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Abstract 

The average catch per tow by a research vessel survey is often 
used as an index of abundance. An estimate of the variance of such 
indices that is based only on the between station variability in 
catch may underestimate the true variance if catchability varies 
over time. In this paper, the survey index variance is estimated 
indirectly by cross calibrating time series of VPA estimates and 
trawl survey indices of abundance. The method is applied to several 
species on Georges Bank and to haddock in the Barents Sea. For 
these surveys, it appears that the true variance of the survey 
indices is approximately twice as large as the usual estimates 
based on the within survey variance. As an application, a time 
series technique, which requires an estimate of the survey index 
variance, is used to generate a more precise index of abundance. 
The results indicate that for the surveys examined the variance of 
the estimated abundance index is 30 - 40% smaller than the original 
(average catch per tow) index. 

1. Introduction 

A potentially significant source of variability for trawl 
survey indices of abundance is that the catchability of a species 
with respect to the survey trawl may change from year to year 
(Sissenwine and Bowman 1978; Byrne et al.. 1981; Collie and 
Sissenwine 1983; Pope 1988; Shepherd 1988). Many factors may cause 
such fluctuations. These may include variations in environmental 
conditions, changes in the spatial or vertical distribution of a 
stock, or varying equipment and crew. If catchability does change 
from year to year then an estimate of the error variance that is 
based only on the within survey variability would be an 
underestimate. 

1 



It would be useful to have an estimate of the true survey variance. For tuning a VPA, the estimated variance would provide a weighing factor for the survey series when several abundance indices are available. For survey design, it is needed for determining the relationship between sample size and survey precision. Finally, an estimate of survey error is necessary for a time series method which attempts to generate a more precise abundance index. 

Since the true population size is rarely if ever known, it is necessary to estimate indirectly the variance of a survey index. In this paper the actual survey variance is estimated by cross calibrating VPA abundance estimates and survey catch per tow indices. As examples, the technique is applied to surveys for several species and some applications of the results are presented. 

2. Statistical Methods 

For a particular species let Yt denote the survey index of abundance (e.g., the average catch per tow), zt an estimate of stock size from a VPA and Pt the actual population size for year t. It is assumed that the expected value of the survey index and of the VPA are proportional to population size. That is E(~] = k~ and E(zt) = k'Pt• Since for marine data errors often appear to be multiplicative, let 

where ot is the error term due to yearly changes in catchability and fw is the error due to within survey variability. 

For simplicity, from here on, the same notation will be used to denote the logarithm of the variables. Thus 

Y t = k + Pt + et ' 

where ~ = ot +ew. If the error components are independent, then 

(1) 
Likewise, the VPA series can be expressed as 

z t = k I + Pt + ~ t ' 

where ~t measures the precision of the VPA. Again, it is assumed that the expected value of the VPA is not necessarily equal to, but only that it is proportional to stock size . 

In order to express the error components in terms of the observed series, consider first that 
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where p = Cor (eu ~t). If p = 0, then 

( 2) 

The assumption that p = 0 is the reason a survey series and a 
VPA series are considered rather than, for example, two independent 
trawl surveys. If catchability does vary from year to year, then it 
is unlikely that the measurement errors for the two surveys would 
be uncorrelated. 

Next consider the variance of the year to year changes in the 
series. These changes can be written using the backward difference 
operator V which is defined by Vzt = zt - zt-t• The value of Var (Vzt) 
is calculated, for example, rather than Var(zt) because zt often 
appears to be nonstationary or nearly so (i.e., it does not seem to 
fluctuate about a fixed mean) while Vzt usually seems stationary. 
If zt is nonstationary, then Var ( zt) is not defined. 

For the VPA series, if Vpt and V~t are uncorrelated, then 

Var (Vzt) = Var (Vpt + V~t) 

= Var ( Vpt) + 2 ( 1 - p) a E 2 , 

where p = Cor ( ~t' ~t-d . Thus if p = 0, then 

Var(Vzt) = Var(Vpt) + 2aE2
• ( 3) 

Similarly, if Vpt and V~ are uncorrelated, and Cor(~, et_1) = o, 
then 

Var(V~) = Var(V~) + 2a;. (4) 

It follows from equations (3) and (4) that 

(Var (Vyt) - Var (Vzt)] /2 = a/ - a/. (5) 

In summary, given the assumptions that have been made, the 
error variances can be expressed in terms of the observable series 
and the variance caused by within survey variability, aw2

• The 
variance of the survey abundance index can be written as 

and the variance of the VPA error component is given by 
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Finally, the variance component of the survey index due to varying catchability is given by 

a/ = a/ -
(8} 

3. Examples and Applications 
3.1 Example: estimating error components 

In Table 1 are the results of substituting sample estimates into the appropriate equations for several species with both a VPA series and a series of trawl surveys. This was done using the entire series (Table 1 (a}] and to lessen any effect that the survey indices may have on the VPA estimates, the series through 1985 (Table 1 (b)]. As an indirect check of the assumption that both series are proportional to the true population, the log of the survey index was regressed on the log of the more precise VPA estimates. If this assumption is correct, then the slopes should be equal to one. None of the estimated slopes (column 2) is significantly different from one. In column 3 are estimates of the sum of the error components from equation (2) and in column 4 are estimates of the differences (equation ( 5)]. In the next two columns are estimates of the error terms [equations (6) and (7)]. In the last column (Table 1 (b)] are estimates of the variance of the survey index, aw2
, based on the within survey variability. 

3.2 Application: effect of sample size on survey precision 
Increasing the number of stations in a survey will only reduce the component of the survey variance due to within survey variability. For example, using equations {1) and {8) and estimates of a/ and aj (Table 1 {b)], it appears that doubling the number of stations for the Georges Bank survey would reduce the variance of the haddock index from .20 to .16. The smallest the va~iance could be if just sample size is increased is approximately a[= .12. 

3.3 Application: estimating an index of abundance 

If the error variance of a survey is known, time series methods can be used to estimate an abundance index that has a smaller variance than the original series. Briefly, this can be done as follows (for details, see Pennington, 1985; 1986). 
Suppose Pt follows the autoregressive integrated moving average process (see, e.g., Box and Jenkins 1976) 

where the at's are iid N ( 0, a.2) • If Yt = k + Pt + et. and the et's are iid N(O, a/) and independent of the ~'s, then it follows that ~can be represented by the process 
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t ( B ) y t = 11 ( B ) et , ( 9) 

where the et's are iid N ( 0, ac2
) • Now if model ( 9) and ae2 are known 

then the maximum likelihood estimate of the current value of k + Pt 
is given by 

(10) 

where the ~t' s are the estimated residuals from model ( 9) • The 
variance of the index is approximately equal to 

a/[1 - (ae2/ac2) J, 

as compared with 
series. 

the error variance of the original survey 

Equation (10) is convenient for computing the index, but its 
structure can be more easily seen if it is written in the form 

< 1-8 > Y t + BYt-1 < 1 > , ( 11) 

where 8 = a/ I ac2 and Y;_1 ( 1) denotes the one-step-ahead forecast of Yt 
at time t - 1. That is the index is the weighted average of the 
current survey value and the predicted population level based on 
the previous values of the series. From (11) it also can be seen 
that the index is an unbiased estimator of k + ~· 

For the four species considered in section 3.1, the 
autoregressive model 

Y t ' = t:P Y ' t-1 + et , (12) 

where ~'= ~ - ~' fits all the series adequately. The results are 
in Table 2. In the second column are the estimates of t;p. The ratio, 
a/fa/, was estimated using the estimate of a! [from Table 1 (b)] 
and the estimate of the resi~ual variance for model (12). In column 
4 are estimates of Var(zt - ~) for the series through 1985 (except 
for Barents Sea haddock, which is based on the entire series), 
where Yt denotes the index of abundance from equation ( 10) . For 
comparison, in the last column are estimates of Var ( zt - Yt) , a 
measure of the performance of the original index. 

Another approach to estimate an index of abundance, which does 
not require VPA estimates, is to assume that the population follows 
the model 

Pt = Pt-t + ~ , (13) 

where the at's are iid N(O, a/). Then if Yt is related to Pt as above 
and the ~'s are independent of the ~'s, it follows that 

( 1 - B) Yt = ( 1 - 8B) C 1 , (14) 
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;t "' and 8 = ae2/a/. Thus 8a/ is an estimator of ae2 (again, for further details see Pennington 1985; 1986). 

Therefore if the assumptions hold a! can be estimated using only the survey series. It is also not necessary to assume that the series has a mean. In contrast, forecasts based on model (12) assume the mean of the entire series has some relevance to future stock sizes (for more on the advantages of using a nonstationary model, see Box and Jenkins 1976, p. 192). 

In Table 3 are the estimates based on model (141· Two estimates of 8 were use~ to estimate an abundance index; 81 from fitting model (14), and 82 based on the model and the estimates of a/ [Table 1 (b)]. The resulting estimation variances based on the internal and external estimates of a/ (last two columns of Table 2) are similar and are comparable to those from model (12) [Table 2]. In figure 1 are plots of the original survey series, the VPA series and survey abundance indices based on model (14). It appears that the estimated survey index tracks the VPA fairly well except toward the end of the series; the period when the VPA estimates are the most imprecise. It may be noted that the estimated survey indices (Figure 1) are based only on information available during each year. A more precise historical index may be generated by using data from both previous and subsequent years (Pennington 1985). 

4. Discussion 

Since yearly changes in catchability appear to contribute significantly to the variance of the survey abundance indices examined, increasing the number of stations sampled would only marginally improve their precision. A more efficient approach may be one that determines the causes of catchability changes and adjusts the indices accordingly. For example, the area swept by a trawl varies with depth (God0 and Engas 1989). Thus if the spatial distribution of a stock changes, say to deeper water, its catchability may be affected. Given sufficient understanding of survey trawl performance, catch at a station could, perhaps, be adjusted for depth. Another possibility is to use acoustics to track changes in a stock's vertical and spatial distribution and quantify the effect these changes have on catchability. 
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Table 1. 

Summary statistics for estimating the variance components of the survey abundance indices and VPA estimates for Georges Bank haddock (age 2+) and yellowtail (1+), Southern New Engla~d yellowtail (1+) and Barents Sea haddock (3+). A dash represents a negative component estimate. 

(a) Estimates based on entire series. 

Survey slope -~ 2 + A 2 
e a~ 

haddock .98 .18 .19 .19 Georges Bank 

yellowtail 1.09 .39 .33 .36 .03 Georges Bank 

yellowtail .84 .39 .20 .29 .10 so. New Eng. 

haddock 1.04 .56 .48 .52 .04 Barents Sea 

(b) Estimates based on series through 1985. 

survey slope "' 2 + ""' 2 c,. 2 - """2 I' 2 -" 2 A 2 ae a~ e a~ ae a~ aw 

haddock 1.03 .19 .22 .20 .08 Georges Bank 

yellowtail 1.12 .20 .20 .20 .00 .11 Georges Bank 

yellowtail 1.16 .29 .26 .28 .02 .12 So. New Eng. 
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Table 2. 

Parameter estimates for the survey abundance index based on the autoregressive model of the survey series. Except for Barents Sea haddock, a relatively short series, the comparison of th~ estimated index and the VPA series (col. 4) is for the series through 1985 as is that for the average catch per tow index (last column). 

survey 

haddock .76 .30 .08 .19 Georges Bank 

yellowtail .82 .42 .os .20 Georges Bank 

yellowtail .77 .41 .14 .29 So. New Eng. 

haddock .60 .34 .28 .56 Barents Sea 

Table 3. 

Parameter estimates for the survey abundance indices gen~ated by the integrated moving average model. T~e estimate, 81 , is based only on the survey series and 82 is the estimate derived from both series. 

survey 

haddock .23 .28 .08 .07 Georges Bank 

yellowtail .44 .42 .05 .06 Georges Bank 

yellowtail .31 .43 .15 .16 so. New Eng. 

haddock .18 .34 .30 .22 Barents Sea 
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(a) 

Figure 1. VPA estimates of relative abundance (solid line), average 
catch per tow index (dashed line) and estimated index of abundance 
(dotted line) for Georges Bank haddock (a) and yellowtail (b), 
Southern New England yellowtail (c) and Barents Sea haddock (df~ -·· ·-
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