.243 |
| | 3 | | 3 | 27.487 | 569 | | 28.059 |
| | 4 | | 81 | 55.814 | 9.878 | | 65.773 |
| Total | | | 84 | 84.515 | 11.648 | 7.089 | 103.336 |
| 1998 | 1 | | | 1.917 | 3.726 | 1.616 | 7.259 |
| | 2 | | 4 | 529 | 206 | 4 | 743 |
| | 3 | | | 4.926 | 55.155 | 215 | 60.296 |
| | 4 | | | 13.712 | 54.433 | 25.984 | 94.129 |
| Total | | | 4 | 21.084 | 113.520 | 27.819 | 162.427 |
| 1999 | 1 | | | 450 | 20.862 | 9.071 | 30.383 |
| | 2 | | | 108 | 1.048 | | 1.156 |
| | 3 | 1 | 17 | 7.840 | 121.186 | 415 | 129.459 |
| | 4 | 679 | 31 | 5.550 | 19.731 | 1.167 | 27.158 |
| Total | | 680 | 48 | 13.948 | 162.827 | 10.653 | 188.156 |
| 2000 | 1 | | | 2.686 | 15.440 | 28.063 | 46.189 |
| | 2 | | | 1.599 | 123 | 45 | 1.767 |
| | 3 | | | 14.405 | 116.901 | 1.216 | 132.522 |
| | 4 | | | 158 | 12.522 | 2.718 | 15.398 |
| Total | | | | 18.848 | 144.986 | 32.042 | 195.876 |
| 2001 | 1 | 115 | | 1.643 | 39.260 | 9.716 | 50.734 |
| | 2 | 0 | | 699 | 372 | | 1.071 |
| | 3 | 0 | | 947 | 43.226 | 480,9284 | 44.655 |
| | 4 | 79 | | 8.681 | 56.421 | 8537,876 | 73.719 |
| Total | | 194 | | 11.970 | 139.279 | 18.735 | 170.177 |

Table 8.2.1 Species composition in the Danish sprat fishery in tonnes and percentage of the total catch. Data is reported for 19982001.

| | Year | Sprat | Herring | Horse-mackerel | Whiting | Haddock | Mackerel | Other
 Cod
 species | | Total |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Table 8.2.2. North Sea Sprat. Catch in numbers (millions) by quarter and by age 1995-2001.

Table 8.2.3 North Sea Sprat. Mean weight (g) by quarter and by age for 1995-2001.

| Year | Quarter | Age | | | | | | $\begin{gathered} \hline \text { SOP } \\ \text { Tonnes } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 0 | 1 | 2 | 3 | 4 | 5+ | |
| 1995 | 1 | | 3.0 | 9.4 | 12.9 | 19.4 | | 41,976.0 |
| | 2 | | 3.0 | 8.4 | 10.3 | | | 6,891.0 |
| | 3 | 2.4 | 7.6 | 13.9 | 16.4 | 20.7 | | 208,897.0 |
| | 4 | | 10.5 | 13.9 | 16.2 | | | 99,578.0 |
| Weighted mean | | 2.40 | 8.38 | 12.79 | 13.83 | 19.47 | | 357,342.0 |
| 1996 | 1 | | 3.9 | 9.3 | 14.9 | 15.3 | 16.1 | 88,807.0 |
| | 2 | | 6.9 | 8.4 | 11.6 | 20.0 | 15.2 | 2,735.0 |
| | 3 | | 11.6 | 14.2 | 18.2 | 21.5 | | 6,501.0 |
| | 4 | | 12.1 | 15.9 | 17.2 | 20.5 | | 37,359.0 |
| Weighted mean | | | 9.97 | 10.49 | 15.12 | 15.58 | 16.03 | 135,401.0 |
| 1997 | 1 | | 8.0 | 10.0 | 15.0 | 17.0 | 19.0 | 8,161.0 |
| | 2 | | 8.0 | 10.0 | 15.0 | 17.0 | 19.0 | 1,243.0 |
| | 3 | | 14.2 | | | | | 28,285.0 |
| | 4 | 3.7 | 11.9 | 16.4 | 19.1 | 19.6 | | 63,083.0 |
| Weighted mean | | 3.73 | 12.67 | 14.66 | 16.26 | 18.24 | 19.00 | 100,772.0 |
| 1998 | 1 | | 5.6 | 6.0 | 8.7 | 15.0 | | 7,232.0 |
| | 2 | | 5.6 | 6.0 | 8.3 | | | 743.0 |
| | 3 | 3.7 | 14.7 | 15.3 | | | | 60,149.0 |
| | 4 | 4.1 | 10.6 | 13.8 | 16.3 | 14.6 | | 94,173.0 |
| Weighted mean | | 4.03 | 11.69 | 12.80 | 15.98 | 14.65 | | 162,297.0 |
| 1999 | 1 | | 3.3 | 8.7 | 12.5 | 14.4 | 16.3 | 30,168.0 |
| | 2 | | 3.1 | 10.1 | 13.6 | 15.4 | | 993.0 |
| | 3 | | 10.0 | 18.3 | | | | 129,383.0 |
| | 4 | 4.4 | 11.0 | 14.4 | | | | 27,126.0 |
| Weighted mean | | 4.42 | 9.78 | 9.39 | 12.49 | 14.43 | 16.34 | 187,670.0 |
| 2000 | 1 | | 4.2 | 10.1 | 10.7 | 10.2 | 10.5 | 46,192.0 |
| | 2 | | 3.3 | 9.0 | 10.2 | 12.8 | 10.5 | 1,767.0 |
| | 3 | | 11.9 | 11.9 | 11.0 | | | 132,563.0 |
| | 4 | | 11.9 | 11.9 | 11.0 | | | 15,403.0 |
| Weighted mean | | | 11.55 | 10.56 | 10.68 | 10.33 | 10.52 | 195,925.0 |
| 2001 | 1 | | 3.3 | 9.7 | 12.9 | 16.5 | | 50,794.0 |
| | 2 | | 3.3 | 10.3 | 12.9 | | | 1,071.0 |
| | 3 | 4.0 | 12.0 | 15.3 | | | | 44,656.0 |
| | 4 | 3.8 | 11.6 | 12.6 | 19.1 | | | 73,444.0 |
| Weighted mean | | 3.75 | 10.99 | 10.80 | 13.91 | 16.53 | | 169,967.0 |

| $\begin{array}{ll}\text { Table 8.2.4 } & \\ & \\ & \text { sa }\end{array}$ | North Sea Sprat. Sampling commercial landings for biological samples in 2001 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Country | Quarter | Landings 000t | No samples | No fish meas. | No
 fish aged |
| 2001 | | | | | |
| Denmark | | 139.5 | 12 | 1,071 | 49 |
| | | 21.1 | 37 | 258 | |
| | | $3 \quad 44.7$ | 4 | 354 | 50 |
| | | $4 \quad 71.7$ | 5 | 640 | 151 |
| | Total | 156.9 | 58 | 2,323 | 250 |
| Norway | | $1 \quad 9.2$ | 5 | 450 | 400 |
| | | 2 | | | |
| | | 3 | | | |
| | | 40.3 | | | |
| | Total | 9.5 | 5 | 450 | 400 |
| Sweden | | 10.4 | | | |
| | | 2 | | | |
| | | 3 | | | |
| | | 41.085 | | | |
| | Total | 1.5 | | | |
| UK-England/Wales | | $1 \quad 1.6$ | | | |
| | | 2 | | | |
| | | 3 | | | |
| | | $4 \quad 0.4$ | | | |
| | Total | 2.0 | | | |
| UK-Scotland | | 1 | | | |
| | | 2 | | | |
| | | 3 | | | |
| | | 4 | | | |
| Total | | | | | |
| Total North Sea | | 170.0 | 63 | 2773 | 650 |

Table 8.3.1 North Sea Sprat. Abundance indices by age group from IBTS(February), 19842001, in the standard sprat area (Div. IVb). NEW revised data.

| Year | No rect. | No hauls | Age | | | | | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | 1 | | | | | | | | 2 | 3 | 4 | $5+$ | Total |
| | | | | | | | | | | | | | | | |
| 1984 | 80 | 251 | 232.40 | 330.20 | 39.60 | 6.20 | 0.30 | 608.70 | | | | | | | |
| 1985 | 79 | 289 | 375.90 | 195.30 | 26.70 | 3.80 | 0.40 | 602.10 | | | | | | | |
| 1986 | 78 | 285 | 44.20 | 73.60 | 22.00 | 1.20 | 0.20 | 141.20 | | | | | | | |
| 1987 | 78 | 299 | 542.40 | 66.80 | 19.60 | 2.00 | 0.20 | 631.00 | | | | | | | |
| 1988 | 78 | 208 | 91.40 | 887.20 | 61.60 | 6.90 | 0.00 | 1047.10 | | | | | | | |
| 1989 | 79 | 236 | 2297.20 | 472.80 | 269.80 | 5.40 | 1.60 | 3046.80 | | | | | | | |
| 1990 | 78 | 192 | 234.90 | 452.00 | 102.10 | 28.10 | 2.20 | 819.30 | | | | | | | |
| 1991 | 78 | 179 | 677.30 | 93.30 | 23.30 | 2.60 | 0.10 | 796.60 | | | | | | | |
| 1992 | 79 | 185 | 1041.00 | 291.90 | 42.40 | 7.10 | 0.50 | 1382.90 | | | | | | | |
| 1993 | 79 | 181 | 1030.60 | 604.40 | 118.40 | 6.10 | 0.30 | 1759.80 | | | | | | | |
| 1994 | 78 | 173 | 2428.50 | 932.60 | 91.40 | 3.60 | 0.50 | 3456.60 | | | | | | | |
| 1995 | 79 | 166 | 647.40 | 1613.90 | 87.30 | 2.50 | 0.80 | 2351.90 | | | | | | | |
| 1996 | 78 | 146 | 182.40 | 387.20 | 146.80 | 18.30 | 0.70 | 735.40 | | | | | | | |
| 1997 | 79 | 159 | 591.40 | 412.40 | 179.60 | 15.50 | 2.20 | 1201.10 | | | | | | | |
| 1998 | 79 | 197 | 1171.10 | 1457.20 | 306.10 | 15.80 | 3.40 | 2953.60 | | | | | | | |
| 1999 | 78 | 177 | 2509.50 | 562.40 | 80.40 | 4.80 | 25.10 | 3182.2 | | | | | | | |
| 2000 | 78 | 177 | 1058.80 | 907 | 277.5 | 43.9 | 0.9 | 2288.1 | | | | | | | |
| 2001 | 78 | 171 | 883.10 | 1055.80 | 185.20 | 17.50 | 0.10 | 2141.70 | | | | | | | |
| 2002 | 78 | 171 | 1382.60 | 604.50 | 74.40 | 8.40 | 0.60 | 2070.50 | | | | | | | |

Table 8.5.1 North Sea Sprat. IBTS(February) " indices of biomass". by age group 1984-2000. The mean weights are calculated from data in the commercial landings, 1st.quarter, in 1995-2001.

| Year | Age | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: |
| | 1 | | | | |
| 1984 | 1046 | 2972 | 495 | 100 | 4613 |
| 1985 | 1692 | 1758 | 334 | 65 | 3848 |
| 1986 | 199 | 662 | 275 | 22 | 1158 |
| 1987 | 2441 | 601 | 245 | 34 | 3321 |
| 1988 | 411 | 7985 | 770 | 106 | 9272 |
| 1989 | 10337 | 4255 | 3373 | 108 | 18073 |
| 1990 | 1057 | 4068 | 1276 | 467 | 6868 |
| 1991 | 3048 | 840 | 291 | 42 | 4220 |
| 1992 | 4685 | 2627 | 530 | 117 | 7959 |
| 1993 | 4638 | 5440 | 1480 | 99 | 11656 |
| 1994 | 10928 | 8393 | 1143 | 63 | 20527 |
| 1995 | 2913 | 14525 | 1091 | 51 | 18580 |
| 1996 | 821 | 3485 | 1835 | 293 | 6433 |
| 1997 | 2661 | 3712 | 2245 | 273 | 8890 |
| 1998 | 5270 | 13115 | 3826 | 296 | 22507 |
| 1999 | 11293 | 5062 | 1005 | 460 | 17820 |
| 2000 | 4765 | 8163 | 3469 | 690 | 17086 |
| 2001 | 3974 | 9502 | 2315 | 271 | 16062 |
| 2002 | 6222 | 5441 | 930 | 139 | 12731 |
| Mean W (g) | 4.5 | 9.0 | 12.5 | 15.4 | |

Table 8.6.1. SHOT forecast.

Sprat catches 2001, 1st Quarter

Figure 8.1.1a: Sprat catches (in tonnes) in the North Sea in 2001 by statistical rectangle. Working group estimates (if available). First quarter.

Sprat catches 2001, 2nd Quarter

Figure 8.1.1b: Sprat catches (in tonnes) in the North Sea in 2001 by statistical rectangle. Working group estimates (if available). Second quarter.

Sprat catches 2001, 3rd Quarter

Figure 8.1.1c: Sprat catches (in tonnes) in the North Sea in 2001 by statistical rectangle. Working group estimates (if available). Third quarter.

Sprat catches 2001, 4th Quarter

Figure 8.1.1d: Sprat catches (in tonnes) in the North Sea in 2001 by statistical rectangle. Working group estimates (if available). Fourth quarter.

Sprat catches 2001, all quarters

Figure 8.1.2: Total Sprat catches (in tonnes) in the North Sea in 2001 by statistical rectangle. Circle diameter is proportional to catch in tones. Working group estimates (if available).

Figure 8.2.1. Number of 0 ringer herring (in millions) at the beginning of the year and 0 ringer herring caught as by-catch by the Danish Sprat Fishery (in millions) over 1989-1995 when data available.

Figure 8.2.2. Number of 1 ringer herring (in millions) at the beginning of the year and 1 ringer herring caught as by-catch by the Danish Sprat Fishery (in millions) over 1989-1995 when data available.

Figure 8.2.3. IBTS sprat index of abundance (no per hour) and number of 0-1 ringer herring by-catch by the Danish Sprat Fishery (in millions) over 1989-1995 when data available.

Sprat age group 1, IBTS quarter 12002

Figure 8.3.1a. Distribution by age groups in the IBTS (February) 2002 in the North Sea and Division IIIa.

Sprat age group 2, IBTS quarter 12002

Figure 8.3.1b. Continued. Distribution by age groups in the IBTS (February) 2002 in the North Sea and Division IIIa. Sprat age group 2.

Sprat age group 3, IBTS quarter 12002

Figure 8.3.1c Continued. Distribution by age groups in the IBTS (February) 2002 in the North Sea and Division IIIa. Sprat age group 3.

Sprat age group 1 mean lengths, IBTS quarter 12002

Figure 8.3.2. Mean length (mm) of age group 1sprat in the IBTS (February) 2002 in the North Sea and Division IIIa.

DATASET: 2002 neul IBTS
HOCEL: PROC. MODEL (SCHAEFER) Fit: Log Transform CPUE Timing: Start
In. Proportion: 0.800 Time Lag: $0 . \quad R^{2}=0.616$
$K=1.777 \mathrm{E}+0003 \mathrm{G}=3.423 \mathrm{E}-0005 \quad \mathrm{r}=7.099 \mathrm{E}-0001 \mathrm{U}(\mathrm{ln}[\mathrm{Ct}])=2.3 \mathrm{E}-0001$

| | |
| :---: | :---: |
| | Biamass |

Figure 8.5.1 North Sea sprat. Results from the CEDA (v 1.01) assessment: Schaefer model, initial biomass proportion = 0.8 , error model log-normal. Plots correspond to the model fit to the IBTS biomass index (CPUE), residual plots and estimated biomass trajectory (Estimated parameters are K : carrying capacity (in thousand tonnes), r : intrinsic growth rate, q : catchability).

IBTS indices versus the total catch in the period 1987-2001.

Figure 8.6.1 IBTS indices versus the total catch (1987-2001). The regression line is forced through the intercept; R^{2} equals 0.368 . The arrow indicates the biomass index for 2002 (12731).

| | DATASET: 2002 new IBTS
 MODEL: PROD. MODEL (SCHAEFER) Fit: Log Transform CPUE Timing: Start
 In. Proportion: 0.800 Time Lag: $0 . \quad R^{2}=0.616$ $K=1.777 \mathrm{E}+0003 \mathrm{U}=3.423 \mathrm{E}-0005 \quad r=7.099 \mathrm{E}-0001 \mathrm{u}(1 \mathrm{n}[\mathrm{Ct}])=2.3 \mathrm{E}-0001$ |
| :---: | :---: |
| Population | |

Figure 8.6.2 3-yr forward projection of the biomass of North Sea sprat as predicted by CEDA (v1.01). Constant catch scenarios explored were: $175,200,225,250$ and 300 thousand tonnes.

Figure 8.6.3 Historic biomass trajectory for North Sea sprat and 3-yrs forward projection for a constant annual catch of 175 thousand tonnes with associated 95% confidence intervals as estimated by CEDA (v1.01).

9.1.1 ACFM advice applicable for 2001

The TAC for this fishery was set to 12000 t for 2001 and 2002. No ACFM advice has been provided in recent years.

9.1.2 Catches in 2001

Table 9.1.1 shows the nominal landings in 1985-2001. The landings in 2001, as reported by UK (England\&Wales), decreased in 2001 and were lower than the average for the period. The landings are commercial data from English and Welsh vessels landing into England and Wales. Monthly catches for the Lyme Bay sprat fishery in the period from 1991 to early 2002 show that the catches are mainly taken in third and fourth quarter (Table 9.1.2).

9.1.3 Catch composition

Catch compositions and the mean weights for 1991-1998 are given in Tables 9.2.1 and 9.2.2. No samples of commercial catches have been available for 1999, 2000 and 2001.

Table 9.1.1 Nominal catch of sprat (t) in Divisions VIId, e, 1985-2001.

| Country | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark | | 15 | 250 | 2,529 | 2,092 | 608 | | |
| France | 14 | | 23 | 2 | 10 | | | 35 |
| Germany | | | | | | | | |
| Netherlands | | | | | | | | |
| UK (Engl.\&Wales) | 3,771 | 1,163 | 2,441 | 2,944 | 1,319 | 1,508 | 2,567 | 1,790 |
| Total | 3,785 | 1,178 | 2,714 | 5,475 | 3,421 | 2,116 | 2,567 | 1,825 |
| Country | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |
| Denmark | | | | | | | | |
| France | 2 | 1 | 0 | | | | | 18 |
| Germany | | | | | | | | |
| Netherlands | | | | | | | 1 | 1 |
| UK (Engl.\&Wales) | 1,798 | 3,177 | 1,515 | 1,789 | 1,621 | 2,024 | 3,559 | 1,692 |
| Total | 1,800 | 3,178 | 1,515 | 1,789 | 1,621 | 2,024 | 3,560 | 1,711 |
| Country | 2001* | | | | | | | |
| Denmark | | | | | | | | |
| France | | | | | | | | |
| Germany | | | | | | | | |
| Netherlands | | | | | | | | |
| UK (Engl.\&Wales) | 1,349 | | | | | | | |
| Total | 1,349 | | | | | | | |
| * Preliminary | | | | | | | | |

Table 9.1.2 Lyme Bay sprat fishery. Monthly catches (t) 1991-2001. UK vessels only.

| Season | May | | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Total | | | | | | | | | | | | | |
| $1991 / 92$ | 0 | 0 | 0 | 205 | 450 | 952 | 60 | 358 | 258 | 109 | 51 | 0 | 2443 |
| $1992 / 93$ | 0 | 0 | 0 | 302 | 472 | 189 | 294 | 248 | 284 | 158 | 78 | 0 | 2025 |
| $1993 / 94$ | 0 | 8 | 0 | 156 | 82 | 302 | 529 | 208 | 417 | 134 | 53 | 0 | 1889 |
| $1994 / 95$ | 0 | 0 | 0 | 299 | 834 | 545 | 608 | 232 | 112 | 68 | 0 | 0 | 2698 |
| $1995 / 96$ | 0 | 0 | 0 | 154 | 409 | 301 | 307 | 151 | 15 | 80 | 28 | 4 | 1449 |
| $1996 / 97$ | 0 | 0 | 0 | 309 | 452 | 586 | 47 | 243 | 239 | 74 | 30 | 0 | 1980 |
| $1997 / 98$ | 2 | 0 | 14 | 259 | 625 | 105 | 255 | 19 | 50 | 184 | 45 | 0 | 1558 |
| $1998 / 99$ | 0 | 0 | 0 | 337 | 728 | 206 | 56 | 318 | 15 | 149 | 33 | 0 | 1842 |
| $1999 / 00$ | 0 | 0 | 0 | 699 | 1306 | 547 | 544 | 242 | 75 | 34 | 0 | 0 | 3447 |
| $2000 / 01$ | 0 | 0 | 0 | 173 | 541 | 586 | 163 | 114 | 74 | 36 | 0 | 0 | 1686 |
| $2001 / 02$ | 0 | 0 | 0 | 458 | 338 | 171 | 50 | 213 | | | | | 1230 |

Table 9.2.1 Lyme Bay sprat fishery. Number caught by age group (millions).

| Season | | 0/1 | 1/2 | 2/3 | 3/4 | 4/5 | 5/6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991/92 | | 1.7 | 56.03 | 44.69 | 16.24 | 0.57 | 0.03 |
| $1992 / 93^{1}$ | | 0.22 | 28.23 | 48.61 | 12.94 | 1.56 | 0 |
| 1993/94 ${ }^{2}$ | | 0 | 0.83 | 44.81 | 15.7 | 1.95 | 0.58 |
| 1994/95 | No data | | | | | | |
| | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| $1995{ }^{3}$ | | 0.33 | 5.20 | 2.31 | 0.23 | 0.03 | |
| 1996 | 0.72 | 12.60 | 71.35 | 22.00 | 1.24 | 0.20 | |
| 1997 | | 8.81 | 42.88 | 31.87 | 5.43 | 0.10 | |
| 1998 | | 4.08 | 81.16 | 37.52 | 5.05 | 0.39 | |
| 1999 | | | No data | | | | |
| 2000 | | | No data | | | | |
| 2001 | | | No data | | | | |

August to December only (samples in August and December only, so these are best estimates
2 August to December only (samples in August, September and November only, so these are best estimates
3 Only September (one sample)

Table 9.2.2 Lyme Bay area SPRAT. 1991-1998 mean weight (g) at age.

| | | Age | | | | | | |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Season | Quarter | $0 / 1$ | $1 / 2$ | $2 / 3$ | $3 / 4$ | $4 / 5$ | $5 / 6$ | Overall
 mean |
| $1991 / 91$ | 3 | 4.7 | 16.6 | 22.6 | 25.4 | 29.2 | 34.6 | 20.7 |
| | 4 | 6.6 | 17.1 | 23 | 26.3 | 30.9 | | 21.0 |
| | 1 | 5.7 | 13.3 | 17.5 | 20.2 | 24.1 | | 14.4 |
| $1992 / 93$ | 3 | 4.2 | 12.1 | 22.8 | 24.6 | 32.4 | | 21.8 |
| | 4 | | 15.8 | 20.0 | 23.8 | 24.8 | | 21.0 |
| | 1 | | 13.2 | 17.1 | 21.2 | | | 14.2 |
| $1993 / 94$ | 3 | | | 19.1 | 22.2 | 20.8 | | 19.8 |
| | 1 | | | 14.2 | 18.9 | 24.5 | 28.1 | 25.5 |
| | | | | | | | | 20.6 |

| | | Age | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Season | Quarter | 0 | 1 | 2 | 3 | 4 | 5 | 6 | Overall mean |
| 1995 | 3^{2} | - | - | 12.0 | 17.0 | 19.0 | 21.0 | 29.0 | - |
| 1996 | 1 | | | 8.0 | 11.0 | 13.0 | 13.0 | | - |
| | 4 | 8.0 | 15.0 | 19.0 | 23.0 | 28.0 | | | - |
| 1997 | 1 | | 10.0 | 15.0 | 19.0 | 22.0 | 28.0 | | |
| | 3 | | 13.0 | 17.0 | 19.0 | 24.0 | | | |
| | 4 | | 17.0 | 20.0 | 22.0 | 23.0 | | | |
| 1998 | 1 | | 11.0 | 13.0 | 18.0 | 21.0 | 28.0 | | 15.0 |

${ }^{1}$ Based on November samples only.
${ }^{2}$ Based on September sample only.

10.1.1 ACFM advice applicable for 2001 and 2002

No ACFM advice on sprat TAC has been given in recent years. The sprat TAC for 2001 was $50,000 \mathrm{t}$, with a restriction on by-catches of herring not exceeding $21,000 \mathrm{t}$. For 2002 the same values were set as in 2001 .

10.1.2 Landings

Prior to 1998 a mixed-clupeoid fishery management regime existed. In 1997 this fishery management regime was changed and the new agreement between EU and Norway implied that a TAC for sprat was set as well as a by-catch ceiling for herring.

The total annual landings for Division IIIa by area and country are given in Table 10.1.1 for 1974-2001. The total landings increased from 20,100 t in 2000 to $29,100 \mathrm{t}$ in 2001 and are the highest since 1995.

The Norwegian and Swedish landings include the coastal and fjord fisheries. Though the Swedish coastal sprat fishery increased in 2001, these landings continued to be low.

Landings by countries and by quarter are shown in Table 10.1.2. For 2001 the landings were taken in all quarters with the bulk of the catch in the $1^{\text {st }}$ quarter. In the second quarter only $1,400 \mathrm{t}$ were landed. Denmark has a total ban on the sprat fishery in Division IIIa from May to September.

10.1.3 Fleets

Fleets from Denmark, Norway and Sweden carry out the sprat fishery in Division IIIa.
The Danish sprat fishery consists of trawlers using a $16 \mathrm{~mm}-m e s h$ size codend and all landings are used for fishmeal and oil production. Some of the sprat landings from Denmark and Sweden are by-catches in the herring fishery using 32 mm mesh-size cod ends.

A Swedish directed sprat fishery with by-catches of herring is conducted, as well as a fishery carried out with small purse seiners at the west coast of Sweden and in the Swedish fjords.

The Norwegian sprat fishery in Division IIIa is an inshore purse seine fishery for human consumption.

10.2 Catch Composition

10.2.1 Catches in number and weight-at-age

The numbers and the mean weight by age in the landings from 1995 to 2001 are presented in Table 10.2.1 and Table 10.2.2, respectively. Landings, for which samples were collected, were raised using a combination of Swedish and Danish samples, without any differentiation in types of fleets. Quarterly and annual distributions of catches by rectangle are shown in Figures 8.1.1-8.1.2.

10.2.2 Quality of catch and biological data

Denmark reorganised and improved its monitoring system for management and scientific purposes in 1996. The required level of one sample per $1,000 \mathrm{t}$ landed was more than met in 2001 with 45 samples from a total landing of 20,900 tonnes.

Denmark has provided biological samples of all the quarters where there were landings in both the Skagerrak and the Kattegat. Sweden provided no biological samples from the fishery in Kattegat but did provide samples from quarter 1 and 4 from the Skagerrak. No Norwegian samples were collected.

The provided samples were used to estimate the numbers of sprat at age and the mean weight-at-age, in all sprat landings (Table 10.2.1 and Table 10.2.2). The sample size has slightly decreased, but was considered adequate. As in previous years, no samples of sprat were taken from the fisheries for human consumption. Therefore, data from the industrial landings were used for the estimation of numbers of sprat at age and the mean weight-at-age. Detail on the sampling for biological data per country, area and quarter are shown in Table 10.2.3.

10.3 Recruitment

The IBTS (February) sprat indices for 1984-2002 are presented in Table 10.3.1. The IBTS data are provided by rectangle in Figure 8.3.1 for age groups 1,2 and 3+, and the mean length (mm) of 1 -gr sprat in Figure 8.3.2. The indices are calculated as mean no. $/ \mathrm{hr}$ (CPUE) weighted by area where water depths are between 10 and 150 m (ICES 1995/Assess:13). The indices were revised in 2002 (ICES 2002/G:02) based on an agreement in the IBTS WG in 1999, where it was decided to calculate the sprat index as an area weighted mean over means by rectangles for the IIIa (ICES 1999/D:2). The old time-series of IBTS indices (from 1984-2001) is shown in ICES 2001/ACFM:10.

The 2002- IBTS index for age-group 1 is higher than the 2000-index and is above the average, however the remaining age-groups indices are lower than in 2001.

10.4 Acoustic Survey

Acoustic estimates of sprat were included in the ICES co-ordinated Herring Acoustic surveys in 1996. In 1996 the total estimate was 7.9×10^{8} fish or 14,267 tonnes. About 95% of the biomass was recorded in Kattegat. Since 1997 only individual sprat has been caught and no or low acoustic values allocated to sprat (ICES 2001/G:02). In the Acoustic survey in 2001 sprat were present in the Kattegat, but none were found in the Skagerrak (ICES 2002/G:02). The total biomass in the Kattegat was estimated to 8,000 tonnes.

10.5 State of the Stock

No assessments of the sprat stock in Division IIIa have been presented since 1985 and this year is no exception. From the experiences with the run of the Schaefer model in 1999 (ICES 1999/ACFM:12), the WG decided not to run the model this year, as the data did not fit the model. According to the IBTS (February)-index for 2002, the sprat stock in the area has decreased from last year.

10.6 Projection of Catch and Stock

There is no relationship between the IBTS (February) index (no / h) and the total catch in the same year $\left(\mathrm{r}^{2}=0.01\right.$), the data is shown in Figure 10.6.1, and the index was not considered useful for management of sprat at Div. IIIa.

The estimated yield for 2001 using the total IBTS index were 14,000 tonnes (Table 10.6.1) in a SHOT-estimate (Shepherd, 1991). This is considerably lower than the estimated yield for 2001 (32,000 tonnes), however this method is not considered to provide any reliable projection under the present management regime and the IBTS index is poor for this particular stock.

10.7 Management Considerations

Sprat in Division IIIa is short-lived with large inter-annual fluctuations in stock biomass. The natural inter-annual variability in stock abundance, mainly driven by recruitment variability, is high and does not appear to be strongly influenced by fishing effort.

The sprat has mainly been fished together with herring, except for 1994 and 1995 when a directed sprat fishery was carried out with low by-catches of herring. The human consumption fishery takes only a minor part of the total catch.

With the current management regime, where there are by-catch ceilings of herring as well as by-catch percentage limits, the sprat fishery is controlled by these factors. Attempts to assess this stock have demonstrated the need for improved sprat sampling for age data and a suitable biomass index. There is also a need for better knowledge of spawning seasons and recruitment from possible autumn spawners in the North Sea.

Table 10.1.1 SPRAT. Division IIIA. Landings in (1000 tonnes) 1974-2001.
(Data provided by Working Group members). These figures do not in all cases correspond to the official statistics and cannot be used for management purposes.

| | Skagerrak | | | | Kattegat | | | Div. IIIa
 total |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Year | Denmark | Sweden | Norway | Total | Denmark | Sweden | Total | 71.3 |
| 1974 | 17.9 | 2 | 1.2 | 21.1 | 31.6 | 18.6 | 50.2 | 70.6 |
| 1975 | 15 | 2.1 | 1.9 | 19 | 60.7 | 20.9 | 81.6 | 100.6 |
| 1976 | 12.8 | 2.6 | 2 | 17.4 | 27.9 | 13.5 | 41.4 | 58.8 |
| 1977 | 7.1 | 2.2 | 1.2 | 10.5 | 47.1 | 9.8 | 56.9 | 67.4 |
| 1978 | 26.6 | 2.2 | 2.7 | 31.5 | 37 | 9.4 | 46.4 | 77.9 |
| 1979 | 33.5 | 8.1 | 1.8 | 43.4 | 45.8 | 6.4 | 52.2 | 95.6 |
| 1980 | 31.7 | 4 | 3.4 | 39.1 | 35.8 | 9 | 44.8 | 83.9 |
| 1981 | 26.4 | 6.3 | 4.6 | 37.3 | 23 | 16 | 39 | 76.3 |

| Year | Skagerrak | | | Kattegat | | Div. IIIa | Division |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Denmark | Sweden | Norway | Denmark | Sweden | Sweden | Total |
| 1982 | 10.5 | | 1.9 | 21.4 | | 5.9 | 39.7 |
| 1983 | 3.4 | | 1.9 | 9.1 | | 13.0 | 27.4 |
| 1984 | 13.2 | | 1.8 | 10.9 | | 10.2 | 36.1 |
| 1985 | 1.3 | | 2.5 | 4.6 | | 11.3 | 19.7 |
| 1986 | 0.4 | | 1.1 | 0.9 | | 8.4 | 10.8 |
| 1987 | 1.4 | | 0.4 | 1.4 | | 11.2 | 14.4 |
| 1988 | 1.7 | | 0.3 | 1.3 | | 5.4 | 8.7 |
| 1989 | 0.9 | | 1.1 | 3.0 | | 4.8 | 9.8 |
| 1990 | 1.3 | | 1.3 | 1.1 | | 6.0 | 9.7 |
| 1991 | 4.2 | | 1.0 | 2.2 | | 6.6 | 14.0 |
| 1992 | 1.1 | | 0.6 | 2.2 | | 6.6 | 10.5 |
| 1993 | 0.6 | 4.7 | 1.3 | 0.8 | 1.7 | | 9.1 |
| 1994 | 47.7 | 32.2 | 1.8 | 11.7 | 2.6 | | 96.0 |
| 1995 | 29.1 | 9.7 | 0.5 | 11.7 | 4.6 | | 55.6 |
| 1996 | 7.0 | 3.5 | 1.0 | 3.4 | 3.1 | | 18.0 |
| 1997 | 7.0 | 3.1 | 0.4 | 4.6 | 0.7 | | 15.8 |
| 1998 | 3.9 | 5.2 | 1.0 | 7.3 | 1.0 | | 18.4 |
| 1999 | 6.8 | 6.4 | 0.2 | 10.4 | 2.9 | | 26.7 |
| 2000 | 5.1 | 4.3 | 0.9 | 7.7 | 2.1 | | 20.1 |
| 2001 | 5.2 | 4.5 | 1.4 | 14.9 | 3.0 | | 29.1 |

Table 10.1.2 Division IIIa Sprat. Landings of sprat ('000 t) by quarter and by countries, 1994-2001.
(Data provided by the Working Group members)

| | Quarter | Denmark | Norway | Sweden | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1994 | 1 | 0.3 | 0.0 | 0.5 | 0.8 |
| | 2 | 6.0 | 0.0 | 0.3 | 6.3 |
| | 3 | 37.0 | 0.1 | 23.0 | 60.1 |
| | 4 | 16.1 | 1.7 | 11.0 | 28.8 |
| | Total | 59.4 | 1.8 | 34.8 | 96.0 |
| 1995 | 1 | 4.8 | 0.1 | 4.8 | 9.7 |
| | 2 | 10.4 | 0.0 | 0.9 | 11.3 |
| | 3 | 19.3 | 0.0 | 2.3 | 21.6 |
| | 4 | 6.3 | 0.4 | 6.3 | 13.0 |
| | Total | 40.8 | 0.5 | 14.3 | 55.6 |
| 1996 | 1 | 5.6 | + | 4.2 | 9.8 |
| | 2 | 3.4 | | 0.2 | 3.6 |
| | 3 | + | 0.4 | + | 0.4 |
| | 4 | 1.4 | 0.6 | 2.2 | 4.2 |
| | Total | 10.4 | 1.0 | 6.6 | 18.0 |
| 1997 | 1 | 0.7 | - | 0.3 | 1.0 |
| | 2 | 0.4 | - | 1.2 | 1.6 |
| | 3 | 2.3 | - | 0.1 | 2.4 |
| | 4 | 8.2 | 0.4 | 2.2 | 10.8 |
| | Total | 11.6 | 0.4 | 3.8 | 15.8 |
| 1998 | 1 | 4.0 | 0.1 | 0.1 | 4.2 |
| | 2 | 0.9 | | + | 0.9 |
| | 3 | 1.1 | 0.3 | 0.4 | 1.8 |
| | 4 | 5.4 | 0.7 | 5.7 | 11.7 |
| | Total | 11.4 | 1.1 | 6.1 | 18.6 |
| 1999 | 1 | 3.5 | 0.0 | 4.0 | 7.5 |
| | 2 | 0.1 | | 0.2 | 0.3 |
| | 3 | 7.4 | 0.1 | 1.9 | 9.4 |
| | 4 | 6.2 | 0.1 | 3.3 | 9.6 |
| | Total | 17.2 | 0.2 | 9.3 | 26.7 |
| 2000 | 1 | 4.1 | 0.1 | 2.3 | 6.5 |
| | 2 | 0.0 | | 1.9 | 1.9 |
| | 3 | 4.8 | 0.1 | 0.0 | 4.9 |
| | 4 | 3.8 | 0.7 | 2.3 | 6.8 |
| | Total | 12.7 | 0.9 | 6.4 | 20.0 |
| 2001 | 1 | 2.5 | | 2.6 | 5.2 |
| | 2 | 6.6 | | 0.1 | 6.7 |
| | 3 | 10.2 | | 0.1 | 10.2 |
| | 4 | 0.9 | 1.4 | 4.8 | 7.1 |
| | Total | 20.2 | 1.4 | 7.6 | 29.1 |

+ Catch record, but amount not precisely known.

Table 10.2.1 Division IIIA Sprat. Landed numbers (millions) of sprat by age groups in 19952001.

| | Quarter | Age | | | | | | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 0 | 1 | 2 | 3 | 4 | 5+ | |
| 1995 | 1 | | 312.04 | 784.37 | 53.50 | 27.29 | 9.01 | 1186.20 |
| | 2 | | 1248.72 | 993.29 | 61.06 | 15.24 | 4.77 | 2323.08 |
| | 3 | | 1724.02 | 133.56 | 14.17 | | | 1871.74 |
| | 4 | | 902.76 | 139.95 | 29.95 | 10.58 | | 1083.25 |
| | Total | | 4187.54 | 2051.17 | 158.68 | 53.12 | 13.77 | 6,464.27 |
| 1996 | 1 | | 288.42 | 546.53 | 62.11 | 15.65 | 5.07 | 917.78 |
| | 2 | | 0.89 | 414.10 | 42.76 | 0.71 | 0.06 | 458.51 |
| | 3 | | 0.34 | 1.81 | 0.30 | 0.02 | | 2.47 |
| | 4 | | 31.19 | 165.65 | 27.34 | 2.03 | | 226.21 |
| | Total | | 320.84 | 1128.08 | 132.51 | 18.41 | 5.13 | 1,604.97 |
| 1997 | 1 | | | 3.43 | 18.31 | 20.60 | 4.59 | 46.94 |
| | 2 | | 1.00 | 2.76 | 19.56 | 1.51 | 0.25 | 25.07 |
| | 3 | 4.35 | 209.25 | 9.51 | 1.92 | 6.24 | | 231.26 |
| | 4 | 32.39 | 644.28 | 58.31 | 7.16 | 28.02 | | 770.16 |
| | Total | 36.74 | 854.53 | 74.01 | 46.95 | 56.37 | 4.84 | 1,073.43 |
| 1998 | 1 | | 14.91 | 103.38 | 94.00 | 76.99 | 6.34 | 295.61 |
| | 2 | | 3.24 | 21.49 | 20.59 | 16.63 | 1.33 | 63.28 |
| | 3 | 53.62 | 26.03 | 41.84 | 5.65 | 0.74 | | 127.88 |
| | 4 | 192.13 | 253.98 | 226.55 | 53.14 | 29.80 | | 755.61 |
| | Total | 245.75 | 298.16 | 393.25 | 173.38 | 124.17 | 7.67 | 1242.38 |
| 1999 | 1 | 0.0 | 560.5 | 158.0 | 151.2 | 77.4 | 6.8 | 953.9 |
| | 2 | | 32.8 | 1.6 | 1.7 | 1.1 | 0.3 | 37.6 |
| | 3 | 9.6 | 741.7 | 46.7 | 6.3 | 5.9 | | 810.0 |
| | 4 | 8.5 | 645.4 | 20.5 | 6.8 | 0.6 | 0.3 | 682.1 |
| | Total | 18.0 | 1,980.4 | 226.8 | 166.0 | 85.0 | 7.4 | 2,483.6 |
| 2000 | 1 | | 116.6 | 384.3 | 40.3 | 7.3 | 1.6 | 550.0 |
| | 2 | | 17.3 | 127.4 | 11.2 | | | 155.9 |
| | 3 | 2.1 | 223.3 | 51.4 | 12.2 | | | 289.1 |
| | 4 | 18.0 | 277.6 | 81.4 | 13.1 | 0.8 | | 390.9 |
| | Total | 20.2 | 634.8 | 644.6 | 76.8 | 8.1 | 1.6 | 1,386.0 |
| 2001 | 1 | 0.0 | 342.6 | 173.0 | 73.3 | 10.0 | 1.6 | 600.4 |
| | 2 | 0.0 | 1746.4 | 13.4 | 0.4 | 0.0 | 0.0 | 1,760.2 |
| | 3 | 5.7 | 924.1 | 31.7 | 0.0 | 0.0 | 0.0 | 961.5 |
| | 4 | 22.9 | 488.1 | 39.1 | 18.5 | 1.5 | 0.5 | 570.6 |
| | Total | 28.6 | 3,501.2 | 257.2 | 92.2 | 11.5 | 2.1 | 3,892.8 |

Table 10.2.2. Division IIIa Sprat. Quarterly mean weight (g) at age in the landings in 19952001. (1994-1995 Danish and Swedish data, 1996-1997 Danish data, 19982001 Danish and Swedish data).

Table 10.2.3 Division IIIa Sprat. Sampling commercial landings for biological samples in 2001.

| Country
 Area | Quarter | Landings ('000 t) | $\begin{array}{r} \text { No. } \\ \text { samples } \end{array}$ | $\begin{array}{r} \text { No. } \\ \text { meas. } \end{array}$ | $\begin{array}{r} \text { No. } \\ \text { aged } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark | 1 | 0 | 6 | 976 | 200 |
| Skagerrak | 2 | 1 | 9 | 1,632 | 300 |
| | 3 | 3 | 12 | 1,672 | 254 |
| | 4 | 1 | 1 | 107 | |
| | Total | 5.2 | 28 | 4,387 | 754 |
| Denmark | 1 | 2 | 2 | 386 | 102 |
| Kattegat | 2 | 5 | 6 | 1,109 | 291 |
| | 3 | 7 | 9 | 1,369 | 413 |
| | 4 | 0 | | | |
| | Total | 14.9 | 17 | 2,864 | 806 |
| Norway | 1 | 0.0 | | | |
| Skagerrak | 2 | 0.0 | | | |
| | 3 | 0.0 | | | |
| | 4 | 1.4 | | | |
| | Total | 1.4 | 0 | 0 | 0 |
| Sweden | 1 | 1.5 | 4 | 400 | 400 |
| Skagerrak | 2 | 0.1 | | | |
| | 3 | 0.1 | | | |
| | 4 | 4.1 | 13 | 1,300 | 1,290 |
| | Total | 5.7 | 17 | 1,700 | 1,690 |
| Sweden | 1 | 1.1 | | | |
| Kattegat | 2 | 0.0 | | | |
| | 3 | 0.0 | | | |
| | 4 | 0.7 | | | |
| | Total | 1.8 | 0 | 0 | 0 |
| Denmark | | 20.2 | 45 | 7,251 | 1,560 |
| Norway | | 1.4 | 0 | 0 | 0 |
| Sweden | | 7.6 | 17 | 1,700 | 1,690 |
| | Total | 29.1 | 62 | 8,951 | 3,250 |

Table 10.3.1. Div. IIIa Sprat. IBTS(February) indices of sprat per age group 1984-2002. (Mean number per hour per rectangle weighted by area. Only hauls taken in depths of 10150 m are included). New revised data.

| Year | No Rect | No hauls | Age Group | | | | | | |
| :--- | :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | | | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5 +}$ | Total | |
| 1984 | 15 | 38 | 5,676 | 869 | 205 | 79 | 64 | 6,892 | |
| 1985 | 14 | 38 | 2,158 | 2,347 | 393 | 140 | 51 | 5,089 | |
| 1986 | 15 | 38 | 629 | 1,979 | 2,035 | 144 | 38 | 4,825 | |
| 1987 | 16 | 38 | 2,736 | 2,846 | 3,003 | 2,582 | 157 | 11,324 | |
| 1988 | 13 | 38 | 915 | 5,263 | 1,485 | 2,088 | 453 | 10,203 | |
| 1989 | 14 | 38 | 414 | 911 | 989 | 555 | 136 | 3,004 | |
| 1990 | 15 | 38 | 418 | 224 | 65 | 61 | 46 | 814 | |
| 1991 | 14 | 38 | 496 | 732 | 700 | 128 | 376 | 2,433 | |
| 1992 | 16 | 38 | 5,994 | 599 | 264 | 204 | 75 | 7,135 | |
| 1993 | 16 | 38 | 1,590 | 4,169 | 907 | 199 | 240 | 7,105 | |
| 1994 | 16 | 38 | 1,789 | 716 | 1,021 | 313 | 70 | 3,908 | |
| 1995 | 17 | 38 | 2,204 | 1,770 | 35 | 45 | 4 | 4,058 | |
| 1996 | 15 | 38 | 186 | 5,627 | 751 | 128 | 218 | 6,909 | |
| 1997 | 16 | 41 | 233 | 391 | 1,239 | 139 | 135 | 2,137 | |
| 1998 | 15 | 39 | 72 | 1,585 | 620 | 1,618 | 522 | 4,416 | |
| 1999 | 16 | 42 | 4,535 | 355 | 250 | 44 | 314 | 5,498 | |
| 2000 | 16 | 41 | 292 | 738 | 60 | 51 | 24 | 1,165 | |
| 2001 | 16 | 42 | 6,540 | 1,144 | 677 | 92 | 46 | 8,499 | |
| 2002 | 16 | 42 | 1,119 | 966 | 87 | 58 | 13 | 2,242 | |

Table 10.6.1. Div.IIIa Sprat. SHOT forecast of landings in 2002 using total landings and the total IBTS-indices as input data.
IIIa SHOT forecast spreadsheet version 4
Total Index
April 1996

| | older
 central
 younger | $\begin{array}{ll} 0, & 0 \\ 1, & 0 \\ 0, & 0 \end{array}$ | | | | $\begin{gathered} \mathrm{G}-\mathrm{M}= \\ \exp (d) \\ \mathrm{p}(\mathrm{~d} / 2) \end{gathered}$ | $\begin{aligned} & 0,00 \\ & 1,00 \\ & 1,00 \end{aligned}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Land -ings | Recrt
 Index | W'td
 Index | $\begin{array}{r} \text { Y/B } \\ \text { Ratio } \end{array}$ | Hang -over | Act'l Prodn | Est'd
 Prodn | $\begin{gathered} \text { Est'd } \\ \text { SQC. } \end{gathered}$ | Act'l Expl Biom | Est'd Expl Biom | Est'd Land -ings |
| 1984 | 36,1 | 6892 | | 0,77 | 0,23 | | | | 47 | | |
| 1985 | 19,7 | 5089 | 5089 | 0,77 | 0,23 | 15 | | | 26 | | |
| 1986 | 10,8 | 4825 | 4825 | 0,77 | 0,23 | 8 | 14 | 15 | 14 | 20 | 15 |
| 1987 | 14,4 | 11324 | 11324 | 0,77 | 0,23 | 15 | 26 | 23 | 19 | 29 | 23 |
| 1988 | 8,7 | 10203 | 10203 | 0,77 | 0,23 | 7 | 18 | 18 | 11 | 23 | 18 |
| 1989 | 9,8 | 3004 | 3004 | 0,77 | 0,23 | 10 | 4 | 5 | 13 | 7 | 5 |
| 1990 | 9,7 | 814 | 814 | 0,77 | 0,23 | 10 | 1 | 3 | 13 | 4 | 3 |
| 1991 | 14 | 2433 | 2433 | 0,77 | 0,23 | 15 | 4 | 6 | 18 | 7 | 6 |
| 1992 | 10,5 | 7135 | 7135 | 0,77 | 0,23 | 9 | 15 | 15 | 14 | 19 | 15 |
| 1993 | 9,1 | 7105 | 7105 | 0,77 | 0,23 | 9 | 14 | 13 | 12 | 17 | 13 |
| 1994 | 96 | 3908 | 3908 | 0,77 | 0,23 | 122 | 7 | 8 | 125 | 10 | 8 |
| 1995 | 55,6 | 4058 | 4058 | 0,77 | 0,23 | 44 | 16 | 34 | 72 | 45 | 34 |
| 1996 | 18 | 6909 | 6909 | 0,77 | 0,23 | 7 | 30 | 36 | 23 | 47 | 36 |
| 1997 | 15,8 | 2137 | 2137 | 0,77 | 0,23 | 15 | 9 | 11 | 21 | 14 | 11 |
| 1998 | 18, 4 | 4416 | 4416 | 0,77 | 0,23 | 19 | 18 | 18 | 24 | 23 | 18 |
| 1999 | 26,7 | 5498 | 5498 | 0,77 | 0,23 | 29 | 23 | 22 | 35 | 28 | 22 |
| 2000 | 20,1 | 1165 | 1165 | 0,77 | 0,23 | 18 | 5 | 10 | 26 | 13 | 10 |
| 2001 | 29,1 | 8499 | 8499 | 0,77 | 0,23 | 32 | 37 | 33 | 38 | 43 | 33 |
| 2002 | | 2242 | 2242 | 0,77 | 0,23 | | 10 | 14 | | 18 | 14 |

Figure 10.6.1. Division IIIa sprat IBTS indices vs. the total catches in 1984 to 2001. The $\mathrm{R}^{2}=$ 0.01 .

Alshuth, S. 1988: Seasonal variations in length-frequency and birthdate distribution of juvenile sprat (Sprattus sprattus). ICES C.M/H:44

Brielmann, N. 1989. Quantitative analysis of Ruegen spring-spawning herring larvae for estimating 0 -group herring in Sub-divisions 22 and 24. Rapp. P.-v. Reun. Cons. int. Explor. Mer, 190: 271-275.

Brophy, D. 2002. Analysis of juvenile herring dynamics in the Irish and Celtic Sea using otolith microstructure and microchemistry. PhD thesis, National University of Ireland, Dublin 4, Republic of Ireland, in prep.

Deriso, R.B., Quinn, T.J. and Neal, P.R. 1985. Catch-at-age analysis with auxiliary information. Can. J. Fish. Aquat. Sci. 42: 815-824.

Gröger, J. and Gröhsler, T. 2000b. Comparative analysis of alternative statistical models for herring stock discrimination based on meristic characters (Applied Ichthyology, accepted in January 2000).

Holden, S., Kirkwood, G. and Bravington, M.V. 1995. Catch Effort Data Analysis. The CEDA Package. User Manual for CEDA version 2.01. MRAG Ltd., London, UK.

Hulme, T.J. 1995. The use of vertebral counts to discriminate between North Sea herring stocks. ICES J. mar. Sci., 52: 775-779.

ICES 1980. Report of the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$. ICES CM 1980/H:4, 103 pp .
ICES 1991. Report of the Herring Assessment Working Group for the Area South of 62° N. ICES CM 1991/Assess:15.

ICES 1992. Report of the Workshop on Methods of Forecasting Herring Catches in Div. IIIa and the North Sea. ICES CM 1992/H:5.

ICES 1993. Report of the Herring Assessment Working Group for the Area South of 62° N. ICES CM1993/Assess:15.
ICES 1994. Report of the Planning Group for Herring Surveys. ICES CM 1994/H:3.
ICES 1994. Report of the Study Group on herring assessment and biology in the Irish Sea and adjacent waters. ICES CM 1994/H:5.

ICES 1995. Report of the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$. ICES CM 1995/Assess:13.

ICES 1996. Report of the Herring Assessment Working Group for the Area South of 62° N. ICES CM 1996/Assess:10.

ICES 1996. Manual for the International Bottom Trawl Surveys. Revision V. Addendum to ICES CM 1996/H:1 (Ref. Assess+G).

ICES 1997. Report of the Herring Assessment Working Group for the Area south of 62° N. ICES CM 1997/Assess:8.

ICES 1997. Study Group on Multispecies Model Implementation in the Baltic. ICES CM 1997/J:2.
ICES 1998. Report of the Herring Assessment Working Group for the Area south of 62° N. ICES CM 1998/ACFM:14.

ICES 1999. Report of the international bottom trawl survey working group. ICES CM 1999/D:2.
ICES 1999. Report of the Herring Assessment Working Group for the Area South of 62° N. ICES CM 1999/ACFM:12.

ICES 2000. Report of the Herring Assessment Working Group for the Area South of 62° N. ICES CM 2000/ACFM:10.

ICES 2000. Report of the International Bottom Trawl Survey Working Group ICES CM 2000/D:07

ICES 2001 Report of the planning group for herring surveys. ICES CM 2001/G:02.

ICES 2001. Herring Assessment WG for the Area South of 62° N. CM 2001/ACFM:12.
ICES 2001. Report of the Planning Group on commercial catch, discards and biological sampling. CM 2001/ACFM:26.
ICES 2001. Report of the Study Group on evaluation of current assessment procedures for North Sea herring. CM 2001/ACFM:22.

ICES 2001. Report of the working group on the assessment of mackerel, horse mackerel, sardine and anchovy. ICES CM 2001/ACFM:05.

ICES 2001. Report of the Northern pelagic and blue whiting fisheries working group. ICES CM 2001/ACFM:17.

ICES 2002. Report of the Planning Group for herring surveys. 2002/G:02.
Kizner Z.I. and D. Vasilyev 1997. Instantaneous Separable VPA (ISVPA). ICES Journal of Marine Science, 54(3): 399411.

Klenz, B. 1993. Quantitative Larvenanalyse des Rügenschen Frühjahrsherings in den Laichsaisons 1991 und 1992. Infn. Fischw., 40(3): 118-124.

Klenz, B. 2001. Schwacher Nachwuchsjahrgang 2001 des herings in der westlichen Ostsee. Inf. Fischwirtsch. Fischereiforsch. 48(4), 2001: 164-165.

Mosegaard, H. and Popp-Madsen, K. 1996. Racial discrimination of herring stocks, comparing vertebral counts and otolith microstructure analysis. ICES CM 1996/H:17.

Müller, H. and Klenz, B. 1994. Quantitative Analysis of Rügen Spring Spawning Herring Larvae Surveys with Regard to the Recruitment of the Western Baltic and Division IIIa Stock. ICES CM 1994/L:30.

Needle, C.L. 2000. The ins and outs of ICA. Marine Laboratory Aberdeen, Report no. 04/00.

O'Brien, C.D. Darby, B.D. Rackham; D.L. Maxwell; H. Degel; S. Flatman; M. Mathewson; M.A. Pastoors; E.J. Simmonds; and M. Vinther 2001. The precision of international market sampling for North Sea cod (Gadus morhus L.) and its influence on stock assessment ICES CM/P:14.

Patterson, K.R., Skagen D., Pastoors, M., and Lassen H. 1997. HAWG 1997. Harvest control rules for North Sea herring. Working Document to ACFM 1997.

Patterson, K.R. 1998. Integrated Catch at Age Analysis Version 1.4. Scottish Fisheries Research Report. No. 38.

Rosenberg, R. and Palmén, L.-E. 1982. Composition of herring stocks in the Skagerrak-Kattegat and the relations of these stocks with those of the North Sea and adjacent waters. Fish. Res., 1:83-104.

Shepherd, J.G. 1991. Simple Methods for Short Term Forecasting of Catch and Biomass. ICES J. Mar. Sci., 48: 67-78.

Simmonds, E.J., Bailey, M.C., Toresen, R., Torstensen, E., Pedersen, J., Götze, E., Fernandes, P. and Couperus, A.S. 1999. 1998 ICES Coordinated Acoustic Survey of ICES Division IIIa, IVa, IVb, and VIa(North). ICES CM/1999:J36.

Smith, P.E. and Richardson, S.L. 1977. Standard techniques for pelagic fish egg and larva surveys. FAO Fish. Techn. Pap., 175 pp.

Sparre, P., Folmer, O. and Ulrich, C. 2001. VPABASE: A prototype of database for storage and processing and VPASinput data. CM 2001/P:23.

Vasilyev, D., Belikov, S., S. Shamray, E 2000. Tuning of the natural mortality for North East Atlantic Macerel. Working document for the ICES working group on the assessment of mackerel, horse mackerel, sardine and anchovy 2000.

Armstrong, M., Dickey-Collas, M., Peel, J., McAliskey, M., McCurdy, W., Briggs, R. 2002. Survey indices of abundance for herring in the Irish Sea (Area VIIaN): 1992-2001. WD 2.

Cornus, H-P. and Zimmermann, C. 2002. Evidence for different growth rates of herring in commercial catches in ICES Division VIaN in the $1^{\text {st }}$ quarter 2001. WD 4.

Dickey-Collas, M. Armstrong, M. and Briggs, R. 2002. Discarding of herring by the Nephrops and whitefish fleets in the Irish Sea. WD 1.

Gröhsler T. and Müller, H. 2002. Maturity ogives for Western Baltic Herring. WD 6.

Simmonds, E.J., Reid., D.G., Torstensen, E., Staehr., K-J., Zimmermann, C., Jansen, S., Götze, E. and Couperus, A.S. 2002. 2001 ICES Coordinated acoustic survey of ICES Divisions IIIa, IVa, IVb and IVa (North). WD 3.

Torstensen, E 2002: North Sea Sprat Otolith Exchange. WD 5.

APPENDIX I

HERRING ASSESSMENT WORKING GROUP FOR THE AREA SOUTH OF 62° N

12-21 March 2002
LIST OF PARTICIPANTS

| NAME | ADDRESS | TELEPHONE | FAX | E-MAIL |
| :---: | :---: | :---: | :---: | :---: |
| Else Torstensen (Chair) | Institute of Marine Research Research Station, Flødevigen N-4817 His Norway | $\begin{aligned} & +4737059000 \\ & \text { Direct } \\ & +4737059053 \\ & \hline \end{aligned}$ | +44 37059001 | else.torstensen@ imr.no |
| Patricia Reglero Barón | Danish Institute of Fisheries Research Charlottenlund Castle Dk-2920 Charlottenlund Denmark | +4533963375 | +45339633 33 | prb@dfu.min.dk |
| Max Cardinale | Institute for Marine Research P.O. Box 4 45332 Lysekil Sweden | +46 52318750 | +46 52313977 | massimiliano.cardin ale@ fiskeriverket.se |
| Jørgen Dalskov | Danish Institute of Fisheries Research Charlottenlund Castle Dk-2920 Charlottenlund Denmark | +4533963380 | +45339633 33 | jd@dfu.min.dk |
| Mark Dickey-Collas | AESD
 Department of Agriculture (NI)
 Newforge Lane
 Belfast BT9 5PX
 Northern Ireland
 United Kingdom | +44289025 5004 | +442890382244 | mark.dickeycollas@ dardni.gov.uk |
| Tomas Gröhsler | Institute for Baltic Sea Fisheries An der Jägerbäk 2 18069 Rostock-Marienehe Germany | +49 381810267 | +49 381810445 | groehsler.ior@
 t-online.de |
| Emma Hatfield | FRS Marine Laboratory Aberdeen
 P.O. Box 101
 Victoria Road
 Aberdeen AB119DB
 United Kingdom | +44 1224295434 | +44 1224295511 | e.hatfield@ marlab.ac.uk |
| Graham Johnston | Marine Institute Dunmore East Waterford Ireland | +353 872075963 | +353 51385011 | graham.Johnston@ marine.ie |
| Ciaran Kelly | MFSD Marine Institute
 Roshine Road
 Killybegs Co. Donegal Ireland | +3537332991 | +353 7332992 | ciaran.kelly@ Marine.ie |
| Henrik Mosegaard | Danish Institute of Fisheries Research Charlottenlund Castle Dk-2920 Charlottenlund Denmark | +4533963461 | +45339633 33 | hm@dfu.min.dk |
| Peter Munk | Danish Institute of Fisheries Research Charlottenlund Castle Dk-2920 Charlottenlund Denmark | +4533963409 | +4533963434 | pm@dfu.min.dk |
| Richard Nash | Port Erin Marine Laboratory
 Port Erin
 Isle of Man IM9 6JA
 British Isles | +44 1624831009 | 441624831001 | rdmnash@ liv.ac.uk |

| NAME | ADDRESS | TELEPHONE | FAX | E-MAIL |
| :---: | :---: | :---: | :---: | :---: |
| Martin Pastoors | RIVO P.O. Box 68 NL-1970 AB IJmuiden Netherlands | +31255564 690 | +31255 564644 | m.a.pastoors@rivo. wag-ur.nl |
| Gerjan Piet | RIVO P.O. Box 68 NL-1970 AB IJmuiden Netherlands | +31255 564660 | | g.j.piet@ rivo.wag-ur.nl |
| Beatriz Roel | CEFAS Laboratory Pakefield Road Lowestoft
 Suffolk NR33 OHT United Kingdom | +441502524358 | +44 1502524511 | b.a.roel@ cefas.co.uk |
| Norbert Rohlf | Institut für Meereskunde Kiel Düsternbrooker Weg 20 D-24105 Kiel Germany | +49 4316001821 | +49 4316001800 | nrohlf $@$
 ifm.uni-kiel.de |
| John Simmonds | FRS Marine Laboratory Aberdeen
 P.O. Box 101
 Victoria Road
 Aberdeen AB11 9DB
 United Kingdom | +441224295366 | +44 1224295511 | simmondsej@ marlab.ac.uk |
| Dankert Skagen | Institute of Marine Research P.O. Box 1870, Nordnes 5024 Bergen
 Norway | +47 55238419 | +47 55238687 | dankert@imr.no |
| Henrik Sparholt | ICES
 Palaegade 2-4
 1261 Copenhagen K Denmark | +45 33154225 | | henriks@ices.dk |
| Lotte Worsøe | Danish Institute of Fisheries Research Charlottenlund Castle Dk-2920 Charlottenlund Denmark | +4533963364 | +4533963333 | law@dfu.min.dk |
| Christopher Zimmermann | Institute for Sea Fisheries Palmaille 9 D-22767 Hamburg Germany | +49 4038905266 | +49 4038905263 | zimmermann.ish@b fa-fisch.de |

ADDENDUM
 REPORT OF THE
 Herring Larvae Surveys in the North Sea in 2001/2002

This report is not to be quoted without prior consultation with the General Secretary. The document is a report of an expert group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.
1 SUMMARY 1
2 INTRODUCTION 1
3 HERRING LARVAE SURVEYS IN 2000/2001 1
4 ACKNOWLEDGEMENTS 2
5 REFERENCES. 2
6 TABLES AND FIGURES 3-9

Results of the international herring larvae surveys in 2001/2002 are presented. Spatial and temporal coverage is described as is the distribution of larvae in the areas sampled. Larval Abundance Index (LAI) for the units sampled and Multiple Larval Abundance Index (MLAI) are shown for the period since 1972.

Compared to 2000, a strong increase in abundance was observed in the Orkney/Shetland area where the abundance was approximately four times higher than last year's estimate. In the Buchan area the LAI increased but was still below the long-term mean. The situation in the Central (CNS) showed continuously rising LAI estimates over the last four years, representing a recovery from very low records to the long-term mean of this unit. In the Southern North Sea (SNS) the abundance did not changed substantially and was comparable to last year's estimate. Both years showed high larvae abundances and indicate a higher SSB for the Downs component.

Both the LAI per unit as well as the MLAI from the larvae surveys in period 2001/2002 indicate that the SSB increased and almost doubled when compared to last years WG estimates.

2 INTRODUCTION

Within the scope of the International Council for the Exploration of the Sea (ICES) since 1972 a continuos research on distribution and abundance of herring larvae has been undertaken in the North Sea and adjacent waters. The results of these surveys are used as an important estimator of herring spawning stock biomass and thus are valuable basic elements of stock assessment.

3 HERRING LARVAE SURVEYS IN 2001/2002

Institutes in the Netherlands and the Federal Republic of Germany participated in the reporting period. The data administration and analysis were compiled by IfM Kiel and BFA-Fi Hamburg and Rostock, Germany.

Six survey units (out of ten) were covered in the $2001 / 2002$ period. The areas and time periods as well as numbers of samples, vessel-days in sampling and area coverage are given in Table 1. Number of samples taken has decreased (Table 2). This is mainly due to the absence of the Norwegian vessel, which participated last year. Norway will take part in the surveys every third year. Also the planned activity in the Buchan area (1 $1^{\text {st }}$ period) by Germany was cancelled. The research vessel had severe engine problems and was replaced by one which had only a few free ship days available. The program was shorten down and only the Orkney/Shetland area was covered ($2^{\text {nd }}$ period). The spatial extent of the surveys is shown in Figures 1-4.

Newly hatched larvae less than 10 mm in length (11 mm for the Southern North Sea) were used to calculate larval abundance. Each LAI unit is definite by area and time. To estimate larval abundance, the mean number of larvae per square metre obtained from the ichthyoplankton hauls were raised to rectangles of 30×30 nautical miles and the corresponding surface area and were summed up within the given unit. Estimates of larval abundance by sampling unit and time are given in Table 3.

Compared to 2000 (ICES 2001), a strong increase in abundance was observed in the Orkney/Shetland area where the abundance was approximately four times higher than last year's estimate. In the Buchan area the LAI increased but was still below the long-term mean. The situation in the Central North Sea (CNS) showed continuously rising LAI estimates over the last four years, representing a recovery from very low records to the long-term mean of this unit. In the Southern North Sea (SNS) the total abundance did not changed substantially and was comparable to last year's estimate. Both years showed high larvae abundances and indicate a higher SSB for the Downs component. A comparison of the LAI and the HAWG SSB estimates is given in Figure 5. The spatial distribution of larvae was mainly restricted to the western parts of the Channel (VIId). The amount of larvae caught in IVc was negligible for all three surveys in the SNS. This may be an effect of the relatively low temperatures in the bottom water layers, especially near the Belgian and Dutch coastline.

The traditional LAI and LPE (Larval Production Estimates) rely on a complete coverage of the survey area. Due to the substantial decline in ship time and sampling effort since the end of the 80 s , these indices could not be calculated in its traditional form since 1994. Instead, a multiplicative model was introduced for calculating a Multiple Larvae Abundance Index (MLAI, Patterson \& Beveridge, 1995). In this approach the larvae abundances are calculated for a series of sampling units. The total time series of data is used to estimate the year
and sampling unit effects on the abundance values. The unit effects are used to fill unsampled units so that an abundance index can be estimated for each year.
Calculation of the linearized multiplicative model were done using the equation:

$$
\ln \left(\text { Index }_{\text {year }, L A I} \text { unit }\right)=\text { MLAI }_{\text {year }}+\text { MLAI }_{\text {LAI unit }}+\mathrm{u}_{\text {year, } \mathrm{LAI} \text { unit }}
$$

where MLAI $_{\text {year }}$ is the relative spawning stock size in each year, $\mathrm{MLAI}_{\text {LAI }}$ unit are the relative abundances of larvae in each sampling unit and $\mathrm{u}_{\text {year, LAI unit }}$ are the corresponding residuals. The unit effects are reparameterized such that the first sampling unit is used as a reference (Orkney/Shetland 01-15.09.72) and the parameters for the other sampling units are redefined as differences from the reference unit.

The model was fitted to abundances of larvae less than 10 mm in length (11 mm for SNS). The analysis of variance and the parameter estimates are given in Table 4. The estimated trend in spawning stock biomass from this model fit is plotted in Figure 6 versus the SSB values obtained from the ICA runs of the Herring Assessment Working Group (ICES 2001).

Both the LAI per unit as well as the MLAI from the larvae surveys in period 2001/2002 indicate that the SSB has increased and almost doubled when compared to last years WG estimates.

4 ACKNOWLEDGEMENTS

This paper reports on surveys undertaken in 2001/2002 by the RIVO, Netherlands (G. Eltink, M. Warmerdam), and the IfM Kiel, Germany (D. Schnack, N. Rohlf).

5

REFERENCES

ICES, 2002: Report of the herring assessment working group for the area south of 62° North. ICES CM 2002/ACFM: 12

ICES, 2001: Report of the Herring Larval Surveys in the North Sea in 2000/2001. ICES CM 2001/ACFM: 12 addendum

Patterson, K. R. \& D. S. Beveridge, 1995: Report of the Herring Larvae Surveys in the North Sea and adjacent waters in 1994/1995. ICES CM 1995/H:21.

Rohlf, N. \& J. Gröger, 2000: Report of the Herring Larvae Surveys in the North Sea in 1999/2000. ICES CM 2000/ACFM:10 addendum.

Table 1: Fortnights, time periods sampled and survey effort in 2001/2002.
NL - Netherlands, FRG - Federal Republic of Germany

| Area | Time period | Samples available | Vessel days | Nation | Coverage |
| :--- | :--- | :---: | :---: | :--- | :--- |
| Orkney/Shetland | 01-15 Sep. | None
 16-30 Sep. | 93 | 5 | FRG |
| Buchan | $01-15$ Sep. | None | Total | | |
| | 16-30 Sep. | 65 | 5 | NL | Partial |
| Central North | $01-15$ Sep. | None | | | |
| Sea | 16-30 Sep. | 76 | 7 | NL | Total |
| | 01-15 Oct. | None | | | |
| Southern North | 16-31 Dec. | 84 | 4 | NL | Total |
| Sea | 01-15 Jan. | 117 | 6 | FRG | Total |
| | 16-31 Jan. | 99 | 5 | NL | Total |

Table 2: Number of samples taken and sampling effort for the herring larvae surveys in Orkney/Shetland, Buchan, Central North Sea and Southern North Sea by year

| Year | Samples | Vessel-days (sampling) |
| :---: | :---: | :---: |
| $1988 / 89$ | 1355 | 98 |
| $1989 / 90$ | 1300 | 96 |
| $1990 / 91$ | 634 | 49 |
| $1991 / 92$ | 738 | 51 |
| $1992 / 93$ | 498 | 31 |
| $1993 / 94$ | 491 | 34 |
| $1994 / 95$ | 450 | 33 |
| $1995 / 96$ | 421 | 26 |
| $1996 / 97$ | 469 | 32 |
| $1997 / 98$ | 456 | 29 |
| $1998 / 99$ | 531 | 37 |
| $1999 / 00$ | 645 | 38 |
| $2000 / 01$ | 696 | 53 |
| $2001 / 02$ | 534 | 32 |

Table 3: Estimated abundances of herring larvae $<10 \mathrm{~mm}$ long, by standard sampling area and time periods. The number of larvae are expressed as mean number per ICES rectangle * 10^{9}

| | Orkney/Shetland | | Buchan | | Central North Sea | | | | Southern North Sea | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Period | 1-15 | 16-30 | 1-15 | 16-30 | 1-15 | 16-30 | 1-15 | 16-31 | 16-31 | 1-15 | 16-31 |
| | Sep. | Sep. | Sep. | Sep. | Sep. | Sep. | Oct. | Oct. | Dec. | Jan. | Jan. |
| 1972 | 1133 | 4583 | 30 | | 165 | 88 | 134 | 22 | 2 | 46 | |
| 1973 | 2029 | 822 | 3 | 4 | 492 | 830 | 1213 | 152 | | | 1 |
| 1974 | 758 | 421 | 101 | 284 | 81 | | 1184 | | | 10 | |
| 1975 | 371 | 50 | 312 | | | 90 | 77 | 6 | 1 | 2 | |
| 1976 | 545 | 81 | | 1 | 64 | 108 | | 10 | | 3 | |
| 1977 | 1133 | 221 | 124 | 32 | 520 | 262 | 89 | 3 | 1 | | |
| 1978 | 3047 | 50 | | 162 | 1406 | 81 | 269 | 2 | 33 | 3 | |
| 1979 | 2882 | 2362 | 197 | 10 | 662 | 131 | 507 | 7 | | 111 | 89 |
| 1980 | 3534 | 720 | 21 | 1 | 317 | 188 | 9 | 13 | 247 | 129 | 40 |
| 1981 | 3667 | 277 | 3 | 12 | 903 | 235 | 119 | | 1456 | | 70 |
| 1982 | 2353 | 1116 | 340 | 257 | 86 | 64 | 1077 | 23 | 710 | 275 | 54 |
| 1983 | 2579 | 812 | 3647 | 768 | 1459 | 281 | 63 | | 71 | 243 | 58 |
| 1984 | 1795 | 1912 | 2327 | 1853 | 688 | 2404 | 824 | 433 | 523 | 185 | 39 |
| 1985 | 5632 | 3432 | 2521 | 1812 | 130 | 13039 | 1794 | 215 | 1851 | 407 | 38 |
| 1986 | 3529 | 1842 | 3278 | 341 | 1611 | 6112 | 188 | 36 | 780 | 123 | 18 |
| 1987 | 7409 | 1848 | 2551 | 670 | 799 | 4927 | 1992 | 113 | 934 | 297 | 146 |
| 1988 | 7538 | 8832 | 6812 | 5248 | 5533 | 3808 | 1960 | 206 | 1679 | 162 | 112 |
| 1989 | 11477 | 5725 | 5879 | 692 | 1442 | 5010 | 2364 | 2 | 1514 | 2120 | 512 |
| 1990 | | 10144 | 4590 | 2045 | 19955 | 1239 | 975 | | 2552 | 1204 | |
| 1991 | 1021 | 2397 | | 2032 | 4823 | 2110 | 1249 | | 4400 | 873 | |
| 1992 | 189 | 4917 | | 822 | 10 | 165 | 163 | | 176 | 1616 | |
| 1993 | | 66 | | 174 | | 685 | 85 | | 1358 | 1103 | |
| 1994 | 26 | 1179 | | | | 1464 | 44 | | 537 | 595 | |
| 1995 | | 8688 | | | | | 43 | | 74 | 230 | 164 |
| 1996 | | 809 | | 184 | | 564 | | | 337 | 675 | 691 |
| 1997 | | 3611 | | 23 | | | | | 9374 | 918 | 355 |
| 1998 | | 8528 | | 1490 | 205 | 66 | | | 1522 | 953 | 170 |
| 1999 | | 4064 | | 185 | | 134 | 181 | * | 804 | 1260 | 344 |
| 2000 | | 3352 | 28 | 83 | | 376 | | * | 7346 | 338 | 106 |
| 2001 | | 11918 | | 164 | | 1604 | | * | 971 | 5531 | 909 |

* This sampling period in the CNS is omitted from the surveys since 1999.

Table 4: Parameter estimates obtained on fitting the multiplicative model to the estimates of larval abundance by area and time-period. Model fitted to abundances of larvae $<10 \mathrm{~mm}$ in length.
a) Analysis of variance of the model fit

| | DF | Sum
 of Squares | Mean
 Square | F Value | P |
| ---: | ---: | ---: | ---: | ---: | ---: |
| Model | 39 | 150.1 | 3.85 | 8.006 | 0.0001 |
| Error | 213 | 102.4 | 0.4807 | | |
| C Total | 252 | 252.5 | | | |

b) Estimates of parameters

Reference Mean

| Estimate | Standard Error | |
| :---: | :---: | :--- |
| 6.8194 | 0.5637 | Reference: 1972 , Orkney/Shetland 09/01-09/15 |

Year Effects

| Year | Estimate | Standard Error | Year | Estimate | Standard Error |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1973 | 0.3787 | 0.7008 | 1988 | 2.7247 | 0.6057 |
| 1974 | -0.1388 | 0.7508 | 1989 | 2.6889 | 0.6198 |
| 1975 | -1.2079 | 0.7630 | 1990 | 2.9253 | 0.6429 |
| 1976 | -1.3127 | 0.7488 | 1991 | 2.2881 | 0.6967 |
| 1977 | -0.4007 | 0.7179 | 1992 | 1.5169 | 0.7363 |
| 1978 | -0.2094 | 0.7287 | 1993 | 1.2124 | 0.7128 |
| 1979 | 0.5051 | 0.7015 | 1994 | 0.8032 | 0.7511 |
| 1980 | 0.1201 | 0.6983 | 1995 | 0.9511 | 0.7407 |
| 1981 | 0.5343 | 0.6954 | 1996 | 1.6521 | 0.7802 |
| 1982 | 0.8608 | 0.6309 | 1997 | 1.8596 | 0.7318 |
| 1983 | 1.1168 | 0.6469 | 1998 | 2.1599 | 0.6878 |
| 1984 | 1.7169 | 0.6281 | 1999 | 1.9889 | 0.6918 |
| 1985 | 2.1396 | 0.6059 | 2000 | 1.5673 | 0.7071 |
| 1986 | 1.4769 | 0.6259 | 2001 | 2.6950 | 0.7200 |
| 1987 | 2.0307 | 0.6176 | | | |

Sampling Unit Effects

| Sampling Unit | Estimate | Standard Error |
| :--- | :---: | :---: |
| Or/Shet 16-30 Sep | -0.6515 | 0.3359 |
| Buchan 01-15 Sep | -1.8225 | 0.4265 |
| Buchan 16-30 Sep | -2.5583 | 0.3737 |
| CNS 01-15 Sep | -1.6535 | 0.4129 |
| CNS 16-30 Sep | -1.4814 | 0.3687 |
| CNS 01-15 Oct | -2.0955 | 0.3956 |
| CNS 16-31 Oct | -4.1683 | 0.5370 |
| SNS 12-31 Dec | -1.8640 | 0.4001 |
| SNS 01-15 Jan | -2.4991 | 0.3448 |
| SNS 16-31 Jan | -3.7295 | 0.3896 |

Orkney/Shetland 1-15 September 2001: No samples taken in this period.

Figure 1: Orkney/Shetlands 16-30 September 2001 (FRG). Abundance of larvae $<10 \mathrm{~mm}\left(\mathrm{n} / \mathrm{m}^{2}\right)$

Buchan 1-15 September 2001: No samples taken in this period.

Figure 2: Buchan 16-30 September 2001 (NL). Abundance of larvae $<10 \mathrm{~mm}\left(\mathrm{n} / \mathrm{m}^{2}\right)$

Central North Sea 1-15 September 2001: No samples taken in this period

Figure 3: Central North Sea 16-30 September 2001 (NL). Abundance of larvae $<10 \mathrm{~mm}\left(\mathrm{n} / \mathrm{m}^{2}\right)$

Central North Sea 01-15 October 2001: No samples taken in this period

Figure 4a: Southern North Sea 16-31 December 2001 (NL). Abundance of larvae $<11 \mathrm{~mm}\left(\mathrm{n} / \mathrm{m}^{2}\right)$

Figure 4b: Southern North Sea 1-15 January 2002 (FRG). Abundance of larvae $<11 \mathrm{~mm}\left(\mathrm{n} / \mathrm{m}^{2}\right)$

Figure 4c: Southern North Sea 16-31 January 2002 (NL). Abundance of larvae $<11 \mathrm{~mm}\left(\mathrm{n} / \mathrm{m}^{2}\right)$

Figure 5: Comparison of spawning stock size HAWG estimates for the Downs herring and the LAI for the Southern North Sea. LAI estimates (Table 3) are multiplied by 100 to fit the same scale.

Figure 6: Comparison of spawning stock size estimates from the Herring Working Group (ICES, 2002; bold line) and the year effects fitted to the larval abundances in the multiplicative model (symbols with error bars). The MLAI estimates have been rescaled to the mean of the WG estimates. Error bars indicate $+/-$ one standard error of larval survey abundance estimates.

[^0]: *Figures for 1991-1999 altered in 2002 but the1991-1998 undated figures were still not included in the assessment.

[^1]: Proportion of F before spawning: 0.67
 Proportion of M before spawning: 0.67

[^2]: 1 Preliminary data.

[^3]: ${ }^{1}=$ no data available
 ${ }^{2}=$ no survey was carried out in 2000

[^4]: * revised in 1997
 **the survey only covered the Skagerrak area near Norway. Additional estimates for the Kattegat area were added (see ICES 2000/ACFM:10, Table 3.5.8).

[^5]: ${ }^{1}$ revised in 2001 due to new presented area of strata in the
 'Manual for the Baltic International Acoustic Survey'. ICES CM 2000/H:2 Ref.: D: Annex 3 (Table 2.2)
 ${ }^{2}$ no data available
 ${ }^{3}$ incl. estimates for Subdivision 23, which was covered by RV ARGOS (Sweden) in Novemebr 2001

[^6]: Survey weighting to be Manual (recommended) or Iterative (M/I) ?-->M
 Enter weight for FLT22: IYFS Katt/Quarter 3/Age groups 1- at age 1-->
 Enter weight for FLT22: IYFS Katt/Quarter 3/Age groups 1- at age 2-->
 Enter weight for FLT22: IYFS Katt/Quarter 3/Age groups 1- at age 3--> Enter weight for FLT22: IYFS Katt/Quarter 3/Age groups 1Enter weight for FLT22: IYFS Katt/Quarter 3/Age groups 1Enter weight for FLT27: Acoustic Survey in Sub div 22-24 Enter weight for FLT27: Acoustic Survey in Sub div 22-24 Enter weight for FLT27: Acoustic Survey in Sub div 22-24 Enter weight for FLT27: Acoustic Survey in Sub div 22-24 Enter weight for FLT27: Acoustic Survey in Sub div 22-24 Enter weight for FLT27: Acoustic Survey in Sub div 22-24 Enter weight for FLT33: Acoustic Survey in Div IIIa+IVaE Enter weight for FLT33: Acoustic Survey in Div IIIa+IVaE Enter weight for FLT33: Acoustic Survey in Div IIIa+IVaE Enter weight for FLT33: Acoustic Survey in Div IIIa+IVaE Enter weight for FLT33: Acoustic Survey in Div IIIa+IVaE Enter weight for FLT33: Acoustic Survey in Div IIIa+IVaE Enter weight for FLT33: Acoustic Survey in Div IIIa+IVaE
 Enter estimates of the extent to which errors
 in the age-structured indices are correlated
 across ages. This can be in the range 0 (independence)
 to 1 (correlated errors).
 Enter value for FLT22: IYFS Katt/Quarter 3/Age groups 1---> 1.000000000000000
 Enter value for FLT27: Acoustic Survey in Sub div 22-24--> 1.000000000000000
 Enter value for FLT33: Acoustic Survey in Div IIIa+IVaE--> 1.000000000000000
 Do you want to shrink the final fishing mortality (Y/N) ?-->N
 Seeking solution. Please wait.
 Aged index weights
 FLT22: IYFS Katt/Quarter 3/Age groups 1-

 Wts : $0.200 \quad 0.200 \quad 0.200 \quad 0.200 \quad 0.200$
 FLT27: Acoustic Survey in Sub div 22-24
 Age : $\quad 0 \quad 1 \quad 1 \quad 2 \quad 3 \quad 4$
 Wts : $\quad 0.1670 .1670 .1670 .1670 .1670 .167$
 $\begin{array}{cccccc}\text { FLT33: Acoustic Survey in Div IIIa+IVaE } \\ \text { Age } & : & 2 & 3 & 4 & 5\end{array}$ Age : $\quad 2 \quad 3 \quad 4 \quad 5 \quad 6$
 Wts : 0.1430 .1430 .1430 .1430 .1430 .1430 .143
 F in 2001 at age 4 is 0.509485 in iteration 1 Detailed, Normal or Summary output (D/N/S)-->n
 Output page width in characters (e.g. 80..132) ?--> 132
 Estimate historical assessment uncertainty ?-->n
 Succesful exit from ICA

[^7]: Weighted Statistics

[^8]: Input units are thousands and kg - output in tonnes

[^9]: Input units are thousands and kg - output in tonnes

[^10]: Figure 3.7.1b WESTERN BALTIC HERRING:
 Estimates of mean F and SSB by ICA runs by combined fleets and catc h at age data for 1991 to 2001

[^11]: *WG estimate for 1997 has been revised according to the Bayesian assessment (see text section 5.1.3)

[^12]: *Biomass of 2+ ringers in November.
 \# The 1997 survey is not on the same basis as the other years, it was conducted in June (all other surveys were carried out in July) and it is not used for assessment purposes.

[^13]: ${ }^{4}$ Estimated assuming the same discarding rate as in 1986 .

[^14]: *change to $9+$ in 1997.

[^15]: * in the original document the nomenclature $\operatorname{phi}(a, y)=f(y){ }^{*} s(a)$ is used, but changed here to $\mathrm{G}(\mathrm{y})$ avoid confusion with fishing mortality F .

