# REPORT OF THE INDUSTRIAL FISHERIES WORKING GROUP 

Copenhagen, 18-25 March 1992


#### Abstract

This document is a report of a Working Group of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. Therefore, it should not be quoted without consultation with the General Secretary.


*General Secretary
ICES
Palægade 2-4
DK-1261 Copenhagen K
Denmark

## Table of Contents

1 INTRODUCTION ..... 1
1.1 Participation ..... 1
1.2 Terms of Reference ..... 1
1.3 Source of Data ..... 1
1.3.1 Denmark ..... 1
1.3.2 Norway ..... 1
1.4 Quality of Data ..... 2
1.4.1 Denmark ..... 2
1.4.2 Norway ..... 2
1.5 Assessment Strategies ..... 3
1.5.1 Background ..... 3
1.5.2 Seasonal separable VPA ..... 3
1.5.3 XSA estimate of unknown catches at age ..... 3
1.6 General Considerations on Management of Short-Lived Species (Norway Pout, Sandeel and Sprat) ..... 4
2 TRENDS IN THE INDUSTRIAL FISHERIES FOR SANDEEL, SPRAT AND NORWAY POUT IN DIVISION IIIa, THE NORTH SEA, AND DIVISION VIa ..... 5
2.1 Division IIIa ..... 5
2.2 North Sea ..... 5
2.3 Division VIa ..... 5
2.4 Fleets in the Industrial Fisheries ..... 5
2.4.1 Division IIIa ..... 5
2.4.2 North Sea ..... 6
2.4.3 Fisheries around Shetland and in Division VIa ..... 7
2.4.4 Divisions VIId, e ..... 7
3 BY-CATCHES IN THE INDUSTRIAL FISHERIES IN THE NORTH SEA ..... 7
4 NORWAY POUT IN DIVISION IIIA ..... 7
4.1 Landings ..... 7
5 NORWAY POUT IN THE NORTH SEA ..... 8
5.1 Landings ..... 8
5.2 Fishing Effort and Catch per Unit Effort ..... 8
5.3 Catch at Age ..... 8
5.4 Weight at Age ..... 8
5.5 Research Vessel Surveys ..... 8
5.6 Estimates of Catch in Numbers at Age for 1990 ..... 8
5.7 Stock Assessment ..... 9
6 NORWAY POUT IN DIVISION VIa ..... 9
6.1 Landings ..... 9
7 SANDEEL IN DIVISION IIIa ..... 9
7.1 Landings ..... 9
8 SANDEEL IN THE NORTH SEA ..... 9
8.1 Landings in 1991 ..... 9
8.2 Sandeel in the Northern North Sea ..... 10
8.2.1 Fishing effort and CPUE ..... 10
8.2.2 Catch at age ..... 10
8.2.3 Weight at age ..... 10
8.2.4 Stock assessment ..... 10
8.3 Sandeel in the Southern North Sea ..... 11
8.3.1 Fishing effort and CPUE ..... 11
8.3.2 Catch at age ..... 11
8.3.3 Weight at age ..... 11
8.3.4 Stock assessment ..... 11
8.4 Sandeel in the Shetland Area ..... 11
8.4.1 Fishing effort and CPUE ..... 11
8.4.2 Survey catch data ..... 11
8.4.3 Weight at age ..... 11
8.4.4 Analytical assessment ..... 12
8.4.5 Management considerations ..... 12
9 SANDEEL IN DIVISION VIa ..... 12
9.1 Landings ..... 12
9.2 Fishing Effort and CPUE ..... 12
9.3 Catch at Age ..... 13
9.4 Weight at Age ..... 13
9.5 Analytical Assessment ..... 13
10 SPRAT IN DIVISION IIIa ..... 14
10.1 Landings ..... 14
10.2 Research Vessel Surveys ..... 14
10.2.1 Acoustic surveys ..... 14
10.2.2 International Young Fish Survey ..... 14
10.3 State of the stock and catch predictions ..... 14
11 SPRAT IN THE NORTH SEA ..... 14
11.1 Landings ..... 14
11.2 Catch at Age ..... 15
11.3 Weight at Age ..... 15
11.4 Research Vessel Surveys ..... 15
11.4.1 Acoustic surveys ..... 15
11.4.2 International Young Fish Survey ..... 15
11.5 Catch Predictions ..... 15
11.6 Recent Developments in Sprat Biology ..... 15
12 SPRAT IN DIVISION VIa ..... 15
13 SPRAT IN DIVISIONS VIId,e ..... 16
13.1 Landings ..... 16
13.2 Catch at Age ..... 16
13.3 Weight at Age ..... 16
14 TRANSFER TO OTHER WORKING GROUPS ..... 16
15 REFERENCES ..... 16
Tables 2.1-13.3 ..... 18
Figures 1.4.1-10.1 ..... 18
Appendix 1 ..... 93

## 1 INTRODUCTION

### 1.1 Participation

| H. Degel | Denmark |
| :--- | :--- |
| H. Gislason | Denmark |
| J. Lahn-Johannessen | Norway |
| T. Macer | UK (England) |
| P. Munk (part-time) | Denmark |
| K. Popp-Madsen | Denmark |
| S. Reeves | UK (Scotland) |
| D. Skagen (Chairman) | Norway |
| E. Torstensen | Norway |

### 1.2 Terms of Reference

At the 79th Statutory Meeting it was decided (C.Res.1991/2:7:17) that the Industrial Fisheries Working Group should meet at ICES Headquarters from 18-25 March 1992 to:
a) describe the historical development of the fleet units exploiting the target species in the industrial fisheries and the catches of the target and by-catch species;
b) quantify the species composition of by-catches taken in the fisheries for Norway pout, sandeel, and sprat in the North Sea and adjacent waters;
c) resolve, if possible, the age compositions of the 1990 catches to allow the time series of catch-atage data to be maintained;
d) assess the status of the stocks of the target species in the industrial fisheries, i.e., sprat in Sub-area IV and Divisions IIIa, VIa, and VIId,e and Norway pout and sandeel in Sub-area IV and Divisions IIIa and VIa, and advise on the need for any management measures;
e) provide the data requested by the Multispecies Assessment Working Group;
f) prepare for the transfer of its work to area-based Working Groups by 1993, advise how this might be best achieved and consider what difficulties might arise and how these could be overcome.

In addition, the Working Group was requested by the Chairman of ACFM to evaluate an 'adequate' 1993 TAC for Division IIIa sprat, this having been requested of ICES by Sweden.

### 1.3 Source of Data

### 1.3.1 Denmark

A reorganization of the sampling scheme was agreed in 1991 and this became fully effective from mid-April 1991. According to the new sampling scheme, all samples are now taken by fishery inspectors who take two different kinds of randomly-distributed samples:

1) Samples used for checking that no landing contains more by-catch than allowed. To do this all species in each sample are identified. In 1991, the number of landings which was sampled was 815.

Samples for scientific purposes. These samples are collected according to a sampling scheme by month and harbour, taking into account the seasonal changes in the fishery. Samples are sent to the Danish Institute for Fisheries and Marine Research for length measurement and age determination. 350 samples were taken for this purpose in 1991.

In previous years the scientific samples were taken by collectors independent of the fishery inspection.

The samples are taken directly from the vessel or from the fish pump during unloading.

Although the guidelines state that between 5 and 10 kg , depending on the size of the fish, should be sampled, the size of the samples becomes quite variable due to the fact that industrial landings are often rather inhomogeneous and contain a variable number of species. Additional samples from the same vessel are taken if the first-hand impression gives reason to believe that a particular landing is violating the rules. These samples will be recognized as one big sample in the files.

The effort data are based on logbook records on catches with a content of either Norway pout or sandeel of more than $70 \%$ of the landing.

### 1.3.2 Norway

## History of sampling

In the years 1961-1966, a small-scale sampling programme, initiated by the Institute of Marine Research, was carried out at a fish meal plant in Egersund to obtain estimates of the species composition in industrial landings. Each sample consisted of $3 \times 10$ liters collected from the top, the middle and the bottom layer of the landing. The programme was reestablished and extended to three different ports in 1971. By late 1975 sampling by grab was introduced because it became apparent that, particularly during summer, chemical
preservation of landings preventing any fish from being used for human consumption might lead to underestimates of larger fish. The grab samples usually were in the range of $100-150 \mathrm{kgs}$, to some extent depending upon the size of the landings. Sampling was kept at a satisfactory level up to and including 1985. Due to the closing down of an important fish meal plant in one of the ports in early 1986, however, and reduced sampling activity in another port, the sampling scheme gradually deteriorated, eventually coming to an abrupt halt during summer 1990 when yet another plant was closed down.

## Sampling regime

A reorganization of the sampling scheme became imminently important when the previous one ceased to function. To ensure a fair geographical coverage of the main fishing grounds it was determined to establish regular sampling in three ports, namely Egersund, Åkehamn and Måley. The new scheme commenced in January 1991, first in Åkehamn, and later on in Egersund. From January 1992 sampling has also been carried out in Egersund. The aim was to obtain two samples a week from each port and a sufficient number of fish from the target species Norway pout and blue whiting to be aged at the Institute of Marine Research in Bergen. Similar considerations have been made concerning sampling of the sandeel fishery but restricted to one sample a week from Egersund and Åkehamn and random samples from Måløy.

The standard weight of a sample is set to 50 kgs which may be extracted automatically in portions of 5 kgs each from the transportation pipes of the fish meal plant. If this device is not available, sampling will be made by buckets of 10 liters each on board the vessel. Each species is weighed and length measurements are made of selected species.

In 1991, a total of 60 samples was derived from the Norway pout fishery. Forty-nine samples collected from the block of statistical rectangles 46-48, F2-3, representing $53 \%$ of the landings. Eleven samples were collected from rectangles further to the north, representing $33 \%$ of the landings, whereas the southern rectangles, representing $14 \%$ of the landings, remained unsampled.

A total of 24 samples was derived from the sandeel fishery represent statistical rectangles containing $64 \%$ of the landings.

Effort data are derived from logbook records of landings containing at least $70 \%$ in weight of either Norway pout or sandeel.

### 1.4 Quality of Data

### 1.4.1 Denmark

The objective of the new scheme was to ensure an efficient seasonal and geographical coverage of all fishing areas. Figures 1.4 . 1 and 1.4.2 show the relative number of landings and samples by month and areas in 1991, respectively. It can be seen that all months and all major areas were well sampled. The number of samples (815) which were taken for determination of species composition are sampled from a total of 20,194 landings, but the proportion between the two figures has to be seen in the light of the last figure including all landings where the industrial catch exceed only 50 kg , which means that a lot of catches not directly associated with the industrial fishery (e.g., the shrimp fishery) are included in this figure. All in all, the data collected should provide a sufficient basis for an accurate estimate of the species composition of the landings of the Danish industrial fishery through all seasons and areas.

Although 350 samples were collected for estimating length and age compositions, these samples do not cover areas and seasons in a satisfactory way. This is partly due to the fact that not all samples were aged leaving some periods poorly covered in respect to age composition. This affects, in particular, the second half of the year in the northern part of the North Sea, where unfortunately only a poor coverage of sandeel was achieved.

Looking at the age readings for sandeel, there seems to be some discrepancy between the Norwegian and Danish data in the period April to June when intensive growth seems to create some problems (see Section 8 for more details). These problems could be overcome by a more intensive and coordinated sampling in this period. On top of this, there seems to be a need for a more consistent way of age readings among the countries.

The sampling used for calculating the age and length compositions for Norway pout was much better than was the case for sandeel and has improved compared to last year. However, there are still quarters and areas for which the number of samples has to be increased in order to achieve a sufficient coverage.

### 1.4.2 Norway

Sampling has been properly carried out by experienced people and shows a convincing degree of consistency. The expansion of sampling from two to three ports in 1992 is expected to increase the sampling intensity, thus yielding a better geographical coverage of landings from the fishing grounds. This will in turn provide higher accuracy in estimating the species composition, particularly in the Norway pout and blue whiting fishery.

Some effort data are excluded if vital information is missing. This is the reason why not all landings are included.

## Classification of landings

Norwegian official fishery statistics identify landings from industrial trawlers, i.e., trawlers using smallmeshed gear, by codes for species which make up at least $70 \%$ in weight of a landing. The codes commonly used are D12 for Norway pout, D13 for blue whiting and E02 for sandeel. In case none of these codes are appropriate, the code will be M02. Up to and including 1988, M02 indicated landings mainly consisting of Norway pout and blue whiting or some by-catches in the Pandalus fishery. This category usually played an insignificant part compared with the total landings of D12 and D13. In 1989 and 1990, however, a substantial increase of M02 landings revealed significant by-catches of herring and to a lesser extent mackerel and horse mackerel. Landings labelled D12, D13 and M02 are all officially reported to ICES as Norway pout when derived from the North Sea east of longitude $0^{\circ}$ or from the Skagerrak.

### 1.5 Assessment Strategies

### 1.5.1 Background

Due to the lack of acceptable data, the 1991 Working Group was unable to produce catch numbers at age for Norway pout and the two North Sea sandeel stocks for 1990. Due to this, it was not possible to do an analytical assessment that year, and it will not be possible to run a standard VPA in the forthcoming years. In the case of the Shetland and Division VIa sandeel stocks, the assessments present other problems as the low (or in the case of Shetland during 1991, zero), effort has exacerbated the usual problems of poor convergence properties of the VPA and poor estimation of input values.

To overcome these problems, two approaches for performing assessments under these conditions were proposed. Both methods have potential for estimating numbers for missing catches.

Catch numbers obtained this way should be regarded as purely artificial numbers which are optimal according to the model specifications, and not as estimates of the real age composition of the catches.

### 1.5.2 Seasonal separable VPA

A program implementing a seasonal, separable VPA, which can also use research vessel survey data, was made available to the Working Group by Dr R.M.Cook. It is documented more fully in Appendix 1, but a brief description of inputs required by the program is given below.

The program requires the user to supply relative weights for the effort data and the research vessel data. The catch data are given a weight of one, so weights for the other data are taken relative to the catch data. To estimate selectivities, the program assumes that the selectivity at the oldest age is a fixed ratio of the selectivity at some younger, reference age. The user is prompted to supply values for the reference age and the ratio for each season. Where research vessel data are to be used, the user is also prompted to supply an age above which survey catchability is constant.

In the current context, a separable VPA has the advantage of not treating the catch data as exact, and as it also estimates fitted catches for each year/season, it was thought to have application in the estimation of missing catch data. However, the program was developed for assessment purposes, and thus does not at present constrain the fitted catches to have the same sum of products as the known landings for which age compositions are required to be estimated. The current version of the program can only use one set of survey data during a run.

### 1.5.3 XSA estimate of unknown catches at age

The Extended Survivors Analysis (XSA) was adapted to estimate catches at age when the total catch in the season and the weights at age are given, but the age composition of the catches is unknown.

The XSA itself estimates survivor numbers, i.e., the population numbers at the end of the most recent season, for each cohort in the population. This is done by minimizing the sum

$$
S S Q=\sum_{\text {year }} \sum_{\text {age }} \sum_{\text {scason }} \sum_{\text {fleet }}(\log \hat{\mathrm{P}}-\log \mathrm{P})^{2 / w}
$$

where $\hat{P}$ is the population number derived from CPUE data after estimating catchabilities, and $P$ is the population number emerging form the VPA. The symbol $w$ stands for a weighting factor for each $P$. In the present version, this is the estimate of the standard deviation of the inverse logarithmetic catchability. The present version operates on a seasonal basis.

The estimation of unknown catches is done as a searching routine. The process is started with a set of catch numbers, for which a full XSA is made. Then, taking one catch number at a time, a full XSA is done with an increase and a decrease of that catch, and the alternative giving the smallest SSQ is chosen. Then, the next catch number is adjusted in the same way, and the process is repeated until convergence.

In the present version, any number of fleets can be used, but the tuning data have to be specified by season.

This program is still at a developmental stage, and is not sufficiently tested. Test runs done at the meeting revealed that in some instances the final estimates of the unknown catches were very sensitive to the starting numbers. The reason for this is not known. Therefore, the results obtained by this method should be regarded as preliminary. Work on the model will continue, and it may be possible to present more definite results to the Multispecies Assessment Working Group meeting later this year.

### 1.6 General Considerations on Management of Short-Lived Species (Norway Pout, Sandeel and Sprat)

The Working Group has in general not made predictions (except for SHOT predictions for some stocks) or yield-per-recruit analyses, which normally form the background for management advice. The Norway pout, sandeel, and sprat are short-lived and enter the fishery at a very young age, which makes the prediction highly dependent on the recruitment. Recruitment indices are available for some of the stocks, but their predictive power is limited and they have on some occasions been very misleading. In addition, since these are important prey species, their natural mortality is known to vary. At present, variations in $M$ are not taken into account. Moreover, the present assessments are not satisfactory for these short-lived species, both for methodological reasons and because of problems with the quality and quantity of data. Finally, the growth rate may vary quite a lot from year to year, and there is no means to predict growth. For these reasons, the relation between yield per recruit and fishing mortality will vary substantially from year to year, which means that biological reference points related to fishing mortalities will be of limited value.

At present, there are no recommended TACs (on biological grounds) for these species. To some extent, the fisheries are self-regulating, since they become unprofitable at a certain level of CPUE. The threshold CPUE will depend on many factors, however, and there is no guarantee that it will correspond to a biologically sound lower level of the stock size. The Working Group recognizes, however, that the major stocks of Norway
pout and sandeels seem to have tolerated the present level of exploitation. As pointed out earlier (Anon., 1991a), the fishing mortality comprises a relatively small fraction of the total mortality for these stocks.

To the extent that the CPUE reflects the size of the stock, one might indicate a biologically advisable CPUE based on a "minimum biologically acceptable level" (MBAL) of the stock size. An MBAL is difficult to define, and may not be very appropriate for these stocks, however, for several reasons. The relationship between stock and recruitment is by no means clear. For sandeel in particular, the definition of the spawning stock units is in itself problematic, due to the exchange of larvae between local occurrences of stationary adult fish. Moreover, the objective of an MBAL for these stocks is wider than a consideration of the spawning stock level for the stock itself, due to their importance as prey for many other species. If the objective of a viable ecosystem shall be achieved, one must also keep these stocks at levels which ensure sufficient food supplies for their predators. What this implies in terms of management measures is at present unclear.

At present, the multispecies assessment programme for the North Sea (MSVPA) is insufficient as a tool for elucidating these aspects of management. In particular, it has no tuning facilities in its present form, and it does not take into account the area distribution of prey and predators.

A possible additional guideline for management may be obtained by considering the probability structure of the short-term prediction, taking into account what is known about the statistical properties of the input parameters. A study along this line (Skagen, 1991) indicated that the risk of reducing the SSB for sandeel below the historical minimum would increase quite sharply if the exploitation level was increased above the present level. Another general result was that if management concentrates on keeping one factor (e.g., the yearly catch) constant, this will lead to increased variations in other factors, like spawning stock biomass and fishing mortality. This study only considered the effect of variable recruitment. If it is to be applied as background for management, other factors must be included. The same procedure has been implemented in the multispecies prediction programme MSFOR (Anon., 1991b).

Another possible approach is to evaluate the spawning stock needed to give an egg production to ensure recruitment at a level necessary to sustain the stock size, along the line suggested by Serebryakov (1990). However, in its present form this approach only considers the possible relationship between spawning stock biomass and recruitment under constant environmental and ecological conditions.

For sandeel in particular, the area distribution poses special problems. This fish is likely to be very stationary, and is found on many separate grounds. Since larvae are exchanged between these grounds, the age composition in the different grounds may be quite different. The fishermen often tend to stick to a fishing ground as long as the fishery is satisfactory there. This implies that the fishery is far from a random sampling of the stock, which is an underlying assumption in most of the current assessment procedures.

Since there are so many problems associated with the industrial stocks (and other short-lived stocks), which are different from those encountered for most other stocks, the Working Group suggests that ACFM consider alternative guidelines for developing management advice in its future terms of reference relating to these stocks. There is also clearly a need for development of alternative assessment strategies, which take into account problems of the kind mentioned above.

## 2 TRENDS IN THE INDUSTRIAL FISHERIES FOR SANDEEL, SPRAT AND NORWAY POUT IN DIVISION IIIa, THE NORTH SEA, AND DIVISION VIa

A discussion of the definition of "industrial fisheries" was included in the 1990 Report of the Industrial Fisheries Working Group and is not repeated here. As a working definition of such fisheries, the Group includes in its assessments and tables all data from trawl fisheries prosecuted with a mesh size smaller than 32 mm . For some species, notably sprat, some of the catches from these fisheries are used for human consumption rather than for processing into meal and oil.

### 2.1 Division IIIa

The annual landings from the industrial fisheries for the years 1974-1991 are presented in Table 2.1. There were some minor revisions for sprat in 1990, and from 1982 to 1987. The total landings have fluctuated between $92,000 \mathrm{t}$ and $228,000 \mathrm{t}$, with no well-marked trend.

Landings in the three most recent years have been well below the long-term mean of $164,000 \mathrm{t}$, mainly due to decreases in the landings of the clupeoids. Landings of Norway pout were low during the period 1985-1989 but have increased to a near-average level in 1990 and 1991.

### 2.2 North Sea

The annual landings from the industrial fisheries for the years 1974-1991 are given in Table 2.2. For 1991, the landings have been broken down by quarters to indicate the seasonality of the various fisheries. An extra column has been added to Table 2.2 this year giving catches of
"other" species. A breakdown of the species composition of this category is presented in Table 3.3. There were some minor revisions to the data for 1989 and 1990 for herring, Norway pout, blue whiting, and the by-catch of protected species. The total landings of all species have varied without trend between 1.0 million and 1.9 million $t$. Landings increased from a low value of 1.0 million $t$ in 1990 to 1.3 million $t$ in 1991, with increased catches of all species, especially sandeels. There has been a downward trend in landings of sprat and Norway pout, though this seems to have been arrested in the most recent years.

### 2.3 Division VIa

The annual landings as officially reported from the industrial fisheries for the years 1974 to 1991 are presented in Table 2.3. There were minor revisions to the data for 1989, and data for 1990 and 1991 were added. The total landings have shown considerable variations, fluctuating between $10,000 \mathrm{t}$ and $54,000 \mathrm{t}$ with a mean of $27,000 \mathrm{t}$. The variations are mainly due to the Norway pout fishery. Landings in 1990 and 1991 were well below the long-term mean, due mainly to reductions in Norway pout in 1990 and sandeels in 1991.

### 2.4 Fleets in the Industrial Fisheries

It should be noted that some of the fleets below may land all or part of their catches for human consumption.

### 2.4.1 Division IIIa

## Danish fleet

The directed industrial fisheries with small meshed gears ( $<32 \mathrm{~mm}$ ) mainly have Norway pout and sandeel as target species. The former is fished in deeper water while the sandeel fishery takes place in the western Skagerrak, more or less as an extension of the fishing area in sandeel area 3.

Until 1991, fishing on sprat and juvenile herring was carried out with 16 mm mesh. From January 1991 this so-called "mixed clupeoid" fishery has only been allowed with mesh larger than 32 mm .

Industrial fishing in the late 1980s was carried out by about 200 trawlers of which about half were entirely dependent upon this fishery. In 1991, about 130 trawlers took part in the mixed clupeoid fishery.

Apart from the mixed clupeoid fishery and the industrial fisheries with small-meshed gear, by-catches of industrial species are landed from other fisheries, e.g., for shrimp, herring, and blue whiting.

## Norwegian fleet

The Norwegian fishery for sprat in Division IIIa is mainly an inshore and fjord fishery, taking place from June to December. The fleet comprises small purse seiners. The fishery, which is a genuine sprat fishery, is for the canning industry. In the period 1987-1991, the average landing contained nearly $93 \%$ in weight of sprat (Anon., 1992).

## Swedish fleet

The Swedish fishery for sprat is based on two types of gear: purse seiners in the fjords and a mixed clupeoid fishery in Skagerrak/Kattegat using small-meshed (16 mm ) trawls. Only small amounts are taken in the fjords for the canning industry (Anon., 1992).

### 2.4.2 North Sea

## Danish fleet

Industrial fishing in the North Sea commenced at the end of the 1940s. It was directed at the young herring in the Bløden ground area and a rapid expansion took place from 1951. In 1952, the first sandeel landings were processed and Norway pout became a target species at the end of the 1950s. In the 1970s, sprat took the place of the young herring. Today sandeel is the prime target and constitutes about $70 \%$ of the total industrial landings, with Norway pout and sprat of less importance.

The industrial fishery in the North Sea is carried out by about 400 vessels (1988). About $1 / 3$ of these are purely confined to industrial fishing, including the largest vessels (super trawlers) which are not allowed to participate in consumption fishing in the North Sea. The remainder, $2 / 3$ of the industrial vessels, are also enganged in a human consumption fishery outside the sandeel season. Consumption landings in 1988 made up about $40 \%$ in value of the total landings of the "mixed" group of trawlers.

The numbers of vessels by size in the two categories of vessels are shown below (1988):

| GT | Mix | Industrial |
| :---: | :---: | :---: |
| $0-50$ | 70 | 26 |
| $50-100$ | 61 | 14 |
| $100-250$ | 112 | 57 |
| $>250$ | 29 | 32 |
| Total | 272 | 129 |

## English fleet

With the exception of a small fishery for sandeels in the 1970s, the only English industrial fishery in the North Sea has been that for sprat. This has taken place inshore in three main areas: the northeast coast, the Wash, and the Thames estuary. These fisheries reached their peak in the late 1970s, when total English landings from the North Sea reached $55,000 \mathrm{t}$. However, in recent years there have only been irregular landings, mainly taken in the winter period. The fleets that prosecute these fisheries are predominantly $10-17 \mathrm{~m}$ single or pair-boat mid-water trawlers and a few drift netters. In 1991/1992, the only significant fishery was in the Thames estuary, where 25 vessels took part.

## Norwegian fleet

Prior to 1956 herring was the only target species sought. A minor fishery for sandeel commenced in the summer of 1956 but had little impact on the annual industrial landings up to and including 1973 (Table 8.1.1). The fishing season usually lasted from mid-May to the end of June. From 1974 onwards a regular seasonal fishery took place, which in recent years starts in early March and may end in late October. The first landings of Norway pout were recorded in 1957 and during the 1960s a significant fishery developed throughout the year (Table 5.1.1). Blue whiting occurred as by-catch and in some landings even outweighed the Norway pout. In the period 1970-1975 the annual landings increased from 100,000 $t$ to a maximum of $300,000 \mathrm{t}$ and then dropped to 184,000 t in 1976.

The number of trawlers using small-mesh gear and fishing all year round has varied considerably over the years. In the period 1960-1972, the figures were fairly stable around an average of 309. They then increased to 357 in 1973, to 455 in 1974 and to 573 in 1975, of which about 300-350 trawlers were assumed to be more engaged in the Norway pout, blue whiting, and sandeel fishery than that for herring.

The closure of the directed fishery for herring in 1977 caused a serious problem for many trawlers and the number rapidly decreased to eventually stabilize at about 200 in the early 1980s. Since then the reduction of the fleet has continued so that in 1990 only 155 vessels were licensed to perform industrial trawling.

The fleet currently consists of a majority of rather old vessels, half of which were built in 1964 and earlier (the oldest one back in 1934). The gross tonnage varies from 20 to 310 GRT.

By and large, however, the remaining fleet has become more effective over the years, by replacing old engines,
using bigger demersal trawls and installing devices for easier handling and better preservation of the catch.

Of the 99 trawlers fishing in 1990, 80 participated in the Norway pout fishery and 65 in the sandeel fishery thus indicating the interaction between these fisheries.

Alternative fisheries for this fleet may be that for human consumption when using appropriate trawls, that for herring or mackerel within certain quotas or that for capelin for a limited number of the bigger vessels.

The Norwegian fishery for sprat in the North Sea is carried out by purse seiners. During recent decades, only a few vessels have participated in this fishery.

### 2.4.3 Fisheries around Shetland and in Division Vla

The industrial fishery around Shetland started in the early 1970s. Originally the boats targetted Norway Pout, but soon switched to sandeel due to their ready availability in inshore waters which were closer to port. This convenience was an important feature of the fishery; the catch required no sorting or gutting and thus the boats could operate with smaller crews, and the inshore grounds meant that smaller and older boats could prosecute the fishery. Many of the boats which were involved in the fishery during its peak in the early 1980s were rather old and are now no longer fishing. Boats involved in the Shetland sandeel fishery have tended to be rather opportunistic, taking sandeels during the summer and switching to other fisheries such as whitefish or scallops during other seasons.

The sandeel fishery in Division VIa has developed in a similar way to the Shetland fishery. Initially some boats followed the Shetland lead in fishing Norway pout, but as at Shetland, sandeel soon became the more important target species. The sandeel grounds in Division VIa are less inshore than the Shetland grounds, but they are still relatively small and localised. The boats fishing the Division VIa grounds include both small, inshore boats and also, more recently, a few large purse-seiners. As at Shetland, the seasonal nature of the sandeel fishery means that the boats involved are not dedicated industrial trawlers, but switch to other fisheries during the rest of the year, with the purse-seiners, for instance, tending to fish pelagic species during the winter. Occasional Scottish purse-seiners fish the North Sea sandeel stocks, but at present this activity is at a very low level.

### 2.4.4 Divisions VIId,e

## English fleet

There is a regular English fishery for sprat in the Lyme Bay, mainly for the human consumption market. Landings have averaged $3,400 \mathrm{t}$ over the past 10 years,
with a range of $1,500-1,800 \mathrm{t}$. The fleet currently comprises 6 vessels of 14-18 m length and around 20 smaller vessels less than 12 m in length.

## 3 BY-CATCHES IN THE INDUSTRIAL FISHERIES IN THE NORTH SEA

The annual landings of by-catches of the major protected species (haddock, whiting and saithe) in the industrial fisheries are given in Table 3.1. There were revisions to the data for 1989 and 1990, mainly affecting whiting and saithe, and data for 1991 were added. The by-catch of haddock declined in the early 1980s, since when it has remained at a relatively low level, though with a slight increase in the past three years. By-catches of whiting showed a similar downwards trend but have increased markedly since 1988. By-catches of saithe are relatively small.

Maps showing the geographical distribution of industrial catches including by-catches are available for 1991. They are not published in the present report, but are retained in the files of the Working Group.

The distribution north and south of $57^{\circ} \mathrm{N}$ of the industrial landings by target species and associated by-catches is shown in Table 3.2 for 1991. For Danish landings, the definition of target species is more than $50 \%$ of the total catch in a particular square and month. For Norwegian landings, the corresponding definition is at least $70 \%$. Compared to the same table in last year's report, an extra column giving "other" by-catch species has been added. These are given by species in Table 3.3.

In the north, the main fisheries were targetted on sandeel and Norway pout, with the principal by-catches being herring, whiting, and other species in the Norway pout fishery. In the south, the target species were mainly sandeel and sprat, with herring being the chief by-catch species in both fisheries. However, in this area there were also significant fisheries with no clearly defined target species. These took large quantities of herring as a by-catch, as well as smaller amounts of whiting and other species.

## 4 NORWAY POUT IN DIVISION IIIA

### 4.1 Landings

Total landings as officially reported to ICES are shown in Table 4.1. In 1991, they amounted to 49,000 t. With 1989 as an exception, the landings have been at a level of 40,000 to $50,000 \mathrm{t}$ since 1987 .

## NORWAY POUT IN THE NORTH SEA

### 5.1 Landings

Landings as provided by Working Group members are shown by country in Table 5.1.1. The data for Norway for 1989 and 1990 were revised. In 1991, the total landings were $154,500 \mathrm{t}$ which is an increase of $11 \%$ compared to 1990 . Landings by month and country for 1989 to 1991 are given in Table 5.1.2. In 1991, $40 \%$ of the landings were taken in the first half of the year.

### 5.2 Fishing Effort and Catch per Unit Effort

## Danish CPUE

The Danish CPUE by vessel category is shown in Table 5.2.1. for the period 1983-1991. A general increase for all vessel categories is observed in 1991 compared to 1990. The biggest increase has occurred among the smaller and larger categories (30-40 \%), while the medium categories have increased by only $10-15 \%$ on average.

## Norwegian effort

Table 5.2.2 shows the number of fishing days and the average GRT by quarter in the period 1982-1991 for the Norwegian fleet fishing for Norway pout. The figures for 1988 to 1990 were revised to comply with the previous years.

## Total Danish and Norwegian effort

As in previous years, the Danish and Norwegian effort data were standardized to a vessel size of 200 GRT. The Danish CPUE and GRT data were fitted using a nonlinar model of the form:

$$
\mathrm{CPUE}=\mathrm{a} \times(\text { GRT }-50)^{\mathrm{b}}
$$

The result for 1991 was:

$$
\mathrm{CPUE}_{91}=4.674 \times(\text { GRT-50 })^{0.357}
$$

The plot is shown in Figure 5.2. By using this regression, the Norwegian effort data were standardized to a 200 GRT vessel category. The standardized effort by quarter is given in Table 5.2.3.

The level of effort in 1991 was at a similar level as in 1990, except for the second quarter, when both the Danish and Norwegian effort decreased.

### 5.3 Catch at Age

Catch-at-age data for 1989 and 1990 were revised in accordance with the revision of the Norwegian landings
(Tables 5.3.1 and 5.3.2). For 1990, the data only cover the first three quarters and they should, due to the low number of samples, be regarded as subject to a large uncertainty.

Danish and Norwegian samples were used to estimate the catch in numbers at age for 1991 (Table 5.3.1). Compared to 1990 the number of samples has increased. However, there are still particular quarter and area combinations for which the number of samples has to be increased further in order to achieve a sufficient coverage.

### 5.4 Weight at Age

Mean weight at age by quarter for 1986 to 1991 is shown in Table 5.4. The data for 1989 and 1990 have been revised. The weight at age for 1991 was estimated based on data from Denmark and Norway.

### 5.5 Research Vessel Surveys

Updated reseach vessel indices are given in Table 5.5.1. The preliminary International Bottom Trawl Survey index for the 1991 year class as 1-group is twice as high as the index for the 1990 year class, almost 4 times the index for the 1989 year class, and the highest on record since 1974. In the English Ground Fish Survey, however, the index for the 1991 year class as 0 -group indicates a year class which is of the same size as the 1989 year class and lower than the 1990 year class.

The RCT3 program was used to make a calibration regression of the survey indices versus the stock in numbers at age 1 from the VPA presented in the 1990 report (Anon., 1990), Table 5.5.2. In predictions up to and including 1982, the IYFS index of age 1 abundance received the highest weight, but in later years the EGFS index of 0 -group abundance performed better. However, as the slope of the regression of EGFS O-group abundance against VPA 1 -group is around 0.4 , the relationship is highly curvilinear and the regression should, therefore, be treated with caution. It is, therefore, dubious whether the RCT3 is able to resolve the conflict between the IYFS and the EGFS concerning the strength of the 1991 year class.

### 5.6 Estimates of Catch in Numbers at Age for 1990

The XSA and the Seasonal Separable VPA (SSV) (see Section 1.5) were used in an attempt to estimate the missing catch in numbers at age for 1990 (Table 5.6.1).

The input data for the XSA included commercial effort as well as IYFS indices for ages 1 and 2, EGFS indices for ages $0,1,2$ and 3 , and SGFS indices for ages 1,2 and 3 . The SSV is only able to utilize data from one survey at a time and data have to be available for the
same range of age groups as in the commercial catch. Runs were made with IYFS data, ages 1 to 3 , and with EGFS ages 0 to 3 . In both cases the reference age was set to 1 and survey catchability assumed to be constant for age 1 and older.

The SSV estimates of catches at age proved to be highly sensitive to whether survey indices were included or not. Including the IYFS indices for ages 1 to 3 , or the EGFS indices for ages 0 to 3 produced estimates of catch at age in 1989 and 1990 for which the SOP was far above the observed landings. Excluding survey information, the SOP was closer to the observed, and the Working Group, therefore, decided not to utilize the survey indices in the final run.

The XSA estimates provide catches at age for which the SOP is in accordance with the landings. However, the method is still under development, and trial runs in which predictions of the catch at age in other years than 1990 were made showed that the estimates in some cases were dependent on the choice of starting point.

Given the technical problems encountered with the way the XSA estimates missing catch-at-age data, the poor agreement between SOP and SSV estimates and the sensitivity of the latter method to inclusion of survey data, the Working Group was not able to decide upon the best estimate of the age composition of the landings of Norway pout in 1990.

### 5.7 Stock Assessment

An attempt was made to assess the stock by using a quarterly separable VPA in which the selectivity at age was assumed to be constant above age 1 .

Two separate runs were made. In the first run no survey data were included, in the second IYFS data for ages 1 to 3 were given a weight 5 times higher than the effort data.

The results are summarized in Tables 5.7.1-5.7.6. The two runs produce very different results which illustrate that the IYFS and the commercial CPUE are telling two different stories. When the separable VPA is based on commercial effort data rather than IYFS CPUE, higher values of selectivity are generally found on the older ages. The higher selectivity results in a higher level of fishing mortality for the older ages in particular and in a different development of population numbers and biomass over time.

Figure 5.7 illustrates the change in spawning stock biomass with time, as estimated with and without IYFS survey data and as found by ad hoc tuning on commercial data at the 1990 meeting of the Working Group. The SSV run in which survey data were excluded
is in line with the results from ad hoc tuning, while the SSV run in which the IYFS received a high weight in most years results in lower estimates of SSB than the other two and in less pronounced changes over time.

These results mean that the Working Group could not decide on the current state of the stock.

It should be noted that in the 1984 report of this Working Group, a figure of 0.1 was adopted for the proportion of fish mature at age 1. In practice, assessments in that and subsequent years have used a value of 0.5 . Future assessments should use the adopted value of 0.1 .

For comparison with previous values, the SSB figures given above have assumed a value of 0.5 .

## 6 NORWAY POUT IN DIVISION VIa

### 6.1 Landings

Landings of Norway pout as officially reported from Division VIa are given for the period 1974-1991 in Table 6.1. There have been considerable annual variations in landings over this period, varying from $38,000 \mathrm{t}$ to 3,000 t . Landings in the last two years have been amongst the lowest in the period.

## 7 SANDEEL IN DIVISION IIIa

### 7.1 Landings

Estimated landings of sandeels from Division IIIa for the period 1982-1991 are given in Table 7.1. Revised figures for 1990 increased the landings by about $10,000 \mathrm{t}$ from the preliminary estimate in last year's report. Compared with 1990, the preliminary figures for 1991 show a decline of about $2,000 \mathrm{t}$ to about $23,400 \mathrm{t}$.

Further revision of years prior to 1990 may result in changes and, consequently, the years in question are marked 'Preliminary' in Table 7.1.

## 8 SANDEEL IN THE NORTH SEA

### 8.1 Landings in 1991

Total landings, which dropped in 1990, showed a new increase in 1991 to about $842,000 \mathrm{t}$ or $12 \%$ more than the average for 1981-1990.

Table 8.1.1 shows nominal landings by countries since the beginning of the sandeel fishery in 1952. The increase is reflected in all national landings except for the UK from which only one vessel made a few trips to the
sandeel grounds in the central North Sea. Table 8.1.2 indicates that the main increase took place in June (about $80 \%$ ) and especially in July when the landings increased by a factor of $71 / 2$ compared to the previous year.

Catches by sandeel area (Figure 8.1) are given in Tables 8.1.3 and 8.1.4.

### 8.2 Sandeel in the Northern North Sea

### 8.2.1 Fishing effort and CPUE

Fishing-effort data based on logbooks were available for about $78 \%$ of the Norwegian and $60 \%$ of the Danish landings.

The Danish data by half-year and vessel category for 1982-1991 are shown in Table 8.2.1.1.

A power function, CPUE (half year, GRT) $=\mathrm{a} * \mathrm{GRT}^{\mathrm{b}}$, was fitted to each half-year data separately and a Danish CPUE standardized to a 200 GRT vessel was calculated on this basis. The estimates so obtained are shown below:

| Half-year | R-square | a | b | Standard <br> CPUE |
| :--- | :---: | :---: | :---: | :---: |
| 1 | 0.98 | 3.37 | 0.49 | 44.7 |
| 2 | 0.97 | 2.74 | 0.54 | 47.5 |

The Norwegian data are shown in Table 8.2.1.2. They comprise fishing days and mean GRT for the vessels sampled. The fishing days are standardized to a 200 GRT by applying the factor: Mean GRT/200, i.e., assuming a linear relation between fishing power and GRT.

A standardized international CPUE is then calculated as the average of the Danish and Norwegian means weighted by catch, and a standardized international effort is estimated as total international catch divided by the standardized international CPUE. The last procedure and its results are shown in Table 8.2.1.3. The Working Group detected a number of inconsistencies in the table but was not in a position to make corrections at the meeting.

The derived international effort indicates a rather stable level in the late 1970s followed by a significantly lower level in the early 1980s. The effort increases again in the late 1980s.

The Danish and Norwegian CPUE estimates show a significant correlation. Leaving out years with landings
below $10,000 \mathrm{t}$ gives
CPUE Norw. $=11.59+0.53 *$ CPUE Denm.
$r=0.73$ (d.f. $=11)(0.01>P>0.001)$.

### 8.2.2 Catch at age

Sampling the landings for numbers at age improved in 1991 without reaching a fully satisfactory level. The data are shown in Table 8.2.2.1. Year class 1990 appears to be strong as suggested by the relatively high catch of 0 groups in 1990.

The estimated numbers are based on Danish and Norwegian samples applied to the respective landings by area and month. Comparing the two sets of data revealed rather big differences in average weight at age and, consequently, in the derived number caught at age. This feature is mainly confined to the first half of the year in the northern North Sea and seems to be correlated with the high growth rate in that period.

Samples throughout May showed an increase in modal length of about 3.5 cm , and it is obvious that it requires a high sampling rate stratified on short time intervals (weeks) and areas in order to achieve a reliable estimate of catch in number.

Another problem in this connection appears to be the age determination. Again the difficulties may be referred to the growth period when the decision on whether a new year's growth is apparent in the otolith or not can lead to errors in allocating a fish to a year class.

### 8.2.3 Weight at age

Mean weights at age are shown in Table 8.2.3.1. The Danish and the Norwegian data were combined weighted by catches in number.

### 8.2.4 Stock assessment

A semi-annual separable VPA was run using available catch-at-age and effort data for the northern North Sea sandeel stock. Natural mortalities and proportions mature were as given in Tables 8.2.4.1 and 8.2.4.2. The program was run to investigate the possibility of estimating catches for 1990 and providing a rough assessment of the stock. The results from the run clearly indicated that neither would be possible. The output from the program run is too extensive to include in full, but selected output is given in Table 8.2.4.3. The model estimated an extremely high year/season effect for the first half of 1990. This parameter corresponds to the fitted effort required to produce the apparent mortality over this period, given the fitted exploitation pattern. The
value was more than three times higher than any other figures and did not correspond with the actual effort during 1990. The net result was that estimated populations for recent years were greatly in excess of previous estimates. This result appears to be due to problems in the age compositions of years for which such data are available. This may also be exacerbated by the tendency of the sandeel fleet to fish grounds where specific year classes of sandeels are present. This would imply that the exploitation pattern during a given season would not remain constant and thus violate the assumption on which the separable VPA is based.

### 8.3 Sandeel in the Southern North Sea

### 8.3.1 Fishing effort and CPUE

In 1991, Norway only caught about $4,000 \mathrm{t}$ in the southern North Sea and the following data refer to the Danish fishery.

CPUE by vessel size is shown in Table 8.3.1.1. It is already apparent from these data that a substantial increase took place in 1991 and especially in the second half year which in general shows the highest figures on record.

Standardized CPUEs referring to a 200 GRT vessel were calculated in the same way as described in Section 8.2.1 and gave the following parameters:

| Half-year | a | b |
| :--- | ---: | :---: |
| 1 | 6.0349 | 0.4231 |
| 2 | 3.7312 | 0.5049 |

The standardized CPUEs and the total international effort are shown in Table 8.3.1.2. The latter shows a decrease from 1990 in the first half year and an increase in the second.

### 8.3.2 Catch at age

In 1990, no estimate of numbers caught at age could be made for the southern North Sea due to lack of sampling. In 1991, the situation has improved, especially in the first half year when nearly all landings were covered while this only was the case in about $36 \%$ of the landings in the second half year.

The numbers obtained are shown in Table 8.3.2.1.

### 8.3.3 Weight at age

Weight at age is shown in Table 8.3.3.1. The apparent decline from the first to the second half year is either due
to misinterpretation of age or to insufficient sampling in the 3 rd quarter.

### 8.3.4 Stock assessment

A semi-annual separable VPA was run for the southern North Sea sandeel stock. Some output from the run is given in Table 8.3.4.1. As with the northern North Sea stock, there were clearly problems, as the fitted populations for recent years were again unrealistically high, and the year/season effect for the first half of 1990 was estimated as being very high, although not to the same extent as in the northern stock. It appears that the problems with the age compositions of the available catch data, the missing data for 1990, and the variation in the exploitation pattern apply to the southern North Sea stock as well as the northern North Sea stock, and that again the assessment results are unusable.

### 8.4 Sandeel in the Shetland Area

### 8.4.1 Fishing effort and CPUE

With the closure of the inshore fishery, there was no fishing effort or catch during 1991, apart from a Danish catch of 3 tonnes from the offshore part of the Shetland area. Standardized effort data for previous years are presented in Table 8.4.1.1, and landings for 1986 onwards are given in Table 8.1.3.

### 8.4.2 Survey catch data

Surveys of sandeels at Shetland have been conducted during August of each year since 1984, except 1987. During the surveys the objective is to take three hauls at different times of day on each of the main sandeel grounds. The numbers caught at age are then standardiszd to a haul duration of 30 minutes to give overall survey indices. In order that these values are strictly comparable from year to year, values for a particular ground which has not been fished during a given year (usually because of poor weather), are interpolated from existing data. This is done by fitting a GLM to the catch-at-age data, and thus modelling the data in terms of area and year effects. The estimates of these parameters can then be used to estimate values for the missing area/year combinations. The survey indices are given in Table 8.4.2.1.

### 8.4.3 Weight at age

In the absence of any commercial catch data for 1991, biomass totals have been calculated using long-term average catch weights-at-age. These are given in Table 8.4.3.1.

### 8.4.4 Analytical assessment

A semi-annual separable VPA, which can use research vessel survey indices was used for the analysis. Values of natural mortality and proportion mature at age were as used previously.

To run the separable VPA for Shetland, the catch and effort data were both given a relative weight of 1 , but a value of 0.1 was chosen for the survey data. This value was chosen because the survey has been conducted using different vessels in different years. These have included both commercial sandeel boats and a research vessel, so there is good reason to expect year-to-year differences in the sampling efficiency during the survey. Because of this, and because there was no survey during 1987, it is appropriate to downweight the survey data to prevent these inconsistencies having too much influence on the final result.

In the current context there seems to be no reason to assume any differences in the vulnerability of fish at ages older than three, so the selectivity at the oldest age (age 7) has been taken to be the same as that at age 4 during both halves of the year.

Diagnostics from the separable VPA are given in Table 8.4.4.1. These show that the exploitation pattern changes between the two halves of the year, reflecting the predominance of the 0 -group in the second half. The catch residuals for the first half of 1987 show a large positive value for the 1 -group catch and negative values at all older ages. This appears to reflect the concentration of effort on the relatively strong 1986 year class. The research vessel residuals show more negative values in recent years, presumably reflecting a drop in sampling efficiency due to the use of a research vessel rather than commercial sandeel boats.

With the current closure of the fishery, fishing mortality was effectively zero during 1991. Estimates of fishing mortality during previous years resulting from the current assessment are given in Table 8.4.4.2. Fitted populations and stock biomass totals are given in Table 8.4.4.3. The numbers of 0 -group recruits (on 1 July) are given in Figure 8.4.4.1, and biomass totals are shown in Figure 8.4.4.2.

Recruitment estimates from the current VPA are generally similar to those resulting from the previous assessment, although there is a considerable downward revision of the previous estimate of the 1989 year class. This year class now appears to be only slightly stronger than the two preceding year classes, although this year class was rather strongly represented in survey catches as 0 -group and 1-group, so the actual strength of this year class is still not clear. The first estimate of the strength of the 1990 year class indicates that it is rather small,
and of similar size as that of the 1987 year class. It is necessary to be very cautious in interpreting the provisional estimate of the 1991 year class as it is based on only one year's survey data, and is thus a particularly uncertain estimate. Nonetheless, it appears that the 1991 year class is very strong. This is supported by its survey index, which is the highest 0 -group value recorded, and by the wide distribution of 0 -group catches during the survey, where they were found in good numbers on most grounds. This included grounds in the north of Shetland, where 0 -group fish have never previously featured in survey catches.

The current VPA estimates the 1991 spawning stock biomass at around 13.1 thousand tonnes, although it is neccesary to treat this value with some caution because of the uncertainty about the strength of the 1989 year class. This estimate represents a slight reduction from the 1990 SSB, which is currently estimated at 13.6 thousand tonnes. These figures represent downward revisions of the figures from the previous assessment which can be attributed to the change in assessment methodology and the use of the additional survey data. Even allowing for these changes, and for the uncertainty involved in the estimate, the 1991 spawning stock appears to have been one of the smallest recorded.

### 8.4.5 Management considerations

The fishery was closed during 1991 following analyses which suggested that the spawning stock biomass had fallen to a point where its ability to produce a strong year class might be affected. The current assessment indicates that an apparently small spawning stock at the beginning of 1991 may have produced a very strong year class. At present the short-term prospects for the stock are largely dependent upon the apparent strength of this year-class. In the meantime, the spawning stock is still at a low level and seems likely to remain so at least until the maturation of the 1991 year class at the beginning of 1993.

## 9 SANDEEL IN DIVISION VIa

### 9.1 Landings

Official landings of sandeels from Division VIa are given in Table 9.1. Landings in 1991 were $46 \%$ lower than in 1990.

### 9.2 Fishing Effort and CPUE

Fishing effort data, in days absent by month, for the sandeel fishery in Division VIa over the period 1981-1991 are given in Table 9.2.1. The total nominal effort during 1991 shows a $56 \%$ reduction when com-
pared to 1990. Effort figures standardized to a vessel size of 40 GRT are given in Table 9.2.2.

The large reduction in catch and effort in 1991 when compared to previous years is due to the closure of the fishmeal plant in Stornaway in the Western Isles during summer 1990. This meant that boats fishing sandeels off the west coast of Scotland during 1991 had to sail to Shetland or further in order to land their catch. This extra overhead appears to have contributed to the continued decline of the fishery.

The additional time at sea required to land catches at Shetland also means that the effort figures for 1991 are likely to represent an overestimate of the amount of time actually spent fishing. To try and account for this, the effort figures for 1991 used in the assessment were revised downwards as follows: a mean trip length was calculated by dividing the total standardized effort (in days absent) by the number of arrivals (i.e., the number of times vessels landed catches). Investigation indicated that these uncorrected figures for mean trip length were high compared to previous years. On the assumption that it would take a vessel 48 hours to steam from the west coast grounds to Shetland, land its catch and return again, two days were subtracted from the mean trip length. The revised effort figures were then calculated by multiplying this corrected trip length by the number of arrivals during each half of the year. This procedure revised the first-half standardized effort figure for 1991 from 127 down to 99 days absent, and corrected the figure for the second half of the year to 51 days from 81 days. These corrected effort figures for 1991 are given in Table 9.2.2

### 9.3 Catch at Age

Catch-at-age data by month for 1991 are given in Table 9.3.1. Catch at age by half-year for 1983-1991 are given in Table 9.3.2. Sampling coverage was rather poor during 1991, and samples were only obtained from catches during June and July. Numbers caught at age during May and August had to be estimated using these samples. Thus there may be some problems with the age compositions of the 1991 data. However, $84 \%$ of the total catch was taken during June and July, so the May and August catches contributed relatively little to the total catch.

### 9.4 Weight at Age

The absence of samples for May and August means that weights at age are not available for these months. Values for June and July are given in Table 9.4.1. Biomass totals were calculated using long-term mean weights at age in the catch. These are given in Table 9.4.2.

### 9.5 Analytical Assessment

Initial analysis of the current catch data was performed using a tuned semi-annual VPA as has been used in other recent assessments of this stock. However, the results obtained in this way gave unrealistically high estimates of F, and little correspondence between F and effort. For this reason, subsequent assessment work has used a semi-annual separable VPA. In running the program, effort data were given equal weight to the catch data, and selectivity at the oldest age was assumed to be the same as the selectivity at age 4 during both halves of the year. Values of natural mortality and proportion mature at age were as given in Tables 8.2.4.1 and 8.2.4.2.

Input catch-at-age data are given in Table 9.3.2, with diagnostics given in Table 9.5.2. Estimated values of F-at-age are given in Table 9.5.3, and mean $F$ (ages 1 to 3) is plotted as a time series in Figure 9.5.1. Estimated numbers in the sea and biomass totals are given in Table 9.5.4. Trends in recruitment and biomass totals are shown in Figures 9.5.2 and 9.5.3, respectively.

The current assessment has resulted in the estimates for all recent year-class strengths being revised upwards. This appears to be a function of the 1991 catch data rather than the change in assessment methodology, as when a separable VPA was run using catch data up until 1990, the results were similar to the corresponding standard VPA. This upward revision of all year class estimates is presumably related to the poor convergence properties of a VPA such as this one where catches are low and natural mortalities high.

The relatively large discrepancies between current and previous estimates of year-class strength give reason to treat the absolute values of the current estimates with some caution. However, the year-to-year changes appear similar in the current and previous assessments, so it appears possible to draw some broad conclusions about recent recruitment to the stock. The 1987 and 1988 year classes appear to have been rather small, following the large 1986 year class. The previous assessment suggested that the 1989 year class might be quite strong and this is supported by the current assessment. This assessment also suggests that the 1990 year class is of moderate strength, being slightly larger than the 1987 year class. The first, very provisional, estimate of the 1991 year class suggests that it might be quite strong.

Year-to-year changes in the current estimates of spawning stock appear comparable with those indicated by the previous assessment, although the absolute values differ. The 1991 spawning stock appears to have been slightly larger than the 1990 biomass, due to the maturation of the 1989 year class. Spawning stock at the beginning of 1992 is estimated to be slightly larger than
the 1991 stock. With the apparent strength of the 1991 year class, it seems likely that the 1993 spawning stock will be at least as big as the 1992 estimate.

Fishing mortality on this stock has declined in line with the decrease in effort. The current assessment suggests a mean $F$ over ages 1 to 3 of around 0.05 .

## 10 SPRAT IN DIVISION IIIa

### 10.1 Landings

The landings for the period 1974-1991, as provided by the Working Group members, are shown in Table 10.1. The Norwegian data from 1982 onwards have been revised, with only small changes. The Swedish and Norwegian landings include the coastal and fjord fisheries. The Danish data, based on biological analyses of catch compositions, are much lower than the figures presented in the official statistics. The official statistics include all landings from the mixed clupeoid fishery, which, at present, mainly consists of herring catches. On 1 January 1991, the mesh size in the Danish mixed clupeoid fishery was increased from 16 to 32 mm . In 1991, there was an increase in the total catch compared to the last three years, but the catches are still at a very low level compared to the early 1980s.

### 10.2 Research Vessel Surveys

### 10.2.1 Acoustic surveys

No acoustic estimates of the sprat stock were available for 1991.

### 10.2.2 International Young Fish Survey

The IYFS index for 1-group and for total sprat for 1992, together with the indices from previous years, are shown in Table 10.2. The main concentrations were observed in the southeastern part of Kattegat (Figure 10.1). This year's indices are at a higher level than in the previous years, with the 1 -group index at the same level as in the mid-1970s. The high 1 -group index is mainly due to very high values in a few squares on the coast of Sweden, and are presumably based on a small number of hauls.

### 10.3 State of the stock and catch predictions

According to the IYFS indices, the 1991 year class is indicated to be stronger than in previous years.

A SHOT estimate was performed using the IYFS index at age 1 as recruitment index and a $\mathrm{Y} / \mathrm{B}$ ratio of 0.6 , based on the assumption that the fishing effort has been on the same level as in previous years. The change in Y/B ratio from 0.77 to 0.60 in 1985 was made to reflect
a shift from a mainly industrial fishery to a coastal fishery for human consumption at that time. The estimated catch for 1992 is $43,500 \mathrm{t}$, which implies an increase of more than $200 \%$ compared to 1991 (Table 10.3). SHOT predictions for 1993 were run with different levels of recruitment index, using the lowest and highest 3 -years' average indices in the period 19741992. These catch predictions are very uncertain, since they depend largely on the IYFS-index for 1 -year-olds in 1991, which again is generated by high values in a very restricted area. The predictions for 1993, using the lowest (550) and highest (4.738) average index values, respectively, give estimated landing values between 21,000 and $51,000 \mathrm{t}$.

The data available on the sprat stock in Division IIIa are very sparse. Therefore, the Working Group decided that it is not in a position to evaluate more precisely an adequate stock estimate as the basis for sprat TAC in Division IIIa.

## 11 SPRAT IN THE NORTH SEA

### 11.1 Landings

Landings by area and country are given in Table 11.1.1. The Norwegian landings from 1982 and onwards have been revised and catches in the fjords of western Norway excluded. Sprat in the fjords of western Norway is not considered as part of the North Sea sprat stock. However, there is uncertainty concerning the sprat stock identity. The Norwegian catches in the western fjords are presented in Table 11.1.2.

The preliminary figure of $109,500 t$ for the landings of sprat in 1991 is $54 \%$ above last year's figures. After some years with very low or no Norwegian landings of sprat from the North Sea, the Norwegian purse-seine fishery for sprat in 1991 gave around $30,000 \mathrm{t}$.

Table 11.1.3 shows the data available for landings by area and quarter. Most of the landings were taken in Division IVb east in the third and fourth quarters. According to Norwegian logbook information, $25,100 \mathrm{t}$ were taken in the central North Sea (Division IVb east). There is, however, reason to believe that part of this may have been taken in Division IVb west.

Once again there was no fishing for sprat off the northeast coast of England. There were no Scottish sprat landings from the North Sea in 1991.

In the Wash there were good landings in January and February but nothing during the rest of the year.

The Thames Estuary fishery produced very good landings both at the beginning and the end of the year,
and the total landings for the 1991/1992 season are estimated at $5,000 \mathrm{t}$. In December, sprat in the catches had a modal length of 11.5 cm and a range of 8.5 to 14.0 cm , with the 1990 year class contributing $80 \%$ to the catch in the early part of the season.

### 11.2 Catch at Age

Quarterly catch-at-age data in numbers were available from Denmark, Norway and UK (England) and are presented in Table 11.2. The catches were dominated by 1 -and 2 -group fish. The 0 -group came into the Danish fishery in quarter 3 , representing $12 \%$ of the catch in numbers in the 4th quarter. Data on age compositions are, however, based on few samples for the offshore fishery, only 25 samples ( 3,033 fish) from landings were taken, with 1 ( 104 fish) to 6 ( 356 fish) samples per month. No information on the distribution of samples throughout the fishing areas were available, and the Working Group considered the data to be very poor and unsuitable for reliable catch-at-age estimation.

### 11.3 Weight at Age

Danish data for quarterly mean weights at age are given in Table 11.3.

### 11.4 Research Vessel Surveys

### 11.4.1 Acoustic surveys

No acoustic estimates were available for 1991.

### 11.4.2 International Young Fish Survey

Preliminary data from the IYFS in the North Sea in February 1992 are given in Table 11.4. The indices are based on the number of sprat $<10 \mathrm{~cm}$, which, as no age distribution was available, are considered as 1-group sprat. The preliminary index for Division IVb in 1992 is 1,639. Except for the value in 1989, the IYFS index is the highest recorded in the period 1972-1992.

In Munk (1991), which was presented to the Working Group, the changes in mean size of the 1-group sprat are illustrated. The data available are catches from a small pelagic midwater trawl that has been used routinely during the International Young Fish Surveys since 1977. The mean size of sprat in this gear has increased from 5.0 cm to 6.5 cm during the last 15 years. The mean size of 1 -group sprat in the GOV bottom trawl, used during the same surveys, remained at about 8 cm during the period. Munk proposes in his paper that the GOV, because of its larger mesh, is selecting the larger sprat, and that this gear failed to describe the large year classes of the late 1970s because of their exceptionally small lengths at age.

The variability in mean size of sprat, dependent on the relative importance of late spawning (in August), may thus introduce significant bias to indices from the GOVsampling on IYFS.

### 11.5 Catch Predictions

The IYFS index for the 1991 year class is higher than in the two previous year classes.

Both due to the possible bias in the IYFS indices, and the continuing influence of the unrealistically high 1989 index, the Working Group decided not to present any SHOT forecast this year.

### 11.6 Recent Developments in Sprat Biology

At its meeting in 1983, the Working Group stressed the need for a workshop on the problems with the assessment of the sprat stocks of the North Sea and adjacent waters. A workshop was held in 1986, and its work was reported in ICES, Doc. C.M.1987/H:49. In the report, a significant data set was presented and aspects of sprat biology were discussed thoroughly. A series of new initiatives on the item was proposed. At present, however, the understanding is still not sufficient to combine available data to a proper assessment.

Thus, further improvement of the understanding of sprat biology is needed. The following items are identified as the more important ones for improvement of the assesssment:

1) Clarification of spawning period, juvenile growth and subsequent size distributions within age groups;
2) Verification and calibration of otolith reading for age determination;
3) Improvement of sampling and calculation of indices from research vessel surveys (e.g., consideration of the high abundances within restricted areas);
4) Identification of stocks within the North Sea and adjacent waters, and their spatial distribution.

## 12 SPRAT IN DIVISION VIa

The landings of sprat from Division VIa in 1991 are presented in Table 12.1. The total catches, were 1,459 t of which $88 \%$ were taken in the fourth quarter. All the catches were taken by UK (Scotland). The catch in numbers at age and mean weight at age are shown in Table 12.2.

## 13 <br> SPRAT IN DIVISIONS VIId,e

### 13.1 Landings

The nominal landings are shown in Table 13.1.1.
In the eastern Channel, landings were very small at the beginning of the year, but for the second year running, there was an upturn in the landings in November and December, again with landings being made at Poole.

In the western Channel, the 1991/1992 Lyme Bay fishery season began in August and ended in March. The preliminary catch for the 1991/1992 season is $2,280 \mathrm{t}$, which is some 600 t more than in the 1990/1991 season (Table 13.1.2).

### 13.2 Catch at Age

The catch in numbers at age in the Lyme Bay fishery is shown in Table 13.2.1. In the early part of the 1991/1992 season, the 1989 year class contributed $45 \%$ to the catch, with the 1990 and 1988 year classes contributing $36 \%$ and $15 \%$, respectively.

### 13.3 Weight at Age

The mean weight at age for the Lyme Bay fishery is shown in Table 13.3. The mean weight at age in all of the year classes in 1991-1992 were above the long-term average.

## 14 TRANSFER TO OTHER WORKING GROUPS

There are special problems associated with the assessment of the state of the stocks of the short-lived species such as those considered by the present Working Group. Further progress in solving these problems depends on improved methodology and a better understanding of the biology of these species, including their interactions with other species. There exists in the present membership of the Working Group a considerable pool of knowledge and expertise concerning the biology and fisheries for these species, and the requirements for improved methodology.

The Working Group feels that the transfer of the industrial target species to large area-based working groups could result in a loss of expertise and insufficient attention being given to methods to overcome the special assessment problems presented by species with a short life span.

It, therefore, recommends that the work on alternative assessement methods in connection with short-lived species be continued.

The majority of the Working Group members consider that the most effective way would be the establishment of an assessment working group for short-lived species, where theoretical work can develop concurrently with the practical problems. If this working group should prove impossible to establish, these members suggest the following alternatives:

1. An ad hoc study group to consider this item.
2. Have these problems addressed as a special point in the agenda for the Working Group on Methods of Fish Stock Assessment.

The remaining members held the view that the routine assessment work should be transferred to area-based working groups, and that the specific assessment and biological problems related to these species should be addressed according to one of the alternatives ( 1 or 2 ) above.

If all or part of the work is to be transferred to areabased working groups, this Working Group has the opinion that it is natural to transfer the work related to Norway pout and sandeel to the Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak for the North Sea stocks, to the Working Group on the Assessment of Northern Shelf Demersal Stocks for the stocks in Division VIa, and the sprat stocks to the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$.

## 15 REFERENCES

Anon. 1990. Report of the Industrial Fisheries Working Group. ICES, Doc. C.M.1990/Assess: 13.

Anon. 1991a. Report of Industrial Fisheries Working Group. ICES, C.M.1991/Assess: 14.

Anon. 1991b. Report of the Multispecies Assessment Working Group. ICES, Doc. C.M.1991/Assess:7.

Anon. 1992. Workshop on Methods of Forecasting Herring Catches in Division IIIa and the North Sea. ICES, Doc. C.M.1992/H:5.

Berntsen, J., Skagen, D.W. and Svendsen, E. Modelling drift of particles in the North Sea with reference to sandeel larvae. (Working paper presented at the meeting.)

Munk, P. 1991 Changes in mean size and distribution of juvenile North Sea sprat (Sprattus sprattus L.) in the period 1976-1990. ICES, Doc. C.M.1991/H:41.

Serebryakov, V.P. 1990. Prediction of year class strength under uncertainties related to survival in early history of some North Atlantic commercial fish. NAFO SCR Doc.90/115.

Skagen, D.W. 1991. Stock prediction using stochastic recruitment numbers with empicical stockdependent distributions. ICES, Doc. C.M.1991/H:28.

Table 2.1 Landings ${ }^{1}$ from the industrial fisheries for Sandeel, Sprat, and Norway Pout in Division IIIa ('000 t), 1974-1991.

| Year | Major fisheries |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Clupeoids |  |  | Gadoid species |  | Total |
|  | Sandeel | Sprat ${ }^{2}$ | Herring ${ }^{3}$ | Norway pout | Blue whiting |  |
| 1974 | 8 | 71 | 76 | 13 | - | 168 |
| 1975 | 17 | 101 | 57 | 19 | - | 194 |
| 1976 | 22 | 59 | 38 | 42 | - | 161 |
| 1977 | 7 | 67 | 32 | 21 | - | 127 |
| 1978 | 23 | 78 | 16 | 25 | - | 142 |
| 1979 | 34 | 96 | 13 | 25 | 6 | 174 |
| 1980 | 39 | 84 | 25 | 26 | 14 | 188 |
| 1981 | 59 | 76 | 63 | 30 | + | 228 |
| 1982 | 18 | 40 | 54 | 44 | 5 | 161 |
| 1983 | 28 | 26 | 89 | 30 | 16 | 189 |
| 1984 | 19 | 36 | 112 | 46 | 15 | 228 |
| 1985 | 14 | 20 | 116 | 9 | 19 | 178 |
| 1986 | 80 | 11 | 65 | 6 | 9 | 171 |
| 1987 | 4 | 14 | 72 | 3 | 25 | 118 |
| 1988 | 22 | 9 | 97 | 8 | 15 | 151 |
| 1989 | 17 | 10 | 52 | 6 | 9 | 92 |
| $1990^{4}$ | 16 | 10 | 51 | 27 | 10 | 114 |
| $1991{ }^{4}$ | 23 | 14 | 22 | 32 | 11 | 97 |
| $\begin{gathered} \text { Mean 1974- } \\ 1990 \\ \hline \end{gathered}$ | 25 | 48 | 60 | 22 | $12^{5}$ | 164 |

${ }^{1}$ Data from 1974-1984 from Anon. (1986), 1985-1991 provided by Working Group members.
${ }^{2}$ Total landings from all fisheries.
${ }^{3}$ For years 1974-1985, human consumption landings used for reduction are included in these data.
${ }^{4}$ Preliminary.
${ }^{5}$ Mean 1979-1990.

Table 2.2 Landings from the industrial fisheries for Sandeel, Sprat and Norway Pout in the North Sea ('000 t), 1974-1991. For 1991, the data are given both by year and quarters. (Data provided by Working Group members.)

| Year | Major fisheries |  |  |  |  | By-catch protected species ${ }^{1}$ | Other ${ }^{5}$ | Total ${ }^{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Clupeoids |  |  | Gadoid species |  |  |  |  |
|  | Sandeel | Sprat ${ }^{3}$ | Herring | Norway pout | Blue whiting |  |  |  |
| 1974 | 525 | 314 | - | 736 | 62 | 220 |  | 1,857 |
| 1975 | 428 | 641 | - | 560 | 42 | 128 |  | 1,799 |
| 1976 | 488 | 622 | 12 | 435 | 36 | 198 |  | 1,791 |
| 1977 | 786 | 304 | 10 | 390 | 38 | 147 |  | 1,675 |
| 1978 | 787 | 378 | 8 | 270 | 100 | 69 |  | 1,612 |
| 1979 | 578 | 380 | 15 | 320 | 64 | 77 |  | 1,434 |
| 1980 | 729 | 323 | 7 | 471 | 76 | 69 |  | 1,675 |
| 1981 | 569 | 209 | 84 | 236 | 62 | 85 |  | 1,245 |
| 1982 | 611 | 153 | 153 | 360 | 118 | 57 | 24 | 1,476 |
| 1983 | 537 | 88 | 155 | 423 | 118 | 38 | 42 | 1,401 |
| 1984 | 669 | 77 | 35 | 355 | 79 | 35 | 48 | 1,298 |
| 1985 | 622 | 50 | 63 | 197 | 73 | 29 | 66 | 1,100 |
| 1986 | 848 | 16 | 40 | 174 | 37 | 22 | 33 | 1,170 |
| 1987 | 825 | 33 | 47 | 147 | 30 | 24 | 73 | 1,179 |
| 1988 | 893 | 87 | 179 | 102 | 28 | 54 | 45 | 1,388 |
| 1989 | 1,035 | 63 | 146 | 162 | 28 | 40 | 59 | 1,533 |
| 1990 | 590 | 77 | 115 | 140 | 22 | 61 | 40 | 1,039 |
| $1991{ }^{2}$ | 842 | 110 | 131 | 155 | 28 | 45 | 38 | 1,349 |
| 1st Quarter | 30.8 | 2.0 | 12.5 | 43.0 | 4.6 | 5.7 | 12.9 | 111.6 |
| 2nd Quarter | 585.1 | 0.1 | 11.4 | 17.9 | 17.5 | 5.7 | 7.0 | 644.9 |
| 3rd Quarter | 221.8 | 67.5 | 79.7 | 35.1 | 3.7 | 21.1 | 11.3 | 440.2 |
| 4th Quarter | 4.2 | 38.2 | 27.4 | 58.6 | 2.3 | 12.1 | 8.2 | 151.0 |
| Mean 1974-1990 | 678 | 224 | 71 | 322 | 63 | 80 | $48^{4}$ | 1,287 ${ }^{4}$ |

${ }^{1}$ Haddock, whiting and saithe summarized from Table 3.1.
${ }^{2}$ Preliminary.
${ }^{3}$ Includes human consumption landings. Quarterly data for Denmark, Norway and UK only.
${ }^{4}$ Mean 1982-1990.
${ }^{5}$ Data for other species not available for period 1974-1981.

Table 2.3 Landings ('000 t) from the industrial fisheries for Sandeel, Sprat and Norway Pout in Division VIa. (Data officially reported to ICES.)

| Year | Sandeel | Sprat | Norway pout | Total |
| ---: | ---: | ---: | ---: | ---: |
| 1974 | + | 7,026 | 6,721 | 13,747 |
| 1975 | + | 9,053 | 8,655 | 17,708 |
| 1976 | 17 | 8,042 | 19,933 | 27,992 |
| 1977 | 67 | 4,844 | 5,206 | 10,117 |
| 1978 | + | 12,401 | 23,250 | 35,651 |
| 1979 | - | 1,321 | 20,502 | 21,823 |
| 1980 | 211 | 5,202 | 17,870 | 23,283 |
| 1981 | 5,972 | 3,414 | 7,757 | 17,143 |
| 1982 | 10,873 | 3,524 | 4,911 | 19,308 |
| 1983 | 13,051 | 3,834 | 8,325 | 25,210 |
| 1984 | 14,166 | 2,648 | 7,794 | 24,608 |
| 1985 | 18,586 | 3,554 | 9,697 | 31,837 |
| 1986 | 24,469 | 870 | 5,832 | 31,171 |
| 1987 | 14,479 | 851 | 38,267 | 53,597 |
| 1988 | 24,465 | 4,378 | 6,742 | 35,585 |
| 1989 | 18,785 | 1,293 | 28,196 | 48,274 |
| $1990^{1}$ | 16,515 | 813 | 3,316 | 20,644 |
| $1991^{1}$ | 7,777 | 1,459 | 4,348 | 13,584 |
| Mean $1974-1990$ | 9,509 | 4,298 | 13,116 | 26,923 |

${ }^{1}$ Preliminary.

Table 3.1 North Sea. Total reported by-catch ('000 t) of HADDOCK, WHITING, and SAITHE from industrial fisheries. (Data provided by Working Group members.)

| Species | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | $1991^{1}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Haddock | 22 | 17 | 19 | 13 | 10 | 6 | 3 | 4 | 4 | 2 | 3 | 5 |
| Whiting | 46 | 67 | 33 | 24 | 19 | 15 | 18 | 16 | 49 | 36 | 50 | 38 |
| Saithe | - | 1 | 5 | 1 | 6 | 8 | 1 | 4 | 1 | 1 | 8 | 1 |

${ }^{1}$ Preliminary.

Table 3.2 North Sea. Distribution of landings from industrial fisheries ('000 t) by Denmark and Norway by target species and associated by-catches of selected species to the north and south of $57^{\circ} \mathrm{N}$, respectively in 1991. (Data provided by Working Group members).

| Area | Target species |  | By-catch |  |  |  |  | Total all Species |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Species | Landings | Herring | Haddock | Whiting | Saithe | Other |  |
| North | Norway pout | 153 | 12 | 3 | 11 | 1 | 37 | 217 |
|  | Sandeel | 227 | 1 | $+$ | 3 | - | 5 | 236 |
|  | Sprat ${ }^{1}$ | 1 | - | - | - | - | - | 1 |
|  | Others | - | 4 | $+$ | 3 | - | 6 | 13 |
|  | Sum | 381 | 17 | 3 | 17 | 1 | 48 | 467 |
|  | Norway pout | + | + | - | - | - | - | $+$ |
| South | Sandeel | 603 | 18 | 1 | 5 | - | 5 | 632 |
|  | Sprat ${ }^{1}$ | 105 | 5 | $+$ | 1 | - | + | 111 |
|  | Others | - | 91 | + | 16 | - | 13 | 120 |
|  | Sum | 708 | 114 | 1 | 22 | - | 18 | 863 |
|  | Total | 1,089 | 131 | 4 | 39 | 1 | 66 | 1,330 |

${ }^{1}$ Includes catches taken with purse seine by Norway.

Table 3.3 Sum of Danish and Norwegian by-catch by species and year in tonnes.

| Species | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Gadus morhua | 1217 | 2352 | 4175 | 710 | 544 | 1092 | 1404 | 2988 | 2948 |
| Scomber scombrus | 1198 | 2075 | 1278 | 4 | 534 | 2663 | 6414 | 8013 | 5212 |
| Trachurus trachurus | $76^{3}$ | $95^{3}$ | $133^{3}$ | 22789 | 16658 | 7391 | 18104 | 22723 | 14918 |
| Trigla sp. | $16^{3}$ | $2^{3}$ | 2168 | $888^{2}$ | $45342^{2}$ | $5394^{2}$ | $9391^{2}$ | 2598 | $5622^{2}$ |
| Limanda limanda | $115^{3}$ | $116^{3}$ | $149^{3}$ | $187^{3}$ | 3209 | 4632 | 3781 | 7743 | 4706 |
| Argentina spp. | $6425^{3}$ | $10069^{3}$ | $6977^{3}$ | $8714^{3}$ | 5210 | 3033 | 1918 | 778 | 2801 |
| Hippoglossoides platessoides | $268^{3}$ | $44^{3}$ | $170^{3}$ | $59^{3}$ | 718 | 1173 | 946 | 2160 | 1673 |
| Pleuronectes platessa | $66^{3}$ | $10^{3}$ |  | $34^{3}$ | 119 | 109 | 372 | 582 | 5678 |
| Merluccius merluccius ${ }^{3}$ | 298 | 472 | 546 | 349 | 165 | 261 | 242 | 290 | 429 |
| Trisopterus minutus |  |  |  | $68^{3}$ |  | 13024 |  |  |  |
| Molva molva ${ }^{3}$ | 516 | 773 | 528 | 51 | 1 | $5^{2}$ | $48^{2}$ | $121^{2}$ | $79^{2}$ |
| Glyptocephalus cynoglossus | $299^{3}$ | $314^{3}$ | $241^{3}$ | $236^{3}$ | 132 | 340 | 39 | 37 | 13 |
| Gadiculus argenteus ${ }^{3}$ | 2578 | 4511 | 2690 | 1210 | 729 | 3043 | 2494 | 741 | 65 |
| Others | 11065 | 21025 | 29261 | $32557^{1}$ | 3916 | 3604 | 3670 | 3492 | 3154 |
| Danish cod and mackerel included. |  |  |  |  | $54^{3}$ | $25^{3}$ | $251^{3}$ | $1439^{3}$ |  |

${ }^{2}$ Only Danish catches
${ }^{3}$ Norwegian catches. Danish catches included in "Others".

Table 4.1 Norway Pout. Annual landings (tonnes) in Division IIIa. (Data as officially reported to ICES.)

| Country | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | 40,144 | 20,694 | 23,922 | 23,951 | 26,235 | 29,273 | 51,317 | 36,124 |
| Norway | $50^{2}$ | 104 | 362 | 1,182 | 141 | 752 | 1,265 | 990 |
| Sweden | 2,255 | 318 | $591^{3}$ | 32 | 39 | 60 | 60 | 52 |
| Total | 42,449 | 21,116 | 24,875 | 25,165 | 26,415 | 30,085 | 52,685 | 37,166 |
|  |  |  |  |  |  |  |  |  |
| Country | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | $1991^{1}$ |
| Denmark | 67,007 | 85,082 | 32,056 | 47,527 | 45,034 | 16,873 | 41,705 | 49,303 |
| Norway | 947 | 831 | 400 | 1,680 | 1,178 | 309 | 40 | 23 |
|  |  |  |  |  |  |  | 1 |  |
| Sweden | + | - | + | - | - | - | - | - |
| Total | 67,954 | 85,913 | 32,456 | 49,207 | 46,212 | 17,182 | 41,745 | 49,326 |

${ }^{1}$ Preliminary.
${ }^{2}$ Including by-catch.
${ }^{3}$ Includes North Sea.

Table 5.1.1 Norway Pout annual landings ('000 t) in Sub-area IV, the North Sea, by countries in 1958-1991. (Data provided by Working Group members.)

| Year | Denmark | Faroes | Norway | Sweden | UK (Scotland) | Others | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1958 | - | - | - | - | - | - | - |
| 1959 | - | - | 7.8 | - | - | - | 69.3 |
| 1960 | 17.2 | - | 13.5 | - | - | - | 30.7 |
| 1961 | 20.5 | - | 8.1 | - | - | - | 28.6 |
| 1962 | 121.8 | - | 27.9 | - | - | - | 14.7 |
| 1963 | 67.4 | - | 70.4 | - | - | - | 137.8 |
| 1964 | 10.4 | - | 51.0 | - | - | - | 61.4 |
| 1965 | 8.2 | - | 35.0 | - | - | - | 43.2 |
| 1966 | 35.2 | - | 17.8 | - | - | + | 53.0 |
| 1967 | 169.6 | - | 12.9 | - | - | + | 182.6 |
| 1968 | 410.8 | - | 40.9 | - | - | $+$ | 451.8 |
| 1969 | 52.5 | 19.6 | 41.4 | - | - | $+$ | 113.5 |
| 1970 | 142.1 | 32.0 | 63.5 | - | 0.2 | 0.2 | 238.0 |
| 1971 | 178.5 | 47.2 | 79.3 | - | 0.1 | 0.2 | 305.3 |
| 1972 | 259.6 | 56.8 | 120.5 | 6.8 | 0.9 | 0.2 | 444.8 |
| 1973 | 215.2 | 51.2 | 63.0 | 2.9 | 13.0 | 0.6 | 345.9 |
| 1974 | 464.5 | 85.0 | 154.2 | 2.1 | 26.7 | 3.3 | 735.8 |
| 1975 | 251.2 | 63.6 | 218.9 | 2.3 | 22.7 | 1.0 | 559.7 |
| 1976 | 244.9 | 64.6 | 108.9 | $+$ | 17.3 | 1.7 | 435.4 |
| 1977 | 232.2 | 50.9 | 98.3 | 2.9 | 4.6 | 1.0 | 389.9 |
| 1978 | 163.4 | 19.7 | 80.8 | 0.7 | 5.5 | - | 270.1 |
| 1979 | 219.9 | 21.9 | 75.4 | - | 3.0 | - | 320.2 |
| 1980 | 366.2 | 34.1 | 70.2 | - | 0.6 | - | 471.1 |
| 1981 | 167.5 | 16.6 | 51.6 | - | $+$ | - | 235.7 |
| 1982 | 256.3 | 15.4 | 88.0 | - | - | - | 359.7 |
| 1983 | 301.1 | 24.5 | 97.3 | - | + | - | 422.9 |
| 1984 | 251.9 | $19.1{ }^{1}$ | 83.8 | - | 0.1 | - | 354.9 |
| 1985 | 163.7 | 9.9 | 22.8 | - | 0.1 | - | 196.5 |
| 1986 | 146.3 | 6.6 | 21.5 | - | - | - | 174.4 |
| 1987 | 108.3 | 4.8 | 34.1 | - | - | - | 147.2 |
| 1988 | 79.0 | 1.5 | 21.1 | - | - | - | 101.6 |
| 1989 | 95.6 | 0.6 | 65.3 | - | 0.1 | - | 161.6 |
| 1990 | 61.5 | 0.9 | 77.1 | - | - | - | 139.5 |
| 1991 | 85.0 | 1.2 | 68.3 | - | - | - | 154.5 |

[^0]Table 5.1.2 Norway Pout, North Sea. National landings (t) by months, 1989-1991. (Data provided by Working Group members.)

| Month | Denmark | Norway | Faroes | Total $^{1}$ |
| :--- | ---: | ---: | ---: | ---: |
|  |  |  |  |  |
| $\mathbf{1 9 8 9}$ | 7,952 | 795 |  | 8,778 |
| Jan | 2,829 | 1,161 |  | 4,004 |
| Feb | 1,480 | 912 |  | 2,401 |
| Mar | 742 | 3,452 |  | 4,209 |
| Apr | - | 2,654 | 2,664 |  |
| May | 838 | 5,044 | 5,903 |  |
| Jun | 10,451 | 7,522 | 18,037 |  |
| Jul | 12,698 | 6,128 | 16,886 |  |
| Aug | 10,481 | 16,880 | 17,423 |  |
| Sep | 13,826 | 11,124 |  | 30,168 |
| Oct | 23,816 | 5,430 |  | 35,065 |
| Nov | 10,451 | 65,336 | 576 |  |
| Dec | 95,564 |  | 576 |  |
| Total |  |  |  | 161,476 |


| $\mathbf{1 9 9 0}$ |  |  |  |
| :--- | ---: | ---: | ---: |
| Jan | 8,049 | 1,210 | 9,282 |
| Feb | 8,436 | 4,402 | 12,773 |
| Mar | 4,892 | 1,122 | 6,017 |
| Apr | 1,730 | 10,185 | 7,733 |
| May | 385 | 9,388 | 5,909 |
| Jun | 4,620 | 13,180 | 12,406 |
| Jul | 4,080 | 4,693 | 8,116 |
| Aug | 1,335 | 9,281 | 9,269 |
| Sep | 3,016 | 3,593 | 6,106 |
| Oct | 6,085 | 4,592 | 9,842 |
| Nov | 12,043 | 9,495 | 19,810 |
| Dec | 6,802 | 5,961 | 11,672 |
| Total | 61,473 | 77,102 | 850 |


| 1991 |  |  |  |
| :--- | ---: | ---: | ---: |
| Jan | 11,601 | 5,755 | 17,495 |
| Feb | 10,141 | 6,996 | 17,275 |
| Mar | 5,633 | 2,514 | 8,212 |
| Apr | 410 | 3,913 | 4,358 |
| May | 96 | 3,878 | 4,006 |
| Jun | - | 9,491 | 9,567 |
| Jul | 316 | 7,107 | 7,483 |
| Aug | 3,460 | 8,397 | 11,952 |
| Sep | 10,683 | 4,808 | 15,615 |
| Oct | 20,894 | 7,017 | 28,135 |
| Nov | 12,086 | 3,826 | 16,040 |
| Dec | 9,629 | 4,632 |  |
| Total | 84,949 | 68,334 | 1,230 |

${ }^{1}$ Monthly totals estimated assuming Faroes catch is distributed monthly as the sum of Danish and Norwegian landings.

Table 5.2.1 NORWAY POUT. Danish CPUE data (tonnes/day fishing) by vessel category for 19831991.

| Vessel GRT | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $51-100$ | 11.37 | 12.53 | 11.60 | 10.83 | 11.73 | 20.26 | 14.64 | 9.68 | 12.56 |
| $101-150$ | 24.51 | 21.35 | 17.98 | 19.49 | 20.70 | 19.83 | 19.93 | 18.21 | 24.14 |
| $151-200$ | 29.00 | 24.17 | 20.76 | 22.97 | 22.20 | 23.91 | 24.06 | 25.62 | 28.22 |
| $201-250$ | 32.71 | 27.82 | 24.80 | 25.20 | 27.51 | 30.50 | 27.43 | 25.34 | 29.45 |
| $251-300$ | 32.05 | 26.59 | 22.86 | 25.12 | 25.58 | 24.03 | 26.10 | 21.87 | 28.15 |
| $301-$ | 31.81 | 37.47 | 26.86 | 26.63 | 31.10 | 40.09 | 28.92 | 25.91 | 36.73 |

Table 5.2.2 NORWAY POUT. Norwegian fishing effort in number of days and average vessel size (GRT). Landings with less than $70 \%$ Norway pout excluded.

| Year |  | Quarter |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 |
| 1982 | Effort | 733 | 2,240 | 1,934 | 740 |
|  | Ave.GRT | 161.2 | 122.5 | 160.5 | 170.9 |
| 1983 | Effort | 302 | 1,671 | 2,302 | 811 |
|  | Ave. GRT | 150.3 | 155.4 | 147.8 | 154.8 |
| 1984 | Effort | 473 | 1,633 | 1,622 | 282 |
|  | Ave. GRT | 146.2 | 121.0 | 139.9 | 175.5 |
| 1985 | Effort | 600 | 805 | 595 | 443 |
|  | Ave. GRT | 142.7 | 144.2 | 175.2 | 196.8 |
| 1986 | Effort | 5.3 |  | 693 | 261 |
|  | Ave. GRT | 166.5 | $121.8$ | 170.7 | 212.4 |
| 1987 | Effort | 715 | 599 | 290 | 431 |
|  | Ave. GRT | 181.5 | 144.5 | 130.4 | 177.3 |
| 1988 | Effort | 234 | 218 | 672 | 508 |
|  | Ave. GRT | 200.2 | 131.7 | 178.8 | 173.6 |
| 1989 | Effort | 178 | 527 | 1,208 |  |
|  | Ave. GRT | 215.4 | 101.2 | 181.7 | 162.4 |
| 1990 | Effort | 735 | 1,338 | 895 | 951 |
|  | Ave. GRT | 200.2 | 156.2 | 178.8 | 177.0 |
| 1991 | Effort | 883 | 782 | 836 | 712 |
|  | Ave. GRT | 192.1 | 167.6 | 167.0 | 176.1 |

Table 5.2.3 NORWAY POUT. Danish and Norwegian effort (no. of fishing days) standardized to a vessel size of 200 GRT.

| Year | Country | Quarter |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 |  |
| 1982 | Norway | 654 | 1,699 | 1,722 | 682 | 4,757 |
|  | Denmark | 1,922 | 502 | 3,929 | 2,234 | 8,587 |
| Total |  | 2,576 | 2,201 | 5,651 | 2,916 | 13,344 |
| 1983 | Norway | 259 | 1,461 | 1,957 | 708 | 4,385 |
|  | Denmark | 2,317 | 510 | 3,739 | 3,602 | 10,168 |
| Total |  | 2,576 | 1,971 | 5,696 | 4,310 | 14,553 |
| 1984 | Norway | 400 | 1,229 | 1,335 | 263 | 3,227 |
|  | Denmark | 1,887 | 454 | 3,783 | 4,433 | 10,557 |
| Total |  | 2,287 | 1,683 | 5,118 | 4,696 | 13,784 |
| 1985 | Norway | 500 | 675 | 556 | 439 | 2,170 |
|  | Denmark | 2,179 | 208 | 2,009 | 3,290 | 7,686 |
| Total |  | 2,679 | 883 | 2,565 | 3,729 | 9,856 |
| 1986 | Norway | 457 | 222 | 638 | 269 | 1,586 |
|  | Denmark | 1,645 | 0 | 1,397 | 3,332 | 6,374 |
| Total |  | 2,102 | 222 | 2,035 | 3,601 | 7,960 |
| 1987 | Norway | 689 | 529 | 273 | 412 | 1,903 |
|  | Denmark | 1,271 | 7 | 1,335 | 1,790 | 4,403 |
| Total |  | 1,960 | 536 | 1,608 | 2,202 | 6,306 |
| 1988 | Norway | 235 | 784 | 644 | 481 | 1,544 |
|  | Denmark | 645 | 3 | 545 | 1,986 | 3,179 |
| Total |  | 880 | 787 | 1,189 | 2,467 | 4,723 |
| 1989 | Norway | 292 | 359 | 995 | 1,032 | 2,628 |
|  | Denmark | 659 | 108 | 1,802 | 2,265 | 4,834 |
| Total |  | 901 | 467 | 2,797 | 3,297 | 7,462 |
| 1990 | Norway | 438 | 1,182 | 847 | 779 | 3,546 |
|  | Denmark | 977 | 80 | 524 | 1,706 | 3,287 |
| Total |  | 1,715 | 1,262 | 1,371 | 2,485 | 6,833 |
| 1991 | Norway | 866 | 716 | 811 | 669 | 3,062 |
|  | Denmark | 979 | 18 | 517 | 1,524 | 3,038 |
| Total |  | 1,845 | 734 | 1,328 | 2,193 | 6,100 |

Table 5.3.1 NORWAY POUT in the North Sea. Catch in numbers at age by quarter (millions). + represents less than half a million. Data for 1990 only partly available and, therefore not included.


Table 5.3.2 Norway Pout in the North Sea 1990. Catch in numbers at age estimated from available samples (millions).

|  | Quarters |  |  |
| :---: | ---: | ---: | :--- |
| Age | 1 | 2 | 3 |
| 0 | - | - | 215 |
| 1 | 2,297 | 938 | 773 |
| 2 | 300 | 1,032 | 305 |
| 3 | 6 | 20 | 6 |
| 4 | 6 | - | - |

Table 5.4 NORWAY POUT. North Sea 1986-1991. Mean weight at age by quarters. Danish and Norwegian catches combined (grams).

|  |  | Age Group |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Quarter | 0 | 1 | 2 | 3 | 4 |
| 1986 | 1 | - | 6.69 | 29.74 | 44.08 | 82.51 |
|  | 2 | - | 14.49 | 42.92 | 55.39 | - |
|  | 3 | - | 28.81 | 43.39 | 47.60 |  |
|  | 4 | 7.20 | 26.90 | 44.00 | - | - |
| 1987 | 1 | - | 8.13 | 28.26 | 52.93 | 63.09 |
|  | 2 | - | 12.59 | 31.51 | - | - |
|  | 3 | 5.80 | 20.16 | 34.53 | - |  |
|  | 4 | 7.40 | 23.36 | 37.32 | 46.60 | - |
| 1988 | 1 | - | 9.23 | 27.31 | 38.38 | 69.48 |
|  | 2 | - | 11.61 | 33.26 | - | - |
|  | 3 | 9.42 | 26.54 | 39.82 | - | - |
|  | 4 | 7.91 | 30.60 | 43.31 | - | - |
| 1989 | 1 | - | 7.98 | 26.74 | 39.95 | - |
|  | 2 | - | 13.49 | 28.70 | 44.39 | - |
|  | 3 | 7.48 | 26.58 | 35.44 | - | - |
|  | 4 | 6.69 | 26.76 | 34.70 | 46.50 | - |
| 1990 | 1 | - | 6.51 | 25.47 | 37.72 | 68.00 |
|  | 2 | - | 13.75 | 25.30 | 40.35 | - |
|  | 3 | 6.40 | 20.29 | 32.92 | 39.40 | - |
|  | 4 | - | - | - | - | - |
| 1991 | 1 | - | 7.85 | 20.54 | 35.43 | 44.3 |
|  | 2 | - | 12.95 | 28.75 | 49.87 | - |
|  | 3 | 6.06 | 30.95 | 44.28 | 67.25 | - |
|  | 4 | 6.64 | 30.65 | 43.10 | 59.37 | - |

Table 5.5.1 Research Vessel indices for NORWAY POUT.

| $\begin{aligned} & \text { Year } \\ & \text { Class } \end{aligned}$ | IYFS ${ }^{1}$ February |  |  | EGFS ${ }^{2}$ August |  |  |  | SGFS ${ }^{3}$ August |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1-group | 2-group | 3-group | 0-group | 1-group | 2-group | 3-group | 1-group | 2-group | 3-group |
| 1968 | - | 6 | - | - | - | - | - | - | - | - |
| 1969 | 35 | 22 | - | - | - | - | - | - | - | - |
| 1970 | 1,556 | 653 | - | - | - | - | - | - | - | - |
| 1971 | 3,425 | 438 | - | - | - | - | - | - | - | - |
| 1972 | 4,207 | 399 | - | - | - | - | - | - | - |  |
| 1973 | 25,626 | 2,412 | - | - | - | - | - | - | - | - |
| 1974 | 4,242 | 385 | - | - | - | - | 25 | - | - | - |
| 1975 | 4,599 | 334 | - | - | - | 239 | 25 | - | - | - |
| 1976 | 4,813 | 1,215 | - | - | 770 | 119 | - | - | - | - |
| 1977 | 1,913 | 240 | - | 1,388 | 314 | 20 | 7 | - | - | 12 |
| 1978 | 2,690 | 611 | - | 1,209 | 600 | 60 | 25 | - | 346 | 9 |
| 1979 | 4,081 | 557 | - | 1,599 | 824 | 283 | 11 | 1,928 | 127 | 16 |
| 1980 | 1,375 | 403 | 9 | 151 | 385 | 13 | 1 | 185 | 37 | 1 |
| 1981 | 3,315 | 663 | 58 | 1,770 | 712 | 29 | 3 | 1,031 | 90 | 7 |
| 1982 | 2,331 | 802 | 71 | 1,818 | 517 | 93 | 2 | 505 | 78 | 6 |
| 1983 | 3,925 | 1,423 | 23 | 1,501 | 1,008 | 74 | 18 | 597 | 186 | 12 |
| 1984 | 2,109 | 384 | 65 | 160 | 300 | 47 | - | 649 | 51 | 1 |
| 1985 | 2,043 | 469 | 13 | 136 | 219 | 41 | 3 | 412 | 24 | 5 |
| 1986 | 3,023 | 760 | 178 | 109 | 152 | 34 | 5 | 338 | 114 | 5 |
| 1987 | 127 2,079 | 260 | 46 129 | 2 | 26 | 153 | 9 | 128 | 25 | 3 |
| 1988 | 2,079 1,320 | 773 | 129 | 45 | 350 | 45 | 2 | 462 | 94 | 8 |
| 1989 | 1,320 2,497 | 677 | - | 400 | 264 | 118 | - | 323 | 48 | - |
| 1991 | 4,964 ${ }^{4}$ | - | - | 401 | 161 | - | - | 761 | - | - |

${ }^{1}$ International Bottom Trawl Survey, arithmetic mean catch in no./h in standard area.
${ }^{2}$ English groundfish survey, arithmetic mean catch in no./h, Roundfish areas 1,2, and 3
${ }^{3}$ Scottish groundfish surveys, arithmetic mean catch no./h.'
${ }^{4}$ Preliminary.

Table 5.5.2

Analysis by RCT3 ver3.1 of data from file :
pout.dat
North Sea Norway pout as 1-group, 0, 1 \& 2 group data
Data for 5 surveys over 15 years : 1977-1991
Regression type $=C$
Tapered time weighting applied
power $=3$ over 20 years
Survey weighting not applied
Final estimates shrunk towards mean
Minimum S.E. for any survey taken as 20
Minimum of 3 points used for regression
Forecast/Hindcast variance correction used.
Yearclass $=1980$

| Survey/ <br> Series | Slope | Intercept | $\begin{aligned} & \text { std } \\ & \text { Error } \end{aligned}$ | Rsquare | NO. <br> Ptg | Index Value | $\begin{gathered} \text { Predicted } \\ \text { Value } \end{gathered}$ | Std Error | WAP <br> Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IYFS 1 | 1.20 | -5.16 | . 25 | . 844 | 3 | 7.23 | 3.49 | . 764 | . 041 |
| IYFS 2 | . 84 | -. 79 | . 16 | . 931 | 3 | 6.00 | 4.26 | . 324 | . 227 |
| EgFso | 16.37 | ****** | 3.18 | . 033 | 3 | 5.02 | -31.90 | 62.196 | . 000 |
| EGFS 1 | . 86 | -1.09 | . 09 | . 977 | 3 | 5.96 | 4.04 | . 197 | . 595 |
| SGFS1 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | VPA | ean $=$ | 4.32 | . 417 | . 137 |

Yearclass $=1981$

| Survey/ <br> Series | Slope | Intercept | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | Rsquare | No. <br> PEs | Index <br> Value | $\begin{aligned} & \text { Predicted } \\ & \text { Value } \end{aligned}$ | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | $\begin{aligned} & \text { WAP } \\ & \text { Weights } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IYFSI | 1.31 | -6.06 | . 20 | . 927 | 4 | 8.37 | 4.90 | . 389 | . 514 |
| IYFS2 | 2.23 | -9.40 | . 89 | . 396 | 4 | 6.50 | 5.07 | 1.607 | . 030 |
| EgFso | . 64 | -. 20 | . 50 | . 676 | 4 | 7.48 | 4.60 | . 843 | . 109 |
| EGFS 1 | 1.61 | -5.91 | . 46 | . 709 | 4 | 6.57 | 4.67 | . 797 | . 122 |
| SGFS1 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | VPA | Mean $=$ | 4.09 | . 588 | . 224 |

Yearclass $=1982$

| Survey/ <br> Series | Slope | Intercept | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | Rsquare | $\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$ | Index Value | Predicted Value | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | WAP <br> Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IYFSI | 1.20 | -5.27 | . 19 | . 926 | 5 | 7.75 | 4.05 | . 266 | . 518 |
| IYFS2 | 1.95 | -7.78 | . 66 | . 499 | 5 | 6.69 | 5.25 | 1.090 | . 031 |
| egrso | . 65 | -. 26 | . 41 | . 717 | 5 | 7.51 | 4.63 | . 611 | . 098 |
| EGFS 1 | 1.60 | -5.84 | . 37 | . 755 | 5 | 6.25 | 4.15 | . 531 | . 130 |
| SGFS 1 | . 63 | . 08 | . 29 | . 930 | 3 | 6.23 | 4.00 | . 580 | . 109 |
|  |  |  |  |  | VPA | Mean $=$ | 4.20 | . 569 | . 114 |

Table 5.5.2 cont'd


Yearclass $=1985$

| Survey/ <br> Series | slope | Intercept | std Error | Rsquare | No. <br> Pts | Index <br> Value | $\begin{gathered} \text { Predicted } \\ \text { Value } \end{gathered}$ | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | $\begin{aligned} & \text { WAP } \\ & \text { Weights } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IYFS 1 | 1.66 | -8.91 | . 48 | . 583 | 8 | 7.62 | 3.74 | . 608 | . 185 |
| IYFS 2 | 1.84 | -7.50 | . 90 | . 286 | 8 | 6.15 | 3.82 | 1.117 | . 055 |
| EgFso | . 55 | . 43 | . 31 | . 769 | 8 | 4.92 | 3.15 | . 452 | . 335 |
| EGFS 1 | 1.67 | -6.31 | . 58 | . 489 | 8 | 5.39 | 2.68 | . 884 | . 088 |
| SGFSI | 1.06 | -2.71 | . 65 | . 500 | 6 | 6.02 | 3.70 | . 890 | . 087 |
|  |  |  |  |  | VPA | Mean $=$ | 4.17 | . 524 | . 250 |

Yearclass $=1986$

| Survey/ <br> Series | Slope | Intercept | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | Rsquare | $\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$ | Index <br> Value | $\begin{gathered} \text { Predicted } \\ \text { Value } \end{gathered}$ | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | $\begin{aligned} & \text { WAP } \\ & \text { Weights } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IYFS 1 | 1.78 | -9.88 | . 49 | . 589 | 9 | 8.01 | 4.37 | . 592 | . 167 |
| IYFS2 | 2.02 | -8.68 | . 92 | . 287 | 9 | 6.63 | 4.72 | 1.132 | . 046 |
| EgFso | . 51 | . 79 | . 28 | . 812 | 9 | 4.70 | 3.16 | . 382 | . 401 |
| EGFS 1 | 1.37 | -4.37 | . 50 | . 579 | 9 | 5.03 | 2.51 | . 754 | . 103 |
| SGFS1 | 1.14 | -3.22 | . 63 | . 514 | 7 | 5.83 | 3.42 | . 836 | . 084 |
|  |  |  |  |  | VPA | Mean $=$ | 4.09 | . 541 | . 200 |

Table 5.5.2 cont'd.


| Yearclass $=1988$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Survey/ <br> Series |  |  |  |  |  |  |  |  |  |
|  | Slope | Intercept | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | Rsquare | $\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$ | Index <br> Value | Predicted Value | std <br> Error | WAP Weights |
| IYFS1 | . 83 | -2.36 | . 52 | . 660 | 11 | 7.64 | 3.94 | . 612 | . 120 |
| IYFS2 | 2.13 | -9.49 | . 92 | . 385 | 11 | 6.65 | 4.66 | 1.103 | . 037 |
| EGFSO | . 36 | 1.83 | . 27 | . 882 | 11 | 3.83 | 3.19 | . 325 | . 426 |
| EGFS1 | . 75 | -. 42 | . 41 | . 758 | 11 | 5.86 | 3.95 | . 482 | . 194 |
| SGFS 1 | 1.06 | -2.66 | . 49 | . 710 | 9 | 6.14 | 3.83 | . 597 | . 126 |
|  |  |  |  |  | VPA | Mean $=$ | 3.89 | . 684 | . 096 |

Yearclass $=1989$


Yearclass $=1990$

| Survey/ <br> Series | Slope | Intercept | $\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$ | Rsquare | $\begin{aligned} & \text { No. } \\ & \text { Pts } \end{aligned}$ | Index <br> Value | $\begin{gathered} \text { Predicted } \\ \text { Value } \end{gathered}$ | std Error | WAP Weights |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IYFS 1 | . 84 | -2.50 | . 54 | . 632 | 12 | 7.82 | 4.04 | . 637 | . 109 |
| IYFS2 |  |  |  |  |  |  |  |  |  |
| EgFso | . 34 | 1.94 | . 25 | . 891 | 12 | 6.44 | 4.14 | . 294 | . 510 |
| EGFS 1 | . 76 | -. 55 | . 44 | . 726 | 12 | 5.09 | 3.32 | . 521 | . 163 |
| SGFSI | 1.11 | -3.02 | . 49 | . 688 | 10 | 6.64 | 4.34 | . 607 | . 120 |
|  |  |  |  |  | VPA | Mean $=$ | 3.82 | . 668 | . 099 |

Table 5.5.2 cont'd.


| Year <br> Class | Weighted <br> Average <br> Prediction | Log <br> WAP | Int <br> Std <br> Error | Ext <br> Std <br> Error | Var <br> Ratio | VPA | Log <br> VPA |
| :--- | :---: | :---: | :---: | :---: | :---: | ---: | ---: |
| 1980 | 60 | 4.11 | .15 | .10 | .40 | 28 | 3.37 |
| 1981 | 105 | 4.66 | .28 | .16 | .35 | 104 | 4.64 |
| 1982 | 64 | 4.17 | .19 | .12 | .37 | 104 | 4.64 |
| 1983 | 112 | 4.72 | .25 | .22 | .77 | 65 | 4.17 |
| 1984 | 45 | 3.81 | .27 | .25 | .84 | 35 | 3.56 |
| 1985 | 35 | 3.56 | .26 | .21 | .66 | 33 | 3.50 |
| 1986 | 35 | 3.58 | .24 | .28 | 1.38 | 37 | 3.64 |
| 1987 | 11 | 2.46 | .32 | .62 | 3.76 | 12 | 2.56 |
| 1988 | 37 | 3.63 | .21 | .18 | .73 | 32 | 3.47 |
| 1989 | 45 | 3.81 | .21 | .10 | .26 |  |  |
| 1990 | 54 | 3.99 | .21 | .16 | .59 |  |  |
| 1991 | 57 | 4.05 | .25 | .16 | .42 |  |  |

Table 5.6.1 Norway Pout. North Sea. Sampled data from Table 5.3.2 and estimated catch in numbers at age by quarter for 1990 (millions).

| Quarter Age | Sampled data | Estimated |  |
| :---: | :---: | :---: | :---: |
|  |  | XSA | SSV |
| 10 | - | - | - |
| 1 | 2297 | 1319 | 1461 |
| 2 | 500 | 749 | 4037 |
| 3 | 35 | 13 | 9 |
| 4 | 6 | 2 | - |
| SOP (tonnes) | 28284 | 28284 | 112679 |
| 20 | - | - | - |
| 1 | 938 | 1433 | 1336 |
| 2 | 1032 | 784 | 1352 |
| 3 | 20 | 5 | 3 |
| SOP (tonnes) | 39730 | 39730 | 52702 |
| 30 | 215 | - | 4 |
| 1 | 773 | 818 | 1028 |
| 2 | 305 | 289 | 368 |
| 3 | 6 | 2 | 1 |
| SOP (tonnes) | 26158 | 26158 | 33035 |
| 40 |  | 1080 | 1259 |
| 1 |  | 1020 | 2071 |
| 2 |  | 226 | 364 |
| 3 |  | - | 1 |
| SOP (tonnes) | 45253 | 45253 | 84737 |

Table 5.7.1 NORWAY POUT. North sea. Diagnostics from quarterly separable VPA without research vessel data.

```
weight for effort data = 1.0000
IFAIL on exit from E04FDF = 0
Initial sum of squares = 1977.4819
Final sum of squares = 243.6080
Residual mean square = 2.9001
```

IFAIL on exit from EO4YCF $=0$ Coeff. of determination $=.8768$ Adj. Coeff. " " = . 7976

| Number of observations $=139$ | RMS for catch data $=$ | 1.4816 |  |
| :--- | :--- | :--- | :--- |
| Number of parameters | $=55$ | RMS for effort data $=$ | .5143 |

Year/season effects

| year | 1 | 2 | 3 | 4 | age | 1 | 2 | 3 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Year/season effect residuals

| year | 1 | 2 | 3 | 4 |
| :--- | ---: | ---: | ---: | ---: |
| 1984 | .5978 | .0939 | -.0080 | .8470 |
| 1985 | .2410 | .2453 | -1.0317 | .5847 |
| 1986 | -.2216 | -.7171 | -.2545 | -.3870 |
| 1987 | -.3614 | .3846 | -.0506 | -1.1234 |
| 1988 | -1.0393 | -.3326 | -.3792 | -.2518 |
| 1989 | .4211 | -.0743 | 1.3102 | -.1884 |
| 1990 | .2978 | .2458 | .0662 | .1363 |
| 1991 | .0645 | .1544 | .3475 | .3826 |


| Log | catch r | $1 s$ |  | 1984 |  |  |  | 985 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 |  | 1 | 2 | 3 | 4 |
| 0 | . 2109 | -. 9611 | -1.6403 | 1.2094 | -. 0715 | . 0679 | . 1901 | 2101 |
| 1 | . 2511 | -. 4564 | -. 2652 | . 4352 | . 7219 | . 5475 | -. 6119 | 1.4616 |
| $\bigcirc$ | -1.9221 | -1.2940 | . 2654 | 1.8364 | -1.4077 | -1.4999 | . 1788 | 1.4806 |
|  | 1.1612 | 2.5828 | . 2702 | -4.0142 | 1.6738 | 1.1524 | . 5110 | 3.2230 |


|  |  |  |  | 1986 |  |  |  | 1987 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1{ }^{1}$ | 2 | ${ }^{3}$ | 4 | 1 | 2 | 3 | 4 |
| 0 | -. 6095 | . 1682 | -5.5162 | 1.1568 | . 1803 | 1.2481 | 2.4675 | -1.5086 |
| 1 | -. 9851 | -. 3344 | . 3859 | . 1810 | . 5671 | 1.3845 | . 8057 | 767 |
| 2 | -. 5260 | -. 5079 | . 9139 | -. 4361 | -1.2877 | . 0448 | 1.1465 | 1.3643 |
| 3 | 1.7375 | 1.0494 | 2.1629 | -3.6663 | 1.2335 | $-2.6319$ | $-2.5418$ | 3.5584 |


|  |  |  |  |  | 1988 |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1 | 2 | 3 | 4 | 1 | 2 | 4 | 4 |
| 0 | .0000 | .0000 | 1.4066 | -.2978 | .2898 | -.5232 | 1.6604 | .6207 |
| 1 | -.8169 | .0175 | -.5121 | .0945 | .3835 | -.7036 | -.1026 | -1.2156 |
| 2 | -.8312 | .1748 | 1.1294 | 1.7928 | -1.9266 | -.1550 | 1.3028 | -.3914 |
| 3 | 2.7110 | .0000 | -1.9027 | -1.7202 | .6524 | 1.2383 | -4.0887 | 2.1521 |
|  |  |  |  | 1990 |  |  |  | 1991 |
|  | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 0 | .0000 | .0000 | .0000 | .0000 | .0000 | .0000 | 1.4322 | -1.4322 |
| 1 | .0000 | .0000 | .0000 | .0000 | .0349 | -.5149 | .5210 | -.0410 |
| 2 | .0000 | .0000 | .0000 | .0000 | -1.0174 | -.2832 | -.8307 | .0837 |
| 3 | .0000 | .0000 | .0000 | .0000 | .0366 | .3955 | -1.3172 | 1.4147 |

Estimated populations（millions）

|  | 1 | 2 | 3 | 1984 |  | 1 2 | 23 | 1985 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 128290. | 85995. | 57644. | 38636. | 101669. | ．68151． | 45683. | 30618. |
| 1 | 82825. | 53792. | 33203. | 16755. | 25363. | ． 16126. | 10415. | 4946. |
| 2 | 22427. | 7634. | 1810. | 227. | 9422. | － 2032 ． | 852. | 75. |
| 3 | 107. | 36. | 9. | 1. | 61. | － 13. | 6. | 0. |
|  |  |  |  | 1986 |  |  |  | 1987 |
|  | 1 | 2 | 3 | 4 |  | 12 | 23 |  |
| 0 | 139722. | 93658. | 62781. | 42081. | 59146. | ． 39647. | ． 26576. | 17814. |
| 1 | 20086. | 12605. | 8245. | 4874. | 26820. | － 16752. | 11010. | 6806. |
| 2 | 2765. | 451. | 222. | 71. | 2138. | ． 315. | 165. | 68. |
| 3 | 19. | 3. | 2. | 0. | 5. | － 1 ． | 0. | 0. |
|  |  |  |  | 1988 |  |  |  | 1989 |
|  | 1 | 2 | 3 | 4 |  | 1 2 | 23 |  |
| 0 | 492857. | 330372 。 | 221455. | 148441. | 252204. | ． 169057. | ． 113322. | 75961. |
| 1 | 11130. | 7009. | 4633. | 2857. | 96278. | ． 63586. | 41484. | 26820. |
| 2 | 2527. | 443. | 249. | 102. | 1452 ． | ． 708. | 337. | 183. |
| 3 | 2. | 0 。 | 0. | 0. | 16. | ． 8 ． | 4. | 2. |
|  |  |  |  | 1990 |  |  |  | 1991 |
|  | 1 | 2 | 3 | 4 |  | $1 \quad 2$ | 2 |  |
| 0 | 201680． | 135190. | 90621. | 60744.2 | 2852787. | ． 1912280. | ． 1281840 | 859228. |
| 1 | 48857. | 31719. | 20162. | 12709. | 39811. | ． 25522. | ． 16538. | 10599. |
| 2 | 12705. | 4289 。 | 1472 ． | 686. | 7051. | ． 1815. | ． 794. | 408. |
| 3 | 20. | 7. | 2. | 1. | 171. | － 44. | ． 19. | 10. |

Table 5．7．3 NORWAY POUT，North Sea．Fitted Fs from quarterly separable VPA without research vessel data．


Table 5.7.4 Norway Pout. North Sea. Diagnostics from quarterly separable VPA with upweighted IYFS survey data.


Log RV residuals

|  | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | -.0373 | 1.0962 | -1.6997 | 1.9152 | -.1640 | -.1973 | -.6427 | -.2704 |
| 1 | .2785 | .7600 | 2.1605 | .5306 | -5.1186 | .3548 | .2077 | .8266 |
| 2 | -1.7081 | -.6082 | -1.0681 | -3.1773 | -.0660 | .2396 | -1.6042 | -.9223 |
| 3 | .2389 | .6671 | -.3371 | 1.8986 | .8604 | 3.0510 | 1.8060 | .7298 |

Table 5.7.5 Norway Pout. North Sea. Estimated fishing mortality from quarterly separable VPA with upweighted IYFS survey data.

|  | 1984 |  |  |  |  |  |  | 1985 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 0 | . 000 | . 000 | . 000 | . 186 | . 000 | . 000 | . 000 | . 271 |
| 1 | . 037 | . 149 | . 382 | . 104 | . 129 | . 093 | . 800 | . 151 |
| 2 | . 420 | . 435 | . 359 | . 072 | 1.453 | . 271 | . 750 | . 105 |
| 3 | . 420 | . 435 | . 359 | . 072 | 1.453 | . 271 | . 750 | . 105 |
|  |  |  |  | 1986 |  |  |  | 1987 |
|  | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 0 | . 000 | . 000 | . 000 | . 113 | . 000 | . 000 | . 000 | 1.430 |
| 1 | . 049 | . 028 | . 100 | . 063 | . 186 | . 023 | . 093 | . 795 |
| 2 | . 551 | . 082 | . 093 | . 044 | 2.085 | . 067 | . 088 | . 554 |
| 3 | . 551 | . 082 | . 093 | . 044 | 2.085 | . 067 | . 088 | . 554 |
|  |  |  |  | 1988 |  |  |  | 1989 |
|  | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| $u$ | . 000 | . 000 | . 000 | . 145 | . 000 | . 000 | . 000 | . 577 |
| 1 | . 027 | . 019 | . 064 | . 081 | . 015 | . 040 | . 058 | . 320 |
| 2 | . 304 | . 055 | . 060 | . 056 | . 166 | . 117 | . 054 | . 223 |
| 3 | . 304 | . 055 | . 060 | . 056 | . 166 | . 117 | . 054 | . 223 |
|  |  |  |  | 1990 |  |  |  | 1991 |
|  | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 0 | . 000 | . 000 | . 000 | . 152 | . 000 | . 000 | . 000 | . 437 |
| 1 | . 026 | . 075 | . 091 | . 084 | . 045 | . 063 | . 146 | . 243 |
| 2 | . 295 | . 218 | . 086 | . 059 | . 510 | . 182 | . 137 | . 169 |
| 3 | . 295 | . 218 | . 086 | . 059 | . 510 | . 182 | . 137 | . 169 |

Norway pout. North Sea. Estimated population numbers from quarterly separable VPA with upweighted IYFS survey data (mill.).

|  |  | 1984 |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 0 | 149072. | 99926. | 66983. | 44892. | 118836. | 79658. | 53396. | 35780. |
| 1 | 51185. | 33052. | 19081. | 8726. | 24978. | 14712. | 8985. | 2707. |
| 2 | 3704. | 1631. | 708. | 332. | 5274. | 827. | 423. | 134. |
| 3 | 181. | 80. | 35. | 16. | 207. | 32. | 17. | 5. |


|  | 1986 |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 0 | 207873. | 139341. | 93403. | 62607. | 100881. | 67623. | 45329. | 30384. |
| 1 | 18285. | 11671. | 7607. | 4616. | 37484. | 20872. | 13672. | 8347. |
| 2 | 1560. | 603. | 372. | 227. | 2906. | 242. | 152. | 93. |
| 3 | 81. | 31. | 19. | 12. | 146. | 12. | 8. | 5. |


|  | 1988 |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| 0 | 152900. | 102492. | 68702. | 46051. | 153921. | 103177. | 69161. | 46359. |
| 1 | 4874. | 3180. | 2092. | 1315. | 26701. | 17636. | 11355. | 7186. |
| 2 | 2527. | 1251. | 793. | 501. | 813. | 462. | 275. | 175. |
| 3 | 36. | 18. | 11. | 7. | 317. | 180. | 107. | 68. |



|  | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 168262. | 112790. | 75605. | 50678. | 156187. | 104695. | 70179. | 47040. |
| 1 | 17459. | 11401. | 7090. | 4337. | 29182. | 18694. | 11770. | 6815. |
| 2 | 3496. | 1746. | 941. | 579. | 2672. | 1076. | 601. | 351. |
| 3 | 94. | 47. | 25. | 16. | 366. | 147. | 82. | 48. |

Table 6.1 Norway Pout. Annual landings ( $t$ ) in Division VIa. (Data officially reported to ICES).

| Country | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | - | 193 | - | - | 4,443 | 15,609 | 13,070 | 2,877 |
| Faroes | 1,581 | 1,524 | 6,203 | 2,177 | 18,484 | 4,772 | 3,530 | 3,540 |
| Germany | 179 | - | 8 | - | - | - | - | - |
| Netherlands | - | 322 | 147 | 230 | 21 | 98 | 68 | 182 |
| Norway | $144^{3}$ | - | $82^{3}$ | - | - | - | - | - |
| Poland | 75 | - | - | - | - | - | - | - |
| UK (Scotland) ${ }^{2}$ | 4,702 | 6,614 | 6,346 | 2,799 | 302 | 23 | 1,202 | 1,158 |
| Russia | 40 | 2 | 7,147 | - | - | - | - | - |
| Total | 6,721 | 8,655 | 19,933 | 5,206 | 23,250 | 20,502 | 17,870 | 7,757 |


| Country | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | 751 | 530 | 4,301 | 8,547 | $5,832^{4}$ | $37,714^{5}$ | $5,849^{5}$ | $28,180^{5}$ |
| Faroes | 3,026 | 6,261 | 3,400 | 998 | - | - | 376 | 11 |
| Germany | - | - | 70 | - | - | - | - | - |
| Netherlands | 548 | 1,534 | - | 139 | - | - | - | - |
| Norway | - |  | - | - | - | - | - | - |
| Poland | - | - | - | - | - | - | - | - |
| UK (Scotland) ${ }^{2}$ | 586 | - | 23 | 13 | - | 553 | 517 | 5 |
| Russia | - | - | - | - | - | - | - | - |
| Total | 4,911 | 8,325 | 7,794 | 9,697 | 5,832 | 38,267 | 6,742 | 28,196 |


| Country | 1990 | $1991^{1}$ |
| :--- | ---: | ---: |
| Denmark | $3,316^{5}$ | 4,348 |
| Faroes | - | - |
| Germany | - | - |
| Netherlands | - | - |
| Norway | - | - |
| Poland | - |  |
| UK (Scotland) | + | - |
| Russia | - | - |
| Total | 3,316 | 4,348 |

${ }^{1}$ Preliminary.
${ }^{2}$ Amended using national data.
${ }^{3}$ Including by-catch.
${ }^{4}$ Includes Division VIb.
${ }^{5}$ Included in Division IVa.

Table 7.1 Sandeel, Division III.
Landings in tonnes as officially reported to ICES except where indicated.

| Country | 1982 | 1983 | 1984 | 1985 |
| :--- | ---: | ---: | ---: | ---: |
| Denmark | 21,540 | $34,286^{1}$ | $27,679^{1}$ | 14,058 |
| Norway | - | 178 | - | - |
| Sweden | 5 | 31 | - | - |
|  |  |  |  |  |
| Country | $1988^{2}$ | $1989^{2}$ | 1990 | $1991^{2}$ |
| Denmark | 22,356 | $17,236^{1}$ | $25,574^{1}$ | 23,424 |
| Norway | - | - | - | - |
| Sweden | - | - | - | - |

${ }^{1}$ Estimate provided by Working Group members.
${ }^{2}$ Preliminary.

Table 8.1.1 Landings ('000 t) of Sandeel from the North Sea, 1952-1991. (Data provided by Working Group members.)

| Year | Denmark | Germany | Faroes | Netherlands | Norway | Sweden | UK | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1952 | 1.6 | - | - | - | - | - | - | 1.6 |
| 1953 | 4.5 | $+$ | - | - | - | - | - | 4.5 |
| 1954 | 10.8 | $+$ | - | - | - | - | - | 10.8 |
| 1955 | 37.6 | $+$ | - | - | - | - | - | 37.6 |
| 1956 | 81.9 | 5.3 | - | $+$ | 1.5 | - | - | 88.7 |
| 1957 | 73.3 | 25.5 | - | 3.7 | 3.2 | - | - | 105.7 |
| 1958 | 74.4 | 20.2 | - | 1.5 | 4.8 | - | - | 100.9 |
| 1959 | 77.1 | 17.4 | - | 5.1 | 8.0 | - | - | 107.6 |
| 1960 | 100.8 | 7.7 | - | $+$ | 12.1 | - | - | 120.6 |
| 1961 | 73.6 | 4.5 | - | + | 5.1 | - | - | 83.2 |
| 1962 | 97.4 | 1.4 | - | - | 10.5 | - | - | 109.3 |
| 1963 | 134.4 | 16.4 | - | - | 11.5 | - | - | 162.3 |
| 1964 | 104.7 | 12.9 | - | - | 10.4 | - | - | 128.0 |
| 1965 | 123.6 | 2.1 | - | - | 4.9 | - | - | 130.6 |
| 1966 | 138.5 | 4.4 | - | - | 0.2 | - | - | 143.1 |
| 1967 | 187.4 | 0.3 | - | - | 1.0 | - | - | 188.7 |
| 1968 | 193.6 | $+$ | - | - | 0.1 | - | - | 193.7 |
| 1969 | 112.8 | + | - | - | - | - | 0.5 | 113.3 |
| 1970 | 187.8 | $+$ | - | - | $+$ | - | 3.6 | 191.4 |
| 1971 | 371.6 | 0.1 | - | - | 2.1 | - | 8.3 | 382.1 |
| 1972 | 329.0 | + | - | - | 18.6 | 8.8 | 2.1 | 358.5 |
| 1973 | 273.0 | - | 1.4 | - | 17.2 | 1.1 | 4.2 | 296.9 |
| 1974 | 424.1 | - | 6.4 | - | 78.6 | 0.2 | 15.5 | 524.8 |
| 1975 | 355.6 | - | 4.9 | - | 54.0 | 0.1 | 13.6 | 428.2 |
| 1976 | 424.7 | - | - | - | 44.2 | - | 18.7 | 487.6 |
| 1977 | 664.3 | - | 11.4 | - | 78.7 | 5.7 | 25.5 | 785.6 |
| 1978 | 647.5 | - | 12.1 | - | 93.5 | 1.2 | 32.5 | 786.8 |
| 1979 | 449.8 | - | 13.2 | - | 101.4 | - | 13.4 | 577.8 |
| 1980 | 542.2 | - | 7.2 | - | 144.8 | - | 34.3 | 728.5 |
| 1981 | 464.4 | - | 4.9 | - | 52.6 | - | 46.7 | 568.6 |
| 1982 | 506.9 | - | 4.9 | - | 46.5 | 0.4 | 52.2 | 610.9 |
| 1983 | 485.1 | - | 2.0 | - | 12.2 | 0.2 | 37.0 | 536.5 |
| 1984 | 596.3 | - | 11.3 | - | 28.3 | - | 32.6 | 668.6 |
| 1985 | 587.6 | - | 3.9 | - | 13.1 | , - | 17.2 | 621.8 |
| 1986 | 752.5 | - | 1.2 | - | 82.1 | - | 12.0 | 847.8 |
| 1987 | 605.4 | - | 18.6 | - | 193.4 | - | 7.2 | 824.6 |
| 1988 | 686.4 | - | 15.5 | - | 185.1 | - | 5.8 | 892.8 |
| 1989 | 824.4 | - - | 16.6 | - | 186.8 | - | 6.9 | 1034.7 |
| 1990 | 496.0 | - | 2.2 | 0.3 | 88.9 | - | 2.5 | 589.9 |
| $1991{ }^{1}$ | 701.4 | - | 11.2 | - | 128.8 | - | 0.5 | 841.9 |

${ }^{1}$ Preliminary.
$+=$ less than half unit.

- = no information or no catch.

Table 8.1.2 Sandeel North Sea. Monthly landings (t) by country, 1987-1991. (Data provided by Working Group members.)

| Year | Month | Denmark | Faroes | Norway | Scotland | Total ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1987 | Jan | - | - | - | - | - |
|  | Feb | - | - | - | - | - |
|  | Mar | 15,159 | - | 4,681 | 7 | 19,847 |
|  | Apr | 59,495 | 412 | 13,921 | 875 | 74,703 |
|  | May | 143,719 | 1,141 | 27,308 | 2,385 | 174,553 |
|  | Jun | 278,659 | 10,251 | 80,527 | 1,233 | 370,670 |
|  | Jul | 94,532 | 6,815 | 15,230 | 925 | 117,502 |
|  | Aug | 7,320 | - | 37,049 | 1,521 | 45,890 |
|  | Sep | 6,471 | - | 8,451 | 280 | 15,202 |
|  | Oct | - | - | 6,214 | 1 | 6,215 |
|  | Nov | 12 | - | - | - | 12 |
|  | Dec | - | - | - | - | - |
|  | Total | 605,367 | 18,619 | 193,381 | 7,227 | 824,594 |
| 1988 | Jan |  | - | - | - |  |
|  | Feb |  | - | - | - | - |
|  | Mar | 48,766 |  | 21,582 | 4 | 70,352 |
|  | Apr | 147,839 |  | 27,181 | 1,518 | 186,538 |
|  | May | 246,852 |  | 65,160 | 2,481 | 314,493 |
|  | Jun | 169,526 |  | 32,995 | 744 | 203,265 |
|  | Jul | 33,120 | n/a | 104 | 633 | 33,857 |
|  | Aug | 21,155 |  | 5,212 | 198 | 26,565 |
|  | Sep | 9,224 |  | 9,111 | 181 | 18,516 |
|  | Oct | 9,885 |  | 13,709 | 36 | 23,630 |
|  | Nov | - |  | - | - | - |
|  | Dec | - |  | - | - |  |
|  | Total | 686,367 | 15,531 | 185,054 | 5,795 | 877,216 ${ }^{1}$ |
| 1989 | Jan | - |  | - | - |  |
|  | Feb | - |  | - | - | - |
|  | Mar | 62,927 |  | 23,117 | 106 | 86,150 |
|  | Apr | 164,296 |  | 27,953 | 1,192 | 193,451 |
|  | May | 300,524 |  | 61,764 | 2,303 | 364,591 |
|  | Jun | 235,779 | n/a | 59,079 | 3,338 | 298,196 |
|  | Jul | 31,670 |  | 187 | - | 31,857 |
|  | Aug | 6,533 |  | 9,581 | - | 16,114 |
|  | Sep | 22,705 |  | 5,086 | - | 27,791 |
|  | Oct | - |  | 65 | - | 65 |
|  | Nov | - |  | - | - | - |
|  | Dec | - |  | - | - | - |
|  | Total | 824,434 | 16,612 | 186,842 | 6,939 | ,018,215 ${ }^{1}$ |

${ }^{1}$ Excluding the Faroes.
Table 8.1.2 (cont'd)

Table 8.1.2 (cont'd)

| Year | Month | Denmark | Faroes | Norway | Scotland | Total ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1990 | Jan | - |  | - | - | - |
|  | Feb | - |  | - | - | - |
|  | Mar | 24,700 |  | 11,542 | 286 | 36,528 |
|  | Apr | 94,670 |  | 13,673 | 1,450 | 109,793 |
|  | May | 181,582 |  | 35,394 | 668 | 217,644 |
|  | Jun | 121,981 | n/a | 6,660 | 92 | 128,733 |
|  | Jul | 17,307 |  | 1,101 | - | 18,408 |
|  | Aug | 48,992 |  | 17,519 | - | 66,511 |
|  | Sep | 6,793 |  | 2,541 | - | 9,334 |
|  | Oct | - |  | 474 | - | 474 |
|  | Nov | - |  | - | - | - |
|  | Dec | - |  | - | - | - |
|  | Total | 496,025 | 2,230 | 88,904 | 2,496 | 587,425 ${ }^{1}$ |
| 1991 | Jan | - |  | - | - | - |
|  | Feb | - |  | - | - | - |
|  | Mar | 23,454 |  | 7,349 | - | 30,803 |
|  | Apr | 78,374 |  | 12,582 | 30 | 90,986 |
|  | May | 204,894 | n/a | 50,110 | 511 | 255,521 |
|  | Jun | 217,334 |  | 13,176 | - | 230,510 |
|  | Jul | 129,548 |  | 8,267 | - | 137,815 |
|  | Aug | 43,024 |  | 16,955 | - | 59,979 |
|  | Sep | 4,801 |  | 16,153 | - | 20,954 |
|  | Oct | - |  | 4,242 | - | 4,242 |
|  | Nov | - |  | - | - | - |
|  | Dec | - |  | - | - | - |
|  | Total | 701,429 |  | 128,834 |  | $830,810^{1}$ |

${ }^{1}$ Excluding the Faroes.

Table 8.1.3 North Sea SANDEEL. Catch (tonnes) by month and area [Denmark, Norway, and UK (Scotland)] in 1986 - 1991 for areas in Figure 8.1. (Data provided by Working Group members.)

| Month | 1A | 18 | 1 C | 2 A | 2 B | 2 C | 3 | 4 | 5 | 6 | Shetland |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1986 |  |  |  |  |  |  |  |  |  |  |  |
| Mar | 403 | 376 | 1,893 | 2,282 | 6,911 | - | 178 | - | 255 | 265 | 375 |
| Apr | 22,648 | 20,623 | 1,971 | 6,951 | 26,234 | 622 | 7,019 | 376 | - | 1,263 | 2,069 |
| May | $\begin{array}{r}92,298 \\ \hline 158\end{array}$ | 2,345 | 154 | 19,553 | 22,952 | 555 | 20,123 | 1,502 | 1,147 | 4,269 | 4,771 |
| Jun | 158,538 | 2,533 | 692 | 17,656 | 61,493 | 134 | 44,534 | 1,655 | 367 | 50,804 | 2,841 |
| Jul | 20,466 | 1,911 | 1,344 | 4,714 | 79,976 | 11 | 10,465 | 18,046 | 2,263 | 19,049 | 2,68 |
| Aug | 413 309 | 6,404 | 2,239 | 3,169 | 38,368 | 555 | 1,923 | 944 | 14 | 4,601 | 2,152 |
| Sep | 309 | 347 | 209 | 638 | 566 | 84 | 588 | 5 | - | 61 | 2,773 |
| Oct | 160 | 1,183 | - | 295 | 9,620 | - | 5 | - | - |  | 315 |
| Total | 295,235 | 35,722 | 8,502 | 55,258 | 244,120 | 1,961 | 84,835 | 22,528 | 4,046 | 80,312 | 13,982 |
| 1987 |  |  |  |  |  |  |  |  |  |  |  |
| Mar | 319 | 7,175 | 753 | 1,729 | 9,646 | - | 218 | - | - | - | 7 |
| Apr | 8,066 | 26,465 | 21 | 2,573 | 35,361 | - | 445 | 471 | - | 14 | 875 |
| May | 80,175 | 1,973 | 80 | 25,627 | 58,415 | 262 | 2,081 | 347 | 979 | 1,088 | 2,385 |
| Jun | 138,904 | 20,609 | 239 | 10,601 | 161,637 | - | 2, 480 | 1,396 | 357 | 24,963 | 1,233 |
| Jul | 46,253 | 1,181 | - | 8,079 | 15,086 | - | 1,113 | 17,429 | 6,322 | 14,299 | , 925 |
| Aug | 1.100 | 4,873 | 4 | 8,013 | 31,827 | $\bigcirc$ | 545 | 1,765 | 6,322 | 2,152 | 1,521 |
| Sep | 242 | 704 | 49 | 2,866 | 7,698 | 94 | 741 | 1,765 | - | 2,622 | - 280 |
| Oct | - | 668 | - |  | 5,564 | - | - | - | - | 2,622 | 1 |
| Nov | - | - | - |  | - | - | 12 |  |  | - |  |
| Dec | - | - | - | - | - | - | . | - | - | - | - |
| Total | 275,059 | 63,648 | 1,142 | 53,488 | 325,234 | 356 | 5,635 | 21,408 | 7,658 | 45,138 | 7,227 |
| 1988 |  |  |  |  |  |  |  |  |  |  |  |
| Mar | - | 25,627 | - | 234 | 43,482 | - | 1,005 | - | - | - | 4 |
| Apr | 58,156 | 26,432 | 525 | 6,288 | 83,185 | - | 8,237 | 1,689 | 495 | 538 | 993 |
| May | 178,614 | 3,192 | 625 | 21,750 | 62,602 | - | 13,224 | 8,295 | 206 | 24,053 | 1,932 |
| Jun | 48,998 | 1,968 | 126 | 11,767 | 31,143 | 205 | 14,385 | 18,341 | 7,459 | 68,129 | '744 |
| Jul | 9,548 | 21 | 38 | 2,346 | . 66 | - | 7,913 | 6,967 | 1,853 | 9,472 | 633 |
| Aug | 11 | 593 | 721 | 2,468 | 4,619 | 133 | 15,860 | 6,967 | 1,971 | -1 | 196 |
| Sep | 231 | 500 | - | 1,336 | 12,254 | 133 | 4,013 | - | 1,971 |  | 181 |
| Oct | 536 | 103 | - | 825 | 19,135 | 2 | 2,993 | - | - | - | 36 |
| Nov | - | - | - | - | - | - | - | - | - | - | 36 |
| Total | 291,084 | 58,436 | 2,035 | 47,014 | 256,486 | 340 | 67,630 | 35,292 | 11,984 | 102,194 | 4,179 |
| 1989 |  |  |  |  |  |  |  |  |  |  |  |
| Mar | 1395 | 14,831 | 441 | 2,221 | 63,853 | - | 4,695 | - | - | 76 | 11 |
| Apr | 61,395 | 10,782 | - | 34,469 | 61,676 | - | 22,350 | 1,024 | 133 | 421 | 1,193 |
| May | 120,385 | 4,771 | 11 | 113,153 | 60,380 | 240 | 38,946 | 4,013 | 328 | 20,452 | 1,763 |
| Jun | 42,807 | 158 | 11 | 12,924 | 132,713 | - | 16,613 | 21,379 | 3,282 | 67,624 | 536 |
| Jul | 1,272 786 | 154 32 | - | 1,284 | 7 290 | - | 17,825 | 3,778 | 790 | 6,412 | . |
| Aug | 786 | 32 227 | - | 2,688 1,057 | 7,240 5,195 | 1,291 | 4,891 20,017 | 333 | -- | 109 | - |
| Oct | - | 227 | - | 1,057 | 5,195 65 | 1,291 | 20,017 | - | - | - | - |
| Total | 226,645 | 30,955 | 452 | 167,796 | 331,412 | 1,531 | 125,337 | 30,527 | 4,533 | 95,094 | 3,503 |
| 1990 |  |  |  |  |  |  |  |  |  |  |  |
| Mar | 1,566 | 368 | 119 | 230 | 33,271 | 136 | 529 | - | - | 18 | 286 |
| Apr | 37,010 | 167 | - | 37,794 | 22,908 | 56 | 6,379 | 2,049 | 51 | 1,909 | 1,450 |
| May | 84,824 | 147 | - | 18,501 | 39,258 | - | 18,343 | 11,555 | 3,185 | 41,163 | 608 |
| Jun | 15,337 | 418 | - | 7,895 | 13,574 | - | 12,728 | 28,437 | 10,564 | 39,688 |  |
| Jul | 1,478 | 218 | - | 28,934 | 3,590 | 8 | 4,926 | 3,440 | 10,564 | 1,814 | - |
| Aug | 429 | 43 | - | 10,987 | 40,325 | 370 | 13,678 | , | - | 679 | - |
| Sep | - | - | - | 1,931 | 2,686 | - | 4,440 | - | - | 277 | - |
| Oct | - | - | - | , | 474 | - | , 4 | - | - | . | - |
| Nov | - | - | - | - | - | - | - | - | - | - | - |
| Total | 140,644 | 1,361 | 119 | 80,272 | 156,091 | 570 | 61,043 | 45,481 | 13,800 | 85,548 | 2,344 |

Table 8.1.3 cont'd.

| Month | 1 A | 1 B | 1 C | 2 A | 2 B | 2 C | 3 | 4 | 5 | 6 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{1 9 9 1}$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| Mar | 902 | 494 | - | 1,582 | 26,528 | 737 | 548 | - | 4 | 8 |
| Apr | 8,443 | 356 | 680 | 27,611 | 34,413 | 418 | 18,032 | 138 | - | 892 |
| May | 86,975 | 4,631 | - | 9,615 | 106,294 | 615 | 39,939 | 4,038 | 660 | 3,144 |
| Jun | 91,485 | 1,005 | - | 26,522 | 12,671 | - | 34,263 | 10,261 | 115 | 54,187 |
| Jul | 30,976 | 411 | - | 43,619 | 15,253 | - | 13,174 | 8,195 | 215 | 25,972 |
| Aug | 4,624 | 223 | - | 4,631 | 37,052 | - | 4,567 | - | - | 8,882 |
| Sep | 4,789 | - | - | 391 | 15,762 | - | 13 | - | - | - |
| Oct | - | - | - | - | 4,242 | - | - | - | - | - |
| Nov | - | - | - | - | - | - | - | - | - | - |
| Total | 228,194 | 7,120 | 680 | 113,971 | 252,215 | 1,320 | 110,596 | 22,632 | 993 | 93,086 |

Table 8.1.4 Annual landings ('000 t) of Sandeels by area of the North Sea [Denmark, Norway and UK (Scotland)]. (Data provided by Working Group members.)

|  | Area |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| Year | 1 A | 1 B | 1 C | 2 A | 2 B | 2 C | 3 | 4 | 5 | 6 | Shetland | Northern | Southern |  |
| 1972 | 98.8 | 28.1 | 3.9 | 24.5 | 85.1 | 0.0 | 13.5 | 58.3 | 6.7 | 28.0 | 0.0 | 130.6 | 216.3 |  |
| 1973 | 59.3 | 37.1 | 1.2 | 16.4 | 60.6 | 0.0 | 8.7 | 37.4 | 9.6 | 59.7 | 0.0 | 107.6 | 182.4 |  |
| 1974 | 50.4 | 178.0 | 1.7 | 2.2 | 177.9 | 0.0 | 29.0 | 27.4 | 11.7 | 25.4 | 7.4 | 386.6 | 117.1 |  |
| 1975 | 70.0 | 38.2 | 17.8 | 12.2 | 154.7 | 4.8 | 38.2 | 42.8 | 12.3 | 19.2 | 12.9 | 253.7 | 156.5 |  |
| 1976 | 154.0 | 3.5 | 39.7 | 71.8 | 38.5 | 3.1 | 50.2 | 59.2 | 8.9 | 36.7 | 20.2 | 135.0 | 330.6 |  |
| 1977 | 171.9 | 34.0 | 62.0 | 154.1 | 179.7 | 1.3 | 71.4 | 28.0 | 13.0 | 25.3 | 21.5 | 348.4 | 392.3 |  |
| 1978 | 159.7 | 50.2 | 346.5 | 70.3 | 42.5 | 37.4 | 6.4 | 27.2 | 28.1 | 163.0 | 577.2 |  |  |  |
| 1979 | 194.5 | 0.9 | 61.0 | 32.3 | 27.0 | 72.3 | 34.1 | 79.4 | 5.4 | 44.3 | 13.4 | 195.3 | 355.9 |  |
| 1980 | 215.1 | 3.3 | 119.3 | 89.5 | 52.4 | 27.0 | 90.0 | 30.8 | 8.7 | 57.1 | 25.4 | 292.0 | 401.2 |  |
| 1981 | 105.2 | 0.1 | 42.8 | 151.9 | 11.7 | 23.9 | 59.6 | 63.4 | 13.3 | 45.1 | 46.7 | 138.1 | 378.9 |  |
| 1982 | 189.8 | 5.4 | 4.4 | 132.1 | 24.9 | 2.3 | 37.4 | 75.7 | 6.9 | 74.7 | 52.0 | 74.4 | 479.2 |  |
| 1983 | 197.4 | - | 2.8 | 59.4 | 17.7 | - | 57.7 | 87.6 | 8.0 | 66.0 | 37.0 | 78.2 | 419.0 |  |
| 1984 | 337.8 | 4.1 | 5.9 | 74.9 | 30.4 | 0.1 | 51.3 | 56.0 | 3.9 | 60.2 | 32.6 | 91.8 | 532.8 |  |
| 1985 | 281.4 | 46.9 | 2.8 | 82.3 | 7.1 | 0.1 | 29.9 | 46.6 | 18.7 | 84.5 | 17.2 | 79.7 | 513.5 |  |
| 1986 | 295.2 | 35.7 | 8.5 | 55.3 | 244.1 | 2.0 | 84.8 | 22.5 | 4.0 | 80.3 | 14.0 | 375.1 | 457.4 |  |
| 1987 | 275.1 | 63.6 | 1.1 | 53.5 | 325.2 | 0.4 | 5.6 | 21.4 | 7.7 | 45.1 | 7.2 | 395.9 | 402.8 |  |
| 1988 | 291.1 | 58.4 | 2.0 | 47.0 | 256.5 | 0.3 | 37.6 | 35.3 | 12.0 | 102.2 | 4.7 | 384.8 | 487.6 |  |
| 1989 | 227.1 | 31.0 | 0.5 | 167.8 | 331.4 | 1.5 | 125.3 | 30.5 | 4.5 | 95.1 | 3.5 | 489.7 | 525.0 |  |
| 1990 | 140.6 | 1.4 | 0.1 | 80.3 | 156.1 | 0.6 | 61.0 | 45.5 | 13.8 | 85.5 | 2.3 | 219.2 | 365.7 |  |
| 1991 | 228.2 | 7.1 | 0.7 | 114.0 | 252.2 | 1.3 | 110.6 | 22.6 | 1.0 | 93.1 | + | 371.9 | 458.9 |  |
| 1992 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

${ }^{1}$ Assessment areas: $\quad$ Northern - Areas 1B, 1C, 2B, 2C, 3.
Southern-Areas 1A, 2A, 4, 5, 6.

Table 8.2.1.1 Sandeel Northern North Sea. Danish CPUE data.

| Year | Vessel size (GRT) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5-50 | 50-100 | 100-150 | 150-200 | 200-250 | 250-300 | $>300$ |
| First half year |  |  |  |  |  |  |  |
| 1982 | 11.2 | 17.2 | 31.8 | 26.7 | 47.6 | 40.0 | 25.8 |
| 1983 | 11.1 | 17.1 | 23.6 | 23.9 | 31.6 | 36.4 | 41.3 |
| 1984 | 14.6 | 24.8 | 33.4 | 32.1 | 44.4 | 55.5 | 19.7 |
| 1985 | 12.1 | 17.2 | 35.7 | 51.2 | 57.9 | 67.2 | 55.8 |
| 1986 | 21.0 | 32.0 | 45.5 | 50.2 | 63.9 | 57.4 | 71.8 |
| 1987 | 23.7 | 40.7 | 66.5 | 67.5 | 86.7 | 83.0 | 102.5 |
| 1988 | 19.0 | 25.6 | 34.4 | 42.5 | 48.0 | 47.8 | 75.3 |
| 1989 | 16.3 | 25.2 | 36.8 | 41.0 | 49.1 | 51.4 | 76.0 |
| 1990 | 14.5 | 21.6 | 27.3 | 27.8 | 29.1 | 27.4 | 40.2 |
| 1991 | 16.7 | 25.5 | 38.4 | 42.4 | 47.7 | 47.5 | 73.7 |
| Second half year |  |  |  |  |  |  |  |
| 1982 | - | 17.7 | 26.7 | 46.7 | 19.9 | - | - |
| 1983 | 17.9 | 25.7 | 23.9 | 32.9 | 44.5 | 34.3 | 57.1 |
| 1984 | 113.2 | 22.0 | 32.1 | 35.2 | - | 28.3 | 24.0 |
| 1985 | 21.6 | 23.5 | 51.2 | 39.6 | 60.7 | 33.3 | - |
| 1986 | 17.1 | 27.5 | 50.2 | 50.0 | 77.9 | 74.0 | 80.7 |
| 1987 | 21.3 | 31.3 | 67.5 | 28.5 | 42.6 | 26.8 | 22.7 |
| 1988 | 16.8 | 21.3 | 42.5 | 32.4 | 38.0 | 33.1 | 43.9 |
| 1989 | 20.7 | 26.2 | 41.0 | 38.0 | 37.7 | 29.3 | 40.4 |
| 1990 | 17.6 | 32.5 | 27.8 | 34.0 | 40.4 | 32.6 | 55.3 |
| 1991 | 15.0 | 25.9 | 42.4 | 47.6 | 54.4 | 51.9 | 72.5 |

Table 8.2.1.2 Sandeel northern North Sea. Norwegian effort data.

| Year | Fishing days |  | Mean gross register tonnage (GRT) |  |
| :--- | ---: | ---: | :---: | :---: |
|  | Jan-Jun | Jul-Dec | Jan-Jun | Jul-Dec |
| 1976 | 595 | - | 198.8 | - |
| 1977 | 2,212 | 457 | 172.3 | 184.9 |
| 1978 | 1,747 | 806 | 203.4 | 203.7 |
| 1979 | 1,407 | 1,720 | 213.8 | 188.9 |
| 1980 | 2,699 | 1,130 | 204.7 | 206.1 |
| 1981 | 1,780 | 414 | 212.6 | 189.0 |
| 1982 | 1,222 | - | 210.1 | - |
| 1983 | 324 | 66 | 267.8 | 208.0 |
| 1984 | 145 | - | 185.8 | - |
| 1985 | 366 | - | 212.8 | - |
| 1986 | 1,562 | 567 | 192.4 | 182.3 |
| 1987 | 2,123 | 1,584 | 210.5 | 193.0 |
| 1988 | 3,794 | 994 | 215.5 | 206.4 |
| 1989 | 4,843 | 667 | 187.5 | 186.6 |
| 1990 | 2,275 | 683 | 205.7 | 185.6 |
| 1991 | 1,830 | 1,002 | 197.5 | 191.0 |

Table 8.2.1.3
Fishing effort indices for SANDEEL in the Northern North Sea (days fishing multiplied by scaling factors for each vessel category to represent days fishing for a vessel of 200 GRT).

|  | Norwegian |  |  | Danish |  |  | Total <br> Intnat. <br> catch $(' 000 \mathrm{t})$ | Derived Intnat. effort ('000 days) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Standardized fishing days | Catch sampled for fishing effort (;000 t) | CPUE <br> (t/day) | Catch sampled for fishing effort ('000 t) | CPUE <br> (t/day) |  |  |  |


| First half of year |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1976 | 593 | 11.1 | 18.7 | - | - | 18.7 | 110.3 | 5.9 |
| 1977 | 2,047 | 50.4 | 24.6 | - | - | 24.6 | 276.0 | 11.2 |
| 1978 | 1,762 | 44.9 | 25.5 | - | - | 25.5 | 109.7 | 4.3 |
| 1979 | 1,457 | 29.6 | 20.3 | - | - | 20.3 | 47.7 | 2.3 |
| 1980 | 2,732 | 112.8 | 41.3 | - | - | 41.3 | 220.9 | 5.3 |
| 1981 | 1,837 | 42.8 | 23.2 | - | - | 23.2 | 93.3 | 4.0 |
| 1982 | 1,254 | 27.0 | 21.5 | 13.5 | 34.9 | 21.8 | 62.3 | 2.9 |
| 1983 | 377 | 8.5 | 22.5 | 17.4 | 28.9 | 20.4 | 54.5 | 2.7 |
| 1984 | 140 | 3.5 | 25.0 | 54.1 | 41.2 | 26.1 | 74.1 | 2.8 |
| 1985 | 378 | 8.7 | 23.0 | 47.4 | 46.7 | 27.4 | 69.9 | 2.6 |
| 1986 | 1,531 | 59.2 | 38.6 | 154.1 | 54.7 | 35.5 | 221.3 | 6.2 |
| 1987 | 2,178 | 123.6 | 56.7 | 213.2 | 75.1 | 50.5 | 360.9 | 7.1 |
| 1988 | 3,926 | 155.5 | 39.6 | 158.1 | 42.7 | 41.2 | 332.0 | 8.1 |
| 1989 | 4,700 | 164.1 | 35.0 | 267.3 | 44.5 | 40.9 | 449.1 | 11.0 |
| 1990 | 2,275 | 66.0 | 29.0 | 94.9 | 28.0 | 28.4 | 148.4 | 5.2 |
| 1991 | 1,807 | 67.9 | 37.6 | 210.6 | 44.7 | 42.6 | 282.9 | 6.6 |
| Second half of year |  |  |  |  |  |  |  |  |
| 1976 | 108 | 2.0 | 18.5 | - | - | 18.5 | 44.9 | 2.4 |
| 1977 | 439 | 11.8 | 26.9 | - | - | 26.9 | 110.0 | 4.1 |
| 1978 | 814 | 22.5 | 27.6 | - | - | 27.6 | 53.3 | 1.9 |
| 1979 | 1,670 | 53.2 | 31.9 | - | - | 31.9 | 147.7 | 4.6 |
| 1980 | 1,148 | 33.2 | 28.9 | - | - | 28.9 | 71.1 | 2.5 |
| 1981 | 402 | 7.9 | 19.6 | - | - | 19.6 | 44.9 | 2.3 |
| 1982 | - | - | - | 1.8 | 33.0 | 30.5 | 12.0 | 0.4 |
| 1983 | 67 | 2.4 | 35.8 | 12.3 | 37.4 | 37.0 | 23.7 | 0.6 |
| 1984 | - | - | - | 10.7 | 30.2 | 22.8 | 17.7 | 0.8 |
| 1985 | - | - | - | 16.4 | 38.8 | 34.9 | 16.8 | 0.5 |
| 1986 | 540 | 19.8 | 36.7 | 96.1 | 61.5 | 52.6 | 153.8 | 2.9 |
| 1987 | 1,555 | 68.2 | 43.9 | 5.5 | 33.9 | 42.7 | 76.9 | 1.8 |
| 1988 | 1,008 | 28.9 | 28.7 | 41.5 | 33.7 | 32.6 | 71.4 | 2.3 |
| 1989 | 647 | 12.3 | 19.0 | 44.9 | 32.8 | 29.8 | 57.2 | 1.9 |
| 1990 | 683 | 21.5 | 31.5 | 65.8 | 35.1 | 34.2 | 70.8 | 2.1 |
| 1991 | 957 | 31.3 | 32.7 | 96.0 | 47.5 | 40.2 | 92.8 | 2.3 |

Table 8.2.2.1 Sandeels in the northern North Sea.
Catch in numbers, half-year (millions).

| Age group | 1977 |  | 1978 |  | 1979 |  | 1980 |  | 1981 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
| 0 | 3,686 | 3,067 | - | 7,820 | - | 44,203 | 17 | 8,349 | 17 | 9,128 |
| 1 | 24,307 | 2,856 | 6,127 | 1,001 | 2,335 | 1,310 | 13,394 | 1,173 | 5,505 | 346 |
| 2 | 2,351 | 913 | 2,338 | 307 | 1,328 | 433 | 8,865 | 214 | 4,109 | 94 |
| 3 | 516 | 142 | 573 | 39 | 242 | 66 | 1,050 | 19 | 904 | 14 |
| 4 | 124 | 99 | 78 | 1 | 5 | 10 | 6454 |  | 128 6 |  |
| $5+$ | $20 \quad 43$ |  | 66 1 |  | 7 |  | 183 4 |  | 46 |  |
|  | 1982 |  | 1983 |  | 1984 |  | 1985 |  | 1986 |  |
| Age group | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
| 0 | 2 | 6,530 | - | 7,911 | - | - | 1 | 349 | 7 | 7,105 |
| 1 | 3,518 | 65 | 5,684 | 303 | 11,692 | 1,207 | 2,688 | 109 | 23,934 | 7,077 |
| 2 | 2,132 | - | 1,215 | 316 | 1,647 | 121 | 3,292 | 239 | 2,600 | 473 |
| 3 | 556 | - | 89 | 19 | 153 | 43 | 1,002 | 89 | 200 | - |
| 4 | 76 | - | 8 |  | 5 | - | 377 | 7 | - - |  |
| $5+$ | 9 | - | 4 |  | - | - | 103 | 4 | - - |  |
| Age group | 1987 |  | 1988 |  | 1989 |  | $1990^{1}$ |  | 1991 |  |
|  | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
| 0 | - | 455 | 2,453 | 13,196 | 6,124 | 3,380 | 1,595 | 18,293 | - | 14,385 |
| 1 | 26,236 | 5,768 | 9,855 | 1,283 | 56,661 | 4,038 | 10,527 | - | 41,984 | 825 |
| 2 | 10,855 | 198 | 25,922 | 340 | 2,219 | 274 | 1,478 | - | 2,203 | 82 |
| 3 | 350 | - | 1,319 | 119 | 3,385 | - | 231 | - | 727 | - |
| 4 | 107 | - | 26 | 17 | - | - | - | - | 144 | - |
| $5+$ | 48 | - | - | - | - | - | - | - | 81 | - |

${ }^{1}$ Based on Norwegian data only.
Note: $1=$ Jan-Jun.

$$
2=\text { Jul-Dec. }
$$

Table 8.2.3.1 SANDEEL North Sea.
Northern area. Mean weight at age (g) in the catch for 1991.

Data from Denmark and Norway.

| Age | Half-year |  |
| ---: | ---: | ---: |
|  | 1 | 2 |
| 0 | - | - |
| 1 | 5.5 | 5.2 |
| 2 | 12.3 | 17.4 |
| 3 | 19.0 | 25.2 |
| 4 | 22.8 | - |
| $5+$ | 35.5 | - |

Table 8.2.4.1 SANDEEL Natural Mortality Coefficients

| Age | $I$ | $I I$ |
| :--- | :--- | :--- |
|  |  |  |
| 0 |  | 0.8 |
| 1 | 1.0 | 0.2 |
| 2 | 0.4 | 0.2 |
| 3 | 0.4 | 0.2 |
| 4 | 0.4 | 0.2 |
| 5 | 0.4 | 0.2 |
| 6 | 0.4 | 0.2 |
| $7+$ | 0.4 | 0.2 |

Table 8.2.4.2 SANDEEL, Proportion mature at age

| Age | Proportion Mature |
| :---: | :---: |
| 0 | 0 |
| 1 | 0 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | 1 |
| $7+$ | 1 |

Table 8.2.4.3. SANDEEL, Northern North Sea
Some output from semi-annual separable VPA

```
weight for effort data = 1.0000
IFAIL on exit from E04FDF = 0
IFAIL on exit from E04YCF = 0
Initial sum of squares = 379.7021
Final sum of squares = 53.9438
Residual mean square = 1.3157
Coefficient of determination = .8579
Adj. Coeff. of determination = .7263
Number of observations = 80
Number of parameters =}=3
```

Selectivities at age Year/season effects

| age | 1 | 2 | $y e a r$ | 1 | 2 | 1 | 2 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | .0001 | .0169 | 1983 | .9688 | .5879 | .0317 | -.9728 |
| 1 | .2970 | .1581 | 1984 | .6165 | .2734 | .5200 | .0803 |
| 2 | .2893 | .1005 | 1985 | .8947 | .1813 | .0735 | .0214 |
| 3 | .1056 | .0994 | 1986 | .9180 | 1.9028 | .9169 | -.5719 |
| 4 | .1056 | .0994 | 1987 | 1.4888 | .5796 | .5688 | .1399 |
|  |  |  | 1988 | 2.5675 | .6594 | .1557 | .2561 |
|  |  |  | 1989 | 3.5347 | .2723 | .1420 | .9493 |
|  |  | 1990 | 11.3795 | .8154 | -1.7764 | -.0472 |  |
|  |  | 1991 | 4.6002 | .7369 | -.6323 | .1449 |  |

Year/season effect
residuals

Estimated populations


1991
$1685333^{1} 1682975^{2}$
84045. 7888.
8685. 1539. 1729. 713. 179. 74.

Table 8.3.1.1 Sandeel. Southern North Sea. Danish CPUE data.

| Year | Vessel size (GRT) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $5-50$ | $50-100$ | $100-150$ | $150-200$ | $200-250$ | $250-300$ | $>300$ |
|  | 16.1 | 26.9 | 43.1 | 47.2 | 59.2 | $53 / 2$ | 59.6 |
|  | 17.0 | 20.6 | 36.3 | 44.4 | 49.1 | 51.2 | 50.9 |
|  | 19.9 | 26.3 | 42.6 | 50.4 | 60.9 | 56.4 | 60.1 |
|  | 13.8 | 21.2 | 35.5 | 43.4 | 49.8 | 49.1 | 56.3 |
|  | 23.2 | 31.4 | 41.1 | 49.8 | 58.9 | 58.4 | 69.4 |
|  | 23.2 | 34.8 | 53.1 | 68.6 | 81.0 | 76.2 | 98.0 |
| 1988 | 19.2 | 26.8 | 42.9 | 52.3 | 60.0 | 56.6 | 82.8 |
| 1989 | 19.4 | 24.4 | 43.2 | 52.3 | 58.6 | 55.2 | 75.3 |
| 1990 | 20.0 | 20.8 | 30.4 | 33.7 | 39.4 | 35.7 | 49.5 |
| 1991 | 27.0 | 30.0 | 49.5 | 50.3 | 62.7 | 60.7 | 93.4 |
|  |  |  |  |  |  |  |  |
|  |  |  | Second half year |  |  |  |  |
| 1982 | - | 20.3 | 37.5 | 40.5 | - | 27.9 | - |
| 1983 | 15.1 | 21.3 | 25.1 | 32.4 | 45.4 | 34.0 | 34.7 |
| 1984 | 12.7 | 16.4 | 26.9 | 34.2 | 36.5 | 40.2 | 40.9 |
| 1985 | 13.2 | 19.5 | 26.0 | 35.8 | 36.2 | 38.2 | 39.4 |
| 1986 | 18.4 | 25.2 | 32.5 | 44.5 | 45.8 | 51.8 | 55.5 |
| 1987 | 14.9 | 23.4 | 39.7 | 47.9 | 52.6 | 43.1 | 65.2 |
| 1988 | 18.8 | 29.3 | 29.9 | 31.1 | 38.6 | 31.1 | 44.0 |
| 1989 | 26.7 | 26.2 | 27.0 | 38.0 | 37.7 | 29.3 | 40.4 |
| 1990 | 27.9 | 32.8 | 36.4 | 41.3 | 49.3 | 45.2 | 41.7 |
| 1991 | 21.8 | 26.9 | 42.2 | 50.0 | 65.1 | 53.7 | 98.3 |

Table 8.3.1.2 SANDEEL Southern North Sea. Standardized CPUE, based on Danish Data.

| Year | Half-year | CPUE <br> (t/day) | Total international ('000 t) | Total Intl. fishing effort ('000 days) |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Half-year |
| 1982 | 1 | 48.15 | 426.5 | 8.9 |
|  | 2 | 35.74 | 52.6 | 1.5 |
| 1983 | 1 | 42.79 | 359.8 | 8.4 |
|  | 2 | 33.86 | 59.3 | 1.8 |
| 1984 | 1 | 50.51 | 461.1 | 9.1 |
|  | 2 | 32.93 | 71.1 | 2.2 |
| 1985 | 1 | 41.86 | 417.1 | 10.0 |
|  | 2 | 33.59 | 110.6 | 3.3 |
| 1986 | 1 | 53.72 | 386.4 | 7.2 |
|  | 2 | 44.05 | 75.5 | 1.7 |
| 1987 | 1 | 67.58 | 297.7 | 4.4 |
|  | 2 | 44.71 | 105.1 | 2.4 |
| 1988 | 1 | 51.53 | 462.0 | 9.0 |
|  | 2 | 36.14 | 33.4 | 0.9 |
| 1989 | 1 | 51.05 | 506.1 | 9.9 |
|  | 2 | 32.95 | 18.5 | 0.6 |
| 1990 | 1 | 34.08 | 341.7 | 10.0 |
|  | 2 | 43.10 | 24.0 | 0.6 |
| 1991 | 1 | 56.80 | 326.6 | 5.8 |
|  | 2 | 54.15 | 132.3 | 2.4 |

Table 8.3.2.1 SANDEELS in the Southern North Sea. Catch in numbers, half-year (millions)


Table 8.3.3.1 SANDEEL North. Sea.
Southern area.
Mean weight at age
(g) in the catch for 1991. Data from Denmark.

| Age | Half-year |  |
| :---: | :---: | ---: |
|  | 1 | 2 |
| 0 | - | 2.6 |
|  | 8.2 | 7.5 |
| 2 | 16.4 | 13.6 |
| 3 | 16.9 | 12.0 |
| 4 | 17.2 | - |
| $5+$ | - | - |

Table 8.3.4.1, SANDEEL,. Southern North Sea Some output from semi-annual separable VPA


Estimated populations

|  | 1984 |  | 1985 |  | 1986 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 1 | 2 | 1 | 2 |

01338494.1336361. 158556. 158315.1612675.1608687. 221377. 221057.
1 40537. 13509. 599244. 202073. 71043. 20452. 717088. 244805.
2 35133. 9494. 10534. 3174. 160376. 11296. 13835. 4667.
3 3745. 1472. 6553. 2747. 2330. 416. 4740. 2123.
4 133. 52. 949. 398. 1931. 345. 134. 60.

|  |  | 1987 |  | 1988 |  | 1989 |  | 1990 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 |  | 21 | 1 | 1 | 2 | 1 | 2 |
| 0 | 197839. | 197586. | . 1875980. | . 1872763. | 67085. | 66994. | 390106. | 388837. |
| 1 | 99221. | 34854. | 88652. | 28953. | 840796. | 291048. | 30098. | 7608. |
| 2 | 195392. | 85675. | 27556. | 6187. | 23243. | 8907. | 237417. | 5060. |
| 3 | 3495. | 1826. | 62063. | 21888. | 4729. | 2282. | 7199. | 637. |
|  | 1534. | 802. | 1260. | 444. | 16274. | 7856. | 1835. | 162 |

1991

|  | 1 |  |
| ---: | ---: | ---: |
| $0 * * * * * * * * * * * * * * *$ |  |  |
| 1 | 174639. | 56072. |
| 2 | 6164. | 1183. |
| 3 | 3994. | 1285. |
| 4 | 495. | 159. |

Table 8.4.1.1 Standardised effort (days absent) by half-year in the Shetland sandeel fishery (1982-1991). UK (Scotland) data.

| Year | I | II | Total |
| :--- | ---: | ---: | ---: |
| 1982 | 934 | 866 | 1800 |
| 1983 | 768 | 642 | 1410 |
| 1984 | 852 | 539 | 1391 |
| 1985 | 358 | 302 | 660 |
| $1986^{1}$ | 404 | 157 | 561 |
| 1987 | 180 | 98 | 278 |
| 1988 | 200 | 72 | 272 |
| 1989 | 168 | - | 168 |
| 1990 | 102 | - | 102 |
| 1991 | - | - | 0 |

${ }^{1} 1986$ figures incorporate an estimate of Danish effort.

Table 8.4.2.1 Sandeels, Shetland
Survey CPUE (Nos. at age per 30 min haul), 1984-1991.

|  |  | Age |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
| Year | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| 1984 | 345774 | 47590 | 34613 | 9921 | 3999 | 1369 | 856 | 258 |  |  |
| 1985 | 121905 | 74509 | 38843 | 23455 | 10872 | 1959 | 962 | 119 |  |  |
| 1986 | 681869 | 49816 | 11399 | 15376 | 7049 | 2893 | 1210 | 191 |  |  |
| $1987^{1}$ | - | - | - | - | - | - | - | - |  |  |
| 1988 | 73371 | 898 | 7189 | 4843 | 4612 | 3031 | 1619 | 20 |  |  |
| 1989 | 813752 | 9059 | 977 | 3820 | 3893 | 2017 | 462 | 86 |  |  |
| 1990 | 90148 | 30118 | 3771 | 1346 | 1736 | 1142 | 444 | 329 |  |  |
| 1991 | 1009024 | 10001 | 1925 | 1694 | 750 | 53 | 21 | 5 |  |  |

${ }^{1}$ No survey during 1987.

Table 8.4.3.1 SANDEEL, Shetland.
Long-Term Mean weight (g) at age in the catch, 1974-1990.

| Age |  |  |
| :--- | ---: | ---: |
|  | I |  |
| 0 | 0.746 |  |
| 1 | 3.095 | 1.618 |
| 2 | 5.409 | 7.053 |
| 3 | 8.585 | 10.480 |
| 4 | 11.143 | 13.255 |
| 5 | 13.705 | 15.787 |
| 6 | 15.605 | 19.472 |
| 7 | 21.254 | 24.482 |

Table 8.4.4.1 SANDEEL, Shetland. Diagnostics from semi-annual separable VPA.
weight for effort data $=1.0$
weight for $R V$ data $=0.10$
RV catchability constant above age 3
Initial SSQ $=535.4649$
Final SSQ $=24.5534$
Resid. mean square $=.2212$
Coeff. of determination $=.9541$
Adj. Coeff. " " = .9356

Number of observations $=157$
Number of parameters $=46$
IFAIL on exit from EO4FDF $=0$
IFAIL on exit from E04YCF $=0$
RMS for catch data $=$. 4835
RMS for effort data $=$.3385
RMS for RV data $=\quad .1118$

| Selectivities |  |  |
| :--- | ---: | ---: |
| at age |  |  |
| age | 1 | 2 |
| 0 | .0463 | .9009 |
| 1 | .3013 | .2743 |
| 2 | .3725 | .1387 |
| 3 | .7085 | .1713 |
| 4 | .8879 | .2077 |
| 5 | .9641 | .5000 |
| 6 | 1.0289 | .3140 |
| 7 | .8879 | .2077 |

$\stackrel{R V}{\text { catchabilities }}$

| (log Q) | year | 1 | 2 |
| ---: | ---: | ---: | ---: |
| -3.6260 | 1984 | .8149 | .5350 |
| -4.0223 | 1985 | .3109 | .5518 |
| -4.6251 | 1986 | .7029 | .2090 |
| -4.1122 | 1987 | .1747 | .1676 |
| -3.8673 | 1988 | .2564 | .0389 |
| -3.8673 | 1989 | .1669 | .0000 |
| -3.8673 | 1990 | .1752 | .0000 |
| -3.8673 | 1991 | .0000 | .0000 |

Year/season effect resids

| 1 | 2 |
| ---: | ---: |
| .2046 | .1677 |
| .3012 | -.4425 |
| -.3937 | -.1258 |
| .1898 | -.3763 |
| -.0881 | .7770 |
| .1669 | .0000 |
| -.3808 | .0000 |
| .0000 | .0000 |

Log catch residuals

|  |  | 1984 |  |  |
| :--- | ---: | ---: | ---: | ---: |
|  | 1 | 2 | 1 |  |
| 0 | .6442 | -.3932 | -.5422 | -.9 |
| 1 | -.1061 | -.0798 | .9486 | -.2 |
| 2 | .3627 | .3449 | .1526 |  |
| 3 | .0629 | -.0588 | -.2338 |  |
| 4 | -.2018 | -.1579 | -.2696 |  |
| 5 | -.4226 | .0900 | -.1307 |  |
| 6 | .0315 | -.1389 | .0868 |  |
| 7 | -.2703 | .1717 | -.1658 |  |
|  |  |  |  |  |
|  |  | 1 | 1988 |  |
| 0 | .1759 | 1.7120 | -.4835 |  |
| 1 | -.3110 | .0568 | -1.8143 |  |
| 2 | -.1430 | -.8283 | -.5298 |  |
| 3 | .3084 | -.6513 | .6306 |  |
| 4 | -.1607 | -.2599 | 1.1766 |  |
| 5 | -.3181 | .1090 | .6471 |  |
| 6 | .2362 | -1.2464 | .2598 |  |
| 7 | .2123 | .2953 | .0352 |  |

Log RV residuals

|  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| 0 | -.0708 | -.1329 | 2 | 2 | 2 | 2 | 2 | 2 |
| 1 | -.0460 | .0532 | .0626 | .0000 | -.0242 | .1493 | .0669 | .0000 |
| 2 | .0793 | .0816 | .0241 | .0000 | -.1716 | -.0094 | .0445 | .0667 |
| 3 | .0230 | .0732 | .0508 | .0000 | -.0638 | -.0419 | .0312 | -.1104 |
| 4 | .0419 | .1049 | .0585 | .0000 | .0233 | -.1080 | .0085 | -.0411 |
| 5 | .0553 | .0711 | .1117 | .0000 | .0333 | .0148 | -.1374 | -.0110 |
| 6 | .1603 | .1363 | .1859 | .0000 | .0895 | -.0751 | -.0279 | -.4300 |
| 7 | .0000 | .0000 | .0000 | .0000 | .0000 | .0000 | .0000 | -.3686 |

Table 8.4.4.2 SANDEEL, Shetland. Fitted Fs from separable VPA.

|  | 1984 | 1984 | 1985 | 1985 | 1986 | 1986 | 1987 | 1987 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
| 0 | .038 | .482 | .014 | .497 | .033 | .188 | .008 | .151 |
| 1 | .246 | .147 | .094 | .151 | .212 | .057 | .053 | .046 |
| 2 | .304 | .074 | .116 | .077 | .262 | .029 | .065 | .023 |
| 3 | .577 | .092 | .22 | .094 | .498 | .036 | .124 | .029 |
| 4 | .724 | .111 | .276 | .115 | .624 | .043 | .155 | .035 |
| 5 | .786 | .267 | .3 | .276 | .678 | .104 | .168 | .084 |
| 6 | .838 | .168 | .32 | .173 | .723 | .066 | .18 | .053 |
| 7 | .724 | .111 | .276 | .115 | .624 | .043 | .155 | .035 |
|  |  |  |  |  |  |  |  |  |
| $F(1-3)$ | .376 | .104 | .143 | .107 | .324 | .041 | .081 | .033 |
|  |  |  |  |  |  |  |  |  |
|  | 1988 | 1988 | 1989 | 1989 | 1990 | 1990 | 1991 | 1991 |
|  | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
| 0 | .012 | .035 | .008 | 0 | .008 | 0 | 0 | 0 |
| 1 | .077 | .011 | .05 | 0 | .053 | 0 | 0 | 0 |
| 2 | .095 | .005 | .062 | 0 | .065 | 0 | 0 | 0 |
| 3 | .182 | .007 | .118 | 0 | .124 | 0 | 0 | 0 |
| 4 | .228 | .008 | .148 | 0 | .156 | 0 | 0 | 0 |
| 5 | .247 | .019 | .161 | 0 | .169 | 0 | 0 | 0 |
| 6 | .264 | .012 | .172 | 0 | .18 | 0 | 0 | 0 |
| 7 | .228 | .008 | .148 | 0 | .156 | 0 | 0 | 0 |
|  |  |  |  |  |  |  | 0 | 0 |
| $F(1-3)$ | .118 | .008 | .077 | 0 | .081 | 0 | 0 | 0 |

Table 8.4.4.3 SANDEEL, Shetland. Fitted populations (millions) and biomass totals (tonnes) from separable VPA.

|  |  | $\begin{array}{r} 1984 \\ 1 \end{array}$ | $\begin{array}{r} 1984 \\ 2 \end{array}$ | $\begin{array}{r} 1985 \\ 1 \end{array}$ | $\begin{array}{r} 1985 \\ 2 \end{array}$ | $\begin{array}{r} 1986 \\ 1 \end{array}$ | $\begin{array}{r} 1986 \\ 2 \end{array}$ | $\begin{array}{r} 1987 \\ 1 \end{array}$ | $\begin{array}{r} 1987 \\ 2 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0 | 26364 | 0 | 18061 | 0 | 22776 | 0 | 2241 |
|  | 1 | 14596 | 4201 | 7316 | 2451 | 4937 | 1469 | 8478 | 2959 |
|  | 2 | 3397 | 1681 | 2970 | 1773 | 1725 | 890 | 1136 | 714 |
|  | 3 | 1277 | 480 | 1278 | 687 | 1345 | 548 | 708 | 419 |
|  | 4 | 377 | 123 | 359 | 183 | 512 | 184 | 433 | 248 |
|  | 5 | 126 | 38 | 90 | 45 | 133 | 45 | 144 | 82 |
|  | 6 | 28 | 8 | 24 | 12 | 28 | 9 | 33 | 19 |
|  | 7 | 27 | 9 | 12 | - 6 | 12 |  | 10 | 6 |
| SPN |  | 5232 |  | 4733 |  | 3755 |  | 2464 |  |
| SSB |  | 36276 |  | 32900 |  | 29097 |  | 19749 |  |
| TSB |  | 81451 |  | 55543 |  | 44377 |  | 45988 |  |
|  |  | 1988 | 1988 | 1989 | 1989 | 1990 | 1990 | 1991 | 1991 |
|  |  | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
|  | 0 | 0 | 3635 | 0 | 6867 | 0 | 1734 | 0 | 37898 |
|  | 1 | 866 | 295 | 1577 | 552 | 3086 | 1077 | 779 | 287 |
|  | 2 | 2314 | 1410 | 239 | 150 | 452 | 284 | 882 | 591 |
|  | 3 | 571 | 319 | 1148 | 684 | 123 | 73 | 232 | 156 |
|  | 4 | 333 | 178 | 259 | 150 | 560 | 321 | 60 | 40 |
|  | 5 | 196 | 103 | 145 | 83 | 123 | 70 | 263 | 176 |
|  | 6 | 61 | 32 | 83 | 47 | 68 | 38 | 57 | 38 |
|  | 7 | 19 | 10 | 34 | 20 | 54 | 31 | 56 | 38 |
| SPN |  | 3494 |  | 1908 |  | 1380 |  | 1550 |  |
| SSB |  | 25171 |  | 18039 |  | 13635 |  | 13115 |  |
| TSB |  | 27851 |  | 22920 |  | 23187 |  | 15526 |  |

Table 9.1 Sandeel. Division VIa.
Landings in tonnes, 1984-1991, as officially reported to ICES.

| Country | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | $1991^{1}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UK (Scotland) | 14,166 | 18,586 | 24,469 | 14,479 | 24,465 | 18,785 | 14,360 | 7,777 |

${ }^{1}$ Preliminary.

Table 9.2.1 Fishing effort (days absent) by month and year in the Division VIa SANDEEL fishery, 1981-1991, UK (Scotland).

| Month | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Jan | - | - | - | - | - | - | - | - | - | - | - |
| Feb | - | - | - | - | - | - | - | - | - | - | - |
| Mar | - | - | - | - | - | - | - | - | - | - | - |
| Apr | 4 | 54 | 21 | 11 | 7 | 7 | 3 | 26 | 13 | - | - |
| May | 4 | 121 | 112 | 119 | 131 | 104 | 22 | 87 | 50 | 29 | 5 |
| Jun | - | 168 | 112 | 128 | 124 | 117 | 79 | 139 | 99 | 138 | 54 |
| Total | 8 | 343 | 245 | 258 | 262 | 228 | 104 | 252 | 162 | 167 | 59 |
| Jul | 90 | 118 | 126 | 125 | 101 | 126 | 93 | 108 | 110 | 75 | 31 |
| Aug | 132 | 89 | 76 | 63 | 76 | 94 | 67 | 59 | 22 | 5 | 18 |
| Sep | 70 | 34 | - | - | 28 | 67 | 26 | 28 | 3 | - | - |
| Oct | 3 | 4 | - | - | 8 | 15 | - | 8 | - | - | - |
| Nov | - | - | - | - | - | - | - | - | - | - | - |
| Dec | - | - | - | - | - | - | - | - | - | - | - |
| Total | 295 | 245 | 202 | 188 | 213 | 302 | 186 | 203 | 135 | 80 | 49 |
| Annual | 303 | 588 | 447 | 446 | 475 | 530 | 290 | 455 | 297 | 247 | 108 |
| Total |  |  |  |  |  |  |  |  |  |  |  |

Table 9.2.2 Standardized effort (days absent) by half year in the Division VIa sandeel fishery (1982-1991). UK (Scotland) data.

| Year | I | II | Total |
| ---: | ---: | ---: | ---: |
| 1982 | 379 | 271 | 650 |
| 1983 | 315 | 244 | 559 |
| 1984 | 323 | 241 | 564 |
| 1985 | 355 | 285 | 640 |
| 1986 | 337 | 389 | 726 |
| 1987 | 154 | 245 | 399 |
| 1988 | 420 | 329 | 749 |
| 1989 | 282 | 257 | 539 |
| 1990 | 300 | 141 | 441 |
| $1991^{1}$ | 99 | 51 | 150 |

${ }^{1}$ Provisional (see Sect. 9.2).

Table 9.3.1 Sandeels. Division VIa. Numbers caught (millions), 1991, UK (Scotland) data.

|  | Age Group |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Month | 0 | 1 | 2 | 3 | 4 | 5 | 6 | $7+$ | Total |  |
| Apr | - | - | - | - | - | - | - | - | - |  |
| May | 68 | 42 | 13 | + | + | 1 | + | - | 125 |  |
| Jun | 497 | 312 | 126 | 9 | 14 | 24 | 9 | 1 | 992 |  |
| Jul | 69 | 38 | 49 | 29 | 16 | 27 | 9 | - | 237 |  |
| Aug | 25 | 13 | 17 | 11 | 6 | 10 | 3 | - | 86 |  |
| Sep | - | - | - | - | - | - | - | - | - |  |
| Oct | - | - | - | - | - | - | - | - | - |  |
| Total | 658 | 406 | 205 | 49 | 37 | 62 | 21 | 1 | 1,439 |  |

Table 9.3.2

| SANDEEL: |  |  | VIa: |  |  | Catch at age in numbers |  |  | (+ REPRESENTS < HALF A UNIT) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNITS $=$ MILLIONS : |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1983 |  | 1984 |  | 1985 |  |  |  |  |  |  |  |
|  | 1 | 2 | 1 | 2 | 1 | 2 |  |  |  |  |  |  |
| 0 | 391 | 2253 | 186 | 1751 | 53 | 3207 |  |  |  |  |  |  |
| 1 | 521 | 106 | 863 | 99 | 139 | 13 |  |  |  |  |  |  |
| 2 | 136 | 29 | 226 | 67 | 437 | 163 |  |  |  |  |  |  |
| 3 | 86 | 21 | 138 | 115 | 181 | 117 |  |  |  |  |  |  |
| 4 | 111 | 18 | 67 | 38 | 139 | 73 |  |  |  |  |  |  |
| 5 | 29 | 3 | 28 | 26 | 55 | 28 |  |  |  |  |  |  |
| 6 | 12 | 3 | 8 | 8 | 27 | 12 |  |  |  |  |  |  |
| $7+$ | 2 | 1 | 1 | 3 | 7 | 1 |  |  |  |  |  |  |
|  | 1986 |  | 1987 |  | 1988 |  | 1989 |  | 1990 |  | 991 |  |
|  | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
| 0 | 368 | 2702 | 105 | 595 | 795 | 173 | 170 | 275 | 20 | 392 | 564 | 94 |
| 1 | 859 | 996 | 521 | 676 | 187 | 72 | 205 | 20 | 508 | 121 | 355 | 52 |
| 2 | 140 | 68 | 97 | 232 | 1216 | 548 | 128 | 60 | 200 | 5 | 138 | 66 |
| 3 | 171 | 219 | 17 | 37 | 235 | 131 | 535 | 278 | 105 | 11 | 9 | 39 |
| 4 | 58 | 103 | 45 | 31 | 41 | 28 | 127 | 71 | 284 | 51 | 15 | 23 |
| 5 | 38 | 40 | 23 | 20 | 52 | 45 | 22 | 22 | 66 | 19 | 26 | 37 |
| 6 | 9 | 12 | 4 | 7 | 21 | 24 | 18 | 11 | 16 | 1 | 10 | 12 |
| 7+ | 6 | 6 | 1 | 4 | 3 | 8 | 6 | 8 | 2 | 1 | 1 | 0 |

Table 9.4.1 SANDEELS, Division VIa.
Mean weight (g) at age in the catch by month, 1991. UK (Scotland) data.

| Age | Apr | May | Jun | Jul | Aug | Sep |
| :---: | :---: | :---: | ---: | :---: | :---: | :---: |
| 0 | - | - | 1.3 | 2.0 | - | - |
| 1 | - | - | 5.7 | 5.6 | - | - |
| 2 | - | - | 9.8 | 9.9 | - | - |
| 3 | - | - | 16.5 | 14.3 | - | - |
| 4 | - | - | 19.4 | 18.8 | - | - |
| 5 | - | - | 21.5 | 19.1 | - | - |
| 6 | - | - | 20.7 | 21.2 | - | - |
| 7 | - | - | 17.7 | - | - | - |
| 8 | - | - | - | - | - |  |

Table 9.4.2 SANDEELS, Division VIa, long-term mean weight (g) at age in catch, 1980-1991.

| Age | I | II |
| :---: | ---: | ---: |
| 0 | 1.324 | 1.598 |
| 1 | 4.150 | 5.796 |
| 2 | 7.767 | 9.180 |
| 3 | 11.183 | 12.725 |
| 4 | 13.446 | 15.298 |
| 5 | 16.667 | 17.470 |
| 6 | 17.592 | 19.528 |
| $7+$ | 21.877 | 22.051 |

Table 9.5.2 SANDEEL, Division VIa
Diagnostics from semi-annual Separable VPA.
weight for effort data $=1.00$
Initial $S S Q=473.0754$
Final SSQ $=53.3867$
Resid. mean square $=.4724$
Coeff. of determination $=.8871$
Adj. Coeff. " $\quad \|=.8402$

Number of observations $=161$
Number of parameters $=48$
IFAIL on exit from E04FDF $=0$ IFAIL on exit from E04YCF $=0$

RMS for catch data $=$. 6042 RMS for effort data $=\quad .2491$

Selectivities at age

| age | 1 | 2 |
| ---: | ---: | ---: |
| 0 | .0038 | .0311 |
| 1 | .0424 | .0304 |
| 2 | .0973 | .0599 |
| 3 | .1006 | .1349 |
| 4 | .1303 | .1957 |
| 5 | .2024 | .2603 |
| 6 | .2410 | .3107 |
| 7 | .1303 | .1957 |

Log catch residuals

|  |  | 1983 |  | 1984 |  | 1985 |  | 1986 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
| 0 | . 1961 | 1.3084 | . 6368 | 1. 3447 | $-1.9873$ | . 8632 | -. 5632 | -. 5950 |
| 1 | -. 1719 | . 3107 | . 3891 | -. 6007 | -. 6147 | -1.5227 | . 1674 | 1.0006 |
| 2 | -. 6485 | -. 4295 | -. 1809 | -. 5305 | .1734 | . 3434 | . 1864 | -. 1491 |
| 3 | -. 1431 | -. 5481 | . 2636 | . 2042 | . 1417 | . 1154 | . 1113 | . 0242 |
| 4 | . 3658 | -. 5303 | . 3304 | -. 1858 | . 6790 | . 3734 | -. 2654 | -. 0798 |
| 5 | . 3035 | -. 8275 | -. 3925 | -. 1956 | . 4686 | . 3569 | . 0327 | -. 0656 |
| 6 | . 2469 | . 0312 | -. 0074 | . 3026 | . 2902 | . 0838 | -. 3086 | -. 1173 |
| 7 | -. 0529 | . 1770 | -. 8403 | . 3092 | . 9314 | -. 6760 | .3869 | -. 0018 |
|  |  | 1987 |  | 1988 |  | 1989 |  | 1990 |
|  | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
| 0 | . 6749 | . 1490 | 1.8870 | -. 9577 | -. 4365 | -1.1898 | -1.9826 | . 6532 |
| 1 | -. 0970 | . 6003 | -. 7214 | -. 2775 | -. 0059 | -. 8559 | . 0258 | . 9591 |
| 2 | -. 4903 | . 4926 | . 1948 | . 4989 | -. 2077 | . 2025 | . 7573 | -. 8847 |
| 3 | -. 2998 | -. 1599 | -. 0997 | -. 3216 | .3600 | . 1237 | . 4587 | -. 5176 |
| 4 | .3009 | -. 7938 | -. 0581 | -. 1400 | . 1426 | -. 0962 | . 4377 | -. 0916 |
| 5 | . 2775 | -. 3892 | -. 2764 | . 1166 | . 1141 | . 6752 | . 1088 | . 2491 |
| 6 | -. 3369 | -. 2795 | -. 1784 | . 5423 | -. 1385 | -. 0330 | . 7874 | -. 5772 |
| 7 | -. 2560 | . 4083 | -. 5786 | . 7017 | . 2307 | . 8611 | -. 9131 | -. 4185 |

Year/season effects

| year | 1 | 2 |
| ---: | ---: | ---: |
| 1983 | 1.1564 | .4669 |
| 1984 | .9480 | .9422 |
| 1985 | 1.1358 | .8508 |
| 1986 | .9736 | 1.5942 |
| 1987 | .3993 | .8184 |
| 1988 | 1.3158 | 1.0573 |
| 1989 | 1.0355 | .7608 |
| 1990 | .8849 | .2641 |
| 1991 | .3676 | .3045 |

Year/season effect residuals

| 1 | 2 |
| ---: | ---: |
| -.1453 | .5062 |
| .0784 | -.2082 |
| -.0078 | .0615 |
| .0943 | -.2554 |
| .1958 | -.0509 |
| .0132 | -.0153 |
| -.1455 | .0660 |
| .0735 | .5277 |
| -.1566 | -.6317 |


|  |  | 1991 |
| :--- | ---: | ---: |
|  | 1 | 2 |
| 0 | 1.5765 | -1.5765 |
| 1 | .9576 | .3718 |
| 2 | .1893 | .4521 |
| 3 | -.8201 | .8800 |
| 4 | -.1615 | .4006 |
| 5 | -.7674 | -.1012 |
| 6 | -.2686 | .2394 |
| 7 | -.5209 | .0000 |

Table 9.5.3 SANDEELS, Division VIa, fitted Fs-at-age.

|  | $\begin{array}{r} 1983 \\ 1 \end{array}$ | $\begin{array}{r} 1983 \\ 2 \end{array}$ | 1984 1 | 1984 2 | 1985 1 | 1985 | 1986 1 | 1986 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | . 004 | . 015 | . 004 | . 029 | . 004 | . 026 | . 004 | . 050 |
| 1 | . 049 | . 014 | . 040 | . 029 | . 048 | . 026 | . 041 | . 048 |
| 2 | . 113 | . 028 | . 092 | . 056 | . 111 | . 051 | . 095 | . 096 |
| 3 | . 116 | . 063 | . 095 | . 127 | . 114 | . 115 | . 098 | . 215 |
| 4 | . 151 | . 091 | . 124 | . 184 | . 148 | . 167 | . 127 | . 312 |
| 5 | . 234 | . 122 | . 192 | . 245 | . 23 | . 221 | . 197 | . 415 |
| 6 | . 279 | . 145 | . 229 | . 293 | . 274 | . 264 | . 235 | . 495 |
| 7 | . 151 | . 091 | . 124 | . 184 | . 148 | . 167 | . 127 | . 312 |
| $F(1-3)$ | . 093 | . 035 | . 076 | . 071 | . 091 | . 064 | . 078 | . 120 |
|  | 1987 | 1987 | 1988 | 1988 | 1989 | 1989 | 1990 | 1990 |
|  | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
| 0 | . 002 | . 025 | . 005 | . 033 | . 004 | . 024 | . 003 | . 008 |
| 1 | . 017 | . 025 | . 056 | . 032 | . 044 | . 023 | . 038 | . 008 |
| 2 | . 039 | . 049 | . 128 | . 063 | .101 | . 046 | . 086 | . 016 |
| 3 | . 040 | .110 | . 132 | . 143 | .104 | .103 | . 089 | . 036 |
| 4 | . 052 | . 160 | . 171 | . 207 | .135 | . 149 | . 115 | . 052 |
| 5 | . 081 | . 213 | . 266 | . 275 | . 210 | . 198 | . 179 | . 069 |
| 6 | . 096 | . 254 | . 317 | . 328 | . 250 | . 236 | . 213 | . 082 |
| 7 | . 052 | .160 | . 171 | . 207 | .135 | . 149 | . 115 | . 052 |
| $F(1-3)$ | . 032 | . 061 | .105 | . 079 | . 083 | . 057 | . 071 | . 020 |
|  | $\begin{array}{r} 1991 \\ 1 \end{array}$ | $\begin{array}{r} 1991 \\ 2 \end{array}$ |  |  |  |  |  |  |
| 0 | . 001 | . 009 |  |  |  |  |  |  |
| 1 | . 016 | . 009 |  |  |  |  |  |  |
| 2 | . 036 | . 018 |  |  |  |  |  |  |
| 3 | . 037 | . 041 |  |  |  |  |  |  |
| 4 | . 048 | . 060 |  |  |  |  |  |  |
| 5 | . 074 | . 079 |  |  |  |  |  |  |
| 6 | . 089 | . 095 |  |  |  |  |  |  |
| 7 | . 048 | . 060 |  |  |  |  |  |  |
| $F(1-3)$ | . 030 | . 023 |  |  |  |  |  |  |

Table 9.5.4 SANDEELS, Division VIa, fitted populations and biomass totals

|  |  | $\begin{array}{r} 1983 \\ 1 \end{array}$ | 1983 2 | 1984 1 | 1984 2 | 1985 1 | 1985 2 | 1986 1 | 1986 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0 | 72451 | 0 | 27067 | 0 | 88751 | 0 | 173123 |
|  | 1 | 18726 | 8012 | 21507 | 9283 | 7917 | 3390 | 26034 | 11225 |
|  | 2 | 2821 | 1868 | 3549 | 2398 | 4054 | 2689 | 1484 | 1000 |
|  | 3 | 1043 | 688 | 1345 | 906 | 1679 | 1109 | 1893 | 1271 |
|  | 4 | 635 | 405 | 478 | 313 | 591 | 378 | 733 | 478 |
|  | 5 | 118 | 69 | 274 | 167 | 193 | 114 | 237 | 144 |
|  | 6 | 44 | 25 | 45 | 27 | 97 | 55 | 67 | 39 |
|  | 7 | 17 | 11 | 23 | 15 | 23 | 15 | 39 | 26 |
| SSB |  | 45225 |  | 54895 |  | 63637 |  | 48534 |  |
| TSB |  | 122938 |  | 144149 |  | 96492 |  | 156575 |  |
|  |  | 1987 | 1987 | 1988 | 1988 | 1989 | 1989 | 1990 | 1990 |
|  |  | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
|  | 0 | 0 | 34953 | 0 | 23861 | 0 | 66239 | 0 | 42807 |
|  | 1 | 49622 | 21922 | 10263 | 4361 | 6954 | 2991 | 19485 | 8433 |
|  | 2 | 4805 | 3424 | 9609 | 6263 | 1898 | 1271 | 1313 | 892 |
|  | 3 | 674 | 479 | 2415 | 1567 | 4355 | 2907 | 900 | 610 |
|  | 4 | 760 | 534 | 318 | 198 | 1007 | 652 | 1943 | 1283 |
|  | 5 | 259 | 177 | 337 | 191 | 120 | 72 | 416 | 258 |
|  | 6 | 70 | 47 | 106 | 57 | 108 | 62 | 44 | 26 |
|  | 7 | 29 | 21 | 39 | 24 | 44 | 28 | 53 | 35 |
| SSB |  | 61259 |  | 114251 |  | 81846 |  | 55255 |  |
| TSB |  | 267191 |  | 156842 |  | 110706 |  | 136118 |  |
|  |  | 1991 | 1991 |  | 1992 |  |  |  |  |
|  |  | 1 | 2 |  | 1 |  |  |  |  |
|  | 0 | 0 | 82803 |  | 0 |  |  |  |  |
|  | 1 | 12788 | 5657 |  | 67186 |  |  |  |  |
|  | 2 | 3759 | 2687 |  | 4549 |  |  |  |  |
|  | 3 | 651 | 465 |  | 2112 |  |  |  |  |
|  | 4 | 436 | 308 |  | 359 |  |  |  |  |
|  | 5 | 903 | 621 |  | 233 |  |  |  |  |
|  | 6 | 178 | 121 |  | 462 |  |  |  |  |
|  | 7 | 42 | 29 |  | 93 |  |  |  |  |
| SSB |  | 61439 |  |  | 77823 |  |  |  |  |
| TSB |  | 114509 |  |  | 356645 |  |  |  |  |

Table 10.1 Landings of SPRAT in Division IIIa (tonnes $10^{-3}$ ). (Data provided by Working Group members).

|  | Skagerrak |  |  |  | Kattegat |  |  | Div. IIII <br> Year |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | Denmark | Sweden | Norway | Total | Denmark | Sweden | Total |  |
| 1974 | 17.9 | 2.0 | 1.2 | 21.1 | 31.6 | 18.6 | 50.2 | 71.3 |
| 1975 | 15.0 | 2.1 | 1.9 | 19.0 | 60.7 | 20.9 | 81.6 | 100.6 |
| 1976 | 12.8 | 2.6 | 2.0 | 17.4 | 27.9 | 13.5 | 41.4 | 58.8 |
| 1977 | 7.1 | 2.2 | 1.2 | 10.5 | 47.1 | 9.8 | 56.9 | 67.4 |
| 1978 | 26.6 | 2.2 | 2.7 | 31.5 | 37.0 | 9.4 | 46.4 | 77.9 |
| 1979 | 33.5 | 8.1 | 1.8 | 43.4 | 45.8 | 6.4 | 52.2 | 95.6 |
| 1980 | 31.7 | 4.0 | 3.4 | 39.1 | 35.8 | 9.0 | 44.8 | 83.9 |
| 1981 | 26.4 | 6.3 | 4.6 | 37.3 | 23.0 | 16.0 | 39.0 | 76.3 |


| Year | Skagerrak |  | Kattegat |  | Division <br> IIIa |
| :---: | :---: | :---: | ---: | :---: | ---: |
|  | Denmark | Norway | Denmark | Sweden | Total |
| 1982 | 10.5 | 1.9 | 21.4 | 5.9 | 39.7 |
| 1983 | 3.4 | 1.9 | 9.1 | 13.0 | 26.4 |
| 1984 | 13.2 | 1.8 | 10.9 | 10.2 | 36.1 |
| 1985 | 1.3 | 2.5 | 4.6 | 11.3 | 19.7 |
| 1986 | 0.4 | 1.1 | 0.9 | 8.4 | 10.8 |
| 1987 | 1.4 | 0.4 | 1.4 | 11.2 | 14.4 |
| 1988 | 1.7 | 0.3 | 1.3 | 5.4 | 8.7 |
| 1989 | 0.9 | 1.1 | 3.0 | 4.8 | 9.8 |
| 1990 | 1.3 | 1.3 | 1.1 | 6.0 | 9.7 |
| $1991^{1}$ | 4.2 | 0.8 | 2.2 | 6.6 | 13.8 |

${ }^{1}$ Preliminary.

Table 10.2 Indices of Sprat, 1-group, $\geq 2$-group, and all ages in Division IIIa from IYFS, 1974-1992.

| Year | 1 -group | $\geq 2$-group | Total |
| ---: | ---: | ---: | ---: |
| 1974 | 1,325 | - | - |
| 1975 | 5,339 | - | - |
| 1976 | 2,069 | - | - |
| 1977 | 5,713 | 984 | 6,697 |
| 1978 | 5,119 | 2,117 | 7,236 |
| 1979 | 3,338 | 1,482 | 4,820 |
| 1980 | 4,960 | 3,592 | 8,558 |
| 1981 | 2,809 | 3,068 | 5,877 |
| 1982 | 1,577 | 4,965 | 6,272 |
| 1983 | 1,173 | 1,685 | 2,858 |
| 1984 | 4,141 | 2,216 | 6,357 |
| 1985 | 2,077 | 2,667 | 4,744 |
| 1986 | 684 | 4,834 | 5,518 |
| 1987 | 1,830 | 16,543 | 18,373 |
| 1988 | 945 | 8,238 | 9,183 |
| 1989 | 442 | 2,891 | 3,333 |
| 1990 | 503 | 471 | 974 |
| 1991 | 693 | 1,245 | 1,938 |
| 1992 | 5,380 | 1,698 | 7,078 |

Table 10.3 SPRAT in Division.lilia. Spreadsheet for SHOT prediction.

|  | older central younger | $\begin{aligned} & 0.00 \\ & 1 \\ & 1.00 \\ & 6 \\ & 0.00 \end{aligned}$ |  |  | ex | $\begin{aligned} & G-M= \\ & \exp (d) \\ & \exp (d / \end{aligned}$ | $\begin{aligned} & 0.00 \\ & 1.00 \\ & 1.00 \end{aligned}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Land <br> -ings | Recrt <br> Index | W'td Index | $\begin{array}{r} \text { Y/B } \\ \text { Ratio } \end{array}$ | $\begin{gathered} \text { Hang } \\ \text {-over } \end{gathered}$ | Act'l <br> Prodn | Est'd Prodn | $\begin{aligned} & \text { Est'd } \\ & \text { SQC. } \end{aligned}$ | Act' 1 Expl Biom | Est'd Expl Biom | Est'd Land -ings |
| 1982 | 397 | 1577 |  | 0.77 | 0.23 |  |  |  | 516 |  |  |
| 1983 | 264 | 1173 | 1173 | 0.77 | 0.23 | 224 |  |  | 343 |  |  |
| 1984 | 361 | 4141 | 4141 | 0.77 | 0.23 | 390 |  |  | 469 |  |  |
| 1985 | 197 | 2077 | 2077 | 0.60 | 0.40 | 221 |  |  | 328 |  |  |
| 1986 | 108 | 684 | 684 | 0.60 | 0.40 | 49 | 77 | 125 | 180 | 209 | 125 |
| 1987 | 144 | 1830 | 1830 | 0.60 | 0.40 | 168 | 200 | 163 | 240 | 272 | 163 |
| 1988 | 87 | 945 | 945 | 0.60 | 0.40 | 49 | 100 | 118 | 145 | 196 | 118 |
| 1989 | 98 | 442 | 442 | 0.60 | 0.40 | 105 | 45 | 62 | 163 | 103 | 62 |
| 1990 | 97 | 503 | 503 | 0.60 | 0.40 | 96 | 54 | 71 | 162 | 119 | 71 |
| 1991 | 138 | 693 | 693 | 0.60 | 0.40 | 165 | 77 | 85 | 230 | 141 | 85 |
| 1992 |  | 5380 | 5380 | 0.60 | 0.40 |  | 632 | 435 |  | 724 | 435 |

Table 11.1.1 Sprat catches in the North Sea ('000 t), 1981-1991.
Catches in fjords of western Norway excluded.
(Data provided by Working Group members except where indicated.)

| Country | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | $1991{ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Division IVa West |  |  |  |  |  |  |  |  |  |  |
| Denmark | 2.8 | - | - | - | 0.9 | 0.6 | 0.2 | 0.1 | $+$ | - |  |
| Germany | - | - | - | - | - | - | - | - | - | - |  |
| Netherlands | - | - | - | - | 6.7 | - | - | - | - | - | - |
| Norway | - | - | - | - | - | - | - | - | - | - | 0.1 |
| UK (Scotland) | 1.0 | $+$ | - | + | 6.1 | + | + | - | - | + | - |
| Total | 3.8 | + | - | + | 13.7 | 0.6 | 0.2 | 0.1 | + | + | 0.1 |
| Division IVa East (North Sea) stock |  |  |  |  |  |  |  |  |  |  |  |
| Denmark | - | + | - | - | + | 0.2 | $+$ | + | + | - | - |
| Norway | - | 0.3 | - | - | - | - | - | - | - | - | - |
| Sweden | - | - | - | - | - | - | - | - | - | $+^{5}$ | 2.5 |
| Total | - | 0.3 | - | - | + | 0.2 | + | + | + | + | 2.5 |
| Division IVb West |  |  |  |  |  |  |  |  |  |  |  |
| Denmark | 53.6 | 23.1 | 32.6 | 5.6 | 1.8 | 0.4 | 3.4 | 1.4 | 2.0 | 10.0 | 9.4 |
| Faroe Islands | - | - | - | - | - | - | - | - | - | - | - |
| Norway | 0.2 | 10.2 | 0.9 | 0.5 | - | - | - | 3.5 | 0.1 | 1.2 | 4.4 |
| UK (England) | - | - | - | + | - | - | - | - | - | - | - |
| UK (Scotland) | 0.7 | 0.2 | + | + | - | - | 0.1 | - | - | - | - |
| Total | 54.5 | 33.5 | 33.5 | 6.1 | 1.8 | 0.4 | 3.5 | 4.9 | 2.1 | 11.2 | 13.8 |
| Division IVb East |  |  |  |  |  |  |  |  |  |  |  |
| Denmark | 127.5 | 91.2 | 39.2 | 62.1 | 36.6 | 10.3 | 28.0 | 80.7 | 59.2 | 59.2 | 67.0 |
| Germany | 4.8 | 1.5 | - | 0.6 | 0.6 | $0.6{ }^{3}$ | - | - | - | - | - |
| Norway | 0.2 | 7.6 | 10.8 | 3.1 | - | - | - | 0.6 | - | 0.6 | 25.1 |
| Sweden | - | - | - | - | - | - | - | - | - | $+^{2}$ | $+^{2}$ |
| Total | 132.5 | 100.3 | 50.0 | 65.8 | 37.2 | 10.9 | 28.0 | 81.3 | 59.2 | 59.8 | 92.1 |
| Division IVe |  |  |  |  |  |  |  |  |  |  |  |
| Belgium | - | - | - | - | + | + | + | - | $+^{2}$ | $+^{2}$ | $+^{2}$ |
| Denmark | 4.3 | 2.4 | 1.0 | 0.5 | + | 0.1 | $+$ | 0.1 | 0.5 | 1.5 | 1.7 |
| France | - | - | - | - | - | + | - | - | $+^{2}$ | - | $+^{2}$ |
| Netherlands | - | - | - | 0.1 | - | - | - | 0.4 | $0.4{ }^{2,3}$ | - | $+^{2,3}$ |
| Norway | - | 2.2 | 0.5 | 3.4 | - | - | - | - | - | - | - |
| UK (England) | 14.0 | 14.9 | 3.6 | 0.9 | 3.4 | 4.1 | 0.7 | 0.6 | 0.9 | 0.2 | 1.8 |
| Total | 18.3 | 20.1 | 5.1 | 4.9 | 3.4 | 4.3 | 0.7 | 1.1 | 1.8 | 1.7 | 3.5 |
| Total North Sea |  |  |  |  |  |  |  |  |  |  |  |
| Belgium | - | - | - | - | + | + | + | - | + | $+^{2}$ | $+^{2}$ |
| Denmark | 188.2 | 116.6 | 72.6 | 68.1 | 39.5 | 11.7 | 31.7 | 82.3 | 61.9 | 69.2 | 78.1 |
| Faroe Islands | - | - | - | - | - | - | - | - | - | - | - |
| France | - | - | - | - | - | + | - | - | + | - | $+^{2,3}$ |
| Germany | 4.8 | 1.5 | - | 0.6 | - | 0.6 | - | - | - | - | - |
| Netherlands | - | - | - | 0.1 | 0.6 | - | 0.5 | 0.4 | 0.4 | - | $+^{2,3}$ |
| Norway | 0.4 | 20.6 | 12.0 | 7.0 | 6.1 | - | - | 4.1 | 0.1 | 1.8 | 29.6 |
| Sweden | - | - | - | - | - | - | - | - | - | $+^{2}$ | $+^{2}$ |
| UK (England) | 14.0 | 14.9 | 3.6 | 0.9 | 3.4 | 4.1 | 0.7 | 0.6 | 0.9 | 0.2 | 1.8 |
| UK (Scotland) | 1.7 | 0.2 | + | + | - | + | 0.2 | - | - | + | - |
| Total | 209.1 | 153.8 | 88.4 | 76.7 | 49.6 | 16.4 | 33.1 | 87.4 | 63.3 | 71.2 | 109.5 |

${ }^{1}$ Preliminary. ${ }^{2}$ Official statistics. ${ }^{3}$ Includes Divisions IVa-e. ${ }^{5}$ Includes Division IVb East.
$+=$ less than 0.1. $-=$ magnitude known to be nil.

Table 11.1.2 Sprat catches ('000 t) in the fjords of western Norway, 1982-1991.

| 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6.1 | 3.2 | 4.4 | 7.1 | 2.2 | 8.3 | -1 | 2.4 | 2.7 | 3.2 |

${ }^{1}$ Not available.

Table 11.1.3 Sprat catches ( t ) in the North Sea by quarter in 1985 (Denmark, Norway and the UK), 1986, 1987, 1988 (Denmark and the UK), 1989 (Denmark, Norway and the UK), 1990 (Denmark and Norway), and 1991 (Denmark, Norway and UK). Catches in fjords of western Norway excluded.

| Year | Quarter | Area |  |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | IVa West | IVa East (North Sea stock) | IVb West | IVb East | IVc |  |
| 1985 | 1 | 1 | - | 97 | 6,533 | 1,370 | 8,001 |
|  | 2 | - | - | 149 | 659 | - | 808 |
|  | 3 | 44 | 15 | 176 | 4,535 | 5 | 4,775 |
|  | 4 | 7,550 | 9 | 1,407 | 24,913 | 1,547 | 35,426 |
| Total |  | 7,595 | 24 | 1,829 | 36,640 | 2,922 | 49,010 |
| 1986 | 1 | 282 | 123 | 104 | 2,899 | 4,134 | 7,542 |
|  | 2 | 5 | 39 | 206 | 5,048 | 22 | 5,320 |
|  | 3 | 3 | 10 | 6 | 389 | 9 | 417 |
|  | 4 | 373 | 63 | 80 | 2,005 | 51 | 2,571 |
| Total |  | 663 | 235 | 396 | 10,341 | 4,216 | 15,851 |
| 1987 | 1 | 70 | 10 | 148 | 17 | 564 | 809 |
|  | 2 | - | 7 | 118 | 3,297 | 57 | 3,479 |
|  | 3 | - | 6 | 65 | 6,999 | 46 | 7,116 |
|  | 4 | 98 | - | 3,191 | 16,456 | 17 | 19,762 |
| Total |  | 168 | 23 | 3,522 | 26,769 | 684 | 31,166 |
| 1988 | 1 | - | - | 5 | 206 | 529 | 740 |
|  | 2 | - | - | 229 | 682 | 28 | 939 |
|  | 3 | - | 11 | 4,682 | 72,317 | 73 | 77,083 |
|  | 4 | 55 | - | 651 | 7,529 | 31 | 8,266 |
| Total |  | 55 | 11 | 5,567 | 80,734 | 621 | 87,028 |
| 1989 | 1 | - | 39 | 1,127 | 14,702 | 1,231 | 17,099 |
|  | 2 | - | - | 241 | 242 | 14 | 497 |
|  | 3 | 31 | - | 784 | 43,190 | 110 | 44,115 |
|  | 4 | 10 | - | 2 | 1,092 | 101 | 1,205 |
| Total |  | 41 | 39 | 2,154 | 59,226 | 1,456 | 62,916 |
| 1990 | 1 | - | - | 222 | 4,896 | - | 5,118 |
|  | 2 | - | - | 426 | 320 | 39 | 785 |
|  | 3 | - | - | 6,759 | 31,054 | 10 | 37,823 |
|  | 4 | - | - | 3,812 | 23,565 | 1,420 | 28,797 |
| Total |  | - | - | 11,219 | 59,835 | 1,469 | 72,523 |
| 1991 | 1 | - | - | 31 | 899 | 1,117 | 2,047 |
|  | 2 | - | - | 55 | 87 | 1 | 143 |
|  | 3 | 144 | - | 9,038 | 58,312 | - | 67,494 |
|  | 4 | - | - | 4,821 | 33,389 | - | 38,210 |
| Total |  | 144 | - | 13,945 | 92,687 | 1,118 | 107,894 |

Table 11.2 North Sea Sprat. Catch in numbers (millions) taken by quarter in 1987 to 1991 by Denmark, Norway, and UK (England).

| Country | Fishing area | Quarter | Age |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 0 | 1 | 2 | 3 | 4 | 5 |
| 1987 |  |  |  |  |  |  |  |  |
| Denmark | North Sea | 3 | - | 555.11 | 85.23 | 1.00 | - | - |
|  | (Sub-area IV) | 4 | 28.79 | 1,546.19 | 319.81 | 8.44 | - | - |
| UK (Engl.) | Thames (Div. IVc) | 1 | - | 1.01 | 37.18 | 12.14 | 0.76 | - |
| 1988 |  |  |  |  |  |  |  |  |
| Denmark | North Sea <br> (Sub-area IV) | 1 |  | 0.24 | 23.04 | 1.19 | - | - |
|  |  | 2 | - | 1.05 | 101.47 | 5.23 | - | - |
|  |  | 3 | - | 471.43 | 4,615.42 | 9.68 | - | - |
|  |  | 4 | - | 37.63 | 461.13 | 2.36 | - | - |
| UK (Engl.) | Thames (Div.IVc) | 1 | - | 7.53 | 34.24 | 6.89 | 1.66 | 0.14 |
| Norway | North Sea <br> (Division IVb) | 3 | - | 0.4 | 125.6 | 48.7 | 3.9 | - |
|  |  | 4 | 0.7 | 11.0 | 13.2 | 6.2 | - | - |
| 1989 |  |  |  |  |  |  |  |  |
| Denmark | North Sea <br> (Sub-area IV) | 1 | - | 551.35 | 864.77 | 21.57 | - | - |
|  |  | 2 | - | 12.00 | 18.81 | 0.47 | - | - |
|  |  | 3 | 60.04 | 2,026.65 | 2,120.30 | 273.77 | - | - |
|  |  | 4 | 1.52 | 51.31 | 53.69 | 6.93 | - | - |
| UK (Engl.) | $\begin{aligned} & \text { (Thames + Wash) } \\ & \text { (Division IVc) } \end{aligned}$ | 1 | - | 11.1 | 32.40 | 31.42 | 1.01 | - |
|  |  | 4 | 0.08 | 5.84 | 0.80 | 0.50 | - | - |
| Norway | (Division IVb) | 2 | - | 0.11 | 0.60 | 4.70 | 0.05 | - |
| 1990 |  |  |  |  |  |  |  |  |
| Denmark | (Division IVb) | 1 | - | 537.96 | 225.91 | 28.26 | 2.05 | 0.13 |
|  |  | 2 |  |  | No sam |  |  |  |
|  |  | 3 | - | 877.98 | 1,164.78 | - | - | - |
|  |  | 4 |  |  | No sam |  |  |  |
|  | (Division IVc) | 2-4 |  |  | No sam |  |  |  |
| Norway | (Division IVb) | 2-3 |  |  | No sam |  |  |  |
| 1991 |  |  |  |  |  |  |  |  |
| Denmark | (Division IVb) | 1 | - | 34.39 | 1.98 | 0.22 | 0.04 | 0.04 |
|  |  | 2 | - | 0.51 | 3.36 | 0.93 | 0.05 | - |
|  |  | 3 | 9.71 | 664.81 | 1086.27 | 328.04 | 79.07 | - |
|  |  | 4 | 296.05 | 1896.74 | 271.93 | 34.60 | 4.58 | - |
| Norway | (Division IV) | 3 |  |  | No sam |  |  |  |
| UK (Engl.) | Thames | 1 | - | 12.56 | 49.26 | 17.75 | 0.97 | 0.60 |
|  | (Division IVc) | 4 | - | 44.29 | 9.43 | 1.59 | - | - |

Table 11.3 North Sea sprat mean weight at age (g) 1991 (Danish data).

|  | Quarter |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Age | 1 | 2 | 3 | 4 |
| 0 | - | - | 4.0 | 4.0 |
| 1 | 4.2 | - | 13.0 | 14.2 |
| 2 | 12.6 | - | 15.8 | 18.8 |
| 3 | 15.0 | - | 18.7 | 19.7 |

Table 11.4 North Sea SPRAT. IYFS research vessel indices (no./hr).

| Year | North Sea <br> all ages | Division IVb <br> 1-group | Division IVb E <br> 1-group |
| :---: | ---: | ---: | ---: |
| 1970 | - | - | - |
| 1971 | - | - | - |
| 1972 | 873 | 90 | - |
| 1973 | 713 | 123 | - |
| 1974 | 2,631 | 481 | - |
| 1975 | $2,-127$ | - | - |
| 1976 | 3,031 | 1,186 | - |
| 1977 | 2,208 | 136 | - |
| 1978 | $569^{1}$ | 1,474 | - |
| 1979 | 3,770 | $248^{1}$ | $-1,402$ |
| 1980 | 2,107 | 886 | 1,146 |
| 1981 | 602 | 183 | 512 |
| 1982 | 852 | 512 | 944 |
| 1983 | -2 | 347 | 638 |
| 1984 | 638 | 659 | 1,187 |
| 1985 | 170 | 73 | 103 |
| 1986 | 1,248 | 807 | 1,446 |
| 1987 | 1,097 | 145 | 269 |
| 1988 | 5,020 | 4,246 | 7,532 |
| 1989 | 905 | 177 | 267 |
| 1990 | 1,268 | -2 | 1,121 |
| 1991 | $1,639^{3}$ | 1,960 |  |
| 1992 |  |  | $2,218^{3}$ |

${ }^{1}$ Low figures due to abnormal conditions on the survey.
${ }^{2}$ Not yet available.
${ }^{3}$ Preliminary.

Table 12.1 Sprat in Division VIa, 1982-1991. Landings in tonnes as officially reported to ICES.

| Country | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | $1991^{1}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Denmark | - | - | - | - | - | $269^{2}$ | 364 | - | - | - |
| Germany | - | - | - | - | - | - | - | - | - | - |
| Ireland | 287 | - | 192 | 51 | 348 | - | 150 | 147 | - | - |
| Netherlands | 2,156 | 1,863 | - | - | - | - | - | - | - | - |
| Norway | 24 | - | - | 557 | - | - | - | - | - | - |
| UK (Engl.\& | - | - | - | - | 2 | - | - | - | + | - |
| Wales) |  |  |  |  |  |  |  |  |  |  |
| UK (Scotland) ${ }^{3}$ | 1,057 | 1,971 | 2,456 | 2,946 | 520 | 582 | 3,844 | 1,146 | 813 | 1,459 |
| Total | 3,524 | 3,834 | 2,648 | 3,554 | 870 | 851 | 4,378 | 1,298 | 813 | 1,459 |

${ }^{1}$ Preliminary.
${ }^{2}$ Includes Division VIb.
${ }^{3}$ Amended from national data.

Table 12.2 Catch in numbers (millions) at age and mean weight at age (g) in the catch for Sprat in Division VIa. [(Data from UK (Scotland).]


Table 13.1.1 Nominal catch of sprat in Divisions VIId,e, 1982-1991.

| Country | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | $1991^{1}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Belgium | - | 3 | - | - | - | - | - | - | - | - |
| Denmark | 286 | 638 | 1,417 | - | 15 | 250 | 2,529 | 2,092 | 608 | - |
| France | 44 | 60 | 47 | 14 | - | 23 | 2 | 10 | - | - |
| Germany | - | - | - | - | - | - | - | - | - | - |
| Netherlands | 1,533 | 1,454 | 589 | - | - | - | - | - | - | - |
| Norway | - | - | - | - | - | - | - | - | - | - |
| UK (Engl. \& | 4,749 | 4,756 | 2,402 | 3,771 | 1,163 | 2,441 | 2,944 | 1,319 | 1,508 | 2,567 |
| Wales) |  |  |  |  |  |  |  |  |  |  |
| Total | 6,612 | 6,011 | 4,455 | 33,785 | 1,178 | 2,714 | 5,475 | 3,421 | 2,116 | 2,567 |

[^1]Table 13.1.2 Lyme Bay area fishery, 1961-1992. Monthly catches (t) (UK vessels only).

| Season | Jul | Aug | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1961-1962 | - | - | - | 1 | 27 | 4 | 427 | 428 | 35 | 922 |
| 1962-1963 | - | - | - | 309 | 238 | 131 | 148 | 187 | 58 | 1,071 |
| 1963-1964 | - | - | - | 263 | 53 | 82 | 385 | 276 | 24 | 1,083 |
| 1964-1965 | - | - | - | 25 | 56 | 20 | 242 | 465 | 8 | 816 |
| 1965-1966 | - | - | - | 47 | 81 | 165 | 610 | 302 | 17 | 1,222 |
| 1966-1967 | - | - | - | 3 | 152 | 368 | 703 | 355 | 1 | 1,583 |
| 1967-1968 | - | - | 18 | 76 | 238 | 422 | 560 | 43 | 3 | 1,360 |
| 1968-1969 | 11 | - | 4 | 122 | 142 | 298 | 373 | 123 | 1 | 1,074 |
| 1969-1970 | - | - | - | 140 | 131 | 276 | 915 | 283 | 76 | 1,821 |
| 1970-1971 | - | 7 | 38 | 90 | 184 | 549 | 553 | 106 | 20 | 1,547 |
| 1971-1972 | - | - | 369 | 101 | 232 | 228 | 410 | 70 | - | 1,410 |
| 1972-1973 | - | - | 107 | 209 | 132 | 87 | 404 | 165 | 49 | 1,153 |
| 1973-1974 | - | - | 313 | 186 | 194 | 350 | 311 | 96 | 40 | 1,490 |
| 1974-1975 | 184 | 451 | 209 | 533 | 838 | 405 | 157 | 30 | - | 2,807 |
| 1975-1976 | - | - | 66 | 649 | 289 | 111 | 204 | 6 | - | 1,325 |
| 1976-1977 | 289 | 440 | 1,039 | 123 | 594 | 347 | 234 | 103 | 5 | 3,174 |
| 1977-1978 | 31 | 680 | 768 | 725 | 115 | 84 | 201 | 54 | - | 2,658 |
| 1978-1979 | - | 252 | 368 | 545 | 450 | 209 | 58 | 37 | 28 | 1,947 |
| 1979-1980 | - | - | 90 | 674 | 706 | 337 | 150 | 38 | 2 | 1,997 |
| 1980-1981 | - | - | 458 | 815 | 1,423 | 1,872 | 2,069 | 138 | 54 | 6,829 |
| 1981-1982 | - | - | 11 | 475 | 1,854 | 4,311 | 855 | 265 | 100 | 7,871 |
| 1982-1983 | - | - | 54 | 844 | 1,017 | 641 | 522 | 90 | 31 | 3,199 |
| 1983-1984 | - | - | 82 | 477 | 1,076 | 1,772 | 157 | 101 | 55 | 4,350 |
| 1984-1985 | - | - | 331 | 834 | 643 | 252 | 225 | 94 | 19 | 2,398 |
| 1985-1986 | - | 104 | 463 | 1,401 | 769 | 132 | 52 | 1 | - | 2,933 |
| 1986-1987 | - | 9 | 138 | 312 | 192 | 393 | 313 | 145 | 18 | 1,520 |
| 1987-1988 | - | - | 471 | 675 | 636 | 163 | 322 | 129 | 58 | 2,454 |
| 1988-1989 | - | 2 | 1,179 | 413 | 491 | 306 | 285 | 53 | - | 2,729 |
| 1989-1990 | - | 80 | 424 | 340 | 77 | 48 | 128 | 131 | - | 1,228 |
| 1990-1991 | 6 | 221 | 227 | 497 | 84 | 93 | 173 | 315 | 30 | 1,646 |
| 1991-1992 ${ }^{1}$ | 0 | 205 | 450 | 952 | 60 | 358 |  | --N/A | --- | 2,025 |

[^2]Table 13.2.1 Lyme Bay sprat fishery, 1966-1992.
Numbers caught per age group (millions).

|  | Age group |  |  |  |  |  |
| :--- | :---: | ---: | ---: | ---: | ---: | ---: |
| Season | $0 / 1$ | $1 / 2$ | $2 / 3$ | $3 / 4$ | $4 / 5$ | $5 / 6$ |
| $1966-1967$ | 0.55 | 11.67 | 44.00 | 18.56 | 11.67 | 3.60 |
| $1967-1968$ | 2.28 | 46.79 | 33.10 | 5.08 | 0.66 | 0.39 |
| $1968-1969$ | 0.08 | 29.99 | 29.24 | 4.03 | 0.44 | 0.10 |
| $1969-1970$ | 0.13 | 17.53 | 62.78 | 18.60 | 2.73 | 0.35 |
| $1970-1971$ | 0.01 | 4.12 | 46.03 | 26.94 | 1.57 | 0.54 |
| $1971-1972$ | 0.80 | 20.22 | 28.01 | 22.96 | 4.12 | 0.34 |
| $1972-1973$ | 1.51 | 32.20 | 22.20 | 10.20 | 3.96 | 0.38 |
| $1973-1974$ | 0.50 | 22.91 | 46.12 | 9.08 | 5.06 | 2.42 |
| $1974-1975$ | 0.30 | 40.77 | 82.73 | 12.67 | 8.84 | 3.55 |
| $1975-1976$ | 0.16 | 13.33 | 25.25 | 23.28 | 6.39 | 1.47 |
| $1976-1977$ | 0.73 | 40.34 | 108.52 | 34.87 | 6.56 | 0.37 |
| $1977-1978$ | 0.12 | 19.48 | 69.33 | 43.89 | 7.50 | 0.48 |
| $1978-1979$ | 9.20 | 41.71 | 44.64 | 18.97 | 5.72 | 0.01 |
| $1979-1980$ | 1.17 | 26.97 | 55.45 | 7.58 | 4.07 | 0.33 |
| $1980-1981$ | 0.76 | 51.33 | 220.79 | 55.35 | 6.15 | 0.26 |
| $1981-1982$ | 1.08 | 52.00 | 161.91 | 131.28 | 20.94 | 0.55 |
| $1982-1983$ | 1.16 | 4.81 | 49.74 | 58.89 | 25.41 | 0.25 |
| $1983-1984$ | 7.19 | 13.18 | 47.05 | 74.09 | 40.61 | 9.16 |
| $1984-1985$ | 1.21 | 40.15 | 44.27 | 28.25 | 9.60 | 1.23 |
| $1985-1986$ | 1.53 | 15.24 | 105.48 | 21.05 | 7.78 | 1.01 |
| $1986-1987$ | - | 10.36 | 42.40 | 17.14 | 2.84 | 0.70 |
| $1987-1988$ | - | 25.49 | 47.47 | 29.66 | 9.52 | 1.07 |
| $1988-1989$ | 2.31 | 20.10 | 88.99 | 26.10 | 4.86 | 0.62 |
| $1989-1990$ | 0.16 | 15.40 | 22.43 | 24.12 | 3.24 | 0.35 |
| $1990-1991$ | 2.76 | 25.12 | 46.53 | 8.80 | 3.55 | 0.04 |
| $1991-1992^{1}$ | 1.59 | 32.40 | 40.06 | 13.83 | 0.42 | 0.03 |
|  |  |  |  |  |  |  |

${ }^{1}$ August-December only.

Table 13.3 Lyme Bay area SPRAT, 1974-1992. Mean weight at age.

| \$ensous | Quarter |  |  |  |  |  |  | Ovarall mean |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0/1 | 1/2 | 2/3 | 3/4 | 4/5 | $5 / 6$ |  |
| 1974-1975 | 3 | 4.4 | 11.0 | 17.6 | 24.4 | 29.0 | 30.7 | 15.9 |
|  | 4 | 3.6 | 9.2 | 18.9 | 25.6 | 29.6 | 30.7 | 19.0 |
|  | 1 | 4.7 | 8.6 | 14.8 | 20.6 | 23.3 | 24.8 | 12.3 |
|  | Seamon | 3.9 | 9.8 | 18.1 | 25.2 | 29.4 | 30.6 | 17.4 |
| 1975-1976 | 3 | $=$ | 15.4 | 17.1 | 22.1 | 28.6 | 27.0 | 19.1 |
|  | 4 | 3.7 | 9.5 | 16.4 | 24.1 | 29.1 | 28.0 | 19.2 |
|  | 1 | 2.5 | 9.6 | 15.7 | 23.0 | 28.9 | 26.7 | 17.7 |
|  | Seamon | 3.1 | 9.7 | 16.3 | 23.8 | 29.0 | 27.8 | 18.9 |
| 1976-1977 | 3 | - | 12.8 | 16.8 | 20.4 | 27.2 | 26.2 | 17.3 |
|  | 4 | 3.3 | 7.7 | 17.7 | 23.7 | 28.1 | 32.7 | 17.2 |
|  | 1 | 2.6 | 8.2 | 15.1 | 21.0 | 27.2 | - | 12.3 |
|  | Season | 2.9 | 9.3 | 16.8 | 22.0 | 27.7 | 28.1 | 16.5 |
| 1977-1978 | 3 | - | 8.2 | 16.3 | 22.4 | 26.4 | 32.4 | 18.6 |
|  | 4 | - | 6.8 | 18.1 | 22.6 | 24.9 | 30.5 | 19.3 |
|  | 1 | 6.4 | 5.2 | 14.5 | 21.8 | 22.4 | 28.7 | 9.8 |
|  | Sensod | 6.4 | 6.2 | 16.7 | 22.3 | 25.3 | 31.3 | 17.5 |
| 1978-1979 | 3 | 3.5 | 15.4 | 19.2 | 25.4 | 29.6 | = | 20.9 |
|  | 4 | 6.3 | 11.8 | 16.5 | 23.9 | 29.6 | . | 15:2 |
|  | 1 | 4.9 | 10.1 | 13.1 | 19.9 | 28.3 | - | 10.6 |
|  | Season | 5.7 | 12.1 | 16.8 | 24.3 | 29.6 | * | 16.2 |
| 1979-1980 | 3 | 3.0 | 18.2 | 23.6 | 25.8 | 32.9 | 30.7 | 23.1 |
|  | 4 | 3.5 | 16.5 | 33.2 | 27.0 | 31.6 | 30.7 | 22.4 |
|  | 1 | 4.0 | 9.7 | 19.2 | 22.1 | 20.7 | - | 12.5 |
|  | Seamon | 3.9 | 14.3 | 22.9 | 26.8 | 30.7 | 31.0 | 21.0 |
| 1980-1981 | 3 | = | 17.4 | 24.3 | 25.6 | 29.9 | 34.5 | 24.4 |
|  | 4 | 5.2 | 16.1 | 21.4 | 24,8 | 29.9 | 32.0 | 21.7 |
|  | 1 | 3.1 | 11.8 | 17.1 | 21.0 | 28.6 | 34.5 | 16.3 |
|  | Season | 3.1 | 13.5 | 19.9 | 23.6 | 29.7 | 32.9 | 19.7 |
| 1981-1982 | 3 | - | 17.3 | 19.5 | 21.4 | 33.0 | * | 19.6 |
|  | 4 | 6.1 | 14.7 | 21.5 | 25.5 | 28.5 | 31.0 | 23.4 |
|  | 1 | 6.4 | 12.1 | 16.5 | 20.2 | * | - | 14.7 |
|  | Sensora | 6.4 | 12.9 | 20.3 | 25.2 | 28.5 | 31.0 | 21.4 |
| 1982-1983 | 3 | " | 16.0 | 18.9 | 24.9 | 27.5 | 32.9 | 23.9 |
|  | 4 | 6.1 | 15.8 | 19.6 | 24.7 | 27.9 | 32.4 | 23.7 |
|  | 1 | - | 13.0 | 18.8 | 22.5 | 26.1 |  | 20.0 |
|  | Season | 6.1 | 14.1 | 19.3 | 24.4 | 27.8 | 32.4 | 22.9 |
| 1983-1984 | 4 | 4.1 | 15.2 | 20.6 | 23.6 | 27.1 | 27.5 | 23.2 |
|  | $1$ | - | 16.2 | 19.9 | 23.3 | 26.9 | 28.7 | 23.3 |
|  | Serson | 4.1 | 15.3 | 20.5 | 23.5 | 27.0 | 27.5 | 23.2 |
| 1984-1985 | 3 | - | 12.5 | 17.3 | 22.9 | 25.7 | * | 18.7 |
|  | 4 | 5.9 | 16.0 | 19.4 | 23.5 | 26.5 | 27.9 | 20.3 |
|  | 1 | 5.9 | 11.5 | 17.2 | 22.8 | 26.7 | 30.7 | 13.9 |
|  | Season | 5.9 | 14.0 | 18.7 | 23.4 | 26.4 | 28.1 | 18.8 |
| 1985-1986 | 3 | * | 16.0 | 19.2 | 22.6 | 22.0 | $=$ | 19.3 |
|  | 4 | 6.4 | 15.6 | 17.9 | 21.9 | 23.6 | 32.0 | 18.6 |
|  | 1 | 5.7 | 15.9 | 19.0 | 22.9 | 28.3 | - | 17.5 |
|  | Season | 6.3 | 18.7 | 18.2 | 22.0 | 23.4 | 32.0 | 18.7 |


| Seasom | Qugrter | Age group |  |  |  |  |  | Overall medn |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $0 / 1$ | 1/2 | 2/3 | 3/4 | $4 / 5$ | 5/6 |  |
| 1986-1987 | 4 | - | 18.1 | 20.9 | 24.6 | 27.8 | 29.6 | 22.4 |
|  | 1 | - | 13.3 | 18.6 | 23, 3 | 29.6 | - | 17.3 |
|  | Season | - | 14.8 | 19.9 | 24,4 | 28.0 | 29.6 | 20.6 |
| 1987-1988 | 4 | - | 15.4 | 23.1 | 26.9 | 27.3 | 27.7 | 24.8 |
|  | 1 | * | 14.0 | 17.4 | 19.4 | = | - | 15.3 |
|  | Semson | * | 14.2 | 21.5 | 26.3 | 27.3 | 27.7 | 21.7 |
| 1988-1989 | 3 | = | 13.9 | 18.7 | 24.3 | 26.8 | 25.0 | 20.0 |
|  | 4 | 5.7 | 14.1 | 19.1 | 24.0 | 25.8 | 27.0 | 19.0 |
|  | 1 | 4.8 | 13.5 | 17.6 | 23.9 | 24.6 | * | 16.7 |
|  | Scason | 5.7 | 13.9 | 18.7 | 24.2 | 26.2 | 25.7 | 19.1 |
| 1989-1990 | 3 | 1.9 | 13.0 | 18.4 | 21.6 | 25.7 | = | 19.3 |
|  | 4 | = | 13.4 | 18.8 | 21.9 | 25.6 | 25.8 | 18.9 |
|  | $1{ }^{1}$ |  |  |  |  |  |  |  |
|  | Seasoz | 1.9 | 13.0 | 18.4 | 21.6 | 25.7 | 25.8 | 18.9 |
| 1990-1991 | 3 | 5.6 | 17.5 | 23.0 | 26.1 | 26.8 | 31.9 | 22.7 |
|  | 4 | 4.8 | 16.3 | 22.4 | 25.1 | 26.8 | = | 22.0 |
|  | 1 | 5.0 | 11.6 | 16.8 | 24.4 | 26.3 | - | 14.3 |
|  | Season | 5.0 | 13.6 | 20.7 | 25.5 | 26.7 | 31.9 | 18.9 |
| 1991-1992 | 3 | 4.7 | 16.6 | 22.6 | 25.4 | 29.2 | 34.6 | 20.7 |
|  | 4 | 6.6 | 17.1 | 23.0 | 26.3 | 30.9 | * | 21.0 |

'No samples.

Figure 1.4.1 The relative landings and sampling frequency in 1991 by month in the Danish industrial fishery


Figure 1.4.2 The relative landings and sampling frequency in 1991 by ICES fishing area in the Danish industrial fishery.

SAMPLING COVERAGE BY AREA
Danish industrial fishery 1991
Relative frequency


Figure 5.2 Norway pout. North Sea. Danish CPUE versus GRT for 1991.


Figure 5.7 Norway pout. Estimated SSB by year from VPA (Anon., 1990), a Seasonal Separable VPA with commercial CPUE data (Psep), and a Seasonal Separable VPA with IYFS data (IYFS).

## NOṘWAY POUT, North Sea

SSB Estimates from different methods


Figure 8.1 Danish SANDEEL areas and assessment areas by the Working Group.


Figure 8.4.4.1
Sandeels at Shetland
Numbers of 0-group on 1 July


Figure 8.4.4.2
Sandeels at Shetland
Biomass Totals




Figure 9.5.2
Sandeels, Division VIa Numbers of 0-group on 1 July

Figure 9.5.3
Sandeels, Dívision VIa
Biomass Totals

Fig. 10.1 The IYFS index for 1-group sprat for 1992 in Division IIIa.


by<br>Robin Cook<br>Marine Laboratory<br>P.O.Box 101 Victoria Road<br>Aberdeen<br>AB9 8DB<br>UK

## INTRODUCTION

There are a variety of ways of analysing catch at age data. These range from tuned VPA to statistical models such as CAGEAN (Deriso et al), ADAPT (Gavaris) and Survivors (Doubleday and Rivard). These methods in their present implementation are suitable for the analysis of annual catch at age data. There is a trend towards the analysis of seasonal catch at age data and a number of stocks, such as Norway pout and sandeel are already analysed on a seasonal basis using VPA tuning. The method described here is an adaptation of methods like ADAPT, Survivors and CAGEAN for seasonal data.

THE METHOD
The approach assumes that there is some auxilliary data in addition to the catch data. These may be effort data and/or research vessel indices. The analysis estimates populations and fishing mortalities by minimising a weighted sum of squares of the form;

```
        2 2 2
\Sigma (logC-logC') + w1*\Sigma(logE-logf) + w2*\Sigma(logI-logQ-logN)
where C =observed catch
    C'=Fitted catch
    E =observed effort
    f =fitted effort
    I =observed population index
    Q =research vessel catchability
    N =fitted population
    wl=relative weight for effort data
    w2=relative weight for RV index data
```

The catch data are treated in two components. In the first component, it is assumed that the fishing mortality is "separable" into an age effect, $s$, and a year effect, f, (ie fitted effort above) ie;

$$
\operatorname{Fsep}(i, j, k)=s(i, k) * f(j, k)
$$

where $i=i n d e x$ for age
$j=$ index for year
$\mathrm{k}=$ index for season
Since $s$ is indexed by age and season, this means the selectivity at age can change with season.

For this component of the catch data, effort data for at least
some years and seasons must be provided.
The method treats the remainder of the catch data (if any) as exact. The procedure is therefore to choose populations which are the survivors on the margins of the number at age matrix, and values of $s, f$ and $Q$ to minimise the sum of squares above. The fitted catches, $C$, are given by the equation;

$$
C=f * s * P * \operatorname{cumZ} *(1-\exp (-Z) / Z
$$

where cumz is the cumulative total mortality down the cohort, P is the terminal population (ie $N=P$ cumZ) and $Z$ is given by;

$$
\mathrm{Z}=\mathrm{f} * \mathrm{~s}+\mathrm{M}+\text { Foth }
$$

where $M$ is the natural mortality and Foth is the fishing mortality for the "exact" catch data. Foth can be calculated given estimates of $P$ and $s$ and $f$ from the conventional VPA equations.

The procedure can therefore be written as a pseudo algorithm as follows;

1. choose initial values of $\mathrm{s}, \mathrm{f}, \mathrm{Q}$ and P
2. do an ordinary VPA to solve for Foth (Fsep and M are known)
3. calculate C for separable component of catch data
4. calculate sum of squares function
5. find revised values of $S, f, Q$ and $P$ which reduce $S S Q$
6. compare revised values with last iteration
7. if difference is large go to 2 else stop.

## IMPLEMENTATION

The method outined above is implemented in the program PSEP which is still in a state of development. At present a moderate amount of testing has been done and the core calculations appear to be done correctly.

The following data must be provided

1. Catch at age and associated effort for the separable fleet
2. Catch at age total catch
3. Research vessel data as cpue by age and year
4. Natural mortality

If the catch data in $1=$ catch data in 2 then all the catch data are treated as separable. Similarly if 1 is zero, then all the catch data are treated as exact (this option only works if the age and year range of the RV data is the same as the catch data).
If 1 is less than 2 then (2-1) catch data are treated as exact. Research vessel data are optional but if not available then there must be data of type 1.

When the programme runs you are prompted for an input data file and then name of an output file. You are then asked for the relative weight to be given for the effort data and RV data. These are the weights w1 and w2 above and should correspond to the inverse of standard deviation of these data relative to the catch
data. Next you are asked to specify the age above which RV catchability is constant. This is to reduce the number of parameters if possible. It assumes that fish above a certain age are sampled equally by the survey vessel. Next you are asked to specify the selectivity (s) on the oldest age. This is done by setting it equal to $s$ for a younger age multiplied by a constant. You must specify which younger age you want and the multiplier. It is sensible to choose an age at which selectivity is near the maximum. The choice of multiplier is a matter of judgement. Clearly a number between 0 and 1 is required. 1 will tend to give a flat topped selection curve.

The program then performs a minimisation which may take some time. After completion of the calculations, you are asked if you wish the parameter covariance matrix is to be printed. This is usually very large and if you want to save the forests, answer no. This matrix is useful to check that there is no redundancy in the parameters.

Fairly extensive output is provided. The input data is printed followed by your choice of weights etc. The program then prints the parameter "IFAIL" from the minimisation routine (E04FDF). It should be zero. If it is 5 , there is some doubt about the minimum found but the result is probably acceptable. Any other number indicates the minimisation has failed. You are then given some summary information about the sum of squares including the coefficient of determination. The IFAIL parameter for E04YCF indicates whether the parameter covariance matrix has been successfuly calculated. It should be zero. Then follows a list of the parameters (in logs) and their standard deviation. This will give an indication of the precision of the parameters. At present the parameters in this list are not identified but they are in the order, $f, S, P$ and $Q$. Following the correlation matrix, the parameter values are printed. The program then prints the estimated populations and fishing mortalities follwed by tables of residuals. These should be examined carefully for patterns. For each type of data (ie catch, effort and RV), the root mean square (RMS) is printed. This is an indication of the residual variance associated with each data type. The values should be similar for each data type. If not there may be a problem. One solution is to repeat the analysis using the inverse of the values scaled to the catch RMS as relative weights for the effort and RV data.

## ADDITIONAL NOTES

The program at present is very large. In the PC version, the maximum number of years for semiannual data is 9. It is presently compiled only for semiannual or annual data. It will need to be recompiled for quarterly data. This is easily done by modifying two PARAMETER statements, one at the start of the main program and the other at the start of the subroutine LSFUN1. In each case the number of years is altered by modifying the variable NYX and the number of seasons by modifying NQX (ie $=4$ for quarterly data). I have not extensively tested the program with quarterly data, but it will work. I have had a number of overflow errors when testing it with this type of data, however.

The program will work with missing data. Effort data are not required for all years/seasons but there must be enough to be able to estimate the year/season effects. Catch data for the separable analysis can also be missing provided effort data for that year/season is present. Thus it is possible to estimate catches and fishing mortality rates when catch at age data is missing. In this case, the missing data should be entered into the data file as zeros.

1


[^0]:    ${ }^{1}$ Including by-catch.

[^1]:    ${ }^{1}$ Preliminary.

[^2]:    ${ }^{1}$ Provisional.

