REPORT OF THE

WORKING GROUP ON NORTH ATLANTIC SALMON
 Part one

Aberdeen, Scotland
2-11 April 2001

This report is not to be quoted without prior consultation with the General Secretary. The document is a report of an expert group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.

International Council for the Exploration of the Sea
Conseil International pour l'Exploration de la Mer

3.6.4 Trends in the PFA for NEAC stocks 64
3.6.5 Forecasting the PFA for NEAC stocks. 65
3.6.6 Evaluation of effects of farmed salmon on the model 65
3.6.7 Sensitivity analysis of the PFA model 66
3.7 Development of age-specific conservation limits 67
3.7.1 Progress with setting river-specific conservation limits 67
3.7.2 Changes to the National Conservation Limits model. 69
3.1.3 National Conservation Limits 70
3.8 Catch options or alternative management advice 70
3.9 Catches of Post-Smolts in the Norwegian Sea and Adjacent Areas 72
3.10 Data deficiences and research needs in the NEAC Area 72
4 FISHERIES AND STOCKS IN THE NORTH AMERICAN COMMISSION AREA. 130
4.1 Description of Fisheries 130
4.1.1 Gear and effort 130
4.1.2 Catch and catch per unit effort (CPUE). 132
4.1.3 Origin and composition of catches 134
4.1.4 Exploitation rates in Canadian and USA fisheries 134
4.2 Status of Stocks in the North American Commission Area. 135
4.2.1 Measures of abundance in monitored rivers 135
4.2.2 Estimates of total abundance by geographic area 138
Year
4.2.3 Pre-fishery abundance estimates of non-maturing and maturing 1SW North American salmon .. 1 140
4.2.3.1 North American run-reconstruction model 140
4.2.3.2 Non-maturing ISW salmon 140
4.2.3.3 Maturing ISW salmon 141
4.2.3.4 lotal ISW recruits (maturing and non-maturing) 42
4.2.4 Spawning escapement and egg deposition 142
4.2.4.1 Egg depositions in rivers 142
4.2.4.2 Run-reconstruction estimates of spawning escapement 143
4.2.4.3 Escapement variability in North America 144
4.2 .5 Survival indices 145
4.2 .6 Evaluation of the potential bias involved by including fish farm escapees in stock assessments 146
4.3 Effects on US and Canadian Stocks and Fisheries of Quota Management and Closure after 1991 in Canadian Commercial Salmon Fisheries, with special emphasis on the Newfoundland stocks 147
4.4 Update of Age-Specific Stock Conservation Limits. 148
4.5 Catch Options or Alternative Management Advice and Assessment of Risks Relative to the Objective ofExceeding Stock Conservation Limits148
4.5.1 Catch advice for 2001 fisheries on 2SW maturing salmon 149
4.5.2 Catch advice for 2002 fisheries on 2SW maturing salmon 150
4.6 Data Deficiencies and Research Needs in the North American Commission Area 151

1.1 Main Tasks

At its 2000 Statutory Meeting, ICES resolved (C. Res. 2000/2ACFM07) that the Working Group on North Atlantic Salmon [WGNAS](Chair: Dr. N. Ó Maoiléidigh, Ireland) will meet in Edinburgh, UK from the 2-11 April 2001 to consider questions posed to ICES by the North Atlantic Salmon Conservation Organisation (NASCO). An alternative venue was selected in Aberdeen, UK during the same period. The terms of reference and sections of the report in which the answers are provided, follow.

a) With respect to Atlantic salmon in the North Atlantic area:	Section
i. provide an overview of salmon catches and landings, including unreported catches by country and catch and release, and worldwide production of farmed and ranched salmon in 2000;	2.1 \& 2.2
ii. report on significant developments which might assist NASCO with the management of salmon stocks;	2.4, 3.9
iii. use case studies to illustrate options for taking account of risk in the provision of catch advice and comment on the relative merits of each option;	2.3
iv. assess the possible reasons for the differences in the occurrence of escaped farmed fish in fisheries and stocks in different areas;	2.4
v. advise on the potential biases in the catch advice model resulting from the inclusion of fish farm escapes in the assessment models;	3.6
vi. provide a compilation of tag releases by country in 2000.	2.5
b) With respect to Atlantic salmon in the North-East Atlantic Commission area:	
i. describe the events of the 2000 fisheries and the status of the stocks;	3.1-3.4
ii. update the evaluation of the effects on stocks and homewater fisheries of significant management measures introduced since 1991;	3.5
iii. further develop the age-specific stock conservation limits where possible based upon individual river-based stocks;	3.7
iv. provide catch options or alternative management advice with an assessment of risks relative to the objective of exceeding stock conservation limits;	3.8
v. update the information on by-catch of salmon post-smolts in pelagic fisheries;	3.9
vi. identify relevant data deficiencies, monitoring needs and research requirements.	3.10
c) With respect to Atlantic salmon in the North American Commission area:	Section
i. describe the events of the 2000 fisheries and the status of the stocks;	4.1 \& 4.2
ii. update the evaluation of the effects on US and Canadian stocks and fisheries of management measures implemented after 1991 in the Canadian commercial salmon fisheries;	4.3
iii update age-specific stock conservation limits based on new information as available;	4.4
v. provide catch options or alternative management advice with an assessment of risks relative to the objective of exceeding stock conservation limits;	4.5
v. identify relevant data deficiencies, monitoring needs and research requirements.	4.6

d) With respect to Atlantic salmon in the West Greenland Commission area:	Section
i. describe the events of the 2000 fisheries and the status of the stocks;	$5.1 \& 5.2$
ii. update the evaluation of the effects on European and North American stocks of the Greenlandic quota management measures and compensation arrangements since 1993;	5.4
iii. provide a detailed explanation and critical examination of any changes to the model used to provide catch advice and of the impacts of any changes to the model on the calculated quota;	5.5
iv. provide catch options or alternative management advice with an assessment of risks relative to the objective of exceeding stock conservation limits;	5.7
v. evaluate potential causes for the changes in the Continent of origin of salmon captured in the West Greenland fishery including potential changes in marine migration patterns;	5.3
vii. identify relevant data deficiencies, monitoring needs and research requirements.	5.9

The Working Group considered 31 Working Documents submitted by participants (Appendix 1); other references cited in the report are given in Appendix 2.

1.2 Participants

Amiro, P.	USA
Brown, R.	USA
Caron, F.	Canada
Chaput, G.	Canada
Crozier, W	UK (Northern Ireland)
Erkinaro, J.	Finland
Fontaine, P.M.	Canada
Gudbergsson, G.	Iceland
Hansen, L.P.	Norway
Holm, M.	Norway
Jacobsen J.A.	Faroe Islands
Kanneworff, P.	Greenland
Karlsson, L.	Sweden
MacLean, J.	UK (Scotland)
Marshall, L.	Canada
Meerburg, D.J.	Canada
Ó Maoiléidigh, N. (Chair) Ireland	
Perkins, D.	USA
Potter, E.C.E.	UK (England \& Wales)
Prusov, S.	Russia
Reddin, D.G.	Canada
Russell, I.C.	UK (England \& Wales)
Smith, G.W.	UK (Scotland)
Trial, J.	USA
Whoriskey, F.	Canada

A full address list for the participants is provided in Appendix 3.

2.1 Catches of North Atlantic Salmon

2.1.1 Nominal catches of salmon

The nominal catch of a fishery is defined as the round, fresh weight of fish which are caught and retained. Total nominal catches of salmon reported by country in all fisheries for 1960-2000 are given in Table 2.1.1.1. Catch statistics in the North Atlantic also include fish farm escapees and, in some north-east Atlantic countries, ranched fish (see Section 3).

The Icelandic catches are presented under two separate categories; wild and ranched. Iceland is the only North Atlantic country where large scale ranching has previously been undertaken and where the intent was to harvest all returns at the release site. While ranching does occur in other countries it is on a much smaller scale. Some of these operations are experimental and at others harvesting does not occur solely at the release site. The ranched component in these countries has therefore been included within a single figure for the nominal catch.

Figure 2.1.1.1 shows the nominal catch data grouped by the following areas: 'Scandinavia and Russia' (including Denmark, Finland, Iceland, Norway, Russia and Sweden); ‘Southern Europe’ (including Spain, France, Ireland, UK (England and Wales), UK (Northern Ireland) and UK (Scotland)); and 'North America' (including Canada, USA and St Pierre et Miquelon); and 'Greenland and Faroes'.

The provisional total nominal catch for 2000 is 2814 t , which is the highest since 1996 . This catch is 568 t greater than the updated catch for 1999 (2246t) and although greater than the previous 5 -year average (2754t) , is 636t less than the previous 10 -year average (3450 t). In all, 10 countries reported an increase in the 2000 catch compared to the final 1999 values. Catches in 10 countries were greater than the previous 5 -year averages and catches in 5 were greater than previous 10-year averages.

Several countries partition reported nominal catches by size or sea-age category and these data, where available, are given in Tables 2.1.1.2 and 2.1.1.3. The figures for 2000 are provisional and, as in Table 2.1.1.1, catches in some countries include both wild and reared salmon (excluding ranched fish from Iceland) and fish farm escapees. Different countries use different methods to partition their catches by sea-age class and these methods are described in the footnotes to Table 2.1.1.3. The composition of catches in different areas is discussed in more detail in Sections 3, 4 and 5.

Table 2.1.1.4 presents, where data are available, the nominal catch by country partitioned according to whether the catch was taken by coastal, estuarine or riverine fisheries. In addition, fisheries in West Greenland, Faroes and St. Pierre et Miquelon are exclusively coastal or on the high seas. The proportions accounted for by each fishery varied considerably among countries although overall proportions remained relatively stable. In total, coastal fisheries accounted for 53% of catches in North East Atlantic countries in 2000 compared to 52% in 1999, whereas in-river fisheries took 41% of catches in both 1999 and 2000. In North America, coastal fisheries accounted for 9% of the catch in 2000 compared to 7% in 1999, while in-river fisheries took 77% of catches in 2000 compared to 67% in 1999.

2.1.2 Catch and release

The practice of catch and release (often termed hook and release) in rod (recreational) fisheries has been used as a conservation measure for salmon in some areas of Canada and USA since 1984. Recent declines in salmon abundance in the North Atlantic have resulted in an increased use of this management option., either as a voluntary practice or through statutory regulation. The nominal catches presented in Section 2.1.1 are comprised of fish which have been caught and retained and do not include catch-and-release salmon. Table 2.1.2.1 presents catch-and-release information from 1991-2000 for those countries that have records. Catch-and-release may be practiced in other countries while not being formally recorded. There are large differences in the percentage of the total rod catch that is released reflecting the varying management practices among these countries. Within countries, however, this percentage has tended to increase in recent years. Thus in 2000, although release rates range from approximately 10% in Iceland to 74% in Russia, rates in 2000 are among the highest in each 10-year series for most countries.

2.1.3 Unreported catches

Unreported catches by year and Commission Area are presented in Table 2.1.3.1. A description of the methods used to evaluate the unreported catches was provided in ICES 2000/ACFM:13. The 2000 unreported catch can be compared to
previous years values as the estimation method used by each country is relatively unchanged. However, it may not be appropriate to compare the unreported catch of one country to another as the same information may not be included in the estimate. For example, some countries include only the illegal landings in the unreported catch, while other countries include unreported legal catch and illegal catches in their estimates and the illegal catch is included with the nominal catch for France.

The total unreported catch in NASCO areas in 2000 was estimated to be $1,269 \mathrm{t}$, an increase of 23% from the 1999 estimate. Estimates were derived for the North American Commission Area (124t), the West Greenland Commission Area (10 t) and North East Atlantic Commission Area ($1,135 \mathrm{t}$). Figure 2.1.3.1 shows that the unreported catch has remained a relatively constant proportion (30\%) of the total catch since 1987. No data for the combined three Commission Areas are available prior to 1987. Where available, data are presented by country for 2000 (Table 2.1.3.2). The individual inputs to the total North Atlantic catch range from 0% to 16%. While this broadly indicates the level of unreporting by each country relative to the total catch in the North Atlantic, it should be noted that these estimates are not precise and are difficult to validate. The percentage of the total national catches (reported + unreported) by country ranges from 0% to 67%.

It is not known whether any vessels fished for salmon in the international waters in the Norwegian Sea. There were no surveillance flights reported to have been undertaken by the Icelandic and Norwegian Coastguards over the winter period 2000/2001 when fishing for salmon would be most likely to occur.

2.2 Farming and Sea Ranching of Atlantic Salmon

2.2.1 Production of farmed Atlantic salmon

The production of farmed Atlantic salmon in the North Atlantic area was $658,735 \mathrm{t}$, in 2000 (Table 2.2.1.1 and Figure 2.2.1.1), an increase in production over 1999 ($636,783 \mathrm{t}$). The 2000 production was 30% higher than the 1995-99 average ($504,809 \mathrm{t}$) for the area. The countries with the largest production were Norway and Scotland, accounting for 65% and 20% of the reported North Atlantic total. Reported increases compared to average production for 1995 to 1999 (Table 2.2.1.1) ranged from 75% for eastern Canada to 6% for UK(N. Ireland).

The worldwide production of farmed Atlantic salmon in 2000 was $704,134 \mathrm{t}$ (excluding Chile; Table 2.2.1.1 and Figure 2.2.1.1). Outside the North Atlantic area, data were only compiled for production of farmed Atlantic salmon in western North America (Washington and British Columbia), where 2000 production was greater than 1999. The worldwide production of farmed Atlantic salmon compiled for 2000 was over 200 times the reported nominal catch of Atlantic salmon in the North Atlantic. As a result, aquaculture fish dominate world markets, and have probably contributed to the decline in commercial fishing effort in many countries.

2.2.2 Production of ranched Atlantic salmon

Ranching has been defined as the production of salmon through smolt releases with the intent of harvesting the total population that returns to freshwater (harvesting may include collecting fish for broodstock) (ICES 1994/Assess:16). The total production of ranched Atlantic salmon in countries bordering the North Atlantic in 2000 was $11 \mathrm{t}, 22 \mathrm{t}$ lower than in 1999 (33 t) and the lowest value since 1984 (Table 2.2.2.1 and Figure 2.2.2.1). Production in Iceland declined dramatically because no smolts were released into ocean ranching in 1999, thus, only 2SW fish were harvested in 2000. Production of ranched fish was less than 5 t in each of the three other countries reporting (Ireland, UK(N. Ireland), and Norway). Production in these three countries includes catches in net, trap and rod fisheries. Icelandic catches, on the other hand, are entirely from estuarine and freshwater traps at the ranching stations.

2.3 Use of Case Studies to Illustrate Options for Taking Account of Risk in the Provision of Catch Advice

The Working Group considered this question, together with the supplementary request that "ICES provide information that will assist with the implementation and evaluation by NASCO and its Contracting parties of the decision structure (Annex 4 of document $\mathrm{CNL}(00) 18$, provisionally adopted by the Council).

Management of Atlantic salmon in the North American and Greenland Commission areas is based on a fixed escapement strategy. All potential recruits in excess of the conservation requirement are considered to be available for harvest. The conservation requirement is considered to be a threshold reference point. The undesirable event is that the spawning escapement to North America will be below the conservation limit. The probability of achieving the biological objective (conservation requirement) depends on the quota selected, the uncertainties of the harvest, and the uncertainties of the forecast. The level of quota selected by managers should be based on the level of risk that they
consider acceptable. The greater uncertainty in the forecast and harvest the lower the target exploitation or quota would have to be to attain the same risk acceptance level. The exploitation rate, the quota available at this risk acceptance level or the quota plus the spawner escapement reserve could be considered as management targets for that fishery for that year.

The current management approach used or the West Greenland fishery considers the catch options relative to a 50% probability of achieving the conservation limit (or a 50% chance of the undesirable event occurring) and ignores the uncertainty in the stock assessment. Ignoring uncertainty is inconsistent with the principles defined under the precautionary approach. The provision of catch advice in a risk framework involves the incorporation of the uncertainty in all the factors contributing to the assessment of stock status, development of the forecast, and fisheries management.

Risk analysis is useful for making decisions in uncertain situations and may be used to select management options that convey lower levels of risk. Risk analysis for Atlantic salmon is conducted with respect to achieving a conservation limit or combinations of conservation limits. Analysis is based on uncertain exploitation rates, harvest components and imprecise forecasts.

Risk management for mixed stock fisheries is complex. A prime consideration for achieving the biological objective in all stock components is the minimum acceptable probability of achieving the objective for the smallest component. Based on acceptance of this probability, a target exploitation rate or quota can be set from the uncertainty distributions of the forecast and exploitation.

The Working Group considered case studies to illustrate two approaches for taking account of risk in the provision of catch advice. The first considers incorporating the uncertainties in a risk analysis to provide a probability profile of meeting the conservation objective. The second approach addresses the use of management targets to increase the probability of meeting the conservation objective.

2.3.1 Case studies for calculating risk for the provision of catch advice.

The case studies below consider a mixed stock fishery example for two levels of abundance and a single stock example for a homewater fishery.

Case Study 1 Mixed stock fishery - West Greenland fishery

The deterministic calculation of catch options for the West Greenland fishery uses the point estimates of the input parameters. When the input parameters have uncertainty (for example the PFA value), the value at the 50% probability level is used. The procedure is described in Appendix 6 and summarized for two stock levels (low and moderate) (Figure 2.3.1.1). For the low abundance period, the catch option at the point estimates and for a 40% allocation of surplus to West Greenland was 19 tons. For the period of higher abundance, the deterministic catch option was 561 t .

The deterministic calculation does not provide any analysis of the risk of achieving conservation requirements in North America at the calculated catch level. The data inputs are uncertain and a risk analysis for the objective of achieving the conservation limits must appropriately incorporate these uncertainties. The uncertainties included in these case studies are:

- Conservation requirement uncertainty for six stock areas
- Uncertainty in the forecast PFA value
- Uncertainty in the biological characteristics of the salmon in the fishery

Management error (for example, not catching the exact quota) has not been incorporated but it could be included if an estimate was made from historic data.

2.3.1.1 Conservation requirement uncertainty.

The 2SW spawner requirement for North America used by ICES is the sum of point estimates of individual river or fishing area spawner requirements. It has been shown that the sum of individual river or area requirements provides a probability level of less than 50% of simultaneously meeting the conservation requirements in individual rivers or areas (ICES 1996/Assess:11). This excludes the uncertainty in the individual river reference points which have not been quantified for the majority of rivers of North America (except for Quebec rivers). The sum of the 2 SW spawner requirements for North America is 152,548 fish and adjusted for natural mortality to the point prior to the fishery
(spawner reserve) is 170,286 fish. To ensure a spawner escapement of 100% of conservation into six stock areas simultaneously at a 50% probability level, $169,0002 \mathrm{SW}$ are required to return to North America, 188,650 2SW fish released from the fishery (Figure 2.3.1.2). The uncertainty increases as the number of stock areas defined by managers increases. Additionally, the analysis assumes that the stock areas are all producing at the same rate relative to their conservation limits.

Probability of achieving conservation requirements simultaneously in six stock areas		
		Prior to fishery (adjusted by M
Probability Level	In North America	for 11 months)
Point estimate	152,548	170,286
50%	169,000	188,650
75%	173,000	193,100
90%	177,000	197,600

2.3.1.2 PFA Forecast Uncertainty

Forecasts of abundance in the year to come are dependent upon stochastic functional relationships. Generally, the forecasts have large uncertainty. The PFA forecasts for the low abundance and moderate abundance periods are shown in Figure 2.3.1.3. The PFA forecast value at a 50% level for the moderate abundance period was 437,000 fish compared to 183,000 fish in the low abundance period.

	Forecast values	
Probability level	Moderate abundance	Low abundance
10%	236,782	120,000
30%	342,213	155,000
50%	436,770	183,000
70%	553,223	215,000
90%	801,849	280,000

2.3.1.3 Biological characteristics of the fish

Biological characteristics of the fish in the fishery of the coming year are also unknown. These are estimated based on characteristics of previous years taking account of any temporal trends in characteristics if they occur. In the deterministic approach, the point estimates (such as the average weight of previous years, the average fecundity of females in recent years) are used. In the risk analysis, the uncertainty in the characteristics are considered. The four characteristics are: proportion North American origin 1SW salmon, mean weight of 1SW salmon of North America, the mean weight of 1SW salmon of European origin, and the age correction factor for older age groups in the fishery. The variability in the number of 1 SW salmon at a given catch option is illustrated in Figure 2.3.1.4. For a catch of 50 tons, the expected catch of 1 SW salmon of North American origin can vary between 11,700 fish and 15,450 fish $\left(10^{\text {th }}\right.$ to $90^{\text {th }}$ percentiles).

2.3.1.4 Completing the Risk Analysis

Incorporating all these uncertainties results in a measure of the reliability of the stock assessment for making management decisions. The reliability of the assessment has different and profound consequences on the catch options considerations.

In the theoretical example shown in Figure 2.3.1.5, two assessments provide the same point estimate (50% probability value) but the precisions are very different. Under a risk-prone management approach, the allowed catch would be greater for the imprecise assessment: at a 70% risk level, the advised catch under the precise assessment would be 500 t but the uncertain assessment would provide for a catch of 800 t . The risk-averse management approach would advise for lower catch options for the imprecise assessment: at a 20% risk level, the precise assessment would provide a catch option of about $400 t$ but for the imprecise assessment, no catch is advised. A risk-averse approach is a pre-requisite of precautionary management.

The risk analysis probability profiles for the two years of contrasting stock abundance are shown in Figure 2.3.1.6. In the higher abundance year, a catch option of about 1,250 tons produces a 50% probability level of achieving the conservation requirement. This contrasts with the low abundance year when a catch option of just over 100 tons
provides a 50% probability of meeting conservation. Note that these catch levels are higher than the deterministic calculations because high prefishery abundance values cannot be discounted. To adopt a more risk-averse approach, managers must select a higher probability (or lower risk of stocks) exceeding their conservation limits. At a 65% probability level, there would not be any available harvest in the low abundance scenario and a quota of about 900 t in the higher abundance scenario.

The risk analysis described above has not incorporated management uncertainty. When management is imperfect, as is generally the case, the effect on the risk analysis is to increase the uncertainty in the probability of meeting the conservation objectives. The analysis has also excluded any differences in status among the stock areas. In the case where stock status differs, the probability of meeting conservation for a given year will be overestimated since the spawning escapement to the areas will be different from those assumed in the model. An evaluation of performance of previous year fisheries would provide valuable insight into the appropriateness of the data inputs and the assumptions of the risk analysis.

Case Study 2 Single River Example - Miramichi River

The Miramichi River, at a maximum axial length of 250 km and draining an area of about $14,000 \mathrm{~km}^{2}$, has the largest Atlantic salmon run of eastern North America. There are two major branches: the Northwest Branch covers about 3,900 km^{2} and the Southwest Branch about $7,700 \mathrm{~km}^{2}$ of drainage area. The two branches drain into a common estuary and subsequently drain into the Gulf of St. Lawrence at latitude $47^{\circ} \mathrm{N}$. Separate branch assessments were introduced in 1992 to account for the differences in exploitation between the Northwest and Southwest branches. Native Peoples fisheries were historically conducted almost exclusively in the Northwest Miramichi (exploitation also occurs in the estuarial waters of the Miramichi River, downstream of the confluence of the two branches) and recreational fisheries exploitation also differs between the Northwest and Southwest branches.

Temporal stock distinctiveness has also been highlighted as an important component of the Atlantic salmon resource of the Miramichi. Early runs and late runs have different composition in terms of small and large salmon proportions and sex ratios. The early runs in both branches are also exploited more heavily than the late runs.

Atlantic salmon are presently exploited in Native Peoples and recreational fisheries. No large salmon ($>=63 \mathrm{~cm}$ fork length) can be retained in the recreational fishery (mandatory catch and release) and Native Peoples fisheries for small and large salmon are under gear, season and quota controls.

The conservation spawning requirement for the Miramichi River and each branch separately is based on an egg requirement of $2.4 \mathrm{eggs} / \mathrm{m}^{2}$ of spawning and rearing habitat area. The objective is to obtain all the egg depositions from large salmon although compliance relative to the achievement of the conservation requirement is determined relative to egg depositions from both small and large salmon.

2.3.1.5 Forecast of returns in 2001

The association between small salmon (almost exclusively 1SW salmon) and large salmon returns the subsequent year was examined over the time series, 1985 to 2000 (Figure 2.3.1.7). The ratio of small salmon to large salmon for this time period varied between 1.4 and 7.1 with the most recent year ratio (1999 small, 2000 large salmon) at 1.41 . The median ratio model for the recent five-year period (1995 to 1999) would predict returns of large salmon (including previous spawners) of 16,400 fish (ranging between 14,700 and 25,200).

2.3.1.6 Risk analysis of the fishery

The probability of meeting conservation requirements in 2001 was estimated from the predicted return of large salmon in 2001 based on the small:large salmon ratio of 1996 to 2000 and assuming that small salmon returns in 2001 would be similar to the previous five-year average. The model to assess the risk to conservation if fisheries were to occur in year 2001 can account for seasonal differences in harvest levels, catch-and-release mortality, and biological characteristics of the adults (Figure 2.3.1.8).

Risk is quantified in terms of the probability of meeting conservation and the egg loss resulting from the fisheries harvests as a percentage of total eggs in the returns of adult salmon to the river. For the Miramichi River overall, there is a 54% probability of meeting conservation in year 2001, in the absence of fisheries (Figure 2.3.1.9). Egg loss as a percentage of total eggs in the returns would be less than 5% and the probability of meeting the conservation objectives would be 45% if large salmon losses due to fisheries (regardless of user) were less than 1000 fish and small salmon losses were less than 9000 fish (Figure 2.3.1.9).

2.3.2 Case studies for use of management targets as a means of minimizing risk

NASCO (1998) proposed that "stocks be maintained above conservation limits by means of management targets". The purpose of the management target would be to satisfy the management objective of ensuring a high probability that the conservation limit will be exceeded. Targets are aim points. In 2000, the Working Group acknowledged that it was the responsibility of managers to define the level of risk, resulting from uncertainty, of stocks falling below the conservation limit (ICES CM 2000/ACFM: 13). Once the level of risk is defined, it may be possible to set a management target.

Within the case study examples provided in the draft decision structure, the use of management targets at some value proportionally higher than the conservation limit was used. The challenge is to assess whether a management target can be defined which would provide a consistent increase to the probability of meeting the conservation requirement.

The derivation of a mangement target to increase the probability of meeting the conservation requirements can be based upon an assessment of the same uncertainties as the previous approach, namely conservation requirement uncertainty for six stock areas, uncertainty in the forecast PFA value, and uncertainty in the biological characteristics of the salmon in the fishery.

The use of a management target assumes that managers may choose to harvest all the surplus, and the risks are therefore assessed on the assumption that this will be done. The analysis provided in Section 2.3.1 illustrates how a management target could be set which would increase the probability of achieving the stock conservation limits by a fixed amount. For the low abundance year, a probability of achieving the conservation requirement of 60% would result from a management target set at 116% of the conservation requirement which would result in a foregone harvest of 100 t (Figure 2.3.1.6). For the higher abundance year, a management target of 128% of the conservation requirement would be required to achieve a probability of meeting conservation of 60% and this target would result in a foregone harvest of 250 t (from 1,250 t at 50% to $1,000 \mathrm{t}$ at 60%) (Figure 2.3.1.6).

The problem with this approach is that the same management target (a fixed proportion above the conservation limit) will not have a consistent effect in reducing risk. Although an average value could be employed, it could result in significant over-exploitation (or foregone harvest) in different years.

2.3.3 Relative merits of the approaches

Our analysis shows that there is no single management target level which will provide the same level of risk of failing to meet the conservation objectives over variations in abundance and assessment uncertainty. The Working Group therefore favours the approach of providing an annual risk analysis which considers the variations in abundance, and in the uncertainty of the assessment. The deterministic calculations for any year can be completed by the managers and the resultant probability of meeting the conservation objective at the calculated catch level is visually derived from the risk analysis probability profile plot (such as in Figure 2.3.1.6). The Working Group recognizes that it is the responsibility of managers to select the level of risk of stocks falling below the conservation limit and emphasizes that the appropriate risk level might be different for different fisheries; mixed stock fisheries pose a greater risk to conservation of individual salmon populations than single river stock fisheries.

2.3.4 Review of draft decision structure (NASCO CNL(00)18)

The Working Group tabled the Report of the Standing Committee on the Precautionary Approach- (CNL(00) 18 Application of a Precautionary Approach to Management of Salmon Fisheries) for discussion and comment.

The Group considered that the draft decision structure provided a very useful first step in developing mechanisms for guiding managers towards appropriate actions for fisheries, compatible with the underlying goal that conservation requirements (both abundance and diversity) of contributing stocks is achieved. The Working Group endorsed the emphasis given in the draft decision structure to systematically monitoring the effect of management measures and taking results into account in future management decisions. It was also felt that the various elements of the decision structure, if widely applied to fisheries and stocks, would provide a useful audit trail, showing the data available for stocks and the basis of the management decisions taken for the fisheries where those stocks are represented. This would also provide clear indications of data deficiencies and highlight where lack of data was impeding sound management.

The Group was concerned by the absence of any clear indication of how the structure was meant to be used, as both questions and instructions were included. The presentation would be improved by adopting a $\mathbf{F}_{\text {low }}$ diagram type of approach, similar to that provided in the working group report (ICES CM 2000/ACFM: 13). This should make the review and evaluation of measures taken more explicit (by means of feedback loops) and should indicate where where risk should be considered.

The step in the single stock framework that refers to stocks threatened by external factors is unclear, as it is not obvious what happens if the stock is threatened but is not yet below the conservation limit (for example recently introduced disease into a still productive stock). It may be better to incorporate this into the general assessment of status, such that if status is threatened by external factors, the reasons could be identified and appropriate pre-agreed management actions taken.

The Group noted the clear distinction between action under conditions of unsatisfactory stock status (i.e. identify reasons and implement corrective action) and actions under conditions of surplus (implement pre-agreed management actions to harvest the surplus). However, the Group felt it was likely that many stocks with an exploitable surplus are also subject to impacts that may cause them to fall below surplus at some future time, if measures to mitigate impacts (for example, habitat rehabilitation) are not implemented. Therefore, it was insufficient to recommend implementation of measures only when status had become fully unsatisfactory.

The Working Group noted that pre-agreed management actions should take account of all sources of uncertainty, with management targets being suggested where appropriate, however the draft decision framework did not fully address the incorporation of risk into the decision process. In this respect, the use of further case studies specifically to illustrate this would be valuable (see Section 2.3.1).

It was noted that no pre-agreed management actions were specified, though it is accepted that a generic structure may not be able to cover all specific cases.

In summary, the Working Group recommends some modifications and reference to similar salmon management structures being developed by contracting parties for use in homewater fisheries.

2.4 Significant development towards the management of salmon

2.4.1 Infectious salmon anaemia: implications for wild salmon management

Information was presented to the Working Group about infectious salmon anaemia (ISA) in North America.

ISA has caused extensive mortalities at salmon farms. The disease has been reported from the industry in Norway (1984), East Coast Canada (1996), Scotland (1999) and the Faroes (2000). Positive tests in wild fish were obtained in Canada and Scotland in (1999). In 2000 the Working Group expressed concern about the spread of the disease within wild populations, and the subsequent mortalities that could result in wild fish.

In Canada, aggressive control measures taken by the East Coast salmon farming industry seem to be working. At present, only one site has reported the disease in the smolt class that was transferred to the sea cages in spring 2000. No ISA was detected in wild and escaped-farmed fish entering the Magaguadavic River in 2000, where positive tests for both groups were obtained for the first time in 1999.

Initial reports in 2000 of the presence of the virus for the first time in the Margaree River in Nova Scotia (2 of 30 fish tested), the Morell River in Prince Edward Island (4 of 30 fish), and the Saint John River New Brunswick (16 of 36 fish) are problematic because they could not be confirmed with additional testing. The Working Group remains concerned about the potential spread of this disease.

The first confirmed case of ISA from the East Coast USA salmon farming industry was announced on 16 March 2001. The US industry is now implementing measures similar to those used in Norway, Scotland, and Canada to manage the problem.

Recent genome comparisons of European and Canadian strains of the virus found Scottish and Norwegian strains were $98-100 \%$ similar, whereas the Canadian isolate was only about $84-88 \%$ similar to the European group. The two strains may have diverged from each other in about 1900, at which time transfers of salmonids from North America to Europe (Rainbow trout) and from Europe to North America (sea run brown trout) were occurring. Both rainbow trout and
brown trout have been shown to be asymptomatic hosts of the virus. It is not known where the virus originated (Krøssoy et al. 2001).

Independent trials are underway in Canada to evaluate the efficacy of one of the ISA vaccines that is now widely used. The initial results have confirmed a significantly increased survival rate for fish that had been vaccinated.

2.4.2 Causes of fish farm escapes

The Working Group reviewed information on the reasons for the escape of farmed salmon from the British Columbia and East Coast North American salmon farming industries. This was considered relevant to the request to the Working Group (TOR 1.4) to assess possible reasons for the differences in the occurrence of escaped-farmed fish in fisheries and stocks in different areas. For these farmed salmon to find their way into fisheries or rivers, they first have to escape.

The British Columbia Fisheries Department has reviewed the causes of farm escape incidents that were reported to it by the salmon growers. Over the last five years the total number of reported escaped-farmed fish has stabilized at about 1% of the annual total salmon production ($49,100 \mathrm{mt}$ in 1999 ; all species of salmon). On average, there were 5.2 reported escape incidents per year in 1996 - 2000 (26 events total reported over this time period). Escapes resulted from net failures (42% of the total; caused by predator attacks (6 of 11 net failures) and other factors), mechanical problems with cage systems or boats (4% of total), handling errors (39%), and boat collisions with cages (15%).

In the East Coast North American sea cage industry, the reporting of escapes has been imperfect, and the numbers of fish liberated is frequently uncertain. Six incidents could be documented between December 1999 and December 2000. The smallest escape of salmon was 3000 , and the largest $>100,000$. One event released 25,000 rainbow trout. Three of these six releases were storm related, one involved a boat collision, one was due to vandalism, and the cause for one is uncertain.

Escapes from individual fish farms in these two areas appear to predominantly result from inevitable human errors, and severe events like storms. While severe storms occur most frequently in autumn and winter, it will be difficult to predict when human error will occur. Consequently, the entry of farmed fish to the wild will retain a large degree of unpredictability. In addition, different salmon farming regions are characterized by different climates and operating conditions. Releases of farmed fish to the wild, and their occurrence in fisheries and rivers, will vary in both magnitude and frequency among these regions depending upon the severity of the conditions.

2.4.3 Differences in the occurrence of escaped farmed salmon in fisheries and stocks in different areas.

In 2000, about 627,000 tonnes of farmed salmon were produced in the Atlantic area, with Norway and Scotland accounting for the majority of production (see Section 2.2.1). In comparison, the total nominal landings of salmon in commercial fisheries in the north Atlantic in 2000 was about 2,800 tonnes. The catch included a relatively small proportion of salmon released as smolts for ranching, or for stock enhancement, and a proportion of escapees from fish farms. Salmon escape from fish farms at all life stages, they are caught in fisheries and enter freshwater to spawn (e.g. Hansen et al. 1987; Gausen \& Moen 1991; Webb \& Youngson, 1992; Youngson et al. 1997; Crozier 1998).

Farmed salmon are abundant in large numbers in Norwegian coastal commercial salmon fisheries. The proportion is lower in fjord and freshwater catches, but increases in spawning populations (Tables 2.4.3.1, 2.4.3.2). These differences have been suggested to be due to failure of the farmed salmon to home, and therefore the fish are not motivated to enter fjords and freshwater until later in the summer (Lund et al. 1991). Tagging experiments have shown that farmed salmon from Norway are caught in the Faroes fisheries (Hansen et al. 1987), and it has been shown that the incidence of escaped farmed salmon in this fishery can be high (Hansen et al. 1999). Estimates from the commercial fishery at West Greenland in 1991 and 1992 showed that the incidence of farmed fish was less than 1.5% (Hansen et al. 1997). Results from monitoring salmon fisheries and stocks in Scotland, Ireland and Northern Ireland have suggested a much lower proportion of farmed salmon (Webb \& Youngson 1992; Youngson et al. 1997; Crozier 1998; Tables 3.3.7.2-3.3.7.6) Fish farm escapees also occur in rivers in Canada and USA, particularly in areas with high density of farms. Estimates of the proportion of escaped farmed salmon in relation to nominal salmon catch in several countries are shown in Table 2.4.3.1 (ICES 2000/ACFM: 13). It should be noted however, that different methods used in the assessments as well as different geographical locations of the farms relative to salmon rivers could make it difficult to compare the figures between countries.

Analyses carried out in Norway have shown that the occurence of farmed salmon is highest in rivers close to areas with high density of fish farms. (Lund et al. 1994). In Ireland there have been 13 reported incidents between 1986 and 2000 involving 189,000 adults and 120,000 smolts escaping primarily from sites in the West, but also from sites in the North

West, South West and North. The relationship between the number of escapees in the declared catches and the reported salmon farm escapes is shown in Figure 2.4.3.1. The smolt escapes of any given year have been added to the following year to improve interpretation of the results on the assumption that the smolts could return in the following year. Although there are only 5 years data, the trend indicated would suggest that there is a relationship between the number of escapes and the number identified in the catch although these numbers are very low.

Wild salmon leave their home rivers as smolts in the spring and move quickly into oceanic areas (e.g. Holm et al. 1982). In the north east Atlantic areas results from smolt tagging experiments and post-smolt surveys have strongly indicated that ocean currents are the vectors that force the fish northwards (Jonsson et al. 1993; Shelton et al. 1997; Holst et al. 2000). Hatchery-reared salmon released as smolts in freshwater are thought to have a similar migratory pattern as wild salmon (Hansen et al. 1993). Hatchery smolts released on the coast tend to return to the same area from where they were released. (Carlin 1969; Sutterlin et al. 1979; Hansen et al. 1989), but apparently enter any river in that area to spawn.

Hansen \& Jonsson (1989; 1991) observed that when released tagged hatchery-reared salmon post-smolts kept in saltwater sequentially over one year, there was annual variation in both survival and homing precision, with poor survival of the groups released in late summer and autum, and poor homing precision of fish released in winter. Large salmon escaping early in the summer, a few months before spawning, tended to move northwards with the current, and when they were ready to spawn, they entered freshwater in that area. They did not appear to have a homing instinct (Hansen et al. 1987).

The returns from over 39,000 farmed fish experimentally tagged and released as smolts in Ireland 1984, 1985 and 1990 showed a very low rate of return in subsequent years. Compared to the return rates of between 3 and 13% on average for tagged smolts released for enhancement and for ranching, the rate of tag recovery was extremely low (less than 0.1%) indicating that the survival rate of farmed fish which escape as smolts is very low.

An experiment carried out with large farmed salmon released from two farms on the Norwegian coast, Bersagel in south Norway and Meløy in mid Norway. The results were similar and supported the conclusions from studies cited above. Salmon that escape from fish farms in the autumn have lower survival rates than fish released in the winter/early spring (Table 2.4.3.2). The fish released from the two farms were recaptured in the sea, as well as in freshwater north of the site of release (Figure 2.4.3.2 and 2.4.3.3). Some of the fish released from the southern fish farm turned up in areas southeast of the site of release and entered freshwater in this area. Assuming that fish entering freshwater had made their final decision on where to spawn, it could be concluded that the farmed salmon used in the present experiment were not imprinted to any particular river or marine site, and could therefore be regarded as "homeless".

The distribution and direction of migration of the farmed salmon could be explained by transportation with currents (Figure. 2.4.3.4). If so, this may also explain why so few fish released in November and December were recovered. These fish would have been transported with the currents so far north that when they attained sexual maturity, they either were off route to detect freshwater, or they were simply lost in the cold Artic water. Fish that were released closer to maturity, might still have a higher probability to entering freshwater to spawn than groups released earlier, but the low recovery rates of these fish (less than 6%) suggest that significant numbers of them were also lost.

Based on the current knowledge from the literature, the results from the tagging experiments, direction and speed of ocean currents, and from available information of the apparent low proportion of fish farm escapees in Ireland and Scotland relative to the production of farmed salmon, it is hypothetised that fish farm escapees from Faroes, Ireland and Scotland are transported with the currents, and fish that become sexually mature when they are relatively close to the coast enter Norwegian and Russian fisheries and salmon rivers. Under the same hypothesis some fish farm escapees from Ireland may enter fisheries and salmon rivers in N. Ireland and Scotland, some Irish and Scottish fish farm escapees may even turn up in Denmark and Sweden, and some Norwegian fish farm escapees may enter fisheries and rivers in Sweden, Denmark and Russia. It may be that a continous supply of fish farm escapees in the coastal current leads to a high proportion in Norwegian coastal salmon fisheries, although their survival are still low.

2.4.4 Causes of post-smolt mortality in the marine phase

Possibility of by-catch of post-smolts in pelagic fisheries

Between 10 - 20 June 2000, special fishing experiments for post-smolts carried out in the Norwegian Sea yielded 268 post-smolts and 6 salmon in 14 tows during three consecutive days west and southwest of the Voeringplateau $\left(68^{\circ} 30^{\prime} \mathrm{N}\right.$ $-63^{\circ} \mathrm{N}$ and $1^{\circ} \mathrm{W}-5^{\circ} \mathrm{E}$) Table 3.9.1. Most of these fish were taken in three tows (170, 60, and 34 respectively, Figure 2.4.4.1). The CPUE at this particular cruise was 9 post-smolts per trawl hour, which is one of the highest recorded since 1990 (Table 3.9.1). Microtagged and Carlin-tagged fish occurred for the first time in the same hauls. In Norway no microtagging was carried out in 2000, indicating a south European origin of these fish, which supports the hypothesis
that south Norwegian fish and European fish are mixed on the feeding areas in the Norwegian Sea also at the post-smolt stage. These large catch numbers are of concern with respect to the potential impact of the mackerel fishery in the Norwegian Sea in June - August. There is overlap between the mackerel fishing areas and the anticipated northward migration routes for the post-smolts of south and central Europe and south- Norway (ICES 2000/ACFM13). The surface trawl method used by the Norwegian Research vessels resembles the commercial fishing method which also operates with a flotation on the trawl wings. However, the commercially used trawls are considerably deeper and longer, they are towed at higher speed, i.e. $\sim 5-6$ knots vs. 3-3.5 for the research ships, and the tows also last longer. The commercial trawlers thereby sweep much larger areas, and hence are likely to catch more post-smolts. So far it has not been possible to obtain detailed information on the methods used by the commercial ships, but the Norwegian Coastguards report a fleet of $25-30$ Russian and East European trawlers operating annually in the mackerel fishery in international area. Due to the assumed surface-near location of the post-smolts during migration and on their oceanic feeding grounds (Holm et al. 2000) the Working Group has previously recommended that ICES /NASCO should consider the advantages of commercial trawlers lowering the head ropes to a minimum of 5 m below the sea surface (ICES 1999/ACFM: 14) Furthermore the Working Group recommends that specific gear trials and extra observers are arranged for some periods during the pelagic fisheries in order to further investigate the possible impact on post-smolt survival.

Salmon lice observations in selected Norwegian fjords and the Norwegian Sea

The status of salmon lice (Lepheoptheirus salmonis Krøyer) on seaward migrating post-smolts has been monitored by surface trawling in two southwest Norwegian fjords (Figure 2.4.4.2.) since 1998, i.e. since the live-fish sampling technique with the "Fish-lifter" (Holst and McDonald 2000) was introduced. In 2000, a special salmon survey was also carried out for the first time in four large north Norwegian fjords, and the Fish-lift technique was also used during a week in the Norwegian Sea (Table 3.9.1). This technique allows the majority of the fish to pass through the cod-end of the trawl with very little damage and loss of scales and external parasites (ICES 2000/ACFM:13).

The two southwest fjords were selected because they are different both hydrographically and in densities of fish farms, with the Nordfjord containing the largest number of net-pens. The northern fjords, again, represent areas with low (Altafjord) or no fish farms at all (Tana-/ Teno- and Neiden-/ Näätämöfjords) and large numbers of wild post-smolts (cf. Figure 2.4.4.3).

The northern post-smolt samples were infested with, on average, only 0.4 salmon lice per fish. The results of the analyses of salmon lice in post-smolt samples from the 1998-2000 captures in the Nordfjord and the Sognefjord are presented in Figure 2.4.4.3. The numbers have varied greatly between the years, especially in the Sognefjord, where the mean number of lice per fish has been over 30 the two last years. These particular outmigrating cohorts may therefore have been subjected to infestation rates surpassing even conservative estimates of lethal limits.

In the Nordfjord, which actually houses a high number of net-pens, the average number of lice per fish was relatively high in 1998-1999, while it was zero in the samples of 2000. This reflects a combination of an apparently recent entry of the post-smolts into the sea, and a thick layer of fresh water extending to the outlet of this fjord. Holst et al. (2001) report salinities of less than 10 ppm down to 4.5 m depth in the Nordfjord during the days the post-smolts were sampled. This may have protected the fish from infestation, thus underlining the possible importance for survival of the hydrography at the time of smolt passage through the fjords.

None of the samples analysed from the Norwegian Sea, carried more than 10 chalimus or older stages of lice per fish. This has been hypothesised to indicate that fish with high infestation rates either die, or lag behind the main cohorts of sea migrating post-smolts.

At present there is no data available to the Working Group that could enable correlation of the influence of the observed lice infestation rates on subsequent return rates of 1 SW or MSW salmon to the particular fjords. However, the high observed infestation rates are a matter of concern, which should be investigated in more detail.

2.4.5 Marine growth checks as evidence for sub-catchment population structuring.

The FRS, Freshwater Laboratory has routinely examined scale samples from adult Atlantic salmon (Salmo salar L.) returning to Scottish homewaters since the 1960s for the purposes of assessing age structure. As previously reported, scales from fish returning in 1997 showed a higher than previously recorded incidence of summer checks (ICES 1998/ACFM:15 and MacLean et al. 2000). This examination has been extended to incorporate salmon returning to Scottish home waters in 1998 and 1999.

The occurrence of a group of tightly-spaced circuli can be interpreted either as a winter annulus or as a summer growth check (Shearer, 1992). Recaptures of adult salmon previously tagged as emigrating North Esk smolts provide scale samples from fish whose sea age may also be derived from tagging records and thus where the presence of summer checks may be determined unambiguously. Between 1997 and 1999, 320 salmon which had been tagged as smolts on the North Esk were recaptured as returning adults in Scottish home water fisheries. Of these, 64 were identified as exhibiting growth checks on the marine zone of their scales. The sea-age of each fish was estimated both from scale samples and tagging records. In all cases, the ages derived from both methods corresponded and thus supported the interpretation of the growth checks as summer checks rather than as winter annulii.

The occurrence of summer checks on the scales of salmon returning to Scottish home waters in the years 1997-1999 was shown to be significantly greater than levels derived from the previous 35 -year period. There was no evidence that the incidence of checks varied between sexes. There was also no association between the presence of checks with either size at return or marine survival indices.

Where summer checks were identified on scales, the year when the check occurred was recorded, as was the relative position of the check within that year's marine growth zone. Examination of scale samples taken from the North Esk net \& coble fishery, which was the largest sample data set available, showed that checks were not distributed randomly over the marine zone. Three categories of summer check (1SW salmon returns and 2 SW returns with checks on the first or second summer at sea) were identified and their distribution of occurrence with respect to the growing season was analysed. The majority of checks tended to occur within a relatively narrow band within the third quarter of the marine zone. The proportion of salmon whose scales exhibited summer checks was highly variable both among years and sea age categories, but, in general, salmon showed a higher incidence of growth checks in their first year at sea than during their second year

The incidence of summer checks was also strongly related to the subsequent run-timing (the calendar month when fish returned to freshwater) of the adult fish. In particular, the incidence of summer checks in the first year of sea life was significantly associated with run-timing for each category of fish tested except 1SW salmon returning in 1999, when few checks were identified. Figure 2.4.5.1 shows the trends in incidence of summer checks with month of return to freshwater for the three categories of salmon. Seasonal patterns vary among groups but within each group, the pattern remained generally consistent between years.

The cause of the summer checks is unknown and the direct effects difficult to detect. Their relatively high incidence in recent years, however, may allow speculation on the mechanisms responsible for the observed patterns of association between groups of salmon in the ocean. While summer checks are present in scale samples taken from salmon returning to home waters throughout the sampling season the extent to which they occur varies both with adult run-time and sea age. These patterns of variation are relatively consistent among years suggesting that either different "run-timing groups" of salmon are differentially predisposed to the causal event or, salmon are not randomly mixed in the ocean and different groups follow, to some extent, different migration routes.

Radio tracking studies on a number of Scottish rivers show, within each sea age group, there is a relationship between the temporal pattern of return and the spatial distribution at spawning time (Anon, 1997, 1999; Laughton \& Smith, 1992; Smith et al., 1998, Walker \& Walker, 1991). Thus, the "run-timing groups" referred to above may be thought of as proxies for populations differentiated at a sub-catchment scale in freshwater. The pattern of association between individuals in the ocean as evidenced by the proportion whose scales show summer checks may thus reflect the subcatchment population structure found in rivers.

These observations may assist our understanding of recent trends in marine survival. Decreases in marine survival have been documented in the last decade throughout the north Atlantic at several monitored sites (ICES 2000/ACFM:13; Potter \& Crozier, 2000). Furthermore, differential rates of decline in different monthly components of the catch have also been documented (ICES 2000/ACFM:13). Early running spring salmon, in particular, appear to have declined most markedly (Youngson, 1995a) and the upper catchment populations associated with these runs of fish also mirror these declines (Youngson, 1995b; ICES 2000/ACFM:13). The structured variation in the incidence of summer checks between "run-timing groups" reported here provides an association through which differential trends in marine survival may occur as it demonstrates that coherent freshwater populations may encounter similar conditions in a patchy marine environment.

2.4.6 Estimates of M at sea for Atlantic salmon

In the run-reconstruction models of the prefishery abundance (PFA) for the North American and Northeast Atlantic stock complexes, it is assumed that the natural mortality rate is 1% per month after the first year at sea. The assumed rate is from an analysis of weight and age data from the River Bush (U.K.) as developed by Doubleday et al. (1979)
(see below). This rate of natural mortality is used to calculate the number of fish immediately after the first winter, prior to the high seas fisheries, and between the high seas fisheries and returns to homewaters. If marine mortality rate is higher than previously assumed then its impact on assessments may be significant. In the time series of catches and returns used to estimate the PFA, there have been reductions in the level of sea fisheries such that presumably a smaller proportion of the estimated PFA consists of actual observed/harvested animals than was the case a decade ago (ICES CM 2000/ACFM:13). The concern is that the perception of reduced / declining abundance is in part an artifact of the model assumption about natural mortality during the second year at sea in terms of its assumed level and assumed constant rate over time. Two methods for estimating mortality at sea were reviewed, the inverse-weight method and the maturity schedule method.

Method 1 - Inverse Weight Method

Ricker (1976) described a method for estimating the natural mortality rate based on the assumption that M decreases with increased size because marine natural mortality is assumed to be primarily the result of predation. Following on that approach, Doubleday et al. (1979) used the inverse weight hypothesis to estimate natural survival during the second year at sea based on catches, size-at-age, and return rates to the river and concluded that the natural mortality rate between Greenland and home waters (approx. 12 months) was between 3% and 12%, i.e. about 1% per month. Lorenzen (1996) modelled the mortality of juvenile and adult fish as a power function of weight and using empirical observations of 113 species/stocks, derived parameter estimates for M relative to weight. Based on these parameter values and using estimates of weight at age for River Bush salmon (tabled in Doubleday et al. 1979), the monthly mortality rate of Atlantic salmon in the second year of ocean life is about 3\% per month (Figure 2.4.6.1).

Method 2 - Maturity Schedule Method

It is possible to estimate the sea survival rates of 1 SW and 2 SW salmon during the first and second years at sea by modeling the dynamics in the ocean using a simple life history model. Assuming that survival rates at age for males and females are similar, the model provides equations relating the survival rates and maturation profiles for 1SW and 2SW salmon.

$\mathrm{S}_{1} \mathrm{SW}_{\mathrm{M}},{\mathrm{S} 1 \mathrm{SW}_{\mathrm{F}}} \quad$ survival rates (relative to N_{0}) of 1 SW salmon
$\mathrm{S}_{2} \mathrm{SW}_{\mathrm{M}}, \mathrm{S}_{2} \mathrm{SW}_{\mathrm{F}}$ survival rates (relative to N_{0}) of 2 SW salmon

The four parameters to estimate and their constraints are:

$$
0=<S_{1}, S_{2}, \alpha_{M}, \alpha_{F}<=1
$$

The model was applied to data from three rivers:

1. Saint John River hatchery returns of age-1 smolts stocked at Mactaquac
2. LaHave River at Morgans Falls, wild smolts
3. Rivière de la Trinité (Québec) wild smolts

Sex ratios for the wild smolts were derived from sampling. Sex ratio for the age-1 smolts from Mactaquac were obtained from one year's sampling and assumed constant for the years analysed.

Estimates of Marine Survival Rates

Survival rates during the first year at sea were low for the hatchery origin salmon of the Saint John River (range 1.4\% to 3.3% annual) but higher for wild smolts of de la Trinite River (range 1.5% to 8.5%) (Figure 2.4.6.2). During the second year at sea, survival rates of the hatchery salmon ranged between 8% and 24% whereas the wild salmon survival rates in the second year at sea ranged between 17% and 79% (Figure 2.4.6.2). These survival rates are total survival rates after both natural and fishing mortality. Since 1992, most the sea fisheries have been closed or declining and the estimated survival rates can be considered equivalent to natural survival rates.

Survival rates during the first year have not responded to the closure of the fisheries in either of the stocks but survivals in the second year for de la Trinite salmon since the closure of the commercial fisheries are almost double the rates prior to the closure (Figure 2.4.6.2). Survival rates in both the first year and second year are better for wild smolts than hatchery smolts, and wild smolts from the northern stock (Trinite) are higher than those of the more southern LaHave River stock (Figure 2.4.6.3).

Mortality rates during the first and second years at sea are variable and since 1992 are high for both age groups. Based on the data from de la Trinite River, monthly Zs of between 0.02 and 0.15 have been estimated with the most frequently estimated value of 0.05 (Figure 2.4.6.4). Survival rates during the first year at sea have declined and in the 1990s remain as low or lower than those during the period of the 1980s when there were commercial fisheries. M therefore has increased over time.

The model results support the widely held view that the major source of mortality in the ocean occurs during the first year. They also provide evidence against the constant mortality rate assumptions used in the run-reconstruction model and for at least one wild stock of eastern Canada, monthly instantaneous mortality rates of 5% (ranging between 2% and 15%) would seem more appropriate.

Although there appears to be increasing evidence of M being greater than 1% per month in the second year at sea and that M varies annually, the Working Group cautioned that only three rivers were evaluated and the data series on only one was longer than ten years. For this reason the revised values from preceding analysis have not been used in the forecast model for 2002. While an analysis of more rivers would be required to assess the among stock variability in the estimated survival rates and the representative level for the North American stock complex, it will be necessary to incorporate revised values for the forecast model in future as they become available. The Working Group recommended that further evaluation of the maturity schedule method be undertaken particularly as it relates to the sensitivities of the survival estimates to the sex ratio values of the smolts and the assumption of equal survival of male and female salmon.

2.4.7 Potential impact of climate change on juvenile salmon

Climate change has been identified as an important source of aquatic disturbance on a global scale and may alter species composition and dominance in aquatic ecosystems. Cold water ecosystems are particularly at risk and predictions from the climate change models for North America include:
from $1990-2100$, mean surface air temperature increases of $1.4-5.8^{\circ} \mathrm{C}$, with more rapid warming in the Northern regions of North America,
largest increases in air temperature in winter,
increased frequency and duration of summer hot spells (Hengeveld 1990),
increased water temperatures in the range of $2-5^{\circ} \mathrm{C}$ with maximum changes occurring in spring and fall,
advanced timing of snowmelt and spring runoff,
earlier start of a drier spring-summer season contributing to more extreme low $\mathbf{F}_{\text {low }}$ conditions (Manabe and Wetherald 1987).

Climate change has the potential to alter thermal regimes in aquatic environments, adversely affecting Atlantic salmon populations. Water temperature can affect survival, growth and behaviour of salmon in freshwater habitats. Juvenile Atlantic salmon begin feeding in the spring at water temperatures of $6-7^{\circ} \mathrm{C}$, and grow optimally at $16-19^{\circ} \mathrm{C}$. At water temperatures ranging from $22-24^{\circ} \mathrm{C}$, juvenile salmon have been observed to seek refuge from thermal stress. In some Atlantic salmon rivers in eastern Canada, juvenile salmon are already experiencing water temperatures approaching the upper lethal limit $\left(30^{\circ} \mathrm{C}\right)$.

The Working Group reviewed an analysis of the hydrological conditions and river temperatures in the Miramichi River over a 50 year time period and the associated variability in juvenile salmon size-at-age during 1971 to 1999.

Mean annual air temperature increased significantly, at a rate of $0.42^{*} \mathrm{C} /$ decade from $1970-1999$ with the warmest annual temperatures recorded in 1998 and 1999 (Figure 2.4.7.1). Mean air temperature in spring increased significantly, due to an increase of $0.58^{*} \mathrm{C} /$ decade in April ($\mathrm{p}<0.011$). High temperatures were most frequently observed in 1999 and the frequency of high temperatures increased significantly in fall.

Mean summer water temperature was warmer in the Southwest Miramichi River than the Northwest Miramichi River, ranging from 12.3 to $15.3^{\circ} \mathrm{C}$. The warmest water temperatures in the 30 -year series were observed in 1999. Mean summer water temperature increased significantly from 1970 to 1999 , at a rate of $0.29^{\circ} \mathrm{C} /$ decade (p<0.037). The frequency of high water temperatures ranged from 22 days in 1986 to 114 days in 1999. The frequency of high water temperatures increased significantly during the parr growth season (early May to July 15), by approximately 4 days/decade ($\mathrm{p}<0.041$).

The most significant change in discharge was observed in the timing of the spring snowmelt event which has shifted from April and May in the 1960s to March and April in the 1990s (Figure 2.4.7.2).

The range of mean annual fork length of Atlantic salmon fry was 4.0 to 5.4 cm (Figure 2.4.7.3). Mean annual fork length of $1+$ parr ranged from 7.6 to 9.1 cm , while size of 2+ parr ranged from 10.6 to 12.3 cm (Figure 2.4.7.4). Mean annual fork length of parr decreased significantly from 1970 to 1999 , at a rate of $0.18 \mathrm{~cm} /$ decade for $1+$ parr and 0.21 $\mathrm{cm} /$ decade for $2+\operatorname{parr}(\mathrm{p}<0.029)$.

In terms of the timing of the seasonal growth of parr, weight increased during spring and early summer, levelling off or decreasing slightly in late summer. Observed juvenile fish weight was consistently higher than that predicted from water temperature during May to August.

Annual and seasonal changes in meteorological and hydrological conditions were correlated with decreased fork length of juvenile Atlantic salmon. Fork length of parr was most strongly associated with maximum annual and spring air temperatures and mean spring water temperatures in the Southwest Miramichi River (Figure 2.4.7.4). Fork length of parr was also strongly associated with the frequency of high air temperatures during the parr growing season (May July 15) and the extreme high summer air temperatures.

Declines in fork length of juvenile Atlantic salmon parr ($1+$ and $2+$) over the past 30 years suggest that conditions supporting growth have changed in the Northwest and Southwest Miramichi rivers. The functional model of growth relative to water temperature was a poor predictor of fish growth in the Miramichi River. The model tended to underestimate fish weight in spring and summer and overestimate in fall. For Atlantic salmon populations in the Miramichi, neither the theoretical functional model for maximum growth or growth potential index (as derived from the theoretical model) can be reliably used as predictors of fish growth in response to climate change.

Climate change is projected to have significant implications for aquatic ecosystems, altering thermal regimes and stream $\mathbf{F}_{\text {low }}$ conditions. The results of the analyses suggest that growth of juveniles in the Miramichi River are likely to be adversely affected by climate change, particularly during the spring months. Increases in air and water temperatures are expected to contribute to reduced size-at-age of juveniles with the potential effect of altering survival, age at smoltification, and ultimately sea survival

2.5 Compilation of Tag Releases and Finclip Data by ICES Member Countries in 2000

2.5.1 Compilation of tag releases and finclip data for 2000

Data on releases of tagged, fin-clipped, and marked salmon in 2000 were provided by the Working Group and are compiled as a separate report. A summary of Atlantic salmon marked in 2000 is given in Table 2.5.1. About 3.36 million salmon were marked in 2000, a decrease from the 4.43 million fish marked in 1999. The decrease was due largely to the reduced number of adipose fin clips. Primary marks are summarized in three classes: microtag (i.e., coded wire tag), external tag/mark, and adipose clips (without other external marks or fin clips. Secondary marks (primarily adipose clips on fish with coded wire tags) are also presented in the Annex. The adipose clip was the most used primary mark (2.35 million), with microtags (0.65 million) the next most used primary mark. Most marks were applied to hatchery-origin juveniles (3.30 million), while 44,115 wild juveniles and 16,150 adults were marked.

36e：	94atal			Hexate			7世木相 W	Hetart		$\begin{gathered} \text { Elum } \\ \text { cas } \end{gathered}$							$\begin{gathered} =x_{1}^{2} \\ \frac{d y}{T} \end{gathered}$	 T						$\frac{\sqrt{4}}{\frac{4}{4}}$		
					$\frac{1 \times 2}{5}$																					
	4	迷	\％			3		4	T	\％	0	7	＊	0	等						＊	es	T			
1060：	＂	\because	TEM	＊	\cdots	\cdots		＊	160		－	＊	W6	＊	\because	100\％	16n	33	＊	38	153	等落	48	H4］	1	3\％
1084	－	－	13＊＊	＊	\cdots	＊	－	教業		－	－	w	－	－	168\％	w	教	3	事業	dt	新复	3＊	事基	1	ces	
Wex	＊	＊	3\％	＊	＊	＊	$*$	迷		：	\％	Haxay	＊	＊	10x\％	\％${ }^{\text {a }}$	a	44	迷	3is	14x			1	约：20	
10．t	＊	＊	12ex	＊	＊	＊	＊	榣		\％	＊	Hex	＊	＊	17040	，戓䢒	2＊	2	迷	3＊	䢒碞	輷㻃		1	敋延	
100．0．	－	－	粠	－	－	．	－	政		－	－	Wter	－	－	教紼	淘	4	\％	析	产为	12\％	＊＊		早	5400	
130\％	－	－	3145	－	－	－	－	4x		－	－	144	－	－		＊	－	，	5x	W6．	系的	血絽	Inge	1		
Onder	＊	\cdots	\％	＊	\therefore	＊	＊	（1）	寀	：	＊	13＊	＊	＊	19\％10．	5	4．	＊	3x	＊＊	103 ${ }^{\text {a }}$	緸爯	H＊＊	4	荿数	
INers	\％	\pm	3＊＊	＊	：＊	\pm	\％	1䋛	\underline{L}	$=$	$=$	Lucx	$=$	＊	${ }^{1}$	5	cel	3＊	a	＊	123	管道	2n？	1	鎄縉	
150\％	－	－	321.	\cdots	－	－	－	185	1.	－	－	1速发	－	－	146\％	\％	䧸	\％	趐	314	10\％	34\％	［474	1		
	－	\cdots	3	．	\cdots	．	－	184	考	－	－	1）	枟竞	，${ }^{4}$	148\％	（0）	＋1．	素	\％${ }^{\text {\％}}$	48\％	3 ${ }^{3 / 8}$		珷等	1	紗冓	
\％	13，${ }^{\text {a }}$	3＊		＊	－	s	$=$	363	14	＊	＊	$1{ }^{1 / 4}$	娄娄	3＊	14＊	4，	教	8	3 ${ }^{3}$	3＊		\％	1989	1	察积	
18\％	130．6	501	16＊＊	＊	＊	＊	＊	3＊＊	\％	\％	＊	He＊＊	7 T		12m	4	We	W	Hex	3事	7教偖	T）	Hatis	1	W9\％	
160\％	Hex	縤	14＊＊	＊	－	，${ }^{\text {a }}$	\％		＊	墄	13 Lk	W絲䋨	104\％	\＄	1标虊		連	䓨	4，		twes		基舜	1		
10030	304	边	3䍃	＊	＊	年	業	130	\％	緆	Hext		1）	3640\％	Hax	\％	4	等	4		12．	－	－ 0_{0}	管	變	
19\％＊	14＊	30\％	家亚	．	＊	（0	等	龇娄	1	最	183＊	3138	1䍃	－${ }^{\text {a }}$	1ex	W\％	W	3\％				3 \％		䋛	䓡細	
13\％	137\％	51\％		＊	＊	\％	3	1数	3		15x：	3764	1mw	\％	1387	313	\％	3	$4{ }^{3}$	酸	W\％	35．	1＊	17	5xas	
1974	14	＊	8w	＊	－	\％	9	教	9	10\％	1＊＊＊＊	1 Wric	1006	（1）	1＊＊＊	＊	\％	30	\％	14	32	4＊	wnit	路		
Heme	薬尞	will	\％	＊	＊	59	10	县䋛	\％	称	＋1\％	1498	164\％	4，${ }^{\text {a }}$	14＊＊	为客	靽	18	建號	［妾	＊	数素	\＃iva	＋4	W教	
1946	1204	3x	1考新	＊	＊	星	30	㹩参	－	14＊	Heceis	1200	\％	ane	10tat	＊	藓	10	刍数	L繙	940	解番	1axay	＊		
1m\％	骨等		1487	－	－	3	w	－	6	13＊		102\％	1106	mint	1 16．	＊＊＊	：	13	政	9\％	3繻	$4{ }^{4}$	\％		－6	
109\％	1＊＊	等	＋6＊	－	－	，${ }^{1}$	＊	帾	＊	楼亚	34．4	雱		＋鞛	14＊＊	＊	4	$1{ }^{\text {\％}}$	3w	130	縤章	縤	1314			
13＊	W10．8	（1）		＊	＊	進	W	14＊	W	14．	等缺	\％	1趗	4n	140，	，${ }^{\text {ck }}$	2	＊	4＊		－ 4	變	1248	\cdots	54	
10\％	1838．	316	13＊	4	＊		3	3 x	1%	a	\％	\％	瑗尞	mam	12＊	sem	峪	\％			美䋛	－		6.	Ex\％	
180＊	915	314．3	動＊	＊	\％	动等	36000	迹	景缶	新路	1\％＊	neke	＊27	＊＊	14＊\％	\％	4．	緆	城复	迷数	－${ }^{2}$	＊${ }^{3}$		4	Y蒳	
380	\％	＊	㙖書	\％	0	－	＊	36	\＄＊	amb		\％	\％	\％	160	如家	堂	＋	34	絽	＊	等慗	364	書		
108		5	Hes	38	4	4	这	3630	菜	amo	14080	1，wh	382	（2）	184．	－${ }^{5}$	雨	4	$3{ }^{4}$	\％	3新	130	整尞	垩	－6．s．	
T\％	789	7	13＊＊＊	24	$1{ }^{1}$	\％	\％	3	5	14	3 ${ }^{\text {che }}$	170	1604	易数	13＊＊	new	2	＊＊	m	low	3＊	32\％	Ex．	$1{ }^{1 / 4}$	TMex	
1685	35	新逪	1\％＊＊	3	＋	4	数	1310	唓	糕	114		景	－	13060		14．	a	\％	＊	54．	建	䇣等	13，	納䋛	
10080	家		410	新	ρ	4	\％		皿尞	14．	H		管等	4	10才6		\％	－	楼	14		3緒	等	崖类		
10＊	W	緒	115\％	䵭	䓣	䍃	4	lan	4	樓	3\％	May	－	（鳞		5	\％	\％	－	動嘘	－${ }^{\text {a }}$	4	䜌	4	\％	
10\％	朝	（ex	＊11	4	－	（\％）	s＊	蝛	运	－	－	＊		綅	\％＊	＊	\％	3	＊	50	＊2		粦	者迷	＋60	
198．	30	Sil	11	W	1	＊	$3{ }^{3}$	46	＊	－	－		38	44＊	影絡	速教	＊＊	绪	\％${ }^{\text {a }}$	縉			－${ }^{\text {\％}}$	奚	\％	
或楽缶	W	10\％	53x	4	T	管	w	㸻数	＊	＊	＝		\％	3xal	3	沓	\％	＊	12 ${ }^{2}$	W	3 38．	3＊		4	楽䋨	
180	214	1200	37	5	17	T	\％	100	\％	＊	n	3	61.	3 Lz	32	38	\％	\％	䋹	－	3部	za		36	34x	
$1{ }^{\text {cken }}$	314	140\％	器数	楼	1.	＊	䗇	3，${ }_{\text {a }}$	we	－	－	絞䢒	䜌	4tis	－	綡	W	4	隹事	＊	\％${ }^{\text {a }}$	2t	－${ }^{\text {W }}$	－	絲䜌	
14048	1430	14＊	35	等	1	4	\％	，${ }^{\text {cke }}$	䊾䍃	－	\％	30\％	300	$3 \times$	歯数	䌯	＊	3	－${ }^{4}$	縣	ask	\％${ }^{\text {\％}}$	號	－	3 SW	
1456		13＊	这串	－	31.	擞事			等运	：	\because	$6_{6} 8$	3 ${ }^{3}$	20x	需	3震	\％	3		39	嘘	䜌	x ${ }^{2}$	\％	3，${ }^{\text {a }}$	
189\％	120	10\％	230	2	䌊	4	者	10\％	＊${ }^{*}$	＂	－	\％	遙	zat	53\％	314	3	閣	$1{ }^{4}$	坥	锁	洓要事	橖	＊	2mat	
124	\％	4	$1{ }^{1}$	\pm	＋	－	4	24	，	－	－	cos	織	－ 4	教都	13	4	$1{ }^{4}$	14	3	\％		縉	－	4 4	
18\％	\％	\％	1管	3	＊	a	者	30	＊	－	－	等奚	－	313等	期这	\％	6	\％	鯺	號	＋4	䜌	W	－		
3xa	ca	8	13	3	35	93	17	3＊	\pm	＝	$=$	6s	63	301	11 ＊	120	\％ min $^{\text {a }}$	3	21\％	\％	［18）	0	－	$=$	zue	
max																										
1 10\％	12	10	处粦	3	3	＊	w	14＊	123	－	－	\％ 6		喊迷		枟县	\％	建	12	\％		20	\％䜌	$=$		
3n＊006	景前	1＊	发䒨	a	0	54	13	4＊＊	＊＊	－	\％	迷妾	盛全	30			\％	34	立管	8	，縲	3	4	4		

Table 2.1.1.3 Reported catch of SALMON in numbers and weight in tonnes (round fresh weight). Catches reported for 2000 may be provisional. Methods used for estimating age composition given in footnotes.

Table 2.1.1.3 continued

Table 2.1.1.3 continued

Table 2.1.1.3 continued

Table 2.1.1.3 continued

Country	Year	1SW		2SW		3SW			4SW			5SW			MSW ${ }^{1}$		PS		Total	
		No.	Wt	No.	Wt	No.		Wt	No.		Wt	No.		Wt	No.	Wt	No.	Wt	No.	Wt
$\begin{aligned} & \hline \mathrm{UK} \\ & \text { (Scotland) } \end{aligned}$	1982	208,061	416	-			-								128,242	596			336,3032	1,092
	1983	209,617	549	-			-						-		145,961	672	-		320,578	1,221
	1984	213,079	509	-			-						-		107,213	504	-		230,292	1,013
	1985	158,012	399	-			-						-		114,648	514	-		272,660	913
	1986	202,861	526	-			-						-		148,398	745	-		351,259	1,271
	1987	164,785	419	-			-						-		103,994	503	-		268,779	922
	1988	149,098	381	-			-						-		112,162	501	-		261,260	882
	1989	174,941	431	-			-						-		103,886	464	-		278,827	895
	1990	81,094	201	-			-						-		87,924	423	-		169,018	624
	1991	73,608	177	-			-						-		65,193	285	-		138,801	462
	1992	101,676	238	-			-						-		82,841	361	-		184,517	600
	1993	94,517	227	-			-						-		71,726	320	-		166,243	547
	1994	99,459	248	-			-						-		85,404	400	-		184,863	649
	1995	89,921	224	-			-						-		78,452	364	-		168,373	588
	1996	66,413	160	-			-						-		57,920	267	-		124,333	427
	1997	46,872	114	-			-						-		40,427	182	-		87,299	296
	1998	53,447	121	-			-						-		39,248	162	-		92,695	283
	1999	25,183	57	-			-						-		30,651	142	-		55,834	199
	2000	26,896	66				-								29,774	126	-		56,671	192
USA	1982	33		1,206			5						-			-	21		1,265	6.4
	1983	26	-	314			2			-			-		-	-	6		348	1.3
	1984	50	-	545			2			-			-		-	-	12		609	2.2
	1985	23	-	528			2			-			-		-	-	13		557	2.1
	1986	76	-	482			2			-			-		-	-	3		541	1.9
	1987	33	-	229			10			-			-		-	-	10		282	1.2
	1988	49	-	203			3			-			-		-	-	4		259	0.9
	1989	157	0.3	325			2			-			-		-	-	3		487	1.7
	1990	52	0.1	562			12			-			-		-	-	16		642	2.4
	1991	48	0.1	185			1			-			-		-	-	4		238	0.8
	1992	54	0.1	138			1			-			-		-	-	-		193	0.7
	1993	17		133			-			-			-		-	-	2		152	0.6
	1994	12	-	0			-			-			-		-	-	-		12	0
	1995	-	-	-			-			-			-		-	-	-		0	0
	1996	-	-	-			-			-			-		-	-	-		0	0
	1997	-	-	-			-			-			-		-	-	-		0	0
	1998	-	-	-			-			-			-		-	-	-		0	0
	1999	-	-	-			-			-			-		-	-	-		0	0
	2000			-			-			-			-				-		0	0

Table 2.1.1.3 continued

MSW includes all sea ages >1, when this cannot be broken down.
Different methods are used to separate 1SW and MSW salmon in different countries:

- Scale reading: Faroe Islands, Finland (1996 onwards), France, Russia, UK (England and Wales), USA and West Greenland.
- Size (split weight/length): Canada (2.7 kg for nets; 63 cm for rods), Finland up until 1995 (3 kg), Iceland (various splits used at different times and places),
- Norway (3 kg), UK (Scotland) (3 kg in some places and 3.7 kg in others). All countries except Scotland report no problems with using weight to catergorise - catches into sea age classes.

In Scotland, misclassification may be very high in some years.
In Norway, catches shown as 3SW refer to salmon of 3SW or greater.
2. Data for 1993-98 altered from previous reports to take account of catch \& release

Table 2.1.1.4 The weight (tonnes round fresh weight) and proportion (\%) of the nominal catch by country taken in coastal, estuarine and riverine fisheries.

Country	Year	Catch						
		Coast		Estuary		River		Total Weight
		Weight	\%	Weight	\%	Weight	\%	
Canada	1999	7	5	38	25	105	70	150
	2000	11	7	22	15	117	78	150
Finland	1995	0	0	0	0	48	100	48
	1996	0	0	0	0	44	100	44
	1997	0	0	0	0	45	100	45
	1998	0	0	0	0	48	100	48
	1999	0	0	0	0	63	100	63
	2000	0	0	0	0	95	100	95
$\text { France }{ }^{1}$	1995	-	-	2	20	8	80	10
	1996	-	-	4	31	9	69	13
	1997	-	-	3	38	5	63	8
	1998	1	13	2	25	5	63	8
	1999	0	0	4	35	7	65	11
	2000	0	4	4	35	7	61	11
Iceland	1995	20	13	0	0	130	87	150
	1996	11	9	0	0	111	91	122
	1997	0	0	0	0	106	100	106
	1998	0	0	0	0	130	100	130
	1999	0	0	0	0	119	100	119
	2000	0	0	0	0	82	100	82
Ireland	1995	566	72	140	18	84	11	790
	1996	440	64	134	20	110	16	684
	1997	380	67	100	18	91	16	571
	1998	433	69	92	15	99	16	624
	1999	335	65	83	16	97	19	515
	2000	440	71	79	13	102	16	621
Noway	1995	515	61	0	0	325	39	840
	1996	520	66	0	0	267	34	787
	1997	394	63	0	0	235	37	629
	1998	410	55	0	0	331	45	741
	1999	483	60	0	0	327	40	810
	2000	619	53	0	0	557	47	1176
Russia	1995	43	33	9	7	77	60	128
	1996	64	49	21	16	46	35	131
	1997	63	57	17	15	32	28	111
	1998	55	42	2	2	74	56	131
	1999	48	47	2	2	52	51	102
	2000	64	52	15	12	45	36	124

Country	Year	Catch						
		Coast		Estuary		River		Total Weight
		Weight	\%	Weight	$\%$	Weight	\%	
Spain	1995	0	0	0	0	9	100	9
	1996	0	0	0	0	7	100	7
	1997	0	0	0	0	4	100	4
	1998	0	0	0	0	4	100	4
	1999	0	0	0	0	6	100	6
	2000	n/a	-	nia	-	nua	-	nua
Sweden	1995	24	65	0	0	13	35	37
	1996	19	58	0	0	14	42	33
	1997	10	56	0	0	8	44	18
	1998	5	33	0	0	10	67	15
	1999	5	31	0	0	11	69	16
	2000	10	30	0	0	23	70	33
UK	1995	200	68	45	15	49	17	294
England \&	1996	83	45	42	23	58	32	183
Wales	1997	81	57	27	19	35	24	143
	1998	65	53	19	16	38	31	122
	1999	101	67	23	15	26	17	150
	2000	152	71	25	12	36	17	213
UK (N. Ireland) ${ }^{2}$	1999	44	83	9	17	0	0	53
	2000	63	82	14	18	0	0	77
UK	1995	201	34	105	18	282	48	588
Scotland	1996	129	30	80	19	218	51	427
	1997	79	27	33	11	184	62	296
	1998	60	21	28	10	195	69	283
	1999	35	18	23	12	141	71	199
	2000	30	16	24	12	139	72	193
Totals								
North East Atlantic ${ }^{3}$	2000	1386	53	161	6	1086	41	2633
North America ${ }^{4}$	2000	13	9	22	14	117	77	152

'An illegal net fishery operated from 1995 to 1998 , catch unknowm in the first 3 years but
thought to be increasing. Fishery ceased in 1999
${ }^{2}$ no nominal catch data is collected for river fisheries in UK (NI)
${ }^{3}$ data not available from Dermark \& Spain
${ }^{4}$ inchudes Canada \& St Pierre et Miquelon

Table 2.1.2.1 Numbers of fish caught and released in rod fisheries along with the $\%$ of the total rod catch (released + retained) for countries in the North Atlantic where records are available, 1991-2000.

Year	Canada ${ }^{1}$		Iceland		Russia		UK(E\&W)		UK(Scot)		USA	
	Total	$\begin{gathered} \% \text { of total } \\ \text { rod } \\ \text { catch } \end{gathered}$	Total	$\begin{gathered} \% \text { of total } \\ \text { rod } \\ \text { catch } \end{gathered}$	Total	\% of total rod catch	Total	$\begin{aligned} & \text { \% of total } \\ & \text { rod } \\ & \text { catch } \end{aligned}$	Total	$\begin{gathered} \% \text { of total } \\ \text { rod } \\ \text { catch } \end{gathered}$	Total	$\begin{gathered} \% \text { of total } \\ \text { rod } \\ \text { catch } \end{gathered}$
1991					3,211	51					239	50
1992	46,450	34			10,120	73					407	67
1993	53,849	41			11,246	82	1,448	10			507	77
1994	45,804	39			12,056	83	3,227	13	6,595	8	249	95
1995	31,211	36			11,904	84	3,189	20	12,133	14	370	100
1996	36,934	33	669	2	10,745	73	3,428	20	10,409	15	542	100
1997	48,387	49	1,558	5	14,823	87	3,132	24	10,906	18	333	100
1998	56,860	52	2,826	7	12,776	81	5,365	31	13,455	18	273	100
1999	49,268	50	3,051	10	11,450	77	5,447	44	14,839	28	211	100
2000^{2}	49,737	53	2,691	10	12,914	74	7,355	42	19,991	34	-	-

1. Figures for 1992 to 1996 are minimal estimates as not all areas have
reported catch and release.
2. Figures for 2000 are provisional.

Table 2.1.3.1 Estimates of unreported catches by various methods in tonnes within

	national EEZs in the North-East Atlantic, North American			
	and West Greenland Commissions of NASCO, 1986-2000.			
Year	North-East	North-American	West	Total
	Atlantic		Greenland	
1987	2,554	234	-	2,788
1988	3,087	161	-	3,248
1989	2,103	174	-	2,277
1990	1,779	111	-	1,890
1991	1,555	127	-	1,682
1992	1,825	137	-	1,962
1993	1,471	161	<12	1,644
1994	1,157	107	<12	1,276
1995	942	98	20	1,060
1996	947	156	20	1,123
1997	732	90	5	827
1998	1,108	91	11	1,210
1999	887	133	12,5	1,032
2000	1,135	124	10	1,269
Mean				
1995-1999	923	114	<14	1050

Table 2.1.3.2 Estimates of unreported catches by various methods in tonnes by country within national EEZs in the North-East Atlantic, North America and West Greenland Commissions of NASCO, 2000, (NA = not available).

2000 Commission Area	Country	Unreported Catch t	Unreported as \% of Total North Atlantic Catch (Unreported + Reported)	Unreported as \% of Total National Catch (Unreported + Reported)
NEAC	Faroes	<1	-	-
NEAC	Finland	25	0.6	21
NEAC	Iceland	2	0.0	2
NEAC	Ireland	132	3.2	18
NEAC	Norway	633	15.5	35
NEAC	Russia	250	6.1	67
NEAC	Sweden	4	0.1	11
NEAC	UK (E \& W)	38	0.9	15
NEAC	UK (N.Ireland)	8	0.2	9
NEAC	UK (Scotland)	44	1.1	19
NAC	Canada	124	3.0	45
NAC	USA	0	0.0	0
WGC	West Greenland	10	0.2	32
	Total Unreported Catch	1269	31.1	
	Total Reported Catch of North Atlantic salmon	2814		

Table 2.2.1.1 Production of farmed salmon in the North Atlantic area and in areas other than the North Atlantic (in tonnes round fresh weight), 1980-2000.

Table 2.2.2.1 Production of ranched salmon in the North Atlantic (tonnes round fresh weight) as harvested at ranching facilities, 1980-2000.

Year	Iceland commercial ranching	Ireland ${ }^{1}$	UK(N.Ireland) River Bush ${ }^{1}$	Norway various facilities ${ }^{1}$	Total production
1980	8.0			0.0	8.0
1981	16.0			0.0	16.0
1982	17.0				17.0
1983	32.0				32.0
1984	20.0				20.0
1985	55.0	17.5	17.0		89.5
1986	59.0	22.9	22.0		103.9
1987	40.0	6.4	7.0		53.4
1988	180.0	11.5	12.0	4.0	207.5
1989	136.0	16.3	17.0	3.0	172.3
1990	280.0	5.7	5.0	6.0	296.7
1991	345.0	3.6	4.0	5.0	357.6
1992	460.0	9.4	11.0	10.0	490.4
1993	496.0	9.7	8.0	11.0	524.7
1994	308.0	15.2	0.4	9.5	333.1
1995	298.0	16.8	1.2	2.0	318.0
1996	239.0	18.5	3.0	8.0	268.5
1997	50.0	4.1	2.8	2.0	58.9
1998	34.0	9.6	1.0	1.0	45.6
1999	26.0	4.3	1.4	1.0	32.7
2000	2.0	4.6	3.5	1.0	11.1
Mean					
$1995-99$	129	11	2	3	145

${ }^{1}$ Total yield in homewater fisheries and rivers.

Table 2.4.3.1 Proportion of escaped farmed salmon in relation to nominal salmon catch (ICES 2000).

Year	Norway	Faroes	Ireland	N. Ireland	Scotland
1989	22				
1990	23				
1991	22	42	0.4	1.8	3.0
1992	23	34	0.6	1.2	5.2
1993	23	27	0.4	0.2	5.7
1994	21	17	0.3	0.5	0.8
1995	22	20	0.1	1.8	0.3
1996	28	20	0.2		0.2
1997	31		0.2	0.1	0.3
1998	28		0.3	0.0	0.4
1999	24		0.4	1.3	0.5

Table 2.4.3.2. Number of recoveries and recapture rates of farmed salmon released from two fish farms in Norway.

Meløy				
Date of release	No in marine fisheries	No in freshwater	Total Number	Recapture Rate (\%)
03.11 .93	1	0	1	0.2
16.12 .93	4	0	4	0.8
02.02 .94	8	1	9	1.9
23.03 .94	21	6	27	5.5
Bersagel				
12.11 .93	1	0	1	0.2
17.12 .93	2	5	7	1.4
18.02 .94	5	1	6	1.3
24.03 .94	12	6	18	3.8
25.04 .94	17	5	22	4.5

Table 2.5.1 Summary of Atlantic salmon tagged and marked in 2000. 'Hatchery' anc 'Wild' refer to smolts or parr; 'Adult' refers to wild and hatchery fish. Data from Belgium, France, and Spain were not available. Fish were not tagged in Finland.

Country	Origin	Primary Tag or Mark			Total
		Microtag	External mark	Adipose clip	
Canada	Hatchery	0	45,009	1,738,916	1,783,925
	Wild	0	9,083	329	9,412
	Adult	0	6,046	0	6,046
	Total	0	60,138	1,739,245	1,799,383
Denmark	Hatchery	72,900	0	0	72,900
	Wild	0	0	0	0
	Adult	0	0	0	0
	Total	72,900	0	0	72,900
Iceland	Hatchery	127,162	0	0	127,162
	Wild	2,516	0	0	2,516
	Adult	0	563	0	563
	Total	129,678	563	0	130,241
Ireland	Hatchery	289,029	0	0	289,029
	Wild	939	0	0	939
	Adult	0	0	0	0
	Total	289,968	0	0	289,968
Norway	Hatchery	0	85,692	0	85,692
	Wild	0	5,436	0	5,436
	Adult	0	631	0	631
	Total	0	91,759	0	91,759
Russia	Hatchery	0	3,000	417,750	420,750
	Wild	0	40	190	230
	Adult	0	1,809	0	1,809
	Total	0	4,849	417,940	422,789
Sweden	Hatchery	0	4,928	39,517	44,445
	Wild	0	0	0	0
	Adult	0	0	0	0
	Total	0	4,928	39,517	44,445
UK (England \&	Hatchery	100,537	5,061	65,858	171,456
Wales)	Wild	4,139	0	973	5,112
	Adult	0	937	0	937
	Total	104,676	5,998	66,831	177,505
UK (N. Ireland)	Hatchery	34,487	0	35,536	70,023
	Wild	1,483	0	0	1,483
	Adult	0	0	183	183
	Total	35,970	0	35,719	71,689
UK (Scotland)	Hatchery	12,355	2,000	0	14,355
	Wild	6,948	6,462	4,750	18,160
	Adult	0	899	0	899
	Total	19,303	9,361	4,750	33,414
USA	Hatchery	0	172,842	47,857	220,699
	Wild	0	1,800	0	1,800
	Adult	0	5,052	30	5,082
	Total	0	179,694	47,887	227,581
All Countries	Hatchery	636,470	318,532	2,345,434	3,300,436
	Wild	16,025	22,821	6,242	45,088
	Adult	0	15,937	213	16,150
	Total	652,495	357,290	2,351,889	3,361,674

Figure 2.1.1.1 Nominal catches of salmon in four North Atlantic regions 1960-2000.

Figure 2.1.3.1 Total reported catch, unreported catch (in NASCO Areas) and \% unreported catch of com bined catch 1986-2000

Figure 2.2.1.1 Worldwide farmed Atlantic salmon production, 1980 to 2000. Data for non-North Atlantic area do not include farmed salmon production in some countries (notably Chile, which has a high production relative to other countries)

Figure 2.2.2.1 Production of ranched salmon in the North Atlantic, 1980 to 2000

Figure 2.3.1.1. Deterministic calculations of catch options for the fishery at West Greenland for low abundance and moderate abundance periods. Values in bold and in box are parameters with uncertainty.

2.6 Deterministic calculation of quota for a low abundance period			
Step 1	$\mathrm{SpR}=\mathrm{SpT}^{*}\left(\exp \left(11^{*} \mathrm{M}\right)\right)$		$\mathrm{SpT}=2 \mathrm{SW}$ Conservation requirement for North America
	$\mathrm{SpT}=$	152,548	
Step 2	$\mathrm{SpR}=$	170,286	$\mathrm{SpR}=$ Spawning Reserve for North America adjusted for 11 months of natural mortality between West Greenland and North America
	$\mathrm{MAH}=\mathrm{PFA}-\mathrm{SpR}$		
	PFA $=$	183,000	PFA value at 50% probability
Step 3	$\mathrm{MAH}=$	12,714	MAH $=$ Maximum Allowable Harvest $=$ Number of surplus North American origin fish
	NA SWW $=\mathrm{fNA} * \mathrm{MAH}$		FNA $=$ fraction of NA surplus allocated to Greenland NA1SW = Number of North American surplus fish available for Greenland
	FNA =	0.4	
	NA1SW =	5,086	
Step 4	E1SW $=($ NA1SW / PropNA) - NA1SW		
	PropNA =	0.779	PropNA = proportion NA salmon in the fishery
	E1SW =	1,443	E1SW = number of European origin 1SW salmon expected in the fishery
Step 5	Quota $(\mathrm{t})=($ NA1SW * WT1SWNA + E1SW * WT1SWE) * ACF / 1000		
	WT1SWNA =	2.666 kg	WT1SWNA $=$ weight (kg) of 1SW NA origin salmon in the fishery
	WT1SWE =	2.832 kg	WT1SWE = weight (kg) of 1SW European origin salmon in the fishery
	$\mathrm{ACF}=$	1.068	$\mathrm{ACF}=$ age correction factor $(>=1)$ to account for fish other than 1SW of age
	Quota $(\mathrm{t})=$	19	Quota $=$ Allowable harvest (t) at West Greenland taking into account all the factors in steps 1 to 4

2.7	Deterministic calculation of quota for a moderate abundance period		
Step 1	$\mathrm{SpR}=\mathrm{SpT}^{*}(\exp (11 * \mathrm{M})$)		
	$\mathrm{SpT}=$	152,548	$\mathrm{SpT}=2 \mathrm{SW}$ Conservation requirement for North America
	$\mathrm{SpR}=$	170,286	$\mathrm{SpR}=$ Spawning Reserve for North America adjusted for 11 months of natural mortality between West Greenland and North America
Step 2	$\mathrm{MAH}=\mathrm{PFA}-\mathrm{SpR}$		
	PFA $=$	436,770	PFA value at 50% probability
	$\mathrm{MAH}=$	266,484	MAH $=$ Maximum Allowable Harvest $=$ Number of surplus North American origin fish
Step 3	NA1SW $=\mathrm{fNA} *$ MAH		
	FNA =	0.4	FNA $=$ fraction of NA surplus allocated to Greenland NA1SW = Number of North American surplus fish available for Greenland
	NA1SW =	106,594	
Step 4	E1SW $=($ NA1SW $/$ PropNA $)-$ NA1SW		
	PropNA =	0.59	PropNA = proportion NA salmon in the fishery
	E1SW =	74,074	E1SW = number of European origin 1SW salmon expected in the fishery
Step 5	Quota $(\mathrm{t})=($ NA1SW * WT1SWNA + E1SW * WT1SWE) * ACF / 1000		
	WT1SWNA =	2.75 kg	WT1SWNA $=$ weight (kg) of 1SW NA origin salmon in the fishery
	WT1SWE =	3.13 kg	WT1SWE = weight (kg) of 1SW European origin salmon in the fishery
	$\mathrm{ACF}=$	1.068	$\mathrm{ACF}=$ age correction factor $(>=1)$ to account for fish other than 1SW of age
	Quota $(\mathrm{t})=$	561	Quota $=$ Allowable harvest (t) at West Greenland taking into account all the factors in steps 1 to 4

Figure 2.3.1.2. Probability profiles for simultaneously achieving a given level of escapement relative to conservation in six stock areas of North America.

Figure 2.3.1.3. Probability profiles for the PFA forecast values for low abundance and moderate abundance periods.

Figure 2.3.1.4. Expected catch of 1SW salmon of North American origin at a catch option of 50 tons at West Greenland. The uncertainty in catch is quantified by incorporating the observed temporal variation in proportion of fish of North American origin, mean weights of 1SW salmon of North American and European origin, and the age correction factor for older age groups.

Figure 2.3.1.5. Theoretical risk analysis plots showing the risk-prone and risk-averse zones relative to the uncertainty of the stock assessment.

Figure 2.3.1.6. Examples of risk analysis profiles of catch options in West Greenland for low abundance and moderate abundance periods.

Figure 2.3.1.7. Relationship between small salmon (mostly 1SW salmon) in year i and large salmon (2SW salmon with an important component of multiple spawners) in year i+1, for 1985 to 2000.

Figure 2.3.1.8. Fishery, biological characteristics, and forecast data inputs to the risk analysis of the 2001 Miramichi homewater fishery.

Assumptions of the fisheries risk analysis model

Figure 2.3.1.9. Risk analysis profiles for the 2001 homewater fisheries in the Miramichi River. The upper panel describes the egg loss from the harvest levels as a percentage of the total eggs in the predicted returns. The lower panel describes the risk to achieving the conservation requirements for different harvest levels

Egg Loss (\%)

Prob. of Meeting Conservation

Figure 2.4.3.1 Relationship between reported escapes and estimated escapees in Irish catch
(smolts are included with adults of the following year)

Figure 2.4.3.2. Geographical distribution of farmed salmon released at Bersagel. Grey and black dots are respectively river and sea recoveries.

Figure 2.4.3.3. Geographical distribution of farmed salmon released at Meløy. Red and black dots are respectively river and sea recoveries.

Figure 2.4.3.4 Ocean currents in the norteast Atlantic

Figure 2.4.4.1 Locations and numbers of post-smolts captured in surface trawl hauls during a special post-smolt survey tin mid- June 2000. Stars mark trawl-hauls without salmon. Black numbers indicate number of post-smolts and white numbers on black indicate number of older salmon in catch. Micro-tagged and Carlin- tagged fish were captured in the same catch of 170 fish, and a few micro-tagged fish were found on a neighbouring catch site (34). The approximate area where an international mackerel fishing fleet is operating during the summer months is shaded.

Figure 2.4.4.2 Sites of post-smolts captures 20 - 22 may 2000 during salmon lice investigations in the Sognefjorden and the Nordfjord. Numbers indicate post-smolts captured in Nordfjord, while stars indicate captures in the Sognefjord. Numbers of single catches are not known but the total Sognefjord catch was >200.

Figure 2.4.4.3 Average number of salmon lice per fish on seaward migrating post-smolts in trawl-captures in two southwest-Norwegian fjords in May 1998 - 2000.

Figure 2.4.5.1 The relationship between seasonal run-timing of returning adults and incidence of scales exhibiting summer checks. Data for 1SW salmon, 2 SW salmon exhibiting checks in their first year at sea and 2 SW salmon exhibiting checks in their second year at sea are shown separately, grouped by the year when the adults were taken by the net fishery (1997, white bars; 1998, stippled bars; 1999, black bars)

Figure 2.4.6.1. Predicted monthly mortality rate for Atlantic salmon relative to the sea age (days) as per the inverse weight relationship presented by Lorenzen (1996). River Bush data are from Doubleday et al. (1979).

Figure 2.4.6.2 Solutions for S_{1} and S_{2} for the hatchery returning Atlantic salmon from the Saint John River at Mactaquac (upper) and the wild smolts from de la Trinité River (lower).

Figure 2.4.6.3. Inter-river comparisons of annual survivals of the 1996 smolt cohort in year one (S1) (upper panel) and year two (S2) (lower panel). The Saint John smolts are hatchery age-1 smolts, the other two rivers are wild smolts.

Figure 2.4.6.4. Estimated monthly Z (instantaneous mortality rate) of salmon in their second year at sea. The points in grey (1992 and later smolt cohort) are likely a good representation of M since sea fisheries were declining or eliminated.

Figure 2.4.7.1. Mean annual air temperature trends for the Southwest and Northwest Miramichi monitoring stations.

Figure 2.4.7.2. Timing of the peak spring runoff event in the Miramichi River.

Figure 2.4.7.3. Mean annual fork length of juvenile Atlantic salmon from the Miramichi River, 1971 to 1999.

Figure 2.4.7.4. Association between mean annual size-at-age of age-1 and age-2 parr and the mean spring water temperature for the Miramichi River, 1971 to 1999.
 AREA

3.1
 Fishing at Faroes in 1999/2000

In the period 1991-98 inclusive the Faroese salmon quota was bought out. However, the Faroese Government continued sampling inside the 200 mile EEZ during most years (ICES 2000/ACFM:13). No buyout was arranged for 1999 and 2000. No fishing took place in 1999 and the commercial fishery resumed in 2000. In the 1999/2000 season approximately 8 t were caught by M/S "Túgvusteinur" during 2 commercial fishing trips between late January and early April 2000 (ICES 2000/ACFM:13).

3.2 Description of the 2000/2001 commercial fishery

No fishery for salmon was undertaken by Faroese fishermen during the 2000/2001 fishing season and, consequently, no biological information was available for this season.

3.3 Homewater Fisheries in the NEAC area

3.3.1 Significant events in NEAC homewater fisheries in 2000

In an effort to accelerate the phase out of mixed stock fisheries, Government funding ($£ 0.75$ million) has been made available in UK (England and Wales) to facilitate buy-out initiatives. To be utilised, these 'pump-priming' sums have to be matched by equivalent funding from fishery and riparian interests.

UK (England and Wales), UK (Scotland) and Ireland experienced substantially higher than average rainfall in 2000; river flows were generally above average and provided good conditions for angling. However, flows were particularly high late in the year resulting in the loss of some fishing opportunities; these flows may also have impacted on spawning and recruitment (wash-out of redds).

In UK (Scotland), net fishermen agreed to suspend fishing for the first six weeks of the fishing season to protect the early running MSW (spring) salmon. This was a voluntary measure and was observed by the majority of fishermen.

In Ireland, two major draft net fisheries were suspended during 2000 as part of ongoing catchment management initiatives.

3.3.2 Gear

There were no reports of significant changes in the types of gear units used in the NEAC area countries in the year 2000.

3.3.3 Effort

The number of gear units licenced or authorised in several of the NEAC area countries is shown in Table 3.3.3.1. This provides a partial measure of effort but does not take into account other restrictions, for example, the close season. In addition, there is no indication from these data of actual number of licences utilised or the amount of time each licencee fished.

The change in effort for the last 5 years (1996-2000) for net fisheries is shown in Figure 3.3.3.1. In general there is a substantial decline in the net effort deployed in the NEAC area, the only exception being the driftnet fishery in Ireland.

The number of gear units licenced or authorised in the year 2000 declined in all but one of the countries where this information was available. In UK (England and Wales), UK (Scotland), Ireland, France and Norway the number of gear units licenced or authorised in 2000 was lower than in 1999. The only exception to this was the draftnet fishery in UK (N -Ireland). Longer term trends were also consistent among these countries. In all cases, the number of gear units licenced or authorised were at the same level or lower than the previous 5- and 10-year averages with exception for the driftnet fishery in Ireland where an increase occurred compared to the previous 5-and 10-year averages.

Figure 3.3.3.2 show the change in effort over the last 5 years (1996-2000) for rod fisheries in the NEAC area countries where effort is reported. The rod fishery effort has decreased in UK (England and Wales) but increased in Ireland, Finland and France.

There was an increase in the number of rod licences issued in Ireland compared to 1999 and also compared to the previous 5-year average. In Finland, rod effort in the River Teno recreational fishery increased substantially (41\%) compared to 1999 and to the previous 5- and 10-year averages. In River Naatamo the number of fishermen decreased compared to the previous year and to the previous 5- and 10-year averages. A similar decline in effort was evident in the total declared number of rod days fished in UK (England \& Wales) with the 2000 value down compared to previous indices.

3.3.4 Catches

NEAC area catches are presented in Table 3.3.4.1. The total catch in the NEAC area was 2633 tonnes, up 27% on the 1999 catch, and representing 94% of the total North Atlantic nominal catch in 2000. Both homewater and total reported catches in NEAC area showed increases compared to 1999 (27 and 25% respectively). This increase in total catches arises from substantial increases of the nominal catch in a few countries (Norway, Finland, and Sweden), while others showed only slight increases or even substantial decreases (UK (Scotland) and Iceland). The nominal catches for individual countries can be found in Table 2.1.1.1. Figure 3.3.4.1 shows the percentage change in the 1999 NEAC homewater catches relative to the previous 5-year (1995-99) and 10-year (1990-99) means.

As can be seen in Figure 3.3.4.1, four countries (UK (England \& Wales), Sweden Norway and Finland) showed a substantial ($20-91 \%$) increases in catches relative to the 5 -year averages, while two of them (Norway and Finland) also showed large ($40-65 \%$) increases in relation to the 10 -year average. These changes are believed to arise from higher marine survival rates rather than an increase in effort (cf. Section 3.4). The catches in UK (Scotland) and Iceland decreased substantially ($>35 \%$) in relation to both long-term averages, while Russian and French catch decreased only relative to the 5 -year average. For the remaining NEAC countries reporting catches greater than 10 tonnes the changes were minor.

3.3.5 Catch per unit effort (CPUE)

CPUE data for the NEAC area are presented in Tables 3.3.5.1-3.3.5.5. The CPUE data for rod fisheries has been collected by relating the catch to rod days or angler season, and that of net fisheries was calculated as catch per licenceday, trap month or crew month. Grouping of data for the trend analysis was based on the units in which CPUE was presented (rod fisheries) and on national/regional distribution (rod and net fisheries) of fisheries considered.

It is assumed that the CPUE of net fisheries is a more stable indicator of the general status of salmon stocks than rod CPUE; the latter may be more affected by varying local factors, e.g. weather conditions, management measures and angler experience. However, both may also be affected by many measures taken to reduce fishing effort, for example, changes in regulations affecting gear.

In Finland, CPUE in the rivers Teno and Naatamo showed increases over the previous year and, in the case of the Teno, an increase over the previous 5 year average. In France, there was a small increase over the previous year but a decrease on the previous 5 year average. The river Bush (UK (NI)) showed a decrease compared to both recent indices (Table 3.3.5.1). Information from eight rivers in Russia showed, in most cases, increases over both 1999 and previous 5 year averages (Table 3.3.5.2). Results of the route regression analysis showed no general trends in rod CPUE over the last 10 years (Table 3.3.5.6).

In UK (England and Wales) CPUE for the net fishery increased in the North East and North West regions compared to 1999 and the previous 5 -year averages. In contrast, the Wales, South West and Midland regions showed a decrease compared to recent indices (Table 3.3.5.3). Route regression analysis showed a significant upward trend for the last 10years in these fisheries. The CPUE for the Scottish net fisheries showed an increase over 1999 but values remained lower than the previous 5 -year mean (Table 3.3.5.4). Route regression analysis for the Scottish net fishery revealed a significant downward trend for the last 10 -years (Table 3.3.5.6).

CPUE for the marine fishery in Norway has increased for the past three years for bagnets and bendnets and was consistent across all size groups (Table 3.3.5.5). The CPUE was highest for small fish ($<3 \mathrm{~kg}$).

CPUE is a measure that can be influenced by various factors. Water level and weather condition can have effects on CPUE as well as operation intensity or number of gear units in an area. If large changes occur for one or more factors a
common pattern may not be evident over larger areas. It is, however, expected that for a relatively stable effort CPUE can reflect changes in the status of stocks and stock size. This can be seen in the increase in CPUE for the Norwegian marine fishery that is also reflected in increased catch (Section 3.3.4) as well as the calculated PFA values (Section 3.6.).

3.3.6 Age composition of catches

The percentage of 1 SW salmon in catches is presented in Table 3.3.6.1 and Figure 3.3.6.1 for those countries where a time series of data exist. The proportion of 1SW fish in the 2000 catches is presented as a percentage of the 1995-99 and 1990-1999 averages. In comparison with 1999 the differences between countries in Northern and Southern Europe were less apparent in 2000, with southern European countries occurring at both ends of the scale (Figure 3.3.6.1). While the proportion of 1 SW fish in the 2000 catch remained lower than both the 5 and the 10 year average in UK (Scotland), it had changed from lower to higher than the long-term indices in France and UK (England and Wales). Several NEAC countries also report nominal catches partitioned according to sea-age category (Table 2.1.1.3.). These data suggest that for France the change in the age composition of the 2000 catch was driven by the combined effect of an increase in 1 SW catches and a reduction in the number of MSW fish taken.

There was no common trend in the age composition of the 2000 catches of northern European countries (Finland, Iceland, Norway, Sweden, and Russia), as two had gone down and three had remained higher than the long-term averages.

3.3.7 Farmed and ranched salmon in catches

The contribution of wild, farm-origin and ranched salmon to national catches in the NEAC Area 1991-2000, is shown in Table 3.3.7.1. Although showing a slight decrease in 2000, farmed salmon continued to account for a relatively large proportion (20%) of the nominal catch in Norway. Farmed salmon was estimated to constitute less than 2% in all other NEAC countries.

Table 3.3.7.2 gives estimates of the incidence of farmed salmon in Norwegian coastal and fjord fisheries. In 2000, farmed fish accounted for 31% of the catch of coastal fisheries, a decline compared to the previous 5 years estimates. In 2000, the proportion of farmed salmon in Norwegian rod catches was similar to the preceding year, whereas the incidence of farmed fish in brood stock samples was estimated to be 8%, a reduction of almost 50% (Table 3.3.7.3). This decrease in the proportion of farmed salmon in the catches is probably due to a rise in the Norwegian catches of wild fish rather than to a true decrease in escapees, as the number of farmed salmon captured was the highest in the whole time series.

In the River Teno (Finland and Norway), the incidence of farmed salmon during the fishing season in June-August has been low, varying between 0.04% and 0.4% over the period 1987 to 2000 . However, occasional samples taken in 1990 - 91 and 1997 after the fishing season (September-October) have included 0 to 50% farmed fish (Table 3.3.7.4), indicating that the proportion of fish farm escapees in the spawning stock may be higher than shown in the in-season samples. This is similar to data presented from Norway (Table 3.3.7.3).

Catches of salmon in coastal fisheries in both UK (Northern Ireland) and Ireland are examined for escaped farmed salmon (Table 3.3.7.5). Data for both countries are presented together as they constitute a continuous part of the species' geographic range. Escaped farmed fish have been detected every year; the combined frequency being less than 1% in most years. The 2000 figures for two specific areas (UK Northern Ireland and the Galway Limerick area in Ireland), however, show slightly elevated levels (3.1% and 2.2% respectively) compared to previous years.

In UK (Northern Ireland), only 0.3% of the total salmon run trapped in the River Bush comprised farmed salmon, continuing the trend for a low incidence of farmed fish being detected in freshwater (Table 3.3.7.6).

A catch sampling programme in UK (Scotland) from 1981 to the present indicates that the incidence of farmed salmon in catches of fisheries around the country continues to decrease from their highest recorded levels around 1993 (Table 3.3.7.7).

The incidence of farmed salmon in catches is examined in relation to farmed production in Section 2.4.3.

Some new information on tag recoveries was made available to the Working Group. From 1996 to 1999 a total of 409,762 smolts, mainly hatchery reared were tagged and released in Norway. A total of 3,811 adult recoveries were reported from Norway and 19 from other countries $(0.5 \%$ of the total number of salmon recovered). This is consistent with previous observations that very few Norwegian salmon are intercepted in other countries.

3.3.9 Exploitation rates in homewater fisheries

The analyses of exploitation rates were greatly expanded in 2000 as data from 15 new rivers were added. Exploitation rates for 25 wild, 4 mixed (wild and hatchery) and 12 hatchery stocks are shown in Table 3.3.9.1. Route regression analysis shows no trend relative to any of the long-term means for the 1SW stock components from the rivers reported. The analysis detected a significant downward trend in exploitation for the past 10 -year periods for the 2 SW-component of four of the south- European rivers, two southwest-Norwegian and one Icelandic and the Swedish river included in the analysis. Exploitation rates for these rivers showed no trend for the 2 SW component on a 5 year period. As in 1999, exploitation rates of all ages of salmon in the Russian rivers draining to the White Sea Basin showed a significant downward trend both for the 5 and the 10 year period. Among the rivers draining to the Barents Sea, only the exploitation rates for the 10 -year period showed a downward trend while the 5 -year period showed no trend (Table 3.3.5.4).

3.3.10 Summary of homewater fisheries in the NEAC area

In the NEAC area there has been a general reduction in catches since the 1980s. This reflects a decline in fishing effort, both as a consequence of management measures and the reduced value of commercially caught salmon, as well as a reduction in the size of stocks. However, the overall nominal catch in the NEAC area in $2000(2,633 \mathrm{t})$ was substantially higher than that in 1999 (2074t). Catches in some northern European countries were particularly high and well above the recent five and ten-year averages; catches in most other NEAC countries were close to or below the long-term averages.

While there have been no changes in the types of commercial fishing gear used, the number of licensed gear units has, in most cases, continued to fall. Most fisheries for which data are available record a reduction of over 40% in gear units operated over the last 10 years. There are no such consistent trends for the rod fishing effort in NEAC countries over this period. Further initiatives to reduce fishing effort were introduced in several countries.

CPUE data for the net and rod fisheries show differences between countries but no large scale geographic patterns emerge. The Working Group noted that reduction in the number of fisheries operating can benefit those fisheries still in operation and that the lack of consistent trends in CPUE may reflect the imprecise nature of these indices.

Exploitation rates showed no trends relative to long-term averages for 1SW stock components in the NEAC area, although significant downward trends were detected for the 2SW component of some fisheries. There appeared to be no uniform pattern across NEAC countries.

No common trends were noted in the sea age composition of the 2000 catches in the NEAC areas. Differences in the age composition between countries in Northern and Southern Europe noted in 1999 were less apparent in 2000.

In general, the incidence of farmed salmon in NEAC homewater fisheries remained at low levels ($<2 \%$) and similar to recent years, despite the continued increase in the salmon farming industry. The proportion of farmed salmon (20\%) in the nominal catch for Norway did not increase, but this was a result of the significantly increased catch of wild fish. The number of farmed fish in the Norwegian catch was the highest recorded in the time series.

3.4 Status of Stocks in the NEAC Area

3.4.1 Attainment of conservation levels

Attainment of conservation limits was examined for 13 rivers in the NEAC area for which spawning escapement data (egg deposition) and river-specific conservation limits were available. The analyses included five rivers from Russia, four from UK (England \& Wales), and one each from UK (Northern Ireland), UK (Scotland), Ireland and France, where sufficient data were available for the previous 10 years (Figure 3.4.1.1). However, this set of rivers does not sufficiently represent the entire NEAC area as, for instance, no data are available from Norway. In contrast, from 45 rivers in UK
(England \& Wales) where CL attainment data were available, five rivers were selected for the analyses to represent different regions.

In accordance with the analysis carried out last year, four categories of rivers were distinguished (Fig. 3.4.1.2):

- Type A: four rivers in which egg deposition was mostly below CL (means of the river CL attainment rates of 45% to 80%);
- Type B: four rivers in which egg deposition fluctuated around CL (means of the river CL attainment rates of 84% to 119%);
- Type C: three rivers in which egg deposition was mostly above CL (means of the river CL attainment rates of 153%. to 180%);
- Type D: two rivers in which egg deposition was well above CL (means of the river CL attainment rates of 250% and 281%). These rivers never fell below CL during the last 10 years.

Information about the conservation limit attainment for the 13 rivers and one river with a shorter time series available (Coquet, UK England) is given in Table 3.4.1.1. and Fig. 3.4.1.1. Eight rivers (62%) out of the 13 rivers where data were available for the year 2000 showed a decline from 1999 to 2000 in the CL attainment (Table 3.4.1.1, Fig. 3.4.1.1.), and in five cases the reduction varied between 30% and 84%. Rivers with the largest decline belong to the two first categories defined above (Fig. 3.4.1.2). In contrast, three rivers showed a marked increase in their CL attainment (27$57 \%$) all belonging to different categories (Fig. 3.4.1.2). Seven rivers (54\%) had an egg deposition above their CL in 2000, which is more than in 1999 (44%) but less than in $1998(69 \%)$.

The slight increase in CL attainment from that of the previous year was in accordance with the increase in catches (Section 3.3.4), although the CL attainment information available is not representative of the entire NEAC area.

3.4.2 Measures of juvenile abundance

Smolt counts or estimates of juvenile abundance were made available to the Working Group for 14 rivers (Table 3.4.2.1). Estimates of juvenile salmon ($0+$) abundance in the rivers Bush (UK N.Ireland) and Nivelle (France) were clearly higher than the 5 -year mean being the highest (Nivelle) or second highest (Bush) for the last 10 years. In the River Teno and its tributaries (Finland), juvenile salmon (fry \& parr) abundance was mostly at or below the previous 5year mean and below the figures for the previous year (Table 3.4.2.1).

About half of the smolt counts in 2000 were higher than those of the previous year and the 5 -year means (Table 3.4.2.1). There was a significant downward trend during the last 10 years for the smolt counts in all rivers together ($\mathrm{p}=0.981$) and separately for the northern rivers (Norway, Sweden; $\mathrm{p}=0.984$), whereas no trends were detected during the last 5 years for these groups of rivers. No trends were detected for southern rivers (UK N-Ireland, Ireland, France) for the 5- or 10- year periods (Table 3.4.2.2).

In general, the declining smolt counts in northern rivers appear to reflect the previous decline in adult returns and variable attainment of the CL in this area. However, the downward trend in returns and PFA estimates of southern rivers does not seem to be reflected in smolt counts of the southern rivers.

3.4.3 Measures of adult returns back to the rivers

Estimates or total counts of adult salmon returning into the rivers were available for 36 rivers in the NEAC area (Table 3.4.3.1). To examine trends in different geographical groups of rivers, the rivers were divided into northern (Nordic countries and Russia) and southern group (UK, Ireland and France). Information from 32 rivers was available to examine the change between 1999-2000 and in relation to the previous 5-year mean.

In the northern group, eight out of 14 rivers (57%) showed an increase from the previous year but only six rivers (43%) exceeded their 5 -year mean. A significant downward trend was detected for the previous 10 -year period in the northern group ($\mathrm{p}=0.99$), whereas no trend was detected for the previous 5 -year period $(\mathrm{p}=0.32)$.

In the southern group, more than half (56%) of the adult salmon counts were lower than those in 1999, and two thirds (66%) were below their 5 -year mean (Table 3.4.3.1). Due to technical limitations of the route regression analysis, it was necessary to split the southern rivers into two groups: British Isles ($\mathrm{n}=17$) and France ($\mathrm{n}=4$). A significant downward trend was detected for the previous 10 -year period in both groups (British Isles: $p=0.97$, France: $p=0.98$). The rivers in

France showed a downward trend for the previous 5 -year period $(\mathrm{p}=0.97)$ whereas no such trend was detected for the rivers in UK and Ireland ($\mathrm{p}=0.74$).

3.4.4 Survival indices

Estimates of marine survival for wild smolts from 5 stocks returning to homewaters (i.e. before homewater exploitation) for the 1999 smolt year class are presented in Table 3.4.4.1. For the Nivelle River (France), indices of survival are also provided for autumn age -0^{+}parr. This provides an approximation of marine survival as more than 80% of juveniles migrate after only one year in freshwater. In most rivers marine survival for the 1999 smolt year class was below the 5and the 10 -year mean for both 1 SW and 2 SW fish. Route regression analysis showed significant downward trend in marine survival for 1 SW fish for the last 5- and 10 -year period ($\mathrm{p}=0.95$ and 0.99), while no trend was detected for 2SW fish.

Marine survival for 13 hatchery stocks are given in Table 3.4.4.2. For the past 10 -year period, route regression analysis showed a significant downward trend for survival to homewaters for 1 SW ($\mathrm{p}=0.983$) and 2 SW fish ($\mathrm{p}=0.998$), but no trend was detected for the past 5-year period for either 1SW or 2SW fish. However, return rates of hatchery released fish may not always be a reliable indicator of marine survival of wild fish because of differences in release conditions.

These results are consistent with the information on adult salmon counts (Section 3.4.3), and suggest that returns are strongly influenced by factors in the marine environment.

3.4.5 Summary of the status of stocks in the NEAC area

Analysis of attainment of conservation limits (CL) in 2000 showed that the proportion of rivers with an egg deposition above their CL was higher than in 1999 but less than in 1998. However, a majority of rivers showed a decline in their level of attainment in 2000 compared to the previous year and in most cases the decline was substantial ($30-80 \%$). This indicates that the recovery of salmon stocks observed in 1998, from a period of low attainment (1994-1997), has not appeared to continue. Although some areas were not represented in the data (e.g. Norway), the Working Group had no reason to assume that the indices were not representative of stocks in general and noted the analysis broadly corresponded to the results of the PFA analysis in Section 3.4.6.

Measures of smolt production indicated that about half of the rivers showed higher smolt output in 2000 than in 1999. Route regression analysis revealed a significant downward trend over the last 10 years for northern rivers, but no trend was detected for southern rivers. The declining smolt counts in northern rivers appear to reflect the previous decline in adult returns and variable attainment of the CL in this area. However, the downward trend in returns and PFA estimates of southern rivers does not seem to be reflected in smolt counts of the southern rivers.

Measures of adult returns back to the rivers showed that of the rivers examined in 2000, more than half showed increased counts. Both southern and northern rivers showed a significant decline over the last 10 years, whereas no clear trend was detected for the last 5 -year period.

For most rivers where information is available, marine survival indices were below both the previous 5 -and 10 -year means. Route regression analysis showed significant downward trend in marine survival for 1SW fish for the last 5-and 10 -year period, while no trend was detected for 2 SW fish. A similar analysis showed a downward trend in marine survival for 1 SW and 2 SW hatchery fish over the last 10 years but no decline over the past 5 year period. These results are consistent with the information on adult salmon counts and suggest that returns are strongly influenced by factors in the marine environment.

In summary, the monitored rivers analysed in this section would suggest that the status of salmon stocks in the NEAC area is, in general poor. This broadly agrees with the results of the PFA-lagged spawner analysis that is based on national catch statistics and and presented in Section 3.6.

3.5 Evaluation of the effects on stocks and homewater fisheries of significant management measures introduced since 1991.

3.5.1 Evaluation of the Effects of the Suspension of Commercial Fishing Activity at Faroes

Between 1991 and 1998 the Faroese fishermen agreed to suspend commercial fishing for the salmon quota set by NASCO, in exchange for compensation payments. The number of fish spared as a result of this period of suspension is
the catch that would have been taken if the fishery had operated, minus the catch in the research fishery which operated in most years. No buyout was arranged for 1999 or 2000. Although no fishing took place in 1999, a single vessel carried out commercial fishing in 2000, catching approximately 8 t . As for last year (ICES 2000/ ACFM:13), analysis was based on the assumption that full quota would have been taken, had full scale commercial fishing taken place. Thus, the maximum catch that would have been taken in 1999/2000 would have been 300 t (Table 3.2.1.1). For the 1999/2000 analysis therefore the fish spared totalled 292t (300t-8t).

Although commercial fishing was carried out in 1999/2000, no new data on the discard rates, the age composition of the catch, or for the proportion of farm escapees in catches were available. Hence, the same values were used as for the 1998/99 assessment. The assessment is shown in Table 3.5.1. This suggests that if the full quota had been bought out, between 3,000 and 21,000 additional 1SW salmon and between 70,000 and 138,000 additional MSW salmon would have returned to homewaters each year from 1992 to 2000. For the 1999/2000 season, the numbers of fish believed saved were 15,332 1SW and $87,726 \mathrm{MSW}$, respectively. In addition, between 27,000-55,000 escaped farmed fish each season would have been saved from capture in the Faroese fishery. However, data from tagging experiments suggest that almost all survivors would return to Norway (Hansen and Jacobsen, 1997), provided they behaved in a similar manner to wild fish. The analysis carried out suggests that, for the 1999/2000 season, an estimated 24,000 escapedfarmed fish may have been saved.

Estimates (means of 1000 simulations) of the total numbers of 1SW and MSW salmon returning to homewaters (i.e., Pre Fishery Abundance estimates) in the NEAC area and to countries of northern and southern Europe are provided in Tables 3.6.4.1 and 3.6.4.2. The calculated additional returns represent between 7% and 15% of MSW fish and up to 1% of 1SW fish returning to homewaters between 1992 and 2000 (Table 3.5.1). However, data from adult tagging studies (Hansen and Jacobsen 1997), indicate that the majority (about 65\%) of MSW salmon caught in the Faroes fishery would return to Scandinavian countries, Finland and Russia. If this were the case, they might have represented from 10% to 20% of MSW returns and up to 2% of 1SW returns to northern European homewaters in the same period (Table 3.5.1). If stocks and fisheries had remained stable, total catches would have been expected to increase by approximately the same proportions in respective areas.

Although the assessment of changes in catch levels prior to and after suspension of the fishery at Faroes were influenced by many other factors (eg. changes in exploitation and effort) could have affected abundance, the benefits of not fishing should be highlighted. The additional returns will still be expected to contribute to catches and spawning stocks, even if any expected increase has been masked by other factors such as changes in marine survival or management measures in homewaters, such as those outlined in Section 3.5.2, below.

3.5.2 Evaluation of the effects of management measures introduced in homewaters since 1991.

The Working Group noted significant reductions in the number of gear units deployed in most countries in the NEAC area (Table 3.5.2). Additional measures have been taken is some countries.

In Ireland new management and conservation legislation was brought into force in 1997 which was aimed at reducing effort and exploitation in the fishery and to facilitate enforcement. These regulations were enforced during the 19972000 seasons. In order to show whether there has been a change in the catch subsequent to the introduction of measures in 1997, the data were analysed using a Non-Parametric Random Ratio (NPR) test (Rago 1993, ICES 2000/ACFM:13). This test compares the mean catch in the period following the introduction of new regulatory measures in 1996 (i.e. 1997-2000) with the mean catch reported in the preceding 7 years to 1990. The results of this test indicate that drift net catches in the most recent 4 years were significantly lower than the preceding 7 years ($\mathrm{p}<0.01$) in all regions. Similarly, draft net catches (excluding the North Western Region where the Moy River draft net was suspended in 1994) were also significantly lower in the most recent 4 years ($\mathrm{p}<0.01$) in all regions. A Non Parametric Random (NPR) Ratio Test (Rago, 1993, Anon 2000) was applied to the exploitation data for 10 Irish stocks to examine the effects of the management measures introduced in 1997. The results of this test indicated that the exploitation rates in the period from 1997 to 2000 were also significantly reduced compared to the previous 10 year period ($\mathrm{p}<0.01$). It is concluded therefore that the measures introduced in 1997 contributed to a reduction in both the overall catch and the exploitation rate on Irish stocks.

In UK (England and Wales), the North East coast fishery is the largest net fishery in UK (England and Wales) and has taken 68%, on average, of the national declared net catch over the period 1970-92. A phase out of this fishery was introduced in 1993 and the number of licences issued has subsequently fallen by 50%, from 142 in 1992 to 71 in 2000. The exploitation rate in 1992 was estimated to be in the region of 50%. Assuming the remaining fishermen are representative and that there have been no major changes in the fishery, the average exploitation rate (1996-2000) would have fallen to around 32% (i.e. a 36% reduction). This is in close agreement with the reduction in the average
drift net catch (1996-2000), which has fallen by 32% compared with the 5 years (1988-92) prior to the start of the phase out. A number of other smaller coastal mixed stock fisheries have also been phased out since 1991.

National measures introduced in UK (England and Wales) in 1999 to protect spring salmon are estimated to have saved around 3,700 salmon from capture by net fisheries in 2000 before June 1 (based on the catch and the average proportion of fish taken in this period in the 5 years prior to the measures being introduced) and 1,400 by rod fisheries (based on a similar proportion, but adjusted for catch and release).

The Working Group noted that a large number of other measures had been introduced. For example, in UK (England and Wales) the total number of licences issued has been reduced by 46% since 1991, but the introduction of additional controls (e.g. increased close periods) has reduced the total allowable fishing effort by 60%. In UK (Scotland), a voluntary cessation of net effort for the first six weeks of the fishing season was agreed by the majority of fishermen and was introduced in 2000. In the rod fishery, there has been an increase in the practice of catch and release since 1994 as previously reported (Table 2.1.2.1). These recent initiatives, and the continuing decline in overall net effort, are likely to reduce the impact on NEAC stocks. The Working Group expected these changes to reduce homewater exploitation rates.

3.6 Expected abundance of Salmon in the North East Atlantic

3.6.1 Previous development of a NEAC - PFA model

The Working Group has previously developed a model to estimate the pre-fishery abundance (PFA) of salmon from countries in the NEAC area. (PFA in the NEAC area is defined as the number of 1SW recruits on January $1^{\text {st }}$ in the first sea winter). The method employs a basic run-reconstruction approach similar to that described by Rago et al. (1993) and Potter and Dunkley (1993). The model estimates the PFA from the catch in numbers of 1SW and MSW salmon in each country. These are raised to take account of minimum and maximum estimates of non-reported catches and exploitation rates of these two sea-age groups. Finally these values are raised to take account of the natural mortality between January $1^{\text {st }}$ in the first sea winter and the mid-point of the respective national fisheries. A Monte Carlo simulation (1000 runs) (using 'Crystal Ball' in Excel; Decisioneering, 1996) is used to estimate confidence limits on the PFA values. Full details of the model are provided by Potter et al. (1998).

3.6.2 Improvements to the NEAC-PFA model

No changes were made to the structure of the PFA model used in 2001. In addition to adding catch data and other parameter values for 2000, national representatives considered methods for improving the precision of parameter values used in the model, in particular by splitting the national data set into regions. The following changes were made to the input data sets:

Country:	Changes to data inputs:
Finland	No changes; national data set applies to only 2 rivers.
France	No changes made to data inputs; a new model for estimating numbers of returns is being developed.
Iceland	National data set split into south-western and north-eastern regions for 1971-2000
Ireland	Seven regional data sets were evaluated but their use in the assessment was considered inappropriate at this stage; the full data set was reviewed and exploitation and non-reporting rates were modified.
Norway	National data set split into 3 regions (South , middle and North) for period 1983- 2000.
Russia	Data will be split into 3 regions for 2001; methods for handling 'fall salmon' (salmon that start to enter freshwater more than one year before spawning) will also be reviewed.
Sweden	Data will be fully re-evaluated for 2001
UK(England \& Wales)	Data set fully reviewed and corrected; a new model for combining counter and catches data to estimate total returns is being developed.
UK(Northern Ireland)	National data set split into 2 regions (Foyle and Fisheries Conservation Board) for 1971-2000
UK(Scotland)	National data set split into eastern and western regions for 1971-2000

The national and regional input data sets listed above for countries in the NEAC area and for the Faroes and West Greenland fisheries are shown in Appendix 7. The maximum and minimum values denote the limits of the uniform distributions used in the Monte Carlo Simulations.

Tables 3.6.2.1 to 3.6.2.6 summarise the outputs from the simulation, giving the mean estimates for each NEAC country of the numbers (plus variances/standard deviations) of:

- returns (1SW and MSW) (Table 3.6.2.1 and 3.6.2.2),
- recruits (PFA) (maturing and non-maturing 1SW and total 1SW) (Table 3.6.2.3 and 3.6.2.4),
- \quad spawners (1SW and MSW) (Table 3.6.2.5 and 3.6.2.6).

Trends in these outputs are discussed in Section 3.6.4.

3.6.3 Grouping of national stocks

The Working Group has previously considered the most appropriate stock groupings for the provision of catch options or alternative management advice. Stock groupings may be proposed for two purposes: first, to provide advice on the status of all the stocks in the NEAC area in a way that can conveniently be used by NASCO managers; and second to provide catch advice for the stocks contributing to specific fisheries. Different stock groupings may be appropriate to fulfil these objectives.

No new information was presented to the Working Group on methods to group stocks in the NEAC assessment, although it was noted that this is one of the topics being considered by a current EU Concerted Action programme ("SALMODEL"). The Working Group has therefore continued to use the following groups of countries to present the PFA data:

Southern European countries:	Northern European countries:
Ireland	Finland
France	Norway
UK(England \& Wales)	Russia
UK(Northern Ireland)	Sweden
UK(Scotland)	Iceland

3.6.4 Trends in the PFA for NEAC stocks

Tables 3.6.2.1 to 3.6.2.6 show combined results from the PFA assessment for the Northern and Southern European groups and the whole NEAC area. The PFA of maturing and non-maturing 1SW salmon and the numbers of 1SW and MSW spawners for these areas are shown in Figures 3.6.4.1 to 3.6.4.6.

The 95% confidence limits (dotted lines for PFA and vertical bars for the spawning escapement) shown in Figures 3.6.4.1 to 3.6.4.3 indicate the level of uncertainty in this assessment procedure. In more recent years this level of uncertainty has decreased. However, the Working Group recognised that the model provided an interpretation of our current understanding of national fisheries and stocks based upon simple parameters. Errors or inconsistencies in the output must largely reflect errors in our best estimates of these parameters. Furthermore, there are risks that progressive errors could occur if, for example, the rate that exploitation has been reduced over a period of years is underestimated. The results therefore need to be treated with caution.

Figure 3.6.4.1 shows that there has been a general decline in recruitment of 1 SW and MSW salmon in the whole NEAC area over the past 30 years, and both age groups have fallen to their lowest levels in the three years. Numbers of 1SW and MSW spawners have also declined (Figure 3.6.4.2) over the past 30 years, although the decline has been less severe, indicating that reductions in exploitation have, to some extent, compensated for the decline in stocks.

Figure 3.6.4.3 shows that recruitment of maturing 1SW salmon (potential grilse) in Northern Europe was generally high (around one million) in the 1970s and 1980s, although the numbers have fluctuated quite widely, but there was a steady decline in these stocks from the mid 1980s to the mid 1990s. In the past four years there has been an upturn in the recruitment, with stocks in 2000 returning to the levels observed in the early 1990s. The number of 1SW spawners was
low in the 1970s, increased through the 1980s but declined again in the 1990s (Figure 3.6.4.4). However, escapement in 2000 appears to have been good.

Numbers of non-maturing 1SW recruits (potential MSW returns) for Northern Europe are also estimated to have fluctuated around one million between 1970 and 1985, but subsequently fell to about half this level in the late 1990s; there has been a slight upturn in the past three years. The numbers of MSW spawners, however, show no trend over the time series although numbers appear to have been good in 2000. It therefore appears that the decline in recruitment has been balanced by the reductions in exploitation both in homewater fisheries and at Faroes. These trends in recruitment for the Northern European stocks are broadly consistent with the limited data available on the marine survival of monitored stocks in Norway and Iceland (Section 3.4).

In the Southern European stock complex (Figure 3.6.4.5), the numbers of maturing 1SW recruits are estimated to have fallen substantially since the 1970s. Recruitment was at its lowest during the 1990s and there was a further drop in the estimated recruitment in 1999 with value in 1999 and 2000 being the lowest in the time series. This pattern is consistent with the data obtained from a number of monitored stocks. Survival of wild smolts to return as 1SW fish fell to very low levels on the four monitored rivers in the Southern European area for which data were available (Corrib and Burrishoole (Ireland), Bush (UK(Northern Ireland)), Nivelle (France)) (Section 3.4). This suggests that the marked reduction in 1SW returns in 1999 is likely to have been due in large part to a widespread decline in marine survival. Reductions have also been observed in freshwater production and marine survival could be affected by factors operating in freshwater.

The PFA estimates suggest that the number of non-maturing 1SW recruits in Southern Europe has declined fairly steadily over the past 30 years (Figure 3.4.6.5); these stocks have also reached their lowest levels in the time series in 1999 and 2000. This is broadly consistent with the general pattern of decline in marine survival of 2SW returns in most monitored stocks in the area. In more recent years, reductions in exploitation do not appear to have kept pace with the stock declines and the spawning escapement has thus also fallen over the period (Figure 3.6.4.6).

3.6.5 Forecasting the PFA for NEAC stocks

In order to provide numerical catch advice, PFA values must be forecast one or two years in advance. For example, the PFA of non-maturing 1SW recruits must be predicted for 2000 if we are to provide catch advice for the West Greenland fishery in 2001, for the Faroes fishery (MSW stock) in the 2001/02 fishing season and for homewater MSW fisheries in 2002. Because the latest estimate of non-maturing 1SW recruits is for 1999, the PFA must be forecast two years ahead, as is currently practised for the North American assessment. For maturing 1SW stocks, a single year's projection is sufficient.

The Working Group currently has no method for predicting future PFA levels, other than by extrapolation from the estimated time series which due to the uncertainties is not considered to be appropriate. Co-ordination of work on the PFA assessments and predictive models for NEAC stocks is being considered as part of an EU Concerted Action programme and is expected to be one of the more important deliverables resulting from this Concerted Action. .

3.6.6 Evaluation of effects of farmed salmon on the model

NASCO has asked ICES to evaluate the potential biases in the catch advice resulting from the inclusion of farmed escapees in the assessment models. The NEAC PFA model has previously only taken account of the presence of farm escapees in the Faroese catches. The estimated proportion of wild fish in the Faroese catches is shown in Appendix 8h; values for the years 1984 to 1997 were based on scale sampling (Hansen, et al. 1999), while values have been assumed or estimated for other years on the basis of the level of farm production and catches. The recruits back-calculated from the Faroese catches are thus divided into wild and farmed components; the wild fish are re-allocated to the national estimates of 1SW (maturing and non-maturing) recruits according to proportions estimated from various tagging studies; farm escapees in the Faroese catches are ignored in the assessment.

The model has not previously taken any account of farm escapees in other areas. The incidence of farmed fish in catches at West Greenland and in most homewater fisheries has been estimated to be less than 1.5% (Table 3.3.7.1)(Hansen et al., 1997). These fish will therefore have a minimal effect on the PFA and National Conservation Limit assessments.

However, substantial numbers of farm escapees occur in coastal, fjord and river fisheries in Norway. These fish have previously been included in the run-reconstruction model and therefore contributed to the back-calculated estimate of recruitment (PFA), despite the fact that they are clearly not recruits from wild spawners but are derived from cage
production. The farm escapees have also been incorporated into the estimates of the numbers of spawners and thus contribute to the estimated egg-deposition. However, farm fish probably don't spawn as successfully as wild fish and their offspring may not be as viable as wild offspring; their contribution to the egg deposition should therefore be reduced.

The PFA and National Conservation Limits for Norway estimated using the unmodified NEAC PFA-CL model have therefore been compared with the same outputs from a modified version of the model taking account of the escapees. In the revised model, the numbers of wild fish of sea age ' i ' killed (including unreported catches) $\left(\mathrm{H}_{\mathrm{i}}\right)$, is estimated by adding a new parameter $\left(\mathrm{F}_{\mathrm{c}}\right)$ in the model. Thus:

$$
\mathrm{H}_{\mathrm{i}}=\left(\mathrm{C}_{\mathrm{i}} /\left(1-\mathrm{R}_{\mathrm{i}}\right) / \mathrm{U}_{\mathrm{i}}\right) *\left(1-\mathrm{F}_{\mathrm{c}}\right)
$$

where: $\mathrm{C}=$ catch of salmon in numbers;
$\mathrm{R}=$ estimated proportion of the total catch that is unreported;
$\mathrm{U}=$ average level of exploitation of the salmon stock;
$\mathrm{F}_{\mathrm{c}}=$ proportion of farmed fish in catches.

The PFA of wild salmon is estimated from the number of returns by back-calculating from the returning stock $\left(\mathrm{H}_{\mathrm{i}}\right)$.
In estimating the National Conservation Limit for Norway, the number of wild spawners was estimated by deducting the catch of wild fish $\left(C *\left(1-\mathrm{F}_{\mathrm{c}}\right)\right)$ from the estimated number of wild returns $\left(\mathrm{H}_{\mathrm{i}}\right)$. The total numbers of spawners was then calculated by raising this value for the proportion of farmed fish in samples taken on the spawning grounds (F_{s}). However, since farmed fish are believed to be less successful spawners than wild fish their contribution must be weighted by a factor, W. Thus the effective number of spawners, S_{e}, is estimated as follows:

$$
\mathrm{S}_{\mathrm{e}}=\mathrm{H}_{\mathrm{i}}-\left(\mathrm{C} *\left(1-\mathrm{F}_{\mathrm{c}}\right) *\left(1 /\left(1-\mathrm{F}_{\mathrm{s}} * \mathrm{~W}\right)\right)\right)
$$

The effects of these changes on the assessment are shown in Table 3.6.6.1. Over the past 10 years the average proportions of farmed fish in catches of 1SW and MSW salmon (F_{c}) have been 8% and 14% respectively. Removing these fish from the PFA assessment results in the estimated recruitment of 1SW and MSW salmon being reduced by an average of 10% and 18% over this period. The average proportion (F_{s}) of farmed fish on the spawning grounds has been 11% and 15% for 1 SW and MSW salmon respectively. Taking account of these fish in the assessment, and assuming an arbitrary weighting factor (W) of 0.5 , the effective spawning numbers (and hence egg deposition) for 1SW and MSW salmon are reduced by 2% and 4% respectively. The conservation limit estimated by the national lagged-egg deposition model in this scenario is also reduced by about 4%.

This model takes no account of the possibility of farmed fish having an adverse effect on the spawning success of wild fish. There is also considerable uncertainty about the spawning success of farmed escapees (factor 'W'); the assessment currently undertaken by the Working Group assumes that farmed and wild fish contribute equally to the egg deposition. If farmed fish make less contribution to the egg deposition (W closer to 1), the effective spawning escapement (and egg deposition) will be reduced further.

For the 2001 assessment, the Norwegian input data for the PFA model have been split into three regions. However, it has not been possible to provide data on farm escapees for these regions. As a result the potential errors discussed above must be taken into account when considering the catch advice.

3.6.7 Sensitivity analysis of the PFA model

A sensitivity analysis for the spreadsheet model which generates pre-fishery abundance (PFA) estimates based upon a run-reconstruction analysis for national salmon stocks in the North East Atlantic Commission Area (NEAC) of NASCO is described by Potter, et al. (1998).

The model (as applied to individual national data sets) is relatively insensitive to the ranges of natural mortality, M, and the time between recruitment and return to home waters, t, estimates currently used. Although ' t ' can be estimated quite accurately, there is considerable uncertainty about the true values of M at different stages in the marine phase of the life
cycle. As suggested in Section 2.6, if estimates of M are revised in the future this parameter may be sensitive to changes and affect the assessments more than is indicated in the present analysis. (This issue is being investigated further as a separate task with the EU SALMODEL Concerted Action programme.) Variation in the values of non-reporting rates, ' R ', and exploitation rates, ' U ', have a greater effect on the estimates of PFA. The PFA estimate is most sensitive to ' R ' when it is large and to ' U ', when this is small. The latter is a particular concern because exploitation rates are being reduced in many countries.

The sensitivity of the overall assessment of PFA for the NEAC Area and for the Northern and Southern European stock complexes will therefore depend on the values of the various parameters provided for different countries, but these will also be weighted by the national catches. It is thus not immediately apparent to which parameter values the assessment will be most sensitive. A spreadsheet has been therefore been prepared which evaluates the effects on the overall assessment of changing individual parameter values (Tables 3.6.7.1). The evaluation is based upon the data inputs used for the PFA assessment this year (2001).

Table 3.6.7.1 shows the effects ($\%$ change) on the assessment of PFA of maturing and non-maturing 1SW salmon from the Northern and Southern Europe of making the following changes to individual national or regional parameter values:

- adding 0.1 (10\%) to ' R '
- \quad adding 0.1 (10%) to ' U '
- adding 2 months to ' t '
- multiplying ' R ' by 1.2
- multiplying 'U' by 1.2
- multiplying ' t ' by 1.2
[Adding 0.1 to parameters tends to weight the effects on low values, whereas multiplying them by 1.2 weights that effects on larger values.]

At this level of disaggregation the model is fairly sensitive to some parameter values. Changes (as described above) to the eight parameter values listed in the text table below have a greater than 5% effect on the respective PFA estimates (Table 3.6.7.1); several have effects of more than 10%.

Rank	Country	Sea-age	Parameter
1	Russia	MSW	non-reporting rate
2	Scotland (E)	MSW	exploitation rate
3	Russia	MSW	exploitation rate
4	Scotland (W)	MSW	exploitation rate
5	Scotland (E)	1SW	exploitation rate
6	Ireland	1SW	non-reporting rate
7	Ireland	1SW	exploitation rate
8	Scotland (E)	MSW	non-reporting rate

This analysis does not provide any indication of the reliability of any of the parameter values currently used in the NEAC PFA assessment. It merely indicates the effects on the PFA estimates when modest changes (adding 0.1 or multiplying by 1.2) are made to individual values. However, the sensitivity analysis indicates that particular attention should be paid to ensuring that the parameter values listed in the text table below are accurate.

3.7 Development of age-specific conservation limits

3.7.1 Progress with setting river-specific conservation limits

These issues are being dealt with by the EU funded Concerted Action entitled
"A co-ordinated approach towards the development of a scientific basis for management of wild Atlantic salmon in the North-East Atlantic - SALMODEL" (Contract No: QLK5-CT1999-01546). A summary taken from the first years report of this CA is given below:

While NASCO's remit in distant water fisheries requires an international approach, the use of conservation limits at national, regional and local levels is also highly important. At these levels, data on compliance with conservation limits for individual rivers or groups of rivers provides important data on status of stocks. These data are in some cases already being used to manage fisheries at regional and local levels and this is expected to increase as more river-specific conservation limits are set. The use of river specific conservation limits is now generally (though not universally) accepted as providing the most viable means of providing management advice for salmon at all levels from river through to stock complexes. Delivery of conservation limits at all these levels can be enhanced through international cooperation and sharing of data and techniques.

In all, there are around 25 stock and recruitment datasets in the NEAC area, ranging from long time series to rivers where S / R relationships are in the process of being (or could be) developed. These include a mixture of smaller rivers and tributaries of large river systems. Given the time and resource difficulties with collecting meaningful S / R data, it is unlikely that further datasets will be developed in the near future. However, as these rivers are spread throughout the NEAC area and cover a wide array of river types (apart from larger river systems) and productivity levels, even incomplete S / R datasets may provide useful information for helping transport conservation limits to rivers with little or no data (i.e. conservation limits could be tuned to different productivity levels, by comparison across S / R datasets, even if the local data are only partial).

As noted above, two countries (UK(England \& Wales) and France) are already using river specific conservation limits to derive national conservation limits. These are supplemented by UK(N. Ireland) and Ireland, where river-specific conservation limits have been produced, but, as these are still viewed as preliminary they have not yet been used for inclusion in the ICES catch advice process. A majority of countries surveyed in the NEAC area (5) have still to develop even interim conservation limits for their rivers, although most are actively working towards this. For example, Sweden has indicated a target for production of river-specific conservation limits by 2001.

The rate of development of river-specific conservation limits has reflected inter alia difficulties across various countries with availability and representativeness of S / R data, together with the logistical difficulty of accurately surveying large numbers of rivers in remote locations. As a result, only 271 out of a total of 1446 rivers (18.7\%) have river-specific conservation limits at present, and many of those are at interim/developmental stages.

One tendency is to use the most comprehensive S / R data sets and transport conservation limits from these to many rivers. For example, the R. Bush S / R dataset has been used by UK(N. Ireland), UK (England \& Wales) and Ireland to derive river-specific conservation limits for most of their rivers. This raises issues of differences in production across these rivers, together with a critical dependence on the value of a single S / R dataset if there is dynamic change in that stock. In contrast, in Norway a good S / R dataset exists for one small river in the south of the country (River Imsa), but this has not been used to set river-specific conservation limits for the whole country, because of concerns about representativeness of the data.

An intermediate approach is the French example, where a river in Brittany with good S / R data has been used primarily for setting Biological Reference Points (BRP) in that region, but also in other regions after correction/calibration for local productivity, based on restricted local information in some cases. Similarly, in England \& Wales, the Environment Agency adjusts S / R relationships according to a simple model of river type (productivity) and make further adjustments to take account of local knowledge of river structure, productivity and stock characteristics, where known.

The challenge is to take what is really a continuum of possible approaches to identifying and transporting BRPs and providing guidelines that can suggest a best approach for particular situations, taking into account limitations of the data and the methodology.

The process of setting river-specific conservation limits depends on being able to transport BRPs to other rivers . There are a variety of transport methods in use in the NEAC area, all based on measuring some attributes of area of productive habitat and relative levels of productivity in other rivers. These range from remote sensing (e.g. aerial photographs), through map-based measurements (e.g. catchment area/ gradient/wetted area) to in-river surveys of productive habitat area. In practical terms, remote sensing alone is unlikely to provide satisfactory resolution for meaningful transport, while logistical/resource difficulties mean that in-river surveys of all rivers will be impossible. A trend is emerging for top down surveys (incorporated into GIS supported production models), with in-river surveys used to provide ground truthing and calibration. SALMODEL will address development of survey and transport techniques so that where possible common standards can be applied in future.

While summing river-specific conservation limits is preferable to the pseudo stock-recruitment method for setting national conservation limits, efforts have been made to improve the data inputs used in the latter approach, which will continue to be used until sufficient progress has been made the individual river assessments.

Legitimate concerns have been expressed about the suitability of using single conservation limits for management of larger river systems known to have genetically differentiated sub-populations at the sub-catchment level. A related concern highlighted the possible impact of a single river conservation limit on sub-populations having different production characteristics.

Despite the problems, several countries have developed river-specific conservation limits for all their salmon rivers, though the methods used for transport vary considerably. In one or two cases, river specific conservation limits have been set based on the crudest level of transport (catchment area) and therefore these are not yet regarded as reliable enough to replace the ICES pseudo S / R data for setting national conservation limits (Section 3.7.2). While it is noted that NASCO has specifically asked for the development of age specific conservation limits, there has been little progress with dividing river specific conservation limits between sea-age groups.

3.7.2 Changes to the National Conservation Limits model

As indicated above, relatively few river specific conservation limits have been developed for salmon stocks in the NEAC area. An interim approach has therefore been developed for estimating national conservation limits for countries that cannot provide an estimate based upon river specific estimates. The approach is based on establishing quasi-stockrecruitment relationships for national salmon stocks in the North East Atlantic Commission (NEAC) area (Potter et al., 1998).

In brief, the model provides a means for relating the estimates of numbers of spawners and recruits derived from the PFA model. This is addressed by converting the numbers of 1SW and MSW spawners into numbers of eggs deposited, using the proportion of female fish in each age class and the average number of eggs produced per female. The egg deposition in year ' n ' is assumed to contribute to the recruitment in years ' $n+3$ ' to ' $n+8$ ' in proportion to the numbers of smolts produced of ages 1 to 6 years, and these proportions are therefore used to estimate the 'lagged egg deposition' contributing to the recruitment of maturing and non-maturing 1SW fish in year ' $n+8$ '. The plots of lagged eggs (stock) against the 1SW adults in the sea (recruits) have been presented as 'pseudo-stock-recruitment' relationships.

ICES and NASCO currently define the conservation limit for salmon as the stock size that will result in the maximum sustainable yield in the long term (i.e. $\mathrm{S}_{\mathrm{MSY}}$). However, it is not straightforward to estimate this point on the national stock-recruitment relationships because the replacement line is not known. (The replacement line is the line on which 'stock' equals 'recruits'.) This is the case for the quasi-stock-recruitment relationships established by the national model because the stock is expressed as eggs while the recruits are expressed as adult salmon. The Working Group has previously used the following three non-parametric methods (ICES (1993/Assess:10)) to provide Options for setting the conservation limits:

Option 1: the minimum stock size previously observed

Option 2: the stock size where the 90th \%ile of survival intersects the 90th \%ile of recruitment
Option 3: the stock size where the 90th \%ile of survival intersects the median recruitment level.

These values have then been evaluated on the basis that the conservation limit should be set at the egg-deposition level below which recruitment begins to decline, and that if no decline in recruitment is apparent over the range of eggdeposition previously observed, the conservation limit should be set at the lowest previously recorded egg-deposition.

The Working Group considered a more objective approach for setting a conservation limit from the quasi-stockrecruitment relationships. The approach assumes that there is a critical point below which recruitment decreases with stock towards zero levels of stock and recruitment, and above which recruitment is constant.
i.e. $\quad R=\beta \times S \quad S<$ Change point

$$
R=\mu_{S} \quad S \geq \text { Change point }
$$

where

$$
\beta=\frac{\mu_{S}}{\text { Change point }} \text {. }
$$

This is a non-linear model with parameters μ_{S} and Change point, estimated by minimising the residual sum of squares. The minimum is obtained by searching for the Change point over the range $[0, \max (S)]$. The procedure is demonstrated for two simulated data sets:

$$
\begin{array}{ll}
R=S_{l}+\text { noise } & S_{l}=5,6, \ldots 14 \\
R=S_{2}+\text { noise } & S_{2}=15,16, \ldots 25
\end{array}
$$

The results are shown in Figure 3.7.2.1. The top pair of figures correspond to a low level of variability, and show on the left, the residual sum of squares for different values of the Change point, passing through a well defined minimum at Change point $=15.8$. The figure on the right shows the data with the fitted model corresponding to the minimum residual sum of squares. The bottom pair of figures correspond to a higher level of superimposed variability, and we see that the optimum value of Change point (14.0) is less well defined. It should be noted that in both cases that the residual sum of squares is not a smooth function, and there are discontinuities as the Change point coincides with each data point.

This approach was applied to the 2000 national stock-recruitment relationships and in most cases the model provided a conservation limit very close to the Option (1 to 3) previously selected by the Working Group. The Working Group therefore concluded that, being more objective, this approach was more appropriate for the evaluation of the national conservation limits.

3.7.3 National Conservation Limits

The national model has been run for the countries for which no river specific conservation limits have been developed (i.e. all countries except France, UK(England \& Wales) and Sweden). The outputs are illustrated in Appendix 8. For Iceland, UK(Northern Ireland) and UK(Scotland) the input data for the PFA analysis (1971-2000) have been provided for two regions; the lagged spawner analysis has therefore been conducted for each region separately and the estimated conservation limits summed for the country. The conservation limits derived from the national model and river specific estimates are shown in Table 3.7.3.1. The Working Group has previously noted that outputs from the national model are only designed to provide a rough guide to the status of stocks in the NEAC area, where more reliable data are not available because the approach depends upon a number of assumptions. One feature is that it tends to provide estimates close to the minimum level of recruitment previously seen (as estimated by the PFA model). In some cases this will be a conservative estimate of the true conservation limit ($\mathrm{S}_{\mathrm{MSY}}$). It will also be noted that the conservation limit estimates may alter from year to year as the input of new data affects the 'pseudo-stock-recruitment relationship'. This further emphasises the fact that this approach only provides a basis for qualitative catch advice.

The estimated national conservation limits have been summed for Northern and Southern Europe (Table 3.7.3.1) and are given on Figures 3.6.4.4 and 3.6.4.6 for comparison with the estimated spawning escapement. The conservation limits have also been used to estimate the spawner escapement reserves (SERs) (i.e. the CL increased to take account of natural mortality between the recruitment date ($1^{\text {st }} \mathrm{Jan}$) and return to home waters) for maturing and non-maturing 1SW salmon from the Northern and Southern Europe. The SERs are shown as horizontal lines in Figures 3.6.4.5 and 3.6.4.3. Evaluation of stocks against SERs is thought to be inappropriate for the total NEAC data (Figure 3.6.4.1). The Working Group also consider the current SER levels may be less appropriate for evaluating the historic status of stocks (e.g. pre1985), which in many cases have been estimated with less precision.

3.8 Catch options or alternative management advice

The Working Group has been asked to provide catch options or alternative management advice with an assessment of risks relative to the objective of exceeding stock conservation limits in the NEAC area. The Working Group reiterated its concerns about harvesting salmon in mixed stock fisheries, particularly for fisheries exploiting individual river stocks and sub-river populations that are at unsatisfactorily low levels. Annual adjustments in quotas or effort regulations based on changes in the mean status of the stocks is unlikely to provide adequate protection to the individual river stocks that are most heavily exploited by the fishery or are in the weakest condition.

The Working Group also emphasized that the national stock conservation limits discussed above are not appropriate for the management of homewater fisheries, particularly where these exploit separate river stocks. This is both because of
the relative imprecision of the national conservation limits and because they will not take account of differences in the status of different river stocks or sub-river populations. Nevertheless, the Working Group agreed that the combined conservation limits for the main stock groups (national stocks) exploited by the distant water fisheries could be used to provide general management advice for these fisheries.
In view of the uncertainties expressed about the most appropriate stock groupings and the preliminary nature of the conservation limit estimates, the Working Group is unable to provide quantitative catch options at this stage. In the absence of a predictive estimate of PFA and more reliable estimates of conservation limits, it is unlikely that quantitative catch advice will be developed in the near future. However, the Working Group feels that the following qualitative catch advice is appropriate based upon the PFA data and estimated SERs shown in Figures 3.6.4.3 and 3.6.4.5.

The Southern European stock complex is believed to include the main European stocks that have contributed fish to the West Greenland fishery; evidence from tagging studies suggests that the Nordic countries contribute relatively few fish to this fishery. It is therefore appropriate that the European input to the advice on the West Greenland fishery should be based principally on the status of non-maturing 1SW from the Southern area.

Provision of catch advice for the Faroes fishery is more complex. Recent tagging studies at Faroes (1991/92 1994/95), suggest that the main country contributing to the MSW salmon to the fishery is Norway, with significant contributions also from Scotland and Russia (Hansen and Jabobsen, 2001). The 1SW salmon caught in the fishery come mainly from the Southern European countries (Jacobsen et al. 2001). This therefore means that the catch advice for both Northern and Southern European stocks must be taken into account when considering management actions for the Faroes fishery.

For all fisheries, the Working Group considers that management of single stock fisheries should be based upon local assessments of the status of stocks. Conservation would be best achieved by fisheries in estuaries and rivers targeting stocks which have been shown to be above biologically-based escapement requirements.
[NB In the evaluation of the status of stocks, PFA or recruitment values should be assessed against the spawner escapement reserve values while the spawner numbers should be compared with the conservation limits.]

Northern European 1SW stocks: The spawning escapement of 1SW salmon from the Northern European stock complex have been within but close to safe biological limits in recent years, although there is evidence of an upturn in the past few years. It should be noted that the inclusion of farmed fish in the Norwegian data will result in the exploitable surplus being overestimated. The Working Group considers that overall exploitation of the stock complex at the current rate is acceptable, although the status of individual stocks varies considerably. Since very few of these salmon have been caught outside homewater fisheries in Europe, even when fisheries were operating in the Norwegian Sea, management of maturing 1SW salmon should be based upon local assessments of the status of river or sub-river stocks.

Northern European MSW stocks: The PFA of non-maturing 1SW salmon from Northern Europe has been declining since the mid 1980s and the exploitable surplus has fallen from around 1 million recruits in the 1970s to about half this level in recent years. The Working Group considers the Northern European MSW stock complex to be within safe biological limits, although it is recognised that the status of individual stocks will vary considerably. In addition, the inclusion of farmed fish in the Norwegian data will result in the exploitable surplus being overestimated. The Working Group therefore considers that great caution should be exercised in the management of these stocks particularly in mixed stock fisheries and exploitation should not be permitted to increase.

Southern European 1SW stocks: The spawning escapement for the whole stock complex has fallen below the conservation limit throughout the past 10 years. Moreover, recruitment of maturing 1SW salmon in the Southern European stock complex has been below any previously observed value throughout this period. In both 1999 and 2000 recruitment before exploitation was below the spawning escapement reserve. The Working Group considers that reductions in exploitation rates are required for as many stocks as possible and that mixed stock fisheries present particular threats to conservation.

Southern European MSW stocks: The PFA of non-maturing 1SW salmon from Southern Europe has been declining steadily since the 1970s and the spawning escapement for the whole stock complex has been close to or outside safe biological limits throughout much of this period. The upper 95% confidence limit for PFA of spawners has been below the spawner escapement reserve for the past four years. Qualitative projection of these estimates suggests that the PFA is likely to remain below this reserve in 2001. The Working Group considers that further reductions in exploitation rates are urgently required for as many stocks as possible and that mixed stock fisheries present particular threats to conservation.

Since 1995, regular post-smolt surveys have been conducted in the Norwegian Sea and adjacent areas during the summer months. These have been carried out by Norwegian research vessels during routine surface trawl surveys for pelagic species. Extra flotation on trawl-wings and on the head-rope were used when trawling for smolts. In the early 1990s, occasional post-smolt captures were also recorded when the pelagic trawl was being developed and tested, Since 1990 more than 2,400 post-smolts and 99 salmon have been caught in 1,863 surface trawls.

In 2000, trawling for post-smolts was carried out on seven cruises, four of which were specifically aimed at salmon using a 'Fish Lifter' for live fish sampling attached to the cod end of the trawl, as described in Holm et al. (2000) and Holst and Mc Donald (2000). One short cruise to the Voering Plateau was carried out during mid- June where, based on previous observations of the spatial and temporal distribution of post-smolts, it was hypothesized that an aggregation of post-smolts should occur. A special cruise was also conducted in July to four of the large northernmost fjords (Alta, Porsanger, Tana and Neiden) into which some of Norway's most important salmon rivers discharge. A further limited survey was also carried out to the southern edge of the North Atlantic Current where this flows eastwards into the Barents Sea. The southern Barents Sea is believed to be an important feeding area in the early marine phase for northern Norwegian and Russian salmon stocks. The aim of this cruise was to investigate the migration paths of the northern post-smolts, and the level of salmon lice infestations in these northern stocks; some of which are located in fjords (Tana and Neiden) without any fish farming activity.

Overall, more than 760 post-smolts and 38 salmon were captured during the 2000 surveys, the majority ($\sim 60 \%$) in fjords or in coastal areas (Table 3.9.1). The total post-smolt distribution in 2000 is presented in Figure 3.9.1. Figures 3.9.2 and 3.9.3. provide detailed distributions of the catch locations and the numbers captured on the southwest coast of Norway and in the southern Barents Sea, respectively. The captures in both areas are distributed along the Norwegian Coastal Current. For the first time Carlin tagged fish from Ims, southwest Norway, and microtagged post-smolts, presumably of southern European origin, were taken in the same catch. Nine microtags and three Carlin-tags were recorded in a catch of 170 post-smolts and an additional three microtags were recorded in a catch of 34 post-smolts from a neighbouring area (Figures 3.9.1 and 2.4.4.1) This incidence supports the view that some of the post-smolts captured in these areas in 1990-1999 (2-year smolts, aged by scale reading) may have been of south- or southwestNorwegian origin. It is speculated that these fish would migrate along this route with the Atlantic current. The possibility of a common feeding area, explaining the observed correlation in growth and survival between the North Esk fish in Scotland and the SW- Norwegian Figgjo stock (Friedland et al. 1998), may also be supported by this finding. Scale readings from a sample of smolts from the largest catch in June, correspond to earlier recorded age distributions from this area, as the majority of the fish entered the sea as 2-year-old smolts or younger.

The high number of microtags taken in only a few hauls, suggest that even a modest, but co-ordinated effort to microtag more smolts in NE-Atlantic countries could add much to the knowledge about migration routes, spatial and temporal distribution and other characteristics of various salmon stocks in the sea.

The post-smolt CPUE values have been high in the Norwegian Sea during the last two years, assumed to reflect better timing of the cruises. It has previously been suggested that the trawling speed was too low for capturing larger salmon. This was also observed on video recordings from within the trawl during 2000 (Holm, pers obs.). Larger salmon were seen holding station close to the cod-end for a while, but were only occasionally recorded in the catches. Consequently, no efforts have been made to calculate CPUE for larger salmon. The high CPUE values for post-smolts give rise to concern about the interception of these fish in pelagic fisheries in international waters. This issue is addressed in Section 2.4.4.

3.10 Data deficiences and research needs in the NEAC Area

1. More research into the biology of salmon in the marine phase is required. This includes the need to monitor trends in marine mortality for a wider range of stocks than at present, and identify causes for mortality. It should also include the examination of relationships between postsmolt growth and marine mortality. The use of data storage tags will significantly improve the information on the marine life history of salmon.
2. Research on post-smolts in the early marine phase should be continued and expanded. This should include studies of interactions with parasites and assessments of the impact of sea lice on post-smolts.
3. A Study Group is required to quantitatively assess the level of bycatches of post-smolts in pelagic fisheries. It is recommended that such a group should comprise both those with information relating to postsmolt distribution and those who can provide information on the activity and distribution of pelagic fisheries.
4. A coordinated programme of tagging and release of farmed salmon should be undertaken to improve knowledge on the marine survival and migratory behaviour of these fish

If the commercial fishery at Faroes recommences, it is recommended that biological samples from the salmon caught should be collected. Historical samples from this fishery which have not yet been worked up should continue to be analysed.

Table 3.3.3.1 Numbers of gear units licensed or authorised by country and gear type.

Year	England \&		Wales			UK (Scotland)		UK (N. Ireland)			Norway			$\begin{gathered} \hline \text { Driftnet } \\ \text { (No. nets) } \\ \hline \end{gathered}$
	Gillnet licences	Sweepnet	$\begin{gathered} \text { Hand-held } \\ \text { net } \\ \hline \end{gathered}$	Fixed engine	$\begin{gathered} \text { Rod \& } \\ \text { Line }^{1} \\ \hline \end{gathered}$	Fixed engine ${ }^{2}$	$\begin{gathered} \text { Net and } \\ \text { coble }{ }^{3} \\ \hline \end{gathered}$	Driftnet	Draftnet	$\begin{gathered} \text { Bagnets } \\ \text { and boxes } \\ \hline \end{gathered}$	Bagnet	Bendnet	Liftnet	
1966	-	-	-	-		3,513	861	-	-	-	7,101	-	55	-
1967	-	-	-	-	-	2,982	836	-	-	-	7,106	2,827	48	11,498
1968	-	-	-	-	-	3,495	970	-	-	-	6,588	2,613	36	9,149
1969	-	-	-	-	-	3,239	849	139	311	17	6,012	2,756	32	8,956
1970	-	-	-	-	-	2,861	775	138	306	17	5,476	2,548	32	7,932
1971	-	-	-	-	-	3,069	802	142	305	18	4,608	2,421	26	8,976
1972	-	-	-	-	-	3,437	810	130	307	18	4,215	2,367	24	13,448
1973	-	-	-	-	-	3,241	884	130	303	20	4,047	2,996	32	18,616
1974	-	-	-	-	-	3,182	777	129	307	18	3,382	3,342	29	14,078
1975	-	-	-	-	-	2,978	768	127	314	20	3,150	3,549	25	15,968
1976	-	-	-	-	-	2,854	756	126	287	18	2,569	3,890	22	17,794
1977	-	-	-	-	-	2,742	677	126	293	19	2,680	4,047	26	30,201
1978	-	-	-	-	-	2,572	691	126	284	18	1,980	3,976	12	23,301
1979	-	-	-	-	-	2,698	747	126	274	20	1,835	5,001	17	23,989
1980	-	-	-	-	-	2,892	670	125	258	20	2,118	4,922	20	25,652
1981	-	-	-	-	-	2,704	647	123	239	19	2,060	5,546	19	24,081
1982	-	-	-	-	-	2,377	641	123	221	18	1,843	5,217	27	22,520
1983	232	209	333	74	-	2,514	659	120	207	17	1,735	5,428	21	21,813
1984	226	223	354	74	-	2,438	630	121	192	19	1,697	5,386	35	21,210
1985	223	230	375	69	-	1,999	524	122	168	19	1,726	5,848	34	20,329
1986	220	221	368	64	-	1,976	583	121	148	18	1,630	5,979	14	17,945
1987	213	206	352	68	-	1,693	571	120	119	18	1,422	6,060	13	17,234
1988	210	212	284	70	-	1,536	390	115	113	18	1,322	5,702	11	15,532
1989	201	199	282	75	-	1,224	347	117	108	19	1,888	4,100	16	0
1990	200	204	292	69	-	1,276	334	114	106	17	2,375	3,890	7	0
1991	199	187	264	66	-	1,144	306	118	102	18	2,343	3,628	8	0
1992	203	158	267	65	-	857	296	121	91	19	2,268	3,342	5	0
1993	187	151	259	55	-	909	266	120	73	18	2,869	2,783	-	0
1994	177	158	257	53	293,759	753	245	119	68	18	2,630	2,825	-	0
1995	163	156	249	47	243,288	737	226	122	68	16	2,542	2,715	-	0
1996	151	132	232	42	231,744	614	203	117	66	12	2,280	2,860	-	0
1997	139	131	231	35	269,705	671	196	116	63	12	2,002	1,075	-	0
1998	130	129	196	35	233,401	537	151	117	70	12	1,865	1,027	-	0
1999	120	109	178	30	185,502	355	109	113	52	11	1,649	989	-	0
2000	110	101	150	28	174,690	185	89	109	57	10	1.577	982	-	0
Mean 1995-99	141	131	217	38	232728	583	177	117	64	13	2068	1733		
$\%$ change ${ }^{4}$	-21.8	-23.1	-30.9	-25.9	-24.9	-68.3	-49.7	-6.8	-10.7	-20.6	-23.7	-43.3		
Mean 1990-99	167	152	243	50	242900	785	233	118	76	15	2282	2513		
$\%$ change ${ }^{4}$	-34.1	-33.3	-38.1	-43.7	-28.1	-76.4	-61.8	-7.4	-24.9	-34.6	-30.9	-60.9		

[^0]Table 3.3.3.1 continued Number of gear units licensed or authorised by country and gear type.

Year	Ireland				Finland				France		
	Driftnets No.	Draftnets	Other nets Commercial	Rod	The Teno River			R. Näätämö Recreational fishery	Rod and line licences	Com. nets in freshwater ${ }^{4}$	Licences in estuary ${ }^{4,5}$
					Recreational fishery Tourist anglers		Local rod and net fishery Fishermen				
					Fishing days	Fishermen		Fishermen			
1966	510	742	214	11,621	-	-	-	-	-	-	-
1967	531	732	223	10,457	-	-	-	-	-	-	-
1968	505	681	219	9,615	-	-	-	-	-	-	-
1969	669	665	220	10,450	-	-	-	-	-	-	-
1970	817	667	241	11,181	-	-	-	-	-	-	-
1971	916	697	213	10,566	-	-	-	-	-	-	-
1972	1,156	678	197	9,612	-	-	-	-	-	-	-
1973	1,112	713	224	11,660	-	-	-	-	-	-	-
1974	1,048	681	211	12,845	-	-	-	-	-	-	-
1975	1,046	672	212	13,142	-	-	-	-	-	-	-
1976	1,047	677	225	14,139	-	-	-	-	-	-	-
1977	997	650	211	11,721	-	-	-	-	-	-	-
1978	1,007	608	209	13,327	-	-	-	-	-	-	-
1979	924	657	240	12,726	-	-	-	-	-	-	-
1980	959	601	195	15,864	-	-	-	-	-	-	-
1981	878	601	195	15,519	16,859	5,742	677	467	-	-	-
1982	830	560	192	15,697	19,690	7,002	693	484	4,145	55	82
1983	801	526	190	16,737	20,363	7,053	740	587	3,856	49	82
1984	819	515	194	14,878	21,149	7,665	737	677	3,911	42	82
1985	827	526	190	15,929	21,742	7,575	740	866	4,443	40	82
1986	768	507	183	17,977	21,482	7,404	702	691	5,919	$58{ }^{1}$	86
1987	-	-	-	-	22,487	7,759	754	689	5,804 ${ }^{1}$	87^{2}	80
1988	836	-	-	11,539	21,708	7,755	741	538	4,413	101	76
1989	801	-	-	16,484	24,118	8,681	742	696	3,826	83	78
1990	756	525	189	15,395	19,596	7,677	728	614	2,977	71	76
1991	707	504	182	15,178	22,922	8,286	734	718	2,760	78	71
1992	691	535	183	20,263	26,748	9,058	749	875	2,160	57	71
1993	673	457	161	23,875	29,461	10,198	755	705	2,111	53	55
1994	732	494	176	24,988	26,517	8,985	751	671	1,680	17	59
1995	768	512	164	27,056	24,951	8,141	687	716	1,881	17	59
1996	778	523	170	29,759	17,625	5,743	672	814	1,806	21	69
1997	852	531	172	31,873	16,255	5,036	616	588	2,974	10	59
1998	874	513	174	31,565	18,700	5,759	621	673	2,358	16	63
1999	874	499	162	32,493	22,935	6,857	616	850	2,232	15	61
2000	871	490	158	33,527	28.385	8.275	633	624	2.745^{3}	16	35
Mean 1995-99	829	516	168	30549	20093	6307	642	728	2250	16	62
$\%$ change 6	5.0	-5.0	-6.2	9.7	41.3	31.2	-1.5	-14.3	22.0	0.0	-43.7
Mean 1990-99	771	509	173	25245	22571	7574	693	722	2294	36	64
$\% \text { change }^{6}$	13.0	-3.8	-8.8	32.8	25.8	9.3	-8.6	-13.6	19.7	-54.9	-45.6

${ }^{1}$ Common licence for salmon and seatrout introduced in 1986 leading to a short-term increase in the number of licences issued.
Since 1987 fishermen have been obliged to declere their catch
This figure is an estimate from a sample of anglers, the sea trout and salmon angling licenses being common since 2000
${ }^{4}$ The number of licences, 1999 included, indicates only the number of fishermen (or boats allowed to fish for salmon. It overestimates the actual number of fishermen fishing for salmon up to 2 or 3 times.
Adour estuary only southwest of France.
${ }^{6}(2000 /$ mean - $) * 100$

Table 3.3.4.1 Nominal catch of SALMON in NEAC Area (in tonnes round fresh weight), 1960-2000

Year	Homewater countries	Faroes (1)	Other catches in international waters	Total Reported Catch	Unreported catches	
					$\begin{gathered} \text { NEAC } \\ \text { Area } \\ \hline \end{gathered}$	International waters (2)
1960	5540	-	-	5540	-	-
1961	4753	-	-	4753	-	-
1962	6709	-	-	6709	-	-
1963	6276	-	-	6276	-	-
1964	7150	-	-	7150	-	-
1965	6456	-	-	6456	-	-
1966	6052	-	-	6052	-	-
1967	7526	-	-	7526	-	-
1968	6146	5	403	6554	-	-
1969	6281	7	893	7181	-	-
1970	5882	12	922	6816	-	-
1971	5582	-	471	6053	-	-
1972	6597	9	486	7092	-	-
1973	7331	28	533	7892	-	-
1974	7027	20	373	7420	-	-
1975	7116	28	475	7619	-	-
1976	5314	40	289	5643	-	-
1977	5209	40	192	5441	-	-
1978	4966	37	138	5141	-	-
1979	5121	119	193	5433	-	-
1980	5434	536	277	6247	-	-
1981	4909	1025	313	6247	-	-
1982	4471	606	437	5514	-	-
1983	5873	678	466	7017	-	-
1984	4769	628	101	5498	-	-
1985	5533	566	-	6099	-	-
1986	6183	530	-	6713	-	-
1987	4830	576	-	5406	2554	-
1988	5284	243	-	5527	3087	-
1989	4059	364	-	4423	2103	-
1990	3420	315	-	3735	1779	180-350
1991	2822	95	-	2917	1555	25-100
1992	3343	23	-	3366	1825	25-100
1993	3311	23	-	3334	1471	25-100
1994	3563	6	-	3569	1157	25-100
1995	3277	5	-	3282	942	n/a
1996	2750	-	-	2750	947	n / a
1997	2074	-	-	2074	827	n/a
1998	2222	6	-	2228	1108	n/a
1999	2074	-	-	2074	877	n / a
2000	2633	-	-	2633	1135	n / a
Means						
1995-1999	2479	6	-	2482	940	-

Table 3.3.5.1 CPUE for salmon rod fisheries in Finland (Teno, Naatamo), France, the River Bush (UK(N.Ireland)).

	Finland (Teno River)		Finland (Naatamo River)		France	UK(N.Ire.)(R.Bush)
	Catch per angler season	Catch per angler day	Catch per angler season	Catch per angler day	Catch per angler season	Catch per rod day
Year	kg	kg	kg	kg	Number	Number
1974		2.8				
1975		2.7				
1976		-				
1977		1.4				
1978		1.1				
1979		0.9				
1980		1.1				
1981	3.2	1.2				
1982	3.4	1.1				
1983	3.4	1.2				0.248
1984	2.2	0.8	0.5	0.2		0.083
1985	2.7	0.9	n/a	n /a		0.283
1986	2.1	0.7	n / a	n/a		0.274
1987	2.3	0.8	n/a	n/a	0.39	0.194
1988	1.9	0.7	0.5	0.2	0.73	0.165
1989	2.2	0.8	1.0	0.4	0.55	0.135
1990	2.8	1.1	0.7	0.3	0.71	0.247
1991	3.4	1.2	1.3	0.5	0.60	0.396
1992	4.5	1.5	1.4	0.3	0.94	0.258
1993	3.9	1.3	0.4	0.2	0.88	0.341
1994	2.4	0.8	0.6	0.2	2.31	0.205
1995	2.7	0.9	0.5	0.1	1.15	0.206
1996	3.0	1.0	0.7	0.2	1.57	0.267
1997	3.4	1.0	1.1	0.2	$0.43{ }^{1}$	0.338
1998	3.0	0.9	1.3	0.3	0.67	0.569
1999	3.7	1.1	0.8	0.2	0.76	0.273
2000	5.0	1.5	0.9	0.2	0.79	0.259
Mean						
1995-99	3.2	1.0	0.9	0.2	0.90	0.331

${ }^{1}$ Large numbers of new, inexperienced anglers in 1997 because cheaper licence types were introduced.

Table 3.3.5.2 CPUE for salmon rod fisheries in the Barent Sea and White Sea basin in Russia.

Barents Sea Basin, catch per angler day					White Sea Basin, catch per angler day			
Year	Rynda	Kharlovka	Varzina	Iokanga	Ponoy	Varzuga	Kitsa	Umba
1991					2.794	1.870		1.330
1992	2.370	1.454	1.070	0.135	3.489	2.261	1.209	1.366
1993	1.177	1.464	0.488	0.650	2.881	1.278	1.425	2.720
1994	0.710	0.847	0.548	0.325	2.332	1.596	1.588	1.436
1995	0.486	0.782	1.220	0.718	3.459	2.524	1.784	1.196
1996	0.703	0.845	1.502	1.398	3.503	1.444	1.761	0.930
1997	1.197	0.709	0.613	1.411	5.330	2.364	2.482	1.457
1998	1.010	0.551	0.441	0.868	4.544	2.284	2.784	0.979
1999	0.947	0.642	0.427	1.193	3.300	1.710	1.657	0.756
2000	1.348	0.769	0.565	2.283	3.494	1.526	3.018	1.245
Mean								
1995-99	0.869	0.706	0.841	1.118	4.027	2.065	2.094	1.064

Table 3.3.5.3 CPUE data for net and fixed engine salmon fisheries by Region in UK (England and Wales), 1988-2000. (Data expressed as catch per licence-day and catch per licence-tide for Midlands, Wales and North West.)

Year	Region					
	North East	Southern	South West	Midlands ${ }^{1,2}$	Wales ${ }^{2}$	North West ${ }^{2}$
1988	5.49	10.15			-	-
1989	4.39	16.80			0.90	0.82
1990	5.53	8.56			0.78	0.63
1991	3.20	6.40			0.62	0.51
1992	3.83	5.00			0.69	0.40
1993	6.43	No fishing			0.68	0.63
1994	7.53	-			1.02	0.71
1995	7.84	-			1.00	0.79
1996	3.74	-			0.73	0.59
1997	5.30	-	0.59		0.77	0.35
1998	5.12	-	0.78	0.25	0.69	0.32
1999	7.28	-	0.67	0.36	0.83	0.37
2000	11.10	-	0.96	0.43	0.40	0.64
Mean						
1995-99	5.86	-			0.80	0.48

[^1]Table 3.3.5.4 CPUE data for Scottish net fisheries.
Catch in numbers of fish per unit effort.

Year	Fixed engine	Net and coble CPUE
	Catch/trap month ${ }^{1}$	Catch/crew month
1952	33.91	156.39
1953	33.12	121.73
1954	29.33	162.00
1955	37.09	201.76
1956	25.71	117.48
1957	32.58	178.70
1958	48.36	170.39
1959	33.30	159.34
1960	30.67	177.80
1961	31.00	155.17
1962	43.89	242.00
1963	44.25	182.86
1964	57.92	247.11
1965	43.67	188.61
1966	44.86	210.59
1967	72.57	329.80
1968	46.99	198.47
1969	65.51	327.64
1970	50.28	241.91
1971	57.19	231.61
1972	57.49	248.04
1973	73.74	240.60
1974	63.42	257.11
1975	53.63	235.71
1976	42.88	150.79
1977	45.58	188.67
1978	53.93	196.07
1979	42.20	157.19
1980	37.65	158.62
1981	49.60	183.86
1982	62.26	181.89
1983	56.20	206.83
1984	58.98	160.98
1985	54.48	156.55
1986	75.93	204.87
1987	64.34	147.14
1988	51.91	204.53
1989	71.68	268.78
1990	33.31	148.37
1991	35.62	100.44
1992	59.10	151.85
1993	52.29	124.06
1994	93.23	123.40
1995	75.03	139.72
1996	60.51	110.93
1997	33.95	56.27
1998	36.75	65.54
1999	24.30	69.70
2000	38.80	86.90
Mean		
1995-99	46.11	88.43

Table 3.3.5.5 Catch per unit effort for the marine fishery in Norway. The CPUE is expressed as number of salmon caught per net day in Bagnets and Bendnets devided by salmon wight.

	Bagnet				Bendnet		
Year	$<\mathbf{3 k g}$	$\mathbf{3 - 7} \mathbf{~ k g}$	$\mathbf{> 7 ~ k g}$		$<\mathbf{3 k g}$	$\mathbf{3 - 7} \mathbf{~ k g}$	$\mathbf{> 7 ~ k g}$
1998	0.88	0.66	0.12		0.80	0.56	0.13
1999	1.16	0.72	0.16		0.75	0.67	0.17
2000	2.01	0.90	0.17		1.24	0.87	0.17

Table 3.3.5.6			Fisheries in the North East Atlantic, summary of trend analyses based on non-parametric method (1000 iterations) (p <0.1 means significance upward trend, $\mathrm{p}>0.9$ means significant downward trend).		
Section/Data type	Life stage	Period (years)	Fisheries	' p ' value	Trend
Section 3.3.5					
CPUE		10	UK (Scotland) net fisheries. Catch/trap month	0.99	Dn
		10	UK (England \& Wales) net and fixed engines. Catch per licence-day	0.07	Up
		10	Finland (Teno, Näätämö) and France. Rod catch/season,	0.37	Nt
		10	Finland (Teno, Näätämö) and UK (N Ireland) (Bush). Rod catch/day	0.72	Nt
		9	Russia (Barents Sea basin: Rynda, Kharlovka, Varzina, Iokanga). Rod catch/day	0.83	Nt
		10	Russia (White Sea basin: Ponoy, Varzuga, Kitsa, Umba). Rod catch/day	0.03	Up
Section 3.3.9					
Exploitation rates	1 SW	10	$\begin{aligned} & \text { Burrishoole + Delphi + Screebe + Shannon + Bunowen + Corrib } \\ & \text { (Ire), Dee (UK (E\&W)), North Esk (UK (Scot)), Bush (UK (NI)), } \\ & \text { Imsa + Drammen (Nor), Ellidaar + Blandar (Ice), Lagan (Swe) } \end{aligned}$	0.16	Nt
	1 SW	5	```Burrishoole + Delphi + Screebe + Shannon + Bunowen + Corrib (Ire), Dee (UK (E&W)), North Esk (UK (Scot)), Bush (UK (NI)), Imsa + Drammen (Nor), Ellidaar + Blandar + Vesturdalsa (Ice), Lagan (Swe)```	0.33	Nt
	2 SW	10	Corrib (Irl), North Esk (UK Scot), Dee (UK (NI)), Imsa + Drammen (Nor), Blanda (Ice), Lagan (Swe)	1	Dn
	2 SW	5	Corrib (Irl), North Esk (UK Scot), Dee (UK (NI)), Imsa + Drammen (Nor), Blanda + Vesturdalsa (Ice), Lagan (Swe)	0.86	Nt
	All ages	10	B.Z.Litsa, Ura, Tuloma, Kola (Russia, Barents Sea basin)	0.99	Dn
		5		0.46	Nt
	All ages	10	Ponoy, Kitsa,Varzuga, Umba (Russia, White Sea basin)	0.99	Dn
		5		0.94	Dn

Table 3.3.6.1 The percent of 1SW salmon in catches from countries in the North East Atlantic Commission, 1987-2000.

Year	Finland	France	Iceland	Norway	Russia	Sweden	UK (Scot)	UK (E\&W) (1)
1987	66	77		61	71		61	
1988	63	29		64	53		57	
1989	66	33		73	73	41	63	
1990	64	45		68	73	70	48	
1991	59	39		65	70	71	53	
1992	70	48		62	72	68	55	77
1993	58	74		61	61	62	57	78
1994	55	55	64	-	69	65	54	77
1995	59	60	72	58	70	78	53	72
1996	80	51	74	53	80	63	54	65
1997	70	51	73	64	82	54	54	73
1998	75	71	82	66	82	59	58	83
1999	81	27	71	65	78	71	43	70
2000	67	58	84	67	75	69	48	79
Means								
1995-99	73	52	74	62	78	65	52	73
1990-99	67	52	73	62	74	66	53	74

1. Refers to rod and line catches only.

Table 3.3.7.1 Estimated catches (in tonnes round fresh weight) of wild, farmed and ranched salmon in national catches in the North East Atlantic (figures for 2000 include provisional values).

Country	Catches of Salmon						
	Year/Seas on	Wild	FW Farmed	SEA Farmed	Total Farmed	Ranched	Total
Norway	1989	707	29	166	195	3	905
	1990	709.8	29	185	214	6.2	930
	1991	682.5	20	169	189	5.5	877
	1992	653.7	27	176	203	10.3	867
	1993	707	18	191	209	7	923
	1994	781	18	187	205	10	996
	1995	654	13	170	183	2	839
	1996	557	19	203	222	8	787
	1997	430	21	177	198	2	630
	1998	530	29	180	209	1	740
	1999	612	20	178	198	1	811
	2000	940	34	201	235	1	1176
Faroes	1990/1991	117.2			84.8	0	202
	1991/1992	20.4			10.6	0	31
	1992/1993	16.1			5.9	0	22
	1993/1994	5.8			1.2	0	7
	1994/1995	4.8			1.2	0	6
	1995/1996	0.8			0.2	0	1
	$1996 / 1997$	0			0	0	0
	$1997 / 1998^{5}$	-			-	-	6
	$1998 / 1999$	0			0	0	0
	$1999 / 2000^{5}$	-			-	-	8
	200072001	-			-	-	-
Finland	1991	68			<1	0	69
	1992	77			<1	0	78
	1993	70			<1	0	70
	1994	49			<1	0	49
	1995	48			<1	0	48
	1996	44			<1	0	44
	1997	45			<1	0	45
	1998	48			<1	0	48
	1999	63			<1	0	63
	2000	95			<1	0	95
France	1991	13			0	0	13
	1992	20			0	0	20
	1993	16			0	0	16
	1994	18			0	0	18
	1995	9			0	0	9
	1996	14			0	0	14
	1997	8			0	0	8
	1998	9			0	0	9
	1999	11			0	0	11
	2000	11			0	0	11
Iceland ${ }^{1}$	1991	130			3	345	478
	1992	175			+	460	635
	1993	160			-	496	656
	1994	140			-	308	448
	1995	150			-	298	448
	1996	122			-	239	361
	1997	106			-	50	156
	1998	130			-	34	164
	1999	119			-	26	145
	2000	82			-	2	84
Ireland ${ }^{2}$	1991	400			1.7	2.3	404
	1992	620			3.8	6.7	630
	1993	531			1.9	8.1	541
	1994	789			2.6	12.5	804
	1995	774			0.7	14.8	790
	1996	668			0.7	15.9	685

Table 3.3.7.1 (continued). Estimated catches (in tonnes round fresh weight) of wild, farmed and ranched salmon in national catches in the North East Atlantic (figures for 2000 include provisional values).

Country	Catches of Salmon						
	Year/Season	Wild	FW Farmed	SEA Farmed	Total Farmed	Ranched	Total
Ireland continued	1997	565			1.7	2.9	570
	1998	615			1.1	7.5	624
	1999	509			2.1	3.6	515
	2000	617			1.1	3.3	621
Russia	1991	215			0	0	215
	1992	167			0	0	167
	1993	139			0	0	139
	1994	141			0	0	141
	1995	128			0	0	128
	1996	131			0	0	131
	1997	111			0	0	111
	1998	131			0	0	131
	1999	102			0	0	102
	2000	124			0	0	124
Sweden	1991	23			1	14^{3}	38
	1992	24			1	24^{3}	49
	1993	35			1	20^{3}	56
	1994	15			1	29^{3}	44
	1995	12			1	24^{3}	37
	1996	10			1	22^{3}	33
	1997	9			0	10^{3}	19
	1998	9			0	6^{3}	15
	1999	8			0	8^{3}	16
	2000	12			0	21^{3}	33
UK (E\&W)	1991	200			0	0	200
	1992	186			0	0	186
	1993	263			0	0	263
	1994	307			0	0	307
	1995	295			0	0	295
	1996	183			0	0	180
	1997	142			0	0	142
	1998	123			0	0	125
	1999	150			0	0	152
	2000	214			0	0	214
UK (N.Ire)	1991	54			<1	-	55
	1992	85.3			1.1	2.6	89
	1993	80.5			0.2	2.3	83
	1994	90.1			0.5	0.4	91
	1995	80.6			1.5	0.9	83
	1996	74.7			n/a	2.3	77
	1997	90.7			0.07	2.2	93
	1998	76.6			0.03	1.0	78
	1999	50.9			0.67	1.4	53
	2000	75			??	2.5	78
$\mathrm{UK}(\mathrm{Scot})^{4}$	1991	448			14	0	462
	1992	569			31	0	600
	1993	516			31	0	547
	1994	644			5	0	649
	1995	586			2	0	588
	1996	427			<1	0	427
	1997	296			<1	0	296
	1998	283			<1	0	283
	1999	198			1	0	199
	2000	191			1	0	192

1. " + " indicates a small but unquantified catch. 2. Smolts released for enhancement of stocks or rod fisheries are categorised as wild
2. Fish released for mitigation purposes and not expected to contribute to natural spawning.
3. Data from 1994 onwards is the figure reported in national catch statistics, previous years' data have been calculated from a sampling programme.
4. Breakdown of the $1997 / 1998 \& 199 / 2000$ catches not
available.

Table 3.3.7.2 Proportion of farmed Atlantic salmon (unweighted means) in marine fisheries in Norway 1989-2000. $\mathrm{n}=$ number of salmon examined.

	Coast				Fjords			
Year	n	No. localities	\%	Range	n	No. localities	\%	Range
1989	1217	7	45	7-66	803	4	14	8-29
1990	2481	9	48	16-64	940	5	15	6-36
1991*	1245	6	49	29-63	336	3	10	6-16
1992	1162	7	44	4-72	307	1	21	-
1993	1477	7	47	1-60	520	4	20	$7-47$
1994	1087	7	34	2-62	615	4	19	2-42
1995	976	7	42	2-57	745	4	17	2-47
1996*	1183	6	54	35-68	678	4	16	3-22
1997	2046	8	47	7-68	793	5	42	15-85
1998	1194	8	45	6-61	1152	5	43	9-91
1999	1351	8	35	20-59	872	5	41	$2-85$
2000	1996	9	31	8-68	1291	7	31	2-80

* In 1991 and 1996 the coastal results do not include the locality in Finnmark.

Table 3.3.7.3 Proportion of farmed Atlantic salmon (unweighted means) in rod catches (1 June-18 August) and brood stock catches (18 August-30 November) in Norway in 1989-2000. ($\mathrm{n}=$ number of salmon examined; $\mathrm{R}=$ number of rivers sampled).

Year	1 June-18 August				18 August-30 November			
	n	R	\%	Range	n	R	\%	Range
1989	5970	39	7	0-26	1892	19	35	2-77
1990	5380	39	7	0-55	2144	24	34	2-82
1991	4563	31	5	0-23	1799	26	24	0-82
1992	4259	32	5	0-24	1489	22	26	0-71
1993	4070	29	5	0-22	1213	21	22	0-75
1994	3243	18	4	0-19	1699	19	22	0-75
1995*	3480	26	5	0-20	1279	19	29	0-71
1996*	3020	29	7	0-54	1443	23	31	0-82
1997*	2747	30	9	0-34	1892	36	29	0-83
1998*	4161	33	9	0-46	1546	26	22	0-97
1999*	5003	34	6	0-29	1755	23	15	0-53
2000*	5036	32	7	0-48	1835	31	8	0-37

[^2]Table 3.3.7.4 Proportions of escaped farmed Atlantic salmon in 1987 - 2000 in the River Teno (Finland, Norway) during the fishing season (June-August) and after the season (September-October).

Year	Fishing season (June-August)			After season (September-October)		
	samples (n)	farmed fish (n)	farmed fish (\%)	samples (n)	farmed fish (n)	farmed fish (\%)
1987	1430	1	0.07			
1988	1026	1	0.10			
1989	2096	5	0.24			
1990	2467	11	0.45	19	10	47.3
1991	3146	11	0.35	7	4	37.5
1992	3748	2	0.05			
1993	2413	1	0.04			
1994	1529	6	0.39			
1995	1604	5	0.31			
1996	2173	3	0.14	8	1	12.5
1997	3881	7	0.18	28	0	0.0
1998	3722	10	0.27			
1999	6243	10	0.16			
2000	3448	5	0.15			

Table 3.3.7.5 Salmon farm escapees in R. Bush (UK, N.Ireland) based on trapping of the total run throughout the year. (Note: 1994 data includes 14 escapees entering in January 1995).

	$\mathbf{1 9 9 1}$	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	
Total run											
(excl. ranched)	2344	2570	3253	2064	1527	1099	1681	2961	959	950	
No. escapees	3	24	18	54	6	2	4	6	5	4	
\% in sample	0.13	0.93	0.55	2.62	0.39	0.18	0.24	0.20	0.5	0.3	

Table 3.3.7.6 Geographical distribution by frequency (\%) of escaped farmed fish located among commercial catch samples for UK (Northern Ireland) and Ireland inshore catches (1991-2000).

		Frequency (\%)									
Location		1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Northern (UK)	Ireland	-	3.72	0.26	1.18	4.03	-	0.14	0.2	1.9	3.1
Donegal		0.00	0.02	0.09	0.14	0.02	0.34	0.03	0.01	0.04	0.002
Mayo	1.16	1.69	0.27	0.10	0.14	0.25	0.27	0.17	0.79	0.62	
Galway	0.39	0.10	0.06	0.08	0.03	0.00	0.06	0.10	0.51	2.16	
S. West	0.00	0.01	1.05	1.08	0.19	0.42	0.47	1.10	0.69	0.05	
S. and East	-	-	-	-	-	0.00	-	-	-	0.16	

T able 3.3.7.7
Frequency of occurrence of escaped farmed salmon (detected by morphological characters and/or scales growth patterns) among Scottish fisheries for wild salmon (1981-2000).

Year	Nets											Rods				
	East Rigg S \%	Redpoint \%	Achilti buie \%	Culkein Clachtol \%	Strathy \%	Bonar \%	Spey \%	$\begin{gathered} \text { Dee } \\ \% \end{gathered}$	N. Esk \%	$\begin{gathered} \text { Tay } \\ \% \end{gathered}$	Tweed \%	Laxford \%	Annan \%	Cree \%	N. Esk \%	Dionard $\%$
1981	0				0	0	0		0							
1982	0				0.3	0	0	0	0	0	0					
1983	0				0	0	0	0	0	0	0					
1984	0				0	0	0	0	0	0	0					
1985	0			0	0	0	0	0	0	0	0				0	
1986				0.6	0	0	0	0	0	0	0				0	
1987	0			1.3	0	0	0		0	0	0				0	
1988				1.5	0.6	0	0		0	0	0				0	
1989				6.6	6.1	0.7	0.08		0	0	0				0	
1990		*22		4.7	3.8	0	0		0	0	0.13				0	
1991		19.8		8.6	7.3	0.4	0.14		0.13	0	0				0	
1992		18.5		3.5	2.3	0.5	0		0	0.13	0				0.16	
1993		37.5		14.4	15.2	0.7			0	0	0				0.15	
1994				7.7	7.1	0.6			0	0.18	0.4				0.3	
1995		14.5	4.2		4.1				0	0	0				0	
1996		4.84	6.9		3.4				0	0	0				0	
1997		0	0		2.1				0			0.2			0	
1998			3.45	2.8	0.5				0.05		0	0.0			0.35	
1999					2.76				0.14		0	0.0			0	
2000					2.6				0.05		0	9.4	0	1.9	0	0

* Carotenoid pigment analysis.

Table 3.3.9.1 Estimated exploitation rates (in \%) of salmon in homewater fisheries in the North East Atlantic area (Ireland)

	Ireland ${ }^{1}$											
	Lee	Shannon	CorCong	CorGal	Screebe	Delphi	Burrishoole	Bunowen	Eme	Moy		
	All types of gear										net	net
Year	HR	W	W	W								
	1SW	2SW										
1980	96	94	73	-	-	-	63	-	-	-	82	82
1981	91	96	53	-	-	-	85	-	-	-	95	45
1982	94	96	50	67	-	-	83	-	-	-	62	37
1983	84	97	67	84	-	-	84	-	-	-	59	31
1984	100	98	67	84	99	-	87	-	90	-	79	54
1985	98	98	44	50	100	-	86	-	96	-	68	37
1986	99	97	-	78	100	-	79	-	83	-	-	-
1987	92	98	-	59	100	-	74	-	85	-	54	56
1988	99	96	59	-	95	-	80	-	91	-	62	66
1989	88	94	53	76	96	-	76	-	85	-	54	23
1990	80	79	53	42	0	-	63	-	70	68	41	52
1991	99	86	60	68	96	92	83	-	94	85	40	60
1992	-	84	59	67	86	75	77	86	-	64	52	-
1993	-	89	62		98	74	73	90	-	95	60	16
1994	-	90	-	55	98	90	88	100	-	-	62	52
1995	-	91	57	-	93	76	58	99	-	-	66	100
1996	-	88	-	-	64	68	75	99	-	-	49	62
1997	90	83	-	-	78	68	68	94	83	-	60	16
1998	92	95	18	32	92	95	82	98	100	-	38	11
1999	-	100	-	20	67	79	85	100	79	-	43	-
2000	n / a	n/a	n / a	n / a	n/a	n / a	n/a	n/a	n / a	n / a	n/a	n / a
Mean												
1989-98	90	89	52	47	77	80	75	96	85	78	51	46
1994-98	91	91	38	26	79	77	74	98	87		51	47

[^3]Continued.....

Table 3.3.9.1 Estimated exploitation rates (in \%) of salmon in homewater fisheries in the North East
Atlantic area (UK)

Year	UK (England and Wales)													UK (Northern Ireland) ${ }^{1}$				UK (Scotland) ${ }^{2}$			
	Sothern		Southwestern			Welsh				Northwestern											
	Test	Itchen	Frome	Tamar	Fowey	Dee	Dee	Dee	Taff	Leven	Kent	Lune	Lune	River Bush				North Esk			
													net		net net						
	W/H	W	W	W	W	W	W	W	H	W	W	W	W	W	W/HR	HR1+	HR2+	W	W	W	W
	(all ages)		(all ages)			1SW	MSW	(all ages)		(all ages)				1SW	2SW	1SW	1SW	$1 \mathrm{SW}$	$2 \mathrm{SW}$	1 SW	2 SW
1981	-	-	-			-	-	-	-	-				-	-	-	-	24	58	1	4
1982	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	30	48	1	9
1983	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	16	32	1	14
1984	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	29	42	2	15
1985	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	93	-	24	35	2	19
1986	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	82	75	43	30	3	21
1987	-	-	-	-	-	-	-	-	-	-	-	-	-	69	46	94	77	30	38	3	23
1988	39	-	10	-	-	-	-	-	-	-	-	-	-	65	36	72	57	35	37	3	27
1989	29	45	8	-	-	-	-	-	-	-	-	-	44	89	60	92	83	25	26	4	18
1990	36	51	11	-	-	-	-	-	-	-	-	-	36	61	38	63	70	36	34	6	29
1991	26	45	9	-	-	-	-	-	-	-	-	-	30	65	43	57	46	10	15	2	37
1992	25	27	11	-	-	14	18	15	5	-	-	23	30	56	33	74	75	28	27	7	28
1993	26	41	12	-	-	11	15	11	6	-	-	16	30	41	12	67	71	25	18	10	21
1994	25	44	14	13	-	15	21	22	5	-	-	29	35		40	71	64	18	18	5	24
1995	23	21	9	7	11	7	11	18	4	35	35	17	27	67	42	69	-	14	12	4	21
1996	19	47	13	7	8	9	11	17	3	21	31	17	24		-	81	77	19	10	4	32
1997	12	22	6	5	8	8	9	17	1	58	50	18	29	60	-	79	75	12	12	5	18
1998	18	18	6	6	7	10	10	15	-	43	65	12	14	26	-	-	32	23	12	5	20
1999	10	13	n/a	4	3	11	9	21	12	2	15	12	14	63	-	68	51	18	14	2	14
$2000{ }^{3}$	9	9	n/a	4	5	6	17	14	n/a	2	16	8	15	55	-	75	67	33	24	1	20
Mean																					
1990-99	22	33	10	7	7	10	13	17	5	-	-	17	27	55	35	70	62	20	17	5	24
1995-99	16	24	09	06	07	09	10	18	05	32	39	15	22	54	42	74	59	17	12	04	21

${ }^{1}$ Estimate based on microtag recoveries raised to total catch and including estimate of non-catch fishing mortality.
${ }^{2}$ Estimate based on counter and catch figures.
${ }^{3}$ Provisional figures.
$\mathrm{HR}=$ Hatchery reared.
Table 3.3.9.1 continued........
$\mathrm{W}=$ Wild .
'-' = no data

Table 3.3.9.1 (cont'd) Estimated exploitation rates (in \%) of salmon in homewater fisheries in the North East Atlantic area (Iceland, Norway and Sweden)

Year	Iceland ${ }^{1}$					Norway ${ }^{2}$										Sweden ${ }^{3}$	
	Ellidaar	Vesturdalsa		Blanda		Nausta	Øystenså	Orkla	Drammen			Imsa				Lagan	
	rod	rod rod		W	W	W	W	W	rod	net		net		net		net	
	W	W	W						W/HR	HR^{4}		W		HR^{4}		HR^{4}	
	1SW	1 SW	2SW	1 SW	2 SW	All ages				1SW	2SW	1SW	2SW	1SW	2SW	1SW	2SW
1985	40	-	-	-	-	-	-	-	33	57	-	73	94	81	100	81	-
1986	34	-	-	74	78	-	-	-	50	81	50	79	82	78	90	93	82
1987	54	-	-	75	72	-	-	-	44	64	52	56	95	83	95	78	55
1988	45	-	-	81	84	-	-	-	53	70	47	51	80	78	91	73	91
1989	41	-	-	72	73	-	-	-	35	40	59	65	74	44	65	76	86
1990	41	-	-	81	81	-	-	-	33	23	40	42	42	47	68	80	82
1991	37	-	-	75	86	-	-	-	28	54	59	37	72	50	66	91	92
1992	48	-	-	46	68	-	-	-	46	-	51	61	76	74	91	73	98
1993	41	-	-	57	64	-	-	-	45	20	-	53	80	85	89	89	82
1994	49	-	-	49	68	-	-	15	42	42	34	58	80	70	94	70	100
1995	43	-	-	53	90	-	-	-	53	29	40	-	86	56	88	58	70
1996	56	61	71	54	59	-	-	9	47	7	23	66	-	80	89	64	78
1997	50	60	80	40	63	-	9	12	44	15	23	58	80	67	-	55	58
1998	55	68	81	50	48	24	19	23	36	21	33	10	33	10	66	83	66
1999	48	55	69	40	55	16	22	22	42	5	0	0	-	19	-	49	17
2000	46	84	65	37	67	34	27	23	35	26	27	28	-	16	33	46	-
Mean																	
1990-99	47	61	75	55	68	20	17	16	42	24	34	43	69	56	81	71	74
1995-99	50	61	75	47	63	20	17	17	44	15	24	34	66	46	81	62	58

Estimate based on counter and catch figures
Estimates based on counter catch figures
${ }^{3}$ Estimate based on external tag recoveries and before 1994 on assumed 50%
exploitation in the river brood stock fishery and in 1994-96 on mark-recovery estimates.
${ }^{4}$ HR in R. Drammen, R. Imsa and R. Lagan are pooled groups of $1+$ and $2+$ smolts.
${ }^{5}$ Provisional figures.
${ }^{6}$ Net only.
$\mathrm{W}=\mathrm{W}$ ild
$H R=$ Hatchery reared.
'-' = no data

Reporting rates for external tags:

Norway	0.50
Sweden	0.65

Sweden
Elsewhere
0.50

Continued...........

Table 3.3.9.1 (cont'd) Estimated exploitation rates (in \%) of salmon in homewater fisheries in the North East Atlantic (Sweden and Russia)

[^4]Table 3.4.1.1 Conservation limits achievement (egg deposition/conservation limit) in rivers in the NEAC area. (Rivers ranked by mean \% conservation Limit achieved over the last 10 years).

Country	River	$\begin{aligned} & \text { O} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { } \\ & \text { O } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{\circ} \\ & \Gamma \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \text { o } \\ & \hline \end{aligned}$	$\begin{aligned} & +\infty \\ & \text { on } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ம } \\ & \text { © } \\ & \stackrel{-}{2} \\ & \hline \end{aligned}$	$$	$\begin{aligned} & \hat{\infty} \\ & \text { on } \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O} \\ & \mathbf{\infty} \\ & \hline- \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{8}{7} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 항 } \\ & \text { 아 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{8} \end{aligned}$	$\begin{aligned} & \text { প } \\ & \text { or } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { অ } \\ & \stackrel{\rightharpoonup}{2} \\ & \hline \end{aligned}$	$\stackrel{1}{8}$	\circ $\stackrel{\circ}{8}$ $\stackrel{\circ}{-}$	$\begin{aligned} & \text { A} \\ & \text { or } \\ & \hline \end{aligned}$	∞ $\stackrel{\circ}{\circ}$	$\begin{aligned} & \hline 8 \\ & 8 \\ & \hline \end{aligned}$	-
UK (E\&W)	Test	4	5								3	4	4	4	3	4	4	4	5	3	3	4
Russia	Litsa			3	3	2	2	3	2	5	3	3	2	3	4	2	3	4	3	3	3	4
UK (E\&W)	Lune										3	3	3	4	3	3	3	3	3	2	3	2
Ireland	Burrishoole	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	3	3	3	3	3	3	3	3	2	4	3	3	3	3	3	3	3	3	3	3
UK (N I)	Bush		3	3	3	3	2	1	2	2	4	2	2	2	2	3	3	3	3	2	4	4
UK (E\&W)	Dee													3	2	3	3	3	3	2	3	3
Russia	Ura	3	3	2	2	1	1	2	2	2	2	1	2	2	2	3	3	4	3	3	3	5
Russia	Tuloma		4	4	2	1	2	2	3	3	2	2	2	2	2	3	3	3	3	3	2	2
UK (E\&W)	Coquet															2	1	2	2	2	2	2
Russia	Varzuga		2	2	3	2	2	2	2	1	1	1	2	1	2	3	2	3	3	2	2	2
Russia	Kitsa	2	3	2	2	3	2	1	2	1	2	2	2	3	1	1	3	2	2	2	1	1
UK (E\&W)	Tamar															1	1	2	2	2	2	2
UK (S)	North Esk		1	1	1	2	1	1	2	1	1	2	1	1	1	1	1	2	1	1	1	1
Farance	Nivelle					3	4	2	2	2	1	1	1	1	1	1	1	1	2	2	1	

Percent of conservation attained:	>200	$\mathbf{1}$
(egg deposition/conservation limit)	$100-200$	$\mathbf{2}$
	$50-100$	$\mathbf{3}$
	$25-50$	$\mathbf{4}$
	$0-25$	$\mathbf{5}$
	N/A	

Table 3.4.2.1 Wild smolt counts and estimates, and juvenile survey data on various index streams in the North East atlantic (Finland, Norway and Sweden).

[^5]Continued.....

Table 3.4.2.2
Status of stocks in the North East Atlantic. Summary of trend analyses on smolt counts and survival based on a non-parametric method (1000 iterations). ($\mathrm{p}<0.1$ means significance up) trend, $\mathrm{p}>0.9$ means significant downward trend).

Type of data	Life stage	Period (years)	Rivers (Countries)	'p' value	Trend
Section 3.4.2 Smolt counts	Smolts	10	Southern rivers: Oir (Fra), Burrishoole (Irl), Bush (UK NI), North Esk, Girnock, Baddoch (UK Scot)	0.34	Nt
	Smolts	5		0.14	Nt
	Smolts	10	Northern rivers: Orkla, Halselva, Stjordalselva (Nor), Högvadsån (Swe)	0.99	Dn
	Smolts	5		0.64	Nt
	Smolts	10	Southern + Northern rivers + Ellidaar, Vesturdalsa (Ice).	0.98	Dn
	Smolts	5		0.28	Nt
Section 3.4.4 Wild smolt survival	1SW return to homewaters	10	Corrib (Irl), Bush (UK NI), Imsa (Nor), North Esk (UK Scot), Ellidaar + Midfjardara (Ice)	0.99	Dn
	1SW return to homewaters	5	Corrib (Irl)+Bush, Imsa (Nor), North Esk (UK Scot), Ellidaar+Midfjardara (Ice)	0.95	Dn
	2SW return to homewaters	10	Corrib (Irl), Imsa (Nor), North Esk (UK Scot), Midfjardara (Ice)	0.48	Nt
	2SW return to homewaters	5	Corrib (Irl), Imsa (Nor), North Esk (UK Scot), Midfjardara (Ice)	0.11	Nt
Section 3.4.4 Hatchery smolt survival	1SW return to homewaters	10	Shannon, Screebe, Delphi, Bunowen and Burrishoole (Irl), Bush (UK NI), Imsa and Drammen (Nor), Lagan (Swe), Midfjardara (Ice)	0.98	Dn
	1SW return to homewaters	5	Shannon, Screebe, Delphi, Bunowen and Burrishoole (Irl), Bush (UK NI), Imsa and Drammen (Nor), Lagan (Swe), Midfjardara (Ice)	0.74	Nt
	2SW return to homewaters	10	Midfjardara (Ice), Imsa and Drammen (Nor), Lagan (Swe)	0.99	Dn
	2SW return to homewaters	5	Midfjardara (Ice), Imsa and Drammen (Nor), Lagan (Swe)	0.78	Nt
		Trends:	$\begin{aligned} & \mathrm{Up}=\text { significant increase } \\ & \mathrm{Dn}=\text { significant decrease } \\ & \mathrm{Nt}=\text { no trend } \end{aligned}$		

Table 3.4.3.1 Wild adult counts to various rivers in the North East Atlantic area (Iceland, Sweden and Russia).

Year	Iceland	Sweden	Russia								
	River Ellidaar	River Högvadsån	River Ura	River Kitsa	River Tuloma	River Varzuga	River Keret	$\begin{gathered} \text { River } \\ \text { Ponoy }{ }^{1} \\ \hline \end{gathered}$	River Kola	River Yokanga	R. Zap. Litca
	Estimate	Total trap	Total trap	$\begin{aligned} & \hline \text { Total } \\ & \text { Trap } \\ & \hline \end{aligned}$	Total trap	Total trap	Total trap	$\begin{aligned} & \text { Total } \\ & \text { trap } \\ & \hline \end{aligned}$	Total trap	Total trap	$\begin{gathered} \text { Total } \\ \text { trap } \\ \hline \end{gathered}$
1952	3,792				4,800						
1953	2,526				2,950						
1954	2,794	364			4,010						
1955	4,118	210			4,600				4,855		
1956	2,911	144			4,800				2,176		
1957	2,965	126			4,300				2,949		
1958	3,057	632	983		6,228				1,771		1,051
1959	4,773	197	997		6,125				2,790		1,642
1960	4,815	209	3,293		10,360				5,030		2,915
1961	3,779	229	2,178		11,050	55,480			5,121		2,091
1962	3,126	385	1,184		10,920	69,388			5,776	3,655	2,196
1963	4,031	217	811		7,880	64,210			3,656	3,253	1,983
1964	4,526	390	787		4,400	21,424		23,666	3,268	2,642	1,664
1965	3,249	442	1,334		5,600	63,812		12,998	3,676	4,482	1,506
1966	4,274	375	925		3,648	21,086		10,333	3,218	2,488	787
1967	4,839	90	2,679		9,011	20,534		11,527	7,170	4,993	1,486
1968	3,024	172	1,996		6,277	47,258		18,352	5,008	3,357	1,971
1969	3,580	321	967		4,538	53,048		9,267	6,525	1,437	2,341
1970	2,187	610	1,792		6,175	55,556		9,822	5,416	1,117	2,048
1971	2,590	173	1,172		3,284	71,400		8,523	4,784	2,300	1,502
1972	4,627	281	1,693		6,554	48,858		10,975	8,695	1,620	1,316
1973	6,014	100	2,502	4,472	9,726	45,750		20,553	9,780	869	1,319
1974	6,925	270	1,968	3,564	12,784	39,360		24,652	15,419	280	2,605
1975	7,184	138	3,249	13,950	11,074	89,836		41,666	12,793	736	2,456
1976	3,331	65	2,110	6,996	8,060	57,246		44,283	9,360	2,767	1,325
1977	3,756	49	2,784	7,976	2,878	35,354		37,159	7,180	2,488	1,595
1978	4,372	23	1,358	4,410	3,742	18,483		24,045	5,525	1,715	766
1979	4,948	15	888	5,998	2,887	40,992		17,920	6,281	598	700
1980	2,632	260	957	2,310	4,087	43,664		15,069	7,265	1,052	548
1981	2,656	512	438	5,013	3,467	32,158		11,670	7,131	472	477
1982	4,275	572	1,205	4,158	4,252	26,824		9,585	5,898	1,200	889
1983	3,257	447	2,108	3,778	9,102	59,784		15,594	10,643	1,769	1,254
1984	1,659	629	4,458	7,498	10,971	39,636		26,330	10,970	2,498	1,859
1985	2,896	768	2,634	11,134	8,067	48,566		38,787	6,163	1,774	1,563
1986	2,651	1,632	2,474	7,290	7,275	71,562	3,230	32,266	6,508	3,212	1,815
1987	2,191	1,475	1,788	9,911	5,470	137,419	3,427	21,212	6,300	3,468	1,498
1988	4,435	1,283	1,252	10,488	8,069	72,528	3,294	20,620	5,203	2,270	575
1989	4,329	480	2,434	3,697	8,413	65,524	3,531	19,214	10,929	2,850	2,613
1990	3,383	879	1,558	6,548	11,594	56,000	2,520	37,712	13,383	3,376	1,194
1991	3,020	534	1,328	3,041	7,253	63,000	690	21,000	8,500	1,704	2,081
1992	2,917	345	3,391	8,587	5,377	61,300	536	26,600	14,670	5,208	2,755
1993	3,363	603	1,972	2,956	4,516	68,300	687	26,800	11,400	2,600	2,267
1994	2,298	640	1,738	3,222	3,316	77,800	753	28,600	9,730	2,500	2,100
1995	2,509	156	1,461	3,207	4,737	42,290	1,066	33,100	6,051	1,153	1,916
1996	2,170	249	1,171	4,740	4,424	67,900	391	32,600	7,700	2,700	2,330
1997	1,132	189	2,028	5,222	4,405	73,430	180	37,600	6,180	2,700	1,350
1998	875	160	1,100	5,560	3,338	83,050	607	34,400	4,848	-	1,510
1999	628	450	2,180	4,300	6,040	71,000	333	20,300	7,950	-	1,720
2000	1,113	653	780	4,170	6,660	75,540	974	23,000	6,360	-	910
Mean											
95-99	1,463	241	1,588	4,606	4,589	67,534	515	31,600	6,546	2,184	1,765

[^6]Continued...

Year	Russia	UK (E\&W)	UK (NI)	UK (NI)	UK (NI)	UK (NI)								
	Umba	Frome	Test	Itchen	Kent	Leven	Tamar	Dee	Lune	Caldew	Roe	Bush	Faughan	Mourne
	Total trap	Counter	$\begin{aligned} & \text { Counter } \\ & + \text { catch } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Counter } \\ & + \text { catch } \\ & \hline \end{aligned}$	Counter	Counter	Counter	$\begin{aligned} & \hline \text { Counter } \\ & + \text { catch } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Counter } \\ & + \text { catch } \\ & \hline \end{aligned}$	Trap	Counter	Total trap	Counter	Counter
1966													6,792	15,112
1967													1,723	7,087
1968													1,657	2,147
1969	2,030												1,195	1,569
1970	1,316												3,214	5,050
1971	288												1,758	4,401
1972	548												1,020	1,453
1973	2,536											2,614	1,885	2,959
1974	2,692											3,483	2,709	3,630
1975	5,432											3,366	1,617	1,742
1976	1,926											3,124	2,040	2,259
1977	3,692											1,775	2,625	2,419
1978	3,308											1,621	2,587	5,057
1979	3,772											1,820	3,262	2,226
1980	5,924											2,863	3,288	3,146
1981	6,252											1,539	3,772	2,399
1982	8,690											1,571	2,909	4,755
1983	7,850											1,030	2,410	1,271
1984	6,326											6,721	2,116	1,877
1985	12,190											2,443	9,077	8,149
1986	8,568											2,930	4,915	6,295
1987	10,040											2,530	907	2,322
1988	8,455	4,093	1,507	1,336								2,832	3,228	7,572
1989	12,029	3,186	1,730	791	1,137				8,785			1,029	8,287	9,497
1990	9,040	1,880	790	367	2,216				8,261			1,850	6,458	11,541
1991	6,400	805	538	152	1,736				7,591			2,341	4,301	7,987
1992	8,400	900	614	357	1,816			4,643	4,066			2,546	7,375	7,420
1993	8,500	1,182	1,155	852	1,526	101		9,757	7,883			3,235	8,655	17,855
1994	6,800	1,078	775	375	2,072	102	6,359	8,285	6,254	1,590		2,010	7,439	19,908
1995	7,340	1,016	647	880	1,396	123	5,637	5,703	4,589	1,417		1,521	5,838	7,547
1996	6,450	1,353	623	433	1,219	155	3,988	4,931	4,739	1,289		1,097	13,297	5,475
1997	6,200	1,157	361	246	491	41	2,989	5,495	3,121	889		1,677	4,500	6,979
1998	6,440	1,210	898	453	800	39	4,176	6,661	7,457	1,106	2,600	2,995	n / a	6,077
1999	6,850	n / a	867	213	1,018	98	3,588	3,664	4,936	1,022	n/a	959	n/a	8,500
2000	6,780	n / a	583	208	2,354	322	3,539	3,751	8,383	1,566	3,643	950	2,551	4,690
$\begin{gathered} \text { Mean } \\ 95-99 \\ \hline \end{gathered}$	6,656	1,184	679	445	985	91	4,076	5,291	4,968	1,145	-	1,650	7,878	6,916

| Table 3.4.3.1 Cont'd. | Wild adult counts to various rivers in the North East Atlantic area (UK, France, Norway and Ireland). | | | | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| UK(Scotl.) | UK(Scotl.) | UK(Scotl.) | UK(Scotl.) | France | France | France France Norway |

	UK(Scotl.)	UK(Scotl.)	UK(Scotl.)	UK(Scotl.)	France	France	France	France	Norway	Norway	Norway	Ireland
Year	N. Esk	West Water	Girnock	Baddoch	Nivelle	Oir	Scorff	Bresle	Halselva	Imsa	Orkla	Burrishoole
	Counter	Counter	Total trap Females	Total trap Females	Trap est.	Trap est.	Trap est.	Trap est.	Total trap	Total trap	Counter	Total trap
1966			156									
1967			115									
1968			111									
1969			31									
1970			34									
1971			61									
1972			79									
1973			127									
1974			105									
1975			65									
1976			90									
1977			49									
1978			16									
1979			49									
1980			121									832
1981	9,025		41									348
1982	8,121		43							66		510
1983	8,972		26							14		602
1984	7,007		58		33	307		110		32		319
1985	9,912		30		61	296		135		31		567
1986	6,987		75		204	216		210		22		495
1987	7,014		110		138	180		200	52	9		468
1988	11,243		112	47	130	235		105	77	44		458
1989	11,026		43	67	263	235		220	64	83		662
1990	4,762		29	52	291	84		125	68	67		231
1991	9,127	2,962	57	46	184	47		215	89	43		547
1992	10,795	2,809	35	32	234	60		225	35	70		360
1993	10,887	2,699	21	27	472	176		75	18	39		528
1994	11,341	2,976	37	40	317	155	$694{ }^{1}$	105	29	30	4,305	516
1995	9,864	2,391	71	16	195	128	982	80	9	1	-	561
1996	7,993	2,656	41	26	214	196	756	40	25	2	4,405	405
1997	11,315	2,926	9	9	126	67	542	45	77	9	2,509	538
1998	10,474	2,422	11	10	160	189	551	270	38	20	4,171	516
1999	11,789	2,312	22	22	160	257	353	62	14	36	2,827	508
2000	8,353	2,092	27	9	151	490	n/a	35	25	8	7,719	574
Mean												
95-99	10,287	2,541	31	17	171	167	637	99	33	14	3,478	506

Table 3.4.4.1 Estimated survival of wild smolts (\%) to return to homewaters (prior to coastal fisheries) for various monitored rivers in the NE Atlantic area.

Smolt migration year	Iceland ${ }^{1}$					Ireland		$\begin{gathered} \text { UK (N.Ireland) }{ }^{8} \\ \hline \text { R. Bush } \\ 1 \mathrm{SW}^{3} \\ \hline \end{gathered}$	Norway 2		$\text { UK (Scotland) }{ }^{2}$			France	
	Ellidaar 1SW	$\begin{aligned} & \hline \text { R.Vest } \\ & \text { 1SW } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { dalsa }^{4} \\ & 2 \mathrm{SW} \\ & \hline \end{aligned}$	R.Midfjardara ${ }^{4}$		$\begin{gathered} \text { River Corrib } \\ \text { 1SW } \\ \hline \end{gathered}$	$\begin{gathered} \text { River Corrib } \\ 2 \mathrm{SW} \\ \hline \end{gathered}$		R. Imsa 1SW	2SW	North Esk			Nivelle ${ }^{6}$ All ages	$\begin{gathered} \text { Bresle } \\ \text { All ages } \\ \hline \end{gathered}$
1975	20.8														
1980						14.3	0.5								
1981						10.0	3.0		17.3	4.0	13.7	6.9	0.3		
1982						16.7	2.7		5.3	1.2	12.6	5.4	0.2		
1983		2.0				8.0	1.5		13.5	1.3	-	-	-		
1984						20.0	1.6		12.1	1.8	10.0	4.1	0.1		
1985	9.4					15.2	1.4		10.2	2.1	26.1	6.4	0.2		
1986						-	-	31.3	3.8	4.2	-	-	-	15.1	
1987				2.4	1.4	13.3	0.6	35.1	17.3	5.6	13.9	3.4	0.1	2.6	
1988	12.7			0.6	0.9	11.7	0.6	36.2	13.3	1.1	-	-	-	2.4	
1989	8.1	1.1	2.0	0.2	0.7	5.3	0.6	25.0	8.7	2.2	7.8	4.9	0.1	3.5	
1990	5.4	1.0	1.0	1.2	1.3	4.0	0.5	34.7	3.0	1.3	7.3	3.1	0.2	1.8	
1991	8.8	4.2	0.6	1.1	0.5	5.8	1.0	27.8	8.7	1.2	11.2	4.5	-	9.2	
1992	9.6	2.4	0.8	1.4	0.5	5.8	-	29.0	6.7	0.9	-	-	-	8.9	$6.9{ }^{7}$
1993	9.8	-	-	1.0	1.1	8.7	1.6	-	15.6		-	-	-	$8.3{ }^{7}$	$10.3{ }^{7}$
1994	9.0	-	-	1.4	0.6	7.8	1.1	27.1	-	-	17.2	2.3	0.1	$7.2{ }^{7}$	$7.5{ }^{7}$
1995	9.4	1.6	1.2	0.3	0.9	6.7	0.1	n/a	1.8	1.5	11.5	5.1	0.1	2.3	-
1996	4.6	1.4	0.3	1.2	0.7	5.1	0.9	31.0	3.5	0.9	10.7	3.5	0.2	4.4	-
1997	5.3	0.7	0.5	2.4	0.5	10.2	0.6	19.8	1.5	0.3	10.3	6.3	0.1	3.4	4.8
1998	5.3	1.0	1.0	1.3	-	4.4	0.8	13.4	7.2	1.1	-	-		2.6	-
1999	7.7	1.3		-		4.3		16.5	3.7		-			-	-
$\begin{aligned} & \text { Mean } \\ & \text { (5-year) } \end{aligned}$	6.7	1.2	0.7	1.3	0.8	6.8	0.9	22.8	3.5	0.9	12.4	4.3	0.1	3.2	4.8
(10-year)	7.5	1.7	0.9	1.2	0.8	6.4	0.8	26.0	6.3	1.2	10.9	4.2	0.1	4.5	4.8

${ }^{1}$ Microtags.
${ }^{2}$ Carlin tags, not corrected for tagging mortality.
${ }^{3}$ Microtags, corrected for tagging mortality.
${ }^{4}$ Assumes 50% exploitation in rod fishery.
${ }^{5}$ Minimum estimates.
${ }^{6}$ From $0+$ stage in autumn.
${ }^{7}$ Incomplete returns.
${ }^{8}$ Assumes 30% exploitation in trap fishery.

Table 3.4.4.2 Estimated survival of hatchery smolts (\%) to adult return to homewaters, (prior to coastal fisheries) for monitored rivers and experimental facilities in the NE Atlantic area.

Smolt year	Iceland 1		UK (N. Ireland) ${ }^{1}$		Norway ${ }^{2}$				Sweden ${ }^{2}$	
	R Midfiardara ${ }^{3}$		R. Bush (1SW)		R. Imsa		R. Drammen		R. Lagan	
	1SW	2SW	$1+$ smolts	$2+$ smolts	1SW	2SW	1SW	2SW	1SW	2SW
1981					10.1	1.3				
1982					4.2	0.6				
1983	0.0	0.2	1.9	8.1	1.6	0.1				
1984	0.5	0.2	13.3		3.8	0.4	3.5	3.0	11.8	1.1
1985	0.4	0.1	15.4	17.5	5.8	1.3	3.4	1.9	11.8	0.9
1986	0.4	0.7	2.0	9.7	4.7	0.8	6.1	2.2	7.9	2.5
1987	2.7	0.7	6.5	19.4	9.8	1.0	1.7	0.7	8.4	2.4
1988	0.7	0.2	4.9	6.0	9.5	0.7	0.5	0.3	4.3	0.6
1989	0.7	0.4	8.1	23.2	3.0	0.9	1.9	1.3	5.0	1.3
1990	1.9	0.5	5.6	5.6	2.8	1.5	0.3	0.4	5.2	3.1
1991	1.8	0.2	5.4	8.8	3.2	0.7	0.1	0.1	3.6	1.1
1992	1.3	0.2	6.0	7.8	3.8	0.7	0.4	0.6	1.5	0.4
1993	0.5	0.2	1.1	5.8	6.5	0.5	3.0	1.0	2.6	0.9
1994	1.0	0.2	1.6	-	6.2	0.6	1.2	0.9	4.0	1.2
1995	0.8	0.1	3.1	2.4	0.4	0.0	0.7	0.3	3.9	0.6
1996	0.1	0.0	2.0	2.3	2.1	0.2	0.3	0.2	3.5	0.5
1997	0.9	0.0	no release	4.1	0.9	0.0	0.4	0.1	0.6	0.5
1998	no release	no release	2.3	4.5	2.4	0.1	1.9	0.6	1.6	0.9
1999	no release		2.7	5.8	6.0		1.7		2.1	
Mean										
(5-year)	1.1	0.3	4.1	8.3	4.3	0.7	1.4	0.8	4.0	1.2
(10-year)	1.0	0.2	3.9	7.2	3.1	0.6	1.0	0.5	3.2	1.0

${ }^{1}$ Microtagged.
${ }^{2}$ Carlin tagged, not corrected for tagging mortality.

Table 3.4.4.2 Cont'd. Estimated survival of hatchery smolts (\%) to 1SW adult return to homewaters, (prior to coastal fisheries) for monitored rivers and experimental facilities in Ireland.

Smolt year	R. Shannon	R. Screebe	R. Burrishoole 1	R. Delphi	R. Bunowen	R. Lee	R. Corrib Cong. 2	R. Corrib Galway 2	R. Erne
1980	8.6					10.8	0.9		
1981	2.8		9.1			2	1.2		
1982	4.1		9.9			16.3	2.7	16.1	
1983	3.9		4.3			2	1.7	4.1	
1984	4.9	10.4	26.9			0.1	5.2	13.2	9.3
1985	4.8	12.3	27.9			17.7	1.4	14.4	9.9
1986	9.1	0.4	8.8			16.3	-	7.6	10.1
1987	4.7	8.3	13.8			8.6	-	2.2	6.9
1988	4.9	9.2	17.1			5.5	4.2	-	2.6
1989	5.0	1.6	10.1			1.7	6	4.9	1.2
1990	1.3	0.0	12.1			2.5	0.2	2.3	1.3
1991	4.1	0.2	12.8	10.8		0.8	3.5	4	1.3
1992	4.3	1.3	7.1	10.0	4.2	-	0.9	0.6	-
1993	2.9	2.2	14.0	14.3	5.4	-	1	-	-
1994	5.1	1.9	13.1	7.6	8.1	-	-	5.3	-
1995	3.6	4.1	8.5	2.5	3.4	-	2.4	-	-
1996	2.9	1.8	5.5	9.9	3.3	-	-	-	-
1997	6.0	0.4	13.3	10.8	5.1	6.9	-	-	5.9
1998	2.8	1.3	4.9	5.9	2.6	4.6	3.3	2.9	1.9
1999	0.5	2.5	8.6	7.8	1.4	-	-	3.2	3.5
Mean									
(5-year)	4.1	1.9	9.1	7.3	4.5	5.8	2.9	4.1	3.9
(10-year)	3.8	1.5	10.1	9.0	4.6	3.3	2.5	3.3	2.3

[^7]Table 3.5.1 Assessment of the effects of the suspension of commercial fishing at Faroes on the numbers of salmon returning to home waters.

Fishing season

	1991/92	1992/93	1993/94	1994/95	1995/96	1996/97	1997/98	1998/99	1999/00
NASCO quota (t) for the calender year if fishery operated ${ }^{\text {a }}$	550	550	550	550	470	425	380	330	300
Expected No. fish landed if quota had been taken ${ }^{\text {b }}$	147,048	162,850	182,027	172,931	142,037	128,438	140,927	122,384	111,258
Discard rate	8.8\%	9.4\%	14.4\%	15.1\%	$11.9 \%{ }^{\text {c }}$	$11.9 \%{ }^{\text {c }}$	16.9\%	$16.9 \%{ }^{\text {g }}$	$16.9 \%{ }^{\text {g }}$
Discard mortality	80.0\%	80.0\%	80.0\%	80.0\%	80.0\%	80.0\%	80\%	80\%	80\%
Expected No. fish killed if fishery operated	158,399	176,367	206,524	197,536	157,422	142,350	163,855	142,295	129,359
No. fish killed in research fishery	9,350	9,099	3,035	4,187	282	0	1465	0	$2967{ }^{\text {h }}$
Total number of fish saved per year	149,049	167,268	203,489	193,349	157,140	142,350	162,390	142,295	126,392
Proportion of farmed fish in catch	37.0\%	27.0\%	17.0\%	19.0\%	19.0\%	19.0\%	19.0\%	19.0\% ${ }^{\text {f }}$	$19.0 \%{ }^{\text {f }}$
Number farm escapees spared	55,148	45,162	34,593	36,736	29,857	27,046	30,854	27,036	24,015
Number of wild fish spared	93,901	122,106	168,896	156,613	127,283	115,303	131,536	115,259	102,378
Sea age composition of wild fish: 1SW	4.0\%	12.0\%	16.0\%	10.6\%	$10.7 \%{ }^{\text {d }}$	$10.7 \%{ }^{\text {d }}$	19.2\%	19.2\%	19.2\%
2SW	83.0\%	61.0\%	64.0\%	80.8\%	$72.2 \%{ }^{\text {d }}$	$72.2 \%{ }^{\text {d }}$	74.6\%	74.6\%	74.6\%
2SW+	13.0\%	27.0\%	20.0\%	8.6\%	$17.2 \%{ }^{\text {d }}$	$17.2 \%{ }^{\text {d }}$	6.2\%	6.2\%	6.2\%
	1992	1993	1994	1995	1996	1997	1998	1999	2000
Additional salmon 1SW expected to have returned: MSW	$\begin{array}{r} \mathbf{2 , 8 4 2} \\ \mathbf{7 0 , 8 0 9} \end{array}$	$\begin{array}{r} 11,429 \\ 106,307 \end{array}$	$\begin{array}{r} 21,078 \\ 134,159 \end{array}$	$\begin{array}{r} 12,949 \\ 138,533 \end{array}$	$\begin{array}{r} 10,573 \\ 122,196 \end{array}$	$\begin{array}{r} 9,578 \\ 105,368 \end{array}$	$\begin{array}{r} 19,699 \\ 103,169 \end{array}$	$\begin{aligned} & \mathbf{1 7 , 2 6 1} \\ & \mathbf{9 9 , 1 3 0} \end{aligned}$	$\begin{aligned} & \mathbf{1 5 , 3 3 2} \\ & \mathbf{8 7 , 7 2 6} \end{aligned}$
Estimated 1SW returns to all Eurom homewaters: ${ }^{\text {e }}$	2,071,416	1,976,751	2,349,998	1,906,497	1,574,717	1,407,466	1752513	1241462	1661995
\% 1SW returns derived from suspension of commerial fishing at Faroes:	0\%	1\%	1\%	1\%	1\%	1\%	1\%	1\%	1\%
Estimated MSW returns to all European homewaters: ${ }^{\text {e }}$	990,822	1,002,492	1,134,800	1,034,176	953,108	708,513	755788	751153	919223
\% MSW returns derived from suspension of commerial fishing at Faroes:	7\%	11\%	12\%	13\%	13\%	15\%	14\%	13\%	10\%
Estimated 1SW returns to Northern European homewaters: ${ }^{\text {e }}$	718,658	660,583	851,641	596,837	512,841	551,205	668824	614962	842672
$\% 1 \mathrm{SW}$ returns derived from suspension of commerial fishing at Faroes: (Assuming 65\% from N. Europe)	0\%	1\%	2\%	1\%	1\%	1\%	2\%	2\%	1\%
Estimated MSW returns to Momewaters: ${ }^{\text {e }}$	457,004	506,992	489,097	445,638	484,430	365,885	396970	443141	582598
\% MSW returns derived from suspension of commerial fishing at Faroes: (Assuming 65\% from N. Europe)	10\%	14\%	18\%	20\%	16\%	19\%	17\%	15\%	10\%

a. NASCO quota agreed for the calender year in the latter part of the fishing season.
b. Expected no. landed in year y calculated from quota: $\operatorname{Sum}\left(\mathrm{p}_{i} / \mathrm{w}_{i}\right) *$ Quota ${ }_{v}, \mathrm{p}_{i}$ is proportion of age group $i, i=1 ; 2$ and $2+\mathrm{SW}$, and w_{i} is mean weight of sea age i.
c. No data, estimated from mean discard rate 1992-95.
d. No data, mean values from 1992-95 data.
e. Includes farmed escapees.
f. Data not yet available, mean value from 1994-1996 data
g. Taken from 1997/98 research fishery
h. In 1999/2000 a commercial fishery operated instead of a research fishery

Table 3.5.2. Reduction in gear units over the period 1991-2000 for countries where such information is available.

Country	Type of gear units	\% Change in gear units over 1991 to 2000
UK (England \& Wales)	Gillnet Sweepnet Hand-held net Fixed engine	-45
	Fixed engine Net and coble	-46
UK (Scotland)	Driftnet Draftnet Bagnets and boxes	-58
UK (N. Ireland)	Bagnet Bendnet	-84
	Norway	Driftnet Draftnet Other nets
Ireland	Commercial nets in freshwater	-74
France	-44	

a Information on the number of gear units deployed in France for 2000 are not available. The \% change in gear units presented covers the period 1991-1999.

Table 3.6.2.1 Estimated number of RETURNING 1 SW salmon by NEAC country and year

Year	Northern Europe							Southern Europe							NEAC Area	
	Finland	Iceland	Norway	Russia	Sweden	Total		France	Ireland	UK(EW)	UK(NI)	UK(Scot)	Total		Total	
						Est.	SD						Est.	SD	Est.	SD
1971	7,769	63,237	548,639	123,242	11,868	754,754	76,957	53,427	1,070,447	167,317	186,420	1,168,002	2,645,613	203,843	3,400,367	217,886
1972	12,058	64,211	706,255	135,241	9,546	927,311	98,959	105,359	1,164,565	186,085	161,965	1,073,691	2,691,664	192,790	3,618,976	216,704
1973	18,278	66,016	783,174	227,366	11,712	1,106,546	109,210	64,211	1,256,423	177,264	144,386	1,260,818	2,903,101	212,604	4,009,648	239,013
1974	16,906	46,644	736,277	207,967	17,307	1,025,101	105,314	30,123	1,379,752	174,495	156,802	1,317,677	3,058,849	232,899	4,083,950	255,603
1975	16,819	63,731	686,855	222,157	18,386	1,007,948	98,045	60,740	1,429,273	200,739	127,179	1,080,391	2,898,323	212,167	3,906,270	233,726
1976	14,490	53,341	684,807	167,519	10,434	930,591	98,129	55,623	1,007,550	125,363	87,787	935,194	2,211,517	180,113	3,142,107	205,109
1977	13,094	63,767	671,580	141,326	4,888	894,654	96,686	43,066	890,183	143,303	86,806	1,011,664	2,175,022	184,478	3,069,676	208,279
1978	9,552	77,629	724,892	153,472	5,766	971,310	101,399	43,785	795,426	141,288	112,183	1,102,254	2,194,935	198,692	3,166,245	223,070
1979	9,876	68,943	821,339	175,948	5,927	1,082,032	115,874	49,724	709,136	109,888	79,918	947,027	1,895,693	159,198	2,977,725	196,903
1980	9,737	35,260	824,362	115,940	7,378	992,677	114,246	104,147	543,181	139,614	102,394	589,955	1,479,291	107,608	2,471,968	156,945
1981	9,008	49,585	569,815	83,525	13,250	725,184	78,770	82,959	373,334	170,141	80,557	738,379	1,445,370	118,351	2,170,554	142,168
1982	6,446	32,731	415,943	127,541	11,852	594,513	58,571	51,006	669,910	101,354	115,640	1,029,799	1,967,709	170,176	2,562,222	179,973
1983	9,765	51,748	690,376	185,222	15,598	952,710	61,855	55,263	1,100,043	137,806	162,074	1,105,092	2,560,278	193,541	3,512,988	203,185
1984	12,223	32,817	872,447	175,950	22,290	1,115,727	76,051	90,802	524,866	117,621	63,674	1,130,608	1,927,570	182,348	3,043,298	197,572
1985	15,411	57,435	916,774	231,986	26,626	1,248,231	83,554	33,478	1,052,958	124,252	82,531	852,558	2,145,776	158,062	3,394,008	178,787
1986	15,369	83,403	767,763	203,397	28,737	1,098,669	70,456	62,226	1,013,536	153,746	92,030	1,062,355	2,383,893	184,946	3,482,562	197,911
1987	21,650	59,728	624,036	328,405	22,860	1,056,679	62,772	106,499	672,988	134,485	51,375	914,859	1,880,207	170,002	2,936,885	181,220
1988	14,740	108,987	554,480	180,242	19,053	877,501	50,244	37,584	1,040,039	177,532	119,759	906,598	2,281,512	185,870	3,159,014	192,541
1989	21,661	59,418	678,024	264,132	6,151	1,029,386	70,353	19,523	592,805	107,185	115,892	973,506	1,808,911	164,041	2,838,297	178,491
1990	21,302	55,516	555,477	238,818	14,448	885,561	56,432	35,159	439,885	76,456	96,011	495,498	1,143,009	93,336	2,028,570	109,069
1991	19,325	62,425	517,861	230,468	17,744	847,823	54,255	25,344	310,608	74,896	52,434	471,484	934,766	90,794	1,782,589	105,769
1992	31,462	79,113	396,871	192,028	19,185	718,658	43,557	45,949	496,569	74,984	107,403	627,853	1,352,759	119,120	2,071,416	126,833
1993	23,321	73,143	385,618	158,505	19,996	660,583	38,443	64,356	352,244	146,609	128,281	624,678	1,316,168	122,148	1,976,751	128,054
1994	15,698	50,695	593,827	174,288	17,134	851,641	53,830	50,491	496,896	204,480	85,743	660,748	1,498,358	129,716	2,349,998	140,442
1995	16,242	72,501	326,990	156,236	24,868	596,837	33,200	15,355	492,798	102,818	79,952	618,738	1,309,660	113,463	1,906,497	118,227
1996	26,796	54,588	224,768	191,239	15,450	512,841	29,440	19,103	431,085	84,459	82,572	444,657	1,061,876	87,589	1,574,717	92,404
1997	23,655	47,196	294,110	179,313	6,932	551,205	30,812	9,867	325,064	75,517	99,092	346,721	856,261	66,241	1,407,466	73,056
1998	28,452	70,799	369,612	195,926	4,036	668,824	33,467	19,163	372,024	85,090	213,314	394,098	1,083,688	77,128	1,752,513	84,076
1999	35,197	46,706	392,098	134,992	5,969	614,962	31,273	6,350	284,962	74,815	55,256	205,117	626,500	42,006	1,241,462	52,369
2000	36,828	37,300	600,701	155,941	11,901	842,672	51,296	16,861	361,341	119,103	80,468	241,550	819,323	54,887	1,661,995	75,126
10yr Av.	25,697	59,447	410,246	176,894	14,322	686,605	39,959	27,284	392,359	104,277	98,452	463,564	1,085,936	90,309	1,772,540	99,636

Table 3.6.2.2 Estimated number of RETURNING MSW salmon by NEAC country and year

Year	Northern Europe							Southern Europe							NEAC Area	
	Finland	Iceland	Norway	Russia	Sweden	Total		France	Ireland	UK(EW)	UK(NI)	UK(Scot)	Total		Total	
						Est.	SD						Est.	SD	Est.	SD
1971	7,296	37,018	343,756	204,481	865	593,416	53,746	11,255	174,511	107,660	15,679	526,864	835,970	68,716	1,429,385	87,238
1972	11,427	50,486	451,014	170,890	638	684,455	64,955	22,527	193,118	119,592	13,834	713,746	1,062,817	91,833	1,747,271	112,483
1973	17,421	52,932	492,614	285,191	2,043	850,203	78,742	13,851	206,349	110,051	12,032	789,053	1,131,337	101,633	1,981,540	128,567
1974	16,780	44,392	467,159	262,834	1,348	792,513	73,842	6,404	227,862	107,255	13,214	649,748	1,004,483	83,845	1,796,997	111,726
1975	16,432	50,875	440,399	330,259	326	838,289	73,364	12,711	237,614	121,472	10,822	717,402	1,100,022	95,753	1,938,311	120,628
1976	14,423	43,811	438,028	281,788	963	779,013	72,832	9,430	167,206	74,382	7,606	423,289	681,913	58,949	1,460,926	93,698
1977	13,135	50,659	425,060	211,489	745	701,089	65,681	7,321	146,713	81,360	7,293	513,504	756,191	67,036	1,457,281	93,850
1978	8,112	63,675	299,213	145,620	594	517,215	43,594	7,428	131,382	78,467	9,555	614,894	841,726	78,816	1,358,941	90,069
1979	6,459	41,087	519,467	160,929	1,680	729,623	76,810	8,437	116,739	59,017	6,775	506,675	697,643	65,505	1,427,266	100,949
1980	8,757	51,254	521,520	244,931	3,005	829,467	75,741	17,648	131,154	73,055	8,450	598,932	829,239	74,613	1,658,706	106,320
1981	13,703	27,068	547,026	133,546	865	722,208	78,673	12,367	92,108	86,425	6,673	634,358	831,930	79,662	1,554,139	111,962
1982	15,188	28,741	443,278	134,848	3,000	625,054	64,627	7,660	37,130	50,146	9,696	482,494	587,125	59,812	1,212,180	88,058
1983	16,905	33,537	429,326	217,029	2,032	698,828	48,078	8,147	97,458	66,396	13,646	583,971	769,618	71,687	1,468,446	86,316
1984	13,482	29,308	523,878	231,544	2,977	801,188	54,824	13,692	95,400	55,780	5,289	447,273	617,434	56,471	1,418,622	78,706
1985	13,775	22,855	465,102	257,068	1,171	759,971	55,410	10,080	87,521	57,762	6,885	499,786	662,034	64,502	1,422,005	85,034
1986	9,164	40,398	611,906	286,548	1,202	949,218	65,049	10,392	126,751	69,619	7,829	643,717	858,308	83,580	1,807,526	105,911
1987	12,799	30,982	441,595	133,956	3,602	622,934	42,549	5,506	104,979	75,617	4,032	469,756	659,889	63,594	1,282,823	76,516
1988	10,065	23,982	334,589	148,545	3,540	520,721	36,704	15,552	114,818	93,642	11,058	545,254	780,323	76,027	1,301,044	84,423
1989	12,421	21,834	242,252	180,902	9,644	467,054	42,590	7,094	76,214	68,179	8,906	475,958	636,351	64,660	1,103,405	77,427
1990	12,979	22,534	313,769	174,451	6,596	530,329	39,686	7,043	55,603	83,438	8,266	414,633	568,983	58,075	1,099,312	70,340
1991	14,581	20,209	265,964	150,390	7,524	458,668	32,937	6,399	39,531	36,014	4,122	323,069	409,135	45,312	867,804	56,018
1992	14,479	27,074	267,747	137,774	9,930	457,004	31,341	8,203	64,602	26,459	9,448	425,106	533,818	61,223	990,822	68,779
1993	18,787	22,241	248,269	204,507	13,187	506,992	40,237	3,921	43,427	41,284	23,036	383,831	495,500	55,511	1,002,492	68,560
1994	14,361	23,979	263,973	176,742	10,042	489,097	33,252	7,937	78,348	73,492	7,894	478,032	645,703	73,450	1,134,800	80,627
1995	12,410	18,615	279,735	128,620	6,257	445,638	30,712	3,799	78,320	48,095	6,617	451,708	588,538	69,586	1,034,176	76,062
1996	7,692	17,972	247,714	203,258	7,795	484,430	50,732	6,740	52,347	54,800	7,475	347,315	468,678	56,805	953,108	76,162
1997	12,108	14,576	169,798	164,279	5,124	365,885	40,443	3,480	34,973	33,681	9,126	261,367	342,628	44,625	708,513	60,225
1998	10,725	13,683	206,078	163,633	2,850	396,970	40,292	2,955	42,716	21,447	13,135	278,565	358,819	49,183	755,788	63,581
1999	9,645	22,034	246,263	162,808	2,392	443,141	40,226	6,389	31,823	40,507	5,850	223,443	308,012	40,301	751,153	56,941
2000	21,825	8,557	325,987	220,879	5,350	582,598	55,715	4,463	40,406	43,178	7,728	240,851	336,624	44,577	919,223	71,353
10yr Av.	13,661	18,894	252,153	171,289	7,045	463,042	39,589	5,428	50,649	41,896	9,443	341,329	448,746	54,058	911,788	67,831

Table 3.6.2.3 Estimated pre-fishery abundance of MATURING 1SW salmon (potential 1SW returns) by NEAC country and year

Year	Northern Europe							Southern Europe							NEAC Area	
	Finland	Iceland	Norway	Russia	Sweden	Total		France	Ireland	UK(EW)	UK(NI)	UK(Scot)	Total		Total	
						Est.	SD						Est.	SD	Est.	SD
1971	8,555	68,540	595,454	133,849	13,004	819,402	84,740	58,032	1,160,467	181,621	201,954	1,262,769	2,864,842	224,166	3,684,244	239,648
1972	13,209	69,599	766,284	146,873	10,493	1,006,458	108,662	114,289	1,262,444	201,983	175,472	1,160,483	2,914,670	212,370	3,921,128	238,555
1973	19,971	71,561	849,952	246,793	12,865	1,201,142	121,453	69,751	1,362,219	192,504	156,504	1,362,357	3,143,336	234,037	4,344,478	263,674
1974	18,440	50,556	798,805	225,642	18,876	1,112,318	116,893	32,775	1,495,777	189,376	169,880	1,423,777	3,311,585	255,914	4,423,903	281,347
1975	18,369	69,075	745,485	241,092	20,077	1,094,097	109,278	65,944	1,549,605	217,897	137,855	1,167,850	3,139,151	234,605	4,233,249	258,807
1976	15,800	57,812	742,753	181,749	11,400	1,009,514	107,725	60,388	1,092,174	136,057	95,151	1,011,217	2,394,986	197,654	3,404,500	225,104
1977	14,256	69,105	728,229	153,289	5,367	970,246	106,015	46,734	964,895	155,424	94,063	1,093,431	2,354,547	201,232	3,324,793	227,450
1978	10,401	84,138	786,092	166,448	6,303	1,053,382	112,601	47,487	862,292	153,254	121,473	1,191,559	2,376,064	217,114	3,429,446	244,576
1979	10,793	74,719	890,685	190,866	6,518	1,173,581	126,939	53,982	768,743	119,268	86,631	1,023,396	2,052,020	174,127	3,225,601	215,485
1980	10,785	38,216	894,905	126,126	8,238	1,078,269	126,081	113,101	589,195	151,787	111,163	638,362	1,603,610	118,156	2,681,879	172,793
1981	10,143	53,745	619,880	91,294	14,755	789,817	86,854	90,260	405,400	185,179	87,741	799,075	1,567,656	128,929	2,357,473	155,455
1982	7,337	35,477	452,987	138,948	13,198	647,947	65,063	55,626	726,841	110,569	125,702	1,113,661	2,132,400	185,169	2,780,346	196,267
1983	10,973	56,086	749,857	201,532	17,304	1,035,751	68,539	60,263	1,193,027	150,140	175,983	1,195,733	2,775,147	212,602	3,810,898	223,377
1984	13,441	35,569	945,864	191,098	24,367	1,210,339	84,688	98,591	569,280	127,880	69,192	1,222,602	2,087,546	199,781	3,297,885	216,990
1985	16,850	62,259	993,557	251,776	29,023	1,353,466	92,460	36,429	1,141,531	134,982	89,538	921,675	2,324,155	174,199	3,677,621	197,216
1986	16,849	90,393	832,162	220,832	31,367	1,191,602	76,786	67,656	1,098,947	167,027	99,879	1,148,032	2,581,542	202,850	3,773,144	216,897
1987	23,622	64,725	676,312	356,207	24,954	1,145,819	68,117	115,541	729,702	146,059	55,830	988,938	2,036,070	185,476	3,181,889	197,588
1988	16,149	118,113	601,178	195,683	20,845	951,968	54,601	40,900	1,127,516	192,738	129,862	980,405	2,471,422	203,319	3,423,390	210,523
1989	23,587	64,397	734,752	286,500	6,788	1,116,024	77,167	21,262	642,728	116,400	125,627	1,052,198	1,958,215	178,566	3,074,239	194,527
1990	23,170	60,170	601,683	259,016	15,753	959,791	61,124	38,172	476,938	83,041	104,026	535,772	1,237,949	101,933	2,197,740	118,855
1991	20,993	67,660	560,807	249,868	19,302	918,630	59,123	27,520	336,708	81,268	56,820	509,870	1,012,186	98,803	1,930,816	115,142
1992	34,116	85,763	429,806	208,204	20,833	778,722	47,946	49,800	538,275	81,333	116,269	678,610	1,464,287	130,142	2,243,009	138,693
1993	25,296	79,278	417,606	171,833	21,703	715,717	42,349	69,809	381,796	158,921	138,864	675,103	1,424,494	132,927	2,140,211	139,510
1994	17,033	54,948	643,007	188,947	18,591	922,526	59,475	54,734	538,583	221,668	92,830	713,908	1,621,723	141,363	2,544,248	153,365
1995	17,628	78,573	354,108	169,380	26,978	646,668	36,239	16,666	534,157	111,481	86,562	668,484	1,417,349	123,241	2,064,017	128,459
1996	29,057	59,170	243,609	207,326	16,779	555,940	33,029	20,719	467,261	91,596	89,415	480,362	1,149,354	95,770	1,705,293	101,305
1997	25,632	51,160	318,409	194,373	7,519	597,093	34,240	10,692	352,341	81,868	107,241	374,631	926,772	72,714	1,523,866	80,372
1998	30,833	76,730	400,155	212,347	4,380	724,445	37,035	20,761	403,206	92,224	230,849	425,708	1,172,748	84,270	1,897,193	92,049
1999	38,140	50,618	424,487	146,306	6,473	666,023	34,749	6,880	308,851	81,079	59,806	221,592	678,208	46,272	1,344,231	57,867
2000	39,914	40,425	650,043	169,009	12,906	912,297	55,036	18,278	391,618	129,087	87,080	260,984	887,048	60,316	1,799,345	81,651
10yr Av.	27,864	64,432	444,204	191,759	15,546	743,806	43,922	29,586	425,280	113,052	106,574	500,925	1,175,417	98,582	1,919,223	108,841

Table 3.6.2.4 Estimated pre-fishery abundance of NON-MATURING 1SW salmon (potential MSW returns) by NEAC country and year

Year	Northern Europe							Southern Europe							NEAC Area Total	
	Finland	Iceland	Norway	Russia	Sweden	Total		France	Ireland	UK(EW)	UK(NI)	UK(Scot)	Total			
						Est.	SD						Est.	SD	Est.	SD
1971	14,088	68,540	548,639	123,242	11,868	766,377	79,972	40,798	312,903	223,928	16,394	1,054,004	1,648,028	101,101	2,414,405	128,907
1972	24,988	69,599	7J6,255	135,241	9,546	945,629	87,414	26,541	307,809	190,913	14,246	1,100,654	1,640,164	112,952	2,585,793	142,827
1973	23,274	71,561	733,174	227,366	11,712	1,117,087	83,846	16,804	326,456	181,741	15,641	913,330	1,453,970	90,464	2,571,056	123,345
1974	23,313	50,556	736,277	207,967	17,307	1,035,419	79,134	23,891	337,147	197,185	12,835	996,096	1,567,154	110,307	2,602,573	135,756
1975	20,274	69,075	636,855	222,157	18,386	1,016,747	78,263	21,874	261,486	150,052	9,008	656,130	1,098,549	61,180	2,115,296	99,338
1976	17,678	57,812	634,807	167,519	10,434	938,250	76,317	15,037	212,149	133,975	8,641	705,172	1,074,974	73,343	2,013,224	105,847
1977	11,467	69,105	671,580	141,326	4,888	898,364	50,840	16,086	198,131	135,267	11,317	833,365	1,194,166	90,700	2,092,530	103,977
1978	9,904	84,138	724,892	153,472	5,766	978,172	91,331	14,650	168,043	98,039	8,022	681,071	969,825	76,088	1,947,996	118,873
1979	15,576	74,719	821,339	175,948	5,927	1,093,508	87,494	27,811	203,931	129,841	10,008	850,845	1,222,435	92,224	2,315,944	127,124
1980	24,376	38,216	824,362	115,940	7,378	1,010,272	96,396	21,029	162,225	146,040	7,904	923,147	1,260,345	95,330	2,270,617	135,573
1981	25,588	53,745	539,815	83,525	13,250	745,923	77,631	14,463	90,592	96,785	11,483	724,774	938,097	70,458	1,684,020	104,837
1982	26,048	35,477	415,943	127,541	11,852	616,860	46,162	13,998	152,954	109,055	16,169	815,518	1,107,694	81,858	1,724,555	93,977
1983	20,032	56,086	630,376	185,222	15,598	967,315	55,115	18,222	133,454	81,608	6,264	603,617	843,166	62,287	1,810,480	83,171
1984	20,401	35,569	872,447	175,950	22,290	1,126,657	47,336	13,540	122,029	81,789	8,155	662,061	887,573	68,353	2,014,230	83,143
1985	15,568	62,259	916,774	231,986	26,626	1,253,213	61,571	17,286	187,666	114,919	9,273	877,484	1,206,627	93,626	2,459,839	112,057
1986	19,731	90,393	737,763	203,397	28,737	1,110,021	46,934	11,002	159,016	119,408	4,777	662,991	957,193	68,051	2,067,214	82,666
1987	14,655	64,725	624,036	328,405	22,860	1,054,680	36,761	22,576	164,306	137,277	13,095	727,119	1,064,373	75,695	2,119,053	84,150
1988	18,242	118,113	554,480	180,242	19,053	890,129	26,444	13,679	126,311	113,699	10,550	665,920	930,157	66,930	1,820,286	71,964
1989	18,468	64,397	678,024	264,132	6,151	1,031,172	34,490	10,056	82,370	112,302	9,786	549,856	764,372	61,055	1,795,544	70,123
1990	18,618	60,170	555,477	238,818	14,448	887,532	28,867	8,431	54,496	49,021	4,883	410,251	527,083	47,080	1,414,614	55,226
1991	17,962	67,660	517,861	230,468	17,744	851,694	27,964	11,795	89,195	43,581	11,189	538,287	694,046	64,463	1,545,741	70,267
1992	22,911	85,763	336,871	192,028	19,185	716,757	27,116	5,930	59,707	57,055	27,286	479,045	629,023	59,183	1,345,780	65,099
1993	17,596	79,278	335,618	158,505	19,996	660,994	22,234	9,441	94,509	88,852	9,352	577,555	779,709	79,297	1,440,702	82,355
1994	15,358	54,948	593,827	174,288	17,134	855,554	27,532	4,529	94,634	58,377	7,834	547,025	712,399	79,293	1,567,953	83,937
1995	9,749	78,573	326,990	156,236	24,868	596,416	25,437	8,346	65,442	68,209	8,856	425,597	576,449	62,187	1,172,865	67,188
1996	14,447	59,170	224,768	191,239	15,450	505,075	17,509	4,433	43,256	42,089	10,806	315,978	416,561	48,592	921,636	51,650
1997	12,786	51,160	294,110	179,313	6,932	544,300	20,964	3,658	51,597	26,572	15,562	334,549	431,938	51,043	976,239	55,181
1998	11,463	76,730	339,612	195,926	4,036	657,767	25,068	7,611	37,960	48,756	6,926	267,167	368,421	44,133	1,026,187	50,756
1999	25,943	50,618	332,098	134,992	5,969	609,619	30,379	5,333	48,209	52,035	9,155	288,260	403,052	45,888	1,012,671	55,033
10yr Av.	16,683	66,407	475,723	185,181	14,576	688,571	25,307	6,951	63,906	53,455	11,185	418,371	553,868	58,116	1,242,439	63,669

Table 3.6.2.5 Estimated number of 1 SW SPAWNERS by NEAC country and year

Year	Northern Europe							Southern Europe							NEAC Area	
	Finland	Iceland	Norway	Russia	Sweden	Total		France	Ireland	UK(EW)	UK(N)	UK(Scot)	Total			
						Est.	SD						Est.	SD	Est.	SD
eggs/F	5,000	4,500	4,500	4,500	3,000	4403		3,450	3,400	3,000	3,400	5,000	4490		2623	
\% Fem	12\%	45\%	45\%	45\%	50\%	47\%		77\%	60\%	45\%	60\%	40\%	45\%		27\%	
1971	3,618	32,155	112,989	62,664	2,159	181,431	57,145	51,687	302,707	114,127	38,082	807,337	1,313,940	194,913	1,527,527	203,118
1972	5,557	32,456	143,226	68,357	1,688	218,827	74,199	101,879	325,211	126,427	32,455	730,071	1,316,042	182,173	1,567,325	196,703
1973	8,399	33,444	159,750	115,174	2,059	285,382	82,176	62,081	351,827	120,585	29,833	859,635	1,423,961	201,376	1,742,788	217,498
1974	7,821	23,570	149,441	105,098	3,170	265,529	80,102	29,133	385,428	118,519	31,248	920,399	1,484,727	220,848	1,773,826	234,925
1975	7,825	32,227	139,390	112,326	3,394	262,935	74,029	58,760	399,322	136,379	25,682	773,116	1,393,259	198,582	1,688,420	211,932
1976	6,722	26,890	138,127	84,457	1,817	231,123	74,024	53,803	280,702	84,108	17,515	674,066	1,110,194	171,875	1,368,208	187,138
1977	6,096	32,466	138,958	71,963	949	217,967	72,729	41,666	250,728	95,835	17,817	742,353	1,148,400	177,887	1,398,833	192,180
1978	4,429	39,193	146,808	77,491	1,065	229,795	77,269	42,350	221,977	92,900	22,361	818,144	1,197,733	193,991	1,466,721	208,814
1979	4,553	34,956	167,840	89,202	1,065	262,660	85,832	48,079	198,718	71,700	16,087	690,183	1,024,767	153,981	1,322,383	176,287
1980	4,501	17,879	168,590	58,791	1,294	233,176	85,198	100,717	144,168	86,829	20,707	439,025	791,446	103,586	1,042,501	134,122
1981	4,173	25,322	118,454	42,648	2,318	167,594	58,119	80,239	93,324	105,282	16,279	551,670	846,794	116,182	1,039,710	129,908
1982	2,979	16,654	85,668	77,861	2,150	168,657	44,755	49,326	171,802	61,874	23,589	771,854	1,078,445	166,208	1,263,756	172,128
1983	4,539	26,259	162,735	112,832	2,826	282,931	48,218	53,463	293,850	83,093	32,493	843,788	1,306,686	184,626	1,615,877	190,818
1984	5,685	16,617	200,604	106,996	4,035	317,320	60,257	87,842	133,372	69,424	12,769	864,860	1,168,267	179,900	1,502,203	189,723
1985	7,137	29,040	217,418	140,906	4,912	370,373	67,222	32,378	252,505	72,085	16,445	656,429	1,029,841	147,641	1,429,254	162,224
1986	7,175	42,066	181,692	123,248	5,322	317,437	56,299	58,826	210,026	88,803	18,203	811,736	1,187,593	175,625	1,547,097	184,428
1987	10,019	30,199	153,372	206,629	4,318	374,339	53,869	100,499	156,203	78,058	16,189	709,864	1,060,813	164,133	1,465,350	172,747
1988	6,820	55,225	136,877	113,569	3,400	260,667	43,060	35,484	231,810	103,905	42,575	720,005	1,133,781	173,429	1,449,673	178,695
1989	7,787	30,138	232,306	166,498	1,143	407,735	63,774	18,423	153,411	60,362	13,500	774,626	1,020,341	159,641	1,458,214	171,908
1990	7,804	28,175	196,060	150,593	2,676	357,134	50,560	33,259	147,612	42,586	37,160	402,882	663,500	90,258	1,048,809	103,454
1991	7,010	31,783	177,050	162,266	3,317	349,644	48,184	23,944	107,278	42,536	18,913	386,876	579,547	89,118	960,974	101,310
1992	11,433	40,257	132,172	135,177	3,577	282,359	39,692	43,449	180,065	42,990	47,904	511,838	826,246	116,188	1,148,863	122,781
1993	8,430	37,256	131,235	111,613	3,277	254,555	35,803	60,756	100,868	90,941	76,071	516,622	845,258	120,252	1,137,069	125,469
1994	5,699	25,817	209,147	122,714	4,769	342,329	48,689	47,691	137,626	128,803	26,177	547,649	887,946	126,123	1,256,091	135,194
1995	5,852	36,774	112,737	109,835	9,711	238,136	30,700	13,686	128,585	66,256	26,713	516,477	751,717	109,746	1,026,627	113,959
1996	12,435	27,777	71,852	134,604	6,036	224,929	27,615	17,040	121,123	57,641	35,757	369,417	600,977	84,197	853,683	88,610
1997	10,997	23,899	110,598	125,987	2,589	250,171	29,360	8,807	96,019	52,301	40,592	293,228	490,947	65,742	765,018	72,000
1998	13,201	35,743	134,949	137,515	1,164	286,830	31,163	17,098	112,674	60,350	160,340	333,459	683,921	76,595	1,006,494	82,692
1999	12,688	23,724	145,123	94,955	1,763	254,530	28,289	5,660	88,681	55,532	20,481	176,536	346,890	41,474	625,144	50,204
2000	13,463	18,960	220,993	109,725	3,564	347,745	46,961	15,069	113,004	89,767	33,905	210,858	462,603	54,216	829,309	71,727
10yr.av.	9,065	31,762	150,811	135,680	3,826	299,382		28,415	128,526	64,479	48,313	465,307	735,040		1,066,184	

Table 3.6.2.6 Estimated number of MSW SPAWNERS by NEAC country and year

Year	Northern Europe							Southern Europe							NEAC Area	
	Finland	Iceland	Norway	Russia	Sweden	Total		France	Ireland	UK(EW)	UK(NI)	UK(Scot)	Total		Total	
						Est.	SD						Est.	SD		SD
eggs/F	13,000	10,500	10,500	10,500	6,000			6,900	7,000	6,000	6,000	10,000				
\% Fem	77\%	80\%	80\%	80\%	70\%			77\%	85\%	70\%	85\%	60\%				
1971	3,083	14,956	69,680	103,303	211	176,276	43,246	7,195	85,589	79,157	7,842	304,255	484,038	66,554	675,270	79,370
1972	4,835	20,436	91,802	86,456	174	183,268	50,153	14,407	95,038	87,985	6,966	413,329	617,724	89,149	821,428	102,288
1973	7,422	21,392	100,055	144,145	462	252,084	64,271	8,881	101,497	80,978	6,035	462,306	659,697	98,689	933,172	117,772
1974	7,100	18,024	95,746	133,315	341	236,502	59,258	4,094	112,261	79,069	6,619	390,423	592,467	81,268	846,993	100,578
1975	6,875	20,663	90,273	167,537	79	264,764	60,469	8,091	117,075	89,530	5,440	432,568	652,704	93,069	938,131	110,988
1976	6,149	17,819	89,963	143,134	221	239,468	58,900	6,050	82,403	54,439	3,825	264,760	411,476	57,414	668,763	82,253
1977	5,672	20,599	87,322	107,395	189	200,578	51,771	4,721	72,311	58,997	3,634	322,646	462,309	65,367	683,486	83,385
1978	3,455	25,733	60,530	73,555	159	137,700	33,326	4,763	64,593	56,167	4,772	391,081	521,376	77,123	684,809	84,016
1979	3,396	16,549	102,838	81,104	417	189,756	58,787	5,382	57,364	41,834	3,411	324,813	432,805	64,082	639,110	86,962
1980	4,617	20,717	105,602	123,751	789	234,758	58,340	11,278	64,488	49,860	4,226	386,333	516,185	73,657	771,660	93,962
1981	7,191	10,994	112,054	67,750	216	187,210	58,913	8,287	37,881	58,672	3,354	418,227	526,420	78,778	724,625	98,371
1982	7,983	11,566	88,985	81,640	752	179,359	49,433	5,140	16,295	33,573	4,848	323,695	383,551	59,328	574,476	77,223
1983	8,837	13,536	96,805	131,593	487	237,722	40,613	5,447	48,243	44,126	6,865	402,830	507,511	71,014	758,769	81,807
1984	7,177	11,928	122,965	141,157	802	272,101	47,439	9,252	62,092	36,658	2,635	314,096	424,734	56,041	708,762	73,423
1985	7,219	9,286	107,235	156,615	271	271,341	49,028	6,750	54,563	37,468	3,438	357,543	459,761	64,091	740,388	80,693
1986	4,840	16,419	151,054	174,572	302	330,767	56,783	6,992	79,083	45,091	3,935	460,343	595,443	83,001	942,629	100,566
1987	6,766	12,608	109,054	81,709	894	198,423	35,835	3,706	63,679	49,139	2,204	340,943	459,671	63,137	670,701	72,598
1988	5,391	9,640	80,955	89,868	912	177,126	32,260	10,552	68,853	60,666	7,072	405,363	552,506	75,539	739,271	82,139
1989	5,303	8,823	82,075	141,562	2,344	231,285	41,131	4,794	38,875	42,945	3,578	357,786	447,979	64,409	688,087	76,422
1990	5,506	9,110	107, 176	140,193	1,655	254,530	36,914	4,743	30,729	52,075	5,161	314,981	407,689	57,890	671,330	68,657
1991	6,155	8,209	91,101	120,994	1,824	220,074	30,529	4,299	22,321	22,836	2,362	248,852	300,669	45,213	528,952	54,555
1992	6,092	10,980	90,336	110,798	2,467	209,692	29,151	5,503	37,713	16,894	6,327	330,991	397,429	61,095	618,102	67,693
1993	7,845	9,012	82,114	164,447	3,179	257,585	38,747	2,621	20,414	28,087	20,286	302,609	374,016	55,368	640,613	67,579
1994	6,038	9,786	88,637	142,345	2,662	239,682	31,775	5,637	45,581	50,794	4,746	381,179	487,937	73,222	737,405	79,819
1995	5,258	7,558	95,188	103,469	1,880	205,795	28,630	2,704	45,258	33,887	3,816	363,192	448,857	69,445	662,211	75,115
1996	4,065	7,288	82,037	173,972	2,241	264,314	49,947	4,798	28,023	40,370	5,015	281,922	360,129	56,757	631,731	75,605
1997	6,413	5,884	61,359	140,456	1,574	209,803	39,926	2,479	16,374	25,120	6,062	215,611	265,646	44,601	481,333	59,861
1998	5,710	5,554	76,111	140,054	833	222,708	39,595	2,109	21,658	16,396	10,350	233,888	284,401	49,163	512,663	63,125
1999	4,506	8,938	88,503	139,284	676	232,969	39,106	4,558	15,822	32,233	4,011	188,843	245,467	40,283	487,374	56,143
2000	10,202	3,471	117,750	189,057	1,544	318,552	54,619	3,186	20,131	34,390	5,267	207,119	270,092	44,562	592,115	70,491
10yr.av.	6,228	7,668	87,514	142,488	1,888	238,117		3,789	27,329	30,101	6,824	275,421	343,464		589,250	

Table 3.6.6.1 Effects of taking account of fish farm escapees in Norwegian PFA assessment.

	Numbers estimated from PFA and CL analysis					
Year	Maturing 1SW recruits	Non-mat. 1SW recruits	Total 1SW recruits	1SW spawners	MSW spawners	National CL
NOT taking account of farmed fish	510,398	341,371	851,770	185,741	104,690	191,000
Taking account of farm fish	464,109	290,096	754,206	182,359	100,588	183,000
Difference	46,289	51,275	97,564	3,382	4,103	8,000
\% difference	10\%	18\%	13\%	2\%	4\%	4\%

Table 3.6.7.1 Sensitivity of Pre-Fishery Abundance estimates for 1SW and MSW stocks in Northern and Southern Europe to changes in input data to run-reconstruction model. [Based upon input data used in 2001 assessment]

Country	Sea age	Input data for 2001 assessment					Recruits (PFA)	Effect of changing:-			Effect of changing:		
		Catch	Non-rep' rate	Exploit'n rate	Extra catch	Time		Non-rep' rate by by adding \qquad 0.1	Exp'n rate by by adding 0.1	$\begin{gathered} \text { Time } \\ \text { by } \\ \text { by adding } \\ 2.0 \\ \hline \end{gathered}$	Non-rep' rate by multiplying 1.2	Exploit'n rate by multiplying 1.2	Time by multiplying 1.2
Northern European Stock Complex - 1SW													
Iceland 1	1SW	11,894	0.02	0.50		8.0	26,295	0.3\%	-0.5\%	0.1\%	0.0\%	-0.5\%	0.0\%
Iceland 2	15W	6,081	0.02	0.50		8.0	13,444	0.2\%	-0.2\%	0.0\%	0.0\%	-0.2\%	0.0\%
Finland	1SW	17,499	0.25	0.65		8.0	38,885	0.7\%	-0.6\%	0.1\%	0.3\%	-0.7\%	0.1\%
Norway-N	15W	77,121	0.35	0.70		8.0	183,614	3.6\%	-2.5\%	0.4\%	2.4\%	-3.3\%	0.3\%
Norway-M	15W	85,179	0.35	0.60		8.0	236,598	4.7\%	-3.7\%	0.5\%	3.1\%	-4.3\%	0.4\%
Norway-S	15W	85,179	0.35	0.60		8.0	236,598	4.7\%	-3.7\%	0.5\%	3.1\%	-4.3\%	0.4\%
Sweden	15W	7,103	0.15	0.73		8.0	12,486	0.2\%	-0.2\%	0.0\%	0.0\%	-0.2\%	0.0\%
Russia	1SW	27,702	0.40	0.30		8.0	166,718	3.6\%	-4.6\%	0.4\%	2.8\%	-3.0\%	0.3\%
Faroes	15W	225	0.15	1.00		0.5	266	-	-	-	-	-	-
Total Northern Area - 1SW:							914,904						
Northern European Stock Complex -MSW													
Iceland 1	MSW	2,358	0.02	0.60		17.0	4,753	0.1\%	-0.1\%	0.0\%	0.0\%	-0.1\%	0.0\%
Iceland 2	MSW	2,624	0.02	0.60		17.0	5,290	0.1\%	-0.1\%	0.0\%	0.0\%	-0.1\%	0.0\%
Finland	MSW	8,698	0.25	0.55		17.0	24,993	0.6\%	-0.6\%	0.1\%	0.3\%	-0.6\%	0.1\%
Norway-N	MSW	57,286	0.35	0.70		17.0	149,234	4.0\%	-2.8\%	0.4\%	2.7\%	-3.7\%	0.8\%
Norway-M	MSW	38,204	0.35	0.60		17.0	116,111	3.1\%	-2.5\%	0.3\%	2.1\%	-2.9\%	0.6\%
Norway-S	MSW	38,204	0.35	0.60		17.0	116,111	3.1\%	-2.5\%	0.3\%	2.1\%	-2.9\%	0.6\%
Sweden	MSW	3,196	0.15	0.73		17.0	6,147	0.1\%	-0.1\%	0.0\%	0.0\%	-0.2\%	0.0\%
Russia	MSW	9.413	0.70	0.15		17.0	247,939	18.4\%	-14.8\%	0.7\%	32.3\%	6.1\%	1.3\%
Faroes	MSW	1,765	0.00	1.00		1.5	1,792	-	-	-	-	-	-
Total Northern Area - MSW:							672,371						
Southern European Stock Complex - 1SW													
France	15W	1,792	0.00	0.13		8.0	15,530	0.2\%	-0.8\%	0.0\%	0.0\%	-0.3\%	0.0\%
Ireland	15W	211,035	0.15	0.66		8.0	405,419	6.1\%	6.0\%	0.9\%	1.7\%	.7.6\%	0.7\%
UK(Eng\&Wales)	15W	23,461	0.20	0.26		8.0	122,187	2.0\%	-3.8\%	0.3\%	0.7\%	-2.3\%	0.2\%
UK(N Ireland) 1	15W	31,038	0.10	0.58		8.0	64,412	0.9\%	-1.1\%	0.1\%	0.2\%	-1.2\%	0.1\%
UK(N Ireland) 2	15W	10,826	0.10	0.58		8.0	22,467	0.3\%	-0.4\%	0.1\%	0.1\%	-0.4\%	0.0\%
UK(Scotland) E	15W	21,328	0.10	0.17	34,666	7.5	187,622	2.1\%	-6.3\%	0.4\%	0.4\%	-2.8\%	0.3\%
UK(Scotland) W	15W	5,568	0.20	0.11		8.0	68,543	1.1\%	-3.7\%	0.2\%	0.4\%	-1.3\%	0.1\%
Greenland	15W	0	0.00	1.00		7.5	0	-	-	-	-	-	-
Total Southern Area - 1SW:							886,179						
Southern European Stock Complex - MSW													
France	MSW	1,277	0.00	0.30		17.0	5,045	0.1\%	-0.3\%	0.0\%	0.0\%	-0.2\%	0.0\%
Ireland	MSW	17,185	0.15	0.51		17.0	46,910	1.5\%	-1.8\%	0.2\%	0.4\%	-1.9\%	0.4\%
UK(Eng\&Wales)	MSW	7,008	0.20	0.22		18.0	47,671	1.6\%	-3.5\%	0.2\%	0.6\%	-1.9\%	0.4\%
UK(N Ireland) 1	MSW	1,634	0.10	0.33		17.0	6,621	0.2\%	-0.4\%	0.0\%	0.0\%	-0.3\%	0.1\%
UK(N Ireland) 2	MSW	570	0.10	0.33		17.0	2,310	0.1\%	-0.1\%	0.0\%	0.0\%	-0.1\%	0.0\%
UK(Scotland) E	MSW	25,287	0.10	0.17	34,666	17.5	238,178	5.8\%	-17.3\%	1.1\%	1.1\%	-7.8\%	2.0\%
UK(Scotland) W	MSW	4,487	0.20	0.11		17.0	60,437	2.0\%	6.8\%	0.3\%	0.8\%	-2.4\%	0.5\%
Greenland	MSW	8,171	0.40	1.00		9.0	14,901	-	-	-	-	-	-
Total Southern Area - MSW:							422,074						

M
0.01

Table 3.7.3.1 Conservation limit options for NEAC stock groups estimated from national lagged lagged egg deposition model and from of river specific values (where available)

Table 3.9.1. Cruises with surface trawling (flotation on trawl wings) in 2000, captures of post-smolts and adult salmon and smolt catch per unit of effort (trawl hours, CPUE)

$\begin{aligned} & \hline \text { Year } \\ & \text { and } \\ & \text { Cruise } \end{aligned}$	Gear	Dates	Total number of surface hauls	\% hauls with postsmolt captures	Number of post-smolts captured	Number of salmon captured	CPUE	Area
2000- 1^{2}	Harstad ${ }^{\text {C }}$; Fish lift	06-28.05	50	n.a	n.a.	n.a.	n.a.	Selected fjords SW-Norway (Salmon lice investigatons)
2000- 2^{2}	Firkløver trawl ${ }^{\mathbf{B}}$; Fish lift	10-31.05	93	42	291	7	2.2	Norwegian coastal current, Fjords SW - Mid Norway.
2000- 3^{2}	Åkra trawl ${ }^{\text {A }}$; Fish lift	10-20.06	14	64	268	6	9	Norwegian Sea, Voering plateau
$\begin{aligned} & 2000-4 \\ & 2000-5^{2} \end{aligned}$	Åkra trawl ${ }^{\mathbf{A}}$ Firkløver trawl ${ }^{\mathbf{B}}$; Fish lift	$\begin{aligned} & 24-28.06 \\ & 28.06-24.07 \end{aligned}$	2 106	0 30	0 202	0 13	$\begin{gathered} 0 \\ 1.22 \end{gathered}$	The Halten Bank, Norwegian Sea Selected fjords N-Norway and S-Barents Sea (special salmon cruise)
$\begin{aligned} & 2000-6 \\ & 2000-7 \end{aligned}$	Åkra trawl ${ }^{\mathbf{A}}$ Harstad $25 \times 25 m$ float- trawl	$\begin{aligned} & 21.07-16.08 \\ & 17.08-07.09 \end{aligned}$	26 3	12 n.a	5 0	${ }_{1}{ }^{1}$	$\begin{gathered} 0.38 \\ 0 \end{gathered}$	Norwegian Sea Western Barents Sea
TOTAL	2000		294		766	38		

${ }^{1}$ The salmon was captured in a sub-surface trawl (haul)
${ }^{2}$ Cruises dedicated to salmon investigations
${ }^{\text {A }}$ Dimensions of the \AA Ara trawl opening $25 \times 25 \mathrm{~m}$
${ }^{\text {B }}$ Dimensions of the Firkløver trawl opening $18.5 \times 18.5 \mathrm{~m}$
${ }^{C}$ Dimensions of the Harstad float trawl opening $14 \times 14 \mathrm{~m}$

Figure 3.3.3.1 Percent changes in gear units licened or authorised for net fishery in the NEAC are since 1996 (5-year period).

Figure 3.3.3.2 Percent changes in number of rod days, or rods licened or authorised in the NEAC are since 1996 (5-year period).

[^8]Figure 3.3.4.1 Nominal catches of salmon in the NEAC area in year 2000 relative to mean catches in the preceeding 10-year and 5-year period. Countries are ordered after size of change.

Figure 3.3.6.1. The proportions of 1SW salmon in the NEAC catches in 2000 relative to previous indices

Fig. 3.4.1.2. Conservation limit (CL) attainment (egg deposition/conservation limit, \%) for index
rivers having a mean egg deposition below (Type A), around (Type B) or above (Types C\&D) the CL over the 10 previous years the CL over the 10 previous years.

Figure 3.6.4.1 Estimated recruitment (PFA) in the NEAC Area, 1970-2000
a) Maturing 1SW recruits (potential 1SW returns)
(Recruits in Year N become spawners in Year N)

b) Non-maturing 1SW recruits (potential MSW returns)
(Recruits in Year N become spawners in Year N+1)

Figure 3.6.4.2 Estimated spawning escapement in the NEAC Area, 1970-2000
a) 1SW spawners (and 95\% confidence limits)

b) MSW spawners (and 95\% confidenance limits)

Figure 3.6.4.3 Estimated recruitment (PFA) and Spawning Escapement Reserve (SER) for maturing and non-maturing salmon in Northern Europe, 1971-2000.
a) Maturing 1 SW recruits (potential 1 SW returns)
(Recruits in Year N become spawners in Year N)

b) Non-maturing 1 SW recruits (potential MSW returns)
(Recruits in Year N become spawners in Year $N+1$)

Figure 3.6.4.4 Estimated spawning escapement of maturing and nonmaturing salmon in Northern Europe, 1971-2000.
a) 1SW spawners (and 95\% confidence limits)

b) MSW spawners (and 95\% confidence limits)

Figure 3.6.4.5 Estimated recruitment (PFA) and Spawning Escapement Reserve (SER) for maturing and non-maturing salmon in Southern Europe, 1971-2000.
a) Maturing 1SW recruits (PFA) (potential 1SW returns)
(Recruits in Year N become spawners in Year N)

b) Non-maturing 1SW recruits (potential MSW returns)
(Recruits in Year N become spawners in Year $\mathrm{N}+1$)

Figure 3.6.4.6 Estimated spawning escapement of maturing and nonmaturing salmon in Southern Europe, 1971-2000.
a) 1SW spawners (and 95\% confidence limits)

b) MSW spawners (and 95\% confidence limits)

Figure 3.7.2.1 Demonstration of the simple model for establishing conservation limits

Top right: Simulated stock recruitment data with little variability
Top left: Model output for low variability data - residual sum of squares against change points

Bottom right: Simulated data with large variability
Bottom left: Model output for high variability data - Residual sum of squares against change points

Figure 3.9.1 Post-smolt and salmon captures in surface trawl hauls in 2000 (legends in figure). Area of captures at special salmon survey in June, and sites of capture of micro-tagged and Carlin-tagged fish encircled. Shaded circle further north indicates area of captures of micro-tagged fish in July/ August 1995-97. EEZs of countries bordering the NE-Atlantic are drawn as dashed lines.

Figure 3.9.2 Surface trawl captures of post-smolts at the coast in the Norwegian Coastal Current (drawn as grey arrows). Stars mark trawl hauls with no salmon, numbers mark post-smolts in the catch

Figure 3.9.3 Surface trawl surveys in four fjords in northern Norway 28 June - 24.July. Catch legends as in figure 3.9.2. The coastal current is presented as a grey arrow, while the warmer more saline Atlantic current is presented as undulating lines

4.1 Description of Fisheries

4.1.1 Gear and effort

Canada

The 23 areas for which the Department and Fisheries and Oceans (DFO) manages the salmon fisheries are called Salmon Fishing Areas (SFAs); for Québec, the management is delegated to the Société de la Faune et des Parcs du Québec and the fishing areas are designated by Q1 through Q11 (Figure 4.1.1.1). Harvest (fish which are killed and retained) and catches (including harvests and fish caught-and-released in recreational fisheries) are categorized in two size groups: small and large. Small salmon in the recreational fisheries refer to salmon less than 63 cm fork length, whereas in commercial fisheries, it refers to salmon less than 2.7 kg whole weight. Large salmon in recreational fisheries are greater than or equal to 63 cm fork length and in commercial fisheries refer to salmon greater than or equal to 2.7 kg whole weight.

Three user groups exploited salmon in Canada in 2000: Native peoples, residents fishing for food in Labrador and recreational fishers. Commercial fisheries in Québec which operated in 1999 in zone Q9 were closed and licenses bought back in 2000. Commercial quotas normally fished by Native peoples in Ungava Bay (zone Q11) remained closed. Hence there were no commercial fisheries in Canada in 2000.

The following management measures were in effect in 2000:

Native peoples' food fisheries: In Québec, Native peoples' food fisheries took place subject to agreements or through permits issued to the bands. There are 10 bands with subsistence fisheries in addition to the fishing activities of the Inuit in Ungava (Q11), who fished in estuaries or within rivers. The permits generally stipulate gear, season and catch limits. Catches for subsistence fisheries have to be reported collectively by each native user group. However, if reports are not available, the catches are estimated. In the Maritimes and Newfoundland (SFAs 1 to 23), food fishery harvest agreements were signed with several Native peoples groups (mostly First Nations) in 2000. The signed agreements often included allocations of small and large salmon. Harvests which occurred both within and outside agreements were obtained directly from the Native peoples. Harvest by Native peoples with recreational or commercial licenses are reported under the recreational and commercial harvest categories.

Residents food fisheries in Labrador: In the Lake Melville (SFA 1) and the coastal southern Labrador (SFA 2) areas, DFO allowed a food fishery for local residents. Residents who requested a license were permitted to retain a maximum of four (4) salmon of any size while fishing for trout and charr; 4 salmon tags accompanied each license. The license restricted the fishing gear to a gillnet of 15 fathoms (27.4 m) and $3.5 \mathrm{in}(89 \mathrm{~mm})$ mesh. The seasons were June 15-July 2 and July 24-August 19 in SFA 1 and July 15-August 31 in SFA 2. All licensees were to complete logbooks. A total of 970 licenses were issued.

Recreational fisheries: Recreational fisheries management in 2000 varied by area (Figure 4.1.1.2). Except in Québec and Labrador (SFA 1 and 2), only small salmon could be retained in the recreational fisheries.

The seasonal bag limits in the recreational fishery remained at eight small salmon in New Brunswick and in Nova Scotia. In SFA 16 and in Nepisiquit River (SFA 15) of New Brunswick, the small salmon daily retention limit remained at one fish. In the remainder of SFA 15 and in Nova Scotia (SFA 18), the daily retention limits were two small salmon. The maximum daily catch limit was four fish daily. In SFA 17 (PEI), the season and daily bag limits were 7 and 1 respectively. Catch-and-release fishing only for all sizes of Atlantic salmon was in effect in SFA 19 of Nova Scotia. SFAs 20-23 of Nova Scotia and New Brunswick were closed to all salmon angling, except for five acidimpacted rivers on the Atlantic coast of Nova Scotia, where retention of small salmon, mostly of hatchery origin, was allowed.

For insular Newfoundland (SFAs 3 to 14A) and the Strait of Belle Isle shore of Labrador (SFA 14B), the second year of a three year management plan was continued for the recreational fishery which allowed differing seasonal retention limits based on the status of the salmon stocks in the rivers. Retention limits ranged from a seasonal limit of 6 fish on Class I rivers, to no retention and catch-and-release only on Class IV rivers (five rivers in 2000). Some rivers were closed to all angling and were not assigned a class number. The river classification scheme rated individual rivers as Class I (highest) to Class IV (lowest) according to their ability to sustain angling activities as follows:

Class I - large rivers with a seasonal bag limit of 6 fish,

Class II - smaller rivers with a season bag limit of 4 fish,

Class III - rivers with a season bag limit of 2 fish,
Class IV - rivers with catch and release only.

Special class - with various management plans.
In SFAs 1 and 2 of Labrador, there was a seasonal limit of four fish, only one of which could be a large salmon.
In Québec, management rules were set before the season opening as a way to reach conservation limits on each river. Fishing licenses allowed a total landing of 7 salmon for the year. The northern zones (Q8, Q9 and Q11) include 44 rivers which were managed mainly on a zonal basis. Sport fishing was permitted on all rivers except one and retention of both small and large salmon was allowed throughout the northern zones. The daily limit was three fish in Q9, two in Q8 and one in zone Q11. Release of large salmon occurred mainly on a voluntary basis. The 74 rivers of the southern zones were managed river by river. Fishing was not allowed on nine rivers, retention of small salmon only was in force on 34 rivers and retention of small and large was allowed on 31 rivers. On these rivers, fishing for the day would end if the first fish caught was a large salmon. If the first fish was a small salmon, then fishing could continue on most rivers until the second fish, small or large was caught. Seven additional rivers were restricted to retention of small salmon only after mid-season reviews as an insufficient numbers of spawners were detected by this time in the rivers. (Figure 4.1.1.2).

USA

There was no fishery for Atlantic salmon in the USA in 2000; in 1999, hook-and-release fishing only was permitted in some rivers.

France (Islands of Saint-Pierre and Miquelon)

For the Saint-Pierre and Miquelon fisheries in 2000, there were 8 professional and 35 recreational gillnet licenses issued. The number of professional fishermen has increased by one license from 1999 and the number of recreational licenses decreased by five licenses since 1999.

Year	Number of Professional Fishermen	Number of Recreational Licenses
$\mathbf{1 9 9 5}$	12	42
$\mathbf{1 9 9 6}$	12	42
$\mathbf{1 9 9 7}$	6	36
$\mathbf{1 9 9 8}$	9	42
$\mathbf{1 9 9 9}$	7	40
$\mathbf{2 0 0 0}$	8	35

4.1.2 Catch and catch per unit effort (CPUE)

Canada

The provisional harvest of salmon in 2000 by all users was 150 t , similar to the 1999 harvest of 152 t (Table 2.1.1.1; Figure 4.1.2.1). The 2000 harvest was 50,108 small salmon and 11,458 large salmon, about the same as the 1999 harvests for both (Table 4.1.2.1). The dramatic decline in harvested tonnage since 1988 is in large part the result of the reductions in commercial fisheries effort, the closure of the insular Newfoundland commercial fishery in 1992, the closure of the Labrador commercial fishery in 1998 and the closure of theQuébec commercial fishery in 2000 (Figure 4.1.2.1). These reductions were introduced as a result of declining abundance of salmon.

The 2000 harvest of small and large salmon, by number, was divided among the three user groups in different proportions depending on the province and the fish-size group exploited (Table 4.1.2.1). Newfoundland reported the
largest proportion of the total harvest of small salmon and Québec reported the greatest share of the large salmon harvest. Recreational fisheries exploited the greatest number of small salmon in each province, accounting for 79% of the total small salmon harvests in eastern Canada. Unlike years previous to 1999 when commercial fisheries took the largest share of large salmon, food fisheries (including the Labrador resident food fishery) accounted for the largest share in 2000 (60% by number).

Native peoples' food fisheries. Harvests in 2000 (by weight) were up 10% from 1999 and 18% above the previous 5year average harvest. In some cases, particularly in the Maritime provinces, Native peoples' food fisheries harvests in 2000 were less than the allocations.

Native peoples' food fisheries			
		\% large	
Year	Harvest (t)	by weight	by number
$\mathbf{1 9 9 0}$	31.9	78	
$\mathbf{1 9 9 1}$	29.1	87	
$\mathbf{1 9 9 2}$	34.2	83	
$\mathbf{1 9 9 3}$	42.6	83	
$\mathbf{1 9 9 4}$	41.7	83	58
$\mathbf{1 9 9 5}$	32.8	82	56
$\mathbf{1 9 9 6}$	47.9	87	65
$\mathbf{1 9 9 7}$	39.4	91	74
$\mathbf{1 9 9 8}$	47.9	83	63
$\mathbf{1 9 9 9}$	45.9	73	49
$\mathbf{2 0 0 0}$	50.3	69	43

Residents Fishing for Food in Labrador: A total of 633 logbooks have been processed for this fishery. The estimated catch for the entire fishery in 2000 was 5.6 t , about 2,300 fish (79% small salmon by number).

Recreational fisheries: Harvest in recreational fisheries in 2000 totaled 44,412 small and large salmon, 20% below the previous 5 -year average and 8% below the 1999 harvest level (Figure 4.1.2.2). The small salmon harvest of 39,785 fish was a decrease of 19% from the previous 5 -year mean. The large salmon harvest of 4,627 fish was a 32% decline from the previous five-year mean. Small and large salmon harvests were down 9% and 4% from 1999 , respectively. The small salmon size group has contributed 87% on average of the total harvests since the imposition of catch-and-release recreational fisheries in the Maritimes and insular Newfoundland (SFA 3 to 14B, 15 to 23) in 1984 (Figure 4.1.2.2).

Recreational catches (including retained and released fish) of small salmon in 2000 were similar or above the 1984 to 1991 mean in some fishing areas of Québec (Q1,Q2,Q3,Q5), and the north-east coast and northern peninsula of Newfoundland and throughout Labrador (Figure 4.1.2.3). Small salmon catches were among the lowest observed in the majority of the Maritimes. Large salmon catches were among the lowest observed throughout mainland Canada but were among the highest in the west coast of Newfoundland, (SFA 13, 14A) and Labrador (SFAs 1,2, and 14B).

In 1984, anglers were required to release all large salmon in the Maritime provinces and insular Newfoundland. Changes in the management of the recreational fisheries since 1984 have compromised the use of angling catches as indices of abundance. Therefore, the interpretation of trends in abundance relies mostly on rivers where returns have been estimated or completely enumerated. Caught-and-released fish are not considered equivalent to retained fish and their inclusion in catch statistics further compromises the reliability of interpretation of trends. In more recent years, anglers have been required to release all salmon on some rivers for conservation reasons and, on others, they are voluntarily releasing angled fish. In addition, numerous areas in the Maritimes Region in 2000 were closed to retention of all sizes of salmon (Figure 4.1.1.2).

Hook-and-released salmon fisheries: In 2000, about 49,700 salmon (about 20,700 large and 29,000 small) were caught and released (Table 4.1.2.2), representing about 51% of the total number caught, including retained fish. This was a 1% increase from the number released in 1999. Most of the fish released were in New Brunswick (44\%), followed by Newfoundland (43\%), Québec (9\%), Nova Scotia (3\%) and Prince Edward Island (0.3%). Expressed as a proportion of the fish caught, that is, the sum of the retained and released fish, Nova Scotia released the highest percentage (84%), followed by New Brunswick (57\%), Newfoundland (56\%), Prince Edward Island (49\%) and Québec (31\%).

Commercial fisheries: All commercial fisheries for Atlantic salmon were closed in Canada in 2000 and the catch therefore was 0 . Catches have decreased from a peak in 1980 of almost $2,500 \mathrm{t}$ to 0 currently as a result of effort reductions, low abundance of stocks and closures of fisheries (Figure 4.1.2.4).

Unreported catches: Canada's unreported catch estimate for 2000 is about 124 t , compared to 133 t in 1999. Estimates were included for all provinces (but not for all areas within the provinces) and were provided mainly by scientific staff. In the many cases where enforcement staff did not respond to requests for estimates, values previously provided by them were assumed for 2000. An exception to this was Labrador where the unreported catch estimate for 1999 was 6.3 t . No new estimate was provided for 2000 and it was determined to be inappropriate to use the 1999 estimate as most of the unreported catch in 1999 was ascribed to fisheries that are now included in the reported catch. In all areas, most unreported catch arises from illegal fishing or illegal retention of bycatch of salmon.

By stock groupings used for Canadian stocks throughout the report, the unreported catch estimates for 2000 were:

Stock Area	Unreported Catch (t)
Labrador	No estimate
Newfoundland	65
Gulf	39
Scotia-Fundy	<1
Québec	19
Total	124

USA

All fisheries (commercial and recreational) for sea-run Atlantic salmon within the USA are now closed, including rivers previously open to catch-and-release fishing. Thus, there was no harvest of sea-run Atlantic salmon in the USA in 2000. Incidental catch was four Atlantic salmon, caught and released as the result of angling for other species (three on the Penobscot River and one on the Narraguagus River). As in 1999, unreported catches in the USA were estimated to be 0 t .

France (Islands of Saint-Pierre and Miquelon)

The harvest in 2000 was reported to be 2.3 t , the same as in 1998 and 1999, split about equally between professional and recreational fishermen in 2000 (Table 2.1.1.1). There was no estimate made of unreported catch for 2000.

4.1.3 Origin and composition of catches

In the past, salmon from both Canada and USA have been taken in the commercial fisheries of eastern Canada. These fisheries have since been closed. The remaining Native Peoples' and resident food fisheries that exist in Labrador may intercept some salmon from other areas of North America although there are no reports of tagged fish being captured there in 2000. The fisheries of Saint Pierre and Miquelon catch salmon of both Canadian and US origin. Little sampling occurs in these remaining fisheries and often the best information on stock origins comes from sampling of the returns to rivers, rather than the fisheries.

Fish designated as being of wild origin are defined as the progeny of fish where mate selection occurred naturally (eggs not stripped and fertilised artificially) and whose life cycle is completed in the natural environment (ICES 1997/Assess:10). Hatchery-origin fish, designated as fish introduced into the rivers regardless of life stage, were identified on the basis of the presence of an adipose clip, from fin deformations, and/or from scale characteristics. Not all hatchery fish could be identified as such in the returns because of stocking in the early life stages. Aquaculture escapees were identified from hatchery fish on the basis of fin erosion (especially of the tail) and from scale characteristics.

The returns to the majority of the rivers in Newfoundland and to most rivers of the Gulf of St. Lawrence and Québec were comprised exclusively of wild salmon (Figure 4.1.3.1). Hatchery origin salmon made up varying proportions of the total returns and were most abundant in the rivers of the Bay of Fundy, the Atlantic coast of Nova Scotia and the USA. Aquaculture escapees were present in the returns to four rivers of the Bay of Fundy and the coast of Maine (St. Croix, Magaguadavic, Union and Dennys) in 2000.

Aquaculture production of Atlantic salmon in eastern Canada has increased annually, exceeding 10,000 t in 1992 and rising to almost $32,000 \mathrm{t}$ in 2000 (Table 2.2.1.1). Escapes of Atlantic salmon have occurred annually. In 1994, escapes of Atlantic salmon in the Bay of Fundy area were estimated at 20,000 to 40,000 salmon, an amount greater than the total returns of wild and hatchery origin salmon (both small and large) (13,000 to 21,000 fish) to the entire Bay of Fundy and Atlantic coast of Nova Scotia area (SFA 19 to 23) in the same year. The documented minimum numbers of farmed salmon that escaped in 1999 and 2000 from the North American east coast industry (Canada and USA combined) were 50,000 and 118,000 respectively (see Section 2.4.2).

The proportion of the run that are aquaculture escapees has been high (greater than 50%) since 1994 in the Magaguadavic River (SFA 23; Table 4.1.3.1) which is in close proximity to the centre of the aquaculture production area (Figure 4.1.3.2). Escaped fish were not observed between 1983 and 1988. Since 1992, escaped fish have comprised between 33% and 90% of the total counts at the fishway. Aquaculture escapees comprised between 13% and 64% of the total run of salmon to the St. Croix River during 1994 to 2000 (Table 4.1.3.1). In addition to the St. Croix River, three other rivers in Maine were monitored for the occurrence of farmed salmon in 2000, the Union, Dennys and Narraguagus. Percentages of returns which were of farmed origin were 60,94 and 0%, respectively.

4.1.4 Exploitation rates in Canadian and USA fisheries

Canada

In Newfoundland, exploitation rates were available for seven rivers in 2000. For those rivers with retention of small salmon, exploitation rates ranged from 6% to 28%. In Labrador, exploitation rates were available for two rivers; exploitation rates for small salmon range from 2% to 9% and 0 to 2% for large salmon.

In Québec, exploitation rates were estimated using mid-point estimates of returns and recreational landings. Exploitation rates for small salmon were 18% and for large salmon, 10%.

In previous years, overall Canadian exploitation rates were calculated as the harvest of salmon divided by the estimated returns to North America. No estimates of returns to Labrador are possible for 1998, 1999 and 2000, as there was no commercial fishery and there was insufficient information collected on freshwater escapements to extrapolate to other Labrador rivers. For this reason, exploitation rates cannot be calculated for 1998-2000. Harvests in 2000 of 50,108 small and 11,458 large salmon were less than those of 1997, substantially in the case of large salmon. Exploitation rates in 1997 were estimated to be between 0.14 and 0.26 for small and 0.15 and 0.25 for large salmon.

USA

There was no exploitation of USA salmon in homewaters and no salmon of USA origin were reported in Canadian fisheries in 2000.

4.2 Status of Stocks in the North American Commission Area

There are approximately 550 Atlantic salmon rivers in eastern Canada and 21 rivers in eastern USA each of which could contain at least one population of salmon. Assessments are prepared for a limited number of specific rivers, because they compose significant fractions of the salmon resource or are indicators of patterns within a region, or because of the demands by user groups, or as a result of requests for biological advice from fisheries management. The status is evaluated by examining trends in returns and escapement relative to the conservation requirements.

4.2.1 Measures of abundance in monitored rivers

Canada

The returns represent the size of the population before any in-river and estuarine removals. Spawning escapement is determined by subtracting all the known removals, including food fisheries, recreational harvests, broodstock collections, and scientific samples from the total returns.

A total of 72 rivers were assessed in eastern Canada in 2000. Estimates of total returns of small and large salmon were obtained using various techniques: 37 were derived from counts at fishways and counting fences; 4 were obtained using mark and recapture experiments; 24 using visual counts by snorkeling or from shore; and 7 from angling catches, and redd counts.

2000 compared to 1999 adult returns: Of the 72 stocks for which returns of salmon were determined in 2000, comparable data were available for 68 of these in 1999. For 51 of these rivers, returns were estimated by small salmon and large salmon size groups separately in both years (Table 4.2.1.1). For both size groups combined, returns in 2000 were less than 50% of the 1999 returns in seven of the rivers assessed (10%), between 50% and 90% of 1999 returns in $28(41 \%)$ of the rivers and were 90% or greater than 1999 returns in $33(49 \%)$ of the rivers. The Newfoundland rivers showed the highest number of improvements in returns.

Large salmon returns in 2000 decreased from 1999 in rivers throughout the Maritime provinces (63\%) and in Québec (85%). Lower proportions of the rivers were down or improved in Newfoundland (52\%) (Table 4.2.1.1; Figure 4.2.1.1). In most of the rivers of Newfoundland, except for rivers of the south-west coast (SFA 13), large salmon are mostly repeatspawning 1SW fish.

Small salmon returns in 2000 relative to 1999 were generally reduced throughout eastern Canada in the majority of their monitored rivers except in Québec (23\%) (Table 4.2.1.1, Figure 4.2.1.1). Returns were similar to or improved ($>90 \%$ in 2000 relative to 1999) in about half (53%) of the assessed rivers but decrease to 45% excluding Québec's rivers.

1985-2000 patterns of adult returns: Annual returns of salmon by size group are available for 26 rivers in eastern Canada since 1985. These returns do not account for commercial fisheries removals in Newfoundland, Labrador, Québec and Greenland and in some rivers include returns from hatchery stocking. Peak return years differed for regions within eastern Canada (Figure 4.2.1.2). The returns during the Newfoundland commercial fishery moratorium years (1992 to 2000) for all areas except Newfoundland are lower than returns in 1986 to 1988 when there were commercial fisheries in Newfoundland, Labrador, Québec and Greenland harvesting mainland Canada origin salmon. The total returns to seven Newfoundland rivers doubled during 1993 to 2000 from the low levels observed during 1989 to 1991 (Figure 4.2.1.2).

The returns for 2000 of large salmon in all areas except Newfoundland were among the lowest observed during the last 15 years and decreased in all regions except for the Gulf (Table 4.2.1.1, Figure 4.2.1.2). The returns of large salmon in 2000 were the lowest of the time series for the Nova Scotia and Bay of Fundy with a decrease of 68%. Returns of large salmon to ten rivers of Québec in 2000 were the second lowest since 1985. Returns of small salmon in Québec and Gulf rivers in 2000 increased from 1999. Returns to the rivers of the Atlantic coast (Nova Scotia and Bay of Fundy) and Newfoundland decreased for small salmon by 8 and 35% respectively.

Smolt and juvenile abundance: Counts of smolts provide direct measurements of the outputs from the freshwater habitat. Previous reports have documented the high annual variability in the annual smolt output: in tributaries, smolt output can vary by five times but in the counts for entire rivers, annual smolt output has generally varied in magnitude by a factor of two. Wild smolt production has been estimated in 11 rivers of eastern Canada, although only nine rivers have several years of data (Figure 4.2.1.3). In other rivers, juvenile abundance surveys have been conducted.

In 2000, smolt production from the two monitored rivers in Québec was among the lowest of the time series and about half of the 1990-95 average (Figure 4.2.1.4). In Newfoundland, smolt production in 2000 remained at or just above the 1990 to 1995 average but lower than recent years in three of the five rivers (Figure 4.2.1.4).

Juvenile salmon abundance has been monitored annually since 1971 in the Miramichi (SFA 16) and Restigouche (SFA 15) rivers and for shorter and variable time periods in other rivers (Figure 4.2.1.5). In the rivers of the southern Gulf (SFAs 15,16 and 18), densities of young-of-the-year (fry) and parr (juveniles of one or more years old) have increased since 1985 in response to increased spawning escapements (Figure 4.2.1.5). Densities of parr in 2000 increased to record values in the Restigouche River. In the Miramichi River, both fry and parr densities remained high in 2000 but dropped to near-mean values for 1985-1999. High densities of juveniles have also been reported from Nova Scotia rivers along the Gulf of St. Lawrence (SFA 18) and in several Cape Breton Island streams (SFA 19).

Rivers of SFAs 20 and 21 along the Atlantic coast of Nova Scotia are generally organic stained, of lower productivity, and, when combined with acid precipitation, can result in acidic conditions toxic to salmon. Prognoses for salmon populations in 47 of 65 of these rivers indicate that 40 populations are now likely to be extirpated. In the low-acidified St. Mary's River, fry (age 0^{+}) densities remain at moderate abundance while total parr (age- 1^{+}and older) densities are the lowest since 1993 (Figure 4.2.1.5). Juvenile densities in the outer Bay of Fundy (SFA 23) Saint John River and its tributaries, the Nashwaak, Hammond and Kennebecasis rivers, have declined since 1984 as a result of reduced spawning escapement.

Juvenile densities from inner Bay of Fundy rivers (SFA22 and a portion of SFA 23) are critically low and contribute to evidence for possible listing of these stocks pending the passage of the Species at Risk Act. In 2000, densities of parr in 33 electrofishing stations of the Stewiacke River were at a record low (Figure 4.2.1.5); no fry were found.

It is not possible to measure the total smolt production from the rivers of Atlantic Canada for any given year. However, juvenile abundance indices were considered as surrogates of smolt production from eastern Canada. To allow for the combined analysis of smolt counts and juvenile abundance surveys from all the rivers, the individual river surveys were standardized to a common period, 1995 to 1998.

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{Ind}_{i j} \\
{\text { where } \operatorname{Ind}_{i j}}=\quad=\quad \text { Abund }_{i j} / \text { Average }_{j} \\
\text { Adjusted index of juvenile or smolt abundance } \quad \text { for year } i \text { and river } j
\end{array} \\
& \text { Abund }_{i j}=\quad \begin{array}{l}
\text { Measured abundance of juvenile or smolts } \\
\text { for year } i \text { and river } j
\end{array} \\
& \text { Average }_{j}=\quad \text { Average abundance for years } 1995 \text { to } 1998 \text { in river } j
\end{aligned}
$$

This adjustment places all the rivers on a common scale and provides a measure of the temporal variability in the smolt and juvenile measures. Juvenile measures were age 1 and older parr and were lagged forward one year to correspond to the smolt migration year.

The index of smolts from North America was obtained by weighting the annual river indices by the relative proportion of the conservation egg requirements (O'Connell et al. 1997) of the SFA or Zone to the total conservation egg requirements of the zones under consideration (Table 4.2.1.2). An alternative weighting incorporated the relative contribution to the 2SW spawner requirements of the areas or zones within North America. This allows indices of smolt production from all areas of North America to be used but attributes weights to the area indices according to the expected contribution to 2 SW abundance.

The longest time series are from Western Arm Brook (SFA 14A) in Newfoundland and the Miramichi and Restigouche rivers in the Gulf (SFAs 15 and 16). The number of rivers with available data has increased from two in 1971 to greater than 25 rivers since 1995 (Table 4.2.1.3). The proportion of the indexed areas represented by the index rivers has increased from 11% in 1971 to more than 25% since 1993 (Table 4.2.1.3).

The relative index of smolt production, weighted by the area-index factor, indicates relative smolt production at three levels since 1971: at about one-third the 1995 to 1998 average between 1971 and 1979 , at about 60% of the average during 1980 to 1989 and at about average since 1991 (Figure 4.2.1.6). The relative index for 2SW recruitment (calculated by excluding the Newfoundland areas which do not produce 2SW salmon, SFA 3-12, 14A or by weighting all areas according to the 2 SW spawner requirements by area) suggests an overall similar trend.

Estimates of the relative smolt index in the four geographic areas correspond to the previously documented status of rivers (Figure 4.2.1.7). Smolt production from Newfoundland rivers has approximately doubled over the 1971 to 2000 time period (Figure 4.2.1.7). The Gulf smolt index is at its highest level in the 1990s. TheQuébec smolt index has declined between 1984 and 2000, driven by de la Trinité time series which forQuébec has a large area-index weight (Table 4.2.1.2). The relative index for Scotia-Fundy has essentially remained unchanged.

USA

The documented returns of Atlantic salmon to rivers in New England in 2000 was 803 fish. Returns of 1SW salmon were 270 compared to 358 in 1998 and 386 in 1999, while MSW returns decreased to 533 . MSW returns were over 1,000 in the two previous years. Total salmon returns to the rivers of New England continued the downward trend that began in the mid-1980s, and were lower than the previous 5 -year and 10-year averages. Documented Atlantic salmon returns to USA rivers since 1967 are shown in Figure 4.2.1.8. These are minimal estimates, since many rivers in Maine do not contain fish counting facilities, and where counting facilities exist, they do not count 100% of the returns.

The majority of the returns in 2000 were recorded in the rivers of Maine, with the Penobscot River accounting for nearly 67% of the total New England returns. The Connecticut River adult returns accounted for about 10% of the New England total and 46% of the adult returns outside of Maine. Overall, 34% of the adult returns to New England were 1SW salmon and 66% were MSW salmon. Most (72\%) of these fish were of hatchery smolt origin. Of the total returns, approximately 28% were from natural reproduction and stocked fry.

4.2.2 Estimates of total abundance by geographic area

For assessment purposes, the following regions were considered: Labrador (SFA 1, 2, \& 14B), Newfoundland (SFA 3-14A), Québec (Q1-Q11), Gulf of St. Lawrence (SFA 15-18), Scotia-Fundy (SFA 19-23) and USA. Returns of 1SW and 2 SW salmon to each region (Tables 4.2.2.1 and 4.2.2.2; Figures 4.2.2.1 and 4.2.2.2; and Appendix 5) were
estimated by updating the methods and variables used by Rago et al. (1993b) and reported in ICES 1993/Assess:10. The returns for both sea-age groups were derived using a variety of methods using data available for individual river systems and management areas. These methods included counts of salmon at monitoring facilities, population estimates from mark-recapture studies, and the application of angling and commercial catch statistics, angling exploitation rates, and measurements of freshwater habitat (Appendix 5). The 2SW component of the MSW returns was determined using the sea-age composition of one or more indicator stocks.

In the context used here "returns" are the number of salmon that returned to the geographic region, including homewater commercial fisheries, except in the case of Newfoundland and Labrador regions where returns do not include commercial fisheries. This was done to avoid double counting of fish when commercial catches in Newfoundland and Labrador are added to returns of all geographic areas in North America to create the PFA of North American salmon.

Labrador: The basis for estimates of 2SW and 1SW salmon returns and spawners for Labrador (SFAs 1, 2 \& 14B) prior to 1998 are catch data from angling and commercial fisheries. Catch and effort data from the angling fishery were collected by DFO enforcement staff in conjunction with angling reports submitted by fish camp operators and processed by DFO Science Branch personnel. In 1997 for SFA 14B, the angling catch statistics were derived from a licence stub system similar to insular Newfoundland while in SFAs $1 \& 2$ the camp statistics data were used. Commercial catch data were collected by DFO enforcement staff from fish plant landing slips and processed by DFO Statistics and Informatics Branch personnel.

In 1998-2000, there was no commercial fishery in Labrador and although counting projects took place in 2000 on two small Labrador rivers, out of about 100 salmon rivers that exist, it is not possible to extrapolate from these rivers to unsurveyed ones. For Labrador, returns were previously estimated from commercial catches and exploitation rates. As there was no commercial fishery since 1998, it was not possible to estimate the returns or spawners to Labrador for these years.

Newfoundland: The estimates of 1SW and 2SW returns and spawners for insular Newfoundland (SFAs 3-12 \& 14A) are updated for the entire time series. Prior to 1999, they are derived from exploitation rates estimated from rivers with counting facilities which are subsequently applied to angling catches of small salmon, adjusted for the proportions of large:small salmon at counting facilities, and finally the proportion of large salmon that are 2 SW . Exploitation rates for small salmon (retained only) were calculated by dividing the total count and the catch (retained) from rivers with enumeration facilities. In 1997, for SFAs 3-14A, angling catch data was derived from the license stub return system (O'Connell et al. 1997) while in previous years angling catch data was collected by DFO Fishery Officers and Guardian staff. For SFA 13, returns and spawners come from four assessment facilities expanded to the entire drainage area based on their proportionate contribution. The time series of ratios of large:small salmon were updated to include counts for some rivers not previously available. In last years report, a precision index was developed for Newfoundland based on known counts at enumeration facilities. It was noted that in some instances the index for the minimum value was higher than one, indicating that for some years, more salmon were counted than estimated. In order to correct this, exploitation rates were revised based on a weighted average of those rates available for assessed rivers. The new exploitation rates are:

Year	$95^{\text {th }}$. C.I.	$5^{\text {th }}$. C.I.
1995	0.1460	0.0674
1996	0.1500	0.0624
1997	0.1906	0.1149
1998	0.1360	0.0758

The dramatic changes to estimates of returns of both 1SW and 2SW salmon that occurred in 1995 and 1996 were due to lower exploitation rates for the three largest rivers in Newfoundland compared to the smaller ones (Figure 4.2.2.3). Therefore, when averages were weighted to the size of the returns to the rivers and were used instead of unweighted, the lower exploitation rate resulted in higher population estimates. The weighted averages were considered to be more appropriate than unweighted ones as the larger rivers have higher returns which would not have been as well estimated with the higher unweighted exploitation rates.

Beginning in 1999, the method used in previous years was modified to take into consideration the changes implemented in the 1999-2001 Salmon Management Plan. The Management Plan introduced, for the first time, a river classification scheme with different season limits for each of classes I-IV and, in addition, some other rivers were placed in a special class with a different management plan for each river. Since the intent of the Management Plan was to alter exploitation for rivers in the various classes, it would be better to model the estimation procedure for returns and spawners individually for each of them. However, there are too few rivers in each class to do so, there only being ten
rivers available in 1999 and seven in 2000 with which to estimate parameter values for three river classes separately. The $95^{\text {th }}$ confidence intervals of bootstrap estimates of unweighted exploitation rates and ratios of large:small salmon were generated from the assessment rivers with retention angling fisheries. The unweighted averages were used as large rivers are now being dealt with independently. Population estimates for all rivers with counting facilities were included from their assessment information. In order to avoid double counting, the catches of rivers whose populations were included from assessments were subtracted from the total catch. In 1999, most of the Class IV rivers were in Bay St. George area of SFA 13 and the entire area returns and spawners were estimated based on assessments for 8 rivers expanded to the total drainage based on their proportionate contribution. In 2000, the rivers in Bay St. George were in three separate classes and were dealt with independently.

The mid-point of the estimated returns $(184,100)$ of 1 SW salmon to Newfoundland rivers in 2000 is 4% lower than 1999 and 8% higher than the average 1SW returns (170,300) for the period 1992-95 (Figure 4.2.2.1, Appendix 5). The 1992-95 1SW returns are higher than the returns in 1989-91, but similar to the returns to the rivers between 1971 and 1988. The mid-point $(9,300)$ of the estimated 2SW returns to Newfoundland rivers in 2000 remained the same as in 1999 (Figure 4.2.2.2, Appendix 5).

Québec: The mid-point $(30,800)$ of the estimated returns of 1 SW salmon to Québec in 2000 remained the same as the returns observed in 1999 and about the same as the 1995-99 average of 30,759 (Figure 4.2.2.1, Appendix 5).

The mid-point $(29,600)$ of the estimated returns of 2 SW salmon in Québec in 2000 is about the same as the returns observed for 1999 and a 21% decrease from the average of the years 1995-99 of 37,566 (Figure 4.2.2.2). Within the 1971-2000 time series, the 2000 value is the third lowest estimated and continues to decline from the high of 98,000 2SW salmon in 1980.

Gulf of St. Lawrence, SFAs 15-18: The mid-point $(51,900)$ of the estimated returns in 2000 of 1SW salmon returning to the Gulf of St. Lawrence was a 27% increase from 1999 and it is the third lowest value since 1984. The low values noted in 1997 through 2000 are low relative to the high value of about 189,000 in 1992 (Figure 4.2.2.1, Appendix 5).

The mid-point $(22,000)$ of the estimate of 2SW returns in 2000 is 5% higher than the estimate for 1999 and the fourth lowest of the time series (Figure 4.2.2.1, Appendix 5), the lowest being 1979 at 11,500. Returns of 2SW salmon have declined since 1995 with only slight improvement shown in 1999 and 2000.

Scotia-Fundy, SFAs 19-23: The mid-point $(14,700)$ of the estimate of the 1 SW returns in 2000 to the Scotia-Fundy Region was a 7% increase from the 1999 estimate, and the fifth lowest value in the time series, 1971-2000. Returns have generally been low since 1990 (Figure 4.2.2.1, Appendix 5).

The mid-point $(3,600)$ of the 2 SW returns in 2000 is 52% lower than the returns in 1999 and the lowest value in the time series, 1971-2000 (Figure 4.2.2.2, Appendix 5). A declining trend in returns has been observed from 1985 to 2000.

USA: Total salmon returns and spawners for USA rivers in 2000 were based on trap and weir catches (documented returns. Although some Maine rivers do not have fish counting facilities, a large portion of the total adult returns are documented and a method of estimating spawning escapement (and variance) in smaller Maine rivers based on redd counts is being developed. However, for 2000 the number of USA spawners was considered to be the same as the returns. The 1SW returns and spawners to USA rivers in 2000 were 270 fish. This was below the 1999 estimate and the previous 5 -year and 10-year averages. The 2SW returns and spawners to USA rivers in 2000 were 515 fish. This was also below the 1999 estimate and below the 5 -year and 10 -year averages. There were also 183 SW and repeat spawners in the USA returns.

4.2.3 Pre-fishery abundance estimates of non-maturing and maturing 1SW North American salmon

4.2.3.1 North American run-reconstruction model

The Working Group has used the North American run-reconstruction model to estimate pre-fishery abundance, which serves as the basis of abundance forecasts used in the provision of catch advice. The catch statistics used to derive returns and spawner estimates have been updated from those used in ICES 2000/ACFM:13 (Table 4.2.3.1). The North American run-reconstruction model has also been used to estimate the fishery exploitation rates for West Greenland and in homewaters.

4.2.3.2 Non-maturing 1SW salmon

The non-maturing component of 1 SW fish, destined to be 2 SW returns (excludes 3 SW and previous spawners) is represented by the pre-fishery abundance estimator for year i designated as [NN1(i)]. Definitions of the variables are given in Table 4.2.3.2. It is constructed by summing 2SW returns in year $\mathrm{i}+1$ [NR2(i+1)], 2SW salmon catches in commercial and native peoples' food fisheries in Canada [$\mathrm{NC} 2(\mathrm{i}+1)$] and catches in year i from fisheries on nonmaturing 1SW salmon in Canada [$\mathrm{NC1} 1$ (i)] and Greenland [NG1(i)]. In Labrador, native peoples' food harvests of small (AH_s) and large salmon (AH_l) were included in the reported catches for 1999-2000. Because harvests occurred in both Lake Melville and coastal areas of northern Labrador, the fraction of these catches that are immature was labeled as af_imm. This was necessary because non-maturing salmon do not occur in Lake Melville where approximately half the catch originated. However, non-maturing salmon may occur in coastal marine areas in the remainder of northern Labrador. Consequently, af_imm for the fraction of native peoples' harvests that were non-maturing was set at 0.05 to 0.1 which is half of $\mathrm{f}_{-} \mathrm{imm}$ from commercial fishery samples. The equations used to calculate NC 1 and NC 2 are as follows:

Eq. 4.2.3.1 $\mathrm{NCl}(\mathrm{i})=\left[\left(\mathrm{H}_{-} \mathrm{s}(\mathrm{i})_{\{1-7,14 b\}}+\mathrm{H}_{-} 1(\mathrm{i})_{\{1-7,14 b\}} * \mathrm{q}\right) * \mathrm{f}_{-} \mathrm{imm}\right]$

$$
+\left[\left(\mathrm{AH} _\mathrm{s}(\mathrm{i})+\mathrm{AH} _1(\mathrm{i}) * \mathrm{q}\right) * \text { af_imm }\right], \text { and }
$$

Eq. 4.2.3.2 $\mathrm{NC} 2(\mathrm{i}+1)=\left[\mathrm{H}_{-} 1(\mathrm{i}+1)_{\{1-7,14 \mathrm{~b}\}} *(1-\mathrm{q})\right]+\left[\mathrm{AH}_{-} 1(\mathrm{i}+1) *(1-\mathrm{q})\right]$
Similar to 1998 and 1999, the commercial fishery in Labrador remained closed in 2000. In past reports, salmon returns and spawners for Labrador which make up one of the six geographical areas contributing to NR2 for Canada were based on commercial fishery data. Since the commercial fishery was closed in Labrador in 1998, the time series also ended. However, in order to estimate pre-fishery abundance it was still necessary to include Labrador returns for 1998-2000. Consequently, a raising factor was developed by dividing pre-fishery abundance without Labrador into pre-fishery abundance with Labrador based on the time series of Labrador recruit estimates and pre-fishery abundance data from 1971-97. The raising factor (RFL2) to estimate returns to Labrador for 1998-2000 for 2SW salmon was set to the low and high range of values in the time series which was 1.05 to 1.27 . An assumed natural mortality rate [M] of 0.01 per month is used to adjust the numbers between the salmon fisheries on the 1 SW and 2 SW salmon (10 months) and between the fishery on 2 SW salmon and returns to the rivers (1 month) as shown below:

Eq. 4.2.3.3 $\mathrm{NN} 1(\mathrm{i})=[$ RFL2 $*((\mathrm{NR} 2(\mathrm{i}+1) / \mathrm{S} 1+\mathrm{NC} 2(\mathrm{i}+1)) / \mathrm{S} 2+\mathrm{NC} 1(\mathrm{i})]+\mathrm{NG} 1(\mathrm{i})$
where the parameters S 1 and S 2 are defined as $\exp (-\mathrm{M} * 1)$ and $\exp (-\mathrm{M} * 10)$, respectively. A detailed explanation of the model used to determine pre-fishery abundance is given in Rago et al. (1993a).

This estimated pre-fishery abundance represents the extant population and does not account for the fraction of the population present in a given fishery area. The model does not take into account non-catch fishing mortality in any of the fisheries. This is because rates for non-catch fishing mortality are not available on an annual basis and are not well described for some of the fisheries harvesting potential or actual 2SW salmon. Commercial catches were not included in the run-reconstruction model for the West Greenland fishery (1993 and 1994), Newfoundland fishery (1992-2000) and Labrador fishery (1998-2000) as these fisheries were closed.

As the pre-fishery abundance estimates for potential 2 SW salmon requires estimates of returns to rivers, the most recent year for which an estimate is available is 1999. This is because pre-fishery abundance estimates for 2000 require 2SW returns to rivers in North America in the year 2001 which of course are as of yet unavailable. The minimum and maximum values of the catches and returns for the 2 SW cohort are summarized in Table 4.2.3.3. The 1999 abundance estimates ranged between 57,800 and 130,436 salmon. The mid-point of this range $(94,118)$ is 2% higher than the 1998 value $(92,479)$ and is the $2^{\text {nd }}$ lowest in the 28 -year time series (Figure 4.2 .3 .1). The most recent three years are shown with hollow symbols as no Labrador values were estimated for these years and the raising factor described previously was used. The results indicate a slight levelling off of the general decline from 807,000 in 1975. The Working Group expressed concern about the continued decline in the pre-fishery abundance and its impact on spawner levels.

4.2.3.3 Maturing 1SW salmon

Estimation of an aggregate measure of abundance has utility for identifying trends, evaluating management measures, and investigating the influence of the marine environment on survival, distribution, and abundance of salmon. Maturing 1SW salmon are in some areas a major component of salmon stocks and measuring their abundance is thought to be important to provide measures of abundance of the entire cohort from a specific smolt class.

For the commercial catches in Newfoundland and Labrador, all small salmon are assumed to be 1SW fish based on catch samples which show the percentage of 1SW salmon to be in excess of 95%. Large salmon are primarily MSW salmon but some maturing and non-maturing 1SW are also present in commercial catches in SFAs 1-7, 14B. Estimates of fractions of non-maturing salmon present in the Newfoundland and Labrador catch were presented in ICES 1991/Assess:12. The "large" category in SFAs 1-7 and 14B consists of 0.1-0.3 1SW salmon (Rago et al. 1993a; ICES 1993/Assess:10). Salmon catches in SFAs 8-14A are mainly maturing salmon (Idler et al. 1981). These values were assumed to apply to the Aboriginal food fishery catches in marine coastal areas of northern Labrador.

Similar to calculations to determine non-maturing 1SW salmon, a raising factor was also required to include Labrador returns in the maturing component of pre-fishery abundance necessitated by the closure of the commercial fishery in Labrador in 1998. Consequently, a raising factor was developed by dividing pre-fishery abundance without Labrador into pre-fishery abundance with Labrador based on the time series of Labrador recruit estimates and pre-fishery abundance data from 1971-97. The raising factor (RFL1) to estimate returns to Labrador for 1998-2000 for 1SW salmon was set to the low and high range of values in the time series which were 1.04 to 1.59 .

The maturing 1SW component is represented by the pre-fishery abundance estimator for year i [MN1(i)]. It is constructed by summing maturing 1SW returns in year i [MR1(i)] in Canada and the USA and catches in year i from commercial and food fisheries on maturing 1SW salmon in Newfoundland and Labrador [MC1(i)]. An assumed natural mortality rate [M] of 0.01 per month is used to adjust the numbers between the fishery on 1 SW salmon and returns to the rivers (1 month) as shown below:

Eq. 4.2.3.4 $\operatorname{MN1}(\mathrm{i})=[\mathrm{MR} 1(\mathrm{i}) / \mathrm{S} 1+\mathrm{MC1}(\mathrm{i})] *$ RFL1
where the parameter S 1 is defined as $\exp \left(-\mathrm{M}^{*} 1\right)$.

Eq. 4.2.3.5 $\mathrm{MCl}(\mathrm{i})=\left[\left(1-\mathrm{f} _\mathrm{imm}\right)\left(\mathrm{H}_{-} \mathrm{s}(\mathrm{i})_{\{1-7,14 b\}}+\mathrm{q}^{*} \mathrm{H}_{-} \mathrm{l}(\mathrm{i})_{\{1-7,14 b\}}\right)\right]+\mathrm{H}_{-} \mathrm{s}(\mathrm{i})_{\{8-14 a\}}$

$$
+\left[\left(1-\mathrm{af} _i m m\right)\left(A H _s(i)+q^{*} A H _1(i)\right)\right]
$$

This estimated pre-fishery abundance represents the extant population and does not account for the fraction of the population present in a given fishery area. The model does not take into account non-catch fishing mortality in any of the fisheries. This is because rates for non-catch fishing mortality are not available on an annual basis and are not well described for the fisheries harvesting 1SW salmon. Thus, catches used in the run-reconstruction model for the Newfoundland commercial fishery were set to zero for 1992-2000 and for Labrador for 1998-2000 to remain consistent with catches used in other years in these areas (see Section 4.1.1).

The minimum and maximum values of the catches and returns for the 1SW cohort are summarized in Table 4.2.3.4 and the mid-point values are shown in Figure 4.2.3.1. The most recent three years are shown with hollow symbols as no Labrador values were estimated for these years and the raising factor described previously was used. The mid-point of the range of pre-fishery abundance estimates for $2000(404,724)$ is 5% higher than in $1999(385,949)$ which had increased considerably from the low 1997 value of 325,433 which was the lowest estimated in the time series 19712000. The reduced values observed in 1978 and 1983-84 and 1994 were followed by large increases in pre-fishery abundance.

4.2.3.4 Total 1SW recruits (maturing and non-maturing)

Figure 4.2.3.1 shows the pre-fishery abundance of 1SW maturing and 1SW non-maturing salmon from North America for the period 1971 to 1999 and Figure 4.2.3.2 shows these data combined to give the total 1SW recruits. While maturing 1SW salmon in 1998-2000 have increased over the lowest value achieved in 1997, the non-maturing portion of these cohorts remained unchanged since 1997. Because the prefishery abundance has been consistently well below its conservation requirements, this situation is considered to be very serious. The decline in recruits in the time series is alarming. Although the declining trend appears common to both maturing and non-maturing portions of the cohort, nonmaturing 1SW salmon have declined further. The Working Group expressed concerns about these stock trends and recommended further investigation into their causes.

4.2 $4 \quad$ Spawning escapement and egg deposition

4.2.4.1 Egg depositions in rivers

On rivers not under colonization or rehabilitation, egg depositions in 2000 exceeded or equaled the river specific conservation requirements in 23 of the 54 assessed rivers (43%) and were less than 50% of conservation in 18 other rivers (33%) (Figure 4.2.4.1). Large deficiencies in egg depositions were noted in the Bay of Fundy and Atlantic coast of Nova Scotia where 10 of the 11 rivers assessed (91%) had egg depositions which were less than 50% of conservation requirements. Proportionally fewer rivers in Gulf (27\%) and Québec (0%) had egg depositions less than 50% of conservation. Only 27% of the Gulf rivers and 69% of the Québec rivers had egg depositions that equaled or exceeded conservation (Figure 4.2.4.1). In Newfoundland, 57% of the rivers assessed met or exceeded the conservation egg requirements and half of the others (21%) had egg depositions that were less than 50% of requirement. The deficits occurred in the east and southwest rivers of Newfoundland (SFA 13) and in Labrador (Figure 4.2.4.1).

Fourteen rivers in Newfoundland (3) and Québec (11) are under rehabilitation or colonization programs where in recent years salmon have gained access to previously inaccessible habitat or to re-establish the wild production (Figure 4.2.4.1). Five of these rivers in Québec met or exceeded 90% of the conservation requirements in 2000. Egg depositions in 43% of these rivers were less than 50% of requirements. One international border river and four rivers in the USA are under rehabilitation. All of them had egg depositions less than 5% of conservation requirements.

Escapements over time relative to conservation requirements have improved in Newfoundland and decreased in all other areas of eastern Canada (Figure 4.2.4.2). The status of three Bay of Fundy/Atlantic coast of Nova Scotia rivers has severely declined, especially since 1991. The proportion of the conservation requirements achieved in 2000 was the lowest of the time series. For the Québec rivers, spawning escapements declined continually from a peak median value in 1988 with a slight recovery in 1995 and a similar increase in 1999. In almost all years inQuébec, the median proportion of conservation requirements achieved has exceeded the requirements. However, in 2000, the median proportion was the lowest value of the time series with 98% of the conservation requirement. The eight rivers of the Gulf of St. Lawrence have also been quite consistent in equalling or exceeding the conservation requirements but the median escapements were below conservation requirements in three of the last five years. Again in 2000, it was the lowest value (75%) of the last fifteen years. Newfoundland rivers have shown the greatest improvement in the proportion of the spawning requirement achieved as a direct result of the commercial salmon and groundfish moratoria initiated in 1992. There was a decline in 1997 relative to 1996 but escapements increased again in 1998 (highest median values since the 1992), decreased only slightly in 1999 and were unchanged in 2000.

4.2.4.2 Run-reconstruction estimates of spawning escapement

Updated estimates for 2SW spawners were derived for the six geographic regions referenced in Section 4.2.2 (Table 4.2.4.1). Estimates of 1 SW spawners, 1971-2000 are provided in Table 4.2.4.2. These estimates were derived by subtracting the in-river removals from the estimates of returns to rivers. A comparison between the numbers of spawners, returns and spawning requirements for 1 SW and 2 SW salmon are shown in Figures 4.2.2.1 and 4.2.2.2 respectively (there are no spawning requirements defined specifically for 1 SW salmon).

Labrador: As previously explained, it was not possible to estimate spawners in Labrador in 1998-2000 due to lack of assessment information.

Newfoundland: The mid-point of the estimated numbers of 2 SW spawners $(9,000)$ in 2000 is about the same as that estimated in $1999(9,100)$ and is 224% of the total 2 SW spawner requirements for all rivers. The 2 SW spawner requirement has been met or exceeded in seven years since 1984 (Figure 4.2.2.2). The 1SW spawners $(167,200)$ in 2000 was about the same as the 169,700 in 1999 to 206,900 in 1999. The 1992-93, 1995-96 and 1998-2000 1SW spawners are higher than the spawners in 1989-91 and similar to levels in the late 1970s and 1980s (Figure 4.2.2.1). The spawning level in 1997 however was the third lowest in the data series, with 1989 and 1991 being lower. There had been a general increase in both 2SW and 1SW spawners during the period 1992-96 and 1998-2000 and this is consistent with the closure of the commercial fisheries in Newfoundland. For 1997, decreases occurred most strongly in the 1 SW spawners.

Québec: The mid-point of the estimated numbers of 2SW spawners $(19,700)$ in 2000 is 4% lower than that estimated in 1999 and is about 67% of the total 2 SW spawner requirements for all rivers (Figure 4.2.2.2). The spawning escapement in 2000 is the seventh lowest in the time series (1971-2000). Estimates of the numbers of spawners approximated the spawner requirement from 1971 to 1990 however they have been below requirements since 1990. The mid-point of the estimated 1SW spawners in $2000(22,100)$ was about 7% lower than 1999 (Figure 4.2.2.1). Spawning escapement of 1SW fish has generally been higher since the early 1980s than it was before this period.

Gulf of St. Lawrence: The mid-point of the estimated numbers of 2SW spawners $(19,800)$ in 2000 is about the same as that estimated in $1999(19,400)$ and is about 65% of the total 2 SW spawner requirements for all rivers in this region (Figure 4.2.2.2). This is the fifth time in ten years that these rivers have not exceeded their 2SW spawner requirements. The mid-point of the estimated spawning escapement of 1SW salmon $(34,800)$ increased by 28% from 1999 and is the ninth lowest in the time series, 1971-2000. The abundance remains low relative to the peak observed in 1992 (Figure 4.2.2.1). Spawning escapement has on average been higher in the mid-1980s than it was before and after this period.

Scotia-Fundy: The mid-point of the estimated numbers of 2SW spawners $(3,400)$ in 2000 is a 31% decrease from 1999 and is about 14% of the total 2 SW spawner requirements for rivers in this region (Figure 4.2.2.2). Neither the spawner estimates nor the spawner requirements include rivers of the inner Bay of Fundy (SFA 22 and part of SFA 23) as these rivers do not contribute to distant water fisheries and spawning escapements are extremely low. The 2SW spawning escapement in the rest of the area has been generally declining since 1985 and the 3,400 in 2000 is the lowest in the time series, 1971-2000. The mid-point of the estimated 1SW spawners $(14,300)$ in 2000 is a 7% increase from 1999 and is the eighth lowest in the time series, 1971-2000. There has been a general downward trend in 1SW spawners since 1990 (Figure 4.2.2.1).

USA:All age classes of spawners (1SW, 2SW, 3SW, and repeat) in 2000 (803 salmon) represented less than 2% of the 2 SW spawner requirements for all USA rivers. Spawning escapement of 2 SW salmon by river expressed as the percentage of conservation requirement was: 5% in the Penobscot, 2% in the Merrimack, and less than 1% in the Connecticut, Paucatuck, and other Maine rivers.

4.2.4.3 Escapement variability in North America

The projected numbers of potential 2SW spawners that could have returned to North America in the absence of fisheries can be computed from estimates of the pre-fishery abundance taking into consideration the 11 months of natural mortality at 1% per month. These values, termed potential 2 SW recruits, along with total North American 2SW returns, spawners and requirements are shown in Figure 4.2.4.3 and indicate that the overall North American spawner requirement could have been met, in the absence of all fisheries prior to, but not since 1994. The difference between the potential 2 SW recruits and actual 2 SW returns reflect the extent to which mixed stock fisheries at West Greenland and in SFAs 1-14 have reduced the populations.

Similarly, the impact of the Greenland fishery can be considered by subtracting the non-maturing 1SW salmon (accounting for natural mortality) harvested there from the total potential 2SW recruits. These values, termed 2SW recruits to North America, are also shown in Figure 4.2.4.3. The difference between the 2SW recruits to North America and the 2SW returns reflects the impact of removals by the commercial fisheries of Newfoundland and Labrador when they were open and the Labrador food fisheries since reports began in 1998. The 2SW recruits to North America indicate that, even if there had not been a West Greenland commercial fishery, spawner requirements could not have been met since 1992. The difference between the actual 2 SW returns and the spawner numbers reflects in-river removals throughout North America and coastal removals in Québec, Gulf and Scotia Fundy regions.

Following on the technique outlined in previous reports (ICES 1994/Assess:16, ICES 1995/Assess:14), the spawners in each geographic area were allocated (weighted forward) to the year of the non-maturing 1 SW component in the Northwest Atlantic using the weighted smolt age proportions from each area (Table 4.2.4.3). The total spawners for a given recruitment year in each area is the sum of the lagged spawners. Because the smolt age distributions in North America range from one to six years and the time series of estimated 2SW spawners to North America begins in 1971, the first recruiting year for which the total spawning stock size can be estimated is 1979 (although a value for 1978 was obtained by leaving out the 6 -year old smolt contribution which represents 4% of the Labrador stock complex (Table 4.2.4.3)). Since the 1999 2SW spawners to North America (except for Labrador) are known, the spawning stock contributing to the pre-fishery abundance up to 2002 is known for North America and up to 2003 except for Labrador (Figure 4.2.4.4, Table 4.2.4.4).

Spawning escapement of 2SW salmon to several stock complexes has been below the spawner requirement (Labrador, Québec, Scotia-Fundy, USA) since at least the 1980s (Figure 4.2.4.4). In the last four years, lagged spawner abundance has been increasing in Labrador and Newfoundland but decreasing in all other areas.

The relative contributions of the stocks from geographic area to the total spawning escapement of 2SW salmon has varied over time (Figure 4.2.4.5). The reduced potential contribution of Scotia-Fundy stocks and the increased proportion of the spawning stock from the Gulf of St. Lawrence and recently Labrador rivers to future recruitment is most evident. Thus production of non-maturing 1SW salmon would not be expected to increase dramatically from most areas of North America even if the sea survival improves. Only the Newfoundland stock complex has received
spawning escapements which have exceeded the area requirements, all other complexes were below requirement and some declined further in 2000.

4.2.5 Survival indices

Counts of smolts and adult salmon returns enable the estimation of indices of natural survival at sea, particularly following the closure of most northwest Atlantic commercial salmon fisheries in 1992. These estimates are potentially influenced by annual variation in size, age and sex composition of smolts leaving freshwater and possibly, annual variation in sea-age at maturity. There is information from 18 rivers in North America with smolt counts and corresponding adult counts. Data available in 2000 were from 10 wild and five hatchery populations distributed between Newfoundland (SFAs 4, 9, 11, 13, and 14a), Québec (Q2 and Q7), Nova Scotia (SFAs 20 and 21), New Brunswick (SFA 23) and Maine (USA).

Plots of survival rates over time (Figures 4.2.5.1 to 4.2.5.4) provide some insight into the impact of changes in management measures and possible changes in marine survival of wild and hatchery 1 SW and 2 SW stocks. In general the plots suggest:

- data sets that predate the commercial closures in 1992 and 1984 exhibit values that exceed those derived since fisheries closures, i.e., survival of North America stocks to home waters has not increased as expected
- $\quad 1 \mathrm{SW}$ survival greatly exceeds that of 2 SW fish, and
- survival of wild stocks exceeds that of hatchery stocks

Survival indices for 8 of 15 stocks returning 1SW fish in 2000 exceeded indices for 1SW fish in 1999. Six indices for 1SW fish decreased from 1999. None of the survival indices for nine stocks returning 2SW fish in 2000 increased from values in 1999. There have been no significant increasing trends ($\mathrm{p} \leq 0.05$) in survival indices of any of the stock components since commercial closures in 1992.

Sea-age \&stock	Province/region	Number of stocks					
		Relative to 1999			9-Year Trend		
		仑	\Leftrightarrow	(1)	へ	\Leftrightarrow	(1)
1SW Wild	West \& North Nfld	1		2		3	
	South Nfld	3				3	
	Québec		1	1		2	
	NS/NB	1		1		1	
Hatchery	Québec			1		1	
	NS	2				1	1
	NB			1		1	
	Maine	1				1	
	Total	8	1	6		13	1
2SW Wild	South Nfld		1			1	
	Québec		1	1		1	1
	NS			1			
Hatchery	Québec		1			1	
	NS		1	1		1	1
	NB			1		1	
	Maine			1			1
	Total		4	5		5	3

Catch advice is based on estimates of returns and spawners in home rivers and harvests in commercial fisheries (see Sections 4.2.2, 4.2.3, and 4.2.4). Escaped-farmed salmon have been most frequently found close to the principal salmon farming area of Passamaquoddy and Cobscook bays of the Bay of Fundy, although a few other farm sites occur in Nova Scotia and Newfoundland. (Figure 4.1.3.2).

The principal salmon farming industry in Bay the Fundy has grown extensively since 1984 since the closure of local commercial salmon fisheries. Estimates of returns and spawners in this area are based on assessments of wild and hatchery fish at counting facilities where escapes are identified on the basis of external characteristics and scale analysis and excluded from both the assessment and from ascending the rivers. Counts of wild/hatchery salmon in all the principal impacted rivers, (Table 4.1.3.1) generally total less than 200 fish in any year since 1990. Misclassification of many of the hatchery fish would be of little consequence to catch advice at even a regional scale.

Catch advice is not provided for inner Bay of Fundy rivers where some escapes have been observed. The occasional escape noted in other rivers of Nova Scotia and Newfoundland allows the possibility that escapes could influence angler harvests used to derive returns in some Salmon Fishing Areas. However the numbers of these fish must be of minor consequence to assessments. The occurrence of escapes in the West Greenland catch, the North American proportion of which is included in the total of North American production, has been investigated by Hansen et. al. (1997) and found to be less than one percent.

4.2.7 Summary of status of stocks in the North American Commission Area

Estimates of pre-fishery abundance suggest a continuing decline of North American adult salmon over the last 10 years. The total population of 1SW and 2SW Atlantic salmon in the northwest Atlantic has oscillated around a generally declining trend since the 1970s, and the abundance recorded in 1993-2000 was the lowest in the time series (Figure 4.2.3.2). During 1993 to 2000, the total population of 1 SW and 2SW Atlantic salmon was about one-half million fish, 45% of the average abundance during 1972 to 1990 . The decline has been more severe for the 2 SW salmon component than for the small salmon (maturing as 1 SW salmon) age group.

In most regions the returns of 2 SW fish are at or near the lower end of the 30-year time series (1971-2000) except Newfoundland where they are at the second highest level but are a minor age group component of the stocks in this area. Returns of 1SW salmon were at the lower end of the time series in Gulf, Scotia-Fundy, and USA and at about at the mid-point in Québec and Newfoundland.

The rank of the estimated returns in 2000 in the 1971-2000 time series for six regions in North America is shown below:

Region	Rank of 2000 2000 time series	returns in $(\mathbf{1}=$ highest $)$	1971- Mid-point estimate of 2SW spawners as proportion of escapement requirement (\%)
Labrador	Unknown	Unknown	unknown
Newfoundland	12	2	224
Québec	13	28	67
Gulf	22	27	65
Scotia-Fundy	24	30	14
USA	19	30	2

Trends in abundance of small salmon and large salmon within the geographic areas show a general synchronicity among the rivers. Returns of large salmon were generally decreased or were about the same as 1999 and among the lowest observed since 1987 while small salmon returns improved marginally for stocks in some areas. For the rivers of Newfoundland, large salmon returns were among the highest in the last 12 years but large salmon returns in the other areas were among the lowest. Large salmon in Newfoundland are predominantly repeat-spawning 1SW salmon while in other areas of eastern Canada, 2 SW and 3SW salmon make up varying proportions of the returns.

On rivers not under colonization or rehabilitation, egg depositions in 2000 exceeded or equaled the river specific conservation requirements in 23 of the 54 assessed rivers (43%) and were less than 50% of conservation in 18 other rivers (33\%) (Figure 4.2.4.1). Large deficiencies in egg depositions were noted in the Bay of Fundy and Atlantic coast of Nova Scotia where 10 of the 11 rivers assessed (91%) had egg depositions which were less than 50% of conservation
requirements. In 2000, the overall spawning escapement requirements for 2 SW salmon were not met in any area except Newfoundland. The overall 2SW spawning escapement requirement for Canada could have been met or exceeded in only nine (1974-78, 1980-82 and 1986) of the past 28 years (considering the mid-points of the estimates) by reduction of terminal fisheries (Figures 4.2.2.2 and 4.2.4.3). In the remaining years, spawning requirements could not have been met even if all terminal harvests had been eliminated. It is only within the last few years that Québec and the Gulf areas have failed to achieve their overall 2 SW salmon spawning requirements.

Measures of marine survival rates over time indicate that survival of North America stocks to home waters has not increased as expected as a result of fisheries changes. There have been no significant increasing trends in survival indices of any of the stock components since commercial closures in 1992.

Substantive increases in spawning escapements in recent years in northeast coast Newfoundland rivers and high smolt and juvenile production in many rivers, in conjunction with suitable ocean climate indices were suggestive of the potential for improved adult salmon returns for 1998 through 2000. Colder oceanic conditions both nearshore and in the Labrador Sea in the early 1990s are thought to have contributed to lower survival of salmon stocks in eastern Canada during that period. It was expected that increased marine water temperatures in 1994 to 1998 would have favoured marine survival and subsequent adult salmon production. Low returns of 2SW salmon in 1998 were consistent with the low 1SW returns of 1997.

Based on 1SW returns in 2000, no significant improvements in most areas, and further declines in some areas, are expected for large salmon in 2001. An additional concern is the low abundance levels which currently describe many salmon stocks in rivers in eastern Canada, particularly in the Bay of Fundy and Atlantic coast of Nova Scotia. USA salmon stocks exhibit these same downward trends. Most salmon rivers in the USA are hatchery-dependent and remain at low levels compared to conservation requirements. Despite major changes in fisheries management, returns have continued to decline in these areas and many populations are currently threatened with extirpation.

Fish passage efficiency, both upstream and downstream, limit populations at hydropower facilities such as on the Saint John, St. Croix, and Penobscot rivers. Aquaculture has continued to increase. Salmon populations of the Southern Upland of Nova Scotia have fallen to critically low levels in acid-impacted areas. Populations of Maine's downeast rivers are listed under the US Endangered Species Act and are suspected of having been adversely affected by freshwater habitat conditions and agriculture.

4.3 Effects on US and Canadian Stocks and Fisheries of Quota Management and Closure after 1991 in Canadian Commercial Salmon Fisheries, with special emphasis on the Newfoundland stocks

The Working Group previously considered the impact of the closure of the Newfoundland commercial fishery in 1992 on the Newfoundland stocks (ICES 1997/Assess:10).

Dempson et al. (1997) developed an index of salmon returns to illustrate the impact of the commercial salmon fishery moratorium on Newfoundland stocks. It is based on the difference between the returns prior to the moratorium (198491) when there was a commercial fishery to those in the years since the commercial fishery closed (1992-97). By averaging among rivers with counting facilities this provides an estimate of commercial fishing mortality which can then be used to estimate what returns would have been if the commercial fishery had not closed. The method assumes that natural mortality during the commercial fishery years remained at the same levels on average after the commercial fishery was closed. Average commercial fishing exploitation rate was 44% on small salmon and 75% on large. These exploitation rates should be regarded as a minimum values because it is evident that the natural component of marine survival has declined in recent years.

For 2SW salmon, if the commercial fishery had remained open during this period then, on average, from 1,942 to 6,821 fewer 2SW fish would have spawned. For 1SW salmon, had the commercial fishery remained open then, on average, from 37,672 to 96,655 fewer 1SW salmon would have spawned. For 2 SW salmon, in the years since the moratorium, spawner requirements have never been achieved if one uses the minimum estimates or have always been achieved using the maximum estimate. If the commercial fishery had not closed, then 2 SW spawners would never have achieved spawning requirements even at maximum estimates.

Within Newfoundland, the commercial fishery closure has resulted in increased escapements of both small and large salmon to rivers, higher catches of large salmon (which were subsequently released) in the recreational fishery, and increased spawning escapements of both size groups. These increased spawning escapements have not however always resulted in increased smolt production. Some areas of Newfoundland, particularly the south coast, did not see increases in escapement as was expected from the closure of the commercial fishery.

There are no changes recommended in the 2SW spawner requirements from those recommended previously. Spawner requirements for 2SW salmon for Canada now total 123,349 and for the USA, 29,199 for a combined total of 152,548 (Table 4.4.1). The Working Group again recommends that these requirements be refined as additional information on sea-age composition of spawners becomes available and as further understanding of life history strategies is gained.

4.5 Catch Options or Alternative Management Advice and Assessment of Risks Relative to the Objective of Exceeding Stock Conservation Limits

Overview

Catch options are only provided for the non-maturing 1 SW and maturing 2 SW components as the maturing 1 SW component is not fished outside of home waters, and in the absence of significant marine interceptory fisheries, is managed in homewaters by the producing nations.

Catch histories of salmon which could have been available to the Greenland fishery, 1972-99, are provided in Tables 4.5.1 and 4.5.2. and expressed as 2 SW salmon equivalents. The Newfoundland-Labrador commercial fisheries historically harvested both maturing and non-maturing 1SW salmon as well as 2 SW maturing salmon. The harvest in these fisheries of repeat spawners and older sea-ages was not considered in the run reconstructions. Harvests of 1SW non-maturing salmon in Newfoundland-Labrador commercial fisheries have been adjusted by natural mortalities of 1\% per month for 11 months and 2 SW harvests in these same fisheries have been adjusted by one month to express all harvests as 2SW equivalents in the year and time they would reach rivers of origin. Starting in 1998, the Labrador commercial fishery was closed. A Native Peoples' fishery occurred in 1998-2000 which may have harvested, to some degree, mixed stocks and catches for this fishery have been included in Tables 4.5 .1 and 4.5 .2 . As well, a resident's food fishery in Labrador is included for the first time in 2000. Mortalities (principally in fisheries) in mixed stock and terminal fisheries areas in Canada are summed with those of USA to estimate total 2SW equivalent mortalities in North America (Table 4.5.1). Mortalities within North America peaked at about 382,000 in 1976 and are now about 14,400 2 SW salmon equivalents. In the most recent two years estimated (that is those since the closure of the Labrador commercial fishery), those taken as non-maturing fish in Labrador comprise 2\%, or less, of the total in North America.

Of the North American fisheries on the cohort destined to be 2 SW salmon, 90% of the catch comes from terminal fisheries in the most recent year. This value has ranged from as low as 19% in 1973, 1976 and 1987 to values of 76$91 \%$ in 1996-2000 fisheries (Table 4.5.1). The percentage increased significantly with the reduction and closures of the Newfoundland and Labrador commercial fisheries, particularly since 1992.

Table 4.5 .2 shows the mortalities expressed as 2SW equivalents in Canada, USA and Greenland for 1972-2000. Harvests within the USA of the total within North America approached 0.6% on a few occasions in the time series and as recently as in 1990. As well as these harvests in the USA, USA-origin salmon were also harvested in Canada during the time period indicated. The percentage of the total 2SW equivalents that has been taken in North American waters has ranged from $43-100 \%$, with the most recent year estimated at 75%. The two years when 100% of the mortality occurred in North America were the years when the Greenland commercial fishery did not operate.

It is possible to provide catch advice for the North American Commission area for two years. The revised forecast for 2001 for 2SW maturing fish is based on a new forecast of the 2000 pre-fishery abundance and accounting for fish which were already removed from the cohort by fisheries in Greenland and Labrador in 2000 as 1SW non-maturing fish. The second is a new estimate for 2002 based on the pre-fishery abundance forecast for 2001 from Section 5.6. A consequence of these annual revisions is that the catch options for 2 SW equivalents in North America may change compared to the options developed the year before.

4.5.1 Catch advice for 2001 fisheries on 2SW maturing salmon

A revised forecast of the pre-fishery abundance for 2000 is provided in Table 5.6.1.1. This value of 225,708 is higher than the value forecast last year at this time of 179,897 (See Section 5.2 for more detailed derivation of the models used, etc.). A pre-fishery abundance of 225,708 in 2000 can be expressed as 2 SW equivalents by considering natural mortality of 1% per month for 10 months (a factor of 0.904837), resulting in 204,229 2 SW salmon equivalents. There have already been harvests of this cohort as 1SW non-maturing salmon in 2000 for both the Labrador (421) and Greenland (5,041) fisheries (Tables 4.5 .1 and 4.5.2) for a total of $5,4622 \mathrm{SW}$ salmon equivalents already harvested, when the mortality factor is considered.

Table 4.5.1.1 uses the probability density projections for the revised pre-fishery abundance estimate of 225,708 (at 50% probability) and subtracts the spawning reserve $(170,286)$ and the harvests in Greenland and Labrador of 1SW nonmaturing fish in 2000, and converts the remainder to 2 SW salmon equivalents. The calculation is as follows:
$\left[\mathrm{PFA}_{\mathrm{i}}-\right.$ spawning reserve - harvest in Greenland and Labrador in 2000 of 1 SW non-maturing fish $] \mathrm{x}$ exp $-(0.01 * 10$ months)]
where $\quad \mathrm{PFA}_{\mathrm{i}}=$ values from $25-75 \%$

$$
\text { spawning reserve }=170,286
$$

From Table 4.5.1.1, there are some harvest possibilities at forecasted levels which would be considered risk-neutral or risk-averse, that is, at probability levels of 50% and below down to about 14,000 fish at the 40% probability level. Any probability levels below this would suggest no harvest. The numbers provided for catch options refer to the composite North American fisheries. As the biological objective is to have all rivers reaching their conservation requirements, river-by-river management is necessary. On individual rivers, where spawning requirements are being achieved, there are no biological reasons to restrict the harvest.

To validate the forecasts provided by the PFA model, the Working Group considered historic information available on the returns of small and large salmon. Appropriate data were available for 20 rivers in Québec, six rivers of the Gulf, and three rivers of the Scotia-Fundy geographic area for the period 1991-1992 to 1999-2000, during which most commercial salmon fisheries were closed. The relationships between small salmon in year i and large salmon in year i+1 were significant for Québec and Scotia-Fundy (Figure 4.5.1). Forecasts of large salmon from the low returns of small salmon in 2000 (arrow on plots) indicate that there are no expectations for significant increases in large salmon in 2001.

There is no significant relationship between small and large salmon returns in the 'Gulf' rivers. However, the increasing proximity of recent data to the origin (Figure 4.5.1) and the low numbers of small salmon returns in 2000 also suggest low expectations for important increases in large salmon returns to the 'Gulf' in 2001. The evidence for each of the three geographic areas suggests that the PFA forecast of approximately 225,000 non-maturing fish in Greenland in 2000, i.e., triple the PFA value for the previous year and double the average PFA values of the previous 5 years, is highly unlikely.

Regional assessments in some areas of eastern North America provide a more detailed consideration of expectations for 2001, taking into consideration the contribution of all sea ages of salmon to the spawning population. By area, these are:

Labrador: Salmon returns in the year 2001 will be from a higher number of spawners than in recent years but the lack of long-term monitoring facilities makes it difficult to describe stock status or provide current expectations.

Newfoundland: The number of spawners has been relatively high in recent years, however, smolt output from all monitored rivers (with the exception of Highlands and Northeast Brook (Trepassey) in SFA 13) has declined in each of the past three years. In the absence of any improvement in marine survival rates, returns of small salmon in 2001 could be lower.

Québec : Returns of large salmon are expected to be adequate for the attainment of conservation requirements in 43 of the 44 salmon rivers in northern part of Québec; one river will remain closed. On the 74 salmon rivers in southern part of Québec, nine rivers will remained closed to fishing. Returns of large salmon are expected to be insufficient for attainment of conservation requirement on 34 rivers and consequently, only the retention of small salmon will be permitted on those rivers. Six other rivers are also under consideration for grilse-only retention.

Gulf: In SFA 15, returns in 2001 should approximate conservation requirements as they have in the last 5 years. Current levels of harvest have not been limiting the attainment of stock conservation. In SFA 16, neither large salmon nor eggs from small and large fish are expected to meet the conservation requirements in the Northwest and Southwest Miramichi, the Miramichi River overall, or the Buctouche River. It is expected, however that conservation requirements will be met or exceeded on the Tabusintac River. In SFA 18, Northumberland Strait and Cape Breton rivers, the Margaree, River Philip, and Sutherlands rivers are expected to meet or exceed conservation requirements. Stocks of the East River (Pictou), West River (Antigonish) and Wallace rivers are not expected to meet conservation requirements.

Scotia-Fundy: In SFAs 20-23, both large and small salmon returns, including hatchery supplements, are not expected to be adequate to meet conservation requirements. Many stocks are extirpated or at risk of extirpation and most rivers are
closed to even hook-and-release fishing. Few stocks of eastern Cape Breton (SFA 19) are expected to meet conservation requirements but are anticipated to be subjected to hook-and-release fishing.

USA: Salmon returns (both large and small) in 2000 are not expected to be sufficient to meet conservation requirements in any river, including those receiving hatchery stocking.

4.5.2 Catch advice for 2002 fisheries on 2SW maturing salmon

Most catches (93\%) in North America now take place in rivers or in estuaries. The commercial fisheries are now closed and the remaining coastal food fisheries in Labrador are mainly located close to river mouths and likely harvest few salmon from other than local rivers. Fisheries are principally managed on a river-by-river basis and in areas where retention of large salmon is allowed, it is closely controlled.

Catch options which could be derived from the prefishery abundance forecast for 2001 (295,678 at the 50% probability level) would apply principally to North American fisheries in 2002 and hence the level of fisheries in 2001 need to be accounted for before providing these catch options. Assuming probability values between 25 and 75%, accounting for mortality and the spawning requirement and considering an allocation of 60% of the surplus to North America, would yield catch options in 2 SW salmon equivalents of 77,000 to 138,000 fish. The numbers provided for catch options refer to the composite North American fisheries. As the biological objective is to have all rivers reaching their conservation requirements, river-by-river management will be necessary. On individual rivers, where spawning requirements are being achieved, there are no biological reasons to restrict the harvest.

4.6 Data Deficiencies and Research Needs in the North American Commission Area

Some progress was made on research needs identified last year. The Working Group reiterates many of last year's recommendations and suggests some further ones. Relevant sections of this year's report are identified in parentheses.

1. Estimates of total returns to Labrador no longer exist. There is a critical need to develop alternate methods to derive estimates of salmon returns and develop habitat-based spawner requirements in Labrador, and to monitor salmon returns in the Ungava regions of Québec. (4.2.2; 4.2.4)
2. There is a need to investigate changes in the biological characteristics (mean weight, sex ratio, sea-age composition) of returns to rivers, spawning stocks of Canadian and US rivers, and the harvest in food fisheries in Labrador. These data and new information on measures of habitat and stock recruitment are necessary to re-evaluate existing estimates of spawner requirements in Canada and USA and for use in the run reconstruction model. (4.2.2; 4.2.3; 4.4)
3. There is a requirement for additional smolt-to-adult survival rates for wild salmon. As well, sea survival rates of wild salmon from rivers stocked with hatchery smolts should be examined to determine if hatchery return rates can be used as an index of sea survival of wild salmon elsewhere. (4.2.5)
4. Further basic research is needed on the spatial and temporal distribution of salmon and their predators at sea to assist in explaining variability in survival rates. (4.2.3; 4.2.5)
5. Return estimates for the few rivers (Annapolis, Cornwallis and Gaspareau) in SFA 22 that do contribute to distant fisheries should be developed and, when these are available, the SFA 22 spawning requirements for these rivers (476 fish) be included in the total.(4.4)
6. A consistent approach to estimating returns is needed, to incorporate broodstock, if offspring from such broodstock are stocked back into the management area from which their parents originated. (4.1.3)

Accounting of escaped-farmed salmon from North America indicates a high but undocumented mortality. Scale analysis of salmon captured at West Greenland indicated an infrequent appearance of escaped-farmed salmon. In order to substantiate this conclusion farmed-salmon need to be included in background genetic analysis and the data reexamined for the presence of escaped-farmed salmon of North American origin.

Table 4.1.2.1. Percentages by user group and province of small and large salmon harvested (by number) in the Atlantic salmon fisheries of eastern Canada during 2000.

		\% of Provincial Harvest			$\%$ of eastern Canada	Number of fish
		Native peoples' food fisheries	Recreational fisheries	Resident food fisheries		
Small salmon						
Newfoundland Labrador	1	17.5	74.4	8.1	45.5	22,813
Québec		15.3	84.7	0.0	13.1	6,588
New Brunswick		16.6	83.4	0.0	40.2	20,135
P.E.I.		15.6	84.4	0.0	0.4	179
Nova Scotia		27.0	73.0	0.0	0.8	393
Large salmon						
Newfoundland Labrador	/	53.7	21.3	25.0	17.1	1,961
Québec		48.9	51.1	0.0	71.9	8,241
New Brunswick		100.0	0.0	0.0	9.1	1,047
P.E.I.		-	-	-	0.0	0
Nova Scotia		100.0	0.0	0.0	1.8	209
Eastern Canada			\% by User Gro			
Small salmon		16.9	79.4	3.7		50,108
Large salmon		55.3	40.4	4.3		11,458

Table 4.1.2.2. Hook-and-released Atlantic salmon caught by recreational fishermen in Canada, 1984 - 2000.

Year	Newfoundland			Nova Scotia			New Brunswick					Prince Edward Island			Quebec			CANADA*		
	Small	Large	Total	Small	Large	Total	Small Kelt	Small Bright	$\begin{gathered} \text { Large } \\ \text { Kelt } \\ \hline \end{gathered}$	Large Bright	Total	Small	Large	Total	Small	Large	Total	SMALL	LARGE	TOTAL
1984				939	1,655	2,594	661	851	1,020	14,479	17,011							2,451	17,154	19,605
1985		315	315	1,323	6,346	7,669	1,098	3,963	3,809	17,815	26,685			67				6,384	28,285	34,669
1986		798	798	1,463	10,750	12,213	5,217	9,333	6,941	25,316	46,807							16,013	43,805	59,818
1987		410	410	1,311	6,339	7,650	7,269	10,597	5,723	20,295	43,884							19,177	32,767	51,944
1988		600	600	1,146	6,795	7,941	6,703	10,503	7,182	19,442	43,830	767	256	1,023				19,119	34,275	53,394
1989		183	183	1,562	6,960	8,522	9,566	8,518	7,756	22,127	47,967							19,646	37,026	56,672
1990		503	503	1,782	5,504	7,286	4,435	7,346	6,067	16,231	34,079			1,066				13,563	28,305	41,868
1991		336	336	908	5,482	6,390	3,161	3,501	3,169	10,650	20,481	1,103	187	1,290				8,673	19,824	28,497
1992	5,893	1,423	7,316	737	5,093	5,830	2,966	8,349	5,681	16,308	33,304			1,250				17,945	28,505	46,450
1993	18,196	1,731	19,927	1,076	3,998	5,074	4,422	7,276	4,624	12,526	28,848							30,970	22,879	53,849
1994	11,105	2,343	13,448	796	2,894	3,690	4,153	7,443	4,790	11,556	27,942	577	147	724				24,074	21,730	45,804
1995	12,383	2,588	14,971	979	2,861	3,840	770	4,260	880	5,220	11,130	209	139	348		922	922	18,601	12,610	31,211
1996	22,227	3,092	25,319	3,526	5,661	9,187						472	238	710		1,718	1,718	26,225	10,709	36,934
1997	17,362	3,810	21,172	717	3,358	4,075	3,457	4,870	3,786	8,874	20,987	210	118	328	182	1,643	1,825	26,798	21,589	48,387
1998	25,314	4,351	29,665	687	2,520	3,207	3,154	5,760	3,452	8,298	20,664	233	114	347	297	2,680	2,977	35,445	21,415	56,860
1999	18,119	4,534	22,653	591	2,161	2,752	3,155	5,631	3,456	8,281	20,523	192	157	349	298	2,693	2,991	27,986	21,282	49,268
2000	18,292	3,376	21,668	335	1,146	1,481	3,154	6,689	3,455	8,690	21,988	101	46	147	445	4,008	4,453	29,016	20,721	49,737

[^9]Table 4.1.3.1. Counts of salmon and percentage of the counts which were identified as aquaculture escapes (\% Aqua') at the counting facilities of the Magaguadavic River (SFA 23, Canada) and in rivers of eastern Maine, USA.

Magaguadavic River (SFA 23, Canada)						
Year	1SW	\% Aqua'	MSW	\% Aqua	Total	\% Aqua’
1983	303	-	637	-	940	-
1984	249	-	534	-	783	-
1985	169	-	466	-	635	-
1988	291	-	398	-	689	-
1992	238	35	201	31	439	33
1993	208	46	177	29	385	38
1994	1064	94	228	73	1292	90
1995	540	90	198	85	738	89
1996	195	89	68	29	263	74
1997	94	63	47	49	141	58
1998	247	89	6	50	253	88
1999	74	74	29	83	103	77
2000	41	68	3	67	44	68

Rivers of eastern Maine								
Year	Union		St. Croix		Dennys		Narraguagus	
	Total Run	\% Aqua’	Total run	\% Aqua'	Total run	$\%$ Aqua'	Total run	\% Aqua’
1994	-	-	181	54	47	89	52	2
1995^{1}	-	-	60	22	9	44	56	0
1996	-	-	152	13	31	68	64	22
1997	-	-	70	39	2^{2}	100	37	0
1998	-	-	65	37	1^{2}	100	22	0
1999	72	91	36	64	-	Unk	35	8
2000	5	40	50	60	30	97	23	0

${ }^{1}$ High flows in 1995 may have affected accuracy of counts in all three rivers, especially the Dennys River
${ }^{2}$ Incomplete count of total run

Table 4.2.1.1. Comparison of returns of small salmon, large salmon, and size groups combined to assessed rivers of eastern Canada in 2000 relative to returns in 1999 and to returns in 1990 to 2000.

Size group	Number of rivers in each category			
	Returns in 2000 relative to returns in 1999			
	Total	< 50%	50% to 90%	$>=90 \%$
Bay of Fundy and Atlantic Coast of Nova Scotia (SFA 19 to 23)				
Small	9	0	5	4
Large	9	4	2	3
Small \& Large	9	0	6	3
Southern Gulf of St. Lawrence (SFA 15 to 18)				
Small	10	5	1	4
Large	10	3	3	4
Small \& Large	10	5	1	4
Quebec (Zones Q1 to Q11)				
Small	13	0	3	10
Large	13	0	11	2
Small \& Large	28	1	14	13
Newfoundland and Labrador (SFA 1 to 14)				
Small	21	2	8	11
Large	21	5	6	10
Small \& Large	21	1	7	13

Size group	Number of rivers	Rank of 2000 within the 1990 to 2000 period (Rank 1 = highest)		
		Best	Median	Worst
Bay of Fundy and Atlantic coast of Nova Scotia (SFA 19 to 23)				
Small	3	9	10	10
Large	4	9	11	11
Small \& Large	4	9	10	10
Southern Gulf of St. Lawrence (SFA 15 to 18)				
Small	6	6	10.5	11
Large	6	6	10.5	11
Small \& Large	6	5	10.5	11
Quebec (Zones Q1 to Q11)				
Small	11	2	6	11
Large	11	6	11	11
Small \& Large	25	1	9	11
Newfoundland and Labrador (SFA 1 to 14)				
Small	8	2	6	9
Large	9	2	4	8
Small \& Large	8	2	6	8

Table 4.2.1.2. Index rivers in eastern North America with available juvenile abundance or smolt abundance estimates for 1971 to 2000. The index area refers to the SFAs or Zones which are assumed to be represented by the index rivers surveyed in those zones. River locations are shown in Figure 4.2.1.3.

Geographic Area	SFA, Zons	Index river	AbundanceTyPe	Egg requirement (milions)		Index river! all inder rivers	River relative to SFA, Zont	$\begin{aligned} & \text { Roveras } \\ & \text { \% of Total } \end{aligned}$
				SFA, Zene	Index river			
Labrader	1							
	2							
	14B							
Nemfoundiand	3							
	4	Campbeition	Smolat	150.6	29	0.9\%	18\%	0.3\%
	5			37.9				
	8							
	7							
	8							
	9	NE Trupassey	Smolts	16.2	0.1	00\%	0 0\%	00\%
		Roeky	Smola		3.4	10\%	14.2\%	0.3\%
	10			7.8				
	11	Corne	Smolt	41.1	7.1.7	2.3\%	1.0\%	0.7\%
		Littie	Smols		0.3	0.1\%	0.8\%	0.0\%
	12							
	13	Hightands	Smolas	76.4	1.5	0.4\%	2.0\%	0.1\%
	14A	WAB	Smols	19.1	0.9	0.3\%	48\%	0.1\%
Qulf	15	Restigouche	Juveniles	71.9	53.6	15.8\%	74.5\%	6.1\%
		Nepisiguit	duvenies		8.5	2.8\%	132\%	0.9\%
	16	Mramichi	Juvenies	143.5	131.0	36.65	913\%	12.4\%
		Buatouche	Juveniles		1.6	0.6\%	1.1\%	0.2\%
	16	Margare	duvenies	23.1	6.7	20\%	290\%	0.6\%
		R. Philip	Juveniles		2.3	0.7\%	10.0\%	0.2\%
		Wallace	Juveniles		1.5	0.4\%	6.4\%	0.1\%
		Esst Pict	duveniles:		1.1.	0.5\%	76\%	0.2\%
		West	Juveniles		0.8	0.2\%	3.5\%	0.1\%
Sesta-Fundy	19	Mide	Juvenies	21.2	21	0.6\%	98\%	0.2\%
		Baddeck	Juveniles		2.0	0.6\%	9.4\%	0.2\%
		Nerth	duvenies		0.9	0.3\%	4.0\%	0.1\%
		Grand	Juveniles		1.1	0.3\%	5.2\%	0.1\%
		Inhabitarts	duveniles		1.4	0.4\%	6.5\%	0.1\%
	20	St Mary	Juveriles	55.2	96	2.f\%	173\%	0.5\%
	21	LaHaw	Juvenites	77.6	12.2	3.6\%	15.7\%	1.2\%
	22			21.2				
	23	Saint John	Juvenies	\$0.6	32.3	95\%	35.7\%	3.1\%
		Nashwask	Juveniles		13.7	4.0\%	15.1\%	1.3\%
		Kenneberasis	duvenies		8.0	1.5\%	5.8\%	0.5\%
		Hammond	Juveniles		4.0	12\%	4.4\%	0.0%
Quetec	01			24.8				
	g2	Saint-Jean	Smols	11.1	1.9	0.6\%	169\%	0.2\%
	Q3			11.3				
	04							
	95			6.1				
	Q6			5.8				
	$g T$	de la Trinite	Smoks	14.1	1.6	0.8\%	11.2\%	0.2\%
		Molsie	Smoke		20.4	6.0\%	145.1\%	13\%
	Q8			80.8				
	09			26.9				0.0\%
	910	Bededelie	Smolat	7.5	0.1	0.0\%	1.9\%	0,0\%
$\underline{\mathrm{E}}$.	Masine		duveniles	5.5	5.5	1.6\%		0.5\%
North Amerisa	Subtotal			1063.0	339.4	1000\%		32\% 2%

Table 4.2.1.3. Number of rivers and percent of total zonal area represented by the indexed rivers in 1971 to 2000.

Year	Rivers Monitored	River Area as \% of Total Indexed Area
1971	2	11.5%
1972	3	16.3%
1973	3	16.3%
1974	3	16.3%
1975	4	16.9%
1976	4	16.9%
1977	5	17.1%
1978	8	17.4%
1979	6	18.1%
1980	6	17.7%
1981	10	20.9%
1982	11	21.1%
1983	9	20.8%
1984	11	21.1%
1985	11	20.9%
1986	12	20.9%
1987	13	21.8%
1988	12	21.2%
1989	12	20.5%
1990	16	22.7%
1991	18	23.3%
1992	19	23.5%
1993	23	26.8%
1994	24	26.8%
1995	28	29.2%
1996	26	28.1%
1997	29	29.3%
1998	30	29.7%
1999	27	27.6%
2000	26	26.6%

Table 4.2.2.1 Estimated numbers of 1SW returns in North America by geographic regions, 1971 - 2000.

Year	Labrador		Newfoundland		Quebec		Gulf of St. Lawrence		Scotia-Fundy		USA	North America		
	Min	Max		Min	Max	Mid-points								
1971	32,966	115,382	112,644	226,129	14,969	22,453	33,118	57,973	11,515	19,525	32	205,245	441,495	323,370
1972	24,675	86,362	109,282	219,412	12,470	18,704	42,202	73,711	9,522	16,915	18	198,169	415,122	306,645
1973	5,399	18,897	144,267	289,447	16,585	24,877	43,681	77,102	14,766	24,823	23	224,721	435,169	329,945
1974	27,034	94,619	85,216	170,748	16,791	25,186	65,673	114,083	26,723	44,336	55	221,491	449,026	335,259
1975	53,660	187,809	112,272	225,165	18,071	27,106	58,613	101,887	25,940	36,316	84	268,639	578,367	423,503
1976	37,540	131,391	115,034	230,595	19,959	29,938	90,308	155,693	36,931	55,937	186	299,958	603,740	451,849
1977	33,409	116,931	110,114	220,501	18,190	27,285	31,322	56,088	30,860	48,387	75	223,971	469,268	346,619
1978	16,155	56,542	97,375	195,048	16,971	25,456	26,008	45,413	12,457	16,587	155	169,121	339,201	254,161
1979	21,943	76,800	107,402	215,160	21,683	32,524	50,872	93,340	30,875	49,052	250	233,025	467,126	350,075
1980	49,670	173,845	121,038	242,499	29,791	44,686	45,716	81,737	49,925	73,560	818	296,958	617,145	457,051
1981	55,046	192,662	157,425	315,347	41,667	62,501	70,238	128,658	37,371	62,083	1,130	362,877	762,381	562,629
1982	38,136	133,474	141,247	283,002	23,699	35,549	79,874	143,543	23,839	38,208	334	307,129	634,111	470,620
1983	23,732	83,061	109,934	220,216	17,987	26,981	25,337	43,922	15,553	23,775	295	192,838	398,250	295,544
1984	12,283	42,991	130,836	262,061	21,566	30,894	37,696	63,943	27,954	47,493	598	230,933	447,980	339,456
1985	22,732	79,563	121,731	243,727	22,771	33,262	61,255	110,580	29,410	51,983	392	258,290	519,507	388,899
1986	34,270	119,945	125,329	251,033	33,758	46,937	114,718	204,455	30,935	54,678	758	339,768	677,807	508,787
1987	42,938	150,283	128,578	257,473	37,816	54,034	86,564	156,086	31,746	55,564	1,128	328,770	674,567	501,668
1988	39,892	139,623	133,237	266,895	43,943	62,193	123,578	223,368	32,992	56,935	992	374,635	750,007	562,321
1989	27,113	94,896	60,260	120,661	34,568	48,407	72,944	129,515	34,957	59,662	1,258	231,101	454,400	342,750
1990	15,853	55,485	99,543	199,416	39,962	54,792	83,670	159,455	33,939	60,828	687	273,654	530,664	402,159
1991	12,849	44,970	64,552	129,308	31,488	42,755	59,721	113,722	19,759	31,555	310	188,679	362,619	275,649
1992	17,993	62,094	118,778	237,811	35,257	48,742	146,539	231,291	22,832	37,340	1,194	342,594	618,473	480,533
1993	25,186	80,938	134,150	268,550	30,645	42,156	89,934	146,977	16,714	27,539	466	297,095	566,627	431,861
1994	18,159	56,888	95,981	192,138	29,667	40,170	55,639	117,549	8,216	11,583	436	208,098	418,763	313,430
1995	25,022	76,453	202,739	435,153	23,851	32,368	26,019	96,871	14,239	21,822	213	292,082	662,880	477,481
1996	51,867	153,553	257,215	559,079	32,008	42,558	50,313	99,615	22,795	36,047	651	414,848	891,504	653,176
1997	66,812	155,963	99,029	146,050	24,300	33,018	27,515	54,511	7,173	10,467	365	225,194	400,374	312,784
1998	-	-	146,371	247,035	24,029	33,524	38,029	69,155	16,770	26,481	403	-	-	-
1999	-	-	156,740	224,959	25,639	36,296	28,867	53,244	10,556	16,901	419	-	-	-
2000	-	-	116,167	252,102	25,216	36,309	40,215	63,624	10,997	18,343	270	-	-	-

Labrador: SFAs $1,2 \& 14 B$
Newfoundland: SFAs 3-14A
Gulf of St. Lawrence: SFAs 15-18
Scotia-Fundy: SFAs 19-23 (SFA 22 is not included as it does not produce 2SW salmon)
Quebec: Q1-Q11

Table 4.2.2.2 Estimated numbers of 2SW returns in North America by geographic regions, 1971-2000.

	Labrador		Newfoundland		Quebec		Gulf of St. Lawrence		Scotia-Fundy		USA	North America		
Year	Min	Max		Min	Max	Mid-points								
1971	4,312	29,279	2,388	8,923	34,568	51,852	29,483	46,831	11,187	16,410	653	81,937	153,295	117,616
1972	3,706	25,168	2,511	9,003	45,094	67,642	35,640	59,937	14,028	19,731	1,383	102,364	182,865	142,614
1973	5,183	35,196	2,995	11,527	49,765	74,647	34,911	59,550	10,359	14,793	1,427	104,641	197,140	150,890
1974	5,003	34,148	1,940	6,596	66,762	100,143	49,081	83,402	21,902	29,071	1,394	146,082	254,754	200,418
1975	4,772	32,392	2,305	7,725	56,695	85,042	31,175	51,864	23,944	31,496	2,331	121,222	210,851	166,036
1976	5,519	37,401	2,334	7,698	56,365	84,547	29,266	51,427	21,768	29,837	1,317	116,569	212,228	164,398
1977	4,867	33,051	1,845	6,247	66,442	99,663	58,822	100,766	28,606	39,215	1,998	162,581	280,941	221,761
1978	3,864	26,147	1,991	6,396	59,826	89,739	30,465	51,481	16,946	22,561	4,208	117,301	200,531	158,916
1979	2,231	15,058	1,088	3,644	32,994	49,491	8,671	14,324	8,962	12,968	1,942	55,888	97,427	76,658
1980	5,190	35,259	2,432	7,778	78,447	117,670	43,407	73,841	31,897	44,823	5,796	167,169	285,167	226,168
1981	4,734	32,051	3,451	12,035	61,633	92,449	17,743	29,594	19,030	28,169	5,601	112,192	199,900	156,046
1982	3,491	23,662	2,914	9,012	54,655	81,982	31,652	51,128	17,516	24,182	6,056	116,284	196,022	156,153
1983	2,538	17,181	2,586	8,225	44,886	67,329	29,038	46,874	14,310	20,753	2,155	95,513	162,517	129,015
1984	1,806	12,252	2,233	7,060	44,661	59,160	20,478	34,131	17,938	27,899	3,222	90,339	143,724	117,031
1985	1,448	9,779	958	3,059	45,916	61,460	23,106	43,533	22,841	38,784	5,529	99,798	162,144	130,971
1986	2,470	16,720	1,606	5,245	55,159	72,560	36,214	70,921	18,102	33,101	6,176	119,727	204,723	162,225
1987	3,289	22,341	1,336	4,433	52,699	68,365	22,668	47,919	11,529	20,679	3,081	94,602	166,818	130,710
1988	2,068	14,037	1,563	5,068	56,870	75,387	26,140	49,956	10,370	19,830	3,286	100,297	167,564	133,930
1989	2,018	13,653	697	2,299	51,656	67,066	17,311	35,338	11,939	21,818	3,197	86,819	143,371	115,095
1990	1,148	7,790	1,347	4,401	50,261	66,352	24,616	53,110	10,248	18,871	5,051	92,671	155,576	124,123
1991	548	3,740	1,054	3,429	46,841	60,724	20,983	44,446	10,613	17,884	2,647	82,687	132,871	107,779
1992	2,515	15,548	3,111	10,554	46,917	61,285	29,101	61,122	9,777	16,456	2,459	93,880	167,425	130,652
1993	3,858	18,234	1,499	5,094	37,023	46,484	25,753	51,793	6,764	11,087	2,231	77,128	134,924	106,026
1994	5,653	24,396	1,902	6,174	37,703	47,180	22,097	57,055	4,379	6,908	1,346	73,080	143,058	108,069
1995	12,368	44,205	3,635	12,592	43,755	54,186	24,276	62,950	4,985	8,317	1,748	90,767	183,998	137,382
1996	9,113	32,759	4,457	14,159	39,413	49,846	20,380	42,964	7,227	12,054	2,407	82,996	154,188	118,592
1997	9,384	23,833	3,887	8,355	32,443	41,017	17,563	37,804	3,645	5,922	1,611	68,533	118,542	93,537
1998	-	-	5,322	12,453	24,295	31,726	8,260	19,498	2,728	6,003	1,526	-	-	-
1999	-	-	4,254	14,262	25,362	33,622	12,389	29,399	3,482	7,107	1,168	-	-	-
2000	-	-	2,218	16,360	24,695	34,543	14,052	29,955	2,038	5,079	533	-	-	-

[^10]Table 4.2.3.1 Run reconstruction data inputs for harvests used to estimate pre-fishery abundance of maturing and nonmaturing 1SW salmon of North American origin (terms defined in Table 4.2.3.2).

1SW Year (i)	AH_Small (i)	$\left\lvert\, \begin{gathered} \{1\} \\ \mathrm{AH}_{-} \mathrm{Large} \\ (\mathrm{i}+1) \end{gathered}\right.$	AH_Large (i)	$\{1-7,14 b$ Small (i)		$\begin{array}{\|c} \hline\{8-14 \mathrm{a}\} \\ \mathrm{H}_{-} \mathrm{Small} \\ \text { (i) } \end{array}$	$\begin{array}{\|r} \text { H_Large } \\ (\mathrm{i}+1) \\ \hline \end{array}$	$\begin{array}{\|c} \{1-7,14 \mathrm{~b}\} \\ \text { H_Large } \\ (\mathrm{i}+1) \\ \hline \end{array}$
1971	0	0	0	158896	199176	70936	42861	144496
1972	0	0	0	143232	144496	111141	43627	227779
1973	0	0	0	188725	227779	176907	85714	196726
1974	0	0	0	192195	196726	153278	72814	215025
1975	0	0	0	302348	215025	91935	95714	210858
1976	0	0	0	221766	210858	118779	63449	231393
1977	0	0	0	220093	231393	57472	37653	155546
1978	0	0	0	102403	155546	38180	29122	82174
1979	0	0	0	186558	82174	62622	54307	211896
1980	0	0	0	290127	211896	94291	38663	211006
1981	0	0	0	288902	211006	60668	35055	129319
1982	0	0	0	222894	129319	77017	28215	108430
1983	0	0	0	166033	108430	55683	15135	87742
1984	0	0	0	123774	87742	52813	24383	70970
1985	0	0	0	178719	70970	79275	22036	107561
1986	0	0	0	222671	107561	91912	19241	146242
1987	0	0	0	281762	146242	82401	14763	86047
1988	0	0	0	198484	86047	74620	15577	85319
1989	0	0	0	172861	85319	60884	11639	59334
1990	0	0	0	104788	59334	46053	10259	39257
1991	0	0	0	89099	39257	42721	0	32341
1992	0	0	0	24249	32341	0	0	17096
1993	0	0	0	17074	17096	0	0	15377
1994	0	0	0	8640	15377	0	0	11176
1995	0	0	0	7980	11176	0	0	7272
1996	0	0	0	7849	7272	0	0	6943
1997	0	2269	0	9753	6943	0	0	0
1998	2988	1084	2269	0	0	0	0	0
1999	2739	1545	1084	0	0	0	0	0
2000	5842	0	1545	0	0	0	0	0

Table 4.2.3.2 Definitions of key variables used in continental run-reconstruction models for North American salmon.

Variable Definition

i	Year of the fishery on 1SW salmon in Greenland and Canada
M	Natural mortality rate (0.01 per month)
t1	Time between the mid-point of the Canadian fishery and return to river $=2$ months
S1	Survival of 1SW salmon between the homewater fishery and return to river $\{\exp (-\mathrm{Mt} 1)\}$
H_s(i)	Number of "Small" salmon caught in Canada in year i; fish $<2.7 \mathrm{~kg}$
H_l(i)	Number of "Large" salmon caught in Canada in year i; fish $>=2.7 \mathrm{~kg}$
AH_s	Aboriginal and resident food harvests of small salmon in northern Labrador
AH_1	Aboriginal and resident food harvest of large salmon in northern Labrador
f_imm	Fraction of 1SW salmon that are immature, i.e. non-maturing: range $=0.1$ to 0.2
af_imm	Fraction of 1SW salmon that are immature in native and resident food fisheries in N Labrador
q	Fraction of 1SW salmon present in the large size market category; range $=0.1$ to 0.3
MC1(i)	Harvest of maturing 1SW salmon in Newfoundland and Labrador in year i
i +1	Year of fishery on 2SW salmon in Canada
MR1(i)	Return estimates of maturing 1SW salmon in Atlantic Canada in year i
NN1(i)	Pre-fishery abundance of non-maturing 1SW + maturing 2SW salmon in year i
NR(i)	Return estimates of non-maturing + maturing 2SW salmon in year i
NR2(i+1)	Return estimates of maturing 2SW salmon in Canada
$\mathrm{NC1}(\mathrm{i})$	Harvest of non-maturing 1SW salmon in Nfld + Labrador in year i
NC2(i+1)	Harvest of maturing 2SW salmon in Canada
NG(i)	Catch of 1SW North American origin salmon at Greenland
S2	Survival of 2SW salmon between Greenland and homewater fisheries
MN1(i)	Pre-fishery abundance of maturing 1SW salmon in year I
RFL1	Labrador raising factor for 1SW used to adjust pre-fishery abundance
RFL2	Labrador raising factor for 2SW used to adjust pre-fishery abundance

Table 4.2.3.3 Run reconstruction data inputs used to estimate pre-fishery abundance of non-maturing (NN1) 1SW salmon of North American origin (terms defined in Table 4.2.3.2).

1SW Year (i)	NG1 (i)	$\begin{aligned} & \mathrm{NC1} \\ & \mathrm{~min} \end{aligned}$ (i)	$\begin{aligned} & \max \\ & (\mathrm{i}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{NC} 2 \\ & \mathrm{~min} \\ & (\mathrm{i}+1) \end{aligned}$	$\begin{aligned} & \max \\ & (\mathrm{i}+1) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{NR} 2 \\ & \mathrm{~min} \\ & (\mathrm{i}+1) \end{aligned}$	$\begin{aligned} & \max \\ & (\mathrm{i}+1) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{NN} 1 \\ & \min \\ & \text { (i) } \\ & \hline \end{aligned}$	$\begin{aligned} & \max \\ & (\mathrm{i}) \\ & \hline \end{aligned}$	midpoint (i)
		17881	43730	14008	172907	102364	182865			-652798
1971	287672	17881	43730	144008	17290	102364	182865	578974	72662	652798
1972	200784	15768	37316	203072	248628	104641	197140	557790	732940	645365
1973	241493	21150	51412	223422	262767	146082	254754	672631	867684	770157
1974	220584	21187	50243	223332	266337	121222	210851	623907	800542	712224
1975	278839	32385	73371	243315	285486	116569	212228	710252	904626	807439
1976	155896	24285	57005	225424	271703	162581	280941	610799	826787	718793
1977	189709	24323	57902	146535	177644	117301	200531	506919	667787	587353
1978	118853	11796	29813	86644	103079	55888	97427	288792	371342	330067
1979	200061	19478	42242	202634	245013	167169	285167	630091	831411	730751
1980	187999	31132	70739	186367	228568	112192	199900	550336	734489	642412
1981	227727	31000	70441	125578	151442	116284	196022	527318	684352	605835
1982	194715	23583	52338	104116	125802	95513	162517	439982	567499	503741
1983	33240	17688	39712	76554	94103	90339	143724	236377	337388	286882
1984	38916	13255	30019	74062	88256	99798	162144	245424	347471	296448
1985	139233	18582	40002	97329	118841	119727	204723	399028	539102	469065
1986	171745	23343	50988	121610	150859	94602	166818	435090	575673	505381
1987	173687	29639	65127	74996	92205	100297	167564	398168	527764	462966
1988	116767	20709	44860	75300	92364	86819	143371	317609	423746	370678
1989	60693	18139	39691	53173	65040	92671	155576	241044	345930	293487
1990	73109	11072	24518	37739	45590	82687	132871	218191	296332	257262
1991	110680	9302	20175	22639	29107	93880	167425	249798	349917	299857
1992	41855	2748	6790	11967	15386	77128	134924	143925	216262	180094
1993	0	1878	4441	10764	13839	73080	143058	95352	179428	137390
1994	0	1018	2651	7823	10058	90767	183998	110985	219159	165072
1995	21341	910	2267	5090	6545	82996	154188	120523	202958	161740
1996	21944	858	2006	4860	6249	68533	118542	104675	163182	133928
1997	16814	1045	2367	1588	2269	42131	71205	69083	123311	96197
1998	3026	161	367	759	1084	46654	85558	58751	126207	92479
1999	5374	142	306	1082	1545	43536	86471	57800	130436	94118
2000	5571	300	631	0	0	0	0	5871	6202	6036

Table 4.2.3.4 Run reconstruction data inputs and estimated pre-fishery abundance for maturing (MN1) 1SW salmon (grilse) of North American origin (terms defined in Table 4.2.3.2).

$\begin{gathered} 1 \mathrm{SW} \\ \text { Year (i) } \\ \hline \end{gathered}$	MC1 min (i)	max (i)	MR1 min (i)	max (i)	MN1 min (i)	max (i)	midpoint (i)
1971	213987	267720	205245	441495	421294	713652	567473
1972	237286	279064	198169	415122	437446	698358	567902
1973	346109	408260	224721	435169	573089	847803	710446
1974	322772	379370	221491	449026	546489	832909	689699
1975	351015	422105	268639	578367	622355	1006285	814320
1976	313060	375300	299958	603740	616033	985108	800571
1977	252058	318032	223971	469268	478280	792016	635148
1978	132546	172340	169121	339201	303367	514951	409159
1979	218442	252711	233025	467126	453809	724532	589171
1980	343344	412617	296958	617145	643287	1035964	839625
1981	308670	377651	362877	762381	675194	1147695	911444
1982	265678	312538	307129	634111	575893	953022	764458
1983	197184	234389	192838	398250	391960	636641	514300
1984	158852	187900	230933	447980	392105	640382	516244
1985	227928	259284	258290	519507	488814	784012	636413
1986	278654	321357	339768	677807	621836	1005976	813906
1987	319510	375472	328770	674567	651584	1056819	854201
1988	240291	276488	374635	750007	618691	1034033	826362
1989	205998	239495	231101	454400	439422	698461	568941
1990	134630	156382	273654	530664	411034	692380	551707
1991	117141	133509	188679	362619	307716	499773	403745
1992	21986	30556	342594	618473	368023	655245	511634
1993	15027	19983	297095	566627	315107	592304	453706
1994	8142	11928	208098	418763	218331	434899	326615
1995	7278	10200	292082	662880	302296	679741	491019
1996	6861	9028	414848	891504	425878	909491	667685
1997	8358	10652	225194	400374	235816	415050	325433
1998	3054	3302	225603	376598	240161	608110	424136
1999	2705	2758	222221	331819	236245	535653	385949
2000	5697	5675	192865	370647	208520	600927	404724

Table 4.2.4.1 Estimated numbers of 2SW spawners in North America by geographic regions, 1971-2000.

Year	Labrador		Newfoundland		Quebec		Gulf of St. Lawrence		Scotia-Fundy		USA	North America		
	Min	Max		Min	Max	Mid-points								
1971	4,012	28,882	1,817	8,055	11,822	17,733	4,303	8,237	4,496	9,032	490	26,940	72,429	49,684
1972	3,435	24,812	2,008	8,240	23,160	34,741	17,803	32,996	7,459	12,699	1,038	54,903	114,525	84,714
1973	4,565	34,376	2,283	10,449	23,564	35,346	20,505	38,126	3,949	7,844	1,100	55,966	127,240	91,603
1974	4,490	33,475	1,510	5,942	28,657	42,985	31,702	57,923	9,526	15,979	1,147	77,032	157,451	117,242
1975	4,564	32,119	1,888	7,086	23,818	35,726	18,477	33,210	11,861	18,830	1,942	62,549	128,913	95,731
1976	4,984	36,701	2,011	7,198	22,653	33,980	14,821	29,694	11,045	18,337	1,126	56,641	127,035	91,838
1977	4,042	31,969	1,114	5,088	32,602	48,902	32,535	60,188	13,578	23,119	643	84,512	169,909	127,211
1978	3,361	25,490	1,557	5,712	29,889	44,834	11,511	22,829	6,517	11,428	3,314	56,150	113,608	84,879
1979	1,823	14,528	980	3,463	12,807	19,210	3,575	6,823	4,683	8,234	1,509	25,376	53,767	39,572
1980	4,633	34,525	1,888	6,925	35,594	53,390	19,947	37,645	14,270	25,628	4,263	80,596	162,375	121,486
1981	4,403	31,615	3,074	11,442	26,132	39,199	4,657	10,028	5,870	13,353	4,334	48,470	109,971	79,221
1982	3,081	23,127	2,579	8,481	26,492	39,738	11,036	20,330	5,656	11,335	4,643	53,486	107,655	80,571
1983	2,267	16,824	2,244	7,677	17,308	25,963	7,436	14,288	1,505	6,529	1,769	32,529	73,050	52,790
1984	1,478	11,822	2,063	6,800	22,345	32,659	15,332	27,195	14,245	23,650	2,547	58,011	104,673	81,342
1985	1,258	9,530	946	3,042	20,668	31,742	21,168	39,982	18,185	33,580	4,884	67,108	122,759	94,934
1986	2,177	16,334	1,575	5,198	24,088	35,939	32,991	64,980	15,435	30,120	5,570	81,836	158,141	119,988
1987	2,895	21,821	1,320	4,409	21,723	31,727	19,877	43,120	10,235	19,233	2,781	58,831	123,091	90,961
1988	1,625	13,452	1,540	5,033	25,390	38,343	23,392	44,859	9,074	18,381	3,038	64,059	123,106	93,582
1989	1,727	13,270	690	2,289	25,016	35,905	14,758	30,866	11,689	21,539	2,800	56,680	106,668	81,674
1990	923	7,493	1,327	4,372	24,422	36,219	22,554	49,478	9,688	18,245	4,356	63,269	120,163	91,716
1991	491	3,665	1,041	3,410	19,959	29,052	19,590	41,956	9,356	16,479	2,416	52,854	96,978	74,916
1992	2,012	14,889	3,057	10,474	19,337	28,833	27,448	54,168	8,725	15,280	2,292	62,871	125,936	94,403
1993	3,624	17,922	1,449	5,017	15,774	21,428	25,218	46,308	5,710	9,921	2,065	53,839	102,661	78,250
1994	5,339	23,981	1,840	6,077	15,631	21,147	20,315	54,101	3,682	6,093	1,344	48,152	112,743	80,447
1995	12,006	43,726	3,563	12,481	22,575	28,703	22,634	60,511	4,672	7,971	1,748	67,198	155,140	111,169
1996	8,838	32,395	4,372	14,028	19,010	25,421	18,416	39,757	6,507	11,242	2,407	59,550	125,250	92,400
1997	9,221	23,646	3,780	8,190	15,531	20,780	15,832	35,144	3,095	5,311	1,611	49,070	94,682	71,876
1998	-	-	5,222	12,295	14,176	19,333	6,568	16,742	2,424	5,663	1,526	-	-	-
1999	-	-	4,169	14,126	17,198	23,723	11,372	27,406	3,041	6,648	1,168	-	-	-
2000	-	-	1,975	16,021	16,067	23,365	12,262	27,339	1,855	4,877	533	-	-	-

Labrador: SFAs 1,2\&14B
Newfoundland: SFAs 3-14A
Gulf of St. Lawrence: SFAs 15-18
Scotia-Fundy: SFAs 19-23 (SFA 22 is not included as it does not produce 2SW salmon)
Quebec: Q1-Q11

Table 4.2.4.2 Estimated numbers of 1SW spawners in North America by geographic regions, 1971-2000.

	Labrador		Newfoundland		Quebec		Gulf of St. Lawrence		Scotia-Fundy		USA	North America		
Year	Min	Max		Min	Max	Mid-points								
1971	29,032	111,448	85,978	199,463	9,338	14,007	19,874	35,534	4,800	12,810	29	149,051	373,291	261,171
1972	21,728	83,415	84,880	195,010	8,213	12,320	24,319	43,318	2,992	10,385	17	142,149	344,465	243,307
1973	0	11,405	108,785	253,965	10,987	16,480	28,105	51,257	8,658	18,715	13	156,548	351,834	254,191
1974	24,533	92,118	58,731	144,263	10,067	15,100	48,343	84,685	16,209	33,822	40	157,922	370,028	263,975
1975	49,688	183,837	78,882	191,775	11,606	17,409	42,668	74,920	18,232	28,608	67	201,143	496,615	348,879
1976	31,814	125,665	80,571	196,132	12,979	19,469	56,021	99,810	24,589	43,595	151	206,125	484,822	345,474
1977	28,815	112,337	75,762	186,149	12,004	18,006	14,045	27,585	16,704	34,231	54	147,385	378,364	262,874
1978	13,464	53,851	68,756	166,429	11,447	17,170	13,768	25,474	5,678	9,808	127	113,240	272,859	193,049
1979	17,825	72,682	76,233	183,991	15,863	23,795	29,764	57,382	18,577	36,754	247	158,508	374,850	266,679
1980	45,870	170,045	85,189	206,650	20,817	31,226	26,450	50,297	28,878	52,513	722	207,926	511,453	359,690
1981	49,855	187,471	110,755	268,677	30,952	46,428	39,421	77,501	18,236	42,948	1,009	250,228	624,035	437,132
1982	34,032	129,370	99,376	241,131	16,877	25,316	52,020	97,071	12,179	26,548	290	214,774	519,727	367,250
1983	19,360	78,689	77,514	187,796	12,030	18,045	13,611	24,683	7,747	15,969	255	130,517	325,436	227,976
1984	9,348	40,056	91,505	222,730	16,316	24,957	17,990	33,657	17,964	37,503	540	153,663	359,444	256,554
1985	19,631	76,462	85,179	207,175	15,608	25,140	39,514	73,906	18,158	40,731	363	178,454	423,778	301,116
1986	30,806	116,481	87,833	213,537	22,230	33,855	82,122	149,587	21,204	44,947	660	244,854	559,067	401,960
1987	37,572	144,917	104,096	232,991	25,789	40,481	59,330	110,335	21,589	45,407	1,087	249,463	575,217	412,340
1988	34,369	134,100	93,396	227,054	28,582	44,815	85,644	159,916	23,288	47,231	923	266,203	614,039	440,121
1989	22,429	90,212	41,798	102,199	24,710	37,319	44,715	81,719	23,873	48,578	1,080	158,605	361,108	259,857
1990	12,544	52,176	69,576	169,449	26,594	39,826	56,161	113,442	22,753	49,642	617	188,245	425,153	306,699
1991	10,526	42,647	44,023	108,779	20,582	30,433	44,350	87,876	13,814	25,610	235	133,530	295,580	214,555
1992	15,229	59,331	95,096	214,129	21,754	33,583	118,723	189,260	15,125	29,633	1,124	267,051	527,060	397,056
1993	22,499	78,251	107,816	242,217	17,493	27,444	70,969	118,119	11,539	22,252	444	230,760	488,726	359,743
1994	15,228	53,958	66,185	162,342	16,758	25,642	32,651	90,339	6,918	10,218	427	138,167	342,925	240,546
1995	22,144	73,575	172,727	405,141	14,409	21,548	15,407	61,251	12,114	19,697	213	237,014	581,424	409,219
1996	48,362	150,048	218,639	520,504	18,923	27,805	24,411	70,260	19,253	32,472	651	330,240	801,740	565,990
1997	64,049	153,200	80,096	127,116	14,724	22,210	12,699	36,748	6,143	9,428	365	178,076	349,068	263,572
1998	-	-	124,551	225,216	16,277	24,954	23,580	46,609	16,342	26,028	403	-	-	
1999	-	-	135,561	203,780	18,785	28,502	18,212	36,304	10,177	16,516	419	-	-	
2000	-	-	99,743	234,572	17,137	27,096	25,968	43,558	10,656	17,977	270	-	-	

Labrador: SFAs $1,2 \& 14 B$
Newfoundland: SFAs 3-14A
Gulf of St. Lawrence: SFAs 15-18
Scotia-Fundy: SFAs 19-23 (SFA 22 is not included as it does not produce 2SW salmon)
Quebec: Q1-Q11

Table 4.2.4.3. Smolt age distributions in six stock areas of North America used to weight forward the spawning escapement in the current year to the year of the non-maturing 1SW component in the Northwest Atlantic.

	Smolt age (years)					
Stock area	1	2	3	4	5	6
Labrador	0.0	0.0	0.077	0.542	0.341	0.040
Newfoundland	0.0	0.041	0.598	0.324	0.038	0.0
Québec	0.0	0.058	0.464	0.378	0.089	0.010
Gulf of	St.	0.0	0.398	0.573	0.029	0.0
Lawrence						0.0
Scotia-Fundy	0.0	0.600	0.394	0.006	0.0	0.0
USA	0.377	0.520	0.103	0.0	0.0	0.0

Table 4.2.4.4 The mid-point of 2 SW spawners and lagged spawners for North America and to each of the geographic areas. Lagged refers to the allocation of spawners to the year
in which they would have contributed to the year of prefishery abundance.

Year	North America		Prefishery Recruits/ abundance 2SW lagged recruits spawner		Labrador (L)		Newfoundland (N)		Quebec (Q)		Gulf of St. Lawrence (G)		Scotia-Fundy (S)		USA (US)	
	Total 2SW spawners	Lagged 2SW spawners			Total	Lagged										
1971	49684		652827		16447		4936		14777		6270		6764		490	
1972	84714		645486		14124		5124		28951		25399		10079		1038	
1973	91603		770200		19470		6366		29455		29316		5896		1100	
1974	117242		712403		18982		3726		35821		44813		12752		1147	
1975	95731		807391		18341		4487		29772		25844		15345		1942	
1976	91838		718805		20842		4605		28316		22258		14691		1126	
1977	127211		587326		18006		3101		40752		46361		18348		643	
1978	84879	95423	330077	3.46	14425	14759	3635	5802	37362	28016	17170	35371	8973	10034	3314	1442
1979	39572	107023	730725	6.83	8175	17486	2221	4664	16008	32232	5199	36818	6459	14270	1509	1553
1980	121486	96095	639192	6.65	19579	18903	4406	4316	44492	31940	28796	24971	19949	14937	4263	1029
1981	79221	104076	605935	5.82	18009	18795	7258	4472	32666	30266	7342	31955	9612	16888	4334	1699
1982	80571	107284	503481	4.69	13104	19695	5530	3661	33115	34821	15683	34049	8496	12699	4643	2358
1983	52790	82182	286891	3.49	9546	18710	4961	3440	21636	36526	10862	13258	4017	7514	1769	2733
1984	81342	79799	296450	3.71	6650	15422	4432	2801	27502	28065	21264	14937	18947	14569	2547	4006
1985	94934	85408	468776	5.49	5394	11576	1994	3786	26205	32359	30575	19576	25882	13668	4884	4443
1986	119988	80977	505066	6.24	9255	15361	3386	6075	30013	35728	48985	11286	22777	8998	5570	3528
1987	90961	78610	462953	5.89	12358	17772	2865	6023	26725	33119	31498	13524	14734	5813	2781	2359
1988	93582	79001	370526	4.69	7538	14762	3287	5209	31866	27538	34125	15142	13728	13002	3038	3347
1989	81674	93776	293057	3.13	7498	10875	1490	4544	30461	25762	22812	24668	16614	23026	2800	4901
1990	91716	103388	256969	2.49	4208	7799	2850	2951	30320	26580	36016	37632	13966	23978	4356	4449
1991	74916	99937	299086	2.99	2078	6285	2225	2953	24506	28072	30773	41497	12917	17965	2416	3166
1992	94403	89467	179755	2.01	8451	8072	6765	3018	24085	28227	40808	33056	12002	14173	2292	2922
1993	78250	91771	137134	1.49	10773	10649	3233	3080	18601	29616	35763	29551	7816	15464	2065	3410
1994	80447	88940	161214	1.81	14660	9247	3958	2178	18389	30646	37208	28397	4888	15007	1344	3464
1995	11169	89461	156490	1.75	27866	7453	8022	2400	25639	30138	41572	33549	6322	13350	1748	2570
1996	92400	84687	126588	1.49	20617	5299	9200	2585	22216	27289	29086	34922	8875	12373	2407	2219
1997	71876	82888	97899	1.18	16434	3511	5985	5004	18155	24550	25488	38513	4203	9493	1611	1817
1998		76104				6285	8758	4368	16754	21312	11655	36488	4044	6080	1526	1571
1999		80008				9930	9148	3994	20460	19459	19389	38906	4845	5764	1168	1954
2000		89093				14098		6574		22055		36481		7845		2039
2001		89243				22118		8490		22898		28021		6056		1661
2002		75646				22527		7215		20281		20091		4133		1400
2003								7892		18078		15136		4525		2908

Spawners lagged by:
Labrador $=0.0768 \times \mathrm{i}-5$ spawners $+0.542 \times \mathrm{i}-6+0.341 \times \mathrm{i}-7+0.0401 \times \mathrm{i}-8$
Newfoundland $=0.0408 \times i-4$ spawners $+0.5979 \times i-5+0.3237 \times \mathrm{i}-6+0.0375 \times \mathrm{i}-7$
Newfoundland $=0.0408 \times i-4$ spawners $+0.5979 \times i-5+0.3237 \times i-6+0.0375 \times i-7$
Quebec $=0.0577 \times i-4$ spawners $+0.4644 \times \mathrm{i}-5+0.3783 \times i-6+0.0892 \times i-7+0.0104 \times i-8$
Gulf $=0.3979 \times i-4$ spawners $+0.5731 \times i-5+0.0291 \times i-6$
Scotia-Fundy $=0.6002 \times \mathrm{i}-4$ spawners $+0.3942 \times \mathrm{i}-5+0.0055 \times \mathrm{i}-6$
USA $=0.3767 \times i-3$ spawners $+0.520 \times i-4+0.1033 \times i-5$.

Table 4.4.1. 2SW spawning requirements for North America by country, management zone and overall. Management zones are shown in Figure 4.1.1.1.

Country	Stock Area	Management zone	2SW spawner requirement	
Canada	Labrador	SFA 1	7,992	
		SFA 2	25,369	
		SFA 14B	1,390	
	Subtotal			34,746
	Newfoundland	SFA 3	240	
		SFA 4	488	
		SFA 5	233	
		SFA 6 to 8	13	
		SFA 9 to 12	212	
		SFA 13	2,544	
		SFA 14A	292	
	Subtotal			4,022
	Gulf of St. Lawrence	SFA 15	5,656	
		SFA 16	21,050	
		SFA 17	537	
		SFA 18	3,187	
	Subtotal			30,430
	Québec	Q1	2,532	
		Q2	1,797	
		Q3	1,788	
		Q5	948	
		Q6	818	
		Q7	2,021	
		Q8	11,195	
		Q9	3,378	
		Q10	1,582	
		Q11	3,387	
	Subtotal		29,446	
	Scotia-Fundy	SFA 19	3,138	
		SFA 20	2,691	
		SFA 21	5,817	
		SFA 22	0	
		SFA 23	13,059	
	Subtotal		24,705	
Total			123,349	
USA	Connecticut Merrimack		9,727	
			2,599	
	Penobscot		6,838	
	Other Maine rivers		9,668	
	Paucatuck		367	
Total			29,199	
North American Total			152,548	

Table 4.5.1 Fishing mortalities of 2SW salmon equivalents by North American fisheries, 1972-2000.
Only mid-points of the estimated values have been used.

Year	CANADA										USA	Total	Terminal Fisheries as a $\%$ of Total
	MIXED STOCK				TERMINAL FISHERIES IN YEAR i								
	NF-LAB Comm 1SW (Yr i-1) (b)	\% 1SW of total 2SW equivalents	$\begin{gathered} \text { NF-LAB } \\ \text { Comm 2SW } \\ \text { (Yri) (b) } \\ \hline \end{gathered}$	$\begin{gathered} \text { NF-Lab } \\ \text { comm total } \end{gathered}$	Labrador rivers (a)	Nfld rivers (a)	Quebec Region	$\begin{array}{r} \text { Gulf } \\ \text { Region } \\ \hline \end{array}$	Scotia - Fundy Region	Canadian total	Year i		
1972	27,874	11	156,881	184,755	314	633	27,417	22,389	6,801	242,310	346	242,656	24
1973	24,016	8	223,603	247,619	719	895	32,751	17,915	6,680	306,580	327	306,907	19
1974	32,828	9	240,676	273,504	593	542	47,631	21,429	12,734	356,434	247	356,681	23
1975	32,316	9	242,398	274,714	241	528	41,097	15,675	12,375	344,629	389	345,018	20
1976	47,846	13	261,770	309,616	618	412	42,139	18,088	11,111	381,985	191	382,176	19
1977	36,777	10	246,090	282,867	954	946	42,301	33,433	15,562	376,062	1,355	377,418	25
1978	37,200	14	160,477	197,677	580	559	37,421	23,803	10,781	270,821	894	271,714	27
1979	18,825	13	93,917	112,742	469	144	25,234	6,299	4,506	149,395	433	149,828	25
1980	27,923	8	221,597	249,520	646	699	53,567	29,828	18,411	352,670	1,533	354,202	30
1981	46,088	14	205,403	251,492	384	485	44,375	16,326	13,988	327,050	1,267	328,317	23
1982	45,894	18	137,132	183,026	473	433	35,204	25,707	12,353	257,195	1,413	258,608	29
1983	34,348	15	113,815	148,163	313	445	34,472	27,094	13,515	224,002	386	224,388	34
1984	25,969	18	84,480	110,448	379	215	24,408	6,041	3,971	145,464	675	146,138	24
1985	19,578	14	80,351	99,929	219	15	27,483	2,745	4,930	135,322	645	135,967	27
1986	26,504	15	107,009	133,514	340	39	33,846	4,582	2,824	175,145	606	175,750	24
1987	33,629	16	134,879	168,508	457	20	33,807	3,795	1,370	207,956	300	208,256	19
1988	42,874	26	82,769	125,642	514	29	34,262	3,922	1,373	165,743	248	165,990	24
1989	29,664	20	82,998	112,662	337	9	28,901	3,513	265	145,686	397	146,083	23
1990	26,164	22	58,518	84,682	261	24	27,986	2,847	593	116,394	696	117,089	28
1991	16,101	18	41,250	57,352	66	16	29,277	1,942	1,331	89,984	231	90,215	36
1992	13,336	18	25,615	38,952	581	67	30,016	4,303	1,114	75,033	167	75,201	48
1993	4,315	9	13,541	17,856	273	63	23,153	3,010	1,110	45,466	166	45,632	61
1994	2,859	7	12,179	15,038	365	80	24,052	2,368	756	42,659	1	42,660	65
1995	1,660	5	8,852	10,511	420	92	23,331	2,041	330	36,725	0	36,725	71
1996	1,437	4	5,760	7,197	320	108	22,413	2,586	766	33,389	0	33,389	78
1997	1,296	5	5,499	6,795	175	136	18,574	2,196	581	28,456	0	28,456	76
1998	1,544	9	1,909	3,453	268	129	11,256	2,224	322	17,651	0	17,651	80
1999	239	2	912	1,151	268	111	9,032	1,504	450	12,515	0	12,515	91
2000	203	1	1,300	1,503	268	291	9,903	2,203	193	14,361	0	14,361	90
2001	421	-	-	,	-	-	9,	,		-	-	-	-

NF-Lab comm as $1 \mathrm{SW}=\mathrm{NCl}(\mathrm{mid}-\mathrm{pt}) * 0.904837$
NF-Lab comm as 2SW $=$ NC2 $($ mid-pt $) * 0.99005$
NF-Lab comm as $2 \mathrm{SW}=\mathrm{NC2}(\mathrm{mid}-\mathrm{pt}) * * 0.99005$
Terminal fisheries $=2 \mathrm{SW}$ returns $($ mid-pt $)-2$ SW spawners (mid-pt)
a starting in 1993 , includes estimated mortality of 10% on hook and released fish
b - starting in 1998, there was no commercial fishery in Labrador; numbers reflect size of aboriginal fish harvest in 1998-2000 and resident food fishery harvest in 2000

Table 4.5.1.1. Catch options for 2001 North American fisheries

Catch Options for 2001 North American Fisheries (Probability levels refer to probability density function estimates of pre-fishery abundance)		
	Pre-fishery Abundance Forecast	Catch Options in 2SW Salmon Equivalents (no.)
Probability Level	145,125	0
$\mathbf{2 5}$	160,214	0
$\mathbf{3 0}$	175,591	0
$\mathbf{3 5}$	191,502	14,255
$\mathbf{4 0}$	208,016	29,127
$\mathbf{4 5}$	225,708	45,206
$\mathbf{5 0}$	244,830	62,508
$\mathbf{5 5}$	265,996	81,660
$\mathbf{6 0}$	289,541	102,964
$\mathbf{6 5}$	316,274	127,153
$\mathbf{7 0}$	347,994	155,855
$\mathbf{7 5}$		

Table 4.5.2 History of fishing-related mortalities of North American salmon as 2SW equivalents, 1972-2000.

Year	Canadian total	USA total	North America Grand Total	\% USA of Total North American	Greenland total	NW Atlantic Total	Harvest in homewaters as \% of total NW Atlantic
1972	242,310	346	242,656	0.14	260,296	502,952	48
1973	306,580	327	306,907	0.11	181,677	488,584	63
1974	356,434	247	356,681	0.07	218,512	575,193	62
1975	344,629	389	345,018	0.11	199,593	544,611	63
1976	381,985	191	382,176	0.05	252,304	634,479	60
1977	376,062	1,355	377,418	0.36	141,060	518,478	73
1978	270,821	894	271,714	0.33	171,656	443,370	61
1979	149,395	433	149,828	0.29	107,543	257,370	58
1980	352,670	1,533	354,202	0.43	181,023	535,225	66
1981	327,050	1,267	328,317	0.39	170,108	498,425	66
1982	257,195	1,413	258,608	0.55	206,056	464,664	56
1983	224,002	386	224,388	0.17	176,185	400,574	56
1984	145,464	675	146,138	0.46	30,077	176,215	83
1985	135,322	645	135,967	0.47	35,213	171,179	79
1986	175,145	606	175,750	0.34	125,983	301,734	58
1987	207,956	300	208,256	0.14	155,401	363,658	57
1988	165,743	248	165,990	0.15	157,158	323,149	51
1989	145,686	397	146,083	0.27	105,655	251,738	58
1990	116,394	696	117,089	0.59	54,917	172,007	68
1991	89,984	231	90,215	0.26	66,152	156,366	58
1992	75,033	167	75,201	0.22	100,147	175,348	43
1993	45,466	166	45,632	0.36	37,872	83,504	55
1994	42,659	1	42,660	0.00	0	42,660	100
1995	36,725	0	36,725	0.00	0	36,725	100
1996	33,389	0	33,389	0.00	19,310	52,699	63
1997	28,456	0	28,456	0.00	19,856	48,312	59
1998	17,651	0	17,651	0.00	15,214	32,865	54
1999	12,515	0	12,515	0.00	2,738	15,253	82
2000	14,361	0	14,361	0.00	4,863	19,223	75
2001	-	-	-	-	5,041	-	-

Greenland harvest of 2SW equivalents $=$ NG1 $* 0.904837$

Figure 4.1.1.1. Map of Salmon Fishing Areas (SFAs) and Quebec Management Zones (Qs) in Canada.

Figure 4.1.1.2. Summary of recreational fisheries management in eastern Canada and Maine (U.S.A.) during 2000.

Figure 4.1.2.1. Harvest (t) of small salmon, large salmon, and combined in Canada, 1960-2000 by all users.

Figure 4.1.2.2. Harvest (number) of small and large salmon and both sizes combined in the recreational fisheries of Canada, 1974 to 2000.

Figure 4.1.2.3. Angling catches (including kept and released fish) of small and large salmon by management area in 2000 (black square) expressed as a proportion of the average catches for the period 1984 to 1991 . The vertical lines represent the minimum to maximum range. The 1984 to 1991 standard period was selected to represent the period of no commercial fisheries in SFAs 15 to 23 and Zones Q1 to Q6 and before the commercial salmon moratorium in Newfoundland SFAs 3 to 14A introduced in 1992. There were no estimates available for releaseed salmon in Newfoundland SFAs 3 to 11 for the years 1984 to 1991. The angling data for SFA 16 in 2000 are not available.

Figure 4.1.2.4. Harvest (t) of small salmon and large salmon and both size groups combined in the commercial fisheries of Canada, 1974 to 2000. All commercial fisheries were closed in 2000.

Figure 4.1.3.1. Origin (wild, hatchery, aquaculture) of Atlantic salmon returning to monitored rivers of eastern North America in 2000. Only rivers in which more than one origin type was expected are indicated.

Figure 4.1.3.2. Location of Atlantic salmon marine grow-out sites in eastern North America (upper panel) and distribution of rivers with observed juvenile or adult aquaculture escaped Atlantic salmon since 1992 (lower panel).

Figure 4.2.1.1. In-river returns of small salmon and large salmon for 53 monitored rivers of eastern Canada in 2000 relative to 1999 .

Figure 4.2.1.2. In-river returns of small salmon and large salmon for 26 monitored rivers in four geographic areas of eastern Canada from 1985 to 2000. The in-river returns do not account for removals in marine fisheries. Rivers by area are: Newfoundland (Conne, Exploits, Middle Brook, Northeast Trepassey, Northeast Brook, Torrent, Western Arm Brook), Québec (Bonaventure, Cascapédia, Port-Daniel Nord, Grande Rivière, St-Jean, York, Darmouth, Madeleine, Matane, de la Trinité), Gulf (Restigouche, Miramichi, Philip, East Pictou, West Antigonish, Margaree), and ScotiaFundy (Liscomb, LaHave, Saint John at Mactaquac).

Figure 4.2.1.3. Rivers with smolt and juvenile monitoring programs in eastern Canada and U.S. used in the analysis for estimating a relative juvenile abundance index.

Figure 4.2.1.4. Variability in the wild smolt output from nine rivers of eastern Canada in 1971 to 2000 relative to the average smolt output (by individual river) for the 1990 to 1995 period.

Figure 4.2.1.5. Atlantic salmon juvenile densities in eight rivers of the Maritime provinces (Restigouche SFA 15; Miramichi SFA 16; St. Mary's SFA 20, Stewiacke SFA 22, Nashwaak, Hammond, Kennebecasis and Saint John upriver of Mactaquac SFA 23).

Figure 4.2.1.6. Relative index of smolt production in eastern North America. Index-area weighted refers to weighting corresponding to the size of the zone or Salmon Fishing Area. The other two indices consider relative smolt production which would contribute to potential 2 SW recruitment.

Figure 4.2.1.7. Relative index of smolt production in four areas of Canada. Relative indices are derived by weighting index river series by corresponding Salmon Fishing Area or Zone size (defined by conservation egg requirements). The Newfoundland and Quebec indices are derived from direct smolt counts. The Gulf and Scotia-Fundy estimates are based on juvenile abundances.

Figure 4.2.1.8. Documented returns of Atlantic salmon to USA rivers, 1967-2000.

Figure 4.2.2.1. Comparison of estimated mid-points of 1SW returns to and 1SW spawners in rivers of six geographic areas in North America. Returns and spawners for Scotia-Fundy do not include those from SFA 22 and a portion of SFA 23.

Figure 4.2.2.2. Comparison of estimated mid-points of 2 SW returns, 2 SW spawners, and 2 SW conservation requirements for six geographic areas in North America. Returns and spawners for Scotia-Fundy do not include those from SFA 22 and a portion of SFA 23.

Figure 4.2.2.3. Comparison of 1 SW and 2 SW return estimates for insular Newfoundland using previous method and updated method.

Fig. 4.2.3.1. Prefishery abundance estimate of maturing and non-maturing salmon in North America. Open circles are for the years that returns to Labrador were assumed as a proportion of returns to other areas in North America.

Fig. 4.2.3.2. Total 1SW recruits (non-maturing and maturing) originating in North America

Figure 4.2.4.1. Egg depositions in 2000 relative to conservation requirements in 54 rivers (upper panel) and for 19 rivers of eastern Canada and five rivers of U.S. under colonization or rehabilitation (left panel). The black slice represents the proportion of the conservation requirement achieved in 2000. A solid black circle indicates the egg deposition requirement was attained or exceeded.

Figure 4.2.4.2. Proportion of the conservation requirements met in monitored rivers in four geographic areas of eastern Canada, 1984 to 2000. The vertical line represents the minimum and maximum proportion achieved in individual rivers, the black square is the median proportion. The range of the number of rivers included in the annual summary was 7-8 for Newfoundland, 5-8 for the Gulf, 2-3 for Scotia-Fundy and 9 for Québec.

Figure 4.2.4.3. Top panel: comparison of estimated potential 2 SW production prior to all fisheries, 2 SW recruits available to North America, 1971-2000 and 2SW returns and spawners for 1971-97, as 1998-2000 data for Labrador are unavailable. The horizontal line indicates the2SW spawner requirements. Bottom panel: comparison of potential maturing 1SW recruits, 1971-2000 and returns and 1SW spawners for 1971-97 return years as Labrador data for 19982000 are unavailable.

Fig. 4.2.4.4. Midpoints of lagged spawners (solid circles) and estimated annual spawners (open circles) as contribution to potential recruitment in the year of prefishery abundance (PFA) for six geographic areas of North America. The horizontal line represents the spawning requirement (in terms of 2SW fish) in each geographic area.

Fig. 4.2.4.5. Proportion of spawners (mid-points) lagged to year of PFA (solid circles) and as returns to rivers (open circles) in six geographic areas of North America relative to the total lagged spawner or annual spawning escapement to North America. The horizontal line represents the theoretical spawner proportions for each area based on the 2SW spawner requirement for North America

Figure 4.2.5.1. Survival rates (\%) of wild smolts as 1 SW salmon from the rivers in west and north Newfoundland (Highlands, SFA 13, Western Arm Brook, SFA 14A and Campbellton, SFA 4) and south Newfoundland (NE Trepassey, SFA 9; Rocky, SFA 9; and Conne, SFA 10).

Figure 4.2.5.2. Survival rates (\%) of wild smolts as 1 SW and 2SW salmon from the rivers in Quebec (Bec-Scie Q10, de la Trinité, Q7 and Saint-Jean, Q2), Nova Scotia (LaHave, SFA 21) and New Brunswick (Nashwaak, SFA 23).

Figure 4.2.5.3. Survival rates (\%) of hatchery released smolts from the Saint John River (SFA 23), LaHave River (SFA 21), Liscomb and East rivers (SFA 20), and Aux Rochers River (Q7) as 1SW, 2SW returns to the river.

Figure 4.2.5.4. Survival rates (\%) of hatchery released smolts from the Penobscot River (Maine, USA) as 1SW and 2 SW returns to the river. Inset is higher resolution of data.

Figure 4.2.5.5. Relationship between latitude and the survival of hatchery and wild smolts to 2 SW (a) and 1SW (b) returns in North America (1991 to 2000). The lines are predicted values from the $90^{\text {th }}$ quantile least absolute difference regressions (2 SW Survival $=-43.051+1.021 *$ Latitude) and $(1 S W$ Survival $=-8.345+0.197 *$ Latitude $)$.

Figure 4.5.1. Relationships between small salmon returns in year i and large salmon (all ages) returns in year i+1 for 20 rivers in Québec (upper), 6 rivers of the 'Gulf' (middle), and 3 rivers of the Scotia-Fundy (lower) regions. Arrows indicate expectations of large salmon in 2001 based on small salmon returns in 2000.

REPORT OF THE

WORKING GROUP ON NORTH ATLANTIC SALMON
 Part two

Aberdeen, Scotland

2-11 April 2001

This report is not to be quoted without prior consultation with the General Secretary. The document is a report of an expert group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.

International Council for the Exploration of the Sea
Conseil International pour l'Exploration de la Mer

TABLE OF CONTENTS

5.1 Description of fishery at West Greenland

5.1.1 Catch and effort in 2000

At its annual meeting in 1999 the West Greenland Commission of NASCO agreed on a multi-year approach for conservation of the salmon stocks occurring in Greenland. This agreement specified that the catch at West Greenland in 1999 and 2000 should be restricted to that amount used for internal consumption in Greenland, which in the past has been estimated at 20 t . The Greenland authorities subsequently set this amount as total allowable catch.

The fishery was opened on August 14 and was quickly closed by the authorities four days later (August 18) as the reported catch rapidly approached the total allowable catch. The total reported catches in round fresh weight amounted to 20.5 t (Table 5.1.1.1). The geographical distribution of catches by Greenland vessels is given in Table 5.1.1.2 for the years 1977-2000. Compared to previous years, a higher proportion of catch occurred in southern Greenland with 65% taken in NAFO Division 1F.

By regulation, all catches including landings to local markets, privately purchased salmon, and salmon caught by food fishermen, were reported on a daily basis to the Fishery Licence Office. A private company was given permission to buy salmon from fishermen, and biological samples were purchased from this company.

Licences for the salmon fishery have been issued to fishermen fishing for the local markets, hotels, hospitals etc., while fishing for personal use was permitted without licence for residents of Greenland. In total, 179 licences were issued, however only 45 licensed and 1 unlicensed fishermen reported landings. Due to the arrangement with the purchasing company and the extremely short season only few landings to local markets were observed. Despite the early closure of the fishing season and the considerably increased efficiency of reporting and enforcement system, a relatively large part (one third) of the total fishery is still considered to remain unreported. The unreported catches are estimated to be approximately 10 t in 2000 .

5.1.2 Origin of catches at West Greenland

Tissue and biological samples were collected from the mixed population at West Greenland caught for local consumption in 2000. A sample of 491 salmon was purchased from the local purchasing company. In 2000 all samples were obtained through the purchasing company that received most of the landed salmon. The sampled salmon were measured, scales were removed for aging, and gutted weight recorded.

A tissue sample was removed and preserved for DNA analysis. Twelve microsatellite loci were screened in all fish. For Atlantic salmon, these loci have been shown to provide 100% correct assignment to their continent of origin, and 83% correct classification to country or province of origin (King et al. 1999).

A total 490 tissue samples were collected for DNA analysis from the following areas, 250 from NAFO Div. 1D, and 241 from NAFO Div. 1F. No precise information on the date of landing could be obtained because samples were taken after landing and transporting of the fish. By assuming August 16 (mid-point of the fishing season) as the landed date, there is a maximum error of $+/-2$ days.

Based on DNA analysis in NAFO Div. 1D 89.2% of the 250 salmon were of North American origin and 10.8% of European origin. Of 240 salmon taken in NAFO Div. 1F 50.4 \% were classified as North American while 49.6% were European. The combined total for the two NAFO divisions sampled is 344 salmon (70.2%) of North American origin and 146 salmon (29.8%) of European origin (Table 5.1.2.1, Figure 5.1.2.1). Preliminary attempts to achieve a finer level of resolution of origin indicates that Canadian origin fish dominated the North American component of the catch and Southern European stocks dominated the European component of the catch.

The Working Group noted that the significant increase in proportion of North American origin salmon at West Greenland in 1995-1999 was concordant with the reduction in the number caught (Table 5.1.2.2). This increase is possibly related to the declining number of non-maturing salmon especially in the Southern European countries. The proportion of North American origin salmon estimated for 2000 is similar to that observed during the mid-1980s.

Applying the results of the above analysis to the reported catch indicated that 12.6 t (5,100 salmon) of North American origin and 7.6 t (2,700 salmon) of European origin were landed in West Greenland in 2000. Quota reductions have resulted in a reduction in the numbers of North American salmon landed at West Greenland from 1996-1999. The
number of North American salmon remained about the same as that from 1999 to 2000. The number of landed salmon of European origin was similarly reduced from 1995 to 1999, but increased in 2000 due to a higher proportion of European salmon in the Division 1F. The data for 1982 to 2000 (no data for 1993-94) are summarised in Table 5.1.2.2.

5.1.3 Biological characteristics of the catches

Biological characteristics (length, weight, and age) were recorded from 491 fish in catches from NAFO Div. 1D and 1F in 2000 and presented in Tables 5.1.3.1 to 5.1.3.3 together with corresponding data from sampling in Greenland since 1968.

The general downward trend in mean length and weight of both European and North American 1SW salmon observed from 1969 - 1995 reversed in 1996 when mean lengths and weights increased (Table 5.1.3.1, Figure 5.1.3.1). From 1996 to 1998 the mean lengths and weights were relatively stable but increased significantly in 1999. In 2000, a decrease was observed, and the mean lengths and weights were among the lowest observed in the time series (Table 5.1.3.1, Figure 5.1.3.1). The Working Group noted that all catches in 2000 were taken relatively early in the traditional fishing season (mid August), i.e. also early in the feeding season in which period the weight increase is known to be $2-3 \%$ per week. The working group noted that the samples in 2000 could be biased towards smaller (younger) fish, as some sorting might have taken place before landing to the purchasing company.

Distribution of the catch by river age in 1968-2000 as determined from scale samples is shown in Table 5.1.3.2. The proportion of the European origin salmon that were river age 1 fish has been quite variable through the later years with relatively high values in 1998-2000 ($28.6,27.7$ and 36.5%, respectively), the 2000 value being the highest on record. A high proportion of this group suggests a high contribution from Southern European stocks. In 1998 and 1999 low proportions of 7.6 and 7.2%, respectively, of river age 3 were observed, the lowest on record. Some increase from 1999 to 2000 (to 13.1%) was observed, close to the overall mean of 16.2%. The proportion of river age 2 salmon of North American origin declined somewhat from 1998, which was close to the overall mean value of 34.8%, to 23.5 and 26.6 \% in 1999 and 2000, respectively.

The sea-age composition of the samples collected from the West Greenland fishery showed no significant changes in the proportions in the North American component of fish from 1998 to 2000 (Table 5.1.3.3), the 1SW proportion being among the highest in the time series. The proportion of 1SW salmon in the European component has been very high since 1997 (99.3%), and was in 1999 and 2000 estimated at 100%. Samples (6% in weight of the total landings) were representative in time and space of catches in the fishery, but may have been biased if culling of fish occurred prior to purchase for sampling purposes. In addition, the short time period of the fishery may have produced landings that were not representative of the population in the Greenland area in 2000.

5.2 Status of the stocks in the West Greenland area

The salmon caught in the West Greenland fishery are non-maturing 1SW or older salmon, nearly all of which would return to home waters in Europe or North America as MSW fish if they survived. While non-maturing 1SW salmon make up more than 90% of the catch there are also 2 SW salmon and repeat spawners including salmon that had originally spawned for the first time after 1-sea-winter. The most abundant European stocks in West Greenland are thought to originate from the UK and Ireland although low numbers may originate from northern European rivers. For North American MSW salmon, the most abundant stocks in West Greenland are thought to originate in the southern area of the range.

For the Northeast Commission Area, a Run-reconstruction Model was used to update the estimates of pre-fishery abundance of non-maturing 1 SW salmon (Table 3.6.2.4). The main contributor to the abundance of the European component of the West Greenland stock complex is non-maturing 1SW salmon from the southern areas of Europe. These stocks appear to have declined for most of the past 30 years.

Conservation limits and the time series of spawners have been provided for 16 rivers in the NEAC area. Only 6 of the 16 rivers had egg depositions above their conservation limits in the later years. Improvements in egg deposition are indicated for the rivers that were above their conservation limits, while other rivers, which remain near or under their conservation limits on average show a slight decrease (Section 3.4). In general, there seemed to be no indication of recovery from low escapement levels.

In most areas marine survival was lower than the previous 5 -year and 10 -year mean for 1 SW and 2 SW fish. Marine survival rates for 6 hatchery stocks showed a downward trend in survival to home waters for 1 SW and 2 SW salmon for the past 10 -year period.

In general, there has been no significant change in smolt production in the Northeast Atlantic. Returns of salmon to most European rivers showed a significant downward trend for the last ten years period both for southern and northern rivers, but no trend was detected for the last five years.

The Working Group has used the North American run-reconstruction model to estimate pre-fishery abundance, which serves as the basis of abundance forecasts used in the provision of catch advice. The 1999 abundance estimates ranged between 57,800 and 130,436 salmon. The mid-point of this range $(94,118)$ is 2% higher than the 1998 value $(92,479)$ and is the $2^{\text {nd }}$ lowest in the 30 -year time series (Figure 4.2.3.1). The Working Group expressed concern about the continued decline in the pre-fishery abundance and its impact on spawner levels. While maturing 1SW salmon in 19982000 have increased over the lowest value achieved in 1997, the non-maturing portion of these cohorts has increased only slightly from the lowest value recorded in 1998. Because the pre-fishery abundance has been consistently well below its conservation requirements, this situation is considered to be very serious.

The estimate of the total number of 2SW salmon returning to Newfoundland rivers and coastal waters of other areas of North America in 2000 was close to the number in 1999, but was about 26% lower than the estimate for 1997 and lower than the average of the previous years (1971-96). The estimates for 1998-2000 are the lowest observed in the past 10 years and among the lowest in the 30 year time series, 1971-2000 (Table 4.2.2.2). The estimates of returns are quite variable over the time series with no trends indicated. Returns have declined from a peak of 226,000 in 1980 to 94,000 in 1999.

In most regions apart from Newfoundland, the returns of 2SW fish in 2000 are near the lower end of the thirty-year time series. However, returns of 2SW salmon to Labrador in 1995 and 1996 were the best in the time series. The estimated returns decreased again in 1997. Closure of the commercial fishery in Labrador after 1997 eliminated the basis for the return and spawner model, and returns could not be estimated for 1998-2000.

The majority of the USA returns were recorded in the rivers of Maine. The estimated 2SW returns and spawners to USA rivers have declined since 1996, and were in 200066% and 73% below the previous 5 -year and 10-year averages, respectively. Returns to most USA rivers are hatchery-dependent. Spawning escapements decreased further from 5% in 1999 to 1.8% in 2000 compared to conservation requirements.

Egg depositions exceeded or equalled the specific conservation requirements in 23 of the 54 rivers (43%) assessed in Canada and were less than 50% of requirements in 18 other rivers (33%). Large deficiencies in egg depositions were noted in the Bay of Fundy and Atlantic coast of Nova Scotia where 10 of the 11 rivers assessed (91%) had egg depositions that were less than 50% of conservation requirements (Figure 4.2.4.1).

North American salmon stocks remain at low levels relative to the 1970s. The 1SW non-maturing component continues to be low with river returns and total production amongst the lowest recorded. The 1999 pre-fishery abundance estimates ranged between 57,800 and 130,436 salmon. The mid-point of this range $(94,118)$ is 2% higher than the 1998 value $(92,479)$ and is the $2^{\text {nd }}$ lowest in the 28 -year time series. In addition, small salmon returns in 2000 relative to 1999 were generally reduced throughout eastern Canada in the majority of their monitored rivers except in Québec. Returns were similar to or improved ($>90 \%$ in 2000 relative to 1999) in about half (53%) of the assessed rivers but this percentage decreased to 45% without Québec's rivers. Given recent downward trends in returns, improvement in 2SW salmon returns and spawners in 2001 would represent a significant reversal from recently observed trends. Only the Newfoundland stock complex has observed spawning escapements, which have exceeded the area requirements, all other region complexes were below requirement and some declined further in 2000 (Section 4.2.4).

Despite some improvements in the annual returns to some rivers, both in European and North American areas, the overall status of stocks contributing to the West Greenland fishery remains poor, and as a result, the status of stocks within the West Greenland area is thought to be low compared to earlier (historical) levels.

5.3 Changes in the continent of origin of salmon captured at West Greenland including changes in migration patterns

The Working Group noted the considerable increase in proportion of North American origin salmon in the fishery at West Greenland in recent years. The proportion of North American origin salmon has changed dramatically over the period of observation, 1969-1999, from below 40% to a record high level of 90% in 1999. The proportion of North American origin salmon declined in 2000 fishery samples; however, this may have been due to the early opening and short duration of the fishery. Thus, the catch samples while being descriptive of the fishery may not be a good representation of the salmon population at Greenland. The biological explanation(s) for these changes in North American and European salmon will continue to allude us due to incomplete knowledge of migration of the various components contributing to the West Greenland fishery and more importantly the relative contributions of various stock
groupings. Previous tagging studies including tagging at West Greenland had shown that the southern European stock group contributed more heavily to Greenland than did the northern group. Within North America, it has been shown that stocks in the Gulf of St. Lawrence contributed more heavily than others to Greenland. The DNA analysis in 2000 showed that that annual variations in proportional contributions do occur. Exploratory work into more detailed discrimination of origin of salmon captured at West Greenland will lead to a greater understanding of the mixed stock fishery.

The Working Group examined an analysis of the North American proportions from 1987 to 1999. The year 2000 samples were not included because of the short time scale and geographical distribution of the catch and samples.

Analysis of Variance for North American proportion at West Greenland

The results of the analysis of variance indicate that the North American proportion varies over year, between NAFO Divisions and that there is a significant interaction effect between year and the various NAFO Divisions. In terms of NAFO Divisions, the North American proportion increased from NAFO Div. 1B to 1C then declined from 1D to 1E and 1F (Figure 5.3.1). The North American proportion has increased significantly from 1987 to 1999. The reasons for the varying North American proportions between NAFO Divisions and years is not completely known. However, it possibly results from different migration patterns and arrival at Greenland of the various stock components.

To learn more about the reasons behind the increasing North American proportion in Greenland a new variable was created by summing the pre-fishery abundances of North American and European non-maturing Atlantic salmon. Examination of the trends in North American proportion at Greenland and in the total pre-fishery abundance of North American plus southern European salmon indicates that the latter is actually declining ($\mathrm{r}=-0.69, \mathrm{P}<0.0001$) at the same time that the North American proportion at Greenland is increasing ($\mathrm{r}=0.87, \mathrm{P}<0.0001$) (Figure 5.3.2). This can only occur if the proportion of southern European salmon migrating to Greenland is declining or if the proportion of North American salmon migrating to Greenland is increasing ($\mathrm{r}=-0.52, \mathrm{P}<0.004$). However, given current trends the former is more likely the case.

5.4 Evaluation of the effects on European and North American stocks of the West Greenland management measures since 1993

There have been three significant changes in the management regime at West Greenland since 1993. First, NASCO adopted a new management model (Anon., 1993) based upon ICES' assessment of the PFA of non-maturing 1SW North American salmon and the spawner escapement requirements for these stocks. This resulted in a substantial reduction in the TAC agreed to by NASCO from 840 t in 1991 to 258 t in 1992, and further reductions in subsequent years. The second change in management was the suspension of fishing in 1993 and 1994 following the agreement of compensation payments by the North Atlantic Salmon Fund. Due to the closure of the fishery in the two years no sampling could be carried out in Greenland, and no biological data were collected. The third change in management was a multi-year agreement in 1999 restricting the annual catch to that amount used for internal consumption in Greenland, which in the past has been estimated at 20 t .

To calculate a possible TAC for those years according to the agreed quota allocation model (Anon., 1993) biological parameters from sampling in 1992 were used (Table 5.4.1). The variables given in the table (proportion of origin, mean weights, and proportion of 1SW fish) are those used in the analyses, see Sections 5.1 and 5.7.

The numbers of fish spared by the 1993-1994 closure are shown in Table 5.4.1. The potential catches in the years 1993 and 1994 of 89 and 137 t , respectively correspond to the TACs calculated in accordance with the quota allocation computation model that was agreed by NASCO at its annual meeting in 1993. For the successive years nominal catch figures are used. The table shows the number of salmon returning to home waters provided no fishing of the given magnitude took place in Greenland. The biological parameters given in the table represent the annual sampling data.

The mean number for 1993-2000 of potentially returning fish per ton caught at Greenland is calculated to 208 and 106 salmon for North America and Europe, respectively.

In the years 1972-92 exploitation rates in Greenland of the North American component of the salmon stock fluctuated between 10 and 45% around an average of 34% (Figure 5.4.1). The management measures in force since 1993 resulted in an average exploitation rate of this component of 13%, for the period 1995-97, about one third of its previous level after reopening of the fishery in 1995. After the 1999 agreement the exploitation rates decreased to about 5%.

In the current analysis the effects of the management measures taken at West Greenland have been examined in terms of numbers of fish only. Thus it has been difficult to show direct benefits to homewater stocks from these measures. The Working Group recommends that other indices of change, i.e. changes in age composition, size at age and sea survival, should also be included in this evaluation.

5.5 Age-Specific Stock Conservation Limits for All Stocks in the West Greenland Commission Area

Sampling of the fishery at West Greenland (Table 5.1.3.3) since 1985 has shown that both European and North American stocks harvested are primarily (greater than 90%) 1SW non-maturing salmon that would mature as either 2 or 3 SW salmon, if surviving to spawn. Usually less than 1% of the harvest are salmon which have previously spawned and a few percent are 2 SW salmon which would mature as 3 SW or older salmon, if surviving to spawn. For example, in $1999,96.8 \%$ of the sampled catch of North American origin and 100% of the sampled catch of European origin were 1SW salmon. For this reason, conservation limits defined previously for North American stocks have been limited to this cohort (2SW salmon on their return to homewaters) that may have been at Greenland as 1SW non-maturing fish. These numbers have been documented previously by the Working Group and are revised this year in Section 4.4. From Table 4.4.1, the 2SW spawning requirements of salmon stocks from North America which may be present in the West Greenland Commission Area total 152,548 fish, with 123,349 and 29,199 required in Canadian and USA rivers, respectively.

The conservation limits were split into 1SW and MSW components on the basis of the average age composition of catches in the past ten years. The stocks have also been partitioned into northern and southern groups, and tagging information and biological sampling indicates that the majority of the European salmon caught at West Greenland originate from the southern group. The currently estimated conservation limit for southern European MSW stocks is approximately 595,000 fish (Table 3.7.3.1). There is still considerable uncertainty in the conservation limits for European stocks. The above value has been increased from 530,000 in the 2000 report. To date, the conservation limits for MSW salmon in Europe have not been incorporated into the modelling of catch options for West Greenland.

5.6.1 Overview of provision of catch advice

The Working Group was asked to advise on catch levels based upon maintaining adequate spawning escapements sufficient to achieve conservation limits. Although advances have been made in our understanding of the population dynamics of Atlantic salmon and the exploitation occurring in the fisheries, the concerns about the implications of applying TACs to mixed-stock fisheries are still relevant. In principle, adjustments in catches in mixed-stock fisheries provided by means of an annually adjusted TAC would reduce mean mortality on the contributing populations. However, benefits that might result for particular stocks would be difficult to demonstrate, in the same way that damage to individual stocks would be difficult to identify.

In 1993, the Working Group considered how the predictive measures of abundance could be used to give annual catch advice (ICES 1993/Assess:10; Sections 5.3 and 5.4). The aim of management would be to limit catches to a level that would facilitate achieving overall spawning escapement reflecting the spawning requirements in individual North American and European rivers (when the latter have been defined). In order to achieve the desired level of exploitation for a given level of predicted abundance, a TAC could be fixed or some form of effort adjustment introduced. Such an assessment would also depend on a forecast of prefishery abundance for both North American and European salmon stocks.

To date, the advice for any given year has been dependent on obtaining a reliable predictor of the abundance of nonmaturing 1SW North American stocks prior to the start of the fishery in Greenland. Gill net fisheries in Greenland and Labrador harvest one-sea-winter (1SW) salmon about one year before they mature and return to spawn in North American rivers. This component was also harvested on their return as 2SW salmon in commercial fisheries in eastern Canada, angling and native fisheries throughout eastern Canada and angling fisheries in the northeastern USA. The fishery in Greenland harvests salmon which would not mature until the following year while the fishery in Labrador (closed in 1998) harvested a mix from the non-maturing component as well as maturing 1SW and MSW salmon. The commercial fisheries in Québec and the Maritime provinces of Canada harvested maturing 1SW and MSW salmon.

The Working Group has advocated models based on thermal habitat in the northwest Atlantic and spawning stock indices to forecast pre-fishery abundance and provide catch advice for the West Greenland fishery. While the approach has been consistent since 1993, the models themselves have varied slightly over the years. The changes have been made to these models in attempts to improve the biological basis and predictive capability. In particular, the models since 1996 have used a spawning stock surrogate variable (lagged spawners) in an attempt to describe the variations in parental stock size of the non-maturing 1SW component (PFA). The models of previous years included the following predictor variables: 1993 - thermal habitat in March; 1994 - thermal habitat in March; 1995 -thermal habitat in January, February, and March; and 1996-2000 - thermal habitat in February and lagged spawners from the Labrador, Newfoundland, Québec, and Scotia-Fundy regions of Canada.

The Working Group noted that because the method of estimating spawning escapement for Labrador was based on commercial catches and exploitation rates ended in 1997, lagged spawner values will have missing components in year 2003. An alternative index of salmon abundance will be required in the future. Preliminary investigations into the development of a juvenile abundance index as an alternative index of salmon abundance were reported in 2000, and continued in the current report (Section 5.8).

North American run-reconstruction model

The Working Group has used the North American run-reconstruction model to estimate pre-fishery abundance of 1SW non-maturing and maturing 2SW fish adjusted by natural mortality to the time prior to the West Greenland fishery (See Section 4.2.3). Region-specific estimates of 2SW returns are listed in Table 4.2.2.2. Estimates of 2SW returns prior to 1998 in Labrador are derived from estimated 2SW catches in the fishery using a range of assumptions regarding exploitation rates and origin of the catch. With the closure of the Labrador fishery, 1998-2000 returns were estimated as a proportion of the total for other areas based on historical data (Section 4.2.3).

Update of thermal habitat index

The Working Group has been using the relationship between marine habitat, 2SW lagged spawners and estimated prefishery abundance to forecast pre-fishery abundance in the year of interest (ICES 1993/Assess:10; 1994/Assess:16; 1995/Assess:14; 1996/Assess:11, 1997/Assess:10; 1998/ACFM:15, 1999/ACFM:14; and 2000/ACFM:13). Marine habitat is measured as a relative index of the area suitable for salmon at sea, termed thermal habitat, and was derived from sea surface temperature (SST) data obtained from the National Meteorological Center of the National Ocean \&

Atmospheric Administration and previously published catch rates for salmon from research vessels fishing in the northwest Atlantic (Reddin et al. 1993 and ICES 1995/Assess:14). The SST data were determined by optimally interpolating SSTs from ships of opportunity, earth observation satellites (AVHRR), and sea ice cover data. The area used to determine available salmon habitat encompassed the northwest Atlantic north of $41^{\circ} \mathrm{N}$ latitude and west of $29^{\circ} \mathrm{W}$ longitude and includes the Davis Strait, Labrador Sea, Irminger Sea, and the Grand Bank of Newfoundland.

Thermal habitat index has been updated to include data for 2000 and January and February 2001 year data. Two periods of decline are identified (1980 to 1984 and 1988 to 1995) in the February index (Table 5.6.1.1 and Figure 5.6.1.1). The habitat index for February increased slightly (3\%) in 2001 from 1,634 to 1,685. The 2001 February value is close to the long-term mean of 1,653.

The lagged spawner variable used in the model is an estimate of the 2 SW parental stock of the PFA. The calculation procedure is described in Section 4.2.4. Previous analyses indicated that the sum of lagged spawner components from Labrador, Newfoundland, Québec, and Scotia-Fundy and excluding Gulf and U.S. was the strongest explanatory variable for the model. Inclusion of the Gulf spawning component reduced the explanatory power of the variable.

The Working Group recognized the problems inherent in the exclusion of a major component of the spawning stock contributing to the PFA. As well, spawning escapement estimates for Labrador are not available for the years 19982000. The previously formulated lagged spawner variable will therefore not be available beyond 2002 .

5.6.2 Forecast model for pre-fishery abundance of North America 2SW salmon

The model used to forecast pre-fishery abundance for 2001 was revised and results presented in Section 5.6 are based on this model. Changes to the model in 2001 and a comparison in 2001 results produced by each model are provided in Section 5.7. The 2001 forecast of pre-fishery abundance was based on an alternative modelling approach that takes into consideration that habitat acts on PFA through survival rather than on absolute abundance. The adopted model takes the following form:

$$
\text { PFA }=\text { Spawners } * \exp ^{-\left(\alpha+\mathrm{B}^{*} \text { Habitat }+\xi\right)}
$$

This model relates directly to a survival relationship of the form: $N_{t}=N_{0} e^{-Z}$.

In the case of the PFA model, the survival rate of salmon (PFA / Spawners) has a mean survival level which is modified by the habitat environmental variable. A linear form of the model fits the natural \log of PFA relative to the natural \log of spawners and habitat variables:

$$
\operatorname{Ln}(\text { PFA })=\operatorname{Ln}(\text { Spawners })+\text { Habitat }+ \text { intercept }+\xi
$$

The basis for the model is the same two predictor variables as were used from 1999 to 2000: thermal habitat for February (term H2) and lagged spawners (sum of lagged spawners from Labrador, Newfoundland, Scotia-Fundy and Quebec, term SLNQ) (ICES 1996/Assess:11). This was justified on the basis of studies showing that salmon stocks over wide geographic areas tend to have synchronous survival rates and that the winter period may be the critical stage for post-smolt survival and maturation (Scarnecchia 1989; Reddin and Shearer 1987; Friedland et al. 1993; Friedland et al. 1998). Consequently, the input data used in 2000 was updated to reflect the inclusion of the additional value and the refinement of other parameters to the time series of pre-fishery abundance estimates.

There was a significant linear relationship between the estimate PFA values and predicted values (log transformed model; $\mathrm{F}_{2,18}=70.52 ; \mathrm{r}^{2}=0.88$). All model parameters were significant at less than the 5% level (Table 5.6.2.1). Individually, the two predictor variables are also significantly related to pre-fishery abundance. February habitat accounted for approximately 10% of the total sum of squares and SLNQ spawners was approximately 80% (Table 5.6.2.1). The jackknife and simulated predicted values for pre-fishery abundance for 1978-2001 are shown in Table 5.6.1.1 and Figure 5.6.2.1. The predicted values are shown to fit the observed data quite well except in the late 1980s and 1990s when abundance was low and there are low positive residuals at the end of the time series (Figure 5.6.2.1). The forecasted estimate by simulation of pre-fishery abundance for 2001 using the February thermal habitat and lagged spawner model is about 295,700 at the 50% probability level (Table 5.6.1.1).

The model continues to be influenced primarily by the spawning stock level in the predictive relationship for pre-fishery abundance (Table 5.6.2.1). Thus, the prediction of pre-fishery abundance would be moderated during periods of high levels of habitat and low levels of spawning stock. The alternate case would be an increase in predicted pre-fishery abundance when spawning stocks were high and thermal habitat was low. The former has occurred with the predicted
values for 1998 and 1999, as thermal habitat has increased considerably, the predicted pre-fishery abundance in recent years was low due to the large decline in spawners producing them (Figure 5.6.1.1). However, two-sea-winter spawners contributing to returns have improved in the year 2001 which is contributing substantially to the increase in forecasted prefishery abundance.

Using this model to estimate the 2000 pre-fishery abundance yields a value of 225,700 , which is about 25% higher than the previously reported value of 179,900 . Note that the previously reported value was based on the additive model without errors in the lagged spawners. The inclusion of errors in the lagged spawners has been shown to increase the median value and to widen the distribution of the forecast (ICES CM 2000/ACFM:13). The change is also in part due to the addition of 1999 prefishery abundance which was not included last year as it was unavailable. This value is on the mid- to low end of the distribution of prefishery abundance. Also due to the time lag between forecasted and estimated prefishery abundance there is a delay of two years before comparison of estimated and forecasted values can be made. Consequently, any developing trend in high positive or negative residuals indicating a poor fit to recent data will be hard to detect until after the fishery. It should be noted that deterministic and simulated forecast values will show differences due to the method of calculation.

In Section 4.5.1, the relationship between the available 2 SW to 1 SW data from several rivers in Eastern Canada indicated that the 2000 forecast of prefishery abundances, i.e returns of 2 SW salmon to North America in 2001, is unlikely to be achieved. Consequently, there is considerable uncertainty regarding the projected reversal of the declining trend in prefishery abundance forecasted by the model

Stochastic Analyses

Although the exact error bounds for the estimates of prefishery abundance (NN1(i)) are unknown, minimum and maximum values of component catch and return estimates have been estimated. Simulation methods, implemented in the software package SAS (SAS Institute, 1996), were used to generate the probability density function of NN1(i). This was done as a seven-step procedure as follows:

Step 1: Annual values (1978-99) of pre-fishery abundance (NN1) were generated assuming a uniform distribution of the minimum to maximum values of input parameters $\mathrm{NC} 1, \mathrm{NC} 2$, and NR 2 .

Step 2: Annual values (1978-99) of lagged spawners (SLNQ) were generated assuming a uniform distribution of the minimum to maximum values of SLNQ

Step 3: The parameter values of the regression model of pre-fishery abundance on the February thermal habitat (H2) variable and the lagged spawners (SLNQ) variable were estimated from the data set generated in steps 1 and 2.

Step 4: A single pre-fishery forecast value for 2001 was obtained by drawing at random from a normal distribution defined by the mean forecast value and the mean square error of the estimate (for a single prediction) from the regression statistics. The normal distribution was used because the error structure of the regression (after log transforamtion) is assumed to be normal.

Step 5: Step 4 was repeated 1,000 times to generate a vector of forecast values from an individual regression fit.

Step 6: Steps 1 to 5 were repeated 1,000 times to generate $1,000,000$ predictions (1,000 times 1,000) of pre-fishery abundance. This resampling incorporates the uncertainty of the input parameters (step 1 and 2) and the unexplained variance in pre-fishery abundance from the regression (step 5).

Step 7: The probability profile of these stochastic realizations (in 5% intervals) of the pre-fishery abundance forecast was generated from the vector of pre-fishery abundance forecast values obtained in step 6 (Table 5.6.2.2).

These estimates will be used to develop risk analysis and catch advice presented in Section 5.6.3 and 5.6.4. Managers may use this information to determine the relative risks borne by the stock (i.e., not meeting spawning requirements) versus the fishery (e.g., reduced short-term catches).

5.6.3 Development of catch options for 2001

Atlantic salmon are managed with the objective of ensuring adequate numbers of spawners in individual rivers. A composite spawning requirement for the North American 2 SW stock complex was developed by summing the spawning
requirements of Salmon Fishing Areas in Canada and river basins within the USA. Details on the methodology to estimate and update the spawning requirements are provided in (ICES 1996/Assess:11) and in Section 4.4 of this report. With these data, it is possible to compute an allowable harvest. This procedure is unchanged from the previous assessment. Previously, NASCO considered all salmon above the conservation requirement as being available for harvest.

The fishery allocation for West Greenland is for 1SW fisheries in 2001, whereas the allocation for North America can be harvested in fisheries on 1SW salmon in 2001 and/or in fisheries on 2SW salmon in 2002. To achieve spawning requirements, a pool of fish must be set aside prior to fishery allocation in order to meet spawning requirements and allow for natural mortality in the intervening months between the fishery and return to river. Thus, 170,286 pre-fishery abundance fish must be reserved $\left(152,548 / \exp ^{\left(-.01^{* 11)}\right)}\right.$ to ensure achievement of the requirement after natural mortality.

Quota computation for the 2001 fishery requires an estimate of pre-fishery abundance [NN1], stock composition by continent [PropNA], mean weights of North American and European 1SW salmon [WT1SWNA and WT1SWE, respectively], and a correction factor for the expected sea-age composition of the total landings [ACF]. Exponentially smoothed values utilising data collected during the 1995-99 fisheries are summarised below.

Parameter	
	Value
PropNA	0.779
WT1SWNA	2.954
WT1SWE	2.990
ACF	1.049

Greenland quota options are presented for the 25% and 75% cumulative probability levels of PFA (Table 5.6.2.2, Table 5.6.3.1, Appendix 6). The probability distribution provides a measure of the chance that the PFA value would be lower than the value considered. Between the 25% and 75% probability level and at the Fna of 0.4 quota options range from 28 to 467 t with a median value of 200 t .

Growth of salmon through the fishing season can significantly affect the total number of fish harvested under a fixed quota. A sensitivity analysis was conducted to evaluate the effect of salmon growth in August and September on the total number of fish harvested under a theoretical 200 mt quota (Figure 5.6.3.1). This analysis shows that the number of fish harvested under a fixed quota declines significantly as the median date of the fishery is delayed through August and September.

5.6.4 Risk assessment of catch options for 2001

The provision of catch advice in a risk framework involves the incorporation of the uncertainty in all the factors used to develop the catch options. The method is described in more detail in Section 2.3.1 and 2.3.3. Annual variations in uncertainty result in differing assessments and differing levels of precision. The risk analysis plots are calculated for consideration of the 2001 fishery in West Greenland.

The pre-fishery abundance of salmon in 2001 is predicted to be moderate relative to historic levels (Figure 5.6.4.1). The risk analysis results suggest a moderate risk that the returns of 2SW salmon to North America in 2002 will be below the conservation requirement, even in the absence of any fisheries on this age group in Greenland in 2001 (Figure 5.6.4.2).

The risk analysis performed considers the most optimistic scenario of equal production rates in all six stock areas of North America. The reality is that the stock status differs greatly within North America and that the expected returns of salmon to the USA and Scotia Fundy areas will be severely below their respective conservation requirements of this area. In the USA, the escapement for the entire area has never been above 3000 spawners since 1992, no better than 10% of the requirement (Table 4.2.4.1). Similarly, the Scotia-Fundy area lagged spawners have been less than 10,000 fish over the last ten years (Table 4.2.4.4). If all stocks were at their spawner requirements, the U.S.A. stocks would be expected to produce almost 20% of the 2 SW production from North America while the Scotia-Fundy stock is expected to produce just over 16% of the total (Figure 4.2.4.5). Under the current levels of spawning escapement, recruitment to USA. rivers are not expected to be more than 2% of the total PFA, and Scotia-Fundy no better than 10% of the present PFA (Figure 4.2.4.5). The majority of the non-maturing 1SW salmon in the Northwest Atlantic in 2001 are expected to return principally to the other areas, Quebec, Gulf, Labrador and Newfoundland (Figure 4.2.4.5). With this consideration, the risk analysis applies more appropriately to these four areas while the probability of the Scotia-Fundy area meeting its conservation requirement is very likely near zero and is zero for the USA stocks. These differences in anticipated relative production should be considered in the risk analysis for the coming years in an attempt to provide a more realistic evaluation and useful analysis for guiding fisheries management.

The Working Group concludes that the North American stock complex of non-maturing salmon remains in tenuous condition. Increased spawning escapements to rivers of some areas of eastern North America resulted in improved abundance of the juvenile life stages, and perhaps now at adult life stages. Despite the closure of Canadian and West Greenland commercial fisheries, sea survival of adults returning to rivers has not improved and in some areas has declined further. The abundance of maturing 1SW salmon has also declined in many areas of eastern North America. Associations between 1SW returns in year i and 2 SW returns in year $i+1$ observed in several rivers in eastern Canada suggest that abundance of 2SW salmon in 2001 in eastern Canada will be similar to or less than recent years (Sections 4.5.1). Smolt production in 1999 and 2000 in monitored rivers of eastern Canada were similar to or below the average of the last five years and unless sea survival improves, the abundance of non-maturing 1SW salmon in the Northwest Atlantic is not expected to improve above the levels of the last five years.

There is little information available to confirm the possibility of an improvement in prefishery abundance in 2000 and 2001 as forecasted through modelling. Two sea winter adult returns in 2001 will provide initial indications regarding the overall abundance of non-maturing 1 SW salmon in 2000. The adoption of risk neutral quota options on the basis of predicted sharp increases in pre-fishery abundance in 2000 and 2001 provide the potential for significant overexploitation if increases in prefishery abundance are not realized. Extreme caution is urged regarding harvest decisions for 2001, and adoption of conservative harvest levels is warranted until projected increases can be confirmed. The increasing advantage associated with each additional spawner in under-seeded river systems makes a strong case for a conservative management strategy.

5.7 Changes to and Critical Assessment of the 'Model' Used to Provide Catch Advice and Impacts of Changes on the Calculated Quota

5.7.1 Changes from the 2000 assessment

The models used to predict pre-fishery abundance of the North American non-maturing stock complex and subsequent quota levels for West Greenland were revised based on exploratory work conducted by the Working Group and reported in the 1999 and 2000 reports. For the past several years, models used to predict the PFA hypothesized a linear effect of SLNQ and habitat on salmon abundance.

$$
\text { PFA }=\alpha+\beta^{*} \text { SLNQ }+\gamma^{*} \text { Habitat }+\xi
$$

An alternative approach, adopted in the 2001 assessment takes into consideration that habitat acts on PFA by mediating survival rather than on absolute abundance. The adopted model takes the following form:

$$
\text { PFA }=\quad \beta * \text { SLNQ } * \exp ^{-(\alpha+\gamma * \text { Habitat }+\xi)}
$$

This model relates directly to a survival relationship of the form:

$$
\mathrm{N}_{\mathrm{t}}=\mathrm{N}_{0} \mathrm{e}^{-\mathrm{Z}}
$$

where

- $\quad \mathrm{N}_{\mathrm{t}}$ is the abundance at time t (PFA)
- N_{0} is the abundance at time 0 (SLNQ)
- Z is the instantaneous mortality rate (at a mean level with an environmental modification)

A linear form of the model fits the natural \log of PFA relative to the natural \log of spawners and habitat variables:

$$
\ln (\mathrm{PFA})=\alpha+\beta^{\prime} * \operatorname{Ln}(\mathrm{SLNQ})+\gamma^{*} \text { Habitat }+\xi
$$

where

- ξ is assumed $\mathrm{N}(0, \sigma)$

Note that under the back-transformed model, the error structure is assumed lognormal.

The basis for the multiplicative model is two predictor variables: thermal habitat for February (term H2) and lagged spawners (sum of lagged spawners from Labrador, Newfoundland, Scotia-Fundy and Quebec, term SLNQ; ICES 1996/Assess:11), which are unchanged from the 2000 assessment.

In addition, the uncertainty in the lagged spawner and PFA variables were incorporated in the model simulations. A triangular distribution centered at the midpoints and defined by the minimum and maximum values was assumed for the uncertainty in the PFA and lagged spawner variables. Values were drawn randomly and independently for each variable, each year in the simulations. A total of 1,000 simulations were performed to generate the posterior predictive probability distributions of the PFA in year 2000. When predicting the PFA, the uncertainty in the lagged spawners for the year 2000 was also considered in the same way as for the predictor variables.

There is an important difference in distribution between the additive model used in the 2000 assessment and multiplicative models (adopted in 2001) with the latter being skewed to the origin and long tailed towards large values. Because of the underlying lognormal distribution of errors, the predicted abundance is always greater than 0 , contrary to what is given by the additive model. There is a greater cumulative probability for lower PFA levels with the multiplicative model but the distribution suggests that there is insufficient information in the data to fix an upper bound on the PFA. Adoption of the multiplicative model resolves issues related to the biological logic of the model and the prediction of unreasonable PFA values, less than 0 , generated by the additive model in previous assessments.

The multiplicative model has improved statistical fit to the two predictor variables used in previous assessments. Figure 5.7.1.1 provides a comparison of the residuals and pre-fishery abundance estimates for the additive model used in the 2000 assessment and the multiplicative model adopted in 2001. Each model provides similar estimates of pre-fishery abundance and associated residuals. The primary changes in performance of the multiplicative model adopted for 2001 relate to changes in pre-fishery abundance forecasts and characterization of uncertainty about these forecasts.

5.7.2 Impact of changes on the catch advice

Adopting the multiplicative model does result in changes to the catch advice generated. Table 5.7.2.1 provides the probability levels of the pre-fishery abundance estimates for the additive model used in the 2000 assessment. The additive model provides 2001 forecasts of 312,000 and 425,000 salmon at 25% and 75% probability levels, respectively. The multiplicative model generates prefishery abundance forecasts for 2001 of 187,700 and 463,000 salmon at the 25% and 75% probability levels, respectively (Table 5.6.2.2). The distribution of PFA forecasts generated by the multiplicative model is centered at a lower median and has a broader distribution of probability values, particularly in the end of PFA.

Table 5.7.2.2 provides quota options for 2001 at West Greenland based on results from the pre-fishery abundance estimates generated by the additive model used in the 2000 assessment. The additive model used in the 2000 assessment provides a pre-fishery abundance forecast for non-maturing 1SW salmon in 2001 of 368,685 , while the multiplicative model adopted in 2001 provides a lower forecast of 295,678 (approximately 20% lower). In comparing quota options generated by the multiplicative and additive models for a 40% portion of the surplus fishery abundance to West Greenland at a 50% probability level, the multiplicative model provides a quota option of 200 t (Table 5.6.3.1), while the additive model provides a quota option of 317 t (Table 5.7.2.2).

Alternative Spawning Stock Variable

As an alternative to the lagged spawner variable, juvenile abundance indices were considered as surrogates of potential smolt production from eastern Canada as described in Section 4.2.1. The adjustment (annual value divided by the average value of 1994 to 1998) places all the rivers on a common relative scale, temporally. The information from various rivers with juvenile surveys or smolt counts is combined into an index of smolt production reflecting the temporal variability in the juvenile production (Section 4.2.1).

The index of smolts from North America was obtained by weighting the annual river indices by the relative proportion of the conservation egg requirements (O'Connell et al. 1997) of the SFA or Zone to the total conservation egg requirements of the zones under consideration (Table 4.2.1.2). An alternative weighting incorporated the relative contribution to the 2SW spawner requirements of the six main areas within North America. This allows indices of smolt production from all areas of North America to be used but attributes weights to the area indices according to the expected contribution to 2 SW abundance.

The relative indices using alternative weighting factors all show the same general pattern of freshwater production: at about one-third the recent (1995 to 1998) average between 1971 and 1979, at about 60% of the average during 1980 to 1985 and at about average since 1986 (Figure 4.2.1.6).

A model identical to that described in sections 5.6 and 5.7 was fitted after substituting the juvenile index for the lagged spawner variable (SLNQ). The juvenile index was advanced one year to correspond to the year of PFA (i.e. the PFA of year i corresponded to the juvenile index of year i-1 which was a combination of smolt indices of year i-1 and the parr indices of year i-2).

The modeled relationship between juvenile index and PFA is negative indicating that as the juvenile index increases, PFA decreases (Figure 5.8.1). There has not been any temporal contrast in juvenile index and PFA values such that a generally increasing trend in juveniles corresponds to the generally decreasing trend in PFA over the time series examined.

In terms of the predictions for the PFA, the 2000 value has a median estimate of 120,000 fish, 50% lower than the value derived from the lagged spawner model without errors in spawners (Figure 5.8.2) (ICES CM 2000/ACFM:13). For 2001, the model provides the following predictions of PFA; median $=122,000$ fish with a $10^{\text {th }}$ to $90^{\text {th }}$ percentile range of 71,000 to 216,000 fish (Figure 5.8.2).

5.8 Concerns regarding the juvenile index

A juvenile index model is conceptually more attractive as juveniles represent a stage closer to the PFA than the lagged spawner variable used previously. Consequently, some of the noise corresponding to the stochasticity of the recruitment process between the spawner and the juveniles is removed, favoring a more direct link between the predictors and the PFA.

This point needs to be addressed because in many cases (especially until the mid 1980s) the index is based on only a few rivers, and the rivers monitored never represented more than 35% of the total area potentially producing juveniles. The number of sampling stations by river is also limited, whereas juvenile abundance is know to show small-scale spatial variations and the measurement made on each station is an estimate with an uncertainty associated with it. As a first step, a sensitivity analysis of the PFS forecast to measurement errors in juvenile indices is required before applying the index in a predictive framework for PFA abundance.

The rivers monitored for juveniles are assumed to represent the relative production levels within a broader geographic area. This assumption should be tested by examining trends in abundance where several rivers are available from a zone.

The juvenile index also assumes that parr to smolt translations are equivalent in all areas. This should also be examined where parr and smolt data sets from the same river are available. Parr size-at-age has been shown to vary annually in the Miramichi River (Section 2.4.7) and size has been shown to be an important determinant of smoltification. Consequently, increased juvenile densities may not translate directly into smolts especially where overwinter survival of large parr has been shown to be in some rivers limiting smolt production

As with the other indices of spawning stock, there is an assumption of stationarity over time in parr to smolt dynamics. Again, where data sets exist, this should be examined.

5.8.1 Alternative modelling approaches

All the models examined to date assume that the habitat, spawning stock indicators and PFA estimates are temporally independent. In reality, all these data sets are time series with autocorrelation (as evidenced in residual patterns). Models to treat time series data should be examined.

There is also the potential problem of non-stationarity in the data sets being examined. Examples from both sides of the Atlantic provide evidence of shifts in marine survival over the few decades of observations available. Models such as dynamic linear modeling would permit the integration of this information sequentially through time. It would be useful for the Working Group to review these approaches in the near future to address the various problems identified with the modeling approaches to date.

5.9 Data Deficiencies and Research Needs in the WGC area

1. Continued efforts should be made to improve the estimates of the annual catches of salmon taken for local consumption in Greenland.
2. The mean weights, sea and freshwater ages and continent of origin are essential parameters to provide catch advice for the West Greenland fishery. As these parameters are known to vary over time, the Working Group recommends that the sampling programme be continued and closely coordinated with fishery harvest plan to be executed annually in West Greenland.
3. The catch options for the West Greenland fishery are based almost entirely upon data taken from North American stocks (with the current exclusion of Labrador, see Section 4.6). In view of the evidence of a long-term decline in the European stock components contributing to this fishery (southern European non-maturing 1SW recruits) the Working Group emphasised the need for information from these stocks to be incorporated into the assessments as soon as possible.
4. Alternative models should be explored (for example different predictive variables, model formulations, univariate time series, non-parametric change-of-state analyses) to provide some index of plausibility of the quantitative forecasts.
5. Further basic research is needed on the spatial/temporal distribution and migration patterns of salmon and their predators at sea to assist in explaining variability in survival rates.
6. Samples should be obtained for DNA analysis from rivers in North America and Europe.

The status of the six stock areas should be incorporated into the analysis of risk of catch options.

Table 5.1.1. Nominal catches of salmon, West Greenland 1960-2000 (metric tons round fresh weight).

Year	Norway	Faroes	Sweden	Denmark	Greenland ${ }^{1}$	Total	Quota ${ }^{2}$
1960	-	-	-	-	60	60	-
1961	-	-	-	-	127	127	-
1962	-	-	-	-	244	244	-
1963	-	-	-	-	466	466	-
1964	-	-	-	-	1539	1539	-
1965	-3^{3}	36	-	-	825	861	-
1966	32	87	-	-	1251	1370	-
1967	78	155	-	85	1283	1601	-
1968	138	134	4	272	579	1127	-
1969	250	215	30	355	1360	2210	-
1970	270	259	8	358	1244	$2146{ }^{4}$	-
1971	340	255	-	645	1449	2689	-
1972	158	144	-	401	1410	2113	1100
1973	200	171	-	385	1585	2341	1100
1974	140	110	-	505	1162	1917	1191
1975	217	260	-	382	1171	2030	1191
1976	-	-	-	-	1175	1175	1191
1977	-	-	-	-	1420	1420	1191
1978	-	-	-	-	984	984	1191
1979	-	-	-	-	1395	1395	1191
1980	-	-	-	-	1194	1194	1191
1981	-	-	-	-	1264	1264	$1265{ }^{6}$
1982	-	-	-	-	1077	1077	$1253{ }^{6}$
1983	-	-	-	-	310	310	1191
1984	-	-	-	-	297	297	870
1985	-	-	-	-	864	864	852
1986	-	-	-	-	960	960	909
1987	-	-	-	-	966	966	935
1988	-	-	-	-	893	893	-7
1989	-	-	-	-	337	337	7
1990	-	-	-	-	274	274	-7
1991	-	-	-	-	472	472	840
1992	-	-	-	-	237	237	$258{ }^{8}$
1993	-	-	-	-	0^{5}	$0{ }^{5}$	89^{9}
1994	-	-	-	-	0^{5}	$0{ }^{5}$	$137{ }^{9}$
1995	-	-	-	-	83	83	77
1996	-	-	-	-	92	92	$174{ }^{8}$
1997	-	-	-	-	58	58	57
1998	-	-	-	-	11	11	20^{10}
1999	-	-	-	-	19	19	20^{10}
2000	-	-	-	-	21	21	20^{10}

[^11]Table 5.1.1.2. Distribution of nominal catches (metric tons), Greenland vessels.

${ }^{1}$) The fishery was suspended
+) Small catches <0.5 t
-) No commercial landings

Table 5.1.2.1. Size of biological samples and percentage (by number) of North American and European salmon in research vessel catches at West Greenland (1969-82), from commercial samples (1978-92 and 1995-97), and from local consumption samples (1998-2000).

Source	Year	Sample size		Continent of origin (\%)			
		Length	Scales	NA	$(95 \% \mathrm{CI})^{1}$	E	$(95 \% \mathrm{CI})^{1}$
Research	1969	212	212	51	$(57,44)$	49	$(56,43)$
	1970	127	127	35	$(43,26)$	65	$(75,57)$
	1971	247	247	34	$(40,28)$	66	$(72,50)$
	1972	3488	3488	36	$(37,34)$	64	$(66,63)$
	1973	102	102	49	$(59,39)$	51	$(61,41)$
	1974	834	834	43	$(46,39)$	57	$(61,54)$
	1975	528	528	44	$(48,40)$	56	$(60,52)$
	1976	420	420	43	$(48,38)$	57	$(62,52)$
	1977	-	-	45	(55	(
	$1978{ }^{2}$	606	606	38	$(41,34)$	62	$(66,59)$
	$1978{ }^{3}$	49	49	55	$(69,41)$	45	$(59,31)$
	1979	328	328	47	$(52,41)$	53	$(59,48)$
	1980	617	617	58	$(62,54)$	42	$(46,38)$
	1982	443	443	47	$(52,43)$	53	$(58,48)$
Commerc ial	1978	392	392	52	$(57,47)$	48	$(53,43)$
	1979	1653	1653	50	$(52,48)$	50	$(52,48)$
	1980	978	978	48	$(51,45)$	52	$(55,49)$
	1981	4570	1930	59	$(61,58)$	41	$(42,39)$
	1982	1949	414	62	$(64,60)$	38	$(40,36)$
	1983	4896	1815	40	$(41,38)$	60	$(62,59)$
	1984	7282	2720	50	$(53,47)$	50	$(53,47)$
	1985	13272	2917	50	$(53,46)$	50	$(54,47)$
	1986	20394	3509	57	$(66,48)$	43	$(52,34)$
	1987	13425	2960	59	$(63,54)$	41	$(46,37)$
	1988	11047	2562	43	$(49,38)$	57	$(62,51)$
	1989	9366	2227	56	$(60,52)$	44	$(48,40)$
	1990	4897	1208	75	$(79,70)$	25	$(30,21)$
	1991	5005	1347	65	$(69,61)$	35	$(39,31)$
	1992	6348	1648	54	$(57,50)$	46	$(50,43)$
	1995	2045	2045	68	$(72,65)$	32	$(35,28)$
	1996	3341	1297	73	$(76,71)$	27	$(29,24)$
	1997	794	282	80	$(84,75)$	20	$(25,16)$
Local cons.	1998	540	406	79	$(84,73)$	21	$(27,16)$
	1999	532	532	90	$(97,84)$	10	$(16,3)$
	2000	491	491	70		30	

[^12]Table 5.1.2.2. The weighted proportions and numbers of North American and European Atlantic salmon caught at West Greenland 1982-1992 and 1995-2000. Numbers are rounded to the nearest hundred fish.

	Proportion weighted by catch in number		E	
Year	NA			Numbers of Salmon caught

Table 5.1.3.1. Annual mean fork lengths and whole weights of Atlantic salmon caught at West Greenland, 1969-1992 and 1995-2000.
Fork length (cm); whole weight (kg). NA = North America; E = Europe.

Year	Whole weight (kg)									Fork length (cm)					
	Sea age \& origin									Sea age \& origin					
	1SW		2SW		PS		All sea ages		TOTAL	1SW		2SW		PS	
	NA	E	NA	E	NA	E	NA	E		NA	E	NA	E	NA	E
1969	3.12	3.76	5.48	5.80	-	5.13	3.25	3.86	3.58	65.0	68.7	77.0	80.3	-	75.3
1970	2.85	3.46	5.65	5.50	4.85	3.80	3.06	3.53	3.28	64.7	68.6	81.5	82.0	78.0	75.0
1971	2.65	3.38	4.30	-	-	-	2.68	3.38	3.14	62.8	67.7	72.0	-	-	-
1972	2.96	3.46	5.85	6.13	2.65	4.00	3.25	3.55	3.44	64.2	67.9	80.7	82.4	61.5	69.0
1973	3.28	4.54	9.47	10.00	-	-	3.83	4.66	4.18	64.5	70.4	88.0	96.0	61.5	-
1974	3.12	3.81	7.06	8.06	3.42	-	3.22	3.86	3.58	64.1	68.1	82.8	87.4	66.0	-
1975	2.58	3.42	6.12	6.23	2.60	4.80	2.65	3.48	3.12	61.7	67.5	80.6	82.2	66.0	75.0
1976	2.55	3.21	6.16	7.20	3.55	3.57	2.75	3.24	3.04	61.3	65.9	80.7	87.5	72.0	70.7
1977	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1978	2.96	3.50	7.00	7.90	2.45	6.60	3.04	3.53	3.35	63.7	67.3	83.6	-	60.8	85.0
1979	2.98	3.50	7.06	7.60	3.92	6.33	3.12	3.56	3.34	63.4	66.7	81.6	85.3	61.9	82.0
1980	2.98	3.33	6.82	6.73	3.55	3.90	3.07	3.38	3.22	64.0	66.3	82.9	83.0	67.0	70.9
1981	2.77	3.48	6.93	7.42	4.12	3.65	2.89	3.58	3.17	62.3	66.7	82.8	84.5	72.5	-
1982	2.79	3.21	5.59	5.59	3.96	5.66	2.92	3.43	3.11	62.7	66.2	78.4	77.8	71.4	80.9
1983	2.54	3.01	5.79	5.86	3.37	3.55	3.02	3.14	3.10	61.5	65.4	81.1	81.5	68.2	70.5
1984	2.64	2.84	5.84	5.77	3.62	5.78	3.20	3.03	3.11	62.3	63.9	80.7	80.0	69.8	79.5
1985	2.50	2.89	5.42	5.45	5.20	4.97	2.72	3.01	2.87	61.2	64.3	78.9	78.6	79.1	77.0
1986	2.75	3.13	6.44	6.08	3.32	4.37	2.89	3.19	3.03	62.8	65.1	80.7	79.8	66.5	73.4
1987	3.00	3.20	6.36	5.96	4.69	4.70	3.10	3.26	3.16	64.2	65.6	81.2	79.6	74.8	74.8
1988	2.83	3.36	6.77	6.78	4.75	4.64	2.93	3.41	3.18	63.0	66.6	82.1	82.4	74.7	73.8
1989	2.56	2.86	5.87	5.77	4.23	5.83	2.77	2.99	2.87	62.3	64.5	80.8	81.0	73.8	82.2
1990	2.53	2.61	6.47	5.78	3.90	5.09	2.67	2.72	2.69	62.3	62.7	83.4	81.1	72.6	78.6
1991	2.42	2.54	5.82	6.23	5.15	5.09	2.57	2.79	2.65	61.6	62.7	80.6	82.2	81.7	80.0
1992	2.54	2.66	6.49	6.01	4.09	5.28	2.86	2.74	2.81	62.3	63.2	83.4	81.1	77.4	82.7
1995	2.37	2.67	6.09	5.88	3.71	4.98	2.45	2.75	2.56	61.0	63.2	81.3	81.0	70.9	81.3
1996	2.63	2.86	6.50	6.30	4.98	5.44	2.83	2.90	2.88	62.8	64.0	81.4	81.1	77.1	79.4
1997	2.57	2.82	7.95	6.11	4.82	6.90	2.63	2.84	2.71	62.3	63.6	85.7	84.0	79.4	87.0
1998	2.72	2.83	6.44	-	3.28	4.77	2.76	2.84	2.78	62.0	62.7	84.0	-	66.3	76.0
1999	3.02	3.03	7.59	-	4.20	-	3.09	3.03	3.08	63.8	63.5	86.6	-	70.9	-
2000	2.47	2.81	-	-	2.58	-	2.47	2.81	2.57	60.7	63.2	-	-	64.7	-

Table 5.1.3.2. River age distribution (\%) for all North American and European origin salmon caught at West Greenland, 1968-1992 and 1995-2000.

River age								
Year	1	2	3	4	5	6	7	8
North American								
1968	0.3	19.6	40.4	21.3	16.2	2.2	0.0	0.0
1969	0.0	27.1	45.8	19.6	6.5	0.9	0.0	0.0
1970	0.0	58.1	25.6	11.6	2.3	2.3	0.0	0.0
1971	1.2	32.9	36.5	16.5	9.4	3.5	0.0	0.0
1972	0.8	31.9	51.4	10.6	3.9	1.2	0.4	0.0
1973	2.0	40.8	34.7	18.4	2.0	2.0	0.0	0.0
1974	0.9	36.0	36.6	12.0	11.7	2.6	0.3	0.0
1975	0.4	17.3	47.6	24.4	6.2	4.0	0.0	0.0
1976	0.7	42.6	30.6	14.6	10.9	0.4	0.4	0.0
1977	-	-	-	-	-	-	-	-
1978	2.7	31.9	43.0	13.6	6.0	2.0	0.9	0.0
1979	4.2	39.9	40.6	11.3	2.8	1.1	0.1	0.0
1980	5.9	36.3	32.9	16.3	7.9	0.7	0.1	0.0
1981	3.5	31.6	37.5	19.0	6.6	1.6	0.2	0.0
1982	1.4	37.7	38.3	15.9	5.8	0.7	0.0	0.2
1983	3.1	47.0	32.6	12.7	3.7	0.8	0.1	0.0
1984	4.8	51.7	28.9	9.0	4.6	0.9	0.2	0.0
1985	5.1	41.0	35.7	12.1	4.9	1.1	0.1	0.0
1986	2.0	39.9	33.4	20.0	4.0	0.7	0.0	0.0
1987	3.9	41.4	31.8	16.7	5.8	0.4	0.0	0.0
1988	5.2	31.3	30.8	20.9	10.7	1.0	0.1	0.0
1989	7.9	39.0	30.1	15.9	5.9	1.3	0.0	0.0
1990	8.8	45.3	30.7	12.1	2.4	0.5	0.1	0.0
1991	5.2	33.6	43.5	12.8	3.9	0.8	0.3	0.0
1992	6.7	36.7	34.1	19.1	3.2	0.3	0.0	0.0
1995	2.4	19.0	45.4	22.6	8.8	1.8	0.1	0.0
1996	1.7	18.7	46.0	23.8	8.8	0.8	0.1	0.0
1997	1.3	16.4	48.4	17.6	15.1	1.3	0.0	0.0
1998	4.0	35.1	37.0	16.5	6.1	1.1	0.1	0.0
1999	2.7	23.5	50.6	20.3	2.9	0.0	0.0	0.0
2000	3.2	26.6	38.6	23.4	7.6	0.6	0.0	0.0
Mean	3.9	34.8	37.3	16.7	6.1	1.1	0.1	0.0

Table 5.1.3.2. Continued
European River age

Year	1	2	3	4	5	6	7	8
1968	21.6	60.3	15.2	2.7	0.3	0.0	0.0	0.0
1969	0.0	83.8	16.2	0.0	0.0	0.0	0.0	0.0
1970	0.0	90.4	9.6	0.0	0.0	0.0	0.0	0.0
1971	9.3	66.5	19.9	3.1	1.2	0.0	0.0	0.0
1972	11.0	71.2	16.7	1.0	0.1	0.0	0.0	0.0
1973	26.0	58.0	14.0	2.0	0.0	0.0	0.0	0.0
1974	22.9	68.2	8.5	0.4	0.0	0.0	0.0	0.0
1975	26.0	53.4	18.2	2.5	0.0	0.0	0.0	0.0
1976	23.5	67.2	8.4	0.6	0.3	0.0	0.0	0.0
1977	-	-	-	-	-	-	-	-
1978	26.2	65.4	8.2	0.2	0.0	0.0	0.0	0.0
1979	23.6	64.8	11.0	0.6	0.0	0.0	0.0	0.0
1980	25.8	56.9	14.7	2.5	0.2	0.0	0.0	0.0
1981	15.4	67.3	15.7	1.6	0.0	0.0	0.0	0.0
1982	15.6	56.1	23.5	4.2	0.7	0.0	0.0	0.0
1983	34.7	50.2	12.3	2.4	0.3	0.1	0.1	0.0
1984	22.7	56.9	15.2	4.2	0.9	0.2	0.0	0.0
1985	20.2	61.6	14.9	2.7	0.6	0.0	0.0	0.0
1986	19.5	62.5	15.1	2.7	0.2	0.0	0.0	0.0
1987	19.2	62.5	14.8	3.3	0.3	0.0	0.0	0.0
1988	18.4	61.6	17.3	2.3	0.5	0.0	0.0	0.0
1989	18.0	61.7	17.4	2.7	0.3	0.0	0.0	0.0
1990	15.9	56.3	23.0	4.4	0.2	0.2	0.0	0.0
1991	20.9	47.4	26.3	4.2	1.2	0.0	0.0	0.0
1992	11.8	38.2	42.8	6.5	0.6	0.0	0.0	0.0
1995	14.8	67.3	17.2	0.6	0.0	0.0	0.0	0.0
1996	15.8	71.1	12.2	0.9	0.0	0.0	0.0	0.0
1997	4.1	58.1	37.8	0.0	0.0	0.0	0.0	0.0
1998	28.6	60.0	7.6	2.9	0.0	1.0	0.0	0.0
1999	27.7	65.1	7.2	0.0	0.0	0.0	0.0	0.0
2000	36.5	46.7	13.1	2.9	0.7	0.0	0.0	0.0
Mean	20.2	60.9	16.2	2.4	0.3	0.0	0.0	0.0

Table 5.1.3.3. Sea-age composition (\%) of samples from commercial catches at West Greenland, 1985-2000.

	North American			European		
Year	Srevious		Previous spawners			
1985	92.5	7.2	0.3	95.0	4.7	0.4
1986	95.1	3.9	1.0	97.5	1.9	0.6
1987	96.3	2.3	1.4	98.0	1.7	0.3
1988	96.7	2.0	1.2	98.1	1.3	0.5
1989	92.3	5.2	2.4	95.5	3.8	0.6
1990	95.7	3.4	0.9	96.3	3.0	0.7
1991	95.6	4.1	0.4	93.4	6.5	0.2
1992	91.9	8.0	0.1	97.5	2.1	0.4
1993	-	-	-	-	-	-
1994	-	-	-	-	-	-
1995	96.8	1.5	1.7	97.3	2.2	0.5
1996	94.1	3.8	2.1	96.1	2.7	1.2
1997	98.2	0.6	1.2	99.3	0.4	0.4
1998^{1}	96.8	0.5	2.7	99.4	0.0	0.6
1999^{1}	96.8	1.2	2.0	100.0	0.0	0.0
2000^{1}	97.4	0.0	2.6	100.0	0.0	0.0

${ }^{1}$ Catches for local consumption only.
Table 5.4.1. Numbers of salmon returning to home waters provided no fishing took place at Greenland. The average number of potentially returning salmon per ton caught in Greenland is also given.

Year	1993	1994	1995	1996	1997	1998	1999	2000
Nominal catch at Greenland (tons) ${ }^{1}:$	89	137	83	92	58	11	19	21
Proportion of NA fish in catch (PropNA):	0.540	0.540	0.680	0.732	0.796	0.785	0.900	0.700
Proportion of EU fish in catch (PropEU):	0.460	0.460	0.320	0.268	0.204	0.215	0.100	0.300
Mean weight, NA fish, all sea ages (kg):	2.655	2.655	2.450	2.830	2.630	2.760	3.090	3.020
Mean weight, EU fish, all sea ages (kg):	2.745	2.745	2.750	2.900	2.840	2.840	3.030	2.992
Mean weight of all sea ages (NA+EU fish):	2.696	2.696	2.546	2.849	2.673	2.777	3.084	3.012
Proportion of 1SW fish in catch:	0.919	0.919	0.968	0.941	0.982	0.968	0.968	0.968
Catch of 1SW NA fish:	16635	25607	22300	22392	17238	3029	5357	4712
Catch of 1SW EU fish:	13706	21098	9349	8000	4091	806	607	2038
Natural mortality during migration:	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Additional fish if no fishery at Greenland:							$\mathbf{4 2 6 3}$	
2SW fish returning to NA (numbers):	$\mathbf{1 5 0 5 2}$	$\mathbf{2 3 1 7 1}$	$\mathbf{2 0 1 7 7}$	$\mathbf{2 0 2 6 2}$	$\mathbf{1 5 5 9 8}$	$\mathbf{2 7 4 0}$	$\mathbf{4 8 4 7}$	$\mathbf{4 2 6 3}$
2SW fish returning to EU (numbers):	$\mathbf{1 2 4 0 2}$	$\mathbf{1 9 0 9 1}$	$\mathbf{8 4 5 9}$	$\mathbf{7 2 3 9}$	$\mathbf{3 7 0 2}$	$\mathbf{7 2 9}$	$\mathbf{5 4 9}$	$\mathbf{1 8 4 4}$

Average number of salmon potentially returning to home waters per ton caught in
Greenland:
2SW fish returning to NA (numbers per ton, average of 1993-2000):
2SW fish returning to EU (numbers per ton, average of 1993-2000):

${ }^{1}$) Figures for 1993 and 1994 correspond to calculated quotas.

Table 5.6.1.1. Pre-fishery abundance estimates, thermal habitat index for February based on sea surface temperature (H2), lagged spawner index for North America excluding Gulf and US spawners (SLNQ), results of a jacknife cross-validation of the multiplicative forecast model, and simulated forecasts.

Year	Pre-fishery abundance			Thermal Habitat February (H2)	Lagged spawners (SLNQ)			Jacknife Cross-validation	
	Low	High	Mid-point		Low	High	Mid-point	Prediction	Residuals
1971	578,974	726,622	652,798	2,011					
1972	557,790	732,940	645,365	1,990					
1973	672,631	867,684	770,157	1,708					
1974	623,907	800,542	712,224	1,862					
1975	710,252	904,626	807,439	1,827					
1976	610,799	826,787	718,793	1,676					
1977	506,919	667,787	587,353	1,915					
1978	288,792	371,342	330,067	1,951	35,453	81,767	58,610	389,220	-59,153
1979	630,091	831,411	730,751	2,058	42,626	94,677	68,652	664,772	65,978
1980	550,336	734,489	642,412	1,823	43,173	97,017	70,095	590,190	52,222
1981	527,318	684,352	605,835	1,912	43,268	97,575	70,421	658,224	-52,389
1982	439,982	567,499	503,741	1,703	43,381	98,372	70,876	563,713	-59,972
1983	236,377	337,388	286,882	1,416	40,413	91,967	66,190	364,762	-77,880
1984	245,424	347,471	296,448	1,257	37,647	84,066	60,856	233,165	63,283
1985	399,028	539,102	469,065	1,410	39,344	83,435	61,389	248,799	220,266
1986	435,090	575,673	505,381	1,688	40,567	91,757	66,162	442,148	63,233
1987	398,168	527,764	462,966	1,627	36,636	88,818	62,727	353,451	109,515
1988	317,609	423,746	370,678	1,698	37,131	83,891	60,511	339,966	30,712
1989	241,044	345,930	293,487	1,642	41,955	86,459	64,207	400,432	-106,945
1990	218,191	296,332	257,262	1,503	40,948	81,667	61,307	304,340	-47,078
1991	249,798	349,917	299,857	1,357	37,582	72,966	55,274	178,975	120,882
1992	143,925	216,262	180,094	1,381	35,596	71,384	53,490	179,100	994
1993	95,352	179,428	137,390	1,252	38,387	79,232	58,810	244,899	-107,509
1994	110,985	219,159	165,072	1,329	38,395	75,762	57,079	215,540	-50,467
1995	120,523	202,958	161,740	1,311	36,740	69,943	53,342	168,198	-6,458
1996	104,675	163,182	133,928	1,470	33,492	61,600	47,546	134,001	-72
1997	69,083	123,311	96,197	1,594	29,876	55,241	42,558	107,109	-10,912
1998	58,751	126,207	92,479	1,849	25,629	50,461	38,045	91,858	621
1999	57,800	130,436	94,118	1,741	25,658	52,637	39,147	91,254	2,864
2000				1,634	32,960	68,185	50,572	225,708 ${ }^{1}$	
2001				1,685	37,414	81,709	59,561	295,678 ${ }^{1}$	

[^13]Table 5.6.2.1 Results of analysis of prefishery abundance (NN1) on February thermal habitat (H2) and North American spawners (SLNQ) from the multiplicative model, 1978-99.

General Linear Models Procedure

Dependent Variable: LNN1

Source	DF	Sum of Squares	Mean Square	F Value	Pr >
Model	2	7.83182436	3.91591218	70.52	

R-Square
0.881287

Source	DF	Type I SS	Mean Square	F Value	Pr > F
H2	1	1.32987051	1.32987051	23.95	0.0001
LN (SLNQ)	1	6.50195385	6.50195385	117.10	$<.0001$
Source	DF	Type III SS	Mean Square	F Value	Pr $>\boldsymbol{F}$
H2	1	0.80611073	0.80611073	14.52	0.0012
LN(SLNQ)	1	6.50195385	6.50195385	117.10	<.0001

Regression statistics

Parameter	Estimate	Standard Error	t Value	Pr $>\|t\|$
INTERCEPT				
H2	-22.69738188	3.11673567	-7.28	$<.0001$
LN (SLNQ)	0.00082736	0.00021714	3.81	0.0012
	3.09084662	0.28562819	10.82	$<.0001$

Table 5.6.2.2 Estimate of pre-fishery abundance in 2001. forecasted by H2-SLNQ multiplicative model of probability levels between 25 and 75%.
Cumulative Density

Function \%	Forecast
25	187,700
30	207,784
35	228,189
40	249,433
45	271,859
50	295,678
55	321,537
60	350,175
65	382,308
70	418,919
75	462,797

Table 5.6.3.1 Quota options (mt) for 2001 at West Greenland based on H2-SLNQ multiplicative forecasts of fishery abundance. Proportion at West Greenland refers to the fraction of harvestable surplus allocated to the West Greenland fishery. The probability level refers to the pre-fishery abundance levels derived from the probability density function.

Prob.	Proportion at West Greenland (Fna)												
level	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1		
25	0	7	14	21	28	35	42	49	56	63	69		
30	0	15	30	45	60	75	90	105	120	135	150		
35	0	23	46	69	92	116	139	162	185	208	231		
40	0	32	63	95	126	158	190	221	253	284	316		
45	0	41	81	122	162	203	243	284	324	365	405		
50	0	50	100	150	200	250	300	350	400	450	500		
55	0	60	121	181	241	302	362	423	483	543	604		
60	0	72	144	215	287	359	431	503	574	646	718		
65	0	85	169	254	338	423	508	592	677	761	846		
70	0	99	198	298	397	496	595	695	794	893	992		
75	0	117	233	350	467	584	700	817	934	1,051	1,167		

Sp. res $=$	170,286
Prop NA $=$	0.779
WT1SWNA $=$	2.954
WT1SWE $=$	2.990
ACF $=$	1.049

Table 5.7.2.1 Estimate of pre-fishery abundance in 2001. forecasted by H2-SLNQ additive model of probability levels between 25 and 75\%.

Cumulative Density	
Function \%	Forecast
25	312,426
30	324,966
35	336,579
40	347,550
45	358,165
50	368,685
55	379,156
60	389,811
65	400,880
70	412,467
75	424,968

Table 5.7.2.2 Quota options (mt) for 2001 at West Greenland based on H2-SLNQ additive model forecasts of fishery abundance. Proportion at West Greenland refers to the fraction of harvestable surplus allocated to the West Greenland fishery. The probability level refers to the pre-fishery abundance levels derived from the probability density function.

Prob.	Proportion at West Greenland (Fna)											
level	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		
2	0	57	113	170	227	284	340	397	454	511		
30	0	62	123	185	247	309	370	432	494	556		
35	0	66	133	199	265	332	398	465	531	597		
40	0	71	141	212	283	354	424	495	566	637		
45	0	75	150	225	300	375	450	525	600	675		
50	0	79	158	238	317	396	475	554	633	713		
55	0	83	167	250	333	417	500	583	667	750		
60	0	88	175	263	350	438	526	613	701	788		
65	0	92	184	276	368	460	552	644	736	828		
70	0	97	193	290	387	483	580	677	773	870		
75	0	102	203	305	407	508	610	711	813	915		

Sp. res $=$	170,286
Prop NA $=$	0.779
WT1SWNA $=$	2.954
WT1SWE =	2.990
ACF $=$	1.049

Figure 5.1.2.1 Numbers of North American and European Atlantic salmon caught at West Greenland 1982-1992 and 1995-2000.

Figure 5.1.3.1. Mean weight (kg , fresh round weight) of 1 SW Atlantic salmon of North American and European origin sampled at West Greenland from 1969 to 2000

Figure 5.3.1. The proportion (with confidence intervals) of North American salmon for (A) NAFO Divisions and (B) for years 1987-1999.

Figure 5.3.2. The proportions of North American salmon in samples at West Greenland and in the total pre-fishery abundance of North American and southern European 1SW non-maturing salmon, 1971-1999.

Figure 5.4.1 Extant exploitation of the non-maturing component of North American salmon as 1SW North America and Greenland from the run reconstruction statistics.

Fig. 5.6.1.1. Thermal habitat index for Frebruary (H2) and lagged spawners (SLNQ).

Figure 5.6.2.1. Observed estimates, jackknifed historical predictions, and deterministic forecasts (upper Panel A) of prefishery abundance from the multiplicative model. The residual pattern from the jackknifed predictions is shown in the lower panel (Panel B).

Figure 5.6.3.1. Number of fish yielding a 200 mt quota, relative to changes in the median date of the fishery and associated changes in mean weight of fish harvested. Equations presented by Jensen (1990) were used to calculate daily changes in mean weight.

Figure 5.6.4.1. Exact (upper) and cumulative (lower) posterior predicted probability distributions of the PFA in year 2001 based on the multiplicative model of survival with errors in the PFA and SNLQ variables. The distributions were generated from 50,000 Monte Carlo simulations.

Figure 5.6.4.2. Risk analysis (probability of meeting the conservation requirement simultaneously in the six stock areas in North America) of catch options on the prefishery 1SW non-maturing salmon component in 2001.

Figure 5.7.1.1. Observed estimates, jacknifed historical predictions (upper panel) of pre-fishery abundance. The residual pattern for the additive and multiplicative forecast models is shown in the lower panel.

Figure 5.8.1. Association between the juvenile index and the estimated PFA for North America, 1978 to 1999.

Figure 5.8.2. PFA predictions from the juvenile index model for 2000 (upper) and 2001 (lower).

The Working Group recommends that it should meet in 2002 to address questions posed by ACFM, including those posed by NASCO. No invitation to host the meeting was proposed to the Working Group. Therefore, the Working Group should convene from the $3^{\text {rd }}$ to the $13^{\text {th }}$ of April 2002 in Copenhagen, Denmark. It is strongly recommended by the Working Group that this period is adhered in order to provide sufficient time to adequately review and complete the report

The Working Group recognises the problems with long meetings is considering solutions to increase the efficiency and reduce the length of the meeting. A large amount of time is spent updating tables and figures from the previous year's report. It suggested that ICES establish a WGNAS web site giving the opportunity for all subgroups (NEAC, NAC, West Greenland) to update as much as possible (tables, figures and the texts associated to them) prior to the working group meeting. The Chairman would provide directions for the updating process each year. It is also suggested that the overall size of the report be shortened by removing some long series of historical data, appendices, etc, which could be more efficiently held and made available on the web. This process should be carried out concurrently with the present arrangements recommended for the Working group meeting above. Subsequently, the overall length of the meeting can be shortened based on the time being saved by adopting the web-site procedure.

6.2 Data deficiencies and research needs.

Recommendations from Section 2- Atlantic salmon in the North Atlantic Area:

1. Investigate the by-catch issue to assess the possible impact on post-smolt survival in pelagic fisheries (2.4.4.1).
2. Survey and investigat infestation rates of salmon lice and their influence on subsequent returns rates. (2.4.4.2).
3. Evaluation of the maturity schedule method particularly as it relates to the sensitivities of the survival estimates to the sex ratio values of the smolts and the assumption of equal survival of male and female salmon (2.4.6).

Recommendations from Section 3- Fisheries and Stocks from the North East Atlantic Commission Area:

1. More research into the biology of salmon in the marine phase is required. This includes the need to monitor trends in marine mortality for a wider range of stocks than at present, and identify causes for mortality. It should also include the examination of relationships between postsmolt growth and marine mortality. The use of data storage tags will significantly improve the information on the marine life history of salmon. $(2.4,3.9)$
2. Research on postsmolts in the early marine phase should be continued and expanded. This should include studies of interactions with parasites and assessments of the impact of sea lice on postsmolts. (2.4,3.9)
3. A Study Group is required to quantitatively assess the level of bycatches of postsmolts in pelagic fisheries. It is recommended that such a group should comprise both those with information relating to postsmolt distribution and those who can provide information on the activity and distribution of pelagic fisheries. $(2.4,3.9)$
4. A coordinated programme of tagging and release of farmed salmon should be undertaken to improve knowledge on the marine survival and migratory behaviour of these fish (2.4)
5. If the commercial fishery at Faroes recommences, it is recommended that biological samples from the salmon caught should be collected. Historical sample from this fishery information should continue to be analysed.(3.1)

Recommendations from Section 4- Fisheries and Stocks from the North American Commission Area:

1. Estimates of total returns to Labrador no longer exist. There is a critical need to develop alternate methods to derive estimates of salmon returns and develop habitat-based spawner requirements in Labrador, and to monitor salmon returns in the Ungava regions of Québec. (4.2.2; 4.2.4)
2. There is a need to investigate changes in the biological characteristics (mean weight, sex ratio, sea-age composition) of returns to rivers, spawning stocks of Canadian and US rivers, and the harvest in aboriginal fisheries in Labrador.

These data and new information on measures of habitat and stock recruitment are necessary to re-evaluate existing estimates of spawner requirements in Canada and USA and for use in the run reconstruction model. (4.2.2; 4.2.3; 4.4)
3. There is a requirement for additional smolt-to-adult survival rates for wild salmon. As well, sea survival rates of wild salmon from rivers stocked with hatchery smolts should be examined to determine if hatchery return rates can be used as an index of sea survival of wild salmon elsewhere. (4.2.5)
4. Further basic research is needed on the spatial and temporal distribution of salmon and their predators at sea to assist in explaining variability in survival rates. (4.2.3; 4.2.5)
5. Return estimates for the few rivers (Annapolis, Cornwallis and Gaspareau) in SFA 22 that do contribute to distant fisheries should be developed and, when these are available, the SFA 22 spawning requirements for these rivers (476 fish) be included in the total.(4.4)
6. A consistent approach to estimating returns is needed, to incorporate broodstock, if offspring from such broodstock are stocked back into the management area from which their parents originated. (4.1.3)
7. Accounting of escaped-farmed salmon from North America indicates a high but undocumented mortality. Scale analysis of salmon captured at West Greenland indicated an infrequent appearance of escaped-farmed salmon. In order to substantiate this conclusion farmed-salmon need to be included in background genetic analysis and the data re-examined for the presence of escaped-farmed salmon of North American origin.

Recommendations from Section 5- Atlantic Salmon in the West Greenland Commission Area:

7. Continued efforts should be made to improve the estimates of the annual catches of salmon taken for local consumption in Greenland. (5.1)
8. The mean weights, sea and freshwater ages and continent of origin are essential parameters to provide catch advice for the West Greenland fishery. As these parameters are known to vary over time, the Working Group recommends that the sampling programme be continued and closely coordinated with fishery harvest plan to be executed in West Greenland. (5.6)
9. The Working Group recommends that other indices of change, i.e. changes in age composition, size at age and sea survival, should also be included in the evaluation of the effects on European and North American stocks of the West Greenlandic management measures since 1993. (5.4)
10. The catch options for the West Greenland fishery are based almost entirely upon data taken from North American stocks (with the current exclusion of Labrador, see Section 4.6). In view of the evidence of a long-term decline in the European stock components contributing to this fishery (southern European non-maturing 1SW recruits) the Working Group emphasised the need for information from these stocks to be incorporated into the assessments as soon as possible. $(5.4,3.8)$
11. The Working Group recommends that an evaluation be conducted on the present reliability of the PFA estimate. An initial approach is to determine what fraction of the PFA estimate is directly based on catches and assessed returns (hard data), and what fraction results from less certain information such as scaling factors for potential productive habitat. (5.7)
12. Alternative models should be explored (for example different predictive variables, model formulations, univariate time series, non-parametric change-of-state analyses) to provide some index of plausibility of the quantitative forecasts. (5.6)

Further basic research is needed on the spatial/temporal distribution and migration patterns of salmon in relation to sea surface temperature and their predators at sea to assist in explaining variability in survival rates. (5.6)

REPORT OF THE

WORKING GROUP ON NORTH ATLANTIC SALMON
 Part three - Appendices

Aberdeen, Scotland

2-11 April 2001

This report is not to be quoted without prior consultation with the General Secretary. The document is a report of an expert group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.

International Council for the Exploration of the Sea
Conseil International pour l'Exploration de la Mer

TABLE OF CONTENTS
SectionPage
APPENDIX 1 240
APPENDIX 2 242
APPENDIX 3 246
APPENDIX 4 248
APPENDIX 6 263
APPENDIX 6 264
APPENDIX 7 265
APPENDIX 278
APPENDIX 9 290
\square
\square

APPENDIX 1

WORKING DOCUMENTS SUBMITTED TO THE WORKING GROUP ON NORTH ATLANTIC SALMON, 2001
WORKING TITLES AND RELEVANT SECTIONS OF THE REPORT
Doc. No. 1 Erkinaro, J., Länsman, M., Kuusela, J., Julkunen, M. and Niemelä, E. National report for Finland: salmon fishing season in 2000

Doc. No. 2 MacLean, J.C. and G.W. Smith. National report for UK (Scotland) for the year 2000

Doc. No. 3 MacLean, J.C., Smith, G.W. and Whyte, BDM. A description of marine growth checks observed on the scales of salmon returning to Scottish homewaters between 1997 and 1999; evidence for an association between individuals in the ocean which reflects sub-catchment population structuring.

Doc. No. 4 Rowan, J., Sprankle, K., McKeon, J., Marancik, J., Rideout, S., Trial, J., Perkins and Brown, R. National Report for the United States, 2000

Doc. No. 5 Brown, R.W., Mackey, G., and Trial, J. Efforts to minimize interactions between wild and farmed salmon

Doc. No. 6 Caron , F. and Fontaine, P.M. Status of Atlantic Salmon stocks in Quebec.

Doc. No. 7 Anon. Atlantic Salmon Maritime Provinces - Overview for 2000

Doc. No. $8 \quad$ Whoriskey, F.G., Jnr. Infectious Salmon Anemia (ISA): Update on the situation in North America.

Doc. No. 9 Whoriskey, F.G., Jnr. Causes of the escape of farmed Atlantic salmon from sea cages in British Columbia and North America.

Doc. No. 10 Swansberg, E., El-Jabi, N., Chaput, G. and Caissie, D. Impact of climate change on river water temperatures and fish growth.

Doc. No. 11 Chaput, G., Caron, F., Marshall, L. and Amiro, P. Estimation of marine M for Atlantic Salmon

Doc. No. 12 Prusov, S.V., Prischepa, B.F., Krylova, S.S., Antonova, V.P and Bugaev, V.F. Atlantic Salmon fisheries and status of stocks in Russia - National report for 2000.

Doc. No. 13 Ó Maoiléidigh, N., A. Cullen, T. McDermott, N. Bond, D. McLaughlin, and G. Rogan. National Report for Ireland - The 2000 salmon season

Doc. No. 14 Ó Maoiléidigh, N., A. Cullen, T. McDermott, N. Bond, and D. McLaughlin. Review of Irish salmon aquaculture escapee data.

Doc. No. 15\&16 Holme, M., Holst, J.C, Hansen, L.P.H. and Nilsen, F. Salmon surveys in the NE Atlantic in 2000 -Post-smolt distribution and status of salmon lice investigations.

Doc. No. 17 Anon. Annual Assessment of Salmon stocks and Fisheries in England and Wales, 2000. Report prepared by CEFAS and the EA, UK.

Doc. No. 18 Potter, E.C.E. Annual updating and running instructions for the NEAC Area Pre-fishery Abundance and Conservation Limit model.

Doc. No. 19 Potter, E.C.E. Sensitivity analysis for NEAC area pre-fishery abundance assessment.
Doc. No. 20 Potter, E.C.E and Nicholson, M. A simple model to estimate biological reference points from noisy stock-recruitment data.

Hansen, L.P., Fiske, P., Holme, M., Jensen, A.J., Johnsen, B.O., Arnekleiv, J.V. and Hvidsten, N.A. Atlantic salmon; national report for Norway 2000.

Hansen, L.P. Do salmon escaping from fish farms in Faroes,, Ireland and Scotland appear in Norwegian homewater catches and spawning populations?

Short, P.B, Reddin, D.G., Johnson, R.W., King, T., Brown, R. and Kanneworff. Identification and characteristics of North American and European Atlantic salmon (Salmo salar L.) caught at West Greenland in 2000.

Doc. No. 24 Reddin, D.G. Return and spawner estimates Atlantic Salmon for Insular Newfoundland .
Doc. No. 25 Dempson, J.B., O’Connell, M.F., Reddin, D.G., Bourgeois, C., Mullins, C.C. and Porter , T.R. Newfoundland \& Labrador - Atlantic Salmon stock status for 2000.

Doc. No. 26 Meerburg, D. J. Catch, catch-and-released and unreported catch estimates for Atlantic Salmon in Canada, 2000.

Doc. No. 27 Kanneworff, P. The salmon fishery in Greenland 2000

Doc. No. 28 Gudbergsson, G., Antonsson, Th. Gudjonsson. National Report for Iceland - The 2000 salmon season.

Doc. No. 29 Crozier, W.W. , Kennedy, G.J.A. and Boylan, P. Summary of salmon fisheries and status of stocks in Northern Ireland for 2000.

Doc. No. 30 Caron, F. Atlantic salmon survival rate in freshwater and at sea on two index rivers, de la Trinitié and Saint-Jean, Québec.

Doc. No. 31 King, T.L., Brown, R.W. and Reddin, D.G. Multilocus Microsatellite DNA Genotypes as a Tool For Determining the Origins of Atlantic Salmon Collected in the West Greenland Subsistence Fishery

APPENDIX 2

References Cited

Anon. 1993. Report of the West Greenland Commission of North Atlantic Salmon Conservation Organisation. NASCO 1993.

Anon. 1997. Radio-tracking project, 1994-1996. In: The Tweed Foundation 1996 Review and Progress Report, pp. 4-5. The Tweed Foundation, Melrose.

Anon. 1999.Radio tracking on the Ettrick 1998. In: The Tweed Foundation 1998 Review and Progress Report, pp. 1617. The Tweed Foundation, Melrose.

Carlin, B. 1969: Migration of salmon. Lectures Series, Atlantic Salmon Association Special Publication, Montreal, Canada: 14-22.
Crozier, W.W. 1998: Incidence of escaped farmed salmon Salmo salar L. in commercial salmon catches and fresh water in Northern Ireland. Fisheries Management and Ecology 5: 23-29.

Dempson, J. B., D. G. Reddin, M. F. O’Connell, C. C. Mullins, \& C. E. Bourgeois. 1997. Trends in Atlantic salmon abundance illustrated using a scaled index of returns, and estimates of marine exploitation prior to the closure of the Newfoundland commercial fishery. DFO Can. Stock Assess. Sec. Res. Doc. 97/117, 20 pp.

Decisioneering 1996. Crystal Ball - Forecasting and risk analysis for spreadsheet users (Version 4.0). 286 pp.

Doubleday, W.G., D.R. Rivard, J.A. Ritter, \& K.U. Vickers. 1979. Natural mortality rate estimates for North Atlantic salmon in the sea. ICES CM 1979/M:26.

Friedland, K.D., D.G. Reddin, \& J.F. Kocik. 1993. Marine survival of North American and European Atlantic salmon: effects of growth and environment. ICES J. Mar. Sci. 50: 481-492.

Friedland, K.D., L.P. Hansen, \& D.A. Dunkley. 1998. Marine temperatures experienced by post-smolts and the survival of Atlantic salmon (Salmo salar L.) from Norway and Scotland. Fisheries Oceanography 7: 22-34.

Gausen, D. \& Moen, V. 1991: Large-scale escapes of farmed Atlantic salmon (Salmo salar) into Norwegian rivers threaten natural populations. Canadian Journal of Fisheries and Aquatic Sciences 48: 945-957.

Hansen, L.P., K.B. Døving \& B. Jonsson 1987: Migration of farmed adult Atlantic salmon with and without olfactory sense, released on the Norwegian coast. Journal of Fish Biology 30: 713-721.

Hansen, L.P. \& J.A. Jacobsen. 1997. Origin and migration of wild and escaped farmed Atlantic salmon, Salmo salar L., tagged and released north of the Faroe Islands. ICES CM 1997/AA:05, 22 pp.

Hansen, L.P. \& J.A. Jacobsen,. 2001. Origin, migration and growth of wild and farmed Atlantic salmon, Salmo salar L., in oceanic areas north of the Faroe Islands. (Submitted for publication).

Hansen, L.P., Jacobsen, J.A. \& Lund, R.A. 1999: The incidence of escaped farmed Atlantic salmon, Salmo salar L., in the Faroese fishery and estimates of catches of wild salmon. ICES Journal of Marine Science 56: 200-206.

Hansen, L.P. \& Jonsson, B. 1989: Salmon ranching experiments in the River Imsa: Effect of timing of Atlantic salmon (Salmo salar) smolt migration on survival to adults. Aquaculture 82: 367-373.

Hansen, L.P. \& Jonsson, B. 1991: The effect of timing of Atlantic salmon smolt and post-smolt release on the distribution of adult return. Aquaculture 98: 61-67.

Hansen, L.P., B. Jonsson \& R. Andersen 1989: Salmon ranching experiments in the River Imsa: Is homing dependent on sequential imprinting of the smolts? In: Brannon, E. \& B. Jonsson (eds.). Proc. Salmon Migration and Distribution Symposium. School of Fisheries, University of Washington, Seattle, USA. NINA, Trondheim, Norway, pp. 19-29.

Hansen, L.P., N. Jonsson \& B. Jonsson 1993: Oceanic migration of homing Atlantic salmon, Salmo salar. Animal Behaviour 45: 927-941.

Hansen, L.P., D.J. Reddin \& R.A. Lund 1997: The incidence of reared Atlantic salmon (Salmo salar L.) of fish farm origin at West-Greenland. ICES Journal of Marine Science 54: 152-155.

Hengeveld, H.G. 1990. Global climate change: implications for air temperature and water supply in Canada. Trans. Am. Fish. Soc. 119: 176-182.

Holm, M., Huse, I., Waatevik, E., Døving, K.B. \& Aure, J. 1982. Behaviour of Atlantic salmon smolts during seaward migration. I. Preliminary report on ultrasonic tracking in a Norwegian fjord system. ICES CM 1982/M:7.

Holm, M., J.C. Holst, \& L.P. Hansen. 2000. Spatial and temporal distribution of Atlantic salmon (Salmo salar L.) postsmolts in the Norwegian Sea and adjacent areas. ICES J. Mar. Sci., 57: 955-964.

Holst, J.C. \& A. MacDonald. 2000. FISH-LIFT: A device for sampling live fish with trawls. Fish. Res. 48: 87-91.

Holst, J. C., R. Shelton, M. Holm \& L.P. Hansen 2000: Distribution and possible migration routes of post-smolt Atlantic salmon in the North-east Atlantic. In: Mills, D. (ed). The ocean life of Atlantic salmon: Environmental and biological factors influencing survival. Fishing News Books, Blackwell Science, pp. 65-74.

ICES 1991/Assess:12. Report of the Working Group on North Atlantic Salmon. Copenhagen, 14-21 March 1991 ICES CM 1991/Assess:12, 156 pp.

ICES 1993/Assess:10. Report of the North Atlantic Salmon Working Group. Copenhagen, 5-12 March 1993. ICES, Doc. CM 1993/Assess: 10.

ICES 1994/Assess:16. Report of the North Atlantic Salmon Working Group. Reykjavik, 6-15 April 1994. ICES, Doc. CM 1994/Assess:16, Ref. M.

ICES 1995/Assess:14. Report of the North Atlantic Salmon Working Group. Copenhagen, 3-12 April 1995. ICES, Doc. CM 1995/Assess:14, Ref. M, 191 pp.

ICES 1996/Assess:11. Report of the Working Group on North Atlantic Salmon. Moncton, Canada. 10-19 April 1996. ICES CM 1996/Assess: 11, Ref. M. 227 pp.

ICES 1997/Assess:10. Report of the Working Group on North Atlantic Salmon. Copenhagen, 7-16 April 1997. ICES, Doc. CM 1997/Assess:10, 242 pp.

ICES 1998/ACFM:15. Report of the Working Group on North Atlantic Salmon. Copenhagen, 14-23 April 1998. ICES CM 1998/ACFM:15, 293 pp.

ICES 1999/ACFM:14 Report of the Working Group on North Atlantic Salmon. Quebec City, Canada, ICES CM 1999/ACFM:14, 288 pp.

ICES 2000/ACFM:13. Report of the Working Group on North Atlantic Salmon. Copenhagen, 3-14 April 2000. ICES CM 2000/ACFM:13, 301 pp .

Idler, D.R., S.J. Hwang, L.W. Crim, \& D. Reddin. 1981. Determination of sexual maturation stages of Atlantic salmon (Salmo salar) captured at sea. Can. J. Fish. Aquat. Sci. 38: 405-413.

Jacobsen, J.A., R.A. Lund, L.P. Hansen, \& N. O'Maoileidigh. 2001. Seasonal differences in the origin of Atlantic salmon (Salmo salar L.) in the Norwegian Sea based on estimates from age structures and tag recaptures. Fisheries Research. (In press).

Jonsson, N., L.P. Hansen \& B. Jonsson 1993: Migratory behaviour and growth of hatchery-reared post-smolt Atlantic salmon Salmo salar. Journal of Fish Biology 42: 435-443.

King, T.L., W.B. Schill, B.A. Lubinsky, M.C. Smith, M.S. Eackles \& R. Coleman, 1999. Microsatellite and mitochondrial DNA diversity in Atlantic salmon with emphasis on small coastal drainages of the Downeast and Midcoast of Maine. USGS-BRD-Leetown Science Center, Kearneysville, West Virginia.

Krossøy, B., F. Nielsen, K. Falk, C. Endresen \& A. Nylund 2001. Phylogenetic analysis of Infectious salmon anaemia virus isolates from Norway, Canada and Scotland. Diseases of Aquatic Organisms 44: 1-6.

Laughton, R. \& Smith, G. W. 1992. The relationship between date of river entry and the estimated spawning positions of adult Atlantic salmon (Salmo salar L.) in two major Scottish east coast rivers. In: Wildlife Telemetry: Remote Monitoring and Tracking of Animals (Priede, I. G. \& Swift, S. M., eds.), pp. 423-433. Chichester: Ellis Horwood Ltd, Chichester.

Lorenzen, K. 1996. The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystems and aquaculture. J. Fish Biology 49: 627-647.

Lund, R.A., F. Økland \& L.P. Hansen 1991: Farmed Atlantic salmon (Salmo salar) in fisheries and rivers in Norway. Aquaculture 98: 143-150.

Lund, R.A., L.P. Hansen \& F. Økland 1994: Rømming av oppdrettsfisk og sikringssoner for laksefisk. NINA Oppdragsmelding 303: 1-15.

MacLean, J. C., Smith, G. W. \& Whyte, B. D. M. 2000. Description of marine growth checks observed on the scales of salmon returning to Scottish home waters in 1997. In: The Ocean Life of Atlantic Salmon, environmental and Biological Factors Influencing Survival (Mills, D., ed.), pp. 37-48. Blackwell Science.

Manabe, S. \& R.T. Wetherald 1987. Large-scale changes of soil wetness induced by an increase in atmospheric carbon dioxide. J. Atmos. Sci. 44: 1211-1235.

NASCO CNL(98)??. ???.

NASCO CNL(00)18. Application of a Precautionary Approach to Management of Salmon Fisheries.

O’Connell, M.F., D.G. Reddin, P.G. Amiro, T.L. Marshall, G. Chaput, C.C. Mullins, A. Locke, S.F. O'Neil, \& D.K. Cairns. 1997. Estimates of conservation spawner requirements for Atlantic salmon (Salmon salar L.) for Canada. DFO Can. Stock. Assess. Sec. Res. Doc. 97/100. 58pp.

Potter, E. C. E. \& Crozier, W. W. 2000. A perspective on the marine survival of Atlantic salmon. In: The Ocean Life of Atlantic Salmon, Environmental and Biological Factors Influencing Survival (Mills, D., ed.), pp. 19-36. Blackwell Science.

Potter, E.C.E. \& D.A. Dunkley. 1993. Evaluation of marine exploitation of salmon in Europe. pp. 203-219. In: Mills, D (ed): Salmon in the sea, and new enhancement strategies. Fishing News Books, Oxford. 424 pp.

Potter, E.C.E, L.P. Hansen, G. Gudbergsson, W.C. Crozier, J. Erkinaro, C. Insulander, J. MacLean, N. O’Maoileidigh, \& S. Prusov. 1998. A method for estimating preliminary conservation limits for salmon stocks in the NASCONEAC area. ICES CM 1998/T:17.

Rago, P.J. 1993. Two randomisation tests for the estimation of regional changes in fish abundance indices: application to North Atlantic salmon. ICES CM 1993/D:35 Ref M.

Rago, P.J., D.G. Reddin, T.R. Porter, D.J. Meerburg, K.D. Friedland \& E.C.E. Potter, 1993. Estimation and analysis of pre-fishery abundance of the two-sea winter populations of North American Atlantic salmon (Salmo salar L.), 1974-91. ICES CM 1993/M:25.

Rago, P.J., D.G. Reddin, T.R. Porter, D.J. Meerburg, K.D. Friedland \& E.C.E. Potter. 1993a. A continental run reconstruction model for the non-maturing component of North American Atlantic salmon: analysis of fisheries in Greenland and Newfoundland-Labrador, 1974-1991. ICES CM 1993/M:25.

Rago, P.J., D.J. Meerburg, D.G. Reddin, G.J. Chaput, T.L. Marshall, B. Dempson, F. Caron, T.R. Porter, K.D. Friedland, \& E.T. Baum. 1993b. Estimation and analysis of pre-fishery abundance of the two-sea-winter population of North American Atlantic salmon (Salmo salar), 1974-1991. ICES CM 1993/M:24.

Reddin, D.G. \& W.M. Shearer. 1987. Sea-surface temperature and distribution of Atlantic salmon in the Northwest Atlantic Ocean. pp. 262-275, In: Dadswell et al. (eds.) Common strategies of anadromous and catadromous fishes. AFS Symp. 1.

Ricker, W.E. 1976. Review of the rate of growth and mortality of Pacific salmon in salt water, and noncatch mortality caused by fishing. J. Fish. Res. Board of Can. 33: 1483-1524.

SAS Institute. 1996. GLM procedure of SAS. SAS Institute, Cary, NC, USA.
Scarnecchia, D.L., Á. Ísaksson, \& S.E. White. 1989. Oceanic and riverine influences on variations in yield among Icelandic Stock of Atlantic salmon. Trans. Am. Fish. Soc. 118: 482-494.

Shearer, W.M. (ed.) 1992. Atlantic salmon scale reading guidelines. ICES Cooperative Research Report. No. 188. ICES, Copenhagen, 46 pp .

Shelton, R.G.J., Turrell, W.R., Macdonald, A., McLaren, I.S. \& Nicoll, N.T. 1997: Records of post-smolt Atlantic salmon, Salmo salar L., in the Faroe-Shetland Channel in June 1996. Fisheries Research 31: 159-162.

Smith, G.W., Nelson, K., Youngson, A.F. \& Carss, D. 1998. The movements and estimated spawning positions of laterunning adult Atlantic salmon (Salmo salar L.) returning to the Aberdeenshire Dee. Fisheries Research Services Report, 3/98, 11 pp .

Sutterlin, A.M., Saunders, R. L., Henderson, E. B. \& Harmon, P. R. 1978: The homing of Atlantic salmon to a marine site. Canadian Technical Report of Fisheries and Aquatic Sciences 1058: pp.

Walker, A.F. \& Walker, A.M. 1991. The Little Gruinard Atlantic salmon catch and release tracking study. In: Wildlife Telemetry: Remote Monitoring and Tracking of Animals (Priede, I.G. \& Swift, S.M., eds.), pp 434-440. Chichester: Ellis Horwood Ltd.

Webb, J.H. \& Youngson, A.F. 1992: Reared Atlantic salmon, Salmo salar L., in the catches of a salmon fishery on the western coast of Scotland. Aquaculture and Fisheries Management 23: 393-397.

Youngson, A.F. 1995a. Spring salmon: Bensinger-Liddell memorial fellowship. Moulin: Atlantic Salmon Trust, 52 pp.
Youngson, A.F. 1995b. Salmon in the Dee catchment: The scientific basis for management. Moulin: Atlantic Salmon Trust, 79 pp .

Youngson, A. F., Webb, J. H., MacLean, J. C., \& Whyte, B. M. 1997. Frequency of occurrence of reared Atlantic salmon in Scottish salmon fisheries. ICES Journal of Marine Science 54: 1216-1220.

APPENDIX 3

List of Participants

Name	Address	Telephone	Fax	E-mail
Niall Ó Maoiléidigh (Chair)	Marine Institute Abbotstown Castleknock Dublin 15 Ireland	+353-1-8210111	+353-1-8205078	Niall.omaoileidigh@ma rine.ie
Peter Amiro	Dept. of Fisheries and Oceans Diadromous Fish Division BIO P.O.Box 1006, Dartmouth, NS B2Y 4A2 Canada	+19024268104	+19024266814	amirop@ mar.dfo-mpo.gc.ca
Russell Brown	Northeast Fisheries Science Centre NMFS/NOAA 166 Water Street Woods Hole, MA 02543 USA	+1508495 2380	+1508495 2393	Russell.Brown@noaa.g ov
François Caron	Direction de la Recherche Faune et Parcs Québec, 675, est, Boul. René-Lévesque Québec, Québec G1R 4Y1 Canada	$\begin{aligned} & +1418521-3955 \\ & \text { ext } 4377 \end{aligned}$	+14186466863	francois.caron@ fapaq.gouv.qc.ca
Gerald Chaput	Dept. of Fisheries and Oceans P.O. Box 5030 Moncton NB E1C 9B6 Canada	+15068512022	+15068512147	ChaputG@ dfo-mpo.gc.ca
Walter Crozier	DARD River Bush Salmon Station 21 Church Street Bushmills BT57 8Q5 United Kingdom	+441265731435	+441265732130	walter.crozien@dardni. gov.uk
Jaakko Erkinaro	Finnish Game and Fisheries Research Institute Oulu Game and Fisheries Research Tutkijantie 2 FIN-90570 Oulu	$\begin{array}{lll} \hline+358 & 205 & 751 \\ 871 & & \end{array}$	+358 205751879	jaakko.erkinaro@ rktl.fi
Pierre-Michel Fontaine	Fédération Québecoise pour le Saumon Atlantique, 42-B Racine, Loretteville, G2B 1C6 Canada	$\begin{array}{lll} \hline+1 \\ 9191 & (418) & 847- \\ \hline \end{array}$	+1 (418) 8479279	fontaine@mediom.qc.ca
Gudni Gudbergsson	Institute of Freshwater Fisheries Vagnhöfda 7 110 Reykjavik Iceland	+354 5676400	+354 5676420	gudni.gudbergsson@ vei dimal.is
Lars Petter Hansen	Norwegian Institute for Nature Research P.O. Box 736, Sentrum N-0105 Oslo Norway	$\begin{aligned} & \text { +47 } 23355000 \\ & \text { Direct: } \\ & +4723355113 \end{aligned}$	+4723 355101	1.p.hansen@ ninaosl.ninaniku.no
Marianne Holm	Institute of Marine Research P.O. Box 1870 - Nordnes N-5817 Bergen Norway	+4755236892	+475523 6379	marianne.holm@ imr.no

Name Jan Arge Jacobsen	Address Fiskirannsóknarstovan P.O. Box 3051, Noatún FO-110 Tórshavn Faroe Islands Denmark	Telephone +298 315092	$\begin{aligned} & \text { Fax } \\ & +298318264 \end{aligned}$	E-mail janarge@frs.fo
Per Kanneworff	Greenland Institute of Natural Resources P.O. Box 2151 DK-1016 Copenhagen K Denmark	+45 33693456	+45 33693406	grfipka@inet. uni2.dk
Tim King	USGS-Biological Resource Division Leetown Science Center 1700 Leetown Road Kearneysville, WV 25430	+1304 724-4450	+1 304 724-4498	tim_king@usgs.gov
Julian MacLean	FRS, FFL Field Station 16 River St. Montrose, Angus DD10 8DL Scotland, United Kingdom	+44 1674677070	+44 1674672604	j.c.maclean@ marlab.ac.uk
Larry Marshall	Dept. of Fisheries and Oceans Diadromous Fish Division BIO P.O.Box 1006, Dartmouth, NS B2Y 4A2 Canada	+19024263605	+19024266814	marshallL@ mar.dfo-mpo.gc.ca
Dave Meerburg	Dept. of Fisheries and Oceans 200 Kent Street Ottawa, Ont. K1A 0E6 Canada	+1613990 0286	+1613954 0807	meerburd@ dfo-mpo.gc.ca
David Perkins	U.S. Fish and Wildlife Service 300 Westgate Center Dr. Hadley, MA 01035 USA	+14132538405	+14132538488	$\begin{aligned} & \text { David_Perkins@fws.go } \\ & \text { v } \end{aligned}$
Ted Potter	CEFAS Lowestoft Laboratory Pakefield Rd Lowestoft, Suffolk NR33 0HT United Kingdom	$\begin{array}{lll} \hline+44 & 1502 & 562244 \\ \text { (Inst.) } & \\ +44 & 1502 & 524260 \\ \text { (Dir.) } \end{array}$	+44 1502513865	e.c.e.potter@ cefas.co.uk
Sergei Prusov	Polar Research Institute of of Marine Fisheries $\&$ Oceanography 6 Knipovitch Street 183767 Murmansk Russia	+78152473658	+4778910518	inter@pinro. murmansk.ru
Dave Reddin	Dept. of Fisheries and Oceans Box 5667 St. John's Newfoundland A1C 5X1 Canada	+17097724484	+17097723578	$\begin{aligned} & \hline \text { ReddinD@DFO- } \\ & \text { MPO.GC.CA } \end{aligned}$
Gordon Smith	FRS FFL Field Station 16 River Street Montrose DD10 8DL Scotland, UK	+441674 677070	+441674 672604	$\begin{aligned} & \text { g.w.smith@marlab.ac.u } \\ & \text { k } \end{aligned}$
Joan Trial	Maine Atlantic Commission 650 State Street Bangor, Maine, 04401 USA	+1 2079414452	+12079414443	joan.trial@state.me.us
Fred Whoriskey	Atlantic Salmon Federation P.O.Box 5200 St Andrews NB ESB 3A9 Canada	+1506529 1039	+15065294985	asfres@nbnet.nb.ca

APPENDIX 4

Example of SAS program to calculate Atlantic salmon pre-fishery abundance with an estimate of precision based on empirically derived distributions of observed patterns of pre-fishery abundance.

```
FILENAME CATCH DDE 'EXCEL Years78-01 ! R4C1:R27C14';
OPTIONS NOCENTER LINESIZE = 80;
*... DATA FOR CATCH ADVICE FOR 2001 FROM RISKVAR01.XLS ;
*<><><><>< UPDATE COLUMNS BY ONE IN FILENAME STATEMENT <><><>;
DATA CATCH;
    INFILE CATCH;
    INPUT YEAR NG1 NC1_L NC1_H NC2_L NC2_H NR2_L NR2_H NN1_L NN1_H NN1_M H2 GUS_L
GUS_H ;
GUS_M= (GUS_L+GUS_H)/2;
LN_NN1_M=LOG(NN1_M);
LN-GUS=LOG (GUS M);
PROC PRINT;
PROC REG;
MODEL LN_NN1_M = H2 LN_GUS/P R;
- <<< \overline{In 20}01, we cha}nged to risk model with varying spawner and PFA inputs >>>; 
\bullet * <<< also switched to multiplicative model for logged PFA and spawners >>>;
DATA D2; SET CATCH;
    SEED = 0;
DO SIM = 1 TO 1000;
    RAN_C1 = NC1_L + ((NC1_H - NC1_L) * RANUNI (SEED));
    RAN_C2 = NC2_L + ((NC2_H - NC2_L) * RANUNI (SEED));
    RAN_R2 = NR2_L + ((NR2_H - NR2_L) * RANUNI (SEED));
    RAN PFA = LOG((((RAN R2/.99005) + RAN C2)/.90483) + RAN C1 + NG1);
    RAN_SP = GUS_L + ((GUS_H - GUS_L) * RANUNI (SEED));
OUTPUT;
END;
PROC SORT; BY SIM;
PROC REG NOPRINT;
    BY SIM;
    ID YEAR;
    MODEL RAN_PFA = H2 LN_GUS/ P R;
    output out=predic p=pran_pfa stdi=stdi_pfa;
*<><><><>< REMEMBER TO CHANGE THE YEAR BELOW <><><><><><>;
data univ;
    set predic;
    if year=2001;
    do i=1 to 1000;
        new_pfa=pran_pfa+((stdi_pfa)*rannor(0));
        output;
    end;
run;
PROC UNIVARIATE DATA = UNIV;
            VAR NEW_PFA;
            OUTPUT OUT=D4 PCTLNAME=
        MEAN=M STD=S
        PCTLPRE=PFA
            PCTLPTS=5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95;
proc print;
run;
```

Appendix 5(i). Estimated numbers of 1SW salmon recruits, returns and spawners for Labrador.

Commercial catches of small salmon			Grilse Recruits			Grilse to rivers		Labrador grilse spawners Angling catch subtracted SFA $1,2 \& 14 B$	
Year	SFA 1	SFA 2	SFA 14B	SFA 1,2\&14	Nfld	SFA 1,2			
				Min	Max	Min	Max	Min	Max
*1969	10774	21627	6321	48912	122280	18587	65053	15476	61942
*1970	14666	29441	8605	66584	166459	25302	88556	21289	84543
*1971	19109	38359	11212	86754	216884	32966	115382	29032	111448
*1972	14303	28711	8392	64934	162335	24675	86362	21728	83415
*1973	3130	6282	1836	14208	35520	5399	18897	0	11405
1974	9848	37145	9328	71142	177856	27034	94619	24533	92118
1975	34937	57560	19294	141210	353024	53660	187809	49688	183837
1976	17589	47468	13152	98790	246976	37540	131391	31814	125665
1977	17796	40539	11267	87918	219796	33409	116931	28815	112337
1978	17095	12535	4026	42513	106282	16155	56542	13464	53851
1979	9712	28808	7194	57744	144360	21943	76800	17825	72682
1980	22501	72485	8493	130710	326776	49670	173845	45870	170045
1981	21596	86426	6658	144859	362147	55046	192662	49855	187471
1982	18478	53592	7379	100357	250892	38136	133474	34032	129370
1983	15964	30185	3292	62452	156129	23732	83061	19360	78689
1984	11474	11695	2421	32324	80811	12283	42991	9348	40056
1985	15400	24499	7460	59822	149555	22732	79563	19631	76462
1986	17779	45321	8296	90184	225461	34270	119945	30806	116481
1987	13714	64351	11389	112995	282486	42938	150283	37572	144917
1988	19641	56381	7087	104980	262449	39892	139623	34369	134100
1989	13233	34200	9053	71351	178377	27113	94896	22429	90212
1990	8736	20699	3592	41718	104296	15853	55485	12544	52176
1991	1410	20055	5303	33812	84531	12849	44970	10526	42647
1992	9588	13336	1325	29632	79554	17993	62094	15229	59331
1993	3893	12037	1144	33382	93231	25186	80938	22499	78251
1994	3303	4535	802	22306	63109	18159	56888	15228	53958
1995	3202	4561	217	28852	82199	25022	76453	22144	73575
1996	1676	5308	865	55634	159204	51867	153553	48362	150048
1997	1728	8025		72138	162610	66812	155963	64049	153200

Estimates are based on:
EST SMALL RETURNS - (COMM CATCH*PROP LAB ORIGIN)/EXP RATE, PROP SFAs1,2\&14B=.6-.8, SFA 1:0.36-0.42\&SFA 2:0.75-0.85(97) EXP RATE-SFAs $1,2 \& 14 \mathrm{~B}=.3-.5(69-91), .22-.39(92), .13-.25(93)$,

$$
-.10-.19(94), .07-.13(95), .04-.07(96), \text { SFA 1:0.07-0.14\&SFA 2:0.04-0.07 (97) }
$$

EST GRILSE RETURNS CORRECTED FOR NON-MATURING 1SW - (SMALL RET*PROP GRILSE), PROP GRILSE SFAs1,2\&14B=0.8-0.9 EST RET TO FRESHWATER - (EST GRILSE RET-GRILSE CATCHES)
EST GRILSE SPAWNERS = EST GRILSE RETURNS TO FRESHWATER - GRILSE ANGLING CATCHES

* Catches for 1969-73 are Labrador totals distributed into SFAs as the proportion of landings by SFA in 1974-78

Furthermore small catches in 1973 were adjusted by ratio of large:small in $1972 \& 74$ (SFA 1-1.4591, SFA 2-2.2225, SFA 14B-1.5506).

Appendix 5(ii). Estimated numbers of 2SW salmon recruits, returns and spawners for Labrador salmon stocks including west Greenland.

Commercial catches of large salmon				Labrador 2SW Recruits,NF \& Greenland Labrador salmon SFAs 1,2 \& 14B Labrador at Total+NF+WG					Labrador 2SW to rivers SFAs $1,2 \& 14 B$		Labrador 2SW spawners SFAs 1,2 \& 14B Angling catch subtracted	
				Min	Max		Min	Max	Min	Max	Min	Max
*1969	18929	48822	10300	32483	69198	34280	80636	133032	3248	20760	2890	20287
*1970	17633	45479	9595	30258	68490	56379	99561	154121	3026	20547	2676	20085
*1971	25127	64806	13673	43117	97596	24299	85831	163577	4312	29279	4012	28882
*1972	21599	55708	11753	37064	83895	59203	112096	178927	3706	25168	3435	24812
*1973	30204	77902	16436	51830	117319	22348	96314	189771	5183	35196	4565	34376
1974	13866	93036	15863	50030	113827	38035	109433	200476	5003	34148	4490	33475
1975	28601	71168	14752	47715	107974	40919	109012	195006	4772	32392	4564	32119
1976	38555	77796	15189	55186	124671	67730	146485	245646	5519	37401	4984	36701
1977	28158	70158	18664	48669	110171	28482	97937	185706	4867	33051	4042	31969
1978	30824	48934	11715	38644	87155	32668	87816	157045	3864	26147	3361	25490
1979	21291	27073	3874	22315	50194	18636	50481	90267	2231	15058	1823	14528
1980	28750	87067	9138	51899	117530	21426	95490	189152	5190	35259	4633	34525
1981	36147	68581	7606	47343	106836	32768	100331	185233	4734	32051	4403	31615
1982	24192	53085	5966	34910	78873	43678	93497	156236	3491	23662	3081	23127
1983	19403	33320	7489	25378	57268	30804	67021	112531	2538	17181	2267	16824
1984	11726	25258	6218	18063	40839	4026	29802	62306	1806	12252	1478	11822
1985	13252	16789	3954	14481	32596	3977	24644	50494	1448	9779	1258	9530
1986	19152	34071	5342	24703	55734	17738	52991	97275	2470	16720	2177	16334
1987	18257	49799	11114	32885	74471	29695	76625	135970	3289	22341	2895	21821
1988	12621	32386	4591	20681	46789	27842	57355	94614	2068	14037	1625	13452
1989	16261	26836	4646	20181	45509	26728	55528	91673	2018	13653	1727	13270
1990	7313	17316	2858	11482	25967	9771	26158	46828	1148	7790	923	7493
1991	1369	7679	4417	5477	12467	7779	15596	25571	548	3740	491	3665
1992	9981	19608	2752	14756	37045	13713	28469	50758	2515	15548	2012	14889
1993	3825	9651	3620	10242	29482	6592	16834	36074	3858	18234	3624	17922
1994	3464	11056	857	11396	34514	0	11396	34514	5653	24396	5339	23981
1995	2150	8714	312	16520	51530	0	16520	51530	12368	44205	12006	43726
1996	1375	5479	418	11814	37523	4312	16126	41835	9113	32759	8838	32395
1997	1393	5550		13167	28647	3806	16973	32453	9384	23833	9221	23646

Estimates are based on:
EST LARGE RETURNS - (COMM CATCH*PROP LAB ORIGIN)/EXP RATE, PROP SFAs1,2\&14B=.6-.8,SFA 1: 0.64-0.72 \& SFA 2 0.88-0.95 (97);
EXP RATE-SFAs1,2\&14B=.7-.9(69-91),.58-.83(92),.38-.62(93),.29-.50(94), .15-.26(95), .13-.23(96),
SFA 1: 0.22-0.40, SFA 2: 0.16-0.28 (97)

EST 2SW RETURNS - (EST LARGE RETURNS*PROP 2SW), PROP 2SW SFA $1=.7-.9$,SFAs $2 \& 14 \mathrm{~B}=.6-.8$
WG - are North American 1SW salmon of river age 4 and older of which 70% are Labrador origin
EST RET TO FRESHWATER - (EST 2SW RET-2SW CATCHES)
EST 2SW SPAWNERS = EST 2SW RETURNS TO FRESHWATER - 2SW ANGLING CATCHES
*Catches for 1969-73 are Labrador totals distributed into SFAs as the proportion of landings by SFA in 1974-78.

Appendix 5(iii). Atlantic salmon returns to freshwater, total recruits prior to the commercial fishery and spawners summed for Salmon Fishing Area 3-14A, insular Newfoundland, 1969-2000.

	Small catch Small retns to rivel			Small recruits		Small spawner Large retns to rive				Large recruit Large catch			Large spawners		2SW retns to rive 2SW spawners				2SW recruits	
Year	Retained	Min	Max	Retained	Min	Max	Min	Max	Min	Max	Min	Max								
1969	34944	109580	219669	219160	732230	74636	184725	10634	25631	35446	256307	2310	8324	23321	2193	8995	1383	7760	7311	89953
1970	30437	140194	281466	280388	938221	109757	251030	12731	29313	42435	293127	2138	10593	27175	3135	11517	2359	10340	10450	115168
1971	26666	112644	226129	225288	753763	85978	199463	9999	23221	33330	232208	1602	8397	21619	2388	8923	1817	8055	7959	89230
1972	24402	109282	219412	218564	731374	84880	195010	10368	23434	34560	234343	1380	8988	22054	2511	9003	2008	8240	8371	90031
1973	35482	144267	289447	288534	964822	108785	253965	13489	31645	44964	316451	1923	11566	29722	2995	11527	2283	10449	9985	115268
1974	26485	85216	170748	170431	569159	58731	144263	10541	21113	35137	211133	1213	9328	19900	1940	6596	1510	5942	6465	65964
1975	33390	112272	225165	224544	750550	78882	191775	11605	23260	38682	232596	1241	10364	22019	2305	7725	1888	7086	7684	77247
1976	34463	115034	230595	230068	768650	80571	196132	10863	21768	36211	217677	1051	9812	20717	2334	7698	2011	7198	7781	76982
1977	34352	110114	220501	220229	735004	75762	186149	9795	19624	32650	196237	2755	7040	16869	1845	6247	1114	5088	6151	62470
1978	28619	97375	195048	194751	650159	68756	166429	7892	15841	26307	158411	1563	6329	14278	1991	6396	1557	5712	6637	63959
1979	31169	107402	215160	214803	717199	76233	183991	5469	10962	18230	109619	561	4908	10401	1088	3644	98	3463	3625	36437
1980	35849	121038	242499	242076	808330	85189	206650	9400	18866	31335	188656	1922	7478	16944	2432	7778	1888	6925	8108	77784
1981	46670	157425	315347	314850	1051158	110755	268677	21022	42096	70074	420961	1369	19653	40727	3451	12035	3074	11442	11502	120353
1982	41871	141247	283002	282494	943342	99376	241131	9060	18174	30198	181736	1248	7812	16926	2914	9012	2579	8481	9714	90117
1983	32420	109934	220216	219868	734053	77514	187796	9717	19490	32391	194903	1382	8335	18108	2586	8225	2244	7677	8620	82253
1984	39331	130836	262061	261673	873537	91505	222730	8115	16268	27052	162684	511	7604	15757	2233	7060	2063	6800	7445	70602
1985	36552	121731	243727	243461	812424	85179	207175	3672	7370	12240	73702	0	3641	7339	958	3059	946	3042	3193	30593
1986	37496	125329	251033	250657	836778	87833	213537	7052	14140	23505	141400	0	6972	14060	1606	5245	1575	5198	5353	52445
1987	24482	128578	257473	257157	858244	104096	232991	6394	12817	21313	128170	0	6353	12776	1336	4433	1320	4409	4453	44329
1988	39841	133237	266895	266474	889652	93396	227054	6572	13183	21908	131832	0	6512	13123	1563	5068	1540	5033	5211	50681
1989	18462	60260	120661	120520	402203	41798	102199	3234	6482	10780	64815	0	3216	6463	697	2299	690	2289	2325	22992
1990	29967	99543	199416	199086	664721	69576	169449	5939	11909	19798	119093	0	5889	11859	1347	4401	1327	4372	4489	44011
1991	20529	64552	129308	129105	431027	44023	108779	4534	9090	15112	90896	0	4500	9056	1054	3429	1041	3410	3514	34291
1992	23118	118778	237811	118778	237811	95096	214129	16705	33463	16705	33463	0	16564	33322	3111	10554	3057	10474	3111	10554
1993	24693	134150	268550	134150	268550	107816	242217	8121	16267	8121	16267	0	7957	16103	1499	5094	1449	5017	1499	5094
1994	28959	95981	192138	95981	192138	66185	162342	8089	16216	8089	16216	0	7884	16010	1902	6174	1840	6077	1902	6174
1995	29055	202739	435153	202739	435153	172727	405141	16175	34633	16175	34633	0	15956	34414	3635	12592	3563	12481	3635	12592
1996	36715	257215	559079	257215	559079	218639	520504	21957	46706	21957	46706	0	21693	46442	4457	14159	4372	14028	4457	14159
1997	17388	99029	146050	99029	146050	80096	127116	15318	22183	15318	22183	0	14985	21850	3887	8355	3780	8190	3887	8355
1998	19672	146371	247035	146371	247035	124551	225216	23032	36266	23032	36266	0	22672	35906	5322	12453	5222	12295	5322	12453
1999	19960	156740	224959	156740	224959	135561	203780	21198	41674	21198	41674	0	20853	41329	4254	14262	4169	14126	4254	14262
2000	14709	116167	252102	116167	252102	99743	234572	11126	55412	11126	55412	0	10901	55187	2218	16360	1975	16021	2218	16360

SRR (Small returns to river) are the sum of Bay St. George small returns (Reddin \& Mullins 1996) plus Humber R small returns (Mullins \& Reddin 1996) plus small returns in SFAs 3-12 \& 14A SSR (Small recruits) $=$ SRR/(1-Exploitation rate commercial (ERC)) where ERC=0.5-0.7, 1969-91 \& ERC=0, 1992-98. SS (Small spawners) = SSR-(SC+(SR*0.1))
SC = small salmon catch retained
$\mathrm{SR}=$ small salmon catch released with assumed mortalities at 10%
RL (RATIO large:small) are from counting facilities in SFAs $3-11,13 \& 14 \mathrm{~A}$, angling catches in SFA 12
LRR (Large returns to river) = SRR * RL
R (Large recruits) $=\operatorname{LRR}^{*}(1-$ Exploitation rate large (ERL)), where ERL=0.7-0.9, 1969-91; \& ERL=0, 1992-98.
LS (Large spawners) $=$ LRR-large catch retained (LC)-(0.1*large catch released)
2SW-RR (2SW returns to river) = LRR*proportion 2SW of 0.4-0.6 for SFAs 12-14A \& 0.1-0.2 for SFAs 3-11.
2SW-S (2SW spawners) $=$ LS * proportion 2SW of 0.4-0.6 for SFAs 12-14A \& 0.1-0.2 for SFAs 3-11.
2SW-R (2SW recruits) $=$ LR * proportion $2 S W$ of $0.4-0.6$ for SFAs 12-14A\& 0.1-0.2 for SFAs 3-11.

Appendx 501 M ．Small，large，and $2 S v$ retur and spawner cstimete for SFA 16

\％	5\％mall												
	Rewnt		Wmantic				Whathtict			Nutane		4W\％	
	素新，	Mav．	者的．	Mx\％	Wm．	H＊＊	Wher	Hxa		vint			Hz
639	3 ${ }^{3}$				24ctu	34x	137		312	\％	9． 44	W，	4xa
197	2x	3xas			rave	詚12	340	2xa	近	76．a	113緆	5980	
FTE	3 TH	5 FI	PWe	3x5	5829	2145	Ama	17x5	\％6x	565	12x\％	2지제	713
19	514	W62	188	470	W6＊	4 4 Ex	W4＊4	116	4 4	748		34	
$1{ }^{174}$	W	Qw		34\％	訾 10	\％${ }^{\text {\％}}$		4， 4 2l	4 4	\％	1048	＊＊＊	
\％	5165	Cay	K202		720		24＊4	\％ade		64t	W\％		
6程等	1180	3062	\％${ }^{\text {W\％}}$	部新	\％		U\％	？	W6	Wex	＋300\％	Wer	150\％
147	3－6	44x	W10	24浐	4010	－	539	13ck		．10\％	3x ${ }^{\text {s }}$	47485	1）．${ }^{\text {The }}$
169\％	Ex\％	9xis	W ${ }^{4}$	4＊3	976	10204		9217	20\％	TVE		2x．	747
17\％	$5{ }^{5} 5$	3175	223	6×0	3586	W6．	1014	Eux	［81	\％ 8 E		FE\％	TxT
	$5 \mathrm{Ba}_{4}$	WP6	3 ${ }^{\text {3 }}$			－x^{4}	3 ${ }^{\text {Wem }}$		\％ 81	4×4	Hext	－145	殔緒
1410	176\％	T10\％	＋8\％	9040	Wato	3 \％${ }^{\text {\％}}$			等 6	W		孝4\％	Jut
162	6\％	\％ 6 ctas	27	7x\％\％		EXtM	180	4288	208	cos	5\％\％	＊20\％	$2{ }^{2}$ 堂
新教造	3x ${ }^{\text {a }}$	Exty	40	420．0	Hater		1004	Hath		$4{ }^{4} 4$	＋5\％	斯等	或趗
14\％	18 Cl	＋189	T64\％	4 Hz	4x\％		36\％	74x	3 4	边	50x	，${ }^{\text {aty }}$	等緒
\％ex．	cres	WELZ	3 xas		gecte	3x24	7atu	16xte	\％6	STP	121繻	M7E	104\％
19x	1205	275\％	5400	＊63y	vemit	27\％	TEx	2470	W\％	－10x5	2067	785	123\％
＋19	1 17		， 48	－＋ 4 ce	Wex	\％${ }^{\text {atem }}$	武䜌	U4tur	\％ 6	64b		4，${ }^{3}$	Wab
	109	3424		\％mat		\％${ }^{\text {a }}$	20x	x $\times 4$	＊＊		Hack	7窭㶳	14＊＊
	7 ${ }^{\text {cta }}$	verat		\％42	Trex	，察碞	7314				－		素震
	Hew		4－4t	－音戠如	－${ }^{2}$ \％			）${ }^{\text {che }}$	新綡	\％		4）	
者4	58	bext	31.19	ㅌxy	\％	＋7x	4tw	53x	易 4	sax	bict	\％${ }^{\text {wix }}$	
392	105．	2xam	446	\％200	950		71\％	\％4114		$5{ }^{5146}$	cose		
198	Exim	3511	373	TEA	1493	営4	56\％	馬高	\％ 418	＊65	3197	\％${ }^{2}$	WEx
17^{46}		369	130	3－4\％				\％19	W60	4x\％	WH6	3xim	TMe
枹复	者哏	W\％	－ 3 44	War			W77	W19	W ${ }^{\text {Wa }}$	\％${ }^{\text {W\％\％}}$	T37	\％${ }^{4}$	㗊
130	748	1580	3xas	rus	TY\％	－${ }^{\text {a }}$	Ex2\％	1275		EKEX	1084	3\％${ }^{\text {\％}}$	7\％${ }^{\text {W \％}}$
198\％	168\％	16.4	wz	\％ 6 \％	\％	蛣县学	4ty	尞趗	为酸	景嗉	Cal	\＄10	chat
1sta	Tes	3R0］	310	HILE	34ty	TME	4w	54te	0.8	紋世	Hist	940	y．x
1930	512	1275	305	26\％	342	780	3 S	5 S	6E\％	$2 x^{2}$	470	162	
200	W5\％	1200	＊${ }^{\text {P\％}}$	g10	472	710	206	4 Fe	\％ 5	3100	45	125	344

			L＂x9\％	4	1．${ }^{\text {勫 }}$	Prex				
	等\％		\％ekerax	．4．4．	Mama	\％${ }^{\text {a }}$（ ${ }^{\text {a }}$	W	Hext		紜䜌
4 4	4䜌			－464	4 ${ }^{4}$			變衰冓	5x ${ }^{\text {a }}$	教婦
13 E	4ta	44te	deve	，${ }^{\text {enta }}$		4ky	dy	Wes	H48	440
1教新	己絲				303緌	431	W	31者		
		P6	4	W ${ }^{\text {W }}$	W W	19\％	Win	－		
129	\％		3abu	－	\％		\％w｜r	Wex		
TH	TM10		cimo	－Wex	或緒			匆緒		－${ }^{\text {a }}$
哏絭	413		縣稱	What	Hexay	name	33	戓哏	4等显	
				＊1730			35\％	新以教		
	笭絔4	sil＊		数造			4，鯖	迷䜌	\％${ }^{\text {\％\％\％}}$	）
12\％${ }^{\text {ck }}$										
趗	景嘘					－${ }^{\text {a }}$	造䍃		1－9\％	
	7\％${ }^{\text {ax }}$			素紜變		戓緼缶			素縙	－
84x	蹢碞趗	303\％			727		4xat			4＊＊）
綥要	（4）${ }^{\text {a }}$		954		等算等	4 m	Thy	3迷	\％${ }^{\text {a }}$ 䜌	
哏絞		3變気	Weray		納䌊	3				嫊緆
針織	Welum				，					
	17\％					y\％${ }^{\text {a }}$				者哏娄
11致										3 Mrelt
17＊		4婎	\％ 14			4W7	Ww	4星第	1413教	
The		3 3 E	3tat 4	3030	\％	1014	440		2012\％	4tat
thet		䜌意	4 x			4W，楼	1443		気䜌要	，44
148	䋛		30	\％ dut $^{\text {a }}$		4 ${ }^{3}$	54	2tas	4 4	$3{ }^{3}$
73	家䍃	\％	苟校	\％${ }^{\text {a }}$		1	3 ${ }^{\text {a }}$	4 ${ }^{\text {z }}$		
13＊＊					5＊＊	4t	＊${ }^{\text {a }}$	Wata		
13＊	714	－14．		，		部兩		W18x		
315	144	䌊教		－74＊＊		政受	解媎	卒部		
11䋛	m迷？		榡縎等		等者䢒	14003	sel			
楼絽	He	趐䜌		第維	1趗絯	35al	遈路		變敬	1趇
1趗登	根业						数䋨		\％	3asx
31489						嶪䠔	3\％		絸顛	
 Fiveraly 4．4． 										

Appendix 5(y)b. Returns and spawners of large salmon and 2SW salmon to SFA 16. Same procedure as for returns (Appendix 5 (v)b)

Year	25W epawners in SFA. 16		Large Saimon Spawners to the Miramichi Rimer						Spawnere of large ealmon in SFA. 18	
			Large spawners	$\begin{aligned} & 0.8 \\ & \text { Min. } \end{aligned}$	$\begin{aligned} & 1.33 \\ & \text { Mex } \end{aligned}$	Prop. 25W	2SW Spawnere			
	Min.	Max					Min	Max	Min	Mex
1971	3508	5832	4347	3478	5782	0.918	3192	5307	3022	6353
1972	14998	24924	17671	14137	23502	0.965	13643	22681	15535	25827
1973	17134	28486	20349	16279	27064	0.958	15592	25922	17889	29741
1974	27495	45711	34445	27556	45812	0.908	25021	41597	30281	50343
1975	16366	27209	21448	17158	28526	0.868	14893	24760	18855	31347
1976	10760	17889	14332	11466	19062	0.854	9792	16279	12500	20947
1977	27404	45560	32917	26334	43780	0.947	24938	41459	28938	48109
1978	8197	13627	10829	8663	14403	0.861	7459	12401	9520	15827
1979	2751	4573	4541	3633	6040	0.689	2503	4161	3992	6637
1980	15762	26204	18873	15098	25101	0.95	14343	23846	16592	27584
1981	2702	4492	4508	3686	6129	0.667	2459	4088	4051	6735
1982	9429	15676	13258	10606	17633	0.809	8581	14265	11655	19377
1983	5986	9951	8458	6766	11249	0.805	5447	9056	7436	12362
1984	12189	20264	14687	11750	19534	0.944	11092	18440	12912	21465
1985	15390	25586	20122	16098	26762	0.87	14005	23283	17690	29409
1986	22659	37670	30216	24173	40187	0.853	20619	34280	26564	44162
1987	12635	21006	18056	14445	24014	0.796	11498	19116	15873	26390
1988	15050	25021	20980	16784	27903	0.816	13696	22769	18444	30663
1989	8921	14831	15540	12432	20668	0.653	8118	13496	13662	22712
1990	14940	24838	27588	22070	36692	0.616	13595	22602	24253	40321
1991	15472	25721	29089	23271	38688	0.605	14079	23406	25573	42515
1992	18984	27603	35927	29281	42573	0.590	17275	25118	32176	46784
1993	21755	31632	34702	28282	41122	0.7	19797	28785	31079	45189
1994	14207	37140	27147	17808	46553	0.726	12929	33797	19569	51157
1995	18345	47600	32093	19188	49769	0.87	16694	43316	21085	54713
1996	12510	23804	23478	16741	31855	0.68	11384	21661	18397	35005
1997	10319	19411	17596	13357	25127	0.703	9390	17664	14678	27612
1998	4077	6795	9215	7275	12125	0.51	3710	6184	7995	13324
1999	8499	19211	15714	11543	26093	0.67	7734	17482	12685	28574
2000	9640	21238	17654	12901	28421	0.68	8773	19326	14177	31232

Appendis Sive．Keturns of small sabmon and $15 w$ salmon to SFA 18

7							
				\％	1．30	\％${ }^{\text {a }}$	1椪
	W䜌	Hes	Semat	\％	Wex	H景	
\％${ }^{2}$	W102	K4x		58453	＊ 84.45	67綡	$4{ }^{4}+3$
	31791	\＄73］${ }^{\text {P3 }}$	蛀等等		W184		M159\％
钽等				新委䢒			
			73114	9723	W764		37878
早等		y			3030		5xay
	7159		部等新	7ata	3	710	
䅗部		$4{ }^{4} 4$	\％ata		640	等发离	363040
	Wumb			verem			3434
㭏教量	4insel		Exyd		3］	36䜌	b6uk
	34030	30760	\％${ }^{\text {a }}$ 相	3超部	4 ${ }^{\text {a }}$		
tete	541	38	紋䜌盄				N4tet
W We				4．4．0			－
30\％	发教4	36	3610	\％ill	3数教	緒経	3×18
5	4030		Wav	2ax	318010	300	0ustu
1＊＊	$51{ }^{4}$	（1）${ }^{\text {cie }}$	3	4064	athen		803 ${ }^{1 / 4}$
			7界教				
\％${ }^{\text {P／}}$	成䜌		縎教		Thex		
＋＊＊＊				W		戓紜變	
			Prex ${ }^{\text {a }}$	3013	mbim		M17x
\％${ }^{\text {\％}}$	7 71Ex		莫4．4	等亲新	Whax		
\％ 3 \％		380．	10464	495	419\％	W74＊	n¢756
	䍃宯？						
＋3 ${ }^{\text {che }}$	307］	\％${ }^{\text {a }}$	54ly				＊07304＊
		3x ${ }^{\text {a }}$	424x			－4xa	13x
	，			Hesy	$3{ }^{1} 4$		3 ${ }^{\text {a }}$
虽緒	如显童		（4）			364	
＋3\％	1030		Wersu		W1tem		50．${ }^{2}$
					nhed		ntim
			300	Yum	310	20．	3\％${ }^{\text {a }}$（1）
\％${ }^{\text {cke }}$		$4{ }^{4} \times$	3xa	Sum	＋270	教緒	＊＊200

Appendix $5(\mathrm{v})$ d. Spawners of small salmon and 1SW salmon to SFA 16

Year	15W spewners to SFA 16		Spawners to the Mramichi Piver			1SWSpammers to Miramichi	
				0.8	1.33	097	1.00
	Mn	Mex	Smell	Min	Max	Min	Max
1971	18714	32075	21946	17557	29188	17030	29188
1972	23139	39659	27135	21708	36090	21057	36090
$19 / 3$	26169	4486	\$1038	24550	40415	2.8514	4u415
1974	47050	80656	55186	44149	73397	42824	73397
1975	41332	70839	48469	38775	64454	37612	64464
1976	53194	91171	62380	49904	82965	48407	82965
1977	11296	19361	13247	10598	17619	10280	17619
1978	12239	20977	14353	11482	19089	11138	19089
1979	26305	45086	30848	24678	41028	23938	41028
1960	22934	39307	26894	21515	35769	20870	35769
1981	34049	58358	39929	31943	53106	30985	53106
1962	47754	81846	56000	44800	74480	43456	74480
1983	12662	21702	14849	11879	19749	11523	19749
1984	16142	27665	18929	15143	25176	14689	25176
1985	35658	61114	41815	33452	55614	32448	55614
1986	76234	130659	89398	71518	118899	69373	118899
1997	53533	91751	62777	50222	93493	40715	83493
1988	76984	131945	90278	72222	120070	70056	120070
1989	41250	70717	48385	38708	64352	37547	54352
1990	50759	86997	59524	47619	7916 ?	46191	79167
1991	41161	70547	48269	38615	64198	37457	64198
1998	112317	168359	129288	105370	153206	102209	153206
1993	86385	99509	76416	62279	90553	60811	90553
1994	27829	75289	42479	26108	68513	25325	68513
1995	13079	53561	34084	12270	48740	11500	48740
1996	19278	51818	24812	18086	47154	17543	47154
1997	8762	22609	12979	8220	20574	7973	20574
1996	19347	29736	21780	18150	27060	17606	27060
1999	14774	23281	16962	13860	21166	13444	21186
2000	21105	30534	23496	19800	27766	19606	27786

Same procedure for escapaments as used to calculate returns.
Assumes exploitation rates of 3% for large and 34% for smal solmon for the years 1998 to 2000 . These are everage rates for 1993 to 1997 as per assessment For 1999 notve removals $=2526$.

Appendix 5(v). Estimated Alartic sulmon raturning recruits and spiewaurs to the Mornl Rires, SFA. 17, 1970-2000.

PEI sommercial landings are also given.

Year	Simsll recruts		Small spanmers		Large recruhb		Large spawners		25W recruits		25W spammers		PEI comm. tamech (nos.)
	Min	Max	Min	Max	Min	Max	Mn	Max	Min	Max	Mn	Max	
1970	0	0	0	0	0	0	0	0	0	0	0	0	
1971	0	0	0	0	0	0	0	0	0	0	0	0	29
1972	0	0	0	0	0	0	0	0	0	0	0	0	305
1973	5	9	3	7	0	0	0	0	0	0	0	0	206
1974	0	0	0	0	0	0	0	0	0	0	0	0	396
1975	0	0	0	0	0	0	0	0	0	0	0	0	345
1976	14	28	8	22	2	5	1	4	2	5	1	4	573
1977	0	0	0	0	0	0	0	0	0	0	0	0	606
1978	0	0	0	0	0	0	0	0	0	0	0	0	N / A
1979	2	5	1	4	5	9	3	7	5	9	3	7	45.4
1980	12	23	7	18	2	5	1	4	2	5	1	4	1007
1981	259	408	151	390	40	77	36	73	\$0	77	36	73	217
1962	175	536	102	263	16	31	8	23	16	31	8	23	416
1983	17	32	10	25	17	32	15	30	17	32	15	30	326
1984	17	32	10	25	13	25	13	26	13	26	13	26	46
1985	113	217	66	170	8	15	8	15	8	15	8	15	
1906	566	1008	390	852	5	11	5	11	5	11	5	11	
1987	1141	2194	665	1718	66	128	66	128	66	128	66	128	
1988	1542	2563	890	2320	96	188	96	185	96	185	96	185	
1989	400	770	233	603	149	287	149	287	149	287	149	287	
1990	1842	3539	1074	2771	284	585	284	545	284	545	284	545	
1991	1576	3008	919	2371	108	361	120	361	103	361	108	361	
1992	1873	3589	1092	2818	96	163	95	183	95	183	96	183	
1903	1277	2454	745	1502	22	43	22	43	22	43	22	43	
1994	200	383	117	291	168	300	165	306	108	309	165	305	
1996	1008	1914	sas	1441	55	154	81	151	55	154	\$1	151	
1996	1161	2576	738	2154	159	351	154	347	158	351	154	347	
1997	485	832	283	730	31	59.	50	58	31	59	50	58	
1998	635	1221	370	S56	79	151	76	149	79	151	76	149	
1998	377	728	221	570	23	585	20	41	23	45	20	41	
2000	307	591	179	463	57	109	56	108	57	109	56	108	
70.89 x	213	410	124	321	21	40	20	40	21	40	20	40	
90-00x	588	1506	575	1499	108	210	106	208	108	270	106	208	

Nates

For 1970-1900, percent small is calculated from numbers of smal and large salmon in the retsined eatch in each year. For 1981-1997 and 1999. pervent small is calculuted from mumbers of smal and large solmun taken st the Learafis Pond trap
For 1098 and 2000 , peresut small is takan foum seicing catches at Mouseys Puol
Small reeruits are culculated as small retained salmanjexploikation rate. Angler explozation was calculated as $0.34,0.347$, and 0.204 of estimated returns in 1994, 1956, and 1996, respectivety. Fer other years the mean of these values is used. The min add max

Smal spawners $=$ number of small recruits - number of small retsined
Large rescuits = (mumber af small reeruits/(0.01'percent small)-aumber of smal reczuits
Large spamiers " namber of large recouins - number of large retained
it is asssumed thas large salmon and $2 S W$ salmon are equivilent

Appendix 5(viia). Total 2SW returns and spawners to SFA 18, 1070-2000.

	LARGE RETURNS				Commercial catches TOTAL 2SW							LARGE SPAWNERS				TOTAL 2SW			SFA		Ratio		
	Margaree Large salmon		SFA 18		2SW RETURNS			2SW ctch		RETURNS (inc. comm.)		Margaree		SFA 18		SPAWNERS							
			1.24	2.28	0.77	0.87	Zone 6	0.77	0.87			1.24	2.28	0.77	0.87								
Year	MIN	MAX	MIN	MAX	MIN	MAX	(kg)	MIN	MAX	MIN	MAX			MIN	MAX	MIN	MAX					MIN	MAX
1970	581	1,000	723	2,285	556	1,988	30,440	4,262	4,815	4,818	6,803	657	1,145	817	2,616	629	2,276	Yr	18.00	aree			
1971	254	437	316	999	243	869	12,001	1,680	1,898	1,923	2,767	256	446	318	1,019	245	887	84	449	305	1.47		
1972	284	488	353	1,116	272	971	31,840	4,458	5,037	4,729	6,007	272	474	338	1,083	261	942	85	1706	1215	1.40		
1973	316	544	393	1,243	303	1,082	27,694	3,877	4,381	4,180	5,462	287	499	356	1,141	274	993	86	4448	2636	1.69		
1974	289	498	360	1,137	277	989	37,437	5,241	5,922	5,518	6,911	318	554	396	1,265	305	1,101	87	3012	1857	1.62		
1975	173	298	215	681	166	592	23,631	3,308	3,738	3,474	4,330	214	372	266	850	205	740	88	3078	1932	1.59		
1976	222	381	276	871	213	757	18,361	2,571	2,904	2,783	3,662	267	465	332	1,062	256	924	89	3206	1570	2.04		
1977	378	651	470	1,487	362	1,294	26,221	3,671	4,148	4,033	5,442	393	683	488	1,561	376	1,358	90	2391	1507	1.59		
1978	427	735	531	1,679	409	1,461	30,216	4,230	4,780	4,639	6,241	510	888	635	2,028	489	1,765	91	3470	1757	1.97		
1979	219	377	272	861	210	749	7,917	1,108	1,252	1,318	2,002	265	461	330	1,053	254	916	92	3315	1938	1.71		
1980	378	651	470	1,487	362	1,294	24,412	3,418	3,862	3,780	5,156	497	865	618	1,976	476	1,719	93	2372	1102	2.15		
1981	375	647	466	1,478	359	1,286	15,562	2,179	2,462	2,538	3,748	451	785	561	1,793	432	1,560	94	2043	1479	1.38		
1982	484	833	602	1,903	463	1,656	26,664	3,733	4,218	4,196	5,874	555	965	690	2,205	531	1,919	95	1633	1060	1.54		
1983	402	693	500	1,583	385	1,378	24,280	3,399	3,841	3,784	5,218	480	834	596	1,906	459	1,659	96	3921	1864	2.10		
1984	327	583	407	1,332	313	1,159	15,140	2,120	2,395	2,433	3,554	296	532	368	1,216	283	1,058	97	2609	2098	1.24		
1985	1,109	2,217	1,379	5,065	1,062	4,407		0	0	1,062	4,407	1,025	2,133	1,275	4,874	981	4,240	98	2,163	1,327	1.63		
1986	2,738	5,680	3,405	12,978	2,622	11,291		0	0	2,622	11,291	2,583	5,525	3,212	12,624	2,473	10,983	99	1,853	811	2.28		
1987	2,976	6,540	3,701	14,943	2,850	13,000		0	0	2,850	13,000	2,860	6,424	3,557	14,678	2,739	12,770	0	959	636	1.51		
1988	1,286	2,494	1,599	5,698	1,231	4,958		0	0	1,231	4,958	1,143	2,351	1,421	5,372	1,094	4,673			Min	1.244		
1989	1,708	3,693	2,124	8,438	1,635	7,341		0	0	1,635	7,341	1,583	3,568	1,969	8,152	1,516	7,092			Max	2.285		
1990	3,481	7,933	4,329	18,126	3,333	15,769		0	0	3,333	15,769	3,347	7,799	4,162	17,819	3,205	15,503						
1991	1,853	5,785	2,304	13,218	1,774	11,499		0	0	1,774	11,499	1,692	5,624	2,104	12,850	1,620	11,179						
1992	4,875	9,375	6,062	21,420	4,668	18,636		0	0	4,668	18,636	4,722	9,222	5,872	21,071	4,522	18,332						
1993	2,408	6,158	2,995	14,070	2,306	12,241		0	0	2,306	12,241	2,274	6,024	2,828	13,764	2,177	11,975						
1994	2,350	4,500	2,922	10,282	2,250	8,945		0	0	2,250	8,945	2,209	4,359	2,747	9,960	2,115	8,665						
1995	1,750	3,815	2,176	8,717	1,676	7,583		0	0	1,676	7,583	1,693	3,758	2,105	8,586	1,621	7,470						
1996	2,214	4,050	2,753	9,254	2,120	8,051		0	0	2,120	8,051	2,001	3,837	2,488	8,767	1,916	7,627						
1997	3,268	5,435	4,064	12,418	3,129	10,804		0	0	3,129	10,804	3,006	5,173	3,738	11,819	2,878	10,283						
1998	2,283	3,798	2,839	8,678	2,186	7,550		0	0	2,186	7,550	2,114	3,629	2,629	8,292	2,024	7,214						
1999	1,440	2,400	1,791	5,484	1,379	4,771		0	0	1,379	4,771	1,276	2,236	1,587	5,109	1,222	4,445						
2000	991	1648	1,232	3,765	949	3,276		0	0	- 949	3,276	776	1,433	965	3,274	743	2,849						

Margaree returns, 1970-84, equal catch $/ \min (0.215)$ or $\max (0.37)$ exploitation rate.
Return of large salmon (MIN) and (MAX) to all SFA 18 equals Margaree returns * ratio Margaree catch to SFA 18 catch.
Margaree returns 1984-00 based on various Margaree CAFSAC , DFO Atl. Res and CSAS Res. Docs.
Margaree catch to SFA 18 catch; MIN _MAX 2SW based on the ratio 0.77-0.87 2SW fish among MSW fish.
Margaree escapements 1970-83 = returns minus removals; 1984-1999 from various Margaree CAFSAC, DFO Atl. Fish. and CSAS Res.
Docs e.g., Marshall et al. (MS 1997) where 2SW equal 0.77-0.87 of MSW fish; Margaree raised to SFA by respective ratios in recreational catch.

Appendix 5(viib). Total 1SW returns and spawners to SFA 18, 1970-2000.

Year	RETURNS				SPAWNERS			
	Margaree		SFA 18		Margaree		SFA 18	
	0.37	0.21	1.214	2.768			1.214	2.768
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
1970	230	395	279	1,094	145	310	176	859
1971	57	98	69	270	36	77	43	212
1972	114	195	138	541	72	153	87	424
1973	449	772	545	2,137	283	606	343	1,678
1974	162	279	197	772	102	219	124	606
1975	97	167	118	463	61	131	74	364
1976	259	447	315	1,236	163	351	198	970
1977	186	321	226	888	117	252	143	697
1978	68	116	82	322	43	91	52	253
1979	1,614	2,777	1,959	7,685	1,017	2,180	1,234	6,033
1980	451	777	548	2,150	284	610	345	1,688
1981	2,430	4,181	2,950	11,573	1,531	3,282	1,859	9,085
1982	1,868	3,214	2,267	8,896	1,177	2,523	1,429	6,983
1983	184	316	223	875	116	248	141	687
1984	400	688	486	1,904	158	446	192	1,234
1985	634	1,167	770	3,230	125	658	152	1,821
1986	838	1,420	1,017	3,930	56	638	68	1,766
1987	1,143	1,865	1,388	5,162	166	888	202	2,458
1988	1,674	2,911	2,032	8,057	795	2,032	965	5,624
1989	591	977	718	2,704	30	416	36	1,151
1990	940	5,077	1,141	14,052	291	4,428	353	12,256
1991	794	3,891	964	10,770	42	3,139	51	8,688
1992	1,258	2,419	1,527	6,695	701	1,862	851	5,154
1993	1,489	3,851	1,808	10,659	906	3,268	1,100	9,045
1994	573	1,101	696	3,047	259	787	314	2,178
1995	538	1,083	653	2,998	329	874	399	2,419
1996	1,277	2,960	1,550	8,193	935	2,618	1,135	7,246
1997	316	1,517	384	4,199	68	1,269	83	3,512
1998	349	1,625	424	4,498	126	1,402	153	3,880
1999	323	1,610	392	4,456	100	1,387	121	3,839
2000	223	1,368	271	3,786	84	1,229	102	3,402

Recreational ctch:			
Year	SFA 18	Marg- aree	Ratio
1984	298	242	1.23
1985	618	509	1.21
1986	1,180	782	1.51
1987	1,289	977	1.32
1988	1,349	879	1.53
1989	928	561	1.65
1990	1,206	649	1.86
1991	1,262	752	1.68
1992	1,242	678	1.83
1993	1,216	777	1.56
1994	659	429	1.54
1995	711	333	2.14
1996	2,022	918	2.20
1997	558	316	1.77
1998	829	349	2.38
1999	894	323	2.77
2000	467	223	2.09
		Min	1.214
		Max	2.768

Margaree returns, 1970-1983, equal catch divided by MIN (0.37) and MAX (0.215) exploitation rate.
Return of small salmon to all SFA 18 equals Margaree returns * MIN and MAX ratio of
Margaree catch to SFA 18 catch. Margaree returns, 1984-2000, based on annual assessments
in CAFSAC and DFO Atl. Fish. and CSAS Res. Docs, eg., Marshall et al. (MS 1997).
Spawners for 1970-1983 equal returns minus removals; 1984-2000 from various Margaree CAFSAC,
Atl. Res. and CSAS Res Doc. series.

Appendix 5(viii). Total 1SW returns and spawners, SFAs 19, 20, 21 and 23, 1970-2000.

Year	RETURNS						TOTAL RETURNS		SPAWNERS						TOTAL SPAWNERS 19,20,21,23		
	River returns SFA 19-21		$\begin{gathered} \hline \text { Comm- } \\ \text { ercial } \\ 19-21 \end{gathered}$	SFA 23					$\begin{array}{r} \text { angled } \\ 19-21 \end{array}$	Spawners$19-21$		SFA 23					
			Wild	Wild	H	As 19,	,21,23	$\begin{aligned} & \mathrm{H}+\mathrm{W} \\ & \mathrm{MIN} \end{aligned}$				rtns MAX	Harvest				
	MIN	MAX		MIN	MAX		MIN			MAX	MIN			MAX	MIN	MAX	
1970	8,236	16,868		3,189	5,206	7,421	100	16,731	27,578	3,609	4,627	13,259	5,306	7,521	1,420	8,513	19,360
1971	6,345	13,062	1,922	2,883	4,176	365	11,515	19,525	2,761	3,584	10,301	3,248	4,541	2,032	4,800	12,810	
1972	6,636	13,354	1,055	1,546	2,221	285	9,522	16,915	2,917	3,719	10,437	1,831	2,506	2,558	2,992	10,385	
1973	8,225	16,744	1,067	3,509	5,047	1,965	14,766	24,823	3,604	4,621	13,140	5,474	7,012	1,437	8,658	18,715	
1974	14,478	29,385	2,050	6,204	8,910	3,991	26,723	44,336	6,340	8,138	23,045	10,195	12,901	2,124	16,209	33,822	
1975	5,096	10,393	2,822	11,648	16,727	6,374	25,940	36,316	2,227	2,869	8,166	18,022	23,101	2,659	18,232	28,608	
1976	12,421	25,398	1,675	13,761	19,790	9,074	36,931	55,937	5,404	7,017	19,994	22,835	28,864	5,263	24,589	43,595	
1977	13,349	27,943	3,773	6,746	9,679	6,992	30,860	48,387	5,841	7,508	22,102	13,738	16,671	4,542	16,704	34,231	
1978	2,535	5,241	3,651	3,227	4,651	3,044	12,457	16,587	1,113	1,422	4,128	6,271	7,695	2,015	5,678	9,808	
1979	12,365	25,381	3,154	11,529	16,690	3,827	30,875	49,052	5,428	6,937	19,953	15,356	20,517	3,716	18,577	36,754	
1980	16,534	33,825	8,252	14,346	20,690	10,793	49,925	73,560	7,253	9,281	26,572	25,139	31,483	5,542	28,878	52,513	
1981	18,594	38,329	1,951	11,199	16,176	5,627	37,371	62,083	8,163	10,431	30,166	16,826	21,803	9,021	18,236	42,948	
1982	10,008	20,552	2,020	8,773	12,598	3,038	23,839	38,208	4,361	5,647	16,191	11,811	15,636	5,279	12,179	26,548	
1983	4,662	9,562	1,621	7,706	11,028	1,564	15,553	23,775	2,047	2,615	7,515	9,270	12,592	4,138	7,747	15,969	
1984	12,398	25,815	0	14,105	20,227	1,451	27,954	47,493	4,724	7,674	21,091	15,556	21,678	5,266	17,964	37,503	
1985	16,354	34,055	0	11,038	15,910	2,018	29,410	51,983	6,360	9,994	27,695	13,056	17,928	4,892	18,158	40,731	
1986	16,661	34,495	0	13,412	19,321	862	30,935	54,678	6,182	10,479	28,313	14,274	20,183	3,549	21,204	44,947	
1987	18,388	37,902	0	10,030	14,334	3,328	31,746	55,564	7,056	11,332	30,846	13,358	17,662	3,101	21,589	45,407	
1988	16,611	33,851	0	15,131	21,834	1,250	32,992	56,935	6,384	10,227	27,467	16,381	23,084	3,320	23,288	47,231	
1989	17,378	35,141	0	16,240	23,182	1,339	34,957	59,662	6,629	10,749	28,512	17,579	24,521	4,455	23,873	48,578	
1990	20,119	41,652	0	12,287	17,643	1,533	33,939	60,828	7,391	12,728	34,261	13,820	19,176	3,795	22,753	49,642	
1991	6,718	13,870	0	10,602	15,246	2,439	19,759	31,555	2,399	4,319	11,471	13,041	17,685	3,546	13,814	25,610	
1992	9,269	18,936	0	11,340	16,181	2,223	22,832	37,340	3,629	5,640	15,307	13,563	18,404	4,078	15,125	29,633	
1993	9,104	18,711	0	7,610	8,828	foot-	16,714	27,539	3,327	5,777	15,384	5,762	6,868	foot-	11,539	22,252	
1994	2,446	4,973	0	5,770	6,610	note:"a"	8,216	11,583	493	1,953	4,480	4,965	5,738	note:"a	6,918	10,218	
1995	5,974	12,364	0	8,265	9,458		14,239	21,822	1,885	4,089	10,479	8,025	9,218		12,114	19,697	
1996	9,888	20,791	0	12,907	15,256		22,795	36,047	2,211	7,677	18,580	11,576	13,892		19,253	32,472	
1997	2,665	5,488	0	4,508	4,979		7,173	10,467	493	2,172	4,995	3,971	4,433		6,143	9,428	
1998	7,567	15,680	0	9,203	10,801		16,770	26,481	0	7,567	15,680	8,775	10,348		16,342	26,028	
1999	5,048	10,535	0	5,508	6,366		10,556	16,901	67	4,981	10,468	5,196	6,048		10,177	16,516	
2000	6,201	12,890	0	4,796	5,453		10,997	18,343	0	6,201	12,890	4,455	5,087		10,656	17,977	

SFAs 19, 20, 21: Returns, 1970-1997, estimated as run size (1SW recreational catch / expl. rate [0.2 to 0.45]; where MIN and MAX selected as 5th and 95th percentile values from 1,000 monte carlo estimates) + estimated 1SW fish in commercial landings 1970-1983 (Cutting MS 1984). For 1998-2000, see "a" below.
SFA 22: Inner Fundy stocks and inner-Fundy SFA 23 (primarily 1SW fish) do not go to the North Atlantic.
SFA 23: For 1970-97, similar to SFAs 19-21 except that estimated wild 1SW returns destined for Mactaquac Dam, Saint John River, replaced values for recreational catch and estimated proportions that production above Mactaquac is of the total ($0.4-0.6$) river replaced exploitataion rates (commercial
harvest, bi-catch etc., incl. in estimated returns); hatchery returns attributed to above Mactaquac only; 1SW production in rest of SFA (outer Fundy) omitted.
"a"- Revision of method, SFA 23, 1993-2000, estimated returns to Nashwaak fence raised by proportion of area below Mactaquac ($0.21-0.30$) and added to total estimated returns originating upriver of Mactaquac (Marshall et al. 1998); MIN and MAX removals below Mactaquac based on Nashwaak losses, Mactaquac losses are a single value and together summed and removed from returns to establish estimate of spawners. SFAs 19-21, estimate of returns 1998-2000 based on regression of LaHave wild counts on MIN and MAX estimates of total SFA 19-21 returns, 1984-1997, because there was no (1998 and 2000) \& little (1999) angling in SFAs 20-21

Appendix 5(ixa). Total 2 SW returns to SFAs 19, 20, 21 and 23, 1970-2000.

Year	$\begin{gathered} \text { SFA } 19 \\ \text { MIN MAX } \\ \text { SW }=0.7-0.9 \\ \text { Exp. rate }=0.2-0.45 \\ \hline \end{gathered}$		$\begin{gathered} \text { SFA } 20 \\ \text { MIN MAX } \\ 2 \text { SW }=0.6-0.9 \\ \text { Exp. rate }=0.2-0.45 \\ \hline \end{gathered}$		$\begin{gathered} \text { SFA } 21 \\ \text { MIN MAX } \\ 2 \text { SW }=0.5-0.9 \\ \text { Exp. rate }=0.2-0.45 \\ \hline \end{gathered}$		Total Commercial 19-21	SFA 23				total returns SFAs 19,20,21,23			
			W ild W ild M IN MAX $2 S W=0.85-0.95$ p. $\mathrm{abv}=0.4-0.6$				Htch Htch MIN MAX $2 S W=0.85-0.95$								
							M IN	M AX							
1970	1,170	2,537			658	1,535	597	1,525	2,644	8,540	12,674	0	0	13,609	20,915
1971	600	1,266	344	802	481	1,199	2,607	7,089	10,463	66	73	11,187	16,410		
1972	735	1,614	421	1,002	454	1,198	4,549	7,362	10,809	507	559	14,028	19,731		
1973	726	1,571	665	1,532	546	1,437	4,217	3,773	5,559	432	477	10,359	14,793		
1974	1,035	2,225	691	1,588	548	1,397	8,873	8,766	12,790	1,989	2,198	21,902	29,071		
1975	376	824	149	343	882	2,321	9,430	11,217	16,490	1,890	2,088	23,944	31,496		
1976	791	1,672	346	822	441	1,146	5,916	12,304	18,106	1,970	2,175	21,768	29,837		
1977	999	2,152	660	1,509	873	2,354	9,205	14,539	21,420	2,330	2,575	28,606	39,215		
1978	810	1,739	429	995	655	1,706	6,827	6,059	8,903	2,166	2,391	16,946	22,561		
1979	532	1,169	431	978	508	1,288	2,326	4,149	6,084	1,016	1,123	8,962	12,968		
1980	1,408	3,051	746	1,714	1,483	3,989	9,204	16,500	24,041	2,556	2,824	31,897	44,823		
1981	886	1,856	926	2,133	1,754	4,475	4,438	8,696	12,690	2,330	2,577	19,030	28,169		
1982	917	1,990	316	746	682	1,756	5,819	8,266	12,198	1,516	1,673	17,516	24,182		
1983	477	1,030	641	1,475	552	1,434	2,978	8,718	12,793	944	1,043	14,310	20,753		
1984	828	1,768	638	1,500	766	2,004	0	14,753	21,573	953	1,054	17,938	27,899		
1985	1,495	3,132	2,703	6,355	2,102	5,469	0	15,793	23,002	748	826	22,841	38,784		
1986	3,500	7,541	2,561	5,987	2,150	5,312	0	9,210	13,507	681	754	18,102	33,101		
1987	2,427	5,237	1,066	2,527	1,114	2,872	0	6,512	9,590	410	453	11,529	20,679		
1988	2,635	5,724	1,914	4,464	1,105	2,945	0	3,936	5,836	780	861	10,370	19,830		
1989	2,236	4,810	1,512	3,485	1,631	4,086	0	6,159	8,994	401	443	11,939	21,818		
1990	2,406	5,178	1,085	2,515	1,271	3,260	0	4,994	7,375	492	543	10,248	18,871		
1991	1,890	4,050	965	2,200	421	1,071	0	6,739	9,902	598	661	10,613	17,884		
1992	1,788	3,923	631	1,488	480	1,236	0	6,213	9,074	665	735	9,777	16,456		
1993	876	1,897	1,006	2,321	564	1,498	0	4,318	5,371			6,764	11,087		
1994	833	1,845	242	561	305	773	0	2,999	3,729	note		4,379	6,908		
1995	759	1,582	666	1,565	518	1,339	0	3,042	3,831			4,985	8,317		
1996	1,231	2,692	604	1,404	894	2,293	0	4,498	5,665			7,227	12,054		
1997	607	1,299	170	387	301	1,026	0	2,567	3,210			3,645	5,922		
1998	>>>>>>>>	>>>>>>	->>>>>>>>	>>>>>	1,103	3,888	0	1,625	2,115			2,728	6,003		
1999	>>>	-	->>>>>>	$>$	1,230	4,324	0	2,252	2,783			3,482	7,107		
2000	>>>>>>>>	>>>>	>>>>>>>	>>>>>	1,086	3,816	,	952	1,263			2,038	5,079		

SFAs 19, 20, 21: Returns, 1970-97 estimated as run size (MSW recreational catch *prop. 2SW [range of values]/expl. rate [range of values]; where MIN and MAX selected as 5 th and 95th percentile values from 1,000 monte carlo estimates) + estimated 2 SW fish in commercial landings 1970-1983 (Cutting MS 1984). For 1998-2000 see "a" below.
\qquad Inner Fundy stocks do not go to north Atlantic.
SFA 23: For 1970-1997 Similar approach as for SFAs 19-21 except thatestimated wild MSW returns destined for Mactaquac Dam, Saint John River, replaced values fo recreational catch; and estimated proportions that production above Mactaquac is of the total river replaced exploitation rates (commercial harvest, bi-catch etc., incl. in estimated returns) + est. $0.85-0.95^{*} \mathrm{MSW}$ hatchery returns to Mactaquac; 2 SW production in rest of SFA omitted.
"a": Revsion of method, SFA 23, 1993-2000, estimated MSW returns to Nashwaak fence raised by prop. of area below Mactaquac ($0.21-0.30$) * prop. 2SW (0.7 \& 0.9) and added to estimated MSW hatchery and wild returns * (Marshall et al. MS 1998) (0.85-0.95; 2SW) originating upriver of Mactaquac. MIN \& MAX removals below Mactaquac based on Nashwaak losses: Mactaquac losses were a single value and together summed and removed from MSW returns (prevously) to estimate spawners. SFAs 19-21, estimate of 2 SW returns for 1998-00, based on regression of LaHave wild counts on MIN and MAX estimates of total SFA 19-21 MSW returns and 5 th and 95 th percentile values of MIN-MAX ($0.5 \& 0.92$ SW fish among MSW salmon).

Appendix 5(ixb). Total 2SW spawners in SFAs 19, 20, 21 and 23, 1970-2000.

Year	SFA 19		RETURNS SFA 20		SFA 21		REMOVALS angled (19-21)		SPAWNERS SFAs (19-21)		SFA 23				TOTAL SPAWNERS			
			RETURNS	REMOVALS														
	MIN	MAX			MIN	MAX												
1970	1,170	2,537	658	1,535			597	1,525	941	1,375	1,485	4,222	8,540	12,674	7,004	7,828	3,021	9,068
1971	600	1,266	344	802	481	1,199	541	812	884	2,455	7,155	10,536	3,543	3,960	4,496	9,032		
1972	735	1,614	421	1,002	454	1,198	623	922	987	2,892	7,869	11,368	1,397	1,562	7,459	12,699		
1973	726	1,571	665	1,532	546	1,437	740	1,108	1,197	3,432	4,205	6,036	1,454	1,625	3,949	7,844		
1974	1,035	2,225	691	1,588	548	1,397	871	1,277	1,404	3,933	10,755	14,988	2,632	2,942	9,526	15,979		
1975	376	824	149	343	882	2,321	534	867	874	2,621	13,107	18,578	2,120	2,369	11,861	18,830		
1976	791	1,672	346	822	441	1,146	603	887	975	2,754	14,274	20,281	4,203	4,698	11,045	18,337		
1977	999	2,152	660	1,509	873	2,354	967	1,463	1,565	4,552	16,869	23,995	4,856	5,427	13,578	23,119		
1978	810	1,739	429	995	655	1,706	723	1,088	1,171	3,352	8,225	11,294	2,879	3,218	6,517	11,428		
1979	532	1,169	431	978	508	1,288	560	851	911	2,585	5,165	7,207	1,393	1,557	4,683	8,234		
1980	1,408	3,051	746	1,714	1,483	3,989	1,390	2,131	2,247	6,623	19,056	26,865	7,033	7,860	14,270	25,628		
1981	886	1,856	926	2,133	1,754	4,475	1,338	2,125	2,228	6,339	11,026	15,267	7,384	8,253	5,870	13,353		
1982	917	1,990	316	746	682	1,756	734	1,096	1,181	3,396	9,782	13,871	5,307	5,932	5,656	11,335		
1983	477	1,030	641	1,475	552	1,434	633	971	1,037	2,968	9,662	13,836	9,194	10,275	1,505	6,529		
1984	828	1,768	638	1,500	766	2,004	267	419	1,965	4,853	15,706	22,627	3,426	3,829	14,245	23,650		
1985	1,495	3,132	2,703	6,355	2,102	5,469			6,300	14,956	16,541	23,828	4,656	5,204	18,185	33,580		
1986	3,500	7,541	2,561	5,987	2,150	5,312			8,211	18,840	9,891	14,261	2,667	2,981	15,435	30,120		
1987	2,427	5,237	1,066	2,527	1,114	2,872			4,607	10,636	6,922	10,043	1,294	1,446	10,235	19,233		
1988	2,635	5,724	1,914	4,464	1,105	2,945			5,654	13,133	4,716	6,697	1,296	1,449	9,074	18,381		
1989	2,236	4,810	1,512	3,485	1,631	4,086			5,379	12,381	6,560	9,437	250	279	11,689	21,539		
1990	2,406	5,178	1,085	2,515	1,271	3,260			4,762	10,953	5,486	7,918	560	626	9,688	18,245		
1991	1,890	4,050	965	2,200	421	1,071			3,276	7,321	7,337	10,563	1,257	1,405	9,356	16,479		
1992	1,788	3,923	631	1,488	480	1,236			2,899	6,647	6,878	9,809	1,052	1,176	8,725	15,280		
1993	876	1,897	1,006	2,321	564	1,498			2,446	5,716	4,318	5,371	1,054	1,166	5,710	9,921		
1994	833	1,845	242	561	305	773			1,380	3,179	2,999	3,729	697	815	3,682	6,093		
1995	759	1,582	666	1,565	518	1,339			1,943	4,486	3,042	3,831	313	346	4,672	7,971		
1996	1,231	2,692	604	1,404	894	2,293			2,729	6,389	4,498	5,665	720	812	6,507	11,242		
1997	607	1,299	170	387	301	1,026			1,078	2,712	2,567	3,210	550	611	3,095	5,311		
1998	>>>>>>>>	>>>>>	->>>>	>>>>	1,103	3,888			1,103	3,888	1,625	2,115	304	340	2,424	5,663		
1999	->>	->>>>	-	-	1,230	4,324			1,230	4,324	2,252	2,783	441	459	3,041	6,648		
2000	>>>>>>>>		->>>>	-	1,086	3,816			1,086	3,816	952	1,263	183	202	1,855	4,877		

Spawners = returns minus removals where "returns" are from previous Appendix as are outlines of revisions to methods for SFAs 19-21, 1998-2000, and SFA 23, 1993-2000.
"Removals" of 2SW fish in SFAs 19-21 have been few, largely illegal and unascribed since the catch-and-release angling regulations in 1985; removals in SFA 23, 1985-1997,
had been in total, the assessed losses to stocks originating above Mactaquac. The revised method, 1993-2000, incorporates 5th and 95th percentile values for losses
noted on the Nashwaak raised to the total production area downstream of Mactaquac as well as the previously assessed and used values for stocks upstream of Mactaquac.

Appendix 5(x). Estimated numbers of salmons recruits and spawners for Québec, 1969-2000.

Year	Recruit of small salmon			Recruit of large salmon			Spawner of small salmon			Spawner of large salmon		
	Min	Mean	Max									
1969	25355	31694	38032	74653	93316	111979	16313	20392	24470	25532	31915	38299
1970	18904	23630	28356	82680	103350	124020	11045	13806	16568	31292	39115	46937
1971	14969	18711	22453	47354	59192	71031	9338	11672	14007	16194	20243	24292
1972	12470	15587	18704	61773	77217	92660	8213	10267	12320	31727	39658	47590
1973	16585	20731	24877	68171	85214	102256	10987	13734	16480	32279	40349	48419
1974	16791	20988	25186	91455	114319	137182	10067	12583	15100	39256	49070	58884
1975	18071	22589	27106	77664	97080	116497	11606	14507	17409	32627	40784	48940
1976	19959	24948	29938	77212	96515	115818	12979	16224	19469	31032	38790	46548
1977	18190	22737	27285	91017	113771	136525	12004	15005	18006	44660	55825	66990
1978	16971	21214	25456	81953	102441	122930	11447	14309	17170	40944	51180	61416
1979	21683	27103	32524	45197	56497	67796	15863	19829	23795	17543	21929	26315
1980	29791	37239	44686	107461	134327	161192	20817	26021	31226	48758	60948	73137
1981	41667	52084	62501	84428	105535	126642	30952	38690	46428	35798	44747	53697
1982	23699	29624	35549	74870	93587	112305	16877	21096	25316	36290	45363	54435
1983	17987	22484	26981	61488	76860	92232	12030	15038	18045	23710	29638	35565
1984	21566	26230	30894	61180	71110	81041	16316	20636	24957	30610	37674	44739
1985	22771	28016	33262	62899	73545	84192	15608	20374	25140	28312	35897	43482
1986	33758	40347	46937	75561	87479	99397	22230	28042	33855	32997	41114	49232
1987	37816	45925	54034	72190	82920	93650	25789	33135	40481	29758	36610	43462
1988	43943	53068	62193	77904	90587	103269	28582	36699	44815	34781	43653	52524
1989	34568	41488	48407	70762	81316	91871	24710	31015	37319	34268	41727	49185
1990	39962	47377	54792	68851	79872	90893	26594	33210	39826	33454	41535	49615
1991	31488	37121	42755	64166	73675	83184	20582	25508	30433	27341	33569	39797
1992	35257	42000	48742	64271	74112	83953	21754	27668	33583	26489	32993	39497
1993	30645	36400	42156	50717	57197	63677	17493	22469	27444	21609	25481	29353
1994	29667	34918	40170	51649	58139	64630	16758	21200	25642	21413	25191	28968
1995	23851	28109	32368	59939	67083	74227	14409	17978	21548	30925	35122	39320
1996	32008	37283	42558	53990	61136	68282	18923	23364	27805	26042	30433	34824
1997	24300	28659	33018	44442	50315	56187	14724	18467	22210	21275	24871	28466
1998	24029	28777	33524	33280	38370	43460	16277	20615	24954	19419	22951	26483
1999	25639	30967	36296	34742	40400	46058	18785	23643	28502	23559	28028	32497
2000	25216	30762	36309	33829	40574	47320	17137	22116	27096	22009	27008	32007
Mean 95-99	25965	30759	35553	45279	51461	57643	16624	20814	25004	24244	28281	32318
2000 vs												
1999		-1			0			-6			-4	
1995-1999		0			-21			6			-5	

APPENDIX 6

Computation of Catch Advice for West Greenland

The North American Spawning Reserve (SpT) for 2 SW salmon of 152,548 fish remains the same as in 2000.

This number must be divided by the survival rate for the fish from the time of the West Greenland fishery to their return of the fish to home waters (11 months) to give the Spawning Target Reserve (SpR). Thus:

Eq. 1. $\quad \mathrm{SpR}=\mathrm{SpT} *(\exp (11 * \mathrm{M}) \quad($ where $\mathrm{M}=0.01)$

The Maximum Allowable Harvest (MAH) may be defined as the number of non-maturing 1SW fish that are available for harvest. This number is calculated by subtracting the Spawning Target Reserve from the pre-fishery abundance (PFA).

Eq. 2. $\quad \mathrm{MAH}=\mathrm{PFA}-\mathrm{SpR}$
To provide catch advice for West Greenland it is then necessary to decide on the proportion of the MAH to be allocated to Greenland (f_{NA}). The allowable harvest of North American non-maturing 1SW salmon at West Greenland NA1SW) may then be defined as

Eq. 3. $\quad \mathrm{NA} 1 \mathrm{SW}=\mathrm{f}_{\mathrm{NA}} * \mathrm{MAH}$
The estimated number of European salmon that will be caught at West Greenland (E1SW) will depend upon the harvest of North American fish and the proportion of the fish in the West Greenland fishery that originate from North America [PropNA] ${ }^{1}$. Thus:

Eq. 4. $\quad E 1 S W=(N A 1 S W /$ PropNA $)-$ NA1SW

To convert the numbers of North American and European 1SW salmon into total catch at West Greenland in metric tonnes, it is necessary to incorporate the mean weights (kg) of salmon for North America [WT1SWNA] ${ }^{1}$ and Europe [WT1SWE] ${ }^{1}$ and age correction factor for multi-sea winter salmon at Greenland based on the total weight of salmon caught divided by the weight of 1 SW salmon $[\mathrm{ACF}]^{1}$. The quota (in tonnes) at Greenland is then estimated as

Eq. 5. \quad Quota $=($ NA1SW $* W T 1 S W N A+E 1 S W * W T 1 S W E) * A C F / 1000$
1 Sampling data from the 1995-99 fishery at West Greenland were used to update the forecast values by exponential smoothing of the proportion of North American salmon in the catch (PropNA), weights by continent [WT1SWNA, WT1SWE] and the age correction factor [ACF].

APPENDIX 7

Appendix 7a Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - FINLAND

Year	Catch (numbers) 1SW	MSW	Unrep. as \% of total 1SW min	\max	Unrep. as \% of total MSW \qquad	max	$\begin{array}{\|l} \text { Exp. } \\ \text { rate } \\ 1 S W \\ (\%) \\ (\%) \\ \text { min } \end{array}$	\max	Exp. rate MSW (\%) min	max
1971	3,114	3,156	20	30	20	30	40	70	40	80
1972	4,865	4,932	20	30	20	30	40	70	40	80
1973	7,395	7,496	20	30	20	30	40	70	40	80
1974	6,803	7,253	20	30	20	30	40	70	40	80
1975	6,732	7,178	20	30	20	30	40	70	40	80
1976	5,817	6,202	20	30	20	30	40	70	40	80
1977	5,238	5,584	20	30	20	30	40	70	40	80
1978	3,832	3,481	20	30	20	30	40	70	40	80
1979	3,982	2,298	20	30	20	30	40	70	30	70
1980	3,920	3,093	20	30	20	30	40	70	30	70
1981	3,617	4,874	20	30	20	30	40	70	30	70
1982	2,598	5,408	20	30	20	30	40	70	30	70
1983	3,916	6,050	20	30	20	30	40	70	30	70
1984	4,899	4,726	20	30	20	30	40	70	30	70
1985	6,201	4,912	20	30	20	30	40	70	30	70
1986	6,131	3,244	20	30	20	30	40	70	30	70
1987	8,696	4,520	20	30	20	30	40	70	30	70
1988	5,926	3,495	20	30	20	30	40	70	30	70
1989	10,395	5,332	20	30	20	30	50	80	40	80
1990	10,084	5,600	20	30	20	30	50	80	40	80
1991	9,213	6,298	20	30	20	30	50	80	40	80
1992	15,017	6,284	20	30	20	30	50	80	40	80
1993	11,157	8,180	20	30	20	30	50	80	40	80
1994	7,493	6,230	20	30	20	30	50	80	40	80
1995	7,786	5,344	20	30	20	30	50	80	40	80
1996	10,726	2,717	20	30	20	30	40	70	30	70
1997	9,469	4,272	20	30	20	30	40	70	30	70
1998	11,410	3,749	20	30	20	30	40	70	30	70
1999	16,861	3,848	20	30	20	30	50	80	40	70
2000	17,499	8,698	20	30	20	30	50	80	40	70
2001	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0
2003	0	0	0	0	0	0	0	0	0	0
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0

$M(\min)=$	0.005	Return time $(\mathrm{m})=1 \mathrm{SW}(\min)$	7	$\mathrm{MSW}(\min)$	16
$\mathrm{M}(\max)=$	0.015	$1 \mathrm{SW}(\max)$	9	$\mathrm{NSW}(\max)$	18

Appendix 7b Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - FRANCE

Year	Catch (numbers)1SW		Unrep. as \% of total 1SW$\begin{array}{l\|l} \min & \max \\ \hline \end{array}$		Unrep. as \% of total MSW$\begin{array}{l\|l} \mathrm{m} \text { in } & \mathrm{max} \\ \hline \end{array}$		$\begin{aligned} & \text { Exp. rate } \\ & 1 \mathrm{SW}(\%) \\ & \min \\ & \hline \end{aligned}$		Exp. rate MSW (\%)$\min \quad \max$	
	Non-reporting included in exploitation rates									
1971	1,740	4,060	0	0	0	0	2	5	25	50
1972	3.480	8,120	0	0	0	0	2	5	25	50
1973	2,130	4,970	0	0	0	0	2	5	25	50
1974	990	2,310	0	0	0	0	2	5	25	50
1975	1,980	4,620	0	0	0	0	2	5	25	50
1976	1,820	3,380	0	0	0	0	2	5	25	50
1977	1,400	2,600	0	0	0	0	2	5	25	50
1978	1,435	2,665	0	0	0	0	2	5	25	50
1979	1,645	3,055	0	0	0	0	2	5	25	50
1980	3.430	6,370	0	0	0	0	2	5	25	50
1981	2,720	4,080	0	0	0	0	2	5	20	50
1982	1,680	2,520	0	0	0	0	2	5	20	50
1983	1,800	2,700	0	0	0	0	2	5	20	50
1984	2,960	4,440	0	0	0	0	2	5	20	50
1985	1,100	3,330	0	0	0	0	2	5	20	50
1986	3,400	3,400	0	0	0	0	2	12	20	50
1987	6.000	1,800	0	0	0	0	2	12	20	50
1988	2,100	5,000	0	0	0	0	2	12	20	50
1989	1,100	2,300	0	0	0	0	2	12	20	50
1990	1,900	2,300	0	0	0	0	2	12	20	50
1991	1,400	2,100	0	0	0	0	2	12	20	50
1992	2,500	2,700	0	0	0	0	2	12	20	50
1993	3,600	1,300	0	0	0	0	2	12	20	50
1994	2,800	2,300	0	0	0	0	2	12	20	40
1995	1,669	1,095	0	0	0	0	5	20	20	40
1996	2,063	1,942	0	0	0	0	5	20	20	40
1997	1,060	1,001	0	0	0	0	5	20	20	40
1998	2,065	846	0	0	0	0	5	20	20	40
1999	690	1,831	0	0	0	0	5	20	20	40
2000	1,792	1,277	0	0	0	0	5	20	20	40
2001	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0
2003	0	0	0	0	0	0	0	0	0	0
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0

$M(\min)=$	0.005	Return time $(\mathrm{m})=\mathrm{W}(\min)$	7	$\mathrm{~W}(\min)$	16
$M(\max)$	$=0.015$	$1 S W(\max)$	9	$\mathrm{~V}(\max)$	18

Appendix 7c Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - ICELAND-1

Year	Catch (numbers)		Unrep. as \% of total 1SW				$\begin{aligned} & \text { Exp. rate } \\ & \text { 1SW (\%) } \end{aligned}$		Exp. rate MSW (\%)	
	1SW	MSW	min	max	min	max	min	max	min	max
1971	25,746	15,429	1	3	1	3	40	60	50	70
1972	26,793	19,715	1	3	1	3	40	60	50	70
1973	26,105	18,847	1	3	1	3	40	60	50	70
1974	17,742	17,364	1	3	1	3	40	60	50	70
1975	24,541	19,695	1	3	1	3	40	60	50	70
1976	20,046	17,588	1	3	1	3	40	60	50	70
1977	21,394	17,636	1	3	1	3	40	60	50	70
1978	28,436	21,858	1	3	1	3	40	60	50	70
1979	24,508	14,099	1	3	1	3	40	60	50	70
1980	15,447	15,784	1	3	1	3	40	60	50	70
1981	16,666	10,785	1	3	1	3	40	60	50	70
1982	12.398	10,872	1	3	1	3	40	60	50	70
1983	20,397	15,348	1	3	1	3	40	60	50	70
1984	14,129	11,573	1	3	1	3	40	60	50	70
1985	17,595	9,900	1	3	1	3	40	60	50	70
1986	26,753	13,310	1	3	1	3	40	60	50	70
1987	20,697	8.366	1	3	1	3	40	60	50	70
1988	39,891	7.534	1	3	1	3	40	60	50	70
1989	22.050	7.168	1	3	1	3	40	60	50	70
1990	21,396	7.290	1	3	1	3	40	60	50	70
1991	21,438	7.206	1	3	1	3	40	60	50	70
1992	24,245	9.330	1	3	1	3	40	60	50	70
1993	23,818	6.040	1	3	1	3	40	60	50	70
1994	20,668	8.079	1	3	1	3	40	60	50	70
1995	25,517	7.122	1	3	1	3	40	60	50	70
1996	21,264	5,605	1	3	1	3	40	60	50	70
1997	15,470	5.565	1	3	1	3	40	60	50	70
1998	21,520	3,707	1	3	1	3	40	60	50	70
1999	16,622	5.757	1	3	1	3	40	60	50	70
2000	11,894	2,358	1	3	1	3	40	60	50	70
2001	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0
2003	0	0	0	0	0	0	0	0	0	0
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0		0	0	0	0	0	0	0
$M($ min $)=$	0.005		Retu	time (m) $=$	1SW(min)	7	MSW(min)	16		
$\mathrm{M}($ max $)=$	0.015				1SW(max)	9	MSW(max)	18		

Appendix 7d Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - ICELAND-2

Year	Catch (numbers) 1SW	MSW	Unrep. as \% of total 1SW	max	Unrep. as $\%$ of total MSW	max	Exp. rate $1 S W$ (\%) min	max	Exp. rate MSW (\% \min	max
1971	4,704	6,191	1	3	1	3	40	60	50	70
1972	4,334	9,728	1	3	1	3	40	60	50	70
1973	5,803	12,059	1	3	1	3	40	60	50	70
1974	4.867	8.475	1	3	1	3	40	60	50	70
1975	6,343	9,907	1	3	1	3	40	60	50	70
1976	5,880	7,883	1	3	1	3	40	60	50	70
1977	9,285	11,824	1	3	1	3	40	60	50	70
1978	9,232	15,323	1	3	1	3	40	60	50	70
1979	8,807	9,952	1	3	1	3	40	60	50	70
1980	1,586	14,140	1	3	1	3	40	60	50	70
1981	7,105	4,965	1	3	1	3	40	60	50	70
1982	3,358	5,956	1	3	1	3	40	60	50	70
1983	4,583	4,259	1	3	1	3	40	60	50	70
1984	1.742	5.460	1	3	1	3	40	60	50	70
1985	10,233	3,398	1	3	1	3	40	60	50	70
1986	13,745	10,189	1	3	1	3	40	60	50	70
1987	8,238	9,642	1	3	1	3	40	60	50	70
1988	12,776	6,519	1	3	1	3	40	60	50	70
1989	6,644	5,582	1	3	1	3	40	60	50	70
1990	5,403	5,866	1	3	1	3	40	60	50	70
1991	8,583	4,552	1	3	1	3	40	60	50	70
1992	13,831	6,440	1	3	1	3	40	60	50	70
1993	11,354	6,922	1	3	1	3	40	60	50	70
1994	3,712	5,828	1	3	1	3	40	60	50	70
1995	9,494	3,714	1	3	1	3	40	60	50	70
1996	5,007	4,865	1	3	1	3	40	60	50	70
1997	7.354	2.955	1	3	1	3	40	60	50	70
1998	12,822	4,261	1	3	1	3	40	60	50	70
1999	5,905	7,077	1	3	1	3	40	60	50	70
2000	6081	2624	1	3	1	3	40	60	50	70
2001	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0
2003	0	0	0	0	0	0	0	0	0	0
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0

$\begin{array}{cc}\mathrm{M}(\min)= & 0.005 \\ \mathrm{M}(\max)= & 0.015\end{array}$

Return time $(\mathrm{m})=$
1SW(max
$\begin{array}{ll}\text { MSW(max) } & 18\end{array}$

Appendix 7e Input data for NEAC Area Pre Fishery Abundance analysis using Mbnte Carlo simulation - Al IREAND.

Year	Catch (numbers) 1SW	MSW	Unrep. as \%of total 1SW min	max	Unrep. as \%of total MSW min	max	Exp. rate 1SW (\%) min	max	Exp. rate MSW (\%) min	max
1971	475,839	52871	30.00	45.00	30.00	50.00	66.00	78.00	47.00	55.00
1972	523,742	58,194	30.00	45.00	30.00	50.00	66.30	78.00	46.75	55.00
1973	560,323	62,258	30.00	45.00	30.00	50.00	66.30	78.00	46.75	55.00
1974	617,806	68,645	30.00	45.00	30.00	50.00	66.30	78.00	46.75	55.00
1975	643,355	71,484	30.00	45.00	30.00	50.00	66.30	78.00	46.75	55.00
1976	453,194	50,355	30.00	45.00	30.00	50.00	66.30	78.00	46.75	55.00
1977	398,323	44,258	30.00	45.00	30.00	50.00	66.30	78.00	46.75	55.00
1978	357,097	39,677	30.00	45.00	30.00	50.00	66.30	78.00	46.75	55.00
1979	318,484	35,387	30.00	45.00	30.00	50.00	66.30	78.00	46.75	55.00
1980	248,333	39,608	30.00	45.00	30.00	50.00	65.87	81.67	46.75	55.00
1981	173,667	32,159	30.00	45.00	30.00	50.00	67.55	83.64	54.25	63.82
1982	310,000	12,353	30.00	45.00	30.00	50.00	66.81	8277	51.53	60.62
1983	502,000	29,411	30.00	45.00	30.00	50.00	67.54	79.46	46.44	54.63
1984	242,666	19,804	30.00	45.00	30.00	50.00	68.68	80.80	32.19	37.87
1985	498,333	19,608	30.00	45.00	30.00	50.00	69.95	8229	34.71	40.83
1986	498,125	28,335	30.00	45.00	30.00	50.00	72.87	85.73	34.66	40.78
1987	358,842	27,609	20.00	40.00	20.00	45.00	70.66	83.13	36.27	42.67
1988	559,297	30,599	20.00	40.00	20.00	45.00	71.56	84.19	36.76	43.24
1989	305,667	24,891	20.00	40.00	20.00	45.00	68.28	80.33	45.06	53.01
1990	203,955	16,608	20.00	40.00	20.00	45.00	61.21	7202	41.15	48.42
1991	140,796	11,465	20.00	40.00	20.00	45.00	60.42	71.08	40.11	47.19
1992	219,942	17,910	20.00	40.00	20.00	45.00	58.82	69.20	38.34	45.11
1993	187,742	15,288	15.00	35.00	20.00	45.00	65.87	77.50	48.79	57.40
1994	267,928	21,818	15.00	35.00	20.00	45.00	66.73	78.50	38.59	45.40
1995	271,497	22,108	15.00	35.00	20.00	45.00	68.08	80.10	41.60	42.83
1996	230,826	18,797	15.00	35.00	15.00	30.00	66.33	78.03	37.95	56.18435
1997	194,187	15,813	10.00	20.00	10.00	20.00	64.86	76.30	46.67	60.00
1998	219,767	17,896	10.00	20.00	10.00	20.00	64.12	75.43	40.00	60.00
1999	166,887	13,590	10.00	20.00	10.00	20.00	63.50	74.70	40.00	62.17
2000	211,035	17,185	10.00	20.00	10.00	20.00	63.00	75.00	40.00	62.00
2001	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0
2003	0	0	0	0	0	0	0	0	0	0
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0
$\begin{aligned} M(\min) & = \\ M(\max) & = \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.015 \end{aligned}$		Retu	time (m) $=$	1SW(min) 1SW(max)	$\begin{aligned} & 7 \\ & 9 \end{aligned}$	MSW(min) MSW(max)	$\begin{aligned} & 16 \\ & 18 \end{aligned}$		

Appendix $7 f \quad$ Input data for NEAC Area Pre Fishery Abundance analysis using
Monte Carlo simulation - NORWAY-Total pre-1983

Year	$\begin{aligned} & \text { Catch } \\ & \text { (numbers) } \end{aligned}$		Unrep. as \% of total 1SW		Unrep. as \% of total MSW		$\begin{aligned} & \text { Exp. rate } \\ & \text { 1SW (\%) } \end{aligned}$		Exp. rate MSW (\%)	
	1SW	MSW	min	max	min	max	min	max	min	max
1971	213,595	135,247	40	60	40	60	70	90	70	90
1972	279,249	176,818	40	60	40	60	70	90	70	90
1973	305.439	193.402	40	60	40	60	70	90	70	90
1974	288,982	182,981	40	60	40	60	70	90	70	90
1975	271,993	172,224	40	60	40	60	70	90	70	90
1976	270,754	171,439	40	60	40	60	70	90	70	90
1977	263,322	166,733	40	60	40	60	70	90	70	90
1978	285.812	117,655	40	60	40	60	70	90	70	90
1979	324,020	205,167	40	60	40	60	70	90	70	90
1980	323.843	205,055	40	60	40	60	70	90	70	90
1981	221,566	213,943	40	60	40	60	70	90	70	90
1982	163,120	174,229	40	60	40	60	70	90	70	90
1983	0	0	0	0	0	0	0	0	0	0
1984	0	0	0	0	0	0	0	0	0	0
1985	0	0	0	0	0	0	0	0	0	0
1986	0	0	0	0	0	0	0	0	0	0
1987	0	0	0	0	0	0	0	0	0	0
1988	0	0	0	0	0	0	0	0	0	0
1989	0	0	0	0	0	0	0	0	0	0
1990	0	0	0	0	0	0	0	0	0	0
1991	0	0	0	0	0	0	0	0	0	0
1992	0	0	0	0	0	0	0	0	0	0
1993	0	0	0	0	0	0	0	0	0	0
1994	0	0	0	0	0	0	0	0	0	0
1995	0	0	0	0	0	0	0	0	0	0
1996	0	0	0	0	0	0	0	0	0	0
1997	0	0	0	0	0	0	0	0	0	0
1998	0	0	0	0	0	0	0	0	0	0
1999	0	0	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0	0	0
2001	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0
2003	0	0	0	0	0	0	0	0	0	0
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0

	0.005	Return time (m) $=$	1SW(min)	7	SW(min)	6
$\mathrm{M}($ max $)=$	0.015		1SW(max)	9	MSW(max)	18

Appendix 7g Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - NORWAY-S (1983 onwards)

Year	Catch (numbers)		Unrep. as \% of total 1SW		Unrep. as \% of total MSW		$\begin{array}{\|l\|l} \text { Exp. rate } \\ \text { 1SW (\%) } \end{array}$		Exp. rate MSW (\%)	
	1SW	MSW	min	max	min	max	min	max	min	max
1971	0	0	0	0	0	0	0	0	0	0
1972	0	0	0	0	0	0	0	0	0	0
1973	0	0	0	0	0	0	0	0	0	0
1974	0	0	0	0	0	0	0	0	0	0
1975	0	0	0	0	0	0	0	0	0	0
1976	0	0	0	0	0	0	0	0	0	0
1977	0	0	0	0	0	0	0	0	0	0
1978	0	0	0	0	0	0	0	0	0	0
1979	0	0	0	0	0	0	0	0	0	0
1980	0	0	0	0	0	0	0	0	0	0
1981	0	0	0	0	0	0	0	0	0	0
1982	0	0	0	0	0	0	0	0	0	0
1983	38,353	34,080	40	60	40	60	65	85	65	85
1984	86,583	66,580	40	60	40	60	65	85	65	85
1985	106,376	55,914	40	60	40	60	65	85	65	85
1986	98,525	76,517	40	60	40	60	65	85	65	85
1987	73,885	61,257	40	60	40	60	65	85	65	85
1988	72,751	45,278	40	60	40	60	65	85	65	85
1989	83,316	29,734	40	60	40	60	55	75	55	75
1990	66,477	38,353	40	60	40	60	55	75	55	75
1991	57.410	28,440	40	60	40	60	55	75	55	75
1992	40,380	30,691	40	60	40	60	55	75	55	75
1993	46,975	26,425	30	50	30	50	55	75	55	75
1994	95,265	31,392	30	50	30	50	55	75	55	75
1995	45,194	40,019	30	50	30	50	55	75	55	75
1996	22,110	29,417	30	50	30	50	55	75	55	75
1997	36.549	18,312	25	45	25	45	50	70	50	70
1998	47,909	23,533	25	45	25	45	50	70	50	70
1999	48,504	26,435	25	45	25	45	50	70	50	70
2000	85179	38204	25	45	25	45	50	70	50	70
2001	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0
2003	0	0	0	0	0	0	0	0	0	0
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0
$M($ min $)$	0.005		Return time (m) $=$		1SW(min) 1SW(max)	7	MSW(min)	16		
$\mathrm{M}($ max $)$	0.015				9	MSW(max)	18			

Appendix 7h Input data for NEAC Area Pre Fishery Abundance analysis using
Monte Carlo simulation - NORWAY-M (1983 onwards)

Year	Catch (numbers)		Unrep. as \% of total 1SW		Unrep. as \% of total MSW		$\begin{aligned} & \text { Exp. rate } \\ & 1 S W(\%) \end{aligned}$		Exp. rate MSW (\%)	
	1SW	MSW	min	max	min	max	min	max	min	max
1971	0	0	0	0	0	0	0	0	0	0
1972	0	0	0	0	0	0	0	0	0	0
1973	0	0	0	0	0	0	0	0	0	0
1974	0	0	0	0	0	0	0	0	0	0
1975	0	0	0	0	0	0	0	0	0	0
1976	0	0	0	0	0	0	0	0	0	0
1977	0	0	0	0	0	0	0	0	0	0
1978	0	0	0	0	0	0	0	0	0	0
1979	0	0	0	0	0	0	0	0	0	0
1980	0	0	0	0	0	0	0	0	0	0
1981	0	0	0	0	0	0	0	0	0	0
1982	0	0	0	0	0	0	0	0	0	0
1983	112,811	73,452	40	60	40	60	65	85	65	85
1984	86,583	66,580	40	60	40	60	65	85	65	85
1985	106,376	55,914	40	60	40	60	65	85	65	85
1986	98,525	76,517	40	60	40	60	65	85	65	85
1987	73,885	61, 257	40	60	40	60	65	85	65	85
1988	72,751	45,278	40	60	40	60	65	85	65	85
1989	83,316	29,734	40	60	40	60	55	75	55	75
1990	66,477	38,353	40	60	40	60	55	75	55	75
1991	57,410	28,440	40	60	40	60	55	75	55	75
1992	40,380	30,691	40	60	40	60	55	75	55	75
1993	46,975	26,425	30	50	30	50	55	75	55	75
1994	95,265	31,392	30	50	30	50	55	75	55	75
1995	45,194	40,019	30	50	30	50	55	75	55	75
1996	22.110	29,417	30	50	30	50	55	75	55	75
1997	36,549	18,312	25	45	25	45	50	70	50	70
1998	47,909	23,533	25	45	25	45	50	70	50	70
1999	48,504	26,435	25	45	25	45	50	70	50	70
2000	85,179	38,204	25	45	25	45	50	70	50	70
2001	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0
2003	0	0	0	0	0	0	0	0	0	0
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0

$M($ min $)=0.005$
$M(\max)=\quad 0.015$
Return time (m)
1SW(min)
$\begin{array}{cccc}\text { 1SW(min) } & 7 & \text { MSW(min) } & 16 \\ \text { 1SW(max) } & 9 & \text { MSW(max) } & 18\end{array}$

Appendix 7i Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - NORWAY-N (1983 onwards)

Year	Catch (numbers) 1SW		Unrep. as \% of total 1SW	max	Unrep. as \% of total MSW	max	$\left\lvert\, \begin{gathered}\text { Exp. rate } \\ 1 S W(\%) \\ \min \end{gathered}\right.$	\max	Exp. rate MSW (\% min	max
1971	0	0	0	0	0	0	0	0	0	0
1972	0	0	0	0	0	0	0	0	0	0
1973	0	0	0	0	0	0	0	0	0	0
1974	0	0	0	0	0	0	0	0	0	0
1975	0	0	0	0	0	0	0	0	0	0
1976	0	0	0	0	0	0	0	0	0	0
1977	0	0	0	0	0	0	0	0	0	0
1978	0	0	0	0	0	0	0	0	0	0
1979	0	0	0	0	0	0	0	0	0	0
1980	0	0	0	0	0	0	0	0	0	0
1981	0	0	0	0	0	0	0	0	0	0
1982	0	0	0	0	0	0	0	0	0	0
1983	107.749	56,994	40	60	40	60	70	90	70	90
1984	156,755	66,460	40	60	40	60	70	90	70	90
1985	125.469	65,800	40	60	40	60	70	90	70	90
1986	91,403	68,494	40	60	40	60	70	90	70	90
1987	82.236	40,394	40	60	40	60	70	90	70	90
1988	58.859	35.986	40	60	40	60	70	90	70	90
1989	53,009	20,466	40	60	40	60	60	80	60	80
1990	47,133	23,221	40	60	40	60	60	80	60	80
1991	52.442	30,245	40	60	40	60	60	80	60	80
1992	51,137	27,082	40	60	40	60	60	80	60	80
1993	56,382	45,669	30	50	30	50	60	80	60	80
1994	40.402	40,336	30	50	30	50	60	80	60	80
1995	36,706	30,337	30	50	30	50	60	80	60	80
1996	45.946	38.520	30	50	30	50	60	80	60	80
1997	43.413	32,701	25	45	25	45	60	80	60	80
1998	53,099	37,217	25	45	25	45	60	80	60	80
1999	64.531	49,320	25	45	25	45	60	80	60	80
2000	77,121	57.286	25	45	25	45	60	80	60	80
2001	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0
2003	0	0	0	0	0	0	0	0	0	0
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0

$M($ min $)=0.005$
$\begin{array}{lllll}\text { Return time }(\mathrm{m})= & \begin{array}{c}1 \mathrm{SW}(\min) \\ 1 S W(\max)\end{array} & 7 & \mathrm{MSW}(\text { min }) & 16 \\ & \mathrm{MSW}(\text { max }) & 18\end{array}$

Appendix 7 Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - RUSSIA.

Year	Catch (numbers)		Unrep. as \% of total 1SW		Unrep. as \% of total MSW		Exp. rate 1SW (\%)		Exp. rate MSW (\%)	
	1SW	MSW	min	max	min	max	min	max	min	max
1971	48,312	80,841	15	25	15	25	40	60	40	60
1972	53,525	67,407	15	25	15	25	40	60	40	60
1973	89,440	112,636	15	25	15	25	40	60	40	60
1974	82,141	103,444	15	25	15	25	40	60	40	60
1975	87,944	129,896	15	25	15	25	40	60	40	60
1976	66,447	110,756	15	25	15	25	40	60	40	60
1977	55,463	83,195	15	25	15	25	40	60	40	60
1978	60,737	57,564	15	25	15	25	40	60	40	60
1979	69,423	63,844	15	25	15	25	40	60	40	60
1980	45,673	96,795	15	25	15	25	40	60	40	60
1981	32,611	52,528	15	25	15	25	40	60	40	60
1982	39,702	42,471	15	25	15	25	30	50	30	50
1983	57,870	68,396	15	25	15	25	30	50	30	50
1984	54,991	72,228	15	25	15	25	30	50	30	50
1985	72,803	80,292	15	25	15	25	30	50	30	50
1986	63,926	89,465	15	25	15	25	30	50	30	50
1987	97,242	41,769	15	25	15	25	30	45	30	50
1988	53,158	46,848	15	25	15	25	30	45	30	50
1989	78,023	29,454	15	25	20	30	30	45	15	30
1990	70,595	25,663	15	25	20	30	30	45	15	25
1991	40,603	17,543	33	47	33	47	25	35	15	25
1992	34,021	13,431	35	45	45	55	25	35	15	25
1993	28,100	17,907	35	45	50	60	25	35	15	25
1994	30,877	13,668	35	45	55	65	25	35	15	25
1995	27,775	10,023	35	45	55	65	25	35	15	25
1996	33,878	8,708	35	45	65	75	25	35	10	20
1997	31,857	7,107	35	45	65	75	25	35	10	20
1998	34,870	7,024	35	45	65	75	25	35	10	20
1999	24,016	6,998	35	45	65	75	25	35	10	20
2000	27,702	9,413	35	45	65	75	25	35	10	20
2001	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0
2003	0	0	0	0	0	0	0	0	0	0
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0

$M($ min $)=0.005$
$M(\max)=0.015$

Return time $(\mathrm{m})=$
1SW(min)
1SW(max)

MSW(min)
16

Appendix 7k Input data for NEAC Area Pre Fishery Abundance analysis using Mbnte Carlo simulation-SWEDEN

Year	Catch(numbers)		Unrep. as \%of total 1SW		Unrep. as \%of total MSW		$\begin{array}{\|l\|l} \text { Exp. rate } \\ \text { 1SW(\%) } \end{array}$		Exp. rate MSW (\%)	
	1SW	MSW	min	max	min	max	min	max	min	max
1971	6,330	420	20	50	20	50	70	95	55	100
1972	5,005	295	20	50	20	50	70	95	55	100
1973	6,210	1,025	20	50	20	50	70	95	55	100
1974	8,935	660	20	50	20	50	70	95	55	100
1975	9,620	160	20	50	20	50	70	95	55	100
1976	5,420	480	20	50	20	50	70	95	55	100
1977	2,555	360	20	50	20	50	70	95	55	100
1978	2917	275	20	50	20	50	70	95	55	100
1979	3,080	800	20	50	20	50	70	95	55	100
1980	3,920	1,400	20	50	20	50	70	95	55	100
1981	7,095	407	20	50	20	50	70	95	55	100
1982	6,230	1,460	20	50	20	50	70	95	55	100
1983	8,290	1,005	20	50	20	50	70	95	55	100
1984	11,680	1,410	20	50	20	50	70	95	55	100
1985	13,890	590	20	50	20	50	70	95	55	100
1986	14,635	570	20	50	20	50	70	95	55	100
1987	11,860	1,700	20	50	20	50	70	95	55	100
1988	9,930	1,650	20	50	20	50	70	95	55	100
1989	3,180	4,610	20	50	20	50	70	95	55	100
1990	7,430	3,135	20	50	20	50	70	95	55	100
1991	8,990	3,620	20	50	20	50	70	95	55	100
1992	9,850	4,655	20	50	20	50	70	95	55	100
1993	10,540	6,370	20	50	20	50	70	95	55	100
1994	8,035	4,660	20	50	20	50	60	85	55	100
1995	9,761	2.770	20	50	20	50	50	75	55	90
1996	6,008	3,542	20	50	20	50	50	75	55	90
1997	2747	2,307	20	50	20	50	50	75	55	90
1998	2421	1,702	5	25	5	25	60	85	55	90
1999	3,573	1,460	5	25	5	25	55	90	55	90
2000	7,103	3,196	5	25	5	25	55	90	55	90
2001	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0
2003	0	0	0	0	0	0	0	0	0	0
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0

$\begin{aligned} M(\min) & =0.005 \\ M(\max) & =0.015\end{aligned}$
Retumtime $(m)=$
1SMmin)
1SW(max
$\begin{array}{lrl}7 & \text { MSW(min) } & 16 \\ 9 & \text { MSW (max) } & 18\end{array}$

Appendix 71 Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - UK(England and Wales).

Year	Catch (numbers)		Unrep. as \% of total 1SW		Unrep. as \% of total MSW		$\begin{array}{\|l\|l} \text { Exp. rate } \\ \text { 1SW (\%) } \end{array}$		Exp. rate MSW (\%)	
	1SW	MSW	min	max	min	max	min	max	min	max
1971	34,142	18,384	25	45	25	45	23	43	18	38
1972	38,630	20,347	25	45	25	45	23	43	18	38
1973	36,357	18,729	25	45	25	45	23	43	18	38
1974	36,048	18,159	25	45	25	45	23	43	18	38
1975	41,730	20,554	25	45	25	45	23	43	18	38
1976	26,686	12,849	25	45	25	45	24	44	18	38
1977	30,665	14,431	25	45	25	45	24	44	19	39
1978	31,253	14,372	25	45	25	45	25	45	19	39
1979	24,725	11,108	25	45	25	45	26	46	20	40
1980	34,066	14,950	25	45	25	45	29	49	23	43
1981	41,670	17,859	25	45	25	45	29	49	23	43
1982	25,480	10,662	25	45	25	45	30	50	24	44
1983	35,332	14,432	25	45	25	45	31	51	24	44
1984	30,943	12,334	25	45	25	45	32	52	25	45
1985	33,680	13,098	25	45	25	45	33	53	26	46
1986	41,700	15,817	25	45	25	45	33	53	26	46
1987	36,339	17,101	25	45	25	45	33	53	26	46
1988	47,242	21,225	25	45	25	45	32	52	26	46
1989	32,559	17,532	20	40	20	40	34	54	28	48
1990	23,635	21,817	20	40	20	40	35	55	28	48
1991	22,408	9,152	20	40	20	40	34	54	28	48
1992	22,233	6,641	20	40	20	40	34	54	27	47
1993	29,963	7,028	30	60	30	60	29	49	23	43
1994	40,610	12,130	30	60	30	60	28	48	22	42
1995	29,211	11,360	15	25	15	25	27	47	21	41
1996	21,415	11,531	15	25	15	25	23	43	18	38
1997	18,521	6,850	15	25	15	25	22	42	17	37
1998	19,726	4,040	15	25	15	25	20	40	15	35
1999	15,430	6,613	15	25	15	25	17	37	12	32
2000	23,461	7,008	15	25	15	25	16	36	12	32
2001	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0
2003	0	0	0	0	0	0	0	0	0	0
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0
$\begin{array}{r} M(\min)= \\ M(\max)= \end{array}$	0.005 0.015		Retu	ime (m	1SW(min) 1SW(max)	7 9	MSW(min) MSW(max)	17 19		

Appendix 7m Input data for NEAC Area Pre Fishery Abundance analysis using
Monte Carlo simulation - UK(Northern Ireland)-1

Year	Catch (numbers)		Unrep. as \% of total 1SW		Unrep. as \% of total MSW		Exp. rate 1SW (\%)		Exp. rateMSW (\%)	
	1SW	MSW	min	max	min	max	min	max	min	max
1971	79.715	4,196	10	33	10	33	75	85	45	55
1972	66,054	3,477	10	33	10	33	75	85	45	55
1973	58.705	3.090	10	33	10	33	75	85	45	55
1974	74,148	3,903	10	33	10	33	75	85	45	55
1975	52,159	2.745	10	33	10	33	75	85	45	55
1976	36,984	1.947	10	33	10	33	75	85	45	55
1977	37,295	1,963	10	33	10	33	75	85	45	55
1978	45,515	2,396	10	33	10	33	75	85	45	55
1979	35,153	1,850	10	33	10	33	75	85	45	55
1980	46,762	2.461	10	33	10	33	75	85	45	55
1981	33.042	1,739	10	33	10	33	75	85	45	55
1982	57,149	3.008	10	33	10	33	75	85	45	55
1983	79,089	4,163	10	33	10	33	75	85	45	55
1984	28.055	1.477	10	33	10	33	75	85	45	55
1985	38.495	2.026	10	33	10	33	75	85	45	55
1986	44,036	2.318	10	33	10	33	75	85	45	55
1987	17,559	924	10	33	10	33	62	76	41	51
1988	44,920	2,364	10	33	10	33	58	71	32	40
1989	61,585	3.241	10	37	10	37	80	98	54	66
1990	40.732	2.144	10	17	10	17	56	68	34	42
1991	22.176	1,167	10	17	10	17	58	71	39	47
1992	40,144	2.113	10	23	10	23	50	62	30	36
1993	36,127	1.901	10	17	10	17	37	45	11	13
1994	36,921	1,943	10	28	10	28	63	77	36	44
1995	34,116	1,796	10	17	10	17	60	74	38	46
1996	29,017	1.527	10	20	10	20	47	67	24	44
1997	41,765	2,198	5	15	5	15	50	70	24	44
1998	37,953	1,998	5	15	5	15	20	30	15	30
1999	22,126	1,165	5	15	5	15	58	68	25	40
2000	31,038	1,634	5	15	5	15	53	63	25	40
2001	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0
2003	0	0	0	0	0	0	0	0	0	0
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0

$\begin{array}{ll}M(\min) & =0.005 \\ M(\max) & =0.015\end{array}$

1SW(max) $\quad 9 \quad \mathrm{MSW}($ max $) \quad 18$

Appendix 7n
Input data for NEAC Area Pre Fishery Abundance analysis using
Monte Carlo simulation - UK(Northern Ireland)-FCB area-(2)

Year	$\begin{aligned} & \text { Catch } \\ & \text { (numbers) } \end{aligned}$		$\begin{aligned} & \text { Unrep. as } \\ & \% \text { of total } \\ & 1 S W \end{aligned}$		$\begin{aligned} & \text { Unrep. as } \\ & \text { \%of total } \\ & \text { MSW } \end{aligned}$		Exp. rate 1SW (\%)		Exp. rate MSW (\%)	
	1SW	MSW	min	max	min	max	min	max	min	max
1971	36,270	1.909	10	33	10	33	75	85	45	55
1972	35,293	1,858	10	33	10	33	75	85	45	55
1973	29,858	1,571	10	33	10	33	75	85	45	55
1974	22,787	1,199	10	33	10	33	75	85	45	55
1975	27,275	1.436	10	33	10	33	75	85	45	55
1976	18.270	962	10	33	10	33	75	85	45	55
1977	17,139	902	10	33	10	33	75	85	45	55
1978	25,391	1,336	10	33	10	33	75	85	45	55
1979	14,631	70	10	33	10	33	75	85	45	55
1980	16,310	858	10	33	10	33	75	85	45	55
1981	16,338	860	10	33	10	33	75	85	45	55
1982	14,370	756	10	33	10	33	75	85	45	55
1983	21,293	1,121	10	33	10	33	75	85	45	55
1984	11,348	597	10	33	10	33	75	85	45	55
1985	12.635	665	10	33	10	33	75	85	45	55
1986	13.443	708	10	33	10	33	75	85	45	55
1987	9,439	497	10	33	10	33	62	76	41	51
1988	14,628	70	10	33	10	33	58	71	32	40
1989	15.405	811	10	37	10	37	80	98	54	66
1990	10,215	538	10	17	10	17	56	68	34	42
1991	6.804	358	10	17	10	17	58	71	39	47
1992	9,534	502	10	23	10	23	50	62	30	36
1993	8.939	470	10	17	10	17	37	45	11	13
1994	11,146	587	10	28	10	28	63	77	36	44
1995	11,887	626	10	17	10	17	60	74	38	46
1996	10.606	558	10	20	10	20	47	67	24	44
1997	10,705	563	5	15	5	15	50	70	24	44
1998	9,577	504	5	15	5	15	20	30	15	30
1999	9,205	484	5	15	5	15	58	68	25	40
2000	10,826	570	5	15	5	15	53	63	25	40
2001	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0
2003	0	0	0	0	0	0	0	0	0	0
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0

$\begin{array}{ll}M(\text { min })= & 0.005 \\ M(\text { max })= & 0.015\end{array}$
$M(\max)=0.015$
$\begin{array}{lllll}\text { Return time }(\mathrm{m})= & \begin{array}{c}\text { 1SW(min) } \\ \text { 1SW (max) }\end{array} & 7 & \text { MSW(min) } & 16 \\ \text { MSW(max) } & 18\end{array}$

Appendx 70 Input data for NEAC Area Pre Fishery Abundance analysis using Mbnte Carlo simulation - UK(Scotland)-E

Year	Catch (numbers) 1SW	MSW	Catch of Sootish fish in Enaland (\%1SM	Unrep. as \%of total 1SW	max	Unrep. as \%of total MSW min	max	$\begin{gathered} \text { Exp. rate } \\ \text { 1SW(\%) } \\ \text { min } \end{gathered}$	max	Exp. rate MSW(\%) min	max
			70\%								
1971	216,873	135.527	5,335	15	35	15	35	30.0	50.0	40.0	60.0
1972	220,106	183,872	49,097	15	35	15	35	29.3	49.1	39.0	58.7
1973	259,773	204,825	59,700	15	35	15	35	28.7	48.1	38.0	57.4
1974	245,424	158,951	50,118	15	35	15	35	28.0	47.2	37.0	56.2
1975	181,940	180,828	50,778	15	35	15	35	27.4	46.3	36.0	54.9
1976	150,069	92.179	14,759	15	35	15	35	26.7	45.3	35.0	53.6
197	154,306	118.645	49,186	15	35	15	35	26.1	44.4	34.0	52.3
1978	158,844	139,688	47,500	15	35	15	35	25.4	43.5	33.0	51.1
1979	160,791	116,514	39,552	15	35	15	35	24.8	42.6	32.0	49.8
1980	101,665	155.646	41,202	10	25	10	25	24.1	41.6	31.0	48.5
1981	129,690	156.683	61,511	10	25	10	25	23.4	40.7	30.0	47.2
1982	175,355	113,180	44,147	10	25	10	25	228	39.8	29.0	46.0
1983	170,843	126.104	67,231	10	25	10	25	221	38.8	28.0	44.7
1984	175,675	90,829	50,994	10	25	10	25	21.5	37.9	27.0	43.4
1985	133,073	95,012	48,753	10	25	10	25	20.8	37.0	26.0	42.1
1986	180,276	128,813	53,277	10	25	10	25	20.2	36.0	25.0	40.9
1987	139.252	88.519	20,999	10	25	10	25	19.5	35.1	24.0	39.6
1988	118,580	91,068	41,696	10	25	10	25	18.9	34.2	23.0	38.3
1989	142,992	85,348	33,577	5	15	5	15	18.2	33.2	22.0	37.0
1990	63,297	73,954	41,224	5	15	5	15	17.6	32.3	21.0	35.8
1991	53,835	53,676	20,343	5	15	5	15	16.9	31.4	20.0	34.5
1992	79,883	67,968	16.115	5	15	5	15	16.2	30.4	19.0	33.2
1993	73,396	60,496	33,440	5	15	5	15	15.6	29.5	18.0	31.9
1994	80,555	72746	37,243	5	15	5	15	14.9	28.6	17.0	30.7
1995	72986	69.115	42,568	5	15	5	15	14.3	27.7	16.0	29.4
1996	56,617	50,361	14,865	5	15	5	15	13.6	26.7	15.0	28.1
1997	37,465	34,841	17,538	5	15	5	15	13.0	25.8	14.0	26.8
1998	44,915	32,264	14,612	5	15	5	15	123	24.9	13.0	25.6
1999	20.840	26,979	21,466	5	15	5	15	11.7	23.9	12.0	24.3
2000	21,328	25.287	34,666	5	15	5	15	11.0	23.0	11.0	23.0
2001	0	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0	0
2003	0	0	0	0	0	0	0	0	0	0	0
2004	0	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0	0

$M($ min $)=0.005$
$M(\max)=0.015$

Appendix 7p Input data for NEAC Area Pre Fishery Abundance analysis using
Monte Carlo simulation - UK(Scotland)-W.

Year	Catch (numbers)		Unrep. as \% of total 1SW		Unrep. as \% of total MSW		Exp. rate 1SW (\%)		Exp. rate MSW (\%)	
	1sw	MSW	min	max	min	max	min	max	min	max
1971	45287	26074	25	45	25	45	10	30	20	40
1972	31359	34151	25	45	25	45	10	30	19	39
1973	33317	33095	25	45	25	45	10	29	19	38
1974	43992	29406	25	45	25	45	9	29	18	38
1975	40424	27150	25	45	25	45	9	28	18	37
1976	38423	22403	25	45	25	45	9	28	17	36
1977	39958	20342	25	45	25	45	9	27	17	35
1978	45626	23266	25	45	25	45	9	27	16	34
1979	26445	15995	25	45	25	45	9	26	16	34
1980	19776	16942	20	35	20	35	8	26	15	33
1981	21048	18038	20	35	20	35	8	26	15	32
1982	32706	15062	20	35	20	35	8	25	14	31
1983	38774	19857	20	35	20	35	8	25	14	30
1984	37404	16384	20	35	20	35	8	24	13	30
1985	24939	19636	20	35	20	35	8	24	13	29
1986	22579	19584	20	35	20	35	7	23	12	28
1987	25533	15475	20	35	20	35	7	23	12	27
1988	30518	21094	20	35	20	35	7	22	11	27
1989	31949	18538	15	25	15	25	7	22	11	26
1990	17797	13970	15	25	15	25	7	21	10	25
1991	19773	11517	15	25	15	25	7	21	10	24
1992	21793	14873	15	25	15	25	6	21	9	23
1993	21121	11230	15	25	15	25	6	20	9	23
1994	18904	12658	15	25	15	25	6	20	8	22
1995	16935	9337	15	25	15	25	6	19	8	21
1996	9796	7559	15	25	15	25	6	19	7	20
1997	9407	5586	15	25	15	25	6	18	7	19
1998	8532	6984	15	25	15	25	5	18	6	19
1999	4343	3672	15	25	15	25	5	17	6	18
2000	5568	4487	15	25	15	25	5	17	5	17
2001	0	0	0	0	0	0	0	0	0	0
2002	0	0	0	0	0	0	0	0	0	0
2003	0	0	0	0	0	0	0	0	0	0
2004	0	0	0	0	0	0	0	0	0	0
2005	0	0	0	0	0	0	0	0	0	0
$M($ min $)=$ $M(\max)=$	$\begin{aligned} & 0.005 \\ & 0.015 \end{aligned}$		Retu	ime (m) $=$	$\begin{aligned} & \text { 1SW(min) } \\ & \text { 1SWW(max) } \end{aligned}$	7 9	MSW(min) MSW(max)	16 18		

Appendix 7q Input data for NEAC Area Pre Fishery Abundance analysis using Monte Carlo simulation - FAROES

$\left\lvert\, \begin{aligned} & \text { Year } \\ & n / n+1 \end{aligned}\right.$	Catch (numbers) 1SW	MSW	Unrep. as \% of total 1SW min	max	Unrep. as \% of total MSW min	max	Exp. rate 1SW (\%) min	max	Exp. rate MSW (\%) min	max
1971	2620	105796	5	15	0	0	100	100	100	100
1972	2754	111187	5	15	0	0	100	100	100	100
1973	3121	126012	5	15	0	0	100	100	100	100
1974	2186	88276	5	15	0	0	100	100	100	100
1975	2798	112984	5	15	0	0	100	100	100	100
1976	1830	73900	5	15	0	0	100	100	100	100
1977	1291	52112	5	15	0	0	100	100	100	100
1978	974	39309	5	15	0	0	100	100	100	100
1979	1736	70082	5	15	0	0	100	100	100	100
1980	4523	182616	5	15	0	0	100	100	100	100
1981	7443	300542	5	15	0	0	100	100	100	100
1982	6859	276957	5	15	0	0	100	100	100	100
1983	15861	215349	5	15	0	0	100	100	100	100
1984	5534	138227	5	15	0	0	100	100	100	100
1985	378	158103	5	15	0	0	100	100	100	100
1986	1979	180934	5	15	0	0	100	100	100	100
1987	90	166244	5	15	0	0	100	100	100	100
1988	8637	87629	5	15	0	0	100	100	100	100
1989	1788	121965	5	15	0	0	100	100	100	100
1990	1989	140054	5	15	0	0	100	100	100	100
1991	943	84935	5	15	0	0	100	100	100	100
1992	68	35700	5	15	0	0	100	100	100	100
1993	6	30023	5	15	0	0	100	100	100	100
1994	15	31672	5	15	0	0	100	100	100	100
1995	18	34662	5	15	0	0	100	100	100	100
1996	101	28381	5	15	0	0	100	100	100	100
1997	0	0	10	20	0	0	100	100	100	100
1998	339	1,424	10	20	0	0	100	100	100	100
1999	0	0	10	20	0	0	100	100	100	100
2000	225	1,765	10	20	0	0	100	100	100	100
2001	0	0	0	0	0	0	100	100	100	100
2002	0	0	0	0	0	0	100	100	100	100
2003	0	0	0	0	0	0	100	100	100	100
2004	0	0	0	0	0	0	100	100	100	100
2005	0	0	0	0	0	0	100	100	100	100

$M(\min)=0.005$

Return time $(\mathrm{m})=$| $1 \mathrm{SW}($ min $)$ | 0 | $\mathrm{MSW}($ min $)$ | 1 |
| :---: | :---: | :---: | :---: |
| $1 \mathrm{SW}(\max)$ | 1 | $\mathrm{MSW}(\max)$ | 2 |

```
min 0.170
    max 0.270
```

Appendix 7r Input data for NEAC Area Pre Fishery Abundanoe analysis using Mbnte Carlo simulation- WEST GR \rightarrow NAND.

Year	$\begin{gathered} \begin{array}{c} \text { Catch } \\ \text { (numbers) } \end{array} \\ \\ 1 \mathrm{SW} \\ \hline \end{gathered}$	MSW	Uurep. as \%of total 1SW min		Unrep. as \%of total MSW min	max	Exp. rate 1SW(\%) min	max	Exp. rate MSW(\%) min	max
1971	0	856369	0	0	5	15	100	100	100	100
1972	0	614244	0	0	5	15	100	100	100	100
1973	0	560048	0	0	5	15	100	100	100	100
1974	0	535475	0	0	5	15	100	100	100	100
1975	0	650641	0	0	5	15	100	100	100	100
1976	0	386513	0	0	5	15	100	100	100	100
1977	0	442368	0	0	5	15	100	100	100	100
1978	0	293731	0	0	5	15	100	100	100	100
1979	0	417665	0	0	5	15	100	100	100	100
1980	0	370807	0	0	5	15	100	100	100	100
1981	0	398738	0	0	5	15	100	100	100	100
1982	0	346302	0	0	5	15	100	100	100	100
1983	0	100000	0	0	5	15	100	100	100	100
1984	0	95498	0	0	5	15	100	100	100	100
1985	0	301045	0	0	5	15	100	100	100	100
1986	0	316832	0	0	5	15	100	100	100	100
1987	0	305696	0	0	5	15	100	100	100	100
1988	0	280818	0	0	5	15	100	100	100	100
1989	0	117422	0	0	5	15	100	100	100	100
1990	0	101859	0	0	5	15	100	100	100	100
1991	0	178113	0	0	5	15	100	100	100	100
1992	0	84342	0	0	5	15	100	100	100	100
1993	0	2,000	0	0	-25	25	100	100	100	100
1994	0	2,000	0	0	-25	25	100	100	100	100
1995	0	32422	0	0	5	15	100	100	100	100
1996	0	31944	0	0	10	20	100	100	100	100
1997	0	21402	0	0	9	19	100	100	100	100
1998	0	395	0	0	3	13	100	100	100	100
1999	0	6169	0	0	40	60	100	100	100	100
2000	0	8171	0	0	30	50	100	100	100	100
2001	0	0	0	0	0	0	100	100	100	100
2002	0	0	0	0	0	0	100	100	100	100
2003	0	0	0	0	0	0	100	100	100	100
2004	0	0	0	0	0	0	100	100	100	100
2005	0	0	0	0	0	0	100	100	100	100
$\begin{aligned} M(\min) & = \\ M(\max) & = \end{aligned}$	$\begin{aligned} & 0.005 \\ & 0.015 \end{aligned}$		Retu	me(m)	$\begin{gathered} \text { 1SW(min) } \\ \text { 1SW(max) } \end{gathered}$	7	MSW(min) MSW(max)	8 10		

Appendix 8a Lagged egg deposition analysis and estimation of conservation limit options - FINLAND

	Est. 1SW spawners	Est MSW spawners	Egg deposition $\operatorname{egg} \times 10^{-3}$	Smolt age composition						$\begin{gathered} \text { Lagged } \\ \text { egg dep. } \\ \mathrm{S} \\ \mathrm{egg} \times 10^{-3} \\ \hline \end{gathered}$	Total 1SW recruits R	R/S
Egg	5000	13000		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr			
Fem	12\%	77\%		0.00	0.00	0.26	0.59	0.14	0.01			
1971	3,618	3,083	33,027							n/a	22,643	
1972	5.557	4.835	51,737							n/a	38,197	
1973	8,399	7,422	79,331							n/a	43,245	
1974	7.821	7.100	75,762	0						n/a	41,753	
1975	7.825	6.875	73.510	0	0					n/a	38,643	
1976	6,722	6,149	65,581	0	0	8,587				n/a	33,478	
1977	6,096	5,672	60,434	0	0	13,452	19,486			n/a	25,723	
1978	4.429	3.455	37,242	0	0	20,626	30,525	4.624		n/a	20,305	
1979	4.553	3,396	36,726	0	0	19.698	46,805	7.243	330	74.077	26,369	0.36
1980	4,501	4,617	48,919	0	0	19,113	44,699	11,106	517	75,436	35,161	0.47
1981	4,173	7,191	74,485	0	0	17,051	43,371	10,607	793	71,822	35,731	0.50
1982	2,979	7,983	81,700	0	0	15,713	38,693	10,291	758	65,455	33,385	0.51
1983	4,539	8,837	91,181	0	0	9,683	35,656	9,181	735	55,255	31,005	0.56
1984	5,685	7.177	75,252	0	0	9,549	21,973	8.461	656	40,638	33,843	0.83
1985	7.137	7.219	76.549	0	0	12,719	21,669	5.214	604	40,206	32,418	0.81
1986	7,175	4,840	52,756	0	0	19,366	28,862	5,142	372	53,742	36,580	0.68
1987	10,019	6,766	73,734	0	0	21,242	43,946	6,849	367	72,404	38,276	0.53
1988	6,820	5,391	58,052	0	0	23,707	48,203	10,428	489	82,827	34,390	0.42
1989	7.787	5,303	57,758	0	0	19,566	53,797	11.438	745	85,545	42.054	0.49
1990	7,804	5,506	59,798	0	0	19,903	44,399	12,765	817	77,884	41,788	0.54
1991	7,010	6,155	65,817	0	0	13,717	45,164	10,535	912	70,327	38,955	0.55
1992	11,433	6.092	67,837	0	0	19,171	31,126	10,717	753	61,766	57.028	0.92
1993	8,430	7,845	83,583	0	0	15,094	43,503	7,386	765	66,748	42,892	0.64
1994	5,699	6,038	63,855	0	0	15,017	34,251	10,323	528	60,118	32,391	0.54
1995	5,852	5,258	56,148	0	0	15,548	34,077	8,127	737	58,489	27,377	0.47
1996	12,435	4,065	48,149	0	0	17,112	35,281	8,086	581	61,060	43,504	0.71
1997	10,997	6.413	70,793	0	0	17.638	38,832	8.372	578	65.419	38.418	0.59
1998	13,201	5,710	65,078	0	0	21,732	40,024	9,214	598	71,568	42,296	0.59
1999	12,688	4,506	52,714	0	0	16,602	49,314	9,497	658	76,072	64,082	0.84
2000	13,463	10,202	110,199	0	0	14,598	37,674	11,702	678	64,653	39,935	0.62
2001	0	0	0	0	0	12,519	33,127	8,940	836	55,422	0	0.00
2002	0	0	0	0	0	18,406	28,408	7,861	639	55,314	0	0.00
2003	0	0	0	0	0	16,920	41,768	6.741	561	65,991	0	0.00
2004	0	0	0	0	0	13,706	38,396	9,911	481	62,494	0	0.00
2005	0	0	0	0	0	28.652	31,101	9,111	708	69,572	0	0.00
2006	0	0	0	0	0	0	65,017	7,380	651	73,048	0	0.00

Conservation limit:			
Eggs /1000	1SW	MSW	Total salmon
61,593	9,112	5,607	14,718

Appendix 8b Lagged egg deposition analysis and estimation of conservation limit options - ICELAND-1

	Est. 1SW spawners	Est MSW spawners	$\left\|\begin{array}{c} \text { Egg } \\ \text { deposition } \\ \text { egg } \times 10^{-3} \end{array}\right\|$	Smolt age composition						$\begin{array}{\|c\|} \hline \text { Lagged } \\ \text { egg dep. } \\ S \\ \mathrm{~S} \\ \hline \mathrm{egg} \times 10^{-3} \\ \hline \end{array}$	Total 1SW recruits R	R/S	Quasi S-R Relationship 120,000				
Egg	5725	10256		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr				100		-		
Fem	56\%	62\%		0.08	0.49	0.35	0.08	0.00	0.00				100,000			,	
1971	27.188	10,673	155,031							n/a	98,732		80,000		\triangle		
1972	27,937	13,684	176,579							n/a	98,849		\% 60		24	4	
1973	27,362	13,045	170,672							n/a	94,442						
1974	18,496	12,112	136,317	12,247						n/a	80,407		${ }^{\text {r }} 40,000$				
1975	25,608	13,748	169,517	13,950	76,585					n/a	91,258						
1976	20,791	12,304	144,894	13,483	87,230	54.726				n/a	81,010		20,000				
1977	22.640	12,331	150,995	10,769	84,312	62.332	11,627			n/a	92.914						
1978	29.587	15,128	191,051	13.392	67,340	60,247	13,243	465		154.688	92.428	0.60					
1979	25,715	9,702	144,131	11,447	83,741	48,120	12,800	530	0	156,638	87,774	0.56					
1980	16,215	10,927	121,469	11,929	71,578	59,840	10,224	512	0	154,082	57,749	0.37		50,000	100,000 Egg/1000	150,000	200,000
1981	17.753	7,529	104,790	15,093	74,592	51.148	12.714	409	0	153,955	60,743	0.39					

1981	17,753	7,529	104,790	15,093	74,592	51,148	12,714	409	0	153,955	60,743	0.39
1982	13,105	7,472	89,527	11,386	94,379	53,301	10,867	509	0	170,443	59,890	0.35
1983	21,441	10,596	136,119	9,596	71,201	67,441	11,325	435	0	159,997	69,979	0.44
1984	14,792	8,104	98,957	8,278	60,005	50,878	14,329	453	0	133,944	52,401	0.39
1985	18,361	6,914	102,828	7,073	51,766	42,878	10,810	573	0	113,100	67,167	0.59
1986	27,789	9,300	148,226	10,753	44,226	36,991	9,110	432	0	101,513	77,415	0.76
1987	21,601	5,857	106,496	7,818	67,243	31,603	7,859	364	0	114,887	61,933	0.54
1988	41,829	5,168	166,964	8,123	48,885	48,050	6,715	314	0	112,087	104,517	0.93
1989	23,160	4,961	105,793	11,710	50,797	34,932	10,209	269	0	107,916	64,718	0.60
1990	22,495	5,048	104,218	8,413	73,223	36,298	7,422	408	0	125,765	62,920	0.50
1991	22,697	5,031	104,754	13,190	52,609	52,324	7,712	297	0	126,132	67,445	0.53
1992	25,634	6,496	123,490	8,358	82,480	37,593	11,117	308	0	139,856	67,000	0.48
1993	25,229	4,199	107,587	8,233	52,262	58,938	7,987	445	0	127,865	70,301	0.55
1994	21,886	5,685	106,315	8,276	51,484	37,345	12,522	319	0	109,946	61,186	0.56
1995	26,802	4,968	117,516	9,756	51,749	36,789	7,934	501	0	106,728	68,774	0.64
1996	22,483	3,902	96,889	8,499	61,004	36,978	7,816	317	0	114,615	59,207	0.52
1997	16,199	3,843	76,373	8,399	53,148	43,592	7,857	313	0	113,308	42,242	0.37
1998	22,398	2,583	88,236	9,284	52,520	37,978	9,262	314	0	109,358	59,821	0.55
1999	17,505	4,009	81,617	7,654	58,053	37,529	8,069	370	0	111,676	42,164	0.38
2000	12,546	1,643	50,670	6,033	47,863	41,483	7,974	323	0	103,677	26,753	0.26
2001	0	0	0	6,971	37,728	34,202	8,814	319	0	88,034	0	0.00
2002	0	0	0	6,448	43,589	26,960	7,267	353	0	84,615	0	0.00
2003	0	0	0	0	4,003	40,319	31,147	5,728	291	0	81,488	0
2004	0	0	0	0	25,031	28,811	6,618	229	0	60,688	0	0.00

Conservation limit:			
Eggs $/ 1000$	1 SW	MSW	Total salmon
101,513	21,258	4,356	25,614

Appendix 8c Lagged egg deposition analysis and estimation of conservation limit options - ICELAND-2

	Est. 1SW spawners	Est MSW spawners	Egg deposition egg $\times 10^{-3}$	Smolt age composition						$\begin{array}{\|c} \text { Lagged } \\ \text { egg dep. } \\ S \\ \text { egg } \times 10^{-3} \\ \hline \end{array}$	Total 1SW recruits R	R/S
Egg	5808	11776		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr			
Fem	25\%	66\%		0.05	0.55	0.36	0.06	0.01	0.00			
1971	4.967	4.283	40,498							n/a	31.029	
1972	4.519	6.752	59,040							n/a	34,822	
1973	6,083	8,346	73,702							n/a	30,777	
1974	5,074	5.912	53,314	1,903						n/a	31,638	
1975	6.619	6.915	63,358	2.775	22,233					n/a	30,739	
1976	6.098	5.515	51,716	3.464	32,413	14,660				n/a	37.553	
1977	9,826	8,268	78,524	2,506	40,463	21,373	2,430			n / a	52,346	
1978	9,606	10,605	96,371	2,978	29,269	26,680	3,542	445		62,915	41,120	0.65
1979	9,241	6,848	66,640	2,431	34,784	19,300	4,422	649	0	61,586	49,219	0.80
1980	1,665	9,790	78,504	3,691	28,392	22,936	3,199	811	0	59,028	14,771	0.25
1981	7,569	3,466	37,926	4,529	43,110	18,721	3,801	586	0	70,748	29,155	0.41
1982	3.549	4.094	36,969	3.132	52,908	28.426	3.103	697	0	88.265	17.009	0.19
1983	4.818	2,940	29,847	3,690	36,585	34,886	4.711	569	0	80,442	21,981	0.27
1984	1.824	3.823	32,364	1.783	43,099	24,124	5.782	864	0	75,651	11,372	0.15
1985	10,679	2.373	33,948	1,738	20,821	28.418	3.998	1.060	0	56,036	44,325	0.79
1986	14.277	7.119	76,060	1.403	20,296	13,729	4.710	733	0	40,871	50,987	1.25
1987	8.598	6.750	64,949	1.521	16.386	13,383	2.276	864	0	34.429	32,007	0.93
1988	13,397	4.472	54,207	1,596	17.768	10,805	2.218	417	0	32,804	40,481	1.23
1989	6,979	3.863	40,155	3.575	18.637	11.716	1.791	407	0	36,125	27.248	0.75
1990	5,680	4.062	39,820	3.053	41,757	12.289	1.942	328	0	59,369	21.595	0.36
1991	9,087	3,178	37,894	2,548	35,657	27,534	2,037	356	0	68,131	32,580	0.48
1992	14.623	4.484	56,084	1.887	29,760	23,512	4.564	373	0	60,096	45,340	0.75
1993	12.027	4.813	54,867	1.872	22,045	19,623	3.897	837	0	48.273	37.598	0.78
1994	3,931	4,101	37,581	1,781	21,861	14,536	3,252	714	0	42,145	16,022	0.38
1995	9,972	2,591	34,615	2,636	20,804	14,415	2,409	596	0	40,860	31,305	0.77
1996	5,294	3,386	34,007	2,579	30,790	13,717	2,389	442	0	49,917	17,291	0.35
1997	7.700	2,041	27,043	1,766	30,122	20,302	2.274	438	0	54,902	25,181	0.46
1998	13,344	2,970	42,461	1,627	20,632	19,862	3,365	417	0	45,903	43,078	0.94
1999	6.219	4.929	47,339	1.598	19,004	13,604	3.292	617	0	38,115	18,626	0.49
2000	6,414	1,828	23,524	1,271	18,670	12,531	2,255	604	0	35,330	13,679	0.39
2001	0	0	0	1,996	14,847	12,311	2,077	413	0	31,643	0	0.00
2002	0	0	0	2.225	23,311	9,790	2.040	381	0	37,747	0	0.00
2003	0	0	0	1,106	25,989	15,371	1.623	374	0	44.463	0	0.00
2004	0	0	0	0	12,915	17,137	2,548	297	0	32,897	0	0.00
2005	0	0	0	0	0	8.516	2,840	467	0	11,823	0	0.00
2006	0	0	0	0	0	0	1.411	521	0	1,932	0	0.00

Appendix 8d Lagged egg deposition analysis and estimation of conservation limit options - All IRELAND

	Est. 1SW spawners	Est MSW spawners	$\begin{gathered} \text { Egg } \\ \text { deposition } \\ \text { egg } \times 10^{-3} \end{gathered}$	Smolt age composition						$\begin{array}{\|c} \text { Lagged } \\ \text { egg dep. } \\ \mathrm{S} \\ \text { egg } \times 10^{-3} \\ \hline \end{array}$	Total 1SW recruits R	R/S
Egg	3400	7000		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr			
Fem	60\%	85\%		0.20	0.70	0.10	0.00	0.00	0.00			
1971	302.707	85,589	1,126,774							n/a	1,473,370	
1972	325,211	95,038	1,228,905							n/a	1,570,253	
1973	351,827	101,497	1,321,633							n/a	1,688,675	
1974	385.428	112,261	1,454,228	225,355						n/a	1,832,924	
1975	399,322	117.075	1,511,211	245,781	788,742					n/a	1,811,090	
1976	280,702	82,403	1,062,927	264.327	860.233	112.677				1,237.237	1,304,323	1.05
1977	250,728	72,311	941,739	290,846	925,143	122,890	0			1,338,879	1,163,026	0.87
1978	221,977	64,593	837,160	302,242	1,017,959	132,163	0	0		1,452,365	1,030,334	0.71
1979	198,718	57,364	746,703	212.585	1,057,848	145,423	0	0	0	1,415,856	972,673	0.69
1980	144,168	64,488	677,809	188,348	744,049	151,121	0	0	0	1,083,518	751,420	0.69
1981	93,324	37,881	415,771	167,432	659,217	106,293	0	0	0	932,942	495,993	0.53
1982	171,802	16,295	447,432	149,341	586,012	94,174	0	0	0	829,527	879,796	1.06
1983	293,850	48,243	886,500	135,562	522,692	83,716	0	0	0	741.970	1,326,481	1.79
1984	133,372	62,092	641,526	83,154	474,466	74,670	0	0	0	632,291	691,309	1.09
1985	252,505	54,563	839,761	89,486	291,040	67,781	0	0	0	448,307	1,329,195	2.96
1986	210,026	79,083	898,994	177,300	313,202	41,577	0	0	0	532,079	1,257,963	2.36
1987	156,203	63,679	697.543	128,305	620,550	44,743	0	0	0	793.598	894,008	1.13
1988	231,810	68,853	882,570	167,952	449,068	88,650	0	0	0	705,670	1,253,827	1.78
1989	153,411	38,875	544,263	179,799	587,833	64,153	0	0	0	831,784	725,099	0.87
1990	147,612	30,729	483,967	139,509	629,296	83,976	0	0	0	852,781	531,434	0.62
1991	107,278	22,321	351,655	176,514	488,280	89,899	0	0	0	754,693	425,903	0.56
1992	180,065	37,713	591,727	108,853	617.799	69,754	0	0	0	796.406	597.981	0.75
1993	100,868	20,414	327,233	96,793	380,984	88,257	0	0	0	566,035	476,305	0.84
1994	137,626	45,581	551,962	70,331	338,777	54,426	0	0	0	463,534	633,216	1.37
1995	128,585	45,258	531,598	118,345	246,158	48,397	0	0	0	412,901	599,599	1.45
1996	121,123	28,023	413,829	65,447	414,209	35,165	0	0	0	514,821	510,517	0.99
1997	96,019	16,374	293,303	110,392	229,063	59,173	0	0	0	398,628	403,938	1.01
1998	112,674	21,658	358,724	106,320	386,373	32,723	0	0	0	525,416	441,166	0.84
1999	88,681	15,822	275,051	82,766	372,118	55,196	0	0	0	510,080	357,119	0.70
2000	113,004	20,131	350,306	58,661	289,680	53,160	0	0	0	401,500	392,298	0.98
2001	0	0	0	71,745	205,312	41,383	0	0	0	318,440	0	0.00
2002	0	0	0	55,010	251,107	29,330	0	0	0	335,447	0	0.00
2003	0	0	0	70,061	192,535	35,872	0	0	0	298,469	0	0.00
2004	0	0	0	0	245,214	27,505	0	0	0	272,719	0	0.00
2005	0	0	0	0	0	35,031	0	0	0	35,031	0	0.00

CL setting			
4.E+12			
$4 . \mathrm{E}+12 \square$			
$3 . E+12 \square$			
$\stackrel{\text { ºn }}{ }$			
$\begin{aligned} & \bar{⿻} \\ & \mathbf{X} \\ & 2 . E+12 \end{aligned}$			
$5 . \mathrm{E}+11$			
$0 . \mathrm{E}+00$			
Egg/1000			
Conservation limit:			
Eggs /1000	1SW	MSW	Total salmon
639,041	187,338	43,172	230,509

Appendix 8 e Lagged egg deposition analysis and estimation of conservation limit options - NORWAY-Combined estimates

Appendix 8 f Lagged egg deposition analysis and estimation of conservation limit options - RUSSIA

	Est. 1SW spawners	Est MSW spawners	Egg deposition egg $\times 10^{-3}$	Smolt age composition						$\begin{array}{\|c} \text { Lagged } \\ \text { egg dep. } \\ \mathrm{S} \\ \mathrm{egg} \times 10^{-3} \\ \hline \end{array}$	Total 1SW recruits R	R/S
Egg	4500	10500		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr			
Fem	45\%	80\%		0.00	0.10	0.70	0.20	0.00	0.00			
1971	62,664	103.303	994.638							n/a	359.283	
1972	68.357	86,456	864.652							n/a	510,861	
1973	115,174	144,145	1,444,044							n/a	577,404	
1974	105,098	133,315	1,332,668	0						n/a	640,415	
1975	112,326	167.537	1,634,772	0	99,464					n/a	591,223	
1976	84,457	143,134	1,373,355	0	86,465	696,246				n/a	443,811	
1977	71,963	107.395	1,047,847	0	144,404	605,256	198.928			948,588	334.401	0.35
1978	77,491	73,555	774,785	0	133,267	1,010,831	172,930	0		1,317,028	371,200	0.28
1979	89,202	81.104	861.908	0	163,477	932.868	288,809	0	0	1,385,154	516.834	0.37
1980	58,791	123,751	1,158,558	0	137,336	1,144,341	266,534	0	0	1,548,210	343,541	0.22
1981	42,648	67,750	655,460	0	104,785	961,349	326,954	0	0	1,393,088	306,874	0.22
1982	77,861	81,640	843,445	0	77,478	733,493	274,671	0	0	1,085,642	440,480	0.41
1983	112,832	131.593	1,333,865	0	86,191	542,349	209,569	0	0	838.110	506.854	0.60
1984	106,996	141,157	1,402,384	0	115,856	603,336	154,957	0	0	874,149	527,062	0.60
1985	140,906	156.615	1,600,901	0	65,546	810.991	172.382	0	0	1,048,918	624.926	0.60
1986	123,248	174,572	1,715,980	0	84,344	458,822	231,712	0	0	774,878	412,057	0.53
1987	206,629	81,709	1,104,782	0	133,386	590,411	131,092	0	0	854,890	550,474	0.64
1988	113,569	89,868	984,871	0	140,238	933,705	168,689	0	0	1,242,633	433,672	0.35
1989	166,498	141,562	1,526,284	0	160,090	981,669	266,773	0	0	1,408,532	516,470	0.37
1990	150,593	140,193	1,482,572	0	171,598	1,120,631	280,477	0	0	1,572,706	447,242	0.28
1991	162,266	120,994	1,344,938	0	110,478	1,201,186	320,180	0	0	1,631,845	417,715	0.26
1992	135,177	110,798	1,204,433	0	98,487	773,347	343,196	0	0	1,215,031	454,788	0.37
1993	111,613	164,447	1,607,370	0	152,628	689,410	220,956	0	0	1,062,994	386,103	0.36
1994	122,714	142,345	1,444,193	0	148,257	1,068,399	196,974	0	0	1,413,630	346,539	0.25
1995	109,835	103,469	1,091,554	0	134,494	1,037,800	305,257	0	0	1,477,551	415,331	0.28
1996	134,604	173,972	1,733,938	0	120,443	941,457	296,514	0	0	1,358,414	402,650	0.30
1997	125,987	140,456	1,434,957	0	160,737	843.103	268,988	0	0	1,272,828	388,905	0.31
1998	137,515	140,054	1,454,926	0	144,419	1,125,159	240,887	0	0	1,510,465	405,794	0.27
1999	94,955	139,284	1,362,269	0	109,155	1,010,935	321,474	0	0	1,441,565	408,886	0.28
2000	109,725	189,057	1,810,268	0	173,394	764,088	288,839	0	0	1,226,321	169,067	0.14
2001	0	0	0	0	143,496	1,213,756	218,311	0	0	1,575,563	0	0.00
2002	0		0	0	145,493	1,004,470	346,788	0	0	1,496,750	0	0.00
2003	0	0	0	0	136,227	1,018,448	286,991	0	0	1,441,666	0	0.00
2004	0	0	0	0	181,027	953,588	290,985	0	0	1,425,600	0	0.00
2005	0	0	0	0	0	1,267,188	272,454	0	0	1,539,641	0	0.00
2006	0	0	0	0	0	0	362,054	0	0	362.054	0	0.00

Conservation limit:			
Eggs $/ 1000$	1SW	MSW	Total salmon
815,922	75,479	80,808	156,287

Appendix 8 g Lagged egg deposition analysis and estimation of conservation limit options - UK(Northern Ireland)-1

	Est. 1SW spawners	Est MSW spawners	$\begin{array}{\|c\|} \text { Egg } \\ \text { deposition } \\ \text { egg } \times 10^{-3} \end{array}$	Smolt age composition						Lagged egg dep. S egg $\times 10^{-3}$	Total 1SW recruits R	R/S
Egg	3400	6000		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr			
Fem	60\%	85\%		20\%	78\%	2\%	0\%	0\%	0\%			
1971	25.959	5.410	80,546							n/a	148.818	
1972	21.015	4.539	66,019							n/a	123.149	
1973	19,914	3,957	60,806							n/a	115,871	
1974	23,788	5.051	74,287	16,109						n/a	138,122	
1975	16.910	3.560	52.652	13,204	62,826					n/a	96,870	
1976	11,756	2,576	37,121	12,161	51,495	1.611				65,267	69,660	
1977	12,156	2,466	37,378	14,857	47,429	1,320	0			63,607	71,624	1.13
1978	14,485	3,090	45,311	10,530	57,944	1,216	0	0		69,690	83,923	1.20
1979	11,317	2,416	35,408	7,424	41,068	1,486	0	0	0	49,978	68,410	1.37
1980	15,372	3,139	47,369	7,476	28,955	1,053	0	0	0	37,483	87,675	2.34
1981	10,852	2,246	33,594	9,062	29,155	742	0	0	0	38,960	67,936	1.74
1982	18.931	3.884	58,428	7.082	35,343	748	0	0	0	43,172	113.168	2.62
1983	25.556	5.455	79,955	9,474	27.618	906	0	0	0	37,998	143,044	3.76
1984	9,107	1.875	28,141	6.719	36,948	708	0	0	0	44,375	55,458	1.25
1985	12,298	2.593	38,311	11.686	26,204	947	0	0	0	38,837	74,227	1.91
1986	13.890	2.990	43,581	15,991	45,574	672	0	0	0	62,237	79,531	1.28
1987	10,490	1.440	28,744	5,628	62,365	1,169	0	0	0	69,162	46,233	0.67
1988	31.897	5.315	92,179	7.662	21.950	1,599	0	0	0	31,211	106,228	3.40
1989	10,929	2.873	36,946	8.716	29,883	563	0	0	0	39,162	108,571	2.77
1990	29,685	4.142	81,680	5,749	33,993	766	0	0	0	40,508	86,873	2.14
1991	14,517	1,807	38,832	18,436	22,420	872	0	0	0	41,728	52,544	1.26
1992	38.970	5,110	105,558	7.389	71,900	575	0	0	0	79,864	116.151	1.45
1993	61,047	16.293	207.630	16,336	28.818	1,844	0	0	0	46,997	118,551	2.52
1994	20,128	3,641	59,633	7,766	63,710	739	0	0	0	72,216	77,202	1.07
1995	19,803	2,815	54,758	21,112	30,289	1,634	0	0	0	53,034	70,647	1.33
1996	26,495	3,664	72,737	41,526	82,335	777	0	0	0	124,638	74,362	0.60
1997	32.276	4.788	90,264	11,927	161.952	2.111	0	0	0	175,989	97,708	0.56
1998	128,291	8,275	303,914	10,952	46,513	4,153	0	0	0	61,618	189,494	3.08
1999	14,445	2.869	44,101	14,547	42,711	1,193	0	0	0	58,451	49,070	0.84
2000	25,342	3,936	71,771	18,053	56,735	1,095	0	0	0	75,883	64,828	0.85
2001	0	0	0	60,783	70,406	1,455	0	0	0	132,643	0	0.00
2002	0	0	0	8,820	237.053	1,805	0	0	0	247,679	0	0.00
2003	0	0	0	14,354	34,399	6.078	0	0	0	54,831	0	0.00
2004	0	0	0	0	55,981	882	0	0	0	56,863	0	0.00
2005	0	0	0	0	0	1.435	0	0	0	1,435	0	0.00
2006	0	0	0	0	0	0	0	0	0	0	0	\#DIV/0!

Appendix 8h Lagged egg deposition analysis and estimation of conservation limit options - UK(Northern Ireland)-FCB area-(2)

	Est. 1SW spawners	Est MSW spawners	Egg deposition egg $\times 10^{-3}$	Smolt age composition						$\begin{gathered} \text { Lagged } \\ \text { egg dep. } \\ S \\ \text { egg } \times 10^{-3} \\ \hline \end{gathered}$	Total 1SW recruits R	R/S	Quasi S-R Relationship$6 . E+04$$\square$				
Egg	3400	6000		1 yr	2 yr	3 yr	4 yr	5 yr	6 yr								
Fem	60\%	85\%		20\%	78\%	2\%	0\%	0\%	0\%				$5 . E+04$		^		
1971	12.123	2.432	37.137							n/a	69.530		4.E+04				
1972	11.440	2.427	35,717							n / a	66,569		$\stackrel{\square}{6}$	Δ	- 4		
1973	9,919	2.078	30,831							n/a	56,274				- 4		
1974	7.460	1.568	23,215	7.427						n/a	44.593		${ }_{\text {区 }}^{2 . E+04}$				
1975	8,772	1,881	27,485	7.143	28.967					n/a	49,994						
1976	5,759	1.249	18.119	6.166	27.859	743				34,768	34,132		.E+04				
1977	5,661	1.167	17,501	4.643	24,048	714	0			29,405	33,756	1.15					
1978	7.876	1.682	24,645	5.497	18.107	617	0	0		24.221	45.572	1.88	0.E+00				
1979	4.771	995	14.808	3.624	21.438	464	0	0	0	25.526	28,229	1.11					
1980	5.335	1.086	16,424	3.500	14,133	550	0	0	0	18,183	31,392	1.73		0,000	Egg/1000		
1981	5,427	1,108	16,720	4,929	13,650	362	0	0	0	18,942	31,288	1.65					
1982	4,658	964	14,420	2.962	19,223	350	0	0	0	22,535	28,703	1.27					
1983	6,936	1.410	21,340	3.285	11.550	493	0	0	0	15.328	39,203	2.56					
1984	3,662	760	11,350	3,344	12.811	296	0	0	0	16,451	21,889	1.33	CL setting				
1985	4,147	845	12,768	2,884	13,041	328	0	0	0	16,254	24,584	1.51	9.E+09				
1986	4.313	945	13,618	4.268	11.247	334	0	0	0	15,850	25,125	1.59	8.E+09				
1987	5,699	764	15,523	2,270	16,645	288	0	0	0	19,204	22,692	1.18					
1988	10,678	1.756	30,740	2.554	8,853	427	0	0	0	11,833	34,184	2.89	7.E+09				
1989	2,570	705	8,841	2,724	9,959	227	0	0	0	12,909	26,843	2.08	6.E+09				
1990	7.476	1.020	20,450	3.105	10,622	255	0	0	0	13,982	22,035	1.58					
1991	4,395	555	11,797	6,148	12,108	272	0	0	0	18,529	15,465	0.83					
1992	8,935	1.218	24,437	1,768	23,977	310	0	0	0	26,056	27,404	1.05	$\frac{\mathrm{O}}{\mathrm{O}}$				
1993	15,024	3.993	51,014	4.090	6.896	615	0	0	0	11,601	29,665	2.56	\%				
1994	6,049	1,105	17,975	2,359	15,951	177	0	0	0	18,488	23,463	1.27					
1995	6,910	1.000	19,197	4.887	9,202	409	0	0	0	14,498	24,771	1.71	+09				
1996	9,262	1,351	25,784	10,203	19,061	236	0	0	0	29,500	25,860	0.88	1.E+09				
1997	8,316	1.273	23,459	3,595	39,791	489	0	0	0	43,874	25,095	0.57					
1998	32,049	2,075	75,962	3,839	14,020	1,020	0	0	0	18,880	48,281	2.56					
1999	6,036	1,141	18,135	5,157	14,973	359	0	0	0	20,490	19,891	0.97	0	10,000	20,000 30,000	40,000	50,000
2000	8,563	1,331	24,256	4,692	20,111	384	0	0	0	25,187	22,252	0.88			Egg/1000		
2001	0	0	0	15,192	18,298	516	0	0	0	34,006	0	0.00					
2002	0	0	0	3,627	59,251	469	0	0	0	63,347	0	0.00	Conservation				
2003	0	0	0	4.851	14,145	1,519	0	0	0	20,516	0	0.00	Eggs /1000	1SW	MSW	Total	salmon
2004	0	0	0	0	18,920	363	0	0	0	19,282	0	0.00	11,601	4,436	626		61
2005	0	0	0	0	0	485	0	0	0	485	0	0.00					

Appenchedi Lagged eggdeposition azaysis and estimation of conservetion link optons - UK(Scotand)E

Appendix 6 ，Lagged egg deposition analysis and estimation of conservaton limitophion－UK（Scotand）M

	Exilum	$\begin{aligned} & \text { Eanny } \\ & \text { gasw } \end{aligned}$										
＝xim	trit	＊木17		迷亲	2y	3 ${ }^{4}$		51				
Fint	\％	5me		74．	－${ }^{\text {aty }}$	Wat	＋1＊	4	1994			
189	419，12	5，5x	121，x^{3}							ก ${ }^{\text {a }}$	cezama	
18\％．										Nur	5xame	
184\％	zanemi	133，${ }^{\text {3 }}$								nus		
19\％4	3nama	74x	－35，106	44isis						What		
14F5	34－3 ${ }^{\text {a }}$	14 \％ y^{2}		2 Lag 01	01063					\％ix	F9691	
12\％	－ 514	$7 \mathrm{LI} \leq 5$	1：16．4t5	－ 4.3	Extst	－29．vit				1 ， 44,	Existu	
1979	3ty 4	4 $4 \times$	＋18\％ 80	3989］	GMISX	YY，SE	9			$\underline{12412}$	584×4	1． 8
1078	364x	1104	1．3， 3	\％ 3.3	64．etm	3 4 \％	0	7				6－5
1298	Wegeta	7asta	311714	24539	CET $\mathrm{STT}^{\text {a }}$	145，56	$\underline{\square}$	0	\checkmark		＊2898	C）
TME	14Fux	Wixak	\％a，	3．4 4ici	54xat	xuper	5	4	\square	＋xix，4t	Ti，Mat	TX
14x\％	Mi4 $4 \times$	14 $4 \times$		3／，प｜	CHikM	56\％311	1	4	3		37x．7es	N311
1 108x	56，14，	74．csis	566atis	18， 54.3	cay ind	50x， 360	9	0	\％		54．4．749	2．43
1439	3 4 y ${ }^{\text {a }}$		17TH54	141845		4×3	4	4	1	theres	5－4，45	154
11818			2 15314	IE，751	38，54］	27，514	\square	4	\％	6．Whip		C．7
1485	3tayle	7113	7．4xe．tay	191．Sex	4xayed	2y，y x^{4}	9	4	3	cixay	464． 12	Les
1404．	172	113 3 x 5	bursues	311 $\times 23$		2t1．4	0	4	1	TTM， 1	42， 5 \％	14．
14．87	2atry	Wexty	13xask	200．51］	Eil mex	$24 \times 5{ }^{3}$	9	\square	0	1，12．${ }^{2}$	434．54	C．4
1134	3074e	13，xu	417ex	－1，4\％	－4，${ }^{4}$		9	4	3	Hixi，x^{4}	5． 5	\％${ }^{3}$
1489	26\％ 70	14．3．36			641［4\％	34893．	9	4		1，108，741	44×18	2．44
184910	等 ${ }^{\text {a }}$	W7：		714．3y	4xalm	34x x^{4}	9	U	4		3＋7at？	Cr ${ }^{4}$
141	＋7156	2， 5		C 4,7	510， 2x $^{\text {a }}$	X $\times 14$	5	4	\％	［ IIXT 4	3074	¢3
3142	UT／44	15 Ex	Y $\mathrm{Cl\mid L}$	＜u，］14	Cuk	314010	6	$\underline{4}$	3	vixhte	人120	＋3
IIIE	zabeit	n17e2	ctra	16，yex	cra esex	4．2．9x	\square	$\underline{\square}$	3		，\％r，zto	C．${ }^{4}$
144	4 814	Urer	Ytiver	｜ $1 \times 1,4$	uty	＋ 4×1	4	$\underline{4}$	3	－ $4 \mathrm{c} \times \mathrm{X}$	UYY 4×4	Q \times
7189	WW？	Wutw	\％${ }^{\text {When }}$	－ 4 H1	WIUTH4		0	4		－	3Wxy	
1459	5，45x	60， 5	Sex， 5	17x，301	515．804	240．861	6	5	3	－4ytr	185．	CX
1897	86， 8 a	$33^{3} \times 5$	SX，	189，34	44－x ${ }^{\text {x }}$	3，\％，xic	$\underline{0}$	5	3	348972	2xisis	C22
140	－ 4	W－	－4¢ ${ }^{\text {ate }}$	16.1	3－14＊		4	4	3	9x TH	10\％，	413
14＊	44 $4 \times$	Wax		14909	413	＊W 41	\％	$\underline{0}$	3	W¢142	12．${ }^{\text {che }}$	人1 1
20	C3，235	5	46．43	12． 204	2T210	3115	$\underline{\square}$	\square	3	5.8 .812	T6． 3.31	C12
200	\％	Γ	V	［21．89］	26x ${ }^{\text {8in }}$	170．38	5	\square	7	$5 \mathrm{El}, 7 \mathrm{~F}$	1	C．EI
MKY	\％	0	4	Sx，XY	Wrexu	14， $3 \times$	0	3	0	5x，160	$\underline{0}$	CWI
，0113	0	I	8	9，（17	60，bry	101，42	4	\square	3	4，＜1E5	$\underline{\square}$	COL
3 T	4	D	$\underline{4}$	9	20ylm	\＄ 4 ， 2 C	$\underline{1}$	t	0	\＃Yrem	$\underline{\square}$	S．19
We	P	（1）	I	4	1		U	4	通	TJYM	1	Wlu
2TE	¢	\square	V	01	4	4	0	4	\％	1	1	WUVM

Appendix 8k Estimated numbers of fish killed and recruits from Monte Carlo simulation analysis FAROES

Year	Estimated total catch 1SW		Estimated total catch MSW		Est. mat. 1SW recruits mean		Est. nonmat. 1SW recruits mran		Total 1SW recruits means		Prop'n wild	Stock compositio	1SW	MSW
1971	12,358	$9.08 \mathrm{E}+06$	105,796	9.45E-08	2,717	$5.27 \mathrm{E}+05$	122,575	$6.22 \mathrm{E}+06$	125,292	2,598	1.00	France	0.05	0
1972	13.031	$1.10 \mathrm{E}+07$	111.187	1.36E-07	2.869	$6.51 \mathrm{E}+05$	138.149	$7.32 \mathrm{E}+06$	141.018	2.823	1.00	Finland	0.05	0
1973	14,802	$1.37 \mathrm{E}+07$	126,012	$8.40 \mathrm{E}-08$	3,263	$8.53 \mathrm{E}+05$	101,227	$9.06 \mathrm{E}+06$	104,490	3,148	1.00	Iceland	0	0.006
1974	10,331	$6.76 \mathrm{E}+06$	88.276	$7.88 \mathrm{E}-08$	2.278	$4.20 \mathrm{E}+05$	122.803	$4.53 \mathrm{E}+06$	125,080	2.226	1.00	Ireland	0.1	0.057
1975	13,210	$1.07 \mathrm{E}+07$	112,984	$5.06 \mathrm{E}-08$	2,908	$6.39 \mathrm{E}+05$	85,387	$7.01 \mathrm{E}+06$	88,296	2,766	1.00	Norway	0.3	0.396
1976	8.649	$4.86 \mathrm{E}+06$	73.900	$2.34 \mathrm{E}-08$	1.903	$2.84 \mathrm{E}+05$	59,691	$3.17 \mathrm{E}+06$	61.593	1.859	1.00	Russia	0.1	0.183
1977	6.110	$2.23 \mathrm{E}+06$	52.112	$6.21 \mathrm{E}-09$	1.342	$1.28 \mathrm{E}+05$	44.702	$1.47 \mathrm{E}+06$	46.045	1.264	1.00	Sweden	0.05	0.023
1978	4,602	$1.35 \mathrm{E}+06$	39,309	$1.07 \mathrm{E}-09$	1,014	8.12E+04	74,756	$9.72 \mathrm{E}+05$	75,770	1,026	1.00	UK(E\&W)	0.1	0.023
1979	8.152	$4.41 \mathrm{E}+06$	70,082	$4.77 \mathrm{E}-10$	1.796	$2.69 \mathrm{E}+05$	191.784	$3.82 \mathrm{E}+06$	193.580	2.022	1.00	UK(NI)	0.05	0
1980	21.067	$2.67 \mathrm{E}+07$	182.617	$1.20 \mathrm{E}-07$	4.652	$1.75 \mathrm{E}+06$	321.621	$1.87 \mathrm{E}+07$	326.273	4.524	1.00	UK(Sc)	0.2	0.192
1981	35,317	$7.72 \mathrm{E}+07$	300,542	$5.58 \mathrm{E}-07$	7,778	$4.73 \mathrm{E}+06$	308,871	$5.08 \mathrm{E}+07$	316,649	7,453	0.98			
1982	32.485	$6.57 \mathrm{E}+07$	276.957	6.49E-07	7.168	$4.14 \mathrm{E}+06$	244,092	$4.25 \mathrm{E}+07$	251.260	6.828	0.98	Other		0.122
1983	36,381	$4.51 \mathrm{E}+07$	215,350	$2.41 \mathrm{E}-07$	8,020	$3.28 \mathrm{E}+06$	168,863	$2.96 \mathrm{E}+07$	176.883	5.737	0.98			
1984	18,528	$1.69 \mathrm{E}+07$	138,227	8.97E-08	4,083	$1.09 \mathrm{E}+06$	175,039	$1.15 \mathrm{E}+07$	179,122	3,545	0.96	Total	1	1.002
1985	14,816	$2.04 \mathrm{E}+07$	158,103	2.33E-07	3,264	$1.17 \mathrm{E}+06$	195,303	$1.35 \mathrm{E}+07$	198,567	3,834	0.92			
1986	18,206	$2.58 \mathrm{E}+07$	180,934	$2.16 \mathrm{E}-07$	4.012	$1.52 \mathrm{E}+06$	183.050	$1.69 \mathrm{E}+07$	187.061	4.293	0.96			
1987	15.123	$2.28 \mathrm{E}+07$	166.244	1.97E-07	3.334	$1.29 \mathrm{E}+06$	100,822	$1.45 \mathrm{E}+07$	104.155	3.973	0.97			
1988	17,333	$7.30 \mathrm{E}+06$	87,629	$4.92 \mathrm{E}-08$	3,822	$6.00 \mathrm{E}+05$	137,412	$5.07 \mathrm{E}+06$	141,233	2,381	0.92			
1989	12.865	$1.31 \mathrm{E}+07$	121,965	$7.73 \mathrm{E}-08$	2.834	$7.68 \mathrm{E}+05$	152,273	$8.63 \mathrm{E}+06$	155,107	3.065	0.82			
1990	14.836	$1.65 \mathrm{E}+07$	140,054	$1.05 \mathrm{E}-07$	3.270	$9.95 \mathrm{E}+05$	97.862	$1.06 \mathrm{E}+07$	101,132	3.409	0.54			
1991	8,584	$6.09 \mathrm{E}+06$	84,935	$4.68 \mathrm{E}-08$	1,892	$3.52 \mathrm{E}+05$	42,975	$3.83 \mathrm{E}+06$	44,867	2,046	0.54			
1992	3.316	$1.05 \mathrm{E}+06$	35.700	$7.04 \mathrm{E}-09$	732	$6.16 \mathrm{E}+04$	33,079	$6.81 \mathrm{E}+05$	33,811	862	0.62			
1993	2.690	$7.29 \mathrm{E}+05$	30,023	$2.45 \mathrm{E}-09$	594	$4.23 \mathrm{E}+04$	34.262	$5.03 \mathrm{E}+05$	34.856	738	0.69			
1994	2,863	$8.59 \mathrm{E}+05$	31,672	$5.85 \mathrm{E}-09$	631	$4.81 \mathrm{E}+04$	37,434	$5.75 \mathrm{E}+05$	38,065	790	0.72			
1995	3.130	$1.00 \mathrm{E}+06$	34.662	$1.04 \mathrm{E}-08$	688	$5.45 \mathrm{E}+04$	31,269	$6.45 \mathrm{E}+05$	31,957	837	0.80			
1996	2.639	$6.33 \mathrm{E}+05$	28.381	$6.03 \mathrm{E}-09$	581	$3.60 \mathrm{E}+04$	2.071	$3.98 \mathrm{E}+05$	2.652	659	0.75			
1997	0	$0.00 \mathrm{E}+00$	0	$0.00 \mathrm{E}+00$	0	$0.00 \mathrm{E}+00$	1.446	$5.58 \mathrm{E}+01$	1.446	7	0.80			
1998	590	$3.13 \mathrm{E}+03$	1,424	$1.75 \mathrm{E}-11$	130	$4.38 \mathrm{E}+02$	463	$2.18 \mathrm{E}+03$	593	51	0.80			
1999	0	$0.00 \mathrm{E}+00$	0	$0.00 \mathrm{E}+00$	0	$0.00 \mathrm{E}+00$	1.792	$8.57 \mathrm{E}+01$	1.792	9	0.80			
2000	510	$4.19 \mathrm{E}+03$	1,765	$3.10 \mathrm{E}-11$	112	$4.20 \mathrm{E}+02$	400	$2.77 \mathrm{E}+03$	513	56	0.80			
2001	0	$0.00 \mathrm{E}+00$	0	0	0.80									
2002	0	$0.00 \mathrm{E}+00$	0	0	0.80									
2003	0	$0.00 \mathrm{E}+00$	0	0	0.80									
2004	0	$0.00 \mathrm{E}+00$	0	0	0.80									
2005	0	$0.00 \mathrm{E}+00$	0	0	0.80									

Appendix 81 Estimated numbers of fish killed and recruits from Monte Carlo simulation analysis - WEST GREENLAND

Year	Estimated totalcatch 1SW	\checkmark ariance	Estim ated totalcatch M S W	V ariance	Estimated number 1 SW recruits mean	Variance	Est. non-mat. 1SW recruits mean	\checkmark ariance	Prop'n EU	$\begin{array}{r} \text { European } \\ \text { stock } \\ \text { composition } \end{array}$	M S W
1971	0	$0.00 \mathrm{E}+00$	951.713	$9.69 \mathrm{E}+08$	0	$0.00 \mathrm{E}+00$	1.040 .849	$1.89 \mathrm{E}+09$	0.50	France	0.027
1972	0	$0.00 \mathrm{E}+00$	683.518	$4.91 \mathrm{E}+08$	0	$0.00 \mathrm{E}+00$	747.549	$9.89 \mathrm{E}+08$	0.50	Finland	0.001
1973	0	$0.00 \mathrm{E}+00$	623.043	$4.02 \mathrm{E}+08$	0	$0.00 \mathrm{E}+00$	681.415	$8.21 \mathrm{E}+08$	0.50	Iceland	0.001
1974	0	$0.00 \mathrm{E}+00$	595.929	$3.70 \mathrm{E}+08$	0	$0.00 \mathrm{E}+00$	651.746	$7.34 \mathrm{E}+08$	0.50	Ireland	0.147
1975	0	$0.00 \mathrm{E}+00$	723.169	$5.53 \mathrm{E}+08$	0	$0.00 \mathrm{E}+00$	790.896	$1.08 \mathrm{E}+09$	0.50	Norway	0.027
1976	0	$0.00 \mathrm{E}+00$	429.572	$1.92 \mathrm{E}+08$	0	$0.00 \mathrm{E}+00$	469.788	$3.63 \mathrm{E}+08$	0.50	Russia	0.000
1977	0	$0.00 \mathrm{E}+00$	492.205	$2.52 \mathrm{E}+08$	0	$0.00 \mathrm{E}+00$	538.302	$4.96 \mathrm{E}+08$	0.50	Sweden	0.003
1978	0	$0.00 \mathrm{E}+00$	326.682	$1.04 \mathrm{E}+08$	0	$0.00 \mathrm{E}+00$	357.281	$2.14 \mathrm{E}+08$	0.48	UK(E\&W)	0.149
1979	0	$0.00 \mathrm{E}+00$	463.787	$2.24 \mathrm{E}+08$	0	$0.00 \mathrm{E}+00$	507.238	$4.57 \mathrm{E}+08$	0.50	UK(NI)	0.000
1980	0	$0.00 \mathrm{E}+00$	412.993	$1.77 \mathrm{E}+08$	0	$0.00 \mathrm{E}+00$	451.702	$3.77 \mathrm{E}+08$	0.52	UK(Sc)	0.645
1981	0	$0.00 \mathrm{E}+00$	443.665	$2.01 \mathrm{E}+08$	0	$0.00 \mathrm{E}+00$	485.228	$4.10 \mathrm{E}+08$	0.41		
1982	0	$0.00 \mathrm{E}+00$	385.618	$1.54 \mathrm{E}+08$	0	$0.00 \mathrm{E}+00$	421.732	$3.03 \mathrm{E}+08$	0.38	Other	
1983	0	$0.00 \mathrm{E}+00$	111.061	$1.32 \mathrm{E}+07$	0	$0.00 \mathrm{E}+00$	121.468	$2.71 \mathrm{E}+07$	0.60		
1984	0	$0.00 \mathrm{E}+00$	106,146	$1.15 \mathrm{E}+07$	0	$0.00 \mathrm{E}+00$	116,090	$2.36 \mathrm{E}+07$	0.50	Total	1.000
1985	0	$0.00 \mathrm{E}+00$	334.696	$1.18 \mathrm{E}+08$	0	$0.00 \mathrm{E}+00$	366,061	$2.46 \mathrm{E}+08$	0.50		
1986	0	$0.00 \mathrm{E}+00$	351.775	$1.28 \mathrm{E}+08$	0	$0.00 \mathrm{E}+00$	384.733	$2.63 \mathrm{E}+08$	0.43		
1987	0	$0.00 \mathrm{E}+00$	340.041	$1.18 \mathrm{E}+08$	0	$0.00 \mathrm{E}+00$	371.884	$2.31 \mathrm{E}+08$	0.41		
1988	0	$0.00 \mathrm{E}+00$	312.145	$1.06 \mathrm{E}+08$	0	$0.00 \mathrm{E}+00$	341.383	$2.08 \mathrm{E}+08$	0.57		
1989	0	$0.00 \mathrm{E}+00$	130.538	$1.76 \mathrm{E}+07$	0	$0.00 \mathrm{E}+00$	142.769	$3.63 \mathrm{E}+07$	0.44		
1990	0	$0.00 \mathrm{E}+00$	113.195	$1.36 \mathrm{E}+07$	0	$0.00 \mathrm{E}+00$	123.796	$2.66 \mathrm{E}+07$	0.25		
1991	0	$0.00 \mathrm{E}+00$	198.244	$3.99 \mathrm{E}+07$	0	$0.00 \mathrm{E}+00$	216.823	$8.46 \mathrm{E}+07$	0.35		
1992	0	$0.00 \mathrm{E}+00$	94.036	$9.31 \mathrm{E}+06$	0	$0.00 \mathrm{E}+00$	102.846	$1.90 \mathrm{E}+07$	0.46		
1993	0	$0.00 \mathrm{E}+00$	2.047	$9.20 \mathrm{E}+04$	0	$0.00 \mathrm{E}+00$	2.239	$1.15 \mathrm{E}+05$	0.3		
1994	0	$0.00 \mathrm{E}+00$	2.032	$9.16 \mathrm{E}+04$	0	$0.00 \mathrm{E}+00$	2.223	$1.12 \mathrm{E}+05$	0.3		
1995	0	$0.00 \mathrm{E}+00$	36.071	$1.38 \mathrm{E}+06$	0	$0.00 \mathrm{E}+00$	39.448	$2.66 \mathrm{E}+06$	0.32		
1996	0	$0.00 \mathrm{E}+00$	37.751	$1.72 \mathrm{E}+06$	0	$0.00 \mathrm{E}+00$	41.288	$3.31 \mathrm{E}+06$	0.27		
1997	0	$0.00 \mathrm{E}+00$	24.931	$7.06 \mathrm{E}+05$	0	$0.00 \mathrm{E}+00$	27.266	$1.39 E+06$	0.20		
1998	0	$0.00 \mathrm{E}+00$	4.301	$1.81 \mathrm{E}+04$	0	$0.00 \mathrm{E}+00$	4.703	$3.44 \mathrm{E}+04$	0.21		
1999	0	$0.00 \mathrm{E}+00$	12.497	$2.13 \mathrm{E}+06$	0	$0.00 \mathrm{E}+00$	13.668	$2.68 \mathrm{E}+06$	0.10		
2000	0	$0.00 \mathrm{E}+00$	13,724	$1.76 \mathrm{E}+06$	0	$0.00 \mathrm{E}+00$	15,009	$2.24 \mathrm{E}+06$	0.30		
2001	0	$0.00 \mathrm{E}+00$	0.00								
2002	0	$0.00 \mathrm{E}+00$	0.00								
2003	0	$0.00 \mathrm{E}+00$	0.00								
2004	0	$0.00 \mathrm{E}+00$	0.00								
2005	0	$0.00 \mathrm{E}+00$	0.00								

Data from Spain received after the Working Group meeting but included as an appendix for information

RIVER	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	X:1991-00	
BIDASOA	22	59	59	64	49	47	38	36	21	35	43	NAVARRA
PAS	453	© 6	16	77	36	106	30	12	19	7	84	CANTABRIA
NANSA	65	57	44	35	74	86	29	17	25	82	51	
ASON	101	226	75	76	86	66	48	16	32	48	77	
DEVA	2	क6	20	5	23	209	46	8	7	95	48	
other	1	0	0	0	0	0	0	0	0	0	0	
DEVA-CARES	455	921	496	506	247	252	117	177	183	413	377	ASTURIAS
NARCEA	766	430	917	1038	836	401	270	365	394	643	606	
SELLA	297	543	423	581	219	192	130	259	447	440	353	
ESVA	204	169	331	201	175	142	55	66	64	102	151	
NAVIA	13	9	16	8	3	3	0	1	0	1	5	
EO	94	46	27	52	22	26	16	12	54	43	39	
other	3	6	21	7	5	9	6	4	1	18	8	
MASMA	84	32	24	22	5	13	3	2	2	6	19	GALICIA
ตaiNo	29	38	3	17	12	18	8	0	0	0	13	
ULLA	33	21	1	4	1	2	1	0	0	0	6	
MANDEO	11	9	2	12	0	5	0	4	0	5	5	
other	3	7	16	9	0	2	0	2	0	0	5	
total catch Sp	2636	2725	2490	2714	1793	1579	797	979	1249	1938	1890	SPAIN

REPORT OF THE

ICES COMPILATION OF MICROTAGS, FINCLIP AND EXTERNAL TAG RELEASES 2000

by
 THE WORKING GROUP ON NORTH ATLANTIC SALMON

Aberdeen, Scotland
2-11 April 2001

This report is not to be quoted without prior consultation with the General Secretary. The document is a report of an expert group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.

International Council for the Exploration of the Sea
Conseil International pour l'Exploration de la Mer
TERMS OF REFERENCE 3
ICES Atlantic Salmon Marking Database:
1 Canada 4
2 Denmark 16
3 Iceland 17
4 Ireland 20
5 Norway 22
6 Russia 24
$7 \quad$ Sweden 26
8 UK (England and Wales) 27
9 UK(Northern Ireland) 29
10 UK (Scotland) 30
11 USA 32
12 Spain 35
Table 1. Number of tags and marks applied to Atlantic salmon by countries for 2000. 36
Appendix 1: List of National Tag Clearing Houses to which Atlantic Salmon tags should be returned for verification 37

TERMS OF REFERENCE

The terms of reference for the 2001 Working Group on North Atlantic Salmon (C.Res. 2000/2ACFM07) stated that the Group should
"With respect to the Atlantic salmon in the NASCO area, provide a compilation of tag releases by countries in 2000".

Data were provided by Working Group members for national tagging programs, as far as possible including all agencies and organizations. These compilations for 2000 are presented by country together with a summary of the tags and marks by all countries (Table 1). Data were supplied in the standard format agreed by the Working Group in 1997. A list of national tag clearing houses is also given (Appendix 1).

ICES COMPILATION OF MICROTAG, FIN CLIP, AND EXTERNAL TAG RELEASES
Marking Season: 2000

Country: Canada

Origin	Primary Tag or Mark			Total
	Microtag	External mark	Adipose clip	
Hatchery juvenile	0	45,009	1,738,916	1,783,925
Wild juvenile	0	9,083	329	9,412
Adult	0	6,046	0	6,046
Total	0	60,138	1,739,245	1,799,383

[^14]1 Canada continued.

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
	2+, 3+ and 4+	Smolt	W	LSW Miramichi	STR-green	451	NB02301-NB02800	none	May 5-June 1	LSW Miramichi	smolt wheel
	2+, 3+ and 4+	Smolt	W	LSW Miramichi	STR-green	784	NW19000-NW 19991	none	May 5-June 1	LSW Miramichi	smolt wheel
	2+, 3+ and 4+	Smolt	W	LSW Miramichi	STR-green	50	NB02751-NB02800	none	May 5-June 1	Catamaran Brook	fyke net
	2+, 3+ and 4+	Smolt	W	NW Miramichi	STR-green	2834	NW10000-NW13049	none	May 13 - Jund	NW Miramichi	estuarial trap
	1SW	Adult	W	Miramichi	Carlin-blue	48	zz62850-zz62897	none	June - Oct	NW and SW Miramichi R	estuarial traps
	1SW	Adult	W	Miramichi	Carlin-blue	100	zz65500-zz65599	none	June - Oct	NW and SW Miramichi R	estuarial traps
	1SW	Adult	W	Miramichi	Carlin-blue	200	zz65700-zz65899	none	June - Oct	NW and SW Miramichi R	estuarial traps
	1SW	Adult	W	Miramichi	Carlin-blue	861	zz66137-zz66999	none	June - Oct	NW and SW Miramichi R	estuarial traps
	MSW / 1SW	Adult	w	Miramichi	Carlin-blue	49	zz74800-zz74849	none	June - Oct	NW and SW Miramichi R	estuarial traps
	1SW	Adult	W	Miramichi	Carlin-blue	350	zz80650-zz80999	none	June - Oct	NW and SW Miramichi R	estuarial traps
	MSW	Adult	W	Miramichi	Carlin-blue	200	zz82300-zz82499	none	June - Oct	NW and SW Miramichi R	estuarial traps
	MSW	Adult	W	Miramichi	Carlin-blue	153	zz82722-zz82999	none	June - Oct	NW and SW Miramichi R	estuarial traps
	MSW / 1SW	Adult	W	Miramichi	Carlin-blue	282	zz85568-zz85999	none	June - Oct	NW and SW Miramichi R	estuarial traps
	MSW / 1SW	Adult	W	Miramichi	Carlin-blue	611	zz86321-zz86999	none	June - Oct	NW and SW Miramichi R	estuarial traps
	MSW / 1SW	Adult	W	Miramichi	Carlin-blue	6	zz87993-zz87998	none	June - Oct	NW and SW Miramichi R	estuarial traps
	1SW	Adult	W	Miramichi	Carlin-blue	340	zz90000-zz90340	none	June - Oct	NW and SW Miramichi R	estuarial traps
	1SW	Adult	W	Miramichi	Carlin-blue	936	zz91000-zz91999	none	June - Oct	NW and SW Miramichi R	estuarial traps
	MSW	Adult	W	Miramichi	Carlin-blue	106	zz92100-zz92253	none	June - Oct	NW and SW Miramichi R	estuarial traps
	MSW	Adult	W	Miramichi	Carlin-blue	2	zz92896-zz92899	none	June - Oct	NW and SW Miramichi R	estuarial traps
	MSW	Adult	W	Miramichi	Carlin-blue	100	zz93000-zz93099	none	June - Oct	NW and SW Miramichi R	estuarial traps
	MSW / 1SW	Adult	W	Miramichi	Carlin-blue	363	zz94000-zz94649	none	June - Oct	NW and SW Miramichi R	estuarial traps
	MSW / 1SW	Adult	W	LSW Miramichi	Carlin-blue	35	zz52962-zz52998	none	Oct - Nov	Catamaran Brook	counting fence
	MSW / 1SW	Adult	W	LSW Miramichi	Carlin-blue	8	zz81240-zz81247	none	Oct - Nov	Catamaran Brook	counting fence
NF Region		Kelts	W	Campbellton River	T-bar-orange	446	T41201-41301	none	April/May	Campbellton R	
							T41303-T43109	none			
							T43113-T43150	none			
		Kelts	w	Campbellton River	I-button	49	987	none	April/May	Campbellton R	4D7491
					Archieval \&		913	none			5072B0
					Red Atkins		989	none			317418
							984	none			9A7219
							922	none			D774F2
							995	none			5E72C9
							959	none			FD7484
							903	none			F374FD
							944	none			FA752D

1 Canada continued.

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
							904	none			33740B
							969	none			C77325
							986	none			1 E7382
							942	none			007363
							980	none			3D7472
							979	none			CF7426
							946	none			917495
							934	none			3A74C2
							923	none			EB7530
							966	none			8F756D
							917	none			4173B4
							924	none			61739D
							996	none			D574E1
							915	none			BD74D6
							908	none			BB73A6
							961	none			961
							926	none			926
							999	none			999
							957	none			957
							928	none			928
							910	none			297383
							953	none			F27337
							954	none			5D7409
							960	none			AC7384
							992	none			E39233
							L1904	none			2E747C
							L1915	none			8D73C7
							L1934	none			8D7231
							L1966	none			C97245
							L1930	none			A872BB
							L1937	none			577200
							L1954	none			42723B
							L1955	none			C2729E
							L1971	none			DF72E8
							L1969	none			4972E1
							L1987	none			0C7309

W:lacfmlacfmwg\2001\nascolWGNAS2001-tag.doc

1 Canada continued.

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
							L1986	none			2C7576
							L1960	none			A17368
		Kelt	W	Rocky River	I button Archival	1	N3993	ADC	May	Rocky R	34C0000073BD
					\& Green Atkins						
		Kelts	W	Western Arm Bk	I-Button Archival 8	97	809	none	May-Jun	Western Arm Brook	34C00000751C
					Red Atkins		824	none			34C00000753D
							823	none			34C00000746D
							807	none			34C000007526
							805	none			34C00000734B
							819	none			$34 \mathrm{C000007287}$
							810	none			34C000007411
							812	none			34C0000074BA
							815	none			34C000007416
							811	none			34C00000731A
							820	none			34C0000072BA
							801	none			34C0000072EC
							802	none			34C0000073BC
							806	none			34C00000736A
							816	none			34C000007517
							817	none			34C00000736C
							818	none			34C0000074B7
							803	none			34C0000074F8
							808	none			34C0000072A6
							804	none			34C0000072CD
							825	none			$34 \mathrm{C0000074CD}$
							800	none			$34 \mathrm{C0000072} \mathrm{AD}$
							822	none			34C000007557
							814	none			34C00000727E
							821	none			34C0000073D5
							826	none			34C00000750A
							827	none			34C0000072F4
							828	none			34C000007456
							829	none			34C000007203
							830	none			34C0000074CF

1 Canada continued.

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
							831	none			34C000007498
							832	none			34C00000722B
							833	none			34C0000072ED
							834	none			34C000007386
							835	none			34C000007367
							836	none			34C00000732A
							837	none			34C00000720D
							839	none			34C00000735E
							840	none			34C00000724F
							841	none			34C0000072A1
							842	none			34C000007376
							843	none			34C0000072A9
							844	none			34C0000074D8
							845	none			34C0000073A0
							846	none			34C0000074E7
							847	none			34C00000724A
							848	none			34C0000072D8
							849	none			34C000007226
							850	none			34 C 000007437
							851	none			34C00000733C
							852	none			34C000007454
							853	none			34C00000749E
							854	none			34C000007389
							855	none			34C000007255
							856	none			34C00000728E
							857	none			34C0000072F1
							858	none			34C0000072EE
							859	none			34C0000073C1
							860	none			34C0000073B9
							861	none			34C000007490
							862	none			34C000007414
							863	none			34C0000072C7
							864	none			34C0000073BF
							865	none			34C0000072F0
							866	none			34C0000073C3
							867	none			34C0000074F2

W:lacfmlacfmwg\2001 \nascolWGNAS2001-tag.doc

1 Canada continued.

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
							868	none			34C000007225
							869	none			34C000007299
							870	none			34C000007427
							874	none			34C00000756C
							875	none			34C000007479
							876	none			34C0000073CE
							877	none			34C0000074F7
							878	none			34C000007211
							879	none			34C000007366
							880	none			34C0000073F8
							881	none			34C0000072F6
							882	none			$34 \mathrm{C000007311}$
							883	none			34C0000074F9
							884	none			34C000007466
							885	none			34C000007237
							886	none			34C0000072CE
							887	none			34C00000746C
							888	none			$34 \mathrm{C00000750C}$
							889	none			34C000007256
							890	none			34C000007329
							891	none			34C00000730D
							892	none			34C00000752B
							893	none			34C0000074CB
							894	none			34C000007547
							895	none			34C0000073DC
							896	none			34C000007514
							897	none			34C000007570
							898	none			34C00000737E
							899	none			34C00000742F
							P2600	none			34C0000073D7
							P2601	none			34C000007213
							P2602	none			34C00000725B
							P2603	none			34C0000074C5
							P2604	none			34C000007264
							P2605	none			34C000007261
							P2606	none			34C0000072B8

1 Canada continued.

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
							P2607	none			34C000007475
							P2608	none			34 C 000007352
							P2609	none			34 C 000007480
							P2610	none			34C0000072DE
							P2611	none			34C000007390
							P2612	none			34C0000074A0
							P2613	none			34C0000072CA
							P2614	none			34C000007563
							P2615	none			34C000007545
							P2616	none			$34 \mathrm{C000007328}$
							P2617	none			34 C 0000074 A 1
							P2618	none			34C000007486
							P2619	none			34C000007446
							P2620	none			$34 \mathrm{C000007518}$
							P2621	none			34C00000753F
							P2622	none			34C000007481
							P2623	none			$34 \mathrm{C000007435}$
							P2624	none			$34 \mathrm{C000007221}$
							P2625	none			$34 \mathrm{C000007356}$
							P2626	none			34 C 000007313
							P2627	none			34C00000745A
							P2628	none			34C000007449
							P2629	none			34C0000073FF
							P2630	none			34C0000072AF
							P2631	none			34C0000074AC
							P2632	none			34C00000749A
		Kelt	W	Highlands River	I-Button Archieve	14	L2000	none	May	Highland R	34C00000761E
					\& Red Atkins		L2001	none			34C000007787
							L2002	none			34C000007609
							L2003	none			34C000007606
							L2004	none			34C000007812
							L2005	none			34C0000078AD
							L2006	none			$34 \mathrm{C000007724}$
							L2007	none			34C00000759D
							L2008	none			$34 \mathrm{C000007707}$

W:lacfmlacfmwg\2001 \nascolWGNAS2001-tag.doc

1 Canada continued.

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
							L2009	none			34C0000075A7
							L2010	none			34C00000760B
							L2011	none			34C000007876
							L2012	none			34C00000788E
							L2013	none			34C000007625
		Kelts	W	Western Arm Bk	Carlin-green	3	N5627-N5629	none	May-Jun	Western Arm Brook	
		Smolt	W	Conne River	STR-green	3361	565-3930	none	April- June	Conne R	
Quebec		Adult	W	Escoumins	T Bar Spagetti	14	03682 à 03695	none	June 2000	Escoumins (sea)	
Maritimes	2-4	smolt	W	Tay	STR-green	336	9885-9899,5650-5972	ADC	Apr-May	Tay R	
	2-4	smolt	W	Tay	ADC	329		none	Apr-May	Tay R	
	2-4	smolt	70W \&	Tobique	STR-green	78	1311-1351	none	May-Jun	Tobique R - Odell	
			8H				1763-1800				
	2-4	smolt	6W,16H	Tobique	STR-green	22	2066-2087	none	May-Jun	Tobique R - Headpond	
	0+ to 3+	parr	279W\&	Tobique	STR-green	334	5550-5798,9001-9205	none	Oct-Nov	Tobique R - Nictau	
			55H				18561-18605,799				
	0+ to 3+	parr	350W\&	Tobique	STR-green	420	5973-6099,6350-6449	none	Oct-Nov	Tobique R - Gulquac	
			70 H				15100-15145				
							18700-18749				
							18850-19949				
	0+ to 3+	parr	463W\&	Tobique	STR-green	556	2088-2100,6100-6349	none	Oct-Nov	Tobique R - Three Brooks	
			93H				6450-6499				
							15000-15092				
							18501-18549				
							18800-18849				
							18950-18999				
	1SW	adult	4W \& 1H	Hammond	Carlin-yellow	5	4765,67,90-92	none	Aug	Hammond R	Estuary
	1SW/MSW	adult	13W\&3H	Hammond	Carlin-green	16	47106-47199	none	Nov	Hammond R	Broodstock
	1SW/MSW	adult	W	Nashwaak	Carlin-white	18	18590-18614	none	Nov	Nashwaak	Broodstock
	1+	smolt	H	Annapolis	ADC	2396		none	Apr-May	Annapolis R	
	1+	smolt	H	Tusket	ADC	10840		none	Apr-May	Bear R	

W:lacfmlacfmwg\2001 \nascolWGNAS2001-tag.doc

1 Canada continued.

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
	$1+$	smolt	H	LaHave	ADC	9137		none	Apr-May	Clyde R	
	1+	parr	H	East R Sh Hbr	ADC	1350		none	Apr-May	East R Sh Hbr	
	0+	parr	H	East R Sh Hbr	ADC	20000		none	Oct	East R Sh Hbr	
	1+	smolt	H	East R Sh Hbr	ADC	1650		none	Apr-May	East R Sh Hbr	
	2+	smolt	H	East R Sh Hbr	STR-red,blue	6768		ADC	Apr-May	East R Sh Hbr	
	0+	parr	H	Gaspereau, Kings	ADC	21880		none	Oct	Gaspereau, Kings Co	
	$1+$	smolt	H	Gaspereau, Kings	ADC	15874		none	Apr-May	Gaspereau, Kings Co	
	0+	parr	H	Gold	ADC	8748		none	Oct	Gold R	
	2+	smolt	H	Gold	ADC	11656		none	Apr-May	Gold R	
	1+	smolt	H	LaHave	ADC	4494		none	Apr-May	Jordan R	
	0+	parr	H	LaHave	ADC	7878		none	Apr-May	LaHave R	
	0+	parr	H	LaHave	ADC	72740		none	Oct	LaHave R	
	$1+$	smolt	H	LaHave	ADC	30109		none	Apr-May	LaHave R	
	$1+$	smolt	H	LaHave	STR-clear,blue,	19999		ADC	Apr-May	LaHave R	
					red, green						
	$1+$	parr	H	Liscomb	ADC	7375		none	Apr-May	Liscomb R	
	$1+$	smolt	H	Liscomb	ADC	10020		none	Apr-May	Liscomb R	
	0+	parr	H	Liscomb	ADC	19496		none	Oct	Liscomb R	
	0+	parr	H	Margaree	ADC	31936		none	Oct	Margaree R	
	0+	parr	H	Medway	ADC	13216		none	Oct	Medway R	
	$1+$	smolt	H	Medway	ADC	50944		none	Apr-May	Medway R	
	1+	smolt	H	LaHave	ADC	10048		none	Apr-May	Mersey R	
	0+	parr	H	Tusket	ADC	14360		none	Oct	Meteghan R	
	0+	parr	H	LaHave	ADC	13600		none	Oct	Mushamush R	
	1+	smolt	H	LaHave	ADC	7998		none	Apr-May	Mushamush R	
	1+	parr	H	Musquodoboit	ADC	4837		none	Apr-May	Musquodoboit R	
	0+	parr	H	Musquodoboit	ADC	17440		none	Oct	Musquodoboit R	
	$1+$	smolt	H	Musquodoboit	ADC	14404		none	Apr-May	Musquodoboit R	
	0+	parr	H	LaHave	ADC	14000		none	Oct	Petite Riviere	
	$1+$	smolt	H	LaHave	ADC	8085		none	Apr-May	Petite Riviere	
	0+	parr	H	Sackville	ADC	25416		none	Oct	Sackville R	
	$1+$	smolt	H	Sackville	ADC	23964		none	Apr-May	Sackville R	
	0+	parr	H	Salmon R Digby	ADC	30520		none	Oct	Salmon R Digby	
	1+	smolt	H	Salmon R Digby	ADC	25596		none	Apr-May	Salmon R Digby	
	0+	parr	H	Tusket	ADC	13622		none	Oct	Tusket R	
	1+	smolt	H	Tusket	ADC	49661		none	Apr-May	Tusket R	

W:\acfmlacfmwg 2001 nascolWGNAS2001-tag.doc

1 Canada continued.

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
	$1+$	smolt	H	Tusket	STR-clear,blue	8000		ADC	Apr-May	Tusket R	
	1+	smolt	H	Saint John	Carlin-blue	10000	V48000-49999	ADC	Apr-May	Saint John R	
							V37500-39999	ADC			
							V41000-42999	ADC			
							V44500-44999	ADC			
							EE59000-59999	ADC			
							F20000-21999	ADC			
	$1+$	smolt	H	Saint John	ADC	321136		none	Apr-May	Saint John R	
	0+	parr	H	Saint John	ADC	387042		none	Oct	Saint John R	
		Adult	165 W	Saint John	Carlin-yellow	165	4305-4307	none	Jun-Aug	Saint John R	
							4313-4315				
							4509-4512				
							4599-4608				
							4610-4634				
							4636-4699				
							4848-4852				
							4856-4858 \&				
							4319,4321,4323,				
							4356,4380,4381,				
							4384,4386,4387,				
							4389,4500,4506,				
							4526,4527,4535,				
							4547,4550,4552,				
							4555,4574,4582,				
							4588,4591,4596,				
							4598,4805,4822,				
							4825,4828,4829,				
							4832,4835,4836,				
							4839,4840,4842,				
							4844,4845,4846,				
							4854,4867,4871,				
							4891,4894,4898,				
							489,914,635.00				
		Adult	10H\&	Saint John	Carlin-blue	40	2700-2739	none	Nov	Saint John R	Broodstock
			30W								

1 Canada continued.

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
		Adult	20 H	Saint John	Carlin-blue	20	2850-2868\&2899	none	July	Saint John R	
		Adult	19H	Saint John	Carlin-blue	19	1280-1299	none	Oct	Saint John R	
		Adult	13H\&	Saint John	Carlin-white	68	18700-18752	none	Nov	Saint John R	Broodstock
			55W				18754-18762				
							18547,18764,19372,				
							19400,19468-69				
		Adult	45 H	Saint John	Carlin-white	45	18642-18645	none			
							18647-18649				
							18651-18652				
							18662-18663				
							18671-18683				
							18688-18691 \&				
							18627,18634,18636,				
							18638,18640,18654,				
							18655,18660,18665,				
							18666,18668,18669,				
							18686,18693,18694,				
							1,869,618,697				
		Adult	19H\&	Saint John	Carlin-red	55	4008-4061,4099	none	Nov	Saint John R	Broodstock
			40W								
		Adult	39H\&	Saint John	Carlin-orange	97	3000-3002	none	Jun-Oct	Saint John R	
			58W				3007-3010				
							3088-3091				
							3093-3103				
							3105-3119				
							3121-3123				
							3135-3137				
							3139-3146				
							3148-3165				
							3169-3175				
							3177-3179				
							3190-3194				
							3197-3198				
							3005,3125,3127,				
							3113,3167,3181,				
							3183,3185,3186,				

W:\acfmlacfmwg\2001\nascolWGNAS2001-tag.doc

1 Canada continued.

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	$\begin{gathered} \text { Release } \\ \text { Date } \end{gathered}$	Release Location	Comment
							3188				
St. Croix	1SW/MSW	Adult	H	St. Croix	Carlin-blue	10	A39833, 34, 37,45,	ADC	Nov	St. Croix R	broodstock
Waterway							77, 78, 79,83, 85,				
Commission							and 86				
		Adult	H	St. Croix	Carlin-blue	48	E97900,01,05,11,	ADC	Oct	St. Croix R	captively-reared
							12,13,17,19,23,24,				adults, released
							26,27,30,32,37,40,				as spawners
							41,42,43,44,46,50,				
							54,57,58,60,61,62,				
							64,68,69,71,73,74,				
							76,77,80,81,86,90,				
							91,92,95,96,98,99				
							and 1 unknown \#				

ICES COMPILATION OF MICROTAG, FIN CLIP, AND EXTERNAL TAG RELEASES

Marking Season: 2000

Origin	Primary Tag or M ark			
	Microtag	External mark	Adipose clip	Total
Hatchery juvenile	72,900	0	0	
Wild juvenile	0	0	0	0
Adult	0	0	0	0
Total	72,900	0	0	72,900

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark**	Number Marked	Code or Serial	Secondary Tag or Mark*	Release Date	Release Location	Comment
DIFR	1	smolt	H		CWT	72900		ADC		Jutland	

ICES COMPILATION OF MICROTAG, FIN CLIP, AND EXTERNAL TAG RELEASES
Marking Season: 2000
Country: Iceland

| Origin | Primary Tag or Mark | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| | Microtag | External
 mark | Adipose
 clip | Total |
| Hatchery juvenile | 127,162 | 0 | 0 | |
| Wild juvenile | 2,516 | 0 | 0 | 2,516 |
| Adult | 0 | 563 | 0 | 563 |
| Total | 129,678 | 563 | 0 | 130,241 |

Marking Agency*	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark**	Number Marked	Code or Serial	Secondary Tag or Mark**	Release Date	Release Location	Comment
IFF	1+	smolt	H	Laxá í Adaldal	DCWT	3112	016463ser	ADC	June/July	Breiơdalsá	
IFF	1+	smolt	H	Hrútafjaròará	DCWT	1990	016463ser	ADC	June/July	Hrútafjarðará	
IFF	1+	smolt	H	Laxá í Að̌aldal	DCWT	3007	016463ser	ADC	June/July	Laxá í Adaldal	
IFF	1+	smolt	H	Miơfjarð̃ará	DCWT	2612	016463ser	ADC	June/July	Miơfjarðará	
IFF	1+	smolt	H	Koll	DCWT	1002	016563ser	ADC	June/July	Eystri Rangá	
IFF	1+	smolt	H	Laxá í Leirársveit	DCWT	7535	016563ser	ADC	June/July	Laxá í Leirársveit	
IFF	1+	smolt	H	Norơurá	DCWT	3009	016563ser	ADC	June/July	Norơurá	
IFF	1+	smolt	H	Elliðaár	DCWT	1069	016663ser	ADC	June/July	Elliõaár	
IFF	$1+$	smolt	H		DCWT	990	016663ser	ADC	June/July	Eystri Rangá	
IFF	1+	smolt	H	Sogiơ	DCWT	4034	016663ser	ADC	June/July	Sogió	
IFF	$1+$	smolt	H	Dalir	DCWT	1000	016663ser	ADC	June/July	Ytri Rangá	
IFF	1+	smolt	H	Koll	DCWT	3002	016663ser	ADC	June/July	Ytri Rangá	
IFF	$1+$	smolt	H	Norơruá	DCWT	1035	016663ser	ADC	June/July	Ytri Rangá	
IFF	1+	smolt	H	Koll	DCWT	9037	016763ser	ADC	June/July	Ytri Rangá	
IFF	1+	smolt	H	Rangár	DCWT	3021	016763ser	ADC	June/July	Ytri Rangá	
IFF	1+	smolt	H	Breiơdalsá	DCWT	1010	016863ser	ADC	June/July	Breiôdalsá	
IFF	$1+$	smolt	H	Koll	DCWT	4012	016863ser	ADC	June/July	Eystri Rangá	
IFF	1+	smolt	H	Rangár	DCWT	3022	016863ser	ADC	June/July	Eystri Rangá	
IFF	1+	smolt	H	Koll	DCWT	1005	016863ser	ADC	June/July	Ytri Rangá	

3 Iceland continued.

Marking Agency*	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark**	Number Marked	Code or Serial	Secondary Tag or Mark**	Release Date	Release Location	Comment
IFF	1+	smolt	H	Koll	DCWT	2023	016863ser	ADC	June/July	Pverá	
IFF	1+	smolt	H	Koll	DCWT	2004	016963ser	ADC	June/July	Eystri Rangá	
IFF		smolt	W	Vesturdalsá	DCWT	1313	016963ser	ADC	June/July	Vesturdalsá	
IFF	1+	smolt	H	Koll	DCWT	1013	016963ser	ADC	June/July	Ytri Rangá	
IFF		smolt	W	Austurá	DCWT	401	017063ser	ADC	June/July	Austurá	
IFF		smolt	W	Elliòaár	DCWT	802	017063ser	ADC	June/July	Elliõaár	
IFF	0+	smolt	H	Pjórsá	CWT	340	064263ser	ADC	June/July	Pjórsá	
IFF	0+	smolt	H	Laxá í Adaldal	CWT	1010	064663ser	ADC	June/July	Laxá í Aďaldal	
IFF	0+	smolt	H	Pjórsá	CWT	1660	064763ser	ADC	June/July	Pjórsá	
IFF	0+	smolt	H	Elliozaár	CWT	5163	064963ser	ADC	June/July	Ellið̃avatn	
IFF	0+	smolt	H	Pjórsá	CWT	6998	065263ser	ADC	June/July	Pjórsá	
IFF	0+	smolt	H	Laxá í Adaldal	CWT	6990	065363ser	ADC	June/July	Laxá í Aďaldal	
IFF	0+	smolt	H	Pjórsá	CWT	1444	065363ser	ADC	June/July	Pjórsá	
IFF	$1+$	smolt	H	Elliõaár	CWT	4527	065463ser	ADC	June/July	Elliõaár	
IFF	0+	smolt	H	Elliðaár	CWT	6849	065463ser	ADC	June/July	Elliðavatn	
IFF	$1+$	smolt	H	Elliozaár	CWT	5166	065563ser	ADC	June/July	Elliõaár	
IFF	0+	smolt	H	Sogiô	CWT	6015	065563ser	ADC	June/July	Sogiơ	
IFF	$1+$	smolt	H	Elliozaár	CWT	337	065663ser	ADC	June/July	Elliòaár	
IFF	1+	smolt	H	Fnjóská	CWT	10013	065663ser	ADC	June/July	Fnjóská	
IFF	$1+$	smolt	H	Elliòaár	CWT	11106	065763ser	ADC	June/July	Elliòaár	
IFF		adult			T_Bar_green	396	IS71000-IS71499	none	July-Aug	Norolingafljót	Put \& Take
IFF		adult			T_Bar_green	44	IS71000-IS71499	none	July-Aug	Hofsá	Catch \& Rel.
IFF		adult		Laxá í Adaladal	T_Bar_white	20	IS52775-IS52794	none	Nov. 1999	Laxá í Adaladal	Kelt
IFF		adult		Laxá í Adaladal	T_Bar_white	1	IS52819	none	November	Laxá í Adaladal	Kelt
IFF		adult		Laxá í Adaladal	T_Bar_white	3	IS52822-IS52824	none	November	Laxá í Adaladal	Kelt
IFF		adult		Laxá í Adaladal	T_Bar_green	2	IS58548-IS58549	none	November	Laxá í Adaladal	Kelt
IFF		adult		Laxá í Adaladal	T_Bar_green	1	IS61325	none	November	Laxá í Adaladal	Kelt
IFF		adult		Laxá í Adaladal	T_Bar_green	12	IS61358-IS61369	none	November	Laxá í Adaladal	Kelt
IFF		adult		Laxá í Adaladal	T_Bar_white	10	01416-01425	none	November	Laxá í Adaladal	Kelt
IFF		adult		Lake Hóp	T_Bar_white	1	2564	none	June	Lake Hóp	Kelt
IFF		adult		Lake Hóp	T_Bar_white	1	2598	none	June	Lake Hóp	Kelt
IFF		adult		Stóra-Laxá	T_Bar_white	1	IS54797	none	December	Ölfusá	Kelt
IFF		adult		Stóra-Laxá	T_Bar_white	1	IS54787	none	December	Ölfusá	Kelt
IFF		adult		Stóra-Laxá	T_Bar_white	1	IS54751	none	December	Ölfusá	Kelt
IFF		adult		Stóra-Laxá	T_Bar_white	1	IS57847	none	December	Ölfusá	Kelt
IFF		adult		Sog	T_Bar_white	1	IS54780	none	December	Ölfusá	Kelt

3 Iceland continued.											
Marking Agency*	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark**	Number Marked	Code or Serial	Secondary Tag or Mark**	Release Date	Release Location	Comment
IFF		adult		Stóra-Laxá	T_Bar_white	1	IS54820	none	December	Ölfusá	Kelt
IFF		adult		Stóra-Laxá	T_Bar_white	1	IS54848	none	December	Ölfusá	Kelt
IFF		adult		Sog	T_Bar_white	1	IS54782	none	December	Ölfusá	Kelt
IFF		adult		Stóra-Laxá	T_Bar_white	1	IS54821	none	December	Ölfusá	Kelt
IFF		adult		Stóra-Laxá	T_Bar_white	1	IS2883	none	December	Ölfusá	Kelt
IFF		adult		Stóra-Laxá	T_Bar_white	1	IS54819	none	December	Ölfusá	Kelt
IFF		adult		Stóra-Laxá	T_Bar_white	1	IS54788	none	December	Ölfusá	Kelt
IFF		adult		Sog	T_Bar_white	1	IS54785	none	December	Ölfusá	Kelt
IFF		adult		Sog	T_Bar_white	1	IS54756	none	December	Ölfusá	Kelt
IFF		adult		Sog	T_Bar_white	1	IS54783	none	December	Ölfusá	Kelt
IFF		adult		Stóra-Laxá	T_Bar_white	1	IS54849	none	December	Ölfusá	Kelt
IFF		adult		Stóra-Laxá	T_Bar_white	1	IS54789	none	December	Ölfusá	Kelt
IFF		adult		Stóra-Laxá	T_Bar_white	1	IS2882	none	December	Ölfusá	Kelt
IFF		adult		Stóra-Laxá	T_Bar_green	1	IS69699	none	December	Ölfusá	Kelt
IFF		adult		Ölfusá	T_Bar_white	1	IS2820	none	July	Ölfusá	Kelt
IFF		adult		Ölfusá	T_Bar_white	1	IS2822	none	July	Ölfusá	Kelt
IFF		adult		Ölfusá	T_Bar_white	1	IS54803	none	July	Ölfusá	Kelt
IFF		adult			T_Bar_blue	50	Grimsa 2000-3000	none	July-Aug	Grímsá	Catch \& Rel.

* Institute of Freshwater Fisheries
** DCWT =Decimal coded wire tag, CWT= coded wire tag, ADC=adipose fin clip

ICES COMPILATION OF MICROTAG, FIN CLIP, AND EXTERNAL TAG RELEASES

Marking Season: 2000

	Primary Tag or Mark			
Orig in	Microtag	External mark	Adipose clip	Total
Hatchery juvenile	289,029	0	0	
Wild juvenile	939	0	0	939
Adult	0	0	0	0
Total	289,968	0	0	289,968

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
Tom McDermott	1+	Parr	H	Shannon	CWT	10127	47/03/12	Adipose	04/26/2000	Shannon	MSW/Gr. Study
Marine Institute	1+	Parr	H	Shannon	CWT	8060	47/19/62A	Adipose	04/26/2000	Shannon	MSW/Gr. Study
Ireland	1+	Parr	H	Shannon	CWT	2037	47/16/33D	Adipose	04/25/2000	Shannon	MSW/Gr. Study
Migration 2000	1+	Parr	H	Shannon	CWT	10095	47/03/13	Adipose	04/25/2000	Shannon	MSW/Gr. Study
	1+	Parr	H	Shannon	CWT	10139	47/03/14	Adipose	04/25/2000	Shannon	MSW/Gr. Study
	$1+$	Parr	H	Shannon	CWT	10997	47/03/15	Adipose	04/27/2000	Shannon	MSW
	1+	Parr	H	Shannon	CWT	11028	47/04/10	Adipose	04/27/2000	Shannon	MSW
	1+	Parr	H	Shannon	CWT	11004	47/04/09	Adipose	04/27/2000	Shannon	MSW
	$1+$	Parr	H	Shannon	CWT	6145	47/04/08	Adipose	04/27/2000	Shannon	MSW
	$1+$	Parr	H	Shannon	CWT	7274	47/19/56	Adipose	04/26/2000	Liffey	transfer - mix
	$1+$	Parr	H	Cong	CWT	11,022	47/02/08	Adipose	03/27/2000	Corrib	Cong river
	1+	Parr	H	Ballynahinch	CWT	4019	47/19/54A	Adipose	04/14/2000	Owenmore	transfer
	$1+$	Parr	H	Ballynahinch	CWT	5680	47/19/55A	Adipose	04/14/2000	Owenmore	transfer
	1+	Parr	H	Bunowen	CWT	11301	47/02/06	Adipose	03/28/2000	Bunowen	transfer
	$1+$	Parr	H	Bunowen	CWT	991	47/19/35A	Adipose	03/28/2000	Bunowen	transfer
	$1+$	Parr	H	Lee	CWT	10827	47/04/01	Adipose	03/30/2000	Inniscarra	indigenous
	$1+$	Parr	H	Burrishoole	CWT	10997	47/04/02	Adipose	05/01/2000	Bundorragha	non-indigenous
	1+	Parr	H	Burrishoole	CWT	9237	47/19/61A	Adipose	05/01/2000	Bundorragha	non-indigenous
	$1+$	Parr	H	Burrishoole	CWT	2772	47/18/21B	Adipose	05/01/2000	Bundorragha	non-indigenous

Ireland continued.

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
	1+	Parr	H	Delphi	CWT	11004	47/04/07	Adipose	05/01/2000	Bundorragha	indigenous
	$1+$	Parr	H	Delphi	CWT	3601	47/20/02A	Adipose	05/01/2000	Bundorragha	indigenous
	1+	Parr	H	Delphi	CWT	11018	47/04/03	Adipose	05/01/2000	Bundorragha	indigenous
	$1+$	Parr	H	Delphi	CWT	5620	47/19/37A	Adipose	05/01/2000	Bundorragha	indigenous
	1+	Parr	H	Delphi	CWT	10724	47/04/04	Adipose	05/01/2000	Bundorragha	indigenous
	$1+$	Parr	H	Delphi	CWT-seq.	6412	47/02/01B	Adipose	05/01/2000	Bundorragha	indigenous
	1+	Parr	H	Shannon	CWT/ X	4030	47/19/39A	Adipose	04/28/2000	Burrishoole	MSW/Gr. Study
	$1+$	Parr	H	Shannon	CWT/ S	2049	47/18/26B	Adipose	04/28/2000	Burrishoole	MSW/Gr. Study
	$1+$	Parr	H	Shannon	CWT/ S	2007	47/18/25B	Adipose	04/28/2000	Burrishoole	MSW/Gr. Study
	$1+$	Parr	H	Shannon	CWT/ S	266	47/19/53A	Adipose	04/28/2000	Burrishoole	MSW/Gr. Study
	$1+$	Parr	H	Shannon	CWT/ T	1437	47/18/63A	Adipose	04/28/2000	Burrishoole	MSW/Gr. Study
	$1+$	Parr	H	Shannon	CWT/ T	720	47/03/41K	Adipose	04/28/2000	Burrishoole	MSW/Gr. Study
	$1+$	Parr	H	Shannon	CWT/ T	1337	47/17/63B	Adipose	04/28/2000	Burrishoole	MSW/Gr. Study
	1+	Parr	H	Shannon	CWT/ H	2063	47/17/23C	Adipose	04/28/2000	Burrishoole	MSW/Gr. Study
	$1+$	Parr	H	Shannon	CWT/ H	1750	47/17/54B	Adipose	04/28/2000	Burrishoole	MSW/Gr. Study
	1+	Parr	H	Shannon	CWT/ H	274	47/17/33C	Adipose	04/28/2000	Burrishoole	MSW/Gr. Study
	$1+$	Parr	H	Shannon	CWT/ O	8269	47/01/68	Adipose	04/28/2000	Burrishoole	MSW/Gr.-all female
	1+	Parr	H	Burrishoole	CWT	7989	47/01/69	Adipose	05/02/2000	Burrishoole	indigenous-control
	$1+$	Parr	H	Burrishoole	CWT	8000	47/01/70	Adipose	05/02/2000	Burrishoole	indigenous-Abbey
	$1+$	Parr	H	Burrishoole	CWT	8984	47/01/71	Adipose	04/28/2000	Burrishoole	indigenous
	$1+$	Parr	H	Erne	CWT	10506	47/01/84	Adipose	05/04/2000	Erne	Tailrace
	1+	Parr	H	Erne	CWT	1729	47/18/29B		03/28/2000	Erne	Termon
	$1+$	Parr	H	Erne	CWT	688	47/18/23B		03/28/2000	Erne	Termon
	$1+$	Parr	H	Erne	CWT	1688	47/19/28A	Adipose	03/28/2000	Erne	Waterfoot
	$1+$	Parr	H	Erne	CWT	827	47/18/24B	Adipose	03/28/2000	Erne	Waterfoot
	$1+$	Parr	H	Erne	CWT	9189	47/01/85	Adipose	05/04/2000	Erne	Tailrace
	1+	Parr	H	Screebe	CWT	11389	47/01/86	Adipose	04/04/2000	Screebe	Waterfall
	$1+$	Parr	H	Coomhola	CWT	816	47/17/60B	Adipose	04/01/2000	Coomhola	
	1+	Parr	H	Coomhola	CWT	475	47/17/58B	Adipose	04/01/2000	Coomhola	
	1+	Parr	H	Ilen	CWT	782	47/18/16B	Adipose	04/01/2000	Ilen	
	1+/3+	Smolt	W	Corrib	CWT	573	47/19/38	Adipose	05/06/2000	Galway	Trap
	1+/3+	Smolt	W	Corrib	CWT	366	47/17/37B	Adipose	05/11/2000	Galway	Trap

5 Norway
ICES COMPILATION OF MICROTAG, FIN CLIP, AND EXTERNAL TAG RELEASES
Marking Season: 2000
Country: Norway

	Primary Tag or Mark			
Origin	Microtag	External mark	Adipose clip	Total
Hatchery juvenile	0	85,692	0	
Wild juvenile	0	5,436	0	5,436
Adult	0	631	0	631
Total	0	91,759	0	91,759

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
NINA	2	smolt	H	Imsa	Carlin	1993	NG-20000-21999		02 May	Imsa	
NINA	2	smolt	H	Figgo	Carlin	1499	NG-22000-23499		02 May	Imsa	
NINA	2	smolt	H	Lone	Carlin	1491	NG-23500-24999		02 May	Imsa	
NINA	1	smolt	H	Imsa	Carlin	1989	NG-25000-26999		02 May	Imsa	
NINA	1	smolt	H	Figgo	Carlin	1493	NG-27000-28499		02 May	Imsa	
NINA	1	smolt	H	Lone	Carlin	1482	NG-28500-29999		02 May	Imsa	
NINA		smolt	W	Imsa	Carlin	586	NC-12229-12815			Imsa/fella	
NINA		smolt	W	Figgo	Carlin	600	NE-3400-3999		26 Apr	Figgjo	
NINA		smolt	W	Figgjo	Carlin	397	NE-4600-4900		26 Apr	Figgjo	
NINA	1	smolt	H	Figgo	Carlin	1990	NG-34000-35999		03 May	Figgjo	
NINA	2	smolt	H	Imsa	Carlin	1994	NG-30000-31999		16 May	Dirdal	
NINA	2	smolt	H	Imsa	Carlin	1982	NG-32000-33999		15 May	Frafjord	
NINA	1	smolt	H	Suldal	Carlin	1068	NG-36000-37199		08 May	Imsa	
NINA	1	smolt	H	Imsa	Carlin	929	NG-37200-38399		08 May	Imsa	
NINA	1	smolt	H	Suldal	Carlin	685	NG-38400-39599		08 May	Imsa	
NINA	1	smolt	H	Imsa	Carlin	851	NG-39600-40799		08 May	Imsa	
NINA	1	smolt	H	Vikja	Carlin	29999	NF-42000-44999		04 May	Vikja	
NINA	2	smolt	H	Eira	Carlin	1995	NF-45000-46999		16 May	Eira	
NINA	2	smolt	H	Eira	Carlin	998	NF-62000-62999		16 May	Eira	

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
NINA	2	smolt	H	Eira	Carlin	2984	NF-63000-65999		16 May	Eira	
NINA		smolt	W	Audna	Carlin	877	NF-81000-81899		27 Mar	Audna	
NINA	1	smolt	H	Audna	Carlin	1984	Nf-88000-89999		11 May	Audna	
NINA		smolt	W	Bjerkreim	Carlin	1000	NF-82000-82999		04 Apr	Bjrekreim	
NINA		smolt	W	Bjerkreim	Carlin	976	NF-83000--83999		03 Apr	Bjrekreim	
NINA	1	smolt	H	Mandal	Carlin	2957	NF-53000-55999		11 May	Mandal	
NINA	1	smolt	H	Mandal	Carlin	1732	NF-56000-57745		11 May	Mandal	
NINA	2	smolt	H	Mandal	Carlin	264	NF-57746-57999		11 May	Mandal	
NINA	1	smolt	H	Mandal	Carlin	430	NF-58000-58429		11 May	Mandal	
NINA	2	smolt	H	Mandal	Carlin	567	NF-58430-58999		11 May	Mandal	
NINA	2	smolt	H	Mandal	Carlin	2893	NF-59000-61899		12 May	Mandal	
NINA	1	smolt	H	Drammen	Carlin	999	NF-84000-84999		10 May	Drammen	
NINA	1	smolt	H	Drammen	Carlin	996	NF-85000-85999		10 May	Drammen	
NINA	1	smolt	H	Drammen	Carlin	1000	NF-86000-86999		10 May	Drammen	
NINA	1	smolt	H	Drammen	Carlin	998	NF-87000-87999		10 May	Drammen	
NINA		smolt	W	Vosso	Carlin	1000	NF-91000-91999		11 Apr	Vosso	
NINA	2	smolt	H	Alta	Carlin	343	NE-56653-56999		23 Jun	Halselv	
NINA	2	smolt	H	Alta	Carlin	106	NF-66000-66105		23 Jun	Halselv	
NINA	2	smolt	H	Alta	Carlin	2071	NF-66106-68354		4 Jul	Alta	
NINA	1	smolt	H	Alta	Carlin	2742	NF-68355-71361		5 Jul	Alta	
NINA	1	smolt	H	Alta	Carlin	2923	NF-71362-74362		6 Jul	Alta	
NINA	1	smolt	H	Alta	Carlin	2872	NF-74363-77368		28 Jun	Alta	
NINA	1	smolt	H	Alta	Carlin	1192	NF-77369-78769		23 Jun	Halselv	
NINA		adult		Imsa	Lea	49	X 46951-46999		03 Feb	Imsa	
NINA		adult		Imsa	Lea	10	X 70716-70725		03 Feb	Imsa	
NINA		adult		Imsa	Lea	74	X 70726-70800		jan-des	Imsa/fella	
NINA		adult		Imsa	Lea	231	X 86016-86246		oct-des	Imsa/fella	
NINA	2	smolt	H	Imsa	Carlin	202	NX 96780-76991		10 May	Imsa	
NINA		adult		Bjerkreim	Lea	67	X 85900-86002		15 Nov	Bjrekreim	
NINA		adult			Lea	64	X 84536-84599		may-jun	Agdenes	
NINA		adult			Lea	136	X 85701-85835		jun-jul	Agdenes	
TOFA	2	smolt	H	Nidelv	Carlin	2999	NF-92000-94999		22 May	Nidelva	

ICES COMPILATION OF MICROTAG, FIN CLIP, AND EXTERNAL TAG RELEASES

Marking Season: 2000

	Primary Tag or Mark			
Origin	Microtag	External mark	Adipose clip	Total
	0	3,000	417,750	
Hatchery juvenile	0	40	190	230
Wild juvenile	0	1,809	0	1,809
Adult	0	4,849	417,940	422,789
Total				

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
Murmanrybvod	2+	parr	H	Kola River	AD	135000			June	Kola River	
	$3+$	smolt	H	Kola River	AD	13500			June	Kola River	
	$2+$	parr	H	Kola River	AD	47000			June	Niva River	
	$3+$	smolt	H	Kola River	AD	95000			June	Niva River	
	$2+$	smolt	H	Umba River	AD	55300			June	Umba River	
PINRO	$3+$	smolt	H	Kola River	Carlin	1000	53000-53999		June	Kola River	
	$3+$	smolt	H	Kola River	Carlin	100	NY 67900-67999		June	Kola River	
	$3+$	smolt	H	Kola River	Carlin	200	NY 67700-67899		June	Kola River	
	$3+$	smolt	H	Kola River	Carlin	100	NY 66800-66899		June	Kola River	
	$3+$	smolt	H	Kola River	Carlin	100	LH 9700-9799		June	Kola River	
	$3+$	smolt	H	Umba River	Carlin	100	36000-36099		June	Umba River	
	$3+$	smolt	H	Umba River	Carlin	400	36300-36699		June	Umba River	
	$3+$	smolt	H	Umba River	Carlin	100	36800-36899		June	Umba River	
	$3+$	smolt	H	Umba River	Carlin	100	31700-31799		June	Umba River	
	$3+$	smolt	H	Umba River	Carlin	100	50500-50599		June	Umba River	
	$3+$	smolt	H	Umba River	Carlin	100	50900-50999		June	Umba River	
	$3+$	smolt	H	Umba River	Carlin	200	36100-36299		June	Umba River	

Russia continued.											
Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
	$3+$	smolt	H	Umba River	Carlin	100	50600-50699		June	Umba River	
	$3+$	smolt	H	Umba River	Carlin	100	50200-50299		June	Umba River	
	$3+$	smolt	H	Umba River	Carlin	100	52900-52999		June	Umba River	
	3+	smolt	H	Umba River	Carlin	100	09300-09399		June	Umba River	
	1SW,2SW	adult	W	Kola River	Carlin	97	18000-18099		July	Kola River	
	1SW,2SW	adult	W	Kola River	Carlin	34	18300-18399		July	Kola River	
	1SW,2SW	adult	W	lokanga River	Carlin	47	221704-221796		July	lokanga River	
	1SW,2SW	adult	W	lokanga River	Carlin	10	273087-279641		July	lokanga River	
	1SW,2SW	adult	W	lokanga River	Carlin	8	280642-280650		July	lokanga River	
	1SW,2SW	adult	W	lokanga River	Carlin	7	296558-297228		July	lokanga River	
	3+,4+,5+	smolt	W	lokanga River	Carlin	40	0-100		July	lokanga River	
PINRO/ASF	1SW,2SW	adult	W	Ponoi River	Floy	1606	14000-15999		June - Sept	Ponoi River	
	3+,4+	smolt	W	Ponoi River	AD	190			Jule	Ponoi River	
Karelrybvod	2.	parr	H	Keret River	AD	41600			April	Keret River	
	4.	smolt	H	Keret River	AD	250			April	Keret River	
	2.	parr	H	Keret River	AD	4100			May	Wyg River	
	1+	parr	H	Keret River	AD	19000			October	Wyg River	
	0+	parr	H	Keret River	AD	7000			September	Wyg River	

ICES COMPILATION OF MICROTAG, FIN CLIP, AND EXTERNAL TAG RELEASES

Marking Season: 2000

Country: Sweden

	Primary Tag or Mark			
Origin	Microtag	External mark	Adipose clip	Total
Hatchery juvenile	0	4,928	39,517	44,445
Wild juvenile	0	0	0	0
Adult	0	0	0	0
Total	0	4,928	39,517	44,445

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
	2	Smolt	H	Lagan	Carlin	700	SR 059000-699		04/18/2000	Lagan	
	1	Smolt	H	Lagan	Carlin	964	SR 057000-999		04/18/2000	Lagan	
	2	Smolt	H	Lagan	Carlin	488	SR 058500-999		04/27/2000	Nissan	
	1	Smolt	H	Lagan	Carlin	493	SR 058000-499		04/27/2000	Nissan	
	2	Smolt	H	Lagan	Carlin	300	SR 059700-999		04/27/2000	Nissan	
	2	Smolt	H	Göta älv	Carlin	991	SR 055000-999	Adipose	05/24/2000	Göta älv	Release site
	2	Smolt	H	Göta älv	Carlin	992	SR 056000-999	Adipose	05/23/2000	Göta älv	Release site
	2	Smolt	H	Göta älv	Adipose	39517			May 2000	Göta älv	Distinguish from wild

ICES COMPILATION OF MICROTAG, FIN CLIP, AND EXTERNAL TAG RELEASES

Marking Season: 2000
Country: UK (England \& Wales)

Orig in	Primary Tag or Mark			
	Microtag	External mark	Adipose clip	Total
Hatchery juvenile	100,537	5,061	65,858	
Wild juvenile	4,139	0	973	5,112
Adult	0	937	0	937
Total	104,676	5,998	66,831	177,505

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
EA North East	1+	Parr	H	Tyne	Microtag	7,076	20/42/20	Adipose	Mar-00	Tyne	
EA North East	1+	Parr	H	Tyne	Microtag	6,918	20/42/22	Adipose	Mar-00	Tyne	
EA North East	1+	Parr	H	Tyne	Microtag	7,150	20/42/21	Adipose	Mar-00	Tyne	
EA North East	Various	Adult	W	Tyne	Radio tag	23	Orange, various	Floy tag	Spring-00	Tyne	
EA North East	Various	Adult	W	Tyne	Ext. tag	66	Red, various	Needle tag	Spring-00	Tyne	
EA North West	Various	Adult	W	Eden	Radio tag	106	Various	Floy tag	Various	Eden	
EA North West	1+	Smolt	H	Lune	None	22,000		Adipose	Various	Lune	
EA Wales	1+	Smolt	H	Alwen	Microtag	4,873	22/42/55	Adipose	Mar-00	Dee	
EA Wales	1+	Smolt	H	Alwen	Microtag	6,836	23/42/12	Adipose	Mar-00	Dee	
EA Wales	1+	Smolt	H	Tryweryn	Microtag	2,857	21/42/43	Adipose	Mar-00	Dee	
EA Wales	1+	Smolt	H	Tryweryn	Microtag	908	23/42/15	Adipose	Mar-00	Dee	
EA Wales	1+	Smolt	H	Tanat	Microtag	2,501	23/42/24	Adipose	Mar-00	Severn	
EA Wales	1+	Smolt	H	Teme	Microtag	1,471	23/42/24	Adipose	Mar-00	Severn	
EA Wales	2+	Smolt	H	Taff	Microtag	10,237	01/42/57	Adipose	Mar-00	Taff	
EA Wales	1+	Parr	H	Mawddach	Microtag	5,000	19/42/06	Adipose	Feb-00	Mawddach	
EA Wales	1+	Smolt	H	Mawddach	Microtag	5,000	21/42/46	Adipose	Mar-00	Mawddach	
EA Wales	1+	Smolt	H	Conwy	Microtag	5,000	20/42/26	Adipose	Mar-00	Conwy	
EA Wales	Various	Adult	W	Dee	Floy	580	Various	Floy tag	Various	Dee	
EA Wales	Various	Adult	W	Taff	Floy	95	Various	Floy tag	May - Oct-00	Taff	

UK (England \& Wales)

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
EA Wales	Various	Adult	W	Taff	CART	14	Various	Floy tag	May - Sep-00	Taff	
CEFAS/EA Wales	Various	Smolt	W	Dee	Microtag	3,176	01/42/22	Adipose	May - Jun-00	Dee	
CEFAS/EA Wales	Various	Smolt	W	Ceiriog	Microtag	222	01/42/34	Adipose	May - Jun-00	Dee	
CEFAS	Various	Smolt	W	Inny	Microtag	505	01/42/33	Adipose	Apr-00	Tamar	
CEFAS	Various	Smolt	W	Lyd	Microtag	236	01/42/32	Adipose	Apr-00	Tamar	
CEFAS	Various	Parr	W	Itchen	Adipose	150		PIT	Sep-00	Itchen	
CEFAS	Various	Parr	W	Ceiriog	Adipose	823		PIT	Oct-00	Dee	
EA South West	1+	Smolt	H	Exe	None	10,500		Adipose	May-00	Axe	
EA Thames	2+	Smolt	H	Delphi	None	7,463		Adipose	Mar-00	Thames	
EA Thames	1+	Smolt	H	Shannon	Microtag	5,370	23/42/18	Adipose	Mar-00	Thames	
EA Thames	1+	Smolt	H	Shannon	Microtag	9,230	23/42/19	Adipose	Mar-00	Thames	
EA Thames	$1+$	Smolt	H	Shannon	Microtag	10,050	23/42/17	Adipose	Mar-00	Thames	
EA Thames	1+	Smolt	H	Shannon	Microtag	10,060	23/42/16	Adipose	Mar-00	Thames	
EA Thames	$1+$	Smolt	H	Delphi	Elastomer	911		Adipose	Mar-00	Thames	
EA Thames	1+	Smolt	H	Delphi	Elastomer	4,150		Adipose	Mar-00	Thames	
EA Thames	1+	Smolt	H	Delphi	None	4,082		Adipose	Mar-00	Thames	
EA Thames	1+	Smolt	H	Delphi	None	3,613		Adipose	May-00	Thames	
EA Thames	Various	Adult	W	Thames	Radio tag	46		Floy tag	Various	Thames	
EA Thames	Various	Adult	W	Thames	Floy	7	Yellow, various	Floy tag	Various	Thames	
EA Southern	0+	Parr	H	Test	Adipose	500		PIT	Various	Test	
EA Southern	0+	Parr	H	Test	None	17,700		Adipose	Various	Test	

ICES COMPILATION OF MICROTAG, FIN CLIP, AND EXTERNAL TAG RELEASES

Marking Season: 2000
Country: UK(N. Ireland)

	Primary Tag or Mark			
Origin	Microtag	External mark	Adipose clip	Total
Hatchery juvenile	34,487	0	35,536	
Wild juvenile	1,483	0	0	1,483
Adult	0	0	183	183
Total	35,970	0	35,719	71,689

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
DARD	$2+$	smolt	H	R. Bush	CWT	1583	43/16/44	AD	28-Mar-00	R. Lagan	Panjet pectoral fin
DARD	1+	smolt	H	R. Bush	CWT	1940	43/16/45	AD	28-Mar-00	R. Lagan	Panjet pectoral fin
DARD	2+	smolt	H	R. Bush	CWT	5703	43/16/43	AD	28-Mar-00	R. Bush	
DARD	$2+$	smolt	H	R. Bush	CWT	1415	43/16/23	AD	28-Mar-00	R. Bush	
DARD	2+	smolt	H	R. Bush	CWT	1229	43/16/16	AD	28-Mar-00	R. Bush	
DARD	2+	smolt	H	R. Bush	CWT	2324	43/16/32	AD	28-Mar-00	R. Bush	
DARD	$1+$	smolt	H	R. Bush	CWT	9696	43/16/46	AD	07-Apr-00	R. Bush	
DARD	1+	smolt	H	R. Bush	CWT	10597	43/16/47	AD	07-Apr-00	R. Bush	
DARD	1+/2+	smolt	W	R. Bush	CWT	1483	43/01/01	AD	21-Apr-00	R. Bush	sequential tags
DARD	$2+$	smolt	H	R. Bush	AD	16813			21-Feb-00	R. Bush	
DARD	2+	smolt	H	R. Bush	AD	142			17-Feb-00	R. Bush	Caudal fin clip
DARD	1+	smolt	H	R. Bush	AD	18581			06-Apr-00	R. Bush	
DARD		Kelt	W/H	R. Bush	AD	183				R. Bush	Panjet ventral surface

ICES COMPILATION OF MICROTAG, FIN CLIP, AND EXTERNAL TAG RELEASES

Marking Season: 2000

Country: UK (Scotland)

	Primary Tag or Mark			
Origin	Microtag	External mark	Adipose clip	Total
Hatchery juvenile	12,355	2,000	0	
Wild juvenile	6,948	6,462	4,750	18,160
Adult	0	899	0	899
Total	19,303	9,361	4,750	33,414

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
Fisheries Research Services	1	SMOLT	H	Conon	Microtag Sequential	2967	62/16/52	Adipose Clip	Spring 2000	R. Conon	
FRS	1	SMOLT	H	Conon	Microtag Sequential	1862	62/16/49	Adipose Clip	Spring 2000	R. Conon	
FRS	1	SMOLT	H	Conon	Microtag Sequential	1850	62/16/55	Adipose Clip	Spring 2000	R. Conon	
FRS	1	SMOLT	H	Conon	Microtag Sequential	2452	62/16/36	Adipose Clip	Spring 2000	R. Conon	
FRS	Various	SMOLT	W	Conon	Microtag Sequential	2010	62/16/51	Adipose Clip	Spring 2000	R. Conon	
FRS	Various	PARR	W	Conon	Pit Tag	1060	Individual Codes	None	Spring 2000	R. Conon	pre-smolts mainly
FRS	Various	SMOLT	W	Conon	Pit Tag	1148	Individual Codes	None	Spring 2000	R. Conon	
FRS	1+	PARR	W	Tay	Pit Tag	30	Individual Codes	None	July 2000	R. Tay	Shelligan Burn
FRS	1+	PARR	W	Tay	Pit Tag	123	Individual Codes	None	August 2000	R. Tay	Tombane Burn
FRS	1+	PARR	H	Tay	Pit Tag	131	Individual Codes	None	August 2000	R. Tay	Tombane Burn
FRS	1-2-3	PARR	W	Girnock	Pit Tag	268	Individual Codes	Adipose Clip	Jan - Dec 2000	Girnock	Tributary of the Aberdeenshire Dee
FRS	1-2-3	PARR	W	Baddoch	Pit Tag	175	Individual Codes	Adipose Clip	Jan - Dec 2000	Baddoch	Tributary of the Aberdeenshire Dee
FRS	2-3-4	SMOLT	W	Baddoch	Microtag Sequential	1002	62/50/25	Adipose Clip	$\begin{aligned} & \hline 07 / 01 / 00 \\ & -31 / 05 / 00 \\ & \hline \end{aligned}$	Baddoch	
FRS	1-2-3	PARR	W	Baddoch	Microtag Sequential	212	62/50/25	Adipose Clip	$\begin{aligned} & \hline 24 / 08 / 00 \\ & -22 / 12 / 00 \\ & \hline \end{aligned}$	Baddoch	
FRS	1-4	SMOLT	W	North Esk	Green Mod Carlin \& Microtag Sequential	181	$\begin{aligned} & \text { C46742-C46923 } \\ & \& \\ & 62 / 20 / 13 \end{aligned}$	Adipose Clip	$\begin{array}{\|l\|} \hline 01 / 04 / 00 \\ -13 / 04 / 00 \end{array}$	R. North Esk	New green carlin

UK (Scotland) continued.

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
FRS	1-4	SMOLT	W	North Esk	Green Mod Carlin	16	C46924-C46939	Adipose Clip	13/04/00	R. North Esk	New green carlin
FRS	1-4	SMOLT	W	North Esk	Green Mod Carlin	136	C46940-C47075	None	$\begin{aligned} & \hline 13 / 04 / 00 \\ & -18 / 04 / 00 \\ & \hline \end{aligned}$	R. North Esk	New green carlin
FRS	1-4	SMOLT	W	North Esk	 Microtag Sequential	3224	C47076 - C50332 $\&$ $62 / 20 / 13$ 622013	Adipose Clip	$\begin{array}{\|l\|} \hline \text { 19/04/00 } \\ -09 / 06 / 00 \end{array}$	R. North Esk	New green carlin
FRS	1-4	SMOLT	W	North Esk	Microtag Sequential	924	62/20/13	Adipose Clip	$\begin{aligned} & \hline 21 / 04 / 00 \\ & -24 / 05 / 00 \\ & \hline \end{aligned}$	R. North Esk	
Tweed Foundation	Various	Parr	W	R.Tweed	Microtag	<500	A62-D30/01	Adipose Clip	Summer 2000	R. Tweed catchment	Wild parr tagged during electric juvenile monitoring
Western Isles Fisheries Trust	1+	pre-Smolt	H	North Uist	Fluorescent Orange Elastomer dye	2000	N/A	None	15/03/00	Red River Isle of Lewis	in Pectoral Fin
Wester Ross Fisheries Trust	S2-S4	Smolt	W	Tournaig Trap Loch Ewe	Elastomer dye	255	N/A	Adipose Clip	April - June 2000	Loch Ewe Wester Ross	behind Left Eye
West Sutherland Fisheries Trust	Various	Smolt	W	Manse Loch	Elastomer dye	300	N/A	None	$\text { Apr - May } \quad 2$	Manse Loch	behind Left Eye
West Galloway Fisheries Trust	Various	Smolt	W	Bladnoch	Elastomer dye	2350	N/A	Adipose Clip	$\begin{array}{\|l\|} \hline 26 / 03 / 00 \\ -26 / 05 / 00 \\ \hline \end{array}$	Bladnoch	
West Galloway Fisheries Trust	Various	Smolt	W	Bladnoch	N/A	4750	N/A	Adipose Clip	$\begin{aligned} & \hline 26 / 03 / 00 \\ & -26 / 05 / 00 \end{aligned}$	Bladnoch	
Spey Research Trust	Various	Smolt	W	Spey	Microtag	1000	62/10/2	Adipose Clip	$\begin{aligned} & \text { March - April } \\ & 2000 \end{aligned}$	Fiddich	
Spey Research Trust	Various	Parr	W	Spey	Microtag	1300	62/10/2	Adipose Clip	$\begin{aligned} & \hline \text { 09/10/00 } \\ & -30 / 11 / 00 \\ & \hline \end{aligned}$	Fiddich	
Spey Research Trust	Various	Adult	W	Spey	Floy Tag - White	65	00057-00225	None	$\begin{aligned} & \text { Feb - Dec } \\ & 2000 \end{aligned}$	Fiddich	
Spey Research Trust	Various	Adult	W	Spey	Floy Tag - Blue	133	00001-00151	None	$\begin{array}{\|l} \hline \text { Feb - Dec } \\ 2000 \\ \hline \end{array}$	Spey	
Spey Research Trust	Various	Adult	W	Spey	Floy Tag - Pink	23	00001-00026	None	$\begin{aligned} & \text { Feb - Dec } \\ & 2000 \\ & \hline \end{aligned}$	Spey	
Spey Research Trust	Various	Adult	W	Spey	Floy Tag - Yellow	<77	00001-00077	None	$\begin{aligned} & \text { Feb - Dec } \\ & 2000 \\ & \hline \end{aligned}$	Spey	
Spey Research Trust	Various	Adult	W	Spey	Floy Tag - Orange	1	00001	None	$\begin{aligned} & \text { Feb - Dec } \\ & 2000 \\ & \hline \end{aligned}$	Spey	
Tay District Salmon Fishery Board	Various	Various	W	Tay Catchment	Plastic Needle Tag	500	1-500	None	Jan - Dec 2000	Tay	Various Colour Tag
Tweed Foundation	Various	Adult	W	Tweed Catchment	Plastic Needle Tag	N/A	N/A	None	Jan - Dec 2000	Tweed	Various Colour Tag

ICES COMPILATION OF MICROTAG, FIN CLIP, AND EXTERNAL TAG RELEASES

Marking Season: 2000

	Primary Tag or Mark			
Origin	Microtag	External mark	Adipose clip	Total
Hatchery juvenile	0	172,842	47,857	220,699
Wild juvenile	0	1,800	0	1,800
Adult	0	5,052	30	5,082
Total	0	179,694	47,887	227,581

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
USGS	2	smolt	H	Connecticut	VIE	80		PIT	Apr-00	Connecticut R.	Passumpsic R. Study VT
USGS	1	smolt	H	Connecticut	VIE	90		PIT	May-00	Connecticut R.	Passumpsic R. Study VT
USGS	1	smolt	H	Connecticut	VIE	90		PIT	May-00	Connecticut R .	West R. Study VT
USGS	1	smolt	H	Connecticut	VIE	60		PIT	May-00	Connecticut R.	Connecticut Mainstem Study
USGS	1	smolt	H	Connecticut	VIE	60		PIT	Jun-00	Connecticut R.	Connecticut Mainstem Study
USGS	1+,2+	parr	w	Connecticut	VIE	460		PIT	Oct-00	Connecticut R.	West R. Study VT
USGS	1+,2+	parr	w	Connecticut	VIE	126		PIT	Oct-00	Connecticut R.	White R. Study VT
USGS	1+,2+	parr	w	Connecticut	VIE	15		PIT	Sep-00	Connecticut R.	Passumpsic/Moose Study VT
USGS	1+,2+	parr	w	Connecticut	VIE	92		PIT	Sep-00	Connecticut R.	Maidstone R. Study VT
USGS	1+,2+	parr	w	Connecticut	VIE	16		PIT	Sep-00	Connecticut R.	White/Tweed Study VT
CTDEP	2	smolt	H	Connecticut	AD	22,219			Apr-00	Connecticut R.	Farminton R. CT
USFWS	2	smolt	H	Connecticut	AD	25,638			Apr-00	Connecticut R.	Connecticut Mainstem MA
PGE ENERGY	4	adult	w	Connecticut	Radio Tag	10		PIT	May-99	Connecticut R.	Deerfield R. Study MA
CTDEP	2	adult	D	Connecticut	AD	13			Oct-00	Connecticut R.	Salmon R. CT
CTDEP	4	adult	D	Connecticut	FLOY	2	01899-01900		Apr-00	Connecticut R.	Farmington R. CT
CTDEP	2	adult	D	Connecticut	AD	14			Oct-00	Connecticut R.	Farmington R. CT
CTDEP	2	adult	D	Connecticut	AD	4			Oct-00	Connecticut R.	Eightmile R. CT
CTDEP	2	smolt	H	Connecticut	FLOY	140	1125-1300	AD	Apr-00	Connecticut R.	Farmington R. CT
VTCFWRU	1+, 2+	parr	w	Connecticut	PIT	96		VIE	May-Sep -00	Connecticut R.	UVM West Study

W:lacfmlacfmwg\2001\nascolWGNAS2001-tag.doc

USA continued.

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
VTCFWRU	1+, 2+	parr	W	Connecticut	VIE	68			Aug-00	Connecticut R.	UVM West Study
VTCFWRU	1+, 2+	parr	W	Connecticut	VIE	48		PIT	Jun-00	Connecticut R.	UVM BlackStudy
VTCFWRU	1+, 2+	parr	W	Connecticut	VIE	20			Aug-00	Connecticut R.	UVM BlackStudy
VTCFWRU	1+, $2+$	parr	W	Connecticut	VIE	184		PIT	May-Oct -00	Connecticut R.	UVM Williams Study
VTCFWRU	1+, 2+	parr	W	Connecticut	VIE	65			Aug-00	Connecticut R.	UVM Williams Study
USGS	0+	parr	W	Connecticut	PIT	2,000			Sep-00	Connecticut R.	West Brook Study MA
PGE	1	smolt	H	Connecticut	VIE	118			May-00	Connecticut R.	Deerfield R. Study MA
PGE	1	smolt	H	Connecticut	Radio Tag	54			May-00	Connecticut R.	Deerfield R. Study MA
PGE	1	smolt	H	Connecticut	Radio Tag	150			May-00	Connecticut R.	Connecticut Mainstem Study
NHFG	3	adult	D	Merrimack	FLOY	279	White		Mar-00	Merrimack R.	Bristol
NHFG	3	adult	D	Merrimack	FLOY	150	Blue		Mar-00	Merrimack R.	Garvins
NHFG	3	adult	D	Merrimack	FLOY	63	Red		Mar-00	Merrimack R.	Franklin
NHFG	3	adult	D	Merrimack	FLOY	139	Green		Mar-00	Merrimack R.	Boscowen
NHFG	3	adult	D	Merrimack	FLOY	88	Orange		Mar-00	Merrimack R.	Hooksett
NHFG	3	adult	D	Merrimack	FLOY	75	Blue		Mar-00	Merrimack R.	Garvins
NHFG	4	adult	D	Merrimack	FLOY	30	Yellow		Mar-00	Merrimack R.	Sewalls Falls
NHFG	4	adult	D	Merrimack	FLOY	68	Red		Mar-00	Merrimack R.	Franklin
NHFG	4	adult	D	Merrimack	FLOY	100	Yellow		Apr-00	Merrimack R.	Sewalls Falls
NHFG	4	adult	D	Merrimack	FLOY	150	White		Apr-00	Merrimack R.	Bristol
NHFG	3	adult	D	Merrimack	FLOY	155	Green		Apr-00	Merrimack R.	Boscowen
NHFG	2	adult	D	Merrimack	FLOY	145	Red		Apr-00	Merrimack R.	Franklin
NHFG	3	adult	D	Merrimack	FLOY	289	Red		May-00	Merrimack R.	Franklin
NHFG	3	adult	D	Merrimack	FLOY	331	Green		May-00	Merrimack R.	Boscowen
NHFG	3	adult	D	Merrimack	FLOY	165	Yellow		May-00	Merrimack R.	Sewalls Falls
NHFG	2	adult	D	Merrimack	FLOY	160	Orange		May-00	Merrimack R.	Hooksett
NHFG	4	adult	D	Merrimack	FLOY	224	Yellow		May-00	Merrimack R.	Sewalls Falls
NHFG	3	adult	D	Merrimack	FLOY	127	White		May-00	Merrimack R.	Bristol
NHFG	3	adult	D	Merrimack	FLOY	527	Purple		Oct-00	Merrimack R.	Bristol
NHFG	3	adult	D	Merrimack	FLOY	480	Grey		Oct-00	Merrimack R.	Franklin
USFWS	2	adult	D	Merrimack	FLOY	153	Orange		Nov-00	Merrimack R.	Baker River Study
USFWS	3	adult	D	Merrimack	FLOY	98	Orange		Nov-00	Merrimack R.	Baker River Study
USFWS/NMFS	1	smolt	H	Penobscot	VIE	24900		AD	Apr-00	Penobscot R.	right eye Green
USFWS/NMFS	1	smolt	H	Penobscot	VIE	25200		AD	May-00	Penobscot R.	left eye Red
USFWS/NMFS	1	smolt	H	Penobscot	VIE	25000		AD	Apr-00	Penobscot R.	left eye Green
USFWS/NMFS	1	smolt	H	Penobscot	VIE	16700		AD	Apr-00	Penobscot R.	right eye Yellow
USFWS/NMFS	1	smolt	H	Penobscot	VIE	1309	fmlacfm	2400) 1 nascolWGNA	S2001Max-88	Penobscot R.	right eye Blue

10

11
USA continued.

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number Marked	Code or Serial	Secondary Tag or Mark	Release Date	Release Location	Comment
USFWS/NMFS	1	smolt	H	Penobscot	VIE	1100		AD	May-00	Penobscot R.	right jaw Purple
USFWS/NMFS	1	smolt	H	Penobscot	VIE	1100		AD	May-00	Penobscot R.	right eye Purple
USFWS/NMFS	1	smolt	H	Penobscot	VIE	1000		AD	May-00	Penobscot R.	right jaw Blue
USFWS/NMFS	1	smolt	H	Penobscot	VIE	1100		AD	May-00	Penobscot R.	left eye Blue
USFWS/NMFS	1	smolt	H	Penobscot	VIE	24800		AD	May-00	Penobscot R.	left eye Yellow
USFWS/NMFS	1	smolt	H	Penobscot	VIE	24700		AD	May-00	Penobscot R.	right eye Red
USFWS/NMFS	1	smolt	H	Penobscot	VIE	25100		AD	Apr-00	Penobscot R.	left eye Orange
NMFS/ASC/USFWS	4	adult	H/N	St. Croix	PIT/Carlin	48		AD	Oct-00	St. Croix R.	Type B PIT tags/Blue Carlin
NMFS/ASC/USFWS	4	adult	H/N	East Machias	VIE/PIT	235		AD	Oct-00	St. Croix R.	rt. Eye and rt. Lower jaw Yellow VIE; Type B PIT tag
NMFS/ASC/USFWS	4	adult	H/N	Machias	VIE/PIT	92		AD	Oct-00	St. Croix R.	rt. Eye and rt. Lower jaw Red; Type B PIT tag
NMFS/ASC/USFWS	4	adult	H/N	Dennys	VIE/PIT	89		AD	Oct-00	St. Croix R.	rt. Eye and rt. Lower jaw Orange; Type B PIT tag
NMFS/ASC/USFWS	4	adult	H/N	Mixed	VIE/PIT	286		AD	Oct-00	St. Croix R.	mixed VIE marks; Type B PIT tags
NMFS/ASC/USFWS	4	adult	H/N	Dennys	VIE/PIT/Ping	112		AD	Oct-00	Dennys R.	rt. Eye and rt lower jaw Orange; Type B PIT tag; 60 Ping tags
USFWS	7	adult	C	Narraguagus	PIT	98			Nov-00	Narraguagus R.	Type A PIT tags
USGS/NMFS	2	smolt	W	Narraguagus	AD	46		PIT	Apr-00	Narraguagus R.	Type B PIT tags (aging not yet complete)
USGS/NMFS	1	parr	W	Narraguagus	AD	660		PIT	Mar-00	Narraguagus R.	Type B PIT tags (aging not yet complete)
USFWS	7	adult	C	Sheepscot	PIT	26			Nov-00	Sheepscot	Type A PIT tags
USFWS	7	adult	C	Machias	PIT	62			Dec-00	Machias R.	Type A PIT tags
USFWS	6	adult	C	Machias	PIT	2			Dec-00	Machias R.	Type A PIT tags
USFWS	5	adult	C	Machias	PIT	28			Dec-00	Machias R.	Type A PIT tags
NMFS/ASC/USFWS	4	adult	H/N	Machias	VIE/PIT/Ping	176			Oct-00	Machias R.	rt. Eye and rt. Lower jaw Yellow VIE; Type B PIT tags; 16 Ping tags
USFWS	7	adult	C	East Machias	PIT	54			Nov-00	East Machias R.	Type A PIT tags
USFWS	6	adult	C	East Machias	PIT	1			Nov-00	East Machias R.	Type A PIT tags
USFWS	5	adult	C	East Machias	PIT	15			Nov-00	East Machias R.	Type A PIT tags
NMFS/ASC/USFWS	4	adult	H/N	East Machias	VIE/PIT/Ping	16			Oct-00	East Machias R.	rt. Eye and rt. Lower jaw Yellow VIE; Type B PIT tags; 16 Ping tags

Notes:

$\mathrm{H}=$ hatchery

$N=$ raised in net pen
AD = adipose clip
W=wild
C=captive, wild origin held in hatchery then released
$D=$ domestic, entire life cycle in hatchery
$\mathrm{AP}=$ hole punched in adipose fin (AD punch)
LV=left ventral fin clip
$R V=$ right ventral fin clip
Ping=internally implanted ultrasonic pinger
Ping=internally implanted ultrasonic pinger

Marking Season:

\qquad

ICES Atlantic Salmon Marking Database

Country: \qquad SPANN

Found Tosel Pisesiy Hats

$\begin{aligned} & \text { Masw } \\ & \text { Ayory } \end{aligned}$			$\begin{aligned} & \text { Nuitey } \\ & \text { in Wha } \end{aligned}$	5axk Ong		Marber Maxic	Tug Coden = inve vantance	$\begin{aligned} & \text { Aavily } \\ & \text { recliph } \end{aligned}$ enome	$\begin{gathered} \hline \text { Mabans } \\ \text { Dity } \end{gathered}$	Fucs dintan	Comern
Hemes:	\%	Sale	н	8xacy	[w	,	23000	A		H	
Hame:	1.	Stict	H	Ofraz?	owt	5	2xace	A0	1**	Potus	
lame	$1+$	froe	\%	Othars:	CWH^{+}	124	गwn	\cdots	1+6al	R Bituesa	
Liment	\square	$P_{\text {P1 }}$	म	Finamersm	20)	18597		${ }^{5}$	-		
Hemer:	[Fen_{0}	\underline{H}	Exasaluese	40	5in		A	xax ${ }^{\text {a }}$	H fabut	Tetach \$tima
- maxa	1	E\%1	7	Dinspocrep	40	1\%3		40	Nos		
tatam	1	HF	n	2eth	20	12 m		15	rema	Sa	
Atarm	1	\#	H	Sima	N0	cmin		${ }^{\circ}$	FWem	Com	
	\square	\%	H	8 8, ${ }^{4}$	(5)	1000		4	Frioll	cois	
Aiver:	3	nvianst	-	Hexes	B0	80		40	fom	Trex.	
Ansmi	1	unst	$\stackrel{\square}{4}$	laxa	40	2400		*	P600	Hersa	
gutar	I	wem	H	51	${ }^{\text {c/ }}$	50	Juma	\sim	Fram	5	
Stat	$\underline{4}$	H	$\stackrel{-}{4}$	ह!	(c)	2010	$2 \mathrm{~L} \times 2$	A	cram	Es	
Athem:	1.	xatinst	H	Star	40	150		8	Exaso	Fer	
Anpers	4	pir	H	- $=$	20	14×0		∞	0 cos	0\%a	
Numa	4	\#	H	5	20	+1010		$\stackrel{1}{ }$	L-m)	fint	
Athat ${ }^{\text {a }}$	1	Rim	$\stackrel{-}{+}$	Luxet	$4)$	1801		A		kante	
Anam	$\stackrel{1}{4}$	$\underline{10}$	$\stackrel{H}{4}$	Salt	40	2000		4	coty	\# ${ }^{\text {b }}$	
Gucy	5.	P19	H	L685	cw	45	201700	A	-	Lem	
Sulay	$\stackrel{1}{4}$	H	H	Lent	CWI	\%	सेश	${ }^{\circ}$	-	14in	
Kiter	1.	pir	$\stackrel{-}{\square}$	Tis	40	8010		A	Nam(1)	14.	
Sater	$\stackrel{1}{5}$	1	H	ter	(tw	234	2xack	A	kas	ti9	
Gicar	4	\%	H	Us	CW\%	11004	230067	A	Ha-W	Us:	
Guicy	4	H/	H	is	CW		यin99	A	Horal	Us	
- 346	1	Fir	$\stackrel{H}{4}$	1	(W)	$1 / 3$	2: $=1 / \mathrm{M}$	\cdots	Wheli	14	
Satry	5	Vir	$\stackrel{H}{4}$	W\%	CW	m	23x 200	A		$1{ }^{1}$	
Gaka	${ }_{5}$	Hur	${ }^{H}$	6.	cw	316	25000	A	Ns-m	U15	
Eutor	4	\#	H	4	CW	108	2xicich	∞	24**	Let	
-	$\stackrel{\square}{4}$	\%	$\stackrel{H}{H}$	16	cm	1293	2-3/6M	A	2.ay	14	
stare	F	$\underline{10}$	H	H\%	Cow	38	सेडकल	A	inso	H	
Gator ${ }^{\text {a }}$	${ }_{5}$	${ }^{\prime \prime}$	H	M	CW/	311	23007	20	20.30	$4{ }^{4}$	
cicy	4	\#	Hi	4	CW	194	20100	10	20-3	Lis	
Sum	1.	His	H	14.	(\%M)	15	उणन言	N1	2anl	14	

Pope noled
Koisp
Tecumpint

ases Mosmy

Table 1 Summary of Allantit minon lagged and markd in 2000 . 'Hatchery' and 'Whet refer to smolts or parr, 'Adult' refers to wild and hatohery fish. Data from Belgrim and France were not avalable. Fish wese not tagged in Finland

Country	Orimin	Presary Tas or Mask			Total
		Mizrotay	Extumal mark	Adipare clip	
Cunsda	Hatchery	0	45,009	1,738,916	1,205,925
	Whu	0	9,063	529	9,412
	Adult	0	6,046	0	6,045
	Total	0	60,158	1.739.245	1,799,363
Deumark	Hstchary	72,900	0	0	72,900
	Wuld	0	0	0	0
	Adilt	0	0	0	0
	Tatal	72,900	0	0	72,900
touland	Hatchary	127,162	0	0	127,162
	Wha	2,516	0	0	2,515
	Adula	0	551	0	563
	Total	129,678	563	0	130,241
Lreluad	Hatchaty	209,029	0	0	269,039
	WH	929	0	0	939
	Adult	0	0	0	0
	Total	200,969	0	0	209,908
Namay	Hstchary	0	85,002	0	85,692
	Wha	0	5.436	0	5,436
	Adilf	0	631	0	631
	Total	0	91,759	0	91,759
Buria	Hutchary	0	3,000	417,750	420,750
	WH	0	40	190	230
	Adult	0	1,809	0	1,809
	Total	0	4,849	417,940	422,789
Spuin	Hatelary	83,225	10,000	133,788	227,003
	WH	0	0	0	0
	Adolt	0	0	0	0
	Total	63,225	10,000	139.778	227,003
Smoden	Hstchary	0	4,928	39,517	44,445
	Wha	0	0	0	0
	Adily	0	0	0	0
	Total	0	4,928	39,517	44,445
UK (Enylurd ©	Hstchary	100,537	5,051	65,858	171,436
Walen)	Wha	4,139	0	973	\$,112
	Adilf	0	937	0	937
	Total	104,676	5,998	66,831	177,505
OK (N. Lratand)	Hatehary	34,487	0	35,536	20,023
	Wht	1,480	0	0	1,480
	Adult	0	0	183	185
	Total	35,970	0	35,719	71,609
OK (Soothind)	Hatchary	12,355	2,000	0	14,355
	Wha	6,948	6,402	4.750	18,100
	hadil	0	699	0	899
	Totsl	19,303	9,361	4.750	33,414
USA	Hstchary	0	172,842	47,857	220.699
	Wha	0	1,800	0	1,800
	Adulf	0	5,052	30	5,082
	Tatal	0	179,654	47,887	227,581
All Countros	Hatchary	636,470	318,532	2,345,434	3,300,436
	WH	16,025	22,821	6,242	45,088
	Aduli	0	15,927	213	16,150
	Total	652,495	357,200	2,251,899	1,361,674

APPENDIX 1

NATIONAL TAG CLEARING HOUSES TO WHICH ATLANTIC SALMON TAGS SHOULD BE RETURNED FOR VERIFICATION

Country	Institution	Address
BELGIUM	Unite de Recherches en Biologie des Organismes	Rue de Bruxelles, 61 B-5000 NAMUR (Belgique) Claire.Prignon@fundp.ac.be
CANADA	Atlantic Salmon Tag Clearing House Department of Fisheries \& Oceans Bedford Institute of Oceanography (Att. K. Rutherford)	P.O.Box 1006 Darmouth Nova Scotia, B2Y 4A2 RutherfordK@mar.dfo-mpo.gc.ca
DENMARK	Danmarks Fiskeri og Havundersogelser	Charlottenlund Slot DK-2920 Charlottenlund ffi@dfu.min.dk
FAROES	Faroes Fisheries Laboratories	Noatun, P.O. Box 3051 FO-110 Torshavn janarge@frs.fo
FINLAND	Finnish Game \& Fisheries Research Institute	P.O. Box 202 SF-00151 Helsinki maija.lansman@rktl.fi
FRANCE	Conseil Superieur de la Peche	Delegation Regionale 84 Rue de Rennes F-35510 Cesson-Sevigne jean-pierre.porcher@ csp-rennes.environnement.gouv.fr
ICELAND	Institute of Freshwater Fisheries	Vagnhofdi 7 112 Reykjavik Gudni.Gudbergsson@veidimal.is
IRELAND	Marine Institute Fisheries Research Center (Att. A. Cullen)	Abbotstown, Castleknock Dublin 15 Anne.cullen@marine.ie
NORWAY	Norwegian Institute for Nature Research (NINA)	Tungasletta 2 N-7005 Trondheim l.p.hansen@ninaosl.ninaniku.no
PORTUGAL	Institute Superior Agronomia Dept. de Engenharia Florestal	Tapada da Ajuda 1399 Lisbon Portugal

RUSSIA	Knipovitch Polar Research Institute of Marine Fisheries \& Oceanography (Att. S. Prusov)	6 Knipovitch Street 183763 Murmansk inter@pinro.murmansk.ru
SPAIN(Navarra)	Gobierno de Navarra Servicio de Medio Ambiente	c/o Alhondiga, 1E 31002 Pamplona
SPAIN (Asturias)	Principado De Asturias Consejeria De Agricultura (Att. Mr. Jeronimo de la Hoz)	Seccion de Pesca fluvial c/ Coronel Coronel Arvada s/n 33005 OVIEDO.ASTURIAS (Spain)
SWEDEN	Laxforskningsinstitutet Swedish Salmon Research Institute	Forskarstigen S-814 94 Alvkarleby
UK (England Wales)	CEFAS, Lowestoft Laboratory \& (Att. I. Russell)	Pakefield Road, Lowestoft Suffolk NR33 OHT i.c.russell@cefas.co.uk
UK (Scotland)	Fisheries Research Services (Att. J. Higgins)	Freshwater Fisheries Lab. Field Station, 16 River Street, Montrose DD108DL j.higgins@marlab.ac.uk
UK (N Ireland)	Department of Agriculture for N. Ireland, Fishery Research Laboratory (Att. J. Moffett)	38, Castle Road Coleraine C.Londonderry BT51 3RL
USA	Northwest Fisheries Center NMFS/NOAA (Att. R. Brown)	166 Water Street Woods Hole, MA 02543 Russell.Brown@noaa.gov

[^0]: Total number of rods days fished, data for 1999 is provisional
 ${ }^{2}$ Number of gear units expressed as trap or crew months.
 ${ }_{2}^{3}$ Number of gear units expressed as trap months.
 ${ }^{2}(2000 /$ mean -1$) * 100$

[^1]: ${ }^{\mathrm{I}}$ Seine nets and lave nets only
 ${ }^{2}$ Catch per liceence tide

[^2]: * From 1995 onward the results are presented for the two periods separated at 31 August.

[^3]: ${ }^{1}$ Estimate based on microtag recoveries raised to total catch and including estimate of non-catch fishing mortality.
 Estimate based on counter and catch figures.
 Provisional figures.

 $$
 \begin{aligned}
 & \mathrm{HR}=\text { Hatchery reared. } \\
 & \mathrm{W}=\text { Wild. } \\
 & \text { '-' }=\text { no data }
 \end{aligned}
 $$

[^4]: Estimate based on counter and catch figures.
 ${ }^{6}$ Net only.
 ${ }^{7}$ Commercial fisheries on the Ponoi were closed in 1993 and catch-and-release rod fishing was introduced.

[^5]: ${ }^{1}$ Major tributary of River Teno
 ${ }^{2}$ Juvenile survey represents mean fry and parr abundance (number $100 \mathrm{~m}^{2}$ caught by electrofishing) at 35,10 and 12 sites respectively.

[^6]: ${ }^{1}$ Mark recapture estimate from 1994

[^7]: ${ }^{1}$ Return rates to rod fishery with constant effort.
 ${ }^{2}$ Different release sites

[^8]: 1 The number of fishermen and fishing days for River Teno and River Naatamo are combined.

[^9]: * totals for all years prior to 1997 are incomplete and are considered minimal estimates
 blank cells indicate no information available

[^10]: Labrador: SFAs $1,2 \& 14 B$
 Newfoundland: SFAs 3-14A
 Gulf of St. Lawrence: SFAs 15-18
 Scotia-Fundy: SFAs 19-23 (SFA 22 is not included as it does not produce 2 SW salmon)
 Quebec: Q1-Q11

[^11]: ${ }^{1}$ For Greenland vessels: all catches up to 1968 were taken with set gillnets only; after 1968, the catches were taken with set gillnets and drift nets. All non-Greenland catches 1969-75 were taken with drift nets.
 ${ }_{3}^{2}$ Quota figures apply to Greenland fishery only.
 ${ }^{3}$ Figures not available, but catch is known to be less than Faroese catch.
 ${ }^{4}$ Including 7 t caught on longline by one of two Greenland vessels in the Labrador Sea early in 1970.
 ${ }^{5}$ The fishery was suspended.
 ${ }^{6}$ Quota corresponding to specific opening dates of the fishery.
 ${ }^{7}$ Quota for 1988-90 was 2,520 t with an opening date of 1 August and annual catches not to exceed the annual average (840 t) by more than 10%. Quota adjusted to 900 t in 1989 and 924 t in 1990 for later opening dates.
 ${ }^{8}$ Set by Greenland authorities.
 ${ }^{9}$ Quotas were bought out.
 ${ }^{10}$ Fishery restricted to catches used for internal consumption in Greenland.

[^12]: ${ }^{1} \mathrm{CI}$ - confidence interval calculated by method of Pella and Robertson (1979) for 1984-86 and by binomial distribution for the others.
 ${ }^{2}$ During Fishery.
 ${ }^{3}$ Research samples after fishery closed.

[^13]: ${ }^{1}$ Simulated forecast values.

[^14]: W•-lacfmlacfmwgl2001\nascolWGNAS2001-tag doc

