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illumination levels were measured in three artificially illuminated tanks: a black tank, a white 
tank and a tank with black sides and white bottom, in order to test how well normal tank 
illumination in different tank types corresponds to natural illumination conditions for flrst 
feeding of marine fish larvae. Measurements were made with clear water and with algae 
added ("green water"). 

The black tank had low wall and bottom illumination. The white tank had high wall and 
bottom illumination. The black walled white bottomed tank had low wall and high central and 
bottom illumination. Green water attenuated light substantially. The black tank seemed best 
suited to reproduce natural illumination conditions. The white tank was not suited. The black 
walled white bottomed tank had interesting properties, but species specific tests would have 
to be carried out to fme tune the reflective properties of the bottom. Green water seemed to 
be beneficial in all tests. 
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INTRODUCTION 

Most marine flsh larvae are visual feeders (Hunter 1981, Blaxter 1986). Acordingly, 

illumination in larval first feeding tanks is of primary importance. Also, the larval eye at first 

feeding is very simple, with no illumination adaptation capabilities (Blaxter & Staines 1970, 

Neave 1984 ). This makes the larvae very dependent on absolute illumination, as the larval eye 

functions as a light meter (Huse 1992). At first feeding, many marine flsh larvae are also at 

a very primitive general development level as a minimum of energy is invested in each egg. 

The larvae thus posses a very limited reportoir of stereotypic behaviour patterns, as well as 

a very simple positioning algorithm (Huse 1992). This behavioural algorithm governs larval 

positioning in order to maximize feed uptake and minimize predation. The main input 

parameter to this algorithm seems to be illumination (Huse 1992), and a number of 

investigations have described positive and negative phototaxis in marine fish larvae (e.g.: 

Bulowsky & Meade 1983, Corassa & Nickurn 1981, Naas & Mangor-Jensen 1990, Wales 

1984 ). Accordingly, illumination preference in different marine fish larvae, both in relation 

to vertical positioning (e.g.: Blaxter 1973, Matthews 1984, Swenson and Matson 1976, Wales 

1984) and fl!St feeding (e.g.: Batty 1987, Batty et al. 1990, Ellertsen et al. 1980) is 

extensively investigated. 

In the sea, the incoming light is either highly directive (sun, moon) or less directive (skylight, 

stars). In an indoor fish tank the incoming light is normally highly directive from one or a 

few sources. When light enters and travels through water, part of it is absorbed, and part is 

reflected and thus scatterd by particles. The rest retains its directivity and is eventually 

reflected or absorbed by surfaces surrounding the water body. In a shallow water body with 

few particles like a clearwater fi.sh tank the scattering and absorption of light is insignificant 

compared to the direct propagation of directive light. The reflective properties of the tank 

walls and bottom therefore become very important. The addition of algae will increase both 

absorbtion and scattering of light, and thus transfer the point of equilibrium from direct light 

towards scattered light in addition to attenuating illumination with increasing depth by 

absorbtion. There is reason to believe that the behaviour of a flsh larva in its search for food 

or escape from predators will be greatly influenced by variation in these parameters. The larva 

is programmed for natural conditions, and this should therefore also be a guideline in tank 



3 

illumination design. In the sea the horisontal and downwards vertical visual background is 

dark, while prey and predators reflect light and appear lighter than the background, giving 

good contrast. Algae and other particles scatter and absorb light, and skylight will contribute 

to a diffuse light environment. 

Little or no litterature is available on illumination conditions in first feeding tanks. The 

present investigation is a small initial contribution to remedy this, and the working hypothesis 

is: can a first feeding tank for marine fish larvae be illuminated and otherwise optically 

managed to give the larvae a light environment similar to natural conditions? 

MATERIALS AND METHODS 

The experiments were carried out in conical tanks with an upper diameter of 128cm, a lower 

diameter of 115cm, and a depth of 75cm. The tanks were illuminated by 3x2 120 cm daylight 

type fluorescent lamps (Phillips TLD 36W/54), one set of two placed centrally over the tank, 

and the two others parallell with the first over the tank margins. One tank was black, one was 

white, and one had black sides and white bottom. The bottoms of all tanks were slightly 

conical, draining towards a central bottom outlet. Each experiment was run separately with 

only the illuminating fluorescent tubes contributing light to the tanks. 

"Green water" was provided by adding lsochrysis galbana to a final concentration of 125,000 

cells/ml in the tanks. The tanks were kept aerated until the start of the light measurements in 

order to secure a thorough mixing of the algae in the tank water. 

Light measurements were carried out with a Li-Cor U 1000 light meter with a 180o U-

192SA Underwater Quantum Sensor (Cosine corrected). Measurements were taken at 10cm 

intervals vertically down- and upwards, and horisontally from one wall to the other, 

perpendicularly to the planes of the fluorescent tubes. 
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RESULTS 

The illumination level at the surface of the tanks were 24 microEinstein at the center and 19 
near the walls. All readings used to generate the figures were standardized according to 
corresponding surface readings in order to even out these differences. The results of the 
measurements in the white walled/bottomed tank are given in fig.l. The upwards and 
downwards readings are summed, and the sums are presented in the figures. Fig.lA shows 
that the clearwater white tank was most illuminated at the walls despite lowest surface 
illumination here. It was dalkest in the central volume, with a least illuminated cone towards 
the central bottom, and a tendency towards illumination stratification parallell to the wall. 
With green water (Fig.lB) the tank had a gradually decreased illumination from upper wall 
to lower center. The tank was also substantially less illuminated than without algae, and there 
was a tendency towards a more surface parallell stratification than in the clear water situation. 
The horisontal measurements (Figs.l C and D) showed a global centrolateral volume of low 
illumination in both situations, but with substantially lower minimum readings with green 
water. 

Fig. 2 shows the readings from the tank with black sides and white bottom. -lliumination 
decreased towards the bottom, more pronounced along the sides than in the center in clear 
water (Fig. 2A), but more evenly in green water (Fig. 2B ). Horisontal readings (Figs. 2B and 
C) decreased towards the wall, with higher horisontal illumination readings along the bottom 
and surface than in midwater. With clear water the highest readings were along the bottom, 
while with green water they were highest along the surface. General illumination was lower 
than in the white tank. 

Fig. 3 shows the readings from the black tank. In the clear water (Fig. 3A) the illumination 
was higher centrally than laterally in the upper half, and reverse in the lower. In green water 
(Fig. 3B) the center was less illuminated throughout the water column. Both with clear and 
green water the light attenuation was much higher than in the other two tanks. Horisontal 
readings (Figs. 3C and D) decreased towards the wall and bottom, and was highest at the 
surface. 
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DISCUSSION 

Generally the results show that reflections from surfaces in a tank are very important for the 

light distribution in the water body. White surfaces reflect much more light than black 

surfaces, causing a situation of increased illumination towards white surfaces. Towards black 

surfaces, however, this effect is hardly discernible. It is well known that many marine fish 

larvae have a tendency to collect at the tank walls. There may be several reasons for this, but 

one can be the well documented phototaxis of fish larvae, causing them to swim to the 

optimally illuminated part of the tank, which may well be a reflecting tank wall or bottom. 

If this argument holds, the white tank clear water situation is a perfect wall trap. Already 

adding algae improves the situation somewhat by increasing the vertical attenuation, but tank 

sides and tank bottom are still the most luminous parts of the water body. 

Based on the working hypothesis, the black tank seems best suited of the systems tested to 

provide an illusion of natural conditions. With clear water there is increased illumination 

towards the center in the upper part, but the oposite in the lower part. This is probably due 

to decreased importance of direct compared to reflected light with increasing water depth. 

With green water, however, there is decreased illumination towards the center throughout the 

water column. This is to be expected, as direct light will be equally absorbed and scattered 

by algae all over the tank, but reflected light will contribute most along the walls. Variations 

are, however, small, and the horisontal and downwards vertical background will generally 

appear dark. 

The black walled tank with white bottom is also interesting. The reason why this layout was 

considered at all is the optimal conditions for visual inspection in the tank. There is an 

increasing illumination gradient towards the center of the tank both in the clear and green 

water situation which potentially should bring the larvae away from the wall by phototaxis. 

There is, however, also a fairly strong positive gradient towards the bottom, especially in clear 

water, and only species specific experiments can elucidate eventual effects of this. 

In conclusion, based on the working hypothesis, the white walled tank should be avoided. The 

black walled tank with a lighter bottom is an interesting alternative, but total illumination and 
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reflective properties of the bottom would have to be fme tuned for each species, as bottom 
reflection might easily become a light trap. The all black tank is, however, the safest and best 
bid in providing natural illumination. Green water seems to be beneficial in all situations. 
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Fig. 1. lsolines of light intensities (relative values) measured in tanks with white walls and 
white bottom. A: clear water, 360°; 8: green water, 360°; C: clear water, 180° 
(horisontal); D: green water, 180° (horisontal) 
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Fig. 2. lsolines of light intensities (relative values) measured in tanks with black walls and 
white bottom. A: clear water, 360°; 8: green water, 360°; C: clear water, 180° 
(horisontal); D: green water, 180° (horisontal) 
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Fig. 3. lsolines of light intensities (relative values) measured in tanks with black walls and 
black bottom. A: clear water, 360°; B: green water, 360°; C: clear water, 180° 

(horisontal); D: green water, 180° (horisontal) 


