## REPORT OF THE

# NORTH WESTERN WORKING GROUP 

ICES Headquarters, Copenhagen, Denmark

1-8 May 1996

## Part 1 of 2

This report is not to be quoted without prior consultation with the General Secretary. The document is a report of an expert group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.

International Council for the Exploration of the Sea
Conseil International pour l'Exploration de la Mer

Palægade 2-4 DK-1261 Copenhagen K Denmark

## TABLE OF CONTENTS

1 INTRODUCTION ..... 1
1.1 Participants ..... 1
1.2 Terms of Reference. ..... 1
2 DEMERSAL STOCKS IN THE FAROE AREA (DIVISIONS Vb AND IIa) ..... 2
2.1 General Trends in Demersal Fisheries in the Faroe Area ..... 2
2.1.1 Revised management system ..... 2
2.2 Faroe Plateau Cod ..... 3
2.2.1 Trends in landings. ..... 3
2.2.2 Catch-at-age ..... 3
2.2.3 Mean weight-at-age. ..... 3
2.2.4 Maturity-at-age ..... 4
2.2.5 Groundfish surveys ..... 4
2.2.6 Stock assessment .....
2.2.6.1 Tuning and estimates of fishing mortality ..... 4
2.2.6.2 Stock estimates and recruitment. ..... 6
2.2.7 Predictions of catch and biomass ..... 6
2.2.7.1 Short-term prediction ..... 6
2.2.7.2 Medium-term prediction model and input data ..... 7
2.2.7.3 Minimum biological acceptable level (MBAL) ..... 7
2.2.7.4 Long-term prediction ..... 7
2.2.8 Management considerations ..... 7
2.2.9 Comments on the assessment ..... 7
2.3 Faroe Bank Cod ..... 8
2.3.1 Trends in landings and effort ..... 8
2.3.2 Stock assessment ..... 8
2.3.3 Management considerations ..... 9
2.4 Faroe Haddock ..... 9
2.4.1 Landings and trends in the fishery ..... 9
2.4.2 Catch at age ..... 10
2.4.3 Weight at age ..... 10
2.4.4 Maturity at age ..... 10
2.4.5 Assessment ..... 10
2.4.5.1 Tuning and estimates of fishing mortality ..... 10
2.4.5.2 Stock estimates and recruitment. ..... 11
2.4.6 Prediction of catch and biomass. ..... 11
2.4.6.1 Input data ..... 11
2.4.6.1.1 Short-term prediction ..... 11
2.4.6.1.2 Medium-term prediction ..... 12
2.4.6.1.3 Long-term Prediction ..... 12
2.4.6.2 Biological reference points ..... 12
2.4.6.3 Projections of catch and biomass ..... 12
2.4.6.3.1 Short-term prediction ..... 12
2.4.6.3.2 Medium-term prediction ..... 12
2.4.7 MBAL ..... 13
2.4.8 Management considerations ..... 13
2.5 Faroe Saithe ..... 13
2.5.1 Landings and trends in the fishery ..... 13
2.5.2 Catch at age ..... 14
2.5.3 Weight at age ..... 14
2.5.4 Maturity at age ..... 14
2.5.5 Stock assessment. ..... 14
2.5.5.1 Tuning and estimation of fishing mortality ..... 14
2.5.5.2 Stock estimates and recruitment ..... 15
2.5.6 Prediction of catch and biomass ..... 15
2.5.6.1 Input data ..... 15
2.5.6.2 Biological reference points ..... 16
2.5.6.3 Projection of catch and biomass ..... 16
2.5.7 Management considerations ..... 16
2.5.8 Comments on the assessment ..... 16
3 DEMERSAL STOCKS AT ICELAND (DIVISION VA) ..... 17
3.1 Regulation of Demersal Fisheries ..... 17
3.2 Icelandic Saithe ..... 17
3.2.1 Trends in landings ..... 17
3.2.2 Catch in numbers ..... 18
3.2.3 Mean weight at age in the landings ..... 18
3.2.4 Maturity at age in the landings ..... 18
3.2.5 Stock Assessment. ..... 18
3.2.5.1 Tuning input. ..... 18
3.2.5.2 Estimates of fishing mortality ..... 18
3.2.5.3 Spawning stock and recruitment ..... 19
3.2.6 Prediction of catch and biomass ..... 19
3.2.6.1 Input data ..... 19
3.2.6.2 Biological reference points ..... 20
3.2.6.3 Projections of catch and biomass ..... 20
3.2.7 Management considerations ..... 20
3.2.8 Comments on the assessment ..... 20
3.3 Icelandic cod (Division Va) ..... 20
3.3.1 Groundfish survey design ..... 20
3.3.2 Trends in landings and effort ..... 21
3.3.3 Catch in numbers at age ..... 21
3.3.4 Mean weight at age ..... 22
3.3.4.1 Mean weight at age in the landings. ..... 22
3.3.4.2 Mean weight at age in the stock ..... 22
3.3.4.3 Mean weight at age in the spawning stock ..... 22
3.3.5 Maturity at age ..... 22
3.3.6 Stock Assessment ..... 23
3.3.6.1 Tuning data ..... 23
3.3.6.2 Assessment methods ..... 23
3.3.6.3 Estimates of fishing mortality ..... 24
3.3.6.4 Stock and recruitment estimates. ..... 24
3.3.7 Biological and technical interactions ..... 24
3.3.8 Prediction of catch and biomass ..... 25
3.3.8.1 Input data to the short-term prediction ..... 25
3.3.8.2 Input data to the long-term prediction ..... 25
3.3.8.3 Recruitment ..... 25
3.3.8.4 Short term prediction results ..... 25
3.3.8.5 Long-term prediction results and biological reference points ..... 26
3.3.9 Management considerations ..... 26
3.3.10 Comments on the assessment ..... 26
4 THE COD STOCK COMPLEX IN GREENLAND (NAFO SUB-AREA 1 AND ICES SUB-AREA XIV) AND ICELANDIC WATERS (DIVISION Va) ..... 27
4.1 Inter-relationship Between the Cod Stocks in the Greenland-Iceland Area ..... 27
5 COD STOCKS IN THE GREENLAND AREA (NAFO AREA 1 AND ICES SUBDIVISION XIVB). ..... 27
5.1 Cod off Greenland (offshore component) ..... 27
5.1.1 Results of the German groundfish survey ..... 27
5.1.1.1 Stock abundance indices ..... 28
5.1.1.2 Age composition ..... 28
5.1.1.3 Mean weight at age ..... 28
5.1.2 Trends in landings and fisheries ..... 28
5.1.3 Catches in numbers ..... 29
5.1.4 Mean weight-at-age ..... 29
5.1.5 Natural mortality ..... 29
5.1.6 Maturity-at-age ..... 29
5.1.7 Assessment ..... 30
5.1.7.1 Tuning and estimates of terminal fishing mortality ..... 30
5.1.7.2 Assessment of the historical stock status, fishing mortality and recruitment ..... 30
5.1.8 Determination of MBAL ..... 30
5.1.9 Management consideration ..... 31
5.1.10 Comments on the assessments ..... 31
5.2 Inshore cod stock off Greenland ..... 31
5.2.1 Trends in Catch and Effort ..... 31
5.2.2 West Greenland young cod survey ..... 32
5.2.3 Catch in numbers ..... 32
5.2.4 Management Considerations ..... 32
6 GREENLAND HALIBUT IN SUB-AREAS V AND XIV ..... 32
6.1 Trends in Landings and Fisheries ..... 32
6.2 Trends in Effort and CPUE ..... 33
6.3 Catch in Numbers at Age ..... 33
6.4 Weight at Age ..... 34
6.5 Maturity at Age ..... 34
6.6 Stock Assessment ..... 34
6.6.1 Tuning and estimates of fishing mortalities ..... 34
6.6.2 Spawning stock and recruitment ..... 34
6.7 Prediction of Catch and Biomass ..... 35
6.7.1 Input data ..... 35
6.7.2 Biological reference points ..... 35
6.7.3 Projections of catch and biomass ..... 35
6.8 Management Considerations ..... 35
6.9 Comments on the Assessment ..... 36
7 REDFISH IN SUB-AREAS V, VI, XII AND XIV ..... 36
7.1 Species and Stock Identification ..... 36
7.2 Nominal Catches and Splitting of the Landings in Stocks ..... 37
7.2.1 Nominal catches of Redfish by countries and areas ..... 37
7.2.2 Splitting of the catches ..... 38
7.2.3 CPUE ..... 39
7.3 Juvenile Redfish ..... 39
7.3.1 Recruitment indices ..... 39
7.3.1.1 Icelandic 0 -group survey ..... 39
7.3.1.2 Icelandic Groundfish survey ..... 40
7.3.1.3 German Groundfish Survey ..... 40
7.3.1.4 Greenland Trawl Survey ..... 40
7.3.2 Discards of redfish in East- and West Greenland ..... 40
7.3.3 Regulations of small redfish at East- and West Greenland ..... 41
7.4 Age-based production model ..... 41
8 SEBASTES MARINUS ..... 42
8.1 Landings and Trends in the Fisheries ..... 42
8.2 Assessment ..... 43
8.2.1 Trends in CPUE and survey indices ..... 43
8.2.2 State of the stock and catch projections ..... 44
8.2.3 Stock trajectories for Sebastes marinus using the age-based production model. ..... 45
8.2.4 MBAL ..... 45
8.2.5 Management considerations ..... 46
9 DEEP-SEA SEBASTES MENTELLA ..... 46
9.1 Landings and Trends in the Fisheries ..... 46
9.2 Assessment ..... 47
9.2.1 Trends in CPUE and survey indices ..... 47
9.2.2 State of the stock and catch projections ..... 48
9.3 MBAL ..... 48
9.4 Management Considerations ..... 48
10 OCEANIC SEBASTES MENTELLA, ..... 48
10.1 Fishery on oceanic S.mentella. ..... 48
10.1.1 Historical development of the fishery ..... 48
10.1.2 Brief description of the various fleets in 1995 ..... 49
10.1.3 Landings and Trends in the Fishery on Oceanic S. mentella ..... 49
10.2 Assessment. ..... 49
10.2.1 Acoustic assessment ..... 49
10.2.2 Ichthyoplankton assessment. ..... 50
10.3 Some new biological information concerning the oceanic redfish distribution ..... 50
10.4 Stock and catch trajectories for oceanic Sebastes mentella ..... 51
10.5 Management considerations ..... 53
11 REFERENCES ..... 54
12 WORKING DOCUMENTS ..... 55
Tables 2.2.1-10.4.1 ..... 57
Figures 2.2.1-10.4.4 ..... 290

### 1.1 Participants

| J. Boje | Greenland |
| :--- | :--- |
| J.S. Campbell | Canada |
| J.J. Engelstoft | Greenland |
| A.C. Gundersen | Norway |
| E. Hjørleifsson | Iceland |
| A. Kristiansen | Faroe Islands |
| J.J. Maguire | Faroe Islands |
| K.H. Nedreaas | Norway |
| A. Nicholajsen | Faroe Islands |
| H.J. Rätz | Germany |
| J. Reinert (Chairman) | Faroe Islands |
| S.A. Schopka | Iceland |
| V.N. Shibanov | Russia |
| T. Sigurdsson | Iceland |
| B. Steinarsson | Iceland |
| R. Vilhelm | Faroe Islands |

### 1.2 Terms of Reference

The North Western Working Group (Chairman: J. Reinert, Faroe Islands) met at ICES Headquarters from 1-8 May 1996 to:
a) assess the status of and provide catch options for 1997 for the combined Greenland/Icelandic cod stock;
b) assess the status of and provide catch options for 1997 for the stocks of redfish in Sub-areas V, VI, XII, and XIV, Greenland halibut in Subareas V and XIV, saithe in Division Va and Division Vb, and cod and haddock in Division Vb;
c) provide estimates of the biologically acceptable level of spawning stock biomass (MBAL) for as many stocks as possible, with an explanation of the basis on which the estimates are obtained;
d) prepare medium-term forecasts under different management scenarios, taking into account uncertainties in data and assessments and possible stock-recruitment relationships, and indicate the associated probability of the stocks falling or remaining below within a stated time period;
e) provide a detailed description of the various fleets (i.e. gears, seasons, main fishing grounds, and main species) and, where possible, provide the landings, selection parameters, and annual mortalities by fleet and species;
f) update information on the stock identity, migration, spawning areas and state of exploitation of the oceanic stock of Sebastes mentella, paying particular attention to the question of whether the assessment based on acoustic and catch data represents the total exploitable stock taking into account the latest survey data;

Since the above terms of reference were decided, ICES have received the official request for advice from the North-East Atlantic Fisheries Commission. In addition to their standard requests which are addressed in the above terms of reference, the Commission has made additional requests which necessitate adding new items to the terms of reference. ACFM have therefore decided to ask the Working Group to:
g) provide information on the relationship between pelagic "deep sea" Sebastes mentella the $S$. mentella fished in demersal fisheries on the continental shelf and slope;
h) evaluate the medium-term consequences of an adaptive harvesting strategy, based on a constant annual catch within each 5 year period, set at a level required to obtain sustainable yields of "Oceanic" S. mentella and "deep sea" S. mentella.

### 2.1 General Trends in Demersal Fisheries in the Faroe Area

Tables 2.1.1 to 2.1.3 show the yields of cod, haddock and saithe for Faroese fleet categories. The fishery at the Faroes may be considered a multi-fleet and multi-species fishery. The catches of cod have been very low in recent years but in 1995 all fleet categories increased theirs catches. The cod catches increase by 10,000 tonnes (gutted weight) in 1995. The haddock remain at low level as in previous years and the saithe catches declined to 25,000 tonnes. In 1995 several fleets increased theirs effort (Table 2.1.4).

In 1977 an EEZ was introduced in the Faroe area, (Figure 2.1.1). The demersal fishery by foreign nations have since decreased. The fishing mortalities on cod has remained at a high level. For saithe there has been a substantial increase in the fishing mortalities. This is mainly due to the investment in pair trawlers.

During the 1980s the Faroese authorities have attempted to regulate the fishery and the investment in fishing vessels. In 1987 a system of fishing licenses was introduced. The fishery also has been regulated by technical means such as legislation on the mesh size, closed areas, import ban on fishing vessels and a programme of buying back fishing licenses. Mesh size regulations and closed areas are still enforced.

In March 1994 the Faroese Parliament passed a law on the regulation of fisheries within the EEZ. This law introduces quotas for 5 demersal stocks including the Faroe Plateau and the Faroe Bank Cod, Faroe Haddock, Faroe Saithe and redfish. The quotas are allocated to each fleet category by percentage of the total quota and then equally divided between all vessels in each category.

The quota year starts 1 September and ends 31 August the following year. The quota for Faroe Plateau cod for 1995/96 was at the first set to 12,500 tonnes, raised to 18,500 tonnes in November 1995 and then raised to more than 21,250 tonnes in April 1996 together with the opportunities for the authorities to give by catch quotas. The haddock quota has been set at 12,600 tonnes, the saithe quota at 40,950 tonnes and the quota for redfish at 11,550 tonnes. The cod quota at Faroe Bank is 1050 tonnes.

### 2.1.1 Revised management system

The catch quota management system introduced in the Faroese fisheries in 1994 has been met with considerable criticism and it has resulted in at least some fleets misreporting substantial portions of their catches. As a result of the dissatisfaction with the catch quota management system, the Faroese Parliament has adopted a law stipulating that the system would end as of May 31, 1996. In addition, the Faroese government has developed, in close cooperation with the fishing industry, a new system based on individual transferable effort quotas in days. The new system has been submitted to the Parliament for approval. If approved by the Parliament, the effort quota system would enter into force on 1 June 1996.

The individual transferable effort quotas apply to 1) the longliners less than 100 GRT and the jiggers, 2) the single trawlers less than $400 \mathrm{HP}, 3$ ) the pair trawlers and 4) the longliners greater than 100 GRT. The single trawlers $400-1000 \mathrm{HP}$ and greater than 1000 do not have effort limitations, but they are not allowed to fish within the 12 n . miles limit and the areas closed to them as well to the pairtrawlers have increased in area and time. Their harvest of cod and haddock will be limited by maximum by-catch allocation. The single trawlers < 400 HP are given special licenses to fish inside 12 n . miles with a by-catch allocation of $30 \%$ cod and $10 \%$ haddock. Holders of individual transferable effort quotas who fish outside of an area where cod and haddock are normally found can fish 3 days for each day allocated within the area of cod and haddock distribution. One fishing days by longliners less than 100 GRT is considered equivalent to two fishing days for jiggers in the same gear category. Therefore longliners less than 100 GRT could double their allocation by converting to jigging.

The effort quotas are transferable within gear categories but not between gears. The allocation of number of days by gear categories has been made such that the fixed allocation of catches in tons under the present management regime are expected to be maintained.

The number of days fished by gear category since 1985, the average for 1990-1995 and the proposed number of days by category for 1996 are presented in Table 2.1.5.

### 2.2.1 Trends in landings

The nominal landings of cod (1985-1995) from the Faroe Plateau by nations as officially reported to ICES, are given in Table 2.2.1. The relatively high recruitment in 1980-1983 maintained the good fishery for cod from 1983 to 1986 when the catches reached almost $40,000 \mathrm{t}$. The catches have steadily decreased afterwards to the point where only 6,000 tonnes were taken in 1993. This was the lowest catch on record. In 1995 the officially reported catches increased to $19,800 \mathrm{t}$. Preliminary information from the fishery during the first months of 1996 indicate further increase in the catches. Figure 2.2.12 A shows the landings of Faroe Plateau cod for 1961 to 1995.

In recent years, statistics for the Faroese fishery in that part of Sub-division IIa (Figure 2.1.1) which is within the Faroese EEZ, have become available. It is expected that these catches are taken from the Faroe Plateau area so they are included in the total catches used in the assessment. This is depicted in Table 2.2.2 under the row labelled "Total used in the assessment". No information on the Faroese catches in IIa were available for 19931995, however. The French catches of Faroe Plateau cod in 1989 and 1990 as reported to the Faroese authorities are also included

The fishery for Faroe Plateau cod has been considerable better in 1995 than in previous years. Due to the low individual quotas compared to the catch rates, substantial misreporting and discard is expected to have taken place. Informal information from the fishing industry indicate a misreported quantity in 1995 in the order of 3,000 tonnes (gutted weight) and the working group used this information in the assessment of the Faroe Plateau cod. The misreported catches are added to the officially reported catches as $3,330 \mathrm{t}$ nominal weight, Table 2.2.2

During the last 15 years, the Faroe Plateau Cod has almost entirely been exploited by the Faroese fishing fleet. Table 2.1.1 and Table 2.2.3 show the landings disaggregated between the most important fleet categories. In recent years, the long liners and the pair trawlers have taken most of the catches. The long liners, at least those lesser than 100 GRT, have a directed fishery for cod during the entire year while the pair trawlers take cod mainly as by-catch in the saithe fishery.

Figure 2.2.1 shows the catch rates per day from 1985 to 1995 for the long liners, trawlers and jiggers. The catch rates have steadily decreased until 1992 while in the most recent years an increase is seen. Preliminary information from the fishery during the first months of 1996, indicates higher catch rates than in the same period in recent years.

### 2.2.2 Catch-at-age

Catch in numbers-at-age in 1995 is provided for the Faroese fishery in Table 2.2.4. Faroese landings from most of the fleet categories were sampled. The catch-in-numbers for the fleets covered by the sampling scheme were calculated from the age composition in each fleet category and raised by their respective catches. Catch-innumbers for the catches taken by Norway were raised using the age composition of the long liners > 100 GRT. Catch-in-numbers for the other fleets fishing cod on the Faroe Plateau were raised using the overall Faroese age composition. The catch-at-age in number in recent years was revised according to the updated fishery statistics.

### 2.2.3 Mean weight-at-age

Mean weight-at-age data for 1995 are provided for the Faroese fishery in Table 2.2.5. These were calculated using the length/weight relationship based on individual length/weight measurements of samples from the landings. The sum-of-products-check for 1995 showed a discrepancy of $1 \%$.

Figure 2.2.2 shows the mean weight-at-age for 1978 to 1995 . Since 1991 an increasing trend in the growth rates has been observed. Information on the mean weight-at-age in the 1st quarter in 1996 do not show an increasing trend compared to the same period in the years before (Figure 2.2.3).

### 2.2.4 Maturity-at-age

The proportion of mature cod by age are given in Table 2.2.6 and shown in Figure 2.2.4. Data are available back to 1983 . The data were obtained during the Faroese groundfish surveys carried out in the spawning period (March). For the years prior to 1983 a knife-edge maturity ogive has been used in the past. In this year's assessment the average maturity at age for 1983 to 1996 were used for the years prior to 1983. The data files were revised accordingly.

Considerable changes have been observed in the proportion mature at age between years. In 1994 the proportion increase for most of the ages, particularly for age groups 2,3 and 4 . The working group considered smoothing of the data by using running averages rather than the observed estimates (Figure 2.2.4). Comparisons of the spawning stock size calculated by using the smoothed values instead of the observed did not reveal any substantial changes in the spawning stock size with exception in 1994 and 1995 (Figure 2.2.5). Therefore it was decided to continue to use the observed proportion mature for the years 1983 to 1996 as in previous years.

### 2.2.5 Groundfish surveys

The groundfish surveys in Faroese waters were initiated in 1983 and the research vessel Magnus Heinason has been used in the survey each year. Up to 1991 three cruises each year, with approximately 50 trawl stations in each cruise, have been conducted between February and the end of March. In 1992 the period was shortend by dropping the first cruise. Random stratified sampling based on depth stratification and on general knowledge of the distribution of fish in the area has been used to select the trawl stations. In 1992 one third of the 1991stations were used as fixed stations. Since 1993 all stations were fixed stations. The standard abundance estimates is the stratified mean catch per hour calculated using smoothed age/length keys.

The overall mean catch (kg) of cod per unit effort (trawl hour) 1982-1996 is given in Figure 2.2.6. In the recent two years the cod CPUE have increased substantially. The stratified mean catch per trawl hour by age groups 2 to 7 are shown in Figure 2.2.7. The indices for all age groups have increased in the two last years. The increase in 1995 may be due to increased availability because the abundance of all ages increases compared to 1994.

After the meeting of North-Western Working Group in May 1995 some coding errors have been discovered in the survey database. These are now corrected and survey abundance estimates have been revised.

### 2.2.6 Stock assessment

### 2.2.6.1 Tuning and estimates of fishing mortality

Eight catch and effort series were available for tuning of the VPA. One series is derived from the annual Faroese groundfish survey (Table 2.2.7). The estimates of stratified catches in number by age groups per unit time are used as the surveys represented one fleet with constant effort for all the years in the tuning process. To use the results from the survey in 1996 in the assessment the results each year were shifted back in time by approximately three months.

The other catch and effort series available are obtained from long liners and trawlers (Table 2.2.8-Table 2.2.14). The series consist of catch-at-age in numbers and the corresponding effort estimated as number of days at sea. Catches are broken down using the age composition from the sampling of the corresponding fleet categories. No attempt has been made to select those trips where the cod catches exceeded a certain percentage of the total catches.. The same series were also available to the North Western Working Group in 1995.

In the 1995 report of the North-Western Working Group, the tuning data series were analysed in depth and the same analysis is not performed this year. Following the findings of the 1995 North-Western Working Group neither the pairtrawlers series nor the single trawlers $>1000 \mathrm{HP}$ are used for the assessment, age group 2 are removed from all of the commercial series and age group 3 for the single trawlers 400-1000 HP. The decision not to use these series was based on trends in the catchabilities.

One of the series used in the previous assessments of Faroe Plateau cod was the longliners < 100 GRT. They have usually caught 25 percent of the total cod catches (Table 2.2.3) on average but in recent years their share has dropped. It has been pointed out that this category may have changed their activity in recent years due to the
low CPUE and partly due to the influence of changed management rules. This series was not used in the assessment as done by ACFM in the autumn of 1995.

In addition the series by the single trawlers $<400 \mathrm{HP}$ is questionable because their fishing possibilities have been influenced by special management rules for this category only. These have been given special licenses for trawl fishery inside the 12 nautical miles zone during part of the year and different closed areas outside 12 n . mile, mainly to reduce their catches of cod. Also in the quota management system for the last two years this fleet has been given conditions that may affect the usefulness of the series in the Faroe Plateau cod assessment.

The remaining fleets are not expected to have been affected by misreporting of catches to any degree and the tuning data are not adjusted for misreporting in 1995.

In the autumn of 1995, ACFM concluded that the 1995 survey results for Faroe Plateau cod should be considered as outliers based on a multiplicative analysis of the survey results (Cook 1995). The Working Group attempted replicated the analysis with the same data and including values for 1996. The results shown in Figure 2.2.16 indicate that the 1995 and 1996 survey results should be considered as outliers.

In order to further evaluate whether the survey series could be used as a consistent index of stock size for 1983 to 1996, a series of ADAPT calibrations were done for 9 periods of 5 years of catch at age data, 1983 to 1987, 1984 to 1988 and 1991 to 1995 using only the survey results as indices of stock size. The survey results for the year following the last year of catch data were used in the calibration, i.e. the 1988 survey results were used for the 1983 to 1987 calibration, and the 1996 results in the 1991 to 1995 calibration. The ADAPT formulation used minimized the sum of squares between the natural $\log$ of predicted stock size indices and the natural $\log$ of observed stock size indices assuming that the two quantities are related by a linear relationship. The predicted indices are calculated as $\mathrm{k} . \mathrm{N}$ by age where k are age specific calibration coefficient and N are the VPA numbers. The inverse of $k,(1 / k)$, can be seen as the factor by which the survey indices should be multiplied to obtain the VPA numbers, and this factor would be expected to be reasonably stable over time if the survey is to be used as a consistent index of stock size over the time period. The results of the calibrations are presented in Table 2.2.15 and Figure 2.2.8.

Except for age 2, the inverse of k can be considered to be relatively stable over the period studied except for the last one, 1991 to 1995 due to the 1995 and 1996 results. This suggests that "availability" to the survey would have increased considerably for all ages compared with previous years. Based on these results and on the multiplicative analyses presented to ACFM last year, the Working Group concluded that the substantially increased survey indices in 1995 and 1996 likely reflect increased availability of cod and therefore the survey results should not be used in the calibrations. Therefore, only the longliners greater than 100 GRT and the single trawlers 400 to 999 GRT were used in the ESA calibrations reported below as the other indices previously used, the small longliners and the large trawlers appeared to suffer from trends in catchabilities over time.

Fishing for cod on Faroe Plateau in 1995 and in the first part of 1996 has been very successful and it is possible that the commercial indices of stock size used in the calibrations have also been affected by increased availability. The increase in CPUE for these fleets is less than that for the surveys, and it is possible that the increased availability would be particularly high during spawning time, when the survey is conducted. If the commercial indices were also rejected, there would be no basis to conduct a calibrated VPA assessment. The Working Group therefore went ahead with the calibrations using the two commercial indices, bearing in mind that availability might also have increased for these gear types.

The final assessment was done by using the XSA method assuming the catchability of age groups $<3$ years being dependent of year class strength, the catchability being independent of age for age groups 6 and older, using shrinkage of s.e. $=0.5$ and survivors estimates shrunk towards the mean $F$ of the final 5 years or the 5 oldest ages.

The residuals of log catchabilities are shown in Figure 2.2.9. The results from the retrospective analysis of the XSA (Figure 2.2.10) show that including the 1995 point has a large influence on the results of the assessments.

Figure 2.2 .11 shows that using XSA or ADAPT gives almost the same results regarding the fishing mortality, the spawning stock size and the recruitment

The estimates of the fishing mortalities derived from the XSA tuning process and the diagnostics information are given in Table 2.2.16. The s.e. of $\log q$ are quite high, but at the same level as the accepted final XSA run last year.

The estimated fishing mortalities are shown in Table 2.2.17 and in Figure 2.2.12.A. The average $F$ for age groups 3 to 7 in $1995\left(F_{(3-7)}\right)$ is estimated at 0.56 compared to $F_{(3-7)}=0.32$ in 1994. The average fishing mortality is far above $\mathrm{F}_{\text {max }}$. $\left(\mathrm{F}_{\text {max }}=0.38\right)$.

### 2.2.6.2 Stock estimates and recruitment

The stock size in numbers is given in Table 2.2.18. A summary of the VPA, with recruitment set at 2 years old, and biomass estimates are given in Table 2.2.19 and in Figure 2.2.12.B. The stock-recruitment relationship is presented in Figure 2.2.13.

The assessment confirms the poor recruitment observed in the Faroe Plateau cod stock for the 1984 to 1991 year classes. Due to this continuous poor recruitment and the high fishing mortalities, the spawning stock biomass has steadily declined from 1983 to 1992 when it was lowest on record at $17,000 \mathrm{t}$. In 1994 it increased sharply to $55,000 \mathrm{t}$ from $26,000 \mathrm{t}$ in 1993. The increase is partly due to a very high proportion of mature for ages 2 and 3 (Table 2.2.6) and an incoming year class (1992) larger than all the previous ones. For 1995 it is estimated at the same level as in 1994. The assessment indicate the 1992 year class to be above the long term average level and the 1993 year class to be well above the same level.

### 2.2.7 Predictions of catch and biomass

### 2.2.7.1 Short-term prediction

In the short-term predictions the estimates of the year classes 1992 and older were used as they are estimated in the final VPA. The year classes 1993 to 1995 were predicted using the RCT3-program. As input for running RCT3, stratified mean catch-per-hour of age group 2 to 4 in the Faroese groundfish surveys were used as well as the index obtained from the annual 0 -group surveys at Faroes, Table 2.2.20. The output of the RCT3 prediction of the recruitment program is given in Table 2.2.21.

No data are available to estimate the 1996 year class. In recent years the recruitment to the Faroe Plateau cod stock has been poor although the data indicate better recruitment from the 1992 and the 1993 year classes. Based on this, the average of the 1984 to 1992 year classes, as estimated from VPA ( 9.7 millions at an age of 2), was used as input for the 1996 year class.

The input data for the short-term prediction are given in Table 2.2.23. The exploitation pattern in the short term prediction was the average level of F's in 1993-1995 rescaled to the level of F in 1995. A trend of an increase in the mean weight at age since 1991 was observed (Figure 2.2.2) but as mean weight at age data for JanuaryMarch 1986-1996 (Figure 2.2.3) do not indicate any further increase in the mean weights it was decided to use the most recent observed mean weights (from 1995) as input parameter for 1995 and for 1997 and 1998 the average of 1993-1995 was used. The proportion mature as seen in the Faroese groundfish surveys in 1996 was used for 1996 while for 1997 and 1998 the average of the maturity ogive for 1983 to 1996 was used.

Predictions based on two different assumptions regarding the fishing mortality in 1996 were done. The first was based on status quo F in 1996 compared to 1995. The results from this prediction are shown in Table 2.2.23, and in Figure 2.2.12 D. The spawning stock in 1996 and 1997 is estimated at $55,000 \mathrm{t}$, which is well above the spawning stock sizes in recent years. Keeping the fishing mortality in 1997 at the 1995 level will lead to a decrease in the spawning stock size. The catches in 1996 increase to 27,000 tonnes and to $29,000 \mathrm{t}$ in 1997 by keeping the fishing mortality at the 1995 level.

In addition a short-term prediction taken into account anticipated changes in the effort for cod in 1996 based on the new management scheme expected to be implemented 1 June was also done. (The changes are described in Section 2.1.1). At present it is not possible exactly to state the effect of the changes of management since it has not yet been approved by the Parliament. Taking into account that the effort quotas will be implemented from 1 June the number of fishing days in the proposal indicate a reduction of the effort by $23 \%$ compared to 1995 regarding the cod fishery, however. Therefore another prediction was made with F in 1996 derived as the 1995

F times 0.5 plus the 1995 F times 0.5 reduced by $23 \%$.. This gives an average fishing mortality in 1996 of 0.50 corresponding to a F factor in 1996 of 0.895 . Following this the catches are predicted slightly lower in 1996 and 1997 and the spawning stock slightly higher than in the status quo F prediction, Table 2.2.24.

### 2.2.7.2 Medium-term prediction model and input data

This required first fitting the Ricker stock-recruitment curve given in Figure 2.2.13. This relationship was used for the 1996 year class and onwards.

Simulations were then performed by assuming random (log normal) recruitment around the stock-recruitment relationship and (log normal) uncertainty in the current (1996) stock estimate. The catches taken each year were simply fixed at a specified level, although other management strategies could have been tested.

Results from the simulations are given in Figure 2.2.14. Simulations were done assuming a fixed catch quota of $20,000 \mathrm{t}$ and $25,000 \mathrm{t}$ each year, respectively.

It should be noted that one of the sources of problems in the assessments and predictions for this stock has been the change in mean weight-at-age. This uncertainty has not been taken into account in the simulations.

### 2.2.7.3 Minimum biological acceptable level (MBAL)

The stock-recruitment scatterplot (Figure 2.2.13) was examined to identify MBAL. There are no clear breaking point where the possibility of average or above average year-class is lower at lower SSB's. Although no strong year-class have been produced at SSB's lower than $70,000 \mathrm{t}$, the Working Group was not able to identify an MBAL.

### 2.2.7.4 Long-term prediction

The input data for the yield-per-recruit calculations (long-term predictions) are given in Table 2.2.25. The long term (1961-1995) exploitation pattern was used as input in the prediction. The Working Group furthermore inspected a prediction using a short term exploitation pattern (1993-1995) but since only small differences were obtained compared to the other one it was decided to use the long term exploitation pattern. As input for mean weight-at-age the average for 1978 to 1995 was used and for the proportion of mature-by-age groups, the average for the years 1983 to 1995 was used as input.

The output from the yield-per-recruit calculations is shown in Table 2.2.26. and in Figure 2.2.15 C. $\mathrm{F}_{0.1}$ and $\mathrm{F}_{\max }$ are calculated to be 0.17 and 0.38 , respectively. These values should be compared with the present average fishing mortality in 1995 of 0.56 . From Figure 2.2 .13 , showing the spawning stock biomass per recruit relationship, the values of $\mathrm{F}_{\text {med }}=0.47$ and $\mathrm{F}_{\text {high }}=1.25$ were estimated.

### 2.2.8 Management considerations

The new management system proposed by the Faroese government could reduce the fishing mortality on cod in 1996 by a maximum of about $23 \%$ if all the factors relating nominal fishing effort to fishing mortality were the same in 1996 as in 1995 except for the number of days fished. It is highly unlikely, however, that all factors will remain the same, and the decrease in fishing mortality will probably be less than $23 \%$. It is also possible that the fishing mortality will not decrease at all.

Management systems based on effort controls are expected to lead to overcapitalisation in the fishing fleets because fishing captains will want to maximise the catch they can harvest with the fishing effort allocation they have received. In the medium to long term, this process will lead to increased fishing efficiency of the fleets and it will be necessary to decrease the total number of fishing days available to be allocated in order not to exert excessive fishing mortality. In extreme cases, effort controls can lead to the fishery being open only for a few days per year as happened for Pacific Halibut in certain areas.

### 2.2.9 Comments on the assessment

ACFM, in October considered the increase in the 1995 survey index of the stock size to be an outlier. The analyses reported here support this conclusion and suggest that the 1996 survey index should also be considered an outlier. The assessment is based on two indices of stock size derived from the commercial fishery which may have been affected by management measures and technological changes.

The assessment of the Faroe Plateau cod presented in this report indicate that the stock size has increased substantially from its previous very low level. Some of this increase can be attributed to the average 1992 yearclass and the above average 1993 year-class, but the current assessment also shows several other year-classes as being more abundant than in the previous assessment. It is therefore possible that the increase is only apparent, perhaps as a result of increased availability. If this were the case, the existing fishing effort could exert very high fishing mortality.

### 2.3 Faroe Bank Cod

### 2.3.1 Trends in landings and effort

Total nominal landings of the Faroe Bank cod from 1985 to 1995 as officially reported to ICES are given in Table 2.3.1. The catches reached a maximum of $5,000 \mathrm{t}$ in 1973. In recent years the catches have declined from $3,000 \mathrm{t}$ in 1987 to only 325 t in 1992. In 1994 the catches increased to 950 t and decreased to 675 t in 1995 ..

Due to the decreasing trend in the cod catches at Faroe Bank, ACFM in 1990 advised the Faroese authorities to close the Bank to all fishing. This advice was followed for depths shallower than 200 meters. In 1992 and 1993 long liners and jiggers were allowed to participate in an experimental fishery inside the 200 meter depth contour. The catches reported for 1992-1994, therefore, partly originate from the shallower parts of the Bank. For the quota year 1 September 1995 to 31 August 1996 a fixed quota of $1,050 t$ has been set.

### 2.3.2 Stock assessment

The available data for the Faroe Bank cod is not adequate to allow for a detailed analytical assessment of the stock, but the results of a tentative general production model are presented.

Figure 2.3 .1 shows catch per unit effort ( $\mathrm{kg} / \mathrm{day}$ ) of cod on the Faroe Bank for two categories of longliners. The CPUE declined after 1989 and have been at a low level in recent years.

The Faroese groundfish surveys covers waters on the Faroe Bank. Cod is mainly taken within the 200 m depth contour. The catches of cod per trawl hour in water shallower than 200 meter are shown in Figure 2.3.2. The CPUE declined from 220 kg in 1984 to only 25 kg in 1990. The index of stock size increases in recent years, reaching its highest value in 1996.

The length distributions in the long line fishery in 1 quarter 1994-1996 are shown in Figure 2.2.3. In 1994 the catches consisted of fish from 40 to 100 cm while in 1995 the catches mainly consisted of fish between 45-80 cm . In 1996 it consist of $40-50 \mathrm{~cm}$ and of fish between $65-80 \mathrm{~cm}$, age group 2 and 3 respectively.

A Schaefer general production model was fit to the Faroe Bank cod landings data using the research vessel survey results for 1984 to 1995 in $\mathrm{kg} / \mathrm{hour}$ as an index of stock biomass. The Schaefer model is defined by three parameters, the intrinsic rate of growth of the stock ( r ), the virgin biomass or carrying capacity ( k ) and the catchability coefficient (q). In addition, it is necessary to have an estimate of the initial biomass at the start of the time series in order to derive yearly estimates.

The model was fitted using Excel Solver to minimize the sum of squared residuals between the observed CPUE and the predicted CPUE where the predicted CPUE is:

$$
\text { CPUEpred }_{t}=B_{t} \cdot q
$$

and the biomass is:

$$
\mathrm{Bt}+\mathrm{l}=\mathrm{Bt}+(\mathrm{r} \cdot \mathrm{Bt} \cdot(1-\mathrm{Bt} / \mathrm{k}))-\mathrm{Ct}
$$

where C is catch.

Preliminary estimates of feasible catchability coefficients (q) were calculated by assuming that the average harvest rate for 1983 to 1995 was 0.6 and by dividing by the average fishing effort over the period, obtained by dividing the total catch by the CPUE. An initial estimate of $q=0.03$ was used. The virgin biomass (k) was constrained to be higher than the assumed initial biomass of 5,000 tons, $r$ was constrained to be between zero and one, while $q$ was constrained to be higher than 0.001 .

Initial guesses to start the calculations were $r=0.9, k=10,000 t, q=.03$ and initial biomass $=5,000 t$. Several minimizations, one parameter at a time, then two, three and finally four at a time were made until reasonably stable results were obtained.

The minimization was done for 1984 to 1995 with the initial biomass estimated for 1983. Landings, CPUE, predicted CPUE and the residuals are presented in Table 2.3 .2 while the equilibrium production curves with the transient points, the residuals vs CPUE and vs time and the CPUE observed and predicted versus time are shown in figure 2.3.4. The parameter estimates are given in the text table below:

| Virgin Biomass | Rate of increase | q | Init. Biomass |
| :---: | :---: | :---: | :---: |
| 11654 t. | .558 | .027 | 9294 |

MSY would be about $1,900 \mathrm{t}$ at a harvest rate of 0.35 . The results presented above should be used with caution as they are based on very limited data, several assumptions and that different minimizations may give different results. They nevertheless indicate that the current TAC of $1,000 \mathrm{t}$ for 1996 , if caught, could result in an exploitation rate in the order of .26 .

### 2.3.3 Management considerations

The data presented indicate that the stock appears to be increasing from its previous low abundance. However, similar to Faroe Plateau cod, it is not known if the increase in the survey is due to increase abundance or increased availability. Therefore, caution should continue to be exercised in order to rebuild the biomass to values which will produce good recruitment on a sustained basis.

### 2.4 Faroe Haddock

### 2.4.1 Landings and trends in the fishery

Officially reported catches of haddock from the Faroe Plateau increased from a low level of $10,000 \mathrm{t}$ in 1982 to $14,000 \mathrm{t}$ in 1987, but later decreased to a very low level in 1993 and 1994 below 4,000 t ; a slight increase to about $4,600 \mathrm{t}$ was noted for 1995 (Table 2.4.1). Officially reported catches for 1981-1992 from the Faroe Bank have varied between 500 and 1,600 t (on average 1,000 t), but dropped in 1993-1995 to 300-350 t . The closure of the fishery on the shallower parts of the Bank in 1990 and the introduction of a controlled fishery there since 1993, as described in section 2.1, reduced the Faroese catches (Table 2.4.2) whereas Scottish catches remained relatively high in 1990-92. However, in the assessment only the fraction of the Scottish catches which have been reported to the Faroese authorities are included. In addition, some minor French catches in Division Vb, reported to the Faroese authorities, and minor Faroese catches of haddock in ICES Sub-Division IIa4 close to the boundary with SubDivision Vbl (see Figure 2.1.5), are used in the assessment (Table 2.4.1).

Faroese vessels have taken almost the entire catch in recent years. Table 2.4 .3 shows the Faroese landings since 1985 and the proportion taken by each fleet category. Pair trawlers and longliners took most of the catches in these years and within these two groups the relative importance of the larger vessels has increased. Due to poor catches and poor economic conditions, the effort of most fleets has decreased during the most recent years with a slight increase in 1995 (Tables 2.1.4 and 2.4.8). In addition, the fishing ban on the cod spawning grounds before and during the spawning period of cod since 1992 (Section 2.1) has had an impact on the haddock fishery as well. The catch per unit effort for most fleets has declined drastically since the late 1980s. However, the decline for the long liners seems to have levelled off in 1993-95, while the CPUE for the trawler fleets has risen slightly during these years (Figures 2.4.1-2.4.3).

The 1995 monthly Faroese landings of haddock by fleet category from Sub-Divisions Vb 1 and Vb 2 , are shown on Figures 2.4.4-2.4.5. In both areas most of the catches are taken prior to and during the spawning season in the spring and in November/December. Due to fisheries regulations (see Section 2.1), the longliners take almost all the catch
on the Faroe Bank; on the Faroe Plateau the longliner catches are substantial except during the summer months when most of the longliners fish in deeper waters and/or outside the Faroese EEZ.. The longline fishery mostly targets both cod and haddock, while trawler catches of haddock in the most recent years must be regarded as a bycatch.

### 2.4.2 Catch at age

For the Faroese landings, catch-at-age data were provided for fish taken from the Faroe Plateau and the Faroe Bank. Data from the two areas were combined as the fish are believed to belong to the same stock.. Samples from each fleet category were disaggregated by season and then raised by the catch proportions to give the 1995 catch at age in numbers for each fleet (Table 2.4.4). Catches of some minor fleets have been included under the others heading. No catch-at-age data were available from other nations fishing in Faroese waters. Therefore, catches by UK trawlers were assumed to have the same age composition as Faroese otter board trawlers greater than 1000 HP . The Norwegian longliners were assumed to have the same age distribution as the Faroese longliners greater than 100 GRT. The most recent data were revised according to the final catch figures. The resulting total catch at age in numbers are given in Table 2.4.4 and Table 2.4.5.

### 2.4.3 Weight at age

Mean weight-at-age data are provided for the Faroese fishery (Table 2.4.6). The sum-of-products check for 1995 was 1.03. Figure 2.4 .6 shows that the mean weights-at-age for most age groups, which were declining since the mid-1980s, stabilized at a low level for 2-3 years and increased again in 1993-1995. The weights of the 2 and 3 year old seem to have stabilized, however. The growth by each of the 1975-1992 year classes (Figure 2.4.7) also show increased growth in these years. The increase in growth seems to continue in 1996 as the mean weights at age for the commercial landings in the first quarter of 1996 are considerably higher than the corresponding weights in the 1 st quarter of 1995 for all ages except the 2 and 3 years old.

### 2.4.4 Maturity at age

Maturity-at-age data were available from the Faroese Groundfish Surveys 1982-1996 (Table 2.4.7). The surveys are carried out in March-April, so the maturity at age is determined just prior to the spawning of haddock in Faroese waters and the determinations of the different maturity stages should be relatively easy. In order to reduce eventual year to year effects due to possible inadequate sampling and at the same time allow for trends in the series, a 3 year running average was used every year in the series. For the years prior to 1982, average maturity at age from the surveys 1982-1995 was adopted.

### 2.4.5 Assessment

### 2.4.5.1 Tuning and estimates of fishing mortality

Following numerous analyses of all available series of catch and effort data, it was decided at the 1995 meeting of the North Western Working Group to reduce the number of fleets to five and omit some years and ages from the series. The same revised fleets have been updated to include the 1995-data and are used for tuning of the VPA in this assessment. The trawl survey is carried out every year in February-March, so the results are available prior to the annual North Western Working Group meeting; the estimates of catches in numbers at age per trawl hour in the surveys are used as if they represented one fleet with the same effort for all the years in the tuning process. The commercial series consist of effort measured in number of fishing days and the corresponding catch at age in numbers for each fleet (Table 2.4.8).

Initially, two XSA runs based on these five fleets using default settings were made. In one case, the survey estimates in the spring 1986-95 were used, in the other the survey estimates 1986-96 were shifted back to the end of the year before. The retrospective patterns of the resulting fishing mortalities in each of these two runs (Figures 2.4.8-2.4.9) are almost identical, and it was decided to use the shifted survey series, because it contains more recent information. Two additional XSA runs (using the shifted survey), and shrunk 0.3 and 0.7 , respectively, did not show improved retrospective patterns compared to the one with default settings (Figures 2.4.10-2.4.11).

The diagnostics from the XSA are shown in Table 2.4.9, and a plot of the log catchability residuals for each of the five fleets is shown in Figure 2.4.12. In general, both the diagnostics and the residual plots show high CV's, and the
residual plots are more noisy and even with some trends compared to the plots in last years report when the fleets were analysed separately using Laurec-Shepherd ad hoc tuning. This could be an effect of some interactions between fleets. In addition, it should be noted that the 1995 survey estimates were revised after the North Western Working Group-meeting resulting in higher estimates for most ages (Maguire et al, 1995).

Additional XSA runs were done removing some of the fleets and ages from the tuning. When the small longliners were excluded, the XSA resulted in extremely low fishing mortalities, while removal of age 4 in the large longliners or the survey (partial or totally) did not change the fishing mortality level substantially. It was therefore decided to use the above mentioned XSA (with four commercial fleets and the shifted survey) in this assessment.

The fishing mortalities from the final XSA run are given in Table 2.4.10 and in Figure 2.4.13A. Up to 1991 there was an increase in fishing mortality. This is consistent with the decreasing stock sizes and the information on increased effort (more hooks per set) and decreased hook sizes in the long line fishery. However from 1992, the mean F for ages 3-7 decreased again which may be partly explained by the introduction of a fishing ban on the cod spawning grounds before and during the cod spawning season, and the poor economic situation for most fleets which is reflected in the decline in number of fishing days in 1993 and 1994 as seen in Table 2.1.4. In these two years, the fishing mortality is estimated to be below the natural mortality of 0.2 . A slight increase in mean $F$ is noted in 1995.

### 2.4.5.2 Stock estimates and recruitment

The stock size in numbers is given in Table 2.4.11 and a summary of the "VPA" with the biomass estimates is given in Table 2.4.13B. The spawning stock biomass has decreased from over $68,000 t$ in 1987 to $20,000 t$ in 1994 with a slight increase to $21,000 \mathrm{t}$ in 1995. However, this decline in the spawning stock begun in the late 1970 s due to very poor recruitment in those years. The stabilisation in the spawning stock biomass at a relatively high level in the mid1980s was due to the relatively good 1982 and 1983 year classes, but the decline since then was partly due to poor year classes since the mid-1980s, as well as the pronounced decline in the mean weights at age in the stock. The mean weights at age seem, however, to have increased again for most ages from 1993 onwards (Figures 2.4.62.4.7), and the most recent recruitment indices are optimistic regarding the 1993 and 1994 year classes (see below).

### 2.4.6 Prediction of catch and biomass

### 2.4.6.1 Input data

### 2.4.6.1.1 Short-term prediction

The input data for the short-term predictions are given in Table 2.4.16
The year classes up to 1992 inclusive are from the final VPA while the 1993-95 year classes at age 2 were predicted using the RCT3 program. As input for RCT3, stratified mean-catch-per-hour of age groups 1-3 in the Faroese groundfish survey 1986-96 were used (Table 2.4.13). A second run was made based on the full survey series back to 1983 , but the output is not presented in the report, as the diagnostics from the regressions were poor, and there is considerable doubt regarding the indices from the early years in the survey series. However, the estimates of the 1993- and 1994 year class abundances in this run almost doubled compared to the accepted run. The output from the RCT3 is given in Table 2.4.14. The 1993 year class at age 3 is estimated from the RCT3 value at age 2 using a natural mortality of 0.2 and a mean fishing mortality for 2 year olds in 1992-94. The 1996 year class at age 2 was estimated as the average of the 2 years old in 1986-95.

The exploitation pattern used in the prediction was derived from averaging the 1993-1995 fishing mortality matrices from the final VPA and then rescaling the averages to the 1995 level.

By comparing mean weights at age for the first quarter of 1995 and 1996, respectively, it is seen, that the mean weights at age are still increasing. However, this increase seems to level off. Mean weights at age now are near the highest observed. The mean weights-at-age in the stock and catch 1996 were therefore calculated by adding the average annual growth by age group in 1993-95 to the observed weights at age in 1995 (Average annual growth = $\mathrm{w}(\mathrm{a}+1, \mathrm{y}+1)-\mathrm{w}(\mathrm{a}, \mathrm{y}))$. The 1996 mean weights at age were also applied for 1996 and 1997 as the growth is not expected to increase further. The mean weights at age for the two year olds in each of the years 1996-98 were calculated as the average weight at age for age 2 in 1992-94.

The maturity ogive for 1996-98 is based on samples from the Faroese Groundfish Surveys and estimated as the average of the observations in 1994-96.

### 2.4.6.1.2 Medium-term prediction

The Working Group considered the medium term consequences of different management strategies for this stock in a medium prediction model (risk-analysis) for 1996-2005. The input data for the risk analysis are similar to those used in the short-term prediction. The first step was to fit a Ricker stock-recruitment curve to the stockrecruitment data (Figure 2.4.16). This relationship was applied for the year classes from 1996 onwards. Simulations were then performed by assuming random (log normal) recruitment relationship and (log normal) uncertainty in the current (1996) stock estimate. Three different approaches were made: The catches taken each year were simply fixed 1) at a specified level, i.e. the predicted 1996 catch assuming status quo F 2) at a specified level, i.e. the actual quota on $12,600 \mathrm{t}$ and 3 ) as $1 / 3$ of the spawning stock biomass.

### 2.4.6.1.3 Long-term Prediction

The input data for the long-term yield and spawning stock biomass (yield per recruit calculations) are listed in Table 2.4.18. Mean weights-at-age are averages for the 1977-1995 period. The maturity ogives are averages for the years 1983-96. The exploitation pattern was derived from the fishing mortality matrix from the final VPA as average Fvalues for the long time period. Before averaging the annual fishing mortalities were scaled to let the Fbar(age3-7) equal 1.0. In the input table the values are rescaled again to the Fbar(age3-7) long term average. An additional longterm prediction was done using a recent exploitation pattern, i.e. the pattern used in the short-term prediction.

### 2.4.6.2 Biological reference points

The yield- and spawning stock biomass per recruit (age 2) based on the long-term data are shown in Table 2.4.19 and Figure $2.4 .14 \mathrm{C} . \mathrm{F}_{\max }$ and $\mathrm{F}_{0.1}$ are indicated here as 0.54 and 0.18 , respectively. From Figure 2.4.15, showing the recruit/spawning stock relationship, and from Table $2.4 .19, \mathrm{~F}_{\text {med }}$ and $\mathrm{F}_{\text {high }}$ were calculated to be 0.24 and 0.7, respectively.

The results of the additional prediction are not presented in the report, but the $\mathrm{F}_{\max }$ and $\mathrm{F}_{0.1}$ were estimated at 0.47 and 0.14 , corresponding to yields of 623 g and 523 g , respectively.

### 2.4.6.3 Projections of catch and biomass

### 2.4.6.3.1 Short-term prediction

The TAC for the fishing year 1995-96 has recently been increased to $12,600 \mathrm{t}$. Assuming the same TAC for the next fiscal year and that this amount will be caught, the calendar year catches in 1996 could reach $12,600 \mathrm{t}$. In such a case the F-factor has to be set at 1.87 resulting in a reference F of 0.39 . Observations from the fishery in 1996 and the possible implementation of a new management regime during 1996 (Section 2.1) would suggest that it is not likely that this catch level will be taken. It was therefore decided to run the prediction with a status quo reference $F$ in 1996. The catch in 1996 is then predicted to be about $7,300 \mathrm{t}$ and continuing with this fishing mortality will result in a 1997 catch of $9,300 \mathrm{t}$. The SSB will in this case increase from $27,000 \mathrm{t}$ in 1996 to $49,000 \mathrm{t}$ in 1998. The results of the short-term prediction are shown in Table 2.4.17 and Figure 2.4.14D.

### 2.4.6.3.2 Medium-term prediction

The results of the risk analysis indicate that if the predicted 1996 catch of $7,300 \mathrm{t}$ assuming status quo F is applied for each year in the period 1996-2005, the spawning stock biomass most likely will continue to increase during the period to more than $60,000 \mathrm{t}$ (Figure 2.4.17). If the agreed TAC of $12,600 \mathrm{t}$ is taken each year, the initial increase in the spawning stock biomass due to the recruiting 1993 and 1994 year classes will cease within few years and the stock will slowly decrease during the period on a low level below $30,000 \mathrm{t}$ (Figure 2.4.18). If $1 / 3$ of the spawning stock biomass is taken each year 1996-2005, the stock most likely will stabilise at a level of 35-37,000 t (Figure 2.4.19).

### 2.4.7 MBAL

An MBAL of $40,000 t$ has been applied to this stock by ACFM. This was evaluated during the Working Groupmeeting. A ranking of the estimates of year class strength from the final 1996 VPA is shown on Table 2.4.15. Tentatively, year classes falling within the first quartile are considered poor, those within the second and third as medium strength year classes and those within the fourth quartile as good. Accordingly, two horizontal lines were drawn on the SSB-R plot, Figure 2.4.15. Two vertical lines can now be drawn, one at SSB equal to about $40,000 \mathrm{t}$, below which only poor recruitment has been observed, and one at SSB equal to about $65,000 \mathrm{t}$, to the right of which no good year classes have been observed. Based on this splitting of the scatter diagram, the probability of obtaining a certain year class strength at the three SSB regimes was calculated (Table 2.4.17A). From this calculation it appears advisable to let the SSB stay at the $40-60,000 \mathrm{t}$ level, suggesting that the former definition of MBAL for this stock would seem reasonable. However, the 1993- and 1994 year classes are in this assessment predicted to be near the long term average (open dots in Figure 2.4.15), and the SSB is estimated to be below the assumed MBAL.

The reasons for this discrepancy could be related to ecological phenomena because good year classes seem to occur in many areas at the same time. Another possible explanation could be the structure or quality of the SSB. Inspecting the stock in number table (Table 2.4.11) it is seen, that even if the stock at present is small, the proportion of old fish in the stock is high. This may enhance reproductive success.

### 2.4.8 Management considerations

The present assessment confirms that the spawning stock biomass is still at the lowest level on record. Reasons for this are mainly the low level of recruitment and the pronounced small mean weight-at-age in recent years. The growth has, however, improved since 1992, and the 1993 and 1994 year classes are predicted to be near the long term average strength. There seems to be good possibility, that the stock will reach safe biological limits within a few years.

### 2.5 Faroe Saithe

### 2.5.1 Landings and trends in the fishery

Saithe landings from the Faroese grounds were stable at around $40,000-45,000 \mathrm{t}$ in the period 1985-1989 (Table 2.5.1). In 1990 the catches reached a record high of about $60,000 \mathrm{t}$. Since then catches have steadily decreased and were about $27,000-33,000 \mathrm{t}$ in 1993-95. Preliminary statistics for the first quarter of 1996 show the total landings to about $7,250 \mathrm{t}$ compared to about $9,450 \mathrm{t}$ in 1995.

For all practical purposes saithe has been fished only by Faroese vessels since the introduction of the 200 nm EEZ in 1977. The principal fleet consists of large pair trawlers, with engines larger than 1000 HP , accounting for $60 \%$ of the catches in 1993-95. In the same period the smaller pair trawlers ( $<1000 \mathrm{HP}$ ) caught $19 \%$, jiggers $11 \%$ and large single trawlers $8 \%$. All other vessels only had small catches of saithe as by-catch.

Generally speaking effort has increased in 1995 compared with the previous year, Figure 2.1.4. The effort of the larger pair trawlers increased from around 3,000 days at sea to 7,700 days in the period 1985-91. It has since declined to about 5,300 days in 1994 but increased to 6,700 days in 1995. In the smaller pair trawler fleet effort was at a stable level at around 5,500 days in the period 1985-91 and then dropped to 2,000 days in 1994 and increased again to 2,600 days in 1995. Since 1985 effort of the large single trawlers declined from 5,300 days to around 3,500 days in 1990 and stayed at that level until 1995 when it increased to 4,300 days. The effort of jiggers has increased through the period 1985-95 from 3,000 days to an intermediate level of 8,000-10,000 days in 1988-93 and increased to 19,000 days in 1995.

In the last ten years the larger pair trawlers CPUE has ranged between 2.1 t /day to $3.5 \mathrm{t} / \mathrm{day}$. It has varied between about $1.4 \mathrm{t} /$ day to 2.8 t /day for smaller pair trawlers (Table 2.5.3). For both groups of pair trawlers there has been an increase in CPUE in the period 1992-94 but a decrease in 1995. In the period 1985-95 there has been a downwards trend in CPUE for single trawlers. For the larger single trawlers catch rates went down from about 2.4 t /day to about 0.6 t /day whereas for the smaller single trawlers the drop was from about $1.3 \mathrm{t} / \mathrm{day}$ to $0.2 \mathrm{t} / \mathrm{day}$. Except for one year in the period 1985-95 the CPUE for jiggers has varied between 0.3-0.5 t/day. Since 1991 there has been a downwards trend in CPUE for this fleet category.

Catches used in the assessment are presented in Table 2.5.2. These include foreign catches that have been reported to the Faroese Authorities but not officially reported to ICES. Also catches in that part of Sub-division IIa which lies immediately north of the Islands have been included.

### 2.5.2 Catch at age

Catch at age are based on length and otolith samples from Faroese landings mostly in the fleet categories small and large pair trawlers and jiggers and landing statistics by fleet provided by the Faroese Statistical Department for Faroese landings and the Faroese Coast Guard for catches by foreign vessels. Catch at age was calculated by each fleet and by each third of the year before the numbers were combined. Finally the numbers were raised by the foreign catches.

Catches and effort are shown by fleet categories for the period 1985-1995 in Tables 2.1.3 and 2.1.4 and CPUE by fleet categories is presented in Table 2.5.3 and Figure 2.5.1.

Catch at age data in previous years were revised according to the final catch statistics.

### 2.5.3 Weight at age

Through the period 1961-1995 mean weight at age has varied, e.g. with mean weights for age 5 between about 1.5 kg to 3.4 kg and for age 7 between 3.1 kg and 5.3 kg , Table 2.5 .5 and Figure 2.5.2. In the period 1984-1986 mean weight at age values were high and dropped to a low level in the years 1990-1991. Mean weights have generally been increasing since, although, they have stabilised or decreased for some ages in 1995.

The SOP for 1995 shows a discrepancy of $2 \%$ which was not corrected for by the working Group (Table 2.5.4).

### 2.5.4 Maturity at age

Maturity at age data are available for the period 1983-1996 (Table 2.5.6). Because of poor sampling in 1988 the proportion mature for that year was calculated as the average of 1987 and 1989. In 1994 and 1995 the values for proportion mature were unrealistically high probably caused by biased sampling. Data for the period 1983-1996 were used to fit a sigmoid model to the proportion mature and it was decided to use these (Table 2.5 .6 and Figure 2.5.3). In the period 1961-1982 the average for the period 1983-1992 was used.

### 2.5.5 Stock assessment

### 2.5.5.1 Tuning and estimation of fishing mortality

Three tuning series were available: research vessel trawl survey data for the period 1983-1996, a series from commercial pair trawlers (also referred to as the Cuba trawlers) for 1982-1995 and a commercial jiggers series for 1991-1995. The Cuba trawler series extends back to 1982 and consists of data from 8 pair trawlers larger than 1000 HP which specialise in fishery on saithe and account for $5,000-8,000 \mathrm{t}$ of saithe each year, Table 2.5.7.

ADAPT calibrations were performed using the three available tuning series. Each stock size index was examined individually and combined with the Cuba trawler fleet, the index used in previous Faroe saithe assessments. The ADAPT methodology used here minimized the sum of squares between the natural log of predicted stock size indices and the natural log of observed stock size indices assuming that the two quantities are related by a linear relationship. The calibrations were aimed at evaluating the usefulness of the various tuning series.

Positive, statistically significant correlations were obtained between the stock size index and VPA population estimates with each one of the three stock size indices. The 1996 indices at age for the research survey are substantially lower than those for 1995 for all ages, sometimes by an order of magnitude, and, for many ages, they are by far the lowest in the time series. Although there are no a priori reasons to reject the 1996 survey values, the calibrations with the research survey data used the data for 1983 to 1995. The following table lists the runs made and the mean square residual of the calibration, a measure of the goodness of fit.

| Number | Model | Mean Square Residual |
| :--- | :--- | :--- |
| 1 | Cuba trawlers ages 3-8 | .142011 |
| 2 | Cuba trawlers ages 3-8 adjusted | .15839 |
| 3 | Research survey 1983-1995 ages 4-7 | .30423 |
| 4 | Jiggers 1991-1995 ages 6(excl.95),7,8,9,11,12 | .25719 |
| 5 | No 1 an 3 | .87021 |
| 6 | No 1 and 4 | .20427 |
| 7 | No 1,3 and 4 | .79148 |

The RV and Jigger series, even when outliers are excluded from the calibrations, are clearly more variable than the Cuba trawlers series. Combining the Cuba trawlers and the jiggers provides a reasonably low mean square residual, but the fishing mortalities thus estimated are all greater than 2.5 for age 9 and older. The mean square residual increases considerably when the research survey results are combined with the Cuba trawlers, either alone, or in combination with the jiggers.

Based on these calibrations, the jiggers and the RV series were not considered to be useful indices of stock sizes at this time. Further work and the addition of new data points could change this perception.

Only the commercial pair trawlers tuning data series was used in the assessment similar to previous years for the reasons explained in the 1993 Working Group report (Anon., 1993).

The log catchability residuals from the XSA tuning for age $4-8$ are presented in Figure 2.5 .4 and they indicate a downwards trend over the period 1986-93 with increases in 1994-95.

An XSA run was made with almost the same parameters as last year except that $q$ was assumed dependent on stock size for ages less than 4 and for time tapering applied on 20 years rather than 12 in last year's assessment. The diagnostics from this run are shown in Table 2.5.8. The estimated fishing mortalities from the XSA are presented in Table 2.5.8 and the long term fishing mortalities for 1961-1995 in Table 2.5.9. The average fishing mortality for age groups 4-8 was 0.42 in 1995 .

The corresponding retrospective analysis for age $4-8$ is presented in Figure 2.5 .5 and shows a reasonably good convergence for the last 5 years.

### 2.5.5.2 Stock estimates and recruitment

The spawning stock biomass reached its historical lowest values in 1992-1995 even if recruitment has seldom been below the long term average geometric mean recruitment of 22 millions in the period 1980-93 (Figure 2.5.6B). A summary of recruitment, total biomass, spawning stock biomass etc. for the period 1961-1995 is given in Table 2.5.11.

Stock in numbers at age as estimated by the VPA are presented in Table 2.5.10. The high numbers in the stock in 1986-1990 are due to very good recruitment. The long term mean of recruits as 3 year old for the period 1961-95 is 22 mill. (geometric mean). The recruits in 1991 and 1993 are about 26 million, a little above long term mean whereas the recruits in 1992 are about 17 mill.

Spawning stock biomass is given Figure 2.5.6B. The decline of the spawning stock biomass from about 110,000 t in 1988 to a level of $70,000-75,000 \mathrm{t}$ in 1992-94 is continuing to a record low $66,000 \mathrm{t}$ in 1995.

### 2.5.6 Prediction of catch and biomass

### 2.5.6.1 Input data

Input data for prediction with management option are presented in Table 2.5.12 and input data for the yield per recruit calculations are given in Table 2.5.14. Stock in numbers up to year class 1992 are from the final VPA whereas for the 1993-1995 year classes both the geometric mean recruitment of the period 1961-95 and the arithmetic mean of the 3 most recent years were used.

For all three years in the short term prediction (prediction with management options) the mean weight at ages 48 were predicted using mean weight in 1995 and adding mean weight increase for the three previous years in each age group. For other age groups in 1995 the mean weight was calculated as the average for 1993-1995. In the long term prediction (yield per recruit) mean weight for 1961-1995 was used. Weights in the stock were set equal to the average weights in the catches.

In the short term prediction the fitted values for the maturity ogive from the Faroese bottom trawl survey in 1996 was used for that year and for 1997 and 1998 the mean of the fitted values for 1983-1996 were used. This long term mean was also used in the long term prediction.

In the short term prediction the exploitation pattern was the average pattern in 1993-1995 taken from the final VPA. The exploitation pattern was the average of exploitation patterns for 1993-1995 scaled by Fbar (age 4-8) in 1995 before the average was calculated. In the long term prediction the exploitation pattern was derived from the fishing mortality matrix from the final VPA as average F-values for 1961-1995.

### 2.5.6.2 Biological reference points

The yield per recruit and spawning stock biomass per recruit curves are presented in Figure 2.5.7C. Compared to the fishing mortality level in age-groups $4-8$ in 1995 of 0.42 , the reference values for $\mathrm{F}_{\max }$ is 0.45 and $\mathrm{F}_{0.1}$ is $0.18 . \mathrm{F}_{\text {low }}, \mathrm{F}_{\text {med }}$ and $\mathrm{F}_{\text {high }}$ were estimated to $0.11,0.34$ and 0.53 , respectively, (Table 2.5.15, Figure 2.5.7C and Figure 2.5.8). The average fishing mortality for age 4-8 in 1995 thus coincides with $F_{\max }$. The stock-recruitment scatter plot suggest that the probability of above average recruitment is substantially decreased when the spawning stock biomass is less than 85,000 to 90,000 tons which suggest that the minimum biologically acceptable level (MBAL) is probably in that range of spawning stock biomass.

### 2.5.6.3 Projection of catch and biomass

No index of recruitment is available and therefore two scenarios are presented, one with 16.9 mill. recruits derived by calculating the arithmetic mean of the recruitment in the period 1993-95 and another with 22 mill. recruits, the geometric mean for the whole period. Results from the prediction with the lower estimate of recruitment are presented in Table 2.5.13 and Figure 2.5.7D. Fishing in 1996 at the same level as in 1995 will result in catches of 27,000 and decline further to $26,000 \mathrm{t}$ in 1997. The spawning stock biomass for the period 1996-1998 will lie between $58,000 \mathrm{t}-65,000 \mathrm{t}$ with unchanged fishing mortality. For the second scenario with the long term geometric mean recruitment and status quo F in 1996 catches will be $27,000 \mathrm{t}$ and remain stable at $28,000 \mathrm{t}$ in 1997. The spawning stock biomass for the period 1996-1998 will lie between $59,000-67,000 \mathrm{t}$ with unchanged fishing mortality.

Results from the yield per recruit estimates are shown in Table 2.5.15 and Figure 2.5.7C. With an average recruitment of 22 mill. recruits entering the stock each year and a yield per recruit of 1.54 kg , catches in the long term would average $34,000 \mathrm{t}$.

### 2.5.7 Management considerations

The spawning stock biomass is continuing its downward trend, and it is expected to be below MBAL during the period of the short term prediction while fishing mortality is above Fmed. Strict measures to reduce fishing mortality to allow the spawning stock biomass to increase should be seriously considered.

### 2.5.8 Comments on the assessment

Saithe in the Faroes is known to be affected by immigration and emigration mainly with Iceland but also with areas west of Scotland, the North Sea and the Barents Sea. The extent of such migrations and their effect on the assessment are not known.

The problem of the high sampling variation which is introducing noise into the proportion maturity table was solved by fitting a sigmoid model to the observations.

### 3.1 Regulation of Demersal Fisheries

With the extension of fisheries jurisdiction to 200 miles in 1975, Iceland introduced new measures to protect juvenile fish. In the cod, saithe, and haddock fisheries, the mesh size in trawls was increased from 120 mm to 135 mm in 1976 and to 155 mm the following year. Only in the fisheries for redfish was 135 mm allowed in certain areas. Also the mesh size in Danish seines was increased to 170 mm to aim for flatfish, but that fishery turned out not to be profitable. It was, therefore, found necessary to change to a smaller mesh size of 135 mm .

In certain areas outside the 12 -mile limit, a temporary protection for trawling was introduced. In addition a system was implemented whereby fishing can be forbidden immediately in areas where the number of small fish in the catches exceeds a certain percentage ( $25 \%<55 \mathrm{~cm}$ for cod and saithe and $25 \%<48 \mathrm{~cm}$ for haddock). These areas have usually been closed for a week. If small fish are still found to be present at the end of that time, the same process is either repeated or regulations are drawn up and the area closed for a longer period of time.

The frequency with which such closures have had to be implemented varies widely from year to year and depends on the year-class strength and the age structure of the stock. When strong year classes are entering the fishery, immediate closures are often necessary. On the other hand, when there are few small fish, such closures are much more infrequent.

Increases in trawl mesh size and closure of nursery areas have reduced mortality directly due to fishing effort among small cod and haddock aged three and, to some extent, four years, from the levels which they had reached before these measures were implemented. However, this proved in no way sufficient to protect the stocks. Since 1975, the Marine Research Institute in Iceland has recommended TACs for cod and a few years later also for other important demersal species. A quota system was not introduced, however, until 1984.

Attempts were made to limit cod catches from 1977-1983 by means of the so-called scratch-days system, by which cod fishing was limited to a certain number of days each year. This system failed to limit fishing effort sufficiently and the quota system was adopted instead. The quotas are transferable boat quotas. The agreed quotas were based on the Marine Research Institute's TAC recommendations, also taking socio-economic effects into account.

Until 1990, the quota year corresponded to the calendar year but at present the quota, or so-called fishing year, starts on 1 September and ends on 31 August of the following year. This was done to meet the need of the fishing industry.

In order to manage the cod fisheries, a catch rule was introduced by the Icelandic government in spring 1995 and was enforced from the beginning of 1995/1996 fishing year, i.e. 1 September 1995. According to this management scheme, catch will be limited to $25 \%$ of the fishable (4+) stock biomass calculated from the average stock at 1 January of the previous fishing year and 1 January of the coming fishing year, with a minimum catch level of $155,000 \mathrm{t}$.

### 3.2 Icelandic Saithe

### 3.2.1 Trends in landings

Saithe landings from Icelandic grounds (Division Va) fluctuated between $57,000 \mathrm{t}$ and $70,000 \mathrm{t}$ during the period 1981-1986 (Table 3.2.1). From 1987 to 1989, annual landings were about $80,000 \mathrm{t}$. In 1990, landings increased by more than $20 \%$ to $98,000 \mathrm{t}$ and in 1991 the catches reached $103,000 \mathrm{t}$. Since 1991, landings have decreased to the 1981-1986 level. Preliminary reported 1995 landings for Saithe in Division Va are 48,528 t (Table 3.2.1) which compares to $61,000 \mathrm{t}$ expected by the Working Group last year.

About $61 \%$ of the catches were taken by bottom trawl, $32 \%$ by gillnets and the rest by hooks. This is about the same gear proportions as in the two previous years (Figure 3.2.1).

The Icelandic landings in the quota year September-August 1994/1995 amounted to about 50,000 t whereas the national TAC for the same period was 75,000 . This can partly be explained by lower effort because of a limiting quota in the cod fishery and also by decreases in both Saithe recruitment and stock size.

### 3.2.2 Catch in numbers

Minor changes were made to the 1994 catch in numbers at age to account for revised total landings. Data from bottom trawl and gillnets, which represented $95 \%$ of the Icelandic landings in 1995, were used to calculate the catch at age of the total landings used as input for the assessment (Table 3.2.2). Notably, catches from hooks are included with bottom trawl catches.

Compared to last years prognosis, a higher proportion of age group 3 and 5 were observed in the 1995 landings (Figure 3.2.2). As no recruitment indices are available for this stock the size of the 1990 year-class was taken at "face value" from VPA in the 1995 assessment.

### 3.2.3 Mean weight at age in the landings

Mean weight at age in the landings are computed on the basis of samples of otoliths and lengths along with length distributions and length-weight relationships. The mean weights at age are computed for the same categories as the catch numbers at age and are then weighted across the fleets. Increased mean weight at age was observed in 1995 for age groups 4 to 6 and 8 while there was a decrease in other age groups (Table 3.2.3). These weights at age where used as stock weights as well.

### 3.2.4 Maturity at age in the landings

In 1995 a sharp decrease in the proportion mature at age was observed for all age groups except for age group 3 (Table 3.2.4). As has been pointed out in earlier reports of this working group, the raw maturity at age data for saithe can be misleading due to the nature of the fishery and of the species. A GLM model, described in the 1993 Working Group report (Anon. C.M.1993/Assess:18), was used to explain maturity at age as a function of age and year class strength. The raw data given in Table 3.2 .4 was then used to predict the entire maturity at age table for 1980-1998 (Table 3.2.4 and Figure 3.2.3). The maturity at age prior to 1980 (Table 3.2.5) are derived from Anon. ICES, Doc. C.M. 1979/G:6.

### 3.2.5 Stock Assessment

### 3.2.5.1 Tuning input

CPUE data, based on Icelandic trawler logbooks are available. The basic method for computing an aggregate CPUE index consists of first selecting individual tows where the catch contains more than $70 \%$ saithe (lower proportions show similar patterns in CPUE). The catches and towing times are then added and the ratio computed. As the CPUE series derived from the first part of the year showed markedly different behaviour in recent years from the series based on the latter part of the year, the two series were age-disaggregated separately (Table 3.2.6) and both used in the tuning module. The age-disaggregation was based on otolith samples taken from commercial trawlers in the respective time periods. Another series was based on trawler effort (TRW EFFORT Table 3.2.6), calculated by dividing trawlers landings with the annual CPUE. A tuning data set was then constructed from the effort measure along with catch-in-numbers from the same fleet.

### 3.2.5.2 Estimates of fishing mortality

Two different runs were attempted using an XSA based on the two data sets. Tuning diagnostics are relatively poor in both cases (Tables 3.2.7 and 3.2.8). The resulting mean $F$ in 1995 for age groups 4-9 from these runs was 0.27 .

The time series analysis was carried out as described in "Time series analysis of catch-at-age observations" by Gudmundsson (Applied Statistics (1994) 43 No. 1 pp 117-126). Two different runs were done. One using only catch at age data and the second using catch at age data with Trawlers cpue in June-December, age groups 5-7. The resulting F mean for age groups $4-9$ was 0.30 and 0.29 , respectively. The results are shown in Table 3.2.9.

Measurement errors of $\log \mathrm{C}$ and transitory variations of $\log \mathrm{F}$ for the best observed ages are supposed to be equal and estimated as 0.18 . The variability is higher for the youngest and oldest fish.

Joint permanent (i.e. random walk) variations of $\log \mathrm{F}$ at all ages are estimated with a standard deviation of 0.046 and joint permanent variations in selectivity and joint transitory variations were negligible.

Serial correlation between catch prediction errors within each year are modelled and other serial correlations were negligible.

The estimated stocks and fishing mortality rates do not exactly fit the observed catch-at-age data because measurement errors are taken into account. (In VPA measurement errors are implicitly assumed to be zero and whereas in CAGEAN all variability of individual values are assigned to measurement errors and none to F). The approximations introduced to apply the Kalman filter to non-linear equations produce a slight discrepancy between estimated stocks and fishing mortality rates.

The estimated standard deviations of individual values of log CPUE values from trawlers (June-December), ages $5-7$ years was 0.24 and 0.14 for joint variations. Because of the small joint variations of $\log \mathrm{F}$, introduction of the CPUE values has very little effect upon the estimated values from catch-at-age observations only.

At the 1993 Working Group meeting, retrospective analyses were performed on six different combinations of fleets and methods. Time series analysis (TSA), using only catch at age data, was the most consistent one and has therefore been used in most recent assessments.

Because of the differences in reference F's between XSA (0.27) and TSA (0.30) runs in this assessment, a retrospective analysis was performed for the different methods and fleets. The TSA runs seems to be more consistent (Figure 3.2.4) than the XSA runs. The TSA retrospective analysis including the cpue value does not differ markedly from the one using catch-at-age observations only. Notably, the TSA seems to consistently underestimate the present fishing mortalities but nevertheless ends up with higher reference F's in 1995 than the XSA.

The terminal fishing mortalities from the TSA were used to run a traditional VPA and the F`s for the oldest age groups were taken as the mean of the four younger ages. Natural mortality was set to a value of 0.2 . The results of this run are given in Tables 3.2.10-3.2.12 and Figures 3.2.5.A and 3.2.5.B.

### 3.2.5.3 Spawning stock and recruitment

The spawning stock biomass is shown in Figure 3.2.5.B and Table 3.2.12. After a decline from 1970-1977, the spawning stock biomass averaged between 160-180,000 t in 1978-1989 and increased to about $200,000 \mathrm{t}$ in 1990. Since 1992 the spawning stock biomass declined again to a minimum in 1994 of about $160,000 \mathrm{t}$ which is about the same size as in the years 1978-1980, the lowest recorded levels for last 20 years. In 1995 the spawning stock biomass increased to about $180,000 \mathrm{t}$. The estimated spawning stock biomass in the beginning of 1996 is only $147,000 t$, the lowest recorded since 1961-1964.

Estimates of recruitment at age 3 are plotted in Figure 3.2.6.B. The 1983 to 1985 year-classes are all well above the 1967-1987 long-term average (about 40 million). The 1984 year-class is the highest on record at about 110 million. All year-classes after 1985 are well below average. The average size of the 1986-1990 year classes is only estimated at 28 million recruits.

As no information is available for the more recent year classes, the 1991-1994 year classes were set at the same level as the average for the 1967-1987 year classes, excluding the strong year classes in the early 1960s.

### 3.2.6 Prediction of catch and biomass

### 3.2.6.1 Input data

The input data for the catch projections are shown in Table 3.2.13.
For catch predictions and stock biomass calculations, the mean weight at ages $4-9$ were predicted using a multiple regression analysis where the mean weight at age was predicted by the mean weight of the year class in the previous year and year class strength. Since the regression analysis showed significant relationships only for the above age groups the mean weight at age for other age groups were averaged over the 1993 to 1995 period.

For the short-term predictions, the maturity at age was predicted as described in Section 3.2.4.
For long term predictions, averages over the period 1980-1995 were used.

It is expected that the catches in 1996 will only reach $46,000 t$ because the landings during first three months of 1996 were only $80 \%$ of those in 1995. This is in a accordance with observations of experienced fishermen who indicated that it was even more difficult to obtain good catches of Saithe in the beginning of 1996 when compared to their catches in the same period of 1995.

For long-term yield and spawning stock biomass per recruit, the exploitation pattern was taken as the average of the fishing mortalities during 1980-1995 from the standard VPA run. Averages over 1980-1995 for maturity and mean weight at age for all age groups were used, along with a natural mortality of 0.2 (Table 3.2.15).

A yield curve using last three years averages (1993-1995) as an input was also calculated resulting in about the same $F_{\max }$ and $F_{0.1}$ values but a slightly lower yield per recruit.

### 3.2.6.2 Biological reference points

The yield- and spawning stock biomass-per-recruit (age 3) curves are shown in Figure 3.2.6.C.
Compared to the 1995 fishing mortality level of $F_{4-9}=0.30$, the reference values for $F_{\max }$ and $F_{0.1}$ are 0.44 and 0.18 , respectively (Table 3.2.16). From Figure 3.2 .7 showing the recruit/spawning stock relationship and Figure 3.2.6.C showing the spawning stock biomass-per-recruit relationship $F_{\text {med }}=0.28$ and $F_{h i g h}=0.9$ were estimated.

The stock-recruitment scatter plot does not provide a basis do define MBAL as the recruitment seems to be higher at the lower end of the SSB range.

### 3.2.6.3 Projections of catch and biomass

Based on the input data given in Table 3.2.13, options for 1997 were calculated and are given in Table 3.2.14 and Figure 3.2.6.D.

As can be read from the prediction (Table 3.2.14), assuming a $46,000 \mathrm{t}$ total catch in 1996 will lead to about a $15 \%$ reduction in the fishing mortalities in 1996 compared to 1995 . The resulting stock size in the beginning of 1997 will be about $345,000 \mathrm{t}$ which is a little higher than in the beginning of $1996(315,000 \mathrm{t})$. The spawning stock biomass in the beginning of 1997 will also show a slight increase compared to 1996 , i.e. about $160,000 \mathrm{t}$. The same reference $F$ in 1997 compared to 1996 will result in a yield of about $50,000 \mathrm{t}$, and both total and spawning stock biomasses in 1998 will increase from the 1996 level.

### 3.2.7 Management considerations

The stock seems to be in a fairly stable state, the reference F values have been substantially over $\mathrm{F}_{0.1}$, slightly above $\mathrm{F}_{\text {med }}$, but below $\mathrm{F}_{\text {max }}$ in recent years. Increasing effort from the present level will not lead to gains in the long run. Recruitment in recent years (since 1986 year-class) has been below long term average.

### 3.2.8 Comments on the assessment

As mentioned in the last years report, catch at age data for Icelandic Saithe seem to be relatively consistent which is reflected in the low standard deviations of the $\log$ F's from the TSA.

### 3.3 Icelandic cod (Division Va)

### 3.3.1 Groundfish survey design

Icelandic Groundfish Survey (IceGFS) started in 1985. The area of investigation covers the Icelandic shelf down to the 500 m depth contour. 600 stations were considered a reasonable effort to reach an acceptable level of coefficient
of variation of cod indices. In order to work the 600 stations within a reasonable time limit, 5 commercial, standardized, stern trawlers are leased.

The allocation of trawling stations is based on the stratified random sampling theory. The stratification scheme is based on pre-estimated cod density patterns derived from commercial as well as research vessel catch data, which were summarized by statistical squares. The statistical square basis allows flexibility in post-stratifications with respect to different species.

Based on biological and hydrographical considerations, the survey area was divided into two areas, a northern and a southern area for design purposes.

The allocation of statistical squares to strata is based on the estimated density of cod in each square. Information on cod density was derived from three different sources: The trawler captains and their advisors graded each square with respect to their experience of fishing in March. Commercial fisheries data yielded additional information on cod density, as did results from previous research surveys.

Ten strata were constructed from the statistical squares, 4 in the southern area and 6 in the northern one. Statistical squares in each strata are not necessarily adjacent, which allows more possibilities in constructing homogeneous strata with regard to fish density.

Stations were divided between strata in direct proportion to the product of the area of each stratum and its estimated cod density. Finally, the trawl stations of a stratum were allocated to each square within the stratum in direct proportion to the area of the square.

Stations within each statistical square were divided equally between fishermen and project members from the Marine Research Institute (MRI). Project members selected random positions for their stations. Fishermen were asked to fix their stations in each square in accordance with their knowledge and experience of fishing and fishing grounds. Trawling is done both day and night, and sampling is distributed uniformly over the 24 hours.

This sampling method may be classified as "semi-random stratified" since only half of the stations are randomly selected.

In 1996 the Groundfish Survey design was analyzed and revised with the aim to reduce the total survey cost but keeping about the same level of accuracy. Stations which have only be taken occasionally during the survey period since the beginning of the survey in 1985 and other stations with low or zero catches especially in the south-eastern area were omitted. Recalculation of the survey indices resulted in a minor differences compared to the previous estimates. Accordingly, the numbers of stations were reduced to 540 (instead of the 600 originally) in 1996 and the survey was carried out using 4 trawlers instead of 5 earlier.

### 3.3.2 Trends in landings and effort

In the period 1978-1981 landings of cod increased from 320,000t to 469,000t due to immigration of the strong 1973 year class combined with an increase in fishing effort. Catches then declined rapidly to only $280,000 \mathrm{t}$ in 1983. Although cod catches have been regulated by quotas since 1984, catches increased to $392,000 \mathrm{t}$ in 1987 due to the recruitment of the 1983 and 1984 year classes to the fishable stock in those years (Table 3.3.1).

Since 1988 all year classes entering the fishable stock have been well below average, or even poor, resulting in a continuous decline in the landings. The 1995 catch of only $170,000 \mathrm{t}$ is the lowest catch level since 1942. Fishing effort on cod decreased in 1994 compared to 1993. This trend continued in 1995 and a marked reduction in effort against cod has taken place in the most recent years due to further reduction in quota and a diversion of the effort towards other stocks and areas. As a result of this catch rates in cod fisheries both for the trawlers and the gillnet fleet have been increasing as expected (Table 3.3.2.).

### 3.3.3 Catch in numbers at age

The fleets (or "metiers") are defined by the gear, season and area combinations. The gears are long lines, bottom trawl, gillnets, handline lines and Danish seine. In the historical data sets each of these classes may contain related gears (based on sparseness of data and low catches). Notably handlines are included with long lines and pelagic
trawl is included with the bottom trawl. The basic areas splits are the "northern" and "southern" areas. In the historical data set, seasons are split into the "spawning" season (January-May) and "non-spawning" season (JuneDecember). Historically, there have been some changes in fleet definitions and thus there does not currently exist a fully consistent set of catch-at-age data on a per-fleet basis.

Total catch at age (aggregated across fleets) was used as VPA input, and seasonal data (aggregated across gears and regions) were used to estimate the proportion of fishing mortality in January-May.

The total catch-at-age data is given in Table 3.3.3. For the longer VPA runs the catches at age in numbers in Anon.1976/F:6 were used for the years 1955-1969. It should be noted that much higher proportions of the older age groups are taken during the first part of the year and this will considerably affect the estimation of the spawning stock at spawning time. Since the catch-at-age data have historically only been available for January to May, and not by shorter seasons, it is assumed that $60 \%$ of those catches were taken during January to March, i.e., before spawning time (Table 3.3.4).

### 3.3.4 Mean weight at age

### 3.3.4.1 Mean weight at age in the landings

Mean weight at age in the landings are computed on the basis of samples of otoliths and lengths along with length distributions and length-weight relationships.

The mean weights at age are computed for the same categories as the catch numbers at age and are then weighted together across the fleet categories. The data are given in Table 3.3.5. Mean weights at age are not available on an annual basis for catches taken before 1973, and hence the average across the years $1973-1991$ is used as the constant (in time) mean weight at age for the years 1955-1972.

### 3.3.4.2 Mean weight at age in the stock

The weights at age in the landings have been used without modification to compute general stock biomasses, with the exception of the spawning stock biomass (see below).

The groundfish survey does provide better estimates of mean weights at age in the stock, but it is not at all clear how these should be combined across areas which have different catchabilities, and in any case these weights are only available back to 1985 .

### 3.3.4.3 Mean weight at age in the spawning stock

For years up to 1995, data from the period January-May have been used for the estimation of the mean weights at age in the spawning stock. It is assumed that the catches in the different gears and areas appropriately reflect the stock composition with regard to mean weight at age. These weight-at-age data are presented in Table 3.3.6.

### 3.3.5 Maturity at age

Maturity at age is based on samples from the commercial fleets in the months January-May (Anon. 1992/Assess:14). It has been pointed out that using data collected throughout the year may bias the proportion mature in various ways (Stefansson, 1992). The approach taken is, therefore, to compute the proportion mature at the time of spawning, by considering only the first part of the year (January-May), but aggregating across gears and regions.

There has been a marked increase in the proportion of mature fish at age since 1992. This development continued in 1995 when the highest values ever were recorded (Figure 3.3.5.). However the results from the 1996 Groundfish survey show a downward trend in 1996. The maturity at age data are given in Table 3.3.7.

The maturity-at-age data are not available on an annual basis for the catches taken prior to 1973 and, hence, the average for the years 1973-1991 is used as a constant maturity at age for the years 1955-1972.

### 3.3.6 Stock Assessment

### 3.3.6.1 Tuning data

Commercial trawler CPUE data were analyzed as described in Stefansson (1988) to yield GLM indices of abundance (numbers) at age. The analysis takes into account catchability changes in the fleet due to vessel renewal and vessels shifting between regions, but not changes in the spatial distribution of the resource or changes within vessels in the fleet. For this reason the analysis of the logbook data was restricted to the years 1991-1995.

These indices are based on logbooks from demersal trawl fisheries for two parts of the year (January-May and JuneDecember) and three areas i.e. southwest, southeast and northern areas (Table 3.3.8).

The same method was applied for the first time for the gillnet fleet. Logbooks for this fleet have been analyzed and are available since 1988. The gillnet fleet operates mainly during the spawning season and at the spawning grounds off the south and west coasts of the island. This fishery has often been referred to as "the spawning fishery" in earlier reports of this Working Group. The GLM indices presented here are based on the gillnet fishery in the south and west areas during January-May. These indices have been added to the assessment (Table 3.3.9)

The Icelandic groundfish survey data (Palsson et al., 1989) are used as part of the assessment. The basic data are age-disaggregated (Palsson and Stefansson, 1991) and abundance indices computed by using the a modified Gamma-Bernoulli (G-B) method to accommodate spatial information in an appropriate manner. The method is described in Working Paper by H. Björnsson, (Anon.1994/Assess:19). Indices are calculated for each of the three areas separately, age groups 1 to 14 and for the years 1985-1996.

To use the latest information available, the 1996 survey abundance indices were moved back in time of approx. three months i.e. to December 1995. The same applies to abundance indices for the other survey years. The resulting indices are given in Table 3.3.10 by fleet, area and age group.

### 3.3.6.2 Assessment methods

Migrations from Greenland into the Icelandic cod stock can have major effects and hence these need to be taken into account in the assessments. Time series analysis (TSA) of Gudmundsson (1984) and an ADAPT-type of method (Stefansson 1992) which were applied to this stock earlier (Anon.1992/Assess:14) can estimate migration for a given year and age. The implementation of the ADAPT-method used an average selection pattern in determining the terminal fishing mortality recent changes in fishing pattern could not be accounted for. The Working Group therefore decided to use the XSA method.

XSA uses a cohort-analysis to project the stock (or back calculating):

$$
\begin{aligned}
& N_{a, y}=e^{-M} N_{a-1, y-1}-e^{-M / 2} C_{a-1, y-1} \quad \text { or } \\
& N_{a-1, y-1}=e^{M} N_{a, y}+e^{M / 2} C_{a-1, y-1}
\end{aligned}
$$

were $N$ is stock size and $C$ is catch in numbers and $M$ natural mortality. If fish of age $a$ and in the year $y$ is migrating, in amount of $G$, to the stock in the beginning of the year, then the cohort equation will be:

$$
N_{a, y}=e^{-M} N_{a-1, y-1}-e^{-M / 2} C_{a-1, y-1}+G_{a, y}
$$

and in back calculation the equations will be:

$$
\begin{aligned}
N_{a-1, y-1} & =e^{M}\left(N_{a, y}-G_{a, y}\right)+e^{M / 2} C_{a-1, y-1} \\
& =e^{M} N_{a, y}+e^{M / 2}\left(C_{a-1, y-1}-e^{M / 2} G_{a, y}\right)
\end{aligned}
$$

That is, if the size of the migration, $G$, is approximately known it can be implemented into the cohort equations by changing the catch-in-numbers the year before, for the cohort in question. The results are stock in numbers taking into account the migration but the fishing mortality given for age $a-1$ and year $y$ - 1 will be incorrect and the correct value can be calculated by:

$$
F_{a,-1, y-1}=\ln \left(\frac{N_{a-1, y-1}}{N_{a, y}-G_{a, y}}\right)-M
$$

For the Icelandic cod the estimated immigration of 6 years old cod in the year 1990 is about 30 millions at beginning of the year. The total catch of 5 years old cod in 1989 is estimated about 50 millions. The "corrected" catch of 5 years old cod of Icelandic origin in 1989 will then be:

$$
50-\mathrm{e}^{0.2 / 2} 30=16.8 \text { millions }
$$

which is the number used in the assessment.

### 3.3.6.3 Estimates of fishing mortality

Tuning was carried out with the same fleets as at the last working group meeting. Another run with the gillnet indices included gave similar results except for the oldest age groups. The Working Group decided to adopt the run with the most information included i.e. all fleets as the gillnet indices are the only available indices which deal with 9 and 10 year old cod. The retrospective analysis for this XSA with shrinkage of s.e. $=0.5$ is given in Figure 3.3.3. The output of the XSA is given in Table 3.3.11.

The resulting fishing mortalities from the final XSA are given in Table 3.3.12. The fishing mortality reached a peak in 1988 decreased in 1989 but then rose to another peak in 1993. Due to further restriction of the cod quota effort has dropped markedly in 1994 and again in 1995. Fishing mortality has decreased correspondingly and has not been so low since the early sixties (see Table 3.3.15.).

### 3.3.6.4 Stock and recruitment estimates

The resulting stock size in numbers and spawning stock biomasses from the final VPA are given in Tables 3.3.13-14.

In the Stock in numbers table, the recruitment in the most recent years (year classes 1991-1993 as 3 year olds in 1994-1996) was estimated using RCT3 as described in Section 3.3.8.3.

The current spawning stock at spawning time and recruitment levels must be considered in relation to historical sizes. The migration estimates of 39 and 7 million immigrants of the 1973 year class in 1980 and 1981, respectively are taken from the 1993 ADAPT assessment (Anon.1993/Assess:18). With given migration estimates, the recruitment from the SSB can be recomputed by adding back calculated migration. The approach taken here is to do these back calculations with natural mortality only, since it would be incorrect to use the sometimes high fishing mortalities at Iceland. This back calculation revises the 1973 and 1984 year class estimates to 432 and 335 millions, respectively. The resulting SSB and recruitment estimates are given in Table 3.3.15 along with landings and average fishing mortalities. A better estimate might be obtained by back calculating using the fishing mortality at Greenland also, but this is unlikely to have major effects on the issue at hand which is the stock recruitment diagram.

### 3.3.7 Biological and technical interactions

Several important biological interactions in the ecosystem around Iceland are connected to the cod stock. The single most important relationship is the cod-capelin connection (Pálsson, 1981) and this has been studied in some detail (Magnússon and Pálsson, 1989 and 1991a and Steinarsson and Stefánsson, 1991). Another important interaction is between cod and shrimp. This has been studied by Magnússon and Pálsson (1991b) and Stefánsson et al. (1994). The cod-capelin interaction is used in the short-term prediction in Section 3.3.8. based on the results in Steinarsson and Stefánsson (1991).

A numerical description of interactions between fisheries and species requires data on landings as well as catches in numbers at age of each species by gear type, region and season. Such data for cod were available to the 1994 meeting, consisting of catches at age in numbers by metier, i.e. gear, area and season for each of the years 19891992. The resulting data were used to disaggregate fishing mortality by metier. For each fleet the fishing mortality vector was separated into an overall fishing mortality and a selection pattern which averaged to 1 over ages 5-10. The selection patterns were averaged in time to produce a single selection pattern for each fleet. The exercise has not been repeated in the present report.

### 3.3.8.1 Input data to the short-term prediction

For both sets of weight data, the mean weight at age for most of the important ages is found to be significantly correlated with the weight of the same year class the year before and the capelin biomass at the beginning of the year. This holds for ages 4-8 in the catches and ages 5-8 in the spawning stock at spawning time. Thus, these regressions are used to predict the mean weights at age for these age groups for the years 1996-1998. For 1997 onwards, the average capelin biomass is used. For ages 3 and $9-14$ in both data sets and age 4 in the SSB, the average over the years 1991-1995 is used. Table 3.3.16 gives the size of the capelin stock on 1 January each year.

Care needs to be taken with the maturity at age in any prediction, as maturity at age can be a major source of error in SSB estimation (Anon.1994/D:1). The maturity at age is at record high levels in 1995, and it is not reasonable to let this drop to the long-term average in 1996 nor is it reasonable to assume these record-high levels far into the future. Preliminary data for 1996 based on Icelandic Groundfish Survey samples do indicate a decline in maturity at age in 1996. The approach taken is therefore to use a somewhat longer-term (1986-1995) average for 1998 . For the purpose of obtaining an orderly development of trends in the maturity at age, linear interpolation between the record high 1995 and longer term 1998 values was used for 1996 and 1997.

The exploitation pattern used for the short-term predictions was taken as the average of the years 1993-1995 from the VPA.

### 3.3.8.2 Input data to the long-term prediction

For long-term predictions, fluctuating environmental conditions can be ignored, but it is essential to take into account potential changes due to density-dependent growth. These have been investigated for this stock (Steinarsson and Stefánsson, 1991 and Anon.1991/Assess:7) where no significant density-dependent relationships were found concerning growth. However, the results in Schopka (1994) contain indications of some density dependence of growth and this will affect the long-term results at low fishing mortalities. This is not taken into account in the yield-per-recruit calculation.

Mean weight and maturity at age have been predicted as the average over the years 1976-1995.
The average exploitation pattern over 1985-1990 has been used as input.
Another run with the same basic data but an average exploitation pattern in the most recent period i.e. 19931995 was also carried out.

### 3.3.8.3 Recruitment

The modified Gamma-Bernoulli (G-B) method (Anon. 1994/Assess:19) used for the analysis of the Icelandic Groundfish Survey and as tuning data for this stock was also used for recruitment prediction. The resulting indices used for recruitment prediction are given in Table 3.3.17. As an input to the RCT3 program age groups 1-4 from the survey were chosen.

The size of the year classes 1991-1995 has been estimated using RCT3, with the output as given in Table 3.3.18. The revised recruitment estimates are then discounted with natural and fishing mortalities for use in the predictions.

### 3.3.8.4 Short term prediction results

Input to the projections is given in Table 3.3.19. Results from projections up to the year 1997 with different fishing mortalities are given in Table 3.3.20.

Expected landings in 1996 will be 170,000 t which mean a further decrease in fishing mortality to $\mathrm{F}=0.40$ compared to $\mathrm{F}=0.47$ in 1995 .

Continuing fishing in 1997 at the expected 1996 level of fishing mortality ( $\mathrm{F}=0.40$ ) will lead to a decrease in SSB on the short term.

A $15 \%$ reduction in fishing mortality from 1996 (to $\mathrm{F}=0.34$ ) will stabilise the SSB at the 1996 level of about $380,000 \mathrm{t}$ on the short term. This requires a catch of $162,000 \mathrm{t}$.

The average size of the incoming year classes (1987-1994) is 131 million. The yield-per-recruit computations indicate that the maximum obtainable yield per recruit is just under 1.8 kg . These two numbers indicate that the average yield from these year classes cannot be expected to exceed 235,000 t.

### 3.3.8.5 Long-term prediction results and biological reference points

The yield-per-recruit curve based on the 1985-1990 exploitation pattern along with biological reference points is given in Figure 3.3.6 (Tables 3.3.21-22).

The biological reference values for $\mathrm{F}_{\max }$ and $\mathrm{F}_{0.1}$ are 0.37 and 0.21 respectively. Yield per recruit at $\mathrm{F}_{\max }$ - level is around 1.8 kg . By choosing the 1993-1995 exploitation pattern the biological reference points are almost unchanged. On this curve $F_{\max }$ will be 0.36 and $F_{o .1}=0.20$. However, the $\mathrm{Y} / \mathrm{R}$ at $\mathrm{F}_{\max }$ decreases slightly to 1.76 kg which might be due to reduced fishing mortality on the oldest age groups.

A plot of the spawning stock biomass and recruitment is given in Figure 3.3.4. When using the period 19551994, the reference points $\mathrm{F}_{\text {med }}$ and $\mathrm{F}_{\text {high }}$ are about 0.45 and 0.70 , respectively, as seen in Figure 3.3.4. Also shown in the same figure is the fitted Ricker curve. The position of the $F_{\text {high }}$ line with respect to the stock recruitment curve implies that the stock would collapse quickly at such high fishing mortality. This contrasts earlier results (Anon. 1994/Assess:19) and is obtained here due to the inclusion of recent poor year classes at low stock sizes with the effect of lowering the stock-recruitment curve at low stock sizes, i.e. reducing the slope at the origin.

### 3.3.9 Management considerations

In most recent period there has been a substantial reduction in fishing effort directed against cod (Table 3.3.2 and Figure 3.3.1) and hence in fishing mortality. Fishing mortality was at the level of $\mathrm{F}=0.8-0.9$ in 1992-1993 but dropped considerably in 1994 to $\mathrm{F}=0.64$ and again in 1995 to $\mathrm{F}=0.47$ which is slightly above $\mathrm{F}_{\text {med }}=0.45$. In 1996 it is expected that the present restriction of the cod catches will result in $\mathrm{F}=0.40$ which is in the vicinity of the $\mathrm{F}_{\text {max }}$ level.

The inclusion of the stock recruitment relationship has a major effect on the long-term predictions. From Table 3.3.4 it is seen that below-median recruitment occurs more frequently when the SSB is below-median than when the SSB is above the median. The increased probability of poor recruitment at low SSB levels is of major concern, with the time series shows that the five poorest year classes ever recorded have been generated in years when the spawning stock was lower than $300,000 \mathrm{t}$.

In spite of poor recruitment in recent years the spawning stock has shown the first sign of recovery from the historical low level in most recent years. This is a result of the recent catch restrictions combined with an increase in maturity at age.

Medium-term predictions (risk analysis) were carried out at the two latest working group meetings (Anon.1995/Assess:19). The model used incorporated the cod, capelin and shrimp stocks to account for interaction between this stocks. Based on similar calculations, Iceland introduced a catch rule in 1995 which was enforced for the first time for the fishing year which started 1st of September 1995. According to this management scheme catches were limited to $25 \%$ of the 1995 and 1996 average fishable (4+) biomass, however with a minimum acceptable catch level of $155,000 \mathrm{t}$. Applying this rule for the 1996/1997 fishing year the catch will be $186,000 \mathrm{t}$ which corresponds to the present (1996) expected fishing mortality of $\mathrm{F}=0.4$.

### 3.3.10 Comments on the assessment

There has been a considerable decline in fishing mortality on this stock in the most recent period. This is verified in the sharp drop of effort for all fleets engaged in the cod fisheries (Table 3.3.2).

All short-term results on the size of SSB depend heavily on the assumed development in maturity at age, which is hard to estimate and predict accurately. Variations in this biological parameter are indicated by trends apparent in Figure 3.3.5.

Although there are some uncertainties in this assessment, it is clear that the stock has been heavily overfished for a long time but show now the first signs of recovery which is expected to continue under the newly adopted management scheme.

## 4 THE COD STOCK COMPLEX IN GREENLAND (NAFO SUB-AREA 1 AND ICES SUB-AREA XIV) AND ICELANDIC WATERS (DIVISION Va)

### 4.1 Inter-relationship Between the Cod Stocks in the Greenland-Iceland Area

Tagging experiments carried out at Greenland and Iceland show that mature cod at West Greenland migrate to East Greenland. Tagging experiments at East Greenland also show that mature cod from that area migrate to Iceland(Tåning, 1937; Hansen, 1949; and Anon. 1971). On the other hand, immature cod seem not to emigrate from East Greenland to Iceland, but in some years immature cod migrate from East Greenland to the West Greenland stock (Anon. 1971). Tagging experiments at Iceland show that migration of cod from Iceland to Greenland waters occurs very seldom and can be ignored in stock assessments (Jonsson 1965, 1986). Migrations from Greenland waters to Iceland can, therefore, be regarded as a one-way migration.

In egg and larval surveys cod eggs have been found in an almost continuos belt from Iceland to East Greenland, along the East Greenland coast, round Cape Farewell and over the banks at West Greenland (Tåning 1937, Anon 1963). From O-group surveys carried out in the East Greenland-Iceland area since 1970, it becomes quite evident that the drift of O-group cod from the Iceland spawning grounds to the different nursery areas at Iceland varies from year to year. The same applies to the drift of O-group cod with the currents from Iceland to East Greenland (Table 4.1.1). In some years it seems that no larval drift has taken place to the Greenland area, while in other years some, and in some years like 1973 and 1984, considerable numbers drifted to East Greenland waters (Vílhjalmsson and Fridgeirsson 1976, Vílhjalmsson and Magnússon 1984).

The 1973 and 1984 year classes have been very important to the fisheries off both West and East Greenland. Tagging results have shown that when these two year classes became mature, they had migrated in large numbers from West to East Greenland and, to some extent, to the spawning area off the southwest coast off Iceland. This migration of mature cod from Greenland to lceland influences the assessment of these stocks (Schopka, 1993) and it cannot therefore be ignored in the assessments.

## 5 COD STOCKS IN THE GREENLAND AREA (NAFO AREA 1 AND ICES SUBDIVISION XIVB)

In previous analyses, the cod stocks off Greenland have been divided into West and East Greenland or treated as one stock unit to avoid migration effects. Fjord populations (inshore) have always been included. This year, the offshore component off West and East Greenland, the so called Bank Cod, is here assessed separately as one stock unit and distinguished from the inshore populations for the first time. The completion of a re-evaluation of available German sampling data for the offshore catches back to 1955 enabled such an analysis.

### 5.1 Cod off Greenland (offshore component)

### 5.1.1 Results of the German groundfish survey

Annual abundance and biomass indices have been derived using stratified random groundfish surveys covering shelf areas and the continental slope off West and East Greenland. Surveys commenced in 1982 and were primarily designed for the assessment of cod (Gadus morhua L.). A detailed description of the survey design and determination of these estimates is given in the report of the 1993 North-Western Working Group (Anon.,

1993/Assess:16). In 1994 and 1995, the only changes made compared with former surveys where firstly, the new research vessel Walther Herwig III replaced the older Walther Herwig II and, secondly, slightly smaller doors in the trawl rigging were used to avoid net overspread as demonstrated by underwater observations. No attempt was made to adjust for changes in swept areas which are believed to be low. Figure 5.1.1 and Table 5.1.1 indicate names of the 14 strata, their geographic boundaries, depth ranges and areas in nautical square miles $\left(\mathrm{nm}^{2}\right)$. All strata were limited at the 3 mile line offshore except for some inshore regions in Strata 6.1 and 6.2 off East Greenland where there is a lack of adequate bathymetric measurements. Tables 5.1.2 and 5.1.3 list the trawl parameters of the survey and the sampling effort by year and stratum.

### 5.1.1.1 Stock abundance indices

Tables 5.1.4 and 5.1.5 list abundance and biomass indices by stratum, at West and East Greenland, respectively and then combined for the years 1982-95. Indices vary significantly between strata and years. Trends of the abundance and biomass estimates for West and East Greenland are shown in Figures 5.1.2 and 5.1.3, respectively. These Figures illustrate the pronounced increase in stock abundance and biomass indices from 23 million individuals and 45,000 tons in 1984 to 828 million individuals and 690,000 tons in 1987. This trend was the result of the recruitment of the predominating year classes 1984 and 1985, which were mainly distributed in the northern and the shallow strata 1.1, 2.1 and 3.1 off West Greenland during 1987-89. Such high indices were never observed in strata off East Greenland, although their abundance and biomass estimates increased during the period 1989-91 suggesting an eastward migration. During the period 1987-89, which were years with high abundance, the precision of survey indices is extremely low due to enormous variation in catch per tow data. Since 1988, stock abundance and biomass indices decreased dramatically by $99 \%$ to only 5 million fish and 6,000 tons in 1993. 1992 and 1994 survey coverage was incomplete for the East Greenland partly due to technical problems. Last year's (1995) coverage was again incomplete by $25 \%$ (West Greenland strata). However, the most recent indices were taken as representative for stock abundance and composition, mainly because the greater proportion of the stock has been distributed off East Greenland since 1993. Although the 1995 results show a slight increase in stock abundance and biomass from the record low values in 1993, they confirm the severely depleted status of the stock.

### 5.1.1.2 Age composition

Age disaggregated abundance indices for West and East Greenland and the total are listed in Tables 5.1.6, 5.1.7 and 5.1.8, respectively. In 1995, the age composition was found to be dominated by the age groups 2 and 5 years contributing 37 and $23 \%$, respectively. While almost all fish caught off West Greenland were 2 years old, the age composition off East Greenland was found to be more diverse and comprised both juveniles and a few mature $\operatorname{cod}$ ( $>6$ years, $20 \%$ ). Recruitment is classified as poor, so, there is no indication of recovery.

### 5.1.1.3 Mean weight at age

Mean weight of the age groups 1-10 years for West and East Greenland and weighted by abundance to the total are listed in Tables 5.1.9-11, respectively. Weight (g) at age calculations are based on the regression $f(x)=0.00895 x^{3.00589}, x=$ length $(c m)$, which has been determined on the basis of 3,482 individual measurements. The trends of these values are illustrated in Figure 5.1.4 for the period 1982-95. They reveal pronounced area and year effects. Age groups 2-10 years off East Greenland were found to be bigger than those off West Greenland. Possibly driven by the high abundance of cod off West Greenland, weighted mean length and weight for the age groups $1-5$ display a decrease during 1986-87 and remained at low levels until 1991. The mean length and weight for age groups 1-6 have been increasing from low values since 1991. Clear indications for factors controlling the size of fish at age caught during the survey period are lacking, because correlations with trends in survey abundance, temperature and fishing effort are inconsistent. More detailed analysis to explain these pronounced trends will be carried out in the future.

### 5.1.2 Trends in landings and fisheries

Officially reported catches are given in Tables 5.1.12 and 5.1.13 for West and East Greenland including inshore catches, respectively. Landings as used by the working group are listed in Table 5.1.14 and trends are illustrated in Fig. 5.1.5 by gear, inshore, and offshore areas for both West and East Greenland combined. Until 1975, offshore catches have dominated the total figures by more than $90 \%$. Thereafter, the proportions taken offshore declined to $40-50 \%$ and the most recent yields have been dominated by inshore landings since 1993. Otter trawl
board catches (OTB) were most important throughout the time series for offshore fisheries. Miscellaneous gears, mainly long lines and gill nets, contributed $30-40 \%$ until 1977 but have disappeared since then.

Annual landings taken offshore averaged about $300,000 \mathrm{t}$ during the period 1955-60. Until 1968, figures increased to a higher level between $330,000 \mathrm{t}$ and of $440,000 \mathrm{t}$ in 1962. Landings decreased sharply by $90 \%$ to $46,000 \mathrm{t}$ in 1973. Subsequently, the landings dropped below $40,000 \mathrm{t}$ in 1977 and were very variable. The level of $40,000 \mathrm{t}$ was only exceeded during the periods 1980-83 and 1988-1990. Since 1970, there have been large changes in effort which increased during exploitation of the strong year classes born in 1973, 1977, 1979, and 1980. The offshore fishery was closed in 1986 and for the first 10 months in 1987. During 1990-92, the landings decreased from $100,000 \mathrm{t}$ by $90 \%$ to $11,000 \mathrm{t}$. Since then, no directed cod fishery has taken place. The reported landings in the redfish fishery declined from 828 t to 260 t in 1993-95, respectively.

It is important to note that catch figures, especially since 1992, are believed to be incomplete due to unreported by-catches in the shrimp fishery which has recently expanded to all traditional areas of the groundfish fisheries. A first assessment of the catch taken by the shrimp fishery amounting to 32 t or 110000 individuals in 1994 (WP No.18). This estimate is added to the catch figures used by the working group for the 1992-95 period.

### 5.1.3 Catches in numbers

Catch in numbers were re-evaluated for the German catches taken by OTB back to 1955 and used as input for the VPA. Sampling effort is described in WP No. 9. These data do not cover the catches taken by miscellaneous gears during 1955-77 for which no data are available. However, they were also split based on the OTB data assuming a similar age composition.

Catches at age were broken down separately for West and East Greenland. In 1982 and since 1991, the catches at age off West Greenland were calculated according to survey results and the same basis was used in 1992 and 1994 for East Greenland catches, respectively. In 1977, West Greenland catches were partitioned by age according to East Greenland samples due to a lack of data. Mean age in the landings is illustrated in Figures 5.1.6 and 5.1.7 for West and East Greenland, respectively. Both show a significant decreasing trend in mean age and were highly variable during the last 25 years when the catches where influenced by two strong year classes, namely those of 1973 and 1984.

In 1980 and 1981, the catch at age was increased by a number of 12 and 3.5 million individuals or $39,600 \mathrm{t}$ and $16,450 \mathrm{t}$, respectively, as estimated by the assessment of the Icelandic cod stock to account for an emigration of the 1973 year class to Iceland. In addition, the catch at age figure for the 1984 year class in 1990 was raised by 13 million or $27,300 \mathrm{t}$ for the same reason (Section 3.3.6.2).

### 5.1.4 Mean weight-at-age

Mean weight at age data were re-evaluated for the German catches taken by OTB back to 1955 for West and East Greenland, separately. Trends are illustrated in Figures 5.1.8 and 5.1.9 and show pronounced variations over time. During the late 50s, the size of cod at age 5-8 years increased and remained at a high level for both West and East Greenland. The size at age of cod was very small during the early 70 s and 80 s . Multiple linear growth models were formulated for the length at ages 5-8 years based on temperature, quarter of a given year and size at age in the previous year explaining 35 to $50 \%$ of the observed variation in growth (WP 9).

From these time series, input data for the VPA were calculated as weighted means according to the landing weight.

### 5.1.5 Natural mortality

The standard value of 0.2 was used for ages 3 and 4 years. These values were increased for age groups $5+$ to 0.3 to account for an emigration to Iceland.

### 5.1.6 Maturity-at-age

Maturity data were taken from what is listed in previous Working Group reports. In years where no observations were available, maturity at age data was taken from adjacent years. There is only small variations in the VPA input data (Tab. 5.1.17).

### 5.1.7 Assessment

### 5.1.7.1 Tuning and estimates of terminal fishing mortality

Results from the German groundfish survey were used as the only available tuning fleet for the XSA. In order to take incomplete survey coverage in 1992 and 1994 off East Greenland into account, the age disaggregated indices were adjusted by averaging of the values of given year classes in the previous and following years. This was done for East Greenland results before adding the West Greenland results to get combined estimates. The data are given in Table 5.1.15.

As a first run, an XSA tuning exercise was performed based on default values including the most recent years and ages 3 to 10 . This exercise resulted in very high standard errors of log-transformed qs exceeding 1.0. The residuals revealed high positive deviations in the most recent 3 years 1993-95. This result was caused by high variations on an extremely low level in age disaggregated indices of both the catches and the survey indices.

A second run, disregarded years after 1992 when no directed cod fishery took place. The XSA results based on the 1955-92 period are listed in Table 5.1.16. Resulting standard errors of log-transformed qs are much lower and average about 0.6 . The positive deviations as derived from the first run disappeared when the 3 most recent years were excluded. Figure 5.1 .10 shows the behaviour of estimates derived from the retrospective analysis. Most of these tunings reflected the expected low fishing mortalities in 1986 and 1987 when a trawling moratorium was in force for the whole year and the first 10 months, respectively. In the following period, the fishing effort increased. A substantial underestimation of fishing mortality is indicated for the 1988-90 period when compared with the 1991-92 values derived from the retrospective analysis. The Working Group decided to use the very high 1991-92 estimates of the fishing mortality as representative but did not consider them suitable for precise estimation of the present stock status.

### 5.1.7.2 Assessment of the historical stock status, fishing mortality and recruitment

The historical stock status is assessed based on the terminal Fs derived from the second tuning run, disregarding the years 1993-95, when no cod fishery took place and by-catches only were taken by fisheries directed towards redfish or shrimp. The VPA results are listed in Table 5.1.17.

Trends in yield and fishing mortality are shown in Figure 5.1.11. An increasing trend in fishing mortality from 0.1 to 0.4 is determined during the period 1955-68. During the same period, the yield increased from a level of $280,000 \mathrm{t}$ to $380,000 \mathrm{t}$ but decreased drastically to $100,000 \mathrm{t}$ in the early 70 s . Thereafter, the fishing mortality was highly variable and seems to be dependent on the changes in effort directed to the exploitation of individual relatively strong year classes. Periods when Fbar for ages 5-8 years exceeded 0.5 were 1974-1977, 1980-1984 and 1988-1992.

Figure 5.1.12 shows trends in spawning stock biomass and recruitment. During 1955 to 1973 , the spawning biomass decreased almost continuously from 1.8 million $t$ to $110,000 \mathrm{t}$, a decrease of $94 \%$. Thereafter, the spawning stock biomass averaged $50,000 \mathrm{t}$. During the period $1955-73$ before the spawning stock decreased below $100,000 \mathrm{t}$, the recruitment at age 3 varied enormously between 5 million and 700 million and averaged 220 million. Since 1974, the spawning stock varied around the mean of $50,000 \mathrm{t}$ and produced an average recruitment of 41 million representing a mean reduction by $95 \%$ and $80 \%$, respectively. The long term mean recruitment was not exceeded for 8 of 19 years from 1955 to 1973 , while it has been below that value for 17 of 19 years since then. During the last 29 years, only 2 year classes have reached the long term mean recruitment level at age 3, namely those produced in 1973 and 1984.

### 5.1.8 Determination of MBAL

Recruitment at age 3 is plotted against the spawning stock biomass in Figure 5.1.13. There is some relationship between recruitment and the spawning stock biomass with stronger recruitment being produced when the spawning stock biomass is greater than about $750,000 \mathrm{t}$. This suggests that, given suitable environmental conditions, cod in the offshore areas of Greenland can be self-sustaining. For ecological reasons, i.e. mainly temperature and ocean current effects on migration, growth, spawning, larval survival and O-group drift from Iceland contributing to the recruitment, the Working Group had difficulties in identifying a MBAL value. Considering an Icelandic origin for the only 2 strong year classes 1973 and 1984 during the last 29 years, the impact of larval drift to the stock recruitment for Greenland cod must be considered to be low.

### 5.1.9 Management consideration

The first separate assessment of the offshore component of the cod stocks off Greenland reveals that overfishing was a major cause for the collapse of this unit in the beginning of the 70 s . Since that time, the spawning stock has remained below $100,000 \mathrm{t}$ and has not been able to produce an adequate recruitment. Only two strong year classes have been observed in 1976 and 1987 as 3 year olds. An increase in effort directed towards the 1973 and 1984 year classes has resulted in high fishing mortalities. Both year classes contributed only negligible amounts to the severely declined spawning stock. The most recent trend in the fishery and German survey data which are not included in this assessment, are consistent with this picture. Further, no indication of stock recovery is derivable based on the lack of strong pre-recruiting year classes. In the present situation, catches of young cod in the shrimp fishery should be kept to a minimum in order to increase the probability of stock recovery. No fishing should take place until a substantial increase in recruitment and biomass is evident.

### 5.1.10 Comments on the assessments

This assessment of the offshore component of the cod stocks off Greenland is affected by several uncertainties in data as well as ecological factors. The effect of emigration is only directly covered for the 1973 and 1984 year classes and has been taken into account by an increase of the natural mortality to 0.3 for age groups 5 and older. The sampling of commercial catches was historically rather inconsistent and did not cover the $30 \%$ taken by miscellaneous gears, mainly loneliness and gill nets up to 1977. Since 1991, catch at age and weight at age data had to be calculated using survey data. Maturity data were poorly reported implying uncertainties in spawning stock estimates.

No XSA tuning could be applied for the most recent period 1993-95 when low levels in landings, effort and stock abundance were observed. The age disaggregated survey indices had to be adjusted to account for incomplete coverage of the survey area in 1992 and 1994.

### 5.2 Inshore cod stock off Greenland

In the last decade the inshore cod fishery at West Greenland has contained cod originating from two different spawning areas. Icelandic cod spawned off South-western Iceland witch in some years are carried by the Irminger current to settle off South Greenland, and local possibly self-sustained fjord populations. Spawning cod are found in several fjords of the west Greenland (Buch et al., 1994) especially in NAFO Division 1B and NAFO Division. 1D. Tagging experiments and independent fluctuating recruitment in these fjords suggest that these stocks are more or less isolated.

### 5.2.1 Trends in Catch and Effort

Historically the inshore catches have been of limited importance as the inshore fisheries have accounted for no more than $5-10 \%$ of the total international catch (Fig 5.1.1). Annually catches about $15,000-20,000 t$ has been taken inshore during the period 1955-1973. Since then the catches have been varying in agreement with the recruitment of strong year classes to the offshore fishery. High catches of around $50,000 \mathrm{t}$ in 1980 and 1989 have been followed by periods of very low catches. In 1993 and 1994 the catches amounted to only $1,925 \mathrm{t}$ and $2,115 \mathrm{t}$ and decreased further in 1995 to a record low catch of 1,703 tons.

The inshore fishery takes place from small vessels ( $<40$ GRT). Pound net, gillnets and handlines contributes about $95 \%$ of the inshore catch.

Unlike the offshore fishery, the effort in the inshore fishery has not decreased much despite pronounced declining catches in recent years. No alternative species has been available for this small-vessel fishing fleet.

### 5.2.2 West Greenland young cod survey

During June -July 1995 Greenland carried out a gill-net survey on young cod in the three inshore areas off West Greenland : Qaqortoq (NAFO Div. 1F), Nuuk (Div. 1D) and Sisimiut (Div. 1B). The survey has been conducted at the same time since 1985. Three mesh-sizes (16.5, 24 and 33 mm bar length) were used in the first two years, but in 1987 two additional mesh sizes were added ( 18.5 mm and 28 mm ). An index of recruitment for each area is calculated as the mean catch of 2-year olds cod per hour taken by all five mesh sizes. Values for 1985-86 have been corrected to five mesh units based on the relationship between catches in the 3 and 5 mesh-series as found since 1987. The recruitment series is shown in Table 5.2.1.

The 1984 and 1985 year-classes, with are considered to have drifted from Iceland to Greenland, show high abundance at age 2 in all areas. For the other year-classes less resemblance is seen between the areas. For Div. 1F all year classes after 1985 are missing. This pattern of year class occurrence resembles that which has been found offshore indicating the Icelandic origin of cod in this area. In Div. 1B, where the highest CPUE's is generally seen, the year-classes 1986 to 1988 are also prominent whereas the 1989 and 1991 year-classes are very week and the 1992 and 1993-year-class is low. In Division 1D the year-classes of 1986-1987, and 19891990 are prominent whereas 1991-1993 are very weak.

### 5.2.3 Catch in numbers

In West Greenland, 9 samples from poundnet landings were used to convert the total inshore catch into numbers at age. Sampling in 1995 was difficult to perform due to the low catch levels. Sixty percent of the catch was broken down by samples to the respective area and month; the remaining catch had to be converted to numbers at age using samples taken from adjacent areas or months (Table 5.2.2).

Weight -at-age for West Greenland cod were based on samples from commercial inshore fisheries (Table 5.2.2). The overall mean weight was derived by weighting catch from the various areas and months. The mean weight of the age groups 5 and 6 , witch contribute most to the catches, were approximately the same as in 1994, but low compared to the long term mean.

Adequate statistics for the commercial inshore fisheries are only available since 1982 and it is therefore only possible to estimate the catch at age back to 1982 (Table 5.2.3)

### 5.2.4 Management Considerations

The inshore stock component has never been assessed separately. The three latest year-classes in NAFO Div. 1B and Division 1D (the 1991, 1992 and 1993 year-classes) are estimated to be very poor in the young cod survey in 1995. Catches should therefor be kept at a minimum to enhance the recruitment prospects of the inshore stock.

## 6 GREENLAND HALIBUT IN SUB-AREAS V AND XIV

### 6.1 Trends in Landings and Fisheries

Total annual catches in Divisions Va, Vb and Sub-area XIV are presented for the years 1981-1995 in Tables 6.1.1-6.1.4. During the period 1982-1986, catches were stable at about $31,000-34,000 \mathrm{t}$. In the years 1987-1989 catches increased to about $62,000 \mathrm{t}$, followed by a decrease to about $35,000 \mathrm{t}$ in 1992. The catches increased to $41,000 \mathrm{t}$ in 1993, but decreased to about $37,000 \mathrm{t}$ in 1994 and $36,000 \mathrm{t}$ in 1995. Catches not officially reported to ICES have been included in the assessment. More than $75 \%$ of the total annual catch is taken in Division Va. Faroese catches in Vb have increased in recent years from a level of about $1,000 \mathrm{t}$ in 1981-1991 to about $5,000 \mathrm{t}$ in 1994 and $4,000 \mathrm{t}$ in 1995. Catches in Greenland waters (Sub-area XIV) have increased from below $1,000 \mathrm{t}$ in 1987-1991 to about 5,000 $t$ in 1995.

Most of the fishery for Greenland halibut in Divisions $\mathrm{Va}, \mathrm{Vb}$ and Sub-area XIV is a directed fishery, only minor catches in XIVb by Germany and the UK derives partly from a redfish fishery.

The fishing grounds in Va are restricted to an area west of Iceland $\left(65^{\circ}-66^{\circ} \mathrm{N}, 27^{\circ}-29^{\circ} \mathrm{W}\right)$, an area north of Iceland $\left(67^{\circ} 30-68^{\circ} \mathrm{N}, 18^{\circ}-23^{\circ} \mathrm{W}\right)$, and an area east of Iceland $\left(64^{\circ}-66^{\circ} \mathrm{N}, 11^{\circ}-13^{\circ} \mathrm{W}\right)$. The relative proportion of the catches taken on the western fishing grounds has decreased somewhat in the last 5 years. In $199573 \%$ of the Icelandic catch was taken on the western fishing grounds. The main fishing season in Division Va was formerly related to the spawning season in spring, but in recent years, the fishing season has expanded and the present fishery is conducted in late winter to early summer, with the bulk of the catches taken in April through June. The Icelandic trawlers moved to deeper parts of the continental slope around 1991-1992 (depth of approximately $1,000 \mathrm{~m}$ ), partly due to an increase in vessel power.

The trawlers (single trawlers $>1,000 \mathrm{Hp}$ ) fishing in Division Vb are operating on relatively shallow parts of the continental slope, mainly in summer. The gillnet fishery in Division Vb started in 1993, and since then fishing grounds have changed. This fishery is carried out during the whole year with a peak in spring.

The fishing grounds in Division XIVb is on the continental slopes ( $61^{\circ} \mathrm{N}-65^{\circ} \mathrm{N}, 36^{\circ}-41^{\circ} \mathrm{W}$ ). The main fishing season is from June to September. A minor part of the trawl catches are by-catches in a redfish fishery. Both freezing trawlers and fresh fish trawlers operate in the area. In 1995 longliners moved to deeper waters $(1,000-$ $1,400 \mathrm{~m}$ ).

Annual catches in 1994 and 1995 are separated by gears in Tables 6.1.5-6.1.6.

### 6.2 Trends in Effort and CPUE

Commercial catch rates of Icelandic bottom trawlers have decreased for all fishing grounds since 1990. For the years 1990-1995 CPUE on the western fishing grounds have been about three times higher than for the other fishing grounds.

Indices of CPUE for the Icelandic trawl fleet for the period 1985-1995 (Table 6.2.1) are estimated from a GLIM multiplicative model, taking into account changes in the Icelandic trawl catch due to ship, statistical square, month and year effects. All hauls with Greenland halibut exceeding $50 \%$ of the total catch were included in the CPUE estimation. The CPUE indices from the Icelandic trawling fleet in Division Va were used to estimate the total effort for each year ( y ) for all the fleets operating on Greenland halibut in area V and XIV according to:

$$
E_{y, V \& X I V}=Y_{y, V \& X V} / C P U E_{y, V a_{\text {trawl }}}
$$

where E is total effort, Y are the total reported landings in region V and XIV.
The total effort increased up to 1989, decreased somewhat in the next two years, but has been increasing steeply since 1991 and reached a maximum in 1995. The CPUE was relatively stable in 1985-1989, but has declined sharply since then to a historic low last year. The CPUE declined by $70 \%$ from 1985 to 1995. In the last two years the effort has increased by $30 \%$ and the CPUE decreased by $26 \%$.

### 6.3 Catch in Numbers at Age

Although a Greenland/Norwegian age-length key for Division XIVb was available, it was assumed to be unreliable due to a change in personnel reading the otoliths from that area. The only other aged catch samples in 1995 were those obtained from the Icelandic trawl fleet operating in Division Va, and this was used to obtain catch in number for each of the following fleets and areas:
a) Trawl catch in Vb , using length measurements obtained from Faroese trawl catch in the same area.
b) Trawl catch in Va and XIV, using length measurements obtained from Icelandic trawl catch in Va.
c) Longline catch in V and XIV, using length measurements obtained from Icelandic longline catch in Va.
d) Gillnet catch in Vb , using length measurements obtained from Faroesese gillnet catch in the same area.
e) Gillnet catch in XIV, using length measurements obtained from Norwegian gillnet catch in the same area.

The length-weight relationship used was $\mathrm{W}=0.01758 * \mathrm{~L}^{2.84387}$ for $\mathrm{a}-\mathrm{d}$ and $\mathrm{W}=4.48 * 10^{-3} * \mathrm{~L}^{3.191}$ for e. The total catch in numbers (Table 6.3.1.) were obtained from the sum of the above weighted with the catch within each group (a-e).

The mean weight at age in 1995 (Table 6.4.1.) was derived from the weighted average of the above groups (a-e). The estimates in 1994 were derived using Icelandic and Greenland data. The average weight of 5-year olds in 1992 was estimated from the mean of 1980-1991. Weights at age in the catch are also used as weights at age in the stock.

### 6.5 Maturity at Age

Data on maturity at age were available for the years 1982-1984 and 1991-1994, based on samples from the Icelandic trawl fishery. Data on maturity at age for the years 1985-1990 were not available. The maturity at age for these years was therefore estimated by averaging the data from the years 1982-1984 and 1991 (Table 6.5.1.). The data on maturity at age for 1994 showed exceptionally high values for the ages 6 and 7 . The most likely explanation for this is that a substantial part of the Icelandic trawl fishery takes place in the period after spawning (late April-June), and that maturity determination and sampling may be misleading. Therefore it was decided to use the values from 1993 also in 1994 for these age groups. The data on maturity for 1995 were based on information from the Icelandic trawl fishery in division Va .

### 6.6 Stock Assessment

### 6.6.1 Tuning and estimates of fishing mortalities

Age-disaggregated CPUE values for age groups 7-14 over the period 1985-1995, obtained from the Icelandic trawling fleet operating in division Va , were initially used in the tuning process. Since the $\log \mathrm{q}$ residuals and the mean $\log \mathrm{q}$ for ages 13 and 14 are relatively high (Figure 6.6.1.1.) the Group decided to exclude these age groups from the tuning analysis.

Two further XSA runs were performed by the Working Group using the shorter age span (ages 7-12) for the tuning fleet. The setting for the first XSA was the default in terms of the weight of the shrinkage (Standard error to which the means of the last 5 years are shrunk, hereafter referred to as SEmshr $=0.5$ ). The diagnostics showed that the catchability (Mean $\log q$ ) is relatively stable in age groups 9 and older, that the S.E. (Log q) is below 0.3 for all age groups, and also that $\log \mathrm{q}$ residual variation between years are low (Figure 6.6.1.2.). Since the total effort has increased dramatically over the last 5 years (Table 6.2.1.) the applicability of using a shrinkage of the terminal F to the mean of some previous years, was questioned by the Group (and by ACFM last year). Thus, a second XSA tuning was performed where the weight of the shrinkage was reduced by increasing the SEmshr to 1.0 . This resulted in the reduction of the scaled weight of the shrinkage from around $20 \%$ to around $7 \%$ in age groups $8-12$. The diagnostics of the second run (Table 6.6.1.1.) show a reduction in standard error of the Log $q$, but was otherwise similar to the first run (Figure 6.6.1.2.). Variability in reference $F$ values (Fbar 8-12) based on retrospective analysis (Figure 6.6.1.3.) are within acceptable levels. Both analyses tend to overestimate F by $4-15 \%$ in years 1992-1994, but underestimate F prior to that period. The lowering in the weight of the shrinkage resulted in higher terminal F values.

Although the increasing trend in effort is reflected in increasing trend in F , the F values in the two most recent years are somewhat lower than expected if the relationship between these two parameters are simply linear through the origin (Figure 6.6.1.4.). The Working Group thus decided to look at the outcome of a Laurec Shepherd tuning, with a SEmshr $=1.0$, for comparison. The $\log \mathrm{q}$ residuals show a similar trend (Figure 6.6.1.2), but the retrospective analysis gives a poorer performance than the XSA tuning (Figure 6.6.1.3.). The reference $F$ values from the Laurec Shepherd tuning in the last 2-3 years showed similar deviation from a linear regression of $F$ on effort (Figure 6.6.1.4.). Since the retrospective diagnostics of the Laurec Shepherd tuning was relatively poor and the terminal F-values were similar to that of the XSA, further analysis of the former model was terminated.

The terminal fishing mortalities from the XSA run with a Semshr $=1.0$ were used to run a traditional VPA. Natural mortality was assumed to be 0.15 and the proportions of F and M before spawning were set to 0 . The results of this run are given in Tables 6.6.1.2.-5. and Figures 6.6.1.5..A and B.

### 6.6.2 Spawning stock and recruitment

Spawning stock biomass is shown in Table 6.6.1.4. and Figure 6.6.1.5.B. The spawning stock was between 70 and $80,000 \mathrm{t}$ between 1978-1983, and increased to a maximum of $121,000 \mathrm{t}$ in 1988. Since 1988 it has declined to a low of $66,000 \mathrm{t}$ in 1994. The increase in spawning stock to $76,000 \mathrm{t}$ in 1995 is attributed to an increase in proportion of maturity in younger age groups.

Estimates of recruitment at age 5 is shown in Table 6.6.1.5 and Figure 6.6.1.5.B. The long term average for the period 1976-1993 is 32 million fish. The 1980 and 1981 year classes are the highest on record at about 45 million. Since then there has been decline in recruitment, the numbers reaching a record low of 22 million fish in 1987 year class. The size of the 1988 year class is also below average ( 25 million). Estimates of the more recent year classes of 1989 and 1990 are thought to be unreliable, since they are just entering the fisheries.

### 6.7 Prediction of Catch and Biomass

### 6.7.1 Input data

The input data for the short term prediction are given in Table 6.7.1.1. Mean weight at age and exploitation patterns are averages from 1993-1995. Maturity at age is the average of 1991-1995, exclusive of the year 1994 (since those are assumed values of 1993). Natural mortality was set to 0.15 and the proportions of F and M before spawning were set to 0 . Year classes 1989-1991 were assumed to be equal to the lower 25th percentile recruitment value over the period 1976-1993. This is a reflection of the recruitment being below average since 1983 year class. A second projection is also provided, using the long term mean recruitment for 1976-1993, all other input parameters being the same as above (Table 6.7.1.2).

The prediction is based on a status quo F, using the same reference F in 1996 as in 1995.
The Y/R calculation uses the average number of 5 year old fish over the period 1976-1993 and the mean weight at age and the exploitation patterns were based on average over the period 1976-1995 (Table 6.7.1.3).

### 6.7.2 Biological reference points

$\mathrm{F}_{0.1}$ was estimated to be 0.22 and $\mathrm{F}_{\max }=0.57$ (Table 6.7.2.1, Figure 6.7.2.1). For comparison, yield per recruit based on short term exploitation patterns (1993-1995) were also calculated, the $\mathrm{F}_{0.1}$ and $\mathrm{F}_{\max }$ being 0.27 and 0.68 , respectively (output not shown).
$\mathrm{F}_{\text {med }}$ and $\mathrm{F}_{\text {high }}$ are 0.42 and 0.60 , respectively (Figure 6.7.2.2). MBAL could not be assessed from the available data.

### 6.7.3 Projections of catch and biomass

Table 6.7.3.1 shows the results of the predictions using the lower estimate of recruitment ( 26 million). At the beginning of 1996, the total stock is estimated to be about $141,000 \mathrm{t}$, and the spawning stock just below $51,000 \mathrm{t}$. To maintain the catch in 1997 at the level it has been in the past 6 years, an increase in F of $35 \%$ will be required. At a status quo F in 1996 and 1997, the stock biomass will decrease to $137,000 \mathrm{t}$ in the beginning of 1997 and further to $135,000 \mathrm{t}$ in 1998, and SSB will decrease to a record low of $43,000 \mathrm{t}$ in 1998. A minimum of a $50 \%$ reduction in F is needed to increase SSB above 1996 level. This will result in catches less than $17,000 \mathrm{t}$ in 1997.

Table 6.7.3.2 shows the results of predictions using a long term average of recruitment ( 32 million). At the beginning of 1996, the total stock is estimated to be about $162,000 \mathrm{t}$, and the spawning stock about $54,000 \mathrm{t}$. At a status quo F in 1996 and 1997, stock biomass, catch and SSB seem quite stable in 1997 and 1998.

### 6.8 Management Considerations

The Greenland halibut stock biomass has been falling rapidly from a peak in 1987. Catches in the last 6 years have remained around $37,000 \mathrm{t}$, despite drastic increase in F and effort over the period. The fishing mortality has been substantially above $F_{0.1}$ since 1986 and is currently at the level of $F_{\text {high }}$. The increase in effort in recent
years is not reflected in proportional increases in terminal fishing mortality estimates. This in addition to redistribution of fishing efforts indicates that the terminal fishing mortality might be underestimated. Recruitment for year class 1983-1988 have been below average and recruitment of year classes 1989 and onward is unknown. Considerable reduction in catch are needed to rebuild the stock, necessitating strict management regulations.

### 6.9 Comments on the Assessment

Improved sampling of catch data are needed. Data on length composition from the trawl and long line fisheries in Sub-area XIV, which account for about $12 \%$ of the total catch in 1995, were not available. Information on age composition and maturity from the fisheries in XIV and Vb and from the longline fisheries in Va are also lacking.

Progress has been made in an attempt to quantify discrepancies and bias in age readings among Greenland halibut age readers in the last year and the work will conclude with an international workshop in Iceland this fall. Precision and standardisation in determination of maturity are badly needed.

The use of only one commercial fleet for tuning is a cause of concern since the fleet covers only a part of the total fishing area. Although the Icelanders are currently planning and implementing an annual fall survey on the Greenland Halibut grounds within Division Va, it will not become of use in stock assessment in the near future. In the interim period it is recommended that available log book information from regions XIV and Vb are compiled and made available to strengthen the basis of the stock assessment.

Short term predictions are based on assumed recruitment values. Indices of recruitment of Greenland halibut are an obvious prerequisite for sound management advise.

Although some tagging experiments and stock discrimination analysis (DNA, electrophoresis, meristic studies) have been carried out in recent years, further understanding on the basic biology of the Greenlandic halibut is needed.

## 7 REDFISH IN SUB-AREAS V, VI, XII AND XIV

### 7.1 Species and Stock Identification

In the northeast Atlantic there are three common species of redfish: Sebastes viviparus, $S$. marinus and $S$. mentella. In the southernmost part of the area, a fourth redfish species, Helicolenus dactylopterus (blue mouth), is also encountered. The three Sebastes species are found along the Norwegian coast, in the Barents Sea, at the Faroes, Iceland, East Greenland and in the Irminger Sea.

The adult and mature part of a special type of $S$. mentella called oceanic $S$. mentella (oceanic redfish) which is pelagic from less than 100 m to approx. $1,000 \mathrm{~m}$ in the Irminger Sea is considered a separate stock. The other S.mentella type connected to the continental slopes, is called deep-sea S.mentella (deep-sea redfish). In 1991, a S.mentella type resembling the deep-sea S.mentella was discovered by Icelandic scientists in the Irminger Sea pelagic deeper than 500 meters, far from the continental shelves. Until then, deep-sea S.mentella was considered to have its main distribution along the continental slopes in the region, similar to that of S. marinus. The differentiation of the two S.mentella types in the Irminger Sea has been based on the following criteria (e.g., Magnússon et al. 1994, Magnússon et al. 1995):
colour - the deep-sea type is redder, while the oceanic type is more greyish red.
length-weight relationship - the deep-sea type being more stout and heavier at a certain length than the oceanic. length at first maturity - the deep-sea type being longer when first mature.
parasite infestation - the deep-sea type being less infested by the Sphyrion lumpi ectoparasite.

During the summer and autumn, the oceanic redfish in the Irminger Sea is most common in depths from 100 to 350 meters while the deep-sea redfish is most common below 500 meters. In late winter and spring (March to May), i.e., during the "pre"-spawning" and "spawning" period, the oceanic redfish inhabits deeper layers in the
eastern part of the Irminger Sea. During that time there is a considerable overlap in the depth distribution of the two types of $S$. mentella (Magnússon, 1983; Magnússon et al., 1995).

Separating the two pelagic S.mentella types in the Irminger Sea by morphological and biological criteria demands considerable experience, and, at present, it is only Icelandic scientists that have thoroughly investigated this matter and possess the necessary ability. A protocol which details the methodology to separate the two types is urgently required so that other researchers can investigate the separation criteria, the behaviour and interrelationship of the two types. This will also permit researchers to compare the pelagic deep-sea S.mentella in the Irminger Sea with the deep-sea S.mentella on the continental shelf and slope. Genetic analyses (both traditional electrophoresis of hemoglobin and tissue enzymes and DNA analyses) are currently being conducted at Iceland and Norway. Preliminary results so far show variation within the two S.mentella types, but more biological material and more research is required before anything can be concluded regarding the genetic identity of the two types.

In recent years, particularly since 1993, catches of deep-sea $S$. mentella in the Irminger Sea have increased but have been reported as oceanic redfish (Working Doc. no. 15). There is, at the moment, no way to separate the two types in the catches. Iceland has taken steps (sampling on board, at landing sites and by collecting log-book reportings on depth) which hopefully will enable separation of these types in the catches of the Icelandic fleet in the future. It is imperative that countries participating in this fishery should report monthly to NEAFC giving the catch in depth-intervals and by gear type.

ICES has been requested by the North-East Atlantic Fisheries Commission (NEAFC) to provide information on the relationship between pelagic deep-sea S.mentella and the deep-sea S.mentella fished in demersal fisheries on the continental shelf and slope. Work is currently being done to gain more knowledge about what is believed to be pelagic deep-sea S.mentella in the Irminger Sea (e.g., genetic analyses). More detailed results from this research is therefore needed before anything definite can be said about the requested relationship.

The Working Group continues to consider the S. marinus in East Greenland, Iceland and the Faroes as one stock. The deep-sea $S$. mentella in the continental slope region of this area is also considered one stock unit. Due to inadequate knowledge about the distribution (vertical and horizontal) of pelagic deep-sea S.mentella in the Irminger Sea and the lack of separation of oceanic and deep-sea S.mentella in the pelagic catches, the Working Group finds it impossible at this time to separate these two types and does therefore at present consider all pelagic S.mentella in the Irminger Sea as one stock unit. The Working Group therefore will deal with and assess the following stocks:
S. marinus Greenland-Iceland-Faroes stock.
S. mentella Greenland-Iceland-Faroes deep-sea stock.
S. mentella Irminger Sea oceanic stock.

### 7.2 Nominal Catches and Splitting of the Landings in Stocks

### 7.2.1 Nominal catches of Redfish by countries and areas

The total catch of redfish in 1995 (approximately $100,000 \mathrm{t}$ ) excluding the catch figures from the oceanic $S$. mentella fishery, was $20 \%$ less than in $1994(125,000 \mathrm{t})$. This is mainly caused by a decrease in the German deep-sea S.mentella fishery in Sub-area XIV because of a redirection of effort to other fishery resources.

The preliminary reported landings of oceanic $S$. mentella in 1995 are about $124,000 \mathrm{t}$. Thus the total catch of redfish in the area amounts to about $220,000 \mathrm{t}$ in 1995 compared to nearly $260,000 \mathrm{t}$ in 1994.

In Division Va (Iceland), the total redfish landings reached $91,071 \mathrm{t}$ including $1,543 \mathrm{t}$ of oceanic $S$. mentella. Apart from the oceanic $S$. mentella landings the catches in Division Va have remained relatively stable since 1989 at $91,000-100,000 \mathrm{t}$ (Tables 7.2.1-7.2.2).

In Division Vb (Faroes) (Tables 7.2.3-7.2.4) the largest redfish catch were taken in 1986 (21,000 t). Since then catches have decreased steadily to about $12,000 \mathrm{t}$ in 1990 but increased again to about 15,000 and $16,000 \mathrm{t}$ in 1991 and 1992, respectively. Since then catches have decreased to about 8-9,000 t in 1994-1995.

Landings from Sub-area VI have been of minor importance in recent years, but a steady increase in the UK redfish landings is reported (Tables 7.2.5-7.2.6). The catches have not been sampled, it is expected that they are probably S.marinus.

All landings from Sub-area XII are oceanic S.mentella which are described in chapter 10 (Tables 7.2.7-7.2.8).

The highest landings from Sub-area XIV were reported in 1986-1988, having reached 96,000 t. Landings dropped to about $25,000 \mathrm{t}$ in 1989 before increasing to nearly $60,000 \mathrm{t}$ in 1994 . Provisional data for 1995 show, however, a decrease to about $34,000 \mathrm{t}$. This decline is mainly caused by a decrease in the German deep-sea S.mentella fishery due to redirected effort to other resources (Tables 7.2.9-7.2.10). Of the total landings from this area in 1995, about $97 \%$ were oceanic S.mentella.

### 7.2.2 Splitting of the catches

Since 1993, an attempt has been made to divide the redfish catches in Division Va into $S$. marinus and $S$. mentella, using both data from log-books and data collected by the staff of the Marine Research Institute. A new attempt was made this year for 1995, which separates the catches in stratum according to the ratio of $S$. marinus/S.mentella as observed in samples from the same stratum. Each stratum is defined by 15 min Lattitude and $30^{\prime}$ Longitude.

The following data were used:

1. Samples from the fresh-fish trawlers taken by the Marine Research Institute (MRI) and the Icelandic Catch Supervision (ICS) personals.
2. Landing statistics from Germany.
3. Information on landed products from freezer trawlers.
4. Logbook data.
5. Landing statistic from the different fleets.

## Splitting of catches from freezer trawlers:

In the freezer fleet, the products are usually labelled according to species. Reliable data on this basis are available from 1993 to 1995, and assuming that the species composition is the same in the split and unsplit catches, the total catches were split according to the products.

## Splitting of the catches from the fresh fish trawlers.

i. For each year: The catches from each year were pooled into rectangles ( 15 min . Latitude by 30 min . Longitude) and scaled to the total unsplit catch of the two species for each rectangle. It is therefore assumed that the distribution of catches not reported in logbooks was the same as those in the reported catches. Catches taken by other gears were included (about $2 \%$ of total catch). All catches and hauls taken by the freezer trawlers were excluded as well as hauls taken in trips where the trawlers landed in Germany.
ii. For each stratum and each year: The samples taken were used to split the catches according to the average composition in the samples and raised to the total catches from that fleet. If no information on the species composition in strata for a year were available, the composition in $\pm 1$ year, $\pm 2$ years (max. 5 years) were used. If there were no observations in the period from 1988 to 1995 , the splitting was done according to depth and the captain's experience. Only a small proportion of the catches were split using the last criteria.

The landings in Germany are split at the market and reported.

The results are given in the following text table:

| Type of fleet | \% S. marinus | \% S. mentella |
| :--- | :---: | :---: |
| A. Freezer vessels | 15.41 | 84.59 |
| B. Landings in Germany | 20.3 | 79.7 |
| C. Landings in Iceland (excluding from freezer vessels). | 71.3 | 28.7 |
| Results | $\mathbf{4 6 . 4}$ | $\mathbf{5 3 . 6}$ |

The splitting values (\%) between S. marinus and deep sea S. mentella for the years 1992-1995 are given in the following text table:

|  | Results from 1992-1995 (\%) |  |
| :--- | :---: | :---: |
| Year | S. marinus | S. mentella |
| $\mathbf{1 9 9 2}$ | 54.00 | 46.00 |
| $\mathbf{1 9 9 3}$ | 46.96 | 53.04 |
| $\mathbf{1 9 9 4}$ | 40.40 | 59.60 |
| $\mathbf{1 9 9 5}$ | 46.40 | 53.60 |

For other areas and divisions, catches were split according to information from different laboratories (Tables 7.2.11-7.11.12).

### 7.2.3 CPUE

As early as 1978, Magnússon and Magnússon (1978) indicated that the proportion of S. marinus and S. mentella is highly dependent on depth and stated that redfish catches in waters deeper than 500 m , were $>80 \% S$. mentella. Also, they noted that catch percentages of $S$. mentella in waters shallower than 450 m were less than $20 \%$ in the SW area where most of the catches were taken. The same conclusion was reached in studies of samples taken by the Marine Research Institute (MRI) and the Icelandic Catch Supervision (ICS) in the period 1988-1995. This would suggest that CPUE in redfish can be split into CPUE for $S$. mentella and S. marinus, by depth.

Therefore, the CPUE for the bottom trawl fleet for different depth intervals was calculated for the period 1986 to 1995.

The results are given in Figure 7.2.1. The CPUE indices are computed by simply aggregating tows where the percentage of redfish in each tow is above a certain level. This level corresponds to $10 \%$ (Figure 7.2.1). Knowing that $S$. marinus is rarely caught at depths deeper than 500 m , it is assumed that these results give a CPUE in S. mentella.

Similarly, it is assumed that for the redfish fishery at water depths shallower than 500 m , the series for calculated CPUE reflects a CPUE for $S$. marinus.

### 7.3 Juvenile Redfish

### 7.3.1 Recruitment indices

### 7.3.1.1 Icelandic 0 -group survey

Indices for 0 -group redfish in the Irminger Sea and at East Greenland are available from the Icelandic 0 -group surveys which started in 1970 (Table 7.3.1). In 1972, 1973 and 1974 the indices were well above the overall average of 14.8 suggesting good year classes in those years. During the ten-year period 1975-1984 the indices were below average in all the years, particularly in 1976 and from 1978-1984. Values were high in 1985, 1987, 1990, 1991 and in 1995 the index was 13.9 near the average.

Although the indices in 1986 and 1989 were slightly below average the indices suggest generally strong year classes from 1985 to 1991 (with an average index of 19.8 for that period) following a period of poor ones (19751984, average index 5.9). In 1992-1994 the indices were below the overall average.

### 7.3.1.2 Icelandic Groundfish survey

The Icelandic groundfish survey, which covers the depths to the 500 m depth range, provides indices of the recruitment to the $S$. marinus stock. Age determinations are not available, but length distributions from the survey are given in Figure 7.3.1. The points in each plot represent the individual data points in terms of frequency. The solid lines represent smooth curves drawn through the scatterplot using a generalized additive model (GAM) with several degrees of freedom. Year classes can be seen in these plots and it is also seen that the recruitment to the $S$. marinus stock is quite variable, but there is no indication of any recruitment failure in recent years. The length distributions also illustrate the diminishing number of large fish in the latest years and the recruitment of probably two year-classes (1985 and 1987) to the fishable stock. The survey conducted in March 1996 shows an increase in numbers of fish in almost all length groups in relation to the results obtained in 1994 and 1995.

### 7.3.1.3 German Groundfish Survey

Abundance, biomass indices and length compositions have been derived using annual groundfish surveys covering shelf areas and the continental slope off West and East Greenland down to 400 m depth. Surveys commenced in 1982 and were primarily designed for the assessment of cod. A description is given in chapter 5.1.1 and more detailed in the 1993 Report of the North Western Working Group (Anon, 1993/Assess:18). Juvenile redfish ( $<17 \mathrm{~cm}$ ) were classified as Sebastes spp. due to difficult species identification.

Tables 7.3.2 and 7.3.3 describe the trends in survey abundance and biomass for juvenile redfish ( $<17 \mathrm{~cm}$ ) broken down by stratum at West and East Greenland. Respective values are shown in Figures 7.3.2 and 7.3.3. Small and unspecified redfish are very abundant and were distributed both off West and East Greenland. A lack of these size groups during the years 1982-84 might be caused by irregular recording of catches. Since 1985, both abundance and biomass indices vary without a clear trend. In 1985, 1993 and 1995 small redfish redfish were more abundant, in the entire survey area off East Greenland.

Length distributions are illustrated in Figures 7.3.4 and 7.3.5 aggregated for West and East Greenland. They reveal that juveniles off East Greenland are bigger than those off West Greenland. Peaks at 6.5, 10.5-12.5 and $15.5-16.5 \mathrm{~cm}$ re-occur frequently and might indicate year classes.

### 7.3.1.4 Greenland Trawl Survey

Juvenile redfish are caught both off West and East Greenland during the Greenland trawl survey, which commenced in 1992 and is directed towards shrimp. The survey design covers the depth range 0-600 m. The data from 1992 were recalculated to compensate to a change in the cod end mesh size made in 1993 from 44 mm to 20 mm . In 1992, there are two different indices for biomass and abundance because of including or rejecting one single outstanding catch. If this outstanding catch is excluded from the 1992 -survey the biomass index off East Greenland has fluctuated between $33,000 \mathrm{t}$ in 1992 to $81,000 \mathrm{t}$ and $49,000 \mathrm{t}$ in 1993-1994 followed by an increase to $141,000 \mathrm{t}$ in 1995 (Figure 7.3.6). In the same period, the abundance indices are 725 millions in 1992, 1.7 billion and 1.4 billion fish in 1993-1994 and 3.0 billion in 1995.

The length frequencies from all catches off East Greenland reveals that the size group of 12 cm dominated the catches in 1992. In 1993 and 1994, distinct modes were found at 15 cm and 10 cm respectively. In 1995 a distinct mode was seen at 20 cm .

### 7.3.2 Discards of redfish in East and West Greenland

An offshore shrimp fishery with small meshed trawls ( 44 mm ) began in the early seventies at the west coast of Greenland and expanded to the east coast in the beginning of the eighties, mainly at the shallower part of "Dohrn Bank". The shrimp fishery at both West and East Greenland has small redfish as a by-catch and it can be concluded that the area for shrimp fishery is also a part of the nursery area for redfish

Survey data from the Greenland Trawl Survey collected in important shrimp fishing areas on West Greenland as well as data from the commercial shrimp fishery has been analysed in order to estimate the amount of redfish by-catch (WD no. 18).

Based on an annual shrimp catch about $50,000 \mathrm{t}$ at West Greenland, the total bycatch of redfish is estimated to approximately 100 million individuals or $3,100 \mathrm{t}$. Redfish from 6 to about 20 cm are predominating in the bycatch.

Further investigations on this matter is continued in 1996 at East and West Greenland.

### 7.3.3 Regulations of small redfish at East and West Greenland

Present regulations concerning by-catch in the Greenland shrimp fishery permits a by-catch maximum of $10 \%$ of the total catch per each haul by weight. In 1994 a new arrangement with observers on board the vessels was implemented to strengthen the enforcement of the regulations and improve the reliability of the log-books.

The redfish box was created in 1981 as recommended by ACFM to protect that part of the nursery area of redfish (S. marinus and S. mentella) against the directed cod and redfish trawl fishery

Trial fisheries for shrimp have frequently been carried out in the redfish box in the most recent years, and for 1995 a general dispensation has been issued for part of the area. The Greenland Home Rule Government had questioned the relevance of the redfish box, since fishermen often claims, that the by-catches of small redfish are much smaller inside than outside the redfish box. Length frequencies from 1992-94 collected during the Greenland trawl survey reveals that small redfish are indeed caught inside the redfish box, but that the biomass and abundance seems to be highly variable from year to year (Anon, 1995/G:1). As the survey data is collected outside the main shrimp fishing season (January-April) further data is needed to answer this question satisfactory.

Bearing in mind the declining fishery and biomass of S. mentella and especially S. marinus, and increased interest of fishing redfish, concern must be expressed on the discard of small redfish of both species where ever it takes place.

The Working Group considered the following means of protections:

- Legislate the use of a "fish grid" as is the case in the Barents Sea and in Icelandic waters.
- Temporary closure of areas when the by-catch of small fish exceeds a defined level as enforced at Iceland and in the Barents Sea;


### 7.4 Age-based production model

An age-based production model, similar to that used in 1995 (EXCEL spreadsheet format) was updated for the S. marinus stock in ICES Division Va and the oceanic $S$. mentella stock in the Irminger Sea consistent with that indicated in the Report from the Methods Working Group (Anon,.1995/Assess:15, chapter 3.4). For the latter stock, a similar approach has been followed in the last four annual assessments (Anon, 1993/Assess:18).

The model calculates population numbers at age $\mathrm{N}_{\mathrm{ay}}$ at the beginning of year y as well as the fishing mortality $\mathrm{F}_{\mathrm{ay}}$ The basic stock equations are given by
$N_{a+1, y+1}=N_{a y} \exp \left(-Z_{a y}\right)$,
where $\mathrm{Z}_{\mathrm{ay}}=\mathrm{F}_{\mathrm{ay}}+\mathrm{M}$ gives the total mortality rate.
$R_{y}$ denotes the recruitment in year $y$, so that for the first age group, $a=0, N_{0 y}=R_{y}$. If it is assumed that the population at the start of exploitation is a virgin stock which has had constant recruitment, $\mathrm{R}_{0}$, for a number of years, then the stock size in the initial year is given by
$\mathrm{N}_{\mathrm{a}, 0}=\mathrm{R}_{0} \exp (-\mathrm{aM})$
where a year class of age $a$ is assumed to have been originally of constant size $R_{0}$, but subsequently reduced by a constant natural mortality for a number of years.

In order to relate landings in tonnes to an overall average fishing mortality, a selection pattern needs to be assumed or estimated. For the sake of parsimony, a simple model for the selection pattern is taken as length based, with the relative selection at a length of $l$ given with
$\mathrm{S}_{1}^{\mathrm{C}}=1 /\left(1+\exp \left(-\mathrm{K}^{\mathrm{C}} *\left(l-\mathrm{L}^{\mathrm{C}}{ }_{50}\right)\right)\right)$
In this equation $L^{C}{ }_{50}$ denotes the length at $50 \%$ selection. Naturally, $\mathrm{K}^{\mathrm{C}}$ and $\mathrm{L}^{\mathrm{C}}{ }_{50}$ are unknown parameters in this equation and need to be estimated.

Given this selection pattern and length at age the fishing mortality at age is given by
$\mathrm{F}_{\mathrm{ay}}=\mathrm{F}_{\mathrm{y}} \mathrm{S}_{\mathrm{la}}$
where $l_{a}$ is the length at age $a$.
Similarly, a survey selection pattern $\left(\mathrm{S}_{1}\right)$
$\mathrm{S}_{1}=1 /\left(1+\exp \left(-\mathrm{K}^{\mathrm{S}} *\left(l-\mathrm{L}^{\mathrm{S}}{ }_{50}\right)\right)\right)$
can be defined in order to link the total numbers at age to the numbers observed in the survey.
The basic assumption made is that the initial stock size (occurring in 1977) for S. marinus and in 1982 for oceanic $S$. mentella was considered an equilibrium stock composed of age groups from a constant number of recruits. For given values of annual recruitment, $\mathrm{R}_{\mathrm{y}}$, fishing mortality rate in each year, $\mathrm{F}_{\mathrm{y}}$, natural mortality, M , and selection parameters, $\mathrm{K}^{\mathrm{C}}$ and $\mathrm{L}^{\mathrm{C}}{ }_{50}$, it is clear that a complete stock projection can be made for all years. Adding the length-weight relationship allows for the prediction of landings in each of the years. Given the landings, the fishing mortality in each year is determined. Projections of the stock size are then possible for any given value of the parameters (i.e., natural mortality, constant recruitment, fishing selection and growth) based on the usual VPA catch equations and the given catches taken. The concept of the model is that the projection of the fishable stock from the initial years onwards should either match independent acoustic estimates or an index series from a groundfish survey. The model should further match the given annual catches (by calculating the fishing moralities necessary to produce the catches) and the length distributions of these. Iterations were then made with different constant recruitment levels to model the best fit (minimizing sum-of-squares). By setting a selection pattern for the surveys it was possible to estimate both a survey biomass and a fishable biomass. The natural mortality was in all cases set at a constant 0.05 .

The results for various harvesting strategies for each stock are shown in chapters 8 and 10 .

## 8 SEBASTES MARINUS

### 8.1 Landings and Trends in the Fisheries

The total catch of S. marinus in Divisions Va and Vb and in the Sub-areas VI and XIV has decreased from about $130,000 \mathrm{t}$ in 1982 to about $43,000 \mathrm{t}$ in 1994 (Table 8.1.1). This decline of about $68 \%$ over this period has been continuous with few exceptions. The catches in 1995 were about $45,000 \mathrm{t}$. Considering the last years development, the catches have decreased from about $67,000 \mathrm{t}$ in 1990 to about $45,000 \mathrm{t}$ in 1995 or about $40 \%$. The relative highest decline in 1995 occurred in area XIV where less than 100 t were caught compared to $1,400 \mathrm{t}$ in 1994 (Table 8.1.1).

The largest $S$. marinus catches has been taken in Division Va, where the catches have declined from about $63,000 \mathrm{t}$ in 1990 to approximately $39,000 \mathrm{t}$ in 1994 or with about $39 \%$ during this 5 year period. The decline in the catch in 1994 was at least partly due to area closures imposed on the fishery by Iceland in order to reduce the catches of $S$. marinus. The catches in 1995 increased again to approximately $42,000 t$ despite the area closures. The length distribution in the Icelandic landing in 1989-1995 along with measurements at sea from the commercial trawler fleet are shown in Figure 8.1.1.

About $90-95 \%$ of the total redfish catches in area Va in recent years have been taken by bottom trawlers (both fresh fish and freezer) targeting on redfish. The remainder is taken by different gear and partly as a bycatch in the shrimp fishery.

In Division Vb , the catches were highest in 1985 approximating $9,000 \mathrm{t}$ and declined steadily to about $2,400 \mathrm{t}$ in 1990. They have since then remained at that level of $2,100-2,600 \mathrm{t}$ except in 1992 when the catch was about $3,400 \mathrm{t}$ (Table 8.1.1). Most of the redfish (both S. marinus and S. mentella) catches in the sub-area have been taken by large bottom trawlers with more than $50 \%$ of their catches during the last 10 years having been redfish. The length distribution from the Faroes catches is shown in Figure 8.1.2

In Sub-area VI, the catches in the period from 1978-1994 were highest in 1987, at almost 600 t , but declined, then, to a level of 100 t from 1988-1994. In 1995 the catches increased to over 600 t which are the highest catches in the whole period from 1978 (Table 8.1.1). The major proportion of the catches have been taken by trawlers.

In Sub-area XIV, the catches have shown relatively greater decrease than in the other Divisions and Sub-areas. Thus the catches dropped from almost $31,000 \mathrm{t}$ in 1982 to $5,000 \mathrm{t}$ in 1984 (an $84 \%$ decrease). In the period 1984 to 1988 , they varied between $1,200-5,000 \mathrm{t}$. In 1989 they were only 685 t (only $2.2 \%$ of the catches in 1982). The catches remained at this low level for two years, then they increased again to $3,900 \mathrm{t}$ in 1990 . In the period from 1991-1994 the catches were between 1,100-1,700 t but in 1995 the catches were less than 100 t , the lowest on record (Table 8.1.1.).

In 1995 , there was no directed fishery for $S$. marinus nor deep sea $S$. mentella and so most of the catches were taken as bycatch in the shrimp fishery. In former years most of the catches were taken by large bottom trawlers, targeting on redfish and cod.

### 8.2 Assessment

### 8.2.1 Trends in CPUE and survey indices

Figure 8.2 .1 shows the Icelandic groundfish survey abundance index for $S$. marinus and the CPUE index from the trawler fleet. The survey index is a biomass index computed by using an almost knife-edge length-based fishable stock ogive ( 0 on $31 \mathrm{~cm}, 1$ on 33 cm ). For each station, the biomass index is computed by using the selection ogive and computing the total biomass at the station. The index is then averaged within statistical squares and finally across squares within years (see chapter 3.3.1, on groundfish survey design).

The index from the groundfish survey of the fishable stock indicate a strong increase in the fishable biomass in 1996 ( $65 \%$ above that of 1995). Since there is an increase in almost all length groups (Figure 8.2.2), this could indicate a variation in catchability in the survey in 1996., The length distribution from the survey shows a peak in the length distribution about 32 cm , which is in accordance with the peak in 1993 when there was a peak at about 28 cm indicating a growth of about 2 cm annually. The high survey index in 1996 could therefore be related both to an increase in catchability and increasing recruitment to the fishable stock. The results from the trawler fleet shows an increase in CPUE of about 5\% compared to that of 1994.

The results both from the survey and from the fleet indicate an increase, although the peak in the survey index is much higher than in the CPUE data.

In summary, the Icelandic groundfish survey as well as the CPUE data seems to indicate a considerable decline in fishable biomass of $S$. marinus in the period from 1986-1994. The stock shows some indications of recovery in 1995/96. However, the stock is still at a very low level.

Abundance, biomass indices and length composition of S. marinus at Greenland have been derived by using data derived form the German annual groundfish surveys covering shelf areas and the continental slope off West and East Greenland down to 400 m depth. Surveys commenced in 1982 and were primarily designed for the assessment of cod. A description is given in chapter 5.1.1 and more detailed in the 1993 Report of the North Western Working Group (Anon, 1993/Assess:18). Only redfish ( $>=17 \mathrm{~cm}$ ) were separated to Sebastes marinus L . and included in the calculations.

For the period 1982-95, survey abundance and biomass indices are listed in Tables 8.2.2 and 8.2.3 by stratum, West and East Greenland, aggregated to total and accompanying confidence intervals, and illustrated in Figures 8.2.3 and 8.2.4. Values in 1984, 1992 and 1994 are indicated as incorrect due to incomplete sampling off East Greenland. Ignoring these years, total figures show a declining trend from 680,000 million to 325 million individuals and $440,000 \mathrm{t}$ to $140,000 \mathrm{t}$ during 1982-1985. Since 1986, an almost continuous reduction in survey biomass from $300,000 \mathrm{t}$ to $11,000 \mathrm{t}$ in 1995 was observed, which is the minimum of the time series among years with complete survey coverage. Apart from the year 1990 which has the maximum value amounting to 780 million fish caused by the occurrence of juveniles ( $<25 \mathrm{~cm}$ ), there is the same decreasing trend regarding the survey abundance.

During 1987-1995, abundance estimates decreased from 610 million to 43 million.
It can be taken from Figures 8.2 .5 and 8.2.6 that this species was mainly distributed off East Greenland, while the minor abundance and biomass indices off West Greenland decreased almost to zero. It should be underlined that the enormous variation of catch per tow data resulted in high confidence intervals, ranging between $40 \%$ and $60 \%$ of the stratified mean in most of the years.

The length frequencies are illustrated for West and East Greenland and aggregated to total in Figures 8.2.5 and 8.2.6, respectively (WD no. 10). They reveal pronounced year and area effects. Usually, the few individuals off West Greenland showed a peak around 30 cm while fish lengths off East Greenland varied over a wide range. Since 1984, juveniles ( $<30 \mathrm{~cm}$ ) contributed important and increasing parts to the stock. Peaks at lengths of 20.5, $25.5,28.5,29.5$ and 30.5 cm between the successive years 1985-89 and at lengths of $22.5,25.5 \mathrm{~cm}$ between the successive years 1990-91 might indicate the annual growth increments of single cohorts.

### 8.2.2 State of the stock and catch projections

Input data from Division Va for computing TAC values related to different reductions in real effort, as used earlier by the Working Group are given in following text table:

| Year |  | Catch Va | Effort |
| :--- | ---: | :---: | :---: |
| 1985 | 3857 | 67312 | 17 |
| 1986 | 4424 | 67772 | 15 |
| 1987 | 4335 | 69212 | 16 |
| 1988 | 3083 | 80472 | 26 |
| 1989 | 3512 | 51825 | 15 |
| 1990 | 3268 | 63156 | 19 |
| 1991 | 2004 | 49678 | 25 |
| 1992 | 1795 | 51464 | 29 |
| 1993 | 1508 | 45890 | 30 |
| 1994 | 1629 | 38669 | 24 |
| 1995 | 1557 | 41513 | 27 |
| 1996 | 2546 |  |  |
| Average 85-90 |  |  |  |
|  | 3747 | av.86-89 | 18.0 |

The groundfish survey indices ( $U$ ) may be assumed to be related to overall biomass ( $B$ ) by a simple multiplicative relationship $(U=k B)$. If catches in time, t , are assumed to be proportional to stock size and effort $(Y=c E B)$, then it follows that catch over survey index is proportional to effort $(Y / U=a E)$ and this allows a oneyear prediction of catch assuming a status-quo effort level.

The time series of survey indices, catches and deduced effort indices is given above. Since the survey index from the last groundfish survey is probably an outlier and can hardly reflect the true changes in the fishable stock, it is not appropriate to calculate a TAC based on that data point.
A possible alternative would be to use the CPUE data to predict the catch for the next quota year, using status quo effort. The results would then be as follows:

| Year | CPUE | Catch Va | Effort |
| :---: | :---: | :---: | :---: |
| 1988 | 647 | 80472 | 124 |
| 1989 | 689 | 51825 | 75 |
| 1990 | 602 | 63156 | 105 |
| 1991 | 504 | 49677 | 99 |
| 1992 | 509 | 51464 | 101 |
| 1993 | 469 | 45890 | 98 |
| 1994 | 469 | 38669 | 82 |
| 1995 | 491 | 41513 | 85 |

These data seems to not indicate any increase in the effort. That is probably due to equipment improvement in the last years and also expanding of the fishing ground during the first years of the period. However, the present state of exploitation seems not to be sustainable. ACFM has also advised a reduction in effort towards the 19861990 level.

Although the effort measurements using the CPUE data does not reflect the same trend as from the survey data, due to the outlier in the 1996 survey, the effort measurements calculated from the fishery was used to project the status - quo effort in 1997. It was assumed that catch per unit effort will be same in 1996-1997 as in 1995 and the catches in 1996 to be same as in 1995. By using this approach, the catches in 1997, using constant effort would be approximate $42,000 \mathrm{t}$. By reducing the effort in steps of e.g. $25 \%$ annually, the catches in 1997 would be $31,000 \mathrm{t}$. Approximately same results are obtained by projecting the survey data from 1995, as was done for the CPUE data.

### 8.2.3 8.2.3 Stock trajectories for Sebastes marinus using the age-based production model

The input parameters, fixed or estimated, for the model are derived in Section 7.4 and listed in Table 8.2.4 The parameters taken as known a priori were: (1) the length-weight relationship - data from the Icelandic groundfish survey, (2) the growth parameters in the von Bertalanffy model, (3) the natural mortality and the selection pattern in the survey. Then the unknown parameters were: (1) the selection pattern in the fishery and (2) the average recruitment.

The unknown parameters were then estimated by: (1) minimizing the difference between the abundance indices from the Icelandic groundfish survey on the fishable stock from 1985-96 and the estimated fishable stock from the model and (2) the difference in the observed cumulative length distribution in the catches, from 1987-95, and those predicted by the model. Figure 8.2.10. shows (a) indices on the fishable stock and their deviations from the survey indices, (b) catches and fishing moralities, and finally, (c) the cumulative plots of length distributions.

An alternative approach is to use the O-group survey indices as an direct measurement on number of 1 year old fish and scale it with a constant. The indices from the Icelandic O-group survey are correlated with the recruitment indices from the Icelandic groundfish survey ( $r^{2}=0.60-0.68$ dependent on which time lag was used between recruitment and the O-group index (Magnusson and Johannesson, Anon.1995/G:39)). In this case, the same assumptions are made as in Table 8.2.4, and the recruitment multiplier constant and the selection pattern for the fishery were estimated.

The catch prognosis in Figure 8.2.7 and 8.2.8 (1996-2001) are simply derived by assuming a catch of $35,000 \mathrm{t}$ in 1996 and setting the average fishing mortality for 1997-2001 equal to the average from 1982 to 1988.

The main difference between these two runs is basically the difference in the recruitment part. Using the Ogroup data for recruitment the stock shows a higher rate of recovery since the O-group indices in the last 10 years have been relatively high, compared to the overall average in the period from 1976. Using the O-group indices for recruitment also suggests higher catches in the period from 1997 to 2001 while using a constant F . Using the estimated average recruitment (Figure 8.2.7), the stock is predicted to remain at a low level, from 1997 and onwards giving low catches.

### 8.2.4 MBAL

The fishable stock of $S$. marinus is at a very low level, and the catches in last years have been low despite of increased effort, especially in Division Va, but recruitment seems not to have failed in Division Va.

The Working Group agreed that it is difficult to define any MBAL for the stock based on available information.

### 8.2.5 Management considerations

Based on the Icelandic groundfish survey information and the CPUE data, the $S$. marinus stock seems to be at a low level and the fishable biomass appears to have decreased considerably from 1986 to 1995 from analysis of, however, recruitment failure does not seem to have occurred (Table and Figure 7.3.1).

Also from the age-based model, the $S$. marinus stock in Va seems to be at a low level and the fishable biomass may have decreased to about $35 \%$ of the 1985 -level, or about $20 \%$ of the 1977 -level.

It is advised that effort be reduced from the present level since this level does not seem sustainable. Survey indices from the last Icelandic groundfish survey showed an improvement on the previous ones but this improvement is most likely an outlier since there is an increase in all length groups, except one. Nevertheless, the survey does indicate increased recruitment to the fishable stock and the CPUE from the Icelandic trawler fleet has increased slightly compared to the last two years and the length distributions from catches show some signs of incoming recruitment to the fishable stock.

Although there are some indications of incoming recruitment, it is important that this recruitment be used to build the fishable stock up from its present low level. If the stock size is to increase, it is likely that effort will have to be reduced from the present high levels. It is likely that true reductions in real effort will only be attained if the effort is reduced by a considerable amount. Since the effort seems to have more than doubled in recent years, without considerable gains in catches, it would seem that there is little gain in remaining at current effort levels. It is quite likely that similar catches could be obtained in the longer term by decreasing the current effort.

It may be feasible to initiate effort reduction e.g. by imposing an initial $25 \%$ reduction and then following up with further reductions if no significant improvement is seen in the Icelandic groundfish survey and in the CPUE data.

Since S.marinus in Sub-areas V and XIV is treated as a one unit stock, it is suggested by the Working Group that some specific advice should be given for Division Vb and Sub-area XIV.

The results from the German groundfish surveys in Sub-area XIV are alarming concerning $S$. marinus. It is therefore urgent to protect the juvenile fish which are presently observed in large quantities at E-Greenland.

Since recommendations have been advanced to reduce the effort in Va and XIV, it is the opinion of the Working Group that there will be no gain in increasing the effort in Vb .

## 9 DEEP-SEA SEBASTES MENTELLA

### 9.1 Landings and Trends in the Fisheries

The total annual catches of deep-sea $S$. mentella in Divisions Va and Vb and Sub-areas VI and XIV varied considerably in the 1980 s mainly from 30,000 to $60,000 \mathrm{t}$.

In 1990 the catch was $44,000 t$, and reached $67,000 t$ in 1991, decreased slightly in $1992(62,000 \mathrm{t})$ but increased to about $83,000 \mathrm{t}$ in 1994. In 1995 the catches decreased again to approximately $55,000 \mathrm{t}$. In summary, the average annual catch in the period from 1991-1995 ( $69,000 \mathrm{t}$ ) increased substantially from the average in the 1980s ( $42,000 \mathrm{t}$ ) and the year $1990(44,000 \mathrm{t}$ ) (Table 9.1.1).

In Division Va, the total catch in 1995 was about $48,000 \mathrm{t}$, decreasing from the record high caches in 1994 of $57,000 \mathrm{t}$. In the 1980s the catches varied from $10,000-40,000 \mathrm{t}$, but were averaging about $21,000 \mathrm{t}$ during that
period. The catches doubled from 1990-1994 i.e. from $28,000 t$ to $57,000 \mathrm{t}$. This increase in the catch coincides with the introduction of large pelagic trawls used by a part of the Icelandic fleet during autumn and early winter months. Length distributions from the landings of the Icelandic fleet in 1989-1995 along with measurements at sea from the commercial trawler fleet are shown in Figure 9.1.1.

About $90-95 \%$ of the total redfish catches in area Va in recent years have been taken by bottom trawlers (both fresh fish and freezer) and the remainder is taken by other gear and partly as a bycatch in the shrimp fishery.

In Division Vb annual catches of deep-sea $S$. mentella varied from $5,000-8,000 \mathrm{t}$ until 1984. Then catches increased rapidly to about $15,000 \mathrm{t}$ in 1986. The catches declined again to $9,000 \mathrm{t}$ in 1990. They increased to about $13,000 t 1991$. Since then they have remained low at almost half the 1991 catch, a reduction of about $43 \%$ ( $6,000 \mathrm{t}$ in 1995) (Table 9.1.1). The length distribution from the Faroese catches is shown in Figure 9.1.2.

In Sub-area VI the annual catches were highest in $1980(1,000 \mathrm{t})$, but have decreased to 80,90 and 5 t in 1993, 1994 and 1995 respectively (Table 9.1.1).

In Sub-area XIV, the annual catches have varied considerably. In the beginning of the 1980s the landings were between 10,000-15,000t, but then decreased to the level of $6,000 \mathrm{t}$ in 1987-1992 and increased to $19,000 \mathrm{t}$ in 1994. At that time the fleet were mainly fishing very small redfish. The catches in 1995 are the lowest on record, at only $1,000 \mathrm{t}$, due to effort reduction (Table 9.1.1).

### 9.2 Assessment

### 9.2.1 Trends in CPUE and survey indices

CPUE for deep-sea S. mentella in division Va is based on tows taken below 500 m depth and where total catches of redfish are more than $10 \%$ of the total catch in each tow. In the period from 1986-1989 the CPUE was stable. Since 1989, there has been a strong declining trend in CPUE (Figure 9.2.1), except in 1995 where CPUE increased by $5 \%$ from 1994 . The decline in the period from 1989 shows a reduction from a stable CPUE level of about 950 before 1990 to the current level of about 500 , which is a reduction of about $45 \%$ (Table 9.2 .1 ).
It should be noted that these data reflect only a part of the stock, i.e. Division Va, and only in the demersal trawl fishery. During the same period, the landings have increased from about $20,000 \mathrm{t}$ to an average of over $50,000 \mathrm{t}$ in last the two years. This may be taken as a strong indication that the stock in this area cannot sustain the present level of exploitation.

Since 1991, considerable amounts of $S$. mentella have been taken in pelagic trawls on mating grounds mainly in the area east of the Reykjanes Ridge. The CPUE from this fishery (Figure 9.2.2) shows considerable decline, even though fishing technology has improved during the last years.

Abundance, biomass estimates and length structures of $S$. mentella at Greenland have been derived using data derived form the German annual groundfish surveys covering shelf areas and the continental slope off West and East Greenland down to 400 m depth. Surveys commenced in 1982 and were primarily designed for the assessment of cod. A description is given in chapter 5.1.1 and more detailed in the 1993 Report of the North Western Working Group (Anon, 1993/Assess:18.). Only redfish ( $>=17 \mathrm{~cm}$ ) were separated to deep sea Sebastes mentella Travin and included in the calculations.

Survey abundance and biomass indices are presented in Tables 9.2 .2 and 9.2.3, broken down by stratum at West and East Greenland, and illustrated in Figures 9.2.3 and 9.2.4. An increasing trend is evident for both abundance and biomass indices. In 1991, 1993 and 1995, when the survey area was completely covered, this species was found to be very abundant with 970 million and 1,400 million and 2,500 million individuals and 290,000 , 230,000 , and 375,000 tons respectively. During the early eighties, the abundance varied among $90-170$ million fish, while the minimum and maximum biomass amounted $34,000 \mathrm{t}$ and $65,000 \mathrm{t}$. Comparing the proportions between West and East Greenland, deep sea redfish was almost exclusively distributed off East Greenland. West Greenland shares are negligible and vary without a clear trend. The high confidence intervals indicate a low precision of these estimates.

Length disaggregated abundance is shown for West, East Greenland and total in Figures 9.2.5 and 9.2.6. Since 1985, juveniles ( $<25 \mathrm{~cm}$ ) contribute significant portions and have dominated the stock structure since 1989. In

1991 and 1993, most of the beaked redfish were smaller than 20 cm or varied between $25-27 \mathrm{~cm}$. Growth indications for single cohorts between successive years are hardly derivable from these length distributions, the only occurring in 1990-91 with pronounced peaks at $21.5-23.5 \mathrm{~cm}$ and $25.5-26.5 \mathrm{~cm}$, respectively. In 1993 and 1995, pronounced peaks were determined at 18 and $21-22 \mathrm{~cm}$, respectively.

Only small amounts of $S$. mentella are caught in the Icelandic groundfish survey, and it was considered not to reflect any changes in the stock situation.

### 9.2.2 State of the stock and catch projections

It should be noted that in the last few years the CPUE has decreased drastically, catches have increased and fishing effort has increased by a factor of 3 since 1989-1990.

It is possible to compute effort as well as a TAC corresponding to different reductions in effort for deep sea $S$. mentella by a similar method as described in section 8.2.1, although for the deep-sea $S$. mentella, a CPUE index is used as the survey index. The time series of the CPUE index, catches in area Va and deduced effort index are given in Table 9.2.1.

### 9.3 MBAL

The fishable stock seems to be at a very low level, and knowledge about recruitment is scarce. Therefore, it is difficult to define any MBAL limit for the stock.

### 9.4 Management Considerations

The stock seemed stable during 1989-1990 and it would be necessary to reduce the current fishing effort by about $57 \%$ to reach the effort created during this period of relative stability. The reduction could be done by $25 \%$ per year which, assuming that the CPUE in 1996/1997 will be the same as in 1995, would correspond to catches of $35,000 t$ for the 1996/1997 fishing season.

According to German survey data, there is a large depletion of the adult stock (over 30 cm ) in Sub-area XIV. The fishery in earlier years targeting on small fish did not continue in 1995. The working group points out that exploiting the juvenile redfish will neither lead to stock recovery nor improve catches in future.

Regarding Division Vb the catches of deep-sea $S$. mentella have decreased in recent years although the effort has remained at approximately the same level. Although little information exist on the part of the stock in Division Vb , a reduction in fishing effort is recommended.

An age based production model could also be used for this stock using length distributions from catches and a CPUE data as an tuning series in absence of any survey data on the fishable stock. Since the input data necessary to run the model were not available for the group, it was not possible to run the model during the meeting.

## 10 OCEANIC SEBASTES MENTELLA,

### 10.1 Fishery on oceanic S.mentella

### 10.1.1 Historical development of the fishery.

The fishery on oceanic S. mentella started in 1982 by the Russian fleet. Bulgaria, former GDR and Poland joined Russia from 1984. The international catches during the first period increased from $60,000-70,000 \mathrm{t}$ to $105,107 \mathrm{t}$ in 1986. Since 1987 the total landings decreased and reached a minimum in 1991 of $24,956 \mathrm{t}$. The main reason for this decrease was a reduction in fishing effort, especially by Russia. From 1989 the number of countries, participating in the oceanic S. mentella fishery increased. As a consequence, the total catches also increased and reached the highest level to date in 1994 of 139,562 tonnes (Tables 10.1.1-10.1.2).

In 1982-1992 the fishery was carried out during April-August. In 1993-1994 the fishing season was prolonged considerably, and in 1995 the fishing season was from March to December. The fleets participating in this fishery
have improved and developed new fishing technology, and most trawlers are now using big pelagic trawls ("Gloria"-type with different (80-120 meters) vertical openings), and are working at all depths (100-800 m).

### 10.1.2 Brief description of the various fleets in 1995.

The fleets fishing for oceanic S.mentella are different. and it was impossible for the Working Group to get a complete picture of all vessel types, gears etc. Up to 70 trawlers at a time participated in the fishery in 1995 at the same time.

The Russian fleet, which in 1995 was composed from 2 to 41 factory trawlers depending on the season, and consisted of seven different factory trawler types. The Icelandic trawlers, in 1995 about 20 vessels, were almost all factory trawlers. The 3 Norwegian trawlers were all factory trawlers. Spain, which took part in this fishery for the first time in 1995, participated with 4 vessels. The German fleet composed 7 factory and 2 roundfish trawlers. The Faroes fleet composed 1 factory and 3-4 freshfish trawlers. Information about the other fleets (see Table 10.1.2) was not available.

### 10.1.3 Landings and Trends in the Fishery on Oceanic S. mentella

Provisional data for 1995 show a total catch of $123,846 \mathrm{t}$ (Table 10.1.1-10.1.2). In 1995, catches have been reported from 15 countries. The catch statistics for 1994 and 1995 should, however, be considered incomplete. Reportings from Bulgaria, Lithuania and Ukraine are lacking in one or both of the years. Assuming similar catches for these countries as in 1993 the total landings in 1994 and 1995 are likely to be at least 145,000 and $130,000 \mathrm{t}$, respectively.

The landing statistics reported by Iceland and Norway account for discards, while the other countries report the quantity landed. However, there may be other uncertainties connected to the fishery. The factors used for converting the weight of "Japanese-cut" and ordinary head-cut redfish or fillets into round weight may cause errors in the statistics if these factors are wrong and/or differ between countries.

From the beginning of the fishery in 1982 catches were reported from both Sub-areas XII and XIV. Most of the catches were taken in Sub-area XII ( $40,000-60,000 \mathrm{t}$ ) until 1985 when the greater part of the catches were reported from Sub-area XIV. In 1994-1995 the landings from Sub-area XII are again in majority with $80,000-85,000 \mathrm{t}$ each year (Table 10.1.1).

The landings from Division Va has been around 2,000 t since the fishery started here in 1992, except in 1994 when more than $15,000 \mathrm{t}$ were caught in this area (Table 10.1.1). It should also be noted that Canada has reported to have landed 602 tonnes from NAFO area 1F.

In Table 10.1.3 the CPUE for Russian and Norwegian fleets are given, but were not used for assessment purposes because of changes in gears, fishing pattern etc. Patchiness and variations in the extension of fish concentrations were also reported. This will affect CPUE, and it was therefore impossible for the Working Group to draw any conclusions from these observations.

Length distributions of oceanic $S$. mentella from German, Icelandic and Spanish landings were reported for 1995 and are given in Figure 10.1.1. The weighted (by catch) length distribution was used as input to the stock production model.

### 10.2 Assessment

### 10.2.1 Acoustic assessment

Results from a new acoustic survey was available for the Working Group. This survey was conducted by Russia by one research vessel from 24 June to 30 July 1995 to cover the area in international waters and within the Greenland EEZ down to a depth of 500 m (W.D. No. 19). The survey design (Fig. 10.2.1.B) was in accordance with the recommendations of the ICES Study Group on Redfish Stocks (Anon. 1994/G:4). The stock size in the area covered was calculated to be about 2.48 mill. tonnes, with an abundance of $4.1^{*} 10^{9}$ specimens (Table 10.2.1). The biomass estimate is 11.7 \% higher than that in 1994 and 3.1 \% lower than that in 1993. The 1995 redfish distribution is shown on Fig. 10.3.3.

It was not possible to cover the total redfish distributional area as only one Russian research vessel took part in the survey. It is believed, however, that the main area of the stock's distribution down to 500 m depth was covered. The Working Group therefore agreed upon adopting the results from the 1995 Russian survey into the assessment. The 1991-1995 acoustic surveys were all included in the stock production model to evaluate the stock. The Working Group has previously decided not to include the years prior to 1991 due to insufficient area coverage, improper design of the survey tracks, and improvement of the acoustic survey technique over time.

Settings of the acoustic instruments and the target strength parameters will have impact on the correct level of the estimate (can lead to either over- or underestimate). This may cause a bias in the estimates when different vessels from different countries are not all intercalibrated. However, assuming that the acoustic equipment has been acceptably intercalibrated among the vessels within and between years, the main biases in the field are believed to be differences in the ability to scrutinize the deepest part of the 500 m water column, exclusion of the scattering layer, and day-night differences in the behaviour of the fish, which will be reflected in the target strength (TS) measurements and computed biomass (Reynisson et al.1995). An average TS between day and night has therefore been used.

The acoustic surveys have measured the oceanic S.mentella stock to be at the same level during the last five years (2.2-2.6 mill. t . This implies that the catches during these years can not yet be seen to have affected the fishable stock size, but it remains an open question how the fishery may have affected the recruitment to the stock, i.e., young oceanic redfish that grow up outside the Irminger Sea.

The oceanic redfish geographic distributional pattern in June-July has appeared very similar from year to year. The surveys have neither shown any significant changes in the mean length, individual weight or sex ratio of oceanic redfish.

Pelagic S. mentella living mainly deeper than 500 meters in the Irminger Sea, which according to Icelandic scientists mainly belong to the deep-sea $S$. mentella and not the oceanic type (e.g., due to different colour, length at first maturity) has not yet been assessed acoustically.

Stock trajectories for oceanic $S$. mentella are fully dependent on the best available acoustic estimate. The acoustic design and analysis procedure of the acoustic surveys have been according to Simmonds et al. (1992) and conducted by countries having long experience in this measuring technique. Although improvements are to be expected, the Working Group considers the acoustic estimates to be reliable taking into account difficulties mentioned above. Especially in periods with great increase in fishing effort from year to year, it is necessary to frequently conduct these acoustic surveys. This is especially important now, also since more experience about the capability of the rather new stock production model to monitor the stock is needed.

### 10.2.2 Ichthyoplankton assessment

The regular Russian ichthyoplankton survey of the oceanic redfish stock was conducted from 18 April to 17 May 1995. The standard techniques to calculate redfish abundance and estimate biomass were used (Shibanov and Melnikov, 1994). The redfish larvae were collected using a "Bongo" sampler with an opening of 60 cm diameter. The samples were collected using oblique tows fishing in the $0-50 \mathrm{~m}$ layer. The area covered and station positions are presented in Fig. 10.2.1.A.

The commercial redfish stock was estimated at 2.95 mill. tonnes with an abundance of $3.6 * 10^{9}$ specimens. (Table 10.2.2.). The estimated results relates well with the results from the 1993 icththyoplankton survey (Table 10.2.3.). The Working Group did not use the estmate in the stock production model. However, no effects of catches on the stock can be seen from this alternative method either.

### 10.3 Some new biological information concerning the oceanic redfish distribution

In accordance with requests from ACFM and NEAFC to the North-Western Working Group, new information about redfish migration patterns, collected during the Russian ichthyoplankton and trawl-acoustic surveys is presented.

There is a hypothesis about existence of two types of redfish in the Irminger Sea.

In 1995 the distribution of redfish extruded larvae (April-May) and fry that started their active feeding (June-July) were observed (Fig. 10.3.1.). Extrusion of larvae in the Irminger Sea started in mid-April in the southeastern area and was completed by the end of the second ten-day period of May on the western slopes of the Reykjanes Ridge. The larvae were widely distributed over an area of 126.700 sq. miles. The larval density reached 45 specimens/sq. m in some locations, situated generally along the Reykjanes Ridge.

In June-July 1995 a northward drift of fry concentrations was registered. It is obvious that the general direction of redfish larvae/fry drift was in the same direction as the surface currents. In the northern part of the area surveyed a westward drift was registered, which is consistent with the direction of the Irminger current. It is quite likely that the fry later drifted in a southern direction within the Greenland EEZ following the water masses of the Irminger Current. In this case the most probable location of young oceanic redfish settling will be on the shelf and slopes of West Greenland and, perhaps, off Baffin Island.

It is obvious that redfish larvae which are extruded in the same places and at the same time will mix. It has not been possible for the ichthyoplankton survey to distinguish between larvae extruded by the two hypothetic pelagic redfish types. A concentration of redfish fry at $60^{\circ} 30^{\prime} \mathrm{N}, 32^{\circ} 00^{\prime} \mathrm{W}$ is presented in Fig. 10.3.1.B.

Outlines of adult redfish distribution were obtained both from the hydroacoustic observations during the ichthyoplankton and trawl-acoustic surveys (Fig. 10.3.2. and 10.3.3.). In April-May the adult redfish was mainly distributed in the international waters of the Irminger Sea. In June-July the redfish aggregations moved in a western direction so, that $66 \%$ of the redfish stock was distributed within the East Greenland EEZ. Redfish were distributed in a south-west to north-east direction and were found mainly along the frontal zone between the Irminger Current and the relative cold water masses of the central Irminger Sea.

### 10.4 Stock and catch trajectories for oceanic Sebastes mentella

The input parameters, fixed or estimated, to the model are listed in Table 10.4.1. All fixed parameters were the same as those used by last year's Working Group. The length-weight relationship was taken from the 1994 acoustic survey results. Von Bertalanffy parameters were estimated to give the best fit (EXCEL Solver) to Norwegian otolith readings of oceanic S.mentella presented to last year's Working Group. The same selection pattern was assumed for the fishery and the survey. The other parameters were estimated (by EXCEL Solver) as to minimise (1) the discrepancy between the observed catch length distributions in 1994 and 1995 (Fig. 10.1.1) and those predicted by the model, and (2) the difference between the acoustic biomass estimates and those estimated by the model for the same years. The results from the age-based production model are given in Figures 10.4.1-10.4.4. The age-length distribution generated by the model also resembled previous age-length keys presented to the Working Group. The fishing mortalities on the fully recruited age groups, i.e., above age 20 , are at present estimated to be about 0.06 .

The stock production model estimates the virgin biomass in 1982 to have been 2.93 mill. tonnes. The model shows that if the cumulative catch in the next five year period will be e.g., $750,000 \mathrm{t}$, the fishable stock will be reduced by approx. $500,000 \mathrm{t}$. The modelling thus shows that the stock is only capable of approx. $50,000 \mathrm{t}$ production per year.

It was the opinion of the Working Group that it was difficult to rely on the prognosis from the stock production model due to the following:
i) The acoustic estimate, which is considered to be an absolute measure of the fishable stock, covers only the pelagic redfish shallower than 500 metres. The input historic catches to the model, however, represent the total catches taken from the whole water column, also deeper than 500 metres.
ii) The 1995 acoustic survey estimated the fishable stock (of which approximately $95 \%$ is mature) to be 2.48 mill. t , which do not imply any stock decrease compared with the previous surveys, although the 1993-1995 catches have been as high as 113,000-140,000 teach year. Although the cumulative catches in 1993-1995 (i.e. $377,000 \mathrm{t}$ ) have only been slightly higher than the variation in the acoustic estimates seems to be (e.g. the difference between the 1994 and 1995 acoustic estimates is $291,000 \mathrm{t}$ ) the rapid decline in the fishable biomass towards 2001, according to the model, may be difficult to rely on.

Nevertheless, different scenarios from the stock production model are presented below:

## Scenario 1

Projections of spawning stock biomass (about $95 \%$ of the fishable biomass is mature) and catches have been made up to 2010. Based on the 1996 quota agreement in NEAFC, the catch for 1996 has been set to $150,000 \mathrm{t}$. If it is a goal not to let the biomass in 2010 become less than $50 \%$ of the virgin biomass in 1982, and the quota each year is set to a certain percentage of the spawning stock biomass, then the quota should not be set higher than approximately $5 \%$ of this biomass in the beginning of each year (see text table below). This scenario will give quotas from about $102,000 \mathrm{t}$ in 1997 down to $73,000 \mathrm{t}$ in 2010. In the short term (until 2001), the stock will be reduced to $58 \%$ of the 1982 -level when fishing $5 \%$ of the standing fishable biomass annually, or down to 52 $\%$ and $46 \%$ if the annually catches are taken as $7.5 \%$ or $10 \%$, respectively, of the fishable biomass measured at the beginning of each year.

Scenario 1: (Figure 10.4.2)
Final stock biomass as percentage of the estimated virginal stock biomass.

|  | Catch as percentage of fishable biomass |  |  |
| :--- | :--- | :--- | :--- |
| Year | $5 \%$ | $7.5 \%$ | $10 \%$ |
| 2001 | 58 | 52 | 46 |
| 2010 | 49 | 39 | 30 |

## Scenario 2

Stock and catch scenarios were also made when having constant catches within each 5 -year period based on a certain percentage ( $5-10 \%$ ) of the fishable biomass in the beginning of the 5 -year period. In the text table below the consequences (as stock size in year 2001 and 2010 as percentage of virgin biomass in 1982) are shown for the different catch scenarios.

Scenario 2: (Figure 10.4.3)
Final stock biomass as percentage of the estimated virginal stock biomass.

|  | Catch as percentage of fishable biomass |  |  |
| :--- | :--- | :--- | :--- |
| Year | $5 \%$ | $7.5 \%$ | $10 \%$ |
| 2001 | 57 | 50 | 43 |
| 2010 | 48 | 36 | 26 |

## Scenario 3

A scenario is also presented with a constant catch of $100,000 \mathrm{t}, 125,000 \mathrm{t}$ or $150,000 \mathrm{t}$ each year the next five years (i.e., 1997-2001), and a catch in later years set to $5 \%$ of the fishable biomass in the beginning of each 5year period. This scenario was requested for by NEAFC. The results are shown in the text-table below.

Scenario 3: (Figure 10.4.4)
Final stock biomass as percentage of the estimated virginal stock biomass.

|  | Constant catch in 1997-2001 |  |  |
| :--- | :--- | :--- | :--- |
| Year | $100,000 \mathrm{t}$ | $125,000 \mathrm{t}$ | $150,000 \mathrm{t}$ |
| 2001 | 57 | 54 | 51 |
| 2010 | 49 | 47 | 45 |

A run was also made to take account of the mixture of a possible deep-sea S.mentella type in the three most recent year's catches. The 1993-1995 catches of oceanic S.mentella were reduced to $65 \%$ according to Icelandic samples (W.D. no. 15). In summary it could be said that the catch and stock development will be similar to the above scenarios, but the decrease will be about five years delayed.

Another run was made with catches of $150,000 \mathrm{t}$ per year until 2010. This will give a stock in 2010 of $23 \%$ of virgin biomass, and the estimated fishing mortality will increase from the present 0.06 to 0.25 in 2010.

These predictions clearly relate to the generic evaluation of management strategies, which are sometimes considered in more general settings (Anon. 1995/Assess:15). Such approaches need to be considered in more detail in the future, with an emphasis on quantifying uncertainty in such a fashion as to allow tabulation of e.g. medium-term catches vs. risk of depletion. This is particularly the case for Oceanic $S$. mentella. In order to complete such a task, the two working groups ideally need some guidance on appropriate target levels and criteria for evaluating strategies.

Some generic goals should be set, e.g. on a long-term target level for the stock, possible aversion to catch reduction and on interannual variation, in order to reduce the number of possibilities for evaluation. In the absence of other criteria, the present meeting has emphasised harvesting strategies which lead the Oceanic-type S. mentella towards a level close to half of the virgin biomass, in accordance with the NEAFC request to "obtain sustainable yields". Clearly little can be said on where MSY is for this stock, but a procedure which maintains a stock close to $50 \%$ of its virgin size certainly constitutes a sustainable harvesting strategy. This is also stated in ACFM's latest advice, i.e., that a SSB above or close to $50 \%$ of virgin biomass is very likely to be sustainable.

All three scenarios show a gradual decline in the spawning stock over the simulation period, and an equilibrium SSB is not reached. However, the model simulations have shown that the harvesting strategy closest to this goal will be in the coming five-year period sooner or later to set the catch to about $5 \%$ of the fishable stock.

### 10.5 Management considerations

Due to inadequate knowledge about deep-sea S.mentella caught pelagic in the Irminger Sea, it is the opinion of the Working Group until such knowledge is available to continue managing all pelagic redfish in the Irminger Sea as one stock unit, hitherto grouped as oceanic S.mentella, and separated from the adult continental stocks.

The Working Group found it difficult to rely on the prognosis from the stock production model. The acoustic surveys do not cover the entire water column from where the fishery is going on, and the fishery does not seem too have affected the stock size yet. Better prognosis and stock evaluation should, however, be possible to make after the acoustic survey in June-July 1996.

The main strategy when setting the catch-levels for the oceanic $S$. mentella stock in the future should be to obtain sustainable yields. In order to do that, and in view of the uncertainties concerning the stock dynamics, the fishable biomass should never be reduced below $50 \%$ of the virgin biomass in 1982 .

The scenarios given show that the stock will come very close to this "critical" level already in 2001 if the annual catches will be $150,000 \mathrm{t}$ in the next five years (scenario 3). Scenarios 1 and 2 show that if any of these strategies for quota recommendations should be adopted, approaching the $5 \%$ catch-level could be recommended. Dependent upon how to decrease from the present catch level, this will in the years after 2001 imply a catch level at about $80,000 \mathrm{t}$. Better prognosis should be possible to give after the 1996 acoustic survey. The results from the stock production model also indicate a yearly production in the stock of approx. $50,000 \mathrm{t}$. This implies a production only $1 / 3$ of the present catch level.

The age-based production model used for this stock has revealed some stock dynamics which are quite different from e.g., gadoid stocks. The strong decline observed even though the fishing mortality is quite low is something one should be aware of when evaluating the fishing mortalities, which although they are low compared to other fish stocks, may have reached a critical level for a long-lived species such as redfish.

Although stock trajectories are made taking into account different catch levels, the behaviour of the stock to the recent increase in fishing effort is unknown. The Working Group therefore see the need for the international
acoustic survey which will be conducted in June-July 1996. Future time scaling of monitoring the stock by surveys is therefore dependent on the results from the 1996 survey and the development of the fishery.

It should be underlined that since no reliable information is available on the recruitment processes for this stock, it will at present be impossible to detect reduction in the recruitment before the fish enter the fishable part of the stock at an age of at least $10-15$ years. The stock could therefore suffer from recruitment failure in many years before it is possible to observe it. In order to gain important knowledge on the location of the nursery areas for this stock and of the recruitment to the Irminger Sea, a joint international synoptic trawl survey for 0-group and/or juvenile redfish covering the entire distribution area would be necessary.

The ichthyoplankton surveys do provide some information about the spawning stock. Although it is not possible to identify to which redfish type the larvae belong, it should be further investigated if these surveys can provide a larval index useful for management.

## 11 REFERENCES

Anon. 1979. Report of the Saithe (Coalfish) Working Group. ICES CM 1979/G:6.
Anon. 1991. Report of the Multispecies Assessment Working Group. ICES CM 1991/Assess:7.
Anon. 1993. Report of the North Western Working Group. ICES CM 1993/Assess:18.
Anon. 1994. Report of the Study Group on the Redfish Stocks. ICES CM 1994/G:4.
Anon. 1994a. Report of the North Western Working Group. ICES CM 1994/Assess:19.
Anon. 1994b. Report of the Workshop on Sampling Strategies for Age and Maturity. ICES CM 1994/D:1.
Anon. 1995. Report of the North Western Working Group. ICES CM 1995/Assess:19.
Anon. 1995. Report of the Study Group on the Redfish Stocks. ICES, CM 1995/G:1.
Anon. 1995. Report of the Methods Working Group 1995. ICES, CM 1995/Assess:15.
Björnsson, H. 1994. Description of method to calculate survey indexes for cod from the Icelandic groundfish survey. Annex I. Report of the North Western Working Group. ICES CM 1994/Assess:19.

Buch, E., Sv. A. Horsted and H. Hovgaard. 1994. Fluctuations in the occurrence of cod in Greenland and their possible causes. ICES Mar. Sci. Symp. 198: 158-174.

Cook, R. 1995. Re-analysis of Faroe Plateau cod. Working paper to ACFM meeting, October 1995.4 pp.
Gudmundsson, G. 1984. Time series analysis of catch-at-age observations. Appl. Statist. 43, No. 1: 117-126.
Horsted, Sv. A. 1994. A review with some proposals for amendments of the catch statistics for the cod fisheries in Greenland waters since 1911. NAFO SCR Doc. 94/38, Ser. No. N2407.

Magnusson, J. 1983. The Irminger Sea oceanic stock of redfish "spawning" and "spawning" and spawning area. ICES, Doc. C.M. 1984/G:24.

Magnusson, J. M. and J.V. Magnusson, 1978. On the proportion of the two species of Redfish, $S$. mentella and $S$. marinus in research catches from Icelandic and East Greenland waters. ICES.C.M 1978/G:37.

Magnusson, J., K.H. Nedreaas, J.V. Magnusson, P. Reinisson, and Th. Sigurdsson, 1994. Report on the joint Icelandic/ Norwegian acoustic survey on oceanic redfish in the Irnibger Sea and adjacent waters in June/July 1994. ICES C.M. 1994/G:44.

Magnusson, J.M., J.V. Magnusson and T. Sigurdsson, 1995. On the distribution and biology of the oceanic redfish in March 1995. ICES, C.M. 1995/G:40.

Magnusson, J.V. and G. Johannesson, 1995. Distribution and abundance of O-group redfish in the Irminger Sea and at East- Greenland in 1970-94 and it's relation to Sebastes marinus abundance index from the Icelandic groundfish survey. ICES, C.M. 1995/G:39.

Magnusson, J., J. Magnusson, A. Halgrimsson, A. Dorchenkov, A. Pedchenko, Yu. Bakay,1992. Report on the Icelandic and Russian acoustic surveys on oceanic redfish in the Irminger Sea and adjacent waters, in May-July 1992. - ICES C.M. 1992/G:51. - 27 p.

Magnússon, K. and O.K. Pálsson. 1989. Trophic ecological relationships of Icelandic cod. Rapp. P.-v. Réun. Cons. int. Explor. Mer. 188:206-224.

Magnússon, K. and O.K. Pálsson. 1991a. Predator-prey interactions of cod and capelin in Icelandic waters. ICES Mar. Sci. Symp. 193:153-17.

Magnússon, K. and O.K. Pálsson. 1991b. The predator-prey impact of cod on shrimps in icelandic waters. ICES CM 1991/K:31.

Maguire, J.J., J. Reinert, A. Kristiansen, J.M. Grastein and A. Nicolajsen. ACFM Working Paper on groundfishes in the Faroes. October 1995.

Pálsson, O.K. 1983. The feeding habits of demersal fish species in Icelandic waters. Rit Fiskideildar, 7(1):1-60.
Pálsson, O.K. E. Jonsson, S.A. Schopka, G. Stefánsson and B.E. Steinarsson. 1989. Icelandic groundfish survey data to improve precision in stock assessment. J. Northw. Atl. Fish. Sci., 9:53-72.

Pálsson, O.K. and G. Stefánsson. 1991. Spatial distribution of Icelandic cod in March 1985-1991. ICES CM 1991/G:63.

Reynisson, P., T. Sigurdsson, J. Magnusson and J.V. Magnusson, 1995. Diurnal variation of the echo intensity and some biological observations on redfish in the Irminger Sea (preliminary results). ICES, C.M. 1995/G:41.

Schopka, S.A. 1994. Fluctuations in the cod stock at Iceland during this century in relation to chances in the fisheries and environment. ICES, Mar. Sci. Symp. 198:175-193.

Shibanov, V. N., and S. P. Melnikov. 1994. Status of the commercial stock of redfish (Sebastes mentella Travin, oceanic type) in the Irminger Sea in 1993 as evaluated by Russian ichthyoplankton survey. ICES C. M. 1994/G:33.

Simmonds, E.J., Williamson, N.J., Gerlotto, F., and Aglen, A. 1992. Acoustic design and analysis procedure: a comprehensive review of current practice. ICES Cooperative Research Report No. 185.

Stefánsson, G. 1988. A statistical analysis of Icelandic trawler reports, 1973-1987. ICES CM 1991/D:13.
Stefánsson, G., U. Skúladóttir and G. Pétursson. 1994. The use of a stock-production type model in evaluating the offshore Pandalus borealis stock of North Icelandic waters, including the predation of Northern shrimp by cod. ICES CM 1994/K:25.

Stefánsson, G., F.M. Baldursson, Á. Danielsson and K. Thórarinsson, 1994b. Utilization of the icelandic cod stock in a multispecies context. ICES CM 1994/?

Steinarsson, B.E. and G. Stefánsson. 1991. An attempt to explain cod growth variability. ICES CM 1991/G:4.

1. Steinarsson, B. Æ. 1996. Saithe in Division Va.
2. Hjørleifsson, E. 1996. Greenland halibut.
3. Reinert, J. 1996. Some Information on the Redfish Fishery in Division Vb.
4. Reinert, J. 1996. Preliminary Assessment of Faroe Haddock.
5. Junquera, S. 1996. The Spanish Fishery of Oceanic Redfish in ICES Sub-areas XII and XIVb in 1995.
6. Kristiansen, A. 1996. Assessment of Faroe Plateau Cod.
7. Kristiansen, A. 1996. Data concerning Greenland Halibut in Faroese Waters.
8. Schopka, S.A. 1996. Some Assessment Tables on Icelandic Cod in Division Va.
9. Rätz, H.J. 1996. Groundfish Survey Results 1982-95 and Length and Age Structure of German Landings 1952-93 for Cod off Greenland (offshore component).
10. Rätz, H.J. 1996. Groundfish Survey Results 1982-95 and Length Structure of German Landings 1962-93 for Golden and Beaked Redfish off Greenland (offshore component).
11. Rätz, H.J., H.P. Cornus and K. Panten 1996. Structures of Commercial Catches of Oceanic Redfish (Sebastes mentella Travin) in 1995.
12. Rätz, H.J. and K. Kosswig 1996. German Catch Figures for 1995 and Length Structures of German and Icelandic Landings.
13. Nicolajsen, Á. 1996. Faroe Saithe. 1995 Assessment.
14. Nedreaas, K.H. 1996. Some Information about the Norwegian Fishery for Oceanic Sebastes mentella, Deepsea S. mentella, S. marinus and Greenland Halibut in ICES Sub-areas XII and XIV in 1994 (revised) and 1995.
15. Sigurðsson, T. 1996. Icelandic Fishery of Oceanic Redfish in 1995 and First Results on the Proportion of the Deep Sea Type in the Icelandic Catches.
16. Sigurðsson, T. 1996. Redfish in ICES Sub-Area Va.
17. Engelstoft, J.J. 1996. Young Cod Distribution and Abundance in West Greenland Inshore Areas, 1995.
18. Engelstoft, J.J. 1996. By-Catches of Redfish and Cod in the Shrimp Fishery in West Greenland.
19. Shibanov, V.N., A.P. Pedschenko, S.P. Melnikov, V.S. Mamylov and M.I. Polishchuk, 1996. Stock Assessment and Distribution of the Oceanic Type Redfish S. mentella in the Irminger Sea in 1995.
20. Shibanov, V.N. and V.I. Vinnichenko 1996. Preliminary Information about Russian Fishery for the Oceanic S. mentella in Sub-Areas XII and XIV in 1995.
21. Kristiansen, A. 1996. Data Concerning Faroe Bank Cod.

Table 2.1.1. Catches of COD in Vb by various faroese fleet categories. Tonnes gutted weight.

| Year | Open <br> boats | Longliners < 100 GRT | Singletrawl $<400$ HP | $\begin{gathered} \text { Gill } \\ \text { nett } \end{gathered}$ | Jiggers | Singletrawl 400-1000HP | Singletrawl $>1000 \mathrm{HP}$ | $\begin{aligned} & \text { Pairtrawl } \\ & \text { < } 1000 \mathrm{HP} \end{aligned}$ | $\begin{aligned} & \text { Pairtrawl } \\ > & 1000 \mathrm{HP} \end{aligned}$ | Longliners $\text { > } 100 \text { GRT }$ | Industrial trawlers | Others | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1985 | 5650 | 9667 | 2506 | 291 | 1522 | 3049 | 4354 | 5393 | 2223 | 3133 | 54 | 202 | 38044 |
| 1986 | 2946 | 4708 | 1643 | 443 | 921 | 2049 | 2840 | 10132 | 4793 | 1700 | 141 | 391 | 32706 |
| 1987 | 2151 | 3232 | 1393 | 283 | 639 | 1543 | 1794 | 6361 | 3273 | 2586 | 112 | 30 | 23408 |
| 1988 | 579 | 3055 | 1114 | 568 | 1657 | 1652 | 1510 | 6065 | 3455 | 3201 | 137 | 35 | 23025 |
| 1989 | 923 | 6019 | 1213 | 692 | 1932 | 1203 | 1157 | 2278 | 1729 | 3840 | 148 | 12 | 21147 |
| 1990 | 471 | 4252 | 582 | 201 | 1000 | 442 | 568 | 863 | 1259 | 2440 | 79 | 27 | 12184 |
| 1991 | 335 | 2478 | 574 | 160 | 629 | 277 | 371 | . 663 | 1038 | 1394 | 45 | 8 | 7971 |
| 1992 | 136 | 1360 | 361 | 1 | 382 | 123 | 193 | 634 | 1119 | 708 | 258 | 21 | 5296 |
| 1993 | 109 | 815 | 803 | 0 | 455 | 219 | 178 | 717 | 1141 | 696 | 40 | 23 | 5194 |
| 1994 | 240 | 1086 | 956 | 58 | 1500 | 235 | 447 | 651 | 1942 | 1128 | 45 | 7 | 8295 |
| 1995 | 733 | 3112 | 1137 | 55 | 4407 | 714 | 865 | 1164 | 2204 | 3341 | 11 | 1 | 17744 |

Table 2.1.2. Catches of HADDOCK in Vb by various faroese fleet categories. Tonnes gutted weight.

| Year | Open <br> boats | Longliners $<100 \text { GRT }$ | Singletrawl $<400 \mathrm{HP}$ | $\begin{aligned} & \text { Gill } \\ & \text { nett } \end{aligned}$ | Jiggers | Singletrawl 400-1000HP | Singletrawl $>1000 \mathrm{HP}$ | $\begin{aligned} & \text { Pairtrawl } \\ & <1000 \mathrm{HP} \end{aligned}$ | $\begin{aligned} & \text { Pairtrawl } \\ &> 1000 \mathrm{HP} \end{aligned}$ | Longliners $>100 G R T$ | Industrial trawlers | Others | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1985 | 903 | 5299 | 196 | 18 | 86 | 780 | 1055 | 2546 | 832 | 1816 | 15 | 28 | 13575 |
| 1986 | 951 | 5039 | 250 | 4 | 62 | 354 | 664 | 2654 | 1313 | 1535 | 87 | 56 | 12967 |
| 1987 | 1520 | 5418 | 313 | 3 | 47 | 625 | 288 | 2340 | 1251 | 1796 | 204 | 29 | 13834 |
| 1988 | 197 | 5227 | 167 | 2 | 50 | 430 | 259 | 1205 | 914 | 2076 | 161 | 13 | 10700 |
| 1989 | 450 | 7433 | 138 | 2 | 176 | 409 | 213 | 862 | 749 | 2257 | 180 | 5 | 12876 |
| 1990 | 248 | 6141 | 76 | 1 | 132 | 294 | 192 | 534 | 800 | 1815 | 68 | 18 | 10319 |
| 1991 | 210 | 4213 | 116 | 0 | 40 | 95 | 126 | 495 | 799 | 1321 | 52 | 5 | 7473 |
| 1992 | 79 | 1892 | 64 | 0 | 13 | 30 | 45 | 439 | 576 | 917 | 41 | 8 | 4104 |
| 1993 | 27 | 787 | 261 | 0 | 6 | 101 | 37 | 424 | 713 | 818 | 98 | 4 | 3275 |
| 1994 | 34 | 630 | 290 | 0 | 4 | 85 | 121 | 363 | 1045 | 913 | 93 | 3 | 3582 |
| 1995 | 46 | 1009 | 295 | 0 | 16 | 207 | 91 | 371 | 695 | 1654 | 11 | 0 | 4397 |

Table 2.1.3. Catches of SAITHE in Vb by various faroese fleet categories. Tonnes gutted weight.

| Year | Open <br> boats | Longliners < 100 GRT | Singletrawl $<400 \mathrm{HP}$ | Gill <br> nett | Jiggers | $\begin{gathered} \text { Singletrawl } \\ 400-1000 H P \end{gathered}$ | Singletrawl $>1000 \mathrm{HP}$ | $\begin{aligned} & \text { Pairtrawl } \\ & <1000 \mathrm{HP} \end{aligned}$ | $\begin{array}{r} \text { Pairtrawl } \\ >1000 \mathrm{HP} \end{array}$ | Longliners $\text { > } 100 \text { GRT }$ | Industrial trawlers | Others | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1985 | 89 | 38 | 23 | 13 | 982 | 2509 | 12930 | 10822 | 10805 | 28 | 60 | 79 | 38377 |
| 1986 | 107 | 67 | 31 | 54 | 1296 | 1004 | 9872 | 9921 | 13173 | 21 | 254 | 330 | 36132 |
| 1987 | 244 | 52 | 116 | 157 | 1985 | 1458 | 7289 | 8134 | 15790 | 37 | 408 | 1 | 35700 |
| 1988 | 173 | 101 | 40 | 113 | 2576 | 2660 | 8257 | 7748 | 17266 | 31 | 501 | 21 | 39587 |
| 1989 | 352 | 55 | 133 | 90 | 3723 | 2144 | 7118 | 9440 | 16513 | 60 | 504 | 5 | 40136 |
| 1990 | 315 | 132 | 110 | 122 | 4032 | 2096 | 10742 | 13127 | 23442 | 101 | 495 | 8 | 54721 |
| 1991 | 298 | 55 | 78 | 281 | 4784 | 585 | 6791 | 12978 | 22584 | 64 | 404 | 7 | 48910 |
| 1992 | 123 | 121 | 18 | 0 | 3300 | 135 | 2253 | 7677 | 17486 | 37 | 320 | 1 | 31472 |
| 1993 | 168 | 56 | 57 | 0 | 2697 | 146 | 1879 | 6234 | 17639 | 29 | 203 | 3 | 29111 |
| 1994 | 139 | 112 | 44 | 2 | 3655 | 315 | 1995 | 5408 | 17240 | 63 | 202 | 0 | 29175 |
| 1995 | 50 | 19 | 90 | 5 | 2579 | 216 | 2406 | 4289 | 14776 | 73 | 19 |  | 24519 |

in $\quad$ Table 2.1.4. Fishing effort (days) by various faroese fleet categories in Vb .

| Year | Open boats | Longliners $<100 \text { GRT }$ | $\begin{aligned} & \text { Singletrawl } \\ & <400 \mathrm{HP} \end{aligned}$ | $\begin{gathered} \text { Gill } \\ \text { nett } \end{gathered}$ | Jiggers | $\begin{aligned} & \text { Singletrawl } \\ & 400-1000 H P \end{aligned}$ | $\begin{gathered} \text { Singletrawl } \\ >1000 \mathrm{HP} \end{gathered}$ | $\begin{array}{r} \text { Pairtrawl } \\ <1000 \mathrm{HP} \end{array}$ | $\begin{array}{r} \text { Pairtrawl } \\ >1000 \mathrm{HP} \end{array}$ | Longliners $>100 \text { GRT }$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1985 |  | 7558 | 2171 | 108 | 3348 | 2077 | 5565 | 5389 | 3193 | 2973 |
| 1986 |  | 6692 | 1509 | 123 | 2745 | 1221 | 5402 | 6573 | 4433 | 2176 |
| 1987 |  | 6728 | 1297 | 201 | 2973 | 1531 | 4389 | 6314 | 5546 | 2915 |
| 1988 |  | 8753 | 1261 | 234 | 8072 | 2204 | 4964 | 6026 | 6034 | 3203 |
| 1989 |  | 12804 | 1445 | 208 | 10670 | 1993 | 4939 | 5175 | 5127 | 3369 |
| 1990 |  | 14543 | 1159 | 157 | 9611 | 1853 | 4020 | 5444 | 7491 | 3521 |
| 1991 |  | 14801 | 1141 | 183 | 10332 | 1038 | 4005 | 5828 | 7875 | 3573 |
| 1992 |  | 10599 | 1150 | 181 | 10128 | 495 | 4174 | 3985 | 7243 | 2892 |
| 1993 |  | 7497 | 2045 | 561 | 8056 | 1008 | 3577 | 2851 | 6335 | 2046 |
| 1994 |  | 7625 | 2029 | 1833 | 13410 | 677 | 3825 | 2120 | 6227 | 2925 |
| 1995 |  | 9742 | 1985 | 2052 | 18744 | 1342 | 4317 | 2594 | 6752 | 3959 |


|  | Effort (days) used by various fleet categories at Faroes 1985-1995. At the right the average |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | of 1990-1995 and the number of fishing days allocated in the proposal. |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | Avg90-95 |  | Proposal |
| Longliners < 100 GRT |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| and jiggers | 10906 | 9437 | 9701 | 16825 | 23474 | 24154 | 25133 | 20727 | 15553 | 21035 | 28486 | 22187 |  | 20380 |
| Single trawlers < | 2171 | 1509 | 1297 | 1261 | 1445 | 1159 | 1141 | 1150 | 2045 | 2029 | 1985 | 1670 | ${ }^{\text {² }}$ | 1170 |
| Pairtrawlers | 8582 | 11006 | 11860 | 12060 | 10302 | 12935 | 13703 | 11228 | 9186 | 8347 | 9346 | 10362 |  | 8225 |
| Longliners > 100 | 2973 | 2176 | 2915 | 3203 | 3369 | 3521 | 3573 | 2892 | 2046 | 2925 | 3959 | 3079 |  | 3040 |
| Single trawl 400- | No effort limitiations. Cod and haddock catches management by bycatch percentages |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Single trawl > 10 | No effort limitiations. Cod and haddock catches management by bycatch percentages |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% Includes effort used inside 12 nautical miles zone. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }^{-7}$ Only for fishery outside 12 n.miles. Will be allocated ca. 800 days for fishing inside 12 n . miles. with max $30 \%$ of cod and max $10 \%$ of haddock. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 2.2.1. Faroe Plateau ( Sub-division Vb1) COD. Nominal catches (tonnes) by countries, 1986-1995,

|  | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 * |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark | 8 | 30 | 10 | - | - | - | - | - | - | - |
| Faroe Island | 34,492 | 21,303 | 22,272 | 20,535 | 12,232 | 8,203 | 5,938 | 5,744 | 8,724*) | 19,128 |
| France ${ }^{1 /}$ | 4 | 17 | 17 | - | - | - | $318{ }^{3)}$ | 1) |  |  |
| Germany | 8 | 12 | 5 | 7 | 24 | 16 | 12 | + | $2^{3)}$ |  |
| Norway | 83 | 21 | 163 | 285 | 124 | 89 | 39 | 61 | 36 *) | 38 |
| UK (Engl. a | - | 8 | - | - | - | 1 | 79 | 186 | 56 |  |
| UK (Scotlan | - | - | - | - | - | - | - | - |  | $641{ }^{3}$ |
| Total | 34,595 | 21,391 | 22,467 | 20,827 | 12,380 | 8,309 | 6,386 | 5,992 | 8,818 | 19,807 |

${ }^{7}$ Preliminary

1) Quantity unknown 1989-1991 and 1994.
${ }^{2)}$ Catches included in Sub-division Vb2
${ }^{3)}$ Reported as Vb.

Table 2.2.2. Nominal catch (tonnes) of COD in sub-division Vb1 (Faroe Plateau) 1986-1995, as used in the assessment.


Table 2.2.3. The Faroese catches (nominal weight) of Faroe Plateau cod 1985-1995 in Vb1 by percent for

|  | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Open boats | 16 | 9 | 10 | 3 | 4 | 4 | 4 | 3 | 2 | 3 | 4 |
| Longliners < 100 GRT | 27 | 15 | 15 | 14 | 29 | 36 | 32 | 26 | 16 | 13 | 18 |
| Singletrawl < 400 HP | 7 | 5 | 6 | 5 | 6 | 5 | 7 | 7 | 15 | 10 | 6 |
| Tangle nett | 1 | 1 | 1 | 3 | 3 | 1 | 2 | 0 | 0 | 1 | 0 |
| Jiggers | 4 | 3 | 3 | 8 | 9 | 8 | 8 | 7 | 9 | 19 | 25 |
| Singletrawl $400-1000 \mathrm{HP}$ | 8 | 6 | 7 | 7 | 6 | 4 | 3 | 2 | 4 | 3 | 4 |
| Singletrawl $>1000 \mathrm{HP}$ | 11 | 8 | 8 | 7 | 6 | 4 | 5 | 4 | 4 | 5 | 5 |
| Pairtrawl < 1000 HP | 12 | 30 | 26 | 25 | 11 | 7 | 8 | 12 | 14 | 8 | 6 |
| Pairtrawl $>1000 \mathrm{HP}$ | 6 | 15 | 14 | 16 | 8 | 10 | 13 | 21 | 22 | 24 | 12 |
| Longliners > 100 GRT | 7 | 5 | 10 | 13 | 18 | 20 | 17 | 13 | 13 | 14 | 18 |
| Industrial trawlers | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 5 | 1 | 1 | 0 |
| Others | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total Faroese catches, t | 39,422 | 34,492 | 21,303 | 22,987 | 21,764 | 13,322 | 8,554 | 6,092 | 5,744 | 8,724 | 22,458 |

## Table 2.2.4

Run title : Cod FaroePlateau Vb1 (run: XSAAK09/X09)
At 6-May-96 22:22:31

| Table 1 | Catch numbers at age |  |  | Numbers*10**-3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1961, | 1962, | 1963, | 1964, | 1965, |
| AGE |  |  |  |  |  |
| 2, | 3093, | 4424, | 4110, | 2033, | 852, |
| 3, | 2686, | 2500, | 3958, | 3021, | 3230, |
| 4, | 1331, | 1255, | 1280, | 2300, | 2564, |
| 5, | 1066, | 855, | 662, | 630, | 1416, |
| 6, | 232, | 481, | 284, | 350, | 363, |
| 7. | 372, | 93, | 204, | 158, | 155, |
| 8, | 78, | 94, | 48, | 79, | 48, |
| 9, | 29. | 22, | 30, | 41, | 63, |
| +gp, | 0, | 0, | 0, | 0. | 0, |
| TOTALNUM, | 8887, | 9724, | 10576, | 8612, | 8691, |
| TONSLAND, | 25500, | 23200, | 23100, | 24000, | 24856, |
| SOPCOF \%, | 121, | 112, | 106, | 114, | 103, |


| Table 1 | Catch numbers at age Numbers*10**-3 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1966, | 1967, | 1968, | 1969, | 1970, | 1971, | 1972, | 1973, | 1974, | 1975, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | 1337, | 1609, | 1529, | 878, | 402, | 328, | 875, | 723, | 2161, | 2584, |
| 3, | 970, | 2690, | 3322, | 3106, | 1163, | 757, | 1176, | 3124, | 1266, | 5689, |
| 4, | 2080, | 860, | 2663, | 3300, | 2172, | 821, | 810, | 1590, | 1811, | 2157, |
| 5, | 1339, | 1706, | 945, | 1538, | 1685, | 1287, | 596, | 707, | 934, | 2211, |
| 6 , | 606, | 847, | 1226, | 477, | 752, | 1451, | 1021, | 384, | 563, | 813, |
| 7, | 197, | 309, | 452, | 713, | 244, | 510, | 596, | 312, | 452, | 295, |
| 8, | 104, | 64, | 105, | 203, | 300, | 114, | 154, | 227, | 149, | 190, |
| 9, | 33, | 27, | 11, | 92, | 44, | 179, | 25, | 120, | 141, | 118, |
| +gp, | 0 , | 0, | 0 , | 0, | 0, | 0, | 0 , | 97, | 91, | 150, |
| TOTALNUM, | 6666, | 8112, | 10253, | 10307, | 6762, | 5447, | 5253, | 7284, | 7568, | 14207, |
| TONSLAND, | 21027, | 25174, | 30279, | 35670, | 29037, | 26151, | 20437, | 22381, | 24581, | 36775, |
| SOPCOF \%, | 103, | 107, | 101, | 110, | 120, | 114, | 109, | 101, | 106, | 94. |

Table 2.2.4 (Continued)

Run title : Cod FaroePlateau Vb1 (run: XSAAK09/X09)
At 6-May-96 22:22:31

| Table 1 | Catch numbers at age Numbers*10**-3 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1976, | 1977, | 1978, | 1979, | 1980, | 1981, | 1982, | 1983, | 1984, | 1985, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | 1497, | 425, | 555, | 575, | 1129, | 646, | 1139, | 2149, | 4396, | 998, |
| 3, | 4158, | 3282, | 1219, | 1732, | 2263, | 4137, | 1965, | 5771, | 5234, | 9484, |
| 4, | 3799, | 6844, | 2643, | 1673, | 1461, | 1981, | 3073, | 2760, | 3487, | 3795, |
| 5, | 1380, | 3718, | 3216, | 1601, | 895, | 947, | 1286, | 2746, | 1461, | 1669, |
| 6, | 1427, | 788, | 1041, | 1906, | 807, | 582, | 471, | 1204, | 912, | 770 , |
| 7, | 617, | 1160, | 268, | 493, | 832, | 487, | 314, | 510, | 314, | 872, |
| 8, | 273, | 239, | 201, | 134, | 339, | 527, | 169, | 157, | 82, | 309, |
| 9, | 120, | 134, | 66, | 87, | 42, | 123, | 254, | 104, | 34, | 65, |
| +gp, | 186, | 9, | 56, | 38, | 18, | 55, | 122, | 102, | 66, | 80, |
| TOTALNUM, | 13457, | 16599, | 9265, | 8239, | 7786, | 9485, | 8793, | 15503, | 15986, | 18042, |
| TONSLAND, | 39799, | 34927, | 26585, | 23112, | 20513, | 22963, | 21489, | 38133, | 36979, | 39484, |
| SOPCOF \%, | 93, | 93, | 100, | 98, | 106, | 104, | 100, | 97. | 97, | 95, |


| Table 1 | Numbers*10**-3 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | 210, | 257, | 509, | 2237, | 243, | 190, | 209, | 118, | 559, | 2625, |
| 3, | 3586, | 1362, | 2122, | 2151, | 2849, | 446, | 465, | 787, | 768, | 2727, |
| 4, | 8462, | 2611, | 1945, | 2187, | 1481, | 2130, | 476, | 591, | 1035, | 2016, |
| 5, | 2373, | 3083, | 1484, | 1121, | 852, | 616, | 932, | 218, | 519, | 1016, |
| 6, | 907, | 812, | 2178, | 1026, | 404, | 300, | 300, | 323, | 122, | 467, |
| 7, | 236, | 224, | 492, | 997, | 294, | 141. | 135, | 94, | 172, | 118, |
| 8, | 147, | 68, | 168, | 220, | 291, | 92, | 55, | 32, | 38, | 176, |
| 9, | 47, | 69, | 33, | 61, | 50, | 52, | 30, | 22, | 22, | 44, |
| +gp, | 38, | 26, | 25, | 9, | 26, | 24, | 35, | 25, | 16, | 49, |
| TOTALNUM, | 16006, | 8512, | 8956, | 10009, | 6490, | 3991, | 2637, | 2210, | 3251, | 9238, |
| TONSLAND, | 34595, | 21391, | 23182, | 22068, | 13487, | 8660, | 6540, | 5992, | 8818, | 23137, |
| SOPCOF \%, | 96, | 96, | 101, | 98, | 99, | 106, | 102, | 102, | 101, | 101, |

Table 2.2.5

Run title : Cod FaroePlateau Vb1 (run: XSAAK09/X09)
At 6-May-96 22:22:31

| Table | Catch | ights | age (kg) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1961, | 1962, | 1963, | 1964, | 1965, |
| AGE |  |  |  |  |  |
| 2, | 1.0600, | 1.0600, | 1.0600, | 1.0600, | 1.0600, |
| 3 , | 1.8900, | 1.8900, | 1.8900 , | 1.8900, | 1.8900, |
| 4, | 2.9200, | 2.9200, | 2.9200, | 2.9200, | 2.9200, |
| 5, | 4.0700, | 4.0700, | 4.0700, | 4.0700, | 4.0700, |
| 6, | 5.3000, | 5.3000, | 5.3000, | 5.3000, | 5.3000, |
| 7, | 6.5800, | 6.5800, | 6.5800, | 6.5800, | 6.5800, |
| 8, | 7.8500, | 7.8500, | 7.8500, | 7.8500, | 7.8500, |
| 9, | 9.0800, | 9.0800, | 9.0800, | 9.0800, | 9.0800, |
| +gp, | 10.2700, | 10.2700, | 10.2700, | 10.2700, | 10.2700, |
| SOPCOFAC, | 1.2066, | 1.1231, | 1.0613, | 1.1411, | 1.0292, |


| Table 2 | Catch | ights | age (k |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1966, | 1967, | 1968, | 1969, | 1970, | 1971, | 1972, | 1973, | 1974, | 1975, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | 1.0600, | 1.0600, | 1.0600, | 1.0600, | 1.0600, | 1.0600, | 1.0600, | 1.0600, | 1.0600, | 1.0600 |
| 3, | 1.8900, | 1.8900, | 1.8900, | 1.8900, | 1.8900, | 1.8900, | 1.8900, | 1.8900, | 1.8900, | 1.8900, |
| 4, | 2.9200, | 2.9200, | 2.9200, | 2.9200, | 2.9200, | 2.9200, | 2.9200, | 2.9200, | 2.9200, | 2.9200 , |
| 5, | 4.0700, | 4.0700, | 4.0700, | 4.0700, | 4.0700, | 4.0700, | 4.0700, | 4.0700, | 4.0700, | 4.0700 , |
| 6, | 5.3000, | 5.3000 , | 5.3000, | 5.3000, | 5.3000, | 5.3000, | 5.3000, | 5.3000, | 5.3000, | 5.3000, |
| 7. | 6.5800, | 6.5800, | 6.5800, | 6.5800, | 6.5800, | 6.5800, | 6.5800, | 6.5800, | 6.5800, | 6.5800 , |
| 8, | 7.8500, | 7.8500, | 7.8500, | 7.8500, | 7.8500, | 7.8500, | 7.8500, | 7.8500, | 7.8500, | 7.8500, |
| 9, | 9.0800, | 9.0800, | 9.0800, | 9.0800, | 9.0800, | 9.0800, | 9.0800, | 9.0800, | 9.0800, | 9.0800 , |
| +gp, | 10.2700, | 10.2700, | 10.2700, | 10.2700, | 10.2700, | 10.2700, | 10.2700, | 10.2700, | 10.2700, | 10.2700, |
| SOPCOFAC, | 1.0308, | 1.0706, | 1.0121, | 1.1028, | 1.2014, | 1.1380, | 1.0923, | 1.0106, | 1.0634, | . 9395 |

Run title : Cod FaroePlateau Vb1 (run: XSAAK09/X09)

```
At 6-May-96 22:22:31
```



Table 2.2.6

Run title : Cod FaroePlateau Vb1 (run: XSAAK09/X09)
At 6-May-96 22:22:31

| Table <br> YEAR, | 5 | $\begin{aligned} & \text { Proport } \\ & \text { 1961, } \end{aligned}$ | on mature 1962, | at age 1963. | 1964, | 1965, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |
| 2, |  | .1700, | .1700, | .1700, | .1700, | .1700, |
| 3, |  | .6400, | .6400, | .6400, | .6400, | .6400, |
| 4, |  | .8700, | .8700, | .8700, | .8700, | .8700, |
| 5. |  | .9500, | .9500, | .9500, | .9500, | .9500, |
| 6. |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 7. |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 8, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 9, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| +gp, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |


| Table YEAR, | 5 | $\begin{aligned} & \text { Propor } \\ & \text { 1966, } \end{aligned}$ | on matu 1967, | at age 1968, | 1969, | 1970, | 1971, | 1972, | 1973, | 1974, | 1975, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
| 2, |  | .1700, | . 1700, | . 1700, | .1700, | .1700, | .1700, | . 1700, | . 1700, | $.1700,$ | $.1700,$ |
| 3 , |  | . 6400 , | . 6400, | . 6400 , | .6400, | .6400, | .6400, | .6400, | . 6400, | $.6400,$ | $.6400,$ |
| 4, |  | . 8700 , | .8700, | . 8700, | . 8700, | . 8700 , | . 8700 , | . 8700 , | . 8700, | . 8700, | . 8700, |
| 5, |  | .9500, | . 9500 , | . 9500 , | . 9500 , | . 9500 , | 1.9500, | . 9.9500, | 1.9500, | 1.9500, | 1.9500, |
| 6, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, 1.0000 | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 7, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 9, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| +gp, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |

Run title : Cod FaroePlateau Vb1 (run: XSAAK09/X09)
At 6-May-96 22:22:31


| $\begin{aligned} & \text { Table } \\ & \text { YEAR, } \end{aligned}$ | 5 | Propor 1986, | on matu 1987, | at age 1988, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
| 2, |  | . 0000, | . 0000, | . 0600, | . 0500 , | . 0000, | .0000, | . 0600 , | . 2500, | .7200, | .2100, |
| 3, |  | . 3800 , | .6700, | .7200, | .5400, | .6800, | . 7200, | .5000, | .7300, | .8900, | .5300, |
| 4, |  | . 9300, | .9100, | . 9000 , | .9800, | . 9000, | . 8600, | .8200, | .7800, | .9800, | .5500, |
| 5, |  | 1.0000, | 1.0000, | . 9700, | 1.0000, | .9900, | 1.0000, | .9800, | .9100, | .9900, | .7400, |
| 6, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | .9600, | 1.0000, | 1.0000, | .9900, | 1.0000, | .9700, |
| 7, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | .9800, | 1.0000, | 1.0000, | 1.0000, | .9800, | 1.0000, |
| 8, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000 , | 1.0000 , | 1.0000, | 1.0000, |
| 9, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| +gp, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |

## Table 2.2.7

COD-FARP: Cod in the Faroe Plateau (Fishing Area Vb1)
RVXSA: Faroe Plateau RV survey shifted backwards to Dec. prev. year (Catch: Number)

| Year | Fishing effort | Catch, age 1 | Catch, age 2 | Catch, age 3 | Catch, age 4 | Catch, age 5 | Catch, age 6 | Catch, age 7 | Catch, age 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1982 | 1 | 471 | 2592 | 1784 | 1441 | 528 | 146 | 51 | 8 |
| 1983 | 1 | 1085 | 2184 | 1619 | 508 | 329 | 131 | 1 | 1 |
| 1984 | 1 | 416 | 4296 | 1546 | 621 | 131 | 157 | 60 | 1 |
| 1985 | 1 | 91 | 2669 | 9423 | 2649 | 1113 | 545 | 352 | 107 |
| 1986 | 1 | 127 | 1539 | 3448 | 4595 | 722 | 91 | 115 | 10 |
| 1987 | 1 | 197 | 1265 | 1662 | 1284 | 1427 | 275 | 72 | 18 |
| 1988 | 1 | 445 | 602 | 1006 | 824 | 405 | 661 | 66 | 9 |
| 1989 | 1 | 262 | 638 | 1522 | 1378 | 436 | 545 | 370 | 62 |
| 1990 | 1 | 254 | 352 | 1222 | 315 | 150 | 51 | 12 | 23 |
| 1991 | 1 | 148 | 210 | 472 | 1810 | 394 | 126 | 65 | 13 |
| 1992 | 1 | 41 | 448 | 232 | 163 | 329 | 118 | 44 | 12 |
| 1993 | 1 | 472 | 374 | 1374 | 783 | 211 | 305 | 32 | 1 |
| 1994 | 1 | 767 | 977 | 2089 | 2913 | 2754 | 755 | 904 | 127 |
| 1995 | 1 | 291 | 5293 | 6885 | 3741 | 2804 | 814 | 154 | 316 |

Table 2.2.8

COD-FARP: Cod in the Faroe Plateau (Fishing Area Vb1) FLT45: Longliners < 100 GRT (jan-dec) (Catch: Thousands)

| Fishing |  |  |  |  |  |  |  |  |
| :--- | :--- | ---: | :--- | ---: | ---: | ---: | ---: | ---: |
| Year | Catch, <br> age 3 | Catch, <br> age 4 | Catch, <br> age 5 | Catch, <br> age 6 | Catch, <br> age 7 | Catch, <br> age 8 | Catch, <br> age 9 |  |
| 1985 | 7530 | 3110 | 799 | 375 | 181 | 282 | 73 | 17 |
| 1986 | 6622 | 646 | 1239 | 352 | 148 | 43 | 26 | 6 |
| 1987 | 6669 | 223 | 427 | 528 | 130 | 29 | 11 | 11 |
| 1988 | 8690 | 532 | 236 | 173 | 273 | 67 | 23 | 5 |
| 1989 | 12774 | 931 | 672 | 303 | 270 | 216 | 34 | 4 |
| 1990 | 14440 | 1302 | 481 | 317 | 119 | 86 | 85 | 14 |
| 1991 | 14780 | 255 | 984 | 185 | 79 | 28 | 15 | 10 |
| 1992 | 10523 | 198 | 164 | 230 | 50 | 22 | 9 | 6 |
| 1993 | 7326 | 178 | 85 | 28 | 53 | 11 | 5 | 3 |
| 1994 | 7443 | 166 | 140 | 47 | 12 | 16 | 3 | 2 |
| 1995 | 9582 | 475 | 169 | 110 | 58 | 16 | 24 | 5 |

Table 2.2.9
COD-FARP: Cod in the Faroe Plateau (Fishing Area Vb1)
FLT44: Single trawlers $<400 \mathrm{HP}$ (jan-dec) (Catch: Thousands)

| Year | Fishing effort | Catch, age 3 | Catch, age 4 | Catch, age 5 | Catch, age 6 | Catch, age 7 | Catch, age 8 | Catch, age 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1985 | 1987 | 1120 | 257 | 82 | 33 | 27 | 11 | 1 |
| 1986 | 1477 | 398 | 466 | 68 | 16 | 4 | 3 | 1 |
| 1987 | 1259 | 266 | 295 | 214 | 28 | 4 | 1 | 1 |
| 1988 | 1196 | 188 | 144 | 71 | 91 | 14 | 4 | 0 |
| 1989 | 1376 | 221 | 175 | 66 | 49 | 57 | 11 | 4 |
| 1990 | 1144 | 274 | 141 | 29 | 10 | 6 | 4 | 0 |
| 1991 | 1106 | 41 | 197 | 54 | 22 | 8 | 4 | 2 |
| 1992 | 1148 | 33 | 27 | 59 | 22 | 9 | 4 | 1 |
| 1993 | 1977 | 169 | 90 | 31 | 42 | 10 | 4 | 3 |
| 1994 | 1600 | 73 | 101 | 54 | 10 | 15 | 3 | 1 |
| 1995 | 1924 | 153 | 175 | 89 | 33 | 6 | 9 | 3 |

Table 2.2.10

COD-FARP: Cod in the Faroe Plateau (Fishing Area Vb1)
FLT32: Single trawlers 400-1000 HP (Catch: Thousands)

| Year | Fishing <br> effort | Catch, <br> age 4 | Catch, <br> age 5 | Catch, <br> age 6 | Catch, <br> age 7 | Catch, <br> age 8 | Catch, <br> age 9 |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1985 | 1969 | 339 | 118 | 57 | 41 | 13 | 2 |
| 1986 | 1133 | 658 | 141 | 38 | 9 | 6 | 2 |
| 1987 | 1463 | 257 | 245 | 36 | 10 | 3 | 3 |
| 1988 | 2175 | 142 | 113 | 165 | 38 | 11 | 2 |
| 1989 | 1952 | 156 | 58 | 51 | 59 | 11 | 4 |
| 1990 | 1853 | 55 | 19 | 15 | 10 | 10 | 2 |
| 1991 | 1013 | 52 | 27 | 15 | 8 | 3 | 3 |
| 1992 | 465 | 10 | 18 | 6 | 3 | 1 | 1 |
| 1993 | 963 | 39 | 11 | 11 | 3 | 1 | 1 |
| 1994 | 636 | 18 | 15 | 4 | 5 | 1 | 1 |
| 1995 | 1302 | 70 | 47 | 22 | 5 | 5 | 1 |

Table 2.2.11

COD-FARP: Cod in the Faroe Plateau (Fishing Area Vbi) FLT33: Single trawlers > 1000 HP (Catch: Thousands)

| Year | Fishing effort | Catch, age 3 | Catch, age 4 | Catch, age 5 | Catch, age 6 | Catch, age 7 | Catch, age 8 | Catch, age 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1985 | 5296 | 706 | 520 | 230 | 91 | 62 | 25 | 9 |
| 1986 | 5232 | 258 | 813 | 206 | 62 | 17 | 10 | 5 |
| 1987 | 4181 | 41 | 154 | 275 | 92 | 27 | 6 | 7 |
| 1988 | 4481 | 105 | 92 | 98 | 152 | 47 | 13 | 4 |
| 1989 | 4572 | 44 | 90 | 82 | 75 | 75 | 18 | 5 |
| 1990 | 3601 | 120 | 63 | 36 | 17 | 12 | 12 | 2 |
| 1991 | 3644 | 8 | 51 | 28 | 16 | 9 | 6 | 2 |
| 1992 | 3580 | 15 | 15 | 29 | 10 | 4 | 2 | 1 |
| 1993 | 3547 | 9 | 16 | 7 | 10 | 4 | 1 | 1 |
| 1994 | 3500 | 20 | 28 | 34 | 9 | 12 | 3 | 1 |
| 1995 | 3789 | 44 | 74 | 54 | 27 | 6 | 7 | 2 |

Table 2.2.12

COD-FARP: Cod in the Faroe Plateau (Fishing Area Vb1)
FLT19: PAIR TRAWLERS 400-1000 HP

| Year | Fishing <br> effort | Catch, <br> age 2 | Catch, <br> age 3 | Catch, <br> age 4 | Catch, <br> age 5 | Catch, <br> age 6 | Catch, <br> age 7 | Catch, <br> age 8 | Catch, <br> age 9 |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1985 | 4906 | 61 | 802 | 424 | 201 | 94 | 120 | 43 | 12 |
| 1986 | 5953 | 20 | 848 | 2667 | 747 | 265 | 54 | 37 | 15 |
| 1987 | 5575 | 46 | 383 | 755 | 927 | 221 | 54 | 16 | 21 |
| 1988 | 5736 | 52 | 558 | 698 | 467 | 663 | 108 | 31 | 4 |
| 1989 | 4987 | 49 | 139 | 265 | 148 | 122 | 114 | 30 | 8 |
| 1990 | 5273 | 1 | 77 | 92 | 68 | 35 | 28 | 24 | 4 |
| 1991 | 5626 | 0 | 13 | 92 | 53 | 29 | 15 | 11 | 6 |
| 1992 | 3832 | 2 | 16 | 33 | 97 | 38 | 17 | 6 | 6 |
| 1993 | 2771 | 4 | 52 | 60 | 26 | 38 | 15 | 4 | 3 |
| 1994 | 1962 | 17 | 42 | 44 | 50 | 15 | 19 | 4 | 3 |
| 1995 | 2388 | 26 | 62 | 109 | 72 | 34 | 8 | 8 | 2 |

[^0]| Year | Fishing effort | Catch, age 2 | Catch, age 3 | Catch, age 4 | Catch, age 5 | Catch, age 6 | Catch, age 7 | Catch, age 8 | Catch, age 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1985 | 3064 | 14 | 370 | 218 | 98 | 39 | 47 | 17 | 6 |
| 1986 | 4336 | 17 | 267 | 1001 | 388 | 166 | 44 | 27 | 8 |
| 1987 | 5420 | 7 | 117 | 319 | 484 | 173 | 46 | 10 | 8 |
| 1988 | 5973 | 9 | 217 | 263 | 247 | 377 | 91 | 34 | 6 |
| 1989 | 5111 | 10 | 73 | 152 | 119 | 104 | 99 | 25 | 7 |
| 1990 | 7424 | 2 | 139 | 149 | 92 | 47 | 29 | 29 | 5 |
| 1991 | 7673 | 1 | 21 | 134 | 82 | 45 | 25 | 17 | 8 |
| 1992 | 6853 | 2 | 29 | 55 | 158 | 64 | 29 | 12 | 5 |
| 1993 | 5953 | 4 | 79 | 106 | 48 | 64 | 24 | 7 | 5 |
| 1994 | 5302 | 28 | 91 | 123 | 151 | 43 | 53 | 12 | 8 |
| 1995 | 6069 | 42 | 115 | 191 | 142 | 71 | 16 | 19 | 6 |

Table 2.2.14

17:23 Tuesday, May 7, 1996
COD-FARP: Cod in the Faroe Plateau (Fishing Area Vb1)
FLT35: Longliners > 100 GRT (Catch: Thousands)

| Fishing | Catch, <br> age 3 | Catch, <br> age 4 | Catch, <br> age 5 | Catch, <br> age 6 | Catch, <br> age 7 | Catch, <br> age 8 | Catch, <br> age 9 |  |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Year |  |  |  |  |  |  |  |  |
| 1985 | 2740 | 468 | 231 | 124 | 69 | 103 | 39 | 9 |
| 1986 | 2085 | 95 | 300 | 128 | 67 | 20 | 14 | 4 |
| 1987 | 2444 | 25 | 132 | 232 | 117 | 56 | 21 | 18 |
| 1988 | 2831 | 191 | 183 | 173 | 229 | 69 | 35 | 10 |
| 1989 | 3220 | 306 | 290 | 163 | 192 | 189 | 54 | 16 |
| 1990 | 3367 | 344 | 179 | 133 | 88 | 77 | 77 | 14 |
| 1991 | 3442 | 47 | 289 | 98 | 52 | 30 | 23 | 13 |
| 1992 | 2829 | 47 | 47 | 89 | 33 | 16 | 8 | 5 |
| 1993 | 1754 | 78 | 76 | 26 | 47 | 12 | 6 | 3 |
| 1994 | 2334 | 134 | 67 | 42 | 13 | 24 | 9 | 5 |
| 1995 | 3648 | 384 | 221 | 152 | 90 | 28 | 59 | 15 |

Table 2.2.15. Faroe Plateau cod: Results of ADAPT calibrations with the research vessel survey index of stock size alone by 5 year periods to investigate changes in the availability of cod to the survey. The 5 year periods correspond to the catch at age used while the survey index for the year following the last year of catch at age data in each period was included in the calibration. The last period, 1991 to 1995, is strikingly different from the other periods, suggesting that the series cannot be treated as a consistent continuous time series of stock size.

|  | $\mathbf{8 3}$ to $\mathbf{8 7}$ | $\mathbf{8 4}$ to $\mathbf{8 8}$ | $\mathbf{8 5}$ to $\mathbf{8 9}$ | $\mathbf{8 6}$ to $\mathbf{9 0}$ | $\mathbf{8 7}$ to $\mathbf{9 1}$ | $\mathbf{8 8}$ to $\mathbf{9 2}$ | $\mathbf{8 9}$ to $\mathbf{9 3}$ | $\mathbf{9 0}$ to $\mathbf{9 4}$ | $\mathbf{9 1}$ to $\mathbf{9 5}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| k2 | 7966 | 5919 | 6118 | 4256 | 3324 | 2154 | 2722 | 5378 | 171099 |
| k3 | 831 | 711 | 858 | 734 | 1006 | 874 | 979 | 1846 | 35596 |
| k4 | 501 | 378 | 370 | 240 | 351 | 360 | 386 | 503 | 9957 |
| k5 | 563 | 368 | 309 | 193 | 237 | 260 | 238 | 324 | 5802 |
| k6 | 692 | 472 | 414 | 237 | 304 | 303 | 291 | 297 | 5519 |
| k7 | 745 | 417 | 362 | 201 | 324 | 267 | 242 | 275 | 6708 |
| k8 | 755 | 367 | 335 | 205 | 333 | 380 | 378 | 368 | 10415 |
| k9 | 1578 | 375 | 514 | 366 | 520 | 447 | 491 | 362 | 9779 |

Table 2.2.16

Lowestoft VPA Version 3.1
6-May-96 22:21:22
Extended Survivors Analysis

Cod FaroePlateau Vb1 (run: XSAAK09/X09)

CPUE data from file /users/fish/ifad/ifapwork/nwwg/cod_farp/FLEET.X09
Catch data for 35 years. 1961 to 1995. Ages 2 to 10

| Fleet, | First, Last, year, year, | $\begin{aligned} & \text { First } \\ & \text { age } \end{aligned}$ | Last, age |  | Bet |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FLT32: Single trawle, | 1985, 1995, | 4, | 9, | . 000, | 1.000 |
| FLT35: Longliners > | 1985, 1995, | 3, | 9, | . 000 , | 1.000 |

Time series weights :
Tapered time weighting applied
Power $=3$ over 20 years

Catchability analysis :
Catchability dependent on stock size for ages < 3
Regression type $=\mathrm{C}$
Minimum of 5 points used for regression
Survivor estimates shrunk to the population mean for ages < 3

Catchability independent of age for ages $>=6$

Terminal population estimation :
Survivor estimates shrunk towards the mean $F$
of the final 5 years or the 5 oldest ages.
S.E. of the mean to which the estimates are shrunk $=.500$

Minimum standard error for population
estimates derived from each fleet $=.300$
Prior weighting not applied

Tuning converged after 15 iterations

| Regression weights |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , | .751, | . 820, | .877, | . 921, | .954, | .976, | .990, | .997, | 1.000, | 1.000 |
| Fishing mortalities |  |  |  |  |  |  |  |  |  |  |
| Age, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995 |
| 2, | . 025 , | .029, | .067, | . 192, | .091, | .041, | .032, | .014, | .031, | . 079 |
| 3, | .353, | .223, | . 348 , | . 446 , | .399, | .241, | .135, | .164, | . 120, | . 208 |
| 4, | .619, | .472, | .570, | .741, | .639, | .593, | .438, | .255, | . 336, | . 523 |
| 5, | .702, | .481, | .543, | .779, | .738, | .606, | .566, | . 368 , | . 373 , | . 653 |
| 6, | .801, | . 554, | . 761, | . 940, | .733, | .635, | .683, | .389, | . 362, | . 686 |
| 7, | .823, | .463, | . 793, | 1.015, | .789, | .618, | .668, | .470, | . 370, | . 725 |
| 8, | .569, | .597, | .775, | 1.081, | . 986 | .615, | .523, | . 321 , | .352, | . 821 |
| 9. | .655, | .579, | .662, | .733, | .779, | .457, | .413, | .409, | . 383, | . 907 |

## Table 2.2.16 (Continued)

XSA population numbers (Thousands)


Estimated population abundance at 1st Jan 1996
$.00 \mathrm{E}+00,2.90 \mathrm{E}+04,1.07 \mathrm{E}+04,2.65 \mathrm{E}+03,9.98 \mathrm{E}+02,4.28 \mathrm{E}+02,1.00 \mathrm{E}+02,1.25 \mathrm{E}+02$,
Taper weighted geometric mean of the VPA populations:
$1.22 \mathrm{E}+04,8.72 \mathrm{E}+03,5.27 \mathrm{E}+03,2.70 \mathrm{E}+03,1.32 \mathrm{E}+03,6.06 \mathrm{E}+02,2.77 \mathrm{E}+02,1.16 \mathrm{E}+02$,
Standard error of the weighted Log(VPA populations) :
, $7537, .6836, .6384, .6438, .6602, .6557, .5703, .5091$,

Log catchability residuals.


Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age, | 4, | 5, | 6, | 7, | 8, | 9, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -10.9058, | -10.7995, | -10.7092, | -10.7092, | -10.7092, | -10.7092, |
| S.E(Log q), | .4343, | .3524, | .3173, | .3438, | .3363, | .2524, |

## Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 4, | .75, | 1.708, | 10.29, | .85, | 11, | .29, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 5, | .83, | 1.203, | 10.28, | .86, | 11, | .28, |
| 6, | .94, | .344, | 10.51, | .83, | 11, | .32, |
| 7, | .95, | .274, | 10.49, | .80, | 11, | .35, |
| 7, | .70 .70, |  |  |  |  |  |
| 8, | .74, | 2.398, | 9.51, | .92, | 11, | .17, |
| 9, | .93, | .260, | 10.36, | .64, | 11, | .24, |

Table 2.2.16 (Continued)


Mean $\log$ catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age, | 3, | 4, | 5, | 6, | 7, | 9, | 9, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -11.7949, | -11.0475, | -10.7265, | -10.3695, | -10.3695, | -10.3695, | -10.3695, |
| S.E(Log q), | .6437, | .3945, | .3356, | .3193, | .3958, | .6402, | .5785 , |

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 3, | 1.02, | -.046, | 11.84, | .53, | 11, | .69, | -11.79, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4, | 1.28, | -1.111, | 11.76, | .67, | 11, | .50, | -11.05, |
| 5, | 1.30, | -1.440, | 11.61, | .74, | 11, | .41, | -10.73, |
| 6, | .86, | 1.035, | 9.90, | .87, | 11, | .27, | -10.37, |
| 7, | .84, | 1.239, | 9.52, | .88, | 11, | .26, | -10.15, |
| 8, | .68, | 1.931, | 8.51, | .82, | 11, | .26, | -9.92, |
| 9, | 1.01, | -.021, | 10.06, | .32, | 11, | .46, | -10.01, |

Terminal year survivor and F summaries :
Age 2 Catchability dependent on age and year class strength
Year class $=1993$

| Fleet, | Estimated, Survivors, | Int, | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, Ratio, |  | Scaled, Weights | $\begin{gathered} \text { Estimated } \\ \mathrm{F} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLT32: Single trawle, | 1., | .000, | .000, | .00, | 0, | .000, | . 000 |
| FLT35: Longliners > , | 1.1 | .000, | . 000 , | . 00 , | 0 , | . 000 , | . 000 |
| P shrinkage mean | 8725., | .68, , , , |  |  |  | .349, | .241 |
| F shrinkage mean | 55235., | .50, , , |  |  |  | .651, | . 042 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | ---: | ---: | ---: | ---: | :--- |
| at end of year, | s.e, | S.e, | Ratio, |  |  |
| $29033 .$, | .40, | 10.31, | 2, | 25.556, | .079 |

Table 2.2.16 (Continued)
Age 3 Catchability constant w.r.t. time and dependent on age
Year class $=1992$

| Fleet, | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, Ratio, |  | Scaled, Weights, | $\begin{gathered} \text { Estimated } \\ \mathrm{F} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLT32: single trawle, | 1., | . 000 , | . 000 | . 00, | 0, | .000, | . 000 |
| FLT35: Longliners > , | 11303., | . 675 , | . 000 , | . 00 , | 1, | . 308 , | . 197 |
| F shrinkage mean | 10417., | .50, |  |  |  | 692, | 213 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| 10682., | .40, | .07, | 2, | .168, | .208 |

Age 4 Catchability constant w.r.t. time and dependent on age
Year class $=1991$

| Fleet, | Estimated, | Int, | Ext, | Var, | $N$, | Scaled, | Estimated |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Survivors, | s.e, | s.e, | Ratio, |  | Weights, | F |
| FLT32: Single trawle, | 1997., | .456, | .000, | . 00, | 1. | .249, | . 649 |
| FLT35: Longliners > | 2718., | . 353 , | .082, | . 23, | 2, | .402, | . 513 |
| F shrinkage mean | 3161., | . 50, |  |  |  | .349, | . 456 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | S.e, | Ratio, |  |  |
| $2654 .$, | .25, | .12, | 4, | .473, | .523 |

Age 5 Catchability constant w.r.t. time and dependent on age
Year class $=1990$

| Fleet, | Estimated, | Int, | Ext, | Var, | $N$, | Scaled, | Estimated |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Survivors, | s.e, | s.e, | Ratio, |  | Weights, | F |
| FLT32: Single trawle, | 864., | .291, | .379, | 1.31, | 2, | .336, | . 725 |
| FLT35: Longliners > , | 962., | .254, | .238, | .94, | 3, | .424, | . 671 |
| F shrinkage mean | 1301., | . 50 |  |  |  | .240, | . 534 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | S.e, | S.e, | Ratio, |  |  |
| $998 .$, | .19, | .16, | 6, | .849, | .653 |

Age 6 Catchability constant w.r.t. time and dependent on age

```
Year class = 1989
```

| Fleet, | Estimated, | Int, | Ext, | Var, | N, | Scaled, | Estimated |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Survivors, | S.e, | s.e, | Ratio, |  | Weights, |  |
| FLT32: single trawle, | 421., | . 224, | .090, | . 40 , | 3, | . 385 , | . 695 |
| FLT35: Longliners > , | 389., | .207, | .183, | . 88 , | 4, | .431, | . 735 |
| F shrinkage mean | 556., | . 50, |  |  |  | . 184 , | . 565 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | R, | Ratio, |  |
| $428 .$, | .15, | .10, | 8, | .645, | .686 |

Table 2.2.16 (Continued)

Age 7 Catchability constant w.r.t. time and age (fixed at the value for age) 6
Year class $=1988$

| Fleet, | Estimated, | Int, | Ext, | Var, | N, Scaled, | Estimated |  |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| FLT32: | Single trawle, | Survivors, | s.e, | s.e, | Ratio, | , Weights, | F |
| FLT35: Longliners $>$, | $95 .$, | .199, | .060, | .30, | 4, | .418, | .752 |
|  | $93 .$, | .196, | .218, | 1.12, | 5, | .401, | .764 |
| F shrinkage mean , | $133 .$, | $.50, \ldots$, |  |  |  | .182, | .588 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $100 .$, | .15, | .11, | 10, | .733, | .725 |

Age 8 Catchability constant w.r.t. time and age (fixed at the value for age) 6
Year class $=1987$

| Fleet, | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, Ratio, | $N$, Scaled, <br> , Weights, | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLT32: single trawle, | 96., | .187, | .081, | .43, | 5, .471, | . 980 |
| FLT35: Longliners > , | 132., | . 204, | .187, | .92, | 6, .316, | 793 |
| F shrinkage mean | 210., | . 50, |  |  | .212, | . 564 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $125 .$, | .15, | .13, | 12, | .837, | .821 |

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 6
Year class $=1986$

| Fleet, | Estimated, | Int, | Ext, | Var, | N, Scaled, Estimated |  |  |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| FLT32: | Single trawle, | Survivors, | s.e, | s.e, | Ratio, | Weights, | F |
| FLT35: Longliners $>$, | $20 .$, | .178, | .094, | .53, | 6, | .537, | 1.100 |
|  | $37 .$, | .231, | .177, | .77, | 7, | .235, | .736 |
| F shrinkage mean , | $40 .$, | $.50, \ldots$, |  |  |  | .229, | .688 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $27 .$, | .16, | .12, | 14, | .764, | .907 |

Table 2.2.17

Run title: Cod FaroePlateau Vb1 (run: XSAAK09/X09)
At 6-May-96 22:22:31
Terminal Fs derived using XSA (With F shrinkage)

| $\begin{aligned} & \text { Table } 8 \\ & \text { YEAR, } \end{aligned}$ | Fishing 1961, | $\begin{aligned} & \text { mortality } \\ & 1962, \end{aligned}$ | $\begin{aligned} & \text { (F) at } \\ & 1963 \text {, } \end{aligned}$ | $\begin{aligned} & \text { age } \\ & 1964 \text {, } \end{aligned}$ | 1965, |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | . 3346 , | .2701, | . 2534, | . 1086, | . 1209, |  |  |  |  |  |
| 3, | . 5141 , | . 4982, | .4138, | . 2997, | . 2518, |  |  |  |  |  |
| 4, | . 4986, | . 4838, | . 5172, | .4523, | . 4498 , |  |  |  |  |  |
| 5, | . 5737, | . 7076, | . 5124, | . 5229, | . 5622 , |  |  |  |  |  |
| 6, | .4863, | . 5569, | .5405, | .5659, | .6604, |  |  |  |  |  |
| 7. | .9566, | .3662, | .4879, | .6677, | . 5305, |  |  |  |  |  |
| 8, | .8116, | . 6826, | . 3269 , | . 3531, | . 4345, |  |  |  |  |  |
| 9, | .6715, | .5641, | . 4806 , | . 5164, | . 5318, |  |  |  |  |  |
| +gp, | .6715, | . 5641 , | .4806, | . 5164, | . 5318, |  |  |  |  |  |
| FBAR 3-7, | .6059, | .5226, | . 4944, | .5017, | .4909, |  |  |  |  |  |
| Table 8 | Fishing | mortality | (F) at |  |  |  |  |  |  |  |
| YEAR, | 1966, | 1967. | 1968, | 1969, | 1970, | 1971, | 1972, | 1973, | 1974, | 1975, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | . 0829, | .0789, | . 1010, | . 1099, | . 0530, | .0309, | . 0464, | . 0657 , | .0816, | . 0775 , |
| 3, | . 1969, | . 2389, | . 2318, | . 3063 , | . 2081, | . 1337, | . 1476, | . 2322, | . 1568, | . 3194, |
| 4, | . 2552, | . 2687 , | . 3949 , | . 3806 , | . 3654, | . 2225 , | .2070, | . 3048, | . 2046, | . 4360 , |
| 5, | . 4499, | . 3442 , | . 5339, | . 4180 , | . 3409 , | . 3845 , | . 2497, | . 2813, | . 2953, | . 4134, |
| 6, | . 5016, | .5779, | . 4472 , | .5709, | . 3709, | . 5572, | .6058, | . 2526, | . 3797 , | . 4544 , |
| 7, | . 9680, | .5203, | . 7132 , | . 5118 | .6559, | . 4651 , | . 4686, | . 3722, | . 5330 , | . 3504 , |
| 8, | . 8520, | 1.0438, | . 3331, | .8457, | .4208, | . 7528, | . 2464 , | . 3259 , | . 3052 , | .4485, |
| 9, | .6106, | . 5556, | . 4882 , | . 5499 , | .4339, | .4801, | . 3578 , | . 3092 , | . 3457 , | . 4235, |
| +gp, | .6106, | .5556, | . 4882, | .5499, | .4339, | . 4801, | . 3578, | .3092, | . 3457 , | . 4235 , |
| FBAR 3-7, | . 4743, | . 3900 , | .4642, | . 4375 , | . 3882, | . 3526, | . 3358 , | . 2886, | .3139, | . 3947 , |

Run title : Cod FaroePlateau Vb1 (run: XSAAK09/X09)
At 6-May-96 22:22:31
Terminal Fs derived using XSA (With F shrinkage)

| Table 8 YEAR, | $\begin{aligned} & \text { Fishing } \\ & \text { 1976, } \end{aligned}$ | $\begin{aligned} & \text { mortality } \\ & \text { 1977, } \end{aligned}$ | (F) at 1978, | 1979, | 1980, | 1981, | 1982, | 1983, | 1984, | 1985, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | .0933, | .0481, | .0589, | .0432, | .0545, | .0523, | . 0584, | .0991, | .1070, | . 0656 |
| 3, | .1723, | .3037, | .1897, | .2631, | .2387, | .2885, | .2224, | .4651, | . 3709 , | . 3533 , |
| 4, | . 3665 , | . 4750 , | .4292, | .4310, | . 3713 , | . 3400, | . 3615 , | .5573, | .5744, | .5070, |
| 5, | .5569, | . 7534 , | .4291, | .5052, | . 4339 , | . 4399 , | . 3872 , | .6449, | . 6584, | . 6046 , |
| 6, | .5167, | . 7335 , | .4852, | .4909, | .5186, | .5647, | .4090, | .7780, | .4579, | .9157, |
| 7, | . 7620, | 1.1140, | .5971, | .4483, | .4124, | .6952, | . 6935 , | 1.1035, | . 4700, | 1.1340, |
| 8, | . 5430, | . 7778 , | .5676, | .6908, | . 6444 , | .5023, | .5544, | .9444, | .5036, | 1.2769, |
| 9, | .5739, | . 7784, | . 5056 , | .5173, | .4797, | .5125, | .4848, | .8139, | .5372, | 1.0048, |
| +gp, | .5739, | .7784, | .5056, | .5173, | .4797, | .5125, | .4848, | .8139, | .5372, | 1.0048 |
| FBAR 3-7, | .4749, | .6759, | .4261, | .4277, | .3950, | .4657, | .4147, | .7098, | .5063, | .7029, |



Table 2.2.18

Run title : Cod FaroePlateau Vb1 (run: XSAAK09/X09)
At 6-May-96 22:22:31
Terminal Fs derived using XSA (With F shrinkage)

| Table 10 YEAR, | $\begin{aligned} & \text { Stock } \\ & \text { 1961, } \end{aligned}$ | number at 1962. | $\begin{gathered} \text { age (start } \\ 1963, \end{gathered}$ | of year) 1964. | 1965, | Numbers*10**-3 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | 12019, | 20654, | 20290, | 21834, | 8269, |  |  |  |  |  |
| 3, | 7385, | 7042, | 12907. | 12893, | 16037, |  |  |  |  |  |
| 4, | 3747, | 3616, | 3503, | 6986, | 7823, |  |  |  |  |  |
| 5. | 2699, | 1863, | 1825, | 1710, | 3639, |  |  |  |  |  |
| 6, | 666, | 1245, | 752, | 895 , | 830, |  |  |  |  |  |
| 7, | 668 , | 335, | 584, | 358, | 416, |  |  |  |  |  |
| 8, | 155, | 210. | 190, | 294, | 151, |  |  |  |  |  |
| 9. | 66, | 56, | 87, | 112, | 169, |  |  |  |  |  |
| +gp, | 0 , | 0, | 0, | 0, | 0, |  |  |  |  |  |
| TOTAL, | 27403, | 35021, | 40138, | 45083, | 37332, |  |  |  |  |  |
| Table 10 | Stock | number at | age (start | of year) |  |  | bers*10* |  |  |  |
| YEAR, | 1966, | 1967, | 1968, | 1969, | 1970, | 1971, | 1972, | 1973, | 1974, | 1975, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | 18566, | 23451, | 17582, | 9325, | 8608, | 11928, | 21320, | 12572, | 30478, | 38313, |
| 3, | 5999, | 13990, | 17744, | 13012, | 6840, | 6684, | 9469, | 16663, | 9639, | 22998, |
| 4, | 10207, | 4034, | 9020, | 11522, | 7843, | 4548, | 4788, | 6688, | 10816, | 6746, |
| 5, | 4085, | 6475, | 2525, | 4976, | 6447, | 4456, | 2981, | 3187, | 4037, | 7217, |
| 6, | 1698, | 2133, | 3757, | 1212, | 2682, | 3754, | 2483, | 1901, | 1969, | 2460, |
| 7. | 351, | 842, | 980, | 1967, | 561, | 1515, | 1760, | 1109, | 1209, | 1103, |
| 8, | 200, | 109, | 410, | 393, | 965, | 238, | 779, | 902, | 626, | 581, |
| 9, | 80, | 70, | 31, | 240, | 138, | 519, | 92, | 499, | 533, | 378, |
| +gp, | 0, | 0, | 0, | 0 , | 0 , | 0 , | 0, | 400, | 342, | 476, |
| TOTAL, | 41186, | 51104, | 52049, | 42646, | 34085, | 33642, | 43672, | 43923, | 59650, | 80272, |

Run title : Cod FaroePlateau Vb1 (run: XSAAK09/X09)
At 6-May-96 22:22:31
Terminal Fs derived using XSA (With F shrinkage)

| Table 10 | Stock number at age (start of year) |  |  |  | Numbers*10**-3 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1976, | 1977, | 1978, | 1979, | 1980, | 1981, | 1982, | 1983, | 1984, | , |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | 18571, | 9993, | 10718, | 15023, | 23534, | 14017, | 22205, | 25172, | 18665, | 35220', |
| 3, | 29030, | 13850, | 7797, | 8273, | 11780, | 18246, | 10891, | 17150, | 18665, |  |
| 4, | 13682, | 20005, | 8370, | 5281, | 5206, | 7597, | 11195, | 7139, | 8819, 3348 | 10546, |
| 5, | 3572, | 7764, | 10186, | 4461, | 2810, | 2941, | 4427, | 6386, | 3348, | 4065, |
| 6, | 3908, | 1676, | 2993, | 5430, | 2204, | 1491, | 1551, | 2461, | 2743, | 1419, |
| 7, | 1279, | 1908, | 659, | 1508, | 2721, | 1074, | 694, | 843, | 925, | 1421, |
| 8, | 636, | 489, | 513, | 297, | 789, | 1475, | 439, | 284, | 229, | 474, |
| 9, | 304, | 274, | 184, | 238, | 122, | 339, | 731, | 206, | 90, | 113, |
| +gp, | 466, | , 18, | 154, | 103, | 52, | 150 47329 | 52481, | 59841, | 82870, | 70773', |
| TOTAL, | 71447, | , 55978, | 41574, | 40614, | 49217, | 47329, | 52481, | 59841, | 82870, | 7073, |


| Table 10 | Stock number at age (start of year) |  |  |  |  | Numbers*10**-3 |  |  | 1994, | 1995, | 1996, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, |  |  |  |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
| 2, | 9447, | 10040, | 8639, | 14171, | 3082, | 5170, | 7266, | 9326, | 20235, | 38362, | 0 |
| 3, | 13326, | 7545 , | 7988, | 6612, | 9578, | 2303, | 4061, | 5760, | 7529, | 16061, | 29033, |
| 4, | 20254, | 7665, | 4945, | 4620, | 3467, | 5264, | 1482, | 2904, | 4003, | 5469, | 10682 |
| 5, | 5200, | 8926, | 3913, | 2289, | 1804, | 1499, | 2382, | 783, | 1843, | 2341, | 2654 , |
| 6, | 1818, | 2110, | 4518, | 1861, | 859 , | 706, | 670, | 1107, | 444, | 1039, | 998 , |
| 7, | 465, | 668 , | 993 , | 1729, | 595, | 338, | 306, | 277, | 614, | 253, | 428, |
| 8, | 374, | 167, | 344, | 368, | 513, | 221, | 149, | 129, | 142, | 347, | 100, |
| 9, | 108, | 173, | 75, | 130, | 102, | 157, | 98, | 72, | 76, | 82, | 125 |
| +gp, | 86, | 65, | 56, | 19, | 52, | 72, | 113, | 82, | 55, | 89, | 56 |
| TOTAL, | 51079, | 37360, | 31472, | 31798, | 20053, | 15730, | 16528, | 20440, | 34941, | 64043, | 44076, |

Table 2.2.19

Run title : Cod FaroePlateau Vb1 (run: XSAAK09/X09)
At 6-May-96 22:22:31
Table 16 Summary (without SOP correction)
Terminal Fs derived using XSA (With F shrinkage)

| , | RECRUITS, Age 2 | TOTALBIO, | TOTSPBIO, | LANDINGS, | YIELD/SSB, | FBAR | 3-7, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1961, | 12019, | 58355, | 40784, | 25500, | .6252, |  | . 6059 |
| 1962, | 20654, | 64307, | 39592, | 23200, | .5860, |  | .5226, |
| 1963, | 20290, | 73668, | 45333, | 23100, | .5096, |  | . 4944 , |
| 1964, | 21834, | 85299, | 54316, | 24000, | .4419, |  | . 5017 , |
| 1965. | 8269, | 86578, | 64681, | 24856, | .3843, |  | . 4909, |
| 1966, | 18566, | 91054, | 65933, | 21027, | . 3189 , |  | . 4743 , |
| 1967, | 23451, | 107766, | 74766, | 25174, | . 3367 , |  | . 3900 , |
| 1968, | 17582, | 118650, | 87170, | 30279, | . 3474 , |  | .4642, |
| 1969, | 9325, | 113005, | 90562, | 35670, | .3939, |  | .4375, |
| 1970, | 8608, | 97929, | 81413, | 29037, | .3567, |  | . 3882 , |
| 1971, | 11928, | 93140, | 75465, | 26151, | .3465, |  | . 3526 , |
| 1972, | 21320, | 98305, | 70681, | 20437, | . 2891, |  | . 3358 , |
| 1973, | 12572, | 110419, | 84832, | 22381, | .2638, |  | . 2886 , |
| 1974, | 30478, | 130197, | 91896, | 24581, | . 2675 , |  | . 3139, |
| 1975, | 38313, | 166326, | 112941, | 36775, | .3256, |  | . 3947 , |
| 1976, | 18571, | 170699, | 128687, | 39799, | . 3093 , |  | .4749, |
| 1977, | 9993, | 100741, | 83366, | 34927 , | . 4190, |  | . 6759 |
| 1978, | 10718, | 96180, | 78479, | 26585, | . 3388 , |  | .4261, |
| 1979, | 15023, | 85069, | 66676, | 23112, | . 3466, |  | .4277, |
| 1980, | 23534, | 84954, | 58836, | 20513, | . 3486 , |  | . 3950 |
| 1981, | 14017, | 88333, | 63487, | 22963, | . 3617, |  | . 4657 |
| 1982, | 22205, | 100084, | 67154, | 21489, | . 3200 , |  | . 4147 |
| 1983, | 25172, | 123312, | 98760, | 38133, | . 3861 , |  | . 7098 , |
| 1984 , | 47876, | 152377, | 115745, | 36979, | . 3195 , |  | . 5063 , |
| 1985, | 17379, | 131443, | 84857, | 39484, | .4653, |  | . 7029 , |
| 1986, | 9447, | 99709, | 74372, | 34595, | . 4652 , |  | .6598, |
| 1987, | 10040, | 78730, | 62489, | 21391, | .3423, |  | .4385, |
| 1988, | 8639, | 66594, | 52587, | 23182, | .4408, |  | .6030, |
| 1989, | 14171, | 57384, | 38726, | 22068, | .5698, |  | . 7840 , |
| 1990, | 3082, | 35885, | 28095, | 13487, | . 4800, |  | .6595, |
| 1991, | 5170, | 25405, | 19400, | 8660, | . 4464, |  | . 5383 , |
| 1992, | 7266, | 27378, | 17268, | 6540, | .3787, |  | . 4982 |
| 1993, | 9326, | 37693, | 25156, | 5992, | . 2382, |  | . 3292 , |
| 1994, | 20235, | 62473, | 53844, | 8818, | .1638, |  | . 3123 , |
| 1995, | 38362, | 112645, | 51737, | 23137, | . 4472 , |  | .5591, |
| Arith. |  |  |  |  |  |  |  |
| Mean | 17298, | 92345, | 67145, | 24686, | .3823, |  | . 4867 , |
| Units, | (Thousands), | (Tonnes), | (Tonnes), | (Tonnes), |  |  |  |

Table 2.2.20


Table 2.2.21
Analysis by RCT3 ver3.1 of data from file :
Faroe Plateau cod; Groundfish surveys and 0-group survey data.
Data for 4 surveys over 14 years: 1982-1995
Regression type $=\mathrm{C}$
Tapered time weighting applied
power $=3$ over 20 years
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass $=1989$
I------------Regression----------I I------------Prediction----------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP Series cept Error Pts Value Value Error Weights

| gfage2 | 1.55 | .66 | 1.08 | .409 | 7 | 5.54 | 9.24 | 1.378 | .079 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gfage3 | 1.09 | 1.66 | .55 | .729 | 7 | 5.35 | 7.50 | .872 | .197 |
| gfage4 | .93 | 2.46 | .34 | .878 | 7 | 5.45 | 7.51 | .551 | .494 |
| 0-grou | 2.03 | -6.07 | 2.29 | .134 | 7 | 4.37 | 2.79 | 4.400 | .008 | VPA Mean $=\quad 9.35 \quad .820 \quad .223$

Yearclass $=1990$
I------------Regression-----------I I------------Prediction----------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP Series cept Error Pts Value Value Error Weights

| gfage2 | 1.76 | -.63 | 1.16 | .363 | 8 | 5.00 | 8.19 | 1.488 | .056 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gfage3 | .94 | 2.84 | .54 | .722 | 8 | 6.11 | 8.57 | .692 | .261 |
| gfage4 | .80 | 3.51 | .42 | .811 | 8 | 7.23 | 9.28 | .521 | .460 |
| 0-grou | 1.08 | 1.51 | 1.58 | .235 | 8 | 6.26 | 8.25 | 1.995 | .031 |

Table 2.2.21 (Continued)

```
Yearclass = 1991
    I-----------Regression----------- I ------------Prediction----------I
```

Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP
Series cept Error Pts Value Value Error Weights
$\begin{array}{llllllllll}\text { gfage2 } & 1.72 & -.33 & 1.08 & .361 & 9 & 3.74 & 6.12 & 1.705 & .041\end{array}$
$\begin{array}{llllllllll}\text { gfage3 } & .92 & 3.02 & .51 & .717 & 9 & 5.93 & 8.47 & .639 & .289\end{array}$
$\begin{array}{llllllllll}\text { gfage4 } & .82 & 3.34 & .42 & .786 & 9 & 7.64 & 9.59 & .517 & .442\end{array}$
$\begin{array}{llllllllll}0 \text {-grou } & 1.04 & 1.83 & 1.45 & .239 & 9 & 2.89 & 4.84 & 2.434 & .020\end{array}$
VPA Mean $=9.19 \quad .755 \quad .208$
Yearclass $=1992$
I------------Regression-----------I I------------Prediction----------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP
Series cept Error Pts Value Value Error Weights

| gfage2 | 1.77 | -.24 | 1.51 | .198 | 10 | 6.16 | 10.66 | 1.874 | .036 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| gfage3 | .92 | 3.09 | .54 | .661 | 10 | 6.89 | 9.43 | .640 | .308 |
| gfage4 | .82 | 3.29 | .42 | .757 | 10 | 8.84 | 10.52 | .576 | .380 |
| 0-grou | 1.05 | 2.25 | 2.05 | .117 | 10 | 4.80 | 7.28 | 2.551 | .019 |

    VPA Mean \(=\quad 9.17 \quad .702 \quad .256\)
    Yearclass $=1993$
I------------Regression-----------I I-----------Prediction----------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP
Series cept Error Pts Value Value Error Weights
$\begin{array}{llllllllll}\text { gfage2 } & 1.86 & -.71 & 1.60 & .177 & 10 & 6.64 & 11.64 & 2.146 & .054\end{array}$
$\begin{array}{llllllllll}\text { gfage3 } & .92 & 3.07 & .54 & .652 & 10 & 8.57 & 11.00 & .799 & .390\end{array}$
gfage4
$\begin{array}{llllllllll}0 \text { 0-grou } & 1.08 & 2.04 & 2.16 & .106 & 10 & 7.09 & 9.73 & 2.593 & .037\end{array}$
VPA Mean $=9.16 \quad .693 \quad .519$

## Table 2.2.21 (Continued)

Yearclass $=1994$
I-----------Regression-----------I I-----------Prediction----------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP Series cept Error Pts Value Value Error Weights
$\begin{array}{llllllllll}\text { gfage2 } & 1.99 & -1.36 & 1.73 & .152 & 10 & 7.98 & 14.48 & 3.037 & .046\end{array}$
gfage3
gfage4

| 0 -grou | 1.13 | 1.75 | 2.31 | .092 | 10 | 6.50 | 9.12 | 2.786 | .054 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

                                    VPA Mean \(=\quad 9.14 \quad .683 \quad .900\)
    Yearclass $=1995$
I-----------Regression-----------I I------------Prediction----------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP
Series cept Error Pts Value Value Error Weights
gfage2
gfage3
gfage4
$\begin{array}{llllllllll}0 \text {-grou } & 1.21 & 1.33 & 2.52 & .076 & 10 & 4.09 & 6.26 & 3.343 & .039\end{array}$
VPA Mean $=9.11 \quad .670 \quad .961$

| Year | Weighted | Log | Int | Ext | Var | VPA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Clas |  |  |  |  |  |  |
| Average | WAP | Std | Std | Ratio | VPA |  |
| Prediction | Error | Error |  |  |  |  |


| 1989 | 3034 | 8.02 | .39 | .48 | 1.51 | 5173 | 8.55 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1990 | 8069 | 9.00 | .35 | .19 | .30 | 7594 | 8.94 |
| 1991 | 7671 | 8.95 | .34 | .48 | 1.95 | 9626 | 9.17 |
| 1992 | 17710 | 9.78 | .36 | .35 | .97 |  |  |
| 1993 | 22744 | 10.03 | .50 | .55 | 1.22 |  |  |
| 1994 | 11829 | 9.38 | .65 | .79 | 1.48 |  |  |
| 1995 | 8123 | 9.00 | .66 | .55 | .70 |  |  |

Table 2.2.22
Cod in the Faroe Plateau (Fishing Area Vb1)

Prediction with management option table: Input data

| Year: 1996 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Stock <br> size | Natural mortality | Maturity ogive | Prop. of F bef.spaw. | Prop. of M bef.spaw. | Weight in stock | Exploit. pattern | Weight <br> in catch |
| 2 | 15893.000 | 0.2000 | 0.0400 | 0.0000 | 0.0000 | 1.218 | 0.0580 | 1.218 |
| 3 | 17025.000 | 0.2000 | 0.4400 | 0.0000 | 0.0000 | 1.986 | 0.2290 | 1.986 |
| 4 | 10682.000 | 0.2000 | 0.7500 | 0.0000 | 0.0000 | 2.622 | 0.5190 | 2.622 |
| 5 | 2654.000 | 0.2000 | 0.8700 | 0.0000 | 0.0000 | 3.925 | 0.6490 | 3.925 |
| 6 | 998.000 | 0.2000 | 0.9400 | 0.0000 | 0.0000 | 5.180 | 0.6700 | 5.180 |
| 7 | 428.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.079 | 0.7290 | 6.079 |
| 8 | 100.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.241 | 0.6960 | 6.241 |
| 9 | 125.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.782 | 0.7920 | 7.782 |
| $10+$ | 56.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.627 | 0.7920 | 8.627 |
| Unit | Thousands | - | - | - | - | Kilograms | - | Kilograms |


| Year: 1997 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | $\begin{aligned} & \text { Recruit- } \\ & \text { ment } \end{aligned}$ | Natural mortality | Maturity ogive | Prop. of $F$ bef.spaw. | Prop. of M bef.spaw. | Weight <br> in stock | Exploit. pattern | Weight in catch |
| 2 | 9673.000 | 0.2000 | 0.3233 | 0.0000 | 0.0000 | 1.206 | 0.0580 | 1.206 |
| 3 | . | 0.2000 | 0.6200 | 0.0000 | 0.0000 | 1.915 | 0.2290 | 1.915 |
| 4 | . | 0.2000 | 0.7600 | 0.0000 | 0.0000 | 2.618 | 0.5190 | 2.618 |
| 5 | - | 0.2000 | 0.8667 | 0.0000 | 0.0000 | 3.790 | 0.6490 | 3.790 |
| 6 |  | 0.2000 | 0.9700 | 0.0000 | 0.0000 | 4.882 | 0.6700 | 4.882 |
| 7 | - | 0.2000 | 0.9933 | 0.0000 | 0.0000 | 5.528 | 0.7290 | 5.528 |
| 8 |  | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.694 | 0.6960 | 6.694 |
| 9 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.173 | 0.7920 | 8.173 |
| 10+ | * | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.712 | 0.7920 | 8.712 |
| Unit | Thousands | - | - | - | - | Kilograms | - | Kilograms |


| Year: 1998 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Recruitment | Natural mortality | Maturity ogive | Prop. of $F$ bef.spaw. | Prop. of M bef.spaw. | Weight in stock | Exploit. pattern | Weight <br> in catch |
| 2 | 9708.000 | 0.2000 | 0.3233 | 0.0000 | 0.0000 | 1.206 | 0.0580 | 1.206 |
| 3 | . | 0.2000 | 0.6200 | 0.0000 | 0.0000 | 1.915 | 0.2290 | 1.915 |
| 4 | - | 0.2000 | 0.7600 | 0.0000 | 0.0000 | 2.618 | 0.5190 | 2.618 |
| 5 | - | 0.2000 | 0.8667 | 0.0000 | 0.0000 | 3.790 | 0.6490 | 3.790 |
| 6 | . | 0.2000 | 0.9700 | 0.0000 | 0.0000 | 4.882 | 0.6700 | 4.882 |
| 7 | . | 0.2000 | 0.9933 | 0.0000 | 0.0000 | 5.528 | 0.7290 | 5.528 |
| 8 | * | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.694 | 0.6960 | 6.694 |
| 9 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.173 | 0.7920 | 8.173 |
| $10+$ | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.712 | 0.7920 | 8.712 |
| Unit | Thousands | - | - | - | - | Kilograms | - | Kilograms |

Notes: Run name : MANAKO2
Date and time: 20MAY96:14:57

Table 2.2.23
Cod in the Faroe Plateau (Fishing Area Vb1)
Prediction with management option table

| Year: 1996 |  |  |  |  | Year: 1997 |  |  |  |  | Year: 1998 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F Factor | Reference F | Stock biomass | Sp.stock biomass | Catch in weight | F <br> Factor | Reference F | Stock biomass | Sp.stock biomass | Catch in weight | Stock biomass | Sp.stock biomass |
| $1.0000$ | $0.5592$ | $101446$ | $55262$ | $26775$ | 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000 1.8000 1.9000 2.0000 | 0.0000 0.0559 0.1118 0.1678 0.2237 0.2796 0.3355 0.3914 0.4474 0.5033 0.5592 0.6151 0.6710 0.7270 0.7829 0.8388 0.8947 0.9506 1.0066 1.0625 1.1184 | $93833$ | $\begin{aligned} & 67227 \\ & 67227 \\ & 67227 \\ & 67227 \\ & 67227 \\ & 67227 \\ & 67227 \\ & 67227 \\ & 67227 \\ & 67227 \\ & 67227 \\ & 67227 \\ & 67227 \\ & 67227 \\ & 67227 \\ & 67227 \\ & 67227 \\ & 67227 \\ & 67227 \\ & 67227 \\ & 67227 \end{aligned}$ | $\begin{array}{r} 0 \\ 3606 \\ 7028 \\ 10276 \\ 13361 \\ 16291 \\ 19075 \\ 21721 \\ 24236 \\ 26628 \\ 28904 \\ 31070 \\ 33132 \\ 35096 \\ 36967 \\ 38749 \\ 40449 \\ 42070 \\ 43616 \\ 45092 \\ 46501 \end{array}$ | $\begin{array}{r} 117728 \\ 113368 \\ 109235 \\ 105316 \\ 101599 \\ 98072 \\ 94725 \\ 91548 \\ 88531 \\ 85665 \\ 82942 \\ 80354 \\ 77894 \\ 75555 \\ 73329 \\ 71211 \\ 69195 \\ 67275 \\ 65446 \\ 63704 \\ 62043 \end{array}$ | 92481 88571 84870 81366 78048 74905 71926 69104 66428 63891 61485 59202 57035 54979 53026 51172 49410 47735 46143 44629 43189 |
| - | - | Tonnes | Tonnes | Tonnes | - | - | Tonnes | Tonnes | Tonnes | Tonnes | Tonnes |

Notes: Run name
: MANAK02
Date and time : 20MAY96:14:57
Computation of ref. F: Simple mean, age 3-7
Basis for 1996 : F factors

Prediction with management option table

| Year: 1996 |  |  |  |  | Year: 1997 |  |  |  |  | Year: 1998 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F <br> Factor | Reference F | Stock biomass | Sp.stock biomass | Catch in weight | F <br> Factor | Reference F | Stock biomass | Sp.stock biomass | Catch in weight | Stock biomass | Sp.stock biomass |
| 0.8950 | 0.5005 | 101446 | 55262 | 24511 | 0.0000 | 0.0000 | 96513 | 69523 | 0 | 120574 | 95139 |
| . |  |  |  | . | 0.1000 | 0.0559 |  | 69523 | 3749 | 116049 | 91073 |
| . | - |  | . |  | 0.2000 | 0.1118 |  | 69523 | 7305 | 111761 | 87225 |
| . | . |  | . |  | 0.3000 | 0.1678 |  | 69523 | 10680 | 107696 | 83583 |
| - | . |  | . | - | 0.4000 | 0.2237 |  | 69523 | 13884 | 103841 | 80135 |
| . | . |  | . | . | 0.5000 | 0.2796 | - | 69523 | 16926 | 100185 | 76870 |
| . | . |  | . | - | 0.6000 | 0.3355 |  | 69523 | 19816 | 96717 | 73777 |
| - | - |  | . | . | 0.7000 | 0.3914 |  | 69523 | 22561 | 93426 | 70847 |
| . | . |  | . | . | 0.8000 | 0.4474 | - | 69523 | 25170 | 90301 | 68070 |
| - | - |  | . | . | 0.9000 | 0.5033 | . | 69523 | 27651 | 87335 | 65438 |
| . | . |  | . | - | 1.0000 | 0.5592 | - | 69523 | 30010 | 84517 | 62943 |
| * | . |  | . | . | 1.1000 | 0.6151 | . | 69523 | 32255 | 81840 | 60576 |
| - | . | - | . | - | 1.2000 | 0.6710 | . | 69523 | 34391 | 79296 | 58330 |
| . | . | . | . | . | 1.3000 | 0.7270 | . | 69523 | 36424 | 76877 | 56200 |
| - | . | - | - | . | 1.4000 | 0.7829 | . | 69523 | 38361 | 74577 | 54177 |
| . | * | - | . | . | 1.5000 | 0.8388 | . | 69523 | 40206 | 72389 | 52257 |
| - | - |  | - | - | 1.6000 | 0.8947 | . | 69523 | 41964 | 70307 | 50433 |
| - | - | - | . | - | 1.7000 | 0.9506 | , | 69523 | 43640 | 68325 | 48701 |
| * | - |  | - | - | 1.8000 | 1.0066 | . | 69523 | 45238 | 66438 | 47054 |
| - | - | - | . | . | 1.9000 | 1.0625 | . | 69523 | 46764 | 64641 | 45489 |
| - | - |  | - | , | 2.0000 | 1.1184 | - | 69523 | 48219 | 62928 | 44001 |
| - | - | Tonnes | Tonnes | Tonnes | - | - | Tonnes | Tonnes | Tonnes | Tonnes | Tonnes |

Notes: Run name
: MANAK04
Date and time : 20MAY96:15:15
Computation of ref. F: Simple mean, age 3-7
Basis for 1996 : F factors

Cod in the Faroe Plateau (Fishing Area Vb1)
Yield per recruit: Input data

| Age | Recruitment | Natural mortality | Maturity ogive | Prop. of $F$ bef.spaw. | Prop. of M bef.spaw. | Weight in stock | Exploit. pattern | Weight in catch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1.000 | 0.2000 | 0.1729 | 0.0000 | 0.0000 | 1.071 | 0.1010 | 1.071 |
| 3 | . | 0.2000 | 0.6407 | 0.0000 | 0.0000 | 1.593 | 0.3150 | 1.593 |
| 4 | - | 0.2000 | 0.8736 | 0.0000 | 0.0000 | 2.254 | 0.4930 | 2.254 |
| 5 | . | 0.2000 | 0.9514 | 0.0000 | 0.0000 | 3.079 | 0.5840 | 3.079 |
| 6 | . | 0.2000 | 0.9900 | 0.0000 | 0.0000 | 3.849 | 0.6590 | 3.849 |
| 7 | - | 0.2000 | 0.9971 | 0.0000 | 0.0000 | 4.825 | 0.7440 | 4.825 |
| 8 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 5.809 | 0.7190 | 5.809 |
| 9 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.413 | 0.6430 | 7.413 |
| $10+$ | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 9.519 | 0.6430 | 9.519 |
| Unit | Numbers | - | - | - | - | Kilograms | - | Kilograms |

Notes: Run name : YLDAKO2
Date and time: 20MAY96:15:18

Table 2.2.26

Cod in the Faroe Plateau (Fishing Area Vb1)
Yield per recruit: Summary table

|  |  |  |  |  |  | 1 January |  | Spawning time |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { F } \\ \text { Factor } \end{gathered}$ | Reference F | Catch in numbers | Catch in weight | Stock <br> size | Stock biomass | $\begin{aligned} & \text { Sp.stock } \\ & \text { size } \end{aligned}$ | sp.stock biomass | Sp.stock size | sp.stock biomass |
| 0.0000 | 0.0000 | 0.000 | 0.000 | 5.517 | 23260.277 | 4.278 | 21610.350 | 4.278 | 21610.350 |
| 0.0500 | 0.0280 | 0.104 | 505.413 | 4.997 | 19199.376 | 3.764 | 17561.150 | 3.764 | 17561.150 |
| 0.1000 | 0.0559 | 0.183 | 827.879 | 4.603 | 16263.967 | 3.375 | 14637.044 | 3.375 | 14637.044 |
| 0.1500 | 0.0839 | 0.246 | 1037.852 | 4.295 | 14068.564 | 3.070 | 12452.569 | 3.070 | 12452.569 |
| 0.2000 | 0.1118 | 0.296 | 1176.169 | 4.045 | 12381.345 | 2.826 | 10775.921 | 2.826 | 10775.921 |
| 0.2500 | 0.1398 | 0.337 | 1267.631 | 3.840 | 11055.260 | 2.624 | 9460.066 | 2.624 | 9460.066 |
| 0.3000 | 0.1677 | 0.372 | 1327.849 | 3.667 | 9993.028 | 2.456 | 8407.744 | 2.456 | 8407.744 |
| 0.3500 | 0.1957 | 0.402 | 1366.921 | 3.519 | 9128.072 | 2.312 | 7552.392 | 2.312 | 7552.392 |
| 0.4000 | 0.2236 | 0.428 | 1391.526 | 3.391 | 8413.530 | 2.188 | 6847.162 | 2.188 | 6847.162 |
| 0.4500 | 0.2515 | 0.451 | 1406.160 | 3.279 | 7815.629 | 2.080 | 6258.296 | 2.080 | 6258.296 |
| 0.5000 | 0.2795 | 0.471 | 1413.890 | 3.180 | 7309.534 | 1.985 | 5760.971 | 1.985 | 5760.971 |
| 0.5500 | 0.3074 | 0.489 | 1416.834 | 3.092 | 6876.660 | 1.900 | 5336.617 | 1.900 | 5336.617 |
| 0.6000 | 0.3354 | 0.505 | 1416.467 | 3.012 | 6502.885 | 1.824 | 4971.120 | 1.824 | 4971.120 |
| 0.6500 | 0.3634 | 0.520 | 1413.823 | 2.940 | 6177.330 | 1.756 | 4653.614 | 1.756 | 4653.614 |
| 0.7000 | 0.3913 | 0.533 | 1409.632 | 2.875 | 5891.511 | 1.694 | 4375.625 | 1.694 | 4375.625 |
| 0.7500 | 0.4193 | 0.545 | 1404.410 | 2.815 | 5638.738 | 1.638 | 4130.473 | 1.638 | 4130.473 |
| 0.8000 | 0.4472 | 0.557 | 1398.524 | 2.759 | 5413.683 | 1.586 | 3912.838 | 1.586 | 3912.838 |
| 0.8500 | 0.4752 | 0.567 | 1392.233 | 2.708 | 5212.061 | 1.538 | 3718.443 | 1.538 | 3718.443 |
| 0.9000 | 0.5031 | 0.577 | 1385.721 | 2.661 | 5030.397 | 1.494 | 3543.824 | 1.494 | 3543.824 |
| 0.9500 | 0.5311 | 0.586 | 1379.119 | 2.617 | 4865.851 | 1.453 | 3386.145 | 1.453 | 3386.145 |
| 1.0000 | 0.5590 | 0.594 | 1372.516 | 2.575 | 4716.081 | 1.415 | 3243.074 | 1.415 | 3243.074 |
| 1.0500 | 0.5870 | 0.602 | 1365.977 | 2.537 | 4579.146 | 1.379 | 3112.676 | 1.379 | 3112.676 |
| 1.1000 | 0.6149 | 0.610 | 1359.543 | 2.500 | 4453.423 | 1.346 | 2993.334 | 1.346 | 2993.334 |
| 1.1500 | 0.6429 | 0.617 | 1353.244 | 2.466 | 4337.549 | 1.314 | 2883.692 | 1.314 | 2883.692 |
| 1.2000 | 0.6708 | 0.624 | 1347.097 | 2.434 | 4230.371 | 1.285 | 2782.602 | 1.285 | 2782.602 |
| 1.2500 | 0.6988 | 0.630 | 1341.113 | 2.403 | 4130.907 | 1.257 | 2689.088 | 1.257 | 2689.088 |
| 1.3000 | 0.7267 | 0.636 | 1335.298 | 2.374 | 4038.319 | 1.231 | 2602.316 | 1.231 | 2602.316 |
| 1.3500 | 0.7547 | 0.642 | 1329.652 | 2.346 | 3951.885 | 1.206 | 2521.570 | 1.206 | 2521.570 |
| 1.4000 | 0.7826 | 0.647 | 1324.175 | 2.320 | 3870.981 | 1.182 | 2446.231 | 1.182 | 2446.231 |
| 1.4500 | 0.8106 | 0.652 | 1318.865 | 2.295 | 3795.066 | 1.160 | 2375.762 | 1.160 | 2375.762 |
| 1.5000 | 0.8385 | 0.657 | 1313.717 | 2.271 | 3723.668 | 1.138 | 2309.696 | 1.138 | 2309.696 |
| 1.5500 | 0.8665 | 0.662 | 1308.726 | 2.248 | 3656.373 | 1.118 | 2247.623 | 1.118 | 2247.623 |
| 1.6000 | 0.8944 | 0.667 | 1303.887 | 2.226 | 3592.818 | 1.099 | 2189.182 | 1.099 | 2189.182 |
| 1.6500 | 0.9224 | 0.671 | 1299.195 | 2.205 | 3532.682 | 1.080 | 2134.057 | 1.080 | 2134.057 |
| 1.7000 | 0.9503 | 0.675 | 1294.645 | 2.185 | 3475.679 | 1.062 | 2081.967 | 1.062 | 2081.967 |
| 1.7500 | 0.9783 | 0.679 | 1290.230 | 2.166 | 3421.557 | 1.045 | 2032.661 | 1.045 | 2032.661 |
| 1.8000 | 1.0062 | 0.683 | 1285.946 | 2.147 | 3370.089 | 1.029 | 1985.916 | 1.029 | 1985.916 |
| 1.8500 | 1.0342 | 0.687 | 1281.787 | 2.129 | 3321.073 | 1.013 | 1941.533 | 1.013 | 1941.533 |
| 1.9000 | 1.0621 | 0.691 | 1277.748 | 2.112 | 3274.327 | 0.998 | 1899.333 | 0.998 | 1899.333 |
| 1.9500 | 1.0901 | 0.694 | 1273.825 | 2.095 | 3229.686 | 0.984 | 1859.155 | 0.984 | 1859.155 |
| 2.0000 | 1.1180 | 0.698 | 1270.012 | 2.079 | 3187.004 | 0.970 | 1820.853 | 0.970 | 1820.853 |
| - | - | Numbers | Grams | Numbers | Grams | Numbers | Grams | Numbers | Grams |

Notes: Run name : YLDAK02

| Date and time | $:$ 20MAY96:15:18 |
| :--- | :--- |
| Computation of ref. | : Simple mean, age $3-7$ |
| F-0.1 factor | $: 0.2683$ |
| F-max factor | $: 0.5677$ |
| F-0.1 reference F | $: 0.1500$ |
| F-max reference F | $: 0.3173$ |
| Recruitment | $:$ Single recruit |

Table 2.3.1. Faroe Bank (Sub-division Vb2) COD. Nominal catches (tonnes) by countries, 1986-1995,
as officially reported to ICES.


Table 2.3.2: Faroe Bank Cod: results of the fitting of Schaefer general production model.

| Year | Landings | Obs. CPUE | Pred. CPUE | Biomass |
| :--- | :---: | :---: | :---: | :---: |
| 1983 | 2367 | 45 | 246.6 | 9294 |
| 1984 | 2216 | 218 | 211.7 | 7977 |
| 1985 | 2961 | 173 | 190.1 | 7164 |
| 1986 | 1905 | 159 | 152.4 | 5743 |
| 1987 | 3479 | 151 | 144.9 | 5462 |
| 1988 | 3091 | 103 | 95.6 | 3602 |
| 1989 | 1412 | 37 | 50.4 | 1899 |
| 1990 | 568 | 24 | 36.4 | 1373 |
| 1991 | 425 | 47 | 39.3 | 1481 |
| 1992 | 326 | 61 | 47.1 | 1776 |
| 1993 | 385 | 62 | 60.8 | 2290 |
| 1994 | 953 | 67 | 77.8 | 2932 |
| 1995 | 674 | 88 | 85.0 | 3202 |
| 1996 |  |  |  | 3823 |

Table 2.4.1 Faroe Plateau (Sub-division Vb1) HADDOCK. Nominal catches (tonnes) by countries 1981-1994, as officially reported to ICES, and the total Working Group estimate.

| Country | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark | - | - | - | - | 1 | 8 | 4 |
| Faroe Islands | 10,319 | 11,898 | 11,418 | 13,597 | 13,359 | 13,954 | 10,867 |
| France ${ }^{1}$ | 2 | 2 | 20 | 23 | 8 | 22 | 14 |
| Germany | 1 | + | + | + | 1 | 1 | - |
| Norway | 12 | 12 | 10 | 21 | 22 | 13 | 54 |
| UK (Engl. and Wales) | - | - | - | - | - | 2 | - |
| UK (Scotland) ${ }^{3}$ | 1 | - | - | - | - | - | - |
| United Kingdom |  |  |  |  |  |  |  |
| Total | 10,335 | 11,912 | 11,448 | 13,641 | 13,391 | 14,000 | 10,939 |
| Working Group estimate ${ }^{+5}$ | 11,937 | 12,894 | 12,378 | 15,143 | 14,477 | 14,882 | 12,178 |
|  |  |  |  |  |  |  |  |
| Country | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| Denmark | - | - | - | - | - | - | - |
| Faroe Islands | 13,506 | 11,106 | 8,074 | 4,629 | 3,622 | 3,675 | 4,566 |
| France ${ }^{1}$ | - | - | - | 164 | - | - | - |
| Germany | + | + | + | - | - | - | 5 |
| Norway | 111 | 94 | 125 | $71^{2}$ | $29^{2}$ | 22 | 28 |
| UK (Engl. and Wales) | - | 7 | - | 71 | 80 | - | - |
| UK (Scotland) ${ }^{3}$ | - | - | - | - | - | - | - |
| United Kingdom |  |  |  |  |  | $200{ }^{6}$ | 55 |
| Total | 13,617 | 11,207 | 8,199 | 4,935 | 3,731 | 3,897 |  |
| Working Group estimate ${ }^{\text {+ }{ }^{\text {S }} \text {, }}$ | 14,325 | 11,726 | 8,429 | 5,476 | 3,814 | 4,251 | 4,987 |

1) Including catches from Sub-division Vb2. Quantity unknown 1989-1991, 1993 and 1995.
2) Provisional data
3)From 1983 catches included in Sub-division Vb2.
3) Includes catches from Sub-division Vb2 and Division IIa in Faroese waters.
5)Includes French catches from Division Vb , as reported to the Faroese coastal guard service
4) Reported as Division Vb.

Table 2.4.2 Faroe Bank (Sub-division Vb2) HADDOCK. Nominal catches (tonnes) by countries, 1981-1995, as officially reported to ICES.

| Country | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Faroe Islands | 1,533 | 967 | 925 | 1,474 | 1,050 | 832 | 1,160 |
| France ${ }^{1}$ | - | - | - | - | - | - | - |
| Norway | 1 | 2 | 5 | 3 | 10 | 5 | 43 |
| UK (Engl. and Wales) | - | - | - | - | - | - | - |
| UK (Scotland) ${ }^{3}$ | 48 | 13 | + | 25 | 26 | 45 | 15 |
| Total | 1,582 | 982 | 930 | 3,462 | 1,086 | 882 | 1,218 |
| Country | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| Faroe Islands | 659 | 325 | 217 | 338 | 185 | 353 | 313 |
| France ${ }^{1}$ | - | - | - | - | - |  |  |
| Norway | 16 | 97 | 4 | 23 | 8 | 1 | 20 |
| UK (Engl. and Wales) | - | - | - | + | + | ${ }^{1}$ | ... |
| UK (Scotland) ${ }^{3}$ | 30 | 725 | 287 | 852 | 102 | ... ${ }^{1}$ | $\cdots$ |
| Total | 705 | 1,147 | 508 | 1,213 | 295 |  |  |

1) Catches included in Sub-division Vbl.
2) Provisional data
3)Since 1983 includes also catches taken in Sub-division Vb1 (see Table 2.4.1)

|  | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | Haddock \% |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Open boats | 7 | 7 | 11 | 2 | 3 | 2 | 3 | 2 | 1 | 1 | 1 | 22 |
| Longliners < 100GRT | 39 | 39 | 39 | 49 | 58 | 60 | 56 | 46 | 24 | 18 | 23 | 46 |
| Longliners > 100GRT | 13 | 12 | 13 | 19 | 18 | 18 | 18 | 22 | 25 | 25 | 38 | 23 |
| Otterboard trawlers < 400HP | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 8 | 8 | 7 | 11 |
| Otter board trawlers 400-999HP | 6 | 3 | 5 | 4 | 3 | 3 | 1 | 1 | 3 | 2 | 5 | 11 |
| Otterboard trawlers > 1000HP | 8 | 5 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 3 | 2 | 1 |
| Pairtrawlers < 1000HP | 19 | 20 | 17 | 11 | 7 | 5 | 7 | 11 | 13 | 10 | 8 | 1 |
| Pairtrawlers > 1000HP | 6 | 10 | 9 | 9 | 6 | 8 | 11 | 14 | 22 | 29 | 16 | 8 |
| Nets | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| Jigging | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| Industry trawlers | 0 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 3 | 0 | 2 |
| Other gears | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
| Total catch, tonnes ungutted | 13575 | 12967 | 13834 | 10700 | 12876 | 10319 | 7473 | 4104 | 3275 | 3582 | 4395 |  |

E:lacfmlnwwg96IT-2-4-3.x|s

Table 2.4.4
Haddock in ICES Division Vb 1995 Catch at age in numbers by fleet category

| Age | Vb1 Open Boats | $\begin{array}{\|c\|} \hline \mathrm{Vb1} \\ \text { LLiners } \\ <\text { 100GRT } \\ \hline \end{array}$ | Vb1 LLiners $>100 \mathrm{GRT}$ | Vb1 OB. trawl. < 400HP | $\begin{array}{\|c\|} \hline \mathrm{Vb1} \\ \text { OB. trawl. } \\ 400-999 \mathrm{H} \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \mathrm{Vb1} \\ \mathrm{OB} . \operatorname{trawl} . \\ >1000 \mathrm{HP} \end{array}$ | Vb1 <br> Pair trawl <br> $<1000 \mathrm{HP}$ | $\begin{array}{\|c\|} \hline \mathrm{Vb1} \\ \hline \text { Pair trawl } \\ >1000 \mathrm{HP} \\ \hline \end{array}$ | Vb1 Others | $\begin{gathered} \text { Vb2 } \\ \text { All } \\ \text { Fleets } \end{gathered}$ | Vb <br> Foreign Trawlers | Vb Foreign LLiners | $\begin{aligned} & \mathrm{Vb} \\ & \text { Total } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 21 | 470 | 274 | 1 | 1 | 0 | 2 | 3 | 6 | 24 | 0 | 8 | 810 |
| 3 | 6 | 133 | 156 | 11 | 29 | 4 | 24 | 46 | 5 | 35 | 2 | 5 | 456 |
| 4 | 2 | 45 | 66 | 9 | 16 | 5 | 20 | 43 | 3 | 23 | 3 | 2 | 237 |
| 5 | 1 | 40 | 82 | 9 | 10 | 4 | 16 | 33 | 2 | 26 | 2 | 2 | 227 |
| 6 | 1 | 26 | 55 | 6 | 4 | 2 | 8 | 18 | 2 | 9 | 1 | 2 | 133 |
| 7 | 2 | 53 | 103 | 19 | 17 | 7 | 25 | 50 | 3 | 11 | 4 | 3 | 298 |
| 8 | 2 | 51 | 108 | 19 | 12 | 6 | 23 | 46 | 2 | 17 | 4 | 3 | 293 |
| 9 | 2 | 41 | 79 | 24 | 13 | 7 | 25 | 51 | 2 | 14 | 4 | 2 | 264 |
| 10 | 1 | 13 | 10 | 11 | 7 | 3 | 9 | 17 | 2 | 3 | 2 | 0 | 78 |
| 11 | 1 | 16 | 20 | 9 | 6 | 5 | 15 | 32 | 2 | 6 | 3 | 1 | 115 |
| 12 | 0 | 8 | 14 | 6 | 3 | 2 | 8 | 16 | 0 | 6 | 1 | 0 | 65 |
| 13 | 0 | 5 | 2 | 5 | 2 | 2 | 5 | 10 | 0 | 2 | 1 | 0 | 34 |
| 14 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 15 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 4 |
| Total no. | 39 | 902 | 970 | 130 | 120 | 47 | 180 | 366 | 26 | 178 | 29 | 29 | 3016 |
| Catch, t. | 42 | 1007 | 1418 | 290 | 206 | 87 | 347 | 681 | 38 | 280 | 54 | 43 | 4493 |

Notes: $\quad$ Numbers in $1000^{\prime}$
Catch, gutted weight in tonnes
Others includes netters, jiggers, other small categories and catches not otherwise accounted for LLiners = Longliners OB.trawI. $=$ Otterboard trawlers Pair Trawl. $=$ Pair trawlers

Table 2.4.5

Run title : Haddock Faroes Vb (run: XSAJAK01/X01)
At 2-May-96 18:36:02

| Table 1 | Numbers*10**-3 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1961, | 1962, | 1963, | 1964, | 1965, |  |  |  |  |  |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | 7932, | , 9631, | 13552, | 2284, | 1368, |  |  |  |  |  |
| 3, | 7330, | , 13977, | 8907, | 7457, | 4286, |  |  |  |  |  |
| 4, | 5134, | , 5233, | 7403, | 3899, | 5133, |  |  |  |  |  |
| 5, | 1937, | , 2361, | 2242, | 2360, | 1443, |  |  |  |  |  |
| 6, | 1305, | 1407, | 1539, | 1120, | 1209, |  |  |  |  |  |
| 7, | 838, | 868, | 860, | 728, | 673, |  |  |  |  |  |
| 8, | 236, | 270, | 257, | 198, | 1345, |  |  |  |  |  |
| 9, | 59, | 72, | 75, | 49, | 43, |  |  |  |  |  |
| +gp, | 0, | 0, | 0, | 0, | 0, |  |  |  |  |  |
| TOTALNUM, | 24771, | 33819, | 34835, | 18095, | 15500, |  |  |  |  |  |
| TONSLAND, SOPCOF \% | $\begin{array}{r} 20831, \\ 89 \end{array}$ | $27151,$ | 27571, | 19490, | 18479, |  |  |  |  |  |
| SOPCOF \%, | $89 \text {, }$ | $90 \text {, }$ | 90, | 101, | 94, |  |  |  |  |  |
| Table 1 | Catch n | numbers at | age N | bers*10* |  |  |  |  |  |  |
| YEAR, | 1966, | 1967, | 1968, | 1969, | 1970, | 1971, | 1972, | 1973, | 1974, | 1975, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | 1081, | 1425, | 5881, | 2384, | 1728, | 717, | 750, | 3300, | 5633, | 7337, |
| 3, | 3304, | 2405, | 4097, | 7539, | 4855, | 4393, | 3744, | 8388, | 2899, | 7952, |
| 4, | 4804, | 2599, | 2812, | 4567, | 6581, | 4727, | 4179, | 1236, | 3970, | 2097, |
| 5, | 2710, | 1785, | 1524, | 1565, | 1624, | 3267, | 2706, | 2786, | 451, | 1371, |
| 6, | 1112, | 1426, | 1526, | 1485, | 1383, | 1292, | 1171, | 916, | 976, | 247, |
| 7, | 740, | 631, | 923, | 1224, | 1099, | 864, | 696, | 1051, | 466, | 352,' |
| 8, | 180, | 197, | 230, | 378, | 326, | 222, | 180, | 150, | 535, | 237, |
| $\begin{array}{r}9, \\ +\quad \mathrm{gp} \\ \hline\end{array}$ | 54, | 52, | 68, | 114, | 68, | 147, | 113, | 68, | 68, | 419, |
| TOTALNUM, | 13985, | 10520, | 17061, | 19256, | 17664, | 15629, | 13539, | 17906, | 15145, | 20199, |
| TONSLAND, | 18766, | 13381, | 17852, | 23272, | 21361, | 19393, | 16485,' | 17969, | 14763, | 20715, |
| SOPCOF \%, | 109, | 102, | 103, | 108, | 103, | 99, | 98, | 98, | 97, | 117, |

Run title : Haddock Faroes Vb (run: XSAJAK01/X01)
At 2-May-96 18:36:02

| Table 1 | Catch numbers at age Numbers*10**-3 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1976, | 1977, | 1978, | 1979, | 1980, | 1981, | 1982, | 1983, | 1984, | 1985, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | 4396, | 255, | 32, | 1, | 143, | 74, | 539, | 441, | 1195, | 985, |
| 3, | 7858, | 4039, | 1022, | 1161, | 58, | 455, | 934, | 1969, | 1561, | 4553, |
| 4, | 6798, | 5168, | 4248, | 1754, | 3724, | 202, | 784, | 383, | 2462, | 2196, |
| 5, | 1251, | 4918, | 4054, | 3341, | 2583, | 2586, | 298, | 422, | 147, | 1242, |
| 6, | 1189 , | 2128, | 1841, | 1850, | 2496, | 1354, | 2182, | 93, | 234, | 169, |
| 7, | 298. | 946, | 717, | 772, | 1568, | 1559, | 973, | 1444, | 42, | 91, |
| 8, | 720 | 443, | 635, | 212, | 660, | 608, | 1166, | 740, | 861 , | 61, |
| 9, | 258, | 731, | 243, | 155, | 99, | 177, | 1283, | 947, | 388, | 503, |
| +gp, | 318, | 855, | 312, | 74, | 86, | 36, | 214, | 795, | 968, | 973, |
| TOTALNUM, | 23086, | 19483, | 13104, | 9320, | 11417, | 7051, | 8373, | 7234, | 7858, | 10773, |
| TONSLAND, | 26211 | 25553, | 19200, | 12424, | 15016, | 12233, | 11937, | 12894, | 12378, | 15143, |
| SOPCOF \%, | 107 | 98, | 99, | 104, | 100, | 109, | 92, | 106, | 106, | 106, |
| Table 1 | Catch | numbers at | age | ers*10 |  |  |  |  |  |  |
| YEAR, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | 230 | 283, | 655, | 63, | 105, | 77, | 40, | 113, | 277, | 810, |
| 3, | 2549, | 1718, | 444, | 1518, | 1275, | 1044, | 154, | 298, | 191, | 456, |
| 4, | 4452, | 3565, | 2463, | 658, | 1921, | 1774, | 776, | 274, | 307, | 237, |
| 5, | 1522, | 2972, | 3036, | 2787, | 768, | 1248, | 1120, | 554, | 153, | 227, |
| 6, | 738, | 1114, | 2140, | 2554, | 1737, | 651, | 959, | 538, | 423, | 133, |
| 7, | 39. | 529, | 475, | 1976, | 1909, | 1101, | 335, | 474, | 427, | 298, |
| 8, | 130, | 83, | 151, | 541. | 885, | 698, | 373, | 131, | 383, | 293, |
| 9, | 71, | 48, | 18, | 133, | 270, | 317, | 401, | 201, | 125, | 264, |
| +gp, | 712, | 334, | 128, | 81, | 108, | 32, | 162, | 185, | 301, | 298, |
| TOTALNUM, | 10443, | 10646, | 9510, | 10311, | 8978, | 6942, | 4320, | 2768, | 2587, | 3016, |
| TONSLAND, | 14477, | 14882, | 12178, | 14325, | 11726, | 8429, | 5446, | 4026, | 4252, | 4987, |
| SOPCOF \%, | 101, | 102, | 97, | 100, | 102, | 106, | 105, | 104, | 100, | 103, |

Table 2.4.6

Run title : Haddock Faroes Vb (run: XSAJAK01/X01)
At 2-May-96 18:36:02

| Table 2 | Catch weights at age (kg) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1961. | 1962, | 1963, | 1964, | 1965, |
| AgE |  |  |  |  |  |
| 2, | . 4700, | . 4700 , | . 4700, | . 4700 , | . 4700, |
| 3, | . 7300, | . 7300, | .7300, | .7300, | . 7300, |
| 4, | 1.1300, | 1.1300, | 1.1300, | 1.1300, | 1.1300, |
| 5, | 1.5500, | 1.5500 | 1.5500, | 1.5500, | 1.5500 |
| 6. | 1.9700, | 1.9700, | 1.9700, | 1.9700, | 1.9700, |
| 7, | 2.4100, | 2.4100, | 2.4100, | 2.4100, | 2.4100, |
| 8, | 2.7600, | 2.7600, | 2.7600, | 2.7600, | 2.7600, |
| 9, | 3.0700 , | 3.0700, | 3.0700, | 3.0700, | 3.0700, |
| +gp, | 3.5500 , | 3.5500, | 3.5500, | 3.5500, | 3.5500, |
| SOPCOFAC, | .8938, | .9011, | . 8964 , | 1.0131, | .9401, |


| Table 2 YEAR, | $\begin{aligned} & \text { Catch } \\ & 1966, \end{aligned}$ | weights at 1967. | $\begin{aligned} & \text { age }(\mathrm{kg}) \\ & 1968, \end{aligned}$ | 1969, | 1970, | 1971, | 1972, | 1973, | 1974, | 1975, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | . 4700 | . 4700 , | . 4700, | . 4700, | . 4700, | . 4700, | $.4700$ | $.4700$ | . 4700 | . 4700 , |
| 3. | . 7300, | . 7300, | . 7300, | . 7300, | . 7300, | . 7300, | $.7300,$ | $.7300,$ | . 7300, | . 7300, |
| 4, | 1.1300, | 1.1300, | 1.1300, | 1.1300, | 1.1300, | 1.1300, | 1.1300, | 1.1300, | 1.1300, | 1.1300, |
| 5, | 1.5500, | 1.5500, | 1.5500, | 1.5500, | 1.5500, | 1.5500, | 1.5500, | 1.5500, | 1.5500, | 1.5500, |
| 6, | 1.9700, | 1.9700, | 1.9700, | 1.9700, | 1.9700, | 1.9700, | 1.9700, | 1.9700, | 1.9700, | 1.9700, |
| 7, | 2.4100, | 2.4100, | 2.4100, | 2.4100, | 2.4100, | 2.4100, | 2.4100, | 2.4100, | 2.4100, | 2.4100, |
| 8, | 2.7600, | 2.7600, | 2.7600, | 2.7600, | 2.7600 , | 2.7600, | 2.7600, | 2.7600, | 2.7600, | 2.7600, |
| 9, | 3.0700, | 3.0700, | 3.0700, | 3.0700, | 3.0700, | 3.0700, | 3.0700, | 3.0700, | 3.0700, | 3.0700, |
| +gp, | 3.5500, | 3.5500, | 3.5500, | 3.5500, | 3.5500, | 3.5500, | 3.5500, | 3.5500, | 3.5500, | 3.5500, |
| SOPCOFAC, | 1.0920, | 1.0166, | 1.0278, | 1.0835, | 1.0274, | . 9874 , | .9795, | .9772, | .9711, | 1.1712, |

Run title : Haddock Faroes Vb (run: XSAJAK01/X01)
At 2-May-96 18:36:02

| $\begin{aligned} & \text { Table } 2 \\ & \text { YEAR, } \end{aligned}$ | $\begin{aligned} & \text { Catch } \\ & \text { 1976, } \end{aligned}$ | $\begin{aligned} & \text { ights } \\ & 1977, \end{aligned}$ | $\begin{aligned} & \text { age (kg) } \\ & 1978, \end{aligned}$ | 1979, | 1980, | 1981, | 1982, | 1983, | 1984, | 1985, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | . 4700, | . 3110, | . 3570, | . 3570, | . 6430, | . 4520 , | . 7000, | . 4700 , | .6810, | . 5280, |
| 3, | . 7300, | . 6330 , | . 7900 , | .6720, | .7130, | .7250, | . 8960, | .7400, | 1.0110, | .8590, |
| 4, | 1.1300, | 1.0440, | 1.0350, | . 8940, | .9410, | .9570, | 1.1500, | 1.0100, | 1.2550, | 1.3910, |
| 5, | 1.5500, | 1.4260, | 1.3980, | 1.1560, | 1.1570, | 1.2370, | 1.4440, | 1.3200, | 1.8120, | 1.7770, |
| 6 , | 1.9700, | 1.8520, | 1.8700, | 1.5900, | 1.4930, | 1.6510, | 1.4980, | 1.6600, | 2.0610, | 2.3260, |
| 7, | 2.4100, | 2.2410, | 2.3500, | 2.0700, | 1.7390, | 2.0530, | 1.8290, | 2.0500, | 2.0590, | 2.4400, |
| 8, | 2.7600, | 2.2050, | 2.5970, | 2.5250 , | 2.0950, | 2.4060, | 1.8870, | 2.2600, | 2.1370, | 2.4010, |
| 9, | 3.0700, | 2.5700, | 3.0140, | 2.6960 , | 2.4650, | 2.7250, | 1.9610, | 2.5400, | 2.3680, | 2.5320, |
| +gp, | 3.5500, | 2.5910, | 2.9200 , | 3.5190 , | 3.3100, | 3.2500, | 2.8560, | 3.0400, | 2.6860, | 2.6860 , |
| SOPCOFAC, | 1.0746, | .9762, | .9947, | 1.0385, | 1.0017, | 1.0870, | .9238, | 1.0554, | 1.0602, | 1.0559, |


| Table 2 | C | eights a | age (kg) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1986, | 1987, | 1988, | 1989، | 1990, | 1991, | 1992, | 1993, | 1994, | 1995, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | .6080, | . 6050, | .5010, | . 5800 , | . 4380, | . 5470 , | . 5250, | .7550, | .7540, | .6660, |
| 3, | .8870, | . 8310, | . 7810, | .7790, | .6990, | .6930, | .7240, | .9820, | 1.1030, | 1.0540, |
| 4, | 1.1750, | 1.1260, | .9740, | . 9230, | . 9390, | .8840, | .8170, | 1.0270, | 1.2540, | 1.4890, |
| 5, | 1.6310, | 1.4620, | 1.3630, | 1.2070, | 1.2040, | 1.0860 , | 1.0380, | 1.1920, | 1.4650, | 1.7790, |
| 6, | 1.9840, | 1.9410, | 1.6800, | 1.5640, | 1.3840, | 1.2760, | 1.2490, | 1.3780, | 1.5930, | 1.9400, |
| 7, | 2.5190, | 2.1730, | 1.9750, | 1.7460, | 1.5640, | 1.4770, | 1.4300, | 1.6430, | 1.8040, | 2.1820, |
| 8, | 2.5830, | 2.3470, | 2.3440, | 2.0860, | 1.8180, | 1.5740, | 1.5640, | 1.7960, | 2.0490, | 2.3570, |
| 9, | 2.5700, | 3.1180, | 2.2480, | 2.4240, | 2.1680, | 1.9300, | 1.6330, | 1.9710, | 2.2250, | 2.4900, |
| +gp, | 2.9220, | 2.9330, | 3.2950, | 2.5140, | 2.3350, | 2.1530, | 2.1260 , | 2.2400, | 2.4230, | 2.6780, |
| SOPCOFAC, | 1.0141, | 1.0197, | .9695, | 1.0025 , | 1.0195, | 1.0635, | 1.0496, | 1.0361, | .9969, | 1.0323, |

Table 2.4.7

Run title : Haddock Faroes Vb (run: XSAJAK01/X01)
At 2-May-96 18:36:02

| Table YEAR, | 5 | Propor 1961, | on mature 1962, | $\begin{aligned} & \text { e at age } \\ & 1963, \end{aligned}$ | 196 | 96 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |
| 2, |  | .0600, | .0600, | .0600, | .0600, | . 0600 |
| 3, |  | . 4800 , | . 4800 , | .4800, | .4800, | .4800, |
| 4 , |  | .9100, | .9100, | .9100, | .9100, | .9100, |
| 5, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000 |
| 6. |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000 |
| 7. |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 8, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 9, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000 |
| +gp, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |



Run title : Haddock Faroes Vb (run: XSAJAK01/X01)
At 2-May-96 18:36:02


| Table YEAR, | 5 | $\begin{aligned} & \text { Proport } \\ & \text { 1986, } \end{aligned}$ | matu 1987, | at age 1988, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
| 2. |  | . 0300, | . 0500, | . 0500 , | . 0200 , | . 0800 , | . 1600 , | . 1800, | . 1500, | . 1200, | . 1000 , |
| 3. |  | . 4300, | .3200, | . 2400 , | .2200, | . 3700, | .5800, | .6500, | .5300, | .5000, | .5500, |
| 4, |  | .9500, | .9100, | . 8900, | .8700, | . 9000 , | .9300, | .9100, | .9000, | .9200, | . 9700 , |
| 5, |  | .9900, | .9800, | . 9800, | .9900, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 6, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000 , | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 7. |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 8, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 9, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| +gp, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |

Table 2.4.8
Haddock in the Faroe Grounds (Fishing Area Vb) (run name: XSAJAK01)
105
LL95A: Longliners < 100GRT, revised in 1995 (Catch: Thousands) (Effort: Unknown)
19851995
110.001 .00

39

| 7558 | 2542 | 787 | 306 | 65 | 23 | 30 | 120 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 6692 | 1435 | 1747 | 530 | 256 | 12 | 51 | 15 |
| 6728 | 1027 | 1819 | 1118 | 331 | 155 | 20 | 12 |
| 8753 | 311 | 1557 | 1405 | 768 | 138 | 40 | 5 |
| 12804 | 1042 | 433 | 1676 | 1361 | 1015 | 313 | 74 |
| 14543 | 993 | 1141 | 428 | 955 | 1005 | 457 | 155 |
| 14801 | 733 | 1165 | 615 | 281 | 560 | 385 | 170 |
| 10599 | 103 | 419 | 480 | 282 | 65 | 154 | 181 |
| 7497 | 92 | 80 | 152 | 112 | 64 | 22 | 46 |
| 7625 | 47 | 50 | 25 | 55 | 57 | 51 | 18 |
| 9574 | 133 | 45 | 40 | 26 | 53 | 51 | 41 |

LL95B: Longliners > 100GRT, revised in 1995 (Catch: Thousands) (Effort: Unknown)
19851995
110.001 .00

46

| 2973 | 300 | 188 | 40 |
| ---: | ---: | ---: | ---: |
| 2176 | 584 | 203 | 124 |
| 2915 | 168 | 323 | 220 |
| 3203 | 200 | 470 | 504 |
| 3369 | 79 | 421 | 492 |
| 3521 | 316 | 146 | 312 |
| 3573 | 260 | 223 | 127 |
| 2892 | 92 | 216 | 188 |
| 2046 | 55 | 124 | 134 |
| 2925 | 92 | 43 | 98 |
| 3517 | 66 | 82 | 55 |

MH96A: Magnus Heinason Groundfish Survey tricked 96 to 95 end (Catch: Number) (Effort: Unknown) 19851995
110.991 .00

25

| 100 | 46.5 | 21.7 | 4.2 | 0.8 |
| ---: | ---: | ---: | ---: | ---: |
| 100 | 26.4 | 16.7 | 8.7 | 1.5 |
| 100 | 11.8 | 21.2 | 10.7 | 3.8 |
| 100 | 113.0 | 8.5 | 23.2 | 31.2 |
| 100 | 64.0 | 23.9 | 2.5 | 7.7 |
| 100 | 13.4 | 9.8 | 3.9 | 1.5 |
| 100 | 8.5 | 15.5 | 6.8 | 5.1 |
| 100 | 9.9 | 6.2 | 6.3 | 4.7 |
| 100 | 3.1 | 4.0 | 2.0 | 3.6 |
| 100 | 10.1 | 2.9 | 2.5 | 0.8 |
| 100 | 137.1 | 6.1 | 0.9 | 0.7 |

OB95A: Otter board trawlers 400-999 HP, revised in 1995 (Catch: Thousands) (Effort: Unknown)
19881995
110.001 .00

57

| 2204 | 118 | 86 | 19 |
| ---: | ---: | ---: | ---: |
| 1993 | 91 | 92 | 56 |
| 1853 | 25 | 52 | 48 |
| 1038 | 15 | 10 | 12 |
| 495 | 8 | 4 | 2 |
| 1008 | 24 | 14 | 12 |
| 677 | 3 | 6 | 6 |
| 1199 | 10 | 4 | 17 |

PT95A: Pair trawlers > 1000HP, revised in 1995 (Catch: Thousands) (Effort: Unknown)
19881995
110.001 .00

57

| 6034 | 251 | 194 | 55 |
| ---: | ---: | ---: | ---: |
| 5127 | 162 | 156 | 39 |
| 7491 | 57 | 156 | 184 |
| 7875 | 181 | 104 | 131 |
| 7243 | 107 | 150 | 52 |
| 6335 | 82 | 111 | 122 |
| 6227 | 32 | 133 | 128 |
| 5052 | 33 | 18 | 50 |

Table 2.4.9
Lowestoft VPA Version 3.1
2-May-96 18:35:14
Extended Survivors Analysis
Haddock Faroes Vb (run: XSAJAK01/X01)
CPUE data from file /users/fish/ifad/ifapwork/nwwg/had_faro/FLEET.X01
Catch data for 35 years. 1961 to 1995. Ages 2 to 10.

| Fleet, | First, Last, year, year, | First, Last, age , age | a, | Beta |
| :---: | :---: | :---: | :---: | :---: |
| LL95A: Longliners < | 1985, 1995, | 3, 9, | . 000 , | 1.000 |
| LL95B: Longliners | 1985, 1995, | 4, 6, | . 000, | 1.000 |
| MH96A: Magnus Heinas, | 1985, 1995, | 2, 5, | . 990, | 1.000 |
| OB95A: Otter board t, | 1988, 1995, | 5, 7, | .000, | 1.000 |
| PT95A: Pair trawlers, | 1988, 1995, | 5, 7, | .000, | 1.000 |

Time series weights :
Tapered time weighting applied
Power $=3$ over 20 years

Catchability analysis :
Catchability dependent on stock size for ages < 3
Regression type $=\mathrm{C}$
Minimum of 5 points used for regression
Survivor estimates shrunk to the population mean for ages < 3

Catchability independent of age for ages $>=6$

Terminal population estimation :
Survivor estimates shrunk towards the mean $F$
of the final 5 years or the 5 oldest ages.
S.E. of the mean to which the estimates are shrunk $=.500$

Minimum standard error for population
estimates derived from each fleet $=.300$
Prior weighting not applied

Tuning converged after 58 iterations

Regression weights
, .751, .820, .877, .921, .954, .976, .990, .997, 1.000, 1.000

Fishing mortalities

| Age, 1986, 1987, 1988, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995 |  |  |  |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2, | .010, | .038, | .044, | .005, | .012, | .031, | .012, | .066, | .074, | .037 |
| 3, | .095, | .097, | .078, | .136, | .132, | .155, | .080, | .117, | .151, | .167 |
| 4, | .246, | .188, | .196, | .159, | .254, | .273, | .165, | .201, | .169, | .284 |
| 5, | .252, | .258, | .242, | .355, | .281, | .261, | .278, | .170, | .164, | .182 |
| 6, | .321, | .296, | .299, | .330, | .392, | .409, | .329, | .208, | .189, | .210 |
| 7, | .157, | .403, | .198, | .500, | .441, | .464, | .383, | .268, | .254, | .197 |
| 8, | .423, | .581, | .190, | .364, | .438, | .284, | .280, | .252, | .361, | .277 |
| 9, | .289, | .271, | .234, | .255, | .311, | .275, | .262, | .239, | .406, | .456 |

## Table 2.4.9 (Continued)

XSA population numbers (Thousands)


| 1986, | $2.54 \mathrm{E}+04,3.10 \mathrm{E}+04,2.26 \mathrm{E}+04,7.54 \mathrm{E}+03,2.97 \mathrm{E}+03,2.97 \mathrm{E}+02,4.17 \mathrm{E}+02,3.13 \mathrm{E}+02$, |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1987, | $8.31 \mathrm{E}+03,2.06 \mathrm{E}+04,2.30 \mathrm{E}+04$, | $1.45 \mathrm{E}+04,4.80 \mathrm{E}+03,1.76 \mathrm{E}+03,2.08 \mathrm{E}+02,2.24 \mathrm{E}+02$, |  |
| 1988, | $1.69 \mathrm{E}+04,6.55 \mathrm{E}+03$, | $1.53 \mathrm{E}+04,1.56 \mathrm{E}+04,9.15 \mathrm{E}+03,2.92 \mathrm{E}+03,9.65 \mathrm{E}+02,9.54 \mathrm{E}+01$, |  |
| 1989, | $1.40 \mathrm{E}+04,1.32 \mathrm{E}+04$, | $4.96 \mathrm{E}+03,1.03 \mathrm{E}+04,1.01 \mathrm{E}+04,5.55 \mathrm{E}+03,1.96 \mathrm{E}+03,6.53 \mathrm{E}+02$, |  |
| 1990, | $9.96 \mathrm{E}+03,1.14 \mathrm{E}+04$, | $9.45 \mathrm{E}+03,3.46 \mathrm{E}+03,5.92 \mathrm{E}+03,5.92 \mathrm{E}+03,2.76 \mathrm{E}+03,1.12 \mathrm{E}+03$, |  |
| 1991, | $2.78 \mathrm{E}+03,8.06 \mathrm{E}+03$, | $8.20 \mathrm{E}+03,6.00 \mathrm{E}+03,2.14 \mathrm{E}+03,3.28 \mathrm{E}+03,3.12 \mathrm{E}+03,1.46 \mathrm{E}+03$, |  |
| 1992, | $3.69 \mathrm{E}+03,2.20 \mathrm{E}+03$, | $5.65 \mathrm{E}+03,5.11 \mathrm{E}+03,3.78 \mathrm{E}+03,1.16 \mathrm{E}+03,1.69 \mathrm{E}+03,1.92 \mathrm{E}+03$, |  |
| 1993, | $1.96 \mathrm{E}+03$, | $2.99 \mathrm{E}+03$, | $1.67 \mathrm{E}+03,3.92 \mathrm{E}+03,3.17 \mathrm{E}+03,2.23 \mathrm{E}+03,6.50 \mathrm{E}+02,1.04 \mathrm{E}+03$, |
| 1994, | $4.31 \mathrm{E}+03,1.51 \mathrm{E}+03$, | $2.18 \mathrm{E}+03,1.12 \mathrm{E}+03,2.71 \mathrm{E}+03,2.11 \mathrm{E}+03,1.40 \mathrm{E}+03,4.14 \mathrm{E}+02$, |  |
| 1995, | $2.49 \mathrm{E}+04,3.28 \mathrm{E}+03$, | $1.06 \mathrm{E}+03,1.50 \mathrm{E}+03,7.75 \mathrm{E}+02,1.84 \mathrm{E}+03,1.34 \mathrm{E}+03,7.96 \mathrm{E}+02$, |  |

Estimated population abundance at 1st Jan 1996
$, .00 \mathrm{E}+00,1.97 \mathrm{E}+04,2.27 \mathrm{E}+03,6.53 \mathrm{E}+02,1.03 \mathrm{E}+03,5.14 \mathrm{E}+02,1.24 \mathrm{E}+03,8.31 \mathrm{E}+02$,
Taper weighted geometric mean of the VPA populations:
$9.44 \mathrm{E}+03,7.12 \mathrm{E}+03,5.65 \mathrm{E}+03,4.40 \mathrm{E}+03,3.13 \mathrm{E}+03,2.18 \mathrm{E}+03,1.36 \mathrm{E}+03,8.28 \mathrm{E}+02$,
Standard error of the weighted Log(VPA populations) :

$$
1.0045,1.0144,1.0475, \quad .9675, .9546, \quad .9236, \quad .9278,1.0344,
$$

Log catchability residuals.


Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

| Age, | 3, | 4, | 5, | 6, | 7, | 8, | 9 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -11.9473, | -11.6225, | -11.6535, | -11.5692, | -11.5692, | -11.5692, | -11.5692, |
| S.E(Log q), | .2802, | .4401, | .5605, | .5979, | .6405, | .5578, | .1981, |

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 3, | .80, | 7.051, | 11.33, | .99, | 11, | .09, | -11.95, |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4, | .74, | 4.614, | 10.85, | .97, | 11, | .18, | -11.62, |
| 5, | .63, | 5.982, | 10.48, | .97, | 11, | .16, | -11.65, |
| 6, | .85, | .760, | 11.04, | .76, | 11, | .52, | -11.57, |
| 7, | .75, | 1.462, | 10.67, | .81, | 11, | .44, | -11.71, |
| 8, | 1.15, | -.573, | 12.19, | .64, | 11, | .66, | -11.51, |
| 9, | .93, | 1.130, | 11.25, | .97, | 11, | .18, | -11.61, |

Table 2.4.9 (Continued)

```
Fleet : LL95B: Longliners >
Age , 1985
    2,No data for this fleet at this age
    3, No data for this fleet at this age
    4,.06
    5,..07
    6,. . }4
    7, No data for this fleet at this age
    8,No data for this fleet at this age
    9,No data for this fleet at this age
Age, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995
    2 ,No data for this fleet at this age
    3,No data for this fleet at this age
    4, .38,-1.21, -.72, -. 58, .16, .10, -.41, .66, .54, . 79
    5, .02, -.46, -. 26, .04, .00, -.15, .20, .20, .04, . 21
    6, .12, -.09, .00, -. 15, -.09, .02, .02, .15, -.38, . }1
    7, No data for this fleet at this age
    8. No data for this fleet at this age
    9,No data for this fleet at this age
```

Mean $\log$ catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age, | 4, | 5, | 6 |
| ---: | ---: | ---: | ---: |
| Mean $\log q$, | -11.5033, | -11.1013, | -10.7358, |
| S.E(Log q), | .6361, | .2075, | .1944, |

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 4, | 1.70, | -2.612, | 13.48, | .64, | 11, | .84, | -11.50, |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5, | 1.18, | -2.318, | 11.58, | .95, | 11, | .20, | -11.10, |
| 6, | 1.14, | -1.859, | 11.11, | .96, | 11, | .20, | -10.74, |

## Table 2.4.9 (Continued)

| Fleet : MH96A: Magnus Heinas |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age , 1985 |  |  |  |  |  |  |  |  |  |  |
| $2,-.76$ |  |  |  |  |  |  |  |  |  |  |
| 3, -. 68 |  |  |  |  |  |  |  |  |  |  |
| $4,-.69$ |  |  |  |  |  |  |  |  |  |  |
| $5,-1.22$ |  |  |  |  |  |  |  |  |  |  |
| 6, No data for this fleet at this age |  |  |  |  |  |  |  |  |  |  |
| 7 , No data for this fleet at this age |  |  |  |  |  |  |  |  |  |  |
| 8 , No data for this fleet at this age |  |  |  |  |  |  |  |  |  |  |
| 9 , No data for this fleet at this age |  |  |  |  |  |  |  |  |  |  |
| Age | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995 |
| 2 | -.89, | -. 50, | .93, | .54, | -.59, | . 28 , | .12, | -.30, | . 04, | . 71 |
| 3 | -.96, | -.32, | -. 10, | .29, | -.46, | . 37, | .67, | -.03, | . 37, | . 35 |
| 4 | , -.62, | -.49, | . 70, | -.43, | -. 54, | . 18, | . 37 , | .48, | . 40, | . 21 |
| 5 | , -1.07, | -. 78 , | 1.23, | . 36, | -.26, | . 40 , | .49, | . 38 , | .13, | -. 29 |
| 6 | , No data | for th | his flee | $t$ at th | is age |  |  |  |  |  |
| 7 | , No data | for th | his flee | $t$ at th | is age |  |  |  |  |  |
| 8 | , No data | for th | his flee | t at th | is age |  |  |  |  |  |
| 9 | , No data | for th | his flee | $t$ at th | is age |  |  |  |  |  |

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age , | 3, | 4, | 5 |
| ---: | ---: | ---: | ---: |
| Mean $\log q$, | -10.8734, | -11.4073, | -11.6119, |
| S.E(Log q), | .4971, | .5044, | .7077, |

Regression statistics :
Ages with q dependent on year class strength
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Log q
2, .94, .258, 10.32, .73, 11, .64, -10.39,

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value, Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 3, | 1.58, | -3.471, | 12.06, | .82, | 11, | .53, | -10.87, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4, | 1.32, | -1.642, | 12.28, | .77, | 11, | .61, | -11.41, |
| 5, | .91, | .360, | 11.32, | .65, | 11, | .67, | -11.61, |

Table 2.4.9 (Continued)

Fleet : OB95A: Otter board $t$
Age , 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995
2, No data for this fleet at this age
3 , No data for this fleet at this age
4 , No data for this fleet at this age
$5,99.99,99.99,-.15, \quad .16, \quad .00,-.49,-.21, \quad .39,-.03, \quad .31$
$6,99.99,99.99, .09, .18, .24, .20,-.59, .08,-.22, .06$
$7,99.99,99.99,-.32, .35, .18,-.02,-.08, .30, .06, .64$
8, No data for this fleet at this age
9 . No data for this fleet at this age

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age , | 5, | 6, | 7 |
| :---: | ---: | ---: | ---: |
| Mean Log q, | -12.2253, | -12.2182, | -12.2182, |
| S.E(Log q), | .2910, | .2807, | .3333 , |

## Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 5, | 1.11, | -.788, | 12.67, | .89, | 8, | .33, | -12.23, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 6, | .96, | .295, | 12.06, | .91, | 8, | .29, | -12.22, |
| 7, | .96, | .193, | 11.90, | .79, | 8, | .31, | -12.07, |

## Fleet : PT95A: Pair trawlers

Age , 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995
2 , No data for this fleet at this age
3. No data for this fleet at this age

4 , No data for this fleet at this age
5, 99.99, 99.99, $-.21,-.02,-.39, \quad .16,-.11,-.03, \quad .30, \quad .25$
$6,99.99,99.99,-.31,-.44,-.26, .31, \quad .15, \quad .11, \quad .45,-.08$
7. 99.99, 99.99, -.47, -1.16, -.08, .14, .29, .58, .69, . 07

8, No data for this fleet at this age
9. No data for this fleet at this age

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

| Age , | 5, | 6, | 7 |
| ---: | ---: | ---: | ---: |
| Mean $\log q$, | -12.4128, | -12.0136, | -12.0136, |
| S.E(Log q), | .2358, | .3139, | .5930, |

Regression statistics :

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 5, | 1.18, | -1.684, | 13.15, | .94, | 8, | .25, | -12.41, |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6, | 1.26, | -1.557, | 13.01, | .86, | 8, | .36, | -12.01, |
| 7, | 3.09, | -1.947, | 20.50, | .13, | 8, | 1.54, | -11.99, |

Table 2.4.9 (Continued)

Terminal year survivor and $F$ summaries :
Age 2 Catchability dependent on age and year class strength
Year class $=1993$

| Fleet, | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, Ratio, |  | Scaled, Weights, | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LL95A: Longliners < | 1., | . 000 , | .000, | .00, | 0, | .000, | . 000 |
| LL95B: Longliners > | 1., | .000, | . 000 , | . 00 , | 0, | .000, | . 000 |
| MH96A: Magnus Heinas, | 40148., | . 744 , | .000, | . 00, | 1, | .259, | . 018 |
| OB95A: Otter board t, | 1., | . 000 , | . 000, | .00, | 0, | .000, | . 000 |
| PT95A: Pair trawlers, | $1 .$, | .000, | . 000 , | .00, | 0, | .000, | . 000 |
| P shrinkage mean , | 7119., | 1.01, , , |  |  |  | .145, | . 098 |
| F shrinkage mean , | 18456., | .50, , , |  |  |  | .596, | . 039 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | S.e, | Ratio, |  |  |
| 19667., | .38, | .63, | 3, | 1.639, | .037 |

Age 3 Catchability constant w.r.t. time and dependent on age

| Fleet, | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, Ratio | $N$, | Scaled, Weights, | Estimated <br> F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LL95A: Longliners < | 1775., | .300, | .000, | . 00 ' | $1^{\prime}$, | .516, | . 209 |
| LL95B: Longliners > | 1., | . 000 , | .000, | . 00 , | 0, | .000, | . 000 |
| MH96A: Magnus Heinas, | 2881., | .414, | .147, | . 36 , | 2, | .264, | . 134 |
| OB95A: Otter board t, | $1 .$, | . 000 , | .000, | . 00 | 0, | .000, | . 000 |
| PT95A: Pair trawlers, | 1. | . 000 , | .000, | . 00 , | 0, | .000, | . 000 |
| F shrinkage mean | 3039., | . 50, |  |  |  | .220, | . 127 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $2270 .$. | .22, | .16, | 4, | .733, | .167 |

Age 4 Catchability constant w.r.t. time and dependent on age

```
Year class = 1991
```

| Fleet, | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, Ratio, |  | Scaled, Weights | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LL95A: Longliners < | 461., | .252, | .086, | .34, | 2, | .475, | . 382 |
| LL95B: Longliners > | 1445., | .667, | .000, | . 00 , | 1, | . 075, | . 138 |
| MH96A: Magnus Heinas, | 783., | . 334 , | . 165, | .49, | 3 , | .273, | . 242 |
| OB95A : Otter board t, | 1., | . 000 , | . 000, | . 00, | 0 , | .000, | . 000 |
| PT95A: Pair trawlers, | 1. | . 000 , | . 000 , | . 00, | 0 , | . 000, | . 000 |
| F shrinkage mean | 901., | . 50, |  |  |  | .177, | .213 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $653 .$, | .18, | .16, | 7, | .886, | .284 |

Age 5 Catchability constant w.r.t. time and dependent on age
Year class $=1990$

| Fleet, | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, Ratio, |  | Scaled, Weights, | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LL.95A: Longliners < | 572., | .233, | .221, | . 95 , | 3, | .238, | . 307 |
| LL95B: Longliners > | 1330., | .274, | .115, | .42, | 2, | .204, | . 144 |
| MH96A: Magnus Heinas, | 1118., | . 301 , | .146, | .49, | 4, | .144, | . 169 |
| OB95A: Otter board t, | 1396., | .309, | .000, | .00, | 1, | .164, | . 137 |
| PT95A: Pair trawlers, | 1319., | . 300 , | . 000 , | .00, | 1, | .174, | . 145 |
| F shrinkage mean | 787., | . 50, |  |  |  | . 075 , | . 232 |

Weighted prediction :
Survivors, Int,
at end of year, s.e,

$$
\text { 1026., } \quad 12
$$

$$
\begin{array}{lrlll}
\text { Ext, } & \text { N, } & \text { Var, } & \text { F } & 100 \\
\text { S.e, } & \text { Ratio, } & & 100 & 182
\end{array}
$$

Table 2.4.9 (Continued)

Age 6 Catchability constant w.r.t. time and dependent on age
Year class $=1989$

| Fleet, | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | Ext, s.e, | Var, Ratio, | N, | Scaled, Weights, | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LL95A: Longliners < | 337., | .221, | .175, | .79, | 4, | .173, | . 305 |
| LL95B: Longliners > | 583., | .203, | . 108, | .53, | 3, | . 250, | . 188 |
| MH96A: Magnus Heinas, | 793., | . 302. | .117, | . 39, | 4, | . 086, | . 141 |
| OB95A: Otter board t, | 524., | . 216, | .047, | .22, | 2, | .226, | . 207 |
| PT95A: Pair trawlers, | 577., | . 224. | .190, | .85, | 2, | .208, | . 189 |
| F shrinkage mean | 335., | . 50 |  |  |  | .056, | . 307 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | S.e, | Ratio, |  |  |
| $514 .$, | .10, | .08, | 16, | .805, | .210 |

Age 7 Catchability constant w.r.t. time and age (fixed at the value for age) 6
Year class $=1988$

| Fleet, | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, Ratio, | $N$, | Scaled, Weights | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LL95A: Longliners < | 901., | . 214 , | .239, | 1.11, | 5, | .169, | . 262 |
| L.L95B: Longliners > | 1080., | . 204 , | . 204, | 1.00, | 3 , | .212, | . 223 |
| MH96A: Magnus Heinas, | 1520., | . 303 , | . 208, | .68, | 4, | . 072, | . 163 |
| OB95A: Otter board t, | 1570., | .186, | . 264 , | 1.42, | 3 , | . 284, | . 158 |
| PT95A: Pair trawlers, | 1488., | .212, | .161, | .76, | 3, | .206, | . 167 |
| F shrinkage mean | 614., | . 50, |  |  |  | .057, | . 364 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | S.e, | S.e, | Ratio, |  |  |
| $1235 .$, | .10, | .10, | 19, | 1.081, | .197 |

Age 8 Catchability constant w.r.t. time and age (fixed at the value for age) 6

```
Year class = 1987
```

| Fleet, | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, Ratio, |  | Scaled, Weights, | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LL95A: Longliners < | 663., | .218, | .186, | . 85, | 6. | .192, | . 336 |
| LL95B: Longliners > | 979. | . 206, | .021, | . 10, | 3, | .198, | . 240 |
| MH96A: Magnus Heinas, | 935. | . 310, | .230, | .74, | 4, | .058, | . 250 |
| OB95A: Otter board t, | 825. | . 188, | .088, | .47, | 3, | .275, | . 279 |
| PT95A: Pair trawlers, | 924. | .214, | . 190, | .88, | 3, | .195, | . 252 |
| F shrinkage mean | 690., | . 50, |  |  |  | .080, | . 325 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | S.e, | Ratio, |  |  |
| $831 .$, | .10, | .07, | 20, | .665, | .277 |

Age 9 Catchability constant w.r.t. time and age (fixed at the value for age) 6
Year class $=1986$

| Fleet, | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | Ext, | Var, Ratio, | $N$, | Scaled, Weights, | $\begin{aligned} & \text { Estimated } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LL95A: Longliners < | 333., | .198, | .081, | .41, | 7, | . 348 , | . 541 |
| LL95B: Longliners > | 396., | .207, | .067, | . 33, | 3, | .144, | . 472 |
| MH96A: Magnus Heinas, | 465., | .317, | .296, | .93, | 4, | .042, | . 414 |
| OB95A : Otter board t, | 328., | . 190, | .291, | 1.53, | 3 , | .208, | . 548 |
| PT95A: Pair trawlers, | 519., | . 217 , | .112, | .52, | 3, | .144, | . 379 |
| F shrinkage mean | 918., | . 50, |  |  |  | .114, | . 231 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $413 .$, | .11, | .10, | 21, | .890, | .456 |

Table 2.4.10

Run title : Haddock Faroes Vb (run: XSAJAK01/X01)

| At 2-May-96 | 18:36:02 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Terminal Fs derived using XSA (With F shrinkage) |  |  |  |  |  |  |  |  |  |
| $\begin{array}{ll} \text { Table } 8 \\ \text { YEAR, } & \end{array}$ | Fishing 1961, | $\begin{aligned} & \text { mortality } \\ & 1962, \end{aligned}$ | (F) at 1963, | $\begin{aligned} & \text { age } \\ & 1964, \end{aligned}$ | 1965, |  |  |  |  |  |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | .1875, | . 3232, | . 3801 , | .0876, | .0691, |  |  |  |  |  |
| 3, | .4162, | .5866, | .5639, | . 3722, | . 2354, |  |  |  |  |  |
| 4, | .4209, | .5980, | .7261, | .5193, | . 4767 , |  |  |  |  |  |
| 5, | . 4387 , | . 3480 , | .5591, | .5369, | . 3678 , |  |  |  |  |  |
| 6, | .5879, | . 6706, | .4026, | .6107, | . 5882, |  |  |  |  |  |
| 7, | .9483, | 1.0499, | 1.2493, | . 3375 , | .9618, |  |  |  |  |  |
| 8 , | .8742, | .9736, 1 | 1.1139, | 1.2027, | 2.3618, |  |  |  |  |  |
| 9, | .6600, | . 7351 , | .8185, | .6472, | .9618, |  |  |  |  |  |
| +gp, | . 6600 , | .7351, | . 8185 , | . 6472 , | . 9618 , |  |  |  |  |  |
| FBAR 3-7, | . 5624 , | .6506, | .7002, | .4753, | . 5260 , |  |  |  |  |  |
| Table 8 | Fishing | mortality | (F) at | age |  |  |  |  |  |  |
| YEAR, | 1966, | 1967, | 1968, | 1969, | 1970, | 1971, | 1972, | 1973, | 1974, | 1975, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | . 0609 , | . 0641 , | . 1261, | . 0860, | . 0551 , | .0526, | .0253, | . 1670, | . 1265, | . 1219, |
| 3, | . 2370 , | . 1872, | . 2646, | . 2362 , | . 2527, | . 1935, | . 4220, | . 4303, | . 2170, | . 2646, |
| 4, | . 4515 , | . 2970, | . 3482, | . 5319 , | . 3342 , | . 4185, | .2851, | .2379, | . 3722 , | . 2409 , |
| 5, | . 5006, | . 2997, | . 2846, | . 3329 , | . 3638 , | . 2752, | . 4515 , | . 3128, | . 1275, | . 2110, |
| 6, | .5421, | .5406, | . 4539, | . 4974 , | . 5557, | . 5557, | .1493, | . 2691, | . 1710, | .0953, |
| 7, | . 9128 , | .6906, | . 8366, | . 8274 , | . 8736, | . 8371, | .6713, | . 1942, | . 2130, | . 0857 , |
| 8, | .7509, | . 6634 , | . 5850, | 1.0628, | .5427, | . 4220, | . 4054, | . 2902, | . 1431, | . 1596, |
| 9, | . 6372, | . 5021 , | . 5056 , | . 6564, | .5383, | . 5057, | . 3952 , | . 2622, | . 2063, | . 1591, |
| +gp, | .6372, | .5021, | . 5056 , | . 6564, | .5383, | . 5057, | . 3952 , | . 2622, | . 2063, | . 1591, |
| FBAR 3-7, | . 5288, | . 4030, | . 4376 , | . 4852, | . 4760 , | . 4560, | .3958, | . 2889, | .2201, | . 1795, |

Run title : Haddock Faroes Vb (run: XSAJAK01/X01)
At 2-May-96 18:36:02
Terminal Fs derived using XSA (With F shrinkage)

| Table 8 YEAR, | Fishing 1976, | $\begin{aligned} & \text { mortality } \\ & 1977, \end{aligned}$ | $\begin{aligned} & \text { (F) at } \\ & 1978 \text {, } \end{aligned}$ | $\begin{aligned} & \text { age } \\ & 1979, \end{aligned}$ | 1980, | 1981, | 1982, | 1983, | 1984, | 1985, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | .0901, | . 0107 | .0010, | . 0004 , | .0312, | . 0237, | .0369, | . 0247, | .0326, | . 0284 , |
| 3, | . 1859, | . 1118, | . 0541, | .0459, | .0278, | . 1314, | .4612, | . 1839, | . 1145, | . 1676, |
| 4, | . 3801 , | .1793, | . 1649, | . 1239, | . 2036, | . 1276, | . 3502 , | . 3474 , | . 3685 , | . 2338, |
| 5. | . 2212, | . 5254, | . 2084, | . 1890, | .2707, | . 2126, | . 2814, | . 3225 , | . 2166, | . 3210 , |
| 6, | . 2861, | . 7226, | . 3798 , | . 1383, | .2105, | . 2220, | .2799, | .1323, | . 2981, | . 4149 , |
| 7. | . 1595, | . 3885, | .5729, | . 2700, | .1667, | . 1969, | . 2461, | .3025, | .0812, | . 1803, |
| 8, | . 2530, | . 3768 , | .4930, | . 3275 | .3910, | .0898, | . 2216, | . 3000 , | . 2974, | . 1626, |
| 9, | . 2614, | .4417, | . 3661 , | . 2107, | . 2498, | .1705, | . 2774, | . 2825, | . 2537, | . 2839, |
| +gp, | . 2614, | . 4417 , | . 3661, | . 2107. | . 2498, | . 1705, | . 2774 , | . 2825, | . 2537, | . 2839, |
| FBAR 3-7, | . 2466, | . 3855 , | . 2760, | . 1534, | .1759, | . 1781, | . 3238 , | . 2577 , | . 2158, | . 2635, |


| $\begin{aligned} & \text { Table } 8 \\ & \text { YEAR, } \end{aligned}$ | Fishing 1986, | $\begin{gathered} \text { mortality } \\ 1987, \end{gathered}$ | $\begin{aligned} & \text { (F) at } \\ & 1988, \end{aligned}$ | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | . 0100 | . 0384, | .0439, | . 0050 , | .0117, | . 0311, | .0120, | . 0657 , | .0737, | . 0366, |
| 3. | . 0954, | . 0966, | .0779, | . 1357, | . 1317, | . 1546, | .0803, | . 1168, | . 1510, | . 1670, |
| 4, | . 2458, | . 1876, | . 1956, | . 1586, | . 2545, | . 2733, | . 1646, | . 2006, | . 1694, | . 2838, |
| 5, | . 2523, | . 2577, | . 2416, | . 3547 , | . 2810, | . 2613, | . 2776, | . 1696, | . 1643, | . 1824, |
| 6, | . 3212, | . 2965, | . 2991, | . 3296 , | . 3917 , | . 4094, | . 3288 , | . 2079, | . 1892, | . 2103, |
| 7. | . 1566, | . 4028 , | .1981, | . 4996, | .4407, | . 4640 , | . 3826, | .2679, | . 2536, | . 1975, |
| 8, | . 4226, | .5808, | .1899, | . 3636, | .4377, | . 2841 , | . 2801, | . 2519, | . 3613. | . 2770, |
| 9, | . 2890, | . 2708, | . 2339, | . 2548, | . 3110, | . 2748, | .2621, | . 2393, | . 4062 , | . 4563, |
| +gp, | .2890, | . 2708, | .2339, | . 2548, | . 3110, | . 2748 , | . 2621, | . 2393, | . 4062, | . 4563, |
| FBAR 3-7, | .2142, | . 2482, | . 2025, | . 2956, | .2999, | . 3125, | . 2468, | . 1926, | . 1855, | . 2082, |

Table 2.4.11

Run title : Haddock Faroes Vb (run: XSAJAK01/X01)
At 2-May-96 18:36:02
Terminal Fs derived using XSA (With F shrinkage)

| Table 10 | Stock | number at | age (start | of year) |  | Numbers*10**-3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1961, | 1962, | 1963. | 1964, | 1965, |  |
| AGE |  |  |  |  |  |  |
| 2, | 51279, | 38537, | 47363, | 30111, | 22646; |  |
| 3, | 23796, | 34806, | 22837, | 26515, | 22586, |  |
| 4, | 16517, | 12850, | 15850, | 10638, | 14961, |  |
| 5, | 6028, | 8877, | 5786, | 6278, | 5182, |  |
| 6, | 3245, | 3182, | 5132, | 2708, | 3005, |  |
| 7, | 1512, | 1476, | 1332, | 2809, | 1204, |  |
| 8, | 448, | 480, | 423, | 313, | 1641, |  |
| 9, | 135, | 153, | 148, | 114, | 77, |  |
| +gp, | 102958, | $\begin{array}{r} 0 \\ 100362, \end{array}$ | $\begin{array}{r} 0, \\ 98871, \end{array}$ | 79487, | $\begin{array}{r} 0, \\ 71302, \end{array}$ |  |


| Table 10 | Stock number at age (start of year) |  |  |  | Numbers*10**-3 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1966, | 1967, | 1968, | 1969, | 1970, | 1971, | 1972, | 1973, | 1974, | 1975, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | 20208, | 25359, | 54870, | 31981, | 35616, | 15473, | 33211, | 23710, | 52401, | 70632, |
| 3, | 17303, | 15567, | 19473, | 39602, | 24026, | 27596, | 12019, | 26512, | 16426, | 37805, |
| 4, | 14614, | 11177, | 10569, | 12236, | 25602, | 15278, | 18619, | 6453, | 14116, | 10826, |
| 5, | 7605, | 7618, | 6799, | 6109, | 5886, | 15007, | 8232, | 11462, | 4165, | 7965, |
| 6 , | 2937, | 3774, | 4622, | 4188, | 3585, | 3349, | 9330, | 4291, | 6864, | 3002, |
| 7, | 1366, | 1398, | 1800, | 2403, | 2085, | 1684, | 1573, | 6579, | 2684, | 4736, |
| 8, | 377, | 449, | 574, | 638, | 860, | 713, | 597, | 658, | 4436, | 1776, |
| 9, | 127, | 146, | 189, | 262, | 181, | 409, | 383, | 326, | 403, | 3148, |
| +gp, | 0 , | 0 , | 0 , | 0, | 0, | 0, | 0 , | 52, | 867, | 1399, |
| TOTAL, | 64536, | 65488, | 98896, | 97419, | 97841, | 79508, | 83963, | 80044, | 102362, | 141288, |

Run title : Haddock Faroes Vb (run: XSAJAK01/X01)
At 2-May-96 18:36:02
Terminal Fs derived using XSA (With F shrinkage)

| Table 10 | Stock number at age (start of year) |  |  |  | Numbers*10**-3 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1976, | 1977, | 1978, | 1979, | 1980, | 1981, | 1982, | 1983, | 1984, | 1985, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 2, | 56389, | 26484, | 34934, | 2859, | 5147, | 3494, | 16422, | 19959, | 41152, | 38893, |
| 3, | 51189, | 42189, | 21453, | 28573, | 2340, | 4085, | 2794, | 12957, | 15942, | 32611, |
| 4, | 23757, | 34800, | 30887, | 16639, | 22343, | 1863, | 2933, | 1442, | 8827, | 11640, |
| 5, | 6966, | 13300, | 23816, | 21444, | 12036, | 14923, | 1343, | 1692, | 834, | 4999, |
| 6 , | 5281, | 4571, | 6439, | 15831, | 14534, | 7517, | 9878, | 830, | 1003, | 550, |
| 7, | 2234, | 3248, | 1817, | 3606, | 11287, | 9641, | 4929, | 6113, | 595, | 610, |
| 8, | 3559, | 1559, | 1803, | 839, | 2254, | 7822, | 6483, | 3155, | 3698, | 449, |
| 9, | 1240, | 2263, | 876, | 902, | 495, | 1248, | 5854, | 4253, | 1914, | 2249, |
| +gp, | 1519, | 2623, | 1116, | 428, | 428, | 253, | 970, | 3547, | 4747, | 4323, |
| TOTAL, | 152134, | 131037, | 123140, | 91120, | 70863, | 50846, | 51606, | 53949, | 78712, | 96324, |


| Table 10 | Stock number at age (start of year) |  |  |  |  | Numbers*10**-3 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995, | 1996, |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
| 2, | 25428, | 8310, | 16871, | 14021, | 9957, | 2778, | 3694, | 1964, | 4309, | 24916, | 0 |
| 3 , | 30952, | 20611, | 6548, | 13220, | 11422, | 8057, | 2205, | 2988, | 1506, | 3277, | 19667, |
| 4, | 22580, | 23035, | 15320, | 4959, | 9450, | 8198, | 5652, | 1666, | 2177, | 1060, | 2270, |
| 5, | 7543, | 14458, | 15633, | 10314, | 3465, | 5999, | 5107, | 3925, | 1116, | 1504, | 653, |
| 6, | 2969, | 4799, | 9148, | 10052, | 5923, | 2142, | 3782, | 3168, | 2712, | 775 , | 1026, |
| 7. | 297, | 1763, | 2921, | 5554, | 5919, | 3278, | 1164, | 2229, | 2107, | 1838, | 514, |
| 8, | 417, | 208, | 965, | 1962, | 2759, | 3119, | 1687, | 650, | 1396, | 1338, | 1235, |
| 9, | 313, | 224, | 95, | 653, | 1116, | 1458, | 1922, | 1044, | 414, | 796, | 831, |
| +gp, | 3115, | 1547, | 674, | 396, | 444, | 146, | 772, | 955, | 988, | 891, | 875, |
| TOTAL, | 93613, | 74954, | 68176, | 61131, | 50455, | 35174, | 25985, | 18589, | 16724, | 36396, | 27073, |

Table 2.4.12

Run title : Haddock Faroes Vb (run: XSAJAK01/X01)
At 2-May-96 18:36:02
Table 16 Summary (without SOP correction)
Terminal Fs derived using XSA (With F shrinkage)

| , | $\begin{gathered} \text { RECRUITS, } \\ \text { Age } 2 \end{gathered}$ | TOTALBIO, | TOTSPBIO, | LANDINGS, | YIELD/SSB, | FBAR | 3-7, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1961, | 51279, | 81164, | 47797, | 20831, | .4358, |  | . 5624, |
| 1962, | 38537, | 83420, | 51875, | 27151, | . 5234 , |  | .6506, |
| 1963, | 47363, | 80753, | 49547, | 27571, | .5565, |  | . 7002 , |
| 1964, | 30111, | 68578, | 44128, | 19490, | .4417, |  | .4753, |
| 1965, | 22646, | 65656, | 45556, | 18479, | .4056, |  | .5260, |
| 1966, | 20208, | 60937, | 43955, | 18766, | .4269, |  | .5288, |
| 1967, | 25359, | 60212, | 41962, | 13381, | .3189, |  | . 4030, |
| 1968, | 54870, | 78094, | 45385, | 17852, | . 3933 , |  | .4376, |
| 1969, | 31981, | 83843, | 53436, | 23272, | . 4355 , |  | . 4852, |
| 1970, | 35616, | 87348, | 59889, | 21361, | . 3567 , |  | .4760, |
| 1971, | 15473, | 81821, | 62956, | 19393, | . 3080 , |  | . 4560 , |
| 1972, | 33211, | 83175, | 62046, | 16485, | .2657, |  | .3958, |
| 1973, | 23710, | 82868, | 61673, | 17969, | . 2914, |  | .2889, |
| 1974, | 52401, | 95576, | 64754, | 14763, | .2280, |  | . 2201, |
| 1975, | 70632, | 122233, | 75576, | 20715, | . 2741, |  | . 1795, |
| 1976, | 56388, | 136322, | 89562, | 26211, | . 2927 , |  | . 2466, |
| 1977, | 26484, | 122033, | 97133, | 25553, | .2631, |  | . 3855 , |
| 1978, | 34934, | 121574, | 98161, | 19200, | .1956, |  | . 2760, |
| 1979, | 2859, | 98577, | 86295, | 12424, | .1440, |  | . 1534, |
| 1980, | 5147, | 88613, | 82742, | 15016, | .1815, |  | . 1759, |
| 1981, | 3494, | 80030, | 76845, | 12233, | .1592, |  | . 1781, |
| 1982, | 16422, | 69607, | 57310, | 11937, | .2083, |  | . 3238 , |
| 1983, | 19959, | 65285, | 52851, | 12894 , | . 2440, |  | . 2577, |
| 1984, | 41152, | 85209, | 55337, | 12378, | . 2237, |  | .2158, |
| 1985, | 38893, | 94774, | 63562, | 15143, | . 2382, |  | . 2635, |
| 1986, | 25428, | 99369, | 67274, | 14477, | .2152, |  | . 2142, |
| 1987, | 8310, | 88098, | 68918, | 14882, | .2159, |  | . 2482, |
| 1988, | 16871, | 75632, | 61649, | 12178, | .1975, |  | . 2025, |
| 1989, | 14021, | 67546, | 50824, | 14325, | . 2819, |  | . 2956, |
| 1990, | 9957, | 51317, | 41388, | 11726, | .2833, |  | . 2999 , |
| 1991, | 2778, | 36477, | 32348, | 8429, | .2606, |  | . 3125 , |
| 1992, | 3694, | 27261, | 24697, | 5446, | .2205, |  | . 2468, |
| 1993, | 1964, | 24199, | 21388, | 4026, | . 1882, |  | . 1926, |
| 1994, | 4309, | 23571, | 19663, | 4252, | . 2162, |  | . 1855, |
| 1995, | 24916, | 37340, | 20803, | 4987, | .2397, |  | .2082, |
| Arith. |  |  |  |  |  |  |  |
| Mean | , 26039, | 77386, | 56551, | 15863, | .2895, |  | . 3334, |
| Units, | (Thousands), | (Tonnes), | (Tonnes), | (Tonnes), |  |  |  |

Table 2.4.13

Faroe Haddock: VPA and groundfish survey data

| 3 11 2 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Yearclass' 'VPAage2' | 'Survage1' | 'Survage2' | 'Survage3' |  |
| 1985 | 8310 | 23.6 | 11.8 | 11.8 |
| 1986 | 16871 | 40.6 | 88.1 | 113.0 |
| 1987 | 14021 | 40.5 | 146.6 | 64.0 |
| 1988 | 9957 | 43.8 | 43.1 | 13.4 |
| 1989 | 2778 | 6.1 | 16.5 | 8.5 |
| 1990 | 3694 | 4.0 | 26.9 | 9.9 |
| 1991 | 1964 | 6.2 | 9.2 | 3.1 |
| 1992 | 4309 | 28.1 | 21.3 | 10.1 |
| 1993 | -11 | 186.3 | 252.6 | 137.1 |
| 1994 | -11 | 486.9 | 244.2 | -11 |
| 1995 | -11 | 65.6 | -11 | -11 |

Table 2.4.14
Analysis by RCT3 ver3.1 of data from file :
rcte96.dat
Faroe Haddock: VPA and groundfish survey data
Data for 3 surveys over 11 years: 1985-1995
Regression type $=\mathrm{C}$
Tapered time weighting applied
power $=3$ over 20 years
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as . 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass $=1988$
I------------Regression-----------I I---------------------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP Series cept Error Pts Value Value Error Weights

| Surv1 | 1.25 | 4.99 | .13 | .938 | 3 | 3.80 | 9.75 | .299 | .236 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Surv2 | .32 | 8.17 | .25 | .809 | 3 | 3.79 | 9.36 | .508 | .082 |
| Surv3 | .32 | 8.20 | .00 | 1.000 | 3 | 2.67 | 9.06 | .006 | .527 |

$$
\text { VPA Mean }=9.44 \quad .367 \quad .156
$$

Yearclass $=1989$

I------------Regression-----------I I------------Prediction---------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP Series cept Error Pts Value Value Error Weights

| Surv1 | 1.80 | 2.86 | .47 | .415 | 4 | 1.96 | 6.40 | 2.411 | .004 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Surv2 | .35 | 8.00 | .22 | .762 | 4 | 2.86 | 9.00 | .395 | .155 |
| Surv3 | .30 | 8.32 | .08 | .964 | 4 | 2.25 | 9.00 | .141 | .605 |

$$
\text { VPA Mean }=\begin{array}{lll} 
& 9.38 & .321
\end{array}
$$

Yearclass $=1990$
I-----------Regression-----------I I------------Prediction---------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP Series cept Error Pts Value Value Error Weights

| Surv1 | .95 | 5.97 | .26 | .908 | 5 | 1.61 | 7.50 | .518 | .477 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Surv2 | .92 | 5.64 | .75 | .544 | 5 | 3.33 | 8.71 | 1.079 | .110 |
| Surv3 | .79 | 6.49 | .60 | .652 | 5 | 2.39 | 8.39 | .903 | .157 |

$$
\text { VPA Mean }=9.09 \quad .707 \quad .256
$$

Table 2.4.14 (Continued)
Yearclass $=1991$


$$
\text { VPA Mean }=8.94 \quad .728 \quad .210
$$

Yearclass $=1992$
I------------Regression----------I I------------Prediction---------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP Series cept Error Pts Value Value Error Weights

Surv1 $\quad .93 \quad 6.08 \quad .39 \quad .852 \quad 7 \quad 3.37 \quad 9.23-.502 \quad .427$
$\begin{array}{llllllllll}\text { Surv2 } & 1.04 & 5.11 & .68 & .650 & 7 & 3.10 & 8.35 & .872 & .141\end{array}$
$\begin{array}{llllllllll}\text { Surv3 } & .82 & 6.39 & .48 & .787 & 7 & 2.41 & 8.36 & .619 & .280\end{array}$

$$
\text { VPA Mean }=8.74 \quad .842 \quad .152
$$

Yearclass $=1993$
I------------Regression-----------I I------------Prediction---------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP Series cept Error Pts Value Value Error Weights

| Surv1 | 1.00 | 5.79 | .52 | .733 | 8 | 5.23 | 11.00 | .865 | .213 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Surv2 | 1.04 | 5.12 | .61 | .663 | 8 | 5.54 | 10.88 | .976 | .167 |
| Surv3 | .82 | 6.39 | .44 | .793 | 8 | 4.93 | 10.42 | .662 | .364 |

$$
\text { VPA Mean }=8.68 \quad .790 \quad .256
$$

Yearclass $=1994$
I------------Regression-----------I I-----------Prediction----------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP Series cept Error Pts Value Value Error Weights

| Surv1 | .99 | 5.79 | .52 | .730 | 8 | 6.19 | 11.95 | 1.066 | .249 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | :---: |
| Surv2 | 1.04 | 5.12 | .60 | .670 | 8 | 5.50 | 10.83 | .971 | .300 |
| Surv3 |  |  |  |  |  |  |  |  |  |

$$
\text { VPA Mean }=8.67 \quad .791 \quad .452
$$

## Table 2.4.14 (Continued)

Yearclass $=1995$
I-----------Regression----------I I------------Prediction----------I
Survey/ Slope Inter- Std Rsquare No. Index Predicted Std WAP Series cept Error Pts Value Value Error Weights $\begin{array}{llllllllll}\text { Surv1 } & .99 & 5.79 & .53 & .726 & 8 & 4.20 & 9.96 & .751 & .526\end{array}$
Surv2
Surv3
VPA Mean $=8.65 \quad .792 \quad .474$

| Year <br> Class | Weighted <br> Average | Log <br> WAP | Int <br> Std | Ext | Var | VPA | Log |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Error |  |  |  |  |  |  |  |


| Table 2.4.15 | Ranking of yearclass strengths from the final 1996 VPA(quartiles) |
| :--- | :--- |



## Table 2.4.16

Haddock in the Faroe Grounds (Fishing Area Vb)
Prediction with management option table: Input data

| Year: 1996 |  |  |  |  |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Age | Stock <br> size | Natural <br> mortality | Maturity <br> ogive | Prop.of <br> bef.spaw. | Prop.of $M$ <br> bef.spaw. | Weight <br> in stock | Exploit. <br> pattern | Weight <br> in catch |
| 2 | 25154.000 | 0.2000 | 0.0100 | 0.0000 | 0.0000 | 0.725 | 0.0625 | 0.725 |
| 3 | 20438.000 | 0.2000 | 0.5500 | 0.0000 | 0.0000 | 0.990 | 0.1544 | 0.990 |
| 4 | 2270.000 | 0.2000 | 0.9700 | 0.0000 | 0.0000 | 1.383 | 0.2322 | 1.383 |
| 5 | 653.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.971 | 0.1834 | 1.971 |
| 6 | 1026.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.217 | 0.2157 | 2.217 |
| 7 | 514.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.448 | 0.2553 | 2.448 |
| 8 | 1235.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.662 | 0.3161 | 2.662 |
| 9 | 831.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.792 | 0.3913 | 2.792 |
| $10+$ | 875.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.943 | 0.3913 | 2.943 |
| Unit | Thousands | - | - | - | - | Kilograms | - | Kilograms |


| Year: 1997 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | ---: | ---: | ---: | ---: | ---: |
| Age | Recruit- <br> ment | Natural <br> mortality | Maturity <br> ogive | Prop.of <br> bef.spaw. | Prop.of M <br> bef.spaw. | Weight <br> in stock | Exploit. <br> pattern | Weight <br> in catch |
| 2 | 11408.000 | 0.2000 | 0.0100 | 0.0000 | 0.0000 | 0.725 | 0.0625 | 0.725 |
| 3 | $\cdot$ | 0.2000 | 0.5500 | 0.0000 | 0.0000 | 0.990 | 0.1544 | 0.990 |
| 4 | $\cdot$ | 0.2000 | 0.9700 | 0.0000 | 0.0000 | 1.383 | 0.2322 | 1.383 |
| 5 | $\cdot$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.971 | 0.1834 | 1.971 |
| 6 | $\cdot$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.217 | 0.2157 | 2.217 |
| 7 | $\cdot$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.448 | 0.2553 | 2.448 |
| 8 | $\cdot$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.662 | 0.3161 | 2.662 |
| 9 | $\cdot$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.792 | 0.3913 | 2.792 |
| $10+$ | $\cdot$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.943 | 0.3913 | 2.943 |
| Unit | Thousands | - | - | - | - | Kilograms | - | Kilograms |


| Year: 1998 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Recruitment | Natural mortality | Maturity ogive | Prop. of F bef.spaw. | Prop. of M bef.spaw. | Weight in stock | Exploit. pattern | Weight in catch |
| 2 | 12512.000 | 0.2000 | 0.0100 | 0.0000 | 0.0000 | 0.725 | 0.0625 | 0.725 |
| 3 | . | 0.2000 | 0.5500 | 0.0000 | 0.0000 | 0.990 | 0.1544 | 0.990 |
| 4 | . | 0.2000 | 0.9700 | 0.0000 | 0.0000 | 1.383 | 0.2322 | 1.383 |
| 5 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.971 | 0.1834 | 1.971 |
| 6 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.217 | 0.2157 | 2.217 |
| 7 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.448 | 0.2553 | 2.448 |
| 8 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.662 | 0.3161 | 2.662 |
| 9 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.792 | 0.3913 | 2.792 |
| 10+ | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.943 | 0.3913 | 2.943 |
| Unit | Thousands | - | - | - | - | Kilograms | - | Kilograms |

Notes: Run name : MANJAK02
Date and time: 08MAY96:01:26

Table 2.4.17

Haddock in the Faroe Grounds (Fishing Area Vb)
Prediction with management option table

| Year: 1996 |  |  |  |  | Year: 1997 |  |  |  |  | Year: 1998 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { F } \\ \text { Factor } \end{gathered}$ | Reference F | Stock biomass | Sp.stock biomass | Catch in weight |  | Reference F | Stock biomass | Sp.stock biomass | Catch in weight | Stock biomass | Sp.stock biomass |
| $1.0000$ | $0.2082$ | $54613$ | $27359$ | 7338 | 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000 1.8000 1.9000 2.0000 | $\begin{aligned} & 0.0000 \\ & 0.0208 \\ & 0.0416 \\ & 0.0625 \\ & 0.0833 \\ & 0.1041 \\ & 0.1249 \\ & 0.1457 \\ & 0.1666 \\ & 0.1874 \\ & 0.2082 \\ & 0.2290 \\ & 0.2498 \\ & 0.2707 \\ & 0.2915 \\ & 0.3123 \\ & 0.3331 \\ & 0.3539 \\ & 0.3748 \\ & 0.3956 \\ & 0.4164 \end{aligned}$ | $58509$ | $\begin{aligned} & 41107 \\ & 41107 \\ & 41107 \\ & 41107 \\ & 41107 \\ & 41107 \\ & 41107 \\ & 41107 \\ & 41107 \\ & 41107 \\ & 41107 \\ & 41107 \\ & 41107 \\ & 41107 \\ & 41107 \\ & 41107 \\ & 41107 \\ & 41107 \\ & 41107 \\ & 41107 \\ & 41107 \end{aligned}$ | $\begin{array}{r} 0 \\ 1023 \\ 2024 \\ 3002 \\ 3960 \\ 4896 \\ 5812 \\ 6708 \\ 7585 \\ 8443 \\ 9283 \\ 10105 \\ 10909 \\ 11697 \\ 12467 \\ 13222 \\ 13960 \\ 14684 \\ 15392 \\ 16085 \\ 16764 \end{array}$ | $\begin{aligned} & 73202 \\ & 71995 \\ & 70813 \\ & 69658 \\ & 68528 \\ & 67423 \\ & 66342 \\ & 65284 \\ & 64249 \\ & 63236 \\ & 62246 \\ & 61276 \\ & 60328 \\ & 59399 \\ & 58490 \\ & 57601 \\ & 56731 \\ & 55878 \\ & 55044 \\ & 54227 \\ & 53428 \end{aligned}$ | $\begin{aligned} & 59404 \\ & 58232 \\ & 57086 \\ & 55966 \\ & 54871 \\ & 53801 \\ & 52754 \\ & 51731 \\ & 50729 \\ & 49751 \\ & 48793 \\ & 47857 \\ & 46941 \\ & 46045 \\ & 45168 \\ & 44311 \\ & 43472 \\ & 4265 \\ & 41848 \\ & 41062 \\ & 40293 \end{aligned}$ |
| - | - | Tonnes | Tonnes | Tonnes | - | - | Tonnes | Tonnes | Tonnes | Tonnes | Tonnes |

Notes: Run name : MANJAK02
Date and time : 08MAY96:01:26
Computation of ref. F: Simple mean, age 3-7
Basis for 1996 : F factors

Table 2.4.18

Haddock in the Faroe Grounds (Fishing Area Vb)
Yield per recruit: Input data

| Age | Recruit- <br> ment | Natural <br> mortality | Maturity <br> ogive | Prop.of <br> bef.spaw. | Prop.of M <br> bef.spaw. | Weight <br> in stock | Exploit. <br> pattern | Weight <br> in catch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1.000 | 0.2000 | 0.0900 | 0.0000 | 0.0000 | 0.551 | 0.0692 | 0.551 |
| 3 | $\cdot$ | 0.2000 | 0.4900 | 0.0000 | 0.0000 | 0.820 | 0.2148 | 0.820 |
| 4 | $\cdot$ | 0.2000 | 0.9200 | 0.0000 | 0.0000 | 1.068 | 0.3220 | 1.068 |
| 5 | $\cdot$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.377 | 0.3218 | 1.377 |
| 6 | $\cdot$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.684 | 0.3707 | 1.684 |
| 7 | $\cdot$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 1.965 | 0.4375 | 1.965 |
| 8 | $\cdot$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.160 | 0.4853 | 2.160 |
| 9 | $\cdot$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.403 | 0.4014 | 2.403 |
| $10+$ | $\cdot$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 2.762 | 0.4014 | 2.762 |
| Unit | Numbers | - | - | - |  |  | Kilograms | - |
| Kilograms |  |  |  |  |  |  |  |  |

Notes: Run name : YLDJAK01
Date and time: 06MAY96:15:37

Haddock in the Faroe Grounds (Fishing Area Vb)
Yield per recruit: Summary table

|  |  |  |  |  |  | 1 January |  | Spawning time |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F Factor | Reference F | Catch in numbers | Catch in weight | Stock <br> size | Stock biomass | Sp.stock size | Sp.stock biomass | $\begin{aligned} & \text { Sp.stock } \\ & \text { size } \end{aligned}$ | Sp.stock biomass |
| 0.0000 | 0.0000 | 0.000 | 0.000 | 5.517 | 8492.978 | 4.135 | 7591.902 | 4.135 | 7591.902 |
| 0.0500 | 0.0167 | 0.068 | 121.474 | 5.176 | 7661.598 | 3.797 | 6762.513 | 3.797 | 6762.513 |
| 0.1000 | 0.0333 | 0.125 | 216.261 | 4.892 | 6980.282 | 3.515 | 6083.171 | 3.515 | 6083.171 |
| 0.1500 | 0.0500 | 0.174 | 291.216 | 4.651 | 6413.223 | 3.276 | 5518.072 | 3.276 | 5518.072 |
| 0.2000 | 0.0667 | 0.216 | 351.151 | 4.444 | 5934.978 | 3.071 | 5041.771 | 3.071 | 5041.771 |
| 0.2500 | 0.0833 | 0.252 | 399.527 | 4.264 | 5526.995 | 2.893 | 4635.717 | 2.893 | 4635.717 |
| 0.3000 | 0.1000 | 0.284 | 438.890 | 4.105 | 5175.444 | 2.737 | 4286.081 | 2.737 | 4286.081 |
| 0.3500 | 0.1167 | 0.312 | 471.139 | 3.965 | 4869.818 | 2.599 | 3982.355 | 2.599 | 3982.355 |
| 0.4000 | 0.1333 | 0.337 | 497.717 | 3.840 | 4602.005 | 2.476 | 3716.427 | 2.476 | 3716.427 |
| 0.4500 | 0.1500 | 0.360 | 519.734 | 3.727 | 4365.646 | 2.365 | 3481.940 | 2.365 | 3481.940 |
| 0.5000 | 0.1667 | 0.381 | 538.052 | 3.625 | 4155.696 | 2.265 | 3273.847 | 2.265 | 3273.847 |
| 0.5500 | 0.1833 | 0.399 | 553.350 | 3.532 | 3968.104 | 2.174 | 3088.098 | 2.174 | 3088.098 |
| 0.6000 | 0.2000 | 0.417 | 566.166 | 3.447 | 3799.585 | 2.091 | 2921.407 | 2.091 | 2921.407 |
| 0.6500 | 0.2167 | 0.432 | 576.928 | 3.369 | 3647.448 | 2.015 | 2771.086 | 2.015 | 2771.086 |
| 0.7000 | 0.2334 | 0.447 | 585.985 | 3.297 | 3509.473 | 1.945 | 2634.914 | 1.945 | 2634.914 |
| 0.7500 | 0.2500 | 0.460 | 593.618 | 3.231 | 3383.813 | 1.881 | 2511.042 | 1.881 | 2511.042 |
| 0.8000 | 0.2667 | 0.473 | 600.055 | 3.169 | 3268.920 | 1.821 | 2397.924 | 1.821 | 2397.924 |
| 0.8500 | 0.2834 | 0.485 | 605.484 | 3.111 | 3163.487 | 1.765 | 2294.254 | 1.765 | 2294.254 |
| 0.9000 | 0.3000 | 0.496 | 610.063 | 3.057 | 3066.407 | 1.713 | 2198.924 | 1.713 | 2198.924 |
| 0.9500 | 0.3167 | 0.506 | 613.919 | 3.006 | 2976.735 | 1.664 | 2110.988 | 1.664 | 2110.988 |
| 1.0000 | 0.3334 | 0.516 | 617.159 | 2.958 | 2893.659 | 1.618 | 2029.635 | 1.618 | 2029.635 |
| 1.0500 | 0.3500 | 0.525 | 619.874 | 2.913 | 2816.479 | 1.575 | 1954.167 | 1.575 | 1954.167 |
| 1.1000 | 0.3667 | 0.534 | 622.139 | 2.871 | 2744.591 | 1.535 | 1883.978 | 1.535 | 1883.978 |
| 1.1500 | 0.3834 | 0.542 | 624.018 | 2.831 | 2677.467 | 1.496 | 1818.541 | 1.496 | 1818.541 |
| 1.2000 | 0.4000 | 0.550 | 625.564 | 2.793 | 2614.647 | 1.460 | 1757.395 | 1.460 | 1757.395 |
| 1.2500 | 0.4167 | 0.557 | 626.824 | 2.756 | 2555.727 | 1.426 | 1700.138 | 1.426 | 1700.138 |
| 1.3000 | 0.4334 | 0.564 | 627.836 | 2.722 | 2500.352 | 1.393 | 1646.414 | 1.393 | 1646.414 |
| 1.3500 | 0.4500 | 0.571 | 628.633 | 2.689 | 2448.209 | 1.362 | 1595.910 | 1.362 | 1595.910 |
| 1.4000 | 0.4667 | 0.577 | 629.245 | 2.658 | 2399.018 | 1.333 | 1548.347 | 1.333 | 1548.347 |
| 1.4500 | 0.4834 | 0.583 | 629.695 | 2.628 | 2352.533 | 1.305 | 1503.478 | 1.305 | 1503.478 |
| 1.5000 | 0.5000 | 0.589 | 630.004 | 2.599 | 2308.533 | 1.278 | 1461.082 | 1.278 | 1461.082 |
| 1.5500 | 0.5167 | 0.595 | 630.191 | 2.572 | 2266.821 | 1.252 | 1420.964 | 1.252 | 1420.964 |
| 1.6000 | 0.5334 | 0.600 | 630.273 | 2.546 | 2227.219 | 1.228 | 1382.944 | 1.228 | 1382.944 |
| 1.6500 | 0.5500 | 0.605 | 630.261 | 2.520 | 2189.569 | 1.204 | 1346.865 | 1.204 | 1346.865 |
| 1.7000 | 0.5667 | 0.610 | 630.169 | 2.496 | 2153.726 | 1.182 | 1312.583 | 1.182 | 1312.583 |
| 1.7500 | 0.5834 | 0.615 | 630.006 | 2.473 | 2119.561 | 1.160 | 1279.968 | 1.160 | 1279.968 |
| 1.8000 | 0.6000 | 0.620 | 629.782 | 2.450 | 2086.957 | 1.139 | 1248.902 | 1.139 | 1248.902 |
| 1.8500 | 0.6167 | 0.624 | 629.504 | 2.428 | 2055.806 | 1.119 | 1219.280 | 1.119 | 1219.280 |
| 1.9000 | 0.6334 | 0.629 | 629.180 | 2.407 | 2026.011 | 1.100 | 1191.003 | 1.100 | 1191.003 |
| 1.9500 | 0.6501 | 0.633 | 628.815 | 2.387 | 1997.483 | 1.082 | 1163.983 | 1.082 | 1163.983 |
| 2.0000 | 0.6667 | 0.637 | 628.416 | 2.368 | 1970.142 | 1.064 | 1138.139 | 1.064 | 1138.139 |
| 2.0500 | 0.6834 | 0.641 | 627.986 | 2.349 | 1943.913 | 1.046 | 1113.397 | 1.046 | 1113.397 |
| 2.1000 | 0.7001 | 0.645 | 627.530 | 2.330 | 1918.727 | 1.030 | 1089.689 | 1.030 | 1089.689 |
| 2.1500 | 0.7167 | 0.648 | 627.051 | 2.313 | 1894.523 | 1.014 | 1066.952 | 1.014 | 1066.952 |
| 2.2000 | 0.7334 | 0.652 | 626.553 | 2.296 | 1871.242 | 0.998 | 1045.129 | 0.998 | 1045.129 |
| 2.2500 | 0.7501 | 0.655 | 626.039 | 2.279 | 1848.831 | 0.983 | 1024.166 | 0.983 | 1024.166 |
| 2.3000 | 0.7667 | 0.659 | 625.510 | 2.263 | 1827.241 | 0.969 | 1004.014 | 0.969 | 1004.014 |
| 2.3500 | 0.7834 | 0.662 | 624.970 | 2.247 | 1806.426 | 0.955 | 984.629 | 0.955 | 984.629 |
| 2.4000 | 0.8001 | 0.665 | 624.420 | 2.232 | 1786.345 | 0.941 | 965.967 | 0.941 | 965.967 |
| 2.4500 | 0.8167 | 0.668 | 623.863 | 2.217 | 1766.958 | 0.928 | 947.990 | 0.928 | 947.990 |
| 2.5000 | 0.8334 | 0.671 | 623.298 | 2.203 | 1748.228 | 0.915 | 930.661 | 0.915 | 930.661 |
| 2.5500 | 0.8501 | 0.674 | 622.729 | 2.189 | 1730.122 | 0.903 | 913.947 | 0.903 | 913.947 |
| 2.6000 | 0.8667 | 0.677 | 622.156 | 2.175 | 1712.608 | 0.891 | 897.816 | 0.891 | 897.816 |
| 2.6500 | 0.8834 | 0.680 | 621.580 | 2.162 | 1695.657 | 0.879 | 882.238 | 0.879 | 882.238 |
| 2.7000 | 0.9001 | 0.683 | 621.002 | 2.149 | 1679.241 | 0.867 | 867.187 | 0.867 | 867.187 |
| 2.7500 | 0.9167 | 0.685 | 620.424 | 2.136 | 1663.335 | 0.856 | 852.637 | 0.856 | 852.637 |
| 2.8000 | 0.9334 | 0.688 | 619.845 | 2.124 | 1647.913 | 0.846 | 838.563 | 0.846 | 838.563 |
| 2.8500 | 0.9501 | 0.690 | 619.267 | 2.112 | 1632.955 | 0.835 | 824.943 | 0.835 | 824.943 |
| 2.9000 | 0.9667 | 0.693 | 618.689 | 2.100 | 1618.437 | 0.825 | 811.756 | 0.825 | 811.756 |
| 2.9500 | 0.9834 | 0.695 | 618.114 | 2.089 | 1604.341 | 0.815 | 798.982 | 0.815 | 798.982 |
| 3.0000 | 1.0001 | 0.698 | 617.540 | 2.078 | 1590.648 | 0.805 | 786.603 | 0.805 | 786.603 |
| - | - | Numbers | Grams | Numbers | Grams | Numbers | Grams | Numbers | Grams |

Notes: Run name

| Run name | : YLDJAK01 |
| :--- | :--- |
| Date and time | : O6MAYY6: 15:51 |
| Computation of ref. | F: Simple mean, age 3-7 |
| F-0.1 factor | $: 0.5540$ |
| F-max factor | $: 1.6181$ |
| F-0.1 reference F | $: 0.1847$ |
| F-max reference F | $: 0.5394$ |
| Recruitment | $:$ Single recruit |

Table 2.5.1 Saithe in the Faroes. Nominal catches $(t)$ by countries, 1982-95 as officially reported to ICES

| Country | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark | - | - | - | - | 21 | 255 | 94 |
| Faroe Islands | 30,808 | 38,963 | 54,344 | 42,874 | 40,139 | 39,301 | 44,402 |
| France | 130 | 180 | 243 | 839 | 87 | 153 | 313 |
| German Dem.Rep. | - | - | - | 31 | - | - | - |
| German Fed. Rep. | 19 | 28 | 73 | 227 | 105 | 49 | 74 |
| Netherlands | - | - | - | - | - | - | - |
| Norway | 15 | 5 | 5 | - | 24 | 14 | 52 |
| UK (Eng. \& W.) | - | - | - | 4 | - | 108 | - |
| UK (Scotland) | 1 | - | - | 630 | 1,340 | 140 | 92 |
| United Kingdom | - | - | - | - | - | - | - |
| USSR | - | - | - | - | - | - | - |
| Total | 30,973 | 39,176 | 54,665 | 44,605 | 41,716 | 40,020 | 45,027 |
| Country | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | $1995{ }^{\text {1 }}$ |
| Denmark |  | 2 |  |  |  |  |  |
| Faroe Islands | 43624 | 59821 | 53321 | 35979 | 32719 | 32406 | 27217 |
| France ${ }^{3}$ | - | - | - | 1999 | 75 | - | - |
| German Dem.Rep. | 9 |  | 32 | 5 | 2 | 1 | 19 |
| German Fed. Rep. | 20 | 15 | - | - | - | - | - |
| Netherlands | 22 | 67 | 65 | - | - | - | - |
| Norway | 51 | 46 | 103 | 85 | 34 | 156 | 14 |
| UK (Eng. \& W.) | - | - | 5 | 74 | 280 | 151 | - |
| UK (Scotland) | 9 | 33 | 79 | 98 | 425 | 438 | - |
| United Kingdom | - | - | - | - | - | - | 221 |
| USSR/Russia ${ }^{2}$ | - | 30 | - | 12 | - | - | - |
| Total | 43735 | 60014 | 53605 | 38252 | 33535 | 33152 | 27471 |

${ }^{1}$ Preliminary.
${ }^{2}$ As from 1991.
${ }^{3}$ Quantity unknown 1989-91 and 1994.

Table 2.5.2 Saithe in the Faroes. Nominal catches ( t ) by countries, 1982-95 as used in the assessment

| Country | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denmark | - | - | - | - | 21 | 255 | 94 |
| Faroe Islands |  |  |  |  |  |  |  |
| Vb | 30,808 | 38,963 | 54,344 | 42,874 | 40,139 | 39,301 | 44,402 |
| lla4 | - | - | - | - | - | - | 258 |
| France | 130 | 180 | 243 | 839 | 87 | 153 | 313 |
| German Dem.Rep. | - | - | - | 31 | - | - | - |
| German Fed. Rep. | 19 | 28 | 73 | 227 | 105 | 49 | 74 |
| Netherlands | - | - | - | - | - | - | - |
| Norway | 15 | 5 | 5 | - | 24 | 14 | 52 |
| UK (Eng. \& W.) | - | - | - | 4 | - | 108 | - |
| UK (Scotland) | 1 | - | - | 630 | 1,340 | 140 | 92 |
| United Kingdom | - | - | - | - | - | - | - |
| USSR | - | - | - | - | - | - | - |
| Total | 30,973 | 39,176 | 54,665 | 44,605 | 41,716 | 40,020 | 45,285 |
| Country | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | $1995{ }^{1}$ |
| Denmark | - | 2 | - | - | - | - | - |
| Faroe Islands |  |  |  |  |  |  |  |
| Vb | 43624 | 59821 | 53321 | 35979 | 32719 | 32406 | 27217 |
| Ila4 | 269 | 988 | 963 | 165 | - | - | - |
| France ${ }^{3}$ | 473 | 626 | 283 | 1999 | 75 | 10 | - |
| German Dem.Rep. | 9 |  | - | - | - | - | - |
| German Fed. Rep. | 20 | 15 | 32 | 5 | 2 | 1 | - |
| Netherlands | 22 | 67 | 65 | - | - | - | - |
| Norway | 51 | 46 | 103 | 34 | 85 | 156 | 14 |
| UK (Eng. \& W.) | - | - | 5 | 74 | 280 | 151 | - |
| UK (Scotland) | 9 | 33 | 79 | 98 | 425 | 438 | - |
| United Kingdom | - | - | - | - | - | - | 221 |
| USSR/Russia ${ }^{2}$ | - | 30 | 7 | 12 | 11 | 11 | 9 |
| Total | 44477 | 61628 | 54858 | 38366 | 33597 | 33173 | 27461 |

Table 2.5.3 Saithe in the Faroes. CPUE (tonnes/days) by fleet categories.

|  | Year | Open boats | $\begin{array}{r} \text { Long } \\ \text { liners } \\ <100 \text { GRT } \end{array}$ | Single trawl $>400 \mathrm{HP}$ | Gill net | Jiggers | $\begin{array}{r} \text { Single } \\ \text { trawl } \\ <1000 \mathrm{HP} \end{array}$ | $\begin{array}{r} \text { Single } \\ \text { trawl } \\ >1000 \mathrm{HP} \end{array}$ | $\begin{array}{r} \text { Pair } \\ \text { trawl } \\ <1000 \mathrm{HP} \end{array}$ | $\begin{array}{r} \text { Pair } \\ \text { trawl } \\ >1000 \mathrm{HP} \end{array}$ | $\begin{array}{r} \text { Long } \\ \text { liners } \\ >100 \mathrm{GRT} \end{array}$ | Indust. trawl | Other vessels | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1985 | 0.239 | 0.005 | 0.012 |  | 0.300 | 1.274 | 2.441 | 2.206 | 3.526 | 0.010 |  |  | 1.232 |
|  | 1986 | 0.236 | 0.010 | 0.021 |  | 0.480 | 0.886 | 1.887 | 1.667 | 3.038 | 0.010 |  |  | 1.205 |
|  | 1987 | 0.439 | 0.008 | 0.092 |  | 0.677 | 0.997 | 1.743 | 1.459 | 2.913 | 0.015 |  |  | 1.171 |
|  | 1988 | 0.064 | 0.012 | 0.033 |  | 0.325 | 1.223 | 1.843 | 1.351 | 2.891 | 0.011 |  |  | 0.949 |
|  | 1989 | 0.090 | 0.004 | 0.097 |  | 0.352 | 1.098 | 1.557 | 1.893 | 3.231 | 0.019 |  |  | 0.828 |
|  | 1990 | 0.108 | 0.009 | 0.096 |  | 0.427 | 1.131 | 2.983 | 2.489 | 3.158 | 0.030 |  |  | 1.106 |
|  | 1991 | 0.101 | 0.004 | 0.071 |  | 0.471 | 0.577 | 1.864 | 2.307 | 2.943 | 0.019 |  |  | 0.971 |
|  | 1992 | 0.070 | 0.011 | 0.016 |  | 0.347 | 0.290 | 0.629 | 2.003 | 2.552 | 0.013 |  |  | 0.777 |
|  | 1993 | 0.119 | 0.008 | 0.029 |  | 0.348 | 0.152 | 0.530 | 2.250 | 2.963 | 0.017 |  |  | 0.870 |
|  | 1994 | 0.063 | 0.015 | 0.028 |  | 0.286 | 0.495 | 0.570 | 2.756 | 3.252 | 0.027 |  |  | 0.776 |
| E | 1995 | 0.015 | 0.002 | 0.045 |  | 0.138 | 0.161 | 0.557 | 1.653 | 2.188 | 0.018 |  |  | 0.465 |

Table 2.5.4 Saithe in the Faroes. Catch numbers at age Numbers* $10^{* *}$-3.

| Table 1 | Catch numbers at age |  |  | Numbers*10**-3 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1961, | 1962, | 1963, | 1964, | 1965, |  |  |  |  |  |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 3 , | 183, | 562, | 614, | 684, | 996, |  |  |  |  |  |
| 4, | 379, | 542, | 340, | 1908, | 850, |  |  |  |  |  |
| 5, | 483, | 617, | 340, | 1506, | 1708, |  |  |  |  |  |
| 6 , | 403, | 495, | 415, | 617 , | 965, |  |  |  |  |  |
| 7, | 216, | 286, | 406, | 572 , | 510, |  |  |  |  |  |
| 8, | 129, | 131, | 202, | 424, | 407, |  |  |  |  |  |
| 9, | 116, | 129, | 174, | 179, | 306, |  |  |  |  |  |
| 10, | 82, | 113, | 158, | 150, | 201, |  |  |  |  |  |
| 11, | 45, | 71, | 94, | 100, | 156, |  |  |  |  |  |
| +gp, | 82, | 105, | 274, | 174, | 285, |  |  |  |  |  |
| TOTALNUM, | 2118, | 3051, | 3017, | 6314, | 6384, |  |  |  |  |  |
| TONSLAND, | 9592, | 10454, | 12693, | 21893, | 22181, |  |  |  |  |  |
| SOPCOF \%, | 108, | 93, | 96, | 99, | 92, |  |  |  |  |  |
| YEAR, | 1966, | 1967, | 1968, | 1969, | 1970, | 1971, | 1972, | 1973, | 1974, | 1975, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 3, | 488, | 595, | 614, | 1191, | 1445, | 2857, | 2714, | 2515, | 3504, | 2062, |
| 4. | 1540, | 796, | 1689, | 2086, | 6577, | 3316, | 1774, | 6253, | 4126, | 3361, |
| 5, | 1201, | 1364, | 1116, | 2294, | 1558, | 5585, | 2588, | 7075, | 4011, | 3801, |
| 6, | 1686, | 792, | 1095, | 1414, | 1478, | 1005, | 2742, | 3478, | 2784, | 1939, |
| 7. | 806, | 1192, | 548, | 1118, | 899, | 828, | 1529, | 1634, | 1401, | 1045, |
| 8, | 377, | 473, | 655, | 589, | 730, | 469, | 1305, | 693, | 640, | 714, |
| 9 , | 294, | 217, | 254, | 580, | 316, | 326, | 1017, | 550, | 368, | 302, |
| 10, | 205, | 190, | 128, | 239, | 241, | 164, | 743, | 403, | 340, | 192, |
| 11, | 156, | 97, | 89, | 115, | 86, | 100, | 330, | 215, | 197, | 193, |
| +gp, | 225, | 140, | 187, | 190, | 132, | 100, | 210, | 186, | 265, | 298, |
| TOTALNUM, | 6978, | 5856, | 6375, | 9816, | 13462, | 14750, | 14952, | 23002, | 17636, | 13907, |
| TONSLAND, | 25563, | 21319, | 20387, | 27437, | 29110, | 32706, | 42663, | 57431, | 47188, | 41576, |
| SOPCOF \%, | 98, | 104, | 102, | 97, | 96, | 109, | 100, | 120, | 113, | 116, |
| YEAR, | 1976, | 1977, | 1978, | 1979, | 1980, | 1981, | 1982, | 1983, | 1984, | 1985, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 3 , | 3178, | 1609, | 611, | 287, | 996, | 411, | 387, | 2483, | 368, | 1224, |
| 4, | 3217, | 2937, | 1743, | 933, | 877, | 1804, | 4076, | 1103, | 11067, | 3990, |
| 5, | 1720, | 2034, | 1736, | 1341, | 720, | 769, | 994, | 5052, | 2359, | 5583, |
| 6, | 1250, | 1288, | 548, | 1033, | 673, | 932, | 1114, | 1343, | 4093, | 1182, |
| 7, | 877, | 767, | 373, | 584, | 726, | 908, | 380, | 575, | 875, | 1898, |
| 8, | 641, | 708, | 479, | 414, | 284, | 734, | 417, | 339, | 273, | 273, |
| 9, | 468, | 498, | 466, | 247, | 212, | 343, | 296, | 273, | 161, | 103, |
| 10, | 223, | 338, | 473, | 473, | 171, | 192, | 105, | 98, | 52, | 38, |
| 11, | 141, | 272, | 407, | 368, | 196, | 92, | 88, | 98, | 65, | 26, |
| +gp, | 287, | 330, | 535, | 691, | 786, | 1021, | 902, | 540, | 253, | 275, |
| TOTALNUM, | 12002, | 10781, | 7371, | 6371, | 5641, | 7206, | 8759, | 11904, | 19566, | 14592, |
| TONSLAND, | 33065, | 34835, | 28138, | 27246, | 25230, | 30103, | 30964, | 39176, | 54665, | 44605, |
| SOPCOF \%, | 107, | 104, | 100, | 102, | 99, | 96, | 96 , | 100, | 100, | 94, |


| YEAR, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 3 , | 1167, | 1581, | 866, | 451, | 294, | 1030, | 548, | 1319, | 690, | 402, |
| 4 , | 1997, | 5793, | 2950, | 5981, | 3837, | 5125, | 4281, | 2615, | 3960, | 1028, |
| 5, | 4473, | 3827, | 9555, | 5300, | 10131, | 7451, | 3860, | 4696, | 2662, | 3501, |
| 6 , | 3730, | 2785, | 2784, | 7136, | 9229, | 5543, | 2820, | 1668, | 2367, | 1853, |
| 7, | 953, | 990, | 1300, | 793, | 5076, | 3487, | 1445, | 859, | 746, | 1188, |
| 8, | 1077, | 532, | 621, | 546, | 478, | 1630, | 941 , | 493, | 500, | 348, |
| 9, | 245, | 333, | 363, | 185, | 123, | 405, | 645, | 449, | 307, | 243, |
| 10, | 104, | 81, | 159, | 83, | 61, | 238, | 129, | 246, | 303, | 194, |
| 11, | 67, | 43 , | 27, | 55, | 60, | 128, | 66, | 54, | 150, | 105, |
| +gp, | 158, | 97, | 60, | 39, | 79. | 118, | 114, | 52, | 49 , | 118 , |
| TOTALNUM, | 13971, | 16062, | 18685, | 20569, | 29368, | 25155, | 14849, | 12451, | 11734, | 8980, |
| TONSLAND, | 41716, | 40020, | 45285, | 44477, | 61561, | 54863, | 38366, | 33481, | 33187, | 27480, |
| SOPCOF \%, | 94, | 96, | 99, | 97. | 98, | 99, | 105, | 101, | 102, | 102, |

Table 2.5.5 Saithe in the Faroes. Catch weights at age (kg).

Table 2 Catch weights at age (kg)

|  | YEAR, | 1961, | 1962, | 1963, | 1964, | 1965, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AgE |  |  |  |  |  |
|  | 3, | 1.4300, | 1.2730, | 1.2800, | 1.1750, | 1.1810, |
|  | 4, | 2.3020, | 2.0450, | 2.1970, | 2.0550, | 2.1250, |
|  | 5, | 3.3480, | 3.2930, | 3.2120 , | 3.2660, | 2.9410, |
|  | 6 , | 4.2870, | 4.1910, | 4.5680, | 4.2550, | 4.0960, |
|  | 7, | 5.1280, | 5.1460, | 5.0560 , | 5.0380 , | 4.8780, |
|  | 8 , | 6.1550, | 5.6550, | 5.9320, | 5.6940, | 5.9320 , |
|  | 9, | 7.0600, | 6.4690, | 6.2590 , | 6.6620, | 6.3210 , |
|  | 10, | 7.2650, | 6.7060, | 8.0000 , | 6.8370, | 7.2880, |
|  | 11, | 7.4970, | 7.1500, | 7.2650, | 7.6860, | 8.0740 , |
|  | +gp, | 9.3400, | 9.0240, | 8.8590, | 8.5590, | 8.9040, |
| 0 | SOPCOFAC, | 1.0779, | . 9342 , | .9590, | .9933, | .9220, |


|  | YEAR, | 1966, | 1967, | 1968, | 1969, | 1970, | 1971, | 1972, | 1973, | 1974, | 1975, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AGE |  |  |  |  |  |  |  |  |  |  |
|  | 3, | 1.3610, | 1.2730, | 1.3020, | 1.1880, | 1.2440, | 1.1010, | 1.0430, | 1.0880, | 1.4300, | 1.1140, |
|  | 4, | 2.0260, | 1.7800, | 1.7370, | 1.6670, | 1.4450, | 1.3160, | 1.4850, | 1.4610, | 1.5250, | 1.6580, |
|  | 5, | 3.0550 , | 2.5340, | 2.0360, | 2.3020, | 2.2490, | 1.8180, | 2.0550, | 1.5820, | 2.2070, | 2.2600 , |
|  | 6 , | 3.6580, | 3.5720, | 3.1200, | 2.8530, | 2.8530, | 2.9780, | 2.8290, | 2.2490, | 2.5000, | 3.1200 , |
|  | 7, | 4.5850, | 4.3680, | 4.0490, | 3.6730, | 3.5150, | 3.7020, | 3.7910, | 3.6870, | 3.1200, | 3.5570 , |
|  | 8 , | 5.5200, | 5.3130, | 5.1830, | 5.0020, | 4.4180, | 4.2710, | 4.1750, | 4.3850, | 4.6010, | 4.0960 , |
|  | 9, | 6.8370, | 5.8120, | 6.2380, | 5.7140, | 5.4440, | 5.3880, | 4.8080, | 5.1280, | 5.5590, | 5.1280 , |
|  | 10, | 7.2650, | 6.5540, | 7.5200, | 6.4050, | 5.7330, | 5.9720, | 5.2940, | 5.2760, | 5.7140, | 6.0940 , |
|  | 11, | 7.6620, | 7.8060, | 8.0490, | 6.5540, | 6.6620, | 6.4900, | 6.9480, | 6.7270 , | 6.2590 , | 7.1960, |
|  | +gp, | 9.2230, | 8.1490, | 9.0920, | 8.0870, | 8.5840, | 8.0050, | 7.5150, | 8.0310, | 8.0100, | 8.5980, |
| 0 | SOPCOFAC, | .9769, | 1.0357, | 1.0194, | .9663, | .9634, | 1.0935, | 1.0043, | 1.2006, | 1.1296, | 1.1607, |


| YEAR, | 1976, | 1977, | 1978, | 1979, | 1980, | 1981, | 1982, | 1983, | 1984, | 1985, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 3 , | 1.0880, | 1.2230, | 1.4930, | 1.2200, | 1.2300, | 1.3100, | 1.3370, | 1.2080, | 1.4310, | 1.4010, |
| 4, | 1.6760, | 1.6410, | 2.3240, | 1.8800, | 2.1200, | 2.1300, | 1.8510, | 2.0290, | 1.9530, | 2.0320 , |
| 5, | 2.8780, | 2.6600, | 3.0680 , | 2.6200, | 3.3200, | 3.0000, | 2.9510, | 2.9650, | 2.4700, | 2.9650, |
| 6 , | 3.0810, | 3.7900 , | 3.7460, | 3.4000, | 4.2800, | 3.8100, | 3.5770, | 4.1430, | 3.8500 , | 3.5960 , |
| 7, | 4.2870, | 4.2390, | 4.9130, | 4.1800 , | 5.1600 , | 4.7500, | 4.9270, | 4.7240, | 5.1770, | 5.3360 , |
| 8, | 4.3520, | 5.5970, | 4.3680 , | 4.9500, | 6.4200 , | 5.2500, | 6.2430 , | 5.9010, | 6.3470, | 7.2020 , |
| 9, | 4.7900, | 5.3500, | 5.2760 , | 5.6900, | 6.8700 , | 5.9500, | 7.2320 , | 6.8110, | 7.8250, | 6.9660 , |
| 10, | 5.9120, | 5.9120, | 5.8320 , | 6.3800, | 7.0900, | 6.4300, | 7.2390, | 7.0510, | 6.7460, | 9.8620 , |

Table 2.5.5 (Continued)

| 11, | 6.6190, | 6.8370, | 6.0530, | 7.0200, | 7.9300, | 7.0000, | 8.3460, | 7.2480, | 8.6360, | 10.6700, |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $+9 p$, | 7.8940, | 7.7080, | 7.5760, | 8.6260, | 9.2150, | 8.9620, | 10.0410, | 10.0550, | 10.0980, | 11.9500, |  |
| 0 | SOPCOFAC, | 1.0680, | 1.0442, | 1.0049, | 1.0248, | .9937, | .9564, | .9632, | .9997, | .9991, | .9415, |


|  | YEAR, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AGE |  |  |  |  |  |  |  |  |  |  |
|  | 3 , | 1.7180, | 1.6090, | 1.5000, | 1.3090, | 1.2230, | 1.2400, | 1.2640, | 1.4080, | 1.5030, | 1.4560, |
|  | 4, | 1.9860, | 1.8350, | 1.9750, | 1.7350, | 1.6330, | 1.5680, | 1.6020, | 1.8600, | 1.9510, | 2.1770, |
|  | 5, | 2.6180, | 2.3950, | 1.9780, | 1.9070, | 1.8300, | 1.8640, | 2.0690, | 2.3230, | 2.2670, | 2.4200, |
|  | 6, | 3.2770, | 3.1820, | 2.9370, | 2.3730, | 2.0520, | 2.2110, | 2.5540, | 3.1310, | 2.9360, | 2.8950, |
|  | 7, | 4.1860, | 4.0670 , | 3.7980, | 3.8100, | 2.8660, | 2.6480, | 3.0570, | 3.7300, | 4.2140 , | 3.6510, |
|  | 8, | 5.5890, | 5.1490 , | 4.4190, | 4.6670, | 4.4740, | 3.3800, | 4.0780, | 4.3940, | 4.9710, | 5.0640 , |
|  | 9, | 6.0500 , | 5.5010, | 5.1150, | 5.5090, | 5.4240, | 4.8160, | 5.0120, | 5.2090, | 5.6570, | 5.4400, |
|  | 10, | 6.1500 , | 6.6260, | 6.7120 , | 5.9720, | 6.4690, | 5.5160, | 6.7680, | 6.5400, | 5.9500, | 6.1670, |
|  | 11, | 9.5360 , | 6.3430, | 9.0400 , | 6.9390, | 6.3430, | 6.4070, | 7.7540, | 8.4030, | 6.8910, | 7.0800, |
|  | +gp, | 10.2180, | 10.2440, | 9.3370, | 9.9360, | 8.2870, | 7.7290, | 8.2270, | 8.0500, | 9.1090 , | 7.5410, |
| 0 | SOPCOFAC, | .9419, | . 9620 , | .9928, | .9698, | .9789, | . 9940 , | 1.0497, | 1.0133, | 1.0244, | 1.0211, |

Table 2.5.6 Saithe in the Faroes. Proportion mature at age.

Table
5 Proportion mature at age

| YEAR, | 1961, | 1962, | 1963, | 1964, | 1965, |
| ---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  | .0400, | .0400, | .0400, | .0400, |
| 3, | .2600, | .2600, | .2600, | .2600, | .2600, |
| 4, | .5700, | .5700, | .5700, | .5700, | .5700, |
| 5, | .8200, | .8200, | .8200, | .8200, | .8200, |
| 6, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 7, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 8, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 9, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |


| YEAR, | 1966, | 1967, | 1968, | 1969, | 1970, | 1971, | 1972, | 1973, | 1974, | 1975, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 3. | . 0400 , | . 0400 , | . 0400 , | . 0400 , | . 0400 , | . 0400 , | . 0400 , | . 0400 , | . 0400 , | . 0400 , |
| 4, | . 2600 , | . 2600 , | . 2600, | . 2600 , | . 2600, | . 2600 , | . 2600 , | . 2600, | . 2600 , | . 2600, |
| 5, | . 5700, | . 5700 , | . 5700, | . 5700, | . 5700, | . 5700, | . 5700, | . 5700, | . 5700, | 5700, |
| 6. | . 8200, | . 8200 , | . 8200, | . 8200 , | . 8200 , | . 8200, | . 8200 , | . 8200 , | . 8200, | 8200, |
| 7, | . 9100 , | . 9100 , | . 9100 , | . 9100 , | . 9100 , | . 9100 , | . 9100 , | . 9100 , | . 9100 , | . 9100, |
| 8, | . 9800 , | . 9800 , | . 9800 , | . 9800 , | . 9800 , | . 9800 , | . 9800 , | . 9800 , | . 9800 , | . 9800 , |
| 9, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000 , | 1.0000, | 1.0000, | 1.0000, |
| 10, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 11, | 1.0000 , | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| +gp, | 1.0000 , | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |

1

| YEAR, | 1976, | 1977, | 1978, | 1979, | 1980, | 1981, | 1982, | 1983, | 1984, | 1985, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 3 , | . 0400 , | . 0400 , | . 0400 , | . 0400 , | . 0400 , | . 0400 , | . 0400 , | . 1100, | . 1300 , | . 1300 , |
| 4, | . 2600, | . 2600, | . 2600, | . 2600 , | . 2600 , | . 2600 , | . 2600 , | . 3400 , | . 3200 , | . 3400 , |
| 5, | . 5700, | . 5700, | . 5700, | . 5700, | . 5700, | . 5700, | . 5700, | . 7000 , | . 6000, | 7000, |
| 6, | . 8200 , | . 8200 , | . 8200 , | . 8200, | . 8200, | . 8200 , | . 8200 , | . 9300 , | . 9100, | . 8900 , |
| 7, | . 9100, | . 9100 , | . 9100 , | . 9100 , | . 9100 , | . 9100 , | . 9100, | . 9800 , | . 9900 , | . 9900 , |
| 8, | . 9800 , | . 9800 , | . 9800 , | . 9800 , | . 9800 , | . 9800 , | . 9800 , | 1.0000, | 1.0000, | 1.0000 , |
| 9 , | 1.0000, | 1.0000, | 1.0000, | 1.0000 , | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |

## Table 2.5.6 (Continued

| 10, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 11, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| $+g p$, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |


| YEAR, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 3, | .1600, | . 1500 , | . 1400 , | .1200, | .1100, | . 1100, | .1100, | .1300, | . 1400, | .1300, |
| 4, | . 3300 , | . 3000 , | . 3300 , | . 2800 , | . 2600 , | . 2500 , | . 2600 , | . 3000 , | . 3200 , | . 3700 , |
| 5, | .6300, | . 5800, | . 4900 , | . 4700 , | . 4500 , | . 4600 , | . 5100, | .5600, | .5500, | 5900, |
| 6 , | . 8600 , | . 8500, | . 8200, | . 7200 , | .6600, | .6900, | .7600, | . 8400 , | . 8200 , | .8100, |
| 7, | . 9600 , | . 9600 , | .9500, | .9500, | . 8900, | . 8700 , | . 9100, | .9500, | .9700, | . 9400 , |
| 8, | .9900, | .9900, | .9800, | .9900, | .9900, | . 9600, | .9800, | .9800, | .9900, | .9900, |
| 9, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | .9900, | 1.0000, | 1.0000, | 1.0000, | 1.0000 , |
| 10, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000 |
| 11, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| +gp, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |

Table 2.5.7 Saithe in the Faroes. Effort (fishing days) and catch at age (thousands) for the Cuba trawlrs.

|  | Effort <br> days | Age | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Year | $\mathbf{1 4}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{1 9 8 2}$ | 1805 | 0 | 984 | 275 | 516 | 107 | 47 | 37 | 34 | 14 | 12 | 9 | 17 |
| $\mathbf{1 9 8 3}$ | 1792 | 225 | 231 | 1052 | 312 | 116 | 85 | 73 | 15 | 31 | 32 | 2 | 36 |
| $\mathbf{1 9 8 4}$ | 1714 | 77 | 1780 | 328 | 762 | 182 | 49 | 19 | 3 | 8 | 17 | 2 | 5 |
| $\mathbf{1 9 8 5}$ | 1224 | 93 | 518 | 1196 | 249 | 313 | 41 | 16 | 3 | 6 | 12 | 4 | 1 |
| $\mathbf{1 9 8 6}$ | 1341 | 170 | 324 | 891 | 638 | 177 | 188 | 45 | 17 | 9 | 6 | 16 | 1 |
| $\mathbf{1 9 8 7}$ | 1762 | 239 | 943 | 798 | 633 | 237 | 125 | 65 | 15 | 10 | 1 | 3 | 4 |
| $\mathbf{1 9 8 8}$ | 1705 | 129 | 539 | 1706 | 599 | 244 | 102 | 67 | 16 | 2 | 2 | 3 | 4 |
| $\mathbf{1 9 8 9}$ | 1473 | 96 | 1096 | 931 | 1178 | 133 | 79 | 26 | 15 | 10 | 2 | 0 | 2 |
| $\mathbf{1 9 9 0}$ | 1820 | 44 | 477 | 1442 | 1395 | 768 | 71 | 19 | 8 | 8 | 3 | 2 | 1 |
| $\mathbf{1 9 9 1}$ | 1985 | 72 | 594 | 1035 | 837 | 528 | 258 | 31 | 29 | 21 | 11 | 0 | 0 |
| $\mathbf{1 9 9 2}$ | 1932 | 19 | 464 | 488 | 413 | 207 | 120 | 104 | 20 | 10 | 4 | 6 | 1 |
| $\mathbf{1 9 9 3}$ | 1649 | 144 | 559 | 906 | 326 | 174 | 103 | 77 | 46 | 10 | 7 | 0 | 0 |
| $\mathbf{1 9 9 4}$ | 1638 | 122 | 906 | 558 | 524 | 167 | 117 | 76 | 70 | 34 | 4 | 5 | 0 |
| $\mathbf{1 9 9 5}$ | 1872 | 79 | 299 | 957 | 392 | 242 | 82 | 41 | 30 | 23 | 13 | 2 | 3 |

Table 2.5.8 Saithe in the Faroes (Division Vb). XSA diagnostic output.

```
Lowestoft VPA Version 3.1
```

8-May-96 09:48:38

Extended Survivors Analysis

Saithe Faroes Vb (run: XSAANII5/X15)

CPUE data from file/users/fish/ifad/ifapwork/nwwg/sai_faro/FLEET.X15

Catch data for 35 years. 1961 to 1995. Ages 3 to 12.
Fleet, First, Last, First, Last, Alpha, Beta year, year, age, age
CUBA: CUBA TRAWL NO, 1982, 1995, 3, 11, .000, 1.000

Time series weights :

Tapered time weighting applied
Power $=3$ over 20 years

Catchability analysis :
Catchability dependent on stock size for ages < 4
Regression type $=C$
Minimum of 5 points used for regression Survivor estimates shrunk to the population mean for ages < 4

Catchability independent of age for ages $>=9$

Terminal population estimation :

Survivor estimates shrunk towards the mean $F$
of the final 5 years or the 3 oldest ages.
S.E. of the mean to which the estimates are shrunk $=$. 500

Minimum standard error for population
estimates derived from each fleet $=.300$

Prior weighting not applied

Tuning converged after 24 iterations

1

Regression weights

| , | . 751 , | . 820, | .877, | . 921, | . 954, | . 976, | .990, | .997, | 1.000, | 1.000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fishing mortalities |  |  |  |  |  |  |  |  |  |  |
| Age, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995 |
| 3, | . 021. | . 0.36, | . 021, | .017, | . 015, | . 044, | . 036 , | . 058 , | . 082, | . 030 |
| 4, | . 138 , | . 137 , | .088, | . 202, | .195, | . 389 , | . 260 , | . 244 , | . 246 , | . 170 |
| 5, | . 455 , | . 426, | . 349 , | . 225, | . 620, | .716, | . 575, | .507, | . 421 , | . 358 |
| 6, | . 754 , | . 576, | . 638 , | . 480 , | . 770 , | . 854 , | .661, | . 528, | . 522, | . 589 |
| 7. | . 440 , | . 454, | . 588 , | $.3{ }^{-}$ | . 766 , | .765, | . 562, | . 428 , | . 478 , | . 545 |
| 8, | . 746 , | .473, | 581, | . 528 , | . 403, | .601, | . 476 , | . 377 , | . 478 , | . 429 |
| 9. | . 874, | . 542 | -01, | . 338 ; | . 213, | .719, | . 508, | .439, | . 428 , | . 453 |
| 10, | . 541, | .831, | . 544, | . 333 , | .176, | . 821 , | . 527 , | . 369 , | .606, | . 532 |
| 11, | .637, | $\pm 50$, | .749, | . 365 , | . 430 , | .682, | . 564, | . 438 , | . 403 , | . 435 |

Table 2.5.8 Saithe in the Faroes (Division Vb). XSA diagnostic output. (Continued).
1.

XSA population numbers (Thousands)


| 1986 |  | 6 | 1.71E+04, | 1.35E+04 | $7.78 \mathrm{E}+03$ | $2.96 \mathrm{E}+03$ | $2.26 \mathrm{E}+03$ | $4.65 \mathrm{E}+02$ | 2.75E+02, | 1.57E+02 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1987 |  | 4.91E+04, | 5.02E+04, | 1. $22 \mathrm{E}+04$, | $7.03 \mathrm{E}+03$, | 3.00E+03, | 1.56E+03, | 8.79E+02, | 1.59E+02, | 1.31E+02 |
| 1988 |  | 4.52E+04, | 3.88E+04, | $3.58 \mathrm{E}+04$ | 6.53E+03, | 3.23E+03, | 1.56E+03, | 7.96E+02, | 4.19E+02, | $5.66 \mathrm{E}+01$ |
| 1989 |  | $2.97 \mathrm{E}+04$ | $3.62 \mathrm{E}+04$ | 2.91E+04 | 2.07E+04, | 2. | $1.47 \mathrm{E}+03$ | 7. | 3.24E+02, | 1.99E+02 |
| 1990 |  | $2.18 E+04$ | $2.39 \mathrm{E}+04$ | $2.42 \mathrm{E}+04$ | $1.90 \mathrm{E}+04$ | 1.05 E | 1.59E+03, | 7.10E+02, | 4.17E+02, | 1 |
| 1991 |  | $2.64 \mathrm{E}+04$ | 1. $76 \mathrm{E}+04$ | $1.61 \mathrm{E}+04$ | 1.07E+04, | 7.21E+03, | $3.99 \mathrm{E}+03$, | 8.73E+02, | 4.70E+02, | $2.86 \mathrm{E}+02$ |
| 1992 |  | 1. $69 \mathrm{E}+04$ | $2.07 \mathrm{E}+0$ | $9.76 \mathrm{E}+0$ | +03 | $72 \mathrm{E}+03$ | $2.74 \mathrm{E}+03$ | 0 | $3.48 \mathrm{E}+02$, | 1.69E+02 |
| 1993 |  | 2.60E+04, | 1.33E+04, | 1. $30 \mathrm{E}+04$ | 4.49E+03, | 2.72E+03, | 1.73E+03, | 1.40E+03, | 8.82E+02, | 1. $68 \mathrm{E}+02$ |
| 1994 |  | 9.65E+03, | 2.01E+04, | $8.56 \mathrm{E}+03$ | $6.43 \mathrm{E}+03$, | 2.17E+03, | 1.45E+03, | 9.74E+02, | $7.36 \mathrm{E}+02$, | $5.00 \mathrm{E}+02$ |
| 1995 |  | 1. $49 \mathrm{E}+04$, | $7.28 \mathrm{E}+03$ | 1. $29 \mathrm{E}+04$ | $4.60 \mathrm{E}+03$ | 3.12E+03 | +03 | $7.38 \mathrm{E}+02$ | 5. | 3. |

Estimated population abundance at 1st Jan 1996
$.00 \mathrm{E}+00,1.18 \mathrm{E}+04,5.03 \mathrm{E}+03,7.37 \mathrm{E}+03,2.09 \mathrm{E}+03,1.48 \mathrm{E}+03,5.87 \mathrm{E}+02,3.84 \mathrm{E}+02,2.50 \mathrm{E}+02$,

Taper weighted geometric mean of the VPA populations:

$$
2.45 \mathrm{E}+04,1.99 \mathrm{E}+04,1.39 \mathrm{E}+04,7.19 \mathrm{E}+03,3.35 \mathrm{E}+03,1.60 \mathrm{E}+03,8.17 \mathrm{E}+02,4.05 \mathrm{E}+02,2.05 \mathrm{E}+02,
$$

Standard exror of the weighted Log(VPA populations) :

1
.5409, .5639, .5316, .5616, .5080, .4289, .4079, .5131, .6200,

Log catchability residuals.

Fleet : CUBA: CUBA TRAWL NO

| Age | , | 1982, | 1983, | 1984, | 1985 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | , | 99.99, | . 70 , | -.30, | . 61 |  |  |  |  |  |  |
| 4 | , | .18, | -. 46 , | . 82 , | . 21 |  |  |  |  |  |  |
| 5 | , | -. 39. | -.10, | -. 46 , | . 63 |  |  |  |  |  |  |
| 6 | , | .60, | -.09, | -.08, | -. 22 |  |  |  |  |  |  |
| 7 | , | -.17, | -.07, | . 31 , | . 27 |  |  |  |  |  |  |
| 8 | , | -. 44 , | . 33, | -.11, | . 02 |  |  |  |  |  |  |
| 9 | , | -. 10, | . 97, | -.31, | -. 20 |  |  |  |  |  |  |
| 10 | , | . 03 , | -. 28 , | -1.37, | -1.27 |  |  |  |  |  |  |
| 11 | , | -.07, | .47, | -.21, | . 18 |  |  |  |  |  |  |
| Age | , | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995 |
| 3 | , | . 26 , | .60, | -.13, | . 08 , | -.99, | -.60, | -1.96, | .64, | 1.43, | . 18 |
| 4 | , | -. 20 , | -. 48 , | -.77, | . 21 , | -.43, | .10, | -. 34, | . 44 , | . 52, | . 26 |
| 5 | , | . 37, | .08, | -. 24, | -.55, | . 04, | . 07, | -.21, | . 24 , | .15, | . 12 |
| 6 | , | . 37 | .11, | . 19, | -. 21, | -. 04, | -. 03 , | -. 28 , | -. 06 , | . 06 , | . 00 |
| 7 | , | .05, | . 07 , | .11, | -.31, | .09, | . 01, | -. 33, | -.09, | . 12 , | . 03 |
| 8 | , | .64, | . 21, | . 09 , | .01, | -. 44 , | -. 07, | -.49, | -. 07 , | . 29 , | . 06 |
| 9 | , | . 96 , | . 28 , | .51, | -.34, | -. 92, | -.50, | -.07, | . 00 , | . 35 , | -. 11 |
| 10 | , | . 37. | . 65 , | -.35, | -.11, | -1.27, | . 10 , | -.07, | -.08, | . 63, | -. 04 |
| 11 |  | . 34, | . 27 , | -. 34, | -.01, | -.37, | . 21, | -. 03, | . 08, | . 20, | . 11 |

Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age , | 4, | 5, | 6, | 7, | 8, | 10, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean Log q, | -10.8045, | -9.9854, | -9.6308, | -9.7692, | -9.8910, | -10.0067, |
| $\mathrm{~S}, \mathrm{E}(\operatorname{Iog} \mathrm{g})$, | .4528, | .3155, | .2081, | .1866, | .3096, | .5213, |

Table 2.5.8 Saithe in the Faroes (Division Vb). XSA diagnostic output. (Continued).

Regression statistics :

| Age, | Slope , | t-value , | Intercept, | RSquare | No Pts, | Reg s.e, | Mean Log |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 , | 1.38, | -. 665, | 14.01, | . 25 , | 13, | . 97 , | -12.94, |
| Ages | with q | independent | of year c | ass stre | gth and | constant | w.r.t. ti |
| Age, | Slope , | t-value, | Intercept, | RSquare | No Pts, | Reg s.e, | Mean Q |
| 4, | 1.41, | -1.105, | 11.15, | .44, | 14, | .63, | -10.80, |
| 5, | 1.13, | -.559, | 10.04, | .65, | 14, | . 37, | -9.99, |
| 6 , | 1.11, | -. 848 , | 9.71, | . 86 , | 14. | . 23 , | -9.63, |
| 7, | .96, | . 379 , | 9.70, | . 90 , | 14, | . 19 , | -9.77, |
| 8, | 1.11, | -. 455 , | 10.18, | .62, | 14, | . 36 , | -9.89, |
| 9, | 1.17, | -. 351 , | 10.57, | . 31 , | 14, | . 64 , | -10.01, |
| 10, | .78, | . 665 , | 9.26, | .49, | 14, | . 52 , | -10.19, |
| 11, | .84, | 1.520, | 9.19, | . 90 , | 14, | . 19 , | -9.96, |

1
Terminal year survivor and $F$ summaries :
Age 3 Catchability dependent on age and year class strength
Year class $=1992$


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | S.e, | , | Ratio, |  |
| $5029 .$, | .33, | .52, | 3, | 1.577, | .170 |

Age 5 Catchability constant w.r.t. time and dependent on age
Year class $=1990$

Fleet,

| Estimated, | Int, | Ext, | Var, | N, Scaled, | Estimated |
| ---: | :--- | ---: | ---: | ---: | ---: |
| Survivors, | s.e, | s.e, | Ratio, | Weights, | F |
| $9456 .$, | .263, | .139, | .53, | 3, | .701, |
|  |  |  |  | .289 |  |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | $F$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | , | Ratio, |  |
| $7366 .$, | .24, | .28, | 4, | 1.182, | .358 |

Table 2.5.8 Saithe in the Faroes (Division Vb). XSA diagnostic output. (Continued).

Age 6 Catchability constant w.r.t. time and dependent on age


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | , | Ratio, |  |
| $2088 .$, | .20, | .14, | 5, | .708, | .589 |

Age 7 Catchability constant w.r.t. time and dependent on age

Year class $=1988$

| Fleet, |  | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | $\begin{gathered} \text { Var, } \\ \text { Ratio, } \end{gathered}$ |  | Scaled, Weights, | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CUBA: CUBA TRAWL | NO, | 1546., | .181, | . 068 , | . 37 , | 5, | . 765 , | 528 |
| F shrinkage mean | , | 1293., | . 50, |  |  |  | . 235 , | . 605 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | , | Ratio, |  |
| $1482 .$, | .18, | .07, | 6, | .361, | .545 |

1
Age 8 Catchability constant w.r.t. time and dependent on age

Year class = 1987


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | ---: | :--- |
| at end of year, | s.e, | s.e, | , | Ratio, |  |
| $587 .$, | .17, | .05, | 7, | .298, | .429 |

Age 9 Catchability constant w.r.t. time and dependent on age

```
Year class = 1986
```

| Fleet, |  | Estimated, Survivors, | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ | $\begin{aligned} & \text { Ext, } \\ & \text { s.e, } \end{aligned}$ | Var, <br> Ratio, |  | Scaled, Weights, | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CUBA: CUBA TRAWL | NO, | 389. | .177, | .089, | .50, | 7, | . 735 , | . 448 |
| F shrinkage mean | , | $371 .$, | . 50, |  |  |  | . 265 , | . 465 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | ---: | ---: | ---: | ---: | ---: |
| at end of year, | s.e, | s.e, | , | Ratio, |  |
| $384 .$, | .19, | .07, | 8, | .384, | .453 |

Table 2.5.8 Saithe in the Faroes (Division Vb). XSA diagnostic output. (Continued).


Table 2.5.9 Saithe in the Faroes. Fishing mortality (F) at age.


Table 2.5.10 Saithe in the Faroes (Division Vb). Stock in numbers at age, 1961-1995.

| Table | 10 Stock | number a | age (st | rt of ye |  |  | Numbers*10**-3 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | YEAR, | 1961, | 1962, | 1963, | 1964, | 1965, |  |  |  |  |  |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
|  | 3, | 9051. | 13669, | 22442, | 16207, | 22826, |  |  |  |  |  |
|  | 4 , | 7741. | 7245, | 10683, | 17818. | 12651, |  |  |  |  |  |
|  | 5, | 5645, | 5995, | 5441, | 8438, | 12862, |  |  |  |  |  |
|  | 6 , | 3882, | 4185, | 4350, | 4147, | 5546, |  |  |  |  |  |
|  | 7, | 2681, | 2814, | 2978, | 3186, | 2837, |  |  |  |  |  |
|  | 8, | 1747, | 1999, | 2045, | 2071, | 2091, |  |  |  |  |  |
|  | 9, | 1385, | 1313, | 1518, | 1491, | 1312, |  |  |  |  |  |
|  | 10, | 1036, | 1029, | 958, | 1086, | 1059, |  |  |  |  |  |
|  | 11, | 568, | 774, | 740, | 642, | 753, |  |  |  |  |  |
|  | +gp, | 1033, | 1141, | 2148, | 1111, | 1368, |  |  |  |  |  |
| 0 | TOTAL, | 34768, | 40163, | 53303, | 56199, | 63305, |  |  |  |  |  |
| YEAR, | 1966, | 1967, | 1968, | 1969, | 1970, | 1971, | 1972, | 1973, | 1974, | 1975 |  |
|  | AGE |  |  |  |  |  |  |  |  |  |  |
|  | 3, | 21863, | 26926, | 21550, | 40867, | 34212, | 37351, | 33711, | 23315, | 18897, | 16679, |
|  | 4, | 17787, | 17459, | 21506, | 17088, | 32382, | 26703, | 27996, | 25145, | 16813, | 12301, |
|  | 5, | 9588, | 13169, | 13574, | 16080, | 12103, | 20561, | 18862, | 21316, | 14929, | 10032, |
|  | 6, | 8985, | 6764, | 9548, | 10103, | 11089, | 8500, | 11780, | 13101, | 11050, | 8593, |
|  | 7, | 3668, | 5831, | 4821, | 6826, | 6993, | 7742, | 6049, | 7164, | 7580, | 6528, |
|  | 8, | 1861, | 2274, | 3695, | 3451, | 4577, | 4912, | 5589, | 3569, | 4387, | 4938, |
|  | 9, | 1344, | 1183, | 1433, | 2433, | 2293, | 3087, | 3597, | 3395, | 2295, | 3012, |
|  | 10, | 797, | 834, | 772, | 944, | 1467, | 1591, | 2233, | 2025, | 2282, | 1546, |
|  | 11, | 685, | 467, | 511, | 516, | 556 , | 983, | 1154, | 1156, | 1293, | 1561, |
|  | +gp, | 982, | 670, | 1068, | 848, | 850, | 979, | 729, | 994, | 1731, | 2400, |
| 0 | TOTAL, | 67561, | 75576, | 78479, | 99157, | 106522, | 112409, | 111700, | 101180, | 81256, | 67590, |


| YEAR, | 1976, | 1977, | 1978, | 1979, | 1980, | 1981, | 1982, | 1983, | 1984, | 1985, |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AGE |  |  |  |  |  |  |  |  |  |  |
|  | 3, | 18821, | 12987, | 8491, | 8740, | 12394, | 33352, | 14773, | 41068, | 25969, | 22248, |
|  | 4, | 11790, | 12534, | 9177, | 6399, | 6896, | 9246, | 26934, | 11745, | 31377, | 20929, |
|  | 5, | 7030, | 6742, | 7604, | 5936, | 4395, | 4852, | 5938, | 18364, | 8618, | 15676, |
|  | 6 , | 4774, | 4199, | 3679, | 4655, | 3647, | 2947, | 3277, | 3962, | 10464, | 4921, |
|  | 7, | 5281, | 2778, | 2273, | 2516, | 2877, | 2377, | 1569, | 1675, | 2029, | 4863, |
|  | 8 , | 4399, | 3530, | 1580, | 1523, | 1532, | 1698, | 1124, | 941, | 851, | 869, |
|  | 9, | 3397, | 3022, | 2250, | 860, | 873, | 997, | 726, | 543, | 464, | 450, |
|  | 10, | 2193, | 2358, | 2023, | 1420, | 481, | 523, | 506, | 327, | 198, | 234, |
|  | 11, | 1092, | 1594, | 1624, | 1229, | 735, | 239, | 254, | 319, | 179, | 115, |
|  | +gp, | 2214, | 1924, | 2120, | 2288, | 2925, | 2624, | 2579, | 1745, | 689, | 1207, |
| 0 | TOTAL, | 60991, | 51666, | 40822, | 35567, | 36753, | 58854, | 57681, | 80688, | 80837, | 71511, |


|  | YEAR, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995, | 1996, | GMST 61-93 | AMST |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AGE |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 3, | 62558, | 49090, | 45165, | 29705, | 21796, | 26377, | 16903, | 25996, | 9653, | 14884, | 0 , | 22566, | 25333, |
|  | 4, | 17108, | 50162, | 38761, | 36195, | 23913, | 17579, | 20663, | 13343, | 20091, | 7279, | 11822, | 16868, | 19275, |
|  | 5, | 13525, | 12199, | 35828, | 29065, | 24222, | 16106, | 9755, | 13044, | 8558, | 12866, | 5029, | 11240, | 12954, |
|  | 6, | 7782, | 7026, | 6525, | 20688, | 19001, | 10664, | 6445, | 4494, | 6431, | 4598, | 7366 , | 6648, | 7599, |
|  | 7, | 2960, | 2997 , | 3232, | 2823, | 10481, | 7206, | 3716, | 2725, | 2170, | 3123, | 2088, | 3814, | 4305, |
|  | 8, | 2264, | 1561, | 1558, | 1470, | 1594, | 3988, | 2745, | 1735, | 1454, | 1102, | 1482, | 2228, | 2551, |
|  | 9, | 465, | 879, | 796, | 713, | 710, | 873, | 1790, | 1396. | 974, | 738, | 587, | 1318, | 1585, |
|  | 10, | 275, | 159, | 419, | 324, | 417. | 470, | 348, | 882, | 736, | 520, | 384, | 774, | 1006, |
|  | 11. | 157, | 131, | 57, | 199, | 190, | 286, | 169, | 168, | 500, | 329, | 250, | 459, | 639, |
|  | +gp, | 366, | 293, | 124. | 140, | 248, | 260, | 289, | 160, | 162, | 366 , | 368, |  |  |
| 0 | TOTAL, | 107460, | 124497, | 132465, | 121322, | 102570, | 83808, | 62823, | 63944, | 50728, | 45804, | 29377, |  |  |

Table 2.5.11 Saithe in the Faroes (Division Vb). Summary of population statistics, 1961-1995.
Table 16 Summary (without sop correction)


Table 2.5.12

Saithe in the Faroes Grounds (Fishing Area Vb)
Prediction with management option table: Input data

| Year: 1996 |  |  |  |  |  |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| Age | Stock <br> size | Natural <br> mortality | Maturity <br> ogive | Prop.of F <br> bef.spaw. | Prop.of M <br> bef.spaw. | Weight <br> in stock | Exploit. <br> pattern | Weight <br> in catch |  |
| 3 | 16850.000 | 0.2000 | 0.1300 | 0.0000 | 0.0000 | 1.456 | 0.0560 | 1.456 |  |
| 4 | 11822.000 | 0.2000 | 0.3400 | 0.0000 | 0.0000 | 2.060 | 0.2180 | 2.060 |  |
| 5 | 5029.000 | 0.2000 | 0.6400 | 0.0000 | 0.0000 | 2.709 | 0.4260 | 2.709 |  |
| 6 | 7366.000 | 0.2000 | 0.8400 | 0.0000 | 0.0000 | 3.188 | 0.5430 | 3.188 |  |
| 7 | 2088.000 | 0.2000 | 0.9500 | 0.0000 | 0.0000 | 3.886 | 0.4810 | 3.886 |  |
| 8 | 1482.000 | 0.2000 | 0.9900 | 0.0000 | 0.0000 | 4.794 | 0.4250 | 4.794 |  |
| 9 | 587.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.018 | 0.4370 | 6.018 |  |
| 10 | 384.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.366 | 0.4980 | 6.366 |  |
| 11 | 250.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.206 | 0.4230 | 7.206 |  |
| $12+$ | 368.000 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.072 | 0.4230 | 8.072 |  |
| Unit | Thousands | - | - | - | - | Kilograms | - | Kilograms |  |


| Year: 1997 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Recruitment | Natural mortality | Maturity ogive | Prop. of $F$ bef.spaw. | Prop. of M bef.spaw. | Weight in stock | Exploit. pattern | Weight in catch |
| 3 | 16850.000 | 0.2000 | 0.1300 | 0.0000 | 0.0000 | 1.456 | 0.0560 | 1.456 |
| 4 | . | 0.2000 | 0.3000 | 0.0000 | 0.0000 | 2.060 | 0.2180 | 2.060 |
| 5 | - | 0.2000 | 0.5600 | 0.0000 | 0.0000 | 2.709 | 0.4260 | 2.709 |
| 6 | . | 0.2000 | 0.8100 | 0.0000 | 0.0000 | 3.188 | 0.5430 | 3.188 |
| 7 |  | 0.2000 | 0.9400 | 0.0000 | 0.0000 | 3.886 | 0.4810 | 3.886 |
| 8 | - | 0.2000 | 0.9900 | 0.0000 | 0.0000 | 4.794 | 0.4250 | 4.794 |
| 9 |  | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.018 | 0.4370 | 6.018 |
| 10 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.366 | 0.4980 | 6.366 |
| 11 |  | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.206 | 0.4230 | 7.206 |
| 12+ | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.072 | 0.4230 | 8.072 |
| Unit | Thousands | - | - | - | - | Kilograms | - | Kilograms |


| Year: 1998 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Recruitment | Natural mortality | Maturity ogive | Prop. of F bef.spaw. | Prop. of M bef.spaw. | Weight <br> in stock | Exploit. pattern | Weight <br> in catch |
| 3 | 16850.000 | 0.2000 | 0.1300 | 0.0000 | 0.0000 | 1.456 | 0.0560 | 1.456 |
| 4 | . | 0.2000 | 0.3000 | 0.0000 | 0.0000 | 2.060 | 0.2180 | 2.060 |
| 5 | . | 0.2000 | 0.5600 | 0.0000 | 0.0000 | 2.709 | 0.4260 | 2.709 |
| 6 | . | 0.2000 | 0.8100 | 0.0000 | 0.0000 | 3.188 | 0.5430 | 3.188 |
| 7 | - | 0.2000 | 0.9400 | 0.0000 | 0.0000 | 3.886 | 0.4810 | 3.886 |
| 8 | * | 0.2000 | 0.9900 | 0.0000 | 0.0000 | 4.794 | 0.4250 | 4.794 |
| 9 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.018 | 0.4370 | 6.018 |
| 10 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.366 | 0.4980 | 6.366 |
| 11 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.206 | 0.4230 | 7.206 |
| 12+ | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.072 | 0.4230 | 8.072 |
| Unit | Thousands | - | - | - | - | Kilograms | - | Kilograms |

Notes: Run name : MANJAK05
Date and time: 19MAY96:16:58

Table 2.5.13

Saithe in the Faroes Grounds (Fishing Area Vb)
Prediction with management option table

| Year: 1996 |  |  |  |  | Year: 1997 |  |  |  |  | Year: 1998 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\text { F }}{\text { Factor }}$ | Reference F | Stock biomass | Sp.stock biomass | Catch in weight | Factor | Reference F | Stock biomass | Sp.stock biomass | Catch in weight | Stock biomass | Sp.stock biomass |
| $1.0000$ | $0.4186$ | $111961$ | $65405$ | $27459$ | 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000 1.8000 1.9000 2.0000 | 0.0000 0.0419 0.0837 0.1256 0.1674 0.2093 0.2512 0.2930 0.3349 0.3767 0.4186 0.4605 0.5023 0.5442 0.5860 0.6279 0.6698 0.7116 0.7535 0.7953 0.8372 | 110547 | $\begin{aligned} & 58619 \\ & 58619 \\ & 58619 \\ & 58619 \\ & 58619 \\ & 58619 \\ & 58619 \\ & 58619 \\ & 58619 \\ & 58619 \\ & 58619 \\ & 58619 \\ & 58619 \\ & 58619 \\ & 58619 \\ & 58619 \\ & 58619 \\ & 58619 \\ & 58619 \\ & 58619 \\ & 58619 \end{aligned}$ | $\begin{array}{r} 0 \\ 3054 \\ 5991 \\ 8816 \\ 11535 \\ 14151 \\ 16669 \\ 19093 \\ 21427 \\ 23674 \\ 25839 \\ 27924 \\ 29934 \\ 31870 \\ 33737 \\ 35537 \\ 37273 \\ 38947 \\ 40562 \\ 42120 \\ 43624 \end{array}$ | $\begin{array}{r} 139134 \\ 135780 \\ 132558 \\ 129460 \\ 126483 \\ 123619 \\ 120866 \\ 118218 \\ 115670 \\ 113219 \\ 110860 \\ 108589 \\ 106403 \\ 104298 \\ 102271 \\ 100318 \\ 98437 \\ 96624 \\ 94876 \\ 93192 \\ 91567 \end{array}$ | $\begin{aligned} & 80656 \\ & 77882 \\ & 75225 \\ & 72678 \\ & 70237 \\ & 67897 \\ & 65654 \\ & 63503 \\ & 61440 \\ & 59462 \\ & 57565 \\ & 55745 \\ & 53999 \\ & 52324 \\ & 50716 \\ & 49173 \\ & 47692 \\ & 46270 \\ & 44904 \\ & 43593 \\ & 42334 \end{aligned}$ |
| - | - | Tonnes | Tonnes | Tonnes | - | - | Tonnes | Tonnes | Tonnes | Tonnes | Tonnes |
| Notes: Run name  : MANJAK05 <br>  Date and time  : 19 MAY96:16:58 <br>  Computation of ref. : Simple mean, age $4-8$  <br>  Basis for 1996  $:$ F factors |  |  |  |  |  |  |  |  |  |  |  |

Table 2.5.14

Saithe in the Faroes Grounds (Fishing Area Vb)
Yield per recruit: Input data

| Age | Recruitment | Natural mortality | Maturity ogive | Prop. of $F$ bef.spaw. | Prop. of M bef.spaw. | Weight in stock | Exploit. pattern | Weight in catch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1.000 | 0.2000 | 0.1300 | 0.0000 | 0.0000 | 1.304 | 0.0560 | 1.304 |
| 4 | . | 0.2000 | 0.3000 | 0.0000 | 0.0000 | 1.851 | 0.2180 | 1.851 |
| 5 | - | 0.2000 | 0.5600 | 0.0000 | 0.0000 | 2.535 | 0.4260 | 2.535 |
| 6 | - | 0.2000 | 0.8100 | 0.0000 | 0.0000 | 3.313 | 0.5430 | 3.313 |
| 7 | - | 0.2000 | 0.9400 | 0.0000 | 0.0000 | 4.200 | 0.4810 | 4.200 |
| 8 | - | 0.2000 | 0.9900 | 0.0000 | 0.0000 | 5.118 | 0.4250 | 5.118 |
| 9 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 5.866 | 0.4370 | 5.866 |
| 10 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 6.550 | 0.4980 | 6.550 |
| 11 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.403 | 0.4230 | 7.403 |
| 12+ | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.946 | 0.4230 | 8.946 |
| Unit | Numbers | - | - | - | - | Kilograms | - | Kilograms |

Notes: Run name : YLDANI01
Date and time: 07MAY96:21:41

Saithe in the Faroes Grounds (Fishing Area Vb)
Yield per recruit: Summary table

|  |  |  |  |  |  | 1 January |  | Spawning time |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F <br> Factor | $\begin{array}{\|c} \text { Reference } \\ F \end{array}$ | Catch in numbers | Catch in weight | Stock <br> size | Stock biomass | $\begin{gathered} \text { Sp. stock } \\ \text { size } \end{gathered}$ | Sp.stock biomass | Sp.stock size | Sp.stock biomass |
| 0.0000 | 0.0000 | 0.000 | 0.000 | 5.517 | 23141.420 | 3.644 | 19720.916 | 3.644 | 19720.916 |
| 0.1000 | 0.0419 | 0.142 | 643.952 | 4.807 | 18020.571 | 2.956 | 14665.771 | 2.956 | 14665.771 |
| 0.2000 | 0.0837 | 0.241 | 1006.856 | 4.315 | 14677.193 | 2.485 | 11383.920 | 2.485 | 11383.920 |
| 0.3000 | 0.1256 | 0.314 | 1219.753 | 3.955 | 12370.719 | 2.144 | 9135.173 | 2.144 | 9135.173 |
| 0.4000 | 0.1674 | 0.370 | 1347.883 | 3.680 | 10710.810 | 1.888 | 7529.527 | 1.888 | 7529.527 |
| 0.5000 | 0.2093 | 0.414 | 1426.072 | 3.463 | 9474.885 | 1.689 | 6344.703 | 1.689 | 6344.703 |
| 0.6000 | 0.2512 | 0.449 | 1473.888 | 3.287 | 8528.286 | 1.530 | 5446.312 | 1.530 | 5446.312 |
| 0.7000 | 0.2930 | 0.479 | 1502.766 | 3.142 | 7785.678 | 1.401 | 4749.259 | 1.401 | 4749.259 |
| 0.8000 | 0.3349 | 0.504 | 1519.607 | 3.020 | 7190.902 | 1.294 | 4197.606 | 1.294 | 4197.606 |
| 0.9000 | 0.3767 | 0.525 | 1528.681 | 2.916 | 6705.825 | 1.205 | 3753.411 | 1.205 | 3753.411 |
| 1.0000 | 0.4186 | 0.543 | 1532.691 | 2.825 | 6303.847 | 1.129 | 3390.253 | 1.129 | 3390.253 |
| 1.1000 | 0.4605 | 0.560 | 1533.377 | 2.746 | 5965.979 | 1.063 | 3089.299 | 1.063 | 3089.299 |
| 1.2000 | 0.5023 | 0.574 | 1531.881 | 2.676 | 5678.383 | 1.007 | 2836.856 | 1.007 | 2836.856 |
| 1.3000 | 0.5442 | 0.587 | 1528.959 | 2.614 | 5430.790 | 0.957 | 2622.785 | 0.957 | 2622.785 |
| 1.4000 | 0.5860 | 0.598 | 1525.119 | 2.558 | 5215.453 | 0.913 | 2439.457 | 0.913 | 2439.457 |
| 1.5000 | 0.6279 | 0.609 | 1520.705 | 2.507 | 5026.441 | 0.874 | 2281.046 | 0.874 | 2281.046 |
| 1.6000 | 0.6698 | 0.619 | 1515.952 | 2.461 | 4859.148 | 0.839 | 2143.047 | 0.839 | 2143.047 |
| 1.7000 | 0.7116 | 0.627 | 1511.019 | 2.419 | 4709.960 | 0.807 | 2021.931 | 0.807 | 2021.931 |
| 1.8000 | 0.7535 | 0.636 | 1506.019 | 2.380 | 4575.999 | 0.779 | 1914.904 | 0.779 | 1914.904 |
| 1.9000 | 0.7953 | 0.643 | 1501.024 | 2.344 | 4454.958 | 0.753 | 1819.731 | 0.753 | 1819.731 |
| 2.0000 | 0.8372 | 0.650 | 1496.087 | 2.310 | 4344.965 | 0.729 | 1734.608 | 0.729 | 1734.608 |
| - | - | Numbers | Grams | Numbers | Grams | Numbers | Grams | Numbers | Grams |

Notes: Run name : YLDANI01
Date and time : O7MAY96:21:41
Computation of ref. F: Simple mean, age $4-8$
$\mathrm{F}-0.1$ factor $\quad: 0.4287$
F-max factor : 1.0754
$\mathrm{F}-0.1$ reference $F \quad: 0.1794$
F-max reference $F: 0.4502$
Recruitment : Single recruit

Table 3.2.1 Nominal catch (tonnes) of SAITHE in Division Va, by countries, 1981-1995, as officially reported to ICES.

| Country | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 19 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Belgium | 532 | 201 | 224 | 269 | 158 | 218 | 217 | 2 |
| Faroe Islands | 3,545 | 3,582 | 2,138 | 2,044 | 1,778 | 783 | 2,139 | 2,5 |
| France | - | 23 | - | - | - | - | - |  |
| Iceland | 54,921 | 65,124 | 55,904 | 60,406 | 55,135 | 63,867 | 78,175 | 74,3 |
| Norway | 3 | 1 | + | - | 1 | - | - |  |
| UK (Engl. and Wales) | - | - | - | - | 29 | - | - |  |
| Total | 59,001 | 68,931 | 58,266 | 62,719 | 57,101 | 64,868 | 80,531 | 77,2 |
| Working Group estimate | - | - | - | - | - | $66,376^{2 /}$ | - |  |


| Country | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | $1995^{\top 1}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Belgium | 369 | 190 | 236 | 195 | 104 | 30 | - |
| Faroe Islands | 2,246 | 2,905 | 2,690 | 1,570 | 1,562 | 975 | 1,184 |
| France | - | - | - | - | - | - |  |
| Iceland | 79,796 | 95,032 | 99,390 | 77,832 | 69,982 | 63,333 | 47,344 |
| Norway | - | - | - | - | - | - | - |
| UK (Engl. and Wales) | - | - | - | - | - | - | - |
| Total | 82,411 | 98,127 | 102,316 | 79,597 | 71,648 | 64,338 | 48,528 |
| Working Group estimate | - | $102,737^{3 /}$ | - |  |  |  |  |

1) Provisional.
2) Additional catch by Faroe Islands of $1,508 \mathrm{t}$ included.
3) Additional catch by Iceland of 451 t included.

Table 3.2.2

Run title : Saithe Iceland Va (run: SVPBS06/V06)
At 4-May-96 12:06:57


| Table 1 | Catch numbers at age Numbers*10**-3 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 3, | 3108, | 956, | 1318, | 315, | 143, | 198, | 242, | 657, | 702, | 1567, |
| 4, | 1400, | 5135, | 5067, | 4313. | 1692, | 874, | 2928, | 1083, | 2955, | 1847, |
| 5. | 4170, | 4428, | 6619, | 8471, | 5471, | 3613, | 3844, | 2841, | 1770, | 2652, |
| 6, | 2665, | 5409, | 3678, | 7309, | 10112, | 6844, | 4355, | 2252, | 2603, | 1802, |
| 7, | 1550, | 2915, | 2859, | 1794, | 6174, | 10772, | 3884, | 2247, | 1377, | 2364, |
| 8, | 1116, | 1348, | 1775, | 1928, | 1816, | 3223, | 4046, | 2314, | 1243, | 903, |
| 9, | 628, | 661, | 845, | 848, | 1087, | 858, | 1290, | 3671, | 1263, | 573, |
| 10, | 1549, | 496, | 226, | 270, | 380, | 838, | 350, | 830, | 2009, | 481, |
| 11, | 216, | 498, | 270, | 191, | 151, | 228, | 196, | 223, | 454, | 520, |
| 12, | 51, | 58, | 107, | 135, | 55, | 40, | 56, | 188, | 158, | 106, |
| 13, | 30, | 27, | 24, | 76, | 76, | 6, | 54, | 81, | 188, | 35, |
| 14, | 14, | 48, | 1, | 10, | 37, | 5, | 15, | 12, | 82, | 13, |
| +gp, | 95, | 22, | 1, | 8, | 42, | 42, | 1, | 1, | 51, | 17, |
| TOTALNUM, | 16592, | 22001, | 22790, | 25668, | 27236, | 27541, | 21261, | 16400, | 14855, | 12880, |
| TONSLAND, | 66376, | 80559, | 77247, | 82425, | 98130, | 102737, | 79597, | 71648, | 64338, | 48528, |
| SOPCOF \%, | 100, | 100, | 100, | 100, | 100, | 100, | 100, | 100, | 100, | 100, |

## Table 3.2.3

Run title : Saithe Iceland Va (run: SVPBS06/V06)
At 4-May-96 12:06:57

| Table 2 YEAR, | $\begin{aligned} & \text { Catch } \\ & \text { 1976, } \end{aligned}$ | weights at 1977, | $\begin{gathered} \text { age }(\mathrm{kg}) \\ 1978, \end{gathered}$ | 1979, | 1980, | 1981, | 1982, | 1983, | 1984, | 1985, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 3, | 1.1200, | 1.1200, | 1.1200, | 1.1200, | 1.4280, | 1.5850, | 1.5470, | 1.5300, | 1.6530, | 1.6090, |
| 4, | 1.7600, | 1.7600, | 1.7600, | 1.7600, | 1.9830, | 2.0370, | 2.1940 , | 2.2210, | 2.4320, | 2.1720, |
| 5, | 2.7300, | 2.7300, | 2.7300, | 2.7300, | 2.6670, | 2.6960, | 3.0150, | 3.1710, | 3.3300, | 3.1690 , |
| 6, | 4.2900, | 4.2900, | 4.2900, | 4.2900, | 3.6890, | 3.5250, | 3.1830 , | 4.2700, | 4.6810, | 3.9220, |
| 7. | 5.5400, | 5.5400, | 5.5400, | 5.5400, | 5.4090, | 4.5410, | 5.1140, | 4.1070, | 5.4660, | 4.6970, |
| 8, | 7.2700, | 7.2700, | 7.2700, | 7.2700, | 6.3210, | 6.2470, | 6.2020, | 5.9840, | 4.9730, | 6.4110, |
| 9, | 8.4200, | 8.4200, | 8.4200, | 8.4200, | 7.2130, | 6.9910 , | 7.2560, | 7.5650, | 7.4070, | 6.4920, |
| 10, | 9.4100 , | 9.4100, | 9.4100, | 9.4100, | 8.5650, | 8.2020, | 7.9220, | 8.6730, | 8.1790, | 8.3460 , |
| 11, | 10.0000, | 10.0000, | 10.0000, | 10.0000, | 9.1470, | 9.5370, | 8.9240, | 8.8010, | 8.7700, | 9.4010, |
| 12, | 10.5600, | 10.5600, | 10.5600, | 10.5600, | 9.6170, | 9.0890, | 10.1340, | 9.0390, | 8.8310, | 10.3350, |
| 13. | 11.8700, | 11.8700, | 11.8700, | 11.8700, | 10.0660, | 9.3510, | 9.4470, | 11.1380, | 11.0100, | 11.0270, |
| 14, | 13.1200, | 13.1200, | 13.1200, | 13.1200, | 11.0410, | 10.2250, | 10.5350, | 9.8180, | 11.1270, | 10.6440, |
| +gp, | 14.0000, | 14.0000, | 14.0000, | 13.1200, | 13.0000, | 13.0000, | 13.0000, | 13.0000, | 13.0000, | 13.0000, |
| SOPCOFAC, | .9706, | .9769, | .9691, | .9840, | .9989, | .9933, | .9922, | .9915, | .9975, | .9929, |


| Table YEAR, | $\begin{aligned} & \text { Catch } \\ & 1986, \end{aligned}$ | $\begin{aligned} & \text { ights a } \\ & \text { 1987, } \end{aligned}$ | $\begin{aligned} & \text { age }(\mathrm{kg} \\ & \text { 1988, } \end{aligned}$ | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 3 , | 1.4500, | 1.5160, | 1.2610, | 1.4030, | 1.6470, | 1.2240, | 1.2690, | 1.3810, | 1.4440, | 1.3700, |
| 4, | 2.1900 , | 1.7150, | 2.0170, | 2.0210, | 1.9830, | 1.9390, | 1.9090, | 2.1430, | 1.8360, | 1.9770, |
| 5, | 2.9590 , | 2.6700, | 2.5130, | 2.1940, | 2.5660, | 2.4320, | 2.5780, | 2.7420, | 2.6490, | 2.7700, |
| 6 , | 4.4020 , | 3.8390, | 3.4760, | 3.0470, | 3.0210 , | 3.1600, | 3.2880, | 3.6360, | 3.5120, | 3.7230, |
| 7, | 5.4880 , | 5.0810, | 4.7190, | 4.5050, | 4.0770, | 3.6340, | 4.1500, | 4.3980, | 4.9060, | 4.6210, |
| 8, | 6.4060, | 6.1850, | 5.9320, | 5.8890, | 5.7440, | 4.9670, | 4.8650, | 5.4210, | 5.5390, | 5.8540, |
| 9, | 7.5700 , | 7.3300, | 7.5230, | 7.1720, | 7.0380, | 6.6290, | 6.1680, | 5.3190, | 6.8180, | 6.4160, |
| 10, | 6.4870, | 8.0250, | 8.4390, | 8.8520, | 7.5640, | 7.7040, | 7.9260, | 7.0060, | 6.3740, | 7.3560, |
| 11, | 9.6160 , | 7.9740, | 8.7480, | 10.1700, | 8.8540, | 9.0610, | 8.3490, | 8.0700, | 8.3410, | 6.8150, |
| 12, | 10.4620, | 9.6150, | 9.5590, | 10.3920, | 10.6450, | 9.1170, | 9.0290, | 10.0480, | 9.7700, | 8.3120, |
| 13, | 11.7470, | 12.2460, | 10.8240, | 12.5220, | 11.6740, | 10.9220, | 11.5740, | 9.1060 , | 10.5280, | 9.1190, |
| 14, | 11.9020, | 11.6560, | 14.0990, | 11.9230, | 11.4310, | 11.3420, | 9.4660, | 11.5910, | 11.2570, | 11.9100, |
| +gp, | 13.0000, | 13.0000, | 13.0000, | 13.0000, | 13.0000, | 13.0000, | 13.0000, | 13.0000, | 13.0000, | 13.0000, |
| SOPCOFAC, | .9987, | 1.0005, | .9999, | .9998, | 1.0005, | .9999, | 1.0002, | 1.0013, | 1.0018, | 1.0027, |

Table 3.2.4 Icelandic Saithe. Maturity at age, data and fitted values.
Fitted:

| Year/age | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1980 | 0.1168 | 0.164 | 0.3355 | 0.6483 | 0.7869 | 0.9033 | 0.9568 |
| 1981 | 0.1313 | 0.2354 | 0.3135 | 0.5403 | 0.811 | 0.8958 | 0.9561 |
| 1982 | 0.1275 | 0.2635 | 0.4174 | 0.5153 | 0.7323 | 0.909 | 0.9524 |
| 1983 | 0.1085 | 0.2539 | 0.4543 | 0.6252 | 0.7122 | 0.8643 | 0.9588 |
| 1984 | 0.0865 | 0.2207 | 0.442 | 0.6597 | 0.7952 | 0.8521 | 0.9368 |
| 1985 | 0.1069 | 0.1807 | 0.3973 | 0.6483 | 0.8186 | 0.9004 | 0.9306 |
| 1986 | 0.0588 | 0.2178 | 0.3392 | 0.6055 | 0.811 | 0.9131 | 0.9546 |
| 1987 | 0.0326 | 0.1269 | 0.3933 | 0.5444 | 0.7813 | 0.909 | 0.9607 |
| 1988 | 0.0754 | 0.0727 | 0.2528 | 0.6015 | 0.7356 | 0.8927 | 0.9588 |
| 1989 | 0.1101 | 0.1595 | 0.1543 | 0.4405 | 0.7784 | 0.8662 | 0.9517 |
| 1990 | 0.1257 | 0.2236 | 0.3064 | 0.2981 | 0.647 | 0.891 | 0.9378 |
| 1991 | 0.1101 | 0.2507 | 0.4013 | 0.507 | 0.4972 | 0.8101 | 0.9501 |
| 1992 | 0.1332 | 0.2236 | 0.4379 | 0.6094 | 0.7053 | 0.6971 | 0.9085 |
| 1993 | 0.1085 | 0.2635 | 0.4013 | 0.6445 | 0.7841 | 0.8478 | 0.8427 |
| 1994 | 0.0977 | 0.2207 | 0.4543 | 0.6094 | 0.8085 | 0.8942 | 0.9284 |
| 1995 | 0.0977 | 0.2013 | 0.3973 | 0.6597 | 0.7841 | 0.9076 | 0.9517 |

Data:

| Year/age | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1980 | 0 | 0.05 | 0.21 | 0.53 | 0.9 | 0.98 | 0.99 |
| 1981 | 0.04 | 0.06 | 0.32 | 0.6 | 0.76 | 0.97 | 1 |
| 1982 | 0 | 0 | 0.31 | 0.53 | 0.77 | 0.84 | 1 |
| 1983 | 0.33 | 0.5 | 0.45 | 0.86 | 0.54 | 0.97 | 0.97 |
| 1984 | 0.39 | 0.14 | 0.4 | 0.77 | 0.91 | 0.79 | 0.99 |
| 1985 | 0 | 0.76 | 0.62 | 0.65 | 0.67 | 0.82 | 0.84 |
| 1986 | 0 | 0.01 | 0.1 | 0.71 | 0.9 | 0.79 | 0.82 |
| 1987 | 0 | 0 | 0.13 | 0.52 | 0.73 | 0.97 | 0.98 |
| 1988 | 0 | 0.01 | 0.09 | 0.2 | 0.79 | 0.79 | 1 |
| 1989 | 0 | 0.04 | 0.13 | 0.38 | 0.79 | 0.97 | 0.99 |
| 1990 | 0 | 0.1 | 0.36 | 0.45 | 0.75 | 0.9 | 1 |
| 1991 | 0 | 0.06 | 0.24 | 0.42 | 0.4 | 0.58 | 0.79 |
| 1992 | 0 | 0.16 | 0.44 | 0.6 | 0.73 | 0.78 | 0.95 |
| 1993 | 0.14 | 0.54 | 0.82 | 0.94 | 0.96 | 0.99 | 0.95 |
| 1994 | 0 | 0.68 | 0.92 | 0.97 | 0.99 | 0.99 | 1 |
| 1995 | 0.24 | 0.49 | 0.46 | 0.41 | 0.41 | 0.55 | 0.7 |

Table 3.2.5

Run title : Saithe Iceland Va (run: SVPBSO6/V06)
At 4-May-96 12:06:57


| Table YEAR, | 5 | $\begin{aligned} & \text { Propor } \\ & 1986, \end{aligned}$ | $\begin{aligned} & \text { on mature } \\ & \text { 1987, } \end{aligned}$ | $\begin{aligned} & \text { at age } \\ & \text { 1988, } \end{aligned}$ | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| age |  |  |  |  |  |  |  |  |  |  |  |
| 3, |  | .0600, | .0300, | . 0800 , | .1100, | .1300, | .1100, | .1300, | .1100, | . 1000 , | . 2000, |
| 4, |  | .2200, | . 1300 , | .0700, | .1600, | .2200, | .2500, | .2200, | .2600, | .2200, | .3800, |
| 5, |  | .3400, | . 3900 , | .2500, | .1500, | . 3100, | .4000, | .4400, | .4000, | .4500, | . 6600 , |
| 6, |  | .6100, | . 5400 , | . 6000 , | . 4400 , | . 3000 , | .5100, | .6100, | .6400, | . 6100 , | .7800, |
| 7. |  | .8100, | . 78000 | .7400, | .7800, | .6500, | . 4800, | . 7100 , | .7800, | . 8100, | .9100, |
| 8, |  | .9100, | .9100, | .8900, | .8700, | .8900, | .8100, | .7000, | .8500, | .8900, | .9500, |
| 9, |  | . 9500 , | . 9600 , | . 9600 , | .9500, | . 9400 , | .9500, | .9100, | .8400, | .9300, | 1.0000, |
| 10, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 11, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 12, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 13, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| 14, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |
| +gp, |  | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, | 1.0000, |

Table 3.2.6

FLTO4: TRW EFFORT

| Year | Fishing effort | Catch, age 3 | Catch, age 4 | Catch, age 5 | Catch, age 6 | Catch, age 7 | Catch, age 8 | Catch, age 9 | Catch, age 10 | Catch, age 11 | Catch, age 12 | Catch, age 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1980 | 26 | 275 | 2534 | 5153 | 2320 | 1525 | 704 | 176 | 154 | 101 | 67 | 132 |
| 1981 | 23 | 203 | 1325 | 3499 | 5232 | 1117 | 384 | 127 | 98 | 6 | 13 | 37 |
| 1982 | 26 | 508 | 1092 | 2483 | 4404 | 1857 | 400 | 181 | 92 | 26 | 29 | 176 |
| 1983 | 29 | 103 | 1589 | 996 | 1991 | 3563 | 1106 | 196 | 61 | 1 | 1 | 307 |
| 1984 | 35 | 53 | 657 | 680 | 1463 | 981 | 2705 | 331 | 361 | 279 | 135 | 616 |
| 1985 | 34 | 376 | 3934 | 3145 | 1765 | 1204 | 672 | 488 | 266 | 21 | 1 | 361 |
| 1986 | 32 | 3104 | 1370 | 4021 | 1965 | 1121 | 552 | 343 | 536 | 145 | 42 | 118 |
| 1987 | 43 | 956 | 5116 | 4289 | 4805 | 2008 | 842 | 337 | 239 | 141 | 27 | 85 |
| 1988 | 46 | 1318 | 5066 | 6596 | 3526 | 2368 | 959 | 447 | 90 | 127 | 35 | 19 |
| 1989 | 50 | 315 | 4302 | 8328 | 6944 | 1279 | 774 | 434 | 171 | 137 | 112 | 103 |
| 1990 | 62 | 143 | 1681 | 5378 | 9655 | 5381 | 1099 | 571 | 217 | 127 | 41 | 146 |
| 1991 | 59 | 191 | 848 | 3542 | 6664 | 10126 | 2484 | 496 | 575 | 152 | 20 | 5 |
| 1992 | 47 | 242 | 2928 | 3712 | 4167 | 3480 | 3184 | 895 | 231 | 96 | 24 | 49 |
| 1993 | 36 | 631 | 963 | 2509 | 1911 | 1649 | 1251 | 2206 | 458 | 105 | 132 | 67 |
| 1994 | 35 | 678 | 2830 | 1623 | 1944 | 715 | 602 | 616 | 1216 | 274 | 91 | 199 |
| 1995 | 27 | 1565 | 1812 | 2443 | 1484 | 1630 | 461 | 250 | 200 | 235 | 54 | 30 |

SAI-ICEL: Saithe in the Iceland Grounds (Fishing Area Va) 09:00 Friday, May 3, 1996
FLTO6: TRW CPU: JAN. - MAY

| Year | Fishing <br> effort | Catch, <br> age 4 | Catch, <br> age 5 | Catch, <br> age 6 | Catch, <br> age 7 | Catch, <br> age 8 | Catch, <br> age 9 | Catch, <br> age 10 | Catch, <br> age 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1980 | 100 | 0.0534 | 0.1119 | 0.0512 | 0.0280 | 0.0191 | 0.0040 | 0.0066 | 0.0052 |
| 1981 | 100 | 0.0279 | 0.1012 | 0.2176 | 0.0473 | 0.0140 | 0.0035 | 0.0013 | 0.0003 |
| 1982 | 100 | 0.0213 | 0.1374 | 0.0556 | 0.0638 | 0.0262 | 0.0164 | 0.0033 | 0.0016 |
| 1983 | 100 | 0.0095 | 0.0278 | 0.0723 | 0.1359 | 0.0380 | 0.0037 | 0.0007 | 0.0000 |
| 1984 | 100 | 0.0394 | 0.0516 | 0.0446 | 0.0298 | 0.0840 | 0.0053 | 0.0026 | 0.0000 |
| 1985 | 100 | 0.0095 | 0.0589 | 0.0364 | 0.0524 | 0.0349 | 0.0182 | 0.0044 | 0.0007 |
| 1986 | 100 | 0.0277 | 0.2478 | 0.0703 | 0.0203 | 0.0018 | 0.0000 | 0.0018 | 0.0000 |
| 1987 | 100 | 0.1257 | 0.0864 | 0.1132 | 0.0440 | 0.0149 | 0.0039 | 0.0031 | 0.0016 |
| 1988 | 100 | 0.0189 | 0.1013 | 0.0774 | 0.0700 | 0.0280 | 0.0206 | 0.0049 | 0.0074 |
| 1989 | 100 | 0.0097 | 0.0434 | 0.1263 | 0.0531 | 0.0381 | 0.0179 | 0.0060 | 0.0022 |
| 1990 | 100 | 0.0211 | 0.0484 | 0.1039 | 0.0899 | 0.0192 | 0.0123 | 0.0062 | 0.0052 |
| 1991 | 100 | 0.0059 | 0.0387 | 0.0783 | 0.1292 | 0.0412 | 0.0135 | 0.0126 | 0.0042 |
| 1992 | 100 | 0.0235 | 0.0483 | 0.0713 | 0.0736 | 0.0734 | 0.0185 | 0.0037 | 0.0016 |
| 1993 | 100 | 0.0048 | 0.0242 | 0.0546 | 0.0710 | 0.0520 | 0.0480 | 0.0112 | 0.0026 |
| 1994 | 100 | 0.0369 | 0.0316 | 0.0632 | 0.0298 | 0.0265 | 0.0222 | 0.0392 | 0.0056 |
| 1995 | 100 | 0.0278 | 0.0421 | 0.0421 | 0.0603 | 0.0194 | 0.0090 | 0.0081 | 0.0096 |

09:00 Friday, May 3, 1996
SAI-ICEL: Saithe in the Iceland Grounds (Fishing Area Va)
FLTO8: TRW CPUE JUNE - DES.

| Year | Fishing effort | Catch, age 3 | Catch, age 4 | Catch, age 5 | Catch, age 6 | Catch, age 7 | Catch, age 8 | Catch, age 9 | Catch, age 10 | Catch, age 11 | Catch, age 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1980 | 100 | 0.0007 | 0.0203 | 0.0721 | 0.0413 | 0.0518 | 0.0243 | 0.0105 | 0.0098 | 0.0058 | 0.0040 |
| 1981 | 100 | 0.0114 | 0.0517 | 0.1159 | 0.1249 | 0.0270 | 0.0098 | 0.0031 | 0.0023 | 0.0000 | 0.0008 |
| 1982 | 100 | 0.0098 | 0.0242 | 0.0600 | 0.1590 | 0.0585 | 0.0103 | 0.0025 | 0.0015 | 0.0003 | 0.0008 |
| 1983 | 100 | 0.0045 | 0.1260 | 0.0386 | 0.0379 | 0.0932 | 0.0186 | 0.0013 | 0.0006 | 0.0000 | 0.0000 |
| 1984 | 100 | 0.0019 | 0.0139 | 0.0057 | 0.0368 | 0.0152 | 0.0780 | 0.0063 | 0.0082 | 0.0076 | 0.0038 |
| 1985 | 100 | 0.0105 | 0.1504 | 0.0900 | 0.0561 | 0.0197 | 0.0055 | 0.0105 | 0.0055 | 0.0000 | 0.0000 |
| 1986 | 100 | 0.0716 | 0.0284 | 0.0734 | 0.0400 | 0.0248 | 0.0144 | 0.0122 | 0.0160 | 0.0077 | 0.0025 |
| 1987 | 100 | 0.0236 | 0.0721 | 0.0676 | 0.0575 | 0.0409 | 0.0216 | 0.0112 | 0.0070 | 0.0039 | 0.0008 |
| 1988 | 100 | 0.0173 | 0.1087 | 0.1042 | 0.0592 | 0.0343 | 0.0159 | 0.0048 | 0.0007 | 0.0007 | 0.0003 |
| 1989 | 100 | 0.0022 | 0.0557 | 0.1058 | 0.0947 | 0.0156 | 0.0118 | 0.0088 | 0.0037 | 0.0033 | 0.0028 |
| 1990 | 100 | 0.0047 | 0.0305 | 0.0928 | 0.1423 | 0.0435 | 0.0064 | 0.0022 | 0.0006 | 0.0006 | 0.0000 |
| 1991 | 100 | 0.0026 | 0.0118 | 0.0440 | 0.0875 | 0.1380 | 0.0353 | 0.0041 | 0.0041 | 0.0002 | 0.0000 |
| 1992 | 100 | 0.0027 | 0.0505 | 0.0703 | 0.0687 | 0.0550 | 0.0530 | 0.0142 | 0.0023 | 0.0011 | 0.0002 |
| 1993 | 100 | 0.0142 | 0.0232 | 0.0628 | 0.0383 | 0.0261 | 0.0211 | 0.0540 | 0.0105 | 0.0023 | 0.0008 |
| 1994 | 100 | 0.0200 | 0.0432 | 0.0324 | 0.0381 | 0.0162 | 0.0140 | 0.0127 | 0.0386 | 0.0057 | 0.0030 |
| 1995 | 100 | 0.0875 | 0.0322 | 0.0536 | 0.0322 | 0.0349 | 0.0115 | 0.0089 | 0.0063 | 0.0066 | 0.0030 |

Table 3.2.7

```
Lowestoft VPA Version 3.1
    2-May-96 15:48:56
Extended Survivors Analysis
Saithe Iceland Va (run: XSABS07/X07)
CPUE data from file/users/fish/ifad/ifapwork/nwwg/sai_icel/FLEET.X07
Catch data for 20 years. 1976 to 1995. Ages 3 to 13.
    Fleet, First, Last, First, Last, Alpha, Beta
FLT04: TRW EFFORT ('C, 1985, 1995, 3, 1, 12, .000, 1.000
Time series weights :
    Tapered time weighting applied
    Power = 3 over 20 years
Catchability analysis :
    Catchability dependent on stock size for ages < 4
        Regression type = C
        Minimum of }5\mathrm{ points used for regression
        Survivor estimates shrunk to the population mean for ages < 4
    Catchability independent of age for ages >= 11
Terminal population estimation :
    Survivor estimates shrunk towards the mean F
    of the final }5\mathrm{ years or the 5 oldest ages.
    S.E. of the mean to which the estimates are shrunk = . 500
    Minimum standard error for population
    estimates derived from each fleet = . }30
    Prior weighting not applied
Tuning converged after 29 iterations
```

Regression weights
. .751, .820, .877, .921, .954, .976, .990, .997, 1.000, 1.000
Fishing mortalities
Age, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995
$3, .047, .010, .026, .011, .007, .007, .013, .018, .017, .021$
$4, .056, .103, .065, .111, .073, .052, .131, .072, .102, .058$
5, .179, .254, .188, .147, .201, .220, .337, .181, .162, . 126
6, .242, .372, .347, .327, .262, .415, .450, .338, .251, . 246
7, .329, .456, .344, .284, .509, .493, .441, .444, .357, . 380
$8, .490, .534, .562, .413, .521, .551, .346, .516, .474, .421$
9, .341, .612, .778, .580, .434, .503, .445, .612, .598, .418
10, .960, .497, .434, .615, .563, .717, .393, .580, .831, . 480
11, .837, $1.003, .558, .824, .869, .808, .356, .470, .746, .526$
12, .629, .561, .604, .610, .598, .594, .467, .695, .733, . 380

## Table 3.2.7 (continued)

XSA population numbers (Thousands)

| YEAR | 3, |  | $\begin{aligned} & \text { AGE } \\ & 4, \end{aligned}$ | 5, |  | 6, | 7, | 8, |  | 9, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 | 7.40E+04, | $2.82 E+04$ | $2.81 \mathrm{E}+04$ | 1.37E+04, | $6.11 \mathrm{E}+03$, | $3.18 E+03$, | $2.40 \mathrm{E}+03$, | 2.77E+03, | $4.21 \mathrm{E}+02$, | $1.21 \mathrm{E}+02$, |
| 1987 | 1.10E+05, | $5.78 \mathrm{E}+04$ | $2.18 \mathrm{E}+04$, | 1.92E+04, | 8.79E+03, | 3.60E+03, | 1.60E+03, | 1.40E+03, | 8.69E+02, | 1.49E+02, |
| 1988 | $5.69 \mathrm{E}+04$, | $8.94 \mathrm{E}+04$ | $4.27 E+04$, | 1.39E+04, | 1.09E+04, | 4.56E+03, | 1.73E+03, | 7.09E+02, | $6.98 \mathrm{E}+02$, | 2.61E+02, |
| 1989 | $3.28 \mathrm{E}+04$, | 4.54E+04, | $6.86 \mathrm{E}+04$, | 2.90E+04, | 8.02E+03, | 6.30E+03, | 2.13E+03, | 6.49E+02, | $3.76 \mathrm{E}+02$, | $3.27 \mathrm{E}+02$, |
| 1990 | $2.35 \mathrm{E}+04$, | $2.66 \mathrm{E}+04$, | $3.32 \mathrm{E}+04$, | 4.85E+04, | $1.71 \mathrm{E}+04$, | 4.94E+03, | $3.41 \mathrm{E}+03$, | 9.75E+02, | 2.87E+02, | 1.35E+02, |
| 1991 | 3.25E+04, | $1.91 \mathrm{E}+04$, | $2.02 \mathrm{E}+04$, | 2.23E+04, | $3.06 \mathrm{E}+04$, | 8.41E+03, | 2.40E+03, | 1.81E+03, | 4.55E+02, | 9.87E+01, |
| 1992 | 2.13E+04, | $2.64 \mathrm{E}+04$, | 1.48E+04, | 1.33E+04, | 1.20E+04, | 1.53E+04, | 3.97E+03, | 1.19E+03, | 7.23E+02, | 1.66E+02, |
| 1993 | $4.18 \mathrm{E}+04$, | 1.72E+04, | $1.90 \mathrm{E}+04$, | 8.68E+03, | $6.93 \mathrm{E}+03$, | 6.34E+03, | $8.86 \mathrm{E}+03$, | 2.08E+03, | 6.57E+02, | $4.15 \mathrm{E}+02$, |
| 1994 | $4.50 \mathrm{E}+04$, | $3.36 \mathrm{E}+04$, | $1.31 \mathrm{E}+04$, | 1.30E+04, | 5.07E+03, | $3.64 \mathrm{E}+03$, | 3.10E+03, | $3.94 \mathrm{E}+03$, | $9.55 \mathrm{E}+02$, | $3.36 \mathrm{E}+02$, |
| 1995 | 8.16E+04, | 3.62E+04, | $2.48 \mathrm{E}+04$, | 9.12E+03, | 8.27E+03, | 2.90E+03, | 1.85E+03, | 1.40E+03, | 1.40E+03, | $3.71 \mathrm{E}+02$, |

Estimated population abundance at 1st Jan 1996
$.00 \mathrm{E}+00,6.54 \mathrm{E}+04,2.80 \mathrm{E}+04,1.79 \mathrm{E}+04,5.84 \mathrm{E}+03,4.63 \mathrm{E}+03,1.56 \mathrm{E}+03,1.00 \mathrm{E}+03,7.07 \mathrm{E}+02,6.79 \mathrm{E}+02$,
Taper weighted geometric mean of the VPA populations:
$4.13 \mathrm{E}+04,3.12 \mathrm{E}+04,2.30 \mathrm{E}+04,1.53 \mathrm{E}+04,9.43 \mathrm{E}+03,5.12 \mathrm{E}+03,2.61 \mathrm{E}+03,1.26 \mathrm{E}+03,5.25 \mathrm{E}+02,1.91 \mathrm{E}+02$, Standard error of the weighted Log(VPA populations) :
, $5100, .4811, ~ .4949, ~ .5221, ~ .5194, ~ .4990, .5265, .5962, .6239, .7162$,

Log catchability residuals.

Fleet : FLT04: TRW EFFORT (C

| Age, | 1985 |
| ---: | ---: |
| 3, | .13 |
| 4, | .62 |
| $5 ;$ | .23 |
| $6 ;$ | .02 |
| 7, | .16 |
| 8, | -.03 |
| 9, | -.42 |
| 10, | .43 |
| 11, | -.77 |
| 12, | -2.44 |


| Age, | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3, | .53, | -.65, | .15, | -.10, | -.30, | -.45, | .22, | .19, | .17, |
| 4, | -.09, | .23, | -.30, | .16, | -.48, | -.80, | .38, | -.06, | .39, |
| 5, | .21, | .27, | -.07, | -.42, | -.32, | -.18, | .45, | .01, | -.03, |
| 6, | -.17, | .15, | .09, | -.06, | -.50, | .03, | .32, | .18, | -.21, |
| 7, | .02 |  |  |  |  |  |  |  |  |
| 7, | .04, | .02, | -.14, | -.57, | .00, | .09, | .16, | .24, | -.30, |
| 8, | .18, | .20, | .04, | -.65, | -.22, | .12, | -.09, | .20, | .03, |
| 9, | -.09, | .12, | .33, | -.08, | -.55, | -.26, | .03, | .47, | .26, |
| 10, | .32, | -.29, | -.69, | .04, | -.37, | .11, | -.30, | .17, | .65, |
| 11, | .78, | -.20, | -.34, | .39, | .38, | .13, | -.77, | -.26, | .47, |
| 12, | .70, | -.28, | -.62, | .23, | -.11, | -.46, | -.63, | .52, | .41, |
| 10 |  |  |  |  |  |  |  |  |  |

Mean log catchability and standard error of ages with catchability
independent of year class strength and constant w.r.t. time

| Age , | 4, | 5, | 6, | 7, | 8, | 9, | 10, | 11. | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean $\log q$, | -6.2727, | -5.4345, | -5.0238, | -4.9494, | -5.0699, | -5.0619, | -4.9073, | -4.8387, | -4.8387, |
| S.E(Log q), | .4170, | .2649, | .2326, | .2594, | .2604, | .3144, | .3906, | .4917, | .8096, |

Regression statistics:
Ages with $q$ dependent on year class strength

Age, Slope, $t$-value, Intercept, RSquare, No Pts, Reg s.e, Mean Log q
3, $.53,2.057, \quad 9.27, \quad .70,11, \quad .36,-8.00$,

Ages with q independent of year class strength and constant w.r.t. time.
Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 4, | .82, | .759, | 7.03, | .68, | 11, | .35, | -6.27, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 5, | 1.53, | -2.308, | 2.98, | .71, | 11, | .33, | -5.43, |
| 6, | 1.38, | -2.376, | 3.24, | .83, | 11, | .26, | -5.02, |
| 7, | .92, | .494, | 5.27, | .84, | 11, | .25, | -4.95, |
| 8, | 1.20, | -.946, | 4.38, | .74, | 11, | .31, | -5.07, |
| 9, | .92, | .401, | 5.29, | .76, | 11, | .30, | -5.06, |
| 10, | .67, | 2.897, | 5.69, | .90, | 11, | .19, | -4.91, |
| 11, | 1.06, | -.175, | 4.75, | .52, | 11, | .55, | -4.84, |
| 12, | .55, | 2.287, | 5.15, | .77, | 11, | .36, | -5.04, |

Terminal year survivor and $F$ summaries :
Age 3 Catchability dependent on age and year class strength
Year class $=1992$


Weighted prediction :
Survivors, Int, Ext, N, Var, F
$\begin{array}{ccccc}\text { at end of year, s.e, } & \text { s.e, } & \text { Ratio, } \\ 65364 ., & .26, & .38, & 3, & 1.445,\end{array}$

Table 3.2.7 (continued)

Age 4 Catchability constant w.r.t. time and dependent on age
Year class $=1991$


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | S.e, | Ratio, |  |  |
| 27985. | .25, | .20, | 3, | .809, | .058 |

Age 5 Catchability constant w.r.t. time and dependent on age
Year class $=1990$


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $17943 .$, | .19, | .20, | 4, | 1.027, | .126 |

Age 6 Catchability constant w.r.t. time and dependent on age
Year class $=1989$


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | S.e, | S.e, | Ratio, |  |  |
| $5835 .$, | .16, | .10, | 5, | .607, | .246 |

Age 7 Catchability constant w.r.t. time and dependent on age
Year class $=1988$


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $4630 .$, | .15, | .12, | 6, | .805, | .380 |

Table 3.2.7 (continued)

Age 8 Catchability constant w.r.t. time and dependent on age
Year class $=1987$


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $1561 .$, | .15, | .13, | 7, | .874, | .421 |

Age 9 Catchability constant w.r.t. time and dependent on age
Year class $=1986$

| Fleet, FLT04: TRW EFFORT (C, | Estimated, Survivors, 1063., | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \\ & .148, \end{aligned}$ | Ext, s.e, .068, | Var, Ratio, .46, | $\begin{aligned} & \text { N, Scaled, } \\ & \text { 7, Weights, } .820, \end{aligned}$ | Estimated F .397 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F shrinkage mean | 756., | . 50, |  |  | .180, | . 523 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $1000 .$, | .15, | .08, | 8, | .523, | .418 |

Age 10 Catchability constant w.r.t. time and dependent on age


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | S.e, | Ratio, |  |  |
| $707 .$, | .17, | .09, | 9, | .529, | .480 |

Age 11 Catchability constant w.r.t. time and dependent on age
Year class $=1984$

| Fleet, FLT04: TRW EFFORT (C, | Estimated, Survivors, 785. | $\begin{aligned} & \text { Int, } \\ & \text { s.e, } \end{aligned}$ $179 .$ | Ext, s.e, .130 | Var, Ratio, .73 |  | Scaled, Weights, 668 | ```Estimated F 470``` |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F shrinkage mean | 508., | . 50, |  |  |  | . 332, | . 656 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $679 .$, | .20, | .13, | 10, | .638, | .526 |

Age 12 Catchability constant w.r.t. time and age (fixed at the value for age) 11
Year class $=1983$


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $208 .$, | .23, | .08, | 11, | .361, | .380 |

Table 3.2.8
Lowestoft VPA Version 3.1
2-May-96 16:20:47
Extended Survivors Analysis
Saithe Iceland Va (run: XSABS08/X08)
CPUE data from file /users/fish/ifad/ifapwork/nwwg/sai_icel/FLEET.X08
Catch data for 20 years. 1976 to 1995. Ages 3 to 13.


Tapered time weighting applied
Power $=3$ over 20 years

Catchability analysis :
Catchability dependent on stock size for ages < 4
Regression type $=\mathrm{C}$
Minimum of 5 points used for regression
Survivor estimates shrunk to the population mean for ages < 4

Catchability independent of age for ages $>=11$

Terminal population estimation :
Survivor estimates shrunk towards the mean $F$ of the final 5 years or the 5 oldest ages.
S.E. of the mean to which the estimates are shrunk $=.500$

Minimum standard error for population
estimates derived from each fleet $=.300$
Prior weighting not applied

Tuning converged after 31 iterations

Regression weights
, .751, .820, .877, .921, .954, .976, .990, .997, 1.000, 1.000

Fishing mortalities
Age, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995
3, .047, .010, .026, .010, .007, .007, .014, .020, .020, . 021
4, .056, . 103, .065, .111, .071, .050, .129, .078, .120, . 066
5, .179, .253, .188, .147, .200, .214, .324, .179, .177, . 151
6, .242, .372, .345, .327, .263, .414, .432, .319, .247, . 276
7, .327, .455, .344, .282, .509, .497, .439, .416, .330, . 372
8, .488, .529, .559, .412, .515, .551, .350, .513, .428, . 375
9, .330, .607, .764, .575, .432, .493, .445, .625, .593, . 358
$10, .963, .473, .429, .594, .554, .712, .382, .580, .868, .472$
11, .842, 1.009, .514, .806, .807, .783, .352, .449, .745, . 574
$12, .563, .568, .612, .528, .572, .513, .441, .682, .674, .379$

Table 3.2.8 (continued)

XSA population numbers (Thousands)


Estimated population abundance at 1st Jan 1996
$.00 \mathrm{E}+00,6.59 \mathrm{E}+04,2.19 \mathrm{E}+04,1.41 \mathrm{E}+04,5.04 \mathrm{E}+03,4.80 \mathrm{E}+03,1.78 \mathrm{E}+03,1.21 \mathrm{E}+03,7.23 \mathrm{E}+02,6.11 \mathrm{E}+02$,
Taper weighted geometric mean of the VPA populations:
$4.04 \mathrm{E}+04,3.05 \mathrm{E}+04,2.27 \mathrm{E}+04,1.53 \mathrm{E}+04,9.55 \mathrm{E}+03,5.21 \mathrm{E}+03,2.65 \mathrm{E}+03,1.28 \mathrm{E}+03,5.33 \mathrm{E}+02,2.00 \mathrm{E}+02$, Standard error of the weighted Log(VPA populations) :
.5175, .4829, .4995, .5249, .5071, .4818, .5143, .5859, .6076, .6945,

Log catchability residuals.


| Age | 1986, | 1987, | 1988, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | , No data . 55 | for | , | at | age |  |  |  |  | 44 |
| 5 | 1.39, | . 6.36, | . 08 | - 1.25 , | -. 41, | -. -.16, | . 36, | -. -.56, | . 18 , | .44 -.10 |
| 6 | . 11 , | .28, | .21, | -.03, | -.75, | -.23, | .16, | . 28 , | . 05 , | . 11 |
| 7 | -.61, | -.17, | . 06 , | . 07, | -. 11, | -.32, | .03, | .49, | -. 10, | . 18 |
| 8 | , -2.13, | -.14, | .27, | . 22, | -.21, | . 04, | -.01, | . 55, | . 33, | . 22 |
| 9 | 99.99, | -.76, | . 85 , | .47, | -.41, | . 04, | -. 14, | . 06 , | . 31, | -. 25 |
| 10 | , -1.91, | -.82, | . 34, | . 64 , | .27, | . 40, | -.49, | . 12, | .82, | . 17 |
| 11 | , 99.99, | -1.01, | . 58, | . 09 , | 1.19, | . 54, | -.97, | -.39, | . 10, | . 28 |

Mean $\log$ catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age, | 4, | 5, | 6, | 7, | 8, | 10, | 11 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Mean $\log q$, | -18.9368, | -17.5541, | -16.8066, | -16.5090, | -16.7202, | -16.6058, | -16.7032, |
| $S . E(\log q)$, | .8083, | .6612, | .3086, | .3046, | .6856, | .4541, | .7458, |

Table 3.2.8 (continued)

Regression statistics :
Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope, $t$-value , Intercept, RSquare, No Pts, Reg s.e, Mean $Q$

| 4, | 1.09, | -.138, | 19.69, | .24, | 11, | .93, | -18.94, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 5, | 2.53, | -1.438, | 28.99, | .10, | 11, | 1.58, | -17.55, |
| 6, | 1.70, | -2.959, | 21.78, | .69, | 11, | .38, | -16.81, |
| 7, | 1.23, | -.964, | 18.20, | .69, | 11, | .38, | -16.51, |
| 8, | .75, | .685, | 14.67, | .48, | 11, | .53, | -16.72, |
| 9, | 1.08, | -.215, | 17.26, | .53, | 10, | .52, | -16.61, |
| 10, | 1.33, | -.524, | 19.83, | .24, | 11, | 1.04, | -16.70, |
| 11, | 1.45, | -.626, | 21.08, | .21, | 10, | 1.08, | -16.56, |



Mean log catchability and standard error of ages with catchability independent of year class strength and constant w.r.t. time

| Age | 4, | 5, | 6, | 7. | 8, | 9, | 10, | 11. | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean Log $q$, | -17.9678, | -17.1186, | -16.7439, | -16.7546, | -16.8470, | -16.7640, | -16.6885, | -16.7089 | -16.7089 |
| S.E(Log q), | .4517, | . 3305 , | .2508, | .3062, | .5037, | .7155, | .9381, | 1.1417, | 1.0654, |

## Table 3.2.8 (continued)

Regression statistics :
Ages with q dependent on year class strength
Age, slope, $t$-value, Intercept, RSquare, No Pts, Reg s.e, Mean Log $q$
3, .51 ,
1.939,
15.17,
.66, 11,
.41, -19.59,

Ages with $q$ independent of year class strength and constant w.r.t. time.
Age, Slope , t-value , Intercept, RSquare, No Pts, Reg s.e, Mean Q

| 4, | .87, | .449, | 17.01, | .61, | 11, | .41, | -17.97, |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 5, | 1.75, | -2.359, | 22.36, | .56, | 11, | .47, | -17.12, |
| 6, | 1.26, | -1.396, | 18.56, | .79, | 11, | .30, | -16.74, |
| 7, | .85, | .897, | 15.62, | .82, | 11, | .26, | -16.75, |
| 8, | 1.08, | -.190, | 17.47, | .44, | 11, | .57, | -16.85, |
| 9, | 1.00, | -.005, | 16.78, | .32, | 11, | .76, | -16.76, |
| 10, | .49, | 2.193, | 11.86, | .70, | 11, | .38, | -16.69, |
| 11, | .93, | .087, | 15.96, | .16, | 10, | 1.13, | -16.71, |
| 12, | 1.06, | -.055, | 17.07, | .15, | 8, | 1.18, | -16.45, |

Terminal year survivor and $F$ summaries :
Age 3 Catchability dependent on age and year class strength
Year class $=1992$


| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $65904 .$, | .33, | 1.12, | 3, | 3.435, | .021 |

## Table 3.2.8 (continued)

Age 4 Catchability constant w.r.t. time and dependent on age
Year class $=1991$


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | S.e, | s.e, | Ratio, |  |  |
| $21882 .$, | .30, | .21, | 4, | .694, | .066 |

Age 5 Catchability constant w.r.t. time and dependent on age
Year class $=1990$

| Fleet, | Estimated, Survivors, | Int, | Ext, s.e, | Var, Ratio, |  | Scaled, Weights | Estimated F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLT06: TRW CPU JAN.-, | 18907., | .538, | .447, | .83, | 2, | .157, | . 119 |
| FLT08: TRW CPU JUNE | 14871., | .269, | .120, | .45, | 3, | .624, | . 150 |
| F shrinkage mean | 9764 | . 50, |  |  |  | .220, | . 220 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $14077 .$, | .22, | .14, | 6, | .665, | .151 |

Age 6 Catchability constant w.r.t. time and dependent on age
Year class $=1989$


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | s.e, | R, | Ratio, |  |
| $5035 .$, | .16, | .07, | 8, | .441, | .276 |

Age 7 Catchability constant w.r.t. time and dependent on age
Year class $=1988$

| Fleet, | Estimated, Survivors, | Int, | Ext, | Var, Ratio, | $N$, Scaled, Weights, | Estimated <br> F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FLT06: TRW CPU JAN.-, | 5178., | . 212, | S.e, | Ratio, | 4, . 372 , | . 346 |
| FLT08: TRW CPU JUNE | 4763., | .173, | .151, | .87, | 5, .516, | . 371 |
| F shrinkage mean | 3854. | . 50 |  |  | .111, | . 441 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | S.e, | Ratio, |  |  |
| $4799 .$, | .13, | .09, | 10, | .669, | .372 |

## Table 3.2.8 (continued)

Age 8 Catchability constant w.r.t. time and dependent on age
Year class $=1987$


Age 9 Catchability constant w.r.t. time and dependent on age
Year class $=1986$


## Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | S.e, | Ratio, |  |  |
| $1213 .$, | .14, | .10, | 14, | .684, | .358 |

Age 10 Catchability constant w.r.t. time and dependent on age
Year class $=1985$

| Fleet, | Estimated, | Int, | Ext, | Var, | N, Scaled, Estimated |  |  |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| FLT06: TRW CPU JAN.-, | Survivors, | S.e, | S.e, | Ratio, | Weights, | F |  |
| FLT08: TRW CPU JUNE , | $802 .$, | .233, | .109, | .47, | 7, | .366, | .433 |
|  | $864 .$, | .203, | .042, | .21, | 8, | .356, | .408 |
| F shrinkage mean , | 502., | $.50, \ldots$, |  |  |  | .278, | .625 |

Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, | F |
| :--- | :--- | :--- | :--- | :--- | :--- |
| at end of year, | s.e, | s.e, | Ratio, |  |  |
| $723 .$, | .18, | .08, | 16, | .465, | .472 |

Age 11 Catchability constant w.r.t. time and dependent on age
Year class $=1984$


Table 3.2 .8 (continued)
Age 12 Catchability constant w.r.t. time and age (fixed at the value for age) 11
Year class $=1983$


Weighted prediction :

| Survivors, | Int, | Ext, | N, | Var, |
| :---: | :---: | :---: | :---: | :---: |
| at end of year, | s.e, | S.e, | Ratio, |  |
| $208 .$, | .26, | .08, | 19, | .301, |
|  |  |  |  |  |



| $\begin{aligned} & \text { Table } 8 \\ & \text { YEAR, } \end{aligned}$ | $\begin{aligned} & \text { Fishing } \\ & \text { 1986, } \end{aligned}$ | $\begin{aligned} & \text { mortality } \\ & \text { 1987, } \end{aligned}$ | (F) at 1988, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995, | FBAR 93-95 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |  |
| 3, | .0475, | .0097, | .0259, | .0104, | . 0065 , | . 0067 , | .0137, | . 0204, | . 0198, | . 0210, | . 0204, |
| 4, | .0562, | . 1033 , | .0649, | .1108, | . 0712, | .0502, | . 1293, | .0783, | . 1202, | .0663, | .0883, |
| 5, | .1790, | .2529, | . 1880, | .1473, | . 2004, | .2136, | . 3235 , | . 1786, | . 1774, | .1508, | .1689, |
| 6. | . 2418 , | . 3718 , | . 3453 , | . 3270 , | . 2632, | .4141, | .4317, | . 3193 , | . 2470 , | . 2763, | .2808, |
| 7, | . 3271 , | .4549, | . 3436, | .2820, | . 5093 , | .4971, | .4394, | .4159, | . 3298 , | . 3721 , | .3726, |
| 8, | . 4881, | . 5293, | .5594, | . 4120, | .5154, | .5506, | . 3502 , | .5133, | .4284, | . 3753 , | . 4390 , |
| 9, | . 3296 , | .6073, | .7642, | . 5752 , | . 4325 , | . 4928 , | . 4447 , | .6248, | .5928, | . 3582 , | . 5253, |
| 10, | .9626, | .4727, | . 4291 , | .5937, | .5544, | .7123, | . 3818 , | . 5800, | . 8679 , | .4721, | .6400, |
| 11, | . 8423, | 1.0093, | .5138, | .8057, | .8069, | . 7830, | . 3520, | .4491, | .7447, | .5742, | .5893, |
| 12, | . 5632, | . 5682 , | .6118, | .5279, | .5718, | . 5134, | .4407, | .6817, | .6745, | . 3789 , | .5783, |
| +gp, | .5632, | . 5682 , | .6118, | .5279, | .5718, | . 5134, | . 4407 , | .6817, | .6745, | . 3789 , |  |
| FBAR 4-9, | .2703, | .3866, | . 3776 , | . 3091 , | . 3320, | . 3697 , | .3531, | . 3550 , | .3159, | . 2665 , |  |

Table 3.2.9 Icelandic Saithe. Results from TSA-runs.

## A. Catch-at-age observations only.

## STOCK IN NUMBERS:

| Age/year | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 23172 | 16563 | 18611 | 27291 | 38728 | 28915 | 58341 | 87303 | 46603 | 26556 | 20910 | 25864 | 15151 | 28639 | 29444 |
| 5 | 33122 | 17778 | 12476 | 13899 | 21300 | 28097 | 22214 | 42962 | 66077 | 34454 | 20129 | 16029 | 18404 | 11379 | 20965 |
| 6 | 20874 | 23488 | 12104 | 8883 | 10051 | 14349 | 19303 | 14066 | 29185 | 45217 | 23336 | 13280 | 9477 | 12446 | 7736 |
| 7 | 5628 | 12543 | 14762 | 7675 | 5673 | 6318 | 9114 | 10945 | 8276 | 17763 | 27743 | 13030 | 7149 | 5545 | 7702 |
| 8 | 4797 | 3222 | 6392 | 8447 | 4303 | 3294 | 3736 | 4867 | 6088 | 4827 | 9341 | 14511 | 7052 | 3769 | 3138 |
| 9 | 1364 | 2575 | 1572 | 3230 | 4325 | 2394 | 1767 | 1893 | 2388 | 3205 | 2362 | 4552 | 7893 | 3483 | 1908 |
| 10 | 517 | 636 | 1258 | 828 | 1673 | 2514 | 1282 | 868 | 865 | 1207 | 1626 | 1131 | 2424 | 3715 | 1682 |
| 11 | 169 | 240 | 290 | 682 | 401 | 922 | 1233 | 646 | 447 | 437 | 618 | 735 | 586 | 1193 | 1711 |

STANDARD DEVIATION OF STOCK ESTIMATE:

| Age/year | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 1709 | 1235 | 1339 | 1748 | 2834 | 1905 | 4473 | 6686 | 3579 | 2204 | 2065 | 3681 | 3010 | 7354 | 11495 |
| 5 | 2549 | 1340 | 982 | 1032 | 1382 | 2083 | 1498 | 3334 | 5059 | 2668 | 1735 | 1639 | 2944 | 2406 | 5907 |
| 6 | 1398 | 1930 | 998 | 715 | 780 | 985 | 1567 | 1080 | 2434 | 3555 | 1985 | 1320 | 1302 | 2263 | 1823 |
| 7 | 604 | 950 | 1302 | 670 | 478 | 507 | 694 | 1051 | 745 | 1612 | 2307 | 1364 | 931 | 993 | 1636 |
| 8 | 479 | 335 | 647 | 770 | 454 | 294 | 332 | 457 | 710 | 500 | 1016 | 1432 | 922 | 675 | 727 |
| 9 | 206 | 300 | 212 | 403 | 497 | 285 | 192 | 212 | 304 | 454 | 314 | 659 | 904 | 642 | 475 |
| 10 | 142 | 140 | 200 | 131 | 301 | 329 | 204 | 137 | 153 | 212 | 303 | 221 | 441 | 653 | 460 |
| 11 | 76 | 91 | 94 | 115 | 92 | 196 | 226 | 131 | 93 | 102 | 139 | 201 | 142 | 291 | 449 |

FISHING MORTALITY RATES:

| Age/year | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 0.065 | 0.072 | 0.083 | 0.047 | 0.116 | 0.064 | 0.108 | 0.074 | 0.102 | 0.077 | 0.066 | 0.127 | 0.079 | 0.106 | 0.074 |
| 5 | 0.140 | 0.179 | 0.135 | 0.124 | 0.193 | 0.169 | 0.237 | 0.186 | 0.176 | 0.189 | 0.210 | 0.293 | 0.185 | 0.185 | 0.169 |
| 6 | 0.301 | 0.265 | 0.256 | 0.249 | 0.262 | 0.252 | 0.344 | 0.307 | 0.296 | 0.283 | 0.371 | 0.401 | 0.309 | 0.279 | 0.293 |
| 7 | 0.358 | 0.438 | 0.345 | 0.377 | 0.337 | 0.323 | 0.421 | 0.372 | 0.336 | 0.439 | 0.448 | 0.410 | 0.418 | 0.360 | 0.388 |
| 8 | 0.423 | 0.508 | 0.480 | 0.469 | 0.380 | 0.422 | 0.480 | 0.501 | 0.440 | 0.512 | 0.513 | 0.400 | 0.498 | 0.469 | 0.428 |
| 9 | 0.524 | 0.515 | 0.429 | 0.450 | 0.324 | 0.424 | 0.510 | 0.575 | 0.479 | 0.478 | 0.529 | 0.429 | 0.554 | 0.520 | 0.440 |
| 10 | 0.516 | 0.547 | 0.371 | 0.517 | 0.395 | 0.512 | 0.485 | 0.463 | 0.481 | 0.470 | 0.581 | 0.458 | 0.509 | 0.570 | 0.452 |
| 11 | 0.473 | 0.428 | 0.358 | 0.482 | 0.384 | 0.446 | 0.504 | 0.507 | 0.520 | 0.485 | 0.529 | 0.465 | 0.510 | 0.523 | 0.463 |
| F(4-9) | 0.302 | 0.330 | 0.288 | 0.286 | 0.269 | 0.276 | 0.350 | 0.336 | 0.305 | 0.330 | 0.356 | 0.343 | 0.341 | 0.320 | 0.299 |

STANDARD DEVIATIONS OF LOG $(\mathrm{F})$ :

| Age/year | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 0.22 | 0.15 | 0.18 | 0.19 | 0.25 | 0.20 | 0.30 | 0.33 | 0.26 | 0.18 | 0.14 | 0.21 | 0.14 |
| 5 | 0.13 | 0.13 | 0.10 | 0.09 | 0.14 | 0.11 | 0.12 | 0.14 | 0.16 | 0.12 | 0.12 | 0.12 | 0.13 |
| 6 | 0.11 | 0.15 | 0.12 | 0.15 | 0.13 | 0.11 | 0.11 | 0.10 | 0.13 | 0.15 | 0.12 | 0.12 | 0.11 |
| 7 | 0.16 | 0.10 | 0.14 | 0.12 | 0.13 | 0.13 | 0.11 | 0.11 | 0.11 | 0.12 | 0.14 | 0.12 | 0.19 |
| 8 | 0.13 | 0.13 | 0.10 | 0.14 | 0.13 | 0.13 | 0.13 | 0.11 | 0.12 | 0.12 | 0.13 | 0.15 | 0.13 |
| 9 | 0.14 | 0.15 | 0.14 | 0.15 | 0.16 | 0.17 | 0.15 | 0.14 | 0.14 | 0.16 | 0.15 | 0.16 | 0.14 |
| 10 | 0.18 | 0.16 | 0.18 | 0.19 | 0.17 | 0.19 | 0.19 | 0.18 | 0.17 | 0.18 | 0.19 | 0.20 |  |
| 11 | 0.21 | 0.20 | 0.20 | 0.21 | 0.19 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.21 | 0.18 | 0.20 |

B. Catch at age and trawlers (June-December), ages 5-7:

## STOCK IN NUMBERS:

| Age/year | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 21685 | 16495 | 19111 | 27635 | 37160 | 29002 | 57197 | 85482 | 46660 | 26219 | 21470 | 26882 | 15935 |
| 5 | 34901 | 16600 | 12462 | 14279 | 21584 | 26886 | 22297 | 41997 | 64578 | 34570 | 19843 | 16433 | 19277 |
| 6 | 20839 | 24864 | 11268 | 8879 | 10282 | 14571 | 18495 | 14192 | 28475 | 44066 | 23419 | 13131 | 9790 |
| 7 | 5622 | 12551 | 15732 | 7059 | 5656 | 6524 | 9260 | 10500 | 8373 | 17302 | 27181 | 13102 | 7089 |
| 8 | 4827 | 3221 | 6477 | 9118 | 3950 | 3286 | 3852 | 4953 | 5852 | 4839 | 9052 | 14449 | 7025 |
| 9 | 1366 | 2593 | 1573 | 3273 | 4633 | 2211 | 1749 | 1940 | 2439 | 3060 | 2354 | 4393 | 7851 |
| 10 | 3468 | 3286 |  |  |  |  |  |  |  |  |  |  |  |
| 10 | 511 | 636 | 1271 | 831 | 1719 | 2749 | 1170 | 858 | 894 | 1236 | 1534 | 1123 | 2315 |
| 11 | 166 | 235 | 292 | 692 | 407 | 954 | 1333 | 590 | 440 | 452 | 629 | 697 | 575 |
| 1134 | 1677 |  |  |  |  |  |  |  |  |  |  |  |  |

STANDARD DEVIATION OF STOCK ESTIMATE:

| Age/year | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 1460 | 1068 | 1110 | 1575 | 2576 | 1778 | 3986 | 5729 | 3232 | 1906 | 1650 | 2654 | 2223 |
| 5 | 2360 | 1141 | 843 | 839 | 1239 | 1896 | 1391 | 2882 | 4290 | 2369 | 1492 | 1301 | 2105 |
| 6 | 1385 | 1788 | 835 | 614 | 617 | 896 | 1404 | 976 | 2070 | 2960 | 1742 | 1092 | 1030 |
| 7 | 604 | 939 | 1207 | 536 | 402 | 404 | 627 | 903 | 657 | 1342 | 1894 | 1174 | 752 |
| 7479 | 1361 |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 | 481 | 335 | 628 | 755 | 338 | 263 | 280 | 416 | 589 | 423 | 829 | 1252 | 798 |
| 9 | 208 | 303 | 209 | 394 | 499 | 228 | 181 | 195 | 279 | 366 | 264 | 551 | 833 |
| 10 | 145 | 142 | 201 | 130 | 290 | 352 | 167 | 130 | 141 | 190 | 241 | 190 | 377 |
| 11 | 78 | 94 | 95 | 116 | 89 | 199 | 248 | 111 | 87 | 963 | 383 |  |  |

Table 3.2.9 Continued
FISHING MORTALITY RATES:

| Age/year | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 0.066 | 0.070 | 0.082 | 0.046 | 0.116 | 0.063 | 0.110 | 0.075 | 0.100 | 0.079 | 0.067 | 0.124 | 0.078 | 0.109 | 0074 |
| 5 | 0.136 | 0.183 | 0.135 | 0.123 | 0.190 | 0.170 | 0.241 | 0.188 | 0.173 | 0.190 | 0.213 | 0.295 | 0.183 | 0.181 | 0.175 |
| 6 | 0.298 | 0.258 | 0.265 | 0.251 | 0.255 | 0.252 | 0.357 | 0.317 | 0.298 | 0.270 | 0.378 | 0.411 | 0.313 | 0.274 | 0.286 |
| 7 | 0.357 | 0.436 | 0.341 | 0.378 | 0.342 | 0.326 | 0.418 | 0.381 | 0.348 | 0.447 | 0.431 | 0.422 | 0.424 | 0.360 | 0.368 |
| 8 | 0.422 | 0.509 | 0.481 | 0.476 | 0.376 | 0.431 | 0.484 | 0.501 | 0.446 | 0.519 | 0.523 | 0.404 | 0.503 | 0.474 | 0.417 |
| 9 | 0.520 | 0.512 | 0.426 | 0.442 | 0.314 | 0.437 | 0.512 | 0.568 | 0.480 | 0.486 | 0.540 | 0.439 | 0.557 | 0.524 | 0.437 |
| 10 | 0.513 | 0.541 | 0.367 | 0.510 | 0.389 | 0.524 | 0.485 | 0.467 | 0.482 | 0.473 | 0.586 | 0.468 | 0.513 | 0.573 | 0.451 |
| 11 | 0.471 | 0.425 | 0.354 | 0.475 | 0.379 | 0.439 | 0.497 | 0.524 | 0.524 | 0.483 | 0.533 | 0.481 | 0.517 | 0.529 | 0.462 |
| $\bar{F}(4-9)$ | 0.300 | 0.328 | 0.288 | 0.286 | 0.266 | 0.280 | 0.354 | 0.338 | 0.308 | 0.332 | 0.359 | 0.349 | 0.343 | 0.320 | 0.293 |

STANDARD DEVIATIONS OF LOG(F):

| Age/year | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 0.22 | 0.16 | 0.19 | 0.20 | 0.25 | 0.21 | 0.30 | 0.33 | 0.25 | 0.17 | 0.13 | 0.19 |
| 5 | 0.13 | 0.12 | 0.10 | 0.09 | 0.14 | 0.12 | 0.12 | 0.13 | 0.16 | 0.12 | 0.12 | 0.12 |
| 6 | 0.11 | 0.15 | 0.13 | 0.14 | 0.14 | 0.11 | 0.12 | 0.11 | 0.13 | 0.15 | 0.12 | 0.13 |
| 7 | 0.16 | 0.10 | 0.13 | 0.14 | 0.12 | 0.12 | 0.11 | 0.12 | 0.11 | 0.13 | 0.14 | 0.12 |
| 8 | 0.13 | 0.13 | 0.11 | 0.13 | 0.15 | 0.13 | 0.11 | 0.11 | 0.13 | 0.13 | 0.14 | 0.14 |
| 9 | 0.14 | 0.15 | 0.14 | 0.15 | 0.16 | 0.17 | 0.15 | 0.13 | 0.13 | 0.14 | 0.14 |  |
| 10 | 0.18 | 0.16 | 0.18 | 0.19 | 0.18 | 0.18 | 0.19 | 0.17 | 0.17 | 0.17 |  |  |
| 11 | 0.21 | 0.20 | 0.20 | 0.21 | 0.19 | 0.20 | 0.19 | 0.19 | 0.20 | 0.16 | 0.18 |  |



| $\begin{aligned} & \text { Table } 8 \\ & \text { YEAR, } \end{aligned}$ | $\begin{aligned} & \text { Fishing } \\ & 1986, \end{aligned}$ | $\begin{aligned} & \text { mortality } \\ & \text { 1987, } \end{aligned}$ | (F) at 1988, | 1989, | 1990, | 1991, | 1992, | 1993, | 1994, | 1995, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 3, | . 0480 , | .0096, | . 0259 , | .0108, | .0069, | .0069, | .0143, | . 0224, | . 0195 , | . 0441 , |
| 4, | .0571, | . 1043, | . 0644 , | . 1108, | .0742, | .0530, | . 1324, | .0818, | . 1327, | . 0655 , |
| 5, | .1769, | . 2563, | .1897, | .1458, | .2000, | . 2235, | . 3438 , | . 1835, | .1862, | .1690, |
| 6 , | . 2192, | . 3648 , | . 3509, | . 3300 , | . 2594, | .4112, | . 4578 , | . 3475 , | .2551, | . 2930, |
| 7, | . 3146 , | . 3953 , | . 3346 , | .2886, | .5145, | . 4844 , | . 4344, | . 4556, | . 3714 , | . 3880 , |
| 8, | . 4796 , | . 4969 , | . 4466, | . 3959 , | . 5309 , | .5597, | . 3377 , | . 5033, | . 4938, | . 4460 , |
| 9, | . 3551 , | . 5878 , | . 6760, | . 3987 , | .4071, | . 5181, | . 4578 , | .5859, | .5721, | . 4460 , |
| 10, | .8910, | .5278, | .4081, | . 4752 , | . 3127, | .6375, | . 4136, | .6074, | .7572, | . 4460 , |
| 11, | .9082, | . 8325 , | .6191, | . 7288 , | . 5364 , | . 3134, | . 2960, | . 5076 , | .8128, | . 4460 , |
| 12, | .8827, | . 6680, | .4204, | .7391, | . 4761 , | . 2623, | .1174, | .5143, | .8422, | . 4460 , |
| 13. | . 2941, | 2.2834, | . 6546, | . 6014, | 1.3666, | . 0853, | . 6757, | . 2479, | 1.6451, | . 4460 , |
| 14. | . 7440 , | 1.0780, | . 5260 , | .6360, | .6730, | . 2730, | . 3160 , | . 3060, | . 4260 , | . 4460 , |
| +gp, | . 7440 , | 1.0780, | . 5260, | .6360, | .6730, | . 2730, | . 3160, | . 3060 , | . 4260 , | . 4460 , |
| FBAR 4-9, | . 2671, | .3676, | . 3437, | . 2783, | .3310, | . 3750, | . 3607 , | .3596, | .3352, | . 3012, |

Table 3.2.11

Run title : Saithe Iceland Va (run: SVPBS06/V06)
At 4-May-96 19:26:33
Traditional vpa using screen input for terminal $F$

| Table 10 | Stock number at age (start of year) |  |  |  | Numbers*10**-3 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR, | 1976, | 1977, | 1978, | 1979, | 1980, | 1981, | 1982, | 1983, | 1984, | 1985, |
| AGE |  |  |  |  |  |  |  |  |  |  |
| 3, | 31242, | 21673, | 49446, | 55312, | 28074, | 19562, | 22175, | 33645, | 47661, | 34399, |
| 4, | 20754, | 25281, | 17691, | 39988, | 44852, | 22737, | 15833, | 17697, | 27449, | 38974, |
| 5, | 13207, | 14079, | 18806, | 13451, | 29346, | 34430, | 17420, | 11978, | 12911, | 21880, |
| 6, | 9455, | 8076, | 8956, | 13203, | 9220, | 19333, | 25031, | 11737, | 8846, | 9849, |
| 7. | 7161, | 5469, | 4993, | 5932, | 7562, | 5218, | 10977, | 16134, | 7402, | 5601, |
| 8, | 7978, | 3930, | 3546, | 2942, | 3450, | 4244, | 2964, | 5144, | 9210, | 4100, |
| 9. | 5937, | 4407, | 2258, | 2040, | 1764, | 1624, | 2206, | 1340, | 2147, | 4310, |
| 10, | 2998, | 3486, | 2239, | 1366, | 1407, | 1096, | 812, | 935, | 648, | 1003, |
| 11, | 1071, | 1501, | 1994, | 1317, | 522, | 916, | 680, | 391, | 540, | 196, |
| 12, | 730, | 612, | 747, | 1205, | 552, | 288, | 695, | 503, | 286, | 183, |
| 13, | 156, | 426, | 352, | 362, | 549, | 351, | 99, | 537, | 401, | 113, |
| 14, | 173, | 44, | 285, | 164 , | 162, | 392, | 166, | 38, | 438, | 163, |
| +gp, | 46, | 181, | 172, | 0, | 285, | 432, | 358, | 1655, | 368, | 669, |
| TOTAL, | 100906, | 89166, | 111484, | 137282, | 127745, | 110623, | 99416, | 101735, | 118309, | 121440, |



Table 3.2.12

Run title : Saithe Iceland Va (run: SVPBS07/V07)
$\begin{array}{rlr}\text { At } & \text { 4-May-96 } & 19: 42: 29 \\ & \text { Table } 16 \quad \text { Summary (without SOP correction) }\end{array}$
Traditional vpa using screen input for terminal $F$


Saithe in the Iceland Grounds (Fishing Area Va)
Prediction with management option table: Input data

| Year: 1996 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | $\begin{aligned} & \text { Stock } \\ & \text { size } \end{aligned}$ | Natural mortality | Maturity ogive | Prop. of F bef.spaw. | Prop. of M bef.spaw. | Weight in stock | Exploit. pattern | Weight in catch |
| 3 | 40.000 | 0.2000 | 0.1000 | 0.0000 | 0.0000 | 1.398 | 0.0210 | 1.398 |
| 4 | 31.941 | 0.2000 | 0.2000 | 0.0000 | 0.0000 | 1.990 | 0.0870 | 1.990 |
| 5 | 24.359 | 0.2000 | 0.3700 | 0.0000 | 0.0000 | 2.720 | 0.1620 | 2.720 |
| 6 | 12.975 | 0.2000 | 0.6100 | 0.0000 | 0.0000 | 3.714 | 0.2690 | 3.714 |
| 7 | 4.758 | 0.2000 | 0.8200 | 0.0000 | 0.0000 | 4.837 | 0.3650 | 4.837 |
| 8 | 4.476 | 0.2000 | 0.8900 | 0.0000 | 0.0000 | 5.797 | 0.4340 | 5.797 |
| 9 | 1.441 | 0.2000 | 0.9600 | 0.0000 | 0.0000 | 7.199 | 0.4820 | 7.199 |
| 10 | 0.914 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.429 | 0.5440 | 7.429 |
| 11 | 0.767 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.253 | 0.5310 | 8.253 |
| 12 | 0.830 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 9.377 | 0.5420 | 9.377 |
| 13 | 0.169 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 9.584 | 0.7550 | 9.584 |
| 14 | 0.056 | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 11.586 | 0.5930 | 11.586 |
| Unit | Millions | - | - | - | - | Kilograms | - | Kilograms |


| Year: 1997 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Recruitment | Natural mortality | Maturity ogive | Prop. of F bef.spaw. | Prop. of M bef.spaw. | Weight in stock | Exploit. pattern | Weight <br> in catch |
| 3 | 40.000 | 0.2000 | 0.1000 | 0.0000 | 0.0000 | 1.398 | 0.0210 | 1.398 |
| 4 | . | 0.2000 | 0.2000 | 0.0000 | 0.0000 | 2.010 | 0.0870 | 2.010 |
| 5 | . | 0.2000 | 0.3700 | 0.0000 | 0.0000 | 2.729 | 0.1620 | 2.729 |
| 6 | . | 0.2000 | 0.5800 | 0.0000 | 0.0000 | 3.635 | 0.2690 | 3.635 |
| 7 | . | 0.2000 | 0.7800 | 0.0000 | 0.0000 | 4.741 | 0.3650 | 4.741 |
| 8 | . | 0.2000 | 0.9100 | 0.0000 | 0.0000 | 6.027 | 0.4340 | 6.027 |
| 9 | - | 0.2000 | 0.9500 | 0.0000 | 0.0000 | 7.103 | 0.4820 | 7.103 |
| 10 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.429 | 0.5440 | 7.429 |
| 11 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.253 | 0.5310 | 8.253 |
| 12 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 9.377 | 0.5420 | 9.377 |
| 13 | . | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 9.584 | 0.7550 | 9.584 |
| 14 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 11.586 | 0.5930 | 11.586 |
| Unit | Millions | - | - | - | - | Kilograms | - | Kilograms |


| Year: 1998 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| Age | Recruit- <br> ment | Natural <br> mortality | Maturity <br> ogive | Prop.of <br> bef.spaw. | Prop.of M <br> bef.spaw. | Weight <br> in stock | Exploit. <br> pattern | Weight <br> in catch |  |
| 3 | 40.000 | 0.2000 | 0.1000 | 0.0000 | 0.0000 | 1.398 | 0.0210 | 1.398 |  |
| 4 | $\cdot$ | 0.2000 | 0.2000 | 0.0000 | 0.0000 | 2.010 | 0.0870 | 2.010 |  |
| 5 | $\cdot$ | 0.2000 | 0.3700 | 0.0000 | 0.0000 | 2.742 | 0.1620 | 2.742 |  |
| 6 | $\cdot$ | 0.2000 | 0.5800 | 0.0000 | 0.0000 | 3.641 | 0.2690 | 3.641 |  |
| 7 | $\cdot$ | 0.2000 | 0.7600 | 0.0000 | 0.0000 | 4.643 | 0.3650 | 4.643 |  |
| 8 | $\cdot$ | 0.2000 | 0.8900 | 0.0000 | 0.0000 | 5.872 | 0.4340 | 5.872 |  |
| 9 | $\cdot$ | 0.2000 | 0.9600 | 0.0000 | 0.0000 | 6.833 | 0.4820 | 6.833 |  |
| 10 | $\cdot$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.429 | 0.5440 | 7.429 |  |
| 11 | $\cdot$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.253 | 0.5310 | 8.253 |  |
| 12 | $\cdot$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 9.377 | 0.5420 | 9.377 |  |
| 13 | $\cdot$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 9.584 | 0.7550 | 9.584 |  |
| 14 | $\cdot$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 11.586 | 0.5930 | 11.586 |  |
| Unit | Millions | - | - | - | - | Kilograms | - | Kilograms |  |

Notes: Run name : PRED94 Date and time: 03MAY96:10:52

Table 3.2.14
Saithe in the Iceland Grounds (Fishing Area Va)
Prediction with management option table

| Year: 1996 |  |  |  |  | Year: 1997 |  |  |  |  | Year: 1998 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F <br> Factor | Reference F | Stock biomass | Sp.stock biomass | Catch in weight | F <br> Factor | Reference F | Stock biomass | Sp.stock biomass | Catch in weight | Stock biomass | Sp.stock biomass |
| $0.8557$ | $0.2566$ | $316435$ | $147310$ | $46011$ | $\begin{aligned} & 0.6000 \\ & 0.7000 \\ & 0.8000 \\ & 0.9000 \\ & 1.0000 \\ & 1.1000 \\ & 1.2000 \\ & 1.3000 \\ & 1.4000 \end{aligned}$ | $\begin{aligned} & 0.1799 \\ & 0.2099 \\ & 0.2399 \\ & 0.2698 \\ & 0.2998 \\ & 0.3298 \\ & 0.3598 \\ & 0.3898 \\ & 0.4198 \end{aligned}$ | $343428$ | 161890 <br> 161890 | 37560 43148 48564 53814 58904 63842 68632 73280 77792 | $\begin{aligned} & 378946 \\ & 372795 \\ & 366832 \\ & 361051 \\ & 355446 \\ & 350008 \\ & 344732 \\ & 339613 \\ & 334643 \end{aligned}$ | $\begin{aligned} & 188305 \\ & 183586 \\ & 179032 \\ & 174634 \\ & 170386 \\ & 166283 \\ & 162319 \\ & 158488 \\ & 154784 \end{aligned}$ |
| - | - | Tonnes | Tonnes | Tonnes | * | - | Tonnes | Tonnes | Tonnes | Tonnes | Tonnes |

Notes: Run name : PRED94
Date and time : 03MAY96:12:21
Computation of ref. F: Simple mean, age 4-9
Basis for $1996: F$ factors
Table 3.2.15
12:00 Friday, May 3, 1996
Saithe in the Iceland Grounds (Fishing Area Va)
Yield per recruit: Input data

| Age | Recruit- <br> ment | Natural <br> mortality | Maturity <br> ogive | Prop.of F <br> bef.spaw. | Prop.of M M <br> bef.spaw. | Weight <br> in stock | Exploit. <br> pattern | Weight <br> in catch |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 1.000 | 0.2000 | 0.1000 | 0.0000 | 0.0000 | 1.457 | 0.0500 | 1.457 |
| 4 | $\cdot$ | 0.2000 | 0.2000 | 0.0000 | 0.0000 | 2.048 | 0.2400 | 2.048 |
| 5 | $\cdot$ | 0.2000 | 0.3700 | 0.0000 | 0.0000 | 2.758 | 0.5300 | 2.758 |
| 6 | $\cdot$ | 0.2000 | 0.5700 | 0.0000 | 0.0000 | 3.648 | 0.9000 | 3.648 |
| 7 | $\cdot$ | 0.2000 | 0.7500 | 0.0000 | 0.0000 | 4.682 | 1.1500 | 4.682 |
| 8 | $\cdot$ | 0.2000 | 0.8700 | 0.0000 | 0.0000 | 5.809 | 1.5900 | 5.809 |
| 9 | $\cdot$ | 0.2000 | 0.9400 | 0.0000 | 0.0000 | 6.932 | 1.5900 | 6.932 |
| 10 | $\cdot$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 7.851 | 1.5900 | 7.851 |
| 11 | $\cdot$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 8.786 | 1.5900 | 8.786 |
| 12 | $\cdot$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 9.625 | 1.5900 | 9.625 |
| 13 | - | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 10.769 | 1.5900 | 10.769 |
| 14 | $\cdot$ | 0.2000 | 1.0000 | 0.0000 | 0.0000 | 11.248 | 1.5900 | 11.248 |
| Unit | Numbers | - | - | - | - | Kilograms | - | Kilograms |

Notes: Run name : YIELD3
Date and time: O3MAY96:12:45
Table 3.2.16
Saithe in the Iceland Grounds (Fishing Area Va)
Yield per recruit: Summary table

| (cont.) |  |  |  |  |  | 1 January |  | Spawning time |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { F } \\ \text { Factor } \end{gathered}$ | $\begin{gathered} \text { Reference } \\ F \end{gathered}$ | Catch in numbers | Catch in weight | Stock size | Stock biomass | $\begin{aligned} & \text { Sp.stock } \\ & \text { size } \end{aligned}$ | sp.stock biomass | Sp.stock size | Sp.stock biomass |
| 1.3600 | 1.3600 | 0.623 | 1689.141 | 2.448 | 5177.472 | 0.562 | 1488.994 | 0.562 | 1488.994 |
| 1.3800 | 1.3800 | 0.624 | 1687.405 | 2.440 | 5148.277 | 0.558 | 1472.236 | 0.558 | 1472.236 |
| 1.4000 | 1.4000 | 0.626 | 1685.694 | 2.432 | 5119.709 | 0.554 | 1455.924 | 0.554 | 1455.924 |
| 1.4200 | 1.4200 | 0.628 | 1684.007 | 2.424 | 5091.745 | 0.550 | 1440.041 | 0.550 | 1440.041 |
| 1.4400 | 1.4400 | 0.629 | 1682.344 | 2.416 | 5064.364 | 0.546 | 1424.570 | 0.546 | 1424.570 |
| 1.4600 | 1.4600 | 0.631 | 1680.704 | 2.408 | 5037.545 | 0.542 | 1409.495 | 0.542 | 1409.495 |
| 1.4800 | 1.4800 | 0.633 | 1679.087 | 2.401 | 5011.269 | 0.538 | 1394.799 | 0.538 | 1394.799 |
| 1.5000 | 1.5000 | 0.634 | 1677.493 | 2.393 | 4985.518 | 0.534 | 1380.470 | 0.534 | 1380.470 |
| - | - | Numbers | Grams | Numbers | Grams | Numbers | Grams | Numbers | Grams |

[^1]Table 3.3.1 Nominal catch (tonnes) of COD in Division Va, by countries, 19821995, as offically reported to ICES.

| Country | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Belgium | 236 | 188 | 254 | 207 | 226 | 597 | 365 |
| Faroe Islands | 5,297 | 5,626 | 2,041 | 2,203 | 2,554 | 1,848 | 1,966 |
| Iceland | 382,297 | 293,890 | 281,481 | 322,810 | 365,852 | 389,808 | 375,741 |
| Norway | 557 | 109 | 90 | 46 | 1 | 4 | 4 |
| UK (Engl. and Wales) | - | - | 2 | 1 | - | - | - |
| Total | 388,387 | 299,813 | 283,868 | 325,267 | 368,633 | 392,257 | 378,076 |
| Working Group estimate | - | - | - | - | - | - | - |


| Country | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Belgium |  |  |  |  |  |  |  |
| Faroe Islands | 309 | 260 | 548 | 222 | 145 | 135 | - |
| Iceland | 2,012 | 1,782 | 1,323 | 883 | 664 | 754 | 719 |
| Norway | 353,985 | 333,348 | 306,697 | 266,662 | 251,170 | 175,296 | 168,685 |
| UK (Engl. and Wales) | 3 | - | - | - | - | - | - |
| Total | - | - | - | - | - | - | - |
| Working Group estimate | 356,309 | 335,390 | 308,568 | 267,767 | 251,979 | 178,808 | 169,404 |

[^2]Table 3.3.2. Icelandic Cod. Landings (tonnes), effort, cpue and \% changes in effort and cpue in the period 1991-1995 (with 1991 as $100 \%$ ). Data are based on logbooks which have been mandatory in the fisheries since 1991.

Bottom trawl

| Year | Catch | efforteffort <br> $\%$ <br> \% changes |  |  | cpue |  | cpue <br> $\%$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 175142 | 234946 | 100 | 745 | 100 |  |  |  |
| 1992 | 131504 | 228196 | 97 | 576 | 77 |  |  |  |
| 1993 | 114587 | 182882 | 78 | 627 | 84 |  |  |  |
| 1994 | 66186 | 83975 | 36 | 788 | 106 |  |  |  |
| 1995 | 60580 | 71202 | 30 | 851 | 114 |  |  |  |

Gillnet

| Year | Catch | effort | effort <br> $\%$ <br> changes |  | cpue |  |  | Cpue <br> \% changes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 58948 | 1060 | 100 | 56 | 100 |  |  |  |
| 1992 | 59712 | 984 | 93 | 61 | 109 |  |  |  |
| 1993 | 56701 | 1008 | 95 | 56 | 101 |  |  |  |
| 1994 | 39192 | 718 | 68 | 55 | 98 |  |  |  |
| 1995 | 32309 | 437 | 41 | 74 | 133 |  |  |  |

Long line

| Year | Catch | effort | effort <br> $\%$ <br> changes |  | cpue |  |  | cpue <br> $\%$ <br> changes |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1991 | 44711 | 2006 | 100 | 22 | 100 |  |  |  |  |
| 1992 | 42301 | 2016 | 100 | 21 | 94 |  |  |  |  |
| 1993 | 47263 | 2224 | 111 | 21 | 95 |  |  |  |  |
| 1994 | 36426 | 1652 | 82 | 22 | 99 |  |  |  |  |
| 1995 | 44588 | 1724 | 86 | 26 | 116 |  |  |  |  |

Table 3.3.3. Icelandic Cod, catch-in-numbers (millions).

| Age | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , | 23.578 | 2.614 | 5.999 | 7.186 | 4.348 | 2.118 | 3.285 |
| 4 | 39.790 | 42.659 | 16.287 | 28.427 | 28.530 | 13.297 | 20.812 |
| 5 | 21.092 | 32.465 | 43.931 | 13.772 | 32.500 | 39.195 | 24.462 |
| 6 | 24.395 | 12.162 | 17.626 | 34.443 | 15.119 | 23.247 | 28.351 |
| 7 | 5.803 | 13.017 | 8.729 | 14.130 | 27.090 | 12.710 | 14.012 |
| 8 | 5.343 | 2.809 | 4.119 | 4.426 | 7.847 | 26.455 | 7.666 |
| 9 | 1.297 | 1.773 | 0.978 | 1.432 | 2.228 | 4.804 | 11.517 |
| 10 | 0.633 | 0.421 | 0.348 | 0.350 | 0.646 | 1.677 | 1.912 |
| 11 | 0.205 | 0.086 | 0.119 | 0.168 | 0.246 | 0.582 | 0.327 |
| 12 | 0.155 | 0.024 | 0.048 | 0.043 | 0.099 | 0.228 | 0.094 |
| 13 | 0.065 | 0.006 | 0.015 | 0.024 | 0.025 | 0.053 | 0.043 |
| 14 | 0.029 | 0.002 | 0.027 | 0.004 | 0.004 | 0.068 | 0.011 |
| Juvenile | 84.607 | 77.549 | 66.317 | 66.657 | 74.804 | 79.027 | 73.043 |
| Adult | 37.778 | 30.489 | 31.909 | 37.748 | 43.878 | 45.407 | 39.449 |
| Sum 3-3 | 23.578 | 2.614 | 5.999 | 7.186 | 4.348 | 2.118 | 3.285 |
| Sum 4-14 | 98.807 | 105.424 | 92.227 | 97.219 | 114.334 | 122.316 | 109.207 |
| Total | 122.385 | 108.038 | 98.226 | 104.405 | 118.682 | 124.434 | 112.492 |
| Age | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| 3 | 3.554 | 6.750 | 6.457 | 20.642 | 11.002 | 6.713 | 2.605 |
| 4 | 10.910 | 31.553 | 24.552 | 20.330 | 62.130 | 39.323 | 27.983 |
| 5 | 24.305 | 19.420 | 35.392 | 26.644 | 27.192 | 55.895 | 50.059 |
| 6 | 18.944 | 15.326 | 18.267 | 30.839 | 15.127 | 18.663 | 31.455 |
| 7 | 17.382 | 8.082 | 8.711 | 11.413 | 15.695 | 6.399 | 6.010 |
| 8 | 8.381 | 7.336 | 4.201 | 4.441 | 4.159 | 5.877 | 1.915 |
| 9 | 2.054 | 2.680 | 2.264 | 1.771 | 1.463 | 1.345 | 0.881 |
| 10 | 2.733 | 0.512 | 1.063 | 0.805 | 0.592 | 0.455 | 0.225 |
| 11 | 0.514 | 0.538 | 0.217 | 0.392 | 0.253 | 0.305 | 0.107 |
| 12 | 0.215 | 0.195 | 0.233 | 0.103 | 0.142 | 0.157 | 0.086 |
| 13 | 0.064 | 0.090 | 0.102 | 0.076 | 0.046 | 0.114 | 0.038 |
| 14 | 0.037 | 0.036 | 0.038 | 0.040 | 0.058 | 0.025 | 0.005 |
| Juvenile | 58.426 | 65.651 | 69.001 | 80.654 | 107.928 | 103.170 | 82.565 |
| Adult | 30.667 | 26.867 | 32.496 | 36.842 | 29.931 | 32.101 | 38.804 |
| Sum 3-3 | 3.554 | 6.750 | 6.457 | 20.642 | 11.002 | 6.713 | 2.605 |
| Sum 4-14 | 85.539 | 85.768 | 95.040 | 96.854 | 126.857 | 128.558 | 118.764 |
| Total | 89.093 | 92.518 | 101.497 | 117.496 | 137.859 | 135.271 | 121.369 |
| Age | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |  |
| 3 | 5.785 | 8.554 | 12.217 | 20.500 | 6.160 | 10.782 |  |
| 4 | 12.313 | 25.131 | 21.708 | 33.078 | 24.142 | 9.113 |  |
| 5 | 27.179 | 15.491 | 26.524 | 15.195 | 19.666 | 16.848 |  |
| 6 | 44.534 | 21.514 | 11.413 | 13.281 | 6.968 | 13.081 |  |
| 7 | 17.037 | 25.038 | 10.073 | 3.583 | 4.393 | 4.120 |  |
| 8 | 2.573 | 6.364 | 8.304 | 2.785 | 1.257 | 1.598 |  |
| 9 | 0.609 | 0.903 | 2.006 | 2.707 | 0.599 | 0.313 |  |
| 10 | 0.322 | 0.243 | 0.257 | 1.181 | 0.508 | 0.184 |  |
| 11 | 0.118 | 0.125 | 0.046 | 0.180 | 0.283 | 0.156 |  |
| 12 | 0.050 | 0.063 | 0.032 | 0.034 | 0.049 | 0.141 |  |
| 13 | 0.015 | 0.011 | 0.012 | 0.011 | 0.018 | 0.029 |  |
| 14 | 0.020 | 0.012 | 0.008 | 0.013 | 0.006 | 0.008 |  |
| Juvenile | 65.114 | 60.283 | 48.743 | 45.914 | 26.361 | 21.978 |  |
| Adult | 45.441 | 43.166 | 43.857 | 46.634 | 37.688 | 34.395 |  |
| Sum 3-3 | 5.785 | 8.554 | 12.217 | 20.500 | 6.160 | 10.782 |  |
| Sum 4-14 | 104.770 | 94.895 | 80.383 | 72.048 | 57.889 | 45.591 |  |
| Total | 110.555 | 103.449 | 92.600 | 92.548 | 64.049 | 56.373 |  |

Table 3.3.4. Icelandic Cod, proportion of fishing and natural mortality before spawning.

| Age | PropF | PropM |
| ---: | ---: | ---: |
| 3 | 0.085 | 0.250 |
| 4 | 0.180 | 0.250 |
| 5 | 0.248 | 0.250 |
| 6 | 0.296 | 0.250 |
| 7 | 0.382 | 0.250 |
| 8 | 0.437 | 0.250 |
| 9 | 0.477 | 0.250 |
| 10 | 0.477 | 0.250 |
| 11 | 0.477 | 0.250 |
| 12 | 0.477 | 0.250 |
| 13 | 0.477 | 0.250 |
| 14 | 0.477 | 0.250 |

Table 3.3.5. Icelandic Cod, mean weight at age in the landings (g).

| Age | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1350 | 1259 | 1289 | 1408 | 1392 | 1180 | 1006 |
| 4 | 1780 | 1911 | 1833 | 1956 | 1862 | 1651 | 1550 |
| 5 | 2650 | 2856 | 2929 | 2642 | 2733 | 2260 | 2246 |
| 6 | 4100 | 4069 | 3955 | 3999 | 3768 | 3293 | 3104 |
| 7 | 5070 | 5777 | 5726 | 5548 | 5259 | 4483 | 4258 |
| 8 | 6730 | 6636 | 6806 | 6754 | 6981 | 5821 | 5386 |
| 9 | 8250 | 7685 | 9041 | 8299 | 8037 | 7739 | 6682 |
| 10 | 9610 | 9730 | 10865 | 9312 | 10731 | 9422 | 9141 |
| 11 | 11540 | 11703 | 13068 | 13130 | 12301 | 11374 | 11963 |
| 12 | 11430 | 14394 | 11982 | 13418 | 17281 | 12784 | 14226 |
| 13 | 14060 | 17456 | 19062 | 13540 | 14893 | 12514 | 17287 |
| 14 | 16180 | 24116 | 21284 | 20072 | 19069 | 19069 | 16590 |
| Age | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| 3 | 1095 | 1288 | 1407 | 1459 | 1316 | 1438 | 1186 |
| 4 | 1599 | 1725 | 1971 | 1961 | 1956 | 1805 | 1813 |
| 5 | 2275 | 2596 | 2576 | 2844 | 2686 | 2576 | 2590 |
| 6 | 3021 | 3581 | 3650 | 3593 | 3894 | 3519 | 3915 |
| 7 | 4096 | 4371 | 4976 | 4635 | 4716 | 4930 | 5210 |
| 8 | 5481 | 5798 | 6372 | 6155 | 6257 | 6001 | 6892 |
| 9 | 7049 | 7456 | 8207 | 7503 | 7368 | 7144 | 8035 |
| 10 | 8128 | 9851 | 10320 | 9084 | 9243 | 8822 | 9831 |
| 11 | 11009 | 11052 | 12197 | 10356 | 10697 | 9977 | 11986 |
| 12 | 13972 | 14338 | 14683 | 15283 | 10622 | 11732 | 10003 |
| 13 | 15882 | 15273 | 16175 | 14540 | 15894 | 14156 | 12611 |
| 14 | 18498 | 16660 | 19050 | 15017 | 125.92 | 13042 | 16045 |
| Age | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 |
| 3 | 1290 | 1309 | 1289 | 1392 | 1443 | 1348 | 1368 |
| 4 | 1704 | 1899 | 1768 | 1887 | 2063 | 1959 | 1955 |
| 5 | 2383 | 2475 | 2469 | 2772 | 2562 | 2920 | 2775 |
| 6 | 3034 | 3159 | 3292 | 3762 | 3659 | 3625 | 3945 |
| 7 | 4624 | 3792 | 4394 | 4930 | 5117 | 5176 | 5028 |
| 8 | 6521 | 5680 | 5582 | 6054 | 6262 | 6416 | 6655 |
| 9 | 8888 | 7242 | 6830 | 7450 | 7719 | 7916 | 7479 |
| 10 | 10592 | 9804 | 8127 | 8641 | 8896 | 10273 | 8984 |
| 11 | 10993 | 9754 | 12679 | 10901 | 10847 | 11022 | 11362 |
| 12 | 14570 | 14344 | 13410 | 12517 | 12874 | 11407 | 12552 |
| 13 | 15732 | 14172 | 15715 | 14742 | 14742 | 13098 | 14574 |
| 14 | 17290 | 20200 | 11267 | 16874 | 17470 | 15182 | 15198 |

Table 3.3.6. Icelandic Cod, mean weight at age in the spawning stock (g).

| Age | 1976 |  | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 12.17 | 960 | 1031 | 1141 | 1333 | 967 | 996 |
|  | 4 | 1604 | 1723 | 1671 | 1647 | 1680 | 1513 | 1626 |
|  | 5 | 2516 | 2729 | 2863 | 2532 | 2708 | 2101 | 2095 |
|  | 6 | 4380 | 4108 | 3920 | 4027 | 3875 | 3225 | 3006 |
|  | 7 | 5407 | 5957 | 5976 | 5664 | 5446 | 4520 | 4339 |
|  | 8 | 6985 | 6696 | 6946 | 6951 | 7106 | 5851 | 5571 |
|  | 9 | 8752 | 7618 | 9204 | 8234 | 8120 | 7661 | 6801 |
|  | 10 | 10143 | 9669 | 10833 | 9500 | 10737 | 9084 | 9259 |
|  | 11 | 11829 | 12578 | 12920 | 12921 | 12628 | 10833 | 11550 |
|  | 12 | 11518 | 13884 | 12863 | 13028 | 17528 | 12401 | 13445 |
|  | 13 | 13916 | 17026 | 19104 | 13308 | 15939 | 11724 | 17138 |
|  | 14 | 15367 | 24652 | 21183 | 18930 | 25212 | 14326 | 16554 |
|  | Age | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
|  | 3 | 891 | 1002 | 1131 | 1182 | 1289 | 1218 | 1012 |
|  | 4 | 1472 | 1479 | 1597 | 1762 | 1811 | 1604 | 1542 |
|  | 5 | 2139 | 2257 | 2285 | 2681 | 2735 | 2499 | 2423 |
|  | 6 | 2918 | 3476 | 3524 | 3562 | 4202 | 3566 | 3743 |
|  | 7 | 4130 | 4480 | 5010 | 4824 | 5110 | 5161 | 5298 |
|  | 8 | 5553 | 5887 | 6195 | 6457 | 6497 | 6238 | 6910 |
|  | 9 | 7007 | 7660 | 7800 | 7843 | 7802 | 7302 | 7725 |
|  | 10 | 7770 | 9920 | 9225 | 9419 | 10220 | 8647 | 9397 |
|  | 11 | 10817 | 11035 | 11336 | 10674 | 11197 | 10184 | 11953 |
|  | 12 | 13176 | 14531 | 13277 | 13660 | 10620 | 11504 | 9529 |
|  | 13 | 14175 | 15378 | 15325 | 13812 | 15893 | 14159 | 12195 |
|  | 14 | 18543 | 16394 | 18932 | 18479 | 16514 | 10952 | 14270 |
|  | Age | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 |
|  | 3 | 813 | 1122 | 876 | 1037 | 1193 | 1066 | 1043 |
|  | 4 | 1330 | 1776 | 1389 | 1570 | 1748 | 1826 | 1715 |
|  | 5 | 2132 | 2233 | 2174 | 2518 | 2382 | 2735 | 2629 |
|  | 6 | 3187 | 3044 | 3185 | 3611 | 3684 | 3497 | 3973 |
|  | 7 | 4691 | 3891 | 4481 | 4872 | 5175 | 4741 | 5030 |
|  | 8 | 6627 | 5897 | 5587 | 6150 | 6210 | 6126 | 6368 |
|  | 9 | 8915 | 7657 | 6775 | 7538 | 7676 | 7582 | 7393 |
|  | 10 | 10362 | 10573 | 8225 | 8840 | 8814 | 9887 | 8942 |
|  | 11 | 12093 | 11230 | 11702 | 11088 | 10842 | 10829 | 11115 |
|  | 12 | 15453 | 14340 | 13474 | 12002 | 12595 | 11307 | 12345 |
|  | 13 | 15337 | 14172 | 15436 | 14402 | 14402 | 13098 | 14335 |
|  | 14 | 17257 | 20200 | 11267 | 18383 | 17470 | 15182 | 15575 |

Table 3.3.7. Icelandic Cod, sexual maturity at age.

| Age | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 0.030 | 0.000 | 0.020 | 0.040 | 0.020 | 0.000 | 0.010 |
| 4 | 0.110 | 0.040 | 0.080 | 0.050 | 0.050 | 0.020 | 0.060 |
| 5 | 0.370 | 0.190 | 0.210 | 0.200 | 0.170 | 0.090 | 0.170 |
| 6 | 0.560 | 0.550 | 0.470 | 0.490 | 0.460 | 0.260 | 0.260 |
| 7 | 0.670 | 0.840 | 0.860 | 0.740 | 0.740 | 0.570 | 0.530 |
| 8 | 0.930 | 0.960 | 0.960 | 0.900 | 0.850 | 0.810 | 0.810 |
| 9 | 0.990 | 0.990 | 0.980 | 0.980 | 0.970 | 0.910 | 0.930 |
| 10 | 1.000 | 1.000 | 1.000 | 0.930 | 0.980 | 0.950 | 0.950 |
| 11 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 12 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 13 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 14 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |

Table 3.3.7 (Continued)

| Age | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 0.000 | 0.010 | 0.040 | 0.010 | 0.020 | 0.040 | 0.040 |
| 4 | 0.040 | 0.050 | 0.110 | 0.070 | 0.040 | 0.060 | 0.120 |
| 5 | 0.160 | 0.200 | 0.200 | 0.230 | 0.140 | 0.220 | 0.250 |
| 6 | 0.330 | 0.410 | 0.490 | 0.460 | 0.460 | 0.350 | 0.490 |
| 7 | 0.510 | 0.650 | 0.700 | 0.720 | 0.670 | 0.610 | 0.760 |
| 8 | 0.710 | 0.810 | 0.880 | 0.810 | 0.840 | 0.780 | 0.840 |
| 9 | 0.860 | 0.930 | 0.910 | 0.960 | 0.930 | 0.840 | 0.890 |
| 10 | 0.980 | 0.990 | 1.000 | 0.970 | 1.000 | 0.950 | 0.970 |
| 11 | 1.000 | 1.000 | 1.000 | 0.980 | 1.000 | 0.980 | 1.000 |
| 12 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 13 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 14 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
|  |  |  |  |  |  |  |  |
| Age | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 |
| 3 | 0.040 | 0.086 | 0.097 | 0.276 | 0.292 | 0.141 | 0.141 |
| 4 | 0.080 | 0.193 | 0.236 | 0.383 | 0.447 | 0.415 | 0.415 |
| 5 | 0.260 | 0.262 | 0.466 | 0.575 | 0.664 | 0.720 | 0.720 |
| 6 | 0.480 | 0.464 | 0.612 | 0.722 | 0.785 | 0.849 | 0.849 |
| 7 | 0.730 | 0.678 | 0.829 | 0.921 | 0.915 | 0.849 | 0.849 |
| 8 | 0.870 | 0.855 | 0.909 | 0.970 | 0.929 | 0.956 | 0.956 |
| 9 | 0.960 | 0.850 | 0.972 | 0.956 | 0.990 | 1.000 | 1.000 |
| 10 | 0.990 | 0.771 | 1.000 | 0.977 | 0.860 | 1.000 | 1.000 |
| 11 | 1.000 | 0.648 | 1.000 | 1.000 | 0.986 | 1.000 | 1.000 |
| 12 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 13 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 14 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |

Table 3.3.8: Icelandic Cod. Bottom trawl CPUE (GLM) indices 1991-1995 used in XSA tuning.

| Northern- Area Jun-Dec |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Agelyear | 1991 | 1992 | 1993 | 1994 | 1995 |
| 4 | 1179 | 750 | 1492 | 2117 | 876 |
| 5 | 698 | 903 | 577 | 1409 | 1823 |
| 6 | 779 | 327 | 287 | 255 | 1173 |
| 7 | 467 | 231 | 102 | 92 | 170 |
| 8 | 79 | 90 | 49 | 28 | 42 |
| South-Western Jun-Dec |  |  |  |  |  |
| Age/Year | 1991 | 1992 | 1993 | 1994 | 1995 |
| 4 | 573 | 679 | 997 | 1139 | 469 |
| 5 | 456 | 580 | 480 | 777 | 921 |
| 6 | 650 | 338 | 273 | 259 | 632 |
| 7 | 727 | 277 | 47 | 78 | 54 |
| South-Eastern Jun-Dec |  |  |  |  |  |
| Age/Year | 1991 | 1992 | 1993 | 1994 | 1995 |
| 5 | 159 | 264 | 248 | 616 | 1218 |
| 6 | 318 | 186 | 313 | 143 | 1264 |
| 7 | 389 | 264 | 166 | 110 | 184 |
| 8 | 208 | 270 | 96 | 17 | 23 |
| Northern- Area Jan-May |  |  |  |  |  |
| Age/Year | 1991 | 1992 | 1993 | 1994 | 1995 |
| 4 | 570 | 834 | 1504 | 978 | 41 |
| 5 | 651 | 1499 | 873 | 1432 | 2028 |
| 6 | 1438 | 829 | 813 | 673 | 1420 |
| 7 | 895 | 288 | 69 | 399 | 284 |
| South-Western Jan-May |  |  |  |  |  |
| Age/Year | 1991 | 1992 | 1993 | 1994 | 1995 |
| 5 | 261 | 325 | 878 | 916 | 568 |
| 6 | 522 | 272 | 414 | 309 | 906 |
| 7 | 1146 | 362 | 77 | 164 | 507 |
| 8 | 265 | 429 | 53 | 19 | 61 |

Table 3.3.9: Icelandic Cod. Gillnet CPUE (GLM) indices 1988-1995 used in XSA tuning.

| South andWestern Areas Jan-May |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| Age/Year |  | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| 6 | 38 | 118 | 66 | 53 | 26 | 43 | 45 | 69 |  |
| 7 | 34 | 47 | 86 | 112 | 57 | 31 | 58 | 66 |  |
| 8 | 41 | 17 | 24 | 58 | 99 | 35 | 28 | 39 |  |
| 9 | 14 | 7 | 9 | 9 | 36 | 43 | 12 | 10 |  |
| 10 | 4 | 3 | 4 | 2 | 5 | 17 | 13 | 9 |  |

Table 3.3.10 Icelandic Cod. Icelandic Groundfish survey indices.

| Northern A |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age/Year | 1984 | 1985 | 1986 | 1987 | 1988 | 189 | 1990 | 1991 | 1992 | 1993 | 1994 | 7995 |
| 3 | 55261 | 22540 | 77227 | 92490 | 60113 | 8272 | 22262 | 13601 | 31684 | 18211 | 4301 | 16420 |
| 4 | 48059 | 18404 | 15257 | 49378 | 46566 | 15722 | 8102 | 9542 | 9441 | 13369 | 11353 | 5609 |
| 5 | 13027 | 17203 | 7551 | 5573 | 18693 | 18464 | 8772 | 2499 | 5124 | 2675 | 7088 | 6580 |
| 6 | 6211 | 4864 | 7364 | 2906 | 1665 | 6501 | 9355 | 2303 | 1100 | 1550 | 1330 | 6431 |
| 7 | 1990 | 1388 | 1453 | 2306 | 545 | 456 | 1242 | 1347 | 672 | 263 | 417 | 1191 |
| 8 | 868 | 375 | 345 | 265 | 311 | 137 | 107 | 144 | 318 | 168 | 53 | 228 |
| South-eastern Area |  |  |  |  |  |  |  |  |  |  |  |  |
| Age/Year | 1984 | 1985 | 1986 | 1987 | 1988 | 189 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| 3 | 233 | 452 | 772 | 4670 | 1914 | 85 | 113 | 349 | 1148 | 1098 | 350 | 870 |
| 4 | 561 | 686 | 404 | 3153 | 4474 | 419 | 114 | 511 | 391 | 1189 | 1943 | 462 |
| 5 | 470 | 1171 | 391 | 519 | 3858 | 1673 | 324 | 309 | 361 | 356 | 2084 | 1069 |
| 6 | 524 | 608 | 842 | 333 | 619 | 1762 | 1104 | 763 | 146 | 321 | 619 | 1650 |
| 7 | 373 | 294 | 286 | 385 | 274 | 265 | 396 | 1087 | 163 | 79 | 300 | 508 |
| 8 | 345 | 138 | 105 | 62 | 238 | 83 | 89 | 203 | 117 | 57 | 70 | 141 |
| South-western Area |  |  |  |  |  |  |  |  |  |  |  |  |
| Age/Year | 1984 | 1985 | 1986 | 1987 | 1988 | 189 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| 3 | 1723 | 1413 | 4003 | 3929 | 5857 | 1702 | 3044 | 1088 | 4112 | 4366 | 1298 | 3709 |
| 4 | 4444 | 2203 | 1266 | 5935 | 9371 | 6149 | 2560 | 2019 | 1935 | 3533 | 4397 | 1928 |
| 5 | 2588 | 2968 | 1190 | 1144 | 5845 | 8867 | 4625 | 1016 | 1664 | 851 | 3538 | 3100 |
| 6 | 1911 | 1310 | 1656 | 860 | 812 | 4150 | 7491 | 1702 | 420 | 573 | 866 | 3747 |
| 7 | 813 | 535 | 410 | 873 | 296 | 409 | 1556 | 2172 | 359 | 114 | 355 | 798 |
| 8 | 417 | 232 | 104 | 102 | 224 | 113 | 193 | 387 | 255 | 66 | 22 | 180 |
| Northern Area age 2 index on age 3 one year later. |  |  |  |  |  |  |  |  |  |  |  |  |
| Age/Year | 1984 | 1985 | 1986 | 1987 | 1988 | 189 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| 3 |  | 31297 | 84656 | 99294 | 68604 | 17511 | 19408 | 15633 | 30540 | 26030 | 5556 | 17477 |
| Northern Area age 1 index on age 3 two years later. |  |  |  |  |  |  |  |  |  |  |  |  |
| Age/Year | 1984 | 1985 | 1986 | 1987 | 1988 | 189 | 1990 | 1991 | 1992 | 1093 | 1994 | 1995 |
| 3 |  |  | 39301 | 52943 | 25874 | 5820 | 14921 | 11786 | 14473 | 16407 | 2237 | 10539 |
| South-eastern Area age 2 index on age 3 one year later. |  |  |  |  |  |  |  |  |  |  |  |  |
| Age/Year | 1984 | 1985 | 1986 | 1987 | 1988 | 189 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| 3 |  | 49 | 859 | 787 | 1121 | 61 | 139 | 39 | 532 | 1222 | 347 | 395 |
| South-eastern Area age 1 index on age 3 two years later. |  |  |  |  |  |  |  |  |  |  |  |  |
| Age/Year | 1984 | 1985 | 1986 | 1987 | 1988 | 189 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| 3 |  |  | 68 | 630 | 38 | 34 | 34 | 21 | 49 | 775 | 84 | 301 |
| South-western Area age 2 index on age 3 one year later. |  |  |  |  |  |  |  |  |  |  |  |  |
| Age/Year | 1984 | 1985 | 1986 | 1987 | 1988 | 189 | 1990 | 1997 | 1992 | 1993 | 1994 | 1995 |
| 3 |  | 534 | 2667 | 2351 | 920 | 818 | 820 | 823 | 936 | 2340 | 795 | 2033 |
| South-westem Area age 1 index on age 3 two years later. |  |  |  |  |  |  |  |  |  |  |  |  |
| Age/Year | 1984 | 1985 | 1986 | 1987 | 1988 | 189 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
|  |  |  | 779 | 841 | 22 | 68 | 601 | 110 | 654 | 531 | 382 | 820 |

Table 3.3.11. Icelandic Cod. XSA diagnostic output.

```
VPA Version 3.1 (MSDOS)
    20/04/1996 9:26
Extended Survivors Analysis
" ICELANDIC COD (Div. Va); data from 1960-95(4/96)
CPUE data from file /codvanet.dat
Data for }15\mathrm{ fleets over }36\mathrm{ years
Age range from 3 to 14
    Fleet Alpha Beta
IceGFS. N. 0.99 1
IceGFS. a2 on a3. N 0.99 1
IceGFS. a1 on a3. N. 0.99 1
IceGFS. SE 0.99 1
IceGFS. a2 on a3. SE. 0.99 1
IceGFS. alon a3. SE. 0.99 1
IceGFS. SW. 0.99 1
IceGFS. a2on a3. SW. 0.99 1
IceGFS.al on a3. SW. 0.99 1
TRAWL.JUN.DEC.N 0.58 1
TRAWL.JUN.DEC.SW 0.58 1
TRAWL.JUN.DEC.SE 0.58 1
TRAWL.JAN.MAY.N 0 0.58
TRAWL.JAN.MAY.SW 0 0.58
GILLNET JAN.MAY.S 0 0.58
Time series weights :
    Tapered time weighting applied
    Power = 3 over 20 years
Catchability analysis :
    Catchability dependent on stock size for ages < 5
    Regression type = C
    Minimum of }5\mathrm{ points used for regression
    Survivor estimates shrunk to the population mean for ages < 5
    Catchability independent of age for ages >= 11
Terminal population estimation :
    Survivor estimates shrunk towards the mean F
    of the final }5\mathrm{ years or the 5 oldest ages.
    S.E. of the mean to which the estimates are shrunk = . 500
    Minimum standard error for population
    estimates derived from each fleet = . 300
    Prior weighting not applied
Regression weights
    0.751 0.82 0.877 0.921 0.954
```

Table 3.3.11 (Continued)
Fishing mortalities

| Age | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 0.07 | 0.044 | 0.044 | 0.035 | 0.05 | 0.096 | 0.077 | 0.132 | 0.089 | 0.081 |
| 4 | 0.22 | 0.308 | 0.218 | 0.263 | 0.232 | 0.315 | 0.372 | 0.309 | 0.228 | 0.185 |
| 5 | 0.578 | 0.515 | 0.504 | 0.136 | 0.441 | 0.514 | 0.647 | 0.487 | 0.305 | 0.246 |
| 6 | 0.694 | 0.783 | 0.833 | 0.599 | 0.637 | 0.767 | 0.929 | 0.814 | 0.433 | 0.343 |
| 7 | 0.882 | 0.973 | 0.953 | 0.716 | 0.784 | 0.946 | 1.078 | 0.885 | 0.709 | 0.497 |
| 8 | 0.935 | 0.996 | 1.398 | 0.873 | 0.792 | 0.782 | 1.015 | 1.065 | 0.941 | 0.613 |
| 9 | 0.806 | 0.974 | 1.122 | 0.817 | 0.779 | 0.73 | 0.61 | 1.207 | 0.691 | 0.645 |
| 10 | 0.764 | 0.705 | 0.985 | 0.55 | 0.829 | 0.855 | 0.468 | 0.929 | 0.771 | 0.468 |
| 11 | 0.735 | 0.581 | 1.033 | 0.657 | 0.634 | 0.948 | 0.375 | 0.713 | 0.594 | 0.572 |
| 12 | 0.672 | 0.654 | 0.908 | 0.976 | 0.756 | 0.861 | 0.682 | 0.528 | 0.425 | 0.681 |
| 13 | 0.445 | 0.74 | 2.361 | 0.575 | 0.434 | 0.362 | 0.272 | 0.529 | 0.597 | 0.482 |
| 14 | 0.691 | 0.738 | 1.298 | 0.722 | 0.691 | 0.759 | 0.49 | 0.802 | 0.624 | 0.586 |
| 1 |  |  |  |  |  |  |  |  |  |  |
| XSA population numbers |  |  |  |  |  |  |  |  |  |  |


| AGE |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 1986 | $3.39 \mathrm{E}+05$ | 1.14E+05 | $6.70 \mathrm{E}+04$ | $6.81 \mathrm{E}+04$ | $2.15 \mathrm{E}+04$ | $8.08 \mathrm{E}+03$ | $3.54 \mathrm{E}+03$ |
| 1987 | $2.83 \mathrm{E}+05$ | $2.59 \mathrm{E}+05$ | $7.46 \mathrm{E}+04$ | $3.08 \mathrm{E}+04$ | 2.79E+04 | $7.29 \mathrm{E}+03$ | $2.60 \mathrm{E}+03$ |
| 1988 | 1.71E+05 | $2.22 \mathrm{E}+05$ | 1. $56 \mathrm{E}+05$ | $3.65 \mathrm{E}+04$ | 1.15E+04 | 8. $63 \mathrm{E}+03$ | $2.20 \mathrm{E}+03$ |
| 1989 | $8.30 \mathrm{E}+04$ | 1. $34 \mathrm{E}+05$ | 1. $46 \mathrm{E}+05$ | 7.71E+04 | 1.30E+04 | $3.64 \mathrm{E}+03$ | $1.74 \mathrm{E}+03$ |
| 1990 | 1.32E+05 | $6.56 \mathrm{E}+04$ | $8.42 \mathrm{E}+04$ | 1.04E+05 | 3.47E+04 | $5.20 \mathrm{E}+03$ | 1. $24 \mathrm{E}+03$ |
| 1991 | 1.04E+05 | $1.03 \mathrm{E}+05$ | $4.26 \mathrm{E}+04$ | $4.44 \mathrm{E}+04$ | $4.52 \mathrm{E}+04$ | 1.30E+04 | 1.93E+03 |
| 1992 | $1.81 \mathrm{E}+05$ | $7.72 \mathrm{E}+04$ | $6.15 \mathrm{E}+04$ | $2.08 \mathrm{E}+04$ | 1.69E+04 | $1.44 \mathrm{E}+04$ | $4.85 \mathrm{E}+03$ |
| 1993 | 1. $83 \mathrm{E}+05$ | 1.37E+05 | $4.35 \mathrm{E}+04$ | $2.64 \mathrm{E}+04$ | $6.74 \mathrm{E}+03$ | $4.70 \mathrm{E}+03$ | $4.27 \mathrm{E}+03$ |
| 1994 | $7.95 \mathrm{E}+04$ | 1.31E+05 | $8.26 \mathrm{E}+04$ | $2.19 \mathrm{E}+04$ | $9.56 \mathrm{E}+03$ | $2.28 \mathrm{E}+03$ | 1.33E+03 |
| 1995 | 1. $53 \mathrm{E}+05$ | 5.95E+04 | $8.54 \mathrm{E}+04$ | $4.98 \mathrm{E}+04$ | 1.16E+04 | $3.85 \mathrm{E}+03$ | 7.27E+02 |

Estimated population abundance at 1st Jan 1996

$$
\begin{array}{lllllll}
0.00 \mathrm{E}+00 & 1.16 \mathrm{E}+05 & 4.05 \mathrm{E}+04 & 5.46 \mathrm{E}+04 & 2.90 \mathrm{E}+04 & 5.79 \mathrm{E}+03 & 1.71 \mathrm{E}+03
\end{array}
$$

Taper weighted geometric mean of the VPA populations:

| $1.49 \mathrm{E}+05$ | $1.17 \mathrm{E}+05$ | $7.91 \mathrm{E}+04$ | $4.15 \mathrm{E}+04$ | $1.69 \mathrm{E}+04$ | $6.48 \mathrm{E}+03$ | $2.30 \mathrm{E}+03$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Standard error of the weighted $\log (V P A$ populations) :

$$
\begin{array}{lllllllll}
0.4341 & 0.4602 & 0.423 & 0.519 & 0.5808 & 0.5998 & 0.6436 & 0.5361 & 0.5813
\end{array} 0.6524
$$

|  | AGE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 | 11 | 12 | 13 | 14 |
| YEAR |  |  |  |  |  |
| 1986 | 1.67E+03 | 8.32E+02 | $2.33 \mathrm{E}+02$ | $2.34 \mathrm{E}+02$ | 9.75E+01 |
| 1987 | 1.29E+03 | $6.35 \mathrm{E}+02$ | 3.27E+02 | 9.73E+01 | 1. $23 \mathrm{E}+02$ |
| 1988 | $8.03 \mathrm{E}+02$ | $5.23 \mathrm{E}+02$ | 2.91E+02 | 1.39E+02 | $3.80 \mathrm{E}+01$ |
| 1989 | $5.88 \mathrm{E}+02$ | $2.45 \mathrm{E}+02$ | 1.53E+02 | 9.61E+01 | 1.07E+01 |
| 1990 | $6.31 \mathrm{E}+02$ | 2.78E+02 | $1.04 \mathrm{E}+02$ | $4.70 \mathrm{E}+01$ | $4.43 \mathrm{E}+01$ |
| 1991 | $4.67 \mathrm{E}+02$ | 2. $26 \mathrm{E}+02$ | $1.21 \mathrm{E}+02$ | $4.00 \mathrm{E}+01$ | 2. $49 \mathrm{E}+01$ |
| 1992 | 7.61E+02 | 1. $63 \mathrm{E}+02$ | $7.15 \mathrm{E}+01$ | $4.18 \mathrm{E}+01$ | $2.28 \mathrm{E}+01$ |
| 1993 | $2.16 \mathrm{E}+03$ | 3. $90 \mathrm{E}+02$ | 9.16E+01 | $2.96 \mathrm{E}+01$ | 2. $61 \mathrm{E}+01$ |
| 1994 | 1.05E+03 | $6.98 \mathrm{E}+02$ | 1.57E+02 | $4.42 \mathrm{E}+01$ | 1. $43 \mathrm{E}+01$ |
| 1995 | $5.44 \mathrm{E}+02$ | $3.96 \mathrm{E}+02$ | $3.15 \mathrm{E}+02$ | 8.38E+01 | 1. $99 \mathrm{E}+01$ |

## Table 3.3.11 (Continued)

```
Estimated population abundance at 1st Jan 1996
```

3.12E+02
$2.79 \mathrm{E}+02$

1. $83 \mathrm{E}+02$
$1.31 \mathrm{E}+02$
$4.24 \mathrm{E}+01$

Taper weighted geometric mean of the VPA populations:
$9.35 E+02$
4.11E+02

1. $83 \mathrm{E}+02$
$7.63 E+01$
$3.36 E+01$

Standard error of the weighted Log(VPA populations) :

$$
0.718 \quad 0.782
$$

Log catchability residuals.

```
Fleet : IceGFS. N.
```

| Age | 1984 | 1985 |
| :--- | :--- | :--- |
| 3 | 0.52 | 0 |
| 4 | 0.32 | 0.23 |
| 5 | 0.48 | 0.38 |
| 6 | 0.55 | 0.21 |
| 7 | 0.46 | 0.2 |
| 8 | 0.69 | 0.1 |
| 9 | No data for this fleet at this age |  |
| 10 | No data for this fleet at this age |  |


| Age | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | -0.17 | 0.09 | 0.36 | 0.02 | 0.09 | 0.1 | -0.02 | -0.29 | -0.26 | -0.2 |
| 4 | 0.02 | 0.06 | 0.11 | -0.1 | 0.14 | -0.14 | 0.18 | -0.2 | -0.32 | -0.05 |
| 5 | 0.35 | -0.12 | 0.34 | 0.02 | 0.13 | -0.37 | 0.12 | -0.35 | -0.19 | -0.36 |
| 6 | 0.36 | 0.32 | -0.36 | 0.02 | 0.12 | -0.3 | -0.12 | -0.13 | -0.47 | 0.19 |
| 7 | 0.35 | 0.64 | 0.06 | -0.47 | -0.38 | -0.41 | 0.02 | -0.2 | -0.26 | 0.38 |
| 8 | 0.33 | 0.23 | 0.62 | 0.14 | -0.54 | -1.17 | -0.25 | 0.28 | -0.27 | 0.33 |
| 9 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 10 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |

Mean $\log$ catchability and standard error
of ages with catchability independent of year class strength

| Age | 5 | 6 | 7 | 8 |
| :--- | ---: | ---: | ---: | ---: |
| Mean Log q | -1.7587 | -1.6995 | -1.9682 | -2.3515 |
| S.E (Log q) | 0.305 | 0.3056 | 0.375 | 0.5329 |

Regression statistics :
Ages with $q$ dependent on year class strength

| Age | Slope $t$-value Intercept | Rsquare | No Pts | Reg s.e | Mean Log q |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| 3 | 0.53 | 2.551 | 6.41 | 0.78 | 12 | 0.24 | -1.6 |
| 4 | 0.69 | 2.223 | 4.72 | 0.86 | 12 | 0.2 | -1.6 |

Ages with q constant w.r.t. time

## Table 3.3.11 (Continued)



| Age | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | -0.11 | 0.15 | 0.44 | 0.32 | -0.07 | 0.07 | -0.09 | -0.15 | -0.29 | -0.26 |
| 4 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 5 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 6 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 7 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 8 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 9 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 10 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| Regression statistics : |  |  |  |  |  |  |  |  |  |  |

Ages with $q$ dependent on year class strength

| Age | Slope | t-value Intercept |  |  | Rsquare No Pts Reg s.e Mean Log q |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0.61 | 2.101 |  | 5.59 | 0.78 |  | 11 | 0.2 |  | -1.48 |  |
| 1 |  |  |  |  |  |  |  |  |  |  |  |
| Fleet | : IceGFs. al on a3. N. |  |  |  |  |  |  |  |  |  |  |
| Age | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |  | 1992 | 1993 | 1994 | 1995 |
| 3 | -0.2 | 0.14 | 0.23 | 0.09 | 0.18 | 0.31 |  | -0.14 | -0.04 | -0.38 | -0.15 |
| 4 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |  |
| 5 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |  |
| 6 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |  |
| 7 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |  |
| 8 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |  |
| 9 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |  |
| 10 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |  |

```
Regression statistics :
```

Ages with $q$ dependent on year class strength

| Age | Slope | t-value | Intercept | Rsquare | No Pts Reg s.e | Mean Log $q$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0.58 | 2.379 | 6.3 | 0.81 | 10 | 0.24 | -2.15 |

Table 3.3.11 (Continued)

| Fleet | : IceGFS. SE |  |
| :--- | :--- | :--- |
| Age | 1984 | 1985 |
| 3 | -0.41 | -0.1 |
| 4 | -0.62 | 0.06 |
| 5 | -0.53 | 0 |
| 6 | -0.3 | -0.25 |
| 7 | -0.18 | -0.32 |
| 8 | 0.35 | -0.32 |
| 9 | No data for this fleet at this age |  |
| 10 | No data for this fleet at this age |  |


| Age | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | -0.65 | 0.45 | 0.49 | -0.42 | -0.72 | 0.13 | 0.18 | 0.18 | 0.39 | 0.17 |
| 4 | -0.31 | 0.04 | 0.34 | -0.43 | -0.45 | -0.03 | 0.14 | 0.14 | 0.41 | 0.39 |
| 5 | -0.3 | -0.19 | 1.07 | -0.07 | -0.85 | -0.14 | -0.22 | -0.05 | 0.89 | 0.13 |
| 6 | -0.18 | -0.22 | 0.27 | 0.34 | -0.39 | 0.22 | -0.51 | -0.08 | 0.39 | 0.46 |
| 7 | -0.24 | -0.11 | 0.41 | 0.02 | -0.49 | 0.41 | -0.37 | -0.37 | 0.44 | 0.56 |
| 8 | -0.28 | -0.65 | 0.93 | 0.22 | -0.15 | -0.25 | -0.67 | -0.22 | 0.58 | 0.43 |
| 9 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 10 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |

Mean $\log$ catchability and standard error
of ages with catchability independent of year class strength

| Age | 5 | 6 | 7 | 8 |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Mean $\log q$ | -4.0706 | -3.3238 | -3.0013 | -2.9301 |  |
| S.E (Log q) | 0.5467 | 0.3477 | 0.3923 | 0.5069 |  |
| Regression statistics |  |  |  |  |  |
| Ages with q dependent on year class strength |  |  |  |  |  |


| Age | Slope | t-value | Intercept | Rsquare No Pts | Reg s.e Mean Log $q$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| 3 | 0.52 | 1.422 | 8.47 | 0.51 | 12 | 0.45 | -5.32 |
| 4 | 0.55 | 1.771 | 7.81 | 0.64 | 12 | 0.36 | -4.63 |

Ages with q constant w.r.t. time

| Age | Slope | t-value | Intercept | Rsquare No Pts | Reg s.e Mean Log q |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 5 | 0.67 | 1.176 | 6.42 | 0.6 | 12 | 0.36 | -4.07 |
| 6 | 0.99 | 0.04 | 3.39 | 0.69 | 12 | 0.36 | -3.32 |
| 7 | 1.12 | -0.477 | 2.18 | 0.64 | 12 | 0.46 | -3 |
| 8 | 1.64 | -1.524 | -0.82 | 0.4 | 12 | 0.78 | -2.93 |

Fleet : IcegFs. a2 on a3. SE.

Age 19841985
$3 \quad 99.99 \quad-0.95$
No data for this fleet at this age No data for this fleet at this age
No data for this fleet at this age
No data for this fleet at this age
No data for this fleet at this age
No data for this fleet at this age
No data for this fleet at this age

## Table 3.3.11 (Continued)

| Age | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | -0.24 | -0.12 | 0.58 | -0.28 | -0.29 | -0.71 | 0.14 | 0.61 | 0.74 | 0.15 |
| 4 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 5 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 6 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 7 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 8 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 9 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 10 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |

Regression statistics :
Ages with $q$ dependent on year class strength

| Age | Slope | t-value | Intercept | Rsquare No Pts | Reg s.e Mean Log q |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 3 | 0.54 | 1.089 | 8.7 | 0.41 | 11 | 0.57 | -5.97 |

1

| Fleet | IceGFS. alon a3. SE. |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |
| Age | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| 3 | -1.05 | 0.86 | -0.83 | -0.21 | -0.66 | -0.76 | -0.67 | 1.53 | 0.59 | 0.92 |
| 4 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 5 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 6 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 7 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 8 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 9 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 10 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |

Regression statistics :

Ages with $q$ dependent on year class strength

| Age | Slope | t-value | Intercept | Rsquare No Pts | Reg s.e Mean Log q |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 0.78 | 0.296 | 8.17 | 0.2 | 100.98 | -7.14 |

Fleet : IceGFS. SW.

Age 19841985
$3 \quad-0.4 \quad-0.65$
$4 \quad-0.18 \quad-0.28$
$5 \quad-0.02 \quad-0.27$
$6 \quad 0.15 \quad-0.33$
$7 \quad 0.03-0.29$
$8 \quad 0.3 \quad-0.03$
9 No data for this fleet at this age
10 No data for this fleet at this age

## Table 3.3.11 (Continued)

| Age | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | -0.41 | -0.27 | 0.64 | 0.09 | 0.23 | -0.53 | 0.25 | 0.36 | -0.09 | 0.32 |
| 4 | -0.95 | -0.13 | 0.4 | 0.52 | 0.32 | -0.29 | 0.02 | -0.02 | 0.17 | 0.09 |
| 5 | -0.39 | -0.6 | 0.29 | 0.4 | 0.6 | -0.16 | 0.1 | -0.38 | 0.22 | 0 |
| 6 | -0.36 | -0.13 | -0.3 | 0.35 | 0.67 | 0.17 | -0.31 | -0.35 | -0.13 | 0.42 |
| 7 | -0.45 | 0.13 | -0.08 | -0.12 | 0.31 | 0.53 | -0.15 | -0.57 | 0.04 | 0.45 |
| 8 | -0.53 | -0.38 | 0.64 | 0.29 | 0.39 | 0.16 | -0.13 | -0.31 | -0.81 | 0.44 |

No data for this fleet at this age No data for this fleet at this age

Mean $\log$ catchability and standard error of ages with catchability independent of year class strength

| Age | 5 | 6 | 7 | 8 |
| :--- | ---: | :---: | :---: | :---: |
| Mean Log q | -2.868 | -2.4727 | -2.4308 | -2.6963 |
| S.E(Log q) | 0.3621 | 0.3627 | 0.3482 | 0.4519 |

Regression statistics :
Ages with $q$ dependent on year class strength

| Age | Slope | t-value | Intercept | Rsquare No Pts | Reg s.e Mean Log $q$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1.02 | -0.066 | 3.58 | 0.54 | 12 | 0.43 | -3.75 |
| 4 | 1.01 | -0.027 | 3.07 | 0.6 | 12 | 0.4 | -3.14 |

Ages with q constant w.r.t. time

| Age | Slope | t-value | Intercept | Rsquare No pts | Reg s.e Mean Log q |  |  |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| 5 | 0.7 | 1.709 | 5.41 | 0.79 | 12 | 0.23 | -2.87 |
| 6 | 0.68 | 2.759 | 5.12 | 0.89 | 12 | 0.19 | -2.47 |
| 7 | 0.75 | 1.919 | 4.24 | 0.88 | 12 | 0.23 | -2.43 |
| 8 | 0.84 | 0.754 | 3.66 | 0.73 | 12 | 0.39 | -2.7 |

Fleet : IceGFS. a2on a3. SW.

| Age | $1984 \quad 1985$ |
| :--- | :--- | :--- |
| 3 | $99.99-0.91$ |
| 4 | No data for this fleet at this age |
| 5 | No data for this fleet at this age |
| 6 | No data for this fleet at this age |
| 7 | No data for this fleet at this age |
| 8 | No data for this fleet at this age |
| 9 | No data for this fleet at this age |
| 10 | No data for this fleet at this age |


| Age | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 0.11 | 0.12 | -0.45 | 0.13 | -0.32 | -0.02 | -0.45 | 0.65 | 0.2 | 0.61 |
| 4 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 5 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 6 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 7 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 8 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 9 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 10 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |

## Table 3.3.11 (Continued)

```
Regression statistics :
Ages with q dependent on year class strength
\begin{tabular}{lllllll} 
Age & Slope & t-value & Intercept & Rsquare No Pts & Reg \(s . e\) Mean Log \(q\) \\
3 & 1.14 & -0.395 & 3.51 & 0.49 & 11 & 0.49
\end{tabular}
```

Fleet : IceGFS.a1 on a3. SW.

| Age | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | -0.26 | -0.04 | -0.57 | -0.78 | 0.47 | -0.58 | 0.24 | 0.11 | 0.65 | 0.58 |
| 4 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 5 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 6 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 7 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 8 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 9 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 10 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |

Regression statistics :

Ages with $q$ dependent on year class strength

| Age | Slope | t-value | Intercept | Rsquare No Pts | Reg s.e Mean Log q |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0.78 | 0.526 | 7.07 | 0.44 | 10 | 0.56 | -5.7 |

1

| Age | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 4 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.05 | -0.16 | -0.12 | 0.21 | 0.11 |
| 5 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 0.06 | 0.06 | -0.17 | -0.06 | 0.12 |
| 6 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 0.23 | 0.24 | -0.21 | -0.44 | 0.19 |
| 7 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.09 | 0.29 | 0.24 | -0.35 | -0.09 |
| 8 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.45 | -0.24 | 0.31 | 0.38 | 0 |
| 9 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 10 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |

Mean $\log$ catchability and standard error
of ages with catchability independent of year class strength

| Age | 5 | 6 | 7 | 8 |
| :---: | ---: | ---: | ---: | ---: |
| Mean Log q | -10.5192 | -10.4207 | -10.491 | -10.7885 |
| S.E(Log q) | 0.1164 | 0.3118 | 0.2661 | 0.3516 |

Regression statistics :

## Table 3.3.11 (Continued)



Mean $\log$ catchability and standard error of ages with catchability independent of year class strength

| Age | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: |
| Mean Log q | -10.9857 | -10.5812 | -10.7884 |
| S.E(Log q) | 0.1373 | 0.3103 | 0.7079 |

Regression statistics :

Ages with $q$ dependent on year class strength

| Age | Slope | t-value | Intercept | Rsquare No Pts | Reg s.e Mean Log q |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 4 | 1.06 | -0.179 | 11.41 | 0.77 | 50.23 | -11.41 |

Ages with $q$ constant w.r.t. time

| Age | Slope | t-value | Intercept | Rsquare No Pts | Reg s.e Mean Log q |  |  |
| :--- | ---: | ---: | ---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| 5 | 1.58 | -3.515 | 10.97 | 0.92 | 5 | 0.11 | -10.99 |
| 6 | 1.22 | -0.41 | 10.64 | 0.55 | 5 | 0.42 | -10.58 |
| 7 | 0.61 | 1.448 | 10.31 | 0.83 | 5 | 0.39 | -10.79 |

## Table 3.3.11 (Continued)

Fleet : TRAWL.JUN.DEC.SE

| Age | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 4 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 5 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.46 | -0.22 | -0.06 | 0.07 | 0.67 |
| 6 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.29 | 0.05 | 0.25 | -0.65 | 0.64 |
| 7 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.42 | 0.29 | 0.59 | -0.31 | -0.15 |
| 8 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 0.2 | 0.53 | 0.66 | -0.45 | -0.93 |
| 9 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 10 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |

Mean log catchability and standard error
of ages with catchability independent of year class strength

| Age | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: |
| Mean $\log$ q | -11.473 | -10.7935 | -10.3513 | -10.4656 |
| S.E (Log q) | 0.4238 | 0.496 | 0.4247 | 0.6743 |

Regression statistics :

Ages with $q$ constant w.r.t. time

| Age | Slope | t-value | Intercept | Rsquare No pts | Reg s.e Mean Log q |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 0.51 | 1.997 | 11.25 | 0.85 | 5 | 0.16 | -11.47 |
| 6 | 0.64 | 0.887 | 10.63 | 0.67 | 5 | 0.33 | -10.79 |
| 7 | 1.51 | -1.221 | 10.76 | 0.66 | 5 | 0.61 | -10.35 |
| 8 | 0.66 | 1.306 | 9.87 | 0.83 | 5 | 0.41 | -10.47 |

Fleet : TRAWL.JAN.MAY.N

| Age | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 4 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.01 | 0.39 | -0.02 | -0.1 | -0.26 |
| 5 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.24 | 0.26 | 0.02 | -0.17 | 0.13 |
| 6 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 0.04 | 0.28 | 0 | -0.11 | -0.21 |
| 7 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 0 | -0.11 | -0.67 | 0.69 | 0.09 |
| 8 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 9 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 10 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |

Mean $\log$ catchability and standard error
of ages with catchability independent of year class strength

| Age | 5 | 6 | 7 |
| :---: | ---: | ---: | ---: |
| Mean Log q | -10.6464 | -10.1046 | -10.5175 |
| S.E(Log q) | 0.2074 | 0.1842 | 0.4879 |

Regression statistics :
Ages with $q$ dependent on yeax class strength

## Table 3.3.11 (Continued)

| Age | Slope | t-value | Intercept | Rsquare No Pts | Reg s.e Mean Log $q$ |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 4 | 0.3 | 1.799 | 11.65 | 0.69 | 5 | 0.28 | -12.06 |

Ages with q constant w.r.t. time

| Age | Slope | t-value | Intercept | Rsquare $N o$ Pts | Reg s.e Mean Log q |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 5 | 0.86 | 0.448 | 10.7 | 0.79 | 5 | 0.2 | -10.65 |
| 6 | 1.32 | -1.1 | 10.03 | 0.8 | 5 | 0.24 | -10.1 |
| 7 | 0.92 | 0.238 | 10.44 | 0.73 | 5 | 0.51 | -10.52 |

1

Fleet : TRAWL.JAN.MAY.SW

| Age | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 4 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 5 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.33 | -0.44 | 0.86 | 0.21 | -0.32 |
| 6 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | -0.17 | -0.03 | 0.13 | -0.08 | 0.15 |
| 7 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 0.19 | 0.06 | -0.62 | -0.26 | 0.62 |
| 8 | 99.99 | 99.99 | 99.99 | 99.99 | 99.99 | 0.25 | 0.69 | -0.27 | -0.6 | -0. |
| 9 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 10 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |

Mean $\log$ catchability and standard error
of ages with catchability independent of year class strength

| Age | 5 | 6 | 7 | 8 |
| :--- | ---: | ---: | ---: | ---: |
| Mean Log q | -11.4764 | -10.9091 | -10.4635 | -10.7757 |
| S.E(Log q) | 0.5439 | 0.1375 | 0.4688 | 0.4951 |
| Regression statistics |  |  |  |  |

Ages with $q$ constant w.r.t. time

| Age | Slope | t-value | Intercept | Rsquare No Pts | Reg s.e Mean Log q |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 1.99 | -0.553 | 11.94 | 0.1 | 5 | 1.19 | -11.48 |
| 6 | 0.96 | 0.216 | 10.89 | 0.91 | 5 | 0.15 | -10.91 |
| 7 | 0.76 | 0.979 | 10.24 | 0.85 | 5 | 0.36 | -10.46 |
| 8 | 0.63 | 4.363 | 10.01 | 0.98 | 5 | 0.13 | -10.78 |

1

| Fleet | : GILLNET JAN.MAY.S |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Age | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| 3 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 4 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 5 | No data for this fleet at this age |  |  |  |  |  |  |  |  |  |
| 6 | 99.99 | 99.99 | -0.16 | 0.16 | -0.72 | -0.04 | 0.04 | 0.28 | 0.41 | -0.01 |
| 7 | 99.99 | 99.99 | -0.2 | -0.06 | -0.42 | -0.38 | -0.03 | 0.23 | 0.46 | 0.34 |
| 8 | 99.99 | 99.99 | -0.19 | -0.34 | -0.38 | -0.41 | 0.08 | 0.17 | 0.64 | 0.36 |
| 9 | 99.99 | 99.99 | -0.07 | -0.61 | -0.03 | -0.48 | -0.05 | 0.41 | 0.17 | 0.58 |
| 10 | 99.99 | 99.99 | -0.31 | -0.41 | -0.11 | -0.5 | -0.17 | 0.13 | 0.54 | 0.75 |

## Table 3.3.11 (Continued)

Mean $\log$ catchability and standard error of ages with catchability independent of year class strength

| Age | 6 | 7 | 8 | 9 | 10 |
| :---: | ---: | :---: | ---: | ---: | ---: |
| Mean Log q | -13.3259 | -12.2181 | -11.6332 | -11.537 | -11.5696 |
| S.E $(\log$ q) | 0.341 | 0.3264 | 0.3894 | 0.4058 | 0.4564 |

Regression statistics :

Ages with q constant w.r.t. time

| Age | Slope | t-value | Intercept | Rsquare No Pts | Reg s.e Mean Log $q$ |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 1.69 | -2.354 | 15.21 | 0.67 | 8 | 0.45 | -13.33 |
| 7 | 1.68 | -3.329 | 13.99 | 0.81 | 8 | 0.35 | -12.22 |
| 8 | 1.46 | -1.506 | 13.01 | 0.65 | 8 | 0.52 | -11.63 |
| 9 | 1.11 | -0.394 | 11.99 | 0.67 | 8 | 0.48 | -11.54 |
| 10 | 0.8 | 0.651 | 10.61 | 0.66 | 8 | 0.38 | -11.57 |
| 1 |  |  |  |  |  |  |  |
| Terminal year survivor and F summaries : |  |  |  |  |  |  |  |

Age 3 Catchability dependent on age and year class strength


Weighted prediction :


Table 3.3.11 (Continued)


1
Age 5 Catchability constant w.r.t. time and dependent on age
Year class $=1990$


## Table 3.3.11 (Continued)

Age 6 Catchability constant w.r.t. time and dependent on age


1
Age 7 Catchability constant w.r.t. time and dependent on age
Year class $=1988$

| Fleet Est | imated <br> vivors | $\begin{aligned} & \text { Int } \\ & \text { s.e } \end{aligned}$ | $\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$ |  |  | N | Scaled <br> Weight | Esti | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IceGFs. N. | 523 | 0.271 | 0.18 | 0.66 | 5 |  | 0.141 | 0.516 |  |
| IceGFS. a2 on a3.N | 6210 | 0.779 | 0 | 0 | 1 |  | 0.017 | 0.47 |  |
| IceGFs. al on a3.N | 7887 | 0.779 | 0 | 0 | 1 |  | 0.017 | 0.387 |  |
| ICeGFS. SE | 8409 | 0.331 | 0.1 | 0.3 | 5 |  | 0.094 | 0.367 |  |
| IceGFS. a 2 on a3SE | 2852 | 1.717 | 0 | 0 | 1 |  | 0.003 | 0.836 |  |
| IceGFs. alon a3.SE | 2708 | 2.856 | 0 | 0 | 1 |  | 0.001 | 0.866 |  |
| IceGFs. SW. | 6213 | 0.308 | 0.177 | 0.57 | 5 |  | 0.108 | 0.47 |  |
| IceGFs. a2on a3.SW | 5687 | 1.355 | 0 | 0 | 1 |  | 0.006 | 0.504 |  |
| IceGFs.a1 on a3.SW | 3233 | 1.674 | 0 | 0 | 1 |  | 0.004 | 0.767 |  |
| TRAWL.JUN. DEC.N | 4761 | 0.261 | 0.08 | 0.31 | 4 |  | 0.151 | 0.578 |  |
| TRAWL.JUN.DEC.SW | 5091 | 0.334 | 0.204 | 0.61 | 4 |  | 0.092 | 0.549 |  |
| TRAWL. JUN. DEC.SE | 4465 | 0.436 | 0.162 | 0.37 | 3 |  | 0.054 | 0.607 |  |
| TRAWL. JAN. MAY.N | 6045 | 0.303 | 0.098 | 0.32 | 4 |  | 0.112 | 0.48 |  |
| TRAWL. JAN. MAY.SW | 7252 | 0.369 | 0.266 | 0.72 | 3 |  | 0.076 | 0.415 |  |
| GILLNET JAN.MAY.S | 8323 | 0.353 | 0.036 | 0.1 | 2 |  | 0.083 | 0.37 |  |
| F shrinkage mean | 2599 | 0.5 |  |  |  |  | 0.041 | 0.89 |  |
| Weighted prediction |  |  |  |  |  |  |  |  |  |
| Survivors | Int |  | Ext | N |  |  |  | F |  |
| at end of year | s.e |  | s.e |  |  |  |  |  |  |
| 5791 | 0.1 |  | 0.06 | 42 |  |  |  | 0.497 |  |

## Table 3.3.11 (Continued)

Age 8 Catchability constant w.r.t. time and dependent on age


Weighted prediction :

| Survivors | Int | Ext | N | Var | F |
| :--- | :---: | :--- | :---: | :---: | ---: |
| at end of year | s.e | s.e |  | Ratio |  |
|  | 1710 | 0.14 | 0.05 | 49 | 0.365 |

1
Age 9 Catchability constant w.r.t. time and dependent on age
Year class $=1986$


Weighted prediction :

| Survivors | Int | Ext | N | Var | F |
| :--- | :---: | :--- | :---: | :---: | ---: |
| at end of year | s.e | s.e |  | Ratio |  |
|  | 312 | 0.21 | 0.07 | 47 | 0.313 |

## Table 3.3.11 (Continued)

1
Age 10 Catchability constant w.r.t. time and dependent on age

Year class $=1985$


Weighted prediction :

| Survivors | Int | Ext | N | Var | F |
| :--- | :---: | :---: | :---: | :---: | ---: |
| at end of year | s.e | s.e |  | Ratio |  |
|  | 279 | 0.25 | 0.09 | 43 | 0.34 |

1
Age 11 Catchability constant w.r.t. time and dependent on age

Year class = 1984


Table 3.3.11 (Continued)
Age 12 Catchability constant w.r.t. time and age (fixed at the value for age) 11
Year class $=1983$

| Fleet Est | Estimated Survivors | Int <br> s.e | $\begin{aligned} & \text { Ext } \\ & \text { s.e } \end{aligned}$ | Var <br> Ratio |  | N | Scaled Weights | Estimated |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IceGFs. N. | 89 | 1.788 | 0.238 | 0.13 | 6 |  | 0.049 | 0.888 |  |
| IceGFs. a2 on a3. |  | 117 | 6.49 | 0 | 0 |  | 1 | 0.004 | 0.736 |
| IceGFs. al on a3.N | 107 | 6.49 | 0 | 0 | 1 |  | 0.004 | 0.784 |  |
| IceGFs. SE | 113 | 2.004 | 0.18 | 0.09 | 6 |  | 0.039 | 0.755 |  |
| IceGFs. a2 on a3SE | 103 | 13.275 | 0 | 0 | 1 |  | 0.001 | 0.805 |  |
| IceGFs. alon a3.SE | 46 | 22.426 | 0 | 0 | 1 |  | 0 | 1.329 |  |
| IceGFs. SW. | 161 | 1.82 | 0.07 | 0.04 | 6 |  | 0.048 | 0.583 |  |
| Icegrs. a2on a3.SW | 146 | 12.21 | 0 | 0 | 1 |  | 0.001 | 0.627 |  |
| IceGFS.a1 on a3.SW | 101 | 13.15 | 0 | 0 | 1 |  | 0.001 | 0.818 |  |
| TRAWL.JUN.DEC.N | 83 | 2.356 | 0 | 0 | 1 |  | 0.028 | 0.928 |  |
| TRAWL.JUN.DEC.SW | 1 | 0 | 0 | 0 | 0 |  | 0 | 0 |  |
| TRAWL.JUN.DEC.SE | 159 | 4.519 | 0 | 0 | 1 |  | 0.008 | 0.589 |  |
| TRAWL. JAN. MAY.N | 1 | 0 | 0 | 0 | 0 |  | 0 | 0 |  |
| TRAWL.JAN.MAY.SW | 168 | 3.317 | 0 | 0 | 1 |  | 0.014 | 0.565 |  |
| GILLNET JAN.MAY.S | 124 | 0.958 | 0.108 | 0.11 | 5 |  | 0.172 | 0.705 |  |
| $F$ shrinkage mean | 138 | 0.5 |  |  |  |  | 0.631 | 0.656 |  |

Weighted prediction :

| Survivors | Int | Ext | N | Var | F |
| :--- | :---: | :--- | :---: | :---: | :---: |
| at end of year | s.e | s.e |  | Ratio |  |
|  | 131 | 0.4 | 0.04 | 33 | 0.106 |

1
Age 13 Catchability constant w.r.t. time and age (fixed at the value for age) 11

Year class $=1982$


Weighted prediction :

| Survivors |  | Int |  | Ext |  | N | N | Var |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| at end of year |  | s.e |  | s.e |  |  |  | Ratio |
| 42 | 0.41 |  | 0.06 |  | 27 |  | 0.146 | 0.482 |

1

Table 3.3.11 (Continued)


Table 3.3.12. Icelandic Cod. Fishing mortality

| Age | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 0.083 | 0.020 | 0.030 | 0.033 | 0.034 | 0.016 | 0.027 |
| 4 | 0.263 | 0.212 | 0.169 | 0.195 | 0.176 | 0.137 | 0.221 |
| 5 | 0.363 | 0.355 | 0.351 | 0.211 | 0.358 | 0.388 | 0.400 |
| 6 | 0.617 | 0.368 | 0.333 | 0.513 | 0.378 | 0.470 | 0.541 |
| 7 | 0.596 | 0.810 | 0.494 | 0.487 | 0.442 | 0.635 | 0.581 |
| 8 | 0.938 | 0.657 | 0.660 | 0.503 | 0.554 | 0.839 | 1.046 |
| 9 | 0.764 | 0.995 | 0.505 | 0.507 | 0.514 | 0.802 | 1.187 |
| 10 | 1.270 | 0.608 | 0.530 | 0.339 | 0.453 | 0.950 | 0.909 |
| 11 | 1.363 | 0.562 | 0.343 | 0.531 | 0.425 | 0.982 | 0.479 |
| 12 | 0.940 | 0.547 | 0.719 | 0.200 | 0.700 | 0.904 | 0.404 |
| 13 | 2.490 | 0.078 | 0.806 | 1.020 | 0.171 | 1.076 | 0.417 |
| 14 | 1.365 | 0.558 | 0.580 | 0.519 | 0.453 | 0.943 | 0.679 |
| W.Av 5-10 | 0.521 | 0.438 | 0.372 | 0.403 | 0.404 | 0.528 | 0.582 |
| Ave 5-10 | 0.758 | 0.632 | 0.479 | 0.427 | 0.450 | 0.681 | 0.777 |
| Age | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| 3 | 0.017 | 0.055 | 0.051 | 0.070 | 0.045 | 0.045 | 0.036 |
| 4 | 0.120 | 0.211 | 0.288 | 0.222 | 0.309 | 0.222 | 0.265 |
| 5 | 0.433 | 0.323 | 0.388 | 0.580 | 0.517 | 0.506 | 0.485 |
| 6 | 0.622 | 0.539 | 0.572 | 0.697 | 0.784 | 0.832 | 0.601 |
| 7 | 0.767 | 0.598 | 0.683 | 0.882 | 0.976 | 0.951 | 0.716 |
| 8 | 0.852 | 0.900 | 0.730 | 0.935 | 0.993 | 1.391 | 0.871 |
| 9 | 0.930 | 0.746 | 0.801 | 0.806 | 0.973 | 1.108 | 0.816 |
| 10 | 1.082 | 0.634 | 0.770 | 0.763 | 0.706 | 0.982 | 0.542 |
| 11 | 0.671 | 0.639 | 0.612 | 0.740 | 0.581 | 1.028 | 0.658 |
| 12 | 0.678 | 0.586 | 0.641 | 0.672 | 0.664 | 0.902 | 0.966 |
| 13 | 0.532 | 0.685 | 0.710 | 0.445 | 0.738 | 2.330 | 0.571 |
| 14 | 0.779 | 0.658 | 0.707 | 0.685 | 0.733 | 1.270 | 0.711 |
| W.Av 5-10 | 0.609 | 0.479 | 0.486 | 0.688 | 0.696 | 0.628 | 0.543 |
| Ave 5-10 | 0.781 | 0.623 | 0.657 | 0.777 | 0.825 | 0.962 | 0.672 |
| Age | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1992-1995 |
| 3 | 0.050 | 0.096 | 0.078 | 0.133 | 0.090 | 0.081 | 0.095 |
| 4 | 0.234 | 0.316 | 0.373 | 0.309 | 0.228 | 0.185 | 0.274 |
| 5 | 0.443 | 0.517 | 0.648 | 0.487 | 0.306 | 0.246 | 0.422 |
| 6 | 0.639 | 0.769 | 0.928 | 0.813 | 0.434 | 0.343 | 0.629 |
| 7 | 0.783 | 0.946 | 1.076 | 0.885 | 0.708 | 0.497 | 0.792 |
| 8 | 0.791 | 0.782 | 1.016 | 1.060 | 0.939 | 0.613 | 0.907 |
| 9 | 0.777 | 0.728 | 0.612 | 1.201 | 0.689 | 0.645 | 0.787 |
| 10 | 0.829 | 0.849 | 0.468 | 0.926 | 0.769 | 0.468 | 0.658 |
| 11 | 0.617 | 0.943 | 0.373 | 0.711 | 0.595 | 0.572 | 0.563 |
| 12 | 0.757 | 0.808 | 0.678 | 0.523 | 0.425 | 0.681 | 0.577 |
| 13 | 0.430 | 0.365 | 0.344 | 0.524 | 0.588 | 0.482 | 0.485 |
| 14 | 0.682 | 0.739 | 0.495 | 0.777 | 0.613 | 0.570 | 0.614 |
| W.Av 5-10 | 0.594 | 0.751 | 0.799 | 0.691 | 0.382 | 0.309 | 0.631 |
| Ave 5-10 | 0.710 | 0.765 | 0.791 | 0.895 | 0.641 | 0.469 | 0.699 |

Table 3.3.13. Icelandic Cod. Stock in numbers (millions).

| Age | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 326.297 | 143.293 | 221.658 | 245.525 | 144.038 | 143.283 | 133.588 |
| 4 | 189.100 | 245.880 | 114.958 | 176.062 | 194.531 | 114.003 | 115.398 |
| 5 | 75.994 | 119.035 | 162.910 | 79.448 | 118.552 | 133.572 | 81.354 |
| 6 | 57.836 | 43.280 | 68.303 | 93.925 | 52.650 | 67.877 | 74.180 |
| 7 | 14.113 | 25.539 | 24.515 | 40.088 | 83.049 | 29.534 | 34.736 |
| 8 | 9.536 | 6.364 | 9.306 | 12.250 | 20.159 | 50.702 | 12.819 |
| 9 | 2.646 | 3.055 | 2.700 | 3.939 | 6.065 | 9.481 | 17.940 |
| 10 | 0.951 | 1.009 | 0.925 | 1.335 | 1.942 | 2.970 | 3.480 |
| 11 | 0.297 | 0.219 | 0.450 | 0.446 | 0.778 | 1.011 | 0.940 |
| 12 | 0.276 | 0.062 | 0.102 | 0.261 | 0.214 | 0.417 | 0.310 |
| 13 | 0.075 | 0.088 | 0.030 | 0.041 | 0.175 | 0.087 | 0.138 |
| 14 | 0.042 | 0.005 | 0.067 | 0.011 | 0.012 | 0.121 | 0.024 |
| Juvenile | 563.482 | 499.603 | 491.744 | 526.243 | 477.628 | 450.121 | 383.335 |
| Adult | 113.682 | 88.226 | 114.180 | 127.087 | 144.538 | 102.937 | 91.573 |
| Sum 3-3 | 326.297 | 143.293 | 221.658 | 245.525 | 144.038 | 143.283 | 133.589 |
| Sum 4-14 | 350.867 | 444.536 | 384.266 | 407.805 | 478.128 | 409.775 | 341.319 |
| Total | 677.164 | 587.829 | 605.924 | 653.330 | 622.166 | 553.058 | 474.907 |
| Age | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| 3 | 226.340 | 139.038 | 144.324 | 335.933 | 277.714 | 168.934 | 82.051 |
| 4 | 106.407 | 182.102 | 107.743 | 112.335 | 256.414 | 217.442 | 132.252 |
| 5 | 75.748 | 77.283 | 120.690 | 66.140 | 73.675 | 154.097 | 142.636 |
| 6 | 44.655 | 40.219 | 45.825 | 67.047 | 30.312 | 35.966 | 76.093 |
| 7 | 35.352 | 19.623 | 19.207 | 21.172 | 27.353 | 11.327 | 12.816 |
| 8 | 15.903 | 13.438 | 8.837 | 7.944 | 7.173 | 8.441 | 3.583 |
| 9 | 3.687 | 5.555 | 4.473 | 3.485 | 2.553 | 2.176 | 1.719 |
| 10 | 4.482 | 1.191 | 2.156 | 1.643 | 1.275 | 0.790 | 0.588 |
| 11 | 1.147 | 1.244 | 0.518 | 0.817 | 0.627 | 0.515 | 0.242 |
| 12 | 0.476 | 0.480 | 0.538 | 0.230 | 0.319 | 0.287 | 0.151 |
| 13 | 0.170 | 0.198 | 0.219 | 0.232 | 0.096 | 0.135 | 0.095 |
| 14 | 0.075 | 0.081 | 0.082 | 0.088 | 0.122 | 0.038 | 0.011 |
| Juvenile | 444.578 | 406.022 | 361.589 | 531.820 | 608.399 | 516.818 | 344.790 |
| Adult | 69.864 | 74.431 | 93.020 | 85.246 | 69.234 | 83.329 | 107.446 |
| Sum 3-3 | 226.340 | 139.038 | 144.324 | 335.933 | 277.714 | 168.934 | 82.051 |
| Sum 4-14 | 288.103 | 341.415 | 310.285 | 281.133 | 399.918 | 431.213 | 370.185 |
| Total | 514.442 | 480.453 | 454.609 | 617.066 | 677.633 | 600.147 | 452.236 |
| Age | 1990 | 1991 | 1992 | 1.993 | 1994 | 1995 | 1996 |
| 3 | 130.623 | 102.830 | 180.138 | 181.578 | 60.000 | 115.000 | 195.000 |
| 4 | 64.826 | 101.724 | 76.475 | 136.463 | 130.186 | 44.911 | 86.828 |
| 5 | 83.111 | 41.995 | 60.702 | 43.124 | 81.999 | 84.862 | 30.547 |
| 6 | 102.922 | 43.674 | 20.508 | 25.993 | 21.691 | 49.460 | 54.322 |
| 7 | 34.166 | 44.458 | 16.567 | 6.636 | 9.443 | 11.510 | 28.745 |
| 8 | 5.127 | 12.779 | 14.129 | 4.623 | 2.243 | 3.809 | 5.732 |
| 9 | 1.228 | 1.903 | 4.787 | 4.189 | 1.312 | 0.719 | 1.690 |
| 10 | 0.622 | 0.462 | 0.752 | 2.126 | 1.032 | 0.539 | 0.309 |
| 11 | 0.280 | 0.222 | 0.162 | 0.386 | 0.690 | 0.392 | 0.276 |
| 12 | 0.103 | 0.124 | 0.071 | 0.091 | 0.155 | 0.311 | 0.181 |
| 13 | 0.047 | 0.039 | 0.045 | 0.029 | 0.044 | 0.083 | 0.129 |
| 14 | 0.044 | 0.025 | 0.022 | 0.026 | 0.014 | 0.020 | 0.042 |
| Juvenile | 310.007 | 247.118 | 265.717 | 242.110 | 147.817 | 158.193 | 239.648 |
| Adult | 113.093 | 103.119 | 108.643 | 163.155 | 160.992 | 153.422 | 164.153 |
| Sum 3-3 | 130.623 | 102.830 | 180.138 | 181.578 | 60.000 | 115.000 | 195.000 |
| Sum 4-14 | 292.476 | 247.407 | 194.221 | 223.687 | 248.810 | 196.615 | 208.801 |
| Total | 423.099 | 350.237 | 374.360 | 405.265 | 308.810 | 311.615 | 403.801 |

Table 3.3.14. Icelandic Cod. Spawning stock biomass (tonnes).

| Age | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 18.342 | 0.000 | 10.689 | 0.000 | 10.271 | 0.000 | 2.917 |
| 4 | 16.044 | 18.155 | 8.826 | 5.033 | 6.867 | 4.674 | 8.748 |
| 5 | 46.708 | 60.349 | 75.078 | 34.391 | 46.055 | 20.608 | 18.925 |
| 6 | 101.364 | 92.719 | 102.241 | 164.298 | 82.994 | 52.345 | 40.896 |
| 7 | 36.343 | 93.539 | 101.232 | 142.178 | 293.394 | 65.637 | 62.440 |
| 8 | 39.358 | 29.197 | 44.333 | 60.424 | 97.902 | 174.046 | 36.503 |
| 9 | 15.111 | 13.639 | 18.245 | 23.794 | 35.896 | 44.875 | 62.996 |
| 10 | 5.008 | 6.946 | 7.402 | 9.432 | 15.614 | 15.691 | 19.198 |
| 11 | 1.747 | 2.002 | 4.695 | 4.251 | 7.633 | 6.445 | 8.216 |
| 12 | 1.935 | 0.634 | 0.887 | 2.946 | 2.469 | 3.193 | 3.271 |
| 13 | 0.304 | 1.381 | 0.365 | 0.317 | 2.450 | 0.582 | 1.845 |
| 14 | 0.320 | 0.092 | 1.024 | 0.152 | 0.233 | 1.052 | 0.277 |
| Total | 282.583 | 318.652 | 375.017 | 447.214 | 601.778 | 389.148 | 266.232 |
|  |  |  |  |  |  |  |  |
| Age | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| 3 | 0.000 | 0.000 | 4.174 | 1.877 | 6.784 | 7.604 | 0.000 |
| 4 | 12.671 | 10.556 | 9.014 | 9.769 | 19.219 | 6.376 | 8.878 |
| 5 | 23.104 | 28.993 | 48.131 | 35.640 | 40.128 | 66.566 | 65.882 |
| 6 | 34.837 | 47.196 | 71.065 | 100.372 | 56.193 | 45.492 | 124.735 |
| 7 | 53.323 | 43.631 | 54.581 | 52.847 | 74.002 | 26.681 | 40.286 |
| 8 | 41.485 | 39.725 | 34.175 | 28.893 | 27.058 | 22.660 | 13.810 |
| 9 | 13.517 | 24.331 | 21.240 | 17.369 | 11.340 | 8.275 | 7.591 |
| 14 | 11 | 2.401 | 1.516 | 1.508 | 2.898 | 5.274 | 3.071 |

Table 3.3.15. Icelandic Cod. Average fishing mortality of agegroups 5-10, recruitment (at age 3 , in millions), spawning stock at spawning time ('000 tonnes).

| Year | F5-10 | Recruitment | SSB |
| :---: | ---: | ---: | ---: |
| 1955 | 0.31 | 260 | 1261 |
| 1956 | 0.26 | 307 | 1199 |
| 1957 | 0.32 | 153 | 1145 |
| 1958 | 0.32 | 191 | 1034 |
| 1959 | 0.33 | 143 | 928 |
| 1960 | 0.38 | 163 | 825 |
| 1961 | 0.33 | 292 | 760 |
| 1962 | 0.4 | 255 | 729 |
| 1963 | 0.45 | 273 | 683 |
| 1964 | 0.54 | 328 | 569 |
| 1965 | 0.61 | 174 | 454 |
| 1966 | 0.54 | 255 | 412 |
| 1967 | 0.49 | 186 | 476 |
| 1968 | 0.67 | 178 | 594 |
| 1969 | 0.53 | 136 | 693 |
| 1970 | 0.56 | 303 | 684 |
| 1971 | 0.62 | 170 | 615 |
| 1972 | 0.71 | 265 | 477 |
| 1973 | 0.71 | 432 | 436 |
| 1974 | 0.76 | 143 | 329 |
| 1975 | 0.81 | 222 | 339 |
| 1976 | 0.76 | 246 | 283 |
| 1977 | 0.63 | 144 | 319 |
| 1978 | 0.48 | 143 | 375 |
| 1979 | 0.43 | 134 | 447 |
| 1980 | 0.45 | 226 | 602 |
| 1981 | 0.68 | 139 | 389 |
| 1982 | 0.78 | 144 | 266 |
| 1983 | 0.78 | 336 | 214 |
| 1984 | 0.62 | 335 | 219 |
| 1985 | 0.66 | 169 | 268 |
| 1986 | 0.78 | 82 | 268 |
| 1987 | 0.82 | 131 | 253 |
| 1988 | 0.96 | 103 | 193 |
| 1989 | 0.67 | 180 | 269 |
| 1990 | 0.71 | 182 | 344 |
| 1991 | 0.77 | 60 | 232 |
| 1992 | 0.79 | 115 | 244 |
| 1993 | 0.9 | 195 | 224 |
| 1994 | 0.64 | 85 | 276 |
| 1995 | 0.47 | 150 | 380 |
|  |  |  |  |

Table 3.3.16. Iceland Cod. Capelin biomass (' 000 tonnes) used for prediction of cod mean weights.

| Year | Total |
| ---: | ---: |
|  |  |
| 1979 | 2386 |
| 1980 | 1482 |
| 1981 | 998 |
| 1982 | 463 |
| 1983 | 1000 |
| 1984 | 1950 |
| 1985 | 2380 |
| 1986 | 2473 |
| 1987 | 2358 |
| 1988 | 2076 |
| 1989 | 1732 |
| 1990 | 1195 |
| 1991 | 1045 |
| 1992 | 1593 |
| 1993 | 1639 |
| 1994 | 1636 |
| 1995 | 1714 |
| 1996 | 2400 |
| Average | 1696 |

Table 3.3.17: Icelandic Cod, input file for the RCT3 program.

| VPA and Groundfish survey indices |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4212 |  |  |  |  |  |
| 'Ycl' | 'VPA' | 'SUR4' | 'SUR3' | 'SUR2' | 'SUR1' |
| 75 | 222 | -11 | -11 | -11 | -11 |
| 76 | 245 | -11 | -11 | -11 | -11 |
| 77 | 144 | -11 | -11 | -11 | -11 |
| 78 | 143 | -11 | -11 | -11 | -11 |
| 79 | 134 | -11 | -11 | -11 | -11 |
| 80 | 226 | -11 | -11 | -11 | -11 |
| 81 | 139 | 55261 | -11 | -11 | -11 |
| 82 | 144 | 22540 | 31297 | -11 | -11 |
| 83 | 336 | 77227 | 84656 | 39301 | -11 |
| 84 | 278 | 92490 | 99294 | 52943 | 16492 |
| 85 | 169 | 60113 | 68604 | 25874 | 13903 |
| 86 | 82 | 8272 | 17511 | 5820 | 2605 |
| 87 | 131 | 22262 | 19408 | 14921 | 1711 |
| 88 | 103 | 13601 | 15633 | 11786 | 2048 |
| 89 | 180 | 31684 | 30540 | 14473 | 3509 |
| 90 | 182 | 18211 | 26030 | 16407 | 1712 |
| 91 | -11 | 4301 | 5556 | 2237 | 223 |
| 92 | -11 | 16420 | 17477 | 10539 | 1312 |
| 93 | -11 | -11 | 35893 | 28480 | 8920 |
| 94 | -11 | -11 | -11 | 3833 | 487 |
| 95 | -11 | -11 | -11 | -11 | 2448 |

Table 3.3.18. Icelandic Cod, output from the RCT3.


Yearclass $=90$

| Survey/ Series | Slope | Intercept | Std Error | Rsquare | No. <br> Pts | Index <br> Value | Predicted Value | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | WAP <br> Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SUR4 | 0.60 | -1.16 | 0.24 | 0.797 | 9 | 9.81 | 4.73 | 0.300 | 0.258 |
| SUR3 | 0.71 | -2.31 | 0.25 | 0.806 | 8 | 10.17 | 4.86 | 0.312 | 0.238 |
| SUR2 | 0.72 | -1.95 | 0.22 | 0.861 | 7 | 9.71 | 5.01 | 0.282 | 0.292 |
| SUR1 | 0.57 | 0.17 | 0.41 | 0.581 | 6 | 7.45 | 4.45 | 0.584 | 0.068 |
|  |  |  |  |  | VPA | Mean $=$ | 5.09 | 0.401 | 0.144 |

Yearclass = 91

| Survey/ <br> Series | Slope | $\begin{gathered} \text { Inter- } \\ \text { cept } \end{gathered}$ | Sta Error | Rsquare | No. <br> Pts | Index Value | Predicted Value | Std Error | WAP <br> Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SUR4 | 0.62 | -1.35 | 0.29 | 0.707 | 10 | 8.37 | 3.87 | 0.439 | 0.216 |
| SUR3 | 0.73 | -2.48 | 0.27 | 0.751 | 9 | 8.62 | 3.77 | 0.441 | 0.214 |
| SUR2 | 0.73 | -2.02 | 0.22 | 0.841 | 8 | 7.71 | 3.59 | 0.400 | 0.261 |
| SUR1 | 0.69 | -0.64 | 0.57 | 0.370 | 7 | 5.41 | 3.08 | 1.106 | 0.034 |
|  |  |  |  |  | VPA | Mean = | 5.10 | 0.389 | 0.275 |

## Table 3.3.18 (Continued)



## Table 3.3.18 (Continued)

| Year <br> Class | Weighted <br> Average <br> Prediction | Log <br> WAP | Int <br> Std <br> Error | Ext <br> Std <br> Error | Var <br> Ratio | VPA | Log |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| 89 | 141 | 4.95 | 0.15 | 0.04 | 0.09 | 180 | 5.20 |
| 90 | 130 | 4.88 | 0.15 | 0.09 | 0.33 | 182 | 5.21 |
| 91 | 114 | 4.09 | 0.20 | 0.32 | 2.47 |  |  |
| 92 | 196 | 5.74 | 0.17 | 0.09 | 0.32 |  |  |
| 93 | 83 | 4.42 | 0.26 | 0.41 | 2.36 |  |  |
| 94 | 149 | 5.01 | 0.37 | 0.13 | 0.13 |  |  |
| 95 |  |  |  |  |  |  |  |

Table 3.3.19

Prediction with management option table: Input data

| Year: 1996 |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Age | Stock <br> size | Natural <br> mortality | Maturity <br> ogive | Prop.of <br> bef.spaw. | Prop.of M M <br> bef.spaw. | Weight <br> in stock | Exploit. <br> pattern | Weight <br> in catch |
| 3 | 195000.00 | 0.2000 | 0.0400 | 0.0850 | 0.2500 | 1059.000 | 0.0610 | 1356.000 |
| 4 | 86828.000 | 0.2000 | 0.3080 | 0.1800 | 0.2500 | 1662.000 | 0.1450 | 1955.000 |
| 5 | 30547.000 | 0.2000 | 0.6070 | 0.2480 | 0.2500 | 2629.000 | 0.2087 | 2775.000 |
| 6 | 54322.000 | 0.2000 | 0.7700 | 0.2960 | 0.2500 | 3973.000 | 0.3193 | 3945.000 |
| 7 | 28745.000 | 0.2000 | 0.8430 | 0.3820 | 0.2500 | 5030.000 | 0.4197 | 5028.000 |
| 8 | 5732.000 | 0.2000 | 0.9400 | 0.4370 | 0.2500 | 6368.000 | 0.5245 | 6655.000 |
| 9 | 1690.000 | 0.2000 | 0.9860 | 0.4770 | 0.2500 | 7446.000 | 0.5091 | 7431.000 |
| 10 | 309.000 | 0.2000 | 0.9850 | 0.4770 | 0.2500 | 9268.000 | 0.4344 | 9148.000 |
| 11 | 276.000 | 0.2000 | 0.9980 | 0.4770 | 0.2500 | 11138.000 | 0.3545 | 11041.000 |
| 12 | 181.000 | 0.2000 | 0.9900 | 0.4770 | 0.2500 | 12748.000 | 0.3545 | 12910.000 |
| 13 | 129.000 | 0.2000 | 0.9950 | 0.4770 | 0.2500 | 14302.000 | 0.3545 | 14494.000 |
| 14 | 42.000 | 0.2000 | 1.0000 | 0.4770 | 0.2500 | 16500.000 | 0.3545 | 16199.000 |
| Unit | Thousands | - | - | - | - | Grams | - | Grams |


| Year: 1997 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Recruit ment | Natural mortality | Maturity ogive | Prop. of $F$ bef.spaw. | Prop. of M bef.spaw. | Weight <br> in stock | Exploit. pattern | Weight in catch |
| 3 | 85000.000 | 0.2000 | 0.0370 | 0.0850 | 0.2500 | 1059.000 | 0.0610 | 1356.000 |
| 4 | . | 0.2000 | 0.2220 | 0.1800 | 0.2500 | 1662.000 | 0.1450 | 1862.000 |
| 5 | . | 0.2000 | 0.4850 | 0.2480 | 0.2500 | 2410.000 | 0.2087 | 2642.000 |
| 6 | . | 0.2000 | 0.7040 | 0.2960 | 0.2500 | 3666.000 | 0.3193 | 3675.000 |
| 7 | . | 0.2000 | 0.8330 | 0.3820 | 0.2500 | 5074.000 | 0.4197 | 5102.000 |
| 8 | - | 0.2000 | 0.9260 | 0.4370 | 0.2500 | 6364.000 | 0.5245 | 6321.000 |
| 9 | . | 0.2000 | 0.9720 | 0.4770 | 0.2500 | 7446.000 | 0.5091 | 7431.000 |
| 10 | . | 0.2000 | 0.9700 | 0.4770 | 0.2500 | 9268.000 | 0.4344 | 9148.000 |
| 11 | . | 0.2000 | 0.9950 | 0.4770 | 0.2500 | 11138.000 | 0.3545 | 11041.000 |
| 12 | - | 0.2000 | 0.9810 | 0.4770 | 0.2500 | 12748.000 | 0.3545 | 12910.000 |
| 13 |  | 0.2000 | 0.9900 | 0.4770 | 0.2500 | 14302.000 | 0.3545 | 14494.000 |
| 14 | - | 0.2000 | 1.0000 | 0.4770 | 0.2500 | 16500.000 | 0.3545 | 16199.000 |
| Unit | Thous ands | - | - | - | - | Grams | - | Grams |


| Year: 1998 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | Recruitment | Natural mortality | Maturity ogive | Prop. of $F$ bef.spaw. | Prop. of M bef.spaw. | Weight in stock | Exploit. pattern | Weight in catch |
| 3 | 150000.00 | 0.2000 | 0.0330 | 0.0850 | 0.2500 | 1059.000 | 0.0610 | 1356.000 |
| 4 | . | 0.2000 | 0.1370 | 0.1800 | 0.2500 | 1662.000 | 0.1450 | 1862.000 |
| 5 | - | 0.2000 | 0.3630 | 0.2480 | 0.2500 | 2410.000 | 0.2087 | 2594.000 |
| 6 | - | 0.2000 | 0.6320 | 0.2960 | 0.2500 | 3511.000 | 0.3193 | 3600.000 |
| 7 | . | 0.2000 | 0.8230 | 0.3820 | 0.2500 | 4888.000 | 0.4197 | 4866.000 |
| 8 | . | 0.2000 | 0.9120 | 0.4370 | 0.2500 | 6394.000 | 0.5245 | 6367.000 |
| 9 |  | 0.2000 | 0.9580 | 0.4770 | 0.2500 | 7446.000 | 0.5091 | 7431.000 |
| 10 | - | 0.2000 | 0.9550 | 0.4770 | 0.2500 | 9268.000 | 0.4344 | 9148.000 |
| 11 |  | 0.2000 | 0.9930 | 0.4770 | 0.2500 | 11138.000 | 0.3545 | 11041.000 |
| 12 | - | 0.2000 | 0.9710 | 0.4770 | 0.2500 | 12748.000 | 0.3545 | 12910.000 |
| 13 |  | 0.2000 | 0.9850 | 0.4770 | 0.2500 | 14302.000 | 0.3545 | 14494.000 |
| 14 | - | 0.2000 | 1.0000 | 0.4770 | 0.2500 | 16500.000 | 0.3545 | 16199.000 |
| Unit | Thousands | - | - | - | $\cdot$ | Grams | - | Grams |

[^3]Table 3.3.20

Prediction with management option table

| Year: 1996 |  |  |  |  | Year: 1997 |  |  |  |  | Year: 1998 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Factor | Reference F | Stock biomass | Sp.stock biomass | Catch in weight | $\begin{gathered} \text { F } \\ \text { Factor } \end{gathered}$ | Reference F | Stock biomass | Sp.stock biomass | Catch in weight | Stock biomass | Sp.stock <br> biomass |
| 1.0000 | 0.4026 | 851398 | 379349 | 170000 | 0.0000 | 0.0000 | 859637 | 423145 | 0 | 1126003 | 555928 |
| . |  |  |  |  | 0.0500 | 0.0201 |  | 420282 | 10872 | 1113655 | 542827 |
| - | - |  | . |  | 0.1000 | 0.0403 |  | 417445 | 21562 | 1101516 | 530100 |
| . | - | , | , | . | 0.1500 | 0.0604 |  | 414632 | 32075 | 1089584 | 517735 |
| - | - |  | - |  | 0.2000 | 0.0805 |  | 411844 | 42413 | 1077854 | 505722 |
| - | - |  | . |  | 0.2500 | 0.1007 |  | 409081 | 52580 | 1066322 | 494048 |
| - | - |  | . |  | 0.3000 | 0.1208 |  | 406341 | 62580 | 1054984 | 482705 |
| - | - |  | - |  | 0.3500 | 0.1409 |  | 403626 | 72416 | 1043836 | 471680 |
| - | - | - | - |  | 0.4000 | 0.1610 |  | 400934 | 82091 | 1032874 | 460965 |
| . | . |  | . | . | 0.4500 | 0.1812 | . | 398266 | 91607 | 1022096 | 450550 |
| - | - | - | - | . | 0.5000 | 0.2013 | - | 395621 | 100970 | 1011497 | 440425 |
| - | . |  | . | . | 0.5500 | 0.2214 |  | 392999 | 110180 | 1001073 | 430581 |
| . | - | . | - | - | 0.6000 | 0.2416 | - | 390400 | 119242 | 990821 | 421010 |
| - | - | . | . | . | 0.6500 | 0.2617 | . | 387824 | 128159 | 980738 | 411703 |
| . | . | . | . | . | 0.7000 | 0.2818 | , | 385270 | 136932 | 970821 | 402653 |
| - | . |  | . |  | 0.7500 | 0.3020 | . | 382738 | 145565 | 961065 | 393850 |
| . | - | . | . | - | 0.8000 | 0.3221 | - | 380228 | 154061 | 951469 | 385288 |
| - | . | - | . | - | 0.8500 | 0.3422 | . | 377740 | 162422 | 942029 | 376960 |
| - | . | . | . | . | 0.9000 | 0.3624 | . | 375274 | 170651 | 932741 | 368857 |
| . | . | . | . | . | 0.9500 | 0.3825 | . | 372828 | 178750 | 923603 | 360973 |
| - | . | . | . | . | 1.0000 | 0.4026 | . | 370404 | 186723 | 914613 | 353302 |
| . | . | . | . |  | 1.0500 | 0.4227 | . | 368001 | 194570 | 905766 | 345838 |
| . | . | - | , |  | 1.1000 | 0.4429 |  | 365618 | 202295 | 897061 | 338572 |
| - | . | . | . | - | 1.1500 | 0.4630 | - | 363256 | 209901 | 888494 | 331501 |
| . | - | - | . | . | 1.2000 | 0.4831 |  | 360915 | 217389 | 880064 | 324617 |
| - | . | - | . | - | 1.2500 | 0.5033 | - | 358593 | 224761 | 871767 | 317916 |
| - | - | . | . | - | 1.3000 | 0.5234 |  | 356291 | 232020 | 863600 | 311391 |
| - | - | - | . | - | 1.3500 | 0.5435 | - | 354009 | 239168 | 855562 | 305038 |
| . | - |  | . | . | 1.4000 | 0.5637 |  | 351747 | 246207 | 847649 | 298851 |
| - | - | - | . | . | 1.4500 | 0.5838 | . | 349504 | 253140 | 839860 | 292825 |
| . | - | . | . | . | 1.5000 | 0.6039 | . | 347280 | 259967 | 832193 | 286956 |
| . | - | - | . |  | 1.5500 | 0.6241 | - | 345075 | 266692 | 824644 | 281238 |
| . | . | . | . | - | 1.6000 | 0.6442 |  | 342889 | 273315 | 817211 | 275668 |
| - | - | . | . |  | 1.6500 | 0.6643 | - | 340721 | 279840 | 809893 | 270241 |
| . | . | - | . | - | 1.7000 | 0.6844 | . | 338572 | 286267 | 802687 | 264952 |
| - | - | , | . |  | 1.7500 | 0.7046 | - | 336441 | 292599 | 795591 | 259798 |
| . | . | . | . | - | 1.8000 | 0.7247 | . | 334328 | 298837 | 788603 | 254775 |
| - | - | . | . |  | 1.8500 | 0.7448 | - | 332233 | 304983 | 781721 | 249878 |
| . | - | . | - | - | 1.9000 | 0.7650 | . | 3301561 | 311039 | 774943 | 245105 |
| . | - | - | . |  | 1.9500 | 0.7851 | . | 328097 | 317006 | 768267 | 240451 |
| . | . |  |  |  | 2.0000 | 0.8052 |  | 326054 | 322887 | 761692 | 235913 |
| - | - | Tonnes | Tonnes | Tonnes | - | - | Tonnes | Tonnes | 'onnes | Tonnes | Tonnes |

Notes: Run name
: MANSASO1
Date and time : 04MAY96:20:44
Computation of ref. F: Simple mean, age 5-10
Basis for 1996 : TAC constraints

## Table 3.3.22

Cod in the Iceland Grounds (Fishing Area Va)
Yield per recruit: Summary table

|  |  |  |  |  |  | 1 January |  | Spawning time |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F <br> Factor | $\left\lvert\, \begin{gathered} \text { Reference } \\ F \end{gathered}\right.$ | Catch in numbers | Catch in weight | Stock size | Stock <br> biomass | $\begin{aligned} & \text { Sp.stock } \\ & \text { size } \end{aligned}$ | Sp.stock biomass | Sp.stock size | Sp.stock biomass |
| 0.0000 | 0.0000 | 0.000 | 0.000 | 5.016 | 23665.436 | 2.404 | 18396.950 | 2.287 | 17499.720 |
| 0.0500 | 0.0500 | 0.131 | 817.577 | 4.574 | 19274.757 | 2.005 | 14194.209 | 1.868 | 13174.603 |
| 0.1000 | 0.1000 | 0.225 | 1282.011 | 4.232 | 16083.737 | 1.702 | 11171.707 | 1.556 | 10130.672 |
| 0.1500 | 0.1500 | 0.293 | 1541.157 | 3.962 | 13724.420 | 1.469 | 8964.369 | 1.320 | 7953.245 |
| 0.2000 | 0.2000 | 0.345 | 1681.168 | 3.746 | 11948.841 | 1.286 | 7326.591 | 1.138 | 6369.195 |
| 0.2500 | 0.2500 | 0.386 | 1752.276 | 3.568 | 10588.356 | 1.141 | 6091.677 | 0.995 | 5196.883 |
| 0.3000 | 0.3000 | 0.419 | 1783.777 | 3.421 | 9527.126 | 1.023 | 5145.407 | 0.881 | 4314.256 |
| 0.3500 | 0.3500 | 0.446 | 1792.757 | 3.296 | 8684.744 | 0.927 | 4408.723 | 0.789 | 3638.383 |
| 0.4000 | 0.4000 | 0.468 | 1789.175 | 3.189 | 8004.767 | 0.846 | 3826.314 | 0.713 | 3112.260 |
| 0.4500 | 0.4500 | 0.488 | 1778.818 | 3.096 | 7447.109 | 0.778 | 3359.051 | 0.649 | 2696.218 |
| 0.5000 | 0.5000 | 0.505 | 1765.039 | 3.014 | 6982.948 | 0.720 | 2978.923 | 0.596 | 2362.302 |
| 0.5500 | 0.5500 | 0.520 | 1749.764 | 2.942 | 6591.305 | 0.671 | 2665.643 | 0.550 | 2090.556 |
| 0.6000 | 0.6000 | 0.533 | 1734.083 | 2.877 | 6256.708 | 0.627 | 2404.332 | 0.511 | 1866.542 |
| 0.6500 | 0.6500 | 0.545 | 1718.602 | 2.818 | 5967.602 | 0.589 | 2183.948 | 0.477 | 1679.681 |
| 0.7000 | 0.7000 | 0.556 | 1703.640 | 2.765 | 5715.246 | 0.556 | 1996.192 | 0.447 | 1522.114 |
| 0.7500 | 0.7500 | 0.566 | 1689.353 | 2.717 | 5492.943 | 0.526 | 1834.754 | 0.420 | 1387.932 |
| 0.8000 | 0.8000 | 0.575 | 1675.802 | 2.672 | 5295.497 | 0.499 | 1694.777 | 0.397 | 1272.633 |
| 0.8500 | 0.8500 | 0.584 | 1662.998 | 2.631 | 5118.832 | 0.475 | 1572.480 | 0.376 | 1172.748 |
| 0.9000 | 0.9000 | 0.592 | 1650.919 | 2.593 | 4959.711 | 0.453 | 1464.890 | 0.357 | 1085.570 |
| 0.9500 | 0.9500 | 0.599 | 1639.530 | 2.557 | 4815.536 | 0.434 | 1369.640 | 0.340 | 1008.966 |
| 1.0000 | 1.0000 | 0.606 | 1628.791 | 2.524 | 4684.200 | 0.415 | 1284.830 | 0.324 | 941.237 |
| 1.0500 | 1.0500 | 0.613 | 1618.657 | 2.492 | 4563.978 | 0.399 | 1208.920 | 0.310 | 881.016 |
| 1.1000 | 1.1000 | 0.619 | 1609.086 | 2.463 | 4453.444 | 0.384 | 1140.649 | 0.297 | 827.192 |
| 1.1500 | 1.1500 | 0.625 | 1600.036 | 2.435 | 4351.410 | 0.370 | 1078.978 | 0.286 | 778.858 |
| 1.2000 | 1.2000 | 0.630 | 1591.470 | 2.409 | 4256.879 | 0.357 | 1023.042 | 0.275 | 735.262 |
| 1.2500 | 1.2500 | 0.635 | 1583.351 | 2.384 | 4169.004 | 0.345 | 972.120 | 0.264 | 695.781 |
| 1.3000 | 1.3000 | 0.640 | 1575.647 | 2.361 | 4087.067 | 0.334 | 925.600 | 0.255 | 659.893 |
| 1.3500 | 1.3500 | 0.645 | 1568.327 | 2.338 | 4010.451 | 0.323 | 882.966 | 0.246 | 627.157 |
| 1.4000 | 1.4000 | 0.649 | 1561.364 | 2.317 | 3938.621 | 0.313 | 843.776 | 0.238 | 597.199 |
| 1.4500 | 1.4500 | 0.654 | 1554.733 | 2.297 | 3871.117 | 0.304 | 807.651 | 0.231 | 569.701 |
| 1.5000 | 1.5000 | 0.658 | 1548.411 | 2.277 | 3807.535 | 0.296 | 774.265 | 0.224 | 544.390 |
| - | - | Numbers | Grams | Numbers | Grams | Numbers | Grams | Numbers | Grams |

Notes: Run name : YLDSASO1
Date and time : O5MAY96:13:49
Computation of ref. F: Simple mean, age 5-10
F-0.1 factor : 0.1947
F-max factor $: 0.3562$
F-0.1 reference F: 0.1947
F-max reference $F: 0.3562$
Recruitment : Single recruit

Table 3.3.21

Cod in the Iceland Grounds (Fishing Area Va)
Yield per recruit: Input data

| Age | Recruit ment | Natural mortality | Maturity ogive | Prop. of $F$ bef.spaw. | Prop.of M bef.spaw. | Weight <br> in stock | Exploit. pattern | Weight in catch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1.000 | 0.2000 | 0.0279 | 0.0850 | 0.2500 | 1074.000 | 0.0600 | 1307.000 |
| 4 |  | 0.2000 | 0.0958 | 0.1800 | 0.2500 | 1619.000 | 0.3300 | 1835.000 |
| 5 | - | 0.2000 | 0.2784 | 0.2480 | 0.2500 | 2437.000 | 0.6100 | 2600.000 |
| 6 | - | 0.2000 | 0.5391 | 0.2960 | 0.2500 | 3587.000 | 0.8600 | 3590.000 |
| 7 | - | 0.2000 | 0.7703 | 0.3820 | 0.2500 | 4959.000 | 1.0500 | 4859.000 |
| 8 | - | 0.2000 | 0.8991 | 0.4370 | 0.2500 | 6322.000 | 1.1600 | 6242.000 |
| 9 | . | 0.2000 | 0.9540 | 0.4770 | 0.2500 | 7784.000 | 1.1600 | 7733.000 |
| 10 | . | 0.2000 | 0.9691 | 0.4770 | 0.2500 | 9526.000 | 1.1600 | 9533.000 |
| 11 | - | 0.2000 | 0.9944 | 0.4770 | 0.2500 | 11512.000 | 1.1600 | 11425.000 |
| 12 | . | 0.2000 | 1.0000 | 0.4770 | 0.2500 | 13007.000 | 1.1600 | 13264.000 |
| 13 | - | 0.2000 | 1.0000 | 0.4770 | 0.2500 | 14797.000 | 1.1600 | 15073.000 |
| 14 | - | 0.2000 | 1.0000 | 0.4770 | 0.2500 | 17503.000 | 1.1600 | 17425.000 |
| Unit | Numbers | - | - | - | $\bullet$ | Grams | - | Grams |

Notes: Run name : YLDSASO1
Date and time: 05MAY96:13:49


[^0]:    COD-FARP: Cod in the Faroe Plateau (Fishing Area Vb1)
    FLT20: PAIR TRAWLERS > 1000 HP

[^1]:    Notes: Run name : YIELD3
    Date and time : 03MAY96:12:45
    Computation of ref. F: Simple mean, age $4-9$
    F-0.1 factor : 0.1834
    F-max factor $: 0.4385$
    F-0.1 reference F: 0.1834
    F-max reference F : 0.4385
    Recruitment : Single recruit

[^2]:    1) Provisional.
    2) Additional catch by Iceland of $214 t$ included.
[^3]:    Notes: Run name : MANSAS01 Date and time: 04MAY96:20:44

