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Repeated echo integrator surveys using a rather dense survey grid were 

performed in areas where the effect of fish migration was assumed to 

be insignificant. Relative estimates of fish abundance representing 

different survey grid densities were calculated by using observations 

along all transects, each second transect, each third transect and 

so on. The "degree of coverage" of an area was defined as the ratio 

between "sailed" distance and the square root of the total area 

covered. Qoefficients of variation of the relative estimates were 

calculated for each degree of coverage. Observations and results for 

different areas are compared and discussed, and curve fit between the 

coefficient of variation and the degree of coverage for the 

observations are presented. Coefficients of variation estimated from 

the inter-transect variation are compared with the observed anes. 

1. INTRODUCTION 

During acoustic surveys sampling is performed -continuously along more 

or less equally spaced transects. In such cases there are no 

straightforward variance estimators for the total survey result. Same 
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authors have analysed various sources of random errors associated with 

the method (Moose and Ehrenberg 1971, Aksland 1976, Bodholt 1977, 

Ehrenberg and Lytle 1977, Lozow 1977}. Several estimators of variance 

have been suggested by different authors (Shotton and Bazigos 

1984}.They are all based on various assumptions which tend to be 

difficult to evaluate. Therefore the users may have doubts whether the 

resulting confidence limits are realistic. In fact those variance 

estimators are used rather seldom, and most acoustic biomass estimates 

are reported as point estimates without any confidence limits. 

The empirical variance of acoustic biomass estimates can be obtained 

from repeated surveys on a presumably constant fish biomass. Examples 

of such studies are Blindheim and Nakken (1971}, Johannessen and Losse 

(1977}, and Gerlotto and Stequert (1983}. 

This work presente an empirical coefficient of variation for a number 

of repeated surveys and relates the observations to the applied levels 

of survey effort. Different measures of effort are applied by 

different authors, and there are different opinions on what is a 

convenient measure of effort. A justification for my definition of 

effort is given in the first part of the paper. This reasoning also 

leads to a simple estimator of the coefficient of variation for 

acoustic abundance estimates. 

2. DEFINITION OF EFFORT 

The total sailed distance or the total ship time would be direct 

measures of the effort. They are closely related to the east of a 

survey, because running the vessel represents the main expense of 

acoustic estimation. These measures are not, however, globally related 

to the precision of the estimates. When studying precision - effort 

relationships, it is useful to have a measure of effort 

this relationship as scale invariant as possible. 

reasoning leads to a useful definition. 

which makes 

The following 

The sampling along transects is far more intense than the.sampling 
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perpendicular to the transect direction. An almost continuous band is 

sampled along the transects, while the distance between transects may 

vary from several hundred meters up to more than 30 nautical miles, 

depending on the size of the area to be surveyed. Thus for a given 

area the precision of a survey estimate mainly depends on the distance 

between transects, or more gererally, the number of transects. 

When the likely distribution area of a fish stock is known, the 

precision of the stock estimate should be related to the effort spent 

within that area only. Consider an echo integrator survey limited to a 

defined fish distribution area. Take the average integrator value (MA) 

of each transect through the area to be independent, identcally 

distributed stochastic variables. This means that each transect 

average is a relative estimate of average fish density for the whole 

area. The variance for the total average (MA) of n transects is then 

(1) Var(M ) = 1 · Var(M ) 
A n A 

where Var(M ) is the inter-transect 
A 

variance. If the relative fish abundance (t) is defined as a constant 

(K) times M we have that Var (t) = (K
2 /n) ·Var (M ). 

A A 

The coefficient of variation, SD(t) /t, is 

(2) CV(t) = CV ( M ) • n - 1 / 2 
A 

In this equation the number of transects is a measure of the effort. 

The number of transects worked parallel to one side of a square can be 

expressed as N/vA, where N is the added length of all transects 

through the square and A is the area of the square. Then 

(3) CV(t)= CV(M )·(N/vA)-1/ 2 
A 

I have used N/fA as a general definition of the "degree of coverage" 

(Aglen 1982). This definition appears to be convenient for comparison 

of the precision of different surveys where t~e shape of the survey 

area or the directions of the transects are different. It is evident 
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that in a long and narrow fjord with an unknown fish distribution 

pattern, a hetter coverage, requiring a higher survey effort, is 

obtained by working a certain number of transects along the fjord 

compared to working the same number of transects across the fjord. In 

this case N/~A gives a hetter description of the degree of coverage 

than the number of transects itself. 

The number of transects can also be expressed by the total degree of 

coverage relative to the degree of coverage represented by one 

transect. When the average transect length is N equation (2) becomes 
A 

(4) CV(t) = CV(M )·[(N/~A)/(N /~A)] - 1/ 2 • a·(N/~A) - 1/ 2 
A A 

Then a is the theoretical CV(M ) at a degree of coverage equal to 1. 
A 

This degree of coverage might be said to take into account both the 

size and shape of the area. It is scale invariant but this does not 

necessarily mean that it bears a "scale invariant" relationship to the 

precision. The re are possibilities that the other factor of the 

express ion [CV(M ) or a] depends on the size of the area. The results 
A 

presented later in the paper are used to compare estimates of a in 

small and large areas. 

If there is a dependence between transect estimates, the covariance 

between transects will introduce an additional term in equation (1), 

but (1/n)·Var(M) will remain an important part. This means that 
A 

the number of transects or the defined degree of coverage is a useful 

measure of effort in any case. It is likely that the covariance term 

will be most important when the distance between transects is small, 

which means at high degree of coverage. Thus if empirical data for 

simplicity are fitted to the function 

(5) b CV ( t) = a· ( N /vA) , 
a significant contribution from the covariance term should result in 

an estimate of b different from the value based on independence 

( -1/2). 

Several authors have related the precision to the distance between 

transects (Blindheim and Nakken 1971, Cram and Hampton 1976 and 

Fiedler 1978). This is useful for studies within a given area, but it 

might be confusing when comparing different areas. Gerlotto and 
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Stequert (1983) have applied this measure of effort while comparing 

resul ts from two areas. They conclude· ... that· the difference between the 

areas are caused by differences in the homogenity of the fish 

distribution. However, much of the difference can be explained by a 

difference in degree of coverage. 

A simulation study of the variance of hydroacoustic biomass estimates 
/ 

is presented by Kimura and Lemberg (1981}. They have defined a 

"sampling index" which can be expressed as 0.5·(N/vA). The reason for 

their definition is to have a scale invariant measure. The factor of 

0.5 arises just because they started with a rectangle of shape 1x4 and 

referred results for other areas to this. 

However, when presenting the results of the simulations, they present 

coefficient of variation versus number of transects. The differences 

shown between the simulation results for an area of shape 1x4 and an 

area of shape 2x2 then just reflects the differences in degree of 

coverage (or sampling index). 

Francis (1984) considers this sampling index, and consequently my 

degree of coverage, as inadequate for two reasons; 

"First, if two surveys with the same A and N are joined, then the 
sampling intensity of the resulting survey should be the same as that 
of the original surveys. With N/vA it is greater. Second, since 
sampling intensity is, roughly speaking, a measure of the proportion 
of fish schools that is likely to be encountered by a ·transect , it is 
a property not only of N and A but also of the size distribution of 
schools. A scale invariant measure such as N/vA would be appropriate 
only if, when the dimensions of the survey areas were doubled, so were 
those of the fish schools. The measure N/A is more suitable when 
comparing surveys where the size distributions of the fish schools are 
approximately the same in all surveys." 

The purpose of my degree of coverage is to have a measure which bears 

approximately the same relationship to precision in small and large 

areas. It is not meant to be "a measure of the proportion of fish 

schools that is likely to be encountered by a transect". Such a 

measure would be inadequate for precision - effort comparisons because 

the sampled proportion required for a given precision will decrease as 

the area increases. It is well known that for a given precision a 

large population (or large area) requires a smaller proportion sampled 

compared to a small population (or small area). 
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By the same argument it follows that when combining two equal areas 

with equal amount of sampling, the precision of the combined estimate 

will be hetter than the precision of each estimate. This is nicely 

reflected by a higher degree of coverage. 

The "sampling intensity" (N/A) advocated by Francis is a measure of 

the proportion of the total area which is sampled. Generally a given 

sampling intensity will then give increased precision when the area is 

increased, even in the case of an unchanged size distribution of 

schools. 

I realize that the size distribution of fish schools is of importance 

for the precision, but the defined degree of coverage is not based on 

the assumption that the size of the schools is scaled to the area. The 

degree of coverage will be a useful measure as lang as an increased 

area gives improved statistics on each transect average due to langer 

transects. To maintain the precision on the total survey estimate, the 

distance between transects may be increased, thus producing 

approximately the same degree of coverage. 

3. MATERIAL AND METHODS 

Different series of repeated surveys are analysed. The series are 

worked in different areas of different size. The smallest is 0.17 

square nautical miles and the !argest about 50 000 square nautical 

miles. Figure 1 shows the location of survey areas. Table 1 

summarizes important data about the surveys. References to more 

detailed descriptions of the surveys are listed in the table. Small 

(5-25 cm) pelagic fish which schooled by day and dispersed at night 

dominated during most surveys. The exceptions are the surveys in 

Lofoten and in the Gulf of Oman. Parallel transects were applied 

during most coverages. Some of the coverages in the fjords were made 

in a zig-zag pattern. 

For each coverage, an average integrator value representing the target 

fish species is calculated. In the Barents Sea, only values obtained 
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Figure l. 

Location of survey areas. 
Lindåspollene include 
Fjellangervågen, Straumsosen 
and Spjeldnesosen. Hardanger­
fjord includes Eidfjord and 
Samlafjord. 

Table 1. Key data about the surveys. The footenotes give references to further descriptions of 
the surveys. Fjellangervågen, Straumsosen and Spjeldnesosen are parts of Lindåspollene, 
Eidfjord and Samlafjord are parts of Hardangerfjord (Figure 1). 

Size of Number Number of 
covered of •dense• 

Name of Dominating area survey- coverages 
area fish species Vessel (sq.n.mile) series each series Time 

1) Fjellangervågen Sprat M/B "H.Reush 13 .17 1 4 Sep. 77 
1) Straumsosen + Her ring M/B •n.Reush"/ 1.0 2 2-11 Sep.77,Mar.78 

Spjeldnesosen M/B •oaffy" 
1) Outer Eidfjord Sprat R/V "P. RØnnestad" 13 2 5- 7 Feb.-Mar.78 
1) Samla fjord 16 3 4- 8 Jan.-Mar.78 
1) Nordfjord 22 1 9 Feb.78 
1) Eidfjord 25 3 2- 6 Oct. 77-Jan._78 
2) Lofoten C od R/V "G.O.Sars• 120 1 6 Mar.71 
3) Gulf of Oman Lanternfish R/V •or.F.Nansen" 10 000 4 1- 3 Jan.-Mar.81, 

Feb.83,Sep.83, 
Nov.83 

4) Barents Sea Cape lin R/V •a.o.sars• 50 000 5 Sep.-Oct.each 
year from -74 
to 78 

1) Aglen [1982bJ,2) Blindheim and Nakken [1971]. 3) Aglen ~ ~ [1982], Gjøsæter and Tilseth [1983], 
Anon [1983),Strømme and Tilseth [1983], 4) Buzeta ~ ~ [1975], Dommasnes et~ [1976], 
Dommasnes and RØttingen [1977], Manstad and RØttingen [1977], Dommasnes ~ ~ [1979]. 
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along 16 successive transects within the fish distribution area were 

applied. The other surveys did not extend outside the assumed fish 

distribution area. In Lindåspollene the coverages were rather uneven, 

and average values were calculated within subareas to give an area­

weighted total average. In Lofoten isolines were drawn, and the 

results are given as the added product of average integrator value and 

area within isolines. The total result is in all cases considered a 

relative abundance estimate for which the symbol t is used throughout 

the rest of the paper. 

From each original coverage estimates for more open survey grids were 

obtained by applying observations from each second transect, each 

third transect and so on. 

In Aglen {1982a) and Aglen et al. {1982} I have evaluated the acoustic 

equipment of application. The equipment used in the fjords and fjord 

inlet had an unfavourable threshold setting that led to systematically 

higher integrator values during day compared to night. In these small 

areas it was possible to make separate coverages during day and night, 

and the results are treated separately. During some of the coverages 

in the Gulf of Oman there was also a tendency towards higher values 

during day compared to night. In this area day and night values are 

not treated separately. 

4. RESULTS AND DISCUSSION 

4.1 The distribution of relative abundance estimates 

The relative fish abundance estimates for all areas except the Gulf 

of Oman are reported in Aglen (1982). Due to the way the estimates are 

constructed, those representing a low degree of coverage are more 

numerous than those representing a high degree of coverage. In Figures 

2-5 the single estimates from all series of surveys are shown as 
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Figure 2. Scatter plots of relative fish abundance estimates. The 
median of the scatter is shown within intervals for the 
degree of coverage. A: Fjellangervåg, B: Straumsosen + 
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Figure 3. Scatter plots of relative fish abundance estimates. The median of the 
scatter is shown within intervals for the degree of coverage. 
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Figure 4. Scatter plots of relative fish abundance estimates. The median of the 
scatter is shown within intervals for the degree·of coverage. 
A: Lofoten, B: Gulf of Oman, C: Barents Sea. 
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percentages of the best estimate oqtained during each series. The 

average of the coverages with highest degree of coverage is considered 

as the best estimate. In most cases the way the poorer coverages are 

constructed from the best coverages makes the average of the poorer 

coverages equal to the best estimate. This is not the case for the 

esimates forn Lindåspollene and Lofoten, where integrator values are 

weighted by sub-areas. The reason for presenting the result in this 

way is to illustrate how the scatter of the estimates relates to the 

degree of coverage. Cases with only one or two estimates are not 

presented on Figures 2-5, because these should fall either on or to 

each side of the best estimate. 

The median of the point scatter is drawn within intervals. (Figures 

2-5). Although there are same variation between areas, there seems to 

be a general tendency of the point scatter to be skewed towards low 

values, at !east for low degrees of coverage. Regarding the medians, 

some of the differences between areas and differences between 

intervals of degree of coverage are incidental due to a low number of 

estimates. By considering all areas together, we get a larger material 

(Figure 5). Here all the medians with a degree of coverage less than 9 
are below the mean. 

Table 2 shows the observed frequency of underestimation and the 

probability of having a number of underestimates equal to or higher 

than the observed one in the case of a symmetrical distribution (a 

binomial case). 

Table 2. Frequency of underestimation {f,%) and significance probability (p) 
within intervals of degree of coverage (N/vA}. p is the probability 
of having a number of underestimates equal to or larger than the 
observed one in the case of a symmetrical distribution. n .is the 
number of estimates. 

N/vA 0.6-0.9 1.0-1.9 2.0-2.9 3.0-3.9 4.0-4.9 5.0-5.9 6.0-15.5 

n 138 278 181 79 49 46 60 

f 57.2 55.8 60.5 58.2 60.2 54.3 56.7 

p .053 .031 .003 .089 .099 .330 .174 
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The table presents the results within intervals for the degree or 

coverage. The significance probabilities are rather low fo~ all 

intervals below 4.9. The material therefore gives strong reason to 

expect that at low degrees of coverage there is a larger probability 

of underestimation than of overestimation. At higher degrees of 

coverage the material does not show any clear tendency towards over­

or under-estimation. 
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Figure 6. 

Distribution of relative fish abun­
dance estimates compared to the 
corresponding normal distribution 
with same mean value and standard 
deviation. N is total number of 
observations. A: S-mile averages 
during the Barents,Sea survey in 
1975. B: All estimates obtained 
at a degree of coverage between 
0.6 and 1.5 (Figure 5). C: All 
estimates obtained at a degree of 
coverage above 6.0. 

There are no observations below a degree of coverage of 0.6, but it is 

easy to see that the scatter has to be more skewed as the degree of 



15 

coverage decreases. When the degree of coverage approaches zero, the 

scatter has to increase considerably and, as negative estimates are 

impossible, the distribution has to be more skewed. Figure 6A ~hows 
the distribution of 5-mile observations during one of the capelin 

surveys in the Barents Sea. If each 5-mile value is considered as an 

abundance estimate, Figure 6A is an example of a distribution of 

estimates obtained at extremely low degree of coverage (0.02). 

It follows from the Central Limit Theorem that as the material 

increases {increasing number of single observations) the distribution 

of the total estimate will approach the normal distribution. This 

means that the distribution of survey estimates approaches the normal 

distribution as the degree of coverage increases. The three 

distributions shown in Figure 6 illustrate this trend. Figure 6B is 

the distribution of all ·estimates obtained at a degree of coverage 

between 0.6 and 1.5, which grossly corresponds to estimates based on 

one single transect. Figure 6C shows all observations obtained at a 

degree of coverage at or above 6.0 which represents a common coverage 

for a whole survey. The corresponding normal distribution with the 

same mean value and standard deviation as the observed ones are drawn 

on each figure. 

In the case of normally distributed estimates, the confidence interval 

is estimated from the empirical standard deviation. Figure 7 compares 

the 90% confidence intervals based on the normal distribution with the 

intervals covering 90% of the observed values. The figure is based on 

the total material and illustrates one result of the trend discussed 

above: Confidence intervals assuming normally distributed estimates 

give a reasonable fit to the observations at a high degree of 

coverage, while they fit poorly at a low degree of coverage. Here 

asymmetric confidence intervals appear more realistic. 

Shotton and Bazigos (1984) point out that the assumption of normality 

is aften weakly supported by real data. They also raise the question: 

"How seriously does the failure of our assumptions affect the methods 

we use?" The data presented here show that the distribution of 

estimates obtained at a common (but moderate) degree of coverage are 

reasonably close to a normal distribution. The material leaves some 

doubt about whether the observations belong to an exact normal 
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distribution, but an assumption of normality will not in this case 

seriously affect the methods. 

Jolly and Hampton (1987) claim that "if a survey has accumulated 

enough information for estimating biomass with reasonable precision, 

the departure from normality should be small". Figure 7 gives some 

support to this statement. 
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Figure 7. 90 % confidence limits based on the normal distribution (whole 
lines} compared to observed 90-percentiles (broken lines) • 

4.2 Observed coefficients of variation 

To avoid the uncertainties connected with estimation of confidence 

intervals, I have chosen to express the precision in terms of the 

coefficient of variation. This is defined as the ratio between the 

empirical standard deviation and the mean value of the observations. 
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It does not require any assumptions about the sampled distribution. 

Calculated coefficients of variation for each series of surveys are 

shown in Figure 8. The lines connecting the points belonging to the 

same series indicate considerable differences between series, even in 

the same area. The point at the right end of each curve is in many 

cases based on only two estimates, while the point on the left end is 

in most cases based on more than 10 estimates. Therefore the 

differences between the series are most evident at low degrees of 

coverage, which may be interpreted as differences of CV{M ) or a in 
A 

equations (2)-(5). 

The differences between series of surveys and between areas are to 

same extent caused by differences in fish distribution patterns. It is 

worthwile to comment on each area. These comments also refer to the 

scatter plots shown in Figures 2-5. 

In the smallest area, Fjellangervåg, (Fig. 2A and 8A) a rather 

homogeneous scattering layer gave a low coefficient of variation even 

at low degree of coverage. In Straumsosen + Spjeldnesosen {Fig. 2B and 

8A) a couple of large schools dominated the total estimate in some of 

the coverages leading to a high coefficient of variation even at a 

reasonable degree of coverage. In these cases the coefficient was kept 

at the same level when the coverage was reduced, because then at most 

ane of the large schools occurred in each coverage. 

In the Fjords (Figures 3A,3B,8B and 8C) day-time observations and 

night-time observations are treated separately. Schooling during 

daytime made the fish distribution more patchy, on a small scale, 

compared to night. This seems to explain the tendency towards higher 

coefficients of variation during day. There are also large differences 

between series of coverages during day. The upper curve in Figure 8C 

represents a series of coverages when the total estimate was dominated 

by a few large schools, while the lowest curves represent cases when a 

number of small schools were distributed over the whole surveyed area. 

In Aglen (1982a) I have shown that the night-time observations in the 

fjords and fjord inlets were influenced by the threshold effect: low 

volume densities of fish were more seriously underestimated than were 
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densities. During night, scattering layers of variable densities 

occurred. Therefore the coefficient of variation of the night-time 

observations might have been smaller if hetter equipment with 

negligible threshold problems had been used. Day-time schools were not 

significantly influenced by the threshold. 
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Figure 8. Coefficient of variation versus degree of coverage. The number of 
estimates is given åt each point. Points belonging to the same series 
of surveys are connected with lines. Al: Fjellangervåg, A2: Straums­
osen + Spjeldnesosen, night, A3: Straumsosen + Spjeldnesosen, day, 
A4: .Lofoten, B: Fjords, night, C: Fjords, day, D: Gulf of Oman, 
E: Barents Sea. 
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Schooling by day was less pronounced in Lofoten, and much of the 

variabilty shown in Figures 4A and 8A may have been caused by larger­

scale patches. In addition, significant amounts of fish may have 

migrated into or out of the area (Blindheim and Nakken 1971). In the 

Gulf of Oman (Figures 4B and 8D) most of the fish were found in nearly 

continuous scattering layers. Some high-density areas, typically 

extending 20-30 nautical miles may have caused much of the experienced 

variability. In addition, the mentioned tendency of differences 

between day and night may have caused some variability. In the Barents 

Sea {Fig. 4C and 8E) it was both a small scale patchiness due to 

schooling by day and a number of patches in a larger scale (10 to 50 

nautical miles extension). 

To examine differences between areas, a curve fit is made for each of 

the areas with more than 12 points. The points are fitted to equation 

(5) by an iteration program (Dixon et al. 1983), searching for the 

values of a and b giving the minimum sum of squares. The points are 

given weight equal to the square root of the number of observations 

(n). The parameters giving the best fit are shown in the following 

table, together with their asymptotic standard deviation. 

a SD{a) b SD(b) n 

Fjords, night .52 .05 -.47 .11 32 

Fjords, da y .79 .10 -.46 .14 23 

Gulf of Oman .41 .05 -.53 .22 13 

Barents Sea .53 .06 -.56 '.21 20 

In equation (5) a describes the level of the curve and b the shape of 

the curve. The differences between the estimated values of b are all 

less than the calculated standard deviations. Even though it is not 

known what kind of distribution the estimates of the parameters belong 

to, it can be concluded that the differences are not significant as 

long as they are smaller than the standard deviations. By the same 

argument it can also be concluded that the estimated values of b are 

not significantly different from -0.50 which is the theoretical value 

assuming independent transect estimates. 
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Some of the differences between the estimated values of a are larger 

compared to the asymptotic standard deviations. The most outstanding 

value is the one representing daytime observations in the Fjords. This 

seems to be significantly larger than all the others. The differences 

between the other values does not appear to be significant. 

Schooling by day in the Fjords is already mentioned as a reason for 

high variability. In Straumsosen + Spjeldnesosen day and night 

observations were also treated separately, but no curve fit is made 

due to few observations. In Figure 8A the same tendency of higher 

coefficients of variation during day is visible. Thus the general 

trend of the data from these small areas is that the coefficient of 

variation is higher for schooled fish (during day) compared to 

dispersed fish (during night}. The two points of high coefficient of 

variation observed during night in Figure 8A represent a period just 

prior to spawning. Most of the herring were concentrated in a small 

part of the total area, and did not disperse much during night. 

The observations in the Barents Sea were made on both schooled and 

scattered fish. The curve fit for this area gives values quite close 

to the values for scattered fish in other areas (fjords during night 

and Gulf of Oman}. 

It seems likely that the precision of the surveys in the Barents Sea 

was less sensitive to schooling than the surveys in the small areas 

discussed above. The reasons are given below. 

In the Barents Sea the transects were long compared to the average 

distance between schools so that each transect hit a number of 

schools. In the small areas the transects were much shorter compared 

to the distance between schools so that many transects did not hit any 

school, while a few hit one or more, thereby giving a high inter­

transect variation and a high coefficient of variation for a given 

degree of coverage. During night the schools usually dispersed in both 

areas, so that the average "school distance" was considerably reduced 

and many "schools" even overlapped. This situation clearly reduced the 

inter-transect variation in the small areas. In the Barents Sea the 

probability of hitting a reasonable number of schools by a transect 
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was already high during day, and the improvement due to reduced school 

distance has probably had less impact on the overall precision. 

As mentioned, much of the variability observed in the large areas is 

caused by larger-scale patches. In the Barents Sea during day such 

patches were recorded as groups of schools. The distance between such 

patches did not significantly decrease when the schools dispersed. 

Thus the variability caused by large-scale patches is not likely to 

have changed much from day to night. 

Standard echo integrator surveys do not give precise information on 

the size of or distance between groups of schools, but most surveys on 

schooled fish show that schools tend to occur in groups. Fiedler 

(1978) shows the distribution of size of school groups observed during 

sonar surveys on anchovies in the California current. The diameter of 

the groups ranged from 1 to 60 nautical miles. The mode of the 

distribution was at 9 nautical miles. Cram and Hampton (1976) show 

results from airplane mappings of pilchard schools off the southwest 

coast of Africa. They found elongated groups of schools with a typical 

width of 3 to 5 nautical miles and lengths ranging from 5 to 50 

nautical miles. The distance between neighbouring groups was in the 

order of 10 to 100 nautical miles. 

Based on the above discussion some generalisations might be made. If 

we assume that the distance between schools and the size of schools 

are approximately the same in small and large areas, the precision is 

most sensitive to schooling in small areas. This does not necessarily 

mean that the precision for a given degree of coverage is poorer in 

small areas, because in large areas larger-scale patches may have the 

same impact on precision as individual schools have in small areas. 

4.3 Predicted coefficients of variation 

The fitted equations represent averages of various fish distribution 

patterns and survey grids. These might be useful as a guide to the 

necessary effort during planning of a survey, but when calculating the 
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precision of the survey results, it is important to be able to utilize 

the variability of the data collected during that particular survey. 

Through the paper I have considered the transect-to-transect variation 

together with the degree of coverage as key parameters determining the 

precision. In the case of independence between transects, equation (2) 

gives an unbiased estimata of the coefficient of variation. To look 

for indications of inter-transect dependence, I have calculated the 

autocorrelation between neighbouring transects for some coverages. 

These are shown in Table 3. 

Table 3. Autocorrelation (r) between neighbouring transects. 

s 
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L 
L 

A 
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n=number of transects,d=distance between transects (nautical miles). 
*: significantly different from zero at 10% level 
**: significantly different from zero at 5% leve! 

Surve y d n r 

Fjellangervåg, sep-77 (night) cover age 1 .06 11 .562* 
cover age 2 .06 11 .199 
cover age 3 .06 11 .807** 
cover age 4 .08 7 .259 

Samlafjord, mar-78 {night) cover age 1 .5 8 .367 
cover age 2 .5 8 -.477 
cover age 3 .5 8 -.154 

Eidfjord, mar-78 {day) cover age 1 .5 32 .113 
cover age 2 .5 32 .159 
cover age 3 .5 32 .492* 

Gulf of Oman, jan-81 cover age 1 20 6 .837* 
cover age 2 20 6 .127 
cover age 3 20 6 .117 

feb-83 cover age 1 20 8 -.185 
cover age 2 20 8 .598 

sep-83 20 12 .081 
nov-83 20 12 .266 

Barents Sea 1974 25 16 .385 
1975 25 16 -.103 
1976 25 16 .178 
1977 25 16 .179 
1978 25 16 -.063 

A few of the autocorrelations are significantly different from zero 

according to at-test given by Zar {1974). All significant values are 

positive. With the number of applied transects, this test requires 
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rather high absolute values to give significance. If there is a 

general independence, negative autocorrelations should be as likely as 

positive ones {a binomial case). The table shows two negative values 

in the small areas and three in the large areas. In the case of 

independence, the probability of having the observed number or less of 

negative values is 0.06 for the small areas, 0.07 for the large areas 

and 0.009 for the total. 

· The conclusion. has to be that some positive dependence between 

neighbouring transects exists, at least for same of the coverages. 

Such dependence seems to exist even in the large areas where the 

distance between transects is large. 
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An important question is whether the dependence leads to serious 
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biases when using equation (2) to estimate the coefficient of 

variation for survey estimates. Figure 9 compares the observed 

.coefficients of variation with those predicted from equation (2). The 

observations of CV(t) for single transects are not presented because 

in those cases CV(t) = CV(M ) and the points have to fall on the 1:1 
A 

line in Figure 9. 

A linear regression of the points give CV(obs) = 0.94·CV(pred) + 0.02, 

and the correlation coefficient is 0.819. Applying es.tmators given by 

Zar (1974), the 95% confidence limits for the slope is 0.67 and 1.21 

and for the intercept -0.07 and 0.11. A regression through the origin 

gives 0.91 and 1.04 as confidence limits for the slope. These 

confidence limits are based on unverified assumptions about normality. 

It is, however, clear that the regression does not give evidence of 

bias when using equation (2) or (4) to estimate the coefficient of 

variation of survey estimates. The estimated confidence limits 

indicate that if a bias exists, it is of minor importance for this 

material. 

5. CONCLUSIONS 

The defined degree of coverage seems convenient for comparisons of 

precision - effort relationships from different areas. The scatter of 

relative abundance estimates shows the same tendency in small and 

large areas: for a common degree of coverage the distribution of 

estimates is not seriously different from a normal distribution, while 

it becomes increasingly skewed towards low values for decreasing 

degrees of coverage. The general relationship between the coefficient 

of variation and the degree of coverage appears similar in small and 

large areas. In small areas the coefficients of variation observed for 

schooled fish tended to be higher than those observed for dispersed 

fish. 

The likely dependence of neighbouring observations may be the main 

reason why the precision of acoustic survey results is estimated so 

seldom. The examined material shows that such a dependence tends to 
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occur both in small and large areas. However, the dependence does not 

appear strong enough to cause any serious bias when estimating total 

variance from the inter-transect variance. 

A common degree of coverage for stock assessment surveys is of the 

order of 10 which gives coefficients of variation ranging from O.l to 

0.4. For this degree of coverage the precision gained by a moderate 

increase in effort is quite small. The largest gai~ in precision will 

in many cases be achieved by searching for periods when the fish 

distribution is most favourable, thus reducing the inter-transect 

variation. 
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