For MASS

(

Advisory Committee on Fishery Management

Fisheridirehtsratels Bibliotek

ICES CM 1997/Assess:6

REPORT OF THE WORKING GROUP ON THE ASSESSMENT OF DEMERSAL STOCKS IN THE NORTH SEA AND SKAGERRAK

ICES Headquarters, Copenhagen, Denmark 7-15 October 1996

PART 1 OF 3

This report is not to be quoted without prior consultation with the General Secretary. The document is a report of an expert group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.

International Council for the Exploration of the Sea Conseil International pour l'Exploration de la Mer

Palægade 2–4 DK-1261 Copenhagen K Denmark

3106/ 54242

.

TABLE OF CONTENTS

S	ection		Page
1	INT	RODUCTION	1
1		Participants	
	1.1	*	
	1.2	Terms of reference	
	1.3	Data sources and sampling levels	
		1.3.1 Data sources: roundfish and flatfish	
		1.3.2 Data sources: Norway pout and sandeel	
		1.3.3 Stock merging.	
		1.3.3.1 Source data	
		1.3.3.2 Biological parameters	
		1.3.3.3 Tuning data	
		1.3.3.4 Cod	
		1.3.3.5 Haddock	
		1.3.3.6 Whiting	
		1.3.3.7 Norway pout	
		1.3.3.8 Summary	
		1.3.4 Sampling levels	
	1.4	Methods and software	9
		1.4.1 Analysis of catch-at-age data	9
		1.4.2 Sensitivity analysis and medium-term projections, Roundfish and flatfish	10
		1.4.3 Catch predictions and medium term projections, Norway Pout and sandeel	11
		1.4.4 Area split predictions	12
		1.4.5 MBAL considerations	13
Та	able 1	1.1	14
2	OVE	ERVIEW	16
	2.1	Stocks in the North Sea (Sub-area IV)	16
		· · ·	
Та	ables 2	2.1.1 - 2.14	19
		2.1.1 - 2.1.2	
	0		
	2.2	Overview of the fisheries in the Skagerrak and Kattegat (Division IIIa)	26
Τa		2.1	
	2.3	Stocks in the eastern Channel (Sub-area VIId)	29
Fi		2.3.1	
11	Suro 2		
3	COL) IN AREAS IIIA (SKAGERRAK), IV AND VIID	32
5	3.1	Catch Trends	
	3.2	Natural Mortality, Maturity, Age Compositions, and Mean Weight at Age.	
	3.2	Catch, Effort, and Research Vessel Data	
	3.3 3.4	Catch at Age Analysis	
		C ;	
	3.5	Recruitment Estimates	
	3.6	Historical Stock Trends	
	3.7	Short Term Forecast	
	3.8	Medium term projections	
	3.9	Long Term Considerations	
		Comments on the Assessment	
		MBAL considerations	
	3.12	Biological reference points	34
		9.1.1 - 3.12.2	
Fig	gures	3.1.1 - 3.11.1	82

(

t j

4	HADDOCK IN SUB-AREA IV AND DIVISION IIIA.	
	4.1 Catch trends	
	4.2 Natural mortality, maturity, age composition, mean weight at age	
	4.3 Catch, Effort and Research Vessel data	
	4.4 Catch-at-age analysis	
	4.5 Recruitment estimation	
	4.6 Historical stock trends	
	4.7 Short-term forecast	
	4.8 Medium term projections	
	4.9 Long-term considerations	
	4.10 Comments on the assessment	
	4.11 MBAL considerations	
	4.12 Biological reference points	
Тε	ables 4.1 - 4.1.9	
Fi	gures 4.1 - 4.9	
5	WHITING	
	5.1 Whiting in Sub-area IV and Division VIId	
	5.1.1 Catch trends	
	5.1.2 Natural mortality, Maturity, Age compositions, Mean weight at age	
	5.1.3 Catch, Effort and Research Vessel Data	
	5.1.4 Catch-at-age analysis	
	5.1.5 Recruitment estimates	
	5.1.6 Historical stock trends	
	5.1.7 Short term forecast	
	5.1.8 Medium term predictions	
	5.1.9 Long term considerations	
	5.1.10 Comments on the assessment	
	5.1.11 MBAL considerations	
	5.1.12 Biological reference points	
	5.1.13 Summary table	
	5.2 Whiting in Division IIIa	
Та	ables 5.1.1 - 5.2	
	gures 5.1.1 - 5.1.12	
6	SAITHE IN SUB-AREA IV AND DIVISION IIIA	
-	6.1 Catch trends	
	6.2 Natural mortality, maturity, age compositions, mean weight at age	
	6.3 Catch, effort and research vessel data	
	6.4 Catch-at-age analysis	
	6.5 Recruitment Estimates	
	6.6 Historical stock trends	
	6.7 Short term forecast	
	6.8 Medium term projections	
	6.9 Long term Considerations	
	6.10 MBAL considerations	
	6.11 Biological reference points	
	6.12 Comments on the Assessment.	
Та	ables 6.1 - 6.18	208
	gures 6.1 - 6.10	
1.1	5uros 0.1 0.10	
7	SOLE IN SUB-AREA IV	243
'	7.1 Catch trends	
		$\omega_{\pm J}$

Section

ţ

(

Page

7.2	Natural mortality, Maturity, Age composition, Mean weight at age	
7.3		
7.4	•	
	7.4.1 Exploration of data	
	7.4.2 Final XSA run	
7.5		
7.6		
7.7	Short term forecast	
	7.7.1 Effects of cold winter on the short term forecast of sole	
	7.7.2 Forecast	
	7.7.3 Sensitivity analyses	
7.8		
7.9	•	
	0 Comments on the assessment	
	1 MBAL considerations	
	2 Biological reference points	
7.17		
	7.1.1 - 7.12.1	
Figures	5 7.4.1 - 7.11.1	
8 SO	LE IN DIVISION VIID	200
8.1	Catch trends	
8.1	Natural mortality, maturity, age compositions and mean weight at age	
8.2 8.3	Catch, effort and research vessel data	
8.5 8.4	Catch at age analysis	
8.5	Recruitment estimates	
8.5 8.6	Historical stock trends	
8.0	Short term forecast	
8.8	Medium term predictions	
8.9	Long-term considerations	
	Comments on the assessment	
	1 MBAL considerations	
	2 Biological reference points	
0.12		
Tables	8.1 - 8.15b	
Figures	8.1 - 8.11	
9 PLA	AICE IN SUB-AREA IV	
9.1	Catch trends	
9.2	Natural mortality, maturity, age composition, mean weight at age	
9.3	Catch, effort and research vessel data	
9.4	Catch at age analysis	
9.5	Recruitment estimates	
9.6	Historic stock trends	
9.7	Biological reference points	
9.8	Short term forecast	
9.9	Medium term projections	
9.10) Long term considerations	
9.11	Comments on the assessment	
	2 MBAL considerations	
	3 The effect of the 'plaice box'	
T-11	0.1.1. 0.20	0.55
	9.1.1 - 9.20	
Figures	9.1 - 9.15	

10 PLAICE IN DIVISION VIID	
10.1 Catch Trends	
10.2 Natural Mortality, Maturity, Age Compositions and Mean Weight at Age	404
10.3 Catch, Effort and Research Vessel Data	
10.4 Catch at Age Analysis	
10.5 Recruit Estimates	
10.6 Historical Stock Trends	
10.7 Short-Term Forecast	406
10.8 Medium-Term Predictions	
10.9 Long-Term Considerations	
10.10 MBAL Considerations	
10.11 Biological Reference Points	
10.12 Comments on the Assessment	
Tables 10.1 - 10.16	408
Figures 10.1 - 10.11	
11 PLAICE IN DIVISION IIIA	
11.1 Trends in Catches and Fisheries	
11.2 Natural Mortality, Maturity, Age Compositions and Mean Weight at Age	
11.3 Catch, Effort and Research Vessel Data	
11.4 Catch at Age Analysis	
11.5 Recruitment Estimates	
11.6 Long-Term Trends	
11.7 Biological Reference Points.	
11.8 Catch Forecast	
11.9 Medium-Term Predictions	
11.10 Long-Term Considerations	
11.11 Comments on the Assessment	
11.12 MBAL Consideration	
m 11 11 1 11 14	110
Tables 11.1 - 11.14	
Figures 11.1 - 11.7	
12 NORWAY POUT IN SUB-AREA IV AND DIVISION IIIA	470
12.1 Catch Trends	
12.2 Natural Mortality, Maturity, Age Composition, Mean Weight at Age	
12.2 Natural Mortality, Maturity, Age Composition, Mean Weight at Age12.3 Catch, Effort and Research Vessel Data	470
 12.2 Natural Mortality, Maturity, Age Composition, Mean Weight at Age 12.3 Catch, Effort and Research Vessel Data	
 12.2 Natural Mortality, Maturity, Age Composition, Mean Weight at Age 12.3 Catch, Effort and Research Vessel Data	470
 12.2 Natural Mortality, Maturity, Age Composition, Mean Weight at Age 12.3 Catch, Effort and Research Vessel Data	470 471
 12.2 Natural Mortality, Maturity, Age Composition, Mean Weight at Age 12.3 Catch, Effort and Research Vessel Data	470 471 471
 12.2 Natural Mortality, Maturity, Age Composition, Mean Weight at Age 12.3 Catch, Effort and Research Vessel Data	
 12.2 Natural Mortality, Maturity, Age Composition, Mean Weight at Age	
 12.2 Natural Mortality, Maturity, Age Composition, Mean Weight at Age	
 12.2 Natural Mortality, Maturity, Age Composition, Mean Weight at Age	
 12.2 Natural Mortality, Maturity, Age Composition, Mean Weight at Age	
 12.2 Natural Mortality, Maturity, Age Composition, Mean Weight at Age	
 12.2 Natural Mortality, Maturity, Age Composition, Mean Weight at Age	
 12.2 Natural Mortality, Maturity, Age Composition, Mean Weight at Age	470 471 471 471 471 472 472 472 472 473 473 473
 12.2 Natural Mortality, Maturity, Age Composition, Mean Weight at Age	
 12.2 Natural Mortality, Maturity, Age Composition, Mean Weight at Age	
 12.2 Natural Mortality, Maturity, Age Composition, Mean Weight at Age	
 12.2 Natural Mortality, Maturity, Age Composition, Mean Weight at Age	

13.1.2 Natural mortality, maturity, age composition, mean weight at age	
13.1.3 Catch, effort and research vessel data	
13.1.3.1 Calculation of the total international effort in the sandeel fishery	
13.1.3.2 Danish data	
13.1.3.3 Norwegian data	
13.1.3.4 Combination of Danish and Norwegian data (only northern North Sea)	
13.1.3.5 Research vessel data	
13.1.4 Catch-at-age analysis	507
13.1.5 Historical stock trends	507
13.1.6 Catch predictions	507
13.1.7 MBAL considerations	509
13.1.8 Biological reference points	
13.1.9 Comments on the assessment	
13.2 Sandeel at Shetland	
13.2.1 Catch trends	
13.2.2 Commercial catch-effort data and research vessel surveys	
13.2.3 Age compositions and mean weights at age	
13.2.4 Natural mortality and maturity at age	
13.2.5 Stock assessment	
13.2.6 MBAL considerations	
Tables 13.1.1.1 - 13.2.6	
Figures 13.1.1.1 - 13.11.1.	
14 NORWAY POUT AND SANDEEL IN DIVISION VIA	560
14.1 Overview of Industrial Fisheries in Division VIa	
14.2 Norway Pout in Division VIa.	
Table 14.2.1	559
14.3 Sandeel in Division VIa	562
14.3 Sandeel in Division VIa 14.3.1 Catch trends	
 14.3 Sandeel in Division VIa 14.3.1 Catch trends 14.3.2 Natural mortality, maturity, age composition and mean weight at age 	
 14.3 Sandeel in Division VIa 14.3.1 Catch trends 14.3.2 Natural mortality, maturity, age composition and mean weight at age 14.3.3 Catch/effort data 	
 14.3 Sandeel in Division VIa 14.3.1 Catch trends 14.3.2 Natural mortality, maturity, age composition and mean weight at age 14.3.3 Catch/effort data	
 14.3 Sandeel in Division VIa	
 14.3 Sandeel in Division VIa 14.3.1 Catch trends 14.3.2 Natural mortality, maturity, age composition and mean weight at age 14.3.3 Catch/effort data	
 14.3 Sandeel in Division VIa	
 14.3 Sandeel in Division VIa	562 562 562 562 562 562 562 562 563 563
 14.3 Sandeel in Division VIa	562 562 562 562 562 562 562 563 563 563 563
 14.3 Sandeel in Division VIa	562 562 562 562 562 562 563 563 563 563
 14.3 Sandeel in Division VIa	562 562 562 562 562 563 563 563 563 563 563 563
 14.3 Sandeel in Division VIa	562 562 562 562 562 563 563 563 563 563 563 563
 14.3 Sandeel in Division VIa	562 562 562 562 562 562 563 563 563 563 563 563 563 563
 14.3 Sandeel in Division VIa	562 562 562 562 562 562 563 563 563 563 563 563 563 563
 14.3 Sandeel in Division VIa	
 14.3 Sandeel in Division VIa	562 562 562 562 562 563 563 563 563 563 563 563 563 563 563
 14.3 Sandeel in Division VIa	562 562 562 562 562 563 563 563 563 563 563 563 563 563 563
 14.3 Sandeel in Division VIa	562 562 562 562 562 563 563 563 563 563 563 563 563 563 563
 14.3 Sandeel in Division VIa	
 14.3 Sandeel in Division VIa	
 14.3 Sandeel in Division VIa	
14.3 Sandeel in Division VIa	
 14.3 Sandeel in Division VIa	

Page

Section	Page
Figures 16.2 - 16.13	580
17 DATA FOR THE MULTISPECIES ASSESSMENT GROUP	591
18 EVALUATION OF EFFECTS OF SANDEEL FISHERIES ON LOCAL AGGREGATIONS	592
19 ASSESSMENT SUMMARIES	601
20 WORKING PAPERS AND REFERENCES	627
ANNEX 1	627

,

(.

1 INTRODUCTION

1.1 Participants

The Working Group met in Copenhagen on 7-15 October 1996 with the following participants:

Frans van Beek	Netherlands
Robin Cook (part time)	Scotland
Poul Degnbol (Chairman)	Denmark
Henrik Gislason	Denmark
Holger Hovgaard	Denmark
Laurence Kell	England
Knut Korsbrekke	Norway
Phil Kunzlik	Scotland
Peter Lewy	Denmark
Tim Macer	England
Capucine Mellon	France
	0
Stuart Reeves	Scotland
Adriaan Rijnsdorp	Netherlands
Odd M. Smedstad	Norway
Alain Tétard	France
Willy Vanhee	Belgium
Wolfgang Weber	Germany
trongang trooor	Connuny

1.2 Terms of reference

The Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (Chairman: Mr P. Degnbol, Denmark) will meet at ICES Headquarters from 7-15 October 1996 to:

- a) assess the status of and provide catch options for 1997 for the stocks of cod, haddock, whiting, saithe, sole and plaice in Sub-area IV, Division IIIa (excluding sole in Division IIIa and cod in the Kattegat) and Division VIId (excluding haddock and saithe), taking into account as far as possible the technical interactions among the stocks due to the mixed species fisheries;
- b) assess the status of, and if possible provide catch forecasts for 1997 for, Norway pout and sandeel stocks in Sub-area IV and Divisions IIIa and VIa and advise on the need for any management measures required to safeguard the stocks.
- c) quantify the species composition of by-catches taken in the fisheries for Norway pout and sandeel in the North Sea and adjacent waters and make this information available to the Working Group on Ecosystem Effects of Fishing Activities
- d) provide estimates of the minimum biologically acceptable level of spawning stock biomass (MBAL) for as many stocks as possible, with an explanation of the basis on which the estimates are obtained;
- e) prepare medium term forecasts under different management scenarios, taking into account uncertainties in data and assessments and possible stock-recruitment relationships, and indicate the associated probability of the stocks falling or remaining below MBAL within a stated time period;
- f) provide the data requested by the Multispecies Assessment Working Group (quarterly catches and mean weights at age in the catch and stock for 1995 for all species in the multispecies model that are assessed by this Working Group);
- g) Specify the information and research required to provide annual forecasts for sandeels based on the status of the stocks in that year;

h) define the information required to evaluate, and if possible carry out an evaluation of, the effect of sandeel fisheries on local aggregations of sandeels in areas close to important wildlife assemblages such as seabird colonies, and the effects of seasonal and localised catch regulations.

The above terms of reference are set up to provide ACFM with the information required to respond to the requests for advice from the North-East Atlantic Fisheries Commission, the European Commission and the Government of the United Kingdom.

The above terms of reference refer to species and areas to be covered but do not explicitly state stock entities to be used. On the basis of evaluations and recommendations from ACFM 1995, a number of entities, which have formerly been assessed as separate units, have been combined in this years assessments. The new combined stock entities are :

- Cod in Sub-area IV, Division VIId and the Skagerrak
- Whiting in Sub-area IV and Division VIId
- Haddock in Sub-area IV and Division IIIa
- Norway pout in Sub-area IV and Division IIIa

Sandeel in Sub-area IV is closely associated to some sandeel components in Division IIIa. However, sandeel landings from IIIa have in recent years been dominated by *Ammodytes tobianus* and *Hyperoplus lanceolatus* contrary to North Sea landings which are dominated by *Ammodytes marinus*. A species split of the landings is not available in the historical time series. It was therefore decided not to merge the Division IIIa and North Sea components.

Details of the merging process is given in section 1.3.3 below.

1.3 Data sources and sampling levels

1.3.1 Data sources: roundfish and flatfish

The data used in assessments are based on :

- Market sampling of market categories, sampled for weight, length and age

- Total landings as market units and/or total weight by nation
- Fleet data : effort and catch data by age derived from logbooks, landings sampling and market information
- Survey data : catch per effort unit by age, weight and maturity information

Details of the data sources are provided for each stock separately in the stock sections.

The working group estimates of total landings do for most stocks deviate from official figures. This discrepancy is shown in the landings Tables under the heading 'unallocated landings'. These unallocated landings will in most cases include discrepancies which are due to differences in the calculation procedures, for instance that official landings figures use nominal box weights whereas the working group estimates are based on the box weights as measured during market sampling. These Sum Of Products differences are in most cases minor. For all stocks except cod, haddock, saithe and whiting, the working group estimates have been used in assessments. The reason the SOP corrected data have not been used for roundfish stocks is that some data in the historical time series have been SOP corrected and that it has proven difficult to rectify this in a consistent manner.

The unallocated landings do in some cases also include corrections for mis- or unreported landings. Such corrections may be based on direct information such as estimation from alternative data sources, or may be based on softer information. It will be evident from the stock sections whether such corrections have been included or not.

The mean weights at age used for stock biomasses are in some cases derived from catch at age weights. Such weights may not represent the stock due to selectivity. The biomasses for these stocks can therefore be used to investigate stock trends but may be biased relative to actual stocks sizes.

Maturity ogives are generally based on biological sampling. However, for some stocks a knife-edge maturity ogive is used and this may introduce bias in the trends in SSB developments - especially when exceptionally large or small year classes enter the spawning stock.

The maturity ogives are generally kept constant over the historical data range. Some of the stocks assessed here - for instance plaice in the North Sea - are known to exhibit relatively large differences in size-at-age over the historical time series. This is expected to result in differences in maturity. The quality of spawning products has also been shown to be associated with fish size for some stocks. The spawning potential will therefore in effect be lower when growth diminishes or the SSB is dominated by young fish than what is indicated by the time series based on a constant maturity-at-age matrix.

1.3.2 Data sources : Norway pout and sandeel

The data sources for Norway pout and sandeel were described detail in the 1995 report of the Working Group (ICES CM 1996/Assess:6). The sampling system has not changed since then.

In Norway, the sampling system in recent years is based on catch samples from three market categories : E02 (if mainly sandeel), D13 (mainly blue whiting, if not sandeel and catch taken west of 0 deg. E) and D12 (mainly Norway pout, if not sandeel and catch taken east of 0 deg. E). The samples are raised to total landings on basis of sales slip information on landed categories. Effort is estimated from trips and an estimate of average days absent per trip. In recent years there has been a considerable proportion of *H. lanceolatus* in the Norwegian sandeel catches. This component has been excluded from the data used in the assessment of the North Sea stock, which is *A. marinus*. The exclusion has been based on length frequencies in the samples with parallel observations of the length distributions of the two species as discussed in the stock section (13.1).

In Denmark, the catch estimates are based on databases containing sales slip information, logbook data, species compositions from inspectors and biological data including age-length keys from independent biological sampling. Total landings are estimated per statistical rectangle based on total catch estimates from sales slip and logbook data and species composition from species composition and biological data.

1.3.3 Stock merging

(based on working group paper by S. Reeves)

At its 1995 meeting, the Working Group on the assessment of demersal stocks in the North Sea and Skagerrak was requested to evaluate the stock units used in the assessment of stocks in the North Sea and adjacent areas, and identify any changes required. As a result of this exercise, the ACFM concluded that the stocks of cod and whiting in VIId (eastern Channel) should be combined with those in the North Sea for assessment purposes. The conclusions for the Skagerrak stocks were less clear, but there were indications that the Cod and Haddock stocks were linked with those in the North Sea and thus there may be grounds for combining the assessments.

This section considers some of the problems involved in combining data across areas in preparation for combined assessments. These are discussed firstly as problems common to all three species, then on a species by species basis.

1.3.3.1 Source data

The data for the roundfish stocks in the North Sea and eastern Channel are all maintained as part of the overall roundfish database, so the procedures used in compiling and raising the data for these stock units are comparable, and the full, fleet-disaggregated databases are available for all stock-units. For the Skagerrak data however, only the raised, fleet-aggregated data from the IFAP system are at present available for years prior to 1995.

In general, the data available for the North Sea cover a longer time span than those from the other areas. In addition the Skagerrak and eastern Channel assessments have tended to use a shorter age-range of data than the North Sea assessments. This is not an issue with the Eastern Channel data, as the full age range is available in the databases, but it is potentially problematic in the Skagerrak stock-units, where the available data are aggregated into a plus-group.

These limitations on year/age range of data mean that, in the first instance, any combined assessment would be limited to the year-range of the stock-unit with the shortest time-series of catch-at-age data. To avoid this problem, the approach used has been to extend the time-series of landings data for the minor-area stocks back to the same starting year as the appropriate North Sea stock, then estimate age-compositions for these landings from North Sea data. This reconstruction of past landings data was not in all cases straightforward. The main problem was that in many cases the official statistics do not distinguish between e.g. Divisions VIId and VIIe or the Skagerrak and the Kattegat. In some cases this limitation was overcome using data for the appropriate area supplied by Working Group members. Where such data were not available, the official statistics for each of the major nations exploiting a stock were split between e.g Divisions VIId and VIIe using the mean split between these areas for the years for which these data were available.

The aggregated plus-group in the Skagerrak data presented another potential problem. In practice this was overcome by expanding the plus-group using the age composition for the appropriate year from the North Sea. Other potential pitfalls, including discards, industrial bycatch and misreporting problems, are discussed under the individual stocks.

1.3.3.2 Biological parameters

One potential problem in combining assessments across areas is the choice of biological parameters (i.e maturity ogive and natural mortality at age) to be used where the values used have previously differed between areas. In the current instance, this is not really a problem; in all cases the North Sea stock is both substantially larger, and more closely studied than those of the other areas. This means that where biological parameters do differ between areas, the North Sea values are the logical choice for the combined assessment. In practice the biological parameters used in the separate assessments tend not to differ, due to the adoption of the North Sea values in recent Skagerrak and eastern Channel assessments.

Weights at age in the stock could also be regarded as biological parameters. In the case of all the stock-units considered here, weights at age in the catch are also used as weights at age in the stock, so there are no differences in practice to consider.

1.3.3.3 Tuning data

Combining catch-at-age data across three areas also has implications for tuning data. Catch rates in one of the small subsidiary areas may not reflect abundance in the North Sea as a whole or in the other minor area. In some cases, where for instance a commercial fleet or a survey operates in both the North Sea and one of the other areas, there may be a case for combining CPUE data into a single series for a combined assessment. For simplicity however, at this stage all tuning data have been kept separate, making it possible to exclude series as necessary at the tuning stage.

One specific example where a survey operates in both the North Sea and Division IIIa is the IBTS first quarter survey. Data from this survey are used in the tuning of both the North Sea and Skagerrak stocks, although the indices used for each species in each area are based on average catch rates over different standard areas. Nonetheless, there is some overlap, with the standard areas for North Sea cod, haddock and whiting including much of the Skagerrak.

1.3.3.4 Cod

The Report of the 1995 Working Group meeting noted that "It may be concluded that the cod in the North Sea, the Skagerrak and the eastern Channel could be considered as a single stock for assessment purposes", although it was also noted that the fish within the North Sea do not form a single, homogeneous stock. The results summarised by the Working Group indicate a net movement of juvenile cod spawned in the eastern channel into the southern North Sea. The cod occurring in the Skagerrak (excluding those from inshore, fjordic stocks) appear to originate from spawning in the North Sea.

Over 1978-1994, the year-range for which landings data are currently available for all three areas, North Sea landings accounted for between 82.7% and 92.1% of the cod taken from the three areas, with a mean of 87.2%. On average the Skagerrak accounted for 10% of the total, and the eastern Channel 2.8%.

Cod : Available data

Table 1.1 summarises the year and age ranges of data used in the most recent (1995) assessment of the three stock units of cod. It can be seen that a combined assessment could be potentially be limited by the availability of catch-at-age data for the Skagerrak, and thus could only extend from 1978 onwards. This contrasts with the North Sea data which extend back to 1963.

Table 1.1 Age and year ranges used in the 1995 Working Group assessments of Cod in the North Sea, Skagerrak, and eastern Channel.

	North Sea	Skagerrak	Eastern Channel
First Year	1963	1978	1976
Last Year	1994	1994	1994
Youngest age	1	1	1
Plus-group age	11	8	5

Cod : Biological parameters.

The most recent assessment of each of the three stock units used the same maturity ogive. This reflects recent changes in practice in the both the Skagerrak and Eastern Channel assessments to use the maturity ogive from the North Sea stock. In the case of the eastern Channel assessment, the North Sea natural mortality estimates have also been adopted, whereas the Skagerrak assessment has used a value of 0.2 at all ages. All individual assessments calculated spawning biomass at the start of the year. Thus the only change in practice involved in a combined assessment would be the application of the North Sea natural mortalities at age to the Skagerrak cod.

Cod : Bycatch, discards and misreporting problems

In the Skagerrak, the 1995 Working Group Report noted that mis/non-reporting of landings has been a major problem in recent years, although there were no estimates of the extent of this problem. Some cod reported as being taken from the Skagerrak were suspected of having been taken from the North Sea, so a combined assessment would tend to cancel-out this area misreporting effect, although it would not account for suspected misreporting into the Skagerrak from the Kattegat. The catch data used in the Skagerrak assessment do not include industrial bycatch as no historical age-compositions are available for this component of the catch. The industrial bycatch has accounted for up to 25.9% of the annual cod landings from the Skagerrak, with an average of 9.5%. This proportion has tended to be lower in recent years, with the bycatch amounting to 4.8% of the estimated cod landings from the Skagerrak in 1994.

Mis-reporting and non-reporting of cod in the North Sea is known to have occurred in recent years. The estimate of misreported landings used in the Working Group estimate of the 1994 catch (2,000t out of a total catch of 88,454t) indicates that the extent of the problem is relatively small, but this may under-estimate the extent of the problem. Industrial bycatch and discards of cod in the North Sea are considered to be negligible. Discards of cod in the other two areas are also presumed to be small.

The Working Group report makes no reference to any occurrence of misreporting of cod in the eastern Channel. Similarly, no bycatch problems are suspected.

Cod : Discussion

The case for treating cod in the eastern Channel and the Skagerrak as part of the North Sea stock seems to be reasonably well defined. Combining the available data from the three areas does not appear to present any major technical problems. There are misreporting problems with cod in the North Sea and Skagerrak, but these are not likely to be exacerbated by combining the data across the areas. Similarly, the absence of age compositions for the industrial bycatch in the Skagerrak will not be overcome by combining the areas, but the relatively small size of these landings when compared with the overall cod catch means that the problem will be diluted somewhat.

The North Sea cod is a well-studied stock with a long time-series of data available. At present the stock is at a very low level with ACFM having advised measures which should lead to significant reductions in fishing mortality. In view of this, and with the recent decline (and in the case of the Northern Cod, collapse) of other cod stocks, this is clearly a highly critical assessment. Thus any major changes to the data used in the assessment should not be made without careful consideration. In this respect the major problem presented by the incorporation of the Skagerrak and eastern Channel data into the North Sea assessment would be the substantially shorter time series of data available. It is hoped that by using North Sea age compositions applied to the estimated landings from the Skaggerak and the Eastern Channel, this problem has been avoided.

1.3.3.5 Haddock

In the case of Haddock, catches from the eastern Channel are negligible, so the only point at issue is the inclusion of catches from the Skagerrak in with the North Sea assessment. In the report of its 1995 meeting, the Working Group noted that the Skagerrak haddock were probably related to the North Sea stock, but cautioned against merging the two given the problems with the catch data in the Skagerrak. Following on from this, the ACFM noted that 'the stock identity is not clear, but the Skagerrak stock is possibly related to the North Sea stock.'

Over 1975 to 1994, catches from the North Sea amounted to between 93.1% and 98.7% of the haddock taken from the two areas. However, it should be noted that the estimates of total catch from the North Sea include discards, whereas no estimates of discards are available for IIIa.

Haddock : Available data

Table 1.2 summarises the year and age ranges of data used in the most recent (1995) assessment of the two stockunits of haddock. It can be seen that a combined assessment could potentially be limited by the availability of catch-at-age data for the Skagerrak, and thus could only extend from 1981 onwards. This contrasts with the North Sea data which extend back to 1963.

Table 1.2 Age and year ranges used in the 1995 Working Group assessments of Haddock in the North Sea and Skagerrak.

	North Sea	Skagerrak
First Year	1963	1981
Last Year	1994	1994
Youngest age	0	1
Plus-group age	10	8

Reconstructing the past catch data for the Skagerrak involved making assumptions about the proportion of the catch which was taken in the human consumption and industrial fisheries. Investigation indicated that the proportion taken in the industrial fishery in the Skagerrak was correlated with the proportion of haddock taken by the industrial fishery in the North Sea. Thus for the years for which no information was available on the industrial/human consumption split in the Skagerrak, it was assumed that the split was the same as in the North Sea. In practice this assumption will make very little difference to the overall catch data as the catches of haddock from the Skagerrak in the early years were very small.

Haddock : Biological parameters

In recent years, problems with the catch-at-age data in the Skagerrak have been regarded as an obstacle to a full analytical assessment, so current biological parameters are not presented in the Working Group report. The values supplied in files indicate partial maturity only at age 2, when 50% of fish are considered mature, and M = 0.2 for all ages. 25% of natural, and 15% of fishing mortality is considered to occur before spawning. In this case, the adoption of biological parameters from the North Sea stock would change all of these values.

The data supplied for weights at age in the catch and stock in the Skagerrak are incomplete, so North Sea values will be used in the combined assessment.

Haddock : Bycatch, discards and misreporting problems

The figures for catches of haddock in the Skagerrak included estimates of industrial bycatch. Over 1983-1994, The bycatch amounted to an average of 34.7% of the haddock taken, with a range of 8.1% to 54.3%. The bycatch data have caused problems with the catch-at-age data as no age compositions are available for the bycatch over the period 1987-1990. Over this period the bycatch accounted for between 8.1% and 33.8% of the total haddock catch.

Although adding the Skagerrak data into the North Sea assessment would substantially reduce the problem caused by the lack of age composition data for the Skagerrak industrial bycatch, a better approach would be to estimate its age composition using data from the North Sea. As the majority of the bycatch in both areas is taken by the Danish industrial fleet, age compositions from this fleet in the North Sea were used to estimate the Skagerrak bycatch for 1987 and 1988. No Danish age compositions were available for 1989 and 1990, so age compositions from the Norwegian North Sea industrial fleet were used. This is less satisfactory than using Danish age compositions, but rather more satisfactory than treating the problem as insurmountable. The 1995 Working Group report notes that the age distributions for the Skagerrak stock-unit need to be re-evaluated as 0-group fish are not included and the industrial catches of 1-group are rather small. In view of this concern, it may be appropriate to investigate the use of the North Sea bycatch data to estimate the age compositions of the Skagerrak bycatch for other years.

Estimates of discards are available for haddock in the North Sea. These are based on Scottish discard sampling, which is appropriate as Scotland accounts for the large majority of the North Sea haddock landings. The majority of the human consumption landings of haddock in the Skagerrak are taken by Danish trawlers. Discarding of haddock presumably also occurs in the Skagerrak, but no estimates are available. Given this absence of information, no attempt has been made to estimate Skagerrak discards from Scottish data.

Misreporting of catches is known to have been a problem for North Sea haddock in some recent years. The Report of the 1995 Working Group meeting notes a general problem of misreporting of demersal stocks in IIIa in some recent years, but makes no specific reference to haddock.

Haddock : Discussion

The data problems with the Skagerrak haddock can be readily addressed using age compositions from the North Sea catches. A potentially more serious problem is the short time-series available for the Skagerrak, where catchat-age data only go back to 1981. In the case of haddock the removal of the earlier years data from the assessment would completely change the perspective of the stock by removing the influence of the exceptionally strong 1967 and 1974 year-classes. As with the cod however, the estimation of Skaggerak catches using North Sea age consumptions should avoid this problem.

1.3.3.6 Whiting

The information on stock identity summarised in the 1995 Working Group Report indicates that the whiting in the Eastern channel are closely related to those in the southern North Sea, but that there are some indications of separate stocks in the southern and northern North Sea. The Report does not address the stock identity of whiting in Division IIIa. Based on this, the ACFM concluded that the stock of whiting in the eastern Channel should be combined with the North Sea stock for assessment purposes. No conclusion was reached over whiting in Division IIIa.

Total catches from the North Sea (including discards and industrial bycatch) accounted for between 72.7% and 93.1% of the whiting caught in the three areas over 1976 to 1994, with a mean of 86.1%. Over the same period, landings from Division IIIa (mostly industrial bycatch) accounted, on average, for 10.2% of the total, with the average from the eastern Channel (human consumption landings only) being 3.8%.

Whiting : Available data

Table 1.3 summarises the year and age ranges of data used in the most recent (1995) assessment of the three stock-units of whiting. No assessment was done for Division IIIa; the data stored on IFAP are only total landings, no catch-at-age data are available.

Table 1.3 Age and year ranges used in the 1995 Working Group assessments of Whiting in the North Sea, Division IIIa^{*} and the eastern Channel.

	North Sea	Division IIIa*	Eastern Channel
First Year	^s 1960	1975	1976
Last Year	1994	1994	1994
Youngest age	0	-	1
Plus-group age	10	-	5

*No assessment done, only total catch data available.

Whiting : Biological parameters

Recent assessments of whiting in the eastern Channel have used the North Sea maturity and natural mortality values. No information is available on the biological parameters of whiting in Division IIIa.

Whiting : Bycatch, discards and misreporting problems

In Division IIIa, landings of Whiting are mostly industrial bycatch, with between 78.5% and 95.4% of the landings over 1981-1994 going for reduction. Discards and industrial bycatch form quite large components of the landings of Whiting from the North Sea, and estimates of both are included in the assessment. Discard estimates are based on Scottish data, and bycatch estimates are based on Danish and Norwegian data. No estimates of discards are available for whiting in the Eastern Channel, but there is no industrial fishery in this area.

Misreporting is not considered to be a serious problem in any of the three areas.

Whiting : Discussion

Incorporation of the eastern Channel whiting data with the North Sea assessment would not be problematic. There seems to be a clear case for regarding whiting in this area as part of the North Sea stock, and the landings are sufficiently small that they could probably be incorporated into the North Sea assessment without the need to shorten the North Sea data series to coincide with the first year of eastern Channel data (1976). Even so, age compositions have still been estimated for these earlier years and have been included in the catch at age data. In the case of whiting in Division IIIa there is apparently no information available on either stock identity or age compositions. While this remains the case it would seem inadvisable to consider including the Division IIIa whiting in the North Sea assessment.

1.3.3.7 Norway pout

In its last report, the Working Group on the Assessment of Norway Pout and Sandeel (ICES C.M.1994/Assess:7) concluded that the justification for a separate stock assessment in IIIa is highly questionable and a preliminary run including the IIIa fishery as an additional fleet in the North Sea assessment produced results which were very close to the results produced by the North Sea assessment. A merge was however not made because the main use of the assessment at the time was to provide stock estimates for the North Sea multispecies assessments. With the new request to provide assessments and catch forecasts for Norway pout in Sub-area IV as well as Division IIIa the situation is different. On basis of the lack of justification for a separate stock assessment as concluded earlier, the Working Group has decided to respond to the request by making a combined assessment for the two areas.

For Norway pout, assessments have so far not been carried out for the IIIa stock separately. However, data on age compositions and weights for the catches are available on a quarterly basis from both Sub-area IV and Division IIIa since 1983. The landings reported from IIIa have in recent years constituted 10-25% of the total landings from IV and IIIa.

The data base for the combined stock was then established by adding catch-at-age data from Sub-area IV and Division IIIa. The weight-at-age in the catch was calculated as and average of the two areas, weighted by catch-at-age. North Sea maturities were used for the combined stocks. The fleets used for tuning were the same as used last year, that is North Sea fleets.

1.3.3.8 Summary.

With the exception of Whiting in Division IIIa, there are no major obstacles to including the catches from the Skagerrak and eastern Channel into the North Sea assessments of cod, haddock, whiting and Norway pout. In all cases the catches from the subsidiary areas are substantially smaller than those from the North Sea, so problems with data in these areas, such as absence of information on bycatch or discards, will tend to be diluted substantially once they are combined with the North Sea data. For the three roundfish stocks, catch-at-age data for the subsidiary areas for early years have been estimated from landed weights and North Sea age compositions. In the case of Skagerrak haddock and eastern Channel whiting, the catches are small enough that these age compositions are unlikely to have a noticeable effect on the combined assessment. With cod however, the Skagerrak catches amount to on average 10% of the total, so the Skagerrak age-compositions may have some influence on the results of a combined assessment.

1.3.4 Sampling levels

Sampling levels for the various stocks are presented in Table 1.4

The Table presents samples taken, number of fish measured (length) and number of fish aged. The figures given may not be entirely comparable across countries and stocks. Sample sizes are variable and the number of fish aged may not in all cases mean otoliths read. The age of especially young fish which are reasonably well separated in terms of length from neighbouring age groups may in some cases be decided by taking otoliths from the transitions zones to neighbouring age classes and then assigning all fish in between length classes for which only one age is found to one age group.

1.4 Methods and software

1.4.1 Analysis of catch-at-age data

Extended survivors analysis (XSA) has been used as the main tool for catch-at-age analysis for all stocks. Two implementations were used : version 3.1 of the Lowestoft VPA package was used for roundfish and flatfish stocks while the Seasonal XSA (Skagen 1993, 1994) was used for Norway pout and sandeel to allow for quarterly data and missing data points. A seasonal separable VPA (Cook 1992, Cook and Reeves 1993) was used to analyse sandeel stocks in Division VIa. This method was applied due to the catch levels having fallen to such a low level that VPA analysis has become unreliable.

The implementation of the various analysis tools is chosen on basis of explorations. The decision on such choices as ages to be treated as recruits, time taper and fleets to be included is based on inspection of diagnostic output including residuals plots and retrospective analysis for a range of options. Such analysis has been done for all stocks included in the present report, but is not repeated every year since the outcome is normally not expected to change over a few years. An analysis of tuning choices has therefore only been repeated for some of the stocks. Details of such analysis are included under the stocks to which the analysis applies or will be found in earlier reports of this working group if reference is made to the same choices being made as in last year's report.

Recruitment estimates has in several cases been made with RCT3. This is the case when recruitment indices from 1996 are available and especially when indices are available from later than the first quarter. The present implementation of XSA can not accommodate survey data in the year following the last catch data year and RCT3 is therefore implemented to utilise this information. This does in itself create some inconsistencies in the approaches used. The survey indices may end up being used twice for recruitment estimation - once in the survivors analysis (and thus in the VPA recruitment) and again with the same survey indices in RCT3. Another

problem is the use of F-shrinkage for recruiting year classes in the present implementation of the XSA. This can not be turned off and has in some cases been seen to have strong influence on the recruitment estimates originating from XSA. The result of this feature is that the present implementation of XSA does not reproduce RCT3 for recruiting year classes.

1.4.2 Sensitivity analysis and medium-term projections, Roundfish and flatfish

Sensitivity analysis, and medium term projections made at the current Working Group meeting used the same software as at previous Working Group meetings. Details of the sensitivity analysis are given in Cook (1993), with an overview of the programs in Anon. (1995) and more detailed documentation in Reeves and Cook (1994).

The program 'INSENS' has again been used for manipulation of catch data for stocks where discard/industrial bycatch data are used in the assessment. The program has also been used for most stocks to calculate coefficients of variation (CVs) of the input parameters for sensitivity analysis of the short-term catch predictions.

The program WGFRANS has again been used for short-term catch prediction with sensitivity analysis. This program is unchanged from the previous Working Group meeting. In some cases the final prediction was run on IFAP and this output is presented in the Report in addition to the sensitivity analyses from WGFRANS.

The output from the sensitivity analysis refers to various input parameters by abbreviations :

Key to parameters used in short-term prediction with sensitivity analysis

(HC = Human consumption, Disc = discards, Ind BC = industrial bycatch)

Code Parameter N0 Numbers at age 0 in 1995 M0 Natural mortality, age 0 N1 Numbers at age 1 in 1995 Natural mortality, age 1 M1 N2 Numbers at age 2 in 1995 M2 Natural mortality, age 2 etc. WS0 Weight in stock at age 0 MT0 Proportion mature, age 0 Weight in stock at age 1 WS1 MT1 Proportion mature, age 1 WS2 Weight in stock at age 2 MT2 Proportion mature, age 2 etc. sH0 Selectivity, HC, age 0 Weight in HC catch, age 0 WH0 Selectivity, HC, age 1 sH1 WH0 Weight in HC catch, age 1 sH2 Selectivity, HC, age 2 WH0 Weight in HC catch, age 2 etc. sD0 Selectivity, Disc, age 0 WD0 Weight in Discards, age 0 Selectivity, Disc, age 1 sD1 WD0 Weight in Discards, age 1 Selectivity, Disc, age 2 sD2 WD0 Weight in Discards, age 2 etc. Selectivity, Ind BC, age 0 sI0 WI0 Weight in Ind Bycatch, age 0 Selectivity, Ind BC, age 1 sI1 WI0 Weight in Ind Bycatch, age 1 sI2 Selectivity, Ind BC, age 2

WI0 Weight in Ind Bycatch, age 2 etc. K95 Year effect on natural mortality, 1995 Year effect on natural mortality, 1996 K96 Year effect on natural mortality, 1997 K97 **HF95** Year effect on HC/discard fishing mortality, 1995 Year effect on HC/discard fishing mortality, 1996 HF96 HF97 Year effect on HC/discard fishing mortality, 1997 Year effect on Ind. bycatch fishing mortality, 1995 IF95 Year effect on Ind. bycatch fishing mortality, 1996 IF96 Year effect on Ind. bycatch fishing mortality, 1997 IF97 Recruitment in 1996 R96 R97 Recruitment in 1997

For medium term projections, stock-recruitment models were fitted using the program RECRUIT, which generates input data for the medium-term projection program WGMTERM. Both of these programs are basically as used at the previous Working Group meetings. Caution should be used in the interpretation of the medium-term projections. The estimated probabilities are contingent upon the model and the assumptions used in this program, and should not be interpreted too literally.

1.4.3 Catch predictions and medium term projections, Norway pout and sandeel

Management of industrial fisheries

TACs for many human consumption fisheries are based on so-called analytical assessments. In these assessments, a catch forecast is made for the year in which the TAC is to be set. In essence a stock projection is made for two years ahead of the most recent stock size estimate. It means, in general, that the forecast may depend heavily on recruiting year-classes which must be predicted in some way. This system can only work if the year classes on which the fishery will depend can be predicted with some precision. In the case of sandeel and Norway pout, the fisheries depend heavily on 1-group and 2-group fish and these are not well estimated in conventional catch-atage analysis. This occurs for a variety of reasons related to the data available, the biology of the species and the variable nature of the fishery. Exploiting fleets, for example, frequently change their area of operation from year to year unpredictably and the amount of effort deployed may depend on the amount of active processing capacity at fishmeal plants.

Although it has proved possible to reduce the time ahead for forecasting to 18 months by using data for the first half of the assessment year, attempting to forecast catches and stock for industrial species is unlikely to be of use in formulating TACs in the usual way for the reasons stated above. If TAC management is to be considered, then alternative approaches to arriving at an appropriate catch constraint will have to be considered. Rather than trying to predict a catch it may be better to consider the possible effects on the stock and the fishery of various management regimes such as fixed or limited flexibility TAC or effort controls. This would require a different approach to the normal ICES assessment procedure. It would be necessary to construct a stochastic simulation model which considered in a probabilistic way the outcomes of potential management actions. Such an exercise would be similar to the IWC 'management procedure' approach and would require the building of a realistic operational model for sandeels and Norway pout. This is a fairly large undertaking and would take some time to develop. An evaluation of possible models could be done appropriately in the Comprehensive Fishery Evaluation Working Group and might be expected to take one or two years to develop.

Catch predictions for sandeel : methodology

A catch prediction for sandeel was made for the first time using software developed to allow the modelling of fisheries management strategies for the Comprehensive Fisheries Evaluation Working Group (Anon 1996). During the CFEWG meeting variance estimates for catch forecasts were discussed and a comparison of survivor estimate CV obtained from the Lowestoft version of XSA and ADAPT (Gavaris, 1988) was made. XSA tended to give lower CVs than ADAPT and further work with a bootstrapped (Efron and Tibshirani, 1993) XSA has shown that there are significant correlation's between the survivor estimates at older ages. It was decided therefore rather than use the analytical CV estimates from XSA to use the bootstrap estimates from the assessment.

A version of the Lowestoft XSA was therefore modified especially for the meeting to include seasonality. It was this version rather than the Seasonal XSA (Skagen 1993) that was used in the assessment that was used in the projection. Whilst Skargen's Seasonal XSA differs from the Lowestoft version in some details of the tuning, a comparison of the assessment results showed only minor differences in the point estimates in the terminal year. The benefits of using the FishLab version of XSA is that it is available as a function for Excel spreadsheets and so can be ran in @Risk to either bootstrap or Monte Carlo the assessment and projection.

The assessment was bootstrapped by taking the catchability estimates from a key run of XSA and replacing the observed values of the tuning fleet catches by their expected values, during the bootstrap the input values for tuning are generated from these expected values plus an error.

The terminal Ns during each iteration were fed to a standard prediction, since the estimates of F and N within the time series will vary then estimates of SSB, recruits and biological reference points will also have a probability distribution attached to them. In addition it will be possible to model growth, natural mortality and maturity as random variables to include a greater range of uncertainty.

1.4.4 Area split predictions

Partial fishing mortality and short term forecast have been calculated for cod and whiting with an EXCELL5 spreadsheet (whipartf.xls and codpartf.xls). Different F multipliers need to be input to obtain the different catch scenarios.

Partial fishing mortality

COD

Total international F-at-age in any year for cod has been partitioned into area partial F's ($F_{a,y,area}$) by use of the ratio of the area catch-at-age in the year divided by the total international catch in the three areas ($C_{a,y,overall}$). For each age, a mean of the F values for n years that precede the final assessment year is calculated. The number of years (n) used to calculate the mean was 5. In the same way, the mean catch at age has been calculated during the same range of years.

 $\begin{array}{l} F_{a,y,area \ IV} = F_{a,y,overall} * mean \ C_{a,y,area \ IV} / C_{a,y,overall} \\ F_{a,y,area \ VIId} = F_{a,y,overall} * mean \ C_{a,y,area \ VIId} / C_{a,y,overall} \\ F_{a,y,area \ IIIa} = F_{a,y,overall} * mean \ C_{a,y,area \ IIIa} / C_{a,y,overall} \end{array}$

with $F_{a,y,overall} = ((\sum_{i=1}^{n} F_{a,yi,overall}) / n) * (F_{2-8,95} / (\sum_{i=1}^{n} F_{2-8,yi}))$

with mean C_{a,y,area} = $((\sum_{a,y,area}) / n)$

WHITING

Whiting overall F has been spread out into partial F's following a different method. This stock concerns two areas (IV and VIId) and three types of catches (human consumption (hc), discards (d) an industrial by-catch (bc)). Then it has been partitioned in two ways, first of all in hcIV, dIV and VIId and in bcIV. Five years have been taken to calculate mean F overall. Then each partial F for hc, d in division IV and hc in VIId has been obtained by multiplying the total F previously obtained by the proportion of each type of catch at age in the total catch. Total catch at age and catch at age per type were averaged over the same range of years than the F at age.

$$\begin{split} F_{a,y, \text{ type }(hcIV+dIV+VIId)} &= F_{a,y,\text{overall}} * C_{a,y, \text{ type }(hcIV+dIV+VIId)} / C_{a,y,\text{overall}} \\ F_{a,y, \text{ type }(bc)} &= F_{a,y,\text{overall}} * C_{a,y, \text{ type }(bc)} / C_{a,y,\text{overall}} \end{split}$$

with C_{a,y,type} = ((
$$\sum_{i=1}^{n} C_{a,yi,type}$$
) / n)

with
$$F_{a,y,overall} = ((\sum_{i=1}^{n} F_{a,yi,overall}) / n) * (F_{2-6,95} / (\sum_{i=1}^{n} F_{2-6,yi}))$$

$$\begin{split} F_{a,y, \ type \ (\ hcIV)} &= \left[C_{a,y, \ type \ hcIV} \ / \ C_{a,y, \ type \ (hcIV+dIV+VIId)}\right] * F_{a,y, \ type \ (\ hcIV+dIV+VIId)} \\ F_{a,y, \ type \ (\ dIV)} &= \left[C_{a,y, \ type \ dIV} \ / \ C_{a,y, \ type \ (hcIV+dIV+VIId)}\right] * F_{a,y, \ type \ (\ hcIV+dIV+VIId)} \\ F_{a,y, \ type \ (\ vIId)} &= \left[C_{a,y, \ type \ VIId} \ / \ C_{a,y, \ type \ (hcIV+dIV+VIId)}\right] * F_{a,y, \ type \ (\ hcIV+dIV+VIId)} \end{split}$$

Short term Forecast

COD

The catch equation has been used to estimate the catch prediction in each area. Natural mortality is the same in IV and VIId but differ in IIIa. The first one has been used to calculate the total mortality.

$$C_{a,y,area} = N_{a,y} e^{-(Z_{a,y})} (F_{a,y,area} / (Z_{a,y}))(e^{(Z_{a,y})} - 1)$$

Plus group : $C_{a+,y,area} = (N_{a,y-1} * F_{a,y,area}) / (Z_{a,y-1})$

WHITING

Total mortality for whiting is the same in the two areas.

$$C_{a,y,type} = N_{a,y} e^{-(Za,y)} (F_{a,y,type} / (Z_{a,y}))(e^{(Za,y)} - 1)$$

Plus group : $C_{a+,y,type} = (N_{a,y-1} * F_{a,y,type}) / (Z_{a,y-1})$

For cod and whiting, mean weights at age have been calculated for each type of catch or area over 5 years. Catches in weight have been obtained by multiply catches in number by the mean weight at age. Weights of the number at age have been obtained by multiplying numbers at age by the mean total weight at age averaged over 5 years too.

1.4.5 MBAL considerations

In response to TOR d) concerning provision of MBAL estimates, a discussion of MBAL is presented for each stock. The basis for this discussion and a summary of the conclusions for the stocks covered by this working group is presented in Section 15.

Table 1.4 Sampling levels for 1995

		Section 3a			Section 4			Section 7d	
	# samples	measured	aged	# samples	measured	aged	# samples	measured	aged
COD		1							
Belgium									
Denmark	122	3830	3821	56	2586	2581			
England				596	79656	8067	76	1642	415
France				86	1680	762	27	119	119
Germany				23	26012	5463			
Netherlands				85	5352	2184			
Norway	53	806	223	222	2871	1053			
Scotland					62329	11671			
Sweden	n/a	n/a	n/a						
Total	175		4044		180486	31781	103	1761	534
HADDOCK									
Belgium									
Denmark	88	4151	4111	54	1751	1716			
England	00	1101		316		3991			
France				24		350			
Germany				L T	1020	000			
Netherlands									
Norway	43	829	0	327	20902	1180			
Scotland	40	020	0	027	139401	12713			
Sweden	n/a	n/a	n/a		100401	12710			
Total	131	4980	4111	721	204724	19950	0	0	0
Total	101	4500	7111	121	204124	10000	U U	0	Ū
WHITING									
Belgium									
Denmark	96	3216	3080	74	1185	1129)		
England				246		3421		495	0
France				107		1373			1717
Germany									
Netherlands				96	7703	1250	•		
Norway	47	870	0			783			
Scotland		0,0	U	210	77098	7283			
Sweden	n/a	n/a	n/a		11000	, 200			
Total	143		3080		136480	15239	70	4735	1717
SAITHE									
Belgium									
Denmark	10	1064	1057	11	546	545			
England	10	1004	1037	54		040			
France				54	0007	0			
Germany				16	9843	3055			
Netherlands				10	3043	0000			
	43	653	22	113	4492	758	1		
Norway	43	003	22	113	4492 19414	750 8166			
Scotland Sweden	-1-	n/a	n/a		19414	0100			
	n/a 53		1079		37602	12524	0	0	•
Total	53	1/1/	10/9	194	3/002	12524	0	0	0

Table 1.4 Continued

_		Section 3a			Section 4			Section 7d	
	# samples	measured	aged	# samples I	measured	aged	# samples	measured	age
SOLE	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10								
Belgium				10	3919	600		1893	48
Denmark	12	1676	1666	5	626	625			
England				128	13447	1744	196	10191	342
France				40	2766	0	126	6873	109
Germany									
Netherlands				75	3944	3944			
Norway									
Scotland									
Sweden									
Total	12	1676	1666	258	24702	6913	336	18957	501
PLAICE									
Belgium				30	2560	380	14	987	26
Denmark	41	4721	4482	21	3577	3470			
England				167	27285	2521	188	8315	216
France				53	2382	700	146	6665	
Germany					2002	,	1.10	0000	
Netherlands				65	5200	5200			
Norway					0200	0200			
Scotland									
Sweden	n/a	n/a	n/a						
Total	41	4721	4482	336	41004	12271	348	15967	352
lotal		-17-21	1102		11004		040	10507	002
NORWAY PO	UT								
Belgium									
Denmark	66	4451	4151	38	3574	3469			
England									
France									
Germany									
Netherlands									
Norway				230	23000	800			
Scotland									
Sweden	n/a	n/a	n/a						
Total	66	4451	4151	268	26574	4269	0	0	(
SANDEEL									
Belgium									
Denmark	17	1249	294	76	11072	4150			
England	.,	1210	201	, .	TIOL	1100			
France									
Germany									
Netherlands									
				120	12000	500			
Norway				120		500 914			
Scotland					21662	914			
Sweden	4 -7	1040	004	400	A 470 A		~	-	-
Fotal	17	1249	294	196	44734	5564	0	0	

2 OVERVIEW

2.1 Stocks in the North Sea (Sub-area IV)

Description of the fisheries

The fisheries in the North Sea can be grouped in human consumption fisheries and industrial fisheries which land their catch for reduction purposes. Demersal human consumption fisheries usually either target a mixture of roundfish species (cod, haddock, whiting), or a mixture of flatfish species (plaice and sole) with a by-catch of roundfish. A fishery directed at saithe exists along the shelf edge. The catch of these fisheries is landed for human consumption. The catch of the industrial fisheries mainly consists of sandeel, Norway pout and sprat. The industrial catches also contain by-catches of other species including herring, haddock and whiting (Table 2.1.2).

Each fishery uses a variety of gears. Demersal fisheries: otter trawls, pair trawls, seines, gill nets, beam trawls. Industrial fisheries: small meshed otter trawls, pelagic trawls and purse seines.

Some major technological developments changed the fisheries in the North Sea in the 1960s such as the development of the beam trawl fishery for flatfish.

Trends in effort of the major fleets are shown in Figure 2.1.1. The trends in landings of the most important species landed by these fleets during the last 25 years, together with the total international landings, are shown in Table 2.1.1 and in the Figure 2.1.2. The human consumption landings have steadily declined over the last 25 years. The landings of the industrial fisheries increased to approximately 1.8 million t in the early 1970's, but has fluctuated around 1 million t in recent years. These landings show the largest annual variations, probably due to the short life span of the species. The total landings reached 3 million t in 1974, and have been around 2.5 million t since the 1980's.

A general upward trend in effort can be seen in all beam trawl fleets, in the Scottish light trawl fleet and the English gill netters. Most other demersal effort series show a downward trend. Whether or not this is caused by poor economic results of the fishery is not clear. The effort in the Danish and Norwegian fishery for Norway pout and sandeel has been gradually decreasing since 1989.

Most commercial species are managed by TAC/quota regulations that apply for Sub-area IV. For saithe the TAC is set for Sub-area IV and Division IIIa. The national management measures with regard to the implementation of the quota in the fisheries differs between species and countries. The industrial fisheries are subject to regulations for the by-catches of protected species.

Human consumption fisheries

<u>Data</u>

The data available from scientific sources for the assessment of roundfish and flatfish stocks are relatively good. The level of biological sampling of most of the commercial landings has been maintained. Discard data are only available for haddock and whiting, but a historical series exists only for one country.

In recent years there was misreporting of roundfish landings associated to restrictive TAC's.

Several series of research vessel survey indices are available for most species. Quarterly data were available from the International Bottom Trawl Survey for quarter 2 and 4 for a period of 5 years and were used in the final VPA runs in some stocks.

Analytical assessments were performed on all four main roundfish stocks and the two principal flatfish stocks. Only whiting are subject to a significant by-catch in the industrial fisheries.

A combined assessment was made for the first time for cod in Sub-area IV, Division IIIa Skagerrak and Division VIId. Also combined assessments for whiting in Sub-area VI and Division VIId and haddock in Sub-area IV and Division IIIa were done for the first time. Previously these species were assessed in the areas separately. Following an evaluation of the stock units in 1995, it was concluded that there was little justification for maintaining separate stock assessments for these separate Sub-areas and Divisions, both in terms of biological

stock identity and the fisheries. The combined catch prediction for these stocks has, however, been split into the original Sub-areas and Divisions.

Multispecies considerations are not incorporated in the assessments or the forecasts for the North Sea stocks. However, natural mortalities estimated by multispecies assessments are incorporated in the assessments of cod, haddock and whiting.

Stock impressions

In the North Sea all stocks of roundfish and flatfish species are exposed to high levels of fishing mortality which is, with the exception of saithe and whiting, on a high historical level. This is in itself a clear indication of an excessive effort. The roundfish stocks, particularly cod, haddock, and whiting are subjected to a high exploitation rate which removes approximately 60% of the biomass each year. This makes the fisheries on these stocks highly dependent on recruiting year classes. Most of the roundfish stocks have been outside or close to safe biological limits in recent years and several stocks are at this level presently. The place stock is outside safe biological levels for a number of years and the sole stock is expected to fall outside these levels in the short term.

ACFM has recommended significant and sustained reductions in fishing mortality on some of these stocks. The TAC regulations resulting from this advice, however, did not lead to the desired reductions in fishing mortality. ACFM has therefore since 1991 indicated that reductions in fishing effort are required to achieve fishing mortality reductions.

Landings of **cod** in 1995 were 139,000 t. Recruitment has been well below averaged in most years since 1985. The cod stock has been stable in recent years but on a very low level. It has increase recently to about 100,000 t in 1996 due to the contribution of a relative abundant 1993 year class. It is expected to remain outside safe biological limits in the short term.

The stock of **saithe** is at a low level compared to the seventies when it was lightly exploited. In recent years it is gradually increasing. Landings in 1995 were 114,000 t. Fishing mortality has declined considerable since 1986. The stock may be within safe biological limits presently.

Human consumption landings of **haddock** in 1995 were 77,500 t. Although the stock of haddock is considered to be within safe biological limits, it is by no means sure that this position will be maintained in the medium term as the present stock size is largely due to the influence of one strong year class.

The assessment of **whiting** has always been of lower precision than the assessment for other stocks. Total landings are gradually decreasing since 1976, and are on a record low level; 47,000 t in 1995. Fishing mortalities have been highly variable with no clear trend although a downward shift is indicated for recent years. Estimates of recruitment form surveys do not correlate well with the VPA. In recent years recruitment is stable, but at a level below the long term geometric mean. The state of the whiting stock is uncertain.

The spawning stock of **plaice** has been decreasing and the stock is considered to be outside safe biological limits. Landings have fallen since 1990 to 98,000 t in 1995 and fishing mortality is at a record high level. The stock is expected to increase in the short term but is expected to remain below the MBAL of 300,000t in the medium term at the present rate of exploitation.

Landings and fishing mortality of **sole** were at a high levels in recent years due to 2 strong year classes in the fishery. The 1995 landings were 30,000 t. Recruitment of recent year classes is, however, below average. The stock seems also to have suffered from extra natural mortality in the most recent winter but the level mortality could not be quantified. The spawning stock is declining rapidly and there is a high probability that it will be below the MBAL of 35,000 t in 1998.

Industrial fisheries

Definitions of industrial fisheries

The industrial fisheries dealt with in this report are the small meshed trawl fisheries targeted at Norway pout and sandeel.

Data available

Data on landings, fishing effort and species composition are available from all industrial fisheries.

Trends in landings and efforts

The level of the sandeel catches in 1976-1986 of about 600,000 t has increased to about 800,000 t in 1987-1995. For Norway pout the there has been a decrease in catches since 1983.

Trends in effort of the Norwegian and Danish fleets fishing for Norway pout and sandeel are shown in Figure 2.1.1. The effort is gradually decreasing since 1989.

Stock impressions

The SSB of Norway pout, which now include both the North Sea and the Skagerrak, has been increasing in the period 1974-1984. The next two years SSB dropped to a low level and has since been increasing. The increase in 1996 is due to the big 1994 year class. It should, however be noted that this year class is poorly estimated. Fishing mortality has generally been decreasing in 1974-1987. In 1995 the fishing mortality fell to about 0.4 compared to the stable level of about 0.6 in 1988-1994.

Over the years, SSB of <u>sandeel</u> has been fluctuating around 1 million t without a trend. There is a general pattern of large SSB being followed by a low SSB. This is caused by similar fluctuation in recruiting year classes.

By-catches of protected species

By-catches of the major projected species, haddock, whiting and saithe in the industrial fisheries are presented in Table 2.1.2 for the years 1974-1995. For the last three years quarterly data are presented. In 1995 the combined by-catch of haddock, whiting and saithe was 36,000 t, which about the half of the average of 73,000 t. Detailed catches of "other" species mentioned in Table 2.1.2 are given in Table 2.1.3.

For four industrial fisheries the distribution of industrial landings and the associated by-catches of a number of species for 1995 is shown in Table 2.1.4 for two areas, North and south of 57 degrees N. This table is based on Danish and Norwegian estimates. The <u>Northern area</u> the Norway pout fishery is associated with by-catches of blue whiting and the protected species haddock and whiting, the sandeel fishery with a large by-catch of sprat, and the sprat fishery with a large by-catch of herring. In the <u>Southern area</u> the sandeel fishery is associated with a large by-catch of sprat and comparatively small by-catches of herring and whiting, the sprat fishery with a large by-catch of herring and some protected species.

······	cod	had	had	whit	whit	saithe	saithe	sole	plaice	N pout	sandeel	demersal	industrial	total
		hc	lb	hc	lb	hc	lb					total	total	
1970	226	525	180	83	115	163	59	20	130	238	191	1147	783	1930
1971	328	235	32	61	72	218	35	24	114	305	382	980	826	1806
1972	354	193	30	64	61	218	28	21	123	445	359	973	923	1896
1973	239	179	11	71	90	195	31	19	130	346	297	833	775	1608
1974	214	150	48	81	130	231	42	18	113	736	524	807	1480	2287
1975	205	147	41	84	86	240	38	21	108	560	428	805	1153	1958
1976	234	166	48	83	150	253	67	17	114	435	488	867	1188	2055
1977	209	137	35	78	106	190	6	18	119	390	786	751	1323	2074
1978	297	86	11	97	55	132	3	20	114	270	787	746	1126	1872
1979	270	83	16	107	59	113	2	23	145	329	578	741	984	1725
1980	294	99	22	101	46	120	0	16	140	483	729	770	1280	2050
1981	335	130	17	90	67	121	1	15	140	239	569	831	893	1724
1982	303	166	19	81	33	161	5	22	155	395	612	888	1064	1952
1983	259	159	13	88	24	167	1	25	144	451	537	842	1026	1868
1984	228	128	10	86	19	192	6	27	156	393	669	817	1097	1914
1985	213	159	6	62	15	192	8	24	160	205	623	810	857	1667
1986	196	166	3	64	18	163	1	18	165	178	848	772	1048	1820
1987	210	108	4	68	16	145	4	17	154	149	825	702	998	1700
1988	176	105	4	56	49	104	1	22	154	109	893	617	1056	1673
1989	140	76	2	45	43	90	2	22	170	173	1039	543	1259	1802
1990	125	51	3	47	51	86	2	35	156	152	591	500	799	1299
1991	102	45	5	53	38	98	1	34	148	193	843	480	1080	1560
1992	114	70	11	52	27	92	0	29	125	300	855	482	1193	1675
1993	122	80	11	53	20	104	1	31	117	182	579	507	793	1300
1994	111	80	4	50	10	97	0	33	110	179	766	481	959	1440
1995	139	75	8	47	27	114	0	30	98	241	918	503	1194	1697

 Table 2.1.1
 Landings of demersal and industrial species from the North Sea

Table 2.1.2 Species compositon in the small meshed fisheries in the North Sea ('000 t). (Data provided by WG members	Table 2.1.2	Species compositon in the sma	Il meshed fisheries in the North Sea	('000 t). (Data	provided by WG members)
---	--------------------	-------------------------------	--------------------------------------	-----------------	-------------------------

Year	Sandeel	Sprat	Herring	Norway pout	Blue whiting	Haddock	Whiting	Saithe	Other	Total
1974	525	314	-	736	62	48	130	42		1857
1975	428	641	-	560	42	41	86	38		1799
1976	488	622	12	435	36	48	150	67		1791
1977	786	304	10	390	38	35	106	6		1675
1978	787	378	8	270	100	11	55	3		1612
1979	578	380	15	320	64 76	16	59	2		1434
1980 1981	729 569	323 209	7 84	471 236	76 62	22 17	46 67	-		1675 1245
1981	569 611	153	153	360	118	17	33	1 5	24	1243
1982	537	88	155	423	118	13	24	1	42	1470
1985	669	77	35	355	79	10	19	6	48	1298
1985	622	50	63	197	73	6	15	8	66	1100
1986	848	16	40	174	37	3	18	1	33	1170
1987	825	33	47	147	30	4	16	4	73	1179
1988	893	87	179	102	28	4	49	1	45	1388
1989	1,039	63	146	162	28	2	36	1	59	1537
1990	591	71	115	140	22	3	50	8	40	1033
1991	843	110	131	155	28	5	38	1	38	1350
1992	854	214	128	252	45	11	27	-	30	1561
1993	578	153	102	174	17	11	20	1	27	1083
1994	769	281	40	172	11	5	10	-	19	1307
1995	911	278	66	181	64	8	27	1	15	1551
Mean 1974-1993	704	220	70	292	53	15	49	9	42	1454
1993 q1	26	16	23	36	1	2	3	0	6	114
1993 q2	430	5	5	28	6	4	4	0	6	487
1993 q3	88	72	51	59	4	3	7	1	7	293
1993 q4	33	61	23	51	5	1	6		8	189
1994 q1	2	19	2	34	3	1	2	-	3	66
1994 q2	643	11	3	15	4	2	1	-	4	683
1994 q3	124	175	22	51	4	1	4	-	7	388
1994 q4	. +	76	13	72	+	1	3	-	5	170
1995 q1	18	20	1	36	-	2	2	-	2	81
1995 q2	752	6	1	17	4	1	3	-	2	786
1995 q3	132	157	49	48	48	2	16	1	7	460
1995 q4	8	96	15	79	11	3	6	1	4	223

E:\ACFM\WGNSSK97\T-2-1-2.DOC

North Sea

 Table 2.1.3 Sum of Danish and Norwegian by-catch by species (excluding those species accounted for in Table 3.1) and year in tonnes.

Species	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
Gadus morhua	4175	544	710	1092	1404	2988	2948	570	1044	1052	876	955
Scomber scombrus	1278	4	534	2663	6414	8013	5212	7466	4631	4386	3576	2331
Trachurus trachurus	133 ³	22789	16658	7391	18104	22723	14918	5704	6651	6169	4886	2746
Trigla sp.	2168	0	888 ²	45342 ²	5394 ²	9391 ²	2598 ²	5622 ²	4209	1593	1139	2091
Limanda limanda	149 ³	187	3209	4632	3781	7743	4706	5578	3986	4871	528	1028
Argentina spp.	6977 ³	8714	5210	3033	1918	778	2801	3434	2024	2874	2209	292
Hippoglossoides platessoides	170 ³	59	718	1173	946	2160	1673	1024	1694	1428	529	617
Pleuronectes platessa	0	34	119	109	372	582	566	1305	218	128	143	33
Merluccius merluccius ³	546	349	165	261	242	290	429	28	359	109	10	-
Trisopterus minutus	0	0	68 ³	0	5 ²	48 ²	121 ²	79 ²	111	36	0	9
Molva molva ³	528	51	1	40	39	37	13	65	10	28	0	-
Glyptocephalus cynoglossus	241 ³	236 ³	132	341	44	255 ³	251 ³	1439 ³	195 ³	246	40	-
Gadiculus argenteus ³	2690	1210	729	3043	2494	741	476	801	0	0	0	-
Others	29261	31715 ¹	3853	3604	3670	3528	3154	4444	4553	4106	5141	5158
Total	48316	65892	32994	72724	44827	59277	39866	37559	29685	27026	19077	15260

¹Danish cod and mackerel included. ²Only Danish catches. ³Norwegian catches. Danish catches included in "Others".

E:\ACFM\WGNSSK97\T-2-1-3.DOC

Table 2.1.4Distribution of landings and associated by-catches of selected species ('000 t) from industrial
fisheries by Denmark and Norway by landing categories to the north and south of 57°N,
respectively, in 1995.(Data provided by Working Group members.)

Area north	Fishery (target species)	Species composition											
	1 / .	Norway	Sandeel	Sprat	Herring	Haddock	Whiting	Saithe	Blue	Other			
		pout							whiting				
	Norway pout	164	0	0	3	6	8	0	65	4	250		
	Sandeel	1	373	13	0	0	0	0	0	0	387		
	Sprat	0	3	15	5	0	1	0	0	0	24		
	Other	11	3	16	9	0	2	1	1	2	45		
	Sum	176	379	44	17	6	11	1	66	6	706		
Area south	Fishery (target species)												
	Norway pout	0	-	0	0	0	0	0	0	0	0		
	Sandeel	0	505	16	4	0	3	0	0	2	530		
	Sprat	1	10	205	26	0	6	Ő	0	3	250		
	Other	4	19	24	19	0	6	0	0	1	73		
	Sum	5	533	245	49	1	15	0	0	6	854		

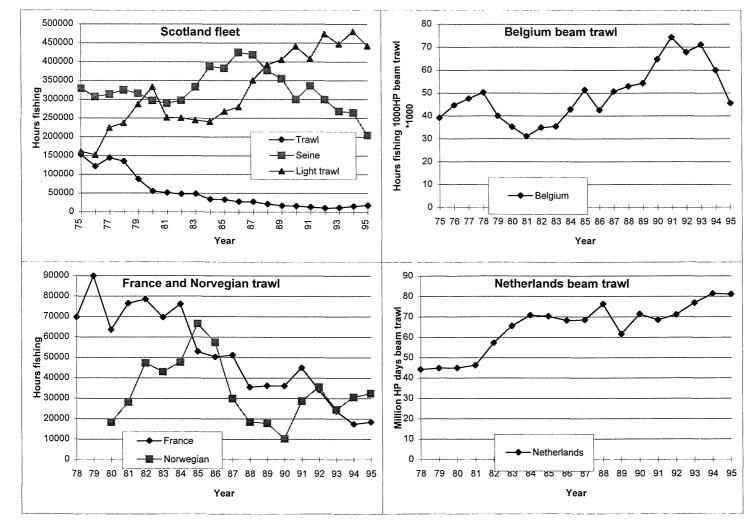
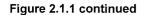
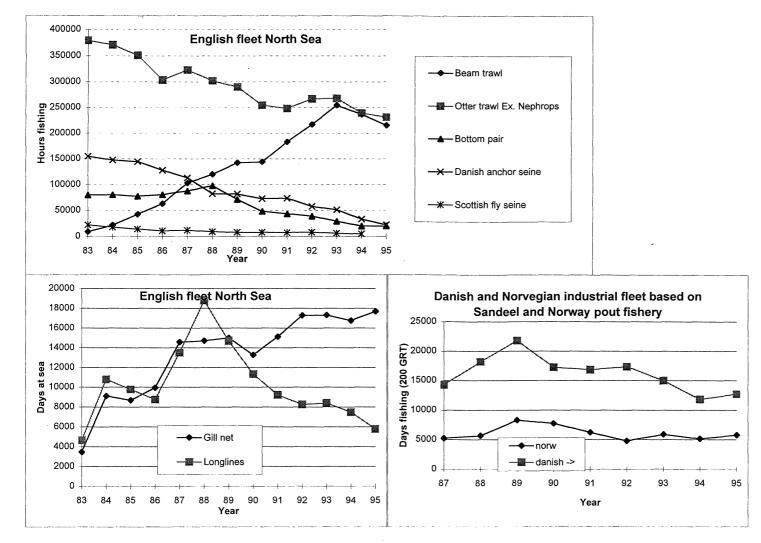
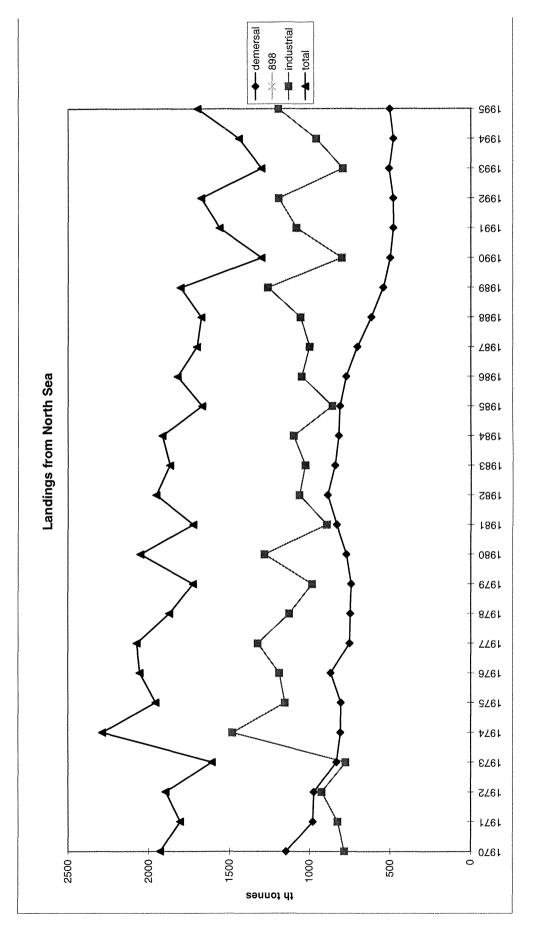
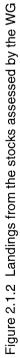




Figure 2.1.1 Fishing effort of demersal fleets in the North Sea

E:\acfm\wgnssk97\F-2-1-1.xls


23



E:\acfm\wgnssk97\F-2-1-1.xls

24

E:\acfm\wgnssk97\F-2-1-2.xls

2.2 Overview of the fisheries in the Skagerrak and Kattegat (Division IIIa)

The fleets operating in the Skagerrak and Kattegat (Division IIIa) includes vessels targeting species for human consumption as well as vessel's engaged in fisheries for reduction purposes. The human consumption fleets are diverse including gillnetters and Danish seiners exploiting flatfish and cod and demersal trawlers involved in various human consumption fisheries (roundfish, flatfish, *Pandalus* and *Nephrops*). Demersal trawling is also used in the fisheries for Norway pout and sandeel which are landed for reduction purposes.

The roundfish, flatfish and *Nephrops* stocks are mainly exploited by Danish and Swedish fleets consisting of bottom trawlers (*Nephrops* trawls with >70 mm meshes and bottom trawls with >90 mm mesh size), gill netters and Danish seiners. The number of vessels operating in Division IIIa has decreased in recent years. This is partly an effect of the EU withdrawal programme which until now has affected the Danish fleets only, but these fleets still dominate the fishery in Division IIIa.

The industrial fishery is a small-mesh trawl fishery mainly carried out by vessels of a size above 20 m. This fleet component has also decreased over the last decade. The most important fisheries are those targeting sandeel and Norway pout. There is also a trawl fishery landing a mixture of species for reduction purposes. Landings in the industrial fisheries in Division IIIa are given in Table 2.2.1

There are important technical interactions between the fleets. Most of the human consumption demersal fleets are involved in mixed fisheries and the Norway pout and the mixed clupeoid fishery have by-catches of protected species. For whiting and haddock the by-catches taken in industrial fisheries are larger in weight than the landings for human consumption.

Misreporting and non-reporting of catches has occurred in recent years, particularly for cod, but the amounts vary between years. There are no discard data available for assessments. The time series of age samples from landings for industrial purposes is short and there are gaps in this series.

The Skagerrak-Kattegat area is to a large extent a transition area between the North Sea and the Baltic - both in terms of hydrography, topology and the identity of stocks in the area. The exchange of water between the North Sea and the Baltic is the main hydrographic feature of the area.

Several of the stocks in the Skagerrak show close affinities to the North Sea stocks, both in terms of population dynamics (similar trends in recruitment and SSB) and biological indicators such as parasites or genetics. Tagging experiments have demonstrated extensive migration between the two areas for several species. Stocks which are believed to be closely associated between the North Sea and Skagerrak include cod (except for coastal populations in fjords), haddock, whiting and Norway pout. For sandeel, the population structure in the North Sea and Skagerrak is probably a complex of several local populations rather than separate populations in the two areas, and there is therefore no biological reason to split these stocks along the North Sea/Skagerrak border.

The landings of \underline{cod} in the Skagerrak in 1995 were 14,600 t in the human consumption fishery with a supplementary by-catch in the industrial fisheries of 750 t. The catch in the human consumption fishery was slightly above the landings taken in 1994 (13,500 tons). The majority of catches were taken by Denmark and Sweden.

The landings of <u>haddock</u> in Div. IIIa in the human consumption fisheries amounted to 2,200 t in 1995 as compared to 1,800 tons taken in 1994. To this must be added the catches from the industrial by-catch estimated at 2,200 t. Most of the catches are taken in The Skaggerak.

The catches of <u>whiting</u> for human consumption were about 500 t in 1995 which is a slight decline as compared to the reported landings in 1994. Besides this the fisheries for reduction purposes took an by-catch of whiting of about 9,000 t. The by-catches are taken by the mixed-clupeid fisheries and in the fisheries targeting Norway pout and Sandeel and mainly consist of small (age 0) whiting. Most of the catches are taken in the Skagerrak. No analytical assessment of the whiting in Division IIIa was possible.

The <u>plaice</u> catches in Div. IIIa amounted to 10,900 t in 1995 which is slightly below the catch level in 1994. About 85% of the catch were taken in Skagerrak.

The <u>industrial</u> fisheries yielded a total catch of 134,000 t I 1995. Most of the catches consist of Norway pout, which is not regulated with quotas, and sprat with important by-catches of herring (Table 2.2.1). The by-catch of the protected species whiting and haddock amounted to 9,114 and 2,162 t. None of the remaining by-catch species accounted for more than 1,000 t.

Year	Sandeel	Sprat ²	Herring ³	Norway pout	Blue whiting	Tota
1974	8	71	76	13	-	168
1975	17	101	57	19	-	194
1976	22	59	38	42	-	162
1977	7	67	32	21	-	127
1978	23	78	16	25	-	142
1979	34	96	13	25	6	174
1980	39	84	25	26	14	188
1981	59	76	63	30	+	228
1982	25	40	54	44	5	168
1983	29	26	89	30	16	190
1984	26	36	112	46	15	23
1985	6	20	116	9	19	170
1986	73	11	65	6	. 9	164
1987	5	14	72	3	25	119
1988	23	9	97	8	15	15
1989	. 18	10	52	6	9	9
1990	16	10	51	27	10	11-
1991	23	14	22	32	11	10
1992	39	2	47	42	18	14
1993 ⁴	45	2	71	8	32	15
1994	55	58	30	7	12	16
1995	12	41	21	50	10	13
Mean 1974–1995	26	41	56	24	14 ⁵	15

Table 2.2.1 Catches of the most important species in the industrial fisheries in Division IIIa ('000 t), 1974–1995¹.

¹Data from 1974–1984 from Anon. (1986), 1985–1993 provided by Working Group members.

²Total landings from all fisheries. ³For years 1974–1985, human consumption landings used for reduction are included in these data. ⁴Preliminary.

⁵Mean 1979–1995.

2.3 Stocks in the eastern Channel (Sub-area VIId)

Description of the fisheries

There are 5 main commercial fleets fishing in Division VIId. Belgian and English offshore trawlers (>300HP) which fish mainly for sole and also take plaice. These vessels are highly mobile and can switch effort to other areas leading to periodic changes in effort. The English vessels also switch to scalloping at some times of the year. The offshore French trawlers are the main fleet fishing for cod and whiting using high headline trawls and also take a range of other species. There are also numerous inshore boats mainly < 10m on the English and French coasts which fish with a variety of gears targeting sole in the spring and autumn and cod in the winter months. The minimum mesh size for trawls was increased from 75mm to 80mm in 1989. There is currently no EU mesh size for fixed nets.

Overall effort has more than doubled from the early 1980's to early 1990's but has since stabilised or declined in some fleets (Figure 2.3.1).

Data

- a) Landings and discards: There is thought to be a low level of under-reporting on all species but some sole are known to be misreported to different areas by bean trawlers and there is under-reporting by inshore vessels. There is no discarding of cod or sole but whiting and place discards can be high especially from larger trawlers.
- b) Catch at age: the main landings of cod and whiting are by French fleets who take more than 80% of the total international landings. The level of sampling for age for cod is poor but has improved since 1994 for whiting.

French fleets take around half the sole and plaice landings with Belgium and England taking most of the remaining catches. Quarterly sampling for age is taken, covering more than 95% of the landings.

State of the stocks

Cod and whiting have been assessed with the North Sea stocks for the first time this year and are included in the overview for the North sea.

An analytical assessment was carried out for **sole** using data from 3 commercial and three survey fleets. Fishing mortality remains high at around 0.48. The spawning stock biomass has increased following strong recruitment in the period 1989-91 and the stock is well above the historical minimum of 7000t. At the current level of fishing mortality the SSB will be expected to decline slightly in 1998.

Plaice was assessed using XSA tuned with 3 commercial and 4 survey fleets. The spawning stock of plaice has declined since the early 1990's following a similar trend to plaice in the North Sea, but has stabilised above the minimum historical level of 6000t. Recruitment since 1985 has fluctuated around the average level and the stock is expected to remain close to current levels up to 1998.

30

Figure 2.3.1 Division VIId Trends in demersal fleet effort

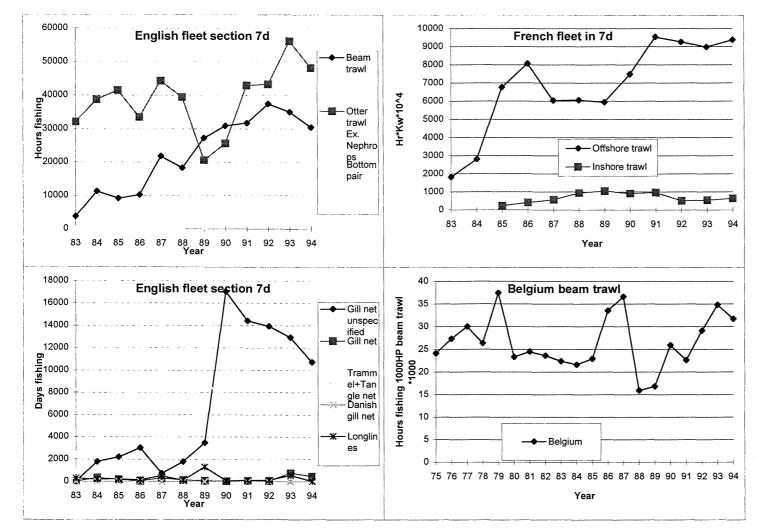


Figure 2.3.1 (Continued) Fishing effort of demersal fleet in section 7d

E:\acfm\wgnssk97\F231-ctd.xls

31

3 COD IN AREAS IIIA (SKAGERRAK), IV AND VIID

This assessment refers for the first time to a combination of the Skagerrak, the North Sea, and the eastern Channel. In previous Working Group meetings, cod in these areas have been assessed separately.

3.1 Catch Trends

Landings data from human consumption fisheries for recent years as officially reported as well as those estimated by the Working Group are given for each area separately in Tables 3.1.1 to 3.1.3. Working Group estimates of the landings for the combined areas are provided in Table 3.1.4, and the data are graphed in Figure 3.1.1. The Working Group estimate for combined landings in 1995 is 138,764 t, a value which is close to the officially reported figure. It includes about 20,000 t of non- or mis-reported landings, which, however, partly are misreported within the new assessment area. The landings in 1995 represent an increase of 25% compared to 1994. Landings increased in the 1960s and early 1970s to reach a peak of 350,000 t in 1972. After a further peak of 335,000 t in 1981, landings have declined markedly to levels similar to those observed in the early 1960s.

Estimates of total international discards are not available but it is known that discards of 1 year-old cod can be considerable for some fleets in some years (Weber, 1995). The industrial by-catch of cod, other than that which is sorted for human consumption, is small.

Cod are caught by virtually all the demersal gears in these areas, including trawls, seines, gill nets and lines. Most of these gears take a mixture of species, but some of the fixed gear fisheries are directed mainly towards cod.

3.2 Natural Mortality, Maturity, Age Compositions, and Mean Weight at Age.

Values for natural mortality and maturity are given in Table 3.2.1, and they are unchanged from those used last year for cod in the North Sea. The sources of these data are multispecies VPA as performed by the Multispecies Working Group in 1986 (natural mortality), and the International Young Fish Survey (maturity). The VPA catch input data are given in Table 3.2.2. They do not include industrial fishery by-catches or discards. For by-catches, estimates are available for the Skagerrak (Table 3.1.2.1). Data for 1994 were updated with minor revisions, and data for 1995 were provided by Denmark, England, France, Germany, The Netherlands, and Scotland. Mean weight at age data for landings are given in Table 3.2.3. These values were also used as stock mean weights, and may not therefore be biologically meaningful. SOP corrections have been applied.

3.3 Catch, Effort, and Research Vessel Data

The fleets used for tuning the VPA are given in Table 3.3.1 and the tuning data are given in Table 3.3.2. Data for a total of 17 fleets were available, including 11 commercial and 6 survey fleets. However, some fleets were excluded from the tuning file because of low predictive weights, trends in catchability or age composition problems. Trends in fishing effort for some fleets are shown in Figure 2.1.1.

3.4 Catch at Age Analysis

The method used to tune the VPA was XSA, the same method as was used last year for the separate stocks. Tuning was performed over a 10 year period with no time taper, and a shrinkage factor of 0.5 was applied to the terminal population estimate. The recruiting age was set at age 1, and catchability was fixed for ages 6 and above. The age range used for VPA was 1 to 11 (the plus group).

Preliminary tuning included single fleet Laurec-Shepherd runs and an XSA run with all available fleet data included. The results (available in Working Group files) were inspected for evidence of marked trends in catchability and for high values for the residuals. As a result of this analysis it was decided to exclude the IBTS-Quarter 4 for the North Sea and the IBTS-Quarter 1 for the Skagerrak. For the 4 Danish commercial fleets in the Skagerrak, sampling is carried out by market categories and hence there are no fleet-specific age compositions. The residual plots for most of the Danish commercial fleets were very similar. It was therefore decided to select for tuning two fleets which are likely to show the most disparate landings category patterns. On this basis the Nephrops trawlers and gill netters were selected. For the French trawl fleet in VIId, the residuals for ages older than two were erratic, and the data were therefore excluded. These older age groups are relatively less abundant in VIId, probably due to emigration into the North Sea. Inspection of the catchability residual plots from the preliminary runs showed that for some fleets there were some differences between the first and second halves of

the 20 year time period available. It was therefore decided to apply tuning to the last 10 years and with zero taper.

The diagnostics from the final XSA run are given in Table 3.4.1. and plots of the log catchability residuals for each fleet from this run are given in Figure 3.4.1. For the estimates of survivors at age 1, the highest weighting is received by some of the survey fleets but for the older ages the commercial fleets receive the greatest weights.

The estimates of fishing mortality rates and population numbers resulting from the tuning procedure and VPA are given in Tables 3.4.2 and 3.4.3. The results from a retrospective analysis using XSA with the options specified above are shown in Figure 3.4.2. The plot shows that there is a tendency for F values to be slightly underestimated. However, there are no gross discrepancies and the results show reasonable agreement between successive estimates.

3.5 Recruitment Estimates

Recruitment in 1995 (1994 year class) was estimated from the XSA analysis.

Because 1996 survey data are available, research vessel survey indices (Table 3.5.1) were used in program RCT3 to estimate recruitment at age 1 in 1996 and 1997 (1995 and 1996 year classes). The survey data were regressed against VPA population estimates for year classes up to 1992 inclusive, on the criterion of a minimum cumulative F of 1.0. Data for two new German groundfish surveys in the German Bight were available for the first time, replacing former surveys which have been terminated. Due to the short time series of 5 years, it was not possible to include the new IBTS indices for quarters 2 and 4. The indices for the English groundfish surveys after 1991 have been corrected to take account of the change of gear to the GOV trawl in 1992. A plot of VPA number against the new German survey indices are shown in Figure 3.5.1.

The results of the RCT3 estimates of recruitment which were used in the catch forecast are given in Table 3.5.2. The estimate for year class 1995 at age 1 in 1996 is 183 millions. The preliminary estimate for the 1996 year class at age 1 in 1997 is 302 millions, based on a single survey 0-group value but strongly weighted towards the mean. The 1997 year class was assumed to be 257 millions at age 1 in 1998, the shrunk mean value from RCT3. The long-term arithmetic mean is 400 millions and the geometric mean is 344 millions at age 1.

3.6 Historical Stock Trends

Historical trends in mean fishing mortality, landings, spawning stock biomass, and recruitment are shown in Table 3.6.1 and Figure 3.1.1. Mean fishing mortality has shown a more or less continuous increase over the whole period. Spawning biomass decreased from a peak of 277,000 t in 1971 to a historical low of 63,000 t in 1993 and 1994. Recruitment has fluctuated considerably over the period but the frequency of good year classes has become reduced in recent years. Only one year class (1993) spawned since 1985 has reached the long term arithmetic mean.

3.7 Short Term Forecast

The input data for the catch prediction are given in Table 3.7.1, and the parameter label values for the sensitivity plots are shown in Table 3.7.2. The CVs used for the population numbers are the values associated with the RCT3 or XSA estimate as appropriate. For all other parameters, the values supplied by the program INSENS were used. The mean weight at age is the average for the period 1991-95. The fishing mortality is the mean for the same period calibrated to the mean F(2-8) in 1995. Population numbers in 1996 are XSA survivor estimates, except for age 1 which is an RCT3 estimate.

The results of a *status quo* landings prediction for 1996 and 1997 are given in Table 3.7.3 and shown graphically in Figure 3.7.1. Landings of 168,000 t are predicted for 1996, which is 15% less than the summed prediction of 197,000 t for IIIa, IV, and VIId from last year's assessment. The *status quo* landings for 1997 are predicted to be 158,000 t. Spawning biomass is estimated to be 124,000 t at the start of 1997, and 122,000 t in 1998.

The catch prediction results have been divided between the three areas included in the combined assessment in Table 3.7.4. The methodology used for this process is explained in Section 1.4.4.

The results of sensitivity analyses of the *status quo* catch prediction are shown in Figures 3.7.2 and 3.7.3. The sensitivity of the predictions (Figure 3.7.2) to the various input parameters shows that the predicted yield in 1997 is heavily influenced by the estimates of fishing effort (HF) in 1996 and 1997, as well as the year effect for M (K) in 1996. Year classes (N) which have the most effect are those spawned in 1993, 1994, and 1995. The estimate for SSB in 1998 is sensitive to the 1993 year class (N3), to fishing effort (HF), and to the selectivity (sH) for 3 and 4 year old fish

Figure 3.7.2 shows also the proportion of the total variance contributed by the input parameters to the estimated yield and spawning biomass. For yield in 1997, most of the variance is contributed by the estimate of year class 1995 (N1), but also to the relative fishing effort (HF97, HF96) and recruitment in 1997. The variances of the SSB estimates have important contributions from N1, relative fishing effort (HF) and from the selectivity at age 2 (sH2).

Figure 3.7.3 shows probability profiles for yield and spawning biomass in 1997 and 1998 respectively.

3.8 Medium term projections

Projections were run for *status quo* F for a 10 year period, and the stock-recruitment relationship assumed was a Shepherd curve with a moving average term. The results are shown in Figures 3.8.1 and 3.8.2. For *status quo* F, the simulation suggests that there is a high probability that both yield and spawning biomass could increase in the medium term (Figure 3.8.1). Figure 3.8.2 shows for year 2005 the 5, 10, and 20 probabilities for SSB falling below a given value at different levels of relative F. The steepness of the lines around the current level of F shows clearly that this projection is very sensitive to differences in F-levels. The graph suggests that, for example, in the case of underestimation of F by 10% there is a high probability that SSB could drop by 50,000 t within 10 years. The retrospective analysis (Figure 3.4.2) indicates that there is a tendency to underestimate F. With the known uncertainties in estimation of F these projections should treated with extreme caution.

3.9 Long Term Considerations

Landings and spawning biomass are at a relatively low level as compared to the recent past, and fishing mortality shows a continuous upwards trend.

3.10 Comments on the Assessment

Quality control data are given in Table 3.10.1. However, these are of limited use, since the 1996 assessment refers to the combined areas, whereas the data for the earlier years are for the North Sea. The assessment results resemble those for the North Sea produced at last year's Working Group, although they appear to be more pessimistic in terms of the lower catch forecast for 1996. It is likely that a significant factor is that the size of the 1993 year class has been revised downwards. For last year's North Sea assessment this year class was estimated to be 465 millions at age 1, and this compares with a value of 399 millions for this year's combined assessment. Other year classes which are important in the catch prediction show increases in the combined assessment as compared to last year's North Sea assessment, as would be expected. The fishing mortality values are similar to those estimated for the North Sea last year. As with that assessment the retrospective pattern shows that the fishing mortality estimated for 1995 may be slightly too low.

3.11 MBAL considerations

Inspection of the stock-recruitment plot (Figure 3.11.1) shows a similar pattern to that observed for the North Sea. It suggests that recruitment is reduced at spawning stock levels below about 150,000 t, and this value could therefore be considered appropriate for MBAL.

3.12 Biological reference points

The input data used for a yield-per-recruit analysis are given in Table 3.12.1. and results at Table 3.12.2. A scatter plot of stock recruitment is shown in Figure 3.11.1, which also shows F _{high} (1.23), F_{med} (0.86) and F_{low} (0.49). F_{max} is estimated at 0.25 and $F_{0.1}$ at 0.15. A yield per recruit and spawning stock biomass per recruit plot is shown in Figure 3.7.1. The fishing mortality is the mean for ages 2 to 8 for the period 1991-95. It can be seen that the current level of F is close to F_{med} .

Year	Belgium	Denmark ²	Faroe Islands	France	Germany	Netherlands	Norway ²	Poland	Sweden	UK (E+W)	UK Isle of Man	UK (N.Ireland)	UK (Scotland)	Russia	Total	Unallocated landings	Landings as used by Working Group
1984	5,804	46,751	-	8,129	13,453	25,460	7,005	7	575	35,605	-	-	54,359	-	197,148	7,723	204,871
1985	4,815	42,547	71	4,834	7,675	30,844	5,766	-	748	29,692	-	-	60,931	-	187,923	5,043	192,966
1986	6,604	32,892	45	8,402	7,667	25,082	4,864	10	839	25,361	-	-	45,748	-	157,484	5,745	163,229
1987	6,693	36,948	57	8,199	8,230	21,347	5,000	13	688	29,960	-	-	49,671	-	166,806	8,671	175,477
1988	5,508	34,905	46	8,323	7,707	16,968 ⁴	3,585	19	367	23,496	-	-	41,382	-	142,306	7,815	150,121
1989	3,398	25,782	35	2,578 ^{1,3}	11,430	12,028	4,813	24	501	18,250	1	124	31,480	-	110,444	5,180	115,624
1990	2,934	21,601	96	1,641 ^{1,3}	11,725	8,445 ¹	5,168	53	620	15,596	-	26	31,120	-	99,025	5,726	104,751
1991	2,331	18,997	23	975 ^{1,3}	7,278	6,830 ¹	5,425	15	784	14,481	-	70	28,748	-	85,957	2,554	88,511
1992	3,356	18,479	109	2,146 ¹	8,446	11,133	10,053 ¹	-	823	14,836	15	72	28,204	-	97,672	332	97,340
1993*	3,374	19,547	46	2,162 ^{1,3}	6,808	10,220	8,760 ¹	-	646	14,894	-	47	28,191	-	94,687	10,009	104,565
1994*	2,648	19,234	80 ¹	1,830 ^{1,4}	5,974	6,512	8,268 ¹	-	630	13,941	-	54	28,844	-	88,015	6,434	94,449
1995	4,827	24,067	219	2,782	9,457	11,199	7,358	-	709	14,991	-	-	35,848	-	111,457	9,035	120,492

Table 3.1.1 Nominal catch (in tonnes) of COD in Sub-area IV, 1984–1995, as officially reported to ICES, and estimated total landings used by the Working Group.

30

¹ Preliminary.
 ² Figures do not include cod caught as industrial by-catch, and not sorted for human consumption.
 ³ Includes Division IIa (EC).
 ⁴ Includes VIIe.

.

Year	·	Op	oen Skagerra	ak		Total	Landings used	Norwegian Coast
	Denmark	Sweden	Norway	Germany	Others		by the WG	Norway
1971	5,914	2,040	1,355	-	13	9,322	9,322	-
1972	6,959	1,925	1,201	-	22	10,107	10,107	-
1973	6,673	1,690	1,253	-	27	9,643	9,643	-
1974	6,694	1,380	1,197	-	92	9,363	9,363	-
1975	14,171	917	1,190	-	52	16,330	16,330	-
1976	18,847	873	1,241	-	466	21,427	21,427	-
1977	18,618	560	-	-	675	19,853	19,853	-
1978	23,614	592	-	-	260	24,466	23,406	1,305
1979	14,007	1,279	-	-	213	15,499	13,128	1,752
1980	21,551	1,712	402	-	341	24,006	25,110	1,580
1981	25,498	2,835	286	-	294	28,913	29,507	1,792
1982	23,377	2,378	314	-	41	26,110	27,775	1,466
1983	18,467	2,803	346	-	163	21,779	22,576	1,520
1984	17,443	1,981	311	-	156	19,891	20,126	1,187
1985	14,521	1,914	193	-	-	16,628	17,611	990
1986	18,424	1,505	174	-	-	20,103	21,142	917
1987	17,824	1,924	152	-	-	19,900	20,855	838
1988	14,806	1,648	392	-	106	16,952	16,945	769
1989	16,634	1,902	256	12	34	18,838	19,648	888
1990	15,788	1,694	143	110	65	17,800	18,589	846
1991	10,396	1,579	72	12	12	12,071	12,441	854
1992	11,194	2,436	270	-	102	14,002	14,794	923
1993	11,997	2,574	75	-	91	14,735	15,324	909
1994	11,953	1,821	60	301	25	14,161	13,910	760
1995	15,888	5,185	169	200	134	21,578	14,636	846

 Table 3.1.2
 Cod in Sub-division IIIa (Skagerrak) Reported landings by country and estimated total landings used by the Working Group.

Table 3.1.2.1By-catches of Cod in the Skagerrak by the Danish small-meshed fishery (tonnes) as estimated by the
Working Group.

Year	By-catch	
1979	4,009	
1980	4,036	
1981	5,376	
1982	9,119	
1983	4,384	
1984	1,084	
1985	1,751	
1986	997	
1987	491	
1988	1,103	
1989	428	
1990	687	
1991	953	
1992	1,360	
1993	511	
1994	666	
1995	749	

Table 3.1.3

COD in Division VIId. Nominal landings (tonnes) as officially reported to ICES, 1976 to 1995.

Year	Belgium	France	Denmark	Netherlands	UK (E+W)	UK (S)	Total	Unreported landings	Total as used by Working Group
1982	251	2696	-	1	306	-	3254	726	3980
1983	368	2802	-	4	358	-	3532	308	3840
1984	331	2492	-	-	282	-	3105	415	3520
1985	501	2589	-	-	326	-	3416	- 86	3330
1986	650	9938	4	-	830	-	11422	1398	12820
1987	815	7541	-	-	1044	-	9400	4820	14220
1988	486	8795	+	1	867	-	10149	- 789	9360
1989	173	n/a	+	1	562	-	n/a	-	5540
1990	237	n/a	-	-	420	7	n/a	-	2730
1991	182	n/a	-	_*	340	2	n/a	-	1920
1992	187	2079*	1	2	441	22	2733	-	2680
1993*	157	n/a	1^1	-	530	2	n/a	-	2430
1994*	228	n/a	9	-	312	+	n/a	-	2850
1995	377	n/a	-	-	336	+	n/a	-	3636

* Preliminary; 1 Includes VIIe.

Details of Program run,		17:40, 10/10/1996
Species Area Age Range Year Range	: : :	COD, 347D, SKAG+NSEA+CHAN 1 - 11+ 1963 - 1995
Catch component		Ref. F age range
1, H.cons.		2 - 8

1

TABLE 3.1.4 : COD, SKAG+NSEA+CHAN Annual weight and numbers caught, 1963 to 1995.

Year	Wt.('000t)	Nos.(millions)
	116	61
1964	126	1 57 1
1 1965	181	99 1
1966	221	123
1967	253	132
1 1968	288	154
1969	201	80 1
1 1970	226	130
1971	328	236
1972	354	254
1973	239	132
1974	214	109
1975	205	115
1976	234	137
1977	209	162
1978	297	237
1979	270	180
1980	294	219
1981	335	259
1982	303	208
1983	259	194
1984	228	172
1985	213	156
1986	196	172
1987	210	172
1988	176	124
1989	140	90
1990	125	86
1991	102	60
1992	114	76
1993	122	77
1994	111	67
1995	139	100
Min.	102	57
Mean	213	140
Max.	354	259

1

TABLE 3.2.1 ; COD, SKAG+NSEA+CHAN Natural Mortality and proportion mature

1.	Age	Nat Mor	Mat.
1-			
1	1	.800	.010
1	2	.350	.050
1	3	.250	.230
1	4	.200	.620
	5	.200	.860
1	6	.200	1.000
	7	.200	1.000
ļ	8	.200	1.000
1	9	.200	1.000
1	10	.200	1.000
1	11+	.200	1.000

Table 3.2.2

ł

l

Run title : Cod in IV, IIIa, VIId (run: XSATIM01/X01)

Table YEAR,	1		numbers at 1964,	-	umbers*10**-3
AGE 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, +gp, TOTALNUM TONSLAND SOPCOF %	· ·	2788, 1213, 81, 492, 14, 6, 0, 60965,	22493, 20113, 4308, 1918, 1818, 599, 118, 94,	51888, 17645, 9182, 2387, 950, 658, 298, 51, 75, 8, 98955,	

Table	1	Catch	numbers at	age Nu	umbers*10*	*-3					
YEAR,		1966,	1967,	1968,	1969,	1970,	1971,	1972,	1973,	1974,	1975,
AGE											
1,		18224,	10803,	5829,	2947,	54493,	44824,	3832,	25966,	15562,	33378,
2,		62516,	70895,	83836,	22674	33917,	155345,	187686,	31755,	58920,	47143,
3,		29845,	32693,	42586,	31578,	18488,	17219,	48126,	54931,	11404,	18944,
4,		6184,	11261,	12392,	13710,	13339,	6754,	5682,	14072,	15824,	4663,
5,		3379,	3271,	6076,	4565,	6297,	7101,	2726,	2206,	4624,	7563,
6,		1278,	1974,	1414,	2895,	1763,	2700,	3201,	1109,	961,	2067,
7,		477,	888,	870,	588,	961,	893,	1680,	1060,	438,	449,
8,		370,	355,	309,	422,	209,	458,	612,	489,	395,	196,
9,		126,	138,	151,	147,	186,	228,	390,	80,	332,	229,
10,		56,	40,	111,	46,	98,	77,	113,	58,	81,	95,
+gp,		83,	17,	24,	78,	40,	94,	18,	162,	189,	63,
TOTALNUM,	. 13	22538,	132335,	153598,	79650,	129791,	235693,	254066,	131888,	108730,	114790,
TONSLAND,	2	21336,	252977,	288368,	200760,	226124,	328098,	353976,	239051,	214279,	205245,
SOPCOF %,		100,	100,	100,	100,	100,	100,	100,	100,	100,	100,

Run title : Cod in IV, IIIa, VIId (run: XSATIM01/X01)

Table 1		umbers at		mbers*10*						
YEAR,	1976,	1977,	1978,	1979,	1980,	1981,	1982,	1983,	1984,	1985,
AGE										
1,	5724,	75413,	29731,	34837,	62605,	20279,	66777,	25733,	64751,	8836,
2,	100283,	51118,	175727,	91697,	104708,	189007,	65299,	129632,	66428,	117484,
3,	18574,	25621,	17258,	44653,	35056,	34821,	60411,	21662,	31276,	18938,
4,	6741,	4615,	9440,	4035,	12316,	9019,	9567,	11900,	4264,	7807,
5,	1741,	2294,	3003,	3395,	1965,	4118,	3476,	2830,	3436,	1362,
6,	3071,	836,	1108,	712,	1273,	785,	2065,	1258,	1019,	1243,
7,	924,	1144,	410,	398,	495,	604,	428,	595,	437,	362,
8,	131,	371,	424,	157,	202,	137,	245,	211,	250,	171,
9,	67,	263,	153,	158,	74,	65,	78,	90,	60,	76,
10,	63,	26,	36,	42,	55,	37,	27,	28,	45,	14,
+gp,	43,	96,	44,	17,	25,	21,	16,	23,	20,	24,
TOTALNUM,	137362,	161797,	237334,	180101,	218774,	258893,	208389,	193962,	171986,	156317,
TONSLAND,	234169,	209154,	297022,		293644,		303251,	259287,	228286,	212925,
SOPCOF %,	100,	100,	100,	101,	100,	100,	99,	100,	100,	99,

Table 1	Catch r	numbers at	age Nu	mbers*10*						
YEAR,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995,
AGE										
1,	99006,	23898,	20187,	23296,	11841,	13628,	27967,	4814,	16173,	16465,
2,	29572,	125863,	53920,	35999,	54692,	23571,	32216,	55560,	25195,	63654,
3,	33544,	10064,	43153,	18252,	11994,	16840,	8697,	11409,	21118,	12932,
4,	5700,	8740,	3150,	10215,	4360,	3319,	4995,	3211,	3078,	5296,
5,	3005,	1502,	2533,	1026,	2462,	1393,	1057,	1578,	862,	800,
6,	586,	1029,	623,	1002,	304,	1032,	479,	430,	513,	283,
7,	538,	226,	282,	238,	293,	220,	321,	201,	137,	147,
8,	169,	207,	71,	136,	70,	135,	58,	111,	59,	41,
9,	65,	50,	57,	24,	58,	26,	39,	18,	31,	13,
10,	42,	33,	13,	25,	11,	3,	17,	10,	7,	13,
+gp,	20,	12,	17,	10,	4,	9,	9,	13,	16,	5,
TOTALNUM,	172247,	171624,	124006,	90223,	86089,	60176,	75855,	77355,	67189,	99649,
TONSLAND,	196147,	209596,		139859,	125285,		114026,	121930,	110560,	
SOPCOF %,	99,	100,	100,	99,	99,	100,	99,	99,	99,	100,

Table 3.2.3

ŧ

Run title : Cod in IV, IIIa, VIId (run: XSATIM01/X01)

Table YEAR,	2		weights an 1964,	
AGE 1, 2, 3, 4, 5,		.5380, 1.0040, 2.6570, 4.4910, 6.7940,		.5810, .9650, 2.3040, 4.5120, 7.2740,
6, 7, 8, 9, 10, +gp, SOPCOFAC	,	9.4090, 11.5620, 11.9420, 13.3830, 13.7560, .0000, .9998,	8.5200, 10.6060, 10.7580, 12.3400, 12.5400, 14.9980,	9.4980, 11.8980, 12.0410, 13.0530, 14.4410, 15.6670, 1.0001,

Table YEAR,	2	Catch 1 1966,	weights an 1967,	t age (kg) 1968,) 1969,	1970,	1971,	1972,	1973,	1974,	1975,
AGE											
1,		.5790,	.5900,	.6400,	.5440,	.6260,	.5790,	.6160,	.5590,	.5940,	.6190,
2,		.9940,	1.0350,	.9730,	.9210,	.9610,	.9410,	.8360,	.8690,	1.0390,	.8990,
2, 3,		2.4420,	2.4040,	2.2230,	2.1330,	2.0410,	2.1930,	2.0860,	1.9190,	2.2170,	2.3480,
4,		4.1690,	3.1530,	4.0940	3.8520,	4.0010,	4.2580,	3.9680,	3.7760,	4.1560,	4.2260,
4, 5,		7.0270,	6.8030,	5.3410,	5.7150,	6.1310,	6.5280,	6.0110,	5.4880,	6.1740,	6.4040,
6,		9.5990,	9.6100,	8.0200,	6.7220,	7.9450,	8.6460,	8.2460,	7.4530,	8.3330,	8.6910,
7,		11.7660,	12.0330,	8.5810,	9.2620,	9.9530,	10.3560,	9.7660,	9.0190,	9.8890,	10.1070,
8,		11.9680,	12.4810,	10.1620,	9.7490,	10.1310,	11.2190,	10.2280,	9.8100	10.7900,	10.9100,
9,		14.0590,	13.5890,	10.7200,	10.3840,	11.9190,	12.8810,	11.8750,	11.0770,	12.1750,	12.3390,
10,		14.7460,	14.2710,	12.4970,	12.7430,	12.5540,	13.1470,	12.5300,	12.3590,	12.4250,	12.9760,
+gp,		15.6720,	19.0160,	11.5950,	11.5670,	14.3670,	15.5440,	14.3500,	12.8860,	13.7310,	14.4310,
SOPCOFAC,		1.0001,	1.0001,	.9999	.9999,	1.0000,	.9998,	1.0001,	.9999,	.9999,	.9999

Run title : Cod in IV, IIIa, VIId (run: XSATIM01/X01)

Table X YEAR,	2		weights an 1977,			1980,	1981,	1982,	1983,	1984,	1985,
AGE											
1,		.5680,	.5420,	.5720,	.5500,	.5500,	.7230,	.5890,	.6320,	.5940,	.5890,
2,		1.0290,	.9480,	.9370,	.9360,	1.0030,	.8370,	.9620,	.9190,	1.0070,	.9320,
2, 3,		2.4700,	2.1600,	2.0010,	2.4110,	1.9480,	2.1890,	1.8580,	1.8350,	2.1560,	2.1350,
		4.5770,	4.6070,	4.1460,	4.4230,	4.4010,	4.6150,	4.1300,	3.8800,	3.9720,	4.1610,
4, 5,		6.4940,	6.7130,	6.5310,	6.5800,	6.1090,	7.0450,	6.7840,	6.4910,	6.1900,	6.3100,
6,		8.6200,	8.8280,	8.6670,	8.4750,	9.1200,	8.8840,	8.9030,	8.4230,	8.3620,	8.4040,
7,		10.1320,	10.0710,	9.6860,	10.6370,	9.5500,	9.9340,	10.3990,	9.8480,	10.3170,	10.3720,
8,		11.3410,	11.0520,	10.9500,	11.2530,	11.8240,	11.4570,	12.5170,	11.8780,	11.4540,	12.0770,
9,		12.8880,	11.8240,	12.4270,	13.0570,	12.7820,	13.3380,	13.4690,	12.7970,	13.5050,	13.0330,
10,		14.1400,	13.1340,	12.7780,	14.1480,	14.0810,	14.8970,	12.8900,	12.5620,	13.4080,	13.2090,
+gp,		14.5570,	14.3620,	13.9810,	15.4780,	15.3920,	16.6290,	14.6080,	14.4260,	13.4720,	14.4150,
SOPCOFAC,		1.0000,	.9999,	1.0030,	1.0082,	.9961,	.9984,	.9942,	.9954,	.9988,	.9950,

Table 2 YEAR,	Catch 1 1986,	weights an 1987,			1990,	1991,	1992,	1993,	1994,	1995,
AGE										
1,	.5760,	.6260,	.5740,	.6690,	.7370,	.6680,	.6990,	.6960,	.6730,	.7180,
2,	.8860,	.9630,	.8670,	1.0570,	.9760,	1.0780,	1.1430,	1.0630,	1.0740,	1.0210,
2, 3,	1.8360,	1.9310,	1.9390,	1.8190,	2.1740,	2.0400,	2.5430,	2.4720,	2.2010,	2.2040,
4, 5,	3.5380,	3.6140,	3.1750,	3.5490,	3.7950,	3.9870,	4.2230,	4.5450,	4.4690,	4.2890,
5,	6.1880,	5.9830,	5.8590,	5.2500,	5.9030,	6.0710,	6.2390,	6.5230,	7.1440,	7.2150,
6,	8.0710,	8.2410,	7.8440,	7.8180,	7.8670,	7.9860,	8.4650,	8.0650,	8.4220,	8.9660,
7,	9.8950,	9.8880,	9.7380,	9.4980,	10.2450,	9.5300,	10.0790,	9.6320,	9.4820,	10.2780,
8,	11.4730,	11.5100,	11.8730,	11.0620,	10.7820,	11.0100,	10.0950,	10.3940,	10.5270,	11.7570,
9,	12.7100,	12.1490,	13.4890,	12.7740,	12.6610,	13.5740,	11.8320,	12.3200,	12.2300,	13.2340,
10,	13.5660,	15.5420,	14.3530,	14.0660,	15.0890,	13.2500,	13.7900,	13.3930,	14.2140,	11.9860,
+gp,	13.1600,	16.4300,	15.7680,	14.5770,	14.6310,	14.9700,	15.5030,	13.9230,	12.4760,	13.8250,
SOPCOFAC,	.9945,	.9953,	.9993,	.9928,	.9914,	.9959,	.9925,	.9946,	.9937,	1.0003,

Table 3.3.1 Tuni	ng fleets
------------------	-----------

Fleet				····	
		First	Last	First	Last
		year	year	age	age
SCOTRL	Scottish trawl	1976	1995	1	10
SCOSEI	Scottish seine	1976	1995	1	10
SCOLTR	Scottish light trawl	1976	1995	1	10
ENGTRL	English trawl	1976	1995	1	10
ENGSEI	English seine	1976	1995	1	10
FRATRB	French trawl	1976	1995	1	10
SCOGFS	Scottish groundfish survey	1982	1995	1	6
ENGGFS	English groundfish survey	1977	1995	1	5
IBTS_Q1_IV	International groundfish survey Q1	1976	1995	1	6
IBTS_Q2_IV	International groundfish survey Q2	1991	1995	1	6
DANGIL_3a	Danish gill net	1987	1995	1	7
DANNEP_3a	Danish nephrops trawl	1987	1995	1	7
FRATRC_7d	French trawl	1985	1995	1	2

Cod in Fishing Areas IV, Skagerrak and VIId (run name: XSATIMO1) 113 FLTO1: SCOTRL_IV (Catch: Unknown) (Effort: Unknown) 1976 1995 1 1 0.00 1.00 1 10

121841										
	128.856	1299.546	676.244	151.830 227.668	84.905 69.898	86.903 30.955	10.988 30.955	3.996	2.997 2.996	1.998
144348 135220	419.389 303.876	575.162 1424.419	838.778 285.883	181.926	63.974	15.993	11.995	5.991 6.997	2.990	1.997 1.000
87467	215.635	914.453	447.243	73.875	46.921	22.961	11.980	3.993	2.995	0.998
55475	154.012	849.920	379.327	127.393	19.965	19.965	7.606	6.655	0.951	1.901
51553	95.989	928.202	387.683	113.695	51.256	13.979	5.592	1.864	0.932	0.932
47889 48339	521.806 178.337	305.760 1427.663	389.066 208.383	73.236 112.430	17.394 23.261	6.408 9.692	2.746 1.938	0.915 0.000	0.915 0.000	0.000 0.969
34574	316.043	772.341	345.964	32.726	16.831	7.480	0.935	0.935	0.000	0.000
33103	82.048	781.283	196.005	79.313	9.116	4.558	2.735	0.912	0.912	0.000
27839 27208	251.300 272.057	190.609 606.030	256.042 38.463	19.914 39.401	10.431 8.443	0.948 1.876	0.948 0.000	0.000 0.938	0.000 0.000	0.000 0.000
21559	27.259	346.285	159.513	8.077	8.077	4.038	1.010	1.010	0.000	0.000
16657	58.153	29.428	134.388	40.929	2.974	2.233	1.194	0.187	0.725	0.080
14325	15.482	327.585	18.792	22.486	5.118	1.215	1.004	0.225	0.000	0.000
13495 10887	45.113 52.261	94.909 99.870	103.953 30.235	7.731 33.291	6.998 1.153	1.718 1.211	0.483 0.120	0.000 0.030	0.028 0.053	0.000 0.000
11657	4.716	124.610	31.231	4.273	6.325	0.634	0.055	0.001	0.000	0.000
15671	54.896	40.799	124.960	9.461	1.713	1.656	0.520		0.000	0.000
17728 FLT02: SCOSE	29.099	254.011	93.718 (Effort: Unkr	49.032	1.501	0.465	0.538	0.035	0.020	0.199
1976 1995		. Onknowny								
1 1 0.00 1.00)									
1 11	E74 7/0	1/277 110	3880 407	7/0 824	179 013		0/5	74 092	0,005	7 009
307165 313913	536.740 2742.119	14237.110 4316.187		369.821 714.031	178.913 177.008		2.945	36.982 35.002	9.995 24.001	3.998 6.000
325246	1703.941	14715.490		850.971	201.993	-	.998	22.999	20.999	8.000
316419	2522.256	8021.633		382.887			5.980	43.987	18.994	11.996
297227 289672	1067.994 855.604	5957.458 13328.760	2341.237 2355.389	828.826 698.688			9.579 8.169	33.049 10.736	14.785 12.388	8.697 3.303
297730	4070.478	4794.063	6023.739	822.294			.409	25.095	20.913	11.711
333168	1342.728	13320.380	1813.966	1289.703	227.494	98	3.353	39.341	18.815	15.394
388085	4839.125	9954.796	3783.950	453.752			3.292	46.539	25.954	6.265
382910 425017	543.929 5425.851	18367.310 2656.135	2498.646 6865.172	835.287 824.863			7.343 2.826	26.159 38.171	24.355 13.965	9.922 7.448
418536	1361.396	13452.120		1423.568			5.518	24.686	35.658	15.543
377132	842.968	7091.734	4631.826	201.992			.995	55.998	15.999	10.000
355735 270869	1684.028 379.134	3495.714 12625.370		1092.297 671.531	91.150 291.604		5.066 3.807	44.650 50.407	18.698 11.534	2.391 3.699
336675	1708.483	4746.648					5.164	32.981	25.229	7.592
300217	1056.525	4120.136		618.214	97.903	5 59	252	31.805	8.852	8.416
268413 264738	259.816	5561.367	776.714	208.932	142.388		5.401	19.572	9.165	2.347
	1177 0/4	7120 945	2779 075	701 222	40 E/C	27	7 716	17 202		2 247
	1172.846 743.283	3129.865 8029.209		301.222		37	7.716 1.557	13.282 16.616	5.077	2.267 0.967
204545 FLT03: SCOLTF	743.283	8029.209	912.815	496.574		37 5 21	7.716 1.557	13.282 16.616		2.267 0.967
204545 FLT03: SCOLTF 1976 1995	743.283 ?_IV (Catch	8029.209	912.815	496.574	60.540 84.516	37 5 21			5.077	
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00	743.283 ?_IV (Catch	8029.209	912.815	496.574	60.540 84.516	37 5 21			5.077	
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11	743.283 ?_IV (Catch	8029.209 : Unknown)	912.815	496.574	60.540 84.516 38.006	37,007		16.616	5.077	
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824	743.283 R_IV (Catch 263.044 2069.153	8029.209 : Unknown) 3274.549 1808.008	912.815 (Effort: Unkr 415.069 774.432	496.574 רואסר) 101.017 118.066	84.516 38.006 75.042	39.007 24.013	1.557 10.002 13.007	16.616 1.000 8.004	5.077 0.914 1.000 2.001	0.967 0.000 (1.001
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824 236929	743.283 R_IV (Catch 263.044 2069.153 2255.601	8029.209 : Unknown) 3274.549 1808.008 5379.048	912.815 (Effort: Unkr 415.069 774.432 670.881	496.574 own) 101.017 118.066 269.952	84.516 38.006 75.042 50.991	39.007 24.013 27.995	10.002 13.007 6.999	16.616 1.000 8.004 7.999	5.077 0.914 1.000 2.001 4.999	0.967 0.000 1.001 0.000
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824	743.283 R_IV (Catch 263.044 2069.153	8029.209 : Unknown) 3274.549 1808.008	912.815 (Effort: Unkr 415.069 774.432	496.574 רואסר) 101.017 118.066	84.516 38.006 75.042	39.007 24.013	1.557 10.002 13.007	16.616 1.000 8.004	5.077 0.914 1.000 2.001	0.967 0.000 (1.001
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824 236929 207494 333197 251504	743.283 2[V (Catch 263.044 2069.153 2255.601 1973.132 1849.470 690.987	8029.209 : Unknown) 1808.008 5379.048 5845.391 5356.235 5236.821	912.815 (Effort: Unkr 415.069 774.432 670.881 1808.121 2100.709 1474.781	496.574 101.017 118.066 269.952 178.012 549.199 293.606	84.516 38.006 75.042 50.991 61.004 71.405 81.839	39.007 24.013 27.995 15.001 15.868 10.968	10.002 13.007 6.999 3.000 4.408 5.906	16.616 1.000 8.004 7.999 4.000 3.526 0.000	5.077 0.914 1.000 2.001 4.999 2.000 0.882 0.000	0.967 0.000 1.001 0.000 0.000 0.000 0.000
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824 236929 207494 333197 251504 250870	743.283 263.044 2069.153 2255.601 1973.132 1849.470 690.987 4703.856	8029.209 : Unknown) 3274.549 1808.008 5379.048 5845.391 5356.235 5236.821 2940.357	912.815 (Effort: Unkr 415.069 774.432 670.881 1808.121 2100.709 1474.781 2301.849	496.574 101.017 118.066 269.952 178.012 549.199 293.606 377.382	84.516 38.006 75.042 50.991 61.004 71.405 81.839 109.995	39.007 24.013 27.995 15.001 15.868 10.968 39.348	10.002 13.007 6.999 3.000 4.408 5.906 8.048	16.616 1.000 8.004 7.999 4.000 3.526 0.000 6.260	5.077 0.914 1.000 2.001 4.999 2.000 0.882 0.000 3.577	0.967 0.000 1.001 0.000 0.000 0.000 0.000 5.366
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824 236929 207494 333197 251504 250870 244349	743.283 2[V (Catch 263.044 2069.153 2255.601 1973.132 1849.470 690.987	8029.209 : Unknown) 3274.549 1808.008 5379.048 5845.391 5356.235 5236.821 2940.357 6293.185	912.815 (Effort: Unkr 415.069 774.432 670.881 1808.121 2100.709 1474.781 2301.849 1020.032	496.574 101.017 118.066 269.952 178.012 549.199 293.606 377.382 459.821	38.006 75.042 50.991 61.004 71.405 81.839 109.995 111.146	39.007 24.013 27.995 15.001 15.868 10.968 39.348 31.372	10.002 13.007 6.999 3.000 4.408 5.906 8.048 14.341	16.616 1.000 8.004 7.999 4.000 3.526 0.000 6.260 5.378	5.077 0.914 1.000 2.001 4.999 2.000 0.882 0.000 3.577 2.689	0.967 0.000 1.001 0.000 0.000 0.000 5.366 0.896
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824 236929 207494 333197 251504 250870 244349 240725 268136	743.283 263.044 2069.153 2255.601 1973.132 1849.470 690.987 4703.856 1321.201 2723.570 430.874	8029.209 : Unknown) 3274.549 1808.008 5379.048 5845.391 5356.235 5236.821 2940.357 6293.185 3022.983 5959.050	912.815 (Effort: Unkr 415.069 774.432 670.881 1808.121 2100.709 1474.781 2301.849 1020.032 1543.958 865.407	496.574 101.017 118.066 269.952 178.012 549.199 293.606 377.382 459.821 180.369 293.653	38.006 75.042 50.991 61.004 71.405 81.839 109.995 111.146 85.675 39.337	39.007 24.013 27.995 15.001 15.868 10.968 39.348 31.372 36.074 21.041	10.002 13.007 6.999 3.000 4.408 5.906 8.048 14.341 9.920 3.659	16.616 1.000 8.004 7.999 4.000 3.526 0.000 6.260 5.378 7.215 2.744	5.077 0.914 1.000 2.001 4.999 2.000 0.882 0.000 3.577 2.689 2.706 0.915	0.967 0.000 1.001 0.000 0.000 0.000 5.366 0.896 0.000 0.915
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824 236929 207494 333197 251504 250870 244349 240725 268136 279767	743.283 263.044 2069.153 2255.601 1973.132 1849.470 690.987 4703.856 1321.201 2723.570 430.874 4140.451	8029.209 : Unknown) (3274.549 1808.008 5379.048 5845.391 5356.235 5236.821 2940.357 6293.185 3022.983 5959.050 1166.751	912.815 (Effort: Unkr 415.069 774.432 670.881 1808.121 2100.709 1474.781 2301.849 1020.032 1543.958 865.407 1847.672	496.574 nown) 101.017 118.066 269.952 178.012 549.199 293.606 377.382 459.821 180.369 293.653 250.965	38.006 75.042 50.991 61.004 71.405 81.839 109.995 111.146 85.675 39.337 95.651	39.007 24.013 27.995 15.001 15.868 10.968 39.348 31.372 36.074 21.041 12.311	10.002 13.007 6.999 3.000 4.408 5.906 8.048 14.341 9.920 3.659 8.523	16.616 1.000 8.004 7.999 4.000 3.526 0.000 6.260 5.378 7.215 2.744 4.735	5.077 0.914 1.000 2.001 4.999 2.000 0.882 0.000 3.577 2.689 2.706 0.915 1.894	0.967 0.000 1.001 0.000 0.000 0.000 5.366 0.896 0.000 0.915 0.947
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824 236929 207494 333197 251504 250870 244349 240725 268136 279767 351131	743.283 263.044 2069.153 2255.601 1973.132 1849.470 690.987 4703.856 1321.201 2723.570 430.874 4140.451 2045.224	8029.209 : Unknown) (3274.549 1808.008 5379.048 5845.391 5356.235 5236.821 2940.357 6293.185 3022.983 5959.050 1166.751 5662.771	912.815 (Effort: Unkr 415.069 774.432 670.881 1808.121 2100.709 1474.781 2301.849 1020.032 1543.958 865.407 1847.672 530.278	496.574 nown) 101.017 118.066 269.952 178.012 549.199 293.606 377.382 459.821 180.369 293.653 250.965 468.273	38.006 75.042 50.991 61.004 71.405 81.839 109.995 111.146 85.675 39.337 95.651 45.347	39.007 24.013 27.995 15.001 15.868 10.968 39.348 31.372 36.074 21.041 12.311 31.465	10.002 13.007 6.999 3.000 4.408 5.906 8.048 14.341 9.920 3.659 8.523 10.180	16.616 1.000 8.004 7.999 4.000 3.526 0.000 6.260 5.378 7.215 2.744 4.735 5.553	5.077 0.914 1.000 2.001 4.999 2.000 0.882 0.000 3.577 2.689 2.706 0.915 1.894 0.925	0.967 0.000 1.001 0.000 0.000 0.000 5.366 0.896 0.000 0.915 0.947 0.925
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824 236929 207494 333197 251504 250870 244349 240725 268136 279767 351131 391988 405883	743.283 263.044 2069.153 2255.601 1973.132 1849.470 690.987 4703.856 1321.201 2723.570 430.874 4140.451 2045.224 403.133 1574.048	8029.209 : Unknown) (3274.549 1808.008 5379.048 5845.391 5356.235 5236.821 2940.357 6293.185 3022.983 5959.050 1166.751 5662.771 3300.276 1205.534	912.815 (Effort: Unkr 415.069 774.432 670.881 1808.121 2100.709 1474.781 2301.849 1020.032 1543.958 865.407 1847.672 530.278 1912.375 1594.526	496.574 101.017 118.066 269.952 178.012 549.199 293.606 377.382 459.821 180.369 293.653 250.965 468.273 133.375 565.712	38.006 75.042 50.991 61.004 71.405 81.839 109.995 111.146 85.675 39.337 95.651 45.347 148.417 48.605	39.007 24.013 27.995 15.001 15.868 10.968 39.348 31.372 36.074 21.041 12.311 31.465 33.093 45.236	10.002 13.007 6.999 3.000 4.408 5.906 8.048 14.341 9.920 3.659 8.523 10.180 14.039 13.343	16.616 1.000 8.004 7.999 4.000 3.526 0.000 6.260 5.378 7.215 2.744 4.735 5.553 2.006 3.382	5.077 0.914 1.000 2.001 4.999 2.000 0.882 0.000 3.577 2.689 2.706 0.915 1.894 0.925 1.003 0.894	0.967 0.000 1.001 0.000 0.000 0.000 5.366 0.896 0.000 0.915 0.947 0.925 0.000 0.257
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824 236929 207494 333197 251504 250870 244349 240725 268136 279767 351131 391988 405883 398153	743.283 263.044 2069.153 2255.601 1973.132 1849.470 690.987 4703.856 1321.201 2723.570 430.874 4140.451 2045.224 403.133 1574.048 327.094	8029.209 : Unknown) (3274.549 1808.008 5379.048 5845.391 5356.235 5236.821 2940.357 6293.185 3022.983 5959.050 1166.751 5662.771 3300.276 1205.534 5739.588	912.815 (Effort: Unkr 415.069 774.432 670.881 1808.121 2100.709 1474.781 2301.849 1020.032 1543.958 865.407 1847.672 530.278 1912.375 1594.526 523.696	496.574 101.017 118.066 269.952 178.012 549.199 293.606 377.382 459.821 180.369 293.653 250.965 468.273 133.375 565.712 456.829	38.006 75.042 50.991 61.004 71.405 81.839 109.995 111.146 85.675 39.337 95.651 45.347 148.417 48.605 179.523	21 39.007 24.013 27.995 15.001 15.868 39.348 31.372 36.074 21.041 12.311 31.465 33.093 45.236 25.746	10.002 13.007 6.999 3.000 4.408 5.906 8.048 14.341 9.920 3.659 8.523 10.180 14.039 13.343 11.324	16.616 1.000 8.004 7.999 4.000 3.526 0.000 6.260 5.378 7.215 2.744 4.735 5.553 2.006 3.382 3.712	5.077 0.914 1.000 2.001 4.999 2.000 0.882 0.000 3.577 2.689 2.706 0.915 1.894 0.925 1.003 0.894 0.999	0.967 0.000 1.001 0.000 0.000 0.000 5.366 0.896 0.000 0.915 0.947 0.925 0.000 0.257 0.128
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824 236929 207494 333197 251504 250870 244349 240725 268136 279767 351131 391988 405883 398153 408056	743.283 263.044 2069.153 2255.601 1973.132 1849.470 690.987 4703.856 1321.201 2723.570 430.874 4140.451 2045.224 403.133 1574.048 327.094 1821.110	8029.209 : Unknown) (3274.549 1808.008 5379.048 5845.391 5356.235 5236.821 2940.357 6293.185 3022.983 5959.050 1166.751 5662.771 3300.276 1205.534 5739.588 1904.532	912.815 (Effort: Unkr 415.069 774.432 670.881 1808.121 2100.709 1474.781 2301.849 1020.032 1543.958 865.407 1847.672 530.278 1912.375 1594.526 523.696 2125.128	496.574 101.017 118.066 269.952 178.012 549.199 293.606 377.382 459.821 180.369 293.653 250.965 468.273 133.375 565.712 456.829 138.039	84.516 38.006 75.042 50.991 61.004 71.405 81.839 109.995 111.146 85.675 39.337 95.651 45.347 148.417 48.605 179.523 94.188	39.007 24.013 27.995 15.001 15.868 10.968 39.348 31.372 36.074 21.041 12.311 31.465 33.093 45.236 25.746 48.099	10.002 13.007 6.999 3.000 4.408 5.906 8.048 14.341 9.920 3.659 8.523 10.180 14.039 13.343 11.324 8.199	16.616 1.000 8.004 7.999 4.000 3.526 0.000 6.260 5.378 7.215 2.744 4.735 5.553 2.006 3.382 3.712 8.482	5.077 0.914 1.000 2.001 4.999 2.000 0.882 0.000 3.577 2.689 2.706 0.915 1.894 0.925 1.003 0.894 0.999 1.206	0.967 0.000 1.001 0.000 0.000 0.000 5.366 0.896 0.000 0.915 0.947 0.925 0.000 0.257 0.128 0.028
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824 236929 207494 333197 251504 250870 244349 240725 268136 279767 351131 391988 405883 398153	743.283 263.044 2069.153 2255.601 1973.132 1849.470 690.987 4703.856 1321.201 2723.570 430.874 4140.451 2045.224 403.133 1574.048 327.094	8029.209 : Unknown) (3274.549 1808.008 5379.048 5845.391 5356.235 5236.821 2940.357 6293.185 3022.983 5959.050 1166.751 5662.771 3300.276 1205.534 5739.588	912.815 (Effort: Unkr 415.069 774.432 670.881 1808.121 2100.709 1474.781 2301.849 1020.032 1543.958 865.407 1847.672 530.278 1912.375 1594.526 523.696	496.574 nown) 101.017 118.066 269.952 178.012 549.199 293.606 377.382 459.821 180.369 293.653 250.965 468.273 133.375 565.712 456.829 138.039 646.729	38.006 75.042 50.991 61.004 71.405 81.839 109.995 111.146 85.675 39.337 95.651 45.347 148.417 48.605 179.523	21 39.007 24.013 27.995 15.001 15.868 39.348 31.372 36.074 21.041 12.311 31.465 33.093 45.236 25.746 48.099 36.368	10.002 13.007 6.999 3.000 4.408 5.906 8.048 14.341 9.920 3.659 8.523 10.180 14.039 13.343 11.324	16.616 1.000 8.004 7.999 4.000 3.526 0.000 6.260 5.378 7.215 2.744 4.735 5.553 2.006 3.382 3.712	5.077 0.914 1.000 2.001 4.999 2.000 0.882 0.000 3.577 2.689 2.706 0.915 1.894 0.925 1.003 0.894 0.999	0.967 0.000 1.001 0.000 0.000 0.000 5.366 0.896 0.000 0.915 0.947 0.925 0.000 0.257 0.128
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824 236929 207494 333197 251504 250870 244349 240725 268136 279767 351131 391988 405883 398153 408056 473955 447064 480400	743.283 263.044 2069.153 2255.601 1973.132 1849.470 690.987 4703.856 1321.201 2723.570 430.874 4140.451 2045.224 403.133 1574.048 327.094 1821.110 1401.577 250.643 722.752	8029.209 : Unknown) (3274.549 1808.008 5379.048 5845.391 5356.235 5236.821 2940.357 6293.185 3022.983 5959.050 1166.751 5662.771 3300.276 1205.534 5739.588 1904.532 2749.504 4891.675 1924.201	912.815 (Effort: Unkr 415.069 774.432 670.881 1808.121 2100.709 1474.781 2301.849 1020.032 1543.958 865.407 1847.672 530.278 1912.375 1594.526 523.696 2125.128 747.952 1262.363 2364.757	496.574 nown) 101.017 118.066 269.952 178.012 549.199 293.606 377.382 459.821 180.369 293.653 250.965 468.273 133.375 565.712 456.829 138.039 646.729 163.983 370.592	38.006 75.042 50.991 61.004 71.405 81.839 109.995 111.146 85.675 39.337 95.651 45.347 148.417 48.605 179.523 94.188 44.077 80.122 47.312	21 39.007 24.013 27.995 15.001 15.868 10.968 39.348 31.372 36.074 21.041 12.311 31.465 33.093 45.236 25.746 48.099 36.368 9.885 42.371	1.557 10.002 13.007 6.999 3.000 4.408 5.906 8.048 14.341 9.920 3.659 8.523 10.180 14.039 13.343 11.324 8.199 11.912 5.161 5.792	16.616 1.000 8.004 7.999 4.000 3.526 0.000 6.260 5.378 7.215 2.744 4.735 5.553 2.006 3.382 3.712 8.482 2.053 3.794 2.346	5.077 0.914 1.000 2.001 4.999 2.000 0.882 0.000 3.577 2.689 2.706 0.915 1.894 0.925 1.003 0.894 0.925 1.003 0.894 0.999 1.206 2.020 0.416 0.300	0.967 0.000 1.001 0.000 0.000 0.000 5.366 0.896 0.000 0.915 0.947 0.925 0.000 0.257 0.128 0.028 0.220 0.211 0.224
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824 236929 207494 333197 251504 250870 244349 240725 268136 279767 351131 391988 405883 398153 408056 473955 447064 480400 442010	743.283 263.044 2069.153 2255.601 1973.132 1849.470 690.987 4703.856 1321.201 2723.570 430.874 4140.451 2045.224 403.133 1574.048 327.094 1821.110 1401.577 250.643 722.752 879.046	8029.209 : Unknown) (3274.549 1808.008 5379.048 5845.391 5356.235 5236.821 2940.357 6293.185 3022.983 5959.050 1166.751 5662.771 3300.276 1205.534 5739.588 1904.532 2749.504 4891.675 1924.201 5807.931	912.815 (Effort: Unkr 415.069 774.432 670.881 1808.121 2100.709 1474.781 2301.849 1020.032 1543.958 865.407 1847.672 530.278 1912.375 1594.526 523.696 2125.128 747.952 1262.363 2364.757 1579.502	496.574 hown) 101.017 118.066 269.952 178.012 549.199 293.606 377.382 459.821 180.369 293.653 250.965 468.273 133.375 565.712 456.829 138.039 646.729 163.983 370.592 797.169	84.516 38.006 75.042 50.991 61.004 71.405 81.839 109.995 111.146 85.675 39.337 95.651 45.347 148.417 148.405 179.523 94.188 44.077 80.122	21 39.007 24.013 27.995 15.001 15.868 10.968 39.348 31.372 36.074 21.041 12.311 31.465 33.093 45.236 25.746 48.099 36.368 9.885	10.002 13.007 6.999 3.000 4.408 5.906 8.048 14.341 9.920 3.659 8.523 10.180 14.039 13.343 11.324 8.199 11.912 5.161	16.616 1.000 8.004 7.999 4.000 3.526 0.000 6.260 5.378 7.215 2.744 4.735 5.553 2.006 3.382 3.712 8.482 2.053 3.794	5.077 0.914 1.000 2.001 4.999 2.000 0.882 0.000 3.577 2.689 2.706 0.915 1.894 0.925 1.003 0.894 0.925 1.003 0.894 0.999 1.206 2.020 0.416	0.967 0.000 1.001 0.000 0.000 0.000 5.366 0.896 0.000 0.915 0.947 0.925 0.000 0.257 0.257 0.257 0.257 0.220 0.220 0.211
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824 236929 207494 333197 251504 250870 244349 240725 268136 279767 351131 391988 405883 398153 408056 473955 447064 480400 442010 FLT04: ENGTRI	743.283 263.044 2069.153 2255.601 1973.132 1849.470 690.987 4703.856 1321.201 2723.570 430.874 4140.451 2045.224 403.133 1574.048 327.094 1821.110 1401.577 250.643 722.752 879.046	8029.209 : Unknown) (3274.549 1808.008 5379.048 5845.391 5356.235 5236.821 2940.357 6293.185 3022.983 5959.050 1166.751 5662.771 3300.276 1205.534 5739.588 1904.532 2749.504 4891.675 1924.201 5807.931	912.815 (Effort: Unkr 415.069 774.432 670.881 1808.121 2100.709 1474.781 2301.849 1020.032 1543.958 865.407 1847.672 530.278 1912.375 1594.526 523.696 2125.128 747.952 1262.363 2364.757 1579.502	496.574 hown) 101.017 118.066 269.952 178.012 549.199 293.606 377.382 459.821 180.369 293.653 250.965 468.273 133.375 565.712 456.829 138.039 646.729 163.983 370.592 797.169	38.006 75.042 50.991 61.004 71.405 81.839 109.995 111.146 85.675 39.337 95.651 45.347 148.417 48.605 179.523 94.188 44.077 80.122 47.312	21 39.007 24.013 27.995 15.001 15.868 10.968 39.348 31.372 36.074 21.041 12.311 31.465 33.093 45.236 25.746 48.099 36.368 9.885 42.371	1.557 10.002 13.007 6.999 3.000 4.408 5.906 8.048 14.341 9.920 3.659 8.523 10.180 14.039 13.343 11.324 8.199 11.912 5.161 5.792	16.616 1.000 8.004 7.999 4.000 3.526 0.000 6.260 5.378 7.215 2.744 4.735 5.553 2.006 3.382 3.712 8.482 2.053 3.794 2.346	5.077 0.914 1.000 2.001 4.999 2.000 0.882 0.000 3.577 2.689 2.706 0.915 1.894 0.925 1.003 0.894 0.925 1.003 0.894 0.999 1.206 2.020 0.416 0.300	0.967 0.000 1.001 0.000 0.000 0.000 5.366 0.896 0.000 0.915 0.947 0.925 0.000 0.257 0.128 0.028 0.220 0.211 0.224
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824 236929 207494 333197 251504 250870 244349 240725 268136 279767 351131 391988 405883 398153 408056 473955 447064 480400 442010 FLT04: ENGTRI 1976 1995 1 1 0.00 1.00	743.283 263.044 2069.153 2255.601 1973.132 1849.470 690.987 4703.856 1321.201 2723.570 430.874 4140.451 2045.224 403.133 1574.048 327.094 1821.110 1401.577 250.643 722.752 879.046 	8029.209 : Unknown) (3274.549 1808.008 5379.048 5845.391 5356.235 5236.821 2940.357 6293.185 3022.983 5959.050 1166.751 5662.771 3300.276 1205.534 5739.588 1904.532 2749.504 4891.675 1924.201 5807.931	912.815 (Effort: Unkr 415.069 774.432 670.881 1808.121 2100.709 1474.781 2301.849 1020.032 1543.958 865.407 1847.672 530.278 1912.375 1594.526 523.696 2125.128 747.952 1262.363 2364.757 1579.502	496.574 hown) 101.017 118.066 269.952 178.012 549.199 293.606 377.382 459.821 180.369 293.653 250.965 468.273 133.375 565.712 456.829 138.039 646.729 163.983 370.592 797.169	38.006 75.042 50.991 61.004 71.405 81.839 109.995 111.146 85.675 39.337 95.651 45.347 148.417 48.605 179.523 94.188 44.077 80.122 47.312	21 39.007 24.013 27.995 15.001 15.868 10.968 39.348 31.372 36.074 21.041 12.311 31.465 33.093 45.236 25.746 48.099 36.368 9.885 42.371	1.557 10.002 13.007 6.999 3.000 4.408 5.906 8.048 14.341 9.920 3.659 8.523 10.180 14.039 13.343 11.324 8.199 11.912 5.161 5.792	16.616 1.000 8.004 7.999 4.000 3.526 0.000 6.260 5.378 7.215 2.744 4.735 5.553 2.006 3.382 3.712 8.482 2.053 3.794 2.346	5.077 0.914 1.000 2.001 4.999 2.000 0.882 0.000 3.577 2.689 2.706 0.915 1.894 0.925 1.003 0.894 0.925 1.003 0.894 0.999 1.206 2.020 0.416 0.300	0.967 0.000 1.001 0.000 0.000 0.000 5.366 0.896 0.000 0.915 0.947 0.925 0.000 0.257 0.128 0.028 0.220 0.211 0.224
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824 236929 207494 333197 251504 250870 244349 240725 268136 279767 351131 391988 405883 398153 408056 473955 447064 480400 442010 FLT04: ENGTRI 1976 1995 1 1 0.00 1.00 1 11	743.283 263.044 2069.153 2255.601 1973.132 1849.470 690.987 4703.856 1321.201 2723.570 430.874 4140.451 2045.224 403.133 1574.048 327.094 1821.110 1401.577 250.643 722.752 879.046 _IV (Catch	8029.209 : Unknown) (3274.549 1808.008 5379.048 5845.391 5356.235 5236.821 2940.357 6293.185 3022.983 5959.050 1166.751 5662.771 3300.276 1205.534 5739.588 1904.532 2749.504 4891.675 1924.201 5807.931 : Unknown) (912.815 (Effort: Unkr 415.069 774.432 670.881 1808.121 2100.709 1474.781 2301.849 1020.032 1543.958 865.407 1847.672 530.278 1912.375 1594.526 523.696 2125.128 747.952 1262.363 2364.757 1579.502 (Effort: Unkr	496.574 101.017 118.066 269.952 178.012 549.199 293.606 377.382 459.821 180.369 293.653 250.965 468.273 133.375 565.712 456.829 138.039 646.729 163.983 370.592 797.169 DOWN)	84.516 38.006 75.042 50.991 61.004 71.405 81.839 109.995 111.146 85.675 39.337 95.651 45.347 148.417 48.605 179.523 94.188 44.077 80.122 47.312 73.989	21 39.007 24.013 27.995 15.001 15.868 10.968 39.348 31.372 36.074 21.041 12.311 31.465 33.093 45.236 25.746 48.099 36.368 9.885 42.371 8.577	1.557 10.002 13.007 6.999 3.000 4.408 5.906 8.048 14.341 9.920 3.659 8.523 10.180 14.039 13.343 11.324 8.199 11.912 5.161 5.792 6.861	16.616 1.000 8.004 7.999 4.000 3.526 0.000 6.260 5.378 7.215 2.744 4.735 5.553 2.006 3.382 3.712 8.482 2.053 3.794 2.346 0.637	5.077 0.914 1.000 2.001 4.999 2.000 0.882 0.000 3.577 2.689 2.706 0.915 1.894 0.925 1.003 0.894 0.999 1.206 2.020 0.416 0.300 0.882	0.967 0.000 1.001 0.000 0.000 0.000 5.366 0.896 0.000 0.915 0.947 0.925 0.000 0.257 0.128 0.028 0.220 0.211 0.224 0.554
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824 236929 207494 333197 251504 250870 244349 240725 268136 279767 351131 391988 405883 398153 408056 473955 447064 480400 442010 FLT04: ENGTRI 1976 1995 1 0.00 1.00 1 11 493436	743.283 263.044 2069.153 2255.601 1973.132 1849.470 690.987 4703.856 1321.201 2723.570 430.874 4140.451 2045.224 403.133 1574.048 327.094 1821.110 1401.577 250.643 722.752 879.046 _IV (Catch) 480.000	8029.209 : Unknown) (3274.549 1808.008 5379.048 5845.391 5356.235 5236.821 2940.357 6293.185 3022.983 5959.050 1166.751 5662.771 3300.276 1205.534 5739.588 1904.532 2749.504 4891.675 1924.201 5807.931 : Unknown) (6058.000	912.815 (Effort: Unkr 415.069 774.432 670.881 1808.121 2100.709 1474.781 2301.849 1020.032 1543.958 865.407 1847.672 530.278 1912.375 1594.526 523.696 2125.128 747.952 1262.363 2364.757 1579.502 (Effort: Unkr	496.574 nown) 101.017 118.066 269.952 178.012 549.199 293.606 377.382 459.821 180.369 293.653 250.965 468.273 133.375 565.712 456.829 138.039 646.729 163.983 370.592 797.169 nown)	84.516 38.006 75.042 50.991 61.004 71.405 81.839 109.995 111.146 85.675 39.337 95.651 45.347 148.417 48.605 179.523 94.188 44.077 80.122 47.312 73.989	21 39.007 24.013 27.995 15.001 15.868 10.968 39.348 31.372 36.074 21.041 12.311 31.465 33.093 45.236 25.746 48.099 36.368 9.885 42.371 8.577	1.557 10.002 13.007 6.999 3.000 4.408 5.906 8.048 14.341 9.920 3.659 8.523 10.180 14.039 13.343 11.324 8.199 11.912 5.161 5.792 6.861	16.616 1.000 8.004 7.999 4.000 3.526 0.000 6.260 5.378 7.215 2.744 4.735 5.553 2.006 3.382 3.712 8.482 2.053 3.794 2.346 0.637 100.000	5.077 0.914 1.000 2.001 4.999 2.000 0.882 0.000 3.577 2.689 2.706 0.915 1.894 0.925 1.003 0.894 0.999 1.206 2.020 0.416 0.300 0.882	0.967 0.000 1.001 0.000 0.000 0.000 0.000 0.915 0.947 0.925 0.000 0.257 0.225 0.000 0.257 0.225 0.028 0.220 0.211 0.224 0.554
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824 236929 207494 333197 251504 250870 244349 240725 268136 279767 351131 391988 405883 398153 408056 473955 447064 480400 442010 FLT04: ENGTRI 1976 1995 1 1 0.00 1.00 1 11	743.283 263.044 2069.153 2255.601 1973.132 1849.470 690.987 4703.856 1321.201 2723.570 430.874 4140.451 2045.224 403.133 1574.048 327.094 1821.110 1401.577 250.643 722.752 879.046 _IV (Catch	8029.209 : Unknown) (3274.549 1808.008 5379.048 5845.391 5356.235 5236.821 2940.357 6293.185 3022.983 5959.050 1166.751 5662.771 3300.276 1205.534 5739.588 1904.532 2749.504 4891.675 1924.201 5807.931 : Unknown) (6058.000 1905.000 10576.000	912.815 (Effort: Unkr 415.069 774.432 670.881 1808.121 2100.709 1474.781 2301.849 1020.032 1543.958 865.407 1847.672 530.278 1912.375 1594.526 523.696 2125.128 747.952 1262.363 2364.757 1579.502 (Effort: Unkr 1508.000 2013.000 1093.000	496.574 nown) 101.017 118.066 269.952 178.012 549.199 293.606 377.382 459.821 180.369 293.653 250.965 468.273 133.375 565.712 456.829 138.039 646.729 163.983 370.592 797.169 nown) 727.000 616.000 987.000	84.516 38.006 75.042 50.991 61.004 71.405 81.839 109.995 111.146 85.675 39.337 95.651 45.347 148.417 48.605 179.523 94.188 44.077 80.122 47.312 73.989 163.000 320.000 338.000	21 39.007 24.013 27.995 15.001 15.868 10.968 39.348 31.372 36.074 21.041 12.311 31.465 33.093 45.236 25.746 48.099 36.368 9.885 42.371 8.577	1.557 10.002 13.007 6.999 3.000 4.408 5.906 8.048 14.341 9.920 3.659 8.523 10.180 14.039 13.343 11.324 8.199 13.343 11.912 5.161 5.792 6.861 5.000 5.000 5.000	16.616 1.000 8.004 7.999 4.000 3.526 0.000 6.260 5.378 7.215 2.744 4.735 5.553 2.006 3.382 3.712 8.482 2.053 3.794 2.346 0.637 100.000 127.000 57.000	5.077 0.914 1.000 2.001 4.999 2.000 0.882 0.000 3.577 2.689 2.706 0.915 1.894 0.925 1.003 0.894 0.925 1.003 0.894 0.999 1.206 2.020 0.416 0.300 0.882 27.000 48.000 60.000	0.967 0.000 1.001 0.000 0.000 0.000 5.366 0.896 0.000 0.915 0.947 0.925 0.000 0.257 0.128 0.220 0.211 0.224 0.554 10.000 14.000 22.000
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824 236929 207494 333197 251504 250870 244349 240725 268136 279767 351131 391988 405883 398153 408056 473955 447064 480400 442010 FLT04: ENGTRI 1976 1995 1 1 0.00 1.00 1 11 493436 509862 559930 553020	743.283 243.044 2669.153 2255.601 1973.132 1849.470 690.987 4703.856 1321.201 2723.570 430.874 4140.451 2045.224 403.133 1574.048 327.094 1821.110 1401.577 250.643 722.752 879.046 _IV (Catch 480.000 2570.000 2029.000 1329.000	8029.209 : Unknown) (3274.549 1808.008 5379.048 5845.391 5356.235 5236.821 2940.357 6293.185 3022.983 5959.050 1166.751 5662.771 3300.276 1205.534 5739.588 1904.532 2749.504 4891.675 1924.201 5807.931 : Unknown) (6058.000 1905.000 10576.000 7698.000	912.815 (Effort: Unkr 415.069 774.432 670.881 1808.121 2100.709 1474.781 2301.849 1020.032 1543.958 865.407 1847.672 530.278 1912.375 1594.526 523.696 2125.128 747.952 1262.363 2364.757 1579.502 (Effort: Unkr 1508.000 2013.000 1093.000 3341.000	496.574 nown) 101.017 118.066 269.952 178.012 549.199 293.606 377.382 459.821 180.369 293.653 250.965 468.273 133.375 565.712 456.829 138.039 646.729 163.983 370.592 797.169 nown) 727.000 616.000 987.000 393.000	84.516 38.006 75.042 50.991 61.004 71.405 81.839 109.995 111.146 85.675 39.337 95.651 45.347 148.417 48.605 179.523 94.188 44.077 80.122 47.312 73.989 163.000 320.000 338.000 403.000	21 39.007 24.013 27.995 15.001 15.868 10.968 39.348 31.372 36.074 21.041 12.311 31.465 33.093 45.236 25.746 48.099 36.368 9.885 42.371 8.577 9.995 9.985 10.995 10.968 10.967 10.968	1.557 10.002 13.007 6.999 3.000 4.408 5.906 8.048 14.341 9.920 3.659 8.523 10.180 14.039 13.343 11.324 8.199 11.912 5.161 5.792 6.861 5.000 5.000 5.000 5.000 5.000	16.616 1.000 8.004 7.999 4.000 3.526 0.000 6.260 5.378 7.215 2.744 4.735 5.553 2.006 3.382 3.712 8.482 2.053 3.794 2.346 0.637 100.000 127.000 57.000 54.000	5.077 0.914 1.000 2.001 4.999 2.000 0.882 0.000 3.577 2.689 2.706 0.915 1.894 0.925 1.003 0.894 0.999 1.206 2.020 0.416 0.300 0.882 27.000 48.000 60.000 15.000	0.967 0.000 1.001 0.000 0.000 0.000 5.366 0.000 0.915 0.947 0.925 0.000 0.257 0.128 0.220 0.211 0.224 0.554 10.000 14.000 22.000 30.000
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824 236929 207494 333197 251504 250870 244349 240725 268136 279767 351131 391988 405883 398153 408056 473955 447064 480400 442010 FLT04: ENGTRI 1976 1995 1 1 0.00 1.00 1 11 493436 509862 559930 553020 442036	743.283 243.044 2069.153 2255.601 1973.132 1849.470 690.987 4703.856 1321.201 2723.570 430.874 4140.451 2045.224 403.133 1574.048 327.094 1821.110 1401.577 250.643 722.752 879.046 _IV (Catch 2570.000 2029.000 1329.000 1881.000	8029.209 : Unknown) (3274.549 1808.008 5379.048 5845.391 5356.235 5236.821 2940.357 6293.185 3022.983 5959.050 1166.751 5662.771 3300.276 1205.534 5739.588 1904.532 2749.504 4891.675 1924.201 5807.931 : Unknown) (6058.000 1905.000 10576.000 7698.000 3786.000	912.815 (Effort: Unkr 415.069 774.432 670.881 1808.121 2100.709 1474.781 2301.849 1020.032 1543.958 865.407 1847.672 530.278 1912.375 1594.526 523.696 2125.128 747.952 1262.363 2364.757 1579.502 (Effort: Unkr 1508.000 2013.000 1093.000 3341.000 2106.000	496.574 nown) 101.017 118.066 269.952 178.012 549.199 293.606 377.382 459.821 180.369 293.653 250.965 468.273 133.375 565.712 456.829 138.039 646.729 163.983 370.592 797.169 nown) 727.000 616.000 987.000 393.000 865.000	84.516 38.006 75.042 50.991 61.004 71.405 81.839 109.995 111.146 85.675 39.337 95.651 45.347 148.417 48.605 179.523 94.188 44.077 80.122 47.312 73.989 163.000 320.000 338.000 403.000 122.000	21 39.007 24.013 27.995 15.001 15.868 10.968 39.348 31.372 36.074 21.041 12.311 31.465 33.093 45.236 25.746 48.099 36.368 9.885 42.371 8.577 395 995 1175 995 117	1.557 10.002 13.007 6.999 3.000 4.408 5.906 8.048 14.341 9.920 3.659 8.523 10.180 14.039 13.343 11.324 8.199 11.912 5.161 5.792 6.861 5.000 3.000 7.000 5.000 5.000 5.000	16.616 1.000 8.004 7.999 4.000 3.526 0.000 6.260 5.378 7.215 2.744 4.735 5.553 2.006 3.382 3.712 8.482 2.053 3.794 2.346 0.637 100.000 127.000 57.000 54.000 38.000	5.077 0.914 1.000 2.001 4.999 2.000 0.882 0.000 3.577 2.689 2.706 0.915 1.894 0.925 1.003 0.894 0.999 1.206 2.020 0.416 0.300 0.882 27.000 48.000 60.000 15.000 16.000	0.967 0.000 1.001 0.000 0.000 0.000 0.000 5.366 0.896 0.000 0.915 0.947 0.925 0.000 0.257 0.128 0.220 0.211 0.224 0.554 10.000 14.000 22.000 30.000 6.000
204545 FLT03: SCOLTF 1976 1995 1 1 0.00 1.00 1 11 152419 224824 236929 207494 333197 251504 250870 244349 240725 268136 279767 351131 391988 405883 398153 408056 473955 447064 480400 442010 FLT04: ENGTRI 1976 1995 1 1 0.00 1.00 1 11 493436 509862 559930 553020	743.283 243.044 2669.153 2255.601 1973.132 1849.470 690.987 4703.856 1321.201 2723.570 430.874 4140.451 2045.224 403.133 1574.048 327.094 1821.110 1401.577 250.643 722.752 879.046 _IV (Catch 480.000 2570.000 2029.000 1329.000	8029.209 : Unknown) (3274.549 1808.008 5379.048 5845.391 5356.235 5236.821 2940.357 6293.185 3022.983 5959.050 1166.751 5662.771 3300.276 1205.534 5739.588 1904.532 2749.504 4891.675 1924.201 5807.931 : Unknown) (6058.000 1905.000 10576.000 7698.000	912.815 (Effort: Unkr 415.069 774.432 670.881 1808.121 2100.709 1474.781 2301.849 1020.032 1543.958 865.407 1847.672 530.278 1912.375 1594.526 523.696 2125.128 747.952 1262.363 2364.757 1579.502 (Effort: Unkr 1508.000 2013.000 1093.000 3341.000 2106.000 1886.000	496.574 nown) 101.017 118.066 269.952 178.012 549.199 293.606 377.382 459.821 180.369 293.653 250.965 468.273 133.375 565.712 456.829 138.039 646.729 163.983 370.592 797.169 nown) 727.000 616.000 987.000 393.000	84.516 38.006 75.042 50.991 61.004 71.405 81.839 109.995 111.146 85.675 39.337 95.651 45.347 148.417 48.605 179.523 94.188 44.077 80.122 47.312 73.989 163.000 320.000 338.000 403.000 250.000	21 39.007 24.013 27.995 15.001 15.868 10.968 39.348 31.372 36.074 21.041 12.311 31.465 33.093 45.236 25.746 48.099 36.368 9.885 42.371 8.577 9.985 117 9.985 117 9.985 117 117 118 118 129 119 119 119 119 119 119 119	1.557 10.002 13.007 6.999 3.000 4.408 5.906 8.048 14.341 9.920 3.659 8.523 10.180 14.039 13.343 11.324 8.199 11.912 5.161 5.792 6.861 5.000 5.000 5.000 5.000 5.000	16.616 1.000 8.004 7.999 4.000 3.526 0.000 6.260 5.378 7.215 2.744 4.735 5.553 2.006 3.382 3.712 8.482 2.053 3.794 2.346 0.637 100.000 127.000 57.000 54.000	5.077 0.914 1.000 2.001 4.999 2.000 0.882 0.000 3.577 2.689 2.706 0.915 1.894 0.925 1.003 0.894 0.999 1.206 2.020 0.416 0.300 0.882 27.000 48.000 60.000 15.000	0.967 0.000 1.001 0.000 0.000 0.000 5.366 0.096 0.000 0.915 0.947 0.925 0.000 0.257 0.128 0.220 0.211 0.224 0.554 10.000 14.000 22.000 30.000

1

1 able es									
392364 358387 342844 288867 275899 296092 310444 255314 258037 223702 209869 184764 173425 FLT05: ENGS 1976 1995 1 1 0.00 1. 1 11	_	14220.000 3459.000 8212.000 2107.000 10435.000 2102.000 1958.000 3101.000 1559.000 2171.000 4054.000 2454.287 3799.592 1: Unknown) (1185.000 2656.000 1047.000 2388.000 682.000 2428.000 718.000 513.000 1092.000 481.000 442.000 1146.382 871.887 Effort: Unkn	907.000 267.000 533.000 209.000 596.000 90.000 134.000 88.000 234.000 96.000 78.190 158.030 own)	217.000 72.000 161.000 36.000 126.000 25.000 101.000 25.000 19.000 55.000	87.000 42.000 54.000 26.000 17.000 34.000 11.000 17.000 5.000 5.000 7.036 2.992	49.000 32.000 16.000 12.000 3.000 10.000 5.000 13.000 5.000 5.000 3.000 1.762 1.896	16.000 16.000 10.000 4.000 0.000 4.000 4.000 2.000 0.000 2.000 0.673 0.662	4.000 3.000 4.000 2.000 2.000 0.000 1.000 0.000 0.000 0.000 0.000 0.847 0.132
211284 196103 203382 187180 201169 185423 183209 177004 167699 157815 136358 123281 91178 88782 80537 84346 67810 54574 39667 28405 FLT06: FRAT 1976 1995 1 1 0.00 1.	-	8523.000 2453.000 12831.000 7004.000 7760.000 12689.000 4741.000 1513.000 3242.000 312.000 2395.000 879.000 748.000 1009.000 262.000 463.000 463.000 497.000 265.085 444.628	895.000 1577.000 746.000 2438.000 1370.000 1053.000 2473.000 573.000 1215.000 326.000 572.000 82.000 594.000 216.000 216.000 216.000 116.000 207.000 57.000 41.000 138.494 83.186 Effort: Unkn	479.000 245.000 547.000 611.000 398.000 330.000 557.000 147.000 241.000 65.000 184.000 138.000 45.000 33.000 42.000 11.373 21.000 own)	$\begin{array}{c} 182.000\\ 131.000\\ 280.000\\ 146.000\\ 359.000\\ 294.000\\ 207.000\\ 72.000\\ 139.000\\ 44.000\\ 80.000\\ 9.000\\ 58.000\\ 26.000\\ 10.000\\ 10.000\\ 17.040\\ \end{array}$	290.000 60.000 78.000 210.000 61.000 189.000 150.000 72.000 117.000 34.000 77.000 19.000 46.000 4.000 38.000 8.000 14.114 3.742	84.000 103.000 21.000 35.000 54.000 74.000 38.000 104.000 50.000 40.000 52.000 10.000 12.000 7.000 15.000 6.000 8.000 3.077 5.623	17.000 31.000 37.000 14.000 29.000 12.000 31.000 18.000 32.000 27.000 13.000 22.000 3.000 8.000 3.000 8.000 3.000 2.000 2.000 2.000 2.000 2.000 2.000 3.043	6.000 8.000 9.000 8.000 9.000 17.000 6.000 13.000 7.000 8.000 3.000 1.000 1.000 1.000 0.519 0.608
1 11 64396 80107 69739 89974 63577 76517 78523 69720 76149 53003 50350 51234 35482 36133 36097 45075 34138 23721 17316 19227 FLT07: SCOG 1982 1995 1 1 0.50 0. 1 6	420.000 379.000 974.000 192.000 469.000 415.000 349.150 45.839 129.353 159.420 79.229 42.678 73.893 FS_IV (Catch	308.000 680.000 639.000 738.000 1529.000 358.000 1273.000 865.000 752.000 169.000 758.000 315.951 352.149 92.647 203.140 315.897 34.314 245.632	389.000 1 130.000 1 397.000 1 419.000 1 419.000 2 491.000 2 284.000 1 239.000 11 239.000 11 474.000 1 58.000 13 345.000 13 51.215 109.162 66.287 34.581 44.199 199	16.000 63.000 67.000 94.000 19.000 45.000 82.000 21.000 33.000 25.000 18.000 25.000 78.384 28.645 16.003 29.039 9.293 5.225 23.905	31.000 5 51.000 12 41.000 12 25.000 10 65.000 17 75.000 17 37.000 8 59.000 17 17.000 6 33.000 2 3.212 2 7.475 0 8.173 2 2.341 0 4.253 0 0.365 0	0.000 4.000 5.000 3.000 2.000 3.000 7.000 1.000 0.000 2.000 7.000 3.000 7.000 3.000 7.000 3.000 8.000 2.000 1.000 3.000 5.000 1.000 5.000 1.000 5.000 1.000 5.000 1.000 5.000 0.000 4.000 1.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.000 5.000 0.005 5.000 0.052	1.000 2.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0017 0.003	$\begin{array}{c} 1.000\\ 0.002\\ 0.$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.007
100 0. 100 0.	_ ·	0.181 0. 0.254 0. 0.196 0. 0.396 0. 0.034 0. 0.165 0. 0.165 0. 0.169 0. 0.169 0. 0.133 0. 0.072 0. 0.101 0. 0.288 0. 0.130 0. 0.130 0. 0.130 0. 0.323 0.	181 0.092 197 0.075 050 0.057 112 0.030 058 0.040 092 0.029 026 0.033 094 0.020 074 0.026 013 0.006 067 0.029 025 0.011 031 0.012 085 0.011 Effort: Unkn	0.060 0.023 0.016 0.024 0.019 0.007 0.012 0.008 0.009 0.004 0.018 0.003 0.007 0.007 0.007					

100 2.423 0.580 0.2 100 5.084 0.670 0.1 100 1.136 1.387 0.1 100 3.238 0.290 0.3 100 1.539 1.096 0.1 100 6.122 0.474 0.1 100 0.430 1.189 0.1 100 3.438 0.115 0.2 100 1.422 1.065 0.0 100 0.836 0.407 0.1 100 2.285 0.248 0.1 100 0.608 0.503 0.0 100 0.752 0.155 0.0 100 2.441 0.158 0.0 100 2.637 0.295 0.1 100 1.028 1.277 0.1 FLT09: IBTS_Q1_IV (Catch: Ur 1976 1995 1 0.00 0.25	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 6 1 7.9 19.9 -1.0 1 36.7 3.2 -1.0 1 12.9 29.3 -1.0 1 9.9 9.3 -1.0 1 16.9 14.8 -1.0 1 2.9 25.5 -1.0 1 9.2 6.7 -1.0 1 3.9 16.6 2.7 1 15.2 8.0 3.9 1 0.9 17.6 3.5 1 17.0 3.6 6.8 1 8.8 28.8 1.4 1 3.6 6.1 5.8 1 3.1 6.3 5.0 1 3.4 15.2 2.0 1 2.4 4.1 3.4 1 13.0 4.5 1.2 1 12.7 19.9 2.0 1 44.8 4.4 3.0 1 9.7 22.1 2.8 FLT10: IBTS_02_IV (Catch: Ur 1991 1995 1 1 0.25 0.50	-1.0 1.8 0.8 1.5 0.9 1.0 0.9 1.7 0.5 1.0 2.3 1.3 1.1 1.7 0.6 0.9 0.6 0.9 1.1 2.3 0.4 1.0 1.0 1.0 0.8 0.8 0.4 0.8 1.0 0.3 0.5 0.7 0.6 0.4 0.8 0.5 0.5 1.1 0.3 0.3 known) (Effort: Unknown)
1 6 10 14.9 31.4 39. 10 190.8 53.2 13. 10 48.2 144.6 22. 10 20.3 34.1 24. 10 42.7 204.7 29. FLT12: DANGIL_3a (Catch: Unk 1987 1995 1 1 0.00 1.00	8 6.1 0.5 0.9 4 4.0 2.2 0.3 4 4.5 0.6 1.0 0 9.3 3.0 1.2
1 7 1 0.0 98.7 68.6 1 12.8 57.7 146.5 1 5.2 67.8 59.2 1 8.9 69.9 91.7 1 6.6 64.8 75.6 1 27.8 114.7 67.9 1 9.3 134.1 94.8 1 15.9 109.4 107.4 1 7.1 127.1 114.6 FLT13: DANNEP_3a (Catch: Unk 1987 1995 1 1 0.00 1.00	20.9 4.2 1.7 0.2 65.5 8.9 5.6 0.8 22.2 18.4 2.0 2.4 51.2 11.4 4.2 1.6 24.8 14.0 2.3 2.3 32.3 6.5 2.8 0.3 18.0 4.3 0.9 0.2 39.5 3.7 2.1 0.1
1 7 1 0.00 18.00 3.00 1 1.90 5.50 11.70 1 2.30 17.90 7.40 1 2.00 16.30 9.60 1 2.20 13.20 5.90 1 8.10 15.00 4.40 1 1.90 25.10 6.70 1 4.50 14.10 6.70 1 2.10 35.00 8.70 FLT17: FRATRC_7d (Catch: Unk 1985 1995 1 1 0.00 1.00	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 2 456831 11.000 870 353839 9094.000 5015 309988 1307.000 5041 260919 791.000 1487	.000 .000 .000 .000 .000

268831	74.000	362.000
361439	61.000	106.000
346545	1426.793	267.854
351004	50.112	497.253
357798	1634.389	83.161
309531	1401.580	774.508

Table 3.4.1

Lowestoft VPA Version 3.1

9-Oct-96 19:16:57

Extended Survivors Analysis

Cod in IV, IIIa, VIId (run: XSATIM01/X01)

CPUE data from file /users/fish/ifad/ifapwork/wgnssk/cod_347d/FLEET.X01

Catch data for 33 years. 1963 to 1995. Ages 1 to 11.

Fleet,	First,	Last,	First,	Last,	Alpha,	Beta
,	year,	year,	age ,	age		
FLT01: SCOTRL_IV (Ca,	1976,	1995,	1,	10,	.000,	1.000
FLT02: SCOSEI_IV (Ca,	1976,	1995,	1,	10,	.000,	1.000
FLT03: SCOLTR IV (Ca,	1976,	1995,	1,	10,	.000,	1.000
FLTO4: ENGTRL IV (Ca,	1976,	1995,	1,	10,	.000,	1.000
FLT05: ENGSEI_IV (Ca,	1976,	1995,	1,	10,	.000,	1.000
FLT06: FRATRB_IV (Ca,	1976,	1995,	1,	10,	.000,	1.000
FLT07: SCOGFS_IV (Ca,	1982,	1995,	1,	6,	.500,	.750
FLT08: ENGGFS_IV (Ca,	1977,	1995,	1,	5,	.500,	.750
FLT09: IBTS Q1 IV (C,	1976,	1995,	1,	6,	.000,	.250
FLT10: IBTS Q2 IV (C,	1991,	1995,	1,	6,	.250,	.500
FLT12: DANGIL 3a (Ca,	1987,	1995,	1,	7,	.000,	1.000
FLT13: DANNEP 3a (Ca,	1987,	1995,	1,	7,	.000,	1.000
FLT17: FRATRC_7d (Ca,	1985,	1995,	1,	2,	.000,	1.000

Time series weights :

Tapered time weighting applied Power = 0 over 10 years

Catchability analysis :

Catchability dependent on stock size for ages < 2

Regression type = C Minimum of 5 points used for regression Survivor estimates shrunk to the population mean for ages < 2

Catchability independent of age for ages >= 6

Terminal population estimation :

Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages.

S.E. of the mean to which the estimates are shrunk = .500

Minimum standard error for population estimates derived from each fleet = .300

Prior weighting not applied

Tuning converged after 29 iterations

Regression weights									
, 1.000, 1.000,	1.000,	1.000,	1.000,	1.000,	1.000,	1.000,	1.000,	1.000	

Fishing	mortali	ties								
Age,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995
1,	.235,	.138,	. 169,	.134,	.142,	.128,	.144,	.046,	.062,	.104
2,	.831,	.909,	.899,	.875,	.915,	.774,	.858,	.789,	.578,	.598
3,	1.054,	.904,	1.159,	1.095,	.993,	.972,	.872,	1.047,	.958,	.781
4.	.961,	.941,	.857,	1.046,	.903,	.890,	.944	1.031,	.980,	.702
5,	.897,	.732,	.806,	.776,	.784,	.850,	.816,	.930,	.895,	.752
6,	.814,	.935,	.792,	.913,	.552,	.940,	.828,	.986,	.940,	.868
7.	.823,	.898,	.729,	.829,	.761,	1.052,	.899,	1.080,	1.062,	.789
8,	.958,	.917,	.817,	1.000,	.623,	1.028,	.916,	.956,	1.194,	1.176
9,	.673,	.868,	.704,	.737,	2.249,	.498,	1.004,	.841,	.790,	.966
10,	.933,	.904,	.578,	.792,	.941,	.767,	.726,	.780,	.985,	.959

XSA population numbers (Thousands)

YEAR ,	1,	AGE 2,	3,	4,	5,	6,	7,
1986 ,	7.06E+05, 6.24E+04	, 5.83E+04,	1.02E+04,	5.61E+03, 1.16E+03,	1.06E+03,	3.03E+02,	1.47E+02, 7.65E+01,
1987	2.77E+05, 2.51E+05	, 1.92E+04,	1.58E+04,	3.20E+03, 1.87E+03,	4.22E+02,	3.81E+02,	9.52E+01, 6.13E+01,
1988				5.06E+03, 1.26E+03,			
1989	2.77E+05, 7.35E+04	3.11E+04,	1.74E+04,	2.10E+03, 1.85E+03,	4.67E+02,	2.38E+02,	5.09E+01, 5.05E+01,
1990	1.34E+05, 1.09E+05	2.16E+04,	8.10E+03,	5.01E+03, 7.92E+02,	6.08E+02,	1.67E+02,	7.17E+01, 1.99E+01,
1991				2.69E+03, 1.87E+03,			
1992	3.12E+05, 6.66E+04	1.69E+04,	9.04E+03,	2.09E+03, 9.40E+02,	5.98E+02,	1.07E+02,	6.80E+01, 3.64E+01,
1993	1.59E+05, 1.21E+05	1.99E+04,	5.52E+03,	2.88E+03, 7.58E+02,	3.36E+02,	1.99E+02,	3.50E+01, 2.04E+01,
1994 ,	3.99E+05, 6.84E+04	3.88E+04,	5.44E+03,	1.61E+03, 9.30E+02,	2.31E+02,	9.35E+01,	6.27E+01, 1.23E+01,
1995	2.48E+05, 1.68E+05	2.70E+04,	1.16E+04,	1.67E+03, 5.39E+02,	2.98E+02,	6.55E+01,	2.32E+01, 2.33E+01,

8,

Estimated population abundance at 1st Jan 1996

, .00E+00, 1.00E+05, 6.52E+04, 9.65E+03, 4.71E+03, 6.45E+02, 1.85E+02, 1.11E+02, 1.66E+01, 7.23E+00, Taper weighted geometric mean of the VPA populations:

, 2.55E+05, 9.59E+04, 3.00E+04, 8.77E+03, 2.90E+03, 1.10E+03, 4.57E+02, 1.69E+02, 6.62E+01, 2.70E+01, Standard error of the weighted Log(VPA populations) :

, .4919, .4947, .4799, .4249, .4614, .4299, .4379, .5516, .5540, .7637,

48

Log catchability residuals.

Fleet : FLT01: SCOTRL_IV (Ca

Age , 1976 1 , 99.99 2 , 99.99 3 , 99.99 4 , 99.99 5 , 99.99 6 , 99.99 7 , 99.99 8 , 99.99 9 , 99.99 10 , 99.99	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99							
Age , 1986, 1 ,17, 2 , .20, 3 , .11, 4 , -52, 5 , -20, 6 , -92, 7 ,83, 8 , 99.99, 9 , 99.99, 10 , 99.99,	.81, .02, 71, 26, .10, 64, 99.99, .25, 99.99,	21, .53, 27, 68, 14, .69, .02, 1.51, 99.99,	.11, -1.30, .62, .22, 01, .02, .74, 37, 2.42,	.05, .88, 87, .47, 18, .26, .43, .16, 99.99,	.57, .38, .54, 28, .84, 03, .36, 99.99, -1.09,	.20, .44, .08, 1.05, 52, .48, -1.35, -1.01, .05,	81, 04, 05, 54, .85, .04, - 1.55, - 5.08, 99.99,	28, 96, .34, 05, 19, .48, .77, 1.39, 99.99,	29 15 .21 .60 54 39 .31 75 35

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6,	7,	8,	9,	10
Mean Log q,	-15.6921,	-15.1899,	-15.4298,	-15.8190,	-15.9589,	-15.9589,	-15.9589,	-15.9589,	-15.9589,
S.E(Log q),	.6736,	.4934,	.5685,	.4850,	.5204,	.8985,	2.1337,	1.5460,	1.9532,

Regression statistics :

Ages with q dependent on year class strength

Age,	Slope ,	t-value ,	Intercept,	RSquare,	No Pts,	Reg s.e,	Mean Log q
1,	.67,	.992,	16.14,	.53,	10,	.49,	-17.96,
Ages	with q	independent	of year c	lass stre	ngth and	constant	w.r.t. time.
Age,	Slope ,	t-value ,	Intercept,	RSquare,	No Pts,	Reg s.e,	Mean Q
2,	.88,	.278,	15.20,	.41,	10,	.63,	-15.69,
3,	.80,	.716,	14.21,	.61,	10,	.41,	-15.19,
4,	.70,	.965,	13.51,	.56,			-15.43,
4, 5,	.90,	.297,	15.04,	.53,	10,	.46,	-15.82,
6,	1.20,	398,	17.77,	.32,	10,	.66,	-15.96,
7,	3.08,	996,	36.80,	.03,	9,	2.74,	-16.08,
8,	2.04,	341,	28.29,	.02,	8,	4.51,	-16.45,
9,	1.09,	042,	16.82,	.09,	4,	2.03,	-15.70,
10,	.00,	.000,	.00,	.00,	0,	.00,	.00,

Fleet : FLT02: SCOSEI_IV (Ca

1 , 2 , 3 , 4 , 5 , 7 , 8 , 9 ,	1976, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99							
1, 2, 3, 4, 5, 7, 8, 9,	1986, .12, 61, .40, .08, 36, 77, 78, 78, 48, 50, 73,	10, 33, 84, .20, .14, .29, 25, .22, .76,	04, 03, 03, 72, .32, .39, .24, .48, .09,	.21, 30, .45, .04, 40, .45, .37, .25, 38,	06, .88, 01, .53, .17, 14, .47, .23, .54,	.76, .36, .41, 45, .09, .01, .44, .64, .37,	15, .13, .26, 14, .12, 02, .43, .87,	58, 09, 25, 19, .08, 29, .26, 03, .30,	24, 16, .18, .18, 20, 15, .25, .25, 32,	.09 .14 23 .07 .30 .07 .37 86 .15

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6,	7,	8,	9,	10
Mean Log q,	-14.9778,	-14.9172,	-15.0323,	-15.0733,	-15.0306,	-15.0306,	-15.0306,	-15.0306,	-15.0306,
S.E(Log q),	.4148,	.3941,	.3649,	.2590,	.3616,	.4167,	.4746,	.5153,	.4947,

Regression statistics :

Ages with q dependent on year class strength

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Log q

1	.82.	.722	16.78,	.67,	10.	.37, -17.72,
••	,	•••••	101107	,	,	

Ages with q independent of year class strength and constant w.r.t. time.

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

	1.01, .71,	034, 1.656,	15.01, 13.57,	.58, .80,	10,	.25,	-14.98, -14.92,
•	.74,	1.249,	13.50,	.75,	10,		-15.03,
	.92, .76,	.435, 1.133,	14.51, 13.12,	.79, .74,	10, 10,		-15.07, -15.03,
7,	2.17,	-2.141,	25.17,	.29,	10,		-14.89,
8,	.83,	.712,	13.27,	.69,	10,	.39,	-14.92,
•	•	243,	15.69,	.54,	10,		-14.84,
10,	1.26,	-1.059,	17.85,	.67,	10,	.56,	-14.84,

Fleet : FLT03: SCOLTR_IV (Ca

1, 2, 3, 4, 5, 7, 8, 9,	1976, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99
1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ,	1986, .25, -11, .10, 06, 04, 41, 68, .04, 27, 20,	.52, 11, 33, 11, 52, 13, .22, 27, 70,	29, .07, 37, 55, .13, .15, .01, 45, -1.07,	.25, 59, .22, 12, 15, .10, .22, 41, 31,	08, .61, 55, .40, .31, .25, 22, 10, .03,	.84, .16, .47, 57, .29, .15, .04, .54, 48,	05, .17, 17, .48, 39, .36, 27, 30, .17,	54, .18, .32, 31, .00, 60, 40, 23, 75,	78, 34, .17, .43, 03, .56, .01, .06, - 1.75,	11 05 .14 .40 .40 44 10 81 .47

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6,	7,	8,	9,	10
Mean Log q,	-15.8828,	-15.5075,	-15.6646,	-16.0784,	-16.2154,	-16.2154,	-16.2154,	-16.2154,	-16.2154,
S.E(Log q),	.3268,	.3329,	.4048,	.2974,	.3797,	.3079,	.4144,	.8117,	1.1152,

Regression statistics :

Ages	Ages with q dependent on year class strength										
Age,	Slope ,	t-value , 1	Intercept,	RSquare,	No Pts,	Reg s.e,	Mean Log q				
1,	.68,	.917,	16.26,	.51,	10,	.51,	-18.05,				
Ages	with q	independent	of year c	lass stren	gth and	constant	w.r.t. time.				
Age,	Slope ,	t-value , I	Intercept,	RSquare,	No Pts,	Reg s.e,	Mean Q				
2, 3,	.94,	.290,	15.60,	.73,	10,	.32,	-15.88,				
3,	.96,	.178,	15.29,	.69,	10,	.34,	-15.51,				
4,	.85,	.521,	14.70,	.61,	10,	.36,	-15.66,				
5,	.94,	.278,	15.60,	.73	10,	.30,	-16.08,				
6,	.82,	.727,	14.56,	.67,	10,	.32,	-16.22				
7,	1.49,	-1.692,	21.37	.59			-16.33,				
8,	.79	1.289	14.00	.82,	10,	.27.	-16.41				
9,	1.60,	955	24.12	•			-16.68,				
10,	.80,	.875,	14.25,	•		•	-17.06,				

Fleet : FLT04: ENGTRL_IV (Ca

1 , 2 , 3 , 4 , 5 , 7 , 8 , 9 ,	1976, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99
1, 2, 3, 5, 7, 8, 9,	1986, .44, 03, .17, 09, .62, .09, 04, .17, .08, .84,	81, .25, .01, .55, 34, .25, 43, 03, .64,	.21, 59, .00, 48, .42, .10, .28, 99.99, .23,	32, 32, 46, .21, 38, .41, 17, .35, 99.99,	.16, 05, 28, 21, .35, .17, .69, .75, .81,	.22, 07, .11, 38, 41, 10, 58, 12, 99.99,	.09, .20, 01, .39, 31, 54, 06, 99.99, 99.99,	.10, .26, 13, .09, .55, 20, .14, .21, 99.99,	15, .37, .25, .01, 11, .05, .11, .10, .57,	.07 02 .33 10 40 23 12 .50 16

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6,	7,	8,	9,	10
Mean Log q,	-15.3954,	-15.3563,	-15.8447,	-16.2485,	-16.5445,	-16.5445,	-16.5445,	-16.5445,	-16.5445,
S.E(Log q),	.2909,	.2393,	.3242,	.4313,	.2729,	.3593,	.3832,	.5426,	1.2076,

Regression statistics :

Ages with q dependent on year class strength

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Log q

1, .73, 1.088, 16.07, .66, 10, .37, -17.44,

Ages with q independent of year class strength and constant w.r.t. time.

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

2,	.93,	.346,	15.13,	.77,	10,	.29, -15.40,
		.780,	14.77,	.85,	10,	.22, -15.36,
4,	.69,	2.017,	13.77,	.84,	10,	.19, -15.84,
5,	.59,	3.146,	12.85,	.88,	10,	.18, -16.25,
6,	.75,	1.798,	14.12,	.86,	10,	.18, -16.54,
7,	.85,	.631,	14.98,	.68,	10,	.32, -16.56,
8,	1.27,	-1.186,	19.25,	.77,	8,	.35, -16.30,
9,	.86,	.630,	14.47,	.83,	6,	.34, -16.18,
10,	.63,	.789,	11.38,	.60,	5,	.73, -16.13,

Fleet : FLT	'05: EN	GSEI_J	(V (Са
-------------	---------	--------	------	----

2,99.99, 3,99.99, 4,99.99, 5,99.99, 6,99.99, 7,99.99, 7,99.99, 8,99.99, 9,99.99,	99.99,99,99 99.99,99 99.99,99 99.99,99 99.99,99 99.99,99 99.99,99 99.99,99	978, 1979, 999, 99.99, 99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99
2,79, 3, .10, 4,27, 5, .42, 6, .11, 7, .63, 8, .55, 9, .54,	38, 02, 68, .42, - 14, .60, - .04, .94, 1.29,	988, 1989, .42, .22, .12, .36, .39, .20, .62, .41, .33, -96, .16, .42, .09, -12, .20, .76, .27, .11, .46, .83,	.38, .38, .01, .10, .14, -1.23, .45, .07, .42,	21, 33, .18, .00, 06, .28, .09, 1.54, 30,	.54, .24, 34, .11, 56, .42, .06, .41, 1.30,	83, 09, 54, .06, .17, 61, 05, .02, 99.99,	11, .08, .29, 14, .80, .74, .66, .38, .07,	.13 .04 .40 07 15 .26 1.23 2.29 1.63

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6,	7,	8,	9,	10
Mean Log q,	-15.7945,	-15.9697,	-16.0845,	-15.4407,	-15.0022,	-15.0022,	-15.0022,	-15.0022,	-15.0022,
S.E(Log q),	.3516,	.3887,	.3077,	.5006,	.6093,	.5369,	1.0382,	.9134,	1.2211,

Regression statistics :

Ages with q dependent on year class strength

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Log q

1, 1.00, .012, 17.86, .58, 10, .45, -17.87,

Ages with q independent of year class strength and constant w.r.t. time.

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

2,	.85,	.705,	15.16,	.74,	10,	.31,	-15.79,
3,		2.743,	13.93,		10,		-15.97,
4,	.69,	2.285,	13.89,	.87,	10,	.17,	-16.08,
5,	.75,	.898,	13.59,	.62,	10,	.38,	-15.44,
6,	.61,	1.421,	11.89,	.63,	10,	.35,	-15.00,
7,	1.19,	477,	16.35,	.43,	10,	.53,	-14.69,
8,	1.41,	653,	18.06,	.24,	10,		-14.29,
9,	1.78,	-1.005,	22.30,	. 19,	9,	1.18,	-14.41,
10,	1.41,	846,	18.55,	.38,	9,	1.10,	-14.11,

Fleet : FLT06: FRATRB_IV (Ca

1, 2, 3, 4, 5, 7, 8, 9,	1976, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99						
1, 2, 3, 5, 7, 8, 9,	1986, 01, 16, .62, .89, .85, .34, 26, 99.99, 99.99, 99.99,	.72, 04, 44, .37, .68, .81, 99.99, .78, 99.99,	11, .29, .50, .11, 1.18, 1.29, .62, 99.99, 99.99,	.92, 08, .32, .26, 31, .32, 50, -1.30, -1.53,	66, .39, 30, 04, 33, .04, 38, 79, 98,	.03, 49, 13, 59, .19, .25, 08, 07, -1.48,	02, .36, .21, 07, 55, -08, -1.70, -1.15, -3.27,	.22, .54, 17, 31, .14, 22, 61, -1.86, -2.30,	-1.04, 88, 31, 58, -1.43, -1.90, -2.28, -2.28, -2.42, -2.19,	03 .09 29 04 43 86 -1.00 -1.33 -1.63

Mean log catchability and standard error of ages with catchability

independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6,	7,	8,	9,	10
Mean Log q,	-16.0451,	-15.6792,	-15.5949,	-16.2233,	-17.0647,	-17.0647,	-17.0647,	-17.0647,	-17.0647,
S.E(Log q),	.4362,	.3788,	.4467,	.7714,	.8812,	1.1352,	1.4813,	2.1954,	1.9957,

Regression statistics :

Ages	with q c	lependent on	year clas	s strengt	h		
Age,	Slope ,	t-value , In	tercept,	RSquare,	No Pts,	Reg s.e,	Mean Log q
1,	1.14,	342,	18.25,	.42,	10,	.61,	-17.54,
Ages	with q i	ndependent o	f year cl	ass stren	igth and	constant	w.r.t. time.
Age,	Slope ,	t-value , In	tercept,	RSquare,	No Pts,	Reg s.e,	Mean Q
2,	.74,		•	•	•		-16.05,
3, 4,		2.363, 2.384,				•	-15.68, -15.59,
5,	.44,				•		-16.22,
6,	.46,	•	11.66,	•	-		-17.06,
7,	.52,	1.528,	12.13,	.59,	9,	.42,	-17.75,
8,	.46,	2.199,	11.10,	.74,		.37,	-18.08,
9,	1.05,	057,	19.66,	.24,		.85,	-18.98,
10,	2.29,	795,	38.78,	.11,	5,	2.44,	-18.60,

Fleet : FLT07: SCOGFS_IV (Ca

Age , 1976, 1977, 1978, 1979, 1980, 1 , 99.99, 99.99, 99.99, 99.99, 99.99, 2 , 99.99, 99.99, 99.99, 99.99, 99.99, 3 , 99.99, 99.99, 99.99, 99.99, 99.99, 4 , 99.99, 99.99, 99.99, 99.99, 99.99, 5 , 99.99, 99.99, 99.99, 99.99, 99.99, 6 , 99.99, 99.99, 99.99, 99.99, 99.99, 7 , No data for this fleet at this age 8 , No data for this fleet at this age 10 , No data for this fleet at this age	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 9 99.99, 9 99.99, 9 99.99, 9 99.99, 9	99.99, 99.99 99.99, 99.99 99.99, 99.99 99.99, 99.99 99.99, 99.99
Age , 1986, 1987, 1988, 1989, 1990, 1 ,34,56,43, .25,38, 2 ,70,08,20,59, .34, 3 , .54,89,47, .35,40, 4 , .08, .09,27, .08, .51, 5 , .15, .29, .00, .36,24, 6 , .77,63, .22,49, .25, 7 , No data for this fleet at this age 8 , No data for this fleet at this age 9 , No data for this fleet at this age 10 , No data for this fleet at this age	.21, .25, 18,14, .05,04, 97, .33, -1.04, .76, -1.18, .94,	.34, .57, .25, 11, 46,	.46, .20 .21, .78 .57, .03 .09, .17 .19,02

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6
Mean Log q,	-16.4630,	-16.2400,	-16.0371,	-15.9227,	-15.7700,
S.E(Log q),	.4752,	.4696,	.4018,	.4947,	.6876,

Regression statistics :

25.26,

Ages with q dependent on year class strength Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Log q 1, .85, .543, 16.70, .63, 10, .40, -17.43, Ages with q independent of year class strength and constant w.r.t. time. Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q .76, -16.46, 2, 3, 4, 5, .68, 1.638, 14.84, 10, .29, .38, .29, .64, .825, 1.131, 14.96, 14.23, .65, .70, .37, -16.24, -16.04, .78, 10, .74, 10, -15.92, - .539, -2.124, 1.25, 17.92, 10,

.00,

228.37,

14.73,

10,

-15.77,

Fleet : FLT08: ENGGFS_IV (Ca

Age	,	1976,	1977,	1978,	1979,	1980,	1981,	1982,	1983,	1984,	1985
1	,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99
2,	,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99
3	,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99	99.99,	99.99
4	,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99
5	,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99,	99.99
6	,	No data	a for t	his flee	et at tl	nis age					
.7	,	No data	a for ti	his flee	et at tl	nis age					
8,	,	No data	a for ti	his flee	et at tl	nis age					
9	,	No data	a for ti	his flee	et at tl	nis age					
10	,	No data	a for tl	his flee	et at tl	nis age					

Age ,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995
1,	20,	04,	- 10,	.35,	.00,	07,	.29,	07,	.06,	21
2,	70,	. 19,	.06,	06,	.28,	25,	43,	.35,	.00,	.57
3,	.18,	82,	.03,	.30,	08,	26,	18,	.34,	.25,	.25
4,	.24,	.53, ·	-2.67,	.50,	30,	12,	.53,	.23,	.45,	.60
5,	36,	.34,	1.05,	06,	23,	95,	.26,	.77,	.10,	94
6,	No data	for thi	is fleet	: at th	is age					
7,	No data	for th	is fleet	: at th	is age					
8,	No data	for th	is fleet	: at th	is age					
9,	No data	for thi	is fleet	: at th	is age					
10,	No data	for thi	is fleet	: at th	is age					

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5
Mean Log q,	-16.3789,	-16.5435,	-16.8897,	-16.7085,
S.E(Log q),	.3802,	.3561,	.9854,	.6550,

Regression statistics :

Ages with q dependent on year class strength Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Log q .82, 1.349, 15.50, .87, 10, .20, -16.17, 1, Ages with q independent of year class strength and constant w.r.t. time. Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q .90, .77, .47, .50, .64, 3.111, 14.60, 10, .17, -16.38, 2, 3, 4, 5, .28, -16.54, .48, -16.89, .49, -16.71, 1.056, .79, 15.26, 10, .50, 1.332, 13.01, 14.32, 10, 10,

Fleet : FLT09: IBTS_Q1_IV (C

Age , 1976, 1977, 1978, 1979, 1980, 1 , 99.99, 99.99, 99.99, 99.99, 99.99, 2 , 99.99, 99.99, 99.99, 99.99, 99.99, 3 , 99.99, 99.99, 99.99, 99.99, 99.99, 4 , 99.99, 99.99, 99.99, 99.99, 99.99, 5 , 99.99, 99.99, 99.99, 99.99, 99.99, 6 , 99.99, 99.99, 99.99, 99.99, 99.99, 7 , No data for this fleet at this age 8 , No data for this fleet at this age 10 , No data for this fleet at this age	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99 99.99, 99.99, 99.99 99.99, 99.99, 99.99 99.99, 99.99, 99.99 99.99, 99.99, 99.99
Age , 1986, 1987, 1988, 1989, 1990, 1 ,30,01,52, .37,20, 2 ,44, .26,45,03, .46, 3 , .20,28,14, .53,03, 4 , .59,16,24, .06,02, 5 , .19,04,08,02, .03, 6 , .43,24, .34,12, .46, 7 , No data for this fleet at this age 8 , No data for this fleet at this age 9 , No data for this fleet at this age 10 , No data for this fleet at this age	78, .25, 13,27, .14,32, .02,13, 26,30,	.88, .12, .19 .60,36, .36 .05,22, .05 .02, .16,31 .09, .48,08

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6
Mean Log q,	-9.1811,	-9.1030,	-8.8443,	-8.4262,	-7.2642,
S.E(Log q),	.3930,	.2577,	.2523,	.2236,	.2931,

Regression statistics :

Ages with q dependent on year class strength Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Log q .97, .52, 1, .092, 10.30, 10, .50, -10.23, Ages with q independent of year class strength and constant w.r.t. time. Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q .67, 2.271, 9.94, .85, .82, .22, .23, -9.18, -9.10, 2, 3, 4, 5, 10, .701, 10, .89, 9.24, 1.03, 8.84, 8.43, -8.84, -8.43, .73, 10, .28, -.073, 1.01, .81, 10, .24, 1.21, - .754, 7.32, .61, 10, .36, -7.26,

Fleet : FLT10: IBTS_Q2_IV (C

Age ,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995
1,	99.99,	99.99,	99.99,	99.99,	99.99,	-1.48,	2.58,	.67,	-1.82,	.05
2,	99.99,	99.99,	99.99,	99.99,	99.99,	28,	.04,	.41,	54,	.36
3,	99.99,	99.99,	99.99,	99.99,	99.99,	.31,	18,	.21,	41,	.06
4,	99.99,	99.99,	99.99,	99.99,	99.99,	.20,	15,	05,	.07,	07
5,	99.99,	99.99,	99.99,	99.99,	99.99,	.90,	-1.14,	.06,	67,	.85
6,	99.99,	99.99,	99.99,	99.99,	99.99,	.16,	09,	91,	.07,	.77
7,	No data	a for th	nis flee	et at th	nis age					
8,	No data	a for th	nis flee	et at th	nis age					
9,	No data	a for th	nis flee	et at th	nis age					
10,	No data	a for th	nis flee	et at th	nis age					

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6
Mean Log q,	-9.0237,	-8.8194,	-9.0270,	-9.1209,	-8.7838,
S.E(Log q),	.4083,	.2927,	.1367,	.9076,	.6050,

Regression statistics :

Ages with q dependent on year class strength Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Log q -.318, 2.05, -10.65, 1, 1.83, 9.19, .05, 5, Ages with q independent of year class strength and constant w.r.t. time. Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q 9.97, .17, .60, 2.350, .92, -9.02, 2, 3, 4, 5, 6, 5, 5, 5, 5, 5, 8.49, 9.07, 8.47, 1.25, -.400, .41, .47, -8.82, -1.160, .84, -9.03, -9.12, 1.29, .55, .425, .23, .56, -.194, 9.12, .29 .82, -8.78,

Fleet : FLT12: DANGIL_3a (Ca

2, 99.99, 3, 99.99, 4, 99.99, 5, 99.99, 6, 99.99, 7, 99.99,	1987, 1988, 99.99, .55, 77,47, .09,36, -1.02,02, .62, -1.18, .61,48, 39, -1.91, for this flee	-1.32, .07, 46, .15, .44, .38, 23,	.31, 28, .30, 23, .30, .04, .58,	43, .32, 25, .86, .47, .09,	1.34, .68, .19, 21, .91, .13,	.14, .21, .43, .58, 13, .60,	.12, .49, 14, 01, .03, 75,	71 25 .21 10 22 .61
8 , No data 9 , No data		et at the	is age is age	.70,	.01,	/0,	02,	-1.07

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6,	7
Mean Log q,	-6.5032,	-5.2019,	-5.1686,	-5.4538,	-5.6702,	-5.6702,
S.E(Log q),	.4778,	.3158,	.5317,	.6295,	.5092,	1.1154,

Regression statistics :

Ages with q dependent on year class strength

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Log q -.735, 7.77, 1.65, .17, .88, -9.57, 1, 8, Ages with q independent of year class strength and constant w.r.t. time. Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q -3.726, -11.24, -6.50, 2, 3, 4, 5, 6, 7, 4.54, .14, 9, 9, 9, 9, 1.34, - .24, -5.20, -5.17, -5.45, 2.08, -2.834, .48, .50, 3.05, 2.79, -1.813, -2.81, .10, 1.43, -1.264, 1.08, 1.69, 9, 9, 1.75, 4.67, .88, -5.67, -1.101, .23, .51, .901, 6.08, .33, .52, -6.12,

Fleet : FLT13: DANNEP_3a (Ca

Age	, 1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995
1	, 99.99,	99.99,	19,	37,	.22,	.08,	.78,	05,	09,	37
2	, 99.99,	76, -	1.11,	.45,	02,	.45,	.37,	.26,	.16,	.18
3	, 99.99,	45,	30,	.04,	.63,	22,	.04,	.37,	33,	.22
4	, 99.99,	-1.21,	.21,	12,	.01,	.76,	16,	.75,	.20,	44
5	, 99.99,	94,	67,	09,	.43,	.20,	.78,	.35,	.22,	28
6	, 99.99,	81,	.22,	11,	11,	12,	17,	.81,	11,	.41
7	, 99.99,	94,	97,	67,	.24,	.85,	.32,	.05,	.13,	-1.34
		a for thi								
9	, No data	a for thi	s flee	t at th	is age					
10	, No data	a for thi	s flee	t at th	is age					

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	2,	3,	4,	5,	6,	7
Mean Log q,	-8.2231,	-7.7888,	-8.1696,	-8.3132,	-8.5117,	-8.5117,
S.E(Log q),	.5549,	.3602,	.6029,	.5489,	.4475,	.7868,

Regression statistics :

Ages with q dependent on year class strength

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Log q

1, 1.01, -.016, 10.89, .50, 8, .40, -10.90,

Ages with q independent of year class strength and constant w.r.t. time.

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

2,	2.81,	-1.885,	2.25,	.13,	9,	1.36,	-8.22,
3,	1.54,	-1.270,	6.47,	.44	9,	.53,	-7.79,
4,	-15.87,	-3.392,	23.24,	.01,	9,	6.29,	-8.17,
5,	1.45,	656,	8.50,	.23,	9,	.83,	-8.31,
6,	2.64,	-2.159,	10.99,	.20,	9,	.98,	-8.51,
7,	.97,	.040,	8.68,	. 19,	9,	.76,	-8.77,

Fleet : FLT17: FRATRC_7d (Ca

Age ,	19	76,	1977	7, 19	78,	1975	2, 19	980,	1981,	1982,	1983,	1984,	1985
1,	99.	99, 9	99.99	, 99.	.99, 99	9.99	, 99	.99,	99.99,	99.99,	99.99,	99.99,	99.99
2,	99.	99, 9	99.99	, 99.	.99, 99	9.99	, 99	.99,	99.99,	99.99,	99.99,	99.99,	99.99
3,	No	data	for	this	fleet	at	this	age	-	-		-	
4,	No	data	for	this	fleet	at	this	age					
5,	No	data	for	this	fleet	at	this	age					
6,	No	data	for	this	fleet	at	this	age					
7,	No	data	for	this	fleet	at	this	age					
8,	No	data	for	this	fleet	at	this	age					
9,	No	data	for	this	fleet	at	this	age					
10,	No	data	for	this	fleet	at	this	age					

Age , 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995 1 , -.13, .20, .45, -.09, .03, -.36, .08, -.37, -.15, .33 2 , 2.41, 1.19, .98, .63, -.46, -1.31, -.55, -.57, -1.90, -.41 3 , No data for this fleet at this age 4 , No data for this fleet at this age 5 , No data for this fleet at this age 6 , No data for this fleet at this age 7 , No data for this fleet at this age 8 , No data for this fleet at this age 9 , No data for this fleet at this age 10 , No data for this fleet at this age

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age, 2 Mean Log q, -17.1760, S.E(Log q), 1.2868,

Regression statistics :

Ages	with q dependent on year class strength									
Age,	Slope ,	t-value , Int	ercept, RSq	uare, No	Pts,	Reg s.e,	Mean Log q			
1,	.33,	3.389,	14.39,	.76,	10,	.29,	-18.35,			
Ages	with q	independent of	year class	strengt	n and	constant	w.r.t. time.			
Age,	Slope ,	t-value , Int	ercept, RSq	uare, No	Pts,	Reg s.e,	Mean Q			
2,	.63,	.646,	15.08,	.28,	10,	.84,	-17.18,			

61

Terminal year survivor and F summaries :

Age 1 Catchability dependent on age and year class strength

Year class = 1994

Fleet,	Estimated,	Int,	Ext,	Var,		Scaled,	
	Survivors,	s.e,	s.e,	Ratio,	,	Weights,	F
FLT01: SCOTRL IV (Ca,	74623.,	.521,	.000,	.00,	1,	.050,	.138
FLT02: SCOSEI IV (Ca,	109678.,	.383,	.000,	.00,	1,	.093,	.096
FLT03: SCOLTR IV (Ca,	90204.	.540,	.000,	.00,	1,	.047,	.115
FLT04: ENGTRL IV (Ca,	107547.	.391,	.000,	.00,	1,	.089,	.098
FLT05: ENGSEI IV (Ca,	114104.	.469,	.000,	.00,	1,	.062,	.092
FLT06: FRATRB IV (Ca,	96771.	.637,	.000,	.00,	1,	.033,	.108
FLT07: SCOGFS IV (Ca,	122251.,	· · · · ·	.000,	.00,	1,		.086
FLTO8: ENGGFS IV (Ca,	81195.,	.300,	.000	.00	1,		.127
FLT09: IBTS Q1 IV (C,	121129.,	.530,	.000,	.00,	1,		.087
FLT10: IBTS Q2 IV (C,	105011.,	2.247.	.000	.00,	1,		.100
FLT12: DANGIL 3a (Ca,	49238.	.961,	.000	,	1,		,202
FLT13. DANNEP 3a (Ca,	69550.	•	.000	•	1,		.147
FLT17: FRATRC 7d (Ca,	139770.	•	.000,	.00,	1,		.076
		,					
P shrinkage mean ,	95903.,	.49,,,,				.062,	.109
F shrinkage mean ,	96911.,	.50,,,,				.060,	.108
i shi nkuge mean ,	,0,111,					,	
Weighted prediction :							
Survivors, Int,	Ext,	N, Var,	F				
at end of year, s.e.	•	Patio					
100212., .12,		15, .516					
100212., .12,	.00,	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	104				

Age 2 Catchability constant w.r.t. time and dependent on age

Year class = 1993

Fleet,	Estimated,	Int,	Ext,	Var,	Ν,	Scaled,	Estimated
,	Survivors,	s.e,	s.e,	Ratio,	,	Weights,	F
FLT01: SCOTRL_IV (Ca,	51798.,	.417,	.060,	.14,	2,	.041,	.709
FLT02: SCOSEI_IV (Ca,	61119.,	.289,	.190,	.66,			.628
FLT03: SCOLTR_IV (Ca,	50995.,	.290,	.328,	1.13,	2,	.088,	.717
FLT04: ENGTRL_IV (Ca,	60875.,	.242,	.062,	.26,	2,	.126,	.630
FLT05: ENGSEI_IV (Ca,	64205.,	.291,	.075,	.26,	2,	.086,	.606
FLT06: FRATRB_IV (Ca,	50010.,	.375,	.523,	1.39,	2,	.052,	.727
FLT07: SCOGFS_IV (Ca,	120483.,	.340,	.161,	.47,	2,	.063,	.367
FLTO8: ENGGFS_IV (Ca,	84170.,	.240,	.248,	1.03,	2,	.125,	.492
FLT09: IBTS_Q1_IV (C,	85842.,	.329,	.115,	.35,	2,	.068,	.484
FLT10: IBTS_Q2_IV (C,	87263.,	.440,	.387,	.88,	2,	.039,	.478
FLT12: DANGIL_3a (Ca,	54747.,	.447,	.147,	.33,	2,	.037,	.681
FLT13: DANNEP_3a (Ca,	66121.,	.358,	.134,	.37,	2,	.056,	.592
FLT17: FRATRC_7d (Ca,	55505.,		.059,	.20,			.674
F shrinkage mean ,	43788.,	.50,,,,				.055,	.798
Weighted prediction :							
Survivors, Int at end of year, s.e							
	.07,		.598				

Age 3 Catchability constant w.r.t. time and dependent on age

Year class = 1992

Fleet, FLT01: SCOTRL_IV (Ca, FLT02: SCOSEI_IV (Ca, FLT03: SCOLTR_IV (Ca, FLT04: ENGTRL_IV (Ca, FLT05: ENGSEI_IV (Ca, FLT06: FRATRB_IV (Ca, FLT06: FRATRB_IV (Ca, FLT08: ENGGFS_IV (Ca, FLT09: IBTS_Q1_IV (C, FLT10: IBTS_Q2_IV (C, FLT12: DANGIL_3a (Ca, FLT13: DANNEP_3a (Ca, FLT17: FRATRC_7d (Ca, F shrinkage mean , Weighted prediction :	Estimated, Survivors, 7634., 7176., 8812., 13074., 10779., 6605., 11461., 10468., 10291., 9038., 12497., 11160., 6044., 6830.,	s.e, .358, .258, .236, .197, .256, .283, .282, .211, .230, .267, .275, .275, .270, .329,	s.e, .381, .113, .065, .294, .241, .095, .102, .237, .182, .080,	1.06, .44, .81, .33, 1.15, .85, .34, .49, 1.03, .68, .29, .29,	Weights, F 3, .038, .914 3, .070, .952 3, .087, .831 3, .123, .627 3, .071, .722 3, .062, 1.004 3, .056, .691 3, .100, .737 3, .097, .746 3, .076, .817 3, .071, .649 3, .068, .704
	Ext, s.e, .06,	, Ratio			

Age 4 Catchability constant w.r.t. time and dependent on age

Year class = 1991

- · ·	Estimated, Survivors, 7307., 4992., 6243., 4951., 4788., 4432., 6244., 6537., 3803., 4181., 4401., 3737., 4897., 2973.,	s.e, .364, .257, .249, .238, .238, .291, .292, .242, .213, .226, .289, .310, .302,	s.e,	Ratio, .31, .22, .32, .47, .42, .47, .35, .28, .62, .55, .41, .66,	444444444444444444444444444444444444444	Weights, .038, .081, .079, .116, .060, .064, .048, .125, .116, .055, .045,	.504 .673 .570 .677 .694 .733 .570 .550 .815 .764 .737 .825	
Weighted prediction :								
Survivors, Int, at end of year, s.e, 4707., .08,	s.e,		,					

63

Age 5 Catchability constant w.r.t. time and dependent on age

Year class = 1990

Fleet, FLT01: SCOTRL_IV (Ca, FLT02: SCOSEI_IV (Ca, FLT03: SCOLTR_IV (Ca, FLT04: ENGTRL_IV (Ca, FLT05: ENGSEI_IV (Ca, FLT06: FRATRB_IV (Ca, FLT08: ENGGFS_IV (Ca, FLT09: IBTS_01_IV (C, FLT10: IBTS_02_IV (C, FLT12: DANGIL_3a (Ca, FLT13: DANNEP_3a (Ca, FLT17: FRATRC_7d (Ca, F shrinkage mean ,	Estimated, Survivors, 453., 835., 958., 548., 441., 671., 435., 632., 794., 662., 617., 443.,	s.e, .365, .232, .240, .262, .340, .312, .361, .209, .246, .345, .355, .325,	s.e, .149, .072, .034, .108, .073, .124, .046, .291, .065, .140, .150, .139,	Ratio, .41, .31, .14, .45, .28, .36, .15, .81, .31, .57, .43, .39,	5, .134, .624 5, .125, .563 5, .093, .853 5, .077, .842 5, .040, .971 5, .061, .732 5, .038, .979 5, .153, .763 5, .060, .648 5, .044, .739 5, .047, .776
Weighted prediction :					
Survivors, Int, at end of year, s.e, 645., .08,	s.e,	, Ratio,			

Age 6 Catchability constant w.r.t. time and dependent on age

Year class = 1989

Fleet,	Estimated,	Int,	Ext,	Var,	N, S	caled,	Estimated
,		s.e,	s.e,	Ratio,	, W	eights,	F
FLT01: SCOTRL IV (Ca,	135.,	.353,	.070,	.20	6,	.053,	1.062
FLT02: SCOSEI IV (Ca,			.061.	.27,		. 123	
FLT03: SCOLTR IV (Ca.						.113,	
FLT04: ENGTRL IV (Ca,				•		.145	
FLT05: ENGSEI IV (Ca,				•		.056,	
FLT06: FRATRB_IV (Ca,			•		•	.028,	
FLT07: SCOGFS IV (Ca,					•	.044,	
FLTO8: ENGGFS IV (Ca,				•	•	.018,	
FLT09: IBTS Q1 IV (CA)						.165,	
		•					
FLT10: IBTS_Q2_IV (C,	•	•		.76,		.047,	
FLT12: DANGIL_3a (Ca,	•		•	.29,		•	
FLT13: DANNEP_3a (Ca,			•	. 19,		.063,	
FLT17: FRATRC_7d (Ca,	176.,	.315,	.324,	1.03,	2,	.002,	.898
F shrinkage mean ,	188.,	.50,,,,				.089,	.858
Weighted prediction :							
Survivors, Int	, Ext,	N, Var,	F				
at end of year, s.e							
185., .09							

Table 3.4.1 (Continued)

Age 7 Catchability constant w.r.t. time and age (fixed at the value for age) 6

Year class = 1988

Fleet, FLT01: SCOTRL_IV (Ca, FLT02: SCOSEI_IV (Ca, FLT03: SCOLTR_IV (Ca, FLT04: ENGTRL_IV (Ca, FLT05: ENGSEI_IV (Ca, FLT06: FRATRB_IV (Ca, FLT07: SCOGFS_IV (Ca, FLT08: ENGGFS_IV (Ca, FLT09: IBTS_01_IV (C, FLT10: IBTS_02_IV (C, FLT10: IBTS_02_IV (C, FLT10: IBTS_02_IV (C, FLT12: DANGIL_3a (Ca, FLT17: FRATRC_7d (Ca, F shrinkage mean ,	Survivors, 186., 133., 116., 111., 266., 49., 107., 107., 105., 113., 46., 67., 99.,	s.e, .396, .249, .231, .228, .348, .517, .347, .350, .203, .334, .401, .369,	Ext, s.e, .091, .092, .107, .107, .314, .314, .134, .206, .051, .084, .254, .261, .086,	.23, .37, .46, .32, .53, .61, .39, .59, .25, .25, .63, .71,	777777656477	Weights, .044, .137, .189, .173, .073, .025, .024, .091, .026, .038, .054,	.539 .693 .762 .790 .405 1.317 .808 .586 .820 .778 1.363 1.097 .851
Weighted prediction :							
Survivors, Int, at end of year, s.e, 111., .10,	s.e,						

Age 8 Catchability constant w.r.t. time and age (fixed at the value for age) 6

Year class = 1987

Fleet,	Estimated,	Int,	Ext,	Var,	N, Scaled,	Estimated
,	Survivors,		s.e,	Ratio,	, Weights	
FLT01: SCOTRL_IV (Ca,	17.,	.468,	.215,	.46,	8, .026,	1.177
FLT02: SCOSEI_IV (Ca,	11.,	.288,	.177,	.61,	8, .144,	1.508
FLT03: SCOLTR IV (Ca,	10.,	.250,	.139,	.55,	8, .194,	1.543
FLTO4: ENGTRL_IV (Ca,	22.,	.252,	.111,	.44,	8, .199,	1.001
FLT05: ENGSEI_IV (Ca,	39.,		.398,	.98,	8, .052,	.673
FLT06: FRATRB_IV (Ca,	5.,	.671,	.280,	.42,	8, .020,	2.107
FLT07: SCOGFS_IV (Ca,	14.,	.332,	.306,	.92,	6, .012,	1.315
FLTO8: ENGGFS_IV (Ca,	18.,	.345,	.087,	.25,	5, .005,	1.126
FLT09: IBTS_Q1_IV (C,	14.,	.196,	.045,	.23,	6, .045,	1.289
FLT10: IBTS_Q2_IV (C,	10.,	.355,	.405,	1.14,		
FLT12: DANGIL_3a (Ca,	22.,	.393,	.267,	.68,	7, .019,	.994
FLT13: DANNEP_3a (Ca,	28.,	.365,	.133,	.36,	7, .026,	.838
FLT17: FRATRC_7d (Ca,	26.,	.300,	.042,	.14,	2, .001,	.878
F shrinkage mean ,	23.,	.50,,,,			.245,	.954
Weighted prediction :						
Survivors, Int,	Ext,	N, Var,	F			
at end of year, s.e. 17., .15,			, , 1.176			

Table 3.4.1 (Continued)

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 6

Year class = 1986

<pre>Fleet, FLT01: SCOTRL_IV (Ca, FLT02: SCOSE1_IV (Ca, FLT03: SCOLTR_IV (Ca, FLT04: ENGTRL_IV (Ca, FLT05: ENGSE1_IV (Ca, FLT06: FRATRB_IV (Ca, FLT08: ENGGFS_IV (Ca, FLT08: ENGGFS_IV (Ca, FLT09: IBTS_01_IV (C, FLT10: IBTS_02_IV (C, FLT12: DANGIL_3a (Ca, FLT13: DANNEP_3a (Ca, FLT17: FRATRC_7d (Ca, F shrinkage mean , Weighted prediction :</pre>	Survivors, 7., 9., 8., 7., 18., 2., 8., 5., 6., 8., 6., 7., 9.,	s.e, .793, .340, .311, .306, .564, .926, .339, .360, .199, .579, .385, .357,	s.e, .292, .022, .114, .070, .286, .337, .385, .269, .066, .362, .193,	Ratio, .37, .07, .37, .23, .51, .36, 1.14, .75, .33, .63, .50, .20,	9, .180, .857 9, .140, .893 9, .191, 1.020 9, .060, .497 9, .016, 1.871 6, .007, .885 5, .003, 1.247 6, .025, 1.056 2, .004, .923 6, .010, 1.036 6, .014, .990
Survivors, Int,	s.e,	, Ratio,			

Age 10 Catchability constant w.r.t. time and age (fixed at the value for age) 6

Year class = 1985

	Survivors, 8., 7., 5., 10., 9.,	s.e, .967, .318, .305, .571, 1.035, .345, .392, .200, .663, .401, .370, .333,	s.e, .683, .055, .219, .082, .042, .293, .231, .110, .086, .000, .125, .112,	Ratio, .71, .17, .65, .27, .07, .28, .67, .28, .43, .00, .31,	9,10,10,10,10,10,5,6,1,6,	Weights, .016, .239, .117, .138, .058, .018, .005, .002, .018,	.895 .979 1.249 .779 .856 1.630 1.339 1.011 1.084 .864 .832 .899 .976
Weighted prediction :							
Survivors, Int, at end of year, s.e, 7., .21,	s.e,	, Ratio,					

Table 3.4.2

Run title : Cod in IV, IIIa, VIId (run: XSATIM01/X01)

At 9-Oct-96 19:18:30

Table YEAR,	8		mortality 1964,		age
AGE 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, +gp, FBAR 2- 8	,	.0249, .5316, .3677, .4525, .4543, .5625, .1602, .7852, .3115, .4581, .4581, .4734,	.0203, .3759, .5929, .4171, .4767, .6126, .6078, .3700, .3262, .4823, .4823, .4823, .4933,	.0585, .4704, .6601, .6211, .4312, .4612, .4612, .4678, .7098, .2696, .4714, .4714, .5459,	·

Table 8 YEAR,	Fishing 1966,	mortality 1967,	(F) at 1968,	age 1969,	1970,	1971,	1972,	1973,	1974,	1975,
AGE										
1,	.0551,	.0335,	.0457,	.0213,	.1098,	.0762,	.0335,	.1292,	.0922,	.1080,
2,	.5499,	.4973,	.6353,	.3906,	.5787,	.8862,	.8903	.6956,	.8119,	.7336,
2, 3,	.6280,	.7286,	.7390,	.6001,	.7465,	.7701,	.9070,	.8377,	.6678,	.7840,
4, 5,	.5283,	.5326,	.7113,	.5816,	.5709,	.7086,	.6528,	.7783,	.6405,	.6663,
5,	.4894,	.5972,	.6228,	.6281,	.5845,	.6944,	.7099,	.5739,	.6400,	.7420,
6, 7,	.4346,	.5988,	.5646,	.6989,	.5316,	.5376,	.8029,	.7209,	.5318,	.6723,
7,	.4452,	.6200,	.5823,	.4867,	.5279,	.5693,	.7789,	.6897,	.7124,	.5118,
8,	.5271,	.7130,	.4542,	.6313,	.3177,	.5188,	1.0275,	.5433,	.6015,	.8389
8, 9,	.7630,	.3800,	.7773,	.4065	.6419,	.6898,	1.2286,	.3375	.9123,	.8771,
10,	.5362,	.5868,	.6054,	.5751,	.5249,	.6073,	.9194,	.5779,	.6859,	.7355,
+gp,	.5362,	.5868,	.6054,	.5751,	.5249,	.6073,	.9194,	.5779,	.6859,	.7355
FBAR 2-8,	.5146,	.6125,	.6156,	.5739,	.5511,	.6693,	.8242,	.6913,	.6580,	.7070

Run title : Cod in IV,IIIa,VIId (run: XSATIM01/X01)

At 9-Oct-96 19:18:30

Table 8 YEAR,	Fishing 1976,	mortality 1977,	y (F) at 1978,	age 1979,	1980,	1981,	1982,	1983,	1984,	1985,
AGE										
1,	.0352,	.1440,	.0954,	.1042,	.1097,	.1011,	.1758,	.1263,	.1780,	.0906,
2,	.9389,	.8420,	1.0251,	.7949	.8838,	.9730,	.9392,	1.0877,	.9607,	.9897,
2, 3,	.8574,	.7700,	.9214,	.9495	.9852,	1.0146,	1.2380,	1.1961,	1.0236,	.9699,
4,	.7559,	.5486,	.7660,	.5851,	.7925,	.7781,	.9288,	.9266,	.8411,	.8152,
5,	.5654,	.6339,	.8694,	.7046,	.6405,	.6807,	.8080,	.8060,	.7725,	.7228,
6,	.7889,	.5903,	.7383,	.5128,	.6321,	.5760,	.9095,	.7977	.7871,	.7232,
7,	.7412,	.7906,	.6576,	.6525,	.8415,	.7152,	.7312,	.7381,	.7295	.7327,
8,	.2720,	.7737,	.7882,	.5710,	.8452,	.5908,	.7288,	1.0466,	.8219,	.7202,
9,	.7952,	1.4547,	.8873	.7895,	.5858,	.7383,	.8213,	.6564,	1.0268,	.6412,
10,	.6382,	.8576,	.7962	.6520,	.7158,	.6663,	.8080,	.8173,	.8362,	.7148,
+gp,	.6382,	.8576,	.7962,	.6520,	.7158,	.6663,	.8080,	.8173,	.8362,	.7148,
FBAR 2-8,	.7028,	.7070,	.8237,	.6815,	.8030,	.7612,	.8977,	.9427,	.8481,	.8105,

Table 8 YEAR,	Fishing 1986,	mortality 1987,	/ (F) at 1988,	age 1989,	1990,	1991,	1992,	1993,	1994,	1995,	FBAR 93-95
AGE											
1,	.2346,	.1379,	.1690,	.1342,	.1418,	.1285,	.1437,	.0461,	.0624,	.1045,	.0710,
2, 3,	.8307,	.9095,	.8986	.8755,	.9147,	.7739,	.8577,	.7890,	.5778,	.5985,	.6551,
3,	1.0540,	.9036,	1.1594,	1.0947,	.9933,	.9724,	.8718,	1.0471,	.9579,	.7807,	.9286,
4,	.9606,	.9413,	.8571,	1.0460,	.9033,	.8896,	.9435,	1.0308,	.9803,	.7021,	.9044
5,	.8969,	.7323,	.8062,	.7755,	.7842,	.8504,	.8162,	.9300,	.8946,	.7521,	.8589
6,	.8144,	.9346,	.7920,	.9132,	.5517,	.9405,	.8279,	.9862,	.9398,	.8675	.9312,
7,	.8231,	.8978,	.7289,	.8291,	.7615,	1.0521,	.8992,	1.0799,	1.0617,	.7893	.9770,
8,	.9578,	.9172,	.8165,	.9996,	.6233,	1.0281,	.9165,	.9561,	1.1943,	1.1756,	1.1087,
9,	.6728,	.8682,	.7038,	.7366,	2.2492,	.4984	1.0042,	.8411,	.7904	.9658,	.8658,
10,	.9330,	.9041,	.5781,	.7922,	.9405	.7673,	.7255,	.7803	.9847,	.9592,	.9081
+gp,	.9330,	.9041,	.5781,	.7922,	.9405	.7673,	.7255	.7803	.9847,	.9592,	•
FBAR 2-8,	.9054,	.8909,	.8655,	.9334,	.7903,	.9296,	.8761,	.9741,	.9438,	.8094,	

Run title : Cod in IV,IIIa,VIId (run: XSATIM01/X01)

At 9-Oct-96 19:18:30

Table 10 YEAR,	Stock r 1963,	umber at 1964,	age (start 1965,	of year)	Numbers*10**-3
AGE					
1,	195108,	374091,	415441,		
2,	123043,	85513,	164718,		
3,	25892,	50953,	41378,		
4.	10736,	13961,	21933,		
5,	8439,	5591,	7532,		
6,	3116,	4386,	2842,		
7,	605,	1453,	1946,		
8,	1000,	422,	648,		
8, 9,	58,	373,	238,		
10,	18,	35,	221,		
+gp,	ο,	11,	23,		
TOTAL,	368014,	536790,	656921,		

Table 10	Stock r	number at	age (star	t of year)	Nu	mbers*10*	*-3		
YEAR,	1966,	1967,	1968,	1969,	1970,	1971,	1972,	1973,	1974,	1975,
AGE										
1,	506865,	488814,	194597,	209056,	781980,	910985,	173681,	319696,	263657,	486407,
2,	176070,	215533,	212397,	83531,	91960,	314839,	379286,	75471,	126243,	108037,
2, 3,	72517,	71595,	92370,	79297,	39829,	36331,	91458,	109724,	26527,	39501,
4,	16654,	30138,	26907,	34356,	33889,	14704,	13099,	28756,	36976,	10595,
5,	9649,	8039,	14486,	10817,	15723,	15676,	5927,	5583,	10811,	15956,
6,	4007,	4842,	3622,	6362,	4725,	7175,	6409,	2386,	2575,	4667,
6, 7,	1467,	2124,	2178,	1686,	2589,	2274,	3432,	2351,	9 50,	1239,
8,	998,	770,	936,	996,	849,	1250,	1053,	1289,	966,	381,
9,	261,	482,	309,	486,	434,	506,	609,	309,	613,	433,
10,	149,	100,	270,	116,	265,	187,	208,	146,	180,	202,
+gp,	219,	42,	58,	195,	107,	226,	33,	403,	415,	132,
TOTAL,	788856,	822480,	548130,	426899,	972351,	1304152,	675194,	546115,	469914,	667551,

Run title : Cod in IV, IIIa, VIId (run: XSATIM01/X01)

At 9-Oct-96 19:18:30

Table 10	Stock r	number at	age (star	t of year	•)	Nu	mbers*10*	*-3		
YEAR,	1976,	1977,	1978,	1979,	1980,	1981,	1982,	1983,	1984,	1985,
AGE										
1,	246650,	839038,	487662,	525055,	898961,	314491,	617990,	323656,	592335,	152125,
2,	196183,	106990,	326453,	199191,	212570,	361964,	127717,	232919,	128179,	222749,
3,	36558,	54065,	32483,	82532,	63392,	61898,	96408,	35185,	55315,	34562,
4,	14046,	12080,	19495,	10068,	24870,	18433,	17477,	21770,	8285,	15478,
5,	4455,	5400,	5714,	7420,	4592,	9218,	6931,	5652,	7057,	2925,
6,	6220,	2072,	2346,	1961,	3003,	1981,	3821,	2529,	2067,	2668,
7,	1951,	2314,	940,	918,	962,	1307,	912,	1260,	933,	770,
8,	608,	761,	859,	399,	391,	339,	523,	359,	493,	368,
9,	135,	379,	287,	320,	184,	138,	154,	207,	103,	177,
10,	148,	50,	72,	97,	119,	84,	54,	55,	88,	30,
+gp,	100,	181,	87,	39,	53,	47,	31,	45,	38,	51,
TOTAL,	507052,	1023330,	876401,	828000,	1209098,	769900,	872018,	623638,	794892,	431905,

Table 10	Stock n	umber at	age (star	t of year)	Numbers*10**-3						
YEAR,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995,	1996,	GMST
AGE												
1,	706392,	276774,	193724,	276670,	133651,	168648,	311647,	159376,	398862,	247588,	0,	3454
2,	62431,	251037,	108344,	73514,	108700,	52116,	66643,	121285,	68385,	168379,	100212,	1431
3,	58346,	19170,	71246,	31085,	21585,	30688,	16939,	19919,	38828,	27040,	65220,	454
4,	10205,	15837,	6048,	17404,	8102,	6226,	9039,	5517,	5444,	11603,	9647,	151
5,	5608,	3197,	5058,	2102,	5006,	2688,	2094,	2880,	1611,	1672,	4707,	61
6,	1162,	1873,	1259,	1849,	792,	1871,	940,	758,	930,	539,	645,	26
7,	1060,	422,	602,	467,	608,	374,	598,	336,	231,	298,	185,	11
8,	303,	381,	141,	238,	167,	232,	107,	199,	94,	66,	111,	4
9,	147,	95,	125,	51,	72,	73,	68,	35,	63,	23,	17,	1
10,	77,	61,	33,	50,	20,	6,	36,	20,	12,	23,	7,	
+gp,	36,	22,	42,	20,	7,	18,	19,	26,	28,	9,	10,	
TOTAL,	845767,	568870,		403449,	278709,	262940	408130,	310352,	514489,	457240,	180761,	

CODIV1B.RCT

Table 3.5.1	С	OD in Illa,	IV, VIId. R	CT3 INPUT	r values; /	AGE 1(mill	ions) 9 Oct 1996
Yearclass	'VPA'	'IYFS1'	'EGFS0'	'EGFS1'	'SGFS1' '(GGFSQ1' '	GGFSQ4'
1970	911	9830	-1	-1	-1	-1	-1
1971	174	410	-1	-1	-1	-1	-1
1972	320	3800	-1	-1	-1	-1	-1
1973	264	1470	-1	-1	-1	-1	-1
1974	486	4030	-1	-1	-1	-1	-1
1975	247	790	-1	-1	-1	-1	-1
1976	839	3670	-1	6270	-1	-1	-1
1977	488	1290	1389	2284	-1	-1	-1
1978	525	990	1256	2423	-1	-1	-1
1979.	899	1690	1855	5084	-1	-1	-1
1980	314	290	1023	1136	-1	-1	-1
1981	618	920	7424	3237	614	-1	678
1982	324	390	255	1540	325	303	66
1983	592	1520	9510	6122	819	566	406
1984	152	90	38	430	66	2	10
1985	706	1700	828	3438	801	725	197
1986	277	880	121	1422	219	242	21
1987	194	360	38	836	162	20	3
1988	277	1310	1678	2285	561	148	2
1989	134	340	598	608	114	31	1
1990	169	240	383	752	303	34	35
1991	312	1300	4840	2440	642	-1	-1
1992	159	1270	1684	742	347	-1	1
1993	-1	1480	377	2637	1158	8	-1
1994	-1	970	2134	1028	475	133	32
1995	-1	370	- 26	619	318	41	20
1996	-1	-1	4122	-1	-1	-1	-1

Table 3.5.2

Analysis by RCT3 ver3.1 of data from file :

codiv1b.rct

COD IV "RCT3 RESULTS; AGE 1(millions) Run 9 Oct 1996"

Data for 6 surveys over 27 years : 1970 - 1996

Regression type = C Tapered time weighting applied power = 3 over 20 years Survey weighting not applied

Final estimates shrunk towards mean Minimum S.E. for any survey taken as .20 Minimum of 5 points used for regression

Forecast/Hindcast variance correction used.

Yearclass = 1995

	I	Re	gressi	on	I	II				
Survey/ Series	Slope	Inter- cept	Std Error	Rsquare	No. Pts	Index Value	Predicted Value	Std Error	WAP Weights	
IYFS1 EGFS0 EGFS1 SGFS1 GGFSQ1 GGFSQ4	1.00 .68 .78 .91 .38 .35	87 1.19 06 .33 3.86 4.55	.74 1.10 .24 .48 .37 .45	.403 .233 .862 .598 .744 .666	23 16 17 12 9 11	5.92 3.30 6.43 5.77 3.74 3.04	5.03 3.42 4.96 5.56 5.29 5.62	.883 1.491 .300 .573 .474 .540	.048 .017 .415 .113 .166 .128	
					VPA	Mean =	5.59	.574	.113	

Yearclass = 1996

	IPredictionI IPrediction					I			
Survey/ Series	Slope	Inter- cept	Std Error	Rsquare	No. Pts	Index Value	Predicted Value	Std Error	WAP Weights
IYFS1 EGFS0 EGFS1 SGFS1 GGFSQ1 GGFSQ4	.70	1.03	1.16	.210	16	8.32	6.83	1.468	.127
					VPA	Mean =	5.55	.560	.873

Year Class	Weighted Average Prediction	Log WAP	Int Std Error	Ext Std Error	Var Ratio	VPA	Log VPA
1995 1996	183 302	5.21 5.71	.19 .52	.15 .43	.60 .67		

Run title : Cod in IV, IIIa, VIId (run: XSATIM01/X01)

At 9-Oct-96 19:18:30

Table 16	Summary	(without	SOP	correction)
----------	---------	----------	-----	-------------

,	RECRUITS,	TOTALBIO,	TOTSPBIO,	LANDINGS,	YIELD/SSB,	FBAR 2-8,
1	Age 1				7/6/	
1963		452115,	151517,	116457,	.7686,	.4734,
1964		542257,	166129,	126041,	.7587,	.4933,
1965	· · · · · · · · · · · · · · · · · · ·	714023,	205376,	181036,	.8815,	.5459,
1966		859771,	230735,	221336,	.9593,	.5146,
1967	• •	923782,	250048,	252977,	1.0117,	.6125,
1968	•	788676,	258248,	288368,	1.1166,	.6156,
1969		630841,	255985,	200760,	.7843,	.5739,
1970	, 781980,	973125,	276932,	226124,	.8165,	.5511,
1971	, 910985,	1180429,	277326,	328098,	1.1831,	.6693,
1972	, 173681,	809898,	231112,	353976,	1.5316,	.8242,
1973	, 319696,	656137,	209226,	239051,	1.1425,	.6913,
1974	, 263657,	623693,	231014,	214279,	.9276,	.6580,
1975	, 486408,	705026,	211945,	205245,	.9684,	.7070,
1976	, 246650,	611040,	182555,	234169,	1.2827,	.7028,
1977	, 839037,	822620,	159911 ,	209154,	1.3079,	.7070,
1978	487662,	812539,	159805,	297022,	1.8586,	.8237,
1979	, 525055,	804579,	164591 ,	269973,	1.6403,	.6815,
1980	, 898961,	1014677,	182039,	293644,	1.6131,	.8030,
1981	, 314491,	854186,	195519,	335497,	1.7159,	.7612,
1982	, 617990,	838461,	189446,	303251,	1.6007,	.8977,
1983	, 323656,	646293,	153489,	259287,	1.6893,	.9427,
1984	, 592335,	712412,	131013,	228286,	1.7425,	.8481,
1985	, 152125,	492169,	122364,	212925,	1.7401,	.8105,
1986	, 706392,	666849,	110425,	196147,	1.7763,	.9054,
1987	276775,	554848,	100728,	209596,	2.0808,	.8909,
1988	193724,	412341,	95200,	176432,	1.8533,	.8655,
1989	276670,	415313,	89698,	139859,	1.5592,	.9334,
1990	133651,	327383,	77127	125285,	1.6244,	.7903
1991	168648,	294991	70168,	102487,	1.4606,	.9296,
1992	· · · · · · · · · · · · · · · · · · ·	404991	67463,	114026,	1.6902,	.8761,
1993		345446,	63077,	121930,	1.9330,	.9741,
1994		475487	63302	110560	1.7466	.9438,
1995		480483	74684	138764,	1.8580,	.8094
		- •				
Arith.		•				
Mean	, 399748,	662027.	163885,	213092,	1.4128,	.7523,
Units,		(Tonnes),	(Tonnes),	(Tonnes),		
		•••••••				

Cod in Fishing Areas IV, Skagerrak and VIId

Prediction with management option table: Input data

	Year: 1996											
Age	Stock size	Natural mortality		Prop.of F bef.spaw.	Prop.of M bef.spaw.	Weight in stock	Exploit. pattern	Weight in catch				
1	183000.00	0.8000	0.0100	0.0000	0.0000	0.691	0.0867	0.691				
2	100212.00	0.3500	0.0500	0.0000	0.0000	1.076	0.6426	1.076				
3	65220.000	0.2500	0.2300	0.0000	0.0000	2.292	0.8271	2.292				
4	9647.000	0.2000	0.6200	0.0000	0.0000	4.303	0.8120	4.303				
5	4707.000	0.2000	0.8600	0.0000	0.0000	6.638	0.7577	6.638				
6	645.000	0.2000	1.0000	0.0000	0.0000	8.381	0.8145	8.381				
7	185.000	0.2000	1.0000	0.0000	0.0000	9.800	0.8723	9.800				
8	111.000	0.2000	1.0000	0.0000	0.0000	10.757	0.9426	10.757				
9	17.000	0.2000	1.0000	0.0000	0.0000	12.638	0.7413	12.638				
10	7.000	0.2000	1.0000	0.0000	0.0000	13.327	0.7522	13.327				
11+	10.000	0.2000	1.0000	0.0000	0.0000	14.140	0.7522	14.140				
Unit	Thousands	-	-	-	-	Kilograms	-	Kilograms				

	Year: 1997											
Age	Recruit- ment	Natural mortality	Maturity ogive	Prop.of F bef.spaw.	Prop.of M bef.spaw.	Weight in stock	Exploit. pattern	Weight in catch				
1	302000.00	0.8000	0.0100	0.0000	0.0000	0.691	0.0867	0.691				
3	•	0.2500	0.2300	0.0000	0.0000	2.292	0.8271	2.292				
5	-	0.2000	0.8600	0.0000	0.0000	6.638	0.7577	6.638				
6	•	0.2000	1.0000	0.0000			0.8145	8.381 9.800				
8 9	•	0.2000 0.2000	1.0000 1.0000	0.0000 0.0000	0.0000		0.9426 0.7413	12.638				
10 11+	•	0.2000 0.2000	1.0000 1.0000	0.0000 0.0000	0.0000	13.327 14.140	0.7522 0.7522	13.327 14.140				
Unit	Thousands	-	-	-	-	Kilograms	-	Kilograms				

	Year: 1998											
Age	Recruit- ment	Natural mortality		Prop.of F bef.spaw.	Prop.of M bef.spaw.	Weight in stock	Exploit. pattern	Weight in catch				
1	257000.00	0.8000	0.0100	0.0000	0.0000	0.691	0.0867	0.691				
2		0.3500	0.0500	0.0000	0.0000	1.076	0.6426	1.076				
3		0.2500	0.2300	0.0000	0.0000	2.292	0.8271	2.292				
4		0.2000	0.6200	0.0000	0.0000	4.303	0.8120	4.303				
5		0.2000	0.8600	0.0000	0.0000	6.638	0.7577	6.638				
6		0.2000	1.0000	0.0000	0.0000	8.381	0.8145	8.381				
7		0.2000	1.0000	0.0000	0.0000	9.800	0.8723	9.800				
8		0.2000	1.0000	0.0000	0.0000	10.757	0.9426	10.757				
9		0.2000	1.0000	0.0000	0.0000	12.638	0.7413	12.638				
10		0.2000	1.0000	0.0000	0.0000	13.327	0.7522	13.327				
11+		0.2000	1.0000	0.0000	0.0000	14.140	0.7522	14.140				
Unit	Thousands	-	-	-	-	Kilograms	-	Kilograms				

Notes: Run name : MANWOL01 Date and time: 100CT96:16:14

Table 3	.7.2	Input to s	ensitivity ana	alvsis								
		cop	347D									
	1	11	1996		3							
	1	0	0		-							
'N1'		183000	0.57	'WH1'	0.691	0.03	'M1'	0.8	0.1	'R97'	302000	0.57
'N2'		100212	0.12	'WH2'	1.076	0.04	'M2'	0.35	0.1	'R98'	257000	0.56
'N3'		65220	0.09	'WH3'	2.292	0.09	'M3'	0.25	0.1	'HF96'	1	0.07
'N4'		9647	0.07	'WH4'	4.303	0.05	'M4'	0.2	0.1	'HF97'	1	0.07
'N5'		4707	0.08	'WH5'	6.638	0.08	'M5'	0.2	0.1	'HF98'	1	0.07
'N6'		645	0.08	'WH6'	8.381	0.05	'M6'	0.2	0.1	'K96'	1	0.1
'N7'		185	0.09	'WH7'	9.8	0.04	'M7'	0.2	0.1	'K97'	1	0.1
'N8'		111	0.1	'WH8'	10.757	0.06	'M8'	0.2	0.1	'K98'	1	0.1
'N9'		17	0.15	'WH9'	12.638	0.06	'M9'	0.2	0.1			
'N10'		6	0.19	'WH10'	13.327	0.06	'M10'	0.2	0.1			
'N11'		10	0.21	'WH11'	14.14	0.08	'M11'	0.2	0.1			
'sH1'		0.087	0.46	'WS1'	0.691	0.03	'MT1'	0.01	0.1			
'sH2'		0.643	0.17	'WS2'	1.076	0.04	'MT2'	0.05	0.1			
'sH3'		0.827	0.04	'WS3'	2.292	0.09	'MT3'	0.23	0.1			
'sH4'		0.812	0.09	'WS4'	4.303	0.05	'MT4'	0.62	0.1			
'sH5'		0.758	0.02	'WS5'	6.638	0.08	'MT5'	0.86	0.1			
'sH6'		0.814	0.05	'WS6'	8.381	0.05	'MT6'	1	0.1			
'sH7'		0.872	0.07	'WS7'	9.8	0.04	'MT7'	1	0			
'sH8'		0.943	0.16	'WS8'	10.757	0.06	'MT8'	1	0			
'sH9'		0.741	0.29	'WS9'	12.638	0.06	'MT9'	1	0			
'sH10'		0.752	0.17	'WS10'	13.327	0.06	'MT10'	1	0			
'sH11'		0.752	0.17	'WS11'	14.14	0.08	'MT11'	1	0			

Cod in Fishing Areas IV, Skagerrak and VIId

Prediction	with	management	option	table
------------	------	------------	--------	-------

	Ŷ	/ear: 1996			Year: 1997					Year: 1998	
F Factor	Reference F	Stock biomass	Sp.stock biomass	Catch in weight	F Factor	Reference F	Stock biomass	Sp.stock biomass	Catch in weight	Stock biomass	Sp.stock biomass
1.0000	0.8098	465325	102505	167946	0.0000	0.0000	512451	123736 123736	0 21148	732285 700992	259878 240690
-	•	•	-		0.2000	0.1620	-	123736 123736	40860 59240	671939 644959	222968 206599
-	-	-	-	•	0.4000	0.3239	-	123736	76387 92390	619898 596613	191480 177514
-		-		-	0.6000	0.4859	•	123736	107333	574971 554851	164612 152693
•		-	•	-	0.8000	0.6479		123736	134343	536141 518734	141682 131508
		-	-	-	1.0000	0.8098		123736 123736	157967 168661	502535 487454	122107 113420
					1.2000	0.9718		123736	178680	473409	105393
-	-	Tonnes	Tonnes	Tonnes	-	-	Tonnes	Tonnes	Tonnes	Tonnes	Tonnes

Notes: Run name

~

Run name : MANWOL01 Date and time : 100CT96:16:19 Computation of ref. F: Simple mean, age 2 - 8 Basis for 1996 : F factors

Table 3.7.4

					Year			
	1996				1997			
Mean F Ages	0.81	0.00	0.22	0.49	0.57	0.65	0.81	0.97
H. cons. TOT 2 to 8 H. cons. IV 2 to 8	0.81	0.00	0.32 0.28	0.49	0.50	0.63	0.81	0.97
H. cons. IV 2 to 8 H. cons. IIIa 2 to 8	0.71	0.00	0.28	0.43	0.30	0.37	0.71	0.83
H. cons. VIId 2 to 8 H. cons. VIId 2 to 8	0.09	0.00	0.04	0.003	0.007	0.008	0.09	0.006
Effort relative to 1995								
H. cons	1.00	.00	.40	.60	.70	.80	1.00	1.20
Biomass at start of year								
Total	465	513	513	513	513	513	513	513
Spawning	103	124	124	124	124	124	124	124
Catch Weight ('000t)								
H. cons. IV	144	0	66	93	105	116	136	154
H. cons. IIIa	22	0	11	15	15	17	19	24
H. cons. VIId	3	0	1	2	2	3	3	4
Total Landings	169	0	77	108	122	135	159	180
Total Catch	169	0	77	108	122	135	159	180
Biomass at start of 1998								
Total		732	620	575	555	536	503	474
Spawning		260	192	165	153	142	122	106

1

Table : Cod in North Sea, Skagerrak and Eastern Channel Catch forecast output

Table 3.7.4 (Continued)

Forecast for year 1996 F multiplier H.cons = 1

	Populations	Catch number			
Age	Stock No.	IV	VIId	Illa	Total
1	183000	9007	942	570	10519
2	100212	35458	680	4692	40831
3	65220	27900	339	4785	33024
4	9647	4166	40	721	4927
5	4707	1973	18	304	2295
6	645	297	2	31	330
7	185	89	0	10	99
8	111	57	0	5	62
9	17	8	0	1	8
10	7	3	0	0	3
11+	10	5	0	0	6
Wt	465.383766	144	3	22	169

Forecast for year 1997

F multiplier H.cons=1.00

	Populations	Catch number			
Age	Stock No.	H. Cons IV	Discards IV	By-catch IV	Total
1	302000	14864	1554	941	17359
2	75400	26679	512	3531	30721
3	37141	15888	193	2725	18806
4	22214	9592	92	1661	11345
5	3507	1470	13	227	1710
6	1806	831	6	87	924
7	234	113	0	12	125
8	63	33	0	3	36
9	35	16	0	1	17
10	7	3	0	0	3
11+	11	5	0	0	5
Wt	513	136	3	19	159

Ð

Table 3.10.1 Stock: Cod in Sub-areas IIIa (Skagerrak), IV (North Sea), VIId (Eastern Channel)

				Average F(2-8,u)					
Date of assessment				Y	ear				
ļ	1987	1988	, 1989	1990	1991	1992	1993	1994	1995
1989	0.83	0.80		I		L	I	I	· ·
1990	0.86	0.83	0.83						
1991	0.89	0.88	0.98	0.75					
1992	0.89	0.89	1.00	0.78	0.93		ж. С		
1993	0.89	0.88	0.95	0.72	0.85	0.86			
1994	0.91	0.89	0.99	0.71	0.92	0.84	0.94		
1995	0.91	0.89	0.99	0.72	0.93	0.86	0.91	0.85	
1996	0.89	0.87	0.93	0.79	0.93	0.88	0.97	0.94	0.81

Assessment Quality Control Diagram 1

Remarks: 1996 data refer to combined assessment for IIIa+IV+VIId, earlier data to IV only.

Assessment Quality Control Diagram 2

			Recruitr	nent (age 1) Unit:	millions				
Date of assessment				Year	class				
	1987	1988	1989	1990	1991	1992	1993	1994	1995
1989	193	329'					.	<u> </u>	
1990	201	324	161 ²						
1991	142	316	140	216					
1992	143	246	137	155	345				
1993	150	257	113	150	410	199			
1994	150	242	112	143	300	165	406		
1995	151	240	112	142	281	100	465	256]
1996	194	277	134	167	312	159	399	248	183

¹Amended by ACFM to 299. ²As revised by ACFM.

Remarks: 1996 data refer to combined assessment for IIIa+IV+VIId, earlier data to IV only.

Table 3.10.1 Stock: Cod in Sub-area IV (North Sea)

	Spawning stock biomass ('000 t)														
Date of assessment															
	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998				
1989	88	91	82 ¹	80 ^{1.2}			.			.					
1990	84	85	87	78'	711										
1991	79	73	66	64	66 ¹	68 ¹									
1992	79	73	62	56	51	47 ¹	521								
1993	82	76	65	60	64	58	62 ¹	66 ¹							
1994	85	76	64	62	61	57	63	69 ¹	74 ¹						
1995	85	76	63	62	60	57	59	78	89 ¹	1031					
1996	95	90	77	70	67	63	63	75	103	1241	1221				

Assessment Quality Control Diagram 3

¹Forecast. Assuming status quo

Remarks : 1996 data refer to combined assessment for IIIa+IV+VIId, earlier data to IV only.

Cod in Fishing Areas IV, Skagerrak and VIId

Yield per recruit: Input data

Age	Recruit- ment	Natural mortality	Maturity ogive	Prop.of F bef.spaw.	Prop.of M bef.spaw.	Weight in stock	Exploit. pattern	Weight in catch
1	1.000	0.8000	0.0100	0.0000	0.0000	0.691	0.0867	0.691
2		0.3500	0.0500	0.0000	0.0000	1.076	0.6426	1.076
3		0.2500	0.2300	0.0000	0.0000	2.292	0.8271	2.292
4		0.2000	0.6200	0.0000	0.0000	4.303	0.8120	
5		0.2000	0.8600	0.0000	0.0000	6.638	0.7577	6.638
6	-	0.2000	1.0000	0.0000	0.0000	8.381	0.8145	8.381
7	-	0.2000	1.0000	0.0000	0.0000	9.800	0.8723	9.800
8	-	0.2000	1.0000	0.0000	0.0000	10.757	0.9426	10.757
9		0.2000	1.0000	0.0000	0.0000	12.638	0.7413	12.638
10	•	0.2000	1.0000	0.0000	0.0000	13.327	0.7522	13.327
11+	· •	0.2000	1.0000	0.0000	0.0000	14.140	0.7522	14.140
Unit	Numbers	-	-	-	-	Kilograms	-	Kilograms

: YLDWOL01 Notes: Run name

Date and time: 100CT96:16:43

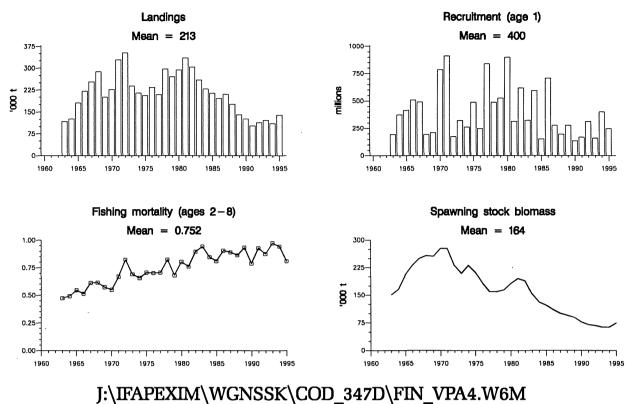
Table 3.12.2

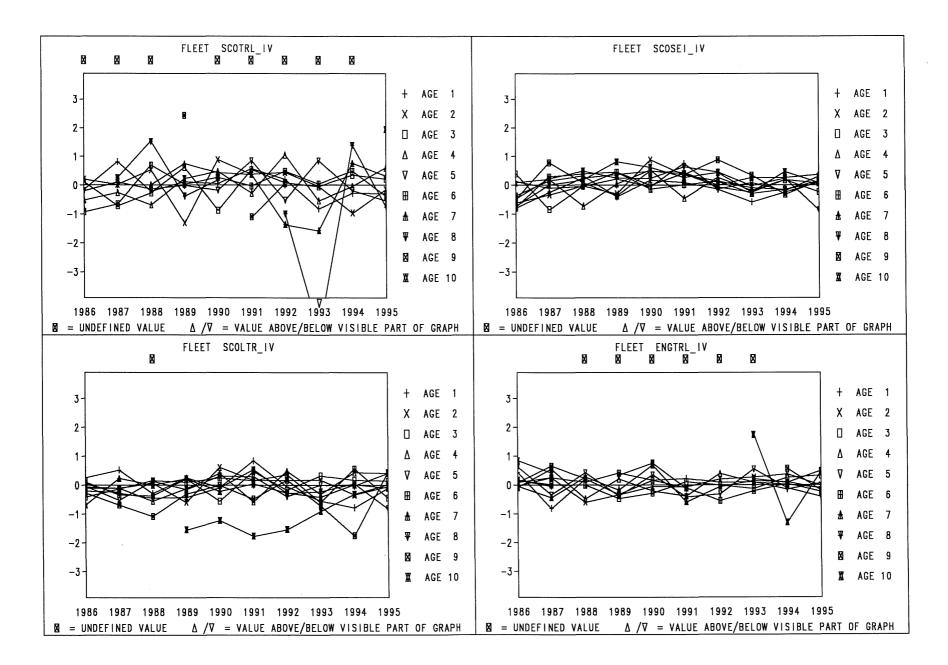
ť

14:47 Thursday, October 10, 1996

Cod in Fishing Areas IV, Skagerrak and VIId

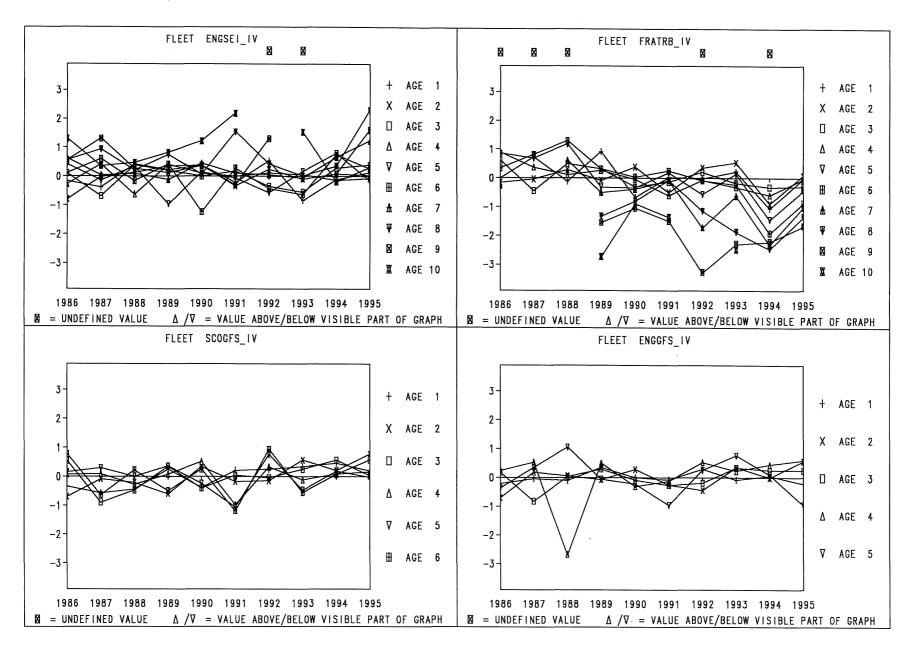
Yield per recruit: Summary table


						1 Jar	nuary	Spawni	ng time
F Factor	Reference F	Catch in numbers	Catch in weight	Stock size	Stock biomass	Sp.stock size	Sp.stock biomass	Sp.stock size	Sp.stock biomass
0.000	0.0000	0.000	0.000	3.126	15084.382	1.344	12791.637	1.344	12791.637
0.1000	0.0810	0.111	600.624	2.603	9347.448	0.861	7195.652	0.861	7195.652
0.2000	0.1620	0.175	780.523	2.311	6519.456	0.605	4489.091	0.605	4489.091
0.3000	0.2429	0.217	818.974	2.125	4925.714	0.451	3000.422	0.451	3000.422
0.4000	0.3239	0.248	806.509	1.996	3942.041	0.350	2108.068	0.350	2108.068
0.5000	0.4049	0.272	776.513	1.900	3292.870	0.281	1538.609	0.281	1538.609
0.6000	0.4859	0.291	742.118	1.827	2841.794	0.231	1157.418	0.231	1157.418
0.7000	0.5669	0.308	708.555	1.768	2515.308	0.193	892.464	0.193	892.464
0.8000	0.6479	0.321	677.784	1.721	2271.068	0.165	702.633	0.165	702.633
0.9000	0.7288	0.334	650.372	1.681	2083.316	0.143	563.190	0.143	563.190
1.0000	0.8098	0.344	626.296	1.647	1935.655	0.125	458.598	0.125	458.598
1.1000	0.8908	0.354	605.295	1.618	1817.245	0.111	378.738	0.111	378.738
1.2000	0.9718	0.363	587.033	1.592	1720.682	0.100	316.812	0.100	316.812
-	-	Numbers	Grams	Numbers	Grams	Numbers	Grams	Numbers	Grams


Notes: Run name

: YLDWOL01 : 100CT96:16:43 Date and time Computation of ref. F: Simple mean, age 2 - 8 F-0.1 factor F-max factor : 0.1874 : 0.3104 F-0.1 reference F : 0.1518 : 0.2513 F-max reference F Recruitment : Single recruit

Figure 3.1.1


Cod in Fishing Areas IV, Skagerrak and VIId 9-10-1996

83

Figure 3.4.1

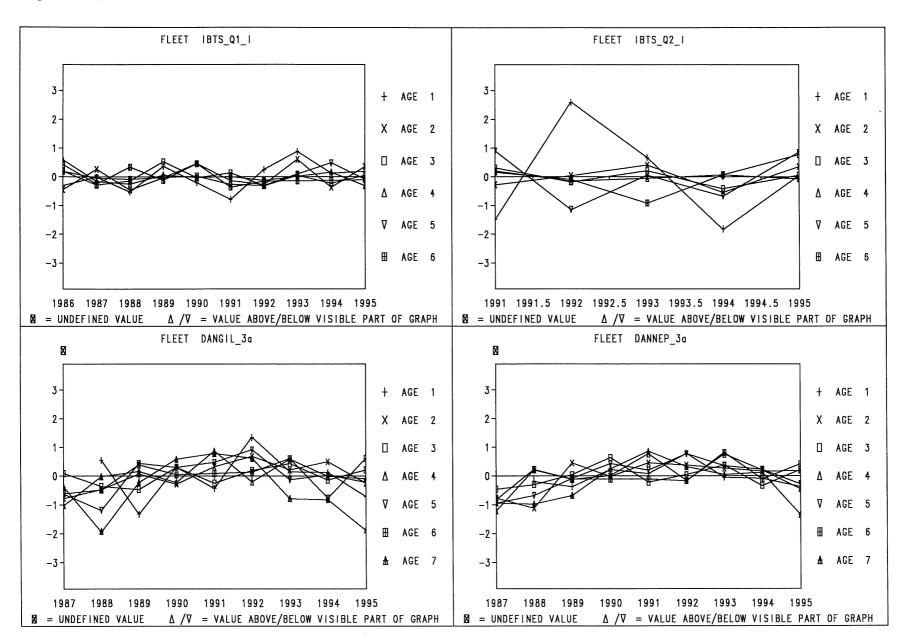
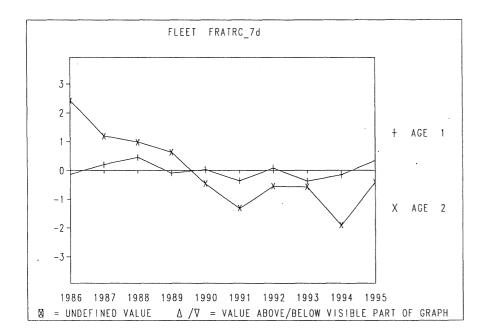
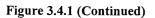




Figure 3.4.1 (Continued)

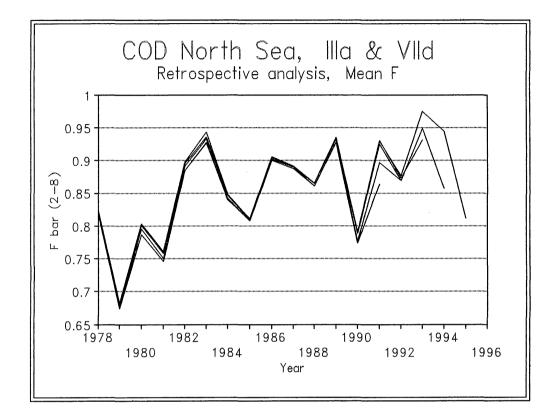


Figure 3.4.2

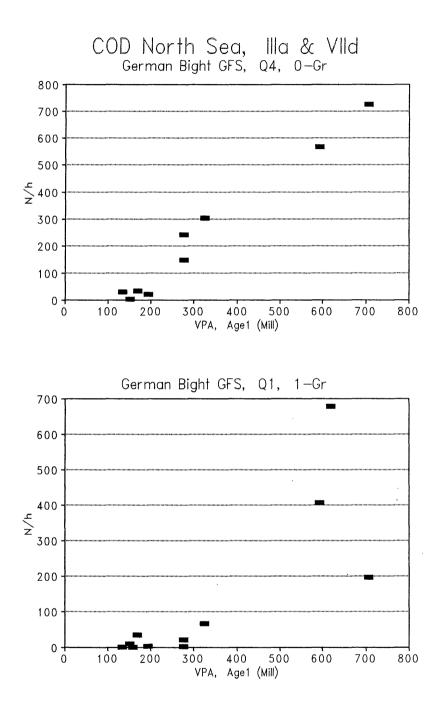
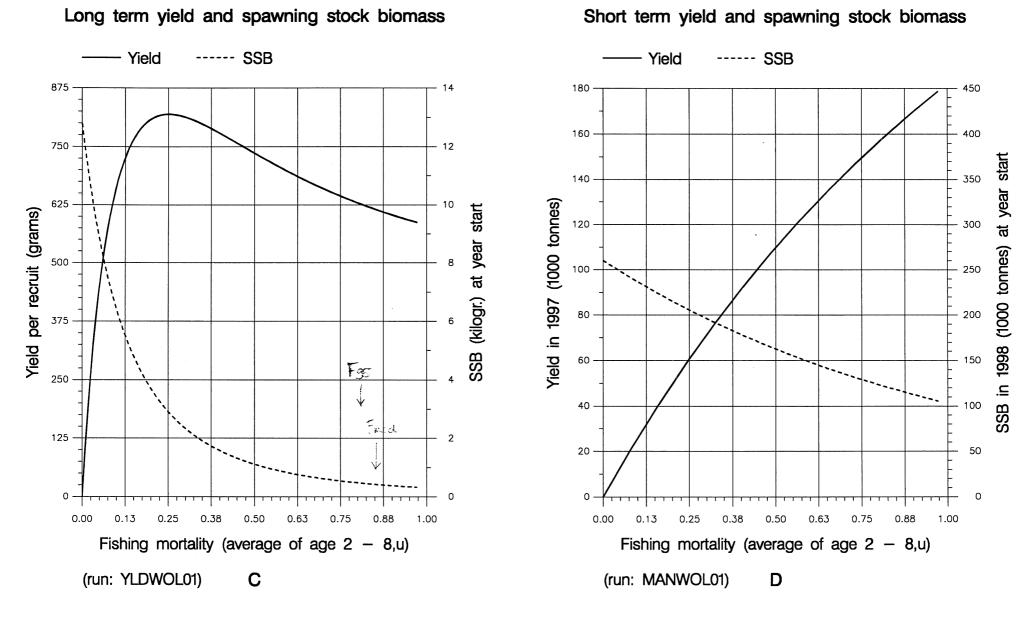
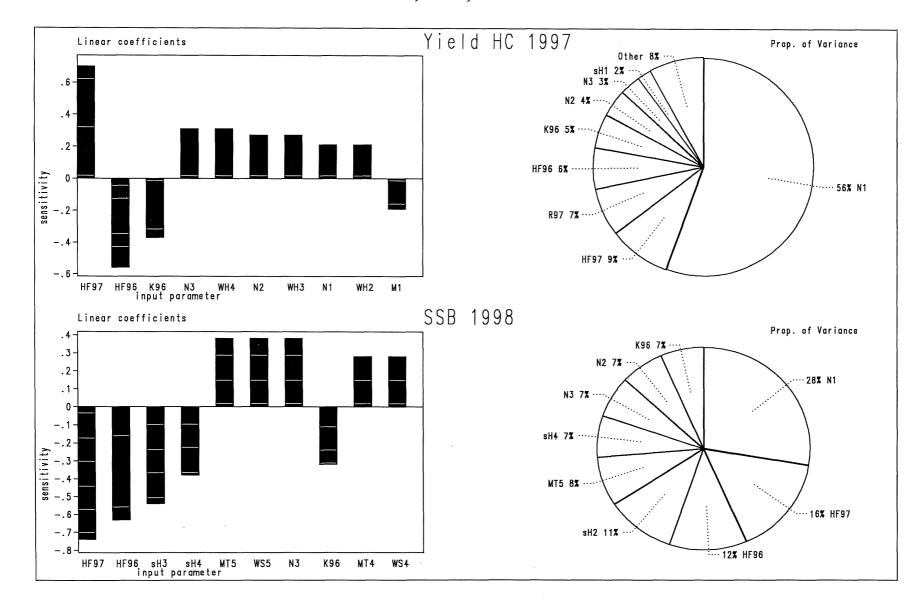
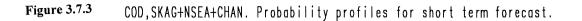
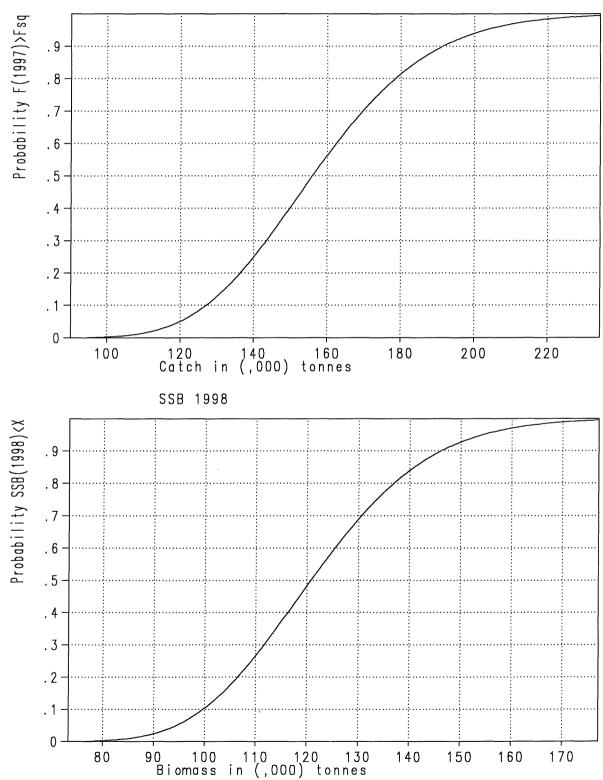
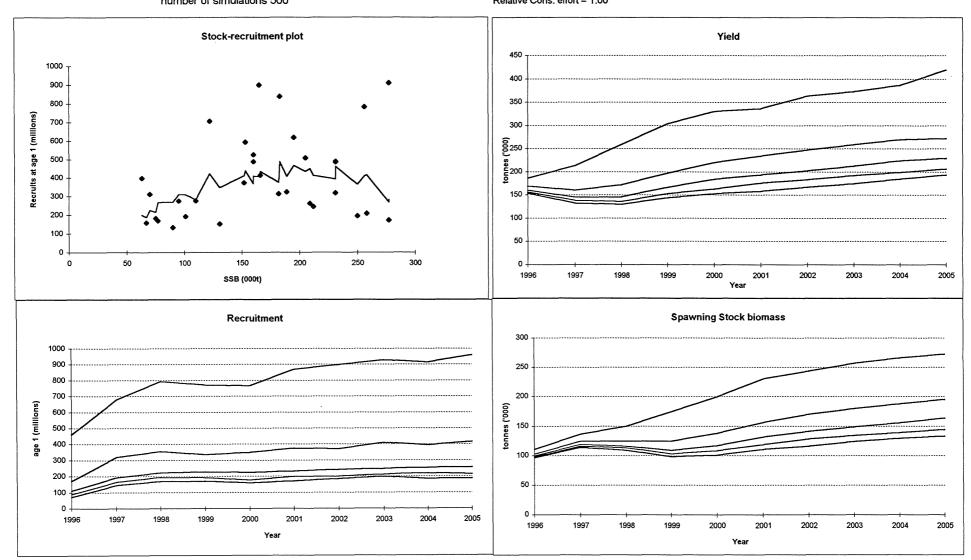




Figure 3.5.1

Figure 3.7.1


Fish Stock Summary Cod in Fishing Areas IV, Skagerrak and VIId 10-10-1996




Figure 3.7.2 COD, SKAG+NSEA+CHAN. Sensitivity analysis of short term forecast.

90

Yield HC 1997

North Sea Cod. Medium term projections. Solid lines show 5, 10, 20, 50 and 95 percentiles. Status quo F. Shepherd stock-recruitment relationship with moving average. number of simulations 500 Relative Cons. effort = 1.00

Figure 3.8.1

als Pro-

.

Cod IIIa+IV+VIId - Medium term predictions showing 5, 10, 20 percentiles of SSB in tenth year (2005) for different F-factors applied to estimated 1995 F Shepherd stock-recruitment relationship , see Section 16.1. 500 simulations

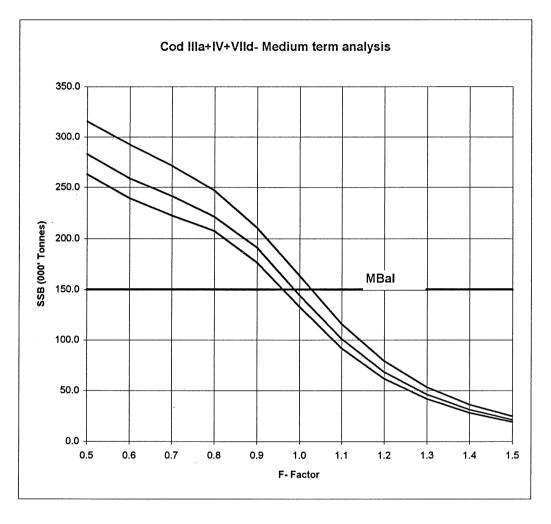
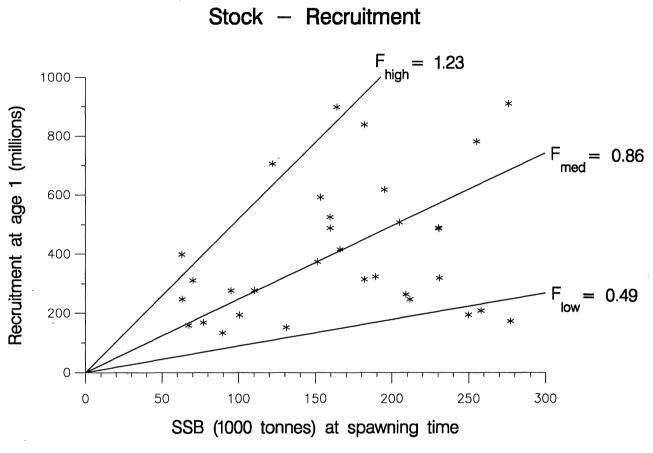



Figure 3.8.2

Cod in Fishing Areas IV, Skagerrak and VIId 9-10-1996

(run: XSATIM01)

4 HADDOCK IN SUB-AREA IV AND DIVISION IIIA

This is the first assessment to combine the North Sea and Division IIIa haddock into a single stock. Problems with the catch-at-age data have previously prevented an analytical assessment for the Division IIIa haddock.

4.1 Catch trends

In the North Sea, Haddock is taken as part of a mixed demersal fishery, with the large majority of the catch being taken by Scottish light trawlers, seiners and pair trawlers. These gears have a minimum mesh size of 100 mm. Smaller quantities are taken by other Scottish vessels, including Nephrops trawlers which use 70 mm mesh and thus discard higher quantities. The fishery is also exploited by vessels from countries including England, Denmark and Norway. In Division IIIa, haddock are taken as a bycatch in a mixed demersal fishery, and in the industrial fishery. Landings from Division IIIa are small compared to the North Sea, amounting to between 2.5 and 6.9 % of the total catch over 1963-1995.

Nominal landings of haddock from Division IIIa for recent years are given in Table 4.1, along with Working Group estimates of landings and industrial bycatch. Table 4.2 gives the corresponding figures for haddock in the North Sea, and Table 4.3 gives the full time series of Working Group estimates for both areas.

In Division IIIa total landings during 1995 amounted to about 4.4 thousand t, with industrial bycatch accounting for about half of this total. This total is slightly below the series average but landings have been close to this level since about 1986.

In the North Sea, human consumption landings in 1995 were around 75 thousand t, which represent a slight drop compared to landings in the two preceding years which were both around 80 thousand t. The 1995 landing represents a considerable undershoot of the TAC of 120,000t. The level of discarding in 1995 was lower than in the two previous years, but the level of industrial bycatch increased relative to 1994. Misreporting is not considered to have been a problem with this stock in 1995.

As noted in Section 1.3.3, the incorporation of the catch data from Division IIIa in with the North Sea data presented a few technical problems. In particular, extending the time-series of catch-at-age data for Division IIIa back from the first year for which data were available (1981) to the first year for which data are available for the North Sea (1963) was complicated by the lack of information about the split between human consumption landings and industrial bycatch for the earlier years. Investigation indicated that the human consumption/industrial bycatch split in Division IIIa was correlated with that in the North Sea, so the latter proportion was also applied to the Division IIIa catch totals and catch-at-age data estimated accordingly. In practice this will have made very little difference to the overall catch-at-age data as the landings from Division IIIa in the 1960s and early 1970s were negligible compared with those from the North Sea. The catch-at-age data from Division IIIa also suffered from the lack of information on the age composition of the industrial bycatches in 1987-1990. To overcome this problem, age compositions for this component of the catches were estimated using age compositions from the industrial bycatch in the North Sea.

4.2 Natural mortality, maturity, age composition, mean weight at age

Natural mortality estimates are given in Table 4.4 along with the maturity ogive. The natural mortality estimates originate from MSVPA, and the maturities are based on IYFS data. These values are as used in recent assessments of the North Sea haddock stock and as such represent a change in practice for the Division IIIa component. The most recent assessment of this stock-unit used a maturity ogive implying partial maturity only at age 2 when 50% of fish were assumed mature, with M set at 0.2 for all ages and SSB calculated assuming that 25% of natural and 15% of fishing mortality occurred before spawning. This practice has also changed in the current assessment as it follows the practice in the North Sea assessment of calculating SSB at the start of the year.

For Division IIIa in 1995, age composition data for the human consumption and industrial bycatches were supplied by Denmark, who accounted for around 70% of the human consumption landings and all of the industrial bycatch in 1995. For the North Sea catches, age composition data for the human consumption landings were supplied by Denmark, England, France and Scotland. These nations accounted for over 90% of the total landings. Industrial bycatch age compositions were supplied by Denmark and Norway. Discard totals and age compositions for the North Sea were estimated from Scottish data. No estimates of discards are available for

Division IIIa. Catch-at-age data are given in Table 4.5. The catch-at-age data for the North Sea are SOP corrected; there are slight SOP discrepancies in the combined data arising from minor discrepancies in the Division IIIa data.

One year-old fish from the 1994 year class were the most abundant in the catches in 1995, although there were also reasonably high numbers of 0 and 3 year-old fish caught. Comparison with the catches predicted in the previous assessment are not strictly valid due to the incorporation of the Division IIIa data in the current assessment, but nonetheless this comparison indicates that catches at all ages apart from 0 and 5 in 1995 are all rather lower than predicted in the last North Sea assessment. This is particularly marked at age 2 where the estimated catch in 1995 amounts to only 57% of the forecast number.

The mean weight at age data for the Division IIIa catches did not cover the most recent years and were not split by catch category, so only North Sea values have been used. Catch at age data from the total catch (i.e. Human consumption, discards and industrial bycatch) in the North Sea, which are also used as stock weights at age, are given in Table 4.6

4.3 Catch, Effort and Research Vessel data

The fleets used in tuning are listed in Table 4.7 along with the age and year ranges used in the tuning file. In practice only the last ten years of data were used in the tuning. This is discussed further in Section 4.4. Indices from the IBTS in quarter 2 and 4 were included in the tuning for the first time. Their use was investigated at the 1995 Working Group meeting, but they were set aside on the general reasoning that at that point the time series were too short. The tuning file is given in Table 4.8

4.4 Catch-at-age analysis

Initial exploratory XSA runs used the same settings as the final XSA run in the 1995 Working Group assessment of the North Sea stock. The first run used all fleets, including the English groundfish survey and the IBTS Q2 and Q4 indices, which were not included in the 1995 assessment. Catchability residuals from this preliminary run indicated a possible year-effect in the Scottish Groundfish survey, as residuals at all ages were positive. This was also reflected in the individual fleet estimates of survivors from this run which were consistently higher for this fleet than for the other fleets. It was a year-effect such as this which led to the exclusion of the English groundfish survey from the 1995 tuning, so subsequent runs concentrated on the effect of excluding the Scottish survey. Comparative retrospective runs were made to investigate the effects of excluding both the Scottish and English surveys. There were no practical differences in the retrospective performance of the assessment whether or not these fleets were included. In addition, excluding either of these surveys made little difference to the survivor estimates in the terminal year. The final run used all of the fleets.

Exploratory runs were also used to investigate the effects of treating the youngest ages as recruits, and of the length and form of the time taper used in the XSA. Runs were made setting the first age for catchability to be independent of stock size at 2 (the default, previously used) and 0, and using a tricubic taper over 20 years (the default, as used previously) and a uniform weighting over 10 years. Neither of these settings made any real difference to the survivor estimates. On the general point that no ages should be treated as recruits unless there is compelling evidence that they should be, no ages were treated as recruits. Similarly, the decision to use a ten-year uniform taper was made on the general grounds that all recent CPUE data should be allowed to influence the XSA fit.

To summarise, the final XSA run used commercial CPUE data for Scottish seiners and light trawlers, and survey data from the first, second and fourth quarter IBTS and from English and Scottish groundfish surveys in the third quarter. In the XSA, no ages were treated as recruits, and the q-plateau was set at age 7. A shrinkage SE of 0.5 was used, and a ten-year tuning window with no taper was used. This differs from the 1995 Working Group assessment of the North Sea stock in the inclusion of the IBTS Q2 and Q4 indices and the English groundfish survey data; in the ages treated as recruits, and in the use of uniform weighting over ten years rather than a tricubic taper over twenty years. The results of exploratory runs indicate that the results of the assessment are rather insensitive to theses options.

The diagnostics from this final XSA run are given in Table 4.9. The diagnostics indicate that the survey data, particularly the IBTS Q1 and Q4 surveys, receive the highest weight in the estimate of survivors from ages 0-2, At age 0, the survivor estimate derived from the F-shrinkage mean is more than twice the size of any of the other

estimates, but it still receives 12% of the weight in the combined survivor estimate. The F-shrinkage mean has little influence on the estimate of survivors from ages 1 to 5. Over ages 1 to 5 the survivor estimates from the individual survey series are rather homogeneous, although the estimate arising from the Scottish groundfish survey is consistently higher than the others. The commercial data begin to make a significant contribution to the survivor estimates from age 3 upwards, and they receive the majority of the weight from age 6 upwards, when the F-shrinkage mean also receives some weight.

Log catchability residuals from the final run are given in Figure 4.1. As noted above, these indicate that there may be a year effect in the Scottish groundfish data for 1995. Retrospective trends in mean F from the final run are given in Figure 4.2. The retrospective shows a general trend to over-estimate F in the terminal year, although the present assessment has resulted in a slight upward revision of mean F in 1994.

Fs at age from the final XSA run are given in Table 4.10, and stock numbers at age are given in Table 4.11. The present assessment indicates a mean F in 1995 of 0.74 which is close to the lowest observed for this stock, which was 0.70 in 1982.

4.5 Recruitment estimation

A number of 1996 surveys are available for this stock, so it is appropriate to utilise RCT3 to use this additional information. The RCT3 input file for the run at age 0 is given in Table 4.12; the runs at ages 1 and 2 used the same recruitment indices, but estimates of the strength of each year class at the appropriate age from the current XSA. Indices from the second and fourth quarter IBTS surveys are included in the file, although as RCT3 was run allowing only series with 5 or more points to be included in the regression, not all of these indices contribute to the estimates. Output from the RCT3 runs at ages 0-2 are given in Tables 4.13a-c.

Indices for the 1996 year class at age 0 are available from Scottish and English August surveys. Both indices indicate that this year class is of around average strength, and both receive quite high weighting in the RCT3 estimate of this year class at age 0, so the RCT3 estimate of 21739 million was used in the prediction. This estimate is slightly below the GM value of 26424 million.

Estimates of the 1995 year class at age 1 from the XSA (1962 million) and RCT3 (2078 million) are very similar. The RCT3 estimate was adopted as it receives most of its weight from 1996 survey indices which are not included in the XSA, whereas the XSA estimate receives 12% of its weight from the F-shrinkage mean, where the estimate is more than twice the size of the other fleet estimates. As the F at age 0 is poorly determined, this is undesirable, so the RCT3 value was considered more appropriate.

At age 2 in 1996 the RCT3 gave an estimate of 1473 million and the XSA 1270 million. This is the 1994 yearclass which is well above average strength. In recent assessments of the North Sea stock, RCT3 has tended to over-estimate strong year-classes, including the 1994 year class, so there were clear grounds for accepting the XSA estimate of this year class.

At ages 3 and older the XSA estimates of population numbers at the start of 1996 were used in the prediction. For numbers at age 0 in 1997, the long term GM value of 26.4 billion was used.

4.6 Historical stock trends

Trends in spawning stock biomass, recruitment and mean F since 1963 are given in Table 4.14 and Figure 4.3. Total F has fluctuated around a mean level of 0.93, although the present assessment indicates that it is currently at 0.74, and thus close to the lowest observed level. Recruitment shows considerable variation, with the current estimate of the 1994 year class indicating that it is the strongest since 1974. Spawning biomass has fluctuated, with occasional slight peaks corresponding to the maturation of strong year classes. SSB declined from 1985 to a historic low of 63,000 t in 1991, since when a slight increase is indicated.

4.7 Short-term forecast

Insufficient data were available to split the Division IIIa data for all years into the industrial and human consumption components, so for the purposes of the short-term catch forecast, the Division IIIa catch at age data were included with the human consumption component of the North Sea data. Thus the predicted human consumption catches arising from the prediction include a component which should be allocated to Division IIIa. Over 1963-1995 the mean value for this proportion (i.e the total landings from IIIa expressed as a proportion of the combined total of IIIa landings and North Sea HC landings) has been 4.5%. Information on the split of IIIa landings into industrial and human consumption components is only available for 1981 onwards. Over 1981-1995, an average of 33% of the haddock from Division IIIa have been taken as industrial bycatch.

Mean Fs at age for the human consumption/discard fleet were calculated by first obtaining partial Fs for this fleet over 1993-1995. The mean exploitation pattern over this period was then scaled to the mean F for this fleet in 1995. These Fs at age were then partitioned between the human consumption and discard components according to the mean proportion at each age over 1993-1995. Prediction Fs-at-age for the industrial bycatch were obtained using a similar procedure with the partial Fs for this fleet. It should be noted that the human consumption reference Fs are calculated over different age ranges, reflecting their different exploitation patterns. This means that the mean F obtained from combining the partial Fs across these two fleets may not correspond to the mean total F. Mean weights at age were calculated over 1993-1995. These procedures are performed automatically by the program 'Insens' and reflect recent practice for catch predictions for the North Sea stock.

The inputs to the prediction with sensitivity analysis are given in Table 4.15. The results of this prediction are given in Table 4.16, with more detailed output assuming *status quo* F in 1996 summarised in Table 4.17. The assumption of *status quo* F in 1996 and 1997 leads to predicted human consumption landings of 118,000 t in 1996 rising to 131,000 t in 1997. SSB is predicted to increase from its 1996 level of 233,000 t to 243,000 t at the start of 1997, then decline back to 210,000 t at the start of 1998.

The predicted increase in human consumption landings over 1996 and 1997 reflects the increased contribution of the 1994 year-class to the catches in 1997, this year-class accounts for 63% of the predicted 1997 HC landings in weight, with no other year class contributing more than 14% to this total. This dependence upon the 1994 year-class is shown clearly by the sensitivity analysis of the short term prediction (Figure 4.4) where it can be seen that the prediction is sensitive only to the estimate of the strength of this year class at age 2, and to factors influencing the survival of this year class and its contribution to the catch and spawning stock.

The cumulative probability distributions from the sensitivity analysis (Figure 4.5) indicate that the probability of the SSB falling below the lowest recorded value of 63,000t by 1998 is very low at *status quo* F.

4.8 Medium term projections

As the stock-recruitment data for this stock do not show any indications of a stock-recruitment relationship, the medium-term projections for this stock used bootstrapped random recruitment. The other input data were as used in the short-term catch prediction with sensitivity analysis (Table 4.15). The results of a medium term projection assuming *status quo* F in the medium term are given in Figure 4.6, and Figure 4.7 shows the probability of the SSB in 2005 falling below the lowest observed value at various levels of human consumption F. Assuming *status quo* F, landings and SSB are predicted to decline slightly after 1997 as the 1994 year-class is depleted, after which a slight increase is indicated. The projections also indicate that even if human consumption F were doubled, the probability of SSB falling below the lowest observed level in the medium term would still be less than 20%. This apparently optimistic prognosis may reflect the fact that the current assessment estimates a rather low F in 1995.

4.9 Long-term considerations

Mean total F for this stock has remained close to 1 for at least the last 20 years. This high level of exploitation means that strong year classes do not survive to make much contribution to the spawning stock, and the fishery will continue to depend upon a few recent incoming year classes.

4.10 Comments on the assessment

Quality control tables for the assessment are given in Table 4.18. It should be noted that values for earlier assessments in this Table refer to assessments of the North Sea stock only.

Recent assessments of the North Sea stock have tended to predict catches which have been over-optimistic. This has resulted from assessments tending to over-estimate F in the terminal year, combined with a tendency to over-estimate the strength of large recruiting year classes. The present assessment estimates a rather low F in 1995, which is perhaps unlikely to be an over-estimate. However, the present short-term forecast is strongly dependent upon the strong 1994 year class so it is again possible that the current catch forecasts are over-optimistic.

4.11 MBAL considerations

The stock-recruitment plot for this stock (Figure 4.8) does not show any evidence that the probability of poor recruitment increases as spawning stock decreases. The spawning stock reached its lowest recorded level in 1991, following a series of very poor year classes. Subsequently, the SSB increased due to improved recruitment. On this basis, MBAL for this stock should be set at a level corresponding to the 1991 SSB, which the current assessment estimates at 63,000t. SSB is currently above this level, and the medium-term projections indicate that it is unlikely to fall below this level in the medium term.

4.12 Biological reference points

The stock-recruitment scatter plot is given in Figure 4.8. It is characterised by large variations in year class strength. Over the range of spawning stock sizes for which data are available, there is no clear link between stock biomass and recruitment. The reference points F-high and F-med, as well as current F. are also indicated on the Figure. Current F is slightly above F-med. A yield-per-recruit plot, based on the input values given in Table 4.15 is given in Figure 4.9. Further reference points are indicated on this Figure, and they are also summarised in Table 4.19

 Table 4.1
 Nominal catch of HADDOCK in Division Illa, 1988-1995, as officially reported to ICES.

Country	1988	1989	1990	1991	1992	1993	1994	1995
Belgium	19	5	13	4	14	9	4	18
Denmark	2558	3895	3885	2339	3812	1600	1458	1576
Germany	-	-	3	-	-	+	1	1
Netherlands	8	-	-	-	-	-	-	-
Norway	245	84	100	110	184	153	130	134
Sweden	64	66	84	69	744	436	408	498
UK (Engl. & Wales)	-	-	-	-	-	+	-	-
Total	2894	4050	4085	2522	4754	2198	2001	2227
WG estimate of H.cons. landings	2852	4098	4100	4086	4396	1959	1833	2191
WG estimate of industrial bycatch	1480	360	1968	2593	4604	2415	2180	2162
WG estimate of total catch	4332	4458	6068	6679	9000	4374	4013	4353
Unallocated landings	-42	48	15	1564	-358	-239	-168	-36

Nominal catch of HADDOCK in Sub-Area IV, 1988-1995, as officially reported to ICES.

Country	1988	1989	1990	1991	1992	1993	1994	1995
Belgium	220	145	192	168	415	292	306	407
Denmark	9174	2789	1993	1330	1476	3582	3208	2902
Faroe Islands	35	16	6	15	13	25	43	49
France	2193	1702	1115	631	508	960	678	598
Germany	802	447	749	535	· 764	348	1829	1284
Netherlands	894	328	102	100	148	192	96	147
Norway	1590	1697	1572	2069	3273	2651	2519	2443
Sweden	614	1051	900	957	1289	908	551	722
UK (Engl. & Wales)	5537	2507	2019	2173	2926	4259	4043	3616
UK (Isle of Man)	-	-	-	-	11	-	-	-
UK (N. Ireland)	-	137	11	48	73	18	9	-
UK (Scotland)	84104	53587	34567	36474	39896	66799	73793	63411
Total	105163	64406	43226	44500	50792	80034	87075	75579
WG estimate of H.cons. landings	105111	76186	51459	44624	70176	79654	80871	75318
WG estimate of discards	62053	25712	32603	40257	47938	79675	65371	57364
WG estimate of industrial bycatch	3995	2410	2591	5421	10816	10741	3561	7747
WG estimate of total catch	171159	104308	86653	90302	128930	170070	149803	140429
Unallocated landings	-52	11780	8233	124	19384	-380	-6204	-261

North Sea + Division Illa

Table 4.2

WG estimate of Total Catch	175491	108766	92721	96981	137930	174444	153816	144782

	N	orth Sea			[Division IIIa		Total
Year	H.cons	Disc	Ind. BC	Total	H. cons.	Ind. BC	Total	
1963	68.4	189.0	13.7	271.0	0.4	0.1	0.5	271.5
1964	130.5	160.3	88.6	379.4	0.4	0.3	0.7	380.2
1965	161.6	62.2	74.6	298.4	0.7	0.3	1.0	299.5
1966	225.8	73.6	46.7	346.0	0.6	0.1	0.7	346.7
1967	147.4	78.1	20.7	246.1	0.4	0.1	0.4	246.6
1968	105.4	161.9	34.2	301.5	0.4	0.1	0.5	302.0
1969	330.9	260.2	338.4	929.5	0.5	0.5	1.1	930.5
1970	524.6	101.4	179.7	805.7	0.7	0.2	0.9	806.7
1971	235.4	177.5	31.5	444.4	2.0	0.3	2.2	446.6
1972	192.9	128.1	29.6	350.6	2.6	0.4	3.0	353.6
1973	178.6	114.7	11.3	304.6	2.9	0.2	3.1	307.7
1974	149.6	166.8	47.8	364.2	3.5	1.1	4.6	368.8
1975	146.6	260.4	41.4	448.4	4.8	1.3	6.1	454.5
1976	165.6	154.3	48.2	368.1	7.0	2.0	9.1	377.1
1977	137.3	44.3	35.0	216.6	7.8	2.0	9.8	226.4
1978	85.8	76.9	10.8	173.5	5.9	0.7	6.6	180.1
1979	83.1	41.7	16.4	141.2	4.0	0.8	4.8	146.0
1980	98.6	94.7	22.3	215.7	6.4	1.5	7.9	223.6
1981	129.6	60.1	17.1	206.8	9.1	1.2	10.4	217.2
1982	165.8	40.5	19.4	225.8	10.8	1.3	12.1	237.8
1983	159.3	65.9	13.1	238.4	8.0	7.2	15.2	253.6
1984	128.1	75.3	10.1	213.5	6.4	2.7	9.1	222.6
1985	158.9	85.7	6.0	250.6	7.2	1.0	8.1	258.7
1986	165.5	52.2	2.6	220.4	3.6	1.7	5.3	225.7
1987	108.0	59.2	4.4	171.6	3.8	1.4	5.3	176.9
1988	105.1	62.1	4.0	171.2	2.9	1.5	4.3	175.5
1989	76.2	25.7	2.4	104.3	4.1	0.4	4.5	108.8
1990	51.5	32.6	2.6	86.7	4.1	2.0	6.1	92.7
1991	44.6	40.3	5.4	90.3	4.1	2.6	6.7	97.0
1992	70.2	47.9	10.8	128.9	4.4	4.6	9.0	137.9
1993	79.7	79.7	10.7	170.1	2.0	2.4	4.4	174.4
1994	80.9	65.4	3.6	149.8	1.8	2.2	4.0	153.8
1995	75.3	57.4	7.7	140.4	2.2	2.2	4.4	144.8
Min	44.6	25.7	2.4	86.7	0.4	0.1	0.4	92.7
Mean	144.4	96.9	36.7	278.0	3.8	1.4	5.2	283.2
Max	524.6	260.4	338.4	929.5	10.8	7.2	15.2	930.5

Table 4.3 Catches ('000t) of Haddock from the North Sea and Division Illa, 1963-1995.

TABLE 4.4;	Haddock,	North Sea	a + IIIa	
	Natural	Mortality	and proportion	mature

Age	Nat Mor	Mat.
0	2.050	.000
1	1.650	.010
2	.400	.320
3	.250	.710
4	.250	.870
5	.200	.950
6	.200	1.000
7	.200	1.000
8	.200	1.000
9	.200	1.000
10+	.200	1.000

.

TABLE 4.5; Haddock, North Sea + IIIa International catch at age ('000), Total , 1963 to 1995.

				-						
Age	1963	1964	1965							
0	1367	140235	652537							
1	1307178	7436	368593							
2	335092	1296771	15184							
3	20963	135227	649840							
4	13026	9069	29496							
5	5781	5350	4662							
6	502	2405	1972							
7	653	287	452	ſ						
8	566	236	107							
9	59	230	90							
10+	18	25	41							
				-						
Age	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
0	1671205	306037	11146	72670	925768	333396	244075	60545	614903	46388
1	1007322	838189	1098748	20493	266379	1815054	679205	366830	1220855	2116937
2	25674	89083	439511	3578611	218480	71035	587590	570630	176342	641759
3	6425	4863	19600	303489	1908736	47546	40604	240604	332967	5899:
4	412551	3585	1947	7596	57435	400469	21213	6192	54314	109062
5	9980	177857	2529	2411	1178	10374	158000	4470	1875	1581:
6	1045	2443	45973	2515	1197	462	3563	39459	1351	98:
7	601	215	325	19129	256	195	190	1257	10922	620
8	165	216	40	200	5954	147	34	108	242	2714
9	90	57	13	24	67	1592	27	29	23	260
10+	25	34	5	7	30	168	419	163	41	82
Age	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985
0	174161	120798	305115	881823	399372	646419	278705	639814	95502	139623
1	170529	258923	463554	351451	678499	134470	275686	157259	432193	179244
2	1062943	107675	146957	204046	333261	423059	86126	252258	168273	534670
3.	211544	394175	30377	41297	73043	143151	299895	73920	122984	7917
4	9952	40185	113703	7406	10476	15228	41435	127250	22079	3766
5	31311	4318	8708	28024	1901	2034	3407	16480	32658	534
6	4996	6275	1264	28024	8067	458	713	1708	3789	746
7	206	1300	2076	2237	598	2498	279	297	596	98:
8	206 76	1300	402	483	121	124	786	60	81	21:
8 9	759	29	402	483	162	64	29	193	39	5
9 10+	63	29	94	152	119	61	29	67	139	
Age	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
0	56507	13384	16535	12042	57703	123907	270741	141225	85961	27368
1	160336	313967	30039	47620	86811	228504	209713	360191	99234	30174
2	178602	250593	490699	35341	103006	78370	253298	262845	296705	8592
3	324014	47642	90169	182824	18961	23222	32520	108674	100456	16781
4	27754	68046	13458	18128	57900	3885	6544	7125	29596	2587
5	9734	4750	18591	2637	3909	12521	1248	1702	1918	764
6	1241	2858	1590	4059	897	974	4848	450	573	51
0	1835	540	629	509	1377	400	451	1139	191	12
7	1 2000				206	614	296	145	508	4
	249	772	158	199	206	011				1
7		772	158 141	83	206	141	289	103	115	6

			. weight a	-	, Total ca	icen, 1905				
Age	1963	1964	1965							
0	.012	.011	.010	3						
1	.123	.119	.069							
2	.253	.239	.225							
3	.474	.403	.365							
4	.695	.664	.648							
5	.806	.814	.844	ļ						
6	1.004	.908	1.193							
7	1.131	1.382	1.173							
8	1.173	1.148	1.482							
9	1.576	1.470	1.707							
10+	1.825	1.781	2.239							
				-						
Age	1966	1967	1968	1969	1970	1971	1972	1973 	1974	197
0	.010	.011	.010	.011	.013	.011	.024	.044	.024	.02
1	.088	.115	.126	.063	.073	.106	.116	.112	.128	.10
2	.247	.281	.253	.216	.222	.247	.242	.241	. 226	.24
3	.367	.461	.509	.406	.353	.362	.388	.372	.343	.35
4	.533	.594	.731	.799	.735	.505	.506	.585	.548	.45
5	.949	.639	.857	.891	.873	.887	.606	.648	.891	.68
6	1.265	1.057	.837	1.032	1.191	1.267	1.000	.724	.895	1.24
7	1.525	1.501	1.606	1.094	1.361	1.534	1.366	1.044	.953	1.12
8	1.938	1.922	2.260	2.040	1.437	1.337	2.241	1.302	1.513	1.09
9	1.727	2.069	2.702	3.034	2.571	1.275	2.006	2.796	2.315	1.72
10+	2.889	2.348	2.073	3.264	3.899	2.058	1.684	1.828	2.639	2.42
								, 		
Age	1976	1977	1978	1979	1980	1981	1982	1983	1984	198
							011			
0	.013	.019	.012	.009	.012	.009	.011	.022	.010	.01
1	.125	.108	.144	.095	.104	.074	.100	.135	.141	.14
2	.224	.241	.253	.291	.284	.262	.292	.297	.300	.27
3	.401	.345	.418	.442	.486	.476	.461	.448	.488	.47
4	.512	.602	.441	.637	.732	.744	.784	.651	.670	.66
5	.588	.613	.719	.664	1.046	1.147	1.166	.916	.805	.85
6	.922	.802	.742	.933	.936	1.479	1.441	1.215	1.097	1.05
7	1.933	1.181	.954	1.187	1.394	1.180	1.672	1.162	1.100	1.47
8	1.784	1.943	1.398	1.187	1.599	1.634	1.456	1.920	1.868	1.84
9	1.306	2.322	2.124	1.468	1.593	1.7,64	2.634	1.376	2.425	2.13
10+	2.430	1.812	2.158	2.374	2.143	1.709	2.156	1.725	2.046	2.04
Age	1986 	1987 	1988	1989	1990 	1991 	1992	1993	1994 	199
0	.025	.008	.024	.027	.044	.029	.018	.010	.017	.01
1	.124	.126	.164	.198	.194	.177	.107	.115	.116	.10
2	.242	.265	.217	.300	.291	.320	.306	.279	.250	.29
3	.396	.405	.417	.372	.429	.471	.486	.447	.420	.36
4	.612	.613	.589	.605	.473	.638	.747	.680	.597	.59
5	.864	1.029	.747	.811	.772	.649	1.016	.894	. 943	.76
6	1.260	1.278	1.283	.984	.968	1.042	.896	1.173	1.208	1.09
7	1.200	1.433	1.424	1.375	1.169	1.230	1.391	1.102	1.570	1.42
8	1.719	1.530	1.542	1.659	1.533	1.479	1.526	1.593	1.470	1.68
	1.526		1.542	1.695	2.034	1.479	1.899	1.733	1.619	1.86
9 10+		1.865			:			1.871	2.439	1.97
	2.578	2.174	2.298	2.241	2.513	1.985	2.007	1 1.0/1	4.439	1 1.7/

TABLE 4.6; Haddock, North Sea + IIIa International mean weight at age (kg), Total catch, 1963 to 1995.

Table 4.7; Haddock in the North Sea and Division IllaSummary of fleets used in catch-at-age analysis

Fleet	Abbreviation	Year rang	ge	Age range	
		First	Last	Youngest	Oldest
Scottish Seiners	SCOSEI	1976	1995	0	10
Scottish Light Trawlers	SCOLTR	1976	1995	0	10
Scottish Groundfish Survey (August)	SCOGFS	1982	1995	0	6
English Groundfish Survey (August)	ENGGFS	1977	1995	0	7
International Bottom Trawl Survey, Quart	er 1 IBTSQ1	1973	1995	0	5
International Bottom Trawl Survey, Quart	er 2 IBTSQ2_SCO	1991	1995	1	6 2
International Bottom Trawl Survey, Quart		1991	1995	0	7 3

1 - Data used as if survey takes place at end of previous year; ages 2-5 from 1981 onwards.

ŧ

2 - Indices based on Scottish ALKs only

3 - Indices based on English ALKs only

Table 4.8

Haddock in Fishing Area IV and IIIa (run name: XSASAR02) 107 FLT01: SCOSEI (Catch: Unknown) (Effort: Unknown) 1976 1995 1 1 0.00 1.00 0 10

0 10	1.00												
30716 31391 32524 31641 29722 28967 29773 33316 38808 3829 4250 ⁷ 41873 3557 30007 33667 3002 ⁷ 2684 ⁷ 26473 20454 FLT02: SC 1976 1999 1 1 0.000 10	13 440 166 166 19 54 19 54 27 21 72 34 30 144 58 1810 85 42 10 205 17 826 34 13 35 12 76 71 38 323 13 291 38 323 445 23 5 1.00		35831.210 33809.840 160842.900 131314.300 10366.880 31143.320 29021.010 120868.200 29238.560 33999.170 43645.950 11575.790 19003.760 35843.580 66143.560 30384.280 74523.460 26626.010 67772.080 known) (Effol	329388.70 37092.61 69033.22 78815.42 128306.00 134259.80 30968.51 77288.72 63391.01 164839.21 72603.51 97730.80 201533.40 46489.32 30754.60 64732.90 88375.01 125357.30 32300.90 rt: Unknown	50 1300' 30 143: 20 172 20 262: 20 557: 30 1188' 30 304 50 492: 200 332: 200 1558: 200 1558: 200 1558: 200 1558: 200 90: 300 95: 300 95: 500 349: 500 349: 500 344: 300 702:	68.820 91.200 39.890 14.720 04.930 26.170 97.900 13.860 85.750 02.650 36.400 30.920 21.010 69.770 55.270 30.928 88.196 96.900 26.900 90.070	2529.1 12895.4 44151.4 3039.5 5180.4 14296.4 50114.9 9426.1 15993.1 12894.4 28882.4 4735.5 83888.2 26705.1 1484.2 1511.9 2349.4 10522.1 8734.2	040 660 951 990 690 380 900 073 390 310 720 789 754 220 518 942 233 030 579	8069.133 1684.006 2365.977 8072.871 500.999 701.958 681.995 6394.235 14976.840 2292.755 4169.091 1989.147 7414.681 1091.295 1434.486 5028.135 290.016 445.716 415.035 2180.770	1480 481 647 2414 101 144 582 1593 2846 489 7 1174 718 1611 302 307 1175 0 100 138	5.017 9.005 996 999 994 999 5.521 925 5.266 7.13 1.07 3.065 .435 .388 5.511 7.738 0.011 2.226 5.890	54.001 347.001 672.993 69.999 123.000 578.965 39.000 118.749 253.625 308.427 620.234 198.915 290.026 223.083 407.550 122.391 79.037 314.410 41.743 39.103	13.0 24.0 85.9 112.9 20.0 14.9 229.9 14.6 18.0 46.9 58.4 284.6 80.0 88.5 67.2 183.0 56.6 28.5 94.7 13.4
1524 22482 23692 28749 33319	24 3256 29 1691 94 463	2.002 5.763 .974 5.914 9.995	3355.072 10101.390 45733.130 44561.960 92519.260	59426.370 6440.708 11470.500 23134.700 46282.270	11342.74 41122.03 2913.84 4109.34 8061.93	20 3 05 12 41	636.974 492.063 279.120 713.887 754.994	1756. 390. 773. 3643. 196.	009 7 938 1 626 2	27.987 87.017 09.992 02.981 14.992	7.000 99.002 166.987 19.998 61.000	5.000 15.000 23.998 56.995 18.000	4
25150 25087 24434	70 351	.018 .994 .970	7979.309 24574.580 19635.390	58146.380 10169.870 48680.480	13652.9 33462.6 6954.7	30 3	517.987 936.959 807.150	160. 132. 1258.	999	20.000 66.999 24.417	319.997 7.000 27.092	12.000 57.999 4.014	2
24072 26813 27976	25 514 36 3547	.080 .814 .354	56768.970 38850.410 26322.220	22191.480 57422.220 26549.290	13374.8 4912.6 32339.2	00 2 30 2	2074.455 2787.082 2796.814	3392. 414. 1013.	161 4 117 8	02.251 71.881 23.812	98.036 127.894 306.884	15.160 27.406 43.387	3
35112 39198	28 96 88 209	5.701 5.356 5.998	26220.210 2930.596 10415.020	33647.760 57588.920 2919.387	6464.3 14074.7 24894.5	23 7 30 2	197.125 366.963	496. 2923.	072 3 692 1	77.057 67.036	71.620 84.018	119.015 28.006	2
40588 44108 40805	84 201 56 1040	.380 .658	11886.350 44141.130	19204.620 12393.730	2664.6 3355.5	23 10 96	2753.952 237.390 564.193	541. 669. 2213.	340 1 164 2	26.922 68.189 26.034	108.898 264.216 79.589	30.131 44.836 145.803	2 2 1 3 5 2
47395 44706 48040	64 231 00 1482	3.052 .101 2.199	20443.350 39863.390 8266.777	31073.280 39175.810 49046.740	3889.0 20213.4 23557.3	70 1 40 6	756.982 526.971 304.283	144. 362. 474.	312	65.573 83.586 28.143	97.505 273.529 42.488	52.225 29.288 63.750	5 2 1
44201 FLT03: EN 1977 1995	NGGFS (Cat	.844 ch: Uni	22873.540 known) (Effo	13761.650 rt: Unknown)	32063.3)	70 5	821.263	1658.	212	96.772	14.662	12.648	1
1 1 0.50 0 7 100		6.68	3.21	6.16 (0.92	0.07	0.09	0.01					
100 100	35.83 87.55	13.69 29.55	2.62 5.46	0.24 2 0.87 0	2.22	0.21 0.44	0.01 0.04	0.07 0.00					
100 100 100	37.40 153.75 28.13	62.33 17.32 31.55	16.73 43.91 7.98	7.56 (11.80 [/]	0.74 1.03	0.04 0.06 0.24	0.14 0.00 0.10	0.02 0.06 0.01					
100 100 100	83.19 22.85 24.59	21.82 59.93 18.66	10.95 6.16 23.82	3.08 0	0.42	0.27 0.48 0.20	0.04 0.10 0.13	0.01 0.01 0.04					
100 100 100	26.60 2.24 6.07	14.97 28.19 2.86		3.38 (0.53 (0.28 0.69	0.18 0.05 0.28	0.04 0.03 0.04	0.04 0.00 0.01					
100 100	9.43 28.19	8.17 6.65	1.45 1.98	3.97 (0.29 (0.25 0.88	0.03 0.05	0.06 0.03	0.01 0.01					
100 100 100	26.33 82.77 13.58	11.50 19.69 24.61		0.58 (1.66 (0.05 0.06	0.22 0.01 0.02	0.00 0.08 0.00	0.01 0.00 0.01					
100 100 FLT04: SC	94.30 17.99 COGFS (Cat	8.07 38.31 ch: Unl	9.02 4.45 known) (Effo	3.40	0.28	0.02 0.09	0.00 0.01	0.00 0.00					
1982 1995 1 1 0.50 0 6													
100 100	12.35 22.03 8.73	24.88 18.13 43.71		3.72	4.55	0.07 0.53 0.65	0.02 0.12 0.09						
100 100 100	8.18 15.88	19.76 21.17	29.81 5.22	2.32 ² .5.44 (1.03 0.32	0.14 0.24	0.22 0.03						
100 100 100	2.77 4.06 4.32	23.86 4.67 8.86	7.04 19.82 2.14	1.70 0	0.27	0.08 0.23 0.04	0.05 0.02 0.07						

100 3 100 8 100 13 100 13 100 1 FLT05: IBTS 1973 1995		5 1.78 5 9.63 6 13.80 5 20.80	0.32 1.0 0.21 0.0 0.48 0.0 2.69 0.0 2.10 0.5 9.26 0.7 port: Unknown)	05 0.16 08 0.03 06 0.04 03 0.02	0.01 0.02 0.08 0.01 0.00 0.02		
1 1 0.99 1. 0 5	00						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	880 0.3850 770 0.6700 820 0.0840 850 0.1080 800 0.2400 860 0.6750 860 0.6250 970 0.2190 990 0.2440 990 0.2420 900 0.2420 900 0.2420 900 0.2400 </td <td>-1.0000 -1.0 -1.0000 -1.0 -1.0000 -1.0 -1.0000 -1.0 -1.0000 -1.0 -1.0000 -1.0 -1.0000 -1.0 -1.0000 -1.0 0.0890 0.2 0.1340 0.0 0.0350 0.0 0.2940 0.0 0.0980 0.0 0.2810 0.0</td> <td>0000 -1.0000 0000 -1.0000 0000 -1.0000 0000 -1.0000 0000 -1.0000 0000 -1.0000 0000 -1.0000 0000 -1.0000 0000 -1.0000 0000 -1.0000 0000 -1.0000 0000 -1.0000 0000 -1.0000 0100 -0.0130 0220 0.0220 0340 0.0040 0180 0.0050 0130 0.0140 0170 0.0030</td> <td>-1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 0.0020 0.0050 0.0050 0.0020 0.0050 0.0050 0.0050 0.0020</td> <td></td> <td></td> <td></td>	-1.0000 -1.0 -1.0000 -1.0 -1.0000 -1.0 -1.0000 -1.0 -1.0000 -1.0 -1.0000 -1.0 -1.0000 -1.0 -1.0000 -1.0 0.0890 0.2 0.1340 0.0 0.0350 0.0 0.2940 0.0 0.0980 0.0 0.2810 0.0	0000 -1.0000 0000 -1.0000 0000 -1.0000 0000 -1.0000 0000 -1.0000 0000 -1.0000 0000 -1.0000 0000 -1.0000 0000 -1.0000 0000 -1.0000 0000 -1.0000 0000 -1.0000 0000 -1.0000 0100 -0.0130 0220 0.0220 0340 0.0040 0180 0.0050 0130 0.0140 0170 0.0030	-1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 0.0020 0.0050 0.0050 0.0020 0.0050 0.0050 0.0050 0.0020			
1 0.67 1 1.11			0.0090 0.0090 0.0010 0.0010	0.0020 0.0020			
1 1.24	20 0.5430	0.1550 0.0	0.0010	0.0010			
1 0.22 1 1.37			0.0020 0250 0.0050	0.0010 0.0010			
1 0.26			0480 0.0073	0.0025			
1991 1995	_wz_stu (tat	ch: Unknown)	(ETTOPL: UNKNO	own)			
1 1 0.25 0.	50						
100 8 100 11 100 1 100 12	81.960 28. 9.630 26. 2.950 38. 5.390 11. 5_Q4_ENG (Cat	930 0.760 540 1.770 800 9.250 380 3.410 860 15.490 rch: Unknown)	0.150 0.270 0.360 1.090 0.880 (Effort: Unkno	0.460 0.030 0.040 0.030 0.400 0.400	0.030 0.100 0.004 0.004 0.010		
0 7 100 9 100 19 100 4 100 13	90.712 57. 98.232 74. 92.168 75.	818 5.094 865 22.977 000 17.137 526 22.192 928 17.995	0.747 1.052 3.980 3.003 11.517	0.236 0.278 0.112 0.909 0.941	0.600 0.025 0.016 0.084 0.257	0.101 0.130 0.016 0.000 0.000	0.032 0.033 0.023 0.012 0.000

Table 4.9

Lowestoft VPA Version 3.1

9-Oct-96 15:59:43

Extended Survivors Analysis

Haddock in IV, IIIa (run: XSASAR02/X02)

CPUE data from file /users/fish/ifad/ifapwork/wgnssk/had_34/FLEET.X02

Catch data for 33 years. 1963 to 1995. Ages 0 to 10.

Fleet,	First,	Last,	First,	Last,	Alpha,	Beta
,	year,	year,	age ,	age		
FLT01: SCOSEI (Catch,	1976,	1995,	0,	9,	.000,	1.000
FLT02: SCOLTR (Catch,	1976,	1995,	0,	9,	.000,	1.000
FLT03: ENGGFS (Catch,	1977,	1995,	0,	7,	.500,	.750
FLT04: SCOGFS (Catch,	1982,	1995,	0,	6,	.500,	.750
FLT05: IBTS Q1 (Catc,	1973,	1995,	Ο,	5,	.990	1.000
FLT06: IBTS Q2 SCO (,	1991,	1995,	1,	6,	.250,	.500
FLT07: IBTS_Q4_ENG (,	1991,	1995,	ο,		.750,	1.000

Time series weights :

Tapered time weighting applied Power = 0 over 10 years

Catchability analysis :

Catchability independent of stock size for all ages

Catchability independent of age for ages >= 7

Terminal population estimation :

Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages.

S.E. of the mean to which the estimates are shrunk = .500

Minimum standard error for population estimates derived from each fleet = .300

Prior weighting not applied

Tuning converged after 28 iterations

Regression weights								
, 1.000, 1.000,	1.000,	1.000,	1.000,	1.000,	1.000,	1.000,	1.000,	1.000

Fishing										
Age,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995
1, 2, 3, 4, 5, 6, 7, 8,	.128, 1.015, 1.240, 1.294, 1.063, .716, .848, .693,	.119, .902, 1.049, 1.084, .837, 1.138, .811, 1.158,	.137, .796, 1.305, 1.117, 1.108, .767, .844, .592,	.106, .655, .987, 1.185, .703, .779, .600, .717,	.197, 1.120, 1.163, 1.153, .949, .551, .671, .521,	.155, .795, 1.032, .864, .884, .658, .511, .735,	.146, .732, 1.194, 1.062, .803, 1.114, .748, .923.	.164, .793, 1.024, 1.042, .957, .782, .885, .574.	1.023, .977, .965, 1.077, .955, 1.491	.099 .525 .777 .888 .768 .752 .734 .617
9,	1.006,	1.028,	.668,	.730,	.698,	.847,	.979,	1.035,	1.389,	.702

XSA population numbers (Thousands)

	•	AGE		-	,	_	
YEAR ,	0,	1,	2,	3,	4,	5,	6,
1986 ,	4.99E+07, 3.05E+06,	3.42E+05,	5.17E+05,	4.33E+04, 1.64E+04,	2.68E+03,	3.55E+03, 5.51E+02	, 1.86E+02,
1987 ,	4.20E+06, 6.40E+06,	5.15E+05,	8.31E+04,	1.16E+05, 9.26E+03,	4.65E+03,	1.07E+03, 1.24E+03	, 2.25E+02,
1988 ,	8.45E+06, 5.36E+05,	1.09E+06,	1.40E+05,	2.27E+04, 3.07E+04,	3.28E+03,	1.22E+03, 3.91E+02	, 3.20E+02,
1989 ,	8.63E+06, 1.08E+06,	8.98E+04,	3.30E+05,	2.96E+04, 5.77E+03,	8.29E+03,	1.25E+03, 4.30E+02	, 1.77E+02,
1990 ,	2.83E+07, 1.11E+06,	1.87E+05,	3.13E+04,	9.59E+04, 7.05E+03,	2.34E+03,	3.11E+03, 5.61E+02	, 1.72E+02,
1991 ,	2.78E+07, 3.63E+06,	1.75E+05,	4.09E+04,	7.61E+03, 2.36E+04,	2.23E+03,	1.10E+03, 1.30E+03	, 2.73E+02,
1992 ,	4.30E+07, 3.53E+06,	5.96E+05,	5.29E+04,	1.13E+04, 2.50E+03,	7.98E+03,	9.47E+02, 5.43E+02	, 5.12E+02,
1993 ,	1.25E+07, 5.44E+06,	5.86E+05,	1.92E+05,	1.25E+04, 3.05E+03,	9.16E+02,	2.14E+03, 3.67E+02	, 1.77E+02,
1994 ,	5.70E+07, 1.56E+06,	8.87E+05,	1.78E+05,	5.38E+04, 3.42E+03,	9.60E+02,	3.43E+02, 7.25E+02	, 1.69E+02,
1995 ,	1.60E+07, 7.30E+06,	2.57E+05,	3.52E+05,	4.98E+04, 1.58E+04,	1.07E+03,	2.68E+02, 1.08E+02	, 1.34E+02,

7,

Estimated population abundance at 1st Jan 1996

, .00E+00, 1.96E+06, 1.27E+06, 1.02E+05, 1.26E+05, 1.60E+04, 5.99E+03, 4.12E+02, 1.05E+02, 4.77E+01, Taper weighted geometric mean of the VPA populations:

, 1.89E+07, 2.51E+06, 3.67E+05, 1.32E+05, 3.14E+04, 8.44E+03, 2.58E+03, 1.14E+03, 5.15E+02, 2.17E+02,
Standard error of the weighted Log(VPA populations) :

, .8735, .8751, .7931, .9661, .9177, .8863, .8095, .8359, .7018, .3942,

Log catchability residuals.

Fleet : FLT01: SCOSEI (Catch

1, 2, 3, 4, 5, 7, 8,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	1979, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99
0, 1, 2, 3, 4, 5, , 6, , 8,	.97, 53, .02, .05, .13, .13, 19, 07, 64,	63, -1.01, 12, 25, 12, 11, .33,	.06, .25, 08, .07, 18, .22, .14, .35, .10,	1989, -1.31, .09, .07, .04, .21, 13, .08, .02, .22, .30,	57, .91, .57, .32, .35, .21, 25, 09, 24,	.48, .20, 02, 06, 23, .12, 26, 44, 11,	44, 44, 41, 24, 42, 41, .11, .11, 51, 21,	1.78, .15, .05, 08, .03, .00, 21, .23, 54,	11, 02, .06, 17, .20, .08, .36,	70 .01 .03 .18 .17 .14 .05 .43 .22

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	Ο,	1,	2,	3,	4,	5,	6,	7,	8,	9
Mean Log q,	-21.7769,	-16.1637,	-13.9068,	-13.5502,	-13.6230,	-13.8982,	-14.0523,	-14.1534,	-14.1534,	-14.1534,
S.E(Log q),	.9176,	.5371,	.2443,	.1761,	.2344,	.2031,	.2104,	.3040,	.3581,	.4486,

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

Ο,	.75,	.936,	20.53,	.64,	10,	.69, -21.78,
1,	1.53,	-1.941,	16.92,	.62,	10,	.72, -16.16,
2,	1.19,	-1.665,	14.11,	.91,	10,	.26, -13.91,
3,	.98,	.337,	13.51,	.97,	10,	.18, -13.55,
4,	.87,	2.104,	13.19,	.97,	10,	.17, -13.62,
5,	.85,	3.356,	13.17,	.98,	10,	.12, -13.90,
6,	.92,	.943,	13.58,	.95,	10,	.20, -14.05,
7,	1.11,	791,	14.93,	.87,	10,	.34, -14.15,
8,	1.00,	.023,	14.17,	.80,	10,	.37, -14.20,
9,	.82,	.630,	12.71,	.60,	10,	.34, -14.34,

Fleet : FLT02: SCOLTR (Catch

0 , 99 1 , 99 2 , 99 3 , 99 4 , 99 5 , 99 6 , 99 7 , 99 8 , 99	976, 1977, .99, 99.99, .99, 99.99, .99, 99.99, .99, 99.99, .99, 99.99, .99, 99.99, .99, 99.99, .99, 99.99, .99, 99.99, .99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99
1, 2, 3, 5, - 7, 8,	.51,05, .63,34, .72, .27, .11, .03, .13,22, .09,37, .23, .28,	09, .27, .21, .21, 44, 13, 20,	1.49, .36, 67, 17, .09, 01, 08, 03, 20,	-1.46, .42, .58, 06, .13, .02, 31, 11, 24,	.29, .61, .16, .07, .27, .06, .16, .27, .27,	.27, 29, 32, 27, 45, 61, .14, .04, .05,	51, .01, .01, .08, .21, .23, .02, .37, 23,	39, 36, .24, .07, .32, .44, .30, .16,	-1.21 85 31 15 .11 .05 .01 53 .18

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	Ο,	1,	2,	3,	4,	5,	6,	7,	8,	9
Mean Log q,	-22.5377,		•				•			
S.E(Log q),	.9757,	.4917,	.4398,	.1783,	.2285,	.2829,	.2731,	.2988,	.2556,	.5927,

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time. Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q .99, 0, .95, .122, 22.27, .47, 10, -22.54, .71, .77, .97, .95, .93, 1.21, -17.17, -.914, .008, 17.67, 15.19, 1,2,3,4,5,6,7,8,9, 10, .60, .47, 1.00, 10, -14.77, .96, .703, 10, .18, 14.64, .22, .27, .93, .892, 14.44, 10, -14.74, .779, -.477, 1.429, .92, 14.40, 10, -14.85, .89, 10, 1.06, 15.39, 13.85, -14.97, -14.95, .30, .93, .92, .24, .86, .89, 10, 1.097, 13.91, -14.90, 10, .59, -14.59, 1.21, -.426, 16.54, .34, 10,

Fleet : FLT03: ENGGFS (Catch

1, 99.99, 2, 99.99, 3, 99.99, 4, 99.99, 5, 99.99, 6, 99.99, 7, 99.99, 8, No data	1977, 1978, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, for this fle	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, eet at th	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 11s age	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99 99.99 99.99 99.99 99.99 99.99 99.99	
1,04, 2, .25, 3,12, 4, .18, 5, .60, 6, .32, 7, .58, 9 8, No data	1987, 1988, 61,32, 16, .05, 27, .36, 26, .45, 26, .45, 24, .45, 25, .16, 99.99, .26, for this fle	.10, .38, .24, .33, .38, .37, .36, .08, ret at th	.01, .20, .10, .18, .44, .10, .07, 79, is age	03, 46, 75, 40, 07, .33, 99.99, .15,	.68, .10, .30, .37, 35, 57, .18,	.11, 10, 16, .03, 27, .02, 99.99,	.52, .03, 31, 58, 23, 09, 99.99,	.16 .01 .23 01 21 23 12	

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	0,	1,	2,	3,	4,	5,	6,	7
Mean Log q,	-17.1620,	-15.6855,	-15.2200,	-15.4996,	- 15.7759,	-15.8435,	-15.4736,	-15.9244,
S.E(Log q),	.4253,	.2222,	.3591,	.3427,	.2780,	.3739,	. 2485,	.4752,

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time. Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q .82, .89, ٥, 1.473, 17.09, 10, .33, -17.16, -1.773, -15.69, -15.22, 1, 2, 3, 4, 5, 6, 7, 1.16, 15.83, .94, 10, .23, .84, .89, .94, .94, .183, .97, 15.15, 10, .37, -.021, .36, .24, .23, 15.51, 10, -15.50, -15.78, 1.00, 15.20, .89, 1.219, 10, .78, 1.08, 14.33, 10, 7, 6, -15.84, 2.599, -15.47, -15.92, .29, -.468, 16.03, .88, 1.29, - .494, 18.33, .43, .66,

Fleet : FLT04: SCOGFS (Catch

1 , 99.99, 2 , 99.99, 3 , 99.99, 4 , 99.99, 5 , 99.99, 6 , 99.99, 7 , No data 8 , No data	1977, 1978, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 1 for this fle	99.99,99,99 99.99,99 99.99,99 99.99,99 99.99,99 99.99,99 99.99,99 99.99,99 et at this	.99, 99.99, .99, 99.99, .99, 99.99, .99, 99.99, .99, 99.99, .99, 99.99, .99, 99.99, .age age	99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99, 99.99, 99.99, 99.99, 99.99, 99.99,	99.99 99.99 99.99 99.99 99.99 99.99
1 ,12, 2 ,01, 3 ,03, 4 ,06, 5 , .51, 6 , .14, 7 , No data 8 , No data	1987, 1988, 27,59, 75, .11, 19, .03, .05, .16, .21, .31, 15,13, .36,44, for this flee for this flee	55, .03, .22, .32, .22, 46, .11, .et at this ret at this	.26, .37, .18,50, .11,55, .10,87, .23,44, .05,37, .93,12, age age	.81, .33, 12, 20, 25, .15,	22, .33, .29, .12, 64, .34,	1.03, .05, .12, 05, .03, 47,	1995 .15 .33 .60 .39 .52 .67

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	Ο,	1,	2,	3,	4,	5,	6
Mean Log q,	-17.2934,	-15.2565,	-14.8101,	-15.1147,	-15.4032,	-15.4642,	-15.5721,
S.E(Log q),	.6409,	.3666,	.2601,	.3833,	.3445,	.3766,	.4718,

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

Ο,	.74,	1.567,	17.15,	.82,	10,	.44,	-17.29,
1,	1.09,	545,	15.30,	.83,	10,	.41,	-15.26,
2,	.96,	.332,	14.74,	.91,	10,	.26,	-14.81,
3,	.79,	2.532,	14.42,	.95,	10,	.24,	-15.11,
4,	.79,	2.986	14.32,	.96,	10,	.20,	-15.40,
5,	.98,	. 158,	15.32,	.85,	10,	.39,	-15.46,
6,	1.08,	317,	16.17,	.70,	9,	.54,	-15.57,

Fleet : FLT05: IBTS_Q1 (Catc

Age	,	1973,	1974,	19	975			
		99.99,						
1	;	99.99	99.99	99.	.99			
2	;	99.99	, 99 . 99	99.	.99			
3		99.99	99.99	99.	.99			
		99.99						
		99.99						
6		No data	for t	his	fleet	at	this	age
		No data						
		No data						
		No data						

Age , 1976, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1985 0 , 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99 1 , 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99 2 , 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99 3 , 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99 4 , 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99 5 , 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99, 99.99 6 , No data for this fleet at this age 7 , No data for this fleet at this age 8 , No data for this fleet at this age 9 , No data for this fleet at this age

Age ,	1986,	1987, '	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995
Ο,	29,	07,	.05,	.08,	.02,	.54,	.21,	23,	.02,	33
1,	11,	12,	.42,	19,	.06,	13,	.27,	22,	.12,	10
2,	10,	.09,	.29,	.44,	08,	57,	.23,	15,	21,	.06
3,	.07,	.16,	.16,	.09,	.08,	61,	.39,	13,	.03,	24
4,	.26,	.09,	18,	.02,	09,	04,	24	.34,	27,	.10
5,	05,	10,	12,	.23,	.28,	99,	.48,	.43,	.32,	48
6,	No data	for this	s fleet	at th	is age				-	
7,	No data	for this	s fleet	at th	is age					
8,	No data	for this	s fleet	at th	is age					
9,	No data	for this	s fleet	at th	is age					

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	Ο,	1,	2,	3,	4,	5
Mean Log q,	-15.5172,	-14.1687,	-14.2711,	-14.5412,	-14.6999,	-14.2111,
S.E(Log q),	.2570,	.2115,	.2904,	.2740,	.2040	.4592,

Regression statistics :

5,

1.72,

-3.900,

Ages with q independent of year class strength and constant w.r.t. time. Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q .26, -15.52, .21, -14.17, 0, .409, 10, .96, 15.57, .93, -1.996, 14.08, .95, 10, 1, 2, 3, 1.16, .88, .99, .065, 14.26, .31, -14.27, 10, .93, .99, .096, 14.51, 10, .29, -14.54, 4, .99, .083, 14.67, .95, 10, .21, -14.70,

.78,

10,

17.95,

.49,

-14.21,

Fleet : FLT06: IBTS_Q2_SCO (

Age	, 1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995
0	, No dat	a for th	nis flee	et at th	nis age					
1	, 99.99,	99.99,	99.99,	99.99,	99.99,	30,	.42,	.37,	60,	.10
2	, 99.99,	99.99,	99.99,	99.99,	99.99,	34,	.16,	. 14,	01,	.05
3	, 99.99,	99.99,	99.99,	99.99,	99.99,	48,	.17,	.47,	- 45,	.29
4	, 99.99,	99.99,	99.99,	99.99,	99.99,	14,	. 13,	.31,	07,	24
5	, 99.99,	99.99,	99.99,	99.99,	99.99,	.29,	23,	08,	48,	.51
6	, 99.99,	99.99,	99.99,	99.99,	99.99,	.46,	.56,	61,	55,	.14
7	, No data	a for th	nis flee	et at th	nis age					
8	, No data	a for th	nis flee	et at th	nis age					
9	, No dat	a for th	nis flee	et at th	nis age					

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	1,	2,	3,	4,	5,	6
Mean Log q,	-15.0334,	-14.2948,	-14.5431,	-14.8893,	-15.3339,	-15.9673,
S.E(Log q),	.4424,	.2034,	.4373,	.2189,	.3976,	.5554,

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

1,	.65,	1.708,	15.07,	.89,	5,	.24, -15.03,
2,	.83,	1.574,	14.07,	.97,	5,	.14, -14.29,
3,	.82,	.887,	14.04,	.89,	5,	.37, -14.54,
4,	1.13,	908,	15.52,	.95,	5,	.25, -14.89,
5,	.75,	2.820,	13.72,	.98,	5,	.18, -15.33,
6,	.68,	2.285,	13.21,	.94,	5,	·

Fleet : FLT07: IBTS_Q4_ENG (

Age ,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995
0,	99.99,	99.99,	99.99,	99.99,	99.99,	02,	.33,	.03,	33,	.00
1,	99.99,	99.99,	99.99,	99.99,	99.99,	02,	.25,	16,	32,	.25
2,	99.99,	99.99,	99.99,	99.99,	99.99,	10,	.13,	09,	48,	.55
3,	99.99,	99.99,	99.99,	99.99,	99.99,	12,	.10,	01,	21,	.24
4,	99.99,	99.99,	99.99,	99.99,	99.99,	.43,	.36,	66,	08,	05
5,	99.99,	99.99,	99.99,	99.99,	99.99,	.61,	40,	91,	.64,	.06
6,	99.99,	99.99,	99.99,	99.99,	99.99,	.49,	14,	35,	99.99,	99.99
7,	99.99,	99.99,	99.99,	99.99,	99.99,	07,	.32,	74,	.50,	99.99
8,	No dat	a for t	his fle	et at tl	nis age					
9,	No dat	a for tl	his fle	et at tl	nis age					

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	Ο,	1,	2,	3,	4,	5,	6,	7
Mean Log q,	-15.4231,	-14.0570,	-13.9102,	-14.2739,	-14.4409,	-14.8454,	-14.3493,	-14.3592,
S.E(Log q),	.2332,	.2532,	.3765,	.1779,	.4345,	.6649,	.4377,	.5501,

Regression statistics :

2.89,

-2.940,

Ages with q independent of year class strength and constant w.r.t. time. Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q 1.07, .78, 1.42, .87, 15.30, 5, 5, 5, .28, Ο, -.330, -15.42, .87, .93, .69, .97, 1.416, 14.29, 14.31, -14.06, -13.91, .18, 1, 2, 3, 4, 5, 6, 7, 5, -14.27, .94, .617, 14.12, .18, -.494, .56, -14.44, 1.15, 15.13, .78, 5, .86, 13.28, 13.98, 5, 3, .48, 1.108, .74, -14.85, -14.35, .94, .58, .88, .152,

.55,

4,

28.59,

-14.36,

Ŧ

.84,

Terminal year survivor and F summaries :

Age 0 Catchability constant w.r.t. time and dependent on age

Year class = 1995

Fleet, FLT01: SCOSEI (Catch FLT02: SCOLTR (Catch FLT03: ENGGFS (Catch FLT04: SCOGFS (Catch FLT05: IBTS_01 (Catc FLT06: IBTS_02_SCO (FLT07: IBTS_04_ENG (F shrinkage mean	585762., 2299245., 2282725., 1410731., 1., 1956168., 5702735.,	s.e, .962, 1.023, .446, .672, .300, .300,	Ext, s.e, .000, .000, .000, .000, .000, .000,	.00, .00, .00, .00, .00,	, Weights, F 1, .030, .000 1, .027, .000 1, .141, .000 1, .062, .000 1, .311, .000 0, .000, .000
Weighted prediction					
	t, Ext, e, s.e, 7, .20,	N, Var, , Ratio, 7, 1.209,			

Age 1 Catchability constant w.r.t. time and dependent on age

FLT02: SCOLTR (Catch, FLT03: ENGGFS (Catch, FLT04: SCOGFS (Catch, FLT05: IBTS_Q1 (Catc,	1401238., 613569., 1499720., 2103324., 1223171., 1409233., 1222031.,	s.e, .486, .461, .249, .334, .212, .485, .212,	s.e, .159, .243, .236, .299, .059, .000,	Ratio, .33, .53, .95, .90, .28,	2, 2, 2, 2, 2, 2, 1,	Weights, .049, .054, .185, .103, .255, .049,	.090 .195 .085 .061 .103
Survivors, Int, at end of year, s.e, 1270026., .11,		N, Var, , Ratio, 14, .938,					

Age 2 Catchability constant w.r.t. time and dependent on age

Year class = 1993

Fleet, FLT01: SCOSEI (Catch, FLT02: SCOLTR (Catch, FLT03: ENGGFS (Catch, FLT04: SCOGFS (Catch, FLT05: IBTS_01 (Catc, FLT06: IBTS_02_SCO (, FLT07: IBTS_04_ENG (, F shrinkage mean , Weighted prediction :	Survivors, 124494., 71294., 113875., 122158., 100724., 91166., 103534.,	s.e, .256, .327, .208, .224, .175, .256, .189,	s.e, .298, .043, .063, .127, .106,	Ratio, 1.17, .13, .30, .57, .60, 1.11,	, Weigh 3, .106 3, .063 3, .150 3, .135 3, .213 2, .107	, .448 , .687 , .481 , .455 , .530 , .572 , .519
Survivors, Int, at end of year, s.e, 101845., .08,		N, Var, , Ratio, 21, .833,				

Age 3 Catchability constant w.r.t. time and dependent on age

Fleet, FLT01: SCOSEI (Catch, FLT02: SCOLTR (Catch, FLT03: ENGGFS (Catch, FLT04: SCOGFS (Catch, FLT05: IBTS_Q1 (Catc, FLT06: IBTS_Q2_SCO (, FLT07: IBTS_Q4_ENG (, F shrinkage mean , Weighted prediction :	Estimated, Survivors, 134430., 107630., 124280., 183956., 108950., 146432., 135386., 73505.,	s.e, .202, .230, .189, .203, .158, .234, .168,	Ext, s.e, .091, .072, .162, .136, .101, .119, .163,	Ratio, .45, .31, .86, .67, .64,	4,4,4,4	Scaled, Weights, .133, .109, .134, .116, .191, .088, .172, .058,	Estimated F .743 .865 .785 .591 .858 .699 .739 1.104
Survivors, Int, at end of year, s.e, 125949., .07,	s.e,						x

Age 4 Catchability constant w.r.t. time and dependent on age

Year class = 1991

Fleet, FLT01: SCOSEI (Catch, FLT02: SCOLTR (Catch, FLT03: ENGGFS (Catch, FLT04: SCOGFS (Catch, FLT05: IBTS_01 (Catc, FLT06: IBTS_02_SCO (, FLT07: IBTS_04_ENG (, F shrinkage mean , Weighted prediction :	Estimated, Survivors, 17667., 18090., 12668., 21455., 17802., 13231., 14984., 12588.,	.205, .216, .205, .231, .182, .230, .203,	Ext, s.e, .061, .049, .088, .080, .076, .110, .071,	.23, .43, .35, .42,	5, 5, 5, 5, 5,	F .830 .816 1.030 .725
Survivors, Int, at end of year, s.e, 15952., .08,	s.e,					

Age 5 Catchability constant w.r.t. time and dependent on age

Fleet, FLT01: SCOSEI (Catch, FLT02: SCOLTR (Catch, FLT03: ENGGFS (Catch, FLT04: SCOGFS (Catch, FLT05: IBTS_01 (Catc, FLT06: IBTS_02_SCO (, FLT07: IBTS_04_ENG (, F shrinkage mean , Weighted prediction :	Estimated, Survivors, 6457., 6299., 4910., 8016., 4537., 7671., 5992., 4572.,	s.e, .203, .207, .220, .244, .209,	Ext, s.e, .056, .051, .060, .127, .088, .141, .032,	Ratio, .28, .25, .27, .52, .42,	6, 6, 6, 6,	Weights, .183, .179, .135, .117, .123, .113,	.728 .741 .879 .622
Survivors, Int, at end of year, s.e, 5989., .09,	s.e,						

Age 6 Catchability constant w.r.t. time and dependent on age

Year class = 1989

<pre>Fleet, FLT01: SCOSEI (Catch, FLT02: SCOLTR (Catch, FLT03: ENGGFS (Catch, FLT04: SCOGFS (Catch, FLT05: IBTS_01 (Catc, FLT06: IBTS_02_SCO (, FLT07: IBTS_04_ENG (,</pre>	Estimated, Survivors, 407., 454., 366., 453., 542., 401., 436., 348.,	s.e, .205, .206, .222, .279, .224, .291,	Ext, s.e, .048, .063, .044, .240, .092, .162, .313,	Ratio, .24, .31, .20, .86, .41, .56,	7, .218, .702 7, .197, .817 7, .101, .704 6, .052, .617 5, .082, .766
	Ev+	N Ver	F		
Survivors, Int, at end of year, s.e, 412., .10,	s.e,				

Age 7 Catchability constant w.r.t. time and dependent on age

<pre>Fleet, FLT01: SCOSEI (Catch, FLT02: SCOLTR (Catch, FLT03: ENGGFS (Catch, FLT04: SCOGFS (Catch, FLT05: IBTS_Q1 (Catc, FLT06: IBTS_Q2_SCO (, FLT07: IBTS_Q4_ENG (, F shrinkage mean , Weighted prediction :</pre>	Survivors, 143., 84., 94., 113., 105., 82., 80.,	s.e, .213, .212, .232, .258, .225, .300,	s.e, .075, .163, .092, .165, .169,	Ratio, .35, .77, .40, .64, .75, .55,	8, 8, 6, 6, 4,	Scaled, Weights, .333, .340, .034, .029, .030, .046, .013, .175,	.587 .855 .797 .698 .733
Survivors, Int at end of year, s.e 105., .14		N, Var, , Ratio, 42, .441,					

Age 8 Catchability constant w.r.t. time and age (fixed at the value for age) 7

Year class = 1987

Fleet, FLT01: SCOSEI (Catch FLT02: SCOLTR (Catch FLT03: ENGGFS (Catch FLT04: SCOGFS (Catch FLT05: IBTS_Q1 (Catc FLT06: IBTS_Q2_SCO (FLT07: IBTS_Q4_ENG () F shrinkage mean	55., 36., 50., 59., 34., 55.,	s.e, .210, .196, .216, .255, .205, .285,	s.e,	Ratio, .33, .36, .61, .35, .53, .52,	9, .391, .555 6, .023, .757 7, .035, .594 6, .021, .528 3, .027, .791
Weighted prediction					
	, s.e,	N, Var, , Ratio, 45, .368,			

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 7

<pre>Fleet, FLT01: SCOSEI (Catch, FLT02: SCOLTR (Catch, FLT03: ENGGFS (Catch, FLT04: SCOGFS (Catch, FLT05: IBTS_Q1 (Catc, FLT06: IBTS_Q2_SCO (, FLT07: IBTS_Q4_ENG (, F shrinkage mean , Weighted prediction :</pre>	36.,	s.e, .294, .274, .250, .274, .221, .389,	s.e, .099, .030, .100, .130, .215,	Ratio, .33, .11, .40, .47, .97, .35,	10, 10, 8, 7, 6, 2,	Weights, .316, .274, .035, .011, .006, .006,	.739 .588 .697 .683 .936
Survivors, Int at end of year, s.e 54., .21	, s.e,	N, Var, , Ratio, 47, .186,					

TABLE 4.10; Haddock, North Sea + IIIa	
International F at age, Total ,	1963 to 1995.

				-						
Age	1963	1964	1965			·				
0	.002	.043	.072	 						
1	.124	.058	1.363							
2	.805	.454	.416	1						
3	.670	1.175	.509	1						
4		.756	.985	1						
	.761	1	:	1						
5	.880	.884	1.299	1						
6	.508	1.263	1.021	1						
7	.827	.622	.872	1						
8	.777	.839	.498							
9	.758	.882	.946							
10+	.758	.882	.946 	-						
			1 1000	1000						
Age	1966 	1967	1968	1969	1970 	1971 	1972	1973	1974	1975
0	.070	.002	.002	.017	.030	.012	.032	.002	.013	.011
1	1.303	.263	.052	.022	.500	.474	.169	.374	.353	.335
2	.831	1.081	.578	.655	1.038	.659	.793	.565	.933	.969
3	.360	.415	.898	1.376	1.150	.798	1.339	1.158	.950	1.254
4	.779	.372	.307	1.287	1.269	.871	1.201	.802	1.003	1.099
5	1.240	1.014	.508	.814	.711	.864	1.158	.950	.628	.992
6	1.310	1.326	.808	1.626	1.437	.686	.859	1.098	.880	. 820
7	1.082	1.139	.597	1.000	.709	1.017	.684	.882	1.125	1.567
8	.970	1.945	.659	.951	1.059	1.285	.471	1.146	.405	.998
9	1.089	1.173	.581	1.149	1.049	.955	.884	.987	.817	1.108
10+	1.089	1.173	.581	1.149	1.049	.955	.884	.987	.817	1.108
Age	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985
		013		025	074	0.57	.038	027	015	.016
0	.030	.013	.022	.035	.074	.057		.027	.015	
1	.308	.338	.391	.176	.189	.179	.173	.151	.125	.207
2	.814	1.005	1.012	.882	.707	.450	.431	.659	.667	.614
3	1.371	1.037	1.128	1.141	1.210	.945	.815	1.020	.994	.960
4	.781	1.262	1.123	1.062	1.184	.994	.879	1.158	1.138	1.106
5	1.271	1.031	1.163	1.023	.937	.801	.648	1.210	1.209	1.031
6	1.064	.989	1.036	1.171	.985	.610	.746	.817	1.082	1.066
7	.393	.924	1.146	.617	1.296	1.008	.981	.830	.774	.961
8	.840	.488	.853	.941	.657	1.115	1.104	.576	.563	.708
9	.879	.949	1.077	.974	1.023	.915	.881	.928	.964	.985
10+	.879	.949	1.077	974	1.023	915	.881	.928	.964	.985
Age	1986	1987	1988	1989	· 1990	1991	1992	1993	1994	1995
0	.003	.009	.005	.004	.006	.013	.018	.032	.004	.049
1	.128	.119	.137	.106	.197	.155	.146	.164	.156	.099
2	1.015	.902	.796	.655	1.120	.795	.732	.793	.525	.525
3	1.240	1.049	1.305	.987	1.163	1.032	1.194	1.024	1.023	.777
4	1.240	1.049	1.117	1.185	1.153	.864	1.062	1.043	.977	.888
5	1.063	.837	1.108	.703	.949	.884	.803	.957	.965	.768
6	.716	1.138	.767	.703	.551	.658	1.114	.783	1.077	.752
7			. 767	.600	.551	.658	.748	. 783	.955	.752
	.848	.811								
8	.693	1.158	.592	.717	.521	.735	.923	.574	1.491	.617
9 10+	1.006 1.006	1.028	.668	.730	.698	847 . 847 .	.979 .979	1.035 1.035	1.389	.702

TABLE 4.11; Haddock, North Sea + IIIa Tuned Stock Numbers at age (10**-5), 1963 to 1996, (numbers in 1996 are VPA survivors)

.

Age	1963	1964	1965	1966						
		01701	263363							
0	23383	91721		689923						
1	255640	3005	11304	31563						
2	7401	43367	545	556						
3	486	2217	18453	241						
4	277	194	534	8636						
5	109	101	71	155						
6	14	37	34	16						
7	13	7	9	10						
8	12	5	3	3						
9	1	4	2	1						
10+	0	0	1	0						
Age	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
0	3881118	171025	121955	877639	782847	215392	728983	1334931	115423	164842
1	82821	498537	21977	15439	109661	99584	26853	93628	169646	14693
	1647	12233	90929	4131	1798	13106	16149	3549	12631	23303
3	1647	375	4601	31652	980	623	3975	6153	936	3213
4	182	83	119	905	7806	344	127	972	1853	208
5	3085	83 70	48	26	198	2545	81	972 44	278	481
						68	654	26	19	84
6	37	917	35	17	10		1			
7	3	8	334	6	3	4	24	179	9	7
8	3	1	4	101	2	1	2	8	48	1
9	1	0	0	1	29	1		0	4	14
10+	1	0	0	1	3	8	3	1	1	1
Age	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
	257504	395514	721808	156583	325016	206485	670377	172801	240690	498941
	20596	32716	49822	89758	18725	39522	25582	84005	21903	30484
	20550	2821	4252	8028	14265	3007	6382	4224	14239	3421
3	6918	509	688	1179	2653	6098	1310	2213	1454	5167
	635	1909	128	171	2055	803	2103	368	638	433
5	74	140	483	35	41	79	2105	515	92	164
	110	22	36	142	11	15	34	63	126	27
	24	34	6	142 9	43	15	54 6	12	120	35
	24 4	34 8	9	3	43 2	13	2		5	6
			3	3	2 1	13	2		1	2
9	1 4	2	1	3 2	1	0	4		2	2
		, ,				· ·				
Age	1987 	1988	1989 	1990 	1991 	1992	1993	1994	1995 	1996
0	42018	84451	86337	283220	277748	430296	125430	569573	160048	0
1	64028	5361	10812	11071	36253	35311	54423	15641	73016	19622
2	5152	10921	898	1868	1746	5961	5862	8873	2569	12700
3	831	1402	3303	313	409	529	1922	1778	3519	1018
4	1165	227	296	959	76	113	125	538	498	1259
5	93	307	58	70	236	25	31	34	158	160
6	46	33	83	23	22	80	9	10	11	60
7	11	12	12	31	11	9	21	3	3	4
8	12	4	4	6	13	5	4	7	1	1
	2	3	2	2	3	5	2	2		0
10+	2	2	1	1	1	3	4	1 1	1	1
					·		I T			· · · · · · · · · · · · · · · · · · ·

Table 4.12

HADDOCK IN IIIa/IV, RCT3 INPUT VALUES, XSA run X02, age 2. 18 26 2 'YEARCLASS' 'VPA' 'IYES1' 'IYES2' 'EGES0' 'EGES1' 'EGES2' 'SGES0' 'SGES1' 'SGES2' 'G

'YEARCLASS	' 'VPA'	'IYFS1' 'IYI	FS2' 'EGFS0	' 'EGFS1	' 'EGFS2' 'SC	GFS0' 'SGFS1	''SGFS2	'GGFS1'	'GGFS2' 'IBC	21' 'SCQ21	' 'SCQ22'	'IBQ40' 'IBQ	41' 'ENQ4)' 'ENQ41' '	'ENQ42'				
1971	16149	740	971	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
1972	3549	187	110	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
1973	12631	1092	385	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
1974	23303	1168	670	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
1975	2074	177	84	-1	-1	32.1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
1976	2821	162	108	-1	66.8	26.2	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
1977	4252	385	240	534.8	136.9	54.6	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
1978	8028	480	402	358.3	295.5	167.3	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
1979	14265	896	675	875.5	623.3	439.1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
1980	3007	268	252	374	173.2	79.8	-1	-1	99.6	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
1981	6382	526	400	1537.5	315.5	109.5	-1	248.8	161.1	-1	72.8	-1	-1	-1	-1	-1	-1	-1	-1
1982	4224	307	219	281.3	218.2	61.6	123.5	181.3	78.8	93.9	47.2	-1	-1	-1	-1	-1	-1	-1	-1
1983	14239	1057	828	831.9	599.3	238.2	220.3	436.7	298.1	272.9	259.6	-1	-1	-1	-1	-1	-1	-1	-1
1984	3421	229	244	228.5	186.6	44.7	87.3	197.6	57.4	129.7	38	-1	-1	-1	-1	-1	-1	-1	-1
1985	5152	579	326	245.9	149.7	43.1	81.8	232.9	70.4	142.3	154.4	-1	-1	-1	-1	-1	-1	-1	-1
1986	10921	885	688	266	281.9	183.5	174.7	239.3	198.2	307.4	179.9	-1	-1	-1	-1	-1	-1	-1	-1
1987	898	92	97	22.4	28.6	14.5	27.7	46.7	21.4	68.6	45.3	-1	-1	-1	-1	-1	-1	-1	-1
1988	1868	210	114	60.7	81.7	19.8	40.6	88.6	24	135	54.7	-1	-1	-1	-1	-1	-1	-1	-1
1989	1746	219	131	94.3	66.4	9.6	43.2	100.2	17.8	180	54.9	-1	-1	493	-1	-1	-1	-1	5.094
1990	5961	679	371	281.9	115	97.7	316.3	170.5	96.3	601	129.2	502	4087	2854	-1	481	-1	57.818	22.977
1991	5862	1115	543	263.3	196.9	58.6	347.1	383.2	138	480.1	-1	772	8196	2680	1128	845.63	90.712	74.865	17.137
1992	8873	1242	504	827.7	246.1	90.2	827	583.6	208	-1	163.5	1276	11963	3838	2461.76	1005.92	198.232	75	22.192
1993	-1	229	205	135.8	80.7	44.5	85.9	126.5	73.4	186.8	69.4	495	1295	1186	636.18	673.3	42.168	185.26	17.995
1994	-1	1375	817	943	383.1	146.1	1376.2	815.3	470.5	526.6	-1	1549	12539	6889	3519.24	2190.92	137.483	160.928	-1
1995	-1	260	-1	180	82.6	-1	156.6	223.1	-1	-1	-1	790	1922	-1	598.78	-1	51.541	-1	-1
1996	-1	-1	-1	199	-1	-1	198	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
Yclass	VPA	IBQ11	IBQ12	egfs0	egfs1	egfs2	sgfs0	sgfs1	sgfs2	ggfs1	ggfs2	IBQ21	SCQ21	SCQ22	IBQ40	IBQ41	ENQ40	ENQ41	ENQ42
Updated ?		Prov	Prov	у	У	У	у	у	У	N/A	N/A	у	у	У	У	У	у	У	у
KEY									~.·										

index	Survey	Quarter	Age
IBQ11	IBTS	1	1 Provisiopnal (age based) for 96 survey
IBQ12	IBTS	1	2 Provisiopnal (age based) for 96 survey
EGFS0	English GFS	3	0
EGFS1	English GFS	3	1
EGFS2	English GFS	3	2
SGFS0	Scottish GFS	3	0
SGFS1	Scottish GFS	3	1
SGFS2	Scottish GFS	3	2
GGFS1	German GFS	2	1 Survey discontinued
GGFS2	German GFS	2	2 Survey discontinued
IBQ21	IBTS (provisional, length-based)	2	1
SCQ21	IBTS (Scottish, age based)	2	1
SCQ22	IBTS (Scottish, age based)	2	2
IBQ40	IBTS (provisional, length-based)	4	0
IBQ41	IBTS (provisional, length-based)	4	1
ENQ40	IBTS (English, age based)	4	0
ENQ41	IBTS (English, age based)	4	1
ENQ42	IBTS (English, age based)	4	2
	,		

Table 4.13a; Haddock in the North Sea and Division IIIa; RCT3 output, age 0

Analysis by RCT3 ver3.1 of data from file : hadrct0.inp HADDOCK IN IIIa/IV, RCT3 INPUT VALUES, XSA run X02, age 0 Data for 18 surveys over 26 years : 1971 - 1996 Regression type = CTapered time weighting applied power = 0 over 20 years Survey weighting not applied Final estimates shrunk towards mean Minimum S.E. for any survey taken as .00 Minimum of 5 points used for regression Forecast/Hindcast variance correction used. Yearclass = 1995 I-----Prediction-----I Std Rsquare No. Survey/ Slope Inter-Index Predicted Std WAP Pts Value Series cept Error Value Error Weights IYFS1 5.70 .797 1.10 .39 23 5.56 11.83 .422 .209 IYFS2 7.55 .751 EGFSO .85 .46 17 5.20 11.97 .502 .147 EGES1 1.04 7.03 .33 .845 18 4.43 11.63 .368 .274 EGFS2 .57 SGFS0 .99 7.43 .691 12 5.06 12.43 .651 .087 SGFS1 1.26 5.63 .37 .835 13 5.41 12.43 .414 .216 SGFS2 GGFS1 ł. GGFS2 IBQ21 SCQ21 SCQ22 IBQ40 IBQ41 ENO40 ENQ41 ENQ42 VPA Mean = 12.29 .743 .067 Yearclass = 1996 I-----Prediction-----I Survey/ Slope Inter-Std Rsquare No. Index Predicted Std WAP Series Pts Value cept Error Value Error Weights IYFS1 IYFS2 EGFSO .85 7.55 .46 .751 17 5.30 12.06 .501 .492 EGFS1 EGES2 SGFS0 .99 7.43 .57 .691 12 5.29 12.66 .655 .288 SGFS1 SGFS2 GGFS1 GGFS2 IBQ21 SC021 SCQ22 IBQ40 IBQ41 ENQ40 ENO41 ENQ42 VPA Mean = 12.33 .748 .221 Year Weighted Log Int Ext Var VPA Log Class Average WAP Std Std Ratio VPA Error Prediction Error 1994 721290 13.49 .13 .13 .95 1995 164040 12.01 .19 .15 .58 1996 217390 12.29 .35 .18 .26

E:\ACFM\WGNSSK97\T-4-13.DOC 16/10/96 16:25

124

Table 4.13b; Haddock in the North Sea and Division IIIa; RCT3 output, age 1

Analysis by RCT3 ver3.1 of data from file : hadrct1.inp HADDOCK IN IIIa/IV, RCT3 INPUT VALUES, XSA run X02, age 1. Data for 18 surveys over 26 years : 1971 - 1996 Regression type = CTapered time weighting applied power = 0 over 20 years Survey weighting not applied Final estimates shrunk towards mean Minimum S.E. for any survey taken as .00 Minimum of 5 points used for regression Forecast/Hindcast variance correction used. Yearclass = 1995 I-----Prediction-----I Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP cept Error Pts Value Value Error Weights Series 1.09 3.69 IYFS1 .38 .804 23 5.56 9.76 .411 .223 IYFS2 .86 5.45 1.04 4.95 .47 .735 .138 EGFSO 17 5.20 9.90 .521 EGFS1 .34 .835 18 4.43 9.55 .379 .261 EGFS2 .98 5.38 .57 .692 12 5.06 10.36 .649 SGFS0 .089 SGFS1 1.25 3.59 .37 .834 13 5.41 10.36 .414 .220 SGFS2 GGFS1 GGFS2 IBQ21 SCQ21 SCQ22 IBQ40 IBO41 ENQ40 ENQ41 ENO42 VPA Mean = 10.22 .740 .069 Yearclass = 1996 I-----Prediction-----I Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP Series cept Error Pts Value Value Error Weights IYFS1 IYFS2 .86 5.45 EGFSO .47 .735 17 5.30 9.98 .520 .471 EGFS1 EGFS2 SGFS0 .98 5.38 .57 .692 12 5.29 10.59 .653 .299 SGFS1 SGFS2 GGFS1 GGFS2 IBQ21 SC021 SCQ22 IBQ40 IBQ41 ENQ40 ENO41 ENQ42 VPA Mean = 10.25.746 .230 Year Weighted Int Ext Var VPA Log Loq Class Average WAP Std VPA Std Ratio Error Prediction Error 1994 .92 91667 11.43 .14 .13 1995 20783 9.94 .19 .15 .57 1996 27629 10.23 .36 .18 .26

E:\ACFM\WGNSSK97\T-4-13.DOC 16/10/96 16:25

Table 4.13c; Haddock in the North Sea and Division IIIa; RCT3 output, age 2

Analysis by RCT3 ver3.1 of data from file : hadrct2.inp HADDOCK IN IIIa/IV, RCT3 INPUT VALUES, XSA run X02, age 2. Data for 18 surveys over 26 years : 1971 - 1996 Regression type = CTapered time weighting applied power = 0 over 20 years Survey weighting not applied Final estimates shrunk towards mean Minimum S.E. for any survey taken as .00 Minimum of 5 points used for regression Forecast/Hindcast variance correction used. Yearclass = 1994 I-----Prediction-----I Survey/ Slope Inter-Std Rsquare No. Index Predicted Std WAP Series Pts Value Value cept Error Error Weights 1.16 1.48 7.23 IYFS1 .37 .840 23 9.84 .420 .097 IYFS2 1.24 1.44 .34 .861 23 6.71 9.77 .386 .115 3.51 .52 .699 9.52 .589 EGFSO .88 17 6.85 .050 .361 EGFS1 1.03 3.15 .32 .853 18 5.95 9.30 .132 9.11 EGFS2 .86 4.82 .33 .844 19 4.99 .367 .128 3.52 SGFS0 1.00 .59 .681 12 7.23 10.73 .816 .026 .38 13 6.70 14 6.16 SGFS1 1.27 1.71 .823 10.20 .500 .069 .₀∠3 .863 4.10 SGFS2 .96 .32 10.01 .404 .106 GGFS1 1.90 -1.75 1.01 .422 11 6.27 10.18 1.283 .010 GGFS2 IBO21 SCQ21 .267 SCQ22 .82 2.23 .15 .963 5 8.84 9.47 .241 IBQ40 IBQ41 ENO40 ENQ41 ENQ42 VPA Mean = 8.47 .821 .026 Yearclass = 1995 I-----Prediction-----I Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAD Pts Value Value Series cept Error Error Weights IYFS1 1.08 1.89 .34 .839 23 5.56 7.93 .371 .264 IYFS2 .570 3.51 8.07 EGFSO .88 .52 .699 17 5.20 .112 EGFS1 1.03 3.15 .32 .853 18 4.43 7.72 .357 .285 EGFS2 SGFS0 1.00 3.52 .59 .681 12 5.06 8.56 .670 .081 SGFS1 1.27 1.71 .38 .823 13 5.41 8.56 .432 .194 SGFS2 GGFS1 GGFS2 IBQ21 SC021 SCQ22 IBQ40 IBQ41 ENQ40 ENO41 ENQ42 VPA Mean = 8.38 .751 .064 VPA Year Weighted Loq Int Ext Var Loq Class Average WAP Std Std Ratio VPA Prediction Error Error 1994 14730 9.60 .13 .13 .97 1995 3260 8.09 .19 .15 .62 1996 4549 8.42 .38 .19 .26

E:\ACFM\WGNSSK97\T-4-13.DOC 16/10/96 16:25

		Mean F		Stock I	Biomass	Red	cruits
	H.cons	Disc.	Ind BC	('000 '	tonnes)	A <u>c</u>	je O
	Ages	Ages	Ages				
Year	2 to 6	2 to 6	0 to 3	Total	Spawning	Yclass	Million
1963	.579	.125	.026	3387	137	1963	2338
1963	.699	.073	.130	1188	420	1963	9172
1965	.647	.073	.341	811	525	1964	26336
1965	.716	.104	.262	780	432	1965	68992
1967	.678	.142	.051	1216	229	1967	388112
1968	.486	.089	.056	6700	265	1968	17103
196'9	.843	.093	.198	2344	816	1969	12196
1970	.804	.123	.266	1409	902	1970	87764
1971	.629	.108	.077	1660	417	1971	78285
1972	.901	.145	.050	1677	301	1972	21539
1973	.778	.126	.033	901	295	1973	72898
1974	.641	.140	.099	1568	258	1974	133493
1975	.765	.203	.083	2163	238	1975	11542
1976	.816	.153	.120	885	308	1976	16484
1977	.814	.133	.164	567	239	1977	25750
1978	.880	.185	.058	665	132	1978	39552
1979	.941	.085	.053	673	109	1979	7218
1980	.851	.080	.083	1251	153	1980	15658
1981	.654	.086	.063	671	240	1981	32502
1982	.590	.067	.064	841	300	1982	20649
1983	.802	.145	.048	760	253	1983	67038
1984	.903	.091	.031	1495	199	1984	17280
1985	.857	.078	.017	861	242	1985	24069
1986	.884	.178	.012	716	222	1986	49894
1987	.856	.142	.014	1068	157	1987	4202
1988	.847	.147	.019	427	159	1988	8449
1989	.709	.132	.014	398	129	1989	8634
1990	.725	.233	.015	341	81	1990	28322
1991	.766	.066	.022	743	63	1991	27775
1992	.870	.100	.029	608	101	1992	43030
1993	.763	.140	.037	892	135	1993	12543
1994	.734	.172	.013	517	160	1994	56957
1995	.602	.136	.022	993	162	1995	* 16404
Min.	.486	.066	.012	341	63	Min.	2338
Mean	.759	.124	.078	1248	266	Gmean	26424
Max.	.941	.233	.341	6700	902	Max.	388112

TABLE 4.14; Haddock, North Sea + IIIa Mean fishing mortality, biomass and recruitment, 1963 - 1995.

Min, max and geo. mean recruitment calculated over years 1963 to 1993 (Arithmetic mean recruitment 1963 - 1993 = 46573) Biomass totals calculated at start of year.

* RCT3 estimate

Table 4.15.Haddo	ck,No:	rth &	Sea + :	IIIa				
Input	data	for	catch	forecast	and	linear	sensitivity	analysis.

Popul	lation	 s in :	++ 1996		weigh		T			 1	Prop.ma	ature
Labl		alue	CV	Labl V	alue	cv	Labl	Value	CV	Labl	Value	CI
+ NO	+		++ .35	•	.01	.26	•	+ 2.05	.10		++ .00	.1(
N1		B300	.19		.11			1.65			.00	
N2		9999	.11		.28	.09	1	.40	.10		.32	
N3		1799	.08		.41	.10		.25	.10		.71	
N4		5899	.07		.62	.08	M4	.25	.10	MT4	.87	.1
N5	1	5999	.08]]	WS5	.87	.11	M5	.20	.10	MT5	.95	.1
N6	!	5998	.09	WS6	1.16	.05	M6	.20	.10	MT6	1.00	.1
N7		400	.10	WS7	1.37	.18	M7	.20	.10	MT7	1.00	.0
N8		100	.14	WS8	1.58	.07	M8	.20	.10			.0
N9		0	.13		1.74		· ·	.20		MT9	: :	
N10		100	.21	WS10 +-	2.09		M10	.20			1.00 ++	
	select:		++			++		 tivity	++			· +
+	+	+	++	+	+	++	-+	+	++	+	+	+
Lab1	Value	CV	Labl	Value +	•		•	1e CV		Valı	•	7 ·+
sH0	.00	1.73	WH0	.00	1	sD0	1	001.00	1.1		05 .41	1
sH1	.00		WH1	.31	1	sD1	1	9 .25	1.1		13 .06	1
sH2	.16		WH2	.39	1	sD2	1	86 .16	11		23 .09	1
sH3	.57		WH3	.46	1	sD3	1	23 .35		1	28 .03	1
sH4	.81	!	WH4	.63	1	sD4			WD4	1	34 .09	1
sH5	.77		WH5	.88	1	sD5		01 1.01	11		35 .12	1
sH6	.74		WH6	1.19	1	sD6		2 1.73	1.1		09 1.73 12 1.73	
sH7	.74 .78		WH7	1.37	1	sD7 sD8		00 1.73 00 .00	1.1		201.73	1
sH8 sH9	. /8	•	WH8	1.58		SD8	1		11			1
sH10				2.07		sD1		00 .00	1.1	1	00 .00	
+	select: Value	+	++	dustri + Value	+	+						
+ sI0	.02	⊦ .79	++ wio	+ .01	+	+ 						
sI1	.03		WI1		1							
sI2	.02		WI2	.18	1	!						
sI3	.01		WI3	.37	1							
sI4	.01		WI4	.50	1	ļ						
sI5	.00		WI5	.43		1						
sI6			WI6		1.08							
sI7 sI8			WI8	.19	1.73	:						
sI9			WI9		.00							
sI10				.00	1	:						
	+								+			
								ve eff				
Labl	Value	CV	Labl	Value	CV	Lab	l Valu	ue CV	1			
к96	1.00	.10	HF96	1.00	.11	IF9	6 1.0	00 .50	1			
				1		::		00 .50	1			
•	•	•		•			•)0 .50 +	•			
				+	+	++	-+		+			
	itment		 ++									
Labl	Va											
	F											
	26424											
 R97		4400	1.05									

Proportion F before spawning= .00 Proportion M before spawning= .00

Linea	1									
		 1996			Y	ear 1997				
Mean F	Aqes	++ 	++	+	+	+	+	+		
H.cons	2 to 6	.74	.00	.15	.30	.44	.59	.74	.8	
Ind BC	2 to 3	.02	.02	.02	.02	.02	.02	.02	.0	
Ind De	0 20 5									
Effort relativ	ve to 1995	1 1				i	i			
H.cons		1.00	.00	. 20	.40	.60	. 80	1.00	1.2	
Ind BC		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0	
		++	+	+	+	+	+	+		
Biomass at sta	art of year									
Total		722	673	673	673	673	673	673	67	
Spawning		233	243	243	243	243	243	243	24	
Catch weight	(000t)									
H.cons	(,0000)	118	o	34	64	90	112	131	14	
Discards		87	o	13	25	36	46	56	e	
Ind BC		7	8	8	7	7	7	7		
Total Land	lings	125	8	42	71	97	119	138	15	
Total Cato	-	212	8	55	97	133	165		21	
		i i	Í	Í		Í	ĺ	ĺ		
Biomass at sta	art of 1998									
Total			917	858	807	763	725	692	66	
Spawning			396	347	305	269	237	,		
		++	+	+	+	+	+	+		
		1	Year							
		1996				1997				
Effort relativ	ve to 1995	1996 ++ 	++	++	++ 	1997 + 	+	++		
Effort relativ H.cons	ve to 1995	1996 ++ 1.00	+ 00.	+ . 20	+ .40	1997 + .60	+ . 80	+ 1.00	1.2	
	ve to 1995	++ 	.00 1.00	.20 1.00	+ .40 1.00	+ 	.80 1.00			
H.cons	ve to 1995	 1.00	1			+ .60				
H.cons		 1.00	1			+ .60				
H.cons Ind BC Est. Coeff. of	f Variation	 1.00	1			+ .60				
H.cons Ind BC Est. Coeff. of Biomass at sta	f Variation	1.00 1.00 1.00 1.00	1.00	1.00 + 	1.00	.60 1.00 +	1.00	1.00	1.0	
H.cons Ind BC Est. Coeff. of Biomass at sta Total	f Variation	1.00 1.00 1.00 .100	1.00	1.00 + .24	1.00 + .24	.60 .60 1.00 .24	1.00	1.00 	1.0	
H.cons Ind BC Est. Coeff. of Biomass at sta	f Variation	1.00 1.00 1.00 1.00	1.00	1.00 + 	1.00	.60 1.00 +	1.00	1.00	1.0	
H.cons Ind BC Est. Coeff. of Biomass at sta Total	f Variation	1.00 1.00 1.00 .100	1.00	1.00 + .24	1.00 + .24	.60 .60 1.00 .24	1.00	1.00 	1.0	
H.cons Ind BC Est. Coeff. of Biomass at sta Total Spawning	f Variation	1.00 1.00 1.00 .100	1.00	1.00 + .24	1.00 + .24	.60 .60 1.00 .24	1.00	1.00 	1.0 	
H.cons Ind BC Est. Coeff. of Biomass at sta Total Spawning Catch weight	f Variation	1.00 1.00 1.00 .100 .10 .10	1.00	1.00 + .24 .15	1.00 .24 .15	.60 1.00 	1.00 .24 .15	1.00 	1.0 2 .1	
H.cons Ind BC Est. Coeff. of Biomass at sta Total Spawning Catch weight H.cons	f Variation	1.00 1.00 1.00 .10 .10 .10 .17	1.00 .24 .15	1.00 .24 .15 .54	1.00 .24 .15 .29	.60 1.00 .24 .15 .21	1.00 .24 .15 .18	1.00 	1.(
H.cons Ind BC Est. Coeff. of Biomass at sta Total Spawning Catch weight H.cons Discards Ind BC	f Variation art of year	1.00 1.00 1.00 .00 .10 .10 .10 .17 .19	1.00 .24 .15 .00 .00	1.00 .24 .15 .54 .58	1.00 .24 .15 .29 .35	.60 1.00 .24 .15 .21 .29	1.00 .24 .15 .18 .27	1.00 	1.0 	
H.cons Ind BC Est. Coeff. of Biomass at sta Total Spawning Catch weight H.cons Discards Ind BC Biomass at sta	f Variation art of year	1.00 1.00 1.00 .00 .10 .10 .10 .17 .19	1.00 .24 .15 .00 .67	1.00 + .24 .15 .58 .68	1.00 + .24 .15 .5 .68	.24 .24 .15 .21 .29 .69	1.00 .24 .15 .18 .27 .70	1.00 .24 .15 .17 .26 .70	1.0 	
H.cons Ind BC Est. Coeff. of Biomass at sta Total Spawning Catch weight H.cons Discards Ind BC	f Variation art of year	1.00 1.00 1.00 .00 .10 .10 .10 .17 .19	1.00 .24 .15 .00 .00	1.00 .24 .15 .54 .58	1.00 .24 .15 .29 .35	.60 1.00 .24 .15 .21 .29	1.00 .24 .15 .18 .27	1.00 		

Table 4.16 Haddock,North Sea + IIIaCatch forecast output and estimates of coefficient of variation (CV) fromlinear analysis.

Forecast for year 1996 F multiplier H.cons=1.00 F multiplier Indust=1.00

	-				
	Populations	Catch nu	mber		
+4	+	+ +	+	+	++
Age	Stock No.	H.Cons	Discards	By-catch	Total
+4		+ +	+		+
0	21739000	18316	36632	183162	238111
1	2078300	3893	84662	31140	119695
2	1269999	128652	296065	17319	442036
3	101800	35971	14388	813	51172
4	125899	61719	2374	459	64553
5	15999	7825	102	20	7948
6	5999	2842	81	0	2923
7	400	192	0	1	193
8	100	50	0	0	50
9	0	0	0	0	0
10	100	34	0	0	34
++		+ +	+	+	+
Wt	722	118	87	7	212
++		+ +	+	+	+

..

Forecast for year 1997 F multiplier H.cons=1.00 F multiplier Indust=1.00

	Populations	Catch nu	mber		
Age	Stock No.	H.Cons	Discards	By-catch	Total
	26424400	. 22264	44528	222639	289431
1	2726743	5107	111077	40856	157040
2	352943	35753	82279	4813	122845
3	498085	175997	70399	3979	250375
4	34988	17152	660	128	17940
5	42203	20642	269	54	20965
6	6011	2847	81	0	2929
7	2304	1106	0	6	1112
8	155	77	0	0	77
9	38	21	0	0	21
10	52	17	0	0	17
++	+	+	+	++	+
Wt	673	131	56	7	194
++		. +	+	++	+

.

Average F(2-6,u)											
Date of assessment		Year									
	1987	1988	1989	1990	1991	1992	1993	1994	1995		
1989	1.00	1.00						1	L		
1990	1.00	1.05	0.95								
1991	1.02	1.05	0.91	0.98							
1992	1.01	1.03	0.91	1.10	1.23						
1993	0.99	0.99	0.87	0.99	0.92	1.31]				
1994	1.01	1.06	0.97	0.86	0.81	1.07	1.02				
1995	1.01	1.05	0.96	0.84	0.78	1.00	0.87	0.89			
1996	1.00	1.02	0.86	0.99	0.85	0.99	0.92	0.91	0.74		

Assessment Quality Control Diagram 1

Remarks: Laurec/Shepherd tuning used 1989-1992, XSA used in 1993. 1996 Assessment combined North Sea and IIIa, all previous figures are North Sea only

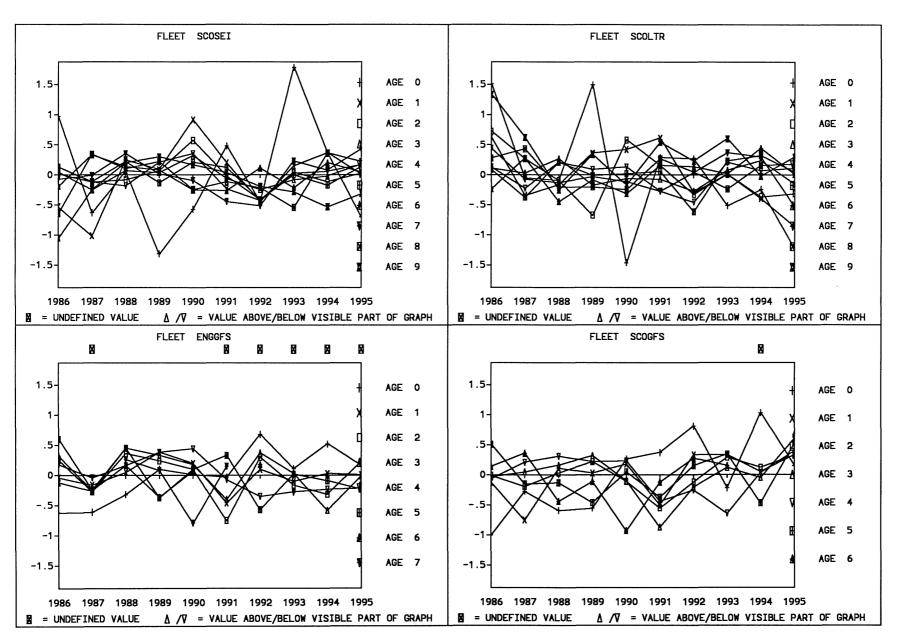
Assessment Quality Control Diagram 2

			Recruitme	ent (age 0) Ui	nit: millions						
Date of assessment		Year class									
	1988	1989	1990	1991	1992	1993	1994	1995	1996		
1989	7650	-		1		1	1	1			
1990	10512	1280									
1991	7802	7879	32729]						
1992	7265	8351	33509	66763							
1993	8017	7927	25254	45919	83110	17559]				
1994	7554	8141	27283	28631	51411	11813	45005				
1995	7591	8220	28190	2795	40711	12504	78532	17128			
1996	8445	8633	28322	27775	43030	12543	56957	16404	21739		

Remarks: 1996 Assessment combined North Sea and IIIa, all previous figures are North Sea only

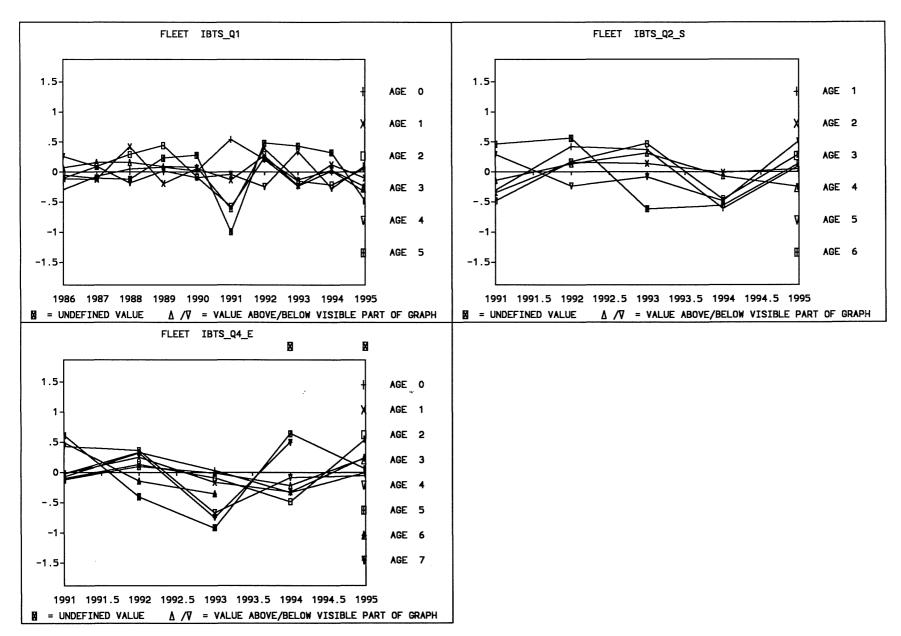
				Spawning	g stock biomass	s ('000 t)					
Date of assessment			-								
	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
1989	134 ²	117 ²	79 ^{1,2}	72 ^{1,2}							
1990	149	122	86	81 ¹	. 150 ¹						
1991	150	122	76	64	99 ¹	122 ¹					
1992	149	119	71	55	105	201 ¹	235 ¹				
1993	155	125	77	58	89	165	248 ¹	177 ¹			
1994	154	121	68	61	99	130	194	158 ¹	163 ¹		
1995	155	122	69	62	103	133	158	178	230 ¹	239 ¹	
1996	159	129	81	63	101	135	160	162	233	243	210

Assessment Quality Control Diagram 3

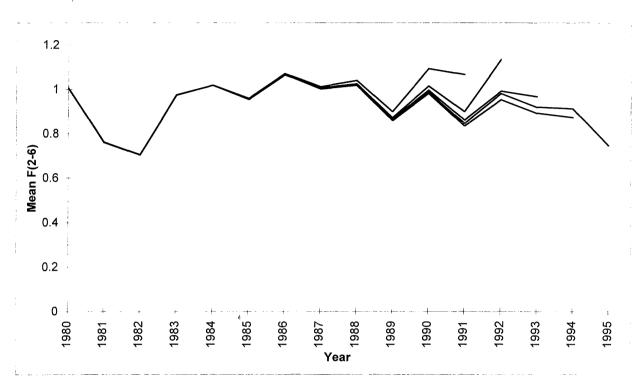

¹Forecast. ²As revised by ACFM. 1996 Assessment combined North Sea and IIIa, all previous figures are North Sea only

Remarks: 1993 XSA used, 1989-1992 Laurec/Shepherd tuning used

E:\ACFM\WGNSSK97\T-4-18.DOC 21/06/96 14:26

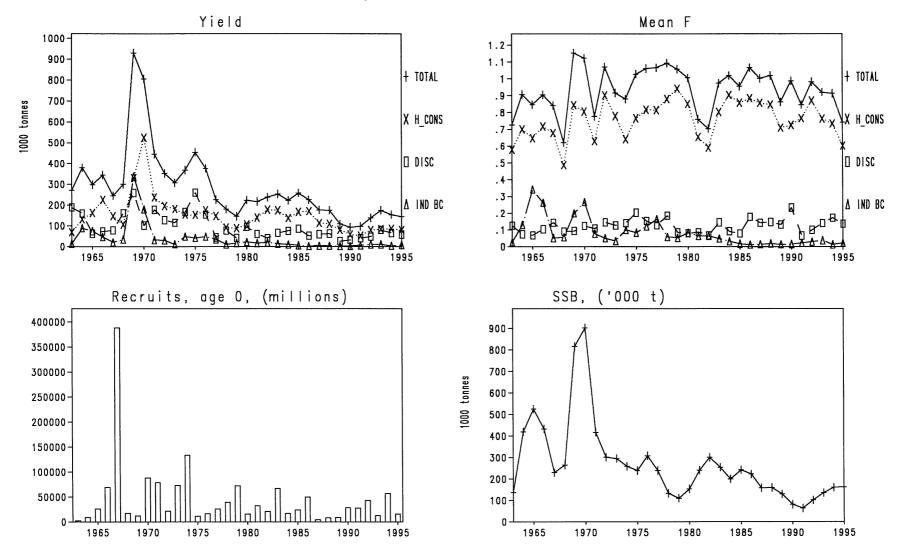

Reference Point Data North Sea + III Haddock: Yield per Recruit

Fmax =	.4021	Fmult =	.5333		Y/R =	.0066	Kg/R
F0.1 =	.1955	Fmult =	.2534		Y/R =	.0061	Kg/R
Fcurr =	.7466	Fmult >	1.0000		SSB/R =	.0075	Kg/R
Fhigh >	.9681	Fmult >	1.3000		SSB/R =	.0021	Kg/R
Fmed =	.5784	Fmult =	.7721		SSB/R =	.0101	Kg/R
Human Cons Discard Industrial	1	Reference	age range age range age range	2 - 6 2 - 6 0 - 3	Reference Reference Reference	F = .	6080 1302 0215



134

Figure 4.1 (Continued)



135

Figure 4.2; Haddock in the North Sea and Division Illa Retrospective trends in Mean F

Figure 4.3 Stock summary, Haddock , North Sea + 111

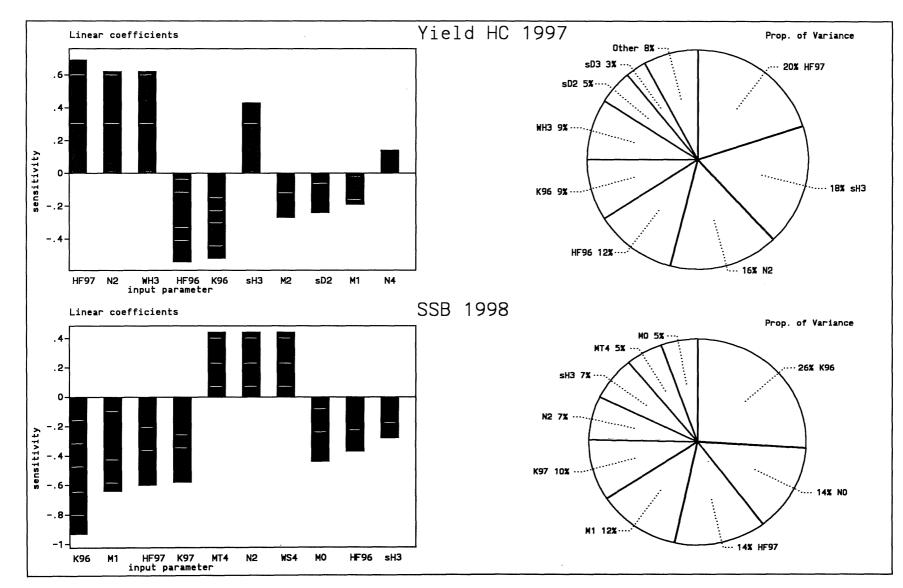
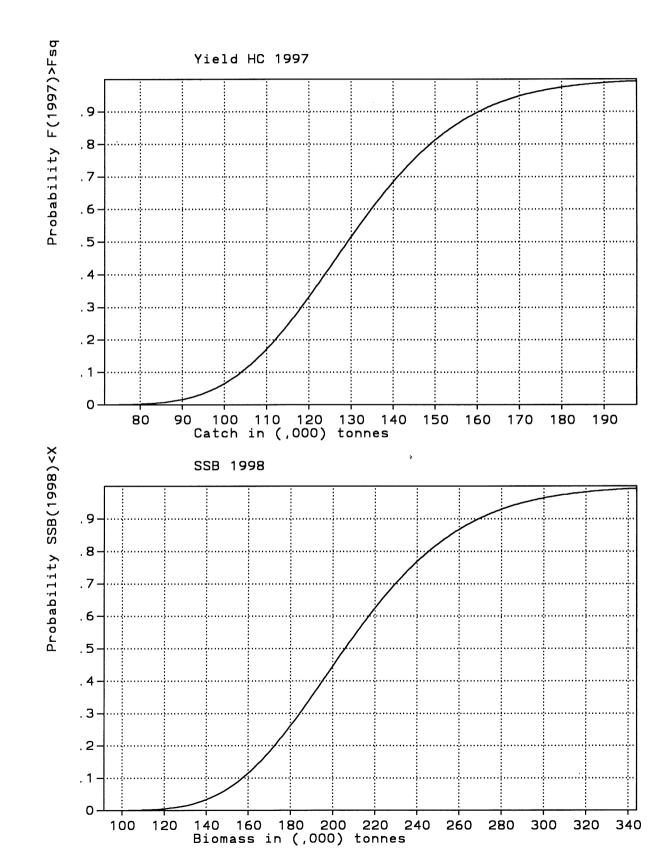
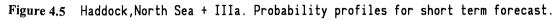
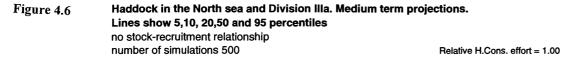
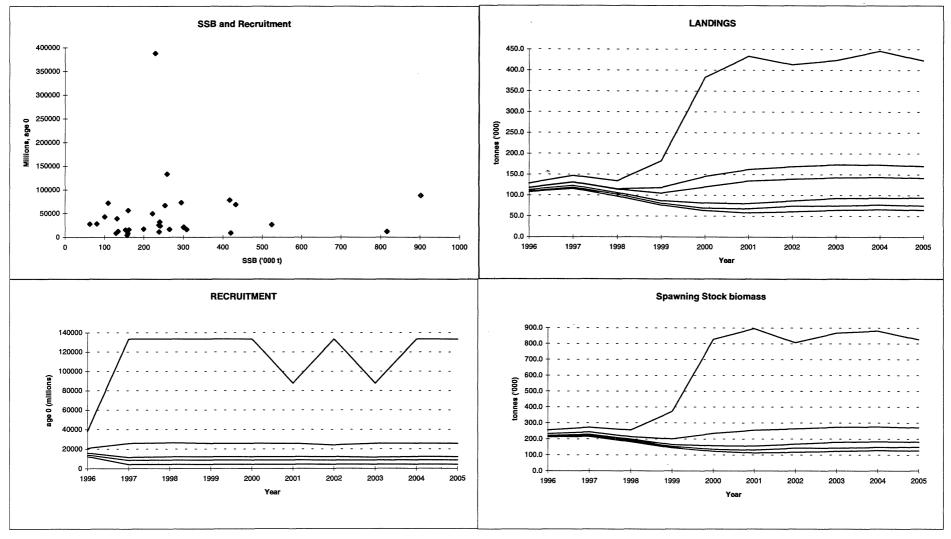
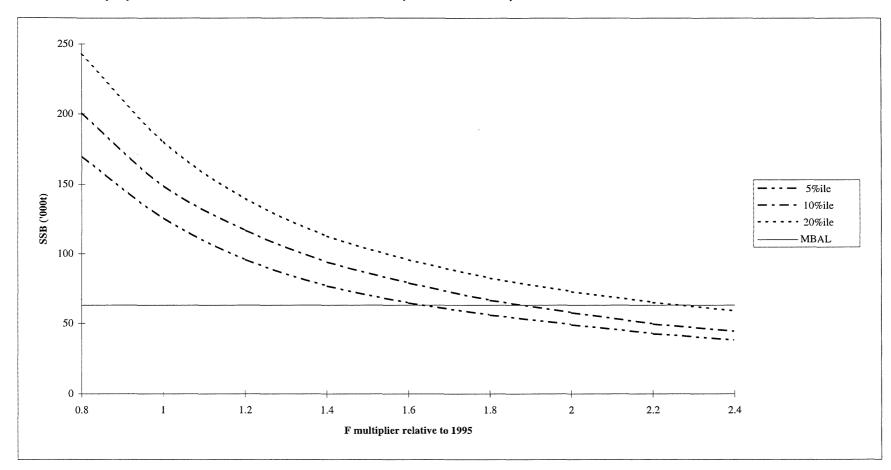
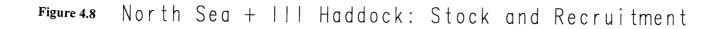
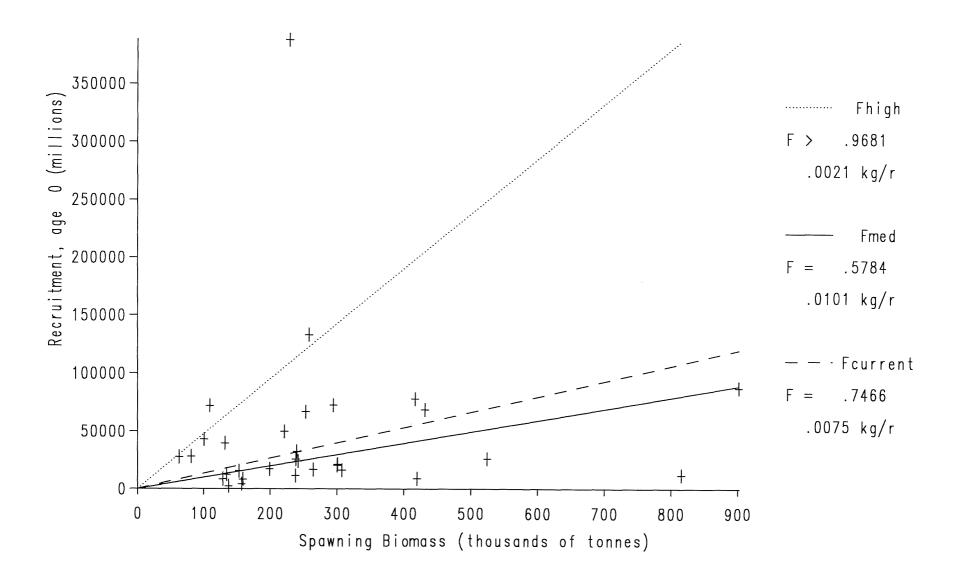
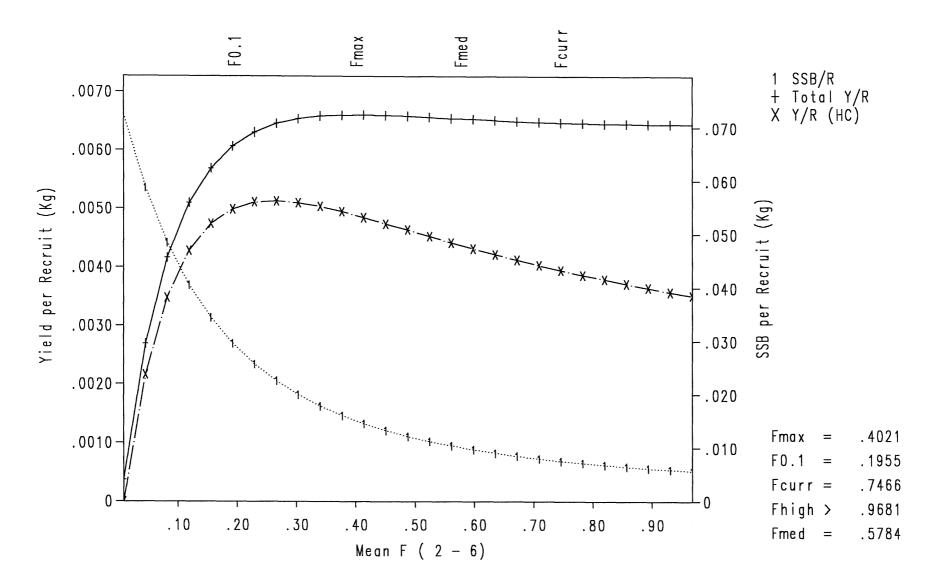






Figure 4.4 Haddock, North Sea + IIIa. Sensitivity analysis of short term forecast.

g:\acfm\wgnssk\had_34\mterm\MEDTERM.XLS


Figure 4.7 'Haddock in the North Sea and Division Illa Medium-term projections of SSB in 2005 at different F levels.(See Section 16.1)

North Sea + III Haddock: Yield per Recruit

5 WHITING

5.1 Whiting in Sub-area IV and Division VIId

This is the first assessment undertaken for whiting in the combined area of Sub-area IV and Division VIIa. The rationale behind the merging of these stocks and the procedures undertaken in merging the data are described in Section 1.3.3.

5.1.1 Catch trends

Total nominal landings are given in Tables 5.1.1 and 5.1.2 for the North Sea and eastern Channel respectively. Total international catches as estimated by the Working Group for the combined North Sea and eastern Channel are shown in Table 5.1.3. Eastern Channel catches as used by the Working Group are also shown separately in Table 5.1.4.

For the North Sea, the total international catches were 99,000t in 1995, of which 42,000t were human consumption landings, 31,000t discards and 27,000t industrial by-catch. This represents a continued decrease in total landings since 1990 (149,000t), but is 13,000t greater than the 1994 value. The 1995 human consumption landings were the lowest recorded since 1989. The total North Sea landings of 68,000t in 1995 were 104% of last year's *status quo* prediction (65,000t) and 84% of the 1995 TAC of 81,000t.

In the eastern Channel recorded landings were 4,891t in 1995 compared to the *status quo* prediction made last year of 6,130 t.

In the North Sea, whiting are caught for human consumption in the mixed demersal fisheries for Scotland (seine and light trawl) and England (seine and trawl). They are also caught incidentally in the Dutch and German trawl fisheries where the former may target whiting if cod are unavailable. French trawlers targeting saithe also take an incidental catch of whiting and, closer inshore, whiting may comprise a part of the French trawl mixed demersal fishery for vessels moving into the southern North Sea from the Channel. Whiting comprise a by-catch in the industrial fishery for Norway pout and clupeids.

In the eastern Channel, whiting are caught both by inshore and offshore trawlers in a mixed demersal fishery.

5.1.2 Natural mortality, Maturity, Age compositions, Mean weight at age

The natural mortality and maturity at age values as used are shown in Table 5.1.5. For natural mortality, these are unchanged from last year as both the North Sea and eastern Channel assessments used similar values. For maturity at age, the values used correspond to the North Sea values as used last year.

The natural mortality values are rounded averages of the estimates produced by an earlier key run from MSVPA.

The maturity ogive is based on North Sea IBTS quarter 1 data, averaged over the period 1981-1985.

For Sub-area IV catches, human consumption landings data and age compositions were provided by Scotland, the Netherlands, England and France. Discard data were provided by Scotland and used to estimate total international discards. Since 1991 the age composition of the Danish industrial by-catch has been directly sampled, whereas it was calculated from research vessel survey data during the period 1985-1990. Norway provided age composition data for its industrial by-catch.

Mean weights at age were available separately for the human consumption, discard and industrial by-catch components of the catch.

For Division VIId catches, age composition data were supplied by England and France. No estimates of discards are available for whiting in the eastern Channel. There is no industrial fishery in this area.

Misreporting is not considered to be a serious problem for either the North Sea or the eastern Channel components of the stock.

Total international catch at age and mean weight at age in the catch (North Sea and eastern Channel combined) are presented in Tables 5.1.6 and 5.1.7. The mean weights at age presented were corrected for sum of products differences, to account for SOP discrepancies in the earlier part of the time series.

The catch mean weight at age was also used as the stock mean weight at age.

5.1.3 Catch, Effort and Research Vessel Data

Catch and effort data from commercial and survey vessels were used to tune the VPA. The fleets available for VPA tuning and the ages and number of years available for each fleet are listed in Table 5.1.8; their values are presented in Table 5.1.9. Data from the quarterly International Bottom Trawl Survey (IBTS) surveys for the second and fourth quarter have been included this year. As final age-based data are not yet available for all the years for these surveys, the data for the second quarter comprise age-based indices from the Scottish component of the survey, while the fourth quarter values comprise age-based indices from the English component of the survey. In addition, data from the fourth quarter French groundfish survey in Division VIId were also included this year. IBTS data from the first quarter (formerly IYFS) have been treated as if the survey took place at the very end of the previous year, by adjusting the parameter values of alpha and beta in the tuning file and offsetting the index age by one year. This allows some survey data, collected after the most recent commercial catch at age data, to be used in tuning. The IBTS series for the first quarter are available for a longer period for ages 1 and 2 than for the older ages due to lack of proper sampling/ageing of the older age groups in the earlier part of the time series.

5.1.4 Catch-at-age analysis

As a preliminary investigations of the catch-at-age and tuning data, single fleet, unshrunk, unweighted Laurec-Shepherd tuning runs were made using 20 years of tuning data. The results from these analyses are retained on the stock file. From plots of the log-catchabilities, strong trends were apparent in the German groundfish survey data and, as last year, this fleet was excluded from subsequent tuning runs. The Dutch groundfish survey series was excluded last year and, as this survey is now discontinued and no new data are forthcoming, the exclusion of the series was continued. Indices for ages 0, 6, 7 and 8 were excluded from the French eastern Channel commercial fleet (FRATRC_7d) tuning series. This was considered appropriate due to their very poor representation in the catch of this fleet.

There was also an indication from these plots that for some important commercial fleets, the log-catchabilities appeared more stable if considered over a shorter, ten year period than over the full 20 year period. For this reason, the tuning period was reduced to 10 years, but with no down-weighting of data within that period.

For a first XSA trial run, the basic parameter selections (pre-recruit age < 2, catchability plateau at age 6, shrinkage SE = 0.5) were unchanged from last year's final run and based on the exploratory runs made then. However, the treatment of age 0 and 1 as recruits was not accepted due to considerable uncertainty regarding both the magnitude and sign of the calculated slopes in the relationships between many of the indices and the estimated abundance of those ages. Consequently, an additional XSA run was made, which ultimately became the final run, in which the catchability of all age groups was considered to be independent of year class strength. The log-catchability residual plots from this run (Figure 5.1.1), although noisy in some cases, demonstrated a marked improvement for the youngest age groups compared to the first trial run, where they were treated as recruits. Because of this, and because some prior selection of fleets and ages had already been undertaken on the basis of log-catchability trends and/or noise, it was decided not to exclude further any fleets and age groups used in this run, and to let the XSA weight them accordingly in the final survivors estimates. Finally, a retrospective analysis was performed to examine the effect of shrinkage.

The retrospective plot for this XSA configuration and tuning data set is shown in Figure 5.1.2 for an assumed F shrinkage mean SE = 0.5. Because of the short time series of the 3 new survey index series, it was not possible to include them the retrospective analysis. Similarly, to make use of the relatively short French eastern Channel commercial fleet series (FRATRC_7d) in the retrospective analysis, it was not possible to select a 'moving window' analysis. Consequently, the available data for each successive run diminished by one year, leading to only a five year tuning period for the retrospective run using 1989 as its terminal year. For this reason, it is not possible to determine whether the extreme spikes in the retrospective estimates of recruitments in the earliest years (Figure 5.1.2) reflect true potential overestimates for those years, or whether they are a result of the diminishing tuning series. This also makes it difficult to judge the effect of varying the level of shrinkage so the default value (SE=0.5) was retained.

The basic parameter selections and tuning options of the final run are shown in Table 5.1.10. The diagnostics of the final run are also given in this Table and the log catchability residual plots are shown in Figure 5.1.1.

The relative weighting of the different tuning fleets to the survivors estimates are indicated in Figure 5.1.3, where the scaled weights are shown plotted by fleet and age. In general, it can be seen that the weighting of survivors estimates from the commercial fleets from the North Sea increases with the age of fish and those of the North Sea survey either decline with age, or are least important at the extremes of the age range. Neither of the eastern Channel tuning fleets get more than 6.2% of the weighting in the final survivors estimates of any age group. The weighting of the F shrinkage mean is highest for the oldest ages, at 55%.

In the previous assessment of this stock, the survivors estimates for ages 0 and 1 were dominated by the effects of shrinkage to both the population and F means. This year, for these ages, due to the treatment of catchabilities as independent of abundance, the IBTS QI and QIV surveys are the most heavily weighted tuning fleets, followed in the case of 0-group fish by the F shrinkage mean. The F shrinkage estimate of survivors from this age is higher than all but one (FraTRB) of the tuning fleet estimates and it gets a 17% weighting in the final weighted value.

The individual fleet estimates of survivors given in Table 5.1.10 are quite diverse at ages 0 and 1, appear less so at age 2, and are reasonably consistent for ages 3 to 6.

Although the XSA output present the fleet and shrinkage based estimates of survivors and their weighted average prediction, it was not possible to inspect their derived estimates of fishing mortality (they are presented as zero values in the output).

The fishing mortalities at age and stock numbers estimated from the final tuning run are presented in Tables 5.1.11 and 5.1.12

5.1.5 Recruitment estimates

There has previously been an inconsistency between survey-based estimates of year class strength used in predictions and tuned values for the same year classes estimated by the Working Group at its subsequent meeting. The tuned values have consistently been lower than RCT3 estimates suggesting that, according to the tuned results, the previous year's predictions will have been based on overestimates of year class strength. This inconsistency was further indicated by the plots of survey indices and XSA estimates of recruitment presented in last year's report (ICES 1996/Assess:6) where no clearly defined relationships were apparent.

Therefore, as at the two previous meetings, it was decided to incorporate all the XSA estimates of survivors in to the input to catch prediction, including the estimates for recruiting year classes. This decision was made because of the inconsistency between RCT3 and XSA noted above. It is emphasised that the use solely of XSA survivors estimates does not mean that the Working Group believes these to be better estimates of recruitment than those produced by RCT3, as this inconsistency between survey data and commercial data was further apparent in an analysis using survey-based estimates of stock trends for whiting in the North Sea (ICES 1995/Assess:8). It has made this decision for the sake of consistency of population estimates from year to year. The results of a sensitivity analysis of the catch prediction (Section 5.1.7 and Figure 5.1.5) indicates that the prediction of human consumption yield in 1997 and spawning biomass in 1998 is relatively insensitive to the XSA estimates of survivors at age 0 and 1. The apparent inconsistency between XSA and survey based estimates of recruits is further examined in Section 5.1.10.

In the previous assessment of this stock, because recruitment since 1979 had fluctuated around a lower level than in the preceding period a 20 year tapered geometric mean value of recruitment at age 0 was assumed for input to prediction. The same issue arises for this assessment (Figure 5.1.4), but the XSA tuning period has been changed from 20 years to 10 years, and it becomes an arbitrary decision whether to continue with a 20 year tapered geometric mean for input to prediction or to use a 10 year untapered value. Ultimately, the decision was made to use a 20 year tri-cubic weighted geometric mean for input to prediction at age 0 in 1996 and subsequent years (34,100 million), rather than the long term geometric mean of 42,600 million. The tricubic taper-weighted GM was calculated externally to the XSA, using the XSA recruitment estimates.

5.1.6 Historical stock trends

Long term trends in fishing mortality, recruitment and spawning biomass are given in Table 5.1.13 and plotted in Figure 5.1.4.

Fishing mortalities have been highly variable with no clear trend, although the human consumption landings component of F appears to have been reasonably stable since 1989, but indicating a fall in 1995. Estimates of all year classes since 1988 lie between 55% and 80% of the long term arithmetic mean (62%-90% of the long term geometric mean). The spawning stock biomass is estimated to have been stable since 1983, fluctuating around 290,000t, compared with its lowest recorded value of 236,000t (in 1971) and below the long term average of 380,000t. Its estimated level at the start of 1995 is 330,000 t.

5.1.7 Short term forecast

A short term catch prediction was first made on the basis of the area combined stocks. The catch category predictions therefore comprised: human consumption landings for IV and VIId combined; human consumption discards for IV only; and industrial by-catch for IV only. This prediction served as a check on the area split prediction made subsequently, but also provided the data required for the sensitivity analysis of the overall catch prediction. An area split prediction was then made.

Input data for combined area short term catch predictions are given in Table 5.1.14.

The proportion of fish landed by the human consumption fleet compared to its catch in recent years does not show any consistent changes. Therefore, calculation of the partial Fs at age and mean weights at age in the various catch categories used in prediction continue to be averaged over a 5 year period.

Results of a *status quo* catch forecast are given in Tables 5.1.15 and 5.1.16. The Sub-area IV TAC for 1996 (67,000t) is less than the Sub-area IV landings indicated by this prediction (79,000t). The TACs appear unlikely to be limiting and a TAC constrained prediction has not been made. Results of the area-split forecast are included in Table 5.1.15. The small discrepancies between the sum of the area based values and the tabulated combined area human consumption landings are due to the effects of cumulative rounding errors.

At *status quo*, the area-combined human consumption landings are predicted to be 64,000t in 1997 compared to a forecast of 58,000t for 1996. This is predicted to result in a spawning biomass in 1997 and 1998 of 375,000t.

At *status quo*, the area-split human consumption landings forecast for 1997 is 57,100t in Sub-area IV and 6,200t in Division VIId. An additional 28,000t of industrial by-catch is predicted for Sub-area IV.

A sensitivity analysis of the *status quo* combined area forecast is presented in Table 5.1.15 and Figures 5.1.5 and 5.1.6. The estimates of human consumption landings in 1997 are most sensitive to the overall level of fishing mortality in 1997 and the overall level of natural mortality in 1996. The estimate of spawning biomass at the start of 1998 is sensitive to the overall magnitude of natural mortality in both 1996 and 1997 as well as to the age-specific values of M at age 0 and 1.

The sensitivities (Figure 5.1.5) are very similar to those presented in last year's report, as are the partial variances in the prediction of spawning biomass in 1998 attributable to the uncertainties in the input values. However, the partial variances in the predicted human consumption landings do differ from those reported last year. In this assessment, uncertainty of the overall level of human consumption fishing mortality has contributed much more to the variance of yield than the equivalent indication from the previous assessment. In last year's analysis, the uncertainty in the population size of fish aged 2, and its absolute magnitude, contributed greatly to the variance in yield. This corresponds to the 1994 year class, which was estimated last year to be very weak, but which has been revised upwards this year.

Probability profiles for the human consumption landings in 1997 and the spawning biomass in 1998 are shown in Figure 5.1.6. They indicate approximately a 20% probability, at *status quo* human consumption F, that the spawning biomass at the start of 1998 will fall below its previously lowest recorded value of 236,000 t. and approximately a 25% probability of falling below MBAL (Section 5.1.11) in the short term.

5.1.8 Medium term predictions

The inputs to medium term projection are similar to those for the sensitivity analysis. Because of the scatter of points on the stock and recruitment plot, the non-parametric approach chosen in previous assessments was selected again this year to generate recruitments in the medium term.

The results of medium term projections corresponding to *status quo* human consumption F are presented in Figure 5.1.7. The projection program selected the same bootstrap series of recruitments in each case. At the end of the 10 year projection, spawning biomass would, on average, be expected to increase as would the human consumption landings, although in both cases the 5% - 95% inter-percentile range is very broad. Several other projections were made for various multipliers of human consumption F. The outcome of these is summarised for the end of the 10 year projection period in Figure 5.1.8. According to these projections, there is a less than 5% probability that spawning biomass will fall below the suggested MBAL of 250,000t (see Section 5.1.11) for the range of F multipliers considered here. However, the bootstrap approach that was chosen to generate recruitment, does so from the entire recruitment time series and does not account for the apparent temporal shift in the overall magnitude of recruitment as indicated for whiting over the last decade (Figure 5.1.4). Because of this, it is likely that the medium term prognoses presented Figures 5.1.7 and 5.1.8 may overestimate yield and biomass values.

It is possible that the apparent shift in recruitment levels is an artefact caused by the extrapolation over the period 1960-1977 of discard rates calculated since the inception of the Scottish sampling scheme in the late 1970s. Although this could not be examined further at this meeting, it was possible to re-run the medium term predictions using a truncated series of stock and recruitment data (1980-1995). The *status quo* results from this are summarised in Figure 5.1.9 and these do indicate a less optimistic outcome after a 10 year projection. Nevertheless, the estimate of MBAL would be largely unchanged, and the median estimate of spawning biomass indicates only a marginal decline from the present value with less than a 5% probability of falling below MBAL.

5.1.9 Long term considerations

The present assessment indicates that the stock is stable in the medium term.

The status quo human consumption fishing mortality (0.49) is below F_{med} (0.88), calculated as outlined in section 5.1.12. The status quo total mean F for ages 2-6 (human consumption landings + discards + industrial by-catch) is estimated to be 0.54, also below F_{med} .

5.1.10 Comments on the assessment

The quality control charts are presented in Tables 5.1.17 and 5.1.18.

Because whiting in IV and VIId have been merged for the first time in assessments this year, it is less easy to make direct comparisons with the previous years' assessments. The landings from Division VIId have been between 7% and 15% of the Sub-area IV human consumption landings since 1982. The merging of data from the 2 areas has required the age compositions from North Sea human consumption landings to be applied to eastern Channel catches from 1960-1976, and there are no estimates for discards in Division VIId. Nevertheless, the overall pattern of stock size, fishing mortality and recruitment resulting from the merged assessment is quite consistent with the pattern observed from last year's assessment of the North Sea stock. The major difference being the estimate of the 1994 year class that has been revised upwards from last year's value of 23,500 million to 35,200 million.

The retrospective analysis made this year does not indicate a consistent pattern of over or under estimation for mean F, and, for the most recent years, the estimates of mean F are reasonably consistent. However, the retrospective analysis does indicate a more obvious retrospective pattern in estimates of recruitment, estimates which are also very noisy. However, constraints on the retrospective analysis due to the short time series of some of the tuning fleets makes it difficult to interpret its results clearly.

Previous meetings have concluded that the survey data and commercial catch data contain different signals concerning the stock, and that there remain inconsistencies in the annual international catch age distributions. This was briefly investigated during this meeting, where the IBTS QI, EngGFS and ScoGFS survey series were used individually to reconstruct the recent history of whiting in Sub-area IV. The results are summarised in Figure 5.1.10 along with the results of the combined stock XSA. It is apparent that there are inconsistencies indicated between the four data sets. XSA and the EngGFS generally follow the same spawning biomass trajectory, which differs from that suggested by both the ScoGFS and IBTS QI surveys. The other stock indicators are harder to interpret in this way. In the time available at the meeting, it was not possible to investigate these associations in more depth.

Discard data are available only for Scottish catches. Discards for other human consumption fleets are estimated by extrapolation from Scottish data, which account for nearly 70% of human consumption landings.

5.1.11 MBAL considerations

A discussion of the general approach taken in estimating MBAL is given in Section 1.4.5 For whiting in IV and VIId, the stock and recruitment scatterplot generated by the XSA analysis (Figure 5.1.11) does not indicate that recruitment is reduced at the lower levels of observed spawning biomass. According to the historical series, stock growth has been seen from the lowest recorded spawning biomass of 236,000t, although this was in a period when the mean level of recruitment appeared to be higher than for recent years. For this reason, the higher level of 250,000t is considered to be an appropriate MBAL according to the criteria outlined in Section 1.4.5.

5.1.12 Biological reference points

The stock and recruitment plot is shown in Figure 5.1.11.

Long term predictions were made assuming various F multipliers applied to the human consumption catches. These multipliers are not applied to the industrial by-catch component of the total catch because effort in the industrial fisheries is assumed to be constant in the restricted management scenarios referred to here. Although the industrial by-catch component of the total international catch is landed and included in the TAC for this stock, it is considered to be invariant with respect to the management options applied to the human consumption fishery.

The biological reference points F_{high} etc. are calculated in terms of the total international $F_{(2-6)}$.

The *status quo* value of reference F in the human consumption fisheries is 0.49, and is 0.54 for the total international fishery. The value of F_{med} corresponding to this is 0.88; F_{high} is > 1 and $F_{0.1}$ is 0.23. F_{max} is not defined. The equilibrium yield per recruit is shown in Figure 5.1.12 contingent on variation in the human consumption component of the total international reference F.

5.1.13 Summary table

5.2 Whiting in Division IIIa

Since 1981, landings have been reported separately for human consumption and reduction purposes. The Danish landings for reduction have been taken in a mixed clupeoid fishery and at an industrial fishery directed at Norway pout and sandeel. This fishery has a by-catch of small, mainly 0-group, whiting.

The total catch in 1995 was 9,600 t, which is an increase compared with 1993 and 1994. Total landings are shown in Table 5.2.1.

No analytical assessment of the stock was possible.

Country	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
Belgium	2,272	2,864	2,798	2,177	2,275	1,404	1,984	1,271	1,040	913	1,030	944	1,042	880
Denmark	27,043	18,054	19,771	16,152	9,076	2,047	12,112	803	1,207	1,529	1,377	1,418	549	368
Faroe Islands	57	18	-	6	-	12	222	1	26	-	16	7	2	21
France	23,780	21,263	19,209	10,853	8,250	10,493	10,569	5,277 ^{1,2}	4,951 ¹	5,188 ^{1,2}	5,115 ¹	5,502 ^{1,2}	5020 ²	5,735
Germany, Fed.Rep.	223	317	286	226	313	274	454	415	692	865	511	441 ¹	239	124
Netherlands	12,218	10,935	8,767	6,973	13,741	8,542	5,087 ³	3,860	3,2721	4,0281	5,390	4,799	3,864	3,640
Norway	17	39	88	103	103	74	52	32	55	103	232	125 ¹	80	114
Poland	-	1	2	-	-	-	-	-	-	-	-	-	-	-
Sweden	11	44	53	22	33	17	5	17	16	48	22	18	10	1
UK (Engl.& Wales) ³	4,743	4,366	5,017	5,024	3,805	4,485	4,008	2,178	2,338	2,676	2,528	2,774	2,722	2477
UK (Scotland)	29,640	41,248	42,967	30,398	29,113	37,630	31,804	26,271	27,486	31,257	30,821	31,268	28,974	27,811
Total	100,004	99,149	98,958	71,934	66,709	64,978	66,294	40,125	41,084	46,607	47,042	47,296	42,502	41,171
Total h.c. catch used by Working Group	73,000	81,000	79,000	55,000	59,000	64,000	52,000	41,000	43,000	47,000	46,000	48,000	43,000	42,000
Total discards	27,000	50,000	41,000	29,000	80,000	54,000	28,000	36,000	56,000	34,000	31,000	43,000	33,000	31,000
Total Ind. By-catch	33,000	24,000	19,000	15,000	18,000	16,000	49,000	43,000	51,000	38,000	27,000	20,000	10,000	27,000

Table 5.1.1 Nominal catch (in tonnes) of WHITING in Sub-area IV, 1982-1995, as officially reported to ICES.

¹Preliminary.

²Includes Division IIa (EC).

n/a = Not available.

³1989-1994 revised. N. Ireland included with England and Wales.

E:\ACFM\WGNSSK97\T-5-1-1.DOC

Year	Belgium	France	Netherlands	UK (E+W)	UK (S)	Total	Unreported landings	Total as used by Working Group
1982	93	7,012	2	170	-	7,277	633	7,910
1983	84	5,057	1	198	-	5,340	1,600	6,940
1984	79	6,914	-	88	-	7,081	289	7,370
1985	82	7,563	-	186	-	7,831	491	7,340
1986	65	4,551	-	180	-	4,796	704	5,500
1987	136	6,730	-	287	-	7,153	2,463	4,690
1988	69	7,501	-	251	-	7,821	3,391	4,430
1989	38	n/a	-	231	-	n/a	-	4,160
1990	83	n/a	-	237	1	n/a	-	3,480
1991	83	n/a	-	292	1	n/a	-	5,780
1992	66	5,414	-	417	24	5,921	-	5,760
1993	74	n/a	-	321	2	n/a	-	5,200
1994	61	n/a	-	293	-	n/a	-	6,623
1995 ¹	68	n/a	-	280	1	n/a	-	4,892

¥

Table 5.1.2WHITING in Division VIId.
Nominal landings (tonnes) as officially reported to ICES, 1982 to 1995.

¹Preliminary

Year	1	Wt.('000t)			Nos.(mi	llions)	
	Total	hcons	dis	ind	Total	hcons	dis	ind
1000	182	49	122		1070		763	109
1960	-	49 69		11	2174	296	1646	232
1961	326			8		298	1185	100
1962	222	58 61	157 154	8 45	1514 1560	229	854	480
1963	261			45 28	944	228	854 341	369
1964	150	63 88	59 77	28 22	944	233 319	490	369 161
1965	187					319	490 546	422
1966	242	108	84	51	1343			422 231
1967	237	72	143	23	1592	258	1103	231 593
1968	265	93	115	58	1661	314	754	
1969	328	61	115	152	2816	216	626	1974
1970	272	83	74	115	2519	284	381	1854
1971	195	61	63	72	2127	194	458	1475
1972	191	64	67	61	1938	188	398	1352
1973	271	71	110	90	2179	247	659	1273
1974	296	81	85	130	2594	271	477	1846
1975	305	84	135	86	1981	264	699	1018
1976	368	83	136	150	2312	276	641	1396
1977	347	78	163	106	2491	281	547	1663
1978	188	97	35	55	1769	363	241	1165
1979	244	107	78	59	1913	382	645	886
1980	224	101	77	46	1456	340	471	645
1981	192	90	36	67	1439	296	214	929
1982	140	81	27	33	778	271	173	333
1983	161	88	50	24	1358	290	370	697
1984	146	86	41	19	909	285	327	297
1985	107	62	ų 29	15	731	219	232	280
1986	162	64	80	18	1211	230	583	399
1987	139	68	54	16	947	246	416	285
1988	133	56	28	49	1396	213	231	952
1989	124	45	36	43	883	172	280	431
1990	153	47	56	51	1296	179	539	578
1991	125	53	34	38	1624	212	242	1170
1992	110	52	31	27	874	193	216	465
1993	117	53	43	20	1245	186	345	714
1994	93	50	33	10	711	169	237	304
1995	104	47	31	27	2031	155	217	1659
Min.	93	45	27	8	711	155	173	100
Mean	203	71	80	51	1565	252	515	798
Max.	368	108	241	152	2816	382	1646	1974

TABLE 5.1.3 Whiting, North Sea and VIId Annual weight and numbers caught, 1960 to 1995.

Year	Wt ('000t)	Nos (millions)
1976	7.715	27
1977	4.954	21
1978	9.113	37
1979	8.910	35
1980	9.167	35
1981	8.932	32
1982	7.911	32
1983	6.936	29
1984	7.373	33
1985	7.336	34
1986	5.503	23
1987	4.688	18
1988	4.426	18
1989	4.155	16
1990	3.476	15
1991	5.777	25
1992	5.762	26
1993	5.204	24
1994	6.623	28
1995	4.891	21

Table 5.1.4	Whiting in VIId. Annual	weight and numbers caught, 1976-1995	
-------------	-------------------------	--------------------------------------	--

TABLE 5.1.5 Whiting, North Sea and VIIdNatural Mortality and proportion mature

Age	Nat Mor	Mat.
0	2.550	.000
1	.950	.110
2	.450	.920
3	.350	1.000
4	.300	1.000
5	.250	1.000
6	.250	1.000
7	.200	1.000
8	.200	1.000
9	.200	1.000
10+	.200	1.000

Table 5.1.6

Run title : Whiting IV, IIIa, VIId (run: XSAWH103/X03)

At 13-Oct-96 10:38:01

Table 1	Catch	numbers a	tage Nu	umbers*10*	*-3	
YEAR,				1963,		1965,
AGE						
Ο,	60828,	215700,	76257,	105982,	234479,	63912,
1,	482896,	1079197,	1022790,	549436,	137589,	342622,
2,	259440,	619965,	220148,	751817,	369668,	148166,
2, 3,	215393,	219882	156642,	96114,	164882,	330156
4,	21460,	32745,	31722,	45332,	22843	72200,
5,	23278,	1355,	5998,	9334,	10908	8002
6,	3634,	4099,	276,	1739,	2770,	3555,
7,	892,	385,	407,	9,	435,	
8,				126,	2,	124,
9,	238,	229,	13,	14,		
+gp	7,	19,	0,	1,	13,	
TOTALNUM,	1070201,	2173697,	1514365,	1559904,	943630,	969513,
TONSLAND,				260771,		
SOPCOF %,	100,			100,		
	,	,	,	,	,	,

Table 1	Catch r	numbers at	age N	umbers*10	**-3					
YEAR,	1966,	1967,	1968,	1969,	1970,	1971,	1972,	1973,	1974,	1975,
AGE										
Ο,	84279,	177436,	104751,	1206087,	1187095,	1232837,	553711,	175647,	571476,	238839,
1,	517081,	973202,	830540,	374343,	606831,	621941,	939141,	1155304,	756260,	955910,
2,	343402,	216063,	523774,	1025996,	83064,	107933,	319094,	666563,	986441	407207,
3,	93851,	122955,	111755,	158808,	571696,	18786,	46392,	135507,	234063,	303537,
4,	255875,	23958,	49514,	28972,	52108,	128541,	7833,	19028,	33307,	56549,
5,	37708,	69081,	7494,	13240,	11463,	13640,	59313,	5739,	4977,	9273,
6,	8535,	7886,	31183,	1734,	3723,	2306,	8392,	18186,	1243,	8014,
7,	1520,	849,	1940,	5989,	1211,	730,	3486,	2504,	5856,	116,
8,	339,		98,	659,			258,	367,	353,	1383,
9,	131,	33,	24,	36,	137,	429,	71,	125,	52,	141,
+gp,	0,	3,	5,	1,	17,	28,	680,	53,	22,	2,
TOTALNUM,		1591593,								1980971,
TONSLAND,		236994,				195357,		•		305010,
SOPCOF %,	100,	100,	100,	100,	100,	100,	100,	100,	100,	100,

Run title : Whiting IV, IIIa, VIId (run: XSAWH103/X03)

At 13-Oct-96 10:38:01

{

Table 1	Catch	numbers at	age N	umbers*10*	**-3					
YEAR,	1976,	1977,	1978,	1979,	1980,	1981,	1982,	1983,	1984,	1985,
4.05										
AGE										
0,	425081,	666975,	687238,	476383,	332209,	516869,	101058,	668604,	157819,	186851,
1,	479610,	1006082,	418910,	615524,	265359,	162899,	192640,	205646,	323408,	204866,
2,	1129375,	480939,	313391,	467537,	416008,	346343,	114444,	184746,	175965,	160568,
3,	169610,	279226,	242370,	218283,	286077,	266517,	245246,	118412,	124886,	101299,
4,	88015,	30130,	90047,	100976,	90718,	102295,	88137,	131508,	49505,	40601,
5,	15988,	21334,	7563,	29267,	52969,	27776,	26796,	37231,	59817,	14454,
6,	3163,	5561,	7565,	3111,	10751,	12297,	6909,	8688,	13860,	18441,
7,	495,	532,	1851,	1657,			2082,	1780,	2964,	3210,
8,	18,	237,	253,	264,	689,	244,	400,	794,	410,	889,
9,	627,	20,	11,	35,			53,	101,	182,	96,
+gp,	29,	162,	13,	5,	20,	38,	31,	35,	21,	10,
TOTALNUM,	2312011,	2491198,	1769212,	1913041,	1456011,	1438864,	777796,	1357545,	908837,	731285,
TONSLAND,	368240,	347056,	188186,	243846,	223517,	192049,	140195,	161212,	145741,	106674,
SOPCOF %,	100,	100,	100,	100,	100,	100,	100,	100,	100,	100,

Table 1	Catch I	numbers at	age N	umbers*10 ¹	**-3					
YEAR,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995,
AGE										
0,	225173,	84847,	416922,	87274,	284732,	1034831,	252670,	622371,	216843,	1571815,
1,	571722,	266018,	428367,	328054,	249254,	130883,	242394,	219005,	170378,	142324,
2,	168167,	366628,	309809,	176811,	510827,	194213,	169818,	171009,	151288,	144828,
3,	173609,	124017,	181630,	192937,	128877,	189658,	92202,	130426,	90728,	112334,
4,	50045,	87941,	39787,	78554,	86729,	38861,	94652,	47625,	45580,	34690,
5,	13746,	11603,	16575,	14322,	32734,	28217,	12106,	47575,	16911,	14966,
6,	3713,	4536,	2010,	4640,	1985,	6091,	6853,	4212,	17376,	5145,
7,	4070,	882,	436,	420,	664,		2726,	1670,	947,	4571,
8,	555,	844,	61,	290,	96,	305,	107,	741,	381,	318,
9,	74,	105,	74,		16,	3,	8,	65,	75,	103,
+gp,	1,	7,	38,	6,	0,	1,	1,	17,	0,	57,
TOTALNUM,	1210875,	947428,	1395709,	883345,	1295914,	1623713,	873537,	1244716,	710507,	2031152,
TONSLAND,	161749,	138808,	133458,	123755,	153445,	125042,	109718,	116686,	93080,	103875,
SOPCOF %,	100,	100,	100,	100,	100,	100,	100,	100,	100,	99,

Run title : Whiting IV, IIIa, VIId (run: XSAWH103/X03)

At 13-Oct-96 10:38:01

Table 2. YEAR,		eights at 1961,	age (kg) 1962,	1963,	1964,	1965,
AGE						
Ο,	.0580,	.0420,	.0550,	.0490,	.0420,	.0580,
1,	.1170,	.1190,	.1190,	.1120,	.1240,	.1240,
2,	. 1900,	.1930,	.1870,	.1950,	.1740,	.2090,
3,	.2560,	.2590,	.2670,	.2720,	.2680,	.2420,
4,	.3140,	.3030,	.3330,	.3530,	.3550,	.3320,
5,	.3440,	.4120,	.4000,	.4120,	.4440,	.4210,
6,	.3840,	.4200,	.5200,	.4720,	.4890,	.4990,
7,	.5010,	.4930,	.5190,	.8200,	.5350,	.5420,
8,	.4570,	.3860,	.5390,	.6260,	.6010,	.6350,
9,	.3830,	.4680,	.5850,	.4990,	.7640,	1.2560,
+gp,	.3980,	.4750,	.0000,	.6100,	.6920,	.6140,
SOPCOFAC,	1.0013,	.9983,	1.0007,	1.0020,	.9997,	1.0005,

Table 2 YEAR,	Catch w 1966,	eights at 1967,	age (kg) 1968,	1969,	1970,	1971,	1972,	1973,	1974,	1975,
AGE										
0,	.0720,	.0620,	.0380,	.0430,	.0200,	.0360,	.0220,	.0270,	.0260,	.0300,
1,	.1090,	.1180,	.1120,	.0970,	.1100,	.1160,	.0710,	.0840,	.0710,	.1000,
2,	.1870,	. 1990,	.1880,	.1730,	.2040	.2190,	.2010,	.1660,	.1500,	.2150,
3,	.2490	.2690,	.2950,	.2620,	.2410,	.2860,	.2840,	.2780,	.2590,	.2780,
4,	.2880,	.3320,	.3590,	.3630,	.3490,	.3190,	.3890,	.3720,	.3830,	.3760,
5,	.3680,	.3400,	.4840,	.4150,	.4550,	.4330,	.4190,	.4390,	.4710,	.4700,
6,	.4340,	.4250,	.4470,	.4190,	.4520,	.5310,	.5210,	.4630,	.5210,	.3560,
7,	.4730,	.4950,	.6200,	.5350,	.5120,	.6370,	.5750,	.5520,	.5440,	.8170,
8,	.6980,	.6260,	.7300,	.6700,	.6280,	.5600,	.7480,	.7380,	.7870,	.5950,
9,	.6940,	.6210,	.7790,	.7870,	.7850,	.7280,	.8010,	.8600,	1.0320,	.7130,
+gp,	.0000,	.4860,	.8420,	1.2360,	.8020,	.7290,	.8220,	.8460,	.9660,	1.0220,
SOPCOFAC,	.9996,	.9990,	1.0007,	.9998,	.9991,	1.0041,	1.0003,	1.0022,	.9992,	1.0027,

Run title : Whiting IV, IIIa, VIId (run: XSAWH103/X03)

At 13-Oct-96 10:38:01

(

Table 2 YEAR,	Catch w 1976,	eights at 1977,	age (kg) 1978,	1979,	1980,	1981,	1982,	1983,	1984,	1985,
IEAR,	1970,	1711,	1970,	1917,	1900,	1701,	1902,	1705,	1704,	1705,
AGE										
Ο,	.0190,	.0220,	.0100,	.0090,	.0130,	.0110,	.0290,	.0150,	.0200,	.0140,
1,	.1070,	.1170,	.0740,	.0980,	.0750,	.0830,	.0610,	.1070,	.0890,	.0940,
2,	. 1940,	.2100,	.1820,	.1660,	.1760,	.1680,	.1840,	.1910,	.1880,	.1850,
2, 3,	.2950,	.3190,	.2340,	.2590,	.2520,	.2420,	.2530,	.2730,	.2710,	.2610,
4,	.3520,	.3990,	.3220,	.3010,	.3280,	.3210,	.3140,	.3250,	.3370,	.3220,
4, 5,	.4440,	.4440,	.4270,	.4110,	.3370,	.3790,	.3760,	.3840,	.3820,	.3880,
6,	.5190,	.4620	.4280,	.4550,	.4580,	.4110,	.4780,	.4260,	.3910,	.4270,
7,	.5140,	.5470,	.4660,	.4920,	.4580,	.4440,	.5040,	.4520,	.4630,	.4700,
8,	.5540,	.4400,	.6150,	.5780,	.5680,	.6510,	.7020,	.5200,	.5750,	.4230,
9,	.7400,	.6940,	.7020,	.6170,	.5390,	.8330,	.7720,	.6770,	.5140,	.4970,
+gp,	.8930,	.5000,	1.2470,	.5590,	.8120,	1.0320,	1.1010,	.5160,	.8710,	.7890,
SOPCOFAC,	.9979,	1.0001,	1.0003,	1.0011,	1.0022,	.9997	.9996,	.9971,	1.0014,	1.0015,

Table 2 YEAR,	Catch w 1986,	eights at 1987,	age (kg) 1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995,
AGE										
0,	.0140,	.0120,	.0130,	.0230,	.0150,	.0170,	.0130,	.0120,	.0130,	.0100,
1,	.1050,	.0770,	.0540,	.0690,	.0810,	.1030,	.0820,	.0730,	.0850,	.0910,
2,	.1810,	.1480,	.1460,	.1580,	.1370,	.1640,	.1810,	.1710,	.1710,	.1810,
2, 3,	.2500,	.2460,	.2250,	.2260,	.2080,	.2140,	.2480,	.2410,	.2500,	.2520,
4,	.3090,	.2930,	.2990,	.2660,	.2490,	.2750,	.2740,	.3100,	.3120,	.3320,
5,	.3680,	.3710,	.3360,	.3150,	.2770,	.2950,	.3210,	.3270,	.3630,	.3790,
6,	.4530,	.3660,	.4140,	.3860,	.4050,	.3310,	.3380,	.3420,	.3660,	.4250,
7,	.4640,	.4860,	.4290,	.4400,	.4830,	.3530,	.3110,	.3940,	.4080,	.4320,
8,	.5230,	.4620,	.8340,	.3470,	.6320,	.3890,	.4780,	.3720,	.4180,	.4470,
9,	1.1850,	.8480,	.5880,	.5120,	.3160,	.4960,	.7740,	.4070,	.3940,	.3470,
+gp,	.5280,	.6020,	.6420,	.8280,	.0000,	1.0550,	1.7270,	.3530,	.4870,	.4050,
SOPCOFAC,	1.0016,	.9992,	1.0015,	1.0005,	1.0022,	1.0012,	.9992,	.9985,	.9993,	.9917,

Country	Fleet	Code	Initial Year	Age Range
Scotland	Groundfish survey	SCOGFS	1982	0-6
	Seiners	SCOSEI	1975	1-9
	Light trawlers	SCOLTR	1975	0-9
Netherlands	Groundfish survey	NETGFS	1980	0-3
England	Groundfish survey	ENGGFS	1977	0-6
France	Trawlers	FRATRB	1976	0-9
		FRATRC-7d	1985	0-8
		FRAGFS-7d	1988	0-3
Germany	Groundfish survey	FRGGFS	1983	1-6
International	Groundfish survey	IBTS-QI ³	1973	0-5
	Q II survey	IBTS_Q2_SCO	1991	1-6
	Q IV survey ²	IBTS_Q4-ENG	1991	0-7

Table 5.1.8North Sea and eastern Channel whiting. Fleets available for VPA tuning.

¹ Scottish sub-set of data ²English sub-set of data ³Formerly IYFS

Table 5.1.9 Whiting in the North Sea/Eastern Channel. Available tuning series

```
SCOSEI IV
1976 1995
1
      1
              0
                     1
0
       10
307165 148.995 22192.289
                             67580.047
                                                                                                              72.998 1
                                           12456.698
                                                          10885.747
                                                                         1889.958
                                                                                        263.994 42.999 0
313913 745.02 22193.598
                             50660.371
                                           37036.02
                                                          3336.092
                                                                         2528.069
                                                                                        371.01 31.001 10
                                                                                                              1
                                                                                                                     6
325246 5345.922
                     14993.602
                                    29307.939
                                                                                1057.941
                                                                                               1408.921
                                                                                                              200.98935.998 0
                                                                                                                                    7
                                                   43710.809
                                                                 15390.197
316419 302.002 90749.852
                             41091.742
                                            28124.234
                                                          14745.013
                                                                         6083.678
                                                                                        676.915 155.75 2.995 0
                                                                                                                     Ο
                                                                                        2556 '260
297227 668.983 27032.33
                             73704.438
                                            37657.648
                                                          11914.984
                                                                         9367.982
                                                                                                      229
                                                                                                                     7
                                                                                                              27
289672 92.998 8726.789
                             22243.637
                                            25047.811
                                                          10551.986
                                                                         2401.997
                                                                                        2084.002
                                                                                                      374
                                                                                                              41
                                                                                                                     4
                                                                                                                            1
297730 43
              3720.987
                             7032 26194.137
                                                                                539.005 277.003 81.001 5
                                                                                                              0
                                                   13117.107
                                                                  2713.028
333168 572.013 11565.39
                             14957.378
                                            21690.016
                                                          34199.105
                                                                         9830.623
                                                                                        2154.563
                                                                                                      406.795 157.779 16.256 0
388035 296.722 4922.5 24015.609
                                    20669.76
                                                   14985.589
                                                                  21269.32
                                                                                4715.242
                                                                                               959.961 87.283 49.593 6.943
381647 773.215 20067.844
                                                           8956.377
                             20263.316
                                            19695.992
                                                                         4795.861
                                                                                        8013.077
                                                                                                      1362.788
                                                                                                                     333.952 17.89 5.963
425017 137.759 139498.17
                             48705.18
                                                                         2624.396
                                                                                        1097.504
                                                                                                      1771.08 215.94 7.271 0
                                            34509.258
                                                           11340.962
418536 1358.848
                   13793.33
                                    52715.141
                                                   38938.77
                                                                 18440.258
                                                                                3637.712
                                                                                               1096.908
                                                                                                              297.738 348.416 15.879 3.97
377132 26.014 2502.074
                             28446.105
                                            44869.258
                                                                         4071.612
                                                                                        678,724 63,973 20,991 16,993 1,999
                                                          12631.404
355735 10.131 6878.804
                             15704.127
                                            41407.43
                                                           23710.402
                                                                         4769.041
                                                                                        1323.229
                                                                                                      112.07643.044 10.723 0.711
252732 184.877 14229.828
                             124635.82
                                            27694.109
                                                           29920.98
                                                                         14767.797
                                                                                        720.818 206.524 23.233 0.017 0
                                                                                                      195.19 93.627 0
336675 886.651 11951.946
                             44964.258
                                            63414.281
                                                          10436.101
                                                                         8730.116
                                                                                       1742.927
                                                                                                                             0.247
300217 426.209 16613.691
                            19452.012
                                            21217.148
                                                          27961.869
                                                                         2804.536
                                                                                       1958.074
                                                                                                      564.87 32.421 3.386 0
                                                                         14446.113 899.254 332.177 153.131 7.51 8.252
268413 599.768 9563.692
                            31623.355
                                            26012.82
                                                          12457.879
264738 82.71 9235.936
                             21451.654
                                            22570.719
                                                          11778.492
                                                                         5530.941
                                                                                        5611.981
                                                                                                      203.907 115.772 14.689 0
                                                                                   1373.442
204545 26.012 8287.879
                             22152.725
                                                                                                      1270.024
                                                                                                                     86.009 14.99 18.127
                                            30006.961
                                                          9018.667
                                                                         3874.625
SCOLTR IV
1976 1995
1
       1
                     1
              0
       10
0
152419 28.998 5574.648
                             30121.129
                                            5297.682
                                                           5247.686
                                                                         875.948 194.988 17.999 1
                                                                                                      43.997 5
                                                           1663.95 2418.911
224824 709.038 24587.139
                             29945.25
                                            24840.408
                                                                                 459.981 33.999 17.999 0
                                                                                                              4
236944 7158.392
                     8785.464
                                    19909.945
                                                   30722.309
                                                                  14472.604
                                                                                 956.038 1612.065
                                                                                                       635.026 72.003 6
                                                                                                                             Ο
287494 367.996 171147.28
                             42910.398
                                            23154.594
                                                           17995.664
                                                                         4057.925
                                                                                        376.993 285.995 56.999 5
                                                                                                                     0
333197 868.998 20805.963
                             58381.992
                                            38436.16
                                                           9525.058
                                                                         9430.05 1864.014
                                                                                               144.001 145.001 3
                                                                                                                      n
251504 170,986 6576,457
                             19069.211
                                            21549.754
                                                           9706.151
                                                                         1777.022
                                                                                       1455.034
                                                                                                       310.008 9
                                                                                                                     1
250870 6390.155
                     5214.103
                                    8196.975
                                                   26680.535
                                                                  12944.739
                                                                                3333.924
                                                                                               646.98 338.988 73.997 15.999 3
                                                                                 6123.52 1216.612
                                                                                                      182.797 140.848 25.969 0.999
244349 20191.061
                     37495.68
                                    17925.867
                                                   12535.311
                                                                  19234.307
                                                                                 9018.982
                                                                                                              478.594 13.127 30.293 5.049
240775 2553.165
                     38266.77
                                    16048.092
                                                   10784.184
                                                                  6306.822
                                                                                               2371.186
                                                                                               2901.185
                                                                                                              443.13 173.087 13.847 0
267393 1221.645
                      28760.939
                                    9368.367
                                                   7616.928
                                                                  3085.792
                                                                                 1333.193
279727 796.708 8138.433
                             8571.9 9577.941
                                                   4108.819
                                                                  767.442 425.282 608.602 51.637 2.025 0
351131 599.518 18761.178
                             25933.338
                                            16160.769
                                                           5954.478
                                                                         1182.953
                                                                                        388.455 116.035 128.993 3.933 0
                                                                         1640.626
                                                                                        207.218 31.033 15.015 6.006
                                                                                                                    6.006
391988 59.996 2397.963
                             15778.771
                                            22525.543
                                                           5127.725
                                                                         2394.091
                                                                                        448.224 33.084 54.358 2.388
                                                                                                                    0.609
405883 491.803 20318.748
                             10051.615
                                            21389.719
                                                           10836.808
371493 371.478 3676.882
                             35321.988
                                            7664.57 8960.094
                                                                  3423.009
                                                                                 159.541 39.935 5.339 0.067 0
                                                                                        628,632 49,904 40.866 0.447 0.253
408056 688.421 8726.876
                             11908.029
                                            22145.619
                                                           3192.247
                                                                         2906.398
473955 1379.234
                     17580.582
                                    14551.322
                                                   11822.715
                                                                  15417.656
                                                                                 1500.403
                                                                                               1160.443
                                                                                                              304.395 12.75
                                                                                                                            0.341 0.655
                                                                                        574.199 203.582 97.351 24.363 4.587
447064 614.447 16438.91
                             20513.145
                                            14385.548
                                                           6590.755
                                                                         10105.473
                     4132.65 15771 13004.648
                                                   6453.762
                                                                  2710.229
                                                                                 2997.307
                                                                                               171.833 83.936 13.864 0
480400 1259.303
                                                                         2982.508
                                                                                        1092.214
                                                                                                      1131.707
                                                                                                                     88.831 3.479 14.193
442010 208.066 9248.035
                             15886.83
                                            19322.299
                                                           6261.604
```

Table 5.1.9 (Cont'd)

FRATRB_IV

______ 1976 1995

1 1 0 1 0 10

0	10											
64396	2718.175	12660.21	45922.27	6143.989	9 4686.48	1 1283.52	254.502 42	3	156	8		
80107	2587.202	24164.32	21838.561	17682.80	07 1796.61	.3 2279.112	1 554.182	2 54	31	6	15	
69739	3351.785	7330.05 23791	.32 19	9207.117	9382.748	836.852 1103.904	4 227	34	4	2		
89974	591.579 61937.4	1 28650	.199 18	8463.207	11830.283	3952.171	397.49 315.87	3 45	14	0		
63577	271.781 9010.2	27059.801	18938.582	5826.699	9 4984.07	5 1071.90	1 78	71	10	1		
76517	107.487 6395.46	9 18560	.02 20	0258.117	9102.926	2249.323	1662.444	315.272	16	10	2	
78523	2984.073	8778.596	5953.086	24941.79	93 14159.4	88 4423.75	7 1089.93	11	542.53	119	14	3
69720	9867.649	21688.24	16261.92	12818.57	19955.3	42 6139.75	1 1102.03	L8	231.456	127.298	19	1
76149	1573.497	19189.369	12048.884	9046.985	5 4993.43	9 6421.89	5 1693.20	55	322.207	32	26	2
53003	570.817 10561.6	8 7129.	542 58	883.502	2466.529	1082.139	1285.78 233.33	334	10	2		
50350	473.48 24324.6	7 10512	.73 81	154.293	2749.571	695.24 237.411	238.763 54.708	3	0			
51234	558.88 9268.70	3 14851	.16589.581	3721.569	9 708.607	209.758 76	82.71 10	0				
35482	1024.471	3136.269	5860.832	7551.045	5 1901.38	843.634 160.791	42 7.158	7	3			
36133	403.266 8819.17	1 3329.	428 82	279.531	3991.409	756.183 229.592	22.13 17.157	1.147	0.003			
36097	7597.934	4192.686	15523.179	4221.804	1 3927.77	1 1600.354	4 91.259	35.05	2.702	0.128	0	
45075	297.152 3610.56	1 5309.	753 7	751.186	1263.168	971.23 211.706	33.269 4.032	0.317	0.085			
34138	318.269 4710.70	2 3987.	946 33	305.109	4309.879	420.786 274.874	141.951 2.076	0.137	0			
23721	2136.246	5610.586	5220.6 47	706.608	1886.29 2272.20	8 160.623	75.755 20.939	4.889	2.41			
17316	373.139 3618.30	7 6213.	199 35	590.334	1987.011	551.282 566.037	30.46 10.456	1.446	0			
19227	2046.048	2927.055	5826.523	6466.316	5 1989.24	1320.004	280.916 247.76	7 14.723	7.447	3.345		

160

SCOGFS IV 1982 1995 1 1 0.5 0.75 0 6 100 1.02 6.53 9.71 9.72 2.24 0.6 0.16 100 2.1 5.63 5.78 4.07 5.11 1.16 0.17 4.42 10.48 3.71 1.7 0.77 0.92 0.18 100 100 1.69 15.77 9.73 2.47 0.63 0.36 0.18 100 4.06 11.11 4.52 2.24 0.27 0.05 0.05 0.77 0.16 0.03 100 1.2 14.05 11.5 2.08 6.42 9.67 16.06 4.52 0.7 0.19 0.02 100 0.06 4.27 40.43 7.41 7.33 1.57 0.13 100 0.47 0.05 100 19.43 22.39 20.53 2.48 2.55 13.79 17.69 9.5 7.59 0.51 0.4 0.09 100 100 24.17 29.25 12.67 5.53 5.85 0.47 0.26 1.82 0.06 2.47 31.69 11.68 4.23 1.56 100 100 6.48 26.35 9.5 2.54 0.57 0.34 0.23 0.58 0.22 12.43 41.76 20.1 9.03 1.96 100

	S_IV										
1977	1995										
1	1	0.5	0.75								
0	6										
100	28.427			27					0.08007		
100	18.440		24.713						0.02241		
100	35.475			52							
100	19.902			2 12.5079					0.05757		
100	34.942		18.314		28.8039		16.0519			0.6163	0.0804
100		2 27.722				2.22009					
100	71.672		11.853		10.8029				0.24207		
100	17.251	97	50.613	45	10.8181	.2	3.01209	0.88883	0.76876	0.37809	
100	19.989	66	15.878	25	17.0425	57	1.67265	0.981	0.18171	0.1533	
100		7 15.161	83	6.59195	53.84688	80.406	0.10373	0.01443			
100	13.731	28	22.762	68	13.0364	9	2.6871	2.00857	0.35157	0.11751	
100	38.169	35	18.805	8 13.1596	52	4.54558	0.64498	0.17371	0.01796		
100	116.94		29.474		11.7599			1.67409	0.3448	0.01853	
100	87.531	5 19.008	5 12.836	3.8544	2.3182	0.3254	0.0461				
100	16.732	23	33.303	82	7.66534	3.81768	1.0855	0.37095	0.04239		
100	45.504	8 26.554	59	13.0698	34	3.0455	2.61006	0.49326	0.58884		
100	25.242	51	25.103	78	9.62914	3.75044	1.16142	0.74167	0.18833		
100	21.143	3 30.546	10.594	36	2.43878	31.12392	0.33328	0.11394	ł		
100	36.281	71	35.506	05	23.7379	96	7.36066	1.87025	0.25078	0.14433	
IBTS_Ç 1973 1	22_1V 1995 1	0.99	1								
0	5										
1	0.322	0.496	-1	-1	-1	-1					
1	0.893	0.153	-1	-1	-1	-1					
1	0.679	0.535	-1	-1	-1	-1					
1	0.418	0.219	-1	-1	-1	-1					
1	0.513	0.293	-1	-1	-1	-1					
1	0.457	0.183	-1	-1	-1	-1					
1	0.692	0.391	-1	-1	-1	-1					
1	0.227	0.485	-1	-1	-1	-1					
1	0.161	0.232	-1	-1	-1	-1					
1	0.128	0.126	0.113	0.079	0.033	0.006					
1	0.436	0.120	0.091	0.031	0.026	0.011					
1	0.341	0.359	0.051	0.019	0.020	0.001					
1	0.456	0.359	0.198	0.019	0.007	0.004					
1	0.430	0.201	0.09	0.033	0.005	0.004					
1	0.889	0.344	0.09	0.046	0.003	0.002					
1	1.465	0.542	0.421	$0.034 \\ 0.112$	0.012	0.001					
1	0.509	0.342	0.421	0.093	0.012	0.003					
								•			
1	1.014	0.675	0.482	0.071	0.038	0.008					
1	0.916	0.748	0.261	0.169	0.016	0.014					
7	1.087	0.524	0.245	0.066	0.059	0.012					
1	0 207										
1	0.721	0.637	0.18	0.067	0.012	0.009					
	0.721 0.679 0.428	0.637 0.457 0.559	0.18 0.245 0.25	0.059	0.012	0.006					

E:\ACFM\WGNSSK97\T-5-1-9.DOC 17/10/96 17:38

1980 1995 1 1 0.5 0.75 0 3 100 16.6 33 6.2 2.7 100 139.3 20.5 13.1 0.9 100 16.6 64 10.5 5.2 100 264.9 43.1 22.4 1.2 100 14.3 133 14.1 9.1 100 85.9 78.3 89.3 3.2	
0 3 100 16.6 33 6.2 2.7 100 139.3 20.5 13.1 0.9 100 16.6 64 10.5 5.2 100 264.9 43.1 22.4 1.2 100 14.3 133 14.1 9.1 100 85.9 78.3 89.3 3.2	
10016.6336.22.7100139.320.513.10.910016.66410.55.2100264.943.122.41.210014.313314.19.110085.978.389.33.2	
100139.320.513.10.910016.66410.55.2100264.943.122.41.210014.313314.19.110085.978.389.33.2	
10016.66410.55.2100264.943.122.41.210014.313314.19.110085.978.389.33.2	
100264.943.122.41.210014.313314.19.110085.978.389.33.2	
100 14.3 133 14.1 9.1 100 85.9 78.3 89.3 3.2	
100 85.9 78.3 89.3 3.2	
100 178.4 38.4 7.5 17	
100 288.3 200.4 25.2 1.8	
100 62.9 144.1 61.2 2.5	
100 188.2 104.9 80.3 21.2	
100 554.3 96.3 19.6 15.4	
100 80.6 155.2 21.4 1.9	
100 45.3 27.2 31 4	
100 265.5 34 6.1 5	
100 179.5 66 35.3 24.7	
-1 -1 -1 -1 -1	

FRGGFS	S_IV					
1983	1995					
1	1	0.25	0.5			
1	6					
100	0.68	1.53	0.92	0.9	0.23	0.03
100	0.57	1.29	1.05	0.32	0.35	0.08
100	0.96	2.28	0.74	0.18	0.09	0.06
100	1.22	2.46	1.92	0.31	0.09	0.05
100	9.1	7.08	1.88	1.7	0.15	0.04
100	1.51	7.98	4.09	0.53	0.32	0.02
100	60.31	39.23	14.46	5.41	0.43	0.14
100	28.02	24.85	8.6	3.23	2.02	0.39
100	32.43	16.37	11.65	3.71	1.07	1.32
100	12.07	7.33	5.66	3.31	0.78	0.32
100	-1	-1	-1	-1	-1	-1
100	18.18	7.9	2.65	0.88	0.33	0.08
100	10.47	7.45	6.65	1.65	0.5	0.19

.

IBTS_Q2_SCO_IV

1991	1995					
1	1	0.25	0.5			
1	6					
100	94.9	38.56	22.86	3.74	1.23	0.51
100	129.76	47.5	11.42	4.28	1.14	0.45
100	104.67	41.49	20.86	5.17	4.85	0.36
100	65.4	35.71	8.55	2.38	0.9	0.75
100	191.61	77.3	26.19	4.42	2.21	0.41

÷

.

Table 5.1.9 (Cont'd)

	_ENG_IV												
1991	1995												
1	1	0.75	1										
0	7												
100	46.8264	7	55.2757	7	19.6417	1	15.0918	9	3.2546	1.85092	1.32901	0.03016	
100	94.2330	6	45.0899	26.4615	8	5.3785	5.02968	0.64532	0.5343	0.12175			
100	78.8705	8	54.2095	8	19.4738	7	7.16071	2.33451	0.82701	0.23715	0.00829		
100	69.8475	6	61.3346	2	26.4132	4	4.14012	0.8418	0.62111	0.10636	0.07947		
100	71.328	107.996	41.715	11.186	2.56	0.523	0.204	0.071					
FRATRC_ 1985 1	_7d 1995 1	0	1										
0	-	0	T										
-	8	474	12002	15051	0005	505	107	0.1	26				
456831		474	13903	15351	2385	527	197	21	36				
353839		217	3457	10828	6419	960	258	56	14				
309988		1939	5352	1467	6436	425	216	38	8				
260919		1718	10289	3766	488	708	28	4	0				
329640	-	1163	6156	6885	1036	25	71	0	0				
268831	0	209	8351	2713	1820	273	2	3	2				
361439	57	3730	7904	4784	3640	2524	495	58	37				
346545	0	5796.45	9	10983.3	3	4990.14	1279.82	7	736.783	269.777	44.681	0.031	
351004	272.48	3600.58	3	7331.00	1	9349.50	7	1789.58	5	487.208	141.427	76.481	11.582
357798	0.001	13816.0	5	8155.7	3199.44	8	1566.88	9	303.335	35.495	12.02	2.622	
309531	70.857	5511.64	7	8178.87	6	4750.82	4	942.841	180.513	27.785	0.434	0.052	

FRAGFS_7d 1988 1995 0.75 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1539 1836

Table 5.1.10

Lowestoft VPA Version 3.1

10-Oct-96 18:58:12

Extended Survivors Analysis

Whiting IV, IIIa, VIId (run: XSAWH103/X03)

CPUE data from file /users/fish/ifad/ifapwork/wgnssk/whg_347d/FLEET.X03

Catch data for 36 years. 1960 to 1995. Ages 0 to 10.

Fleet,	•	•	•	•	Alpha,	Beta
, FLT01: SCOSEI IV (Ca,		year, 1995,	age, 0,	age 9,	.000,	1.000
FLT02: SCOLTR IV (Ca,		1995,	0,	9	.000,	1.000
FLT03: FRATRB IV (Ca,		1995,	Ő,	9,	.000,	1.000
FLT04: SCOGFS IV (Ca,		1995,	Ο,	6,		.750
FLT05: ENGGFS_IV (Ca,	1986,	1995,	ο,	6,	.500,	.750
FLTO6: IBTS_Q1_IV (C,	1986,	1995,	Ο,	5,	.990	1.000
FLT09: IBTS_Q2_SCO_I,	1991,	1995,	1,	6,	.250,	.500
FLT10: IBTS_Q4_ENG_I,	1991,	1995,	Ο,	7,	.750,	1.000
FLT11: FRATRC_7d (Ca,		1995,	1,	5,	.000,	1.000
FLT12: FRAGFS_7d (Ca,	1988,	1995,	Ο,	3,	.750,	1.000

Time series weights :

Tapered time weighting not applied

Catchability analysis :

Catchability independent of stock size for all ages

Catchability independent of age for ages >= 6

Terminal population estimation :

Survivor estimates shrunk towards the mean F of the final 5 years or the 5 oldest ages.

S.E. of the mean to which the estimates are shrunk = .500

Minimum standard error for population estimates derived from each fleet = .300

Prior weighting not applied

Tuning converged after 25 iterations

Regression weights , 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000

Fishing Age,			1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995
1, 2, 3, 4, 5, 6, 7, 8,	.267, .426, .716, 1.260, 1.073, 1.359, 1.473, 1.506,	.504, .876, 1.324, 1.472, 1.690, 1.965, 1.911,	.353, .429, .661, .974, 1.152, 1.375, .759, .730,	.126, .433, .689, .823, 1.517, 1.507, 1.484, 2.562,	.218, .548, .890, .960, 1.208, 1.003, .993, 3.032,	.112, .481, .518, .913, 1.173, .823, 1.236, 3.063.	.218, .372, .576, .631, .945, 1.189, 1.259, .673.	.065, .153, .425, .727, .813, .874, 1.215, 1.195, 1.815, 1.248,	.112, .261, .544, .729, .884, 1.063, 1.100, 1.028	.089 .228 .401 .482 .623 .810 .979 1 725

XSA population numbers (Thousands)

		AGE						
YEAR ,	0,	1,	2,	:	3,	4,	5,	6,
1986 ,	4.31E+07, 3.92E+06,	6.08E+05,	4.04E+05,	8.12E+04,	2.37E+04,	5.66E+03,	5.84E+03,	7.88E+02, 1.08E+02,
1987 ,	3.00E+07, 3.30E+06,	1.16E+06,	2.53E+05,	1.39E+05,	1.71E+04,	6.30E+03,	1.13E+03,	1.09E+03, 1.43E+02,
1988	5.85E+07, 2.32E+06,	1.11E+06,	4.47E+05,	7.43E+04,	2.75E+04,	3.05E+03,	9.06E+02,	1.30E+02, 1.33E+02,
1989	2.65E+07, 4.45E+06	6.30E+05,	4.62E+05,	1.63E+05,	2.08E+04,	6.75E+03,	6.00E+02,	3.47E+02, 5.13E+01,
1990								1.11E+02, 2.19E+01,
1991	2.92E+07, 1.98E+06	6.37E+05,	5.59E+05,	7.54E+04,	4.63E+04,	1.23E+04,	1.01E+03,	3.54E+02, 4.40E+00,
1992	3.27E+07, 1.99E+06	6.84E+05,	2.51E+05,	2.35E+05,	2.24E+04,	1.12E+04,	4.21E+03,	2.41E+02, 1.35E+01,
1993	3.52E+07, 2.49E+06,	6.18E+05,	3.01E+05,	9.94E+04,	9.25E+04,	6.79E+03,	2.65E+03,	9.78E+02, 1.01E+02,
1994	3.52E+07, 2.57E+06,	8.25E+05,	2.58E+05,	1.02E+05,	3.26E+04,	3.01E+04,	1.57E+03,	6.56E+02, 1.30E+02,
1995 ,	3.78E+07, 2.69E+06,	8.90E+05,	4.05E+05,	1.05E+05,	3.66E+04,	1.05E+04,	8.09E+03,	4.28E+02, 1.92E+02,
Estimated	l population abundanc	e at 1st J	an 1996					

7,

, .00E+00, 2.51E+06, 9.51E+05, 4.52E+05, 1.91E+05, 4.82E+04, 1.53E+04, 3.64E+03, 2.49E+03, 6.24E+01, Taper weighted geometric mean of the VPA populations:

, 4.22E+07, 3.21E+06, 9.42E+05, 3.47E+05, 1.04E+05, 3.02E+04, 8.27E+03, 1.75E+03, 4.12E+02, 8.43E+01, Standard error of the weighted Log(VPA populations) :

.4988, .5105, .5766, .5819, .6776, .8200, .9191, 1.1645, 1.1283, 1.2481,

Log catchability residuals.

,

Fleet : FLT01: SCOSEI_IV (Ca

Age ,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995
0,	60,	2.06,	-2.45,	-2.55,	.71,	1.92,	1.15,	1.55,	43,	-1.36
1,	1.79,	39,	-1.55,	-1.23,	.65,	.18,	.67,	02,	10,	.00
2,	.38,	- 14,	65,	61,	.97,	.51,	34,	.39,	35,	15
3,	40,	.27,	14,	19,	.41,	.03,	12,	.08,	.02,	.05
4,	11,	13,	.09,	06,	.56,	02,	17,	.06,	04,	18
5,	71,	.11,	27,	.36,	.79	.09,	29,	.01,	.11,	21
6,	13,	11,	.13,	.11,	.30,	42,	.05,	11,	. 19,	01
7,	.34,	.38,	-1.28,	.04,	. 14,	.03,	21,	19,	18,	.22
8,	.25,	.56,	47,	02,	.97,	.94,	45,	.26,	.10,	.75
9,	-1.19,	58,	60,	. 19,	-5.05,	99.99,	.34,	69,	36,	51

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	Ο,	1,	2,	3,	4,	5,	6,	7,	8,	9
Mean Log q,	-23.9898,	-17.5358,	-15.4526,	-14.5319,	-14.1362,	-13.8603,	-13.7693,	-13.7693,	-13.7693,	-13.7693,
S.E(Log q),	1.7349,	.9539,	.5331,	.2308,	.2186,	.4066,	.2042,	.4808,	.6010,	1.8920,

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.

Age,	Slope ,	t-value ,	Intercept,	RSquare,	No Pts,	Reg s.e,	Mean Q
------	---------	-----------	------------	----------	---------	----------	--------

Ο,	44,	-1.446,	14.42,	.11,	10,	.73,	-23.99,
		261,	18.76,	.04,		•	-17.54,
2,	.82,	.387,	15.12,	.36,	10,	.46,	- 15.45,
3,	1.60,	-1.595,	15.61,	.47,	10,	.34,	-14.53,
4,	.97,	.175,	14.05,	.77,	10,	.22,	-14.14,
5,	.81,	.870,	13.20,	.72,	10,	.33,	-13.86,
6,	1.06,	507,	14.05,	.91,	10,	.23,	-13.77,
7,	.86,	.896,	12.96,	.84,	10,	.41,	-13.84,
8,	.93,	.353,	12.92,	.74,	10,	.50,	-13.48,
9,	.65,	.841,	11.11,	.46,	9,	1.07,	-14.71,

Fleet : FLT02: SCOLTR_IV (Ca

Age ,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995
ο,	.61,	.46,	-2.62,	.24,	.06,	.51,	.91,	.10,	.73,	-1.02
1,	06,	.67,	-1.06,	.30,	51,	.25,	.84,	.58,	92,	09
2,	.05,	.31,	28,	20,	.32,	02,	09,	.43,	26,	26
3,	22,	.61,	.18,	.07,	21,	16,	11,	.02,	07,	11
4,	.38,	.01,	.24,	.11,	.06,	31,	14,	.01,	15,	23
5,	42,	.26,	12,	.64,	.04,	10,	28,	.24,	10,	15
6,	.45,	.14,	.02,	.01,	49,	53,	.18,	.04,	.08,	.10
7,	.80,	.73,	93,	21,	78,	42,	17,	08,	.17,	.44
8,	.35,	.85,	.27,	1.19,	.23,	1.02,	73,	.40,	.29,	1.12
9,	94,	69,	57,	34,	-2.95,	.37,	-1.31,	1.09,	.10,	-1.63

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	Ο,	1,	2,	3,	4,	5,	6,	7,	8,	9
Mean Log q,	-23.0285,	-18.1103,	-16.4449,	-15.5823,	-15.2268,	-14.9561,	-14.8792,	-14.8792,	-14.8792,	-14.8792,
S.E(Log q),	1.0623,	.6574,	.2694,	.2498,	.2139,	.3068,	.2951,	.5894,	.7794,	1.3427

.

Regression statistics :

Ages	with q	independen	t of year c	lass stre	ngth and	constant	w.r.t. time.
Age,	Slope ,	t-value ,	Intercept,	RSquare,	No Pts,	Reg s.e,	Mean Q
Ο,	49,	-2.695,	14.55,	.29,	10,	.40,	-23.03,
1,	.76,	.379,	17.33,	.25,	10,	.53,	-18.11,
	.88,	.489,	16.09,	.66,	10,	.25,	-16.44,
2, 3,	1.21,	594,	16.16,	.51,	10,	.31,	-15.58,
4.	1.09,	413,	15.54,	.73,	10,	.24,	-15.23,
5,	.99,	.043,	14.91,	.74,	10,	.32,	-14.96,
6,	.96,	.236,	14.67,	.84,	10,	.30,	-14.88,
7,	.73,	1.858,	12.94,	.86,	10,	.38,	-14.92,
8,	.83,	.834,	12.96,	.75,	10,	.48,	-14.38,
9,	.95,	.170,	14.97,	.58,	10,	1.14,	-15.57,

Fleet : FLT03: FRATRB_IV (Ca

Age ,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995
	-1.20,									
1,	.71,	16,	43,	16,	09,	47,	.11,	.40,	.23,	14
2,	.33,	.05,	50,	52,	. 19,	26,	39,	.37,	.50,	.24
3,	21,	.09,	06,	01,	03,	56,	31,	.29,	.41,	.38
4,	. 14,	09,	.10,	02,	.01,	59,	34,	.14,	.44,	.20
	37,									
6,	.03,	10,	.61,	.20,	27,	96,	18,	.15,	.18,	.33
7,	.03,	.68,	.22,	.26,	13,	17,	.14,	.32,	.21,	.51
8,	.57,	.78,	.38,	.91,	.33,	64,	-1.46,	.25,	02,	.91
9,	39,	.62,	.43,	- 20,	-1.53,	.68,	-1.14,	.87,	39,	.71

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	Ο,	1,	2,	3,	4,	5,	6,	7,	8,	9
Mean Log q,	-20.0189,	-16.0686,	-14.8104,	-14.0322,	-13.6713,	-13.3998,	-13.3279,	-13.3279,	-13.3279,	-13.3279,
S.E(Log q),	1.2430,	.3668,	.3847,	.3107,	.2890,	.3665,	.4243,	.3407,	.7770,	.8339,

١

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

Ο,	11.94,	514,	49.16,	.00,	10,	15.49,	-20.02,
1,	.70,	.992	15.69,	.58,	10,	.26,	-16.07,
2,	.93,	. 186,	14.72,	.45,	10,	.38,	-14.81,
	1.73,	-1.268,	14.97,	.27,	10,	.52,	-14.03,
4,	1.17,	556,	14.01,	.57,	10,	.35,	-13.67,
5,	.96,	.150,	13.29,	.68,	10,	.37,	-13.40,
6,	1.17,	652,	14.06,	.65,	10,	.51,	-13.33,
7,	.96,	.434,	12.88,	.93,	10,	.26,	-13.12,
		.705,	11.81,	.64,	10,	.63,	-13.13,
9,	.82,	.995,	11.67,	.79,	10,	.68,	-13.36,

Fleet : FLT04: SCOGFS_IV (Ca

Age , 198	86, 1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995
0,	74, -1.60,	58,	21,	1.33,	.95,	1.33,	-1.01,	07,	.60
1, -1.	00,68,	57,	.07,	.32,	.05,	.61,	.43,	. 18,	.59
2,	60,27,	.07,	14,	.07,	.13,	.28,	.33,	27,	.39
3,	74,25,	17,	.29,	09,	.03,	.55,	.20,	27,	.45
4,8	B4,29,	.03,	04,	.52,	34,	.79,	.44,	65,	.40
5,-1.4	49, .25,	25,	13,	.03,	02,	.73,	.62,	01,	.25
6,(01,42,	30,	.09,	.24,	53,	.86,	10,	34,	.52
7 , No (data for th	is flee	t at th	is age					
8 , No (data for th	is flee	t at th	is age					

9, No data for this fleet at this age

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	Ο,	1,	2,	3,	4,	5,	6
Mean Log q,	-18.4558,	-15.6175,	-15.2685,	-15.3036,	-15.4111,	-15.3645,	-15.2339,
S.E(Log q),	1.0156,	.5609,	.3136,	.3892,	.5351,	.6085,	.4387,

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

0,	-2.45,	-1.010,	14.66,	.01,	10,	2.48,	-18.46,
1,	316.67,	-1.656,	274.29,	.00,	10,	162.58,	-15.62,
2,	.96,	.132,	15.20,	.54,	10,	.32,	-15.27,
3,	1.01,	026,	15.33,	.37,	10,	.42,	-15.30,
4,	.55,	2.032,	13.73,	.72,	10,	.25,	-15.41,
5,	.74,	.877,	14.07,	.59,	10,	.46,	-15.36,
6,	1.01,	053,	15.31,	.69,	10,	.47,	-15.23,

Fleet : FLT05: ENGGFS_IV (Ca

Age ,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995
Ο,	93,	75,	38,	1.52,	1.25,	44,	.38,	26,	47,	.09
1,	82,	32,	03,	37,	.02,	.55,	.39,	.07,	.20,	.30
2,	24,	16,	15,	.30,	41,	10,	.29,	.12,	18,	.53
3,	17,	.04,	13,	.38,	.38,	62,	01,	.11,	28,	.29
4,	59,	.51,	21,	13,	.27,	.26,	18,	01,	13,	.20
5,	78,	1.01,	37,	.82,	36,	12,	.75,	30,	05,	61
6,	-1.14,	1.06,	29,	97,	.27,	-1.17,	1.79,	1.16,	92,	.21
7,	No data	for thi	is flee	t at th	is age					
8,	No data	for thi	is flee	t at th	is age					
9,	No data	for thi	is flee	t at th	is age					

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	Ο,	1,	2,	3,	4,	5,	6
Mean Log q,	-16.8726,	-15.4908,	-15.2490,	-15.3393,	-15.2572,	-15.3393,	-15.3495,
S.E(Log q),	.8218,	.4093,	.2979,	.3151,	.3156,	.6347,	1.0707,

Regression statistics :

É

Ages with q independent of year class strength and constant w.r.t. time. Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

	-1.14,	-1.878,	17.91,	.09,	10,		-16.87,
1,	-5.24,	-4.161,	11.17,	.05,	10,	.48,	-15.49,
2,	1.69,	-1.396,	16.37,	.34,	10,		-15.25,
3,	1.46,	893,	16.53,	.32,	10,		-15.34,
4,	.86,	.553,	14.77,	.67,	10,		-15.26,
5,	3.10,	-1.843,	25. 73,	.09,	10,		-15.34,
.6,	1.30,	403,	17.24,	.19,	10,		-15.35,

Fleet : FLT06: IBTS_Q1_IV (C

Age ,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995
Ō,	34,	52,	. 15,	14,	.59,	.48,	.43,	02,	- 12,	52
1,	44,	.06,	.17,	22,	.38,	.41,	.15,	.06,	35,	21
2,	68,	.00,	.26,	.10,	.20,	.39,	.15,	01,	15,	24
3,	54,	21,	.20,	.01,	.51,	.24,	.16,	.14,	01,	49
4,	46,	06,	.22,	37,	.57,	.43,	.32,	23,	35,	07
5,	72,	69,	.12,	.54,	01,	.65,	.99,	78,	13,	.03
6,	No data	for th	is flee	t at th	is age					
7,	No data	for th	is flee	t at th	is age					
8,	No data	for th	is flee	t at th	is age					
9,	No data	for th	is flee	t at th	is age					

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	Ο,	1,	2,	3,	4,	5
Mean Log q,	-15.0847,	-14.1385,	-14.1696,	-14.3890,	-14.5891,	-14.2462,
S.E(Log q),	.4030,	.2933,	.3052,	.3287,	.3634,	.6104,

Regression statistics :

1.30,

Ages with q independent of year class strength and constant w.r.t. time. Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q 1.62, -.670, 13.68, -15.08, 0, 1, 2, 3, 5, .13, 10, .67, .87, -14.14, .25, -14.17, 4.12, -3.054, 12.08, .11, 10, .792, .65, .37, .62, .30, .80, 14.06, 10, .22, -14.17, .42, -14.39, .32, -14.59, .83, -14.25, 10, 10, 1.21, 14.73, .582, -.558, 14.12, .84,

10,

15.40,

Fleet : FLT09: IBTS_Q2_SCO_I

Age ,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995
0,	No data	a for th	nis flee	et at th	nis age					
1,	99.99,	99.99,	99.99,	99.99,	99.99,	.00,	.35,	11,	63,	.39
2,	99.99,	99.99,	99.99,	99.99,	99.99,	01,	.09,	.08,	42,	.26
3,	99.99,	99.99,	99.99,	99.99,	99.99,	19,	06,	.42,	39,	.22
4,	99.99,	99.99,	99.99,	99.99,	99.99,	.45,	66,	.46,	38,	.12
5,	99.99,	99.99,	99.99,	99.99,	99.99	34,	.23,	.23,	41,	.28
6,	99.99,	99.99,	99.99,	99.99,	99.99,	.00,	.10,	.39,	42,	07
7,	No data	a for th	nis flee	et at th	nis age					
8,	No data	a for th	nis flee	et at th	nis age					
9,	No data	a for th	nis flee	et at th	nis age					

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	1,	2,	3,	4,	5,	6
Mean Log q,	-14.1580,	-13.9645,	-14.1963,	-14.5151,	-14.2761,	-14.2941,
S.E(Log q),	.4148,	.2556,	.3221,	.5000,	.3405,	.2936,

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time.

Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

1,	5.52,	525,	11.89,	.00,	5,	2.53, -14.16,	
2,	1.21,	189,	14.06,	.22,	5,	.35, -13.96,	
3,	.96,	.079,	14.14,	.55,	5,	.36, -14.20,	
4,	19.23,	-2.390,	66.91,	.01,	5,	6.52, -14.52,	
5,	.94,	.173,	14.06,	.73,	5,	.37, -14.28,	
6,	2.05,	-5.313,	19.41,	.90,	5,	.22, -14.29,	

Fleet : FLT10: IBTS_Q4_ENG_I

Age ,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995
0,	99.99,	99.99,	99.99,	99.99,	99.99,	21,	.28,	.06,	10,	03
1,	99.99,	99.99,	99.99,	99.99,	99.99,	.03,	09,	18,	13,	.37
2,	99.99,	99.99,	99.99,	99.99,	99.99,	03,	.10,	06,	18,	.17
3,	99.99,	99.99,	99.99,	99.99,	99.99,	.14,	04,	.20,	36,	.06
4,	99.99	99.99,	99.99,	99.99,	99.99,	.88,	06,	. 19,	94,	07
5,	99.99,	99.99,	99.99,	99.99,	99.99,	.96,	.43,	80,	04,	55
6,	99.99,	99.99,	99.99,	99.99,	99.99,	1.24,	.75,	.46,	-1.97,	48
7,	99.99,	99.99,	99.99,	99.99,	99.99,	.27,	.26,	-2.02,	.68,	-1.17
8,	No data	a for tl	nis fle	et at ti	nis age					
9,	No data	a for tl	nis fle	et at th	nis age					

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	Ο,	1,	2,	3,	4,	5,	6,	7
Mean Log q,	-15.4038,	-14.1932,	-14.1496,	-14.5074,	-14.4799,	-14.4495,	-14.0469,	-14.0469,
S.E(Log q),	.1850,	.2222,	.1386,	.2180,	.6513,	.7151,	1.2666,	1.2302,

Regression statistics :

-.929,

Ages with q independent of year class strength and constant w.r.t. time. Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q .429, .519, .350, 1.176, 16.01, 14.33, 14.05, 14.04, .39, 0, .69, -15.40, 5,5555555555 .14, -14.19, 1, 2, 3, 4, 5, 6, 7, .70, .49, .17, .85, .74, .66, .87, .13, -14.51, 1.82, 16.82, -.537, .12, 1.31, -14.48, -.952, -14.45, 2.90, 21.72, .08, 2.10, -1.871, 1.41, 3.50, -1.42, 2.99, 2.88, 27.47, .17, -14.05,

.07,

-14.44,

Fleet : FLT11: FRATRC_7d (Ca

Age ,	1986,	1987, 198	38, 1989,	1990,	1991,	1992,	1993,	1994,	1995
0,	No data	for this	fleet at t	his age					
1,	-2.66,	22, .:	27, -1.10,	-1.79,	.78,	1.30,	.56,	1.84,	1.01
2,	52,	57, .:	27, .09,	23,	.26,	.51,	.22,	05,	.01
3,	.64,	69,	23, .12,	.04,	60,	.31,	.81,	21,	18
4	1.65,	1.27,	54,97,	15,	1.00,	-1.25,	.01,	21,	71
5,	1.11,	.91, .	99, -2.17,	62,	1.42,	.87,	-1.00,	45,	-1.05
6,	No data	for this	fleet at t	his age					
7,	No data	for this	fleet at t	his age					
8,	No data	for this	fleet at t	his age					
9,	No data	for this	fleet at t	his age					

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	1,	2,	3,	4,	5
Mean Log q,	-19.3692,	-17.0183,	-16.5536,	-16.2852,	-16.5016,
S.E(Log q),	1.4399,	.3512,	.4880,	.9907,	1.2123,

Regression statistics :

-.751,

Ages with q independent of year class strength and constant w.r.t. time. Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q -1.714, 11.99, -.62, .12, .27, .19, -19.37, -17.02, 1, 2, 3, 4, 5, 10, .80, 1.58, 1.31, -3.79, 2.56, 19.00, 17.71, 10, .56, -1.015, -.413, .67, -16.55, 3.48, -16.29, 10, .01, -1.585, -5.90, 10,

.03,

10,

3.18,

-16.50,

26.00,

Fleet : FLT12: FRAGFS_7d (Ca

Age ,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995
0,	99.99,	99.99,	29,	26,	13,	1.31,	.97,	46,	67,	47
1,	99.99,	99.99,	99.99,	99.99,	99.99,	16,	. 15,	-1.04,	1.23,	17
2,	99.99,	99.99,	99.99,	99.99,	99.99,	37,	.31,	11,	.82,	64
3,	99.99,	99.99,	99.99,	99.99,	99.99,	-1.13,	.41,	.36,	1.27,	91
4,	No data	a for th	is flee	t at th	nis age					
5,	No data	a for th	is flee	t at th	nis age					
6,	No data	a for th	is flee	t at th	nis age					
7,	No data	a for th	is flee	t at tł	nis age					
8,	No data	a for th	is flee	t at th	nis age					
9,	No data	a for th	is flee	t at th	nis age					

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

Age ,	Ο,	1,	2,	3
Mean Log q,	-10.5842,	-9.5036,	-10.3851,	-11.3432,
S.E(Log q),	.7265,	.8161,	.5755,	1.0054,

Regression statistics :

Ages with q independent of year class strength and constant w.r.t. time. Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q 0, 1, 2, 3, -.765, .118, -26.44, 10.91, 10.92, 13.55, .00, .06, .10, -10.58, -9.50, -10.39, -11.34, 6.48, .73, 8, 5, 5, 5, 4.85, .68, .55, .28, .83, .101, -.59, -3.856, .66,

Terminal year survivor and F summaries :

Age 0 Catchability constant w.r.t. time and dependent on age

Year class = 1995

FLT02: SCOLTR_IV (Ca, FLT03: FRATRB_IV (Ca, FLT04: SCOGFS_IV (Ca, FLT05: ENGGFS_IV (Ca, FLT06: IBTS_Q1_IV (C,	643654., 911057., 10156312., 4569914., 2738855., 1502277., 1., 2441186., 1.,	s.e, 1.820, 1.114, 1.304, 1.065, .862, .423, .000, .300, .000,	Ext, s.e, .000, .000, .000, .000, .000, .000, .000, .000, .000,	Ratio, .00, .00, .00, .00, .00, .00, .00, .0	1, 1, 1, 1, 1, 1, 0,	Weights, .011, .030, .022, .033, .050, .207, .000, .411, .000,	.000 .000 .000 .000 .000 .000 .000 .00
F shrinkage mean , Weighted prediction : Survivors, Int, at end of year, s.e,	5604372.,	.50,,,, N, Var,	F	·	.,	. 174,	.075

Age 1 Catchability constant w.r.t. time and dependent on age

Fleet,	Estimated,	Int,		Ext,	Var,	N,	Scaled,	Estimated
,	Survivors,	s.e,		s.e,	Ratio,	,	Weights,	F
FLT01: SCOSEI_IV (Ca,	861708.,	.877		.182,	.21,	2,	.018,	.098
FLT02: SCOLTR_IV (Ca,	1090533.,	.586		.364,	.62,	2,	.040,	.078
FLT03: FRATRB_IV (Ca,	822411.,	.369,		.007,	.02,	2,	.101,	.102
FLT04: SCOGFS_IV (Ca,	1471416.,	.515		.275,	.53,	2,	.052,	.058
FLT05: ENGGFS_IV (Ca,	1102991.,	.384,		.303,	.79,	2,	.093,	.077
FLT06: IBTS_Q1_IV (C,	793126.	.249,		.045,	. 18,	2,	.221	.106
FLT09: IBTS_Q2_SCO_I,	1405854.,	.454,		.000,	.00,	1,	.067,	.061
FLT10: IBTS_Q4_ENG_I,	1093556.,	.212,		.235,	1.11,	2,	.303,	.078
FLT11: FRATRC_7d (Ca,	2615329.,	1.510,		.000,	.00,	1,	.006,	.033
FLT12: FRAGFS_7d (Ca,	603650.,	.584,		.244,	.42,	2,	.040,	.137
F shrinkage mean ,	476320.,	.50,	,,,				.060,	.170
Weighted prediction :								
Survivors, Int	, Ext,	N,	Var,	F				

Jul VI VOI 3,	*****	۲. ۲.	· · · ·	vai,	•
at end of year,	s.e,	s.e,	,	Ratio,	
950924.,	.12,	.08,	19,	.700,	.089

Age 2 Catchability constant w.r.t. time and dependent on age

Year class = 1993

Fleet, FLT01: SCOSEI_IV (Ca, FLT02: SCOLTR_IV (Ca, FLT03: FRATRB_IV (Ca, FLT04: SCOGFS_IV (Ca, FLT05: ENGGFS_IV (Ca, FLT05: IBTS_02_SCO_I, FLT10: IBTS_04_ENG_I, FLT11: FRATRC_7d (Ca, FLT12: FRAGFS_7d (Ca, F shrinkage mean ,	434204., 323712., 593217., 588232., 660915., 355497., 456603., 469064., 498449., 378229.,	s.e, .472, .267, .273, .278, .243, .197, .251, .174, .358, .430,	s.e, .279, .175, .142, .231, .163, .085, .401, .088,	Ratio, .59, .65, .52, .83, .67, .43, 1.60, .51, 1.12,	3, .093, .305 3, .086, .178 3, .085, .179 3, .110, .161 3, .163, .282 2, .105, .226 3, .206, .220 2, .053, .209
	Ext, s.e, .07,	, Ratio,			

Age 3 Catchability constant w.r.t. time and dependent on age

Year class = 1992

.

.

Fleet, FLT01: SCOSEI_IV (Ca, FLT02: SCOLTR_IV (Ca, FLT03: FRATRB_IV (Ca, FLT04: SCOGFS_IV (Ca, FLT05: ENGGFS_IV (Ca, FLT06: IBTS_01_IV (C, FLT09: IBTS_Q2 SCO I,	Survivors, 190348., 173164.,	.202, .212, .232, .198, .173,	s.e, .117, .147, .112, .241, .123,	Ratio, _46, _73, _53, 1.04, _62, 1.01,	4,	Weights, .075, .112, .098, .081, .111, .137,	.402 .435 .288 .352 .374 .443
FLT10: IBTS_Q4_ENG_I, FLT11: FRATRC_7d (Ca, FLT12: FRAGFS_7d (Ca,	189805., 175723., 237837.,	.153, .296,	.105, .092,	.69, .31, 1.27,	4, 3,	.177, .051,	.403 .430
F shrinkage mean , Weighted prediction :	100388.,	.50,,,,				.031,	.662
Survivors, Int, at end of year, s.e, 191262., .07,							

Age 4 Catchability constant w.r.t. time and dependent on age

Year class = 1991

Fleet, FLT01: SCOSEI_IV (Ca, FLT02: SCOLTR_IV (Ca, FLT03: FRATRB_IV (Ca, FLT04: SCOGFS_IV (Ca, FLT05: ENGGFS_IV (Ca, FLT05: IBTS_Q1_IV (C, FLT09: IBTS_Q2_SCO_I, FLT10: IBTS_Q4_ENG_I, FLT10: IBTS_Q4_ENG_I, FLT11: FRATRC_7d (Ca, FLT12: FRAGFS_7d (Ca,	Survivors, 45578., 47068., 62363., 58836., 51383., 49814., 46246., 39879., 45674., 80113.,	s.e, .205, .181, .189, .232, .186, .175, .208, .159, .300, .413,	s.e,	Ratio, .54, .80, .42, .72, .62, .42, .73, .41, .74,	5, 140, 5, 129, 5, 070, 5, 126, 5, 125, 4, 085, 5, 117, 4, 037, 4, 014,	, F .504 .491 .410 .458 .470 .498 .559 .503 .317
F shrinkage mean , Weighted prediction :	23399.,	.50,,,,			.040,	.822
	, s.e,	N, Var, , Ratio, 48, .700,				

Age 5 Catchability constant w.r.t. time and dependent on age

.

Fleet,	Estimated,	Int,					Estimated
,	Survivors,	s.e,	s.e,	Ratio,	,	Weights,	F
FLT01: SCOSEI_IV (Ca,	13953.,	.210,	.057,	.27,	6,	.124,	.666
FLT02: SCOLTR_IV (Ca,	13668.,	.183,	.033,	. 18,	6,	.174,	.676
FLTO3: FRATRB_IV (Ca,	22801.,	. 196,	. 158,	.81,	6,	.143,	.457
FLT04: SCOGFS IV (Ca,	16330.,		.177,	.67,	6,	.065,	.593
FLT05: ENGGFS IV (Ca,	14556.		.167,	.83,	6,	.100,	.646
FLTO6: IBTS_Q1_IV (C,	15975.	. 195,	.129,	.67,	6,	.102,	.603
FLT09: IBTS Q2 SCO I,	18299.	.225,	.116,	.52,	5,	.115	.543
FLT10: IBTS Q4 ENG I,	13529.	.209,	. 196,	.94,	5,	.075,	.681
FLT11: FRATRC 7d (Ca,	18623.	.348,	.343,	.98,	5,	.028,	.536
FLT12: FRAGFS_7d (Ca,	17489.,	.406,	.132,	.33,			.563
F shrinkage mean ,	7313.,	.50,,,,				.065,	1.032
Weighted prediction :							
Survivors, Int,	Ext,						
	s.e,						
15289., .08,	.05,	56, .707,	, .623				

Age 6 Catchability constant w.r.t. time and dependent on age

Year class = 1989

<pre>Fleet, FLT01: SCOSEI_IV (Ca, FLT02: SCOLTR_IV (Ca, FLT03: FRATRB_IV (Ca, FLT04: SCOGFS_IV (Ca, FLT05: ENGGFS_IV (Ca, FLT06: IBTS_01_IV (C, FLT09: IBTS_02_SCO_I, FLT10: IBTS_04_ENG_I, FLT11: FRATRC_7d (Ca, FLT12: FRAGFS_7d (Ca, F shrinkage mean , Weighted prediction :</pre>		s.e, .211, .192, .224, .300, .240, .197, .226, .298, .348, .462,	s.e,	Ratio, .22, .21, .37, .27, .33, .56, .40, .31, .54,	7, 7, 7, 7, 7, 7, 5, 5, 5,	Weights, .180, .198, .124, .083, .057, .049, .158, .036, .014,	.802 .796 .732 .605 .797 .796 .873 .856 .773 .892
	Ev+		F				
Survivors, Int, at end of year, s.e, 3637., .09,	s.e,	N, Var, , Ratio, 60, .367,					

Age 7 Catchability constant w.r.t. time and age (fixed at the value for age) 6

<pre>Fleet, FLT01: SCOSEI_IV (Ca, FLT02: SCOLTR_IV (Ca, FLT03: FRATRB_IV (Ca, FLT04: SCOGFS_IV (Ca, FLT05: ENGGFS_IV (Ca, FLT06: IBTS_01_IV (C, FLT09: IBTS_02_SCO_I, FLT10: IBTS_04_ENG_I, FLT11: FRATRC_7d (Ca, FLT12: FRAGFS_7d (Ca, F shrinkage mean , Weighted prediction :</pre>	Estimated, Survivors, 2895., 2968., 3437., 2389., 1634., 1634., 1879., 1244., 1328., 1224., 1860.,	s.e, .233, .218, .242, .285, .221, .186, .232, .508, .330, .670,	s.e, .064, .089,	Ratio, .27, .41, .47, .59, .46, .98, .69, .70, .56,	8, 8, 8, 7, 6, 5,	Weights, .178, .166, .216, .050, .038, .034, .089, .029, .010,	.887 .873 .790 1.005 1.261 .978 1.163 1.464 1.414 1.414
Survivors, Int,	Ext.	N, Var,	F				
at end of year, s.e, 2491., .13,	s.e,		,				

Age 8 Catchability constant w.r.t. time and age (fixed at the value for age) 6

Year class = 1987

Fleet,			Ext, s.e,		N, Scaled , Weight	, Estimated
FLT01: SCOSEI_IV (Ca,		.325,		.49,		1.504
FLT02: SCOLTR IV (Ca,			. 198,	•		1.399
	87.,	•	. 148,	•		
FLT04: SCOGFS_IV (Ca,	61.,	.324,	.130,	.40,	7, .017,	1.738
FLT05: ENGGFS_IV (Ca,	106.,	.277,	.154,	.56,	7, .011,	1.315
FLTO6: IBTS_Q1_IV (C,	102.,	.226,	.171,	.76,	6, .008,	1.342
FLT09: IBTS_Q2_SCO_I,	89.,	.254,	.048,	. 19,	3, .032,	1.442
FLT10: IBTS_Q4_ENG_I,	116.,	.802,	.081,	.10,	4, .008,	1.249
FLT11: FRATRC_7d (Ca,	95.,	.401,	.209,	.52,	5, .002,	1.396
FLT12: FRAGFS_7d (Ca,	1.,	.000,	.000,	.00,	0, .000,	.000
F shrinkage mean ,	48.,	.50,,,,			.558,	1.949
Weighted prediction :						
Survivors, Int,			F			
at end of year, s.e,		, Ratio,				
62., .29,	.07,	60, .246,	1.725			

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 6

FLT06: IBTS_Q1_IV (C, FLT09: IBTS_Q2_SCO_I, FLT10: IBTS_Q4_ENG_I, FLT11: FRATRC_7d (Ca, FLT12: FRAGFS_7d (Ca,	Survivors, 62., 45., 93., 121., 100., 90., 65., 24., 98., 1.,	s.e, .384, .465, .421, .335, .292, .210, .271, .908, .377, .000,	s.e, .075, .267, .116, .153, .300, .139, .172, .975, .281,	Ratio, .20, .57, .28, .46, 1.03, .66, .64, 1.07,	10, 10, 10, 7, 6, 2, 3, 5,	Weights, .117, .104, .170, .012, .007, .006, .022, .005, .002, .000,	.921 1.116 .695 .572 .658 .712 .886 1.586 .666 .000
F shrinkage mean , Weighted prediction :	60.,	.50,,,,				.555,	.934
Survivors, Int, at end of year, s.e, 64., .29,	s.e,	, Ratio,					

Table 5.1.11

Run title : Whiting IV, IIIa, VIId (run: XSAWH103/X03)

At 10-Oct-96 18:59:08

Table 8 YEAR,	Fishing 1960,	mortality 1961,		-	1964,	1965,
AGE						
0,	.0052,	.0103,	.0033,	.0206,	.0234,	.0073,
1,	.2156,	.7645,	.3319,	.1467,	.1690,	.2222,
2,	.4686,	.9726,	.6378,	.8739,	.2410,	.5098,
2, 3,	1.4891,	1.4096,	.9676,	.8704,	.6103,	.4511,
4,	2.3403,	1.2813,	.9620,	1.0600,	.6097,	.7127,
5,	1.5397,	1.5144,	.9871,	.9846,	.9102,	.4900
6,	1.8272,	1.7621,	2.6252,	.9853,	1.0186,	.9711,
7,	1.8163,	1.1781,	.9160,	.7402,	.7463,	.9465
8,	1.9481,	1.9184,	1.6033,	.8369,	.3532,	.4880
9,	1.9209,	1.5513,	1.4373,	.9315,	.7347,	.7286,
+gp,	1.9209,	1.5513,	1.4373,	.9315,	.7347,	.7286,
FBAR 2-6,	1.5330,	1.3880,	1.2359,	.9548,	.6779,	.6269,

Table 8	-	mortalit		-	4070	4074	4070	4077	407/	1075
YEAR,	1966,	1967,	1968,	1969,	1970,	1971,	1972,	1973,	1974,	1975,
AGE										
Ο,	.0051,	.0054,	.0267,	.1697,	.1035,	.0617,	.0206,	.0133,	.0208,	.0137,
1,	.4148,	.4117,	. 1581,	.8137,	.7666,	.3988,	.3271,	.2883,	.4012,	.2265,
2,	.6976,	.5666,	.8031,	.5551,	.8240,	.5324,	.7057,	.8052	.8548,	.7663,
2, 3,	.9899,	.7742,	.8871,	.8151,	.9593,	.5651,	.5993,	1.0486,	1.0443,	.9678,
4,	.9453,	.9100,	1.0538,	.7182,	.8486,	.6951,	.5769,	.6273,	.9959,	.9564,
5,	1.2543,	.8193,	.9448,	1.0725,	.7926,	.6171,	.9412,	1.3978,	.3573,	.9827,
6,	2.0093,	1.1172,	1.3298,	.6295,	1.1847,	.3745,	1.1218,	.9555,	1.8789,	2.1886,
6, 7,	2.1082,	1.6323,	1.0037,	1.1049,	1.4557,	.8150,	1.9653,	1.4858,	1.0362,	1.0446,
8,	1.9200,	1.3401,	.8681,	1.2628,	.8209,	.8369,	.7842,	1.5566,	.8883,	.7434
9,	1.6699,	1.1779,	1.0521,	.9683,	1.0322,	.6739,	1.0906,	1.2194,	1.0432,	1.1976,
+gp,	1.6699,	1.1779,	1.0521,	.9683,	1.0322,	.6739,	1.0906,	1.2194,	1.0432,	1.1976,
FBAR 2-6,	1.1793,	.8374,	1.0037,	.7581,	.9218,	.5568,	.7890,	.9669,	1.0262,	1.1724,

Run title : Whiting IV, IIIa, VIId (run: XSAWHI03/X03)

At 10-Oct-96 18:59:08

Table YEAR,	8	Fishing 1976,	mortality 1977,	/ (F) at 1978,	age 1979,	1980,	1981,	1982,	1983,	1984,	1985,
AGE											
0,		.0252,	.0393,	.0396,	.0297,	.0526,	.0709,	.0151,	.0674,	.0229,	.0132,
1,		.1740,	.4274,	. 1566,	.2333,	.1015,	.1653,	.1714,	. 1961,	.2157,	. 1904,
2.		.9282,	.4843,	.4073	.4797,	.4427,	.3295,	.2934,	.4480,	.4673,	.2754,
2, 3,		1.2577,	.8308,	.6318,	.7390,	.8254	.7598,	.5315,	.7473,	.8437,	.7166,
4.		1.0642.	.9647	.8629,	.7092	.9920	1.0073	.7357,	.7352	1.0302	.9068,
4, 5,		.9073,	.9310,	.7694	.8825	1.2482	1.1516,	.9150,	.9276,	1.0506,	1.1794,
6,		1.3173.	1.0787.	1.2036.	.9463	1.1035	1.3491	1.1740,	.9758,	1.3116,	1.3321,
7,		.9489	.8574	1.6559,	1.0208,	1.3130,	1.7767,	.9292,	1.2767	1.2256,	1.5444,
8,		.4295	2.5991	1.5520,	1.3402,	2.3198,	1.2138,	1.1322,	1.2510,	1.2991,	2.1322,
9,		.9438,	1.3024,	1.2237.	.9909,	1.4134,	1.3162,	.9882	1.0452	1.1979.	1.4375
+gp,		.9438,	1.3024.	1.2237,	.9909	1.4134,	1.3162,	.9882,	1.0452	1.1979	1.4375
FBAR 2-6,		1.0949,	.8579,	.7750,	.7513,	.9224,	.9195,	.7299,	.7668,	.9407,	.8821,

Table 8	Fishing	mortality	y (F) at	age							
YEAR,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995,	FBAR 93-95
AGE											
0,	.0189,	.0102,	.0258,	.0118,	.0394,	.1358,	.0280,	.0654,	.0223,	.1610,	.0829,
1,	.2673,	.1387,	.3526,	.1262,	.2179,	.1124,	.2182,	.1528,	.1125,	.0890,	.1181,
2,	.4256,	.5036,	.4292,	.4330,	.5478,	.4813,	.3723,	.4254,	.2609,	.2279,	.3047,
3,	.7162,	.8760,	.6613,	.6891,	.8896,	.5175,	.5759,	.7274,	.5440,	.4008,	.5574,
4,	1.2597,	1.3236,	.9735,	.8234,	.9601,	.9127,	.6315,	.8134,	.7286,	.4822,	.6747,
5,	1.0731,	1.4722,	1.1523,	1.5170,	1.2083,	1.1727,	.9455,	.8737,	.8843,	.6226,	.7935,
6,	1.3585,	1.6898,	1.3749,	1.5069,	1.0033,	.8231,	1.1895,	1.2147,	1.0628,	.8102,	1.0292,
7,	1.4735,	1.9650,	.7589,	1.4837,	.9929,	1.2357,	1.2588,	1.1955,	1.0999,	.9785,	1.0913,
8,	1.5063,	1.9114,	.7303,	2.5620,	3.0324,	3.0626,	.6734,	1.8146,	1.0282,	1.7252,	1.5227,
8, 9,	1.4097,	1.6663,	.9601,	1.5939,	1.6404,	1.4013,	1.0584,	1.2479,	1.0085,	.8991,	1.0518,
+gp,	1.4097,	1.6663,	.9601,	1.5939,	1.6404,	1.4013,	1.0584,	1.2479,	1.0085,	.8991,	-
FBAR 2-6,	.9666,	1.1730,	.9183,	.9939,	.9218,	.7814,	.7429,	.8109,	.6961,	.5088,	

Table 5.1.12

Run title : Whiting IV, IIIa, VIId (run: XSAWH103/X03)

At 10-Oct-96 18:59:08

Table 10	Stock r	umber at	age (star	t of year	·)	Nu	mbers*10**-5
YEAR,	1960,	1961,	1962,	1963,	1964,	1965,	
AGE							
Ο,	418036,	753446,	831790,	185973,	362520,	315936,	
1,	40045,	32471,	58228,	64734,	14225,	27651,	
2,	8684,	12484,	5846,	16158,	21619,	4646,	
3,	3313,	3466,	3010,	1970,	4300,	10833,	
4,	276,	527,	596,	806,	581,	1646,	
5,	336,	20,	108,	169,	207,	234,	
6,	49,	56,	3,	31,	49,	65,	
7,	12,	6,	7,	0,	9,	14,	
8,	28,	2,	2,	2,	0,	4,	
9,	3,	3,	0,	0,	1,	0,	
+gp,	ο,	0,	Ο,	0,	ο,	Ο,	
TOTAL,			899590,			361028,	

Table 10	Stock	number at	age (star	t of year)	Nu	mbers*10*	*-5		
YEAR,	1966,	1967,	1968,	1969,	1970,	1971,	1972,	1973,	1974,	1975,
AGE										
0,	596913,	1176288,	142212,	276564,	431959,	737409,	969679,	477523,	991811,	626930,
1,	24490,	46372,	91351,	10811,	18224,	30411,	54133,	74167,	36795,	75845,
2, 3,	8563,	6256,	11882,	30164,	1853,	3274,	7893,	15095,	21499,	9527,
3,	1779,	2718,	2264,	3394,	11041,	518,	1226,	2485,	4302,	5831,
4,	4862,	466,	883,	657,	1058,	2981,	208,	474,	614,	1067,
5,	598,	1400,	139,	228,	237,	336,	1102,	86,	188,	168,
6,	112,	133,	480,	42,	61,	84,	141,	335,	17,	102,
7,	19,	12,	34,	99,	17,	14,	45,	36,	100,	2,
8,	4,	2,	2,	10,	27,	3,	5,	5,	7,	29,
9,	2,	1,	0,	1,	2,	10,	1,	2,	1,	2,
+gp,	0,	Ο,	0,	0,	Ο,	1,	11,	1,	0,	Ο,
TOTAL,	637342,	1233647,	249246,	321970,	464481,	775041,	1034445,	570209,	1055333,	719504,

Run title : Whiting IV, IIIa, VIId (run: XSAWH103/X03)

At 10-Oct-96 18:59:09

Table 10	Stock	number at	age (star	t of year)	Nu	mbers*10*	*-5		
YEAR,	1976,	1977,	1978,	1979,	1980,	1981,	1982,	1983,	1984,	1985,
105										
AGE										
0,	610886,	619003,	633667,	583360,	232074,	270363,	241440,	367142,	249056,	508726,
1,	48284,	46511,	46469,	47557,	44219,	17192,	19666,	18570,	26799,	19006,
2,	23388,	15691,	11731,	15366,	14565,	15451,	5636,	6408,	5903,	8353,
3,	2823,	5895,	6165,	4978,	6065,	5965,	7086,	2680,	2611,	2359,
4,	1561,	566,	1810,	2310,	1675,	1872,	1966,	2935,	894,	791,
5,	304,	399,	160,	566,	842,	460,	507,	698,	1042,	236,
6,	49,	95,	122,	58,	182,	188,	113,	158,	215,	284,
7,	9,	10,	25,	29,	17,	47,	38,	27,	46,	45,
8,	1,	3,	4,	4,	8,	4,	7,	12,	6,	11,
9,	11,	0,	0,	1,	1,	1,	1,	2,	3,	1,
+gp,	1,	2,	0,	Ο,	0,	1,	1,	1,	0,	Ο,
TOTAL,	687316,	688176,		654227,	299648,	311544,	276460,	398632,	286575,	539813,

Table 10	Stock r	number at	age (star	t of year	·)	Nu	mbers*10*	**-5				
YEAR,	1986,	1987,	1988,	1989,	1990,	1991,	1992,	1993,	1994,	1995,	1996,	GMST
AGE												
Ο,	431022,	299906,	584770,	265297,	263691,	291648,	327342,	352038,	351972,	378266,	0,	4258
1,	39200,	33026,	23180,	44495,	20471,	19794,	19881,	24853,	25749,	26877,	25144,	324
2,	6076,	11605,	11118,	6301,	15168,	6367,	6841,	6181,	8250,	8899,	9509,	94
3,	4044,	2532,	4472,	4615,	2606,	5592,	2509,	3006,	2576,	4052,	4517,	34
4,	812,	1392,	743,	1627,	1633,	754,	2349,	994,	1023,	1054,	1913,	10
5,	237,	171,	275,	208,	529,	463,	224,	925,	326,	366,	482,	3
6,	57,	63,	30,	68,	36,	123,	112,	68,	301,	105,	153,	
7,	58,	11,	9,	6,	12,	10,	42,	26,	16,	81,	36,	
8,	8,	11,	1,	3,	1,	4,	2,	10,	7,	4,	25,	
9,	1,	1,	1,	1,	Ο,	0,	0,	1,	1,	2,	1,	
+gp,	0,	0,	1,	0,	Ο,	Ο,	Ο,	0,	ο,	1,	1,	
TOTAL,	481515,	348718,	624600,	322620,	304146,	324755,	359302,	388104,	390220,	419706,	41781,	

Year	1	Wt.('000t)		Nos.(millions)				
	Total	hcons	dis	ind	Total	hcons	dis	ind	
1960	182	49	122	11	1070	198	763	109	
1961	326	69	241	16	2174	296	1646	232	
1962	222	58	157	8	1514	229	1185	100	
1963	261	61	154	45	1560	226	854	480	
1964	150	63	59	28	944	233	341	369	
1965	187	88	77	22	970	319	490	161	
1966	242	108	84	51	1343	374	546	422	
1967	237	72	143	23	1592	258	1103	231	
1968	265	93	115	58	1661	314	754	593	
1969	328	61	115	152	2816	216	626	1974	
1970	272	83	74	115	2519	284	381	1854	
1971	195	61	63	72	2127	194	458	1475	
1972	191	64	67	61	1938	188	398	1352	
1973	271	71	110	90	2179	247	659	1273	
1974	296	81	85	130	2594	271	477	1846	
1975	305	84	135	86	1981	264	699	1018	
1976	368	83	136	150	2312	276	641	1396	
1977	347	78	163	106	2491	281	547	1663	
1978	188	97	35	55	1769	363	241	1165	
1979	244	107	78	59	1913	382	645	886	
1980	224	101	77	46	1456	340	471	645	
1981	192	90	36	67	1439	296	214	929	
1982	140	81	27	33	778	271	173	333	
1983	161	88	50	24	1358	290	370	697	
1984	146	86	41	19	909	285	327	297	
1985	107	62	29	15	731	219	232	280	
1986	162	64	80	18	1211	230	583	399	
1987	139	68	54	16	947	246	416	285	
1988	133	56	28	49	1396	213	231	952	
1989	124	45	36	43	883	172	280	431	
1990	153	47	56	51	1296	179	539	578	
1991	125	53	34	38	1624	212	242	1170	
1992	110	52	31	27	874	193	216	465	
1993	117	53	43	20	1245	186	345	714	
1994	93	50	33	10	711	169	237	304	
1995	104	47	31	27	2031	155	217	1659	
 Min.	93	45	27	8	711	155	173	100	
Mean	203	71	80	51	1565	252	515	798	
Max.	368	108	241	152	2816	382	1646	1974	

TABLE 5.1.13 Whiting, North Sea and VIId Annual weight and numbers caught, 1960 to 1995.

able]						_			±		
Popul	Lations	s in	1996	Stock	weigh	ts	Nat	.Morta	lity	1	Prop.ma	ature
Labl	Va	alue	CV		alue	CV	Labl	Value	CV	Labl	Value	CV
NO	34106		.51		.01	.20	MO	2.55		MTO	.00	.10
N1	2514	1300	.20		.09	.13		.95		MT1	.11	
N2	950	0000		WS2	.17	.04	1	.45	:	MT2	.92	
N3		L700	.08	-	.24	.06	:	.35		MT3	1.00	
N4		L299		WS4	.30	.08		.30		MT4	1.00	
N5		3200		WS5	.34	.10	-	.25		MT5	1.00	
N6		5299	.08	WS5 WS7	.36 .38	.11 .13		.25	.14	MT7	1.00	
N7 N8		3599 2498	.09 .13		. 42	.10		.20		1	1.00	
N9	4		.29		.48	.35			!	MT9	· · · ·	
N10		100	.29	WS10	.81	.73	M10	.20	.14	MT10	1.00	.00
	•			+-			•			•	+	
	selecti		1.1			1.1		-	1.1		atch wt +	
	Value		• •	Value			1 Valu	1e C1		1 Valu	ue CV	
sH0	.00		WH0	.14	.21	sD0	.(.88	B WDO	.(04 .2	L
sH1	.01	.38	WH1	.18	.05	sD1	.(5 .31	. WD1	.(09 .00	5
sH2	.06	.29	WH2	.23	.05	sD2	.:	13 .21	WD2	.:	16 .09	5
sH3	.22		WH3	.27		sD3		L6 .15	1.1		20 .0'	:
sH4	.39		WH4	.32	1	sD4		11 .11	1.1		23 .05	1
sH5	.57		WH5	.35	1	sD5			. WD5		24 .03	1
sH6	.68 .74		WH6	.38 .40	1	sD6		06 .73			24 .05 27 .21	1
sH7							-				4/ •4-	
			WH7	1	1	sD7		LO 1.36				
sH8	1.26	.58	WH8	.42	.10	SD7 SD8 SD9	. (01 1.71	. WD8	.:	30 1.74 00 .00	1
sH8 sH9 sH10 + Ind s	1.26 .86 .86 .86	.58 .14 .14 	WH8 WH9 WH10 ++ ++ In	.42 .48 .81 + dustri	.10 .35 .73 + al wt	sD8 sD9 sD1 ++ +). . . 0	01 1.71 00 .00 00 .00	. WD8) WD9) WD1	. . 0 .	30 1.74	
sH8 sH9 sH10 sH10 Ind s Ind s Ind s sI1 sI2 sI3 sI4 sI5 sI6 sI7 sI8 sI9 sI10	1.26 .86 .86 .86 .07 .05 .03 .04 .05 .03 .05 .04 .01 .00 .00	.58 .14 .14 .14 .14 .00 .58 .53 .54 .76 .91 1.15 1.62 .00 .00	WH8 WH9 WH10 ++ In ++ Labl ++ W10 W12 W12 W13 W14 W15 W14 W15 W16 W17 W18 W19 W110	.42 .48 .81 + value + .01 .06 .15 .25 .20 .30 .30 .39 .26 .28 .17 .00	.10 .35 .73 + .24 .24 .37 .08 .15 .21 .31 .31 .77 .61 1.49 .00 .00	sD8 sD9 sD1 ++ + + +). . . 0	01 1.71 00 .00 00 .00	. WD8) WD9) WD1	. . 0 .	30 1.74 00 .00 00 .00	
sH8 sH9 sH10 sH10 Ind Ind Ind sI0 sI1 sI3 sI3 sI4 sI5 sI6 sI7 sI8 sI9 sI10	1.26 .86 .86 .86 .07 .05 .08 .04 .03 .05 .04 .03 .05 .04 .01 .00 .00 .00	.58 .14 .14 .14 .14 .74 .74 .74 .75 .26 .53 .53 .54 .76 .91 1.15 1.62 .00 .00	WH8 WH9 WH10 ++ In ++ Labl ++ Labl ++ W10 W10 W12 W12 W12 W13 W15 W15 W15 W15 W15 W10 ++ HC r	.42 .48 .81 + Value + .01 .06 .15 .25 .25 .30 .26 .28 .17 .00 .00 + elativ	.10 .35 .73 + .24 .24 .37 .08 .15 .21 .21 .77 .61 1.49 .00 .00 + e eff	sD8 sD9 sD1 ++ + + + + + + 	.(.(0 .(-+	01 1.73 00 .00 00 .00 +	- WD8 WD9 WD1 ++	. . 0 .	30 1.74 00 .00 00 .00	
sH8 sH9 sH10 sH10 sH10 sH10 sH10 sH10 sH10 sH10 sI1 sI1 sI2 sI3 sI4 sI5 sI6 sI7 sI8 sI9 sI10 + Year + Labl1	1.26 .86 .86 .86 .07 .05 .08 .04 .05 .03 .05 .04 .05 .04 .05 .04 .00 .00 .00	.58 .14 .14 .14 	WH8 WH9 WH10 ++ Lab1 ++ W10 W11 W12 W13 W14 W15 W14 W15 W16 W17 W18 W19 W10 ++ HC r ++	.42 .48 .81 + Value + .01 .06 .15 .25 .20 .30 .26 .28 .28 .28 .20 .00 .00 + elativ +	.10 .35 .73 + .73 + .24 .24 .37 .08 .15 .21 .77 .61 .77 .64 .00 .00 + e eff +	sD8 sD9 sD1 ++ + + + 	.(.(0 .(-+	01 1.73 00 .00 00 .00 +	- WD8 WD9 WD1 ++	. . 0 .	30 1.74 00 .00 00 .00	
sH8 sH9 sH10 sH10 sH10 sH10 sH10 sH10 sH10 sH10 sI1 sI0 sI1 sI2 sI3 sI4 sI5 sI6 sI7 sI8 sI9 sI10 + Labl + Year + Labl	1.26 .86 .86 .86 .07 .05 .08 .04 .05 .03 .05 .04 .01 .00 .00 .00 .00	.58 .14 .14 .14 .24 .26 .53 .54 .76 .91 1.15 1.62 .00 .00 .00 .00	WH8 WH9 WH10 ++ Lab1 ++ W10 W11 W12 W12 W13 W14 W15 W16 W17 W18 W19 W10 ++ Lab1	.42 .48 .81 + Value + .01 .06 .15 .25 .30 .26 .28 .27 .00 .00 .00 + elativ +	.10 .35 .73 + .24 .24 .24 .37 .08 .15 .21 .31 .77 .61 .49 .00 .00 + e eff +	sD8 sD9 sD1 ++ + + + 	.(.(0 .(-+	111.71 00 .00 00 .00 +	- WD8 WD9 WD1 ++	. . 0 .	30 1.74 00 .00 00 .00	
sH8 sH9 sH10 sI0 sI1 sI2 sI3 sI4 sI5 sI6 sI7 sI8 sI9 sI10 + sI8 sI9 sI10 + SI8 sI9 sI10 + sI10 + SI11 SI11 <td< td=""><td>1.26 .86 .86 .86 .01 .05 .03 .05 .04 .05 .03 .05 .04 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00</td><td>.58 .14 .14 .14 .14 .04 .53 .26 .53 .54 .76 .91 1.15 1.62 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0</td><td> WH8 WH9 WH10 ++ Lab1 ++ W10 W11 W12 W12 W12 W13 W14 W15 W14 W15 W16 W19 W10 ++ HC r ++ HF96 HF97</td><td> .42 .48 .81 + .01 .06 .06 .15 .25 .30 .26 .28 .27 .00 .00 + elativ + 1.00 1.00</td><td> .10 .35 .73 + .73 + .24 .24 .24 .24 .24 .31 .77 .61 1.49 .00 .00</td><td> sD8 sD9 sD1 ++ + + + </td><td><pre>/ 0 / -+ relt: 1 Valu -+ 6 1 7 1</pre></td><td>11.73 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .41 00 .41 00 .41</td><td>- WD8 WD9 WD1 ++ </td><td>. . 0 . </td><td>30 1.74 00 .00 00 .00</td><td></td></td<>	1.26 .86 .86 .86 .01 .05 .03 .05 .04 .05 .03 .05 .04 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00	.58 .14 .14 .14 .14 .04 .53 .26 .53 .54 .76 .91 1.15 1.62 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	WH8 WH9 WH10 ++ Lab1 ++ W10 W11 W12 W12 W12 W13 W14 W15 W14 W15 W16 W19 W10 ++ HC r ++ HF96 HF97	.42 .48 .81 + .01 .06 .06 .15 .25 .30 .26 .28 .27 .00 .00 + elativ + 1.00 1.00	.10 .35 .73 + .73 + .24 .24 .24 .24 .24 .31 .77 .61 1.49 .00 .00	sD8 sD9 sD1 ++ + + + 	<pre>/ 0 / -+ relt: 1 Valu -+ 6 1 7 1</pre>	11.73 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .41 00 .41 00 .41	- WD8 WD9 WD1 ++ 	. . 0 .	30 1.74 00 .00 00 .00	
sH8 sH9 sH10 sI0 sI1 sI2 sI3 sI4 sI5 sI6 sI7 sI8 sI9 sI10 + sI9 sI10 + sI3 sI4 sI5 sI6 sI7 sI8 sI9 sI10 + sI10 + sI10 + Lab1 + K96 K97 K98	1.26 .86 .86 .86 .04 .07 .08 .04 .05 .03 .05 .04 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00	.58 .14 .14 .14 .04 .54 .53 .54 .76 .91 1.15 1.62 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	WH8 WH9 WH10 ++ In ++ Lab1 ++ W10 WI1 WI1 WI2 WI1 WI2 WI3 WI4 WI2 WI3 WI4 WI5 WI5 WI6 WI7 WI8 WI9 WI10 ++ Lab1 ++ Lab1 ++	.42 .48 .81 + .01 .06 .05 .25 .30 .26 .28 .17 .00 .00 .00 + .00 .00	.10 .35 .73 + .24 .31 .21 .31 .49 .00 .00 .00 .00 .00 .00 .20 .24 .24 .31 .21 .49 .20 .20	SD8 SD9 SD1 ++ + + + + 	<pre>/</pre>	01 1.73 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .43 00 .43 00 .43	- WD8 WD9 WD9 WD1 ++ 	. . 0 .	30 1.74 00 .00 00 .00	
sH8 sH9 sH10 sI1 sI0 sI1 sI2 sI3 sI4 sI2 sI1 sI3 sI4 sI5 sI6 sI7 sI8 sI9 sI10 + Lab1 + K96 K98 + +	1.26 .86 .86 .86 .04 .07 .08 .04 .05 .03 .05 .04 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00	.58 .14 .14 .14 .04 .01 .81 .26 .53 .54 .76 .91 1.15 1.62 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	WH8 WH9 WH10 ++ In ++ Lab1 ++ W10 WI1 WI1 WI2 WI1 WI2 WI3 WI4 WI2 WI3 WI4 WI5 WI5 WI6 WI7 WI8 WI9 WI10 ++ Lab1 ++ Lab1 ++	.42 .48 .81 + .01 .06 .05 .25 .30 .26 .28 .17 .00 .00 .00 + .00 .00	.10 .35 .73 + .24 .31 .21 .31 .49 .00 .00 .00 .00 .00 .00 .20 .24 .24 .31 .21 .49 .20 .20	SD8 SD9 SD1 ++ + + + + 	<pre>/</pre>	11.73 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .41 00 .41 00 .41	- WD8 WD9 WD9 WD1 ++ 	. . 0 .	30 1.74 00 .00 00 .00	
sH8 sH9 sH10 sI1 sI1 sI3 sI4 sI3 sI4 sI3 sI4 sI3 sI4 sI3 sI4 sI5 sI7 sI8 sI9 sI10 sI4 sI5 sI7 sI8 sI9 sI10 sI10 sI10 sI10 sI10 sI110 sI10 sI10 sI110 sI110 sI110 sI110 sI110 sI110 sI110 sI110 sI110 sI110 <td< td=""><td>1.26 .86 .86 .86 .04 .07 .05 .03 .05 .04 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00</td><td>.58 .14 .14 .14 .14 .24 .20 .53 .54 .76 .91 1.15 1.62 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0</td><td> WH8 WH9 WH10 ++ In ++ Lab1 ++ W10 W12 W12 W12 W14 W13 W14 W13 W14 W15 W14 W15 W16 W17 W18 W19 W10 ++ HC r ++ HC r ++ HF96 HF98 ++ HF98 HF988 HF988 HF9888 HF988888888888888888888888888888888888</td><td> .42 .48 .81 + .01 .06 .05 .25 .30 .26 .28 .17 .00 .00 .00 + .00 .00</td><td> .10 .35 .73 + .24 .31 .21 .31 .49 .00 .00 .00 .00 .00 .00 .20 .24 .24 .31 .21 .49 .20 .20</td><td> SD8 SD9 SD1 ++ + + + + </td><td><pre>/</pre></td><td>01 1.73 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .43 00 .43 00 .43</td><td>- WD8 WD9 WD9 WD1 ++ </td><td>. . 0 . </td><td>30 1.74 00 .00 00 .00</td><td></td></td<>	1.26 .86 .86 .86 .04 .07 .05 .03 .05 .04 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00	.58 .14 .14 .14 .14 .24 .20 .53 .54 .76 .91 1.15 1.62 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	WH8 WH9 WH10 ++ In ++ Lab1 ++ W10 W12 W12 W12 W14 W13 W14 W13 W14 W15 W14 W15 W16 W17 W18 W19 W10 ++ HC r ++ HC r ++ HF96 HF98 ++ HF98 HF988 HF988 HF9888 HF988888888888888888888888888888888888	.42 .48 .81 + .01 .06 .05 .25 .30 .26 .28 .17 .00 .00 .00 + .00 .00	.10 .35 .73 + .24 .31 .21 .31 .49 .00 .00 .00 .00 .00 .00 .20 .24 .24 .31 .21 .49 .20 .20	SD8 SD9 SD1 ++ + + + + 	<pre>/</pre>	01 1.73 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .43 00 .43 00 .43	- WD8 WD9 WD9 WD1 ++ 	. . 0 .	30 1.74 00 .00 00 .00	
sH8 sH9 sH10 sH10 sH10 sH10 sH10 sH10 sH10 sH10 sH10 sI1 sI1 sI3 sI4 sI3 sI4 sI5 sI6 sI7 sI8 sI9 sI10 sI4 sI5 sI7 sI8 sI9 sI10 sK96 K96 K97 K98 Recrut Lab1 + Lab1	1.26 .86 .86 .86 .04 .07 .05 .03 .05 .04 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00	.58 .14 .14 .14 .14 .00 .53 .54 .76 .91 1.15 1.62 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	WH8 WH9 WH10 ++ In ++ Lab1 ++ W10 W11 W12 W12 W13 W14 W13 W14 W15 W13 W14 W15 W15 W16 W17 W18 W19 W10 ++ HC r ++ Lab1 ++ HF96 HF97 HF97	.42 .48 .81 + .01 .06 .05 .25 .30 .26 .28 .17 .00 .00 .00 + .00 .00	.10 .35 .73 + .24 .31 .21 .31 .49 .00 .00 .00 .00 .00 .00 .20 .24 .24 .31 .21 .49 .20 .20	SD8 SD9 SD1 ++ + + + + 	<pre>/</pre>	01 1.73 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .43 00 .43 00 .43	- WD8 WD9 WD9 WD1 ++ 	. . 0 .	30 1.74 00 .00 00 .00	
sH8 sH9 sH10 sH10 sH10 sH10 sH10 sH10 Ind s Ind s Ind s sI0 sI1 sI3 sI4 sI5 sI4 sI7 sI8 sI9 sI10 sI4 sI5 sI7 sI8 sI9 sI10 vear SI10 sK96 K97 K98 Recru Lab1 recru Lab1 recru Repr	1.26 .86 .86 .86 .04 .07 .05 .03 .05 .04 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00	.58 .14 .14 .14 .14 .00 .53 .54 .76 .91 1.15 1.62 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	WH8 WH9 WH10 ++ In ++ Lab1 ++ W10 W11 W12 W12 W14 W13 W14 W15 W14 W15 W16 W17 W18 W19 W10 ++ HC r ++ Lab1 ++ HF96 HF97 HF97 HF97 	.42 .48 .81 + .01 .06 .05 .25 .30 .26 .28 .17 .00 .00 .00 + .00 .00	.10 .35 .73 + .24 .31 .21 .31 .49 .00 .00 .00 .00 .00 .00 .20 .24 .24 .31 .21 .49 .20 .20	SD8 SD9 SD1 ++ + + + + 	<pre>/</pre>	01 1.73 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .00 00 .43 00 .43 00 .43	- WD8 WD9 WD9 WD1 ++ 	. . 0 .	30 1.74 00 .00 00 .00	

Stock numbers in 1996 are VPA survivors. These are overwritten at Age 0 Human consumption + discard Fs are obtained from mean exploitation pattern over 1991 to 1995. This is scaled to give a value for mean F (ages 2 to 6) equal to that in 1995, i.e. .492 Fs are distributed between consumption and discards by mean proportion retained over 1991 to 1995. N.B. Above value for hcons +dis ref F is value for both catch categories combined.

Bycatch Fs are obtained from mean exploitation pattern over 1991 to 1995. This is scaled to give a value for mean F (ages 0 to 4) equal to that in 1995, i.e. .058

E:\ACFM\WGNSSK97\T5114-16.DOC 17/10/96 18:01

	+									
	Year									
	1996				1997					
Mean F Ages		+	+	+	+	+				
H.cons 2 to 6	.49	.00	.10	.20	.30	.39	.49	.59		
Ind BC 0 to 4	.06	.06	.06	.06	.06			.06		
Effort relative to 1995				1		1				
H.cons	1.00	.00	.20	.40	.60	.80	1.00	1.20		
Ind BC	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Biomass at start of year	++	+	+		+	+	+ ·			
Total	575	580	580	580	580	580	580	580		
Spawning	367	375	375	375	375	375	375	37		
Catch weight (,000t)										
H.cons	58.0	.0	15.0	28.9	41.5	53.2	64.0	73.		
Discards	35.9	.0	7.8	15.3	22.4	29.2	35.6	41.		
Ind BC	28.1	30.3	29.8	29.3	28.9	28.4	28.0	27.		
Total Landings	86.1	30.3	44.8	58.2	70.4	81.7	92.0	101.0		
Total Catch	122.0	30.3	52.7	73.5	92.8	110.8	127.6	143.		
Biomass at start of 1998										
Total	i í	674	652	631	612	595	578	56		
Spawning	i İ	468	446	426	407	390	374	35		

Table 5.1.15 Whiting, North Sea and VIId Catch forecast output and estimates of coefficient of variation (CV) from linear analysis.

Area split forecast:

Effort relative to 1995 H. cons	1996 1.00	1997 .00	.20	.40	.60	.80	1.00	1.20
Catch weight ('000t)								
IV H. cons	51.0	.0	13.7	26.0	37.3	47.6	57.1	65.8
VIId (H. cons)	7.0	.0	1.4	2.7	4.0	5.1	6.2	7.3

-	+		. 					
				Ż	<i>lear</i>			
	1996				1997			
Effort relative to 1995		+						
H.cons	1.00	.00	.20	.40	.60	.80	1.00	1.20
Ind BC	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	 	+	+ ا			+ 	+ 	
Est. Coeff. of Variation								
Biomass at start of year		[1					
Total	.10	.39	.39	.39	.39	.39	.39	.39
Spawning	.08	.21	.21	.21	.21	.21	.21	.21
Catch weight		1				! 		
H.cons	.15	.00	.69	.36	.27	.23	.21	.20
Discards	.19	.00	.74	.45	.37	.34	.33	.32
Ind BC	.55	.57	.57	.58	.58	.58	.59	.59
Biomass at start of 1998								
Total		.43	.44	.45	.46	.47	.48	.49
Spawning		.39	.40	.41	.42	.42	.43	.44
+	++	+	+			+	+	

Table 5.1.16 Whiting, North Sea and VIId Detailed forecast tables.

Forecast for year 1996 F multiplier H.cons=1.00 F multiplier Indust=1.00

	Populations	Catch nu	Catch number					
Age	Stock No.	H.Cons	Discards	By-catch	Total			
	34106100	0	24162	785256	809418			
1	2514300	13969	74502	77606	166077			
2	950900	43306	88641	53455	185402			
3	451700	69465	50292	13830	133587			
4	191300	50817	13543	6320	70679			
5	48200	17701	2752	1063	21516			
6	15299	6460	544	458	7462			
7	3600	1620	226	95	1941			
8	2499	1640	13	16	1669			
9	100	53	0	0	53			
10	100	53	0	0	53			
+4	++	+	+	+	+			
Wt	575	58	36	28	122			
++	++	+	+	++	+			

Forecast for year 1997 F multiplier H.cons=1.00 F multiplier Indust=1.00

Populations	Catch number
Age Stock No.	H.Cons Discards By-catch Total
++ 0 34106100 1 2490482 2 873711 3 461005 4 208100 5 81928 6 18866 7 5451 8 1219	0 24162 785256 809418 13837 73796 76871 164503 39790 81446 49116 170352 70896 51328 14115 136339 55279 14732 6875 76886 30087 4678 1807 36572 7967 671 565 9202 2454 343 143 2940 800 6 8 814
9 569 10 69	301 0 0 301 37 0 0 37
++ Wt 580 ++	++ 64 36 28 128 ++

Table 5.1.17 Stock: Whiting in Sub-area IV (North Sea) and VIId (Eastern Channel)

Average F(2-6,u)													
Date of assessment	Year												
	1987	1988	1989	1990	1991	1992	1993	1994	1995				
1989	1.17	0.81											
1990	1.07	0.78	0.69										
1991	1.10	0.82	0.81	0.77									
1992	1.10	0.82	0.79	0.87	0.96								
1993	1.10	0.82	0.78	0.78	0.70	0.85							
1994	1.09	0.81	0.77	0.74	0.64	0.64	0.68		(
1995	1.09	0.81	0.77	0.74	0.64	0.65	0.69	0.65					
1996 ¹	1.12	0.82	0.77	0.73	0.66	0.66	0.74	0.67	0.49				

Assessment Quality Control Diagram 1

Remarks: Reference F is for human consumption landings + discards, age 2-6 ¹ First assessment of combined IV and VIId whiting

Assessment Quality Control Diagram 2

Recruitment (age 0) Unit: millions														
Date of assessment		Year class												
	1987	1988	1989	1990	1991	1992	1993	1994	1995					
1989	39212	70480							L(
1990	50113	72010	48155											
1991	28474	64780	44169	65840										
1992	26333	46065	38134	45240	43856									
1993	28386	52593	23286	20814	48623	49573								
1994	29365	56305	25500	26834	34605	34700	38551							
1995	29382	56909	25284	25033	29478	29814	30565	23495						
1996 ²	29990	58477	26530	26369	29165	32734	35204	35197	37827					

Remarks: ¹ First assessment of combined IV and VIId whiting

Table 5.1.18 Stock: Whiting in Sub-area IV (North Sea) and VIId (Eastern Channel)

	Spawning stock biomass ('000 t)													
Date of assessment					Ye	ar								
	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998			
1989	265	325	391 ¹	354 ¹		•	<u> </u>			.				
1990	283	365	474	444 ¹	375 ¹									
1991	273	269	351	400	422 ¹	347 ¹								
1992	267	243	264	291	305	308 ¹	286 ¹							
1993	279	261	286	228	209	265	315 ¹	289 ¹						
1994	286	271	301	259	267	284	297	325 ¹	360 ¹					
1995	286	271	303	259	256	249	256	263	250 ¹	267 ¹				
1996 ²	297	283	321	277	271	254	274	334	367	375 ¹	374 ¹			

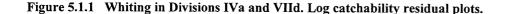
Assessment Quality Control Diagram 3

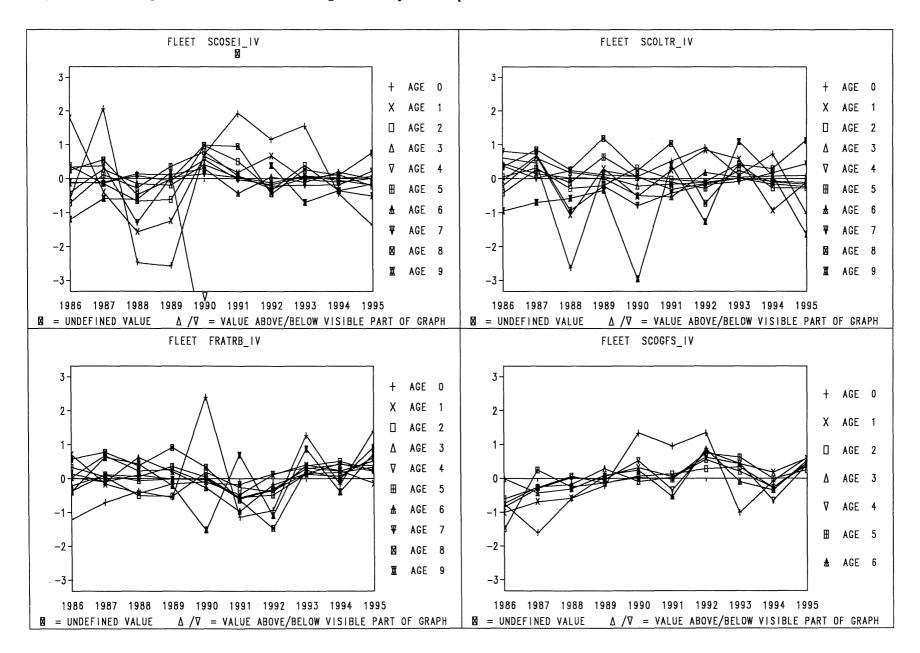
17 1

¹Forecast.

Remarks

² First assessment of combined IV and VIId whiting

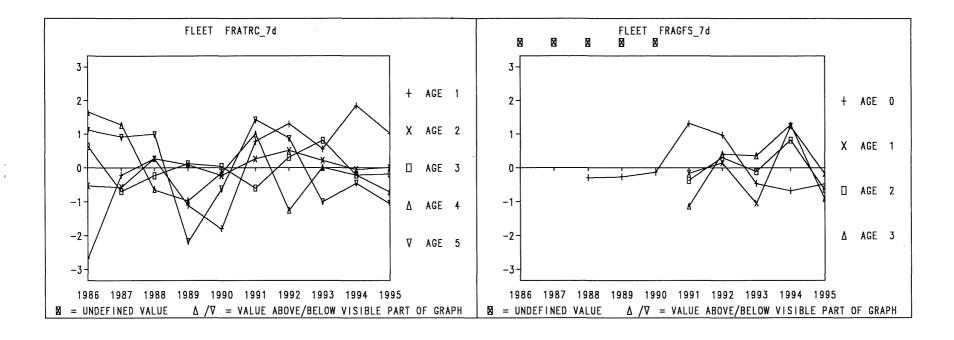

189


E:\ACFM\WGNSSK97\T5117-18.DOC 24/06/96 10:28

Year		Denmark		Norway	Sweden	Others	Total
1975		19,018		57	611	4	19,690
1976		17,870		48	1,002	48	18,968
1977		18,116		46	975	41	19,178
1978		58	899	32	49,091		
1979		16,971		63	1,033	16	18,083
1980		21,070		65	1,516	3	22,654
	Total consumption	Total industrial	Total				
1981	1,027	23,915	24,942	70	1,054	7	26,073
1982	1,183	39,758	40,941	40	670	13	41,664
1983	1,311	23,505	24,816	[·] 48	1,061	8	25,933
1984	1,036	12,102	13,138	51	1,168	60	14,417
1985	557	11,967	12,524	45	654	2	13,225
1986	484	11,979	12,463	64	477	1	13,005
1987	443	15,880	16,323	29	262	43	16,657
1988	391	10,872	11,263	42	435	24	11,764
1989	777	11,662	12,439	29	675	-	13,215
1990	1,016	17,829	18,845	46	435	73	19,333
1991	881	12,463	13,344	56	557	97	14,054
1992	538	10,675	11,213	67	959	1	12,240
1993	181	3,581	3,762	42	756	1	4,561
1994	0	5,391	5,391	21	439	. 1	5,852
1995	85	9,029	9,114	24	431	1	9,570

Table 5.2Nominal landings (in tonnes) of WHITING from Division IIIa as supplied by the
Study Group on Division IIIa Demersal Stocks (Anon., 1992b) and updated by the
Working Group.

¹Preliminary.



FLEET ENGGFS_IV FLEET IBTS_Q1_I 3-3 + AGE O + AGE 0 2. 2-X AGE 1 X AGE 1 1 1 -🛛 AGE 2 AGE 2 Δ AGE 3 \triangle AGE 3 V AGE 4 -1 -1 **V** AGE 4 H AGE 5 -2 -2-🗄 AGE 5 ★ AGE 6 -3 -3. 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 Δ / ∇ = VALUE ABOVE/BELOW VISIBLE PART OF GRAPH Δ / ∇ = value above/below visible part of graph \square = UNDEFINED VALUE \square = UNDEFINED VALUE FLEET IBTS_Q2_S FLEET IBTS_Q4_E X X X M X M 3. 3-+ AGE 0 + AGE 1 2. 2. X AGE 1 X AGE 2 🛛 AGE 2 1 -🛛 AGE 3 ∆ AGE 3 0 V AGE 4 ∆ AGE 4 -1 -1 Ħ AGE 5 **∇** AGE 5 AGE 6 ₫ -2--2-⊞ AGE 6 ¥ AGE 7 -3 -3 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 Δ / ∇ = value above/below visible part of graph Δ / ∇ = VALUE ABOVE/BELOW VISIBLE PART OF GRAPH 🛛 = UNDEFINED VALUE \square = UNDEFINED VALUE

Figure 5.1.1 (Continued)

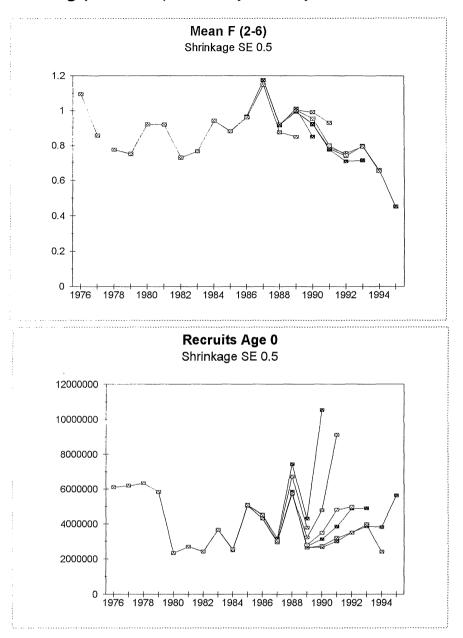
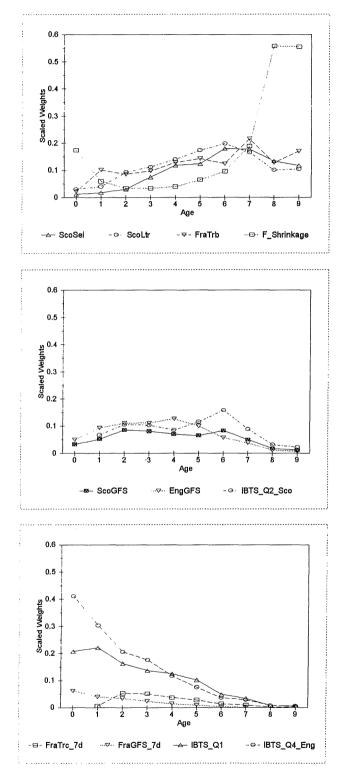
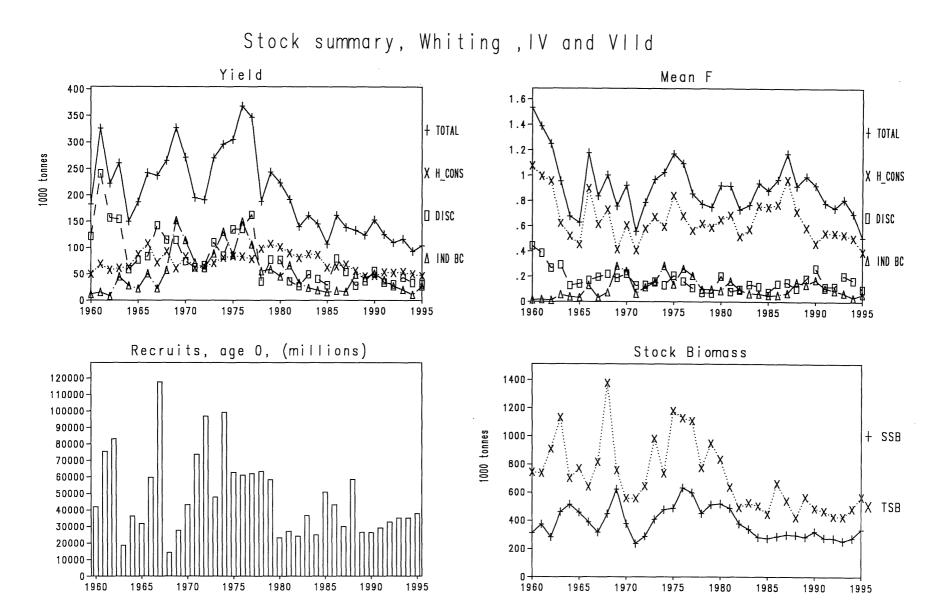
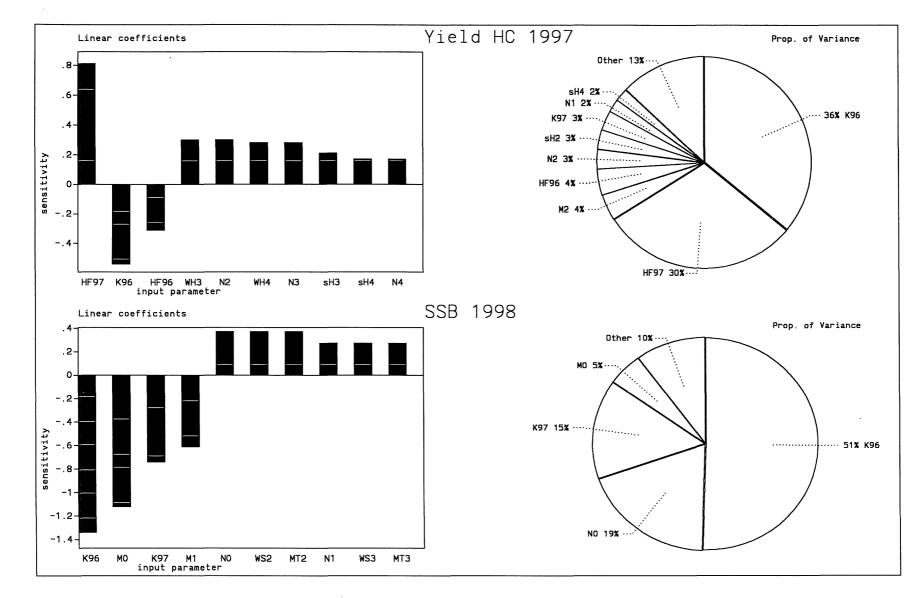

192

Figure 5.1.1 (Continued)



. 193


Figure 5.1.2



Whiting (IV & VIId) - retrospective patterns

Whiting in IV and VIId; Tuning fleets contribution to Survivors estimates by age (scaled weights in weighted average prediction)

Figure 5.1.5 Whiting, North Sea and VIId. Sensitivity analysis of short term forecast.

197

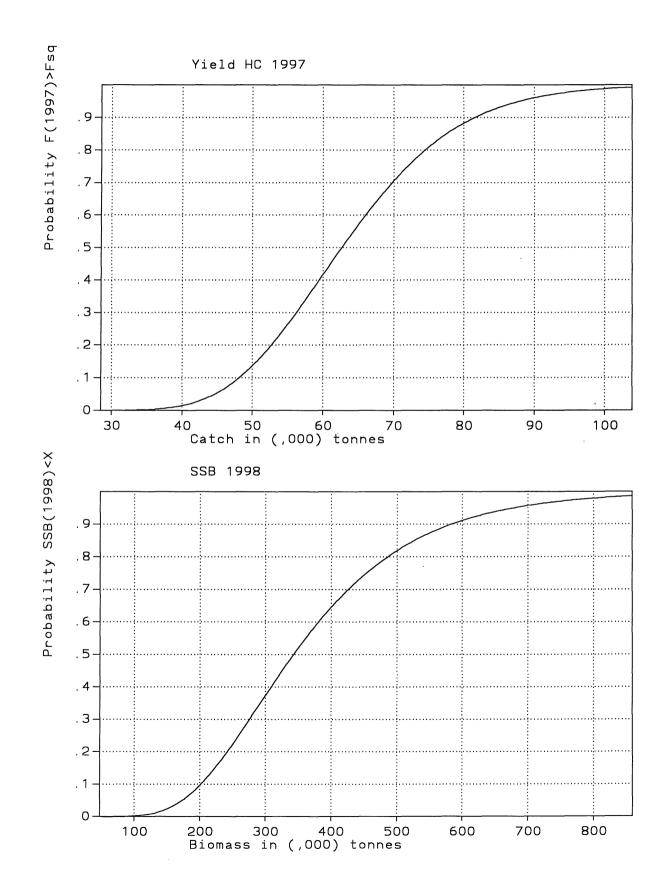
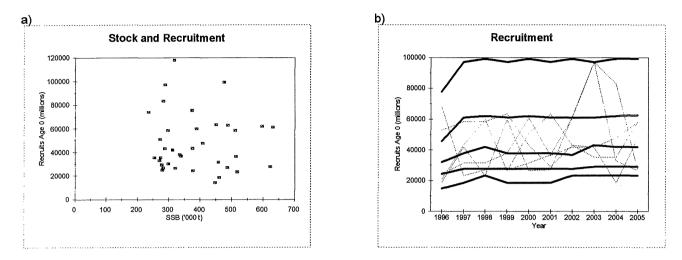
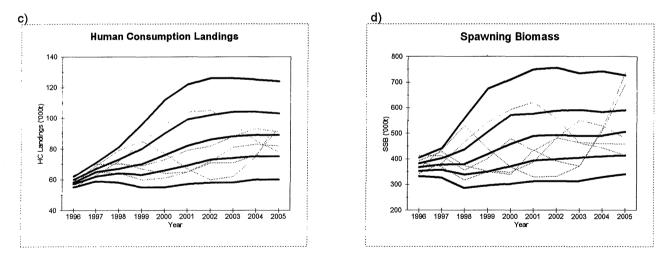
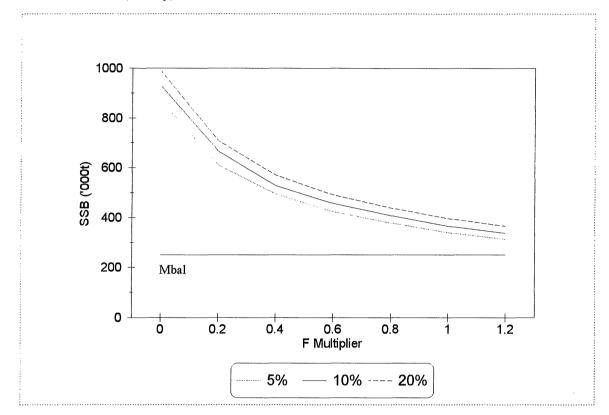



Figure 5.1.6 Whiting, North Sea and VIId. Probability profiles for short term forecast.


Whiting in IV and VIId. Medium term predictions.

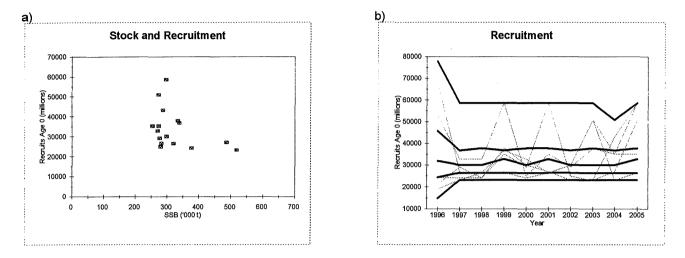
a) stock and recruitment (bootstrapped in simulations)

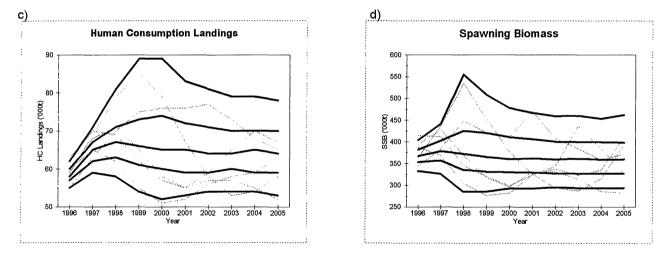
b) percentiles of recruitment

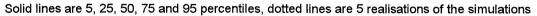

c) percentiles of human consumption landings at status quo F in the human consumption fishery d) percentiles of spawning biomass at status quo F in the human consumption fishery

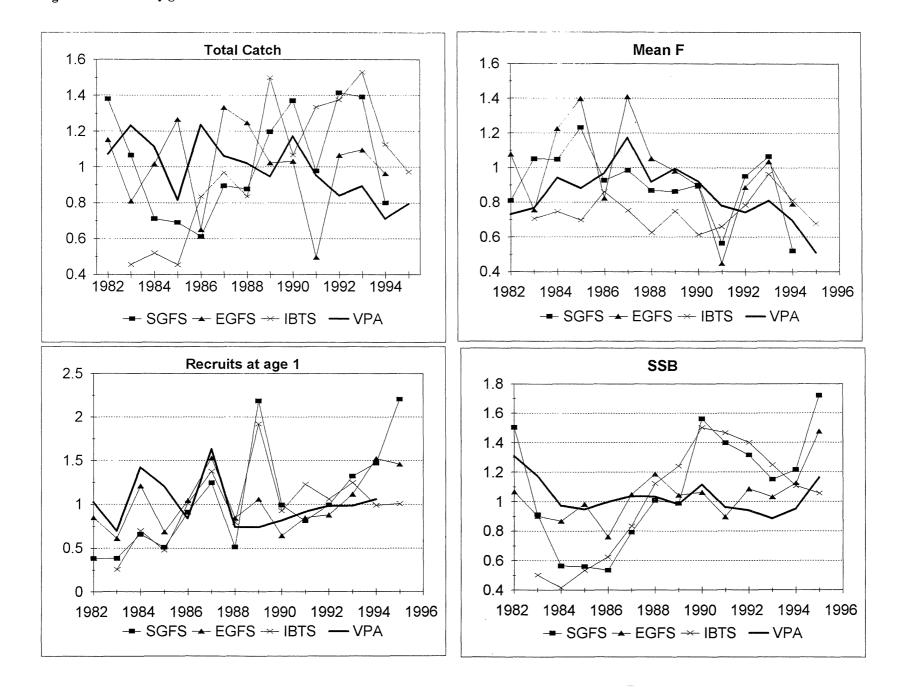
Solid lines are 5, 25, 50, 75 and 95 percentiles, dotted lines are 5 realisations of the simulations

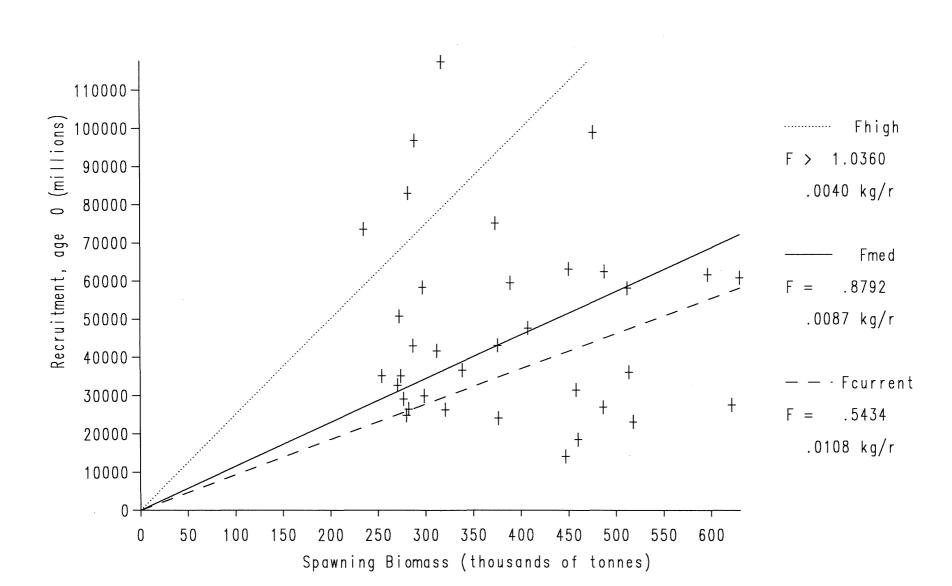
Figure 5.1.8


Whiting in IV and VIId. Medium term predictions.

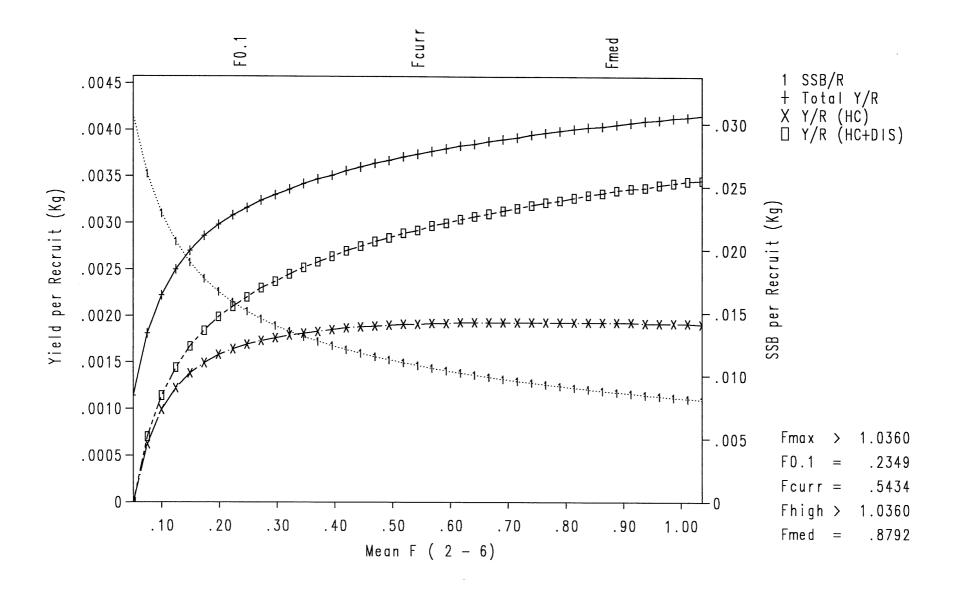

Percentiles of spawning biomass after 10 years for varying F multipliers of the human consumption fishery Percentiles of Prob(SSB<y) are shown. See Section 16.1.


Whiting in IV and VIId. Medium term predictions.


a) stock and recruitment (bootstrapped in simulations)b) percentiles of recruitment



c) percentiles of human consumption landings at status quo F in the human consumption fishery d) percentiles of spawning biomass at status quo F in the human consumption fishery



IV and VIId Whiting: Stock and Recruitment

.