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1. Introduction 
1.1 Participants 

Gerard Y. Conan 
Marsha Daniel 
Eduardo Ferrandis 
Kenneth G. Foote 
Knut Korsbrekke 
Rainer Oeberst 
Lars-Erik Palmen 
Pierre Petitgas 
Jacques Rivoirard 
John Simmonds 
Gunnar Stefansson 
Pat Sullivan 
Gordon Swartzman 
W.G. Warren 

1.2 Terms of reference 

Canada 
Iceland 
Spain 
Norway 
Norway 
Germany 
Sweden 
France 
France 
U.K. (Scotland) 
Iceland 
U.S.A. 
U.S.A. 
Canada 

The terms of reference are given in C. res. 
1990/2:11: 

A Workshop on the Applicability of Spatial 
Statistical Techniques to Acoustic Survey Data, 
with Dr. G. Stefansson (Iceland) as Chairman and 
Dr. G. Y. Conan (Canada) as Vice-Chairman, will 
be held in Reykjavik from 5-9 September 1991 at 
national expense to: 

a. present data analyses prepared in advance; 

b. present comparisons of methods prepared in 
advance; 

c. discuss analyses, methods, and comparisons 
of methods; 

d. prepare plans for an ICES Cooperative 
Research Report. 

1.3 Background 

The acoustic data under analysis consist 
mainly of the mean area backscattering 
coefficient. The meaning of this is explained here. 

The fundamental quantity that is measured in 
echo integration surveys (MacLennan 1990) is the 
mean volume backscattering coefficient sv. This 
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is the cumulative backscattering cross section in 
the sampled volume Vs (Stanton et al. 1987). For 
a single ping, or sounding, 

(1.1) 

where crj, in this section only, is used to denote 
the backscattering cross section of the j-th 
scatterer of n in Vs. In the limit of a large number 
of scatterers or pings, 

(1.2) 

where p is the number density of scatterers with 
respect to volume, and a is the mean 
backscattering cross section of a scatterer. 

While the dependence of Sv on echo range or 
depth z can be quite useful for some applications, 
the data quantity is generally voluminous and 
unwieldy for ordinary surveying work. A much 
more useful quantity is the area or column 
backscattering coefficient sa (Clay and Medwin 
1977). This is the integral of sv(z ): 

(1.3) 
Zt 

where z1 and z2 are the limits of integration. 
Strictly speaking, these define the inner and outer 
radii of a spherical shell centered at the 
transducer, for short pulses and in the transducer 
farfield. For the highly directional transducers 
that are almost universally employed in echo 
integration work, most echoes come from the 
central lobe of the beam patterns, hence echo 
range is tantamount to depth. 

The quantity sa is dimensionless, but is 
typically very small, say of the order of 10-7 to 
10-1• It is more conveniently expressed with 
respect to 1 square nautical mile, or 1 NM 2 

(Knudsen 1990). This quantity, denoted sA, is 
derived from sa thus: 

(1.4) 

This is the basic quantity that is analyzed in echo 
integration surveys. Its units are square meters of 
backscattering cross sectional area per square 
nautical mile. 



The importance of sA may be emphasized by 
substituting Eq. (1.2) in Eq. (1.3), and the result 

in Eq. (1.4): 

(1.5) 

where PA is the number density of fish with 
respect to an area of 1 NM 2 • If a measurement of 

sA is representative of a particular species and 

size or age class of scatterer for which a is 

known, then computation of PA is immediate. 

In the test data, sA is assumed to be 

monospecific with respect to the fish scatterer. 

The various manipulations are performed mainly 

on SA, without division by a, this last Step being 

extraneous to the aim of the study. In one case, 

that of Data set 6, the division has been performed 

and the number further converted to mass density 

with respect to area. 

1.4 Nomenclature 

The following convention is used throughout 

this work. Measurements made along transects 

are of density. This may be acoustic density, Sv 

or sA; number density with respect to volume, p; 

number density with respect to area, pA; or mass 

density with respect to area. The result of 
integrating a density field defined over an area 
specifies the abundance of the animal. 

1.5 Working Papers 

Working papers were available on some of the 

topics. These are listed in Appendix A. 

1.6 Acknowledgements 

The work described in this report would not 

have been possible without the aid of several 

individuals not included in the participant list. In 

particular, A. Aglen, I. Ryjttingen, K. SunnanA, P. 

Reynisson, A. Gu5mundsd6ttir and N. J. 
Williamson are thanked for their contributions of 

acoustic data. Z. Kizner is thanked for the 

contribution of simulated data. Finally, E. Wade, 

D. Stolyarenko and N. J. Williamson prepared 

analyses which were available for the meeting. 
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2. Basic data analyses and survey 
design 

Each survey needs to be explored initially 
with data display tools before analysis begins. A 

key to proper spatial analysis of survey data lies 

in the graphical display and preliminary 

exploratory analysis of abundance and, where 
relevant, ancillary environmental data. Through 

the comparison of several surveys, general 
patterns may emerge that would suggest fruitful 

general approaches. Even after initial processing, 

an acoustic survey data set still provides much 

data, including the depth distribution of fish 

abundance and the depth of the water column, 

sometimes at the individual fish species level. 

The data are generally agglomerated further, as 

seen in the data sets analyzed here, to produce a 

total abundance estimate that applies throughout 
the entire water column. In some cases, depth has 

been provided (although presumably it is 

available or easy to obtain in all cases). 

It is useful to present the survey tracks on a 

map of the area. A variety of means have been 

used to show the spatial distribution of abundance 

along the tracks including scaled histograms 

(Figure 2.1), scaled rectangles (Figure 2.2), and 

scaled circles (Figure 2.3). These figures present 

the data in an explicit spatial context, with 

abundance proportional to the size or length. 
Contour and gray-scale image plots were also 

used to display abundance data (Figure 2.4). 
While these permit more complete spatial 

coverage than the scaled transect plots, they can 

introduce artifacts into the data resulting from the 

interpolation used to cover unsurveyed areas 

between the survey tracks, such as apparent 

smears or gradients of abundance. Careful 

attention should be paid, in interpreting such 

plots, to where the survey tracks actually are. 

Confidence in interpolated predictions is often 

low away from surveyed areas, especially if the 

data are extrapolated out of the study area. This 

was not done here but it is done and it is often 
misleading. An example is in Figure 2.5, which 

shows a bilinear interpolation of the Iceherl 

survey as a 3-D plot. Here, regions of low 

acoustic density appear as four regularly spaced 

areas at the bottom of the surveyed area (front of 

the plot). These areas are intersected by the 

survey transects. Between them are areas of 
purportedly higher density, which are higher 

solely because they are not on the survey tracks 



and so this interpolator produces spatial biases. 
The same observation can be made for the high 
abundance areas near the top of the surveyed area 
(back of the plot). Color plots can be made 
analogously to the transect, grayscale, contour 
and 3-D plots. 

The presence of ancillary information, such as 
depth, can be informative in the analysis of 
acoustic data. The gray scale and contour plots 
for abundance (shown in Figure 2.4) have been 
compared with depth gray-scales for the same 
area, which can help to suggest possible 
relationships between these variables. For the 
Bering Sea there appears to be a strong 
relationship between depth and abundance. This 
suggests further analysis using a spatial trend 
detection model such as GAM or GLM to 
correlate ancillary information with abundance. 
This is discussed further in section 7. 

A number of classical summary statistics may 
be used in an exploratory sense as well. The 
variogram, which is used in geostatistical 
estimation procedures, is a good example. In a 
restricted sense it represents the correlation 
between sets of observations a distance h apart. 
Patterns in variograms fit to the data can indicate 
patterns in the data. Each of the the variograms 
obtained from untransformed test data sets 1-3 
(Figures 2.6, 2.7 and 2.8) represents a different 
covariance pattern. The first indicates covariance 
that continues to decrease with distance, possibly 
indicating some large-scale pattern of variation in 
the observations. The second indicates a pattern 
more like a global nugget effect indicating no 
pattern or covariance on any scale. The third 
shows a covariance that initially decreases with 
distance, only to increase later, indicating both 
small-scale as well as large-scale interactions. 
The variogram can also provide diagnostic 
information about the existence of correlation in a 
population at the spatial scale of the collected 
data. 

Fish depth profiles (showing the fish depth 
distribution) can give important clues to species 
and provide additional information to locate 
trends in fish distributions. As such, these data 
should not be summarized by a single measure, 
such as column scatter strength or overall fish 
abundance, until preliminary display is made. 
The variogram and other simple statistics like 
scatterplots of abundance versus ancillary 
variables can help in preliminary data 
examination and suggest further direction. An 
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important aspect of such preliminary analysis is to 
point out the potential relative importance of 
autocorrelation and trend (drift) to fish spatial 
distribution and thereby suggest whether the 
analysis should ignore or include these factors. 
Graphical display of model predictions and 
residuals can also be important after analysis to 
indicate whether model assumptions were met 
and the need for possible further analysis. 

2.1 Multivariate data 

In addition to density integrated through the 
water column, survey data usually provide 
information on the depth distribution of 
abundance as well, which may be useful in 
providing 1) a good indication of where an 
abundance pattern has changed (i.e. change in 
both the magnitude and depth distribution of 
abundance) and 2) relationships of species 
interactions and possibly help in species 
identification. An example of display of such 
data is given in Figure 2.9. 

Developing tools for multivariate spatial data 
analysis (as, for example, the Barent Sea data 
shown in Figure 2.9) remains a challenge. Few 
methods exist even for the display of such data, 
let alone tests of statistical significance or 
measures of trend. For example, how can the 
depth profile of fish abundance be related to 
covariates? The challenge is compounded if the 
data are not all collected simultaneously or in the 
same region, as, for example, using sea surface 
temperature or ocean color data collected from 
satellite images as covariates for fish abundance 
in a nonparametric regression. That such 
variables are important to fish distribution is 
attested to by the use of spatial cross-correlation 
between fish catch at satellite-collected sea 
surface temperature data to successfully predict 
areas of high catch. For at least two species 
(Shinomiya and Tameishi 1988) these 'hot spots' 
are on the edges of eddies of cold or warm water 
breaking off from major ocean currents. In this 
area, exploratory data analysis plays a central role 
in helping to choose variables of importance, to 
reduce the dimension of the problem to its bare 
essentials, to suggest analysis tools, to 
characterize an area, and to provide clues to 
possible univariate measures that can serve as 
surrogates for multivariate aggregates. 



2.2 Model evaluation 

Just as graphical display is important before 
analysis, so is it important after analysis. The 
model fit should always be graphically compared 
with the original data. For models involving 
transformations of the original data (e.g. GAM 
and GLM) this comparison should be made both 
with the transformed and the natural data. 
Graphical displays of the residuals through, for 
example, two-sided rectangular histograms (e.g. 
right for a positive and left for a negative 
residual) along the transects just like Figure 2.3, 
but for residuals, can indicate lack of fit of the 
model or the possibility of having correlated 
residuals. A variogram on the residuals in a trend 
model can also indicate the need for further 
analysis if significant correlation is shown. Other 
statistical methods, such as cross-validation, can 
be used to evaluate the method applied. 

2.3 Survey Design 

This section is provided as a brief overview of 
the choice within the design of a survey and the 
track layout. It is mostly based on Simmonds et 

al., 1991. Only the major elements in the choice 
of cruise track are considered. Other elements in 
the survey design such as biological sampling 
requirements and allocation or estimating overall 
sampling effort are ignored. The survey design 
consists of a series of choices of strategy. There is 
no one single optimum strategy for all objectives. 
The choices that are appropriate are determined 
firstly by the objectives of the survey, secondly by 
any knowledge of the stock distribution, and 
thirdly, the analytical method to be employed for 
data analysis. In all cases the use of appropriate a 
priori information will improve the survey design 
and the subsequent estimates. However, care must 
always be taken to ensure that any survey design 
is capable of producing adequate results if the fish 
distribution or its behavior differs from the 
expected. It is unlikely that a good survey design 
can be completely free of assumptions, and the 
best results will be obtained by understanding the 
fish stock and its distribution. 

Objectives 

There are a number of possible objectives, 
such as; an overall abundance estimate for a 
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population or an area, an estimate of precision for 
that abundance, a map of the spatial distribution, 
or possibly the location of major exploitable 
concentrations. In addition, there may be 
subsidiary criteria that affect the choice of 
strategy, such as; the absence of bias in the 
estimate and minimum variance, minimization of 
mean square error, or that the estimates are 
obtained with the mm1mum number of 
assumptions. It is important to be clear about 
both the objectives and their relative importance. 

Definition of survey area and Stratification of 
effort 

Selecting the boundaries of the survey area is 
important. Removal of areas that contain no fish 
has considerable benefit. For most stock 
distributions there appears to be a link between 
variance and mean density. Predicting in advance 
areas of high and low density and allocating 
sampling effort accordingly can give considerable 
gains in precision. Depth, hydrography, and a 
knowledge of the distribution from previous 
occasions are all possible stratification criteria. 

Adaptive I Predetermined Strategies 

Predetermined strategies require fewer 
assumptions about the stock distribution. More 
information is required to design an adaptive 
survey than to use predetermined designs. 
Adaptive strategies are particularly applicable 
when the stock is highly contagious in its spatial 
distribution but unpredictable in location. A 
number of adaptive methods have been used; 
scouting or outline surveys followed by intensive 
local surveys, adaptive transect lengths, and 
increased survey effort in areas of high density. 
Each of these methods requires assumptions about 
the distribution of the stock. If these assumptions 
do not hold, the estimates will be biased. 
Adaptive strategies may preclude calculation of 
survey precision without making further 
important assumptions. 

Transect Direction 

Choice of direction is controlled by a number 
of factors. 

a. Minimization of between-transect variance. 
This is relevant for areas with anisotropic 
distributions and requires transects to be 
placed in the direction with the greatest 
rates of change. 



b. Direction of migration. To minimize errors 
caused by systematic horizontal movement 
of a population the survey should be 
conducted with transects alternately with 
and against the direction of migration. If 
this is in conflict with criteria a) then an 
'interlaced' survey design should be 
considered. 

c. Minimization of inter-transect time. In the 
absence of other information the transects 
should be across the short axis of an area. 

d. Operational considerations such as weather 
may necessarily override these 
considerations, but may compromise the 
results. 

Systematic I Random track designs 

The choice of track design is strongly 
influenced by the objectives of the survey and the 
method chosen for data analysis. However, some 
basic guidelines can be given. If the overriding 
requirement is for an estimate of total abundance, 
in the absence of spatial periodicity, systematic 
sampling generally provides the best estimate. If 
the spatial correlation is ignored, then random 
strategies should be employed to allow for 
calculating the variance. But if spatial 
information is modeled, random sampling is not 
required for the variance calculation and 
systematic sampling is believed to be more 
efficient. 

Parallel I Zigzag transects. 

For random designs independence of transects 
is essential. For this reason, parallel transects are 
useful. For adaptive designs, both the transect 
length and spacing will be changed by the use of 
zigzag transects. This requires additional 
assumptions that are difficult to justify and should 
be avoided. 

For systematic designs, the choice of transect 
design is not so clear. 

For parallel transects, a proportion of survey 
time will be unusable if inter-transect data is 
excluded from the data analysis. In most cases 
where the boundaries of the survey area are 
determined by the stock distribution, including 
coastlines, this must be the case. 

For zigzag transects, there is increased 
correlation between data from the vertices. The 
raison d' etre of systematic sampling is to ensure 
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efficient coverage of the sampled area. 

For wide areas with long transects, and thus 
low proportions of unusable time, parallel 
strategies are preferred. For narrow areas, 
considerable survey time will be wasted if 
parallel transects are used. In these situations, the 
increase in survey effort will improve the estimate 
despite the loss of independence at the vertices. 
However, because of the high correlation at the 
vertices~ it is important that they are not located 
preferentially and, where possible, they must be 
located outside the boundaries of the population. 

3. Test data sets 

3.1 Data sets 1-5 Norwegian fish 
stocks 

These data sets are derived from acoustic 
surveys of Norwegian fish stocks. The presented 
data are believed to be monospecific within each 
set. The gross characteristics of the data are 
summarized in Table 3.1. Further details, 
including statistical features, are given below. 
Maps showing transects and acoustic density 
values are presented in Figs. 3.1-5. 

Table 3.1. Gross characteristics of test 
data sets 1-5. 

Interval 
(NM) 

Data Fish type Region Inte- Ave- No. 
set gration raging data 

1 Pelagic Coast 5 5 664 
2 Pelagic Fjord 1 1 96 
3 Pelagic Coast 1 5 881 
4 Pelagic Coast 1 5 986 
5 Benthic Open 3-5 5 1712 

Sea 

Data set 1 This describes an unbounded fish 
aggregation with concentrations on the survey 
boundary. The observations are averaged over 5-
NM intervals, the transects are spaced at intervals 
of about 15 NM. Data on longitude are relative. 
The data were contributed by A. Aglen. 

Data set 2 The distribution is bounded by 
fjord walls, but is extremely patchy. Cross-fjord 
samples are not available nor are more fine­
grained data on one small but exceedingly dense 
concentration. The source of data is A. Aglen. 



Data set 3 The aggregation is mostly 
bounded by the survey. Data are provided at 1-
NM intervals. The parallel transects are locally 
concentrated and strongly contrasted with low 
values including zeroes. The source of the data is 
I. R0ttingen. 

Data set 4 This is the result of repeating the 
survey represented by Data set 3 after one year. 
The sampling interval and distance between 
parallel transects retain their previous survey 
values of 1 and 5 NM, respectively. The 
statistical characteristics are less extreme than in 
Data set 3, but concentrations exist along 
boundaries. I. R0ttingen also contributed this 
data set. 

Data set 5 Two ships collected the data on 
this survey, and the survey grids overlap in space 
but not in time. The data are distinguished by 
survey grid. Considerable differences are 
observed with respect to time and space. The 
source of data is K. SunnanA. 

3.2 Data set 6 Be ring Sea walleye 
pollock 

The data were derived from the 1988 summer 
survey of the eastern Bering Sea shelf. The 
survey region showing the 27 parallel transects is 
shown in Fig. 3.6. Each data record consists of 
position, time, bottom depth, distance sailed, and 
surface density. Bottom depths greater than 400 
m are recorded as 400 m. The surface density 
expresses the fish density in terms of biomass per 
unit area. The units are kilograms of fish mass per 
square meter. The source of the data is N. J. 
Williamson. 

3.3 Data sets 7-91celandic herring 

A major part of the stock of Icelandic 
summer-spawning herring was surveyed 
repeatedly in the region indicated in Fig. 3.7 
under similar conditions on the night of 25-26 
November 1988. The three surveys reported here 
had the following starting and ending times: 
19:00-22:15, 22:40-02:05, and 03:15-07:00 local 
time. The horizontal resolution of the data is 0.1 
NM. Bottom depth is given as an ancillary datum 
associated with each acoustic datum. P. 
Reynisson contributed the data which A. 
Guomundsd6ttir prepared for distribution. 
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3.4 Data sets 10-15 Simulated data 

Two fish aggregation density fields were 
simulated over a square 300 by 300 matrix. The 
first field was simulated by means of an algorithm 
devised by Z. Kizner and exercised on the basis of 
actual survey data for Myctophidae that were 
collected during a cruise of the Soviet vessel 
VOZROZHDENIE in the waters north of South 
Georgia, 27 September - 16 October 1988. The 
second field was derived from the first by a 
transformation. A smoothed version of the first 
field is shown in Figs. 3.8-9. 

On the basis of each simulated data field, 
three variants were derived: (1) without noise, (2) 
with normally distributed additive noise, with 
standard deviation of 20, and (3) with 
multiplicative, lognormally distributed noise, with 
standard deviation of 0 .1. 

Survey data are simulated by superimposing a 
grid of ten equally spaced parallel transects on the 
two density fields in each of the three variants. 
The grid is indicated in Fig. 3.10. Data from the 
first simulated density field in its three variants 
are averaged over a series of three successive 
values. Each of these simulated surveys consists 
of 994 data. Data from the second simulated 
density field are averaged over series of five 
successive values. Each of the resulting 
simulated surveys consists of 596 data. 

4. Classical analyses 

In the classical approach to survey data 
analysis, the data should be collected on a largely 
uniform grid of either systematic or stratified 
random design. The grid density need not be 
uniform over the whole survey area but if 
different levels of survey effort are used then these 
areas must be treated separately. The survey grid 
is constrained so that at least one transect passes 
through each element of area used in the data 
analysis. The data are analyzed to give some 
geographical or spatial distribution and an overall 
estimate of abundance. The area is broken up into 
sub areas or strata. These may be large parts of 
the area or small 'rectangular' strata based on 
lat/long positions. These strata are not selected 
on the basis of the abundance values but rather on 
the spatial variability and should be determined 



prior to the survey. Typically, the strata 
dimensions have turned out to be between two to 
four times the limit of sample correlation. 

4.1 Method 

The data from each stratum are analyzed 
separately to give estimates for each stratum. At 
the end of the analysis, the strata are combined to 
give a total abundance and associated variance. 
The data within each stratum are treated as 
independent and identically distributed. The strata 
are assumed to be independent. An arithmetic 
mean and variance may be calculated for each 
stratum. However, the amplitude distribution of 
data found in each stratum may not, be normal, 
and a more efficient estimate of the stratqrp m~an 
may be possible. The data are e{Camined visually 
to check that the amplitude distribvtion is not 
multimodal. A Maximum Likelihood estimation 
procedure as described by Box and Cox (1964) is 
used to estimate a suitable power transform to the 
Gaussian distribution. This is combined with a 
delta function (Aitchison 1955) to remove the 
zero values. The Box-Cox transform is performed 
separately on all strata, but the results are 
combined to give significant results. If the results 
of this test give a maximum for the power 
transform between +0.5 and 0, a power transform 
of 1/2 1/3 1/4 1/6 or ln is selected. For each 
stratum, the mean and variance of the transformed 
data are calculated. As the distribution is 
Gaussian, confidence limits may be calculated in 
the transform domain. The inverse transform is 
performed and the effects of the delta function 
removed (see MacLennan and MacKenzie 1988). 
An unbiased mean and variance are determined 
for each stratum. The abundance of each stratum 
is calculated using the area of each stratum, 
taking into account the proportions of land and 
sea as appropriate. The variance of the abundance 
is the variance of the mean scaled by the area 
squared. Finally, the total abundance and its 
variance is calculated assuming independence of 
strata. To check the process, the means calculated 
by the arithmetic and transformed methods are 
compared. 

4.2 Data Sets analyzed 

The choice of rectangular strata sizes and the 
selected power transform for the data sets that 
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have been analyzed, are shown in table 4.1. 

Table 4.1. Strata sizes and power transforms used 
for data sets 1-5. 

Strata Sizes 

Data Latitude Longitude Power 
set transform 

1 0.5 1.0 1/6 
2 1/12 1/6 In 
3 0.5 1.0 112 
4 0.5 1.0 1/6 
5 0.5 1.5 In 

The results of the data analysis are given in 
section 8.3. With the exception of data set 2, the 
survey designs and data distributions are suitable 
for this analysis technique. In all these cases, it 
was possible to select one power transform 
unambiguously and the differences between 
arithmetic and transformed means were 
negligible. However, it was not possible to select 
a unique transform for data set 2, since although 
the Box-Cox test indicated that the best transform 
was the logarithmic one, the confidence intervals 
included other transforms. It is also interesting to 
note that for data sets 1 and 4 the transform 
estimate exceeded the arithmetic mean, for data 
set 3 they were equal, and for data sets 2 and 4 the 
transform estimate was less than the arithmetic 
mean, indicating, at least from this small sample, 
that there is no evidence of bias in this technique. 

4.3 General Applicability 

This technique, when applied on a grid 
structure similar to those shown for data sets 1 
and 3 to 5, provides some geographical 
information, total abundance and variance 
estimates along with confidence limits. It works 
best with a systematic sampling strategy and 
uniform sampling intensity. It is most applicable 
to large ocean areas (data sets 1,3-6 and 10-15) 
with little spatial correlation and non-stationarity 
of the density distribution. It is relatively simple 
to use and requires no real operator skill with the 
exception of choice of area size. It is not suitable 
for estimates of single schools (data sets 7 -9) or 
complex areas with highly aggregated 
distributions (data set 2). The assumptions are that 
the within stratum data are uncorrelated and the 
strata are independent. 



5. Kriging 

Spatial covariation can be used in the 
estimation of fish density locally at a point or 
globally over an area. A number of approaches 
have been developed for using spatial covariation 
in this way and the geostatistical literature is a 
particularly rich source of such applications 
(Matheron 1963 1965 1971, Joumel and 
Huijbregts 1978, Cressie 1989). These techniques 
are now being applied in fisheries research 
(Crittenden 1989, Guillard, et al. 1990, Sullivan 
1991, Conan 1985, Conan et al 1988a 1988b, 
Conan and Wade 1989, Gohin 1985, Nicolajsen 
and Conan 1987). 

Estimates, such as that of fish abundance at a 
given location, may be derived as a weighted 
average of the observations taken near the point 
of interest. The observations are weighted in the 
estimate according to their correlation with other 
observations and with the point or area to be 
estimated. The shape of the area of the estimate 
and the coverage of the survey will also affect the 
weights through the computed correlations. The 
correlation is generally given as a function of 
inter-point distance, and may be derived directly 
from another measure of interpoint variation 
known as the variogram (Matheron 1971, Joumel 
and Huijbregts 1978). The variogram is often the 
measure of choice because of its generality, since 
it does not require stationarity in the mean. The 
variogram is defined as half the expected value of 
the squared difference between two random 
variables that are located a distance 'h' apart. 

The estimation (or prediction) variance, cr/, 
is the expected deviation of the estimator from the 
random variable describing the density at a point, 
that is 

cr/=Var [z/-zv]=E [ [z/-ZvrJ. (5.1) 

Note that this may differ from the variance of 
the estimator, 

(5.2) 

a statistic more commonly used in classical 
statistical approaches, but inappropriate here 
except under the right conditions. In terms of the 
covariances, the estimation variance may be 
computed as 

- 9-

(5.3) 

where V represents the total area of interest and v 
represents the area sampled. The average (noted 
by bar) will depend on the weighting used in 
computing the estimator. 

This formula contains the mean covariance 
between two arbitrary points independently 
describing the volume, C (V, V), the mean 
covariance between a sample observation and an 
arbitrary point describing the volume, C (V, v) and 
the mean covariation between sample points, 
C(v,v). 

Several alternative approaches for estimating 
global fish abundance using these principles are 
presented here. The general methods will be 
described first, followed by results and discussion. 
A comparison of the results from this spatial 
geostatistical approach, sometimes referred to as 
kriging, with other approaches discussed in this 
report is given in Section 8. 

Application 1: Point kriging with possible 
trend removal 

W. G. Warren applied point kriging (WP6-7), 
taking into account the following considerations: 

For the Icelandic herring data, a density 
surface was described by taking as coordinates 
the distance from the coastline and the distance 
parallel to the coastline from an arbitrary origin. 
The non-zero data exhibited noticeable positive 
skewness. The Box-Cox (1964) transformation 
was used to determine a transformation that 
would yield an approximate normal (Gaussian) 
distribution. The square-root transformation 
appeared suitable for all three cases. 

A rectangular box with sides parallel and 
perpendicular to the co(\stline was then 
constructed about the patch separately for each 
survey. Each box was divided into rows and 
columns to form cells of approximately equal 
area. The number of data points that fell into a 
cell varied and for some cells this number was 
zero. Trend removal was accomplished by an 
unbalanced analysis of variance (ANOVA), with 
rows and columns as factors. 

The ANOVA-estimated cell values were 
subtracted from the transformed data values at 
points falling within the appropriate cell. The 
residuals were then used to construct a 
conventional spherical variogram where isotropy 
was assumed. The global estimate is 



approximated by computing the point estimates 
over a grid on the area, multiplying by the mean 
area about each point, and then summing. The 
variance of the estimate is computed similarly 
using the correlation between grid point estimates 
that are derived from the spatial correlations. 
Details relating to distance calculations, choice of 
variogram, and the global approximation were 
provided in working paper W6. 

The simulated data were similarly analyzed 
but no trend removal mechanism was applied. 
The Box-Cox approach on the non-zero data 
suggested that a logarithmic transformation would 
be appropriate. The variogram was estimated in 
two directions but no systematic difference was 
found, so a single conventional spherical 
variogram was computed by combining the two 
estimates. Further details were provided in 
working paper W7. 

Application 2: Global block kriging 

The estimate of the average density and 
associated estimation variance over a global area 
of interest is obtained from all points sampled, in 
a one step procedure as described in Matheron 
(1971). The information from the variogram, y, 
and from the respective distance between the 
points and to the area, and the shape of the area 
are used for calculating an estimation variance of 
the form: 

where wi are. the statistical weights attributed to 
the n point samples vi, and V is the global area 
studied. The variogram may or may not be 
isotropic, i.e. identical in all directions. This 
estimation variance is minimized by 
differentiating with respect to each of the weights 
and to a lagrangian parameter, A, in order to 
optimize the estimate of the weighted average and 
to avoid bias under the constrain LW= 1. 

The resulting optimized variance or kriging 
variance is: 

(5.5) 

In the particular Gulfkrig software application 
designed by Conan and Wade, the numerical 
calculations of an average variogram over an area 
V can be made over any irregular shape. If the 
global area over which the estimate is to be made 
is not predefined prior to calculations, it may be 
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defined by first calculating contours of local 
estimation variances by point kriging and theh 
chosing a contour beyond which it is felt that 
extrapolating would be unsatisfactory. 

The global kriging estimate can also be 
approximated by calculating a large number of 
point kriging estimates over a fine mesh grid, and 
then averaging. This procedure is useful when the 
number n of point observations is very large, 
since a matrix of n + 1 x n + 1 must be inverted in 
the direct estimate procedure. 

In working paper WlO, E. Ferrandis proposed 
a simplified computational procedure for 
calculating the statistical weights. This procedure 
reduces the dimensions of the matrix to be 
inverted ton by n. 

Data sets 1 through 4, the Icelandic herring 
data sets, and the simulated data sets were all 
analyzed using the following methodology. No 
trend removal or variance transformation was 
applied to the data. Spherical isotropic variogram 
models were fit to each data set and a global 
estimate and its variance were derived by 
ordinary kriging applied within an irregular block 
defined by the variance contour around the area 
studied. 

The Gulf.Krig software developed by G. 
Conan and E. Wade calculates global and local 
(either block or point) estimates of abundance and 
their variances using the method of ordinary 
kriging. 

Application 3 

A third application by P. Petitgas and J. 
Rivoirard was presented in working paper W9 and 
is given as Appendix B. For the Icelandic herring 
data set, since the data are regularly located 
throughout the field, the abundance is estimated 
using a simple arithmetic mean. Furthermore, 
since the field is large compared with the range of 
the correlation, the mean covariance between two 
arbitrary points independently describing the area 
C (V, V) and the mean covariance between a 
sample observation and an arbitrary point 
describing the area C (V, v) are found to be small. 
Thus, the estimation variance simplifies to the 
mean covariation between sample points C (v, v) 
which may be computed from the mean variance 
among samples plus the mean covariance between 
samples. 

For data set 4 (Norwegian Herring) and for the 
Bering Sea walleye pollock data (data set 6) a 



different approach is taken. Assuming the 

transects are parallel and that each transect 

traverses the entire width of the stock the 

integrated transect values may be taken as being 

one-dimensional observations on the stock. A 

variogram was then estimated in one dimension 

and geostatistical theory was applied to the 

overall abundance estimation and associated 

variance computation. Observing that the field is 

small with respect to the range of covariation the 

estimation variance must now include the mean 

covariance between points and the mean 

covariance between points (in 1D) and the sample 

points. But since the problem is one dimensional 

the computations are straightforward .. 

Two-dimensional computations were 

performed using Bluepack (1991), whereas one­

dimensional computations required no software. 

6. Generalized linear models 

6.1 Description of method 

The basic GLM assumes that the structure of 

the schools is of the form of a mean plus a random 

error, where the mean is a function of location 

(and potentially other variables), but the error 

contains no structure. The mean is parametrized 

as a function (the inverse link function) of some 

linear terms and the distribution of the 

measurements is from the exponential family. 

Generalized linear models are described in 

several texts, including McCullagh (1983), 

McCullagh and Nelder (1989), and Nelder and 

Wedderburn (1972). A clear introduction to their 

use, using the GLIM package (Baker and Nelder, 

1978) is given in Aitkin et al (1989). GLMs can 

also be fitted within the Splus package (Becker et 
al. 1988, Anon. 1991). 

6.2 Application of method 

Only the three herring data sets were 

considered, since GLMs can only be expected to 

work well with this type of acoustic data, when 

there is a single aggregation of fish, within a 

limited area. In all other data sets considered 
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(with the possible exception of walleye pollock), 

there tend to be aggregations with low values in 

between or around. Polynomials of reasonably 

low order cannot fit such data well. An analysis 

using GLMs on one of these data sets was 

introduced briefly in Anon. 1990. 

Assuming a gamma density and a log-link 

seems a reasonable assumption, but high-degree 

polynomials are needed to fit the data well. 

Working paper W2 found that polynomials of up 

to the 6th degree were needed for some of the 

data, and even in this case, (pseudo-) R2-values 

were only at the 0.5-level. 

However, since there seems to be one large 

"lump" in each aggregation, only the results from 

fitting a simple paraboloid as a function of 

location for each data set are presented in this 

report. 

The numbers obtained are given in section 8. 

The areas and gridpoints used were based on a 

grid of 0.2 NM by 0.2 NM cells, which were 

defined in such a fashion as to cover the survey 

tracks with a minimal amount of extrapolation, 

yet retaining a roughly convex region. 

6.3 Discussion 

The actual values obtained (80775, 76933 and 

81250) are quite close, the range of the three 

being only 5% of their average. This is in stark 

contrast to the "confidence bounds", based on 

integrating an estimated one standard error in 

each direction from the surface, all of which are 

over 13% in each direction from the 

corresponding estimate. It must be noted that 

these bounds are only approximate and further, 

they approximate the 68% confidence interval, 

corresponding to one standard error in each 

direction. They are used only to obtain an 

approximate "C.V." ratio (standard error/mean). 

The approximate 95% confidence interval will be 

correspondingly wider. 

It would seem, therefore, that although the 

log-polynomials do not fit very well, there is 

considerable smoothing involved in the 

integration and this is not appropriately reflected 

in the variance estimate behind the confidence 

bound. 

Some concerns were raised during the 

meeting that the reverse transform (exponential), 

required to evaluate the surface on a grid for 



integration, would introduce a bias. Although this 
may be the case, it is not obvious what the precise 
effect is, or how it should be corrected for, since 
the equations used for estimating the parameters 
in the GLM model are different from simply log­
transforming the data before fitting a model. 
These equations are based on the differences 
between the actual (untransformed) observations 
and their means according to the model. 

In lieu of the results in working paper W6, the 
residuals from the GLM are expected to be 
correlated, reducing the validity of the error 
estimates. 

7. Generalized additive models 

7.1 Introduction 

Generalized additive models are used here as 
methods for detection of spatial trends. They can 
be used as a tool in abundance estimation, but 
more importantly as an aid to demonstrating or 
quantifying relationships between the spatial 
distribution of abundance and environmental 
factors. In cases where the average value of a 
variable changes explicitly over space, this 
change is assumed to be a trend. A spatial trend 
is assumed to mean a change in the average 
density which is a function of the spatial location. 
Besides detecting trends in abundance over space, 
these changes can be related quantitatively not 
only to spatial location but to environmental 
factors such as depth and temperature. The 
existence of such quantitative relationships 
strengthens understanding of the factors that 
influence the explicit spatial distribution of fish 
species abundance and also gives a degree of 
explan~tion of this distribution that may serve to 
reduce the variance in abundance estimates by 
providing additional information about 
abundance distribution through covariates that are 
easy to measure. 

Generalized additive models relate the 
changes in abundance to spatial covariates, 
without restricting the functional form of the 
relationship (Kaluzny, 1987; Hastie and 
Tibshirani 1986, 1990). This method allows 
nonlinear trends and includes covariates which 
potentially determine the spatial patterns in the 
data. Bootstrap methods give information on the 
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variability around the trends and permutation tests 
are used to determine the significance of trends. 
The use of generalized additive models for 
analyzing survey data is quite general in that the 
surface which is fitted to the data is only restricted 
to be a sum of smooth non-parametric functions. 
The form of the functions is not restricted to 
polynomials as in generalized linear models 
(GLM; McCullagh and Nelder, 1989). The 
functions are instead determined by a smoothing 
technique that reflects local spatial trends, while 
allowing trends over the entire space to be 
observed (if they exist). 

A Generalized Additive Model (GAM) is a 
nonparametric generalization of multivariate 
linear regression. Both methods relate the 
dependent variable to possibly important 
covariates. However, in GAM the covariates are 
assumed to affect the dependent variable through 
additive, unspecified (not linear) functions. 
Scatterplot smooths (Chambers et al. 1983) in 
GAM replace least square fits in regression. In 
GAM, the data can come from any distribution in 
the exponential family (which includes the 
normal, Poisson and binomial distributions). 
Because of the flexibility of GAM in detecting 
and testing for trends in abundance, they are 
valuable in uncovering factors influencing fish 
distributions over several years. The theory and 
method for applying G AM, using the gam 
function in Splus (Chambers and Hastie 1991), is 
given in Appendix C. 

7.2 Application of GAM to data sets 

The primary focus in the GAM analysis of the 
data sets provided was on uncovering 
relationships between fish abundance and 
environmental factors. Only depth was provided 
as an ancillary variable (except for latitude and 
longitude of the sampling locations) and that only 
for the Icelandic herring and Bering Sea surveys. 
Analysis was most fruitful for the Bering Sea 
survey, where a significant trend for abundance 
with depth was found. This analysis is presented 
in Appendix C. 



8. Comparisons across methods 

8.1 Introduction 

In the following sections, the results from 
applying different methods to each data set are 
corn pared in terms of the estimated abundance 
and the estimated error in that number. The 
density estimate and area used are also 
considered, since in some cases these severely 
affect the results. 

Within tables in the comparisons subsections 
(8.3-8.6), A denotes the arithmetic mean, B 
denotes the method based on the Box-Cox 
transform, G 1-G3 will denote different 
geostatistical methods, S is used to denote the 
spline approximation method, L denotes the 
method based on generalized linear models and T 
denotes the approach of accumulating along a 
transect, followed by analyzing the sample using 
the ratio method (as described in Anon. 1990, p. 
80) 

8.2 Variance estimation 

When the results from the different 
computations are compared, several issues must 
be borne in mind. One of these is the definition of 
the quantity of interest. The term "total abundance 
estimate" can be - and has been - interpreted in 
different mathematical ways, resulting in entirely 
different estimates of associated variances. 

The approaches which have here been called 
"classical", as well as the GLM and GAM 
methods have as their underlying purpose the 
estimation of a "response surface" which can be of 
the form of a step function, a polynomial in 
location or an abundance-depth relationship. The 
surface estimates the expected value of the 
response at each location. The associated 
abundance estimate is the volume under that 
surface. 

The method of point kriging, however, fits a 
surface which estimates the unobserved 
individual responses at each location. The 
associated abundance estimate is also the volume 
"under the surface", albeit a different surface. 
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A fundamental difference in approach is thus 
evident. This sometimes has drastic consequences 
for the variance estimate. 

Under the "classical" approaches, including 
GLM and GAMs, the existence of autocorrelation 
in residuals reflects a redundancy of information, 
which reduces the effective degrees of freedom, 
and increases the variance in the 
integraVabundance estimate. However, the 
kriging school of thought is the exact opposite, 
essentially stating that since there is 
autocorrelation, there is better information to 
interpolate between data points, resulting in a 
better estimate of abundance. 

A simple example will suffice to illustrate the 
difference quite clearly. If the transects are 
parallel, they can be added up to reduce the 
problem to one dimension. Suppose that there is 
no trend in the data, so that the expected value is 
constant in the remaining dimension. The 
"classical" approach is to attempt to estimate this 
single mean. The kriging approach is to estimate 
the entire curve (which will not be a straight line 
due to the autocorrelations). 

If the item of primary interest is the expected 
value, an increase in the autocorrelation will 
obviously reduce the effective degrees of 
freedom. In fact, as the autocorrelation goes to 1, 
the information in the data set is reduced to just 
one observation, as far as the estimation of the 
expected value is concerned. 

If the item of primary interest is the curve 
itself along with the integral of that realization of 
the process, then an increased autocorrelation will 
lead to more information about the behavior 
between data points, thus reducing the variance. 
In the limiting case, as the autocorrelation goes to 
1, the curve will become perfectly known, as will 
the abundance. 

It must be noted that in cases when a grid is 
regular, both approaches may simply be using the 
arithmetic mean as an estimator, but the variance 
estimates may be totally different, with one giving 
CVs as low as a few percent, the other yielding 
CVs which commonly range from 20 to 50%. As 
is described above, this simply stems from the 
choice between estimating a mean surface and 
predicting an unobserved surface. Whether the 
CVs are really as low or high as indicated is not 
known a priori, but can be ascertained through 
other methods, such as cross-validation. 



It is therefore essential to precisely define the 
quantity of interest: should it be the surface of 
expected values or the unobserved measurements 
between the transects ? This question can be at 
least partly answered by investigating the source 
of the autocorrelation. The acoustic 
measurements involve several levels of variation, 
which for convenience can be separated into 
"process error" autocorrelation (the structured 
variability of the resource) and "observation 
error" aptoco:rrelation (the structured variation in 
the measurement instruments). If most of the 
autocorrelation stems from the observation error, 
then there is good reason to treat it as true error 
and consider its effects negative ones. 

Acoustic measurements are capable of 
detecting sharp changes in density, so most of the 
autocorrelation along and across transects will be 
due to contiguous behavior of the resource. This 
implies that when autocorrelations are observed 
along and across transects, they include important 
information about the resource itself and should 
be utilized as best possible for the. estimation of 
the resource. 

This leads immediately to the use of the 
criteria and language used in kriging, specifically 
with respect to the term "total abundance" which 
is defined as the abundance that would have been 
measured if the area had been completely covered 
- not the expected value of that quantity. 

In mathematical notation, the variance of 
primary interest is the prediction variance, 

(8.1) 

where Zv is the double integral of the process and 
Z~ is an estimate. The variance used in the 
alternate ("classical") approach is 

(8.2) 

where /~ is an estimator of the integral of the 
expected value of the process (the above 
equations assume unbiasedness of the estimators). 
As explained above, these two variances may be 
totally different, even if the estimators are both 

"' "' ->!< equal to the sample mean: I v =Zv =Z . 

8.3 Data sets 1-5 

- 14-

Tables 8.1-5 give,· for data· sets 1-5, the 
estimated densities (sA), the corresponding C.V. 
(defined here as 100 times the standard error of sA 
over sA), the area used and the total abundance. 
Analyses of these data sets were also given in 
Anon. (1990), but many of the values have been 
revised. 

Table 8.1. Summary of the results of the analyses of 
test data set 1. 

ID Method ~A CV Area ~A* Area Analysl 

m2/NM2 % 1o3 Nm2 /106 

A Arithmetic 75 
mean 

B Box/Cox 68 9 55 3.7 Sirnmonds 
transf. 

Gl Kriging 85 43.5 54 4.6 Con an & 
Wade 

s Spline 77 N/A 53 4.0 Stolyarenko 

It is noted that in ·table 8.1, methods G 1 and S 
both give higher abundance estimates than 
method B, but the CV estimate in B is much lower 
than for G 1. It must be borne in mind that these 
two CV -values are estimates of different 
quantities, as described in section 8.2. 

Table 8.2. Summary of the results of the analyses of 
test data set 2. 

ID Method SA CV Area sA* Area Analyst 

m21NM2 % Nm2 /103 

A Arithmetic 297 
mean 

B Box/Cox 48 37 49 2.4 Sirnmonds 
transf. 

Gl Kriging 443 4 47 20.9 Con an & 
Wade 

s Spline 259 NIA 51 13.2 Stolyarenko 

In table 8.2, the CV of B is much larger than 
that obtained in G 1 (although these two have 
different interpretations). The actual abundance 
estimates also vary widely, with the Box-Cox 
transform (B) giving the lowest, the spline 
approximation (S) intermediate and global 
kriging (G 1) giving the largest estimate. It must 
be pointed out that the areas used by the different 
analysts are different, but this does not' fully 
explain the differences. The group noted that this 
dataset is particularly difficult to analyze and few 
methods would be applicable to this kind of data 
(c.f. section 3 and Fig. 3.2), since it is to a large 
extent due to the different area definitions. 



Table 8.3. Summary of the results of the analyses of 

test data set 3. 

ID Method SA CV Area sA* Area Analyst 

m21NM2 % 102Nm2 /106 

A Arithmetic 1793 
mean 

B Box/Cox 1327 7 55 7.3 Simmonds 

transform 

Gl Kriging 1558 33.8 63 9.8 Con an & 
Wade 

G2 2089 14 90 18.8 Guillard & 
Gerdaux 

G3 1911 22 83 15.9 Arm strong 

s Spline 7.8 Stolyarenko 

T Transects 3([12 30 19 5.7 Williamson 

as 
strata 

In test data set 3, the CV estimates vary 
widely (table 8.3). The geostatistical methods 
(0 1-03) give abundance estimates which are up 

to two to three times the estimates obtained by the 

other methods. 

Table 8.4. Summary of the results of the analyses of 

test data set 4. 

ID Method SA CV Area sA* Area Analyst 

m2/NM2 % Nm2 /106 

A Arithmetic 774 
mean 

B Box/Cox 560 9 6100 3.4 Simmonds 

transform 

Gl Kriging 1062 51 3000 3.2 Con an & 
Wade 

G2 1690 12% 1975 3.3 Petit gas 

s Spline 3.5 Stolyarenko 

T Transects 1512 31 2200 3.3 Williamson 

as 
strata 

In data set 4, the difference between the 

results from the geostatistical methods 01 and 02 

is considerable. The main explanation for this 

probably lies in definition of the area over which 

the estimation was performed. The area is 1975 

sq. NM for 02 and 3000 sq. NM for 01. In the 

02 approach, the zero values at the extremities of 

the transects are interpreted as zeros exterior to 

the fish spatial extension. Therefore, the area 

over which the estimation errors are made is 

reduced. In the 01 application, on the other hand, 

a much larger surface was defined. Further, 

estimation errors in areas were assumed, whereas 

no error was assumed in the 02 application. 
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The CV of T is very high in data sets 3 and 4. 

It is believed that this stems from this method not 

taking into account the inter-transect spatial 

correlation. 

Table 8.5. Summary of the results of the analyses of 

test data set 5. 

ID Method SA CV Area sA* Area Analyst 

m2/NM2 % 104Nm2 /104 

A Arithmetic 14 
mean 

B Box/Cox 9 8 13 110.0 Simmonds 

transform 

G1 Kriging 14 18 19 266.0 Con an & 
Wade 

s Spline 87.5 Stolyarenko 

Three methods were applied to this test data set. 
The resulting estimates varied widely. 

8.4 Data set 6 Walleye pollock 

Two estimates of transect mean density were 
provided, as indicated in table 8.6. 

Table 8.6. Abundance estimates for walleye 

pollock (data set 6) 

ID Method Abundance CV,% Analyst 

G1 See sect. 13.220 2.3 Petitgas & 

5 (appl. 2) Rivoirard 

G2 See below 13.019 3.5 Warren 

The 02 estimate is based on the total of the 

mean densities over the number of elementary 

sampling units in each transect, Ul;, say. 

However, the lengths, li, of the elementary 

sampling units vary slightly and the 01 estimate 

is based on "Ll;d;. 

Although the original data set consist of 27 

transects, a transmission glitch of some sort 

erased one transect from some of the diskettes 

sent to participants. This omission is unlikely to 

have affected the results to any noticable extent. 

The 01 method is described in Section 5, 

above. In 02, the transect was also taken as the 

sampling unit but the transects were treated as a 

systematic sample with a random start. Variance 

estimation was then accomplished by assuming a 

polynomial trend on the transect totals and 

applying the formula given in Cochran (1977) as 

extended by Kingsley and Smith (1980). A 

quartic was judged to be appropriate. Details are 
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given in working paper W8. Essentially, it was 
assumed that the· residuals, after removal of the 
fourth-order trend, would be independent. The 
slightly greater CV obtained in 02 relative to 01 
suggests that some residual serial correlation may 
have remained in the residuals. 

8.5 Data sets 7-91celandlc herring 

Five different analyses for each of the 3 
surveys were available for the meeting. The 
results are summarized in table 8. 7. 

Table 8.7. Summary of results of analyses of Icelandic herring 
data. Abundances and averages divided by 1000. 

Method ID Statistic 1 2 3 Analyst 

GLM L A bun d. 80.8 76.9 81.3 Stefan-
ss on 

Mean 5.72 4.34 5.32 
Density 

Area 14.1 17.7 15.3 
CV,% 16 18 13 

3D- s A bun d. 110.0 55.4 94.3 Stolyar-
Spline enko 

Mean n.a. 
Density 

Area n.a. 
CV,% n.a. 

Block G1 A bun d. 127.5 117.6 113.4 Wade 
kriging 

Mean 4.94 3.24 2.77 
Density 

Area 25.8 36.3 40.8 
CV,% 19.9 18.6 22.5 

Point G2 A bun d. 103.1 93.3 107.1 Warren 
kriging 

Mean 5.54 3.52 3.87 
Density 

Area 18.7 26.5 27.7 
CV,% 16.6 n.a. n.a 

Mean G3 Petit gas 
abund. Rivoirard 

Mean 5.53 3.25 3.59 
Density 

Area 
CV1> 

•>12% forareal5.0,14% forarea33.5 

No estimate of area size or mean density of 
precision was provided with the application of S. 

The methods of area estimation differed from 
one method to the next: 

• The boundaries for the OLM model 
application (L) were chosen to include all 
locations of observations. 

• The areas for the application of point kriging 
(0 1) were determined as those locations for 
which the estimated density was non-zero. 

~ Areas in the block kriging application (02) 
were defined as the outline of an variance 
contour line of an arbitrary level (value not 
specified). They correspond approximately to 
the outline of the sample points plus a corridor 
of width slightly smaller than the range of 
influence. 

• The area used in 03 was limited to the zone 
that was swept. It was taken as 15 sq. NM for 
all sets. A~ extension on each side of the 
survey was also. considered, giving an area of 
33.5 sq.NM. 

Consequently, the areas, as used for the OLM 
model, were smaller than those used in point 
kriging, which, in turn, were smaller than those 
used in block kriging. 

Application 02 provided a CV estimate for 
survey 1 only. Little change in the mean density, 
area and abundance estimates is anticipated by 
using a finer grid for 02, but the CV estimates 
may be somewhat reduced. 

The OLM estimates of CV, obtained in the L 
application, are not comparable in that they 
represent the pointwise integration of one­
standard error confidence limits and should 
therefore only be considered approximations. 

Other choices of distribution, link function 
and degree of polynomial in L gave alternative 
abundance estimates ranging from 78225 to 
103734, from 67514 to 96185 and from 74195 to 
90543 for surveys 1, 2 and 3, respectively. With 
high-degree polynomials, slight changes in area 
definitions can drastically change the results. 

The estimates of mean density are, not 
surprisingly, inversely related to the estimates of 
area. The relationship is, however, not that of 
exact inverse proportionality so that the 01 
estimates of abundance turn out to be greater than 
those of 02 which, in turn, are greater than those 
ofL. 

The mean density estimates in 03 (the sample 
means) are closest to those of 02 differing by 



0.1%, 8.1% and 7.7% for surveys 1, 2 and 3, 
respectively. 

The spline approximation (S) abundance 
estimates for surveys 1 and 3 are also closest to 
those in G2 differing by 6.7% and 12.0%, 
respectively. The S estimate for survey 2 is 
clearly unrealistically low, since the data are 
supposed to represent three surveys of the same 
aggregation. By the same token, the fixed areas 
assumed in G3 are also unrealistic since this 
would imply abundances for surveys 2 and 3 of 
approximately 60% that of survey 1. 

Since the data sets represent three surveys of 
the same aggregation, it was expected that the 
abundance estimates obtained by any one method 
would be consistent over the three surveys. Table 
8.8 expresses, for each analysis, the range of the 
three estimates of abundance as a percentage of 
their mean. The differences between the estimates 
are relatively small in relation to the estimated 
CVs. 

Table 8.8. Comparison of between-survey results 
for Icelandic herring. 

Application Range (of3) Mean (of3) Range I 
M~n 

% 

L 4317 79653 5.4 
s 54600 86567 63.1 
Gl 14173 119505 11.9 
G2 13875 101178 13.7 
G3 n.a. 

The estimate of CV in G2 (survey 1) seems 
comparable to that obtained in G3, and perhaps 
somewhat less than that obtained in G 1. This is 
consistent with the conjecture that, in employing 
ordinary kriging, somewhat greater precision 
would be attained by removing any seemingly 
well defined trend. 

8.6 Data sets 10-15: Simulated data 

For ease of tabulation, all total abundance 
values have been scaled down by 100000. For all 
six surveys the true abundance is 87.67 and the 
mean density is 97 .41. The population of survey 2 
is that of survey 1 rotated through 90 degrees. 

Three different analyses (or partial analyses) 
of data sets 10·15 were available for the meeting. 
The results are summarized as follows: 
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Table 8.9. Comparisons of results from simulated 
data sets 10-15. 

Data set 10 11 12 13 14 15 

Simul- 1.1 1.2 1.3 2.1 2.2 2.3 
ated 
survey 

ID/ Statistic 
Method I 
Analyst 

A Mean 
density 95.8 95.9 95.8 91.9 92.6 92.3 

Arith. A bun d. 86.20 86.30 86.20 82.70 83.10 83.00 
mean CV n.a. 

Diff. 
from 
true 1.7% 1.6% 1.7% 5.7% 5.2% 5.3% 

s Mean 
density 97.1 97.2 97.1 95.8 96.3 96.3 

2D-spline Abund. 
CV 

Stolyarenko Diff. 
from 
true 2.8% 3.0% 2.8% 1.5% 2.0% 2.0% 

G1 Mean 
Density 94.5 94.4 94.1 94.7 95.7 92.7 

Kriging A bun d. 85.06 84.96 84.96 85.23 86.13 83.43 
CV 12.2% 10.4% 10.2% 12.8% 10.8% 8.8% 

Wade Diff. 
from 
true -3.0% -3.1% -3.1% -2.8% -1.8% -4.8% 

G2 Mean 
density 102.59 n.a. n.a. 97.32 94.89 96.98 

Kriging Abund. 92.33 87.59 85.40 87.29 
CV n.a. 

Warren Diff. 
from 
true 5.3% -0.1% -2.6% -0.4% 

Only estimates of abundance were provided 
with the S method (no measure of precision). 

The G2 abundance estimates for Surveys 2.2 
and 2.3 are preliminary. They were based on a 
smaller critical distance than intended; i.e. the 
distance of data points used from the interpolated 
locations. 

The S estimates are all slightly above the true 
abundance by an average of approx. 2.4%. 
Conversely, the G 1 estimates are all slightly 
below the true value, by an average of 3.1 %. The 
G2 estimates are above the true value for survey 1 
and below for surveys 2.1, 2.2 and 2.3. 

W. Warren also presented estimates obtained 
by treating the major transects as a systematic 
sample (Kingsley and Smith 1980) with a single 
random start, although clearly, a random start was 
not employed. Not all the data were used, as the 
short transects linking the ends of the long 
transects were omitted. The results were as given 



in table 8.10. 

Table 8.10. Results based on assuming 
a random start. 

Data set 10 11 12 13 14 15 

Simu1. 1.1 1.2 1.3 2.1 2.2 2.3 
survey 

A bun d. 94.36 94.51 94.32 75.75 75.13 74.97 
Diff. from 7.6% 7.8% 7.6% -14.7% -14.3% -14.5% 
true 

CV 6.9% 6.9% 6.9% 4.9% 4.9% 4.9% 

These results are interesting in that, as noted 
above, the underlying population for survey 2 was 
that for survey 1 rotated through 90 degrees. It 
can be seen from Fig. 3.10 that the populations 
consists of a "mountain range" running through 
the center of the region and parallel to one pair of 
sides. Consequently, the transects of survey 1 cut 
across the "mountain range" thus giving transects 
totals that exhibit relatively moderate variability 
but with no clear trend. For survey 2, the transects 
run parallel to the "mountain range" so that the 
transect totals exhibit much greater variability but 
also an essentially quadratic trend. Since, for 
survey 2, a quadratic trend was assumed in the 
variance estimation, this accounts for the smaller 
CV estimates. The lower abundance estimates are 
due, in part, to the omission of the short end 
transects which cross the "mountain range". 

8. 7 Discussion 

The above results are, perhaps, as notable for 
the consistencies as for the discrepancies, most of 
which can be explained, at least in part. 

During discussion, the group considered the 
described fish stocks and a number of others. 
There was general agreement that some structure 
could be assumed in all cases considered. There 
was evidence of large scale changes in mean 
density in most cases. In addition to these 
"trends," additional spatial autocorrelation was 
always expected to be present. 

Based on these conclusions, the group agreed 
that there was in many cases potentially great 
benefit involved in utilizing the spatial structure 
when estimating the abundance of the resource, 
and, in particular, there is potential gain when 
estimating the precision of that quantity. 

There is no doubt that spatial analysis can 
give a more realistic measure of precision of a 
survey than classical methods and, under certain 

- 18-

circumstances, a better measure of abundance or 
mean density. It is not, however, a panacea. It 
would be a fallacy to assert that there exists a 
"black box" that can be used to process spatial 
data and that will yield viable results under all 
circumstances. 

Depending on the severity of the trend, it may 
need to be removed before applying covariance 
techniques, although Joumel and Rossi (1989) 
have shown that equivalent results may, in some 
cases, be obtained by using appropriate data 
windows when applying techniques which do not 
assume the existence of trend. 

Spatial analysis can be viewed as a sequence 
of steps at each of which a choice must be made 
of the several options that are available (e.g. 
transform or not, if so which transform ? Trend 
removal or not, if so how? Should ancillary data 
be used ? Do the two-dimensional data lend 
themselves to being collapsed into one 
dimension?). There are as yet no well defined 
rules as to which choice would be best. While 
general guidelines can be given, each situation 
must be treated on its merits, and the viability of 
the results depends, to some extent, on the skill 
and experience of the analyst. 

Spatial analysis cannot be divorced from 
survey design. While in theory it is possible to 
analyze spatially any configuration, spatial 
analysis appears to be most effective under 
systematic designs. 

9. Conclusions and 
recommendations 

9.1 Applicability 

The aim of the workshop was to examine the 
applicability of spatial statistical techniques to 
acoustic survey data, with particular attention to 
global abundance estimation, variance estimation, 
and mapping. This has been done with respect to 
so-called classical or traditional statistical 
techniques, generalized linear models (GLMs), 
generalized additive models (GAMs), and 
geostatistical or kriging techniques. 

In the course of comparing the several 
methods, workshop participants managed to 
clarify a matter of long-standing contention, 



namely that of variance estimation. This is 
described in detail in Section 8.2. In essence, a 
distinction should be made between viewing the 
fish stock as a "pure" random process 
(independent, identically distributed random .. 

i.i.d.- variables) and viewing it as.a process with 
structure. This affects the estimation of variance. 
If the distribution of the fish stock is a pure 
random process, the variance is that of the mean 
estimate. If the spatial distribution is structured, 
i.e. has autocorrelation, then the estimated 
varlance is based on the difference . between the 

process as observed, and as predicted making 
explicit use of autocorrelation. Insofar as fish 

stocks do have structure in space and this can be 
ascertained by sampling along transects crossing 
the aggregation, the second view must be the 

preferred one. Since the whole point of spatial 
statistical techniques is to exploit structure as 
observed, these must at least be recommended as 
useful techniques. 

In fact, the general discussion conducted on 
the basis of specific data analyses supports a 
stronger recommendation. This is that spatial 

statistical techniques be regarded as integral in 

the analysis of acoustic survey data. In other 
words, 

~ecommendation 1 Spatial statistical 
techniques are applicable to acoustic 
survey data and are recommended as 
suitable for the following: (1) 
estimating global abundance of 
acoustically surveyable fish stocks, (2) 
obtaining an associated estimate of 
precision, and (3) mapping the spatial 
distribution of the stock. 

The precision of the global estimate is 

defined here in terms of the mean-square 

difference between the observed distribution and 

that predicted on the basis of observed 
au tocorrelation. 

9~2 Association of techniques with 
spatial features of the stock 

A number of different kinds of fish 
distribution are recognized. These may be 

characterized a priori by the range of the 
autocorrelation with respect to the extent of the 
distribution or a posteriori by the scale of 
variation with respect to the inter-transect 
distance. 
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The following general situation is considered 
first: a stably located fish distribution is confined 
to a known geographical region, which is 
surveyed according to a grid of parallel, equally 
spaced transects. The statistical characteristics of 
the fish distribution can be categorized as follows: 

1. The scale of variation is large compared to 
inter-transect distance. Exs. Test data sets 6 
(walleye pollock), 7-9 (Icelandic herring), 
10-15 (simulated data), 

2. The scale of variation is comparable to 
inter-transect distance. Ex. Test data set 4 
(Norwegian pelagic stock off coast), 

3. The scale of variation is small compared to 
inter-transect distance. Ex. Test data set 2 
(Norwegian pelagic stock in fjord). 

Geostatistical techniques of analysis can be 
applied in each of these situations. In the first and 
second cases, they will be able to exploit the 
observed structure, as characterized by the 
autocorrelation, and the resulting variance 
estimate will be lower than the classical variance 
estimate. In the third case, the geostatistical and 

classical variance estimates could be similar. 

Strictly speaking, the choice of analysis 
should also be based on the scale of variation 

relative to the area sampled. 

A second general situation is illustrated by the 
Icelandic summer-spawning herring. The bulk of 
the stock exists at the autumn survey time in one 
or two dense aggregations of initially unknown 
location. These must be found in order to 

estimate the abundance. When an aggregation is 
found, it is usually possible to sample this very 

densely. An application of geostatistics to the 

Icelandic herring found that the range of 

covariation was too small to obtain the benefits 

associated with high spatial correlation. This 

resulted in an appropriate increase in the variance 
estimate as compared to an estimate assuming 

independence. 

A third general situation is that of migration, 
which requires special surveying tactics. These 

are described in Simrnonds et al. (1991). This 

situation requires detailed examination, not 

undertaken at the workshop. 

An underlying assumption employed here is 

that the biology of the fish stock being surveyed is 
known, at least in its gross whereabouts at the 
time of the survey. Given this knowledge, the 

following recommendation can be made: 



Recommendation 2 Among spatial 
statistical techniques, geostatistics, i.e. 
analysis using the variogram, is 
specifically recommended for the 
analysis of acoustic survey data. 

If the acoustic survey has been performed 
over a. grid composed of parallel transects 
reaching the boundary, then the variance can be 
estimated according to a quite simple procedure. 
Each value of density is exact for the particular, 
small interval of sailed distance. The total density 
along each transect is computed by simple 
summation. The resulting set of numbers 
constitutes a one-dimensional distribution. This 
is necessarily less rough, or spatially more 
correlated, than the underlying two-:dimensional 
fish distribution. Illustrative examples are found 
in the analyses of test data sets 4 (Norwegian 
pelagic stock off coast), 6 (walleye pollock), and 
10-15 (simulated data). In these particular 
examples, the range of spatial correlation of the 
one-dimensional data is large in comparison to 
the ex.tent of the distribution. Application of 
geostatistics here will give both a lower and more 
realistic estimate of variance than is obtainable by 
classical statistical analysis. 

It is noted that for the general acceptance of 
geostatistical techniques, some form of education 
and dissemination of information is required. 

When synoptic know ledge of the whereabouts 
of the fish stock is lacking, estimation of 
abundance is not generally 'possible. Knowledge 
of fish biology is a precondition for conducting a 
proper survey, thence analyzing resulting 
measurements of fish density in order to estimate 
abundance over a region. 

9.3 Analysis procedures 

The phases of an analysis of acoustic survey 
data are: 

1. Exploratory data display and analysis, to 
learn about the characteristics of the data, 
including possible connection with other 
variables, namely covariates, 

2. Diagnosis, or selection of the best analysis 
technique, 

3. Analysis, or exercise of the selected 
technique with the particular survey data, 
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4. Evaluation, including judgement of .the 
quality of the analysis in the context of the 
degree of coverage of the stock by the 
survey grid and how well the analys,is 
assumptions are met. 

In the analysis phase, generalized additive 
models (GAMs) may be useful for associating 
other variables with the fish distribution. 
Examples include those of bottom depth, as in test 
d~ta set 6 (wwleye :polloclc), ~ng t~w:per~tur~, as 
considered by Shinomiya and Tameishi (1988), 
among others, but not considered at the workshop. 
These techniques are particularly valuable for 
facilitating interpolation of measurements of fish 
density between transects, hence.· aiding the 
process of mapping fish distribution, a:s discussed 
in Appendix C. Hence, 

Recommendation 3 Generalized 
additive models should be considered 
for use in exploratory data analyses to 
aid in choosing the specific analysis 
technique, and in the analysis process 
itself, as to map the distribution. 

Association of the pattern of fish distribution 
with other variables can have major significance 
for the conduct of acoustic surveys. The potential 
to improve both the survey design and quality of 
analysis result is emphasized. 
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Figure 2.1 Bering Sea 1988 walleye pollock survey showing cruise tracks and a histogram of abundance 

a).ong the tracks. 
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Figure 2.2 Acoustic survey tracks based on simulated data showing abundance along the track as a series 
of scaled rectangles. 
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Figure 2.3 Acoustic survey track for Icelandic herring survey test data set Iceherl showing abundance 
along the track as a sequence of scaled circles. 
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Figure 2.4 Gray scale and contour plots of acoustically determined fish density (left side) and depth (right 
side) for the Bering Sea acoustic survey test data. 
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Figure 2.5 3-D plot of herring density interpolated from the Iceherl acoustic survey data using a bilinear 
interpolation routine. 



0000~ ~ 00000~ 00006 00008 OOOOL 

Figure 2.6 Variogram from the untransformed data in test data set 1. 

00009 

0 
C\i 

0 

l[) 

0 

0 
0 



L 
a 

1-
9 

L 
z 

Figure 2.7 Variogram from the untransfonned qata in test data set 2. 
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Figure 2.8 Variogram from the. untransfonped data in tes~ data s~t 3. 
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Figure 2.9 Display of the depth distribution of fish abunci.ance along the survey track for an acoustic 
survey in the Barents Sea conducted by the Institute of Marine Research. Bergen. Depth clistribut,ion for 
abundance n,ms from top to bottom in 50 m depth increments. Profiles are drawn for 5 NM segments every 
50 NM along the survey track. 
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Figure. 3,1 Acoustic density of fis~ .for test data .s~t 1 .. 
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Figure 3.2 Acoustic denstiy of fish for test data set 2. 
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Figure 3.3 ~coustic denstiy of fish for test da~ set 3. 
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Figure 3.5 Acoustic denstiy of fish for test data set 5. The solid line indicates the survey grid for one ship; 

the faint or missing line, discerned from the rows of values, that for the second ship. The data are, 

however, to be considered together. Log numbers lack the thousands digit. Congestion in placement of 

numbers, especially near intersecting or coincident transects or in the vicinity of a third-ship track, shown 

in one or several places but not included in the data otherwise, is acknowledged. This map is presented 

only to give an overview of the survey area and grids for the tabulated data. 
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Figure 3.6 Transect lines surveyed during Summer 1988 echo integration/midwater trawl survey of adult 
walleye pollock on the eastern Bering Sea bhelf and slope. Net type used at each haul position also 
indicated. 
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Figure 3 7 L. · ocati on of Icelandic he . mng durin g three surveys in November 1988. 
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Figure 3.8 Simulated field used for data sets 10- 15. 
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Figure 3.10 Simulated cruise tracks used as a basis for data sets 10 .. 15. 
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Appendix A: Working papers and relevant documents available to the 
meeting 

A.1 Working papers 

W1: Kizner, Z.I. 1991. Simulating Data for 
Comparison of Methods of Spatial Statistics. 

W2: Stefansson, G. 1991. Analysis of 
IcelandiC herring data usipg G~Ms. 

W3: Stolyarenko, D.A. 1991. 
Multidimensional Spline Approximation of Stock 
Density: Spline Survey Designer Software 
System. 

W4: Swartzman, G. and Sullivan, P. 1991. 
Exploratory analysis of hydroacoustic fisheries 
survey data using statistical and ~aphical 

techniques. 

WS: Wade, E. 1991. Tlw Applicatioll gf the 
Ordinary Kriging Package ''Gulflqig" for 
Mapping and Estimating Abundance of the 
Resource Surveyed by Acoustic Data Sets. 

W6: Warren, G. W. 1991. Spatial Analysis of 
Acoustic Survey Data. I. Iceland Herring. 

W7: Warren, G.W. 1991. Spatial Analysis of 
Acoustic Survey Data. II. Simulated Data Sets. 

W8: Warren, G.W. 1991. Spatial Analysis of 
Acoustic Survey Data. Ill. Bering Sea Pollock. 

W9: Petitgas, P. and Rivoirard, J. 1991. 
Global estimation: cr2 In and the geostatistical 
estimation variance. 

W10: Ferrandis, E. 1991. A note on the 
kriging weighting estimation. 

A.2 Related documents, available to 
the meeting 

Butterworth, D.S., Borchers, D.L. Miller, 
D.G.M. 1991. Some Comments on the Procedure 
for Testing Estimators of Krill Abundance which 
Utilise Survey Data. 

Haslett, J., Bradley, R., Craig, P., Unwin, A. 
and Wills, G., 1991. Dynamic Graphics for 
Exploring Spatial Data, with Application to 

Locating Global and Local Anomalies. American 
Statistician. 

Sullivan, P.J. 1991. Stock Abundance 
Estimation Using Depth-Dependent Trends and 
Spatially Correlated Variation. 

Unwin, A., Will,. G. and .Haslett, J. 199.1. 
Regarq-Qraphical Analysis of Regional Data. 

Wills, G., Unwin, A. 1991. Kodiak Crabs -
The View from Ireland. 
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Appendix B: GIQbal estimation; a2!n and the geostatistical estimation 
variance 

by 
P. Petitgas and J. Rivoirard 



Acousti,cs _can prqvige a lo.t qf data over a given d,omain. Here we will look at the 

estimation of~ the mean acoustic density over this domain:· and fn 'particular' at the 

estimation variance. 

First we will try to explain why this variance is not always a 2 /n . Then we will give 

the formula using the variogram. And after that we will consider different case studies: 

"iceher" (herring, S-E Iceland, three surveys), "test04" (West of Norway), "kO*a" 

(Walleye Pollock, Baring Sea). 

1. WHY THE ESTIMATION VARIANCE IS NOT ALWAYS a 2 /n 

- line divided into segments 

A line is divided into n segments 11• We know the value Z1 of each of these 

segments. Their; variance is a 2 . 

Suppose we want to estimate the average value of the line L. 

The estimate z£ = _!_I Zi is equal to the exact value of the line ZL = _!_I Zi . 
n n 

The estimation variance Var(ZL- Z[) is zero, but is not a 2 /n either! 

-thin block 

,----------------------------------, 
'----------------------------------~ 

The last example was trivial, but suppose we want to estimate the mean value 

over a thin block V set on the line L. We then would expect the estimate Zv = _!_I Zi 
n 

2 

to be close to the real value Zv. with an estimation variance still smaller than 5!_. 
n 

- large field 

The exact mean value Zv is now the average of many distant values. 

. 2 
If the data Z1 were independent, classical statistics would give 5!_ as estimation 

n 

variance for Zv. 



In the case they are correlated, they count as if they were fewer but independent 

data. So the estimation variance will be larger than a2 /n. 

Summarising all these cases, we can see that the estimation variance is not 

always a 2 /n . lt depends on the geometry of the field and of the data. 

2. VARIOGRAM AND ESTIMATION VARIANCE 

The variogram measures the mean variability between two points x and X+h as a 
function of their vectorial distance h: 

1 
y(h) = "2 E[Z(x +h) -Z(x)]2 

The symbol E (expectation) denotes the average on all pairs (x, X+h). 

The variogram m~y reach a sill. In that case, there is a covariance function 

C(h) = C(O) - y(h) which represents the covariance between two values Z(x) and 

Z(x +h) distant of h. The covariance C(O) for h=O is the variance a 2 , and for h larger 

than the range, there is no more correlation between Z{x) and Z(x +h). 

sill • 

nugget effect 

0------------~~-----------------------
range h 

The variogram makes it possible to compute the variance when estimating the 

average value on V by the average of n samples Z1 : z*v = _!_I Z; . This can be written, 
n 

in term of covariance: 

a~= Cw+ Cij-2C,v (1) 

Cw is the mean covariance between two points describing V independently. 

C,v is the mean covariance between sample i and a point describing V. 



Cij is the mean covariance between samples i and j, for all n2 possible pairs (i,j): 

n pairs correspond to i with itself, the other n2-n correspond to i different from j: 

C(O) c .. =-+ c .. 
v n i~jv 

If the field is large, compared to the range, the terms Cw and C,v are zero. The 

estimation variance a 1 is reduced to the term c,1• which is generally larger than 

C(O) a 2 
--=-

n n 

If the range is lar']e compared to the field, we will see (on test04 and kO* a) that 

a1 can be less than a2 /n. 

3.ICEHER 

The 3 surveys cover nearly the same zone (figures 1 to 4 in nautical miles). 

Excepting the zeroes at the North East, there are about 1 o acoustic values per nm. The 

length of the first survey is smaller (15.5 nm, 174 values) than the two others (23 nm, 

255 and 276 values). Large values are present in the first survey (max=26738), 

increasing its mean and variance. 

Survey no m 

1 5531 28 345 200 

2 3253 14 120 100 

3 3594 16 300 000 

a 
m 

0.93 

1.33 

1.26 

a 
mj(n) 

0.073 

0.072 

0.068 

If the data of a given study were independent with the same law, the mean of this law 

would be estimated by the arithmetic average with a relative standard deviation of 

a/m j(n5 , here 7o/o. 

In fact the acoustic data are regionalised and neighbouring data are correlated. 

Variograms computed at a 0.1 nm lag show structures up to 1.2 nm (figures 5-6-7). 

The structure is shorter for the first survey. 

Knowing the variogram, we can compute the estimation variance of the mean 

value over the field. This supposes that the field has been delimited. Two hypotheses 

have been made. 
- Either we limit approximatively the field to the zone which has been swept (for instance 

if we assume that the outside is close to zero). 

- Or we extend the field on each side of the survey, admitting that the extension is not 



systematically poorer than the survey. 
The surfaces are respectively 15 and 33.5 nm2• 

To compute the estimation variance according to the formula (1), the field is 
discretised very _finely. We obtain as relative standard deviation for the estimation 

1 z*v = -I Z; from each survey: 
n 

about 12 °/o for the smaller field; 
about 14 °/o for the larger one. 

These two values are close, but both are larger than afm /05 =7o/o. lt is due to the fact 

that the field is large enough, and the data correlated: they count as fewer independent 
data. 

Other approaches: 

1) The data are n·ot located regularly throughout the field. A weighted average, 
rather than the arithmetic one, may be used to estimated the field. Kriging corresponds 
to the optimal weighted average, the one which minimises the estimation variance. In 
our case kriging ~ives an increased weight to the data at the angles of broken lines. But 
it practically does not change the estimates and the variance (except for the estimation 
of the larger field from the third survey, where kriging gives about 3000 instead of 3600). 

2) Tables exist, which give the estimation variance of a rectangle knowing its 
median line, with a spherical variogram model (Matheron 1971). 
Let us take a rectangle close to the smaller field. If we replace the broken line survey by 
the median line (which is shorter and would contain less information), we get a relative 
standard deviation of about 14o/o. 
If we u~fpld the broken line to be the median line of a larger but thinner rectangle, we get 
a deviation of 9-1 Oo/o. 
The reality lies between these two limits. 

3) Data are correlated, which is one main reason for the estimation variance 

a 2 /n not to be correct. By averaging them over segments, we can build new values. 

Here we have regularised the data every 1 nm segment. These new values are less 
variable and little correlated to each other. 

Survey no 
a a n m/05 m 

1 17 0.45 0.11 

2 24 0.73 0.15 

3 24 0.76 0.15 



The relative standard deviation is smaller for the first survey. This comes from the fact 

that the variability is shorter scaled, and has been destroyed more by the regularisation. 

The value of ajm /05 is then 11 o/o for the first survey, and 15°/o for the two others. 

4. SURVEYS MADE OF PARALLEL REGULARLY SPACED TRANSECTS 

For such survey design we suggest a simple method to calculate the variance of 

the estimation. We shall see that it can be calculated on the transect cumulated data 

using geostatistics but not using the variance 
02 . 
n 

Each echo-integrated value is the exact mean value on each ESOU segment of 

the acoustic fish density. The variable q(j) defined by cumulating the data Z(i,j) along 

each transect j represe~ts the acoustic fish quantity along each transect j: 
n(J) 

q(j) = I a Z(i,j) 
i= 1 

I 
where. i is the in dice of the acoustic densities along the transacts and j is the in dice of 

the transacts; and where a is the ESOU distance. 

Of course, the transect should sample the limits of the fish regionalisation, i.e. should 

reach the. bordering zeroes at both extremeties. 

The cumulation transforms a 20 regionalisation into a 10 one. Obviously the 2 are 

related. These relations are communly used in stereology and geostatistics when the 

transect lengths are equal. The cumulation has 3 effects on the variogram. The sill 

(variance) is lowered, the nugget effect is filtered, the correlations are smoothed. Even 

though the transacts are of different lengths the 10 data set is expected to be less rough 

and more regular than the 20 one. 

In 10, the estimation problem becomes the following. We want to estimate the 

mean acoustic quantity on a segment L when we know experimental values q (j) 
regularly spaced along L. The values q (j) may be regarded as punctual values because 

the width of the echo surveying cone is very small in comparison to the inter-transect 

distance. Let us call 0 the inter-transect distance. lt is the distance between 2 

successive q(j) values. We have: L = nq D where nq is the number of q(j) values, i.e. 

the number of transacts. 

The estimate of the mean transect acoustic quantity is: q[. = .1:_ I q(j) 
nq j 

The estimation variance writes after equation (1) in 10 as follows: 

a~=CLL+Cjk-2CjL (2) 



where C(h) is the 1 D covariance model of the q(j) values. 

When the inter-transect distance is smaller than the range of the spatial 

correlations, Matheron (1965, 1971) has given theoretical prove for approximating a~ 

of equation (2): the errors of estimation in each segment D can be considered as 

uncorrelated. The variance a~ then writes: 

2 1 2 aE ~-a et (3) n em 
q 

a ;lem is the variance of estimation when the segment D is estimated by the value of its 

central point. Equation (2) rewrites: 

a ;lem = C(O) + CDD - 2CjD 

As C(O) = a 2 (variance of q(j) values) we can write the variance of estimation a~ in 

the following way: 

j 

The mean covariance C DD involves distances larger than the mean covariance CjD 

because the point j is at the canter of the segment D. So we have the inequality: 

a2 
CDD < CjD . Thus we expect a 1 to be smaller than -. 

nq 

We did the previous calculations on 2 .data sets, the one named test04 

concerning herring off shore Norway and the one named KO* a concerning walleye 

pollock in the Barring Sea. In both cases the q (j) values are very regular and 2 values h 

apart st~y correlated for distances h up to half of the total length L. In such situation the 

range of the correlations is large in comparison to the field over which the mean is 

estimated. The q(j) values cannot be considered as observations sampled Ol)t of an 

infinite field. The parameter c? will over-estimate the variance of estimation. 
n 

4.1 Herring off Norway, data set TEST04 (K.Foote) 

The survey design with a proportional representation of the data is given on figure 

8. We shall focus only on the regular part of the survey. The Northeastern irregular part 

represents only 3o/o of the arithmetical mean of the total data set. 

In order to calculate distances the longitudes and latitudes have been 

transformed followingly. Let y and b be the latitude and the longitude expressed in 

minutes and decimal fractions of minutes and let fat be the mean of y over the surveyed 

field. The transformed longitude is: x = b cos (/at) . The distances are expressed in 

nautical miles (n.m.). 



The values are cumulated along the parallel transacts. We have 15 non zero q(j) 
data. A representation of the q(j) values is given on figure 9. We have: 

D = 4.54n.m.; nq = 15; L = 68.ln.m. 

q[. = 1~ 2;. q(j) = 49006. ; s~ = 1~ 'i;.(q(j)- q[.)2 = 3.11 109 
1 J 

The 1 D variogram of the q(j) values is given on figure 10. No nugget effect has 
been modelled. The variogram model is a sum of a spherical and a linear variogram~ 

The variabbility between 2 values h apart is lower than S~ until! h is 30 n.m .. The 

geostatistical estimation variance a~ is caculated using formula (3). We get: 

a;= 12.1% and 
qL 

Sq 
* £ = 29.3% 

qL nq 

4.2. Walleye pollock of the Herring Sea, data set KO* a ( N. Williamson) 

The survey~s made of nq=27 parallel transacts oriented approximatively NE-SW. 
The coordinnates are transformed as previously (here lat=58° ). The mean 

inter-transect distance is: D = 20 n.m . . Along the transacts the echo-integrated data 

Z(i,j) are expressed in kilograms of fish per meters. The q(j) transect cumulated values 

derived are expressed in: kg n.m .. 
m 

The survey design with a proportional representation of the data is given on figure 
11 and a representation of the q(j) values is given on figure 12. We have : 

{) 

qi = .1.983; s~ = 1 
1 

"_i(q(j) -q£)2 = 2.257 ; L = 540n.m. 
nq- j 

The 9 Northwestern transacts , i.e. the 9 Northwestern q(j) values which show the 

greater agregation of fish represent 63 o/o of qi. Correcting the unities the estimated 

total quantity of pollock is: Q = q£ D nq = 3.7 106 tons 

The 1 D variogram of the q(j) values is given on figure 13. No nugget effect has 
been modelled. The variogram model is spherical. The q(j) values are very well 
correlated. The range of the spherical variogram is 340 n.m. which is the equivalent of 

17 inter-transect distances. The geostatistical estimation variance a~ is caculated 

using formula (3). We get: 

a;= 2.3% and 
qL 
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Appendix C: Generalized Additive Models 

by 

G. Swartzman 

In a generalized additive model the expected 
value of a random variable Y is expressed as a 
sum of smooth functions of the covariates. Thus 

p 

E (Y lx1 , .•• , xp) = L Si(xi), (C.1) 
i=1 

where Si(xi) represent smooth functions of the 
covariates. In a generalized additive model a 
known function of the expected value, called the 
link function, is modeled as a sum of smooth 
functions of the covariates. This generalization of 
the model is easy to make for random variables in 
the exponential family. 

If, for example, the Poisson distribution is 
chosen as an underlying distribution, a central 
assumption in the generalized additive model for 
spatial data is that the observations are distributed 
according to a nonhomogeneous Poisson 
distribution. The farameter of the Poisson 
distribution is A = A(u) du where A.(x) is the 

Ax 

intensity of the underlying Poisson process and 
Ax is the area of the observations. The expected 
value of the Poisson distribution is A.(x) and the 
natural link function is the logarithm. Thus, the 
Poisson generalized additive model relates the 
expected counts to the covariates as: 

log ( E (Y I x 1 , • • • , Xp)) 

= log ( A(x)) = ~ Si(xi) (C.2) 
j=1 

p 

Or, if the additive predictor is ll = L Sj(xi) then: 
i=1 

A=Jl=ell 

Since the functional form of the smooth 
functions, Si(xi), j = 1, ... , p, is not specified, the 
usual estimation techniques such as maximum 
likelihood estimation cannot be used for 
generalized additive models. Instead, an 
algorithm that empirically maximizes the 
expected log-likelihood is used. The derivative of 
the expected log -likelihood is set to zero and the 
resulting equation is expanded in a Taylor series 
about an initial estimate of the additive predictor, 
T1°. The equation can then be rearranged to give a 
new estimate for ll based on the initial estimate 
T1°. This update equation is used iteratively with 
the conditional expectation from the expected 
log-likelihood estimated by a scatterplot 

smoother. The resulting algorithm is similar to 
the adjusted dependent variable regression 
method of McCullagh and Nelder, 1989 for 
computing maximum likelihood estimates when 
the predictor, ll, is a linear function of the 
covariates. The adjusted dependent variable for 
the Poisson generalized additive model at the m­
th iteration is 

zm = 'Tlm + (y-e 'llm) (C.3) 
ell'" 

The scatterplot smooth of zm on x (when there is 
only a single covariate x) provides an updated 
estimate of the additive predictor, llm + 1• 

The measure of fit for the generalized additive 
models is the deviance, which is twice the log of 
the likelihood ratio between the saturated model 
and the current model. For the Poisson model this 
is calculated as 

Dev (y, J..l) = 2~ [y;log [~]- (y;- J..l;)l (C.4) 
l=1 Jl, 

The updating iterations are continued until the 
deviance fails to change. 

C.1 Backfitting algorithm 

The above discussion of the generalized 
additive model was for only one covariate, x. For 
the spatial models that will be considered, there 
will be at least two covariates, e.g. longitude and 
latitude. To fit multiple covariates, the backfitting 
algorithm is used. The algorithm computes the 
smooth function for each of covariates by holding 
the other covariate functions fixed. To do this for 
the j-th covariate, xi, the partial residual 
ri = z- S 0 - LSk(xk) (C.S) 

k~) 

where z is the adjusted dependent variable 
described in Eq. (C.3), is formed. An updated 
value of Si is computed by smoothing ri on xi. 
The process is then repeated for each covariate. 

The initial estimates for the algorithm are zero 
for the smooth functions Si and the log of the 
overall mean count for ll· The algorithm is 
iterated until the deviance no longer decreases or 
for a maximum set number of iterations. 

C.2 Smoothers 

The core of the generalized additive models 
(GAM) used is a running line smoother which is 
used to find the smooth functions si of equation 



(C.2). A running line smoother fits a line by least 
squares to the data points in a symmetric nearest 
neighborhood containing ni points around each Xi. 

The advantage of a running line smoother over a 
running mean smoother is that it reduces bias near 
the endpoints without sacrificing much in 
calculation speed (Kaluzny, 1987, Friedman, 
1984). 

The span of the smoother (the fraction of the 
data set used in estimating a line at each point) is 
determined using cross-validation, i.e. the smooth 
value for the point xi is computed by omitting the 
i-th observation and the span is chosen so that the 
residual sum of squares is minimized. In the 
program used in this study the best span was 
found by trying the spans 0.3, 0.4, 0.5, 0.6, 0.7 and 
1.0 and choosing the one which gave the smallest 
residual sum of squares. A span of 1.0 uses all the 
data to fit the least squares line and is equivalent 
to a simple linear regression line. 

C.3 Estimation of variability 

In moving from the parametric generalized 
linear models fit by maximum likelihood to the 
nonparametric generalized additive models, the 
likelihood theory for estimating variances is lost. 
However, the bootstrap methodology of Efron 
(1979, 1982) can be applied to the additive 
models to obtain estimates of variability. 

A bootstrap sample of size n is drawn from the 
observations (x 1j, x 2j, Yj) with replacement. The 
Poisson generalized additive model is fit to this 
sample and the resulting smooth functions, S~ and 
s; are saved. This is repeated N times. The spans 
for the running line smoothers used in the 
bootstrap fitting are fixed at the values chosen by 
cross-validation on the original data. If the span 
is allowed to vary for each bootstrap sample, 
essentially a new model would be fit when the 
interest lies in the variability of the model fit to 
the original data. The upper and lower aJ2 
empirical quantiles of the /i at each Xij gives an 
approximate (1-a)x100% prediction interval for 
Si at that value of Xi. 

C.4 Test of trend significance 

The bootstrap prediction intervals are one 
method to assess the significance of the smooth 
functions. The intervals indicate a range of 
possible values the function could have. If a 
horizontal line can be drawn within the prediction 
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interval then there is an indication that the smooth 
function is not significant. A more . formal 
approach is to do a permutation test. The null 
hypothesis that is considered by the test is: 

H0 : Si(Xij) =m (a constant) for all j, 

i.e. the smooth function for covariate xi does not 
depend on xi. Under this null hypothesis, any 
permutation of (xil, Xj 2 , • • • ,Xin) should result in 
approximately the same overall fit. If the null 
hypothesis is false then permuting the values of xi 

should not result in as good a fit as that obtained 
from the original data. Here the term "good fit" is 
taken to mean a small deviance. To provide a 
familiar measure of model fit a pseudo r2 is 
computed as 1.0 minus the ratio of the deviance in 
the best fitting model to the deviance for the 
overall mean (the null or zero model). While not 
identical to the classical r2 this measure is 
bounded between 0 and 1 and is used as a 
surrogate for it. Since all possible permutations 
cannot be examined, only a sample of size N of 
the possible permutations is used. The deviance 
from the generalized additive fit to each of the N 
permutations of the covariate vector xi is recorded 
along with the other unpermuted covariates. To 
avoid changing the model being fit the same fixed 
span smoother is used for all the fits, with the span 
being chosen by cross-validation on the original 
data. If the deviance from the original data is the 
m-th smallest among the N + 1 deviances the null 
hypothesis is rejected at the m I (N + 1) level. 

C.S Application of GAM to data sets 

The primary focus in the GAM analysis of the 
data sets provided was on uncovering 
relationships between fish abundance and 
environmental factors. Only depth was provided 
as an ancillary variable (except for latitude and 
longitude of the sampling locations) and that only 
for the Icelandic herring and Bering Sea surveys. 
The simulated data set was therefore not 
addressed. Scatterplots of fish abundance against 
depth for each of the Icelandic surveys suggested 
very little relationship between abundance and 
depth over the surveyed area (Fig. C.1). There is 
a drop in abundance below 80m, however, this 
depth range comprised only a tiny fraction of the 
overall survey. GAM with latitude and longitude 
as covariates might provide a marginally 
improved fit to the data relative to GLM (see 
section 6). However, this fit would not help to 
explain the spatial distribution, and other methods 
appear to provide better estimates than the GLM 



estimates. 

Contour and image plots of depth and 
abundance for the Bering Sea survey (Fig. 2.4) 
suggest that the spatial distribution of pollock is 
strongly related to depth. These figures were 
based on spatial interpolations of the abundance 
and depth data provided for the survey (see 
section 2 for a discussion of the dangers of such 
interpolations). GAM was run on these data with 
depth, latitude and longitude as covariates. Due 
to the large number of data points the data were 
binned into a 40x40 grid. The average of all data 
points in each of the 1600 grid bins were taken as 
the value for that bin. Fig. C.2 shows the GAM 
smooth on depth along with the depth residuals 
(conditioned on the fits for latitude and longitude) 
and one standard error range (dashed lines). The 
span used for the smoother was 1/3 (i.e. 1/3 of the 
data distributed around each point used for 
estimating the value at that point). This figure 
indicates that almost all the high abundance 
points are between 100 and 130 m, just off the 
shelf break. 3-D plots of the raw abundance data 
and the GAM fitted mean are shown in Figs. C.3 
and CA respectively. These demonstrate the 
quality of GAM of flattening and spreading out 
peaks. Also, GAM has no protection against 
giving negative estimates at some points, 
although this is only a minor affect over the entire 
survey region. The GAM mean values could be 
converted to an overall abundance estimate using 
the same method as used for GLM. Although 
variance estimates are provided by the S+ version 
of GAM, these are approximate and the theory is 
not clear. Bootstrap resampling can be used to 
provide pointwise variance estimates. The spatial 
distribution of the residuals should be examined 
(this was not done here) as discussed in the data 
analysis section 2 of this report. If the residuals 
appear to be spatially autocorrelated, further 
analysis with a variogram of the residuals suffers 
from bias of the residuals through the deviance 
minimization process inherent in the GAM 
algorithm. 
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Figure C.l. Scatterplots of acoustic measurements versus depth for three Icelandic acoustic surveys of 
herring. 
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