This report not to be quoted without reference to the Council ${ }^{*}$ International Council for the
C.M.1985/Assess:18 Exploration of the Sea

REPORT OF THE SAITHE (COALFISH) WORKING GROUP

Copenhagen, 23 - 29 April 1985

This document is a report of a working Group of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. Therefore, it should not be quoted without consultation with the General Secretary.

[^0]
TABLEOF CONTENTS

1 INTRODUCTION 1
1.1 Participants 1
1.2 Terms of Reference 1
1.3 Landings of Saithe in the North East Atlantic 2
2 NORTH-EAST ARCTIC SAITHE (Sub-areas I and II) 2
2.1 Landings (Table 2.1, Figure 2.1.A) 2
2.2 Age Composition (Table 2.2) 2
2.3 Weight at Age (Table 2.3) 3
2.4 Fishing Mortality and Stock Size Estimate from VPA 3
2.4.1 Estimates of fishing mortality 3 3
2.4.2 Spawning stock biomass and recruitment 4
2.5 Yield per Recruit 4
2.6 Catch Predictions 5
2.7 Comments on the Assessment 5
3 NORTH SEA SAITHE (Sub-area IV and Division IIIa) 6
3.1 Landings (Table 3.1) 6
3.2 Age Composition (Table 3.2) 6
3.3 Weight at Age (Table 3.3) 7
3.4 Fishing Mortality and Stock Estimates from VPA 7
3.4.1 Estimates of fishing mortality 7
3.4.2 Spawning stock biomass and recruitment 8
3.5 Yield per Recruit 8
3.6 Catch Predictions 9
3.7 Quarterly Age Composition Data 9
3.8 Geographical distribution by age group of North Sea Saithe 10
4 ICELANDIC SAITHE 11
5 WEST OF SCOTLAND SAITHE (Sub-area VI) 12
5.1 Landings 12
5.2 Age Composition (Table 5.2) 12
5.3 Weight at Age (Table 5.3) 12
5.4 Effort and Cpue Data 12
5.5 Fishing Mortality Estimates 13
5.6 Yield per Recruit 14
5.7 Catch Predictions 14
5.8 Comments on the Assessment 15
6 DEMERSAL FISHERIES ON THE FAROE PLATEAU IN 1984 16
6.1 Introduction 16
6.2 Trends in 1984 16
6.3 Further Analysis of the Detailed Effort Data for 1973-1983 17
6.4 The Use of Effort Data to Tune VPAs of Cod and Haddock 19
7 FAROE SAITHE (Division Vb) 19
7.1 Landings (Table 7.1, Figure 7.1A) 19
7.2 Age Composition (Table 7.2) 20
7.3 Weight at Age (Table 7.3) 20
7.4 Fishing Mortality and Stock Values from VPA 20
7.4.1 Estimates of Fishing Mortality 20
7.4.2 Spawning Stock Biomass and Recruitment (Table 7.5 and Figure 7.1B) 21
7.5 Equilibrium Yield 21
7.6 Catch Prediction 22
8 FAROE COD 23
8.1 Faroe Plateau Cod 23
8.1.1 Landings (Table 8.1) 23
8.1.2 Age Compositions (Table 8.3) 23 23
8.1.3 Weight at Age (Table 8.4) 23
8.2 Results of VPA (Tables 8.5 og 8.6) 24
8.2.1 Fishing mortality 24 24
8.2.2 Spawning stock biomass and recruitment 24
8.3 Yield per Recruit 24
8.4 Catch Predictions 25
8.5 Faroe Bank Cod (Table 8.2) 25
9 FAROE HADDOCK 25
9.1 Landings (Tables 9.1 and 9.2, Figure 9.1.A) 25
9.2 Age Compositions (Table 9.4) 25
9.3 Weight at Age (Table 9.4) 26
9.4 Results of VPA 26
9.4.1 Fishing mortality 26
9.4.2 Spawning stock biomass and recruitment 26
9.5 Yield per Recruit 27
9.6 Catch Predictions 27
10 OTHER ITEMS 27
10.1 The Problem of Single Nation Stocks 27
10.2 Suggestions for Assessment Programs 29
Tables 51-91
Figures 92-108
Appendix 1-11

1 INTRODUCTION

1.1 Participants

C Annand	Canada
R Cook	U.K.
T Jakobsen	Norway
B W Jones	U.K.
A Kristiansen	Faroes
B Mesnil(Chairman)	France
K Nedreaas	Norway
J B Perodou	France
H H Reinsch	Federal Republic of Germany

Mr. K. Hoydal attended the meeting as ICES Statistician.

1.2 Terms of Reference

At the 72 nd Council Meting it was decided (C.Res. 1984/2:4:12) that the Saithe (Coalfish) Working Group should meet at ICES Headquarters from 23-29 April 1985 to assess catch options for 1986 and 1987 for the saithe stocks and for cod and haddock in Faroese waters inside safe biological limits.

In addition it was decided (C.Res.1984/4:13) that, as other North Sea stock Assessment Working Groups, the Group should:

1) provide quarterly catch at age and mean weight at age data as input for the Multispecies VPA for the period 1974 to 1984 and, as far as possible, for earlier years back to 1963 for the North Sea stocks,
2) evaluate the evidence of natural mortality for the oldest age groups,
3) assess the effects of applying the estimates of total natural mortality calculated by the Multispecies Working Group,
4) provide advice to the Multispecies Working Group on the geographical distribution of saithe by age group and quarter, and on the proportions of these which would be predators on North Sea prey species.

1.3 Landings of Saithe in the North East Atlantic

Historical record of catches from the saithe stocks dealt with by the Working Group are given in Table 1.1

2 NORTH-EAST ARCTIC SAITHE (Sub-areas I and II)

2.1 Landings (Table 2.1, Fiqure 2.1.A)

The provisional estimate of landings in 1984 is 150,315 tonnes which is 8,000 tonnes less than in 1983.

2.2 Age Composition (Table 2.2)

The age composition from Norwegian landings in 1983 was revised. There was an increase in the numbers for all age groups older than 5 years, which was caused mostly by redistribution of the trawl catches according to log-book data. Provisional age compositions for 1984 were available from the Federal Republic of Germany and

Norway, accounting for 99% of the landings.

2.3 Weight at Age (Table 2.3)

For 1960-79, a fixed set of weights at age are used both for catch and stock. For 1980-84, the annual weights at age in the catch for each year are used for catch and stock weights.

The weight at age data used in the yield per recruit and were derived by averaging the weights at age for the years 1982-84.

2.4 Fishing Mortality and Stock Size Estimate from VPA

2.4.1 Estimates of fishing mortality

The assessment of the 1984 Working Group was based on the assumption that fishing mortalities had been stable from 1980 to 1983. The background for this was the development in catches by different gear categories in recent years, (Figure 2.2) and a separable VPA which showed indication of a change in the exploitation pattern since 1980. The reported catches in 1984 were 24,000 tonnes in excess of the catches predicted by the 1984 Working Group . The prediction for 1984 split on gears showed that most of the difference was in the trawl catches, where the age groups 3 and especially 4 had been caught in much larger numbers than predicted. This is in good accordance with the distribution of the trawl catch by area and season which shows that the main increase had occurred in summer in the southern part of the area. Judging by the catch data and the discrepancies with the prediction, there seems to have been an increase rather than a shift in the effort by the trawlers. To account for this in the VPA, fishing mortality on age 3 and 4 in 1984 was increased substantially compared to the recent years.

Effort and cpue for the Norwegian trawlers (Table 2.6) have so far been of little use to the assessment. Data for 1984 were not available at the time of the working Group meeting. The level of fishing mortalities on the other age groups were therefore kept approximately at the 1980-82 level.

There is evidence of lower fishing mortalities on the oldest age groups after 1980 (Table 2.4). A level of less than 0.2 is indicated, but in view of the large year to year variation in the level of these values in the past, fishing mortality at age 14 for 1981-84 was reduced only from 0.35 to 0.30 .

2.4.2 Spawning stock biomass and recruitment

Estimates of spawning stock biomass are given in Table 2.5 and Figure 2.1.B. There is a decline from 1970 onwards, to 143,000 tonnes in 1981, the lowest observed spawning biomass in the time series. The values in recent years are somewhat higher than the 1984 Working Group estimates, and the main reason for this is the revision of the 1983 catch at age data.

Estimates of stock numbers at each age are given in Table 2.5, and recruitment at age 1 is plotted in Figure 2.1.B. The 1978 year class is as large as those in 1973 and 1966-68, however the more recent year classes, from 1979-81, are amongst the lowest in the period reported.

2.5 Yield per Recruit

The Y / R curve is given in Figure 2.2.C. It was calculated using the 1984 exploitation pattern and the 1982-84 average weight at age data (Table 2.7.). Current exploitation (\bar{F}_{3-8} unweighted) at F $=0.59$ is in excess of $\mathrm{F}_{\max }=0.30$ and $\mathrm{F}_{\mathrm{O-1}}=0.18$.

2. 6 Catch Predictions

The data used for catch predictions are given in Table 2.7. It was decided to use recruitment approaching the recent low level ($\mathrm{R}_{1}=$ 200×10^{6}) rather than the long-term average $\left(R_{1}=318 \times 10^{6}\right)$. The predicted catches for 1986 will to a large extent depend on the size of the year classes 1982-84 and possibly represent low estimates.

Any major changes in the exploitation will most likely be caused by the Norwegian trawlers. Effort on North-East Arctic saithe may be reduced if catch rates are higher in the North Sea or if they are given higher quotas on Arctic cod and haddock. However, such changes appear to be of less importance than recruitment for the prediction. In view of this, and lacking information indicating future changes in the exploitation, the 1984 fishing mortalities were used as basis for the prediction.

Predicted catches and stock biomasses for 1985 and for a range of exploitation levels in 1986 are given in Table 2.8. Predicted yield in 1986 and the spawning stock biomass for 1987 are shown in Figure 2.1.D. Assuming that exploitation continues at the 1984 level, catches in 1985 and 1986 are predicted to be 128,000 tonnes and 126,000 tonnes, respectively. The spawning stock will decline to a level of less than 100,000 tonnes in 1987, unless fishing in 1986 is reduced.

2.7 Comments on the Assessment

The problems concerning the assessment of North-East Arctic saithe are lack of recruitment estimates, useful effort data, and other fishing independent data, and inadequate sampling, especially of the older fish. Last year's log-books from trawlers will normally not be available at the time of the meeting. The log-books are used to reallocate catches to fishing areas and the changes from the preliminary statistics may be substantial. The current tendency of variation in the trawl fishery represents a source of
error in the predictions.

3 NORTH SEA SAITHE (Sub-area IV and Division IIIa)

3.1 Landings (Table 3.1)

Landings of saithe from the North sea in recent years have been in the range 120,000-175,000 tonnes. Revised figures for 1983 indicate that the official landings were 157,000 tonnes, slightly lower than that estimated at the 1984 Working Group meeting. The Working Group estimate of landings for 1983 is 165,500 tonnes, however, and this figure has been used in assessments.

Provisional landings reported for 1984 including industrial bycatch amount to $172,000 \mathrm{t}$. The working Group estimate for the same year is higher at 200,000 tonnes and has been used in the assessment.

3.2 Age Composition (Table 3.1.1)

Age compositions for 1983 were revised in line with updated national data. For 1984 age composition data were available for 99% of landings from the following countries: Denmark, England, France, Federal Republic of Germany, Norway, and Scotland.

The total international age composition was obtained by summing the human consumption compositions, raising this sum to total human consumption landings and then adding the industrial bycatch.

3.3 Weight at Age (Table 3.2)

Weight at age data were provided by all countries providing age composition data. Catch at age or weight at age were adjusted to eliminate SOP discrepancies as appropriate.

As noted in earlier reports weights at age prior to 1979 are unreliable and are simply average values.

Weight at age used in predictions are mean values for the years 1982-84.
3.4 Fishing Mortality and Stock Estimates from VPA
3.4.1 Estimates of fishing mortality

Trial runs of VPA using last year's input Fs indicated that the exploitation pattern changed after 1979 when the Norwegian fleet effort increased substantially (see Table 3.5). The VPA was therefore tuned by setting the input Fs to the mean value for the period 1980-1982. These values can be seen in Table 3.3. where the value for age group 1 has been adjusted to give recruitment at age 1 in 1984 of about 260 million fish which corresponds to mean recruitment for the years 1974-1982.

A cpue index of spawning stock biomass was available from French data. This index (Table 3.6) is plotted against spawning stock biomass from VPA (Fig. 3.2) and suggests the VPA value is too low. To overcome this would require lower input Fs. There is however no independent evidence to support such a change and the total international effort in French units (Table 3.5) is little changed from recent years. Partial fishing mortality for France plotted against effective French effort (Table 3.5 and Fig. 3.3) shows the input Fs are consistent with effort data.

The exploitation pattern chosen as input for 1984 generates an exploitation pattern for 1983 which is noticeably different for older fish. This change is probably due to the Norwegian catch in 1984 which unlike 1983 was taken predominantly in the latter part of the year and therefore took proportionately more young fish.

3.4.2 Spawning stock biomass and recruitment

Spawning stock biomass and recruitment are given in Table 3.4 and are plotted in Fig. 3.1B. Recruitment has been increasing following the 1978 year class. The value for the 1982 year class may be too high but indications from the Norwegian industrial bycatch suggest that the 1982 year class is above average. The results of Norwegian acoustic surveys in 1984 and 1985 suggest that the 1981 year class is also above average (Smedstad, unpublished data).

Spawning stock biomass has been in the region of 150-250 thousand tonnes in recent years and appears likely to increase due to improved recruitment in recent years.

3.5 Yield per Recruit

Input data for yield per recruit are shown in Table 3.7. The analysis in this report indicates that present fishing mortality rate is in excess of both $F_{\max }$ and $F_{0.1}$ (Table $3.8,3.9$ and $F i g$. 3.1C).

Yield per recruit analysis as applied to the North Sea stock has a history of being unreliable primarily due to the uncertainty of the position of current F in relation to $F_{\max }$. In 1982 for example the assessment suggested that F was in excess of $F_{\text {max }}$. The 1983 and 1984 assessments imply that for the same years F was approximately equal to $F_{\text {max }}$. This change was partly responsible for the large change in the TAC between 1983 and 1984. The present assessment now implies that F is once again above $F_{\text {max }}$ despite the
fact that there has been no major change in the level of exploitation as far as can be ascertained from effort data and mean F. It seems unlikely therefore, that the present analysis is capable of showing whether or not the stock is overfished in terms of yield per recruit.

3.6 Catch Predictions

Input data for catch predictions are given in Table 3.7. The input exploitation pattern is that for for the period 1980-1982. Assuming no change in fishing mortality rate in 1985 the predicted catches for 1985 will be 259 thousand tonnes which is above the agreed TAC of 200,000 tonnes. Table 3.8 shows the effect of this catch on the management options in 1986. Table 3.9 makes the equivalent predictions based on the catch in 1985 being restricted to the TAC figure. The effect on yields and SSB for these two predictions are given in Fig 3.1.D.

3.7 Quarterly Age Composition Data

There was insufficient time at the meeting to construct a catch at age matrix on a quarterly basis as requested by the Multispecies Working Group. It was agreed that national data would be sent to the Marine Laboratory, Aberdeen for processing along with other roundfish species, on the same basis described in the 1985 Roundfish Working Group report. The summary below shows the availability of data. It should be noted that for the earliex years the age composition data become increasingly unreliable and a large proportion of the catch was not sampled.

ENGLAND: Data are available for all quarters though the level of age sampling is rather too low to split the annual catches down to a quarterly level in some years.

FRANCE: Data are available by quarter from 1976 or 1977 onwards.

FEDERAL REPUBLIC of GERMANY: Catch data are available by quarter from 1974 onwards. No weight at age data are available by quarter.

NORWAY: Quarterly data are available from 1980 onwards and can be split down to fleet level though it is felt that the sample size is rather too small to do this adequately. It is possible to split catches prior to 1980 roughly by quarter by assuming seasonality in the catches by certain sub-fleets.

SCOTLAND: Data are available from 1972 onwards by quarter(or month) and can be disaggregated down to fleet level.

DENMARK and USSR: These countries have both taken large catches from the North Sea during the period in question. It is not known if quarterly data can be obtained from these nations.

3. 8 Geographical distribution by age group of North Sea Saithe

O-group saithe are found pelagically in the North sea in spring and early summer. The distribution is mainly north of $58^{\circ} \mathrm{N}$ and normally the highest concentrations are found along the eastern part of the North Sea plateau. On the Norwegian west coast 0 -group saithe are found in shallow waters from May and by the end of June most of the year class seems to have reached the coast. The pattern appears to be the same on the British side of the North Sea. After June, O-group saithe are normally not found in large concentrations outside the coastal areas, but exceptional years (e.g. 1967) are known.

The saithe stay on the Norwegian west coast, for 2-3 years. Purseseine catches which are taken mostly at depths of $50-100 \mathrm{~m}$, are usually dominated by $2-3$ year old fish. Migration across the Norwegian deep mostly takes place when the fish is three years old. This is reflected in the saithe by-catches from the industrial trawl fishery, where 3 year old fish usually are much
more numerous than 2 year olds.

Immature saithe, mostly 3 and 4 year old fish, tend to be concentrated along the eastern side of the North sea plateau between $57^{\circ} 30^{\prime} N$ and $61^{\circ} N$, and east of $2^{\circ} \mathrm{E}$. Concentrations are also found in the shetland area, but the fish there are usually somewhat larger. Immature saithe are also found more or less regularly all over the North sea north of $57^{\circ} \mathrm{N}$, but usually not further south.

The saithe in the North Sea mostly reach maturity when they are 5 years old. The spawning grounds are found near the edge of the shelf at about 200 m depth and extends more or less continuously from west of Shetland to the Viking Bank. There appears to be a northeastward spawning migration along the Shelf west of Shetland which may continue east and southeast as far as the Viking Bank. There may also be a spawning migration from the south in the eastern part of the North Sea. The behaviour of the mature fish outside the spawning season appears to be variable. The concentrations are probably less dense and there are no grounds where they occur regularly before towards the end of the year.

4 ICELANDIC SAITHE

Landings of saithe from Division Va amounted to about 63,000 tonnes in 1984, 96% of which being taken by Icelandic vessels (Table 4.1).

Age composition of Icelandic landings was communicated to the Working Group by telex and was used to update the datafiles (Tables 4.2-4.4).

In the absence of a representative from the country which is primarily concerned with monitoring and fishing this stock the Working Group was lacking the essential background information required for a reasonable assessment of the stock and fisheries. They were not in a position to discuss the trial assessment
carried out at the Icelandic Institute and thus felt unable to endorse it.

5 WEST OF SCOTLAND SAITHE (Sub-area VI)

5.1 Landings

Landings of saithe from Sub-area VI are given in Table 5.1 and are shown in Figure 5.4.

With a peak of 36,000 tonnes in the period 1974-76 the catches decreased. to 20,000 tonnes in 1979, and then remained more stable around this value. Landings in 1984 are estimated to be 20,300 tonnes.

5.2 Age Composition (Table 5.2)

Age compositions for 1984 were provided by England, Scotland and France and they account for 93% of the total landings. Minor corrections were made to the catch at age data for 1982 and 1983.

5.3 Weight at Age (Table 5.3)

Weight at age data for 1984 were provided by England, France and Scotland. The estimated mean weights at age for 1984 shown in Table 5.3 are similar to previous years.

5.4 Effort and Cpue Data

Catch and effort data for the French fleet were used as in previous years to compute an index of effective catch per unit effort, by fitting a multiplicative model correcting for area and
month effects. This index is given in Table 5.6 and was used to derive an estimate of total international effort. In spite of a slight increase in 1983, the series shows a pronounced decreasing trend which is supported by information on the fleets given in the Appendix.

Another abundance index, computed in the same way, was fitted to the French catch and effort data in the first quarter of each year, when the fleet directs its effort towards adult saithe. This index (Table 5.6) should thus indicate the relative levels of spawning stock biomasses, although the value for 1975 is questionable.

5. 5 Fishing Mortality Estimates

As already mentioned in previous reports, he general level of fishing mortality for this stock has decreased to such a degree that VPA estimates do not demonstrate any convergence and are thus highly dependent on input values.

To account for the decreasing trend in effort, input values for 1984 should be set still lower than the recent level, implying a further loss of reliability of the VPA results. Attempts to define a set of acceptable input values proved unconclusive.

Trial runs were made using SVPA with S terminal = 0.4. (Fig. 5.1). Table 5.7 shows the log-catch-ratio residual table for the run which gave values of $F(I)$ which best reflected the trend in French effort data. The residuals for ages $10 / 11$ and $11 / 12$ in the years 1983/84 are particularly large and suggest problems in the data.

The problem was further complicated this year due to sampling or ageing deficiences on age groups 11 and 12, and it was not considered possible to correct for this adequately.

Consequently, it was preferred not to rely on an analical assessment and the VPA results (Tables 5.4-5.5) are given for indication only.

5.6 Yield per Recruit

Because of failure of the VPA to produce satisfactory estimates of F at age in relation with M values, and in the absence of any evidence on changes in the exploitation pattern, it has been felt useless to recalculate a yield-per-recruit curve. Reference is thus made to last year's report.

5.7 Catch Predictions

Since no reliable estimate of stock size at age is available for 1984, the usual catch forecast could not be computed.

Referring to the time sexies shown in Figure 5.4 (corrected from last year's report) for the last decade, when data are considered of acceptable reliance, it can be seen that since 1978 landings have fluctuated in the range $20,000-27,000$ tonnes, and that recruitment is at comparatively high levels. Spawning stock biomass shows a slow decreasing trend in spite of a continuously decreasing fishing effort. This effect is partly due to the high sensitivity of a non-converging VPA to uncertain input terminal Fs, and partly to variable mixture with North Sea spawners, as explained in the next section.

Further indications are given in the time series plots of effort and CPUE based on French data (Fig. 5.2) which show that the reduction of fishing effort has occured along with a pronounced increase of catch rates which were stable at high levels in the last three years.

All the available evidence suggest that this stock is not in any immediate danger.

In order to derive an estimate of status-quo catches, use was made of available CPUE data which are plotted vs. fishing effort in Figure 5.3. Assuming a linear relationship in the range of observed fishing efforts, one arrives at the regression equation: $Y=0.12 \mathrm{x} \mathbf{f}+4.07$. If fishing effort is to remain at the 1984 level, which is likely to occur for the fleets presently engaged in this fishery, landings may be expected to amount to 20,000 tonnes. Using the equation fitted to the data, one may simulate the effects of slight variations of the fishing effort which should produce results in the range $18,000-20,000$ tonnes.

5.8 Comments on the Assessment

If fishing pressure is to remain at the present low level in the near future, assessment of the West of scotland saithe stock is likely to be subject to the acute problem encountered this year and alrea dy expected last year, namely that the usual analytical approach fails to provide reliable estimates of fishing mortalities and stock numbers at age. As a consequence, alternative methods should be used in order to try and forecast status-quo catches.

The absence of fishery independent data, particularly of abundance index at age time series, makes the use of some of the short-cut methods recommended by the Methodology Working Group of lesser interest, since they would imply mere averages. Solutions might be found in a more refined treatment of CPUEs by age group or over discrete ranges of age groups.

Another question arises from fishery indications that the adult concentrations of saithe along the shelf edge to the northwest of the British Isles are found in continuity from the west of Hebrides up to the northwest of Shetland, well apart the IVa-VIa limit, and no quantitative evidence is available on the relative
contribution of these spawners to the recruitment in the North Sea and in the West of Scotland respectively.

If there is evidence that the West of Scotland and North Sea spawning areas are not clearly separated then or assessment purposes, both stocks might thus be combined, which might eliminate some of the problems with VPA. There is no doubt however that for management purposes they should remain as separate units with, for example, regional TACs set.

6 DEMERSAL FISHERIES ON THE FAROE PLATEAU IN 1984

6.1 Introduction

ACFM concluded on the basis of last year's assessment (Coop.Res.Report 131) that....there is no doubt that the effort has increased since 1977, especially by virtue of the increased number of single boat and pair trawlers. In addition, technical improvements and improved knowledge of the grounds by new skippers are assumed to have increased the fishing power of the trawling fleets......Despite diffculties in splitting the effort between the three species (cod, haddock and saithe) it is evident that a major built up of overall fishing effort, especially in the trawl fisheries has taken place in the demersal fisheries at the Faroes.

6.2 Trends in 1984

Because of problems in connection with a change in computerisation of logbook data, no effort estimates for the larger vessels (trawlers with more than 400 HP and other vessels above 100 GRT) were available to the Working Group.

The following qualitative evidence about changes in 1984 is based on the analyses of the Faroese Board of Fisheries. Two new trawlers have entered the fishery in 1984 (class >2000 HP). In 1985 an expected number of 5 will enter (class 1000-1999). The two trawlers entering in 1984 have mainly been exploiting the deep waters (redfish, blue ling), whereas the 5 entering in 1985 are expected to fish for saithe and to a lesser extent for cod and haddock. Because of a cut-back in the quotas in Icelandic waters 5 trawlers in the $>1000 \mathrm{HP}$ class have been fishing in Faroe waters throughout the year in 1984, and thus increased the fishing pressure on the demersal stocks, especially saithe. Table 6.1 gives a review of the development in recent years and a more general description of the fishery at the faroes is given in the Appendix.

Evidence from the fishery seems to indicate that the demersal trawl effort has been more directed towards saithe in 1984, compared with 1983.

It should be noticed, that the trawlers (and all other gears in principle) have been discouraged from fishing fish below certain size limits. For saithe this has been achieved by a system of closing areas with high percentages of young fish in the catches on short notice and by refusing to accept fish below 60 cm at the fish factories.

6.3 Further Analysis of the Detailed Effort Data for 1973-1983

The analysis of the detailed FISKHAG effort data bank has been continued. An attempt to correct for directivity was made by including an area factor. This attempt seems, however, not to have solved the problem. Previously, corrections for seasonality have been introduced. On the basis of statistical analysis of data disaggregated on 22 fleet units, the data were grouped in

long line boats	<100 GRT
long line ships	$>100 \mathrm{GRT}$
Trawlers	$<400 \mathrm{HP}$
Trawlers	$400-999$
Trawlers	>1000
Pairtrawlers	

The variance of que estimates from gill-net and handine is very high, and this is also the case of the cpue estimates from the open boats and these series have not been treated any further. The pairtrawler series covers only 4 years and is therefor of limited use at present. The cpue was estimated from the multiplicative model:

```
ln(cpue) is a function of rectangle
    vessel class
    season
    + error term
```

In Figure 6.1 some of the annual cpue indexes are plotted. These values have been backtransformed by the following equation.

```
exp(model + mean square divided by 2)
```

are plotted against year.

Effort estimates can then be derived by dividing the catch by this cpue estimates. Table 6.2 summarises the cpue estimates for the main species exploited by different vessel categories.

It should be noted in Fig. 6.1 that there is an increase in haddock cpue for the trawlers in 1983. This is probably an indication of the change in directivity in 1983.

6.4 The Use of Effort Data to Tune VPAs of Cod and Haddock

As no effort data were available for most of the larger vesselgroups for 1984, it was decided to base an evaluation of the trend in effort on the long line (<100 GRT) only. This can be used for cod and haddock, but as this gear does not catch saithe, there is no way to use the 1984 data for saithe.

The long line data were used in the following way: Paxtial Fs for long line were calculated (Table 6.3 and 6.4) and the average F for ages 3-8 for the converged part of the VPA was regressed against the effort estimates derived from the model. A VPA was run, which brought the 1981, 1982, 1983 and 1984 points close to the line.

The results for cod and haddock are shown in Figures 6.2 and 6.3. and are the basis for the VPA finally accepted. It should be noted that the residuals are quite high and this probably precludes straightforward predictions based on the effort data.

7 FAROE SAITHE (Division Vb)

7.1 Landings (Table 7.1, Figure 7.1A)

Preliminary reports indicate that the landings in 1984 were 54,417 tonnes which represents an increase of 39% above the 1983 landings of 39,178 tonnes and continues the trend of increasing landings since 1980. The 1980 year class is very abundant and has dominated the landings in 1984 accounting for 39% of the landed weight.

7.2 Age Composition (Table 7.2)

Age composition data for 1983 from Faroes, France, Federal Republic of Germany, and Norway were updated and new data for 1984 were available for Faroes and the Federal Republic of Germany.

7. 3 Weight at Age (Table 7.3)

Average weight-at-age data for fish in the catch were provided for 1983 and 1984, and these data were corrected for SOP discrepancies. Catch weight-at-age data were also used for stock weight at age for determining stock biomass. Weight-at-age data used in the catch predictions have been obtained by averaging the values for the years 1982-84.

7.4 Fishing Mortality and Stock Values from VPA

7.4.1 Estimates of Fishing Mortality

Recent developments in the Faroese fisheries have been described in Section 6. No fishing effort data were available for 1984 for the fleets which fish for saithe and therefore it was not possible to attempt any of the effort based VPA tuning methods. As mentioned in section 6 there has been a trend of increasing fishing effort on saithe by the Faroese fleets due partly to an overall increase in fleet size and partly to a greater proportion of the available effort being directed towards saithe. In addition a reduction in fishing opportunities at Iceland has resulted in some diversion of effort from that area to Faroe.

In addition to an overal'l tren'd of increasing effort there appears to. have been some concentration of fishing in 1984 on the very abundant 1980 year class resulting "in a changed exploitation pattern in that year. The alternative explanation of the large
catches of 4 -year-olds in 1984 would be that the 1980 year class is far larger than any other year class on record : using an average F value of 0.17 on age-group 4 in 1984 would give a year class strength at age 1 of 145 millions compared to an average abundance of 37 millions. The alternative of increased fishing mortality on age-group 4 is considered to be the more likely one.

The VPA input F values for 1984 have therefore been chosen to reflect these changes which are believed to have taken place in the fishery. These values and the back-calculated values for earlier years are given in Table 7.4 and Figure 7.1A.

7.4.2 Spawning Stock Biomass and Recruitment (Table 7.5 and Fiqure 7.1B)

After a succession of abundant year classes (1966-69) the subsequent year classes up to that of 1976 followed a declining trend. More recently the 1978 and 1980 year classes have been very abundant although the size of the 1980 year class cannot yet be accurately determined.

Spawning stock biomass increased following the trend of increasing recruitment in the 1960^{\prime} s reaching a peak level in the mid-1970's. Subsequently spawning stock biomass declined until 1982 after which the declining trend has halted with the recruitment of the 1978 and 1980 to the spawning stock. It should be noted that the recent abundant year classes are making less of a contribution to the spawning stock than those of comparable size in the 1960's due to the higher levels of fishing mortality now prevailing.

7.5 Equilibrium Yield

Data used in the calculation of equilibrium yield are given in Table 7.6. The exploitation pattern used is based on the average for the years 1980-82 but the F value for the three-year-olds has been reduced to take into account recent restrictions placed on
the landing of this age-group. This exploitation pattern differs from that used in the catch prediction (see below).

The curves of equilibrium yield and equilibrium spawning stock biomass for average recruitment at age 1 of 37 million are given in Figure 7.1C. The current fishing mortality level is assessed to be $F_{(4-8)}=0.4$ which is close to the value of $F_{\max }=0.42$. The value of $\mathrm{F}_{(0.1)}$ is 0.19 .

7.6 Catch Prediction

Input data for the catch prediction are given in Table 7.7. Year classes 1982 and later are assumed to be of average abundance (= 37 million for the years 1963-81).

The exploitation pattern in 1984 appears to have been distorted from the average pattern in recent years due to a concentration of fishing on the very abundant 1980 year class. It seems likely that this situation may continue, though probably to a lesser extent, into the prediction period. The exploitation pattern used for the prediction for 1985 and 1986 has been derived as follows: an average exploitation pattern for the years $1980-82$ was calculated, the F on age-group 5 was increased from 0.19 to 0.3 to allow for some concentration of fishing on the 1980 year class, the resultant F array was then raised to give $F_{(4-8)}=0.4$, and the F on age-group 3 was reduced to 0.03 in view of the restrictions on landings of this age group.

Results of the catch predictions are given in Table 7.8 and Figure 7.1D. For unchanged average fishing mortality in 1985 landings are expected to be 45,000 tonnes, and in 198644,000 tonnes. Spawning stock biomass is expected to increase in 1985 when the 1980 yearclass recruits to the spawning stock but in 1986-87 will decline again to just below the 1984 level.

8 FAROE COD

8.1 Faroe Plateau Cod

8.1.1 Landings (Table 8.1)

Preliminary catch figures indicate a total catch in 1984 of 37,318 tonnes from the Faroe Plateau stock. This is a decrease of 822 tonnes or 2.2% compared to 1983. Non-Faroese landings of cod from the Faroe Plateau were less than 1% of the total landings. The total landings in 1960-84 are shown graphically in Figure 8.1.A.

8.1.2 Age Compositions (Table 8.3)

Age compositions were provided only for the Faroese landings. The Norwegian and United Kingdom (England) catch at age was estimated using the age composition in the larger Faroese long liners' landing. The Federal Republic of Germany data were distributed according to the age composition of catches by large Faroese trawlers (more than 1,000 HP).

8.1.3 Weight at Age (Table 8.4)

Weight at age date for 1984 were provided by Faroes. They gave a sop discrepancy of 2%. The weight at age data for 1983 used in past year's report were revised in accordance with new information provided by Faroes. These gave a sop discrepancy for 1983 of 3% compared to 10% by the data used in last year's report. For the predictions the average weight at age data for the period 1981 1984 were used.
8.2 Results of VPA (Tables 8.5 og 8.6$)$

8.2.1 Fishing mortality

The fishing mortality for 1984 was estimated using the effort data for Faroese long liners. The procedure is described in Section 6.3. Fs for ages 1 and 2 were scaled to reflect the general increase in effort. Fishing mortalities as calculated from VPA are given in Table 8.5, together with input values for 1984 and for the oldest age group in each year. The trend in fishing mortality is shown graphically in Figure 8.1.A.

8.2.2 Spawning stock biomass and recruitment

Estimates of spawning stock biomass (age groups 4 to $10+$) are given in Table 8.6 and shown graphically in Figure 8.1.B. The estimated number of recruits at age 1 for the year classes 1961-82 are given in Figure 8.1.B. The 1982 and earlier year classes were taken a calculated by the VPA. As no reliable information on the abundance of the 1983 and 1984 year classes is available these have been assumed to be equal to the average calculated for year classes 1961-81 (22.7 million at age 1). The current assessment confirm that the 1978 year class is above average and also that the 1981 and 1982 are above average.

8.3 yield per Recruit

Curves of yield per recruit and spawning biomass per 1 year old recruit are plotted in Figure 8.1.C, using the data given in Table 8.7. The estimated fishing mortality in $1984\left(F_{(3-8)}=0.58\right)$ is larger than $F_{\max }=0.34$ and $F_{0.1}=0.16$.

8.4 Catch Predictions

Data used in the catch predictions are given in Table 8.7, and the results are given in Table 8.8 and plotted graphically in Figure 8.1.D. If fishing mortality is maintained at the 1984 level $\left.\left(F_{3-8}\right)=0.58\right)$, landings of 35,000 tonnes are predicted in 1985 and of 33,000 tonnes in 1986.

8.5 Faroe Bank Cod (Table 8.2)

The landings of cod from the Faroe Bank are presented in Table 8.2. No attempt was made to assess this stock.

9 FAROE HADDOCK

The assessment was made for the stock of haddock for the total Faroe area (Division Vb).

9.1 Landings (Tables 9.1 and 9.2, Figure 9.1.A)

The total landings in Divisions Vb1 (Faroe Plateau) and Vb2 (Faroe Bank) were in 1984 12,400 tonnes. This is a decrease of 494 tonnes or 3.7% compared to 1983. The landings were almost exclusively by Faroese vessels.

9.2 Age Compositions (Table 9.3)

Age compositions data for the Faroese landings from the Faroe Plateau were provided. These were used to calculate the age composition for the total landings of Faroese vessels from the Faroe Plateau and Faroe Bank combined. The Norwegian and United Kingdom (Scotland) catch at age was estimated using the age composition in the larger Faroese long liners' landings. Because of minor updates to the 1982 and 1983 catch data there were also

```
minor revisions of the }1982\mathrm{ and 1983 catch at age arrays.
```


9.3 Weight at Age (Table 9.4)

Weight at age data for 1984 were provided by Faroes. They gave a SOP discrepancy of 6%. In the predictions the average weight at age data for 1981 - 1984 were used.

9. 4 Results of VPA

9.4.1 Fishing mortality

The fishing mortality for 1984 was estimated in the same way as for cod in the Faroe area, using the effort data for Faroese long liners (See Section 6.3).

Estimates of fishing mortality in each year calculated by the VPA are given in Table 9.5, together with the input values for 1984 and for the oldest age in each year. The trend in fishing mortalities is shown graphically in Figure 9.1.C.

9.4.2 Spawning stock biomass and recruitment

Spawning stock biomass (Table 9.6, Figure 9.1.B) was relatively stable at about 60,000 tonnes up to 1974. Subsequently, the spawning stock benefitted from recruitment of the abundant 1972 and 1973 year classes, which increased the spawning stock to about 110,000 tonnes. By 1981, the spawning stock had returned to a lower level. The estimated numbers of recruits at age 1 are given in Table 9.6 and Figure 9.1.B.

9.5 Yield per Recruit

The yield per recruit curve given in Figure 9.1.C has been calculated using the exploitation pattern assumed for 1984 and the mean weight at age for the years 1981-84. The present level of $F_{(3-8) u}=0.31$ is higher than $F_{0.1}=0.2$.

It should be noted that the continuing depressed catch levels for this stock at present not is due to an excessive fishing mortality level, as judged from the Y / R curve, but is caused by the very low recruitment levels which have persisted since 1977. There are, however, signs that the 1982 year class is back to normal.

9.6 Catch Predictions

Catch predictions were made using a recruitment level of 37.2 million 1 year old fish (average of year classes 1966-80) for the year classes 1983-86. The stock estimate at 1 January 1985 for year classes 1982 and earlier was taken from the VPA. The input data are given in Table 9.7. The exploitation pattern assumed for 1985 and 1986 is based on the 1984 exploitation pattern. The results are given in Table 9.8 and Figure 9.1.C. If fishing mortality is maintained at the 1984 level $\left(F_{(3-8)}=0.31\right)$, landings of 12,000 tonnes are predicted in 1985 and of 14,000 tonnes in 1986.

10 OTHER ITEMS

10. 1 The Problem of Single Nation Stocks

As a result of the introduction of exclusive fishing zones, some stocks dealt with at the Saithe Working Group are now exploited almost entirely by the coastal state and may be regarded as single nation stocks. The scope for broader scientific involvement in the
assessment of these stocks has as a consequence been much reduced because the source data required for the assessment and local knowledge of the fisheries reside in the hands of scientists from the coastal state. Working Group members from countries with this type of stock therefore find themselves somewhat isolated at the meeting in having to undertake the major share of the assessments for these stocks. Equally members from countries which no longer fish these stocks have little to contribute either in terms of data or knowledge of the present state of the fishery. When there is no Working Group member from the coastal state of a single nation stock the Working Group has had difficulty in carrying out the assessment.

The Working Group discussed the problems outlined above and expressed the view that:

1) because data for the assessment of single nation stocks come from a single fisheries institute, data could be presented to the Working Group at a more advanced stage of analysis or working papers could be circulated in advance of the meeting. This would keep the working Group better informed and would afford more time for effective scientific discussion.
2) the catch prediction methods as applied to single nation stocks may not be adequate. In particular, since the TAC approach to fishery management is not normally applied to these stocks the traditional catch option prediction is perhaps redundant. The Working Group felt that because these single nation stocks are essentially part of a multispecies demersal fishery and given the inherent advantages of having single nation exploitation it is perhaps time to consider more sophisticated assessment techniques appropriate for multispecies management, particularly the technical interaction between subfleets.

As a result of the discussions of the problems of single nation stocks questions were raised as to the suitability of the grouping of the present stocks into a single working Group. It may be more appropriate for example to assess the North sea and West of Scotland stocks within the North Sea Roundfish Working Group and the North-East Arctic Stock within the Arctic Working Group. This would would leave the Faroese and Icelandic stocks which could be dealt with in a new working Group forum. If such a redistribution was adopted, it should be borne in mind that the broader scientific discussion of single-nation stocks would be reduced.

The meeting noted the somewhat anomalous situation that the Icelandic saithe stock is assessed in isolation from cod and haddock. Perhaps it would be desirable to consider assessing all the Icelandic demersal stocks together where they form part of the same multispecies fishery.

10.2 Sugqestions for Assessment Proqrams

For a number of stocks the need has been expressed for computing partial F^{\prime} s at age for those fleets for which effort data are available. If fleet catch age compositions could be stored in the ICES database then a program to calculate the partial F^{\prime} s is viewed as a first priority.

Due to marked seasonal variations in the level of effort aimed at saithe and in the variation in the age composition of the catchable stock for some saithe fisheries, computation of fishing mortalities at age on a quarterly basis, for example, may prove desirable especially in cases when management bodies may wish to consider seasonal regulations. As for the partial F's this implies that the corresponding data are available, and also that quarterly parameters can be handled separately in, for example, prediction programs.

The software should enable basic national data to be stored in the database in a disaggregated form (e.g. by fleets and quarters). Programs would be required to process and aggregate the basic data with provision to store the processed data in separate files. The basic data as supplied should not be overwritten with any processed data.

The working Group would also welcome software allowing for multispecies and technical interactions which would be of particular interest for the assessment of the Faroese stocks.

Availability of general purpose software (spreadsheets, wordprocessing, statistical analysis and graphics) is appreciated, although with infrequent use it is difficult to become familiar with their specific commands and to use them efficiently.

If standard figures for printing in the reports are to be prepared by computer graphics provision should be made for the assessment programs to output data files which could be directly accessed by the graphics software thus avoiding manual transcription and repunching of the data.

Table 1.1 Summary of total landings of SAITHE from the main fishing areas (in tonnes, whole weight). This table is based on the biological data supplied to the Working Group and used in the assessments. These figures differ to some extent from the official Bulletin Statistique data which are used for Tables 4.1, 5.1, 6.1, 7.1 and 9.1.
(IV + IIIa includes industrial fishery by-catch by Denmark and Norway).

Year	Fishing Area					Total
	I + II	IV+IIIa	Va	Vb	VI	
1960	136,006	31,515	48,120	11,845	8,349	235,835
1961	109,821	35,489	50,826	9,592	6,724	212,452
1962	122,841	24,559	50,514	10,454	7,159	215,527
1963	148,036	30,300	48,011	12,693	6,609	245,649
1964	198,110	58,669	60,257	21,893	13,596	352,525
1965	184,548	73,274	60,177	22,181	18,395	358,575
1966	201,860	96,353	52,003	25,563	18,534	394,313
1967	191,191	76,759	75,712	21,319	16,034	381,015
1968	107,181	98,179	77,549	20,387	12,787	316,083
1969	140,379	115,550	115,853	27,437	17,214	416,433
1970	260,404	222,100	116,601	29,110	14,539	642,754
1971	244,732	252,619	136,764	32,706	19,863	686,684
1972	210,508	245,801	111,301	42,186	29,225	639,021
1973	215,659	225,771	110,888	57,574	35,812	645,704
1974	262,301	272,944	97,568	47,188	36,298	716,299
1975	233,453	278,126	87,954	41,578	30,949	672,060
1976	242,486	319,758	82,003	33,067	41,807	719,121
1977	182,808	194,858	62,026	34,835	28,554	503,081
1978	154,465	142,077	49,672	28,135	31,535	405,884
1979	164,234	115,668	63,504	27,246	21,708	392,360
1980	154,379	123,445	58,347	25,230	22,102	383,503
1981	175,516	126,972	59,001	30,103	23,653	415,245
1982	170,903	160,430	68,923	30,964	21,900	453,120
1983	155,405	165,500	58,280	39,228	26,572	444,985
1984*	150,315	200,013	62,820	54,423	20,261	487,832

[^1]Table 2.1 Nominal catch (tonnes) of SAITHE in Sub-area I and Divisions IIa and IIb, 1975-84.
(Data for 1975-83 from Bulletin Statistique).

Country	1975	1976	1977	1978	1979
Belgium	47	1	-	-	-
Faroe Islands	28	20	270	809	1, 117
France	3,156	5,609	5,658	4,345	2,601
German Dem. Rep.	28,517	10,266	7,164	6,484	2,4
Germany Fed. Rep.	41,260	49,056	19,985	18,190	14,82,
Netherlands	-	64	,	18,	14,
Norway	122,598	131,675	139,705	121,069	141,346
Poland	3,860	3,164	1	- 35	14, 34
Portugal	6,4.30	7,233	783	203	-
Spain	11,397	21,661	1,327	121	685
Sweden	B	-		,	8
U.K. (England \& Wales)	2,623	4,651	6,853	2,790	1,170
U.K. (Scotland)	140	73	82	37	,
USSR	13,389	9,013	989	381	3
Total	233,453	242,486	182,817	154,464	164,180

Country	1980	1981	1982	1983	1984*
Belgium	--	-	-	-	-
Faroe Islands	532	236	339	539	503
France	1,016	194	82	537	51
German Dem. Rep.	- ${ }^{12}$	-	-	-	6
Germany Fed. Rep.	12,511	8,413	7,224	4,931	4,531
Netherlands	-	-	-	-	-
Norway	128,878	166,139	169,936	150,741	144,714
Poland	-	-	-	-741	-
Portugal	-	-	-	-	-
Spain	780	-	-	-	-
Sweden	-	-	-	-	-
U.K. (England \& Wales)	794	395	731	1,252	3
U.K. (Scotland)	-	-	1	-	-
USSR	43	121	14	206	200
Total	144,554	175,498	178,327	158,206	150,315

[^2]
Table 2．2 Virtual Population Analysis

North－east Arctic SAITHE
Catch in numbers
Unit：thousands

	1975	1976	1977	1878	1979	1980	1481	1982	1483	1984
1	1	52	121	1711	9.77	400	127			
2		54151			28334	18220		$\begin{array}{r} 137 \\ 17225 \end{array}$	$4 \text { ن4 }$	14230
3	61882	125030	49049	$\begin{aligned} & 45858 \\ & 4096 y \end{aligned}$	$\begin{aligned} & 28334 \\ & 01463 \end{aligned}$	$\begin{aligned} & 18220 \\ & 417740 \end{aligned}$	$\begin{aligned} & 1040 \% \\ & 85954 \end{aligned}$	$\begin{aligned} & 17223 \\ & 34753 \end{aligned}$	$\begin{aligned} & 11638 \\ & 17244 \end{aligned}$	$\begin{aligned} & 1423 n \\ & 37541 \end{aligned}$
4	11691	30576	34317	27085	23328	36644				
5	10306	7941	19140	12470	14122	36644 9211	21520	63052 130619	23768 32100	30564 11101
6	4436	9712	21062	4534	44010	6374	3014	8212	3226	4983
7	78113 6749	3435	4532	1406	2401	32．5．1！	くらい0	11554	3004	1130
8	6789 2914	3212	1450	1848	903	133%	2018	1251	1177	1.394
17	235	2078	1000	930	1356	147	309	461	70！	550
11	1957		963	476	$43:$	750	219	203	247	59%
17.	1245	85%	244	65 0	305	411	252	1211	204	504
13	459	484	211	683	281 108	454	－84	112	123	15%
14	260	1411	勺：	－131	108	251	144	76	101	116
1 〕＋	239	300	15%	294	226	2.39	95	97	44	153
					210	200	4	45	178	58
TOTAI．	19：928	240393	136\％42	148515	1Syyllı	118780	147362			

Table 2.3 Virtual Population Analysis
North-east Arctic SAITHE
Mean Weight at Age of the Stock Unit: kilogramme

	1975	1970	1977	1973	1979	1980	14:31	1982	19:3	1984
1	. 25	. 25	. 25	. 23	. 25	10				
2	. 34	- 34	.34	.34	. 34	. 40	. 29	-30	- 18	. 15
3	. 71	. 71	. 71	. 71	. 71	-43	-43	- 51	. 00	. 55
4	1.11	1.11	1.11	1.11	1.11	$\begin{array}{r}.79 \\ \hline .27\end{array}$.45 1.40	.77 1.12	1.05 1.33	. 74
5	1.63	1.63	1.65	1.65	1.63	2.03	2.405	1.12	1.33	1.30 2.03
6	2.33	2.33	2.33	2.33	2.53	2.55	2.70	2.02	1.80	2.03
7	3.16	3.16	3.16	3.10	3.16	3.29	3.30	?.61	2.80	2.76
8	4.03	4.03	4.03	4.73	4.03	4.34	4.38	3.27	4.110 4.0	3.89 4.55
9	4.37	4.87	4.87	4.87	4.87	5.15	4.45	4.69	4.10	4.55 5.36
10	5.03	5.63	5.63	5.63	5.63	5.75	6.39	4.69	5.33	5.36
11	0.44	6.44	6.44	6.44	0.44	6.71	0.39	5.63 7.18	5.08 7.31	0.01
12	7.11	7.11	7.11	7.11	7.11	6.71 5.94	0.01	7.78	7.51 8.08	0.18 0.73
13	7.82	7.82	7.82	7.82	7.8 ?	6.04	0.75	7.0	7.08 8.54 8.57	0.73
14	8.92	8.92	¢. 92	8.92	8.97	7.75	7.13	8.83	8.34	8.21
$15+$	7.50	9.50	9.50	4.5%	9.50	9.47	7.00	9.44	10.37	\bigcirc

Table 2.4 Virtual Population Analysis
North-east Arctic SAITHE

Fishing Mortality Coefficient

Unit: Year-1
Natural Mortality Coefficient $=.20$

	1975	1970	1977	157%	1479	1980	1981	1982	1983	1984	1980-82
1	.00	. 00	-00	. 11	. $10 n$	-100	-10	00			
?	.27	. 21	. 21	.14	.21	. 06	- 19	- 17	-12	- 12	. 10
3	. 58	. 80	. 75	. 59	. 43	. 52	. 39	. 17	-12	-12	- 10
4	. 41	. 65	.62	. 49	. 63	. 48	. 58	. 45	.26 .63	. 0.05	.45
5	. 42	. 50	. 47	. 48	- 517	. .54	. 58	.61	-6.3	1.07 .70	. 56
6	. 30	. 42	. 27	. 34	- 31	. 44	. 42	. 88	-77	-7\%	- 06
7	. 50	. 41	. 36	. 31	. 47	-.39	. 32	. 21	. .33	. 35	. 45
8	. 59	. 40	. 30	.27	. .35	. 42	. 45	. 215	. .37	. 35	.30 -37
3	. 37	-49	. 35	.32	-33	-03	. 19	. 18	. 37	.35 .30	.37
11	. 47	. 38	. 33	-37	. 24	. 30	- 22	. 20	.24 .13	. 30	.15
11	. 53	. 42	. 17	. 36	. 19	. 30	. 10	.14	. 24	- 3 n	. 24
12	. 87	. 4.47	. 15	. 39	. 28	. 48	.13	. 10	-	. $3 n$.23 .24
13	. 03	1.10	- 20	. 27	. 16	. 43	- 27	. 10	- 20	. 30	. 24
14	. 40	.47	. 35	. 35	. 35	. 35	. 30	. 30	-27 -30	- 30	. 30
$15+$. 40	.47	.35	. 35	. .35	. 35	. 30	. 30	. 30	.30 .30	.32 .32
(3-8)	-47	. 55	. 40	.42	.45	. 46	. 40	. 47	. 47	. 59	

Table 2.5 Virtual Population Analysis

North-east Arctic SAITHE

Stock size in numbers
Biomass Totals

Unit: thousands
Unit: tonnes
All values are given for 1 January

Table 2.6 North-East Arctic SAITHE Catch, effort and catch per unit of effort from Norwegian trawlers in Division IIa 1973-1983.

Side trawlers
Stern trawlers

Year Catch	Effort	Cpue	Catch	Effort	Cpue	
	(tonnes)	(hours)	(kg/hour)	(tonnes)	(hours)	(kg/hour)

1973	10,920	31,487	347	3,602	54,159	67
1974	13,878	33,026	420	4,837	91,398	53
1975	10,545	24,636	428	3,009	82,274	37
1976	11,594	27,854	416	5,060	114,430	44
1977	13,609	32,801	415	8,004	138,597	58
1978	10,048	25,823	389	13,077	169,930	77
1979	13,566	28,306	479	14,364	202,702	71
1980	11,935	23,396	510	25,390	108,727	234
1981	14,581	24,098	605	43,241	124,896	346
1982	5,143	13,575	379	36,489	116,868	312
1983	10,248	22,148	463	46,114	113,114	408

Table 2.7 List of Input Variables for the ICES Prediction Programme
SAIfHE-ARCTIC
The reference F is the mean F for the age group range from 3 to 8

The number of recruits per year is as follnws:

Year	Recruitment
1985	$2700 n \pi . n$
1996	200000.0
1987	$2 n 0000.0$

Deta are printed in the following units:

Number of fish:	thousands
Weight hy age group in the catch: kilogram	
Weight hy age group in the stock: kilogram	
stock biomass:	tonnes mean values for years $1982-1984$ from file weca
Catch weight:	tonnes mean values for years 1932-1984 from file weca

age	tock sizei	fishing: patterni	```natural: mortality:```	maturity: ogive:	weight in: the catchi	weight in: the stocki
1 i	200000.01	.001	. 201	. 001	. 2401	.2401
2:	163746.01	.121	.201	- $00:$. 5531	. 5531
$3:$	107620.7:	.65:	. 201	. 001	. 8531	. 8531
41	36640.91	1.001	. 201	. 001	1.2501	1.2501
$5 i$	15705.0:	.701	. 201	. 001	1.4701	1.9701
$6:$	9773.71	. 5ni	. $20!$	1.100:	$2.723:$	2.723:
$7:$	13787.0:	.351	. 201	1.00:	3.720i	3.720i
81	2422.01	.351	. 201	1.150:	4.213:	4.213i
$9:$	4059.7i	. 301	. 201	1.00:	5.127i	5.127i
17:	1428.01	. 301	. 201	1.00:	5.7731	5.7731
$11:$	1536.71	. 301	. 201	1.00i	6.8401	$6.890 i$
$12:$	935.01	. 301	. 2111	1.001	7.5401	7.5401
$13:$	406.01	. 301	.201	1.001	7.9171	7.9171
14 :	298.01	. 301	. 201	1.00:	8.0231	४.6231
$15+i$	542.01	. 301	. 201	1.00:	$9.080:$	9.0801

Table 2.8 Effects of different levels of fishing mortality on catch, stock biomass and spawning stock biomass.

SAITHE - Arctic

The data unit of the hiomass and the catch is 1 nOO tonnes.
The spawning stock biomass is given for i january.
The reference F is the mean F for the age group range from 3 to δ
-40-

Table 3.1 Nominal catch (tonnes) of SAITHE in Sub-area IV and Division IIIa, 1975-1984 (Data for 1975-1983 from Bulletin Statistique)

Country	1975	1976	1977	1978	1979
Belgium	81	127	107	44	14
Denmark	10,149	15,111	17,334	10,372	10,461
Faroe Is.	287	425	318	213	407
France	24,396	32,552	41,022	38,122	40,983
German Dem. Rep.	5,882	2,088	2,430	2,404	1,504
Germany Fed. Rep.	18,622	38,698	26,860	25,982	18,780
Iceland	1	-	-		18,780
Ireland	-	119	126	88	-
Netherlands	8,917	6,101	7,270	5,135	1,466
Norway	12,483	17,856	14,949	17,627	17,575
Poland	35,304	35,819	12,378	5,661	6,104
Spain	249	-	12,	-	-
Sweden	913	1,271	1,275	990	211
UK (Engl./Wales)	3,472	6,300	6,822	8,382	6,256
UK (Scotland)	8,898	13,034	11,366	14,330	8,257
USSR	110,743	83,669	46,385	10,161	2,015
Sub-total	240,397	253,170	188,642	139,511	114,033
By-catch from					
Industrial					
Fisheries:					
Denmark	27,800	53,684	1,805	72	493
Norway ${ }^{\text {a }}$	9,878	13,082	4,392	2,494	1,142
TOTAL	278,075	319,936	194,839	142,077	115,668

Country	1980	1981	1982	1983	1984*
Belgium	13	12	4	7	34
Denmark	10,370	6,454	10,114	10,530	7,925
Faroe Is.	1,020	614	746	806	105
France	37,306	42,649	47,064	38,782	41,225
German Dem.Rep.	925	-	-	-	-
Germany Fed. Rep	11,095	8,246	13,517	13,649	25,273
Iceland	-	-	-	-	-
Ireland	-	-	-	-	-
Netherlands	245	123	36	112	100^{8}
Norway	47,959	55,882	70,464	78,135	82,194
Poland	2,404	698	793	415	413
Spain	-	-	-	-	-
Sweden	342	156	372	548	463
UK (Engl./Wales)	4,879	4,309	5,627	6,845	1,865
UK (Scotland)	6,525	6,529	8, 136	6,321	6,903
Sub-total	123,083	125,672	156,873	156,150	166,500
By-catch from					
Industrial					
Fisheries:					
Denmark ${ }^{\text {a }}$	--	-	-	-	-
Norway ${ }^{\text {a }}$	363	1,280	5,003	1,445	5,616
TOTAL	123,446	126,952	161,876	157,595	172,116
Preliminary - Data from national Labs. - W.G. Estima					

$\begin{array}{ll}\text { Table 3.1.1 } & \text { Virtual Population Analysis } \\ & \text { North Sea SAITHE (Fishing Area IV) }\end{array}$

Catch in numbers Unit: thousands

	1974	1975	1970	1977	1978	1979	1980	1981	1482	1983	1984
1	3677	311	228	2380	1237	894	474	5595	1462	101	11
2	14750	72546	23125	12993		16959	17642	17674			
3	61760	51267	223080	2250%	29504	1 100\%	111490	$\begin{aligned} & 17674 \\ & 18941 \end{aligned}$	$\begin{aligned} & 22414 \\ & 23056 \end{aligned}$	$\begin{aligned} & 32260 \\ & 2.1487 \end{aligned}$	$\begin{aligned} & 40345 \\ & 36056 \end{aligned}$
4	31803	23585	51407	51 ¢01	27679	14756	111124	9079	33759	18537	35759
5	12431	9028	9052	12 114	17251	12.343	4011	71 ก9	111054	23442	75097
6	29595	6717	5111	4084	3737	6878	05115	4413	6406	$45 ? 4$	17249
7	14504	12660	$35 \cap 4$	3173	1102	2641	4312	3207	1015	4246	1454
8	5028	8656	4842	2ソก2	11369	373	yij	3-69	1346	1206 1205	1454 1122
9	1427	3299	2970	5460	707	4in	300	075	973	$\bigcirc 5$	172 204
17	809	1170	1106%	1895	736	2:?	470	293	294	280	153
11	412	610	420	i 75	040	412	5113	589	1118	194	69
12	222	2.54	2.53	342	415	343	254	345	129	70	58
13	$13 ?$	275	12.1	541	213	157	210	297	48	84	11
14	50	7%	161	123	195	154	147	253	146	33	19
$15+$	27	25	00	129	103	101	リ)	335	146	80	50
TOTAI.	100520	197436	326621	120791	101513	67 Pen	650011	71:372	103512	104262	1511057
- -	\cdots				--...- -	-..- ...					
A) $\quad \mathrm{SOP}$	251011	241869	327894	182120	129207						
B) NOMIN.	272944	278126	319753	194 is58	142077	115608	123445	126137 120972	161198 160430	165374	199995
$\text { (B/A) } \%$	109	115	98	107	142077	115608 98	123445 105	$\begin{array}{r} 126972 \\ 101 \end{array}$	160430 100	$\begin{array}{r} 165500 \\ 100 \end{array}$	$\begin{array}{r} 200013 \\ 100 \end{array}$

Table 3.2 Sum of Products Check
North Sea SAITHE (Fishing Area IV)
Category: Total

Mean Weight at Age in the Stock

	1974	1975	1976	1977	1978	1979	1980				
1	.300						1980	1981	1982	1983	1984
2	.450	. 450	.300 .450	. 300	.300	.430	. 270	. 280	. 270	.390	
3	. 750	. .750	. .750	. 450	. 450	. 410	. 390	. 550	. 550	. 450	. 2700
4	1.160	1.160	.750 1.760	.750 1.160	.750 1.160	.930 1.560	.670 1.750	. 8.890	1.100	. 450	. 400
5	1.790	1.790	1.790	1.790	1.160	1.560 2.240	1.750 2.350	1.620	1.530	1.710	1.540
6	2.480 3.380	2.480 3.380	2.480	2.480	2.7880	2.240 3.060	2.350 2.960	2.470 3.340	2.300	2.130	2.250
3	3.300 4.200	3.380 4.200	3.380 4.200	3.380	3.380	3.920	4.040	3.340 4.370	3.020 4.010	3.070	2.780
9	4.910	4.910	4.200 4.910	4.200	4.200	5.120	5.000	5.300	4.910	3.360 4.560	4.040 4.780
17	5.650	5.650	5.050	4.910	4.910 5.650	6.770 6.470	3.090	-6.290	5.800	5.370	6.020
11	6.450 7.160	6.450 7.160	6.450	6.450	0.450	6.470 6.970	6.550 7.480	7.220 7.460	6.570	6.270	7.420
12 13	7.160 8.070	7.160 8.070	7.160	7.160	7.160	7.590	7.480 7.610	7.460	7.580	6.940	8.090
14	9.070	8.070	8.070	8.070	3.070	3.260	7.960	7.910	8.900	7.690	7.810
+	9.000	9.00	9.000	9.000	9.000	8.140	8.150	8.590	8.180	9.220	9.550
		. 000	$9 .!000$	9.000	9.000	8.820	9.140	8.710	9.400	10.110	9.160

Unit: kilogramme
$2.400 \quad 10.110 \quad 10.460$

North Sea SAITHE (Fishing Area IV)
Fishing Mortality Coefficient Unit: Year-1 Natural Mortality Coefficient $=.20$

Table 3.4 Virtual Population Analysis
North Sea SAITHE (Fishing Area IV)

Stock Size in Numbers
Unit: thousands

Biomass Totals

Unit: tonnes
All values are given for 1 January

Table 3.5 North Sea Saithe. Effort and catch per unit from Norwegian and French trawlers with partial F_{s} for the French fleet from VPA.

Year	Norwegian side trawlers		Norwegian stern trawlers		French cpue Index	```Total effort in French units```
	cpue kg/h	Effort h	cpue kg / h	$\begin{aligned} & \text { Effort } \\ & h \end{aligned}$		
1974					. 51	535.1
1975					. 30	927.1
1976					. 45	710.5
1977					. 43	453.1
1978	542	194			. 36	394.6
1979	721	368	446	5,324	. 37	312.6
1980	607	1,355	704	16,918	. 34	363.0
1981	619	2,974	782	25,102	. 34	373.4
1982	731	3,047	918	42,286	. 45	356.5
1983	672	7,025	1,172	37,961	. 54	306.5
1984		No data		No data	. 61	327.8

Year	Effective effort FRANCE x 10^{-3}	PartialF (5-10) FRANCE from VPA
1974	56.1	.035
1975	81.3	.042
1976	72.3	.070
1977	95.4	.139
1978	105.8	.127
1979	110.7	.149
1980	109.7	.146
1981	125.4	.166
1982	104.5	.187
1983	94.1	.098
1984	103.5	.147

-46-

TABLE 3.6 North Sea SAITHE. French catch per unit effort index of spawning stock biomass and the equivalent estimate from VPA

Year	French cpue index of spawning stock	Spawning stock bio- mass $\times 10^{-3}$ from VPA
-1974	1.29	517
1975	0.96	406
1976	0.83	295
1977	0.81	247
1978	0.88	221
1979	0.87	251
1980	0.76	218
1981	0.52	217
1982	0.66	166
1983	0.83	252
1984	1.17	259

Table 3.7 Effects of different levels of fishing mortality on catch,

 stock biomass and spawning stock biomass.North Sea SAITHE Prediction
Option 1

Year 1985					Year 1980				Year 1צ8\%			
fac-: tor	ref:	stock: biomass:	sp.stock: bionass:	catchi	$\begin{gathered} \text { fac } \\ \text { tor } \end{gathered}$	ref.! $F i$	$\begin{array}{r} \text { stock: } \\ \text { biomassi } \end{array}$	sp. stock: binmassi	catch:	stock! hiomass:	$\begin{gathered} \text { spas } \\ \text { bio } \end{gathered}$	tock: mass:
1.7:	.41:	10901	343:	259:	.11	- $0 \% 1$	11001	4121				
;	'	;	i	,	-1:	- 4^{\prime}		42 !		4041		8001
;	,	;	+	,	-	-			351	13011		8221
,		;	!	!	-21	- 17	!	!	68:	13201		7801
1		1	,	!	-4i	-171	;	i	131	12421		7201
;	;	;	'	'	-6:	-251,	i	!	183:	1171:		000:
,	!	!	,	:	$\begin{array}{r}-81 \\ 1 \\ \hline 101\end{array}$	-331	!	'	241!	$1106:$		$605:$
;	,	!	,	;	1.01	. 411	!	!	2891	$1046:$		5¢5:
,		;	!	'	1.2:	- 517	!	'	3331	491:		510:
:	,	,	!	!	$1.4:$	- 60.	!	!	3741	941:		4081
,	I	1	!	'	1.01	. 601	!	'	4121	8941		4311
,	,	;	;	;	2.0i	- 83	,		4471	ช勺1;		3901
		1	1	1	2.01	. 831	,	;	4741	¢111		365:

The data unit of the biomass and the catcn is $10 n 0$ tonnes.
The spawning stock hinmass is given for 1 January.
The reforence F is the mean F for the age group range from 3 to 6

Table 3.8 Effects of different levels of fishing mortality on catch, stock biomass and spawning stock biomass

North Sea SAITHE Prediction
Option 2

The data unic of the hiomass and the catch is $10 n 0$ tonnes.
The spawning stnck binmass is given for 1 January.
The reference F is the mean F for the age group range fron

Table 3.9 Effects of different levels of fishing mortality on catch, stock biomass and spawning stock biomass

SAITHE. North Sea Prediction with TAC

The data unit of the hiomass and the catch is $10 n 0$ tonnes.
The spawning stock biomass is given for 1 January.
The reforence F is the mean F for the age group range from s to o

Table 4.1 Nominal catch (tonnes) of SAITHE in Division Va 1974-1984. (Data for 1974-1983 from Bulletin Statistique)

Country	1974	1975	1976	1977	1978	1979
Belgium	2,371	1,638	1,615	1,448	1,092	980
Faroe Is.	1,712	1,366	3,267	3,013	4,250	5,457
France	94	32	51	-	-	-
Germany Fed.Rep	18,627	13,820	13,785	10,575	-	-
Iceland	65,169	61,430	56,811	46,973	44,327	57,066
Norway	-	6	5	4	3	1

UK (England \&

Wales)	8,845	8,643	6,024	13	-	-
UK (Scotland)	731	1,021	443	-	-	-
Total	97,549	87,956	82,001	62,026	49,672	63,504

Year	1980	1981	1982	1983	1984*
Belgium	980	532	203	224	269
Faroe Is.	4,930	3,545	3,582	2,138	2,044
France	-	-	23	-	-
Germany Fed.Rep	-	-	-	-	-
Iceland	52,436	54,921	65,124	55,904	60,401
Norway	1	3	1	33	105
UK (England \&					
Wales)	-	-	-	-	-
UK (Scotland)	-	-	-	-	-
Total	58,347	59,001	68,933	58,299	62,819

[^3]Icelandic SAITHE

Catch in numbers

	1974	1975	1970	1977	1878	1979	1480	1981	1982	1983	1984
2	111	16	29	b	0						
3	1269	526	329	54	548	480	$1{ }^{1}$	19 257	0 486	0	0 136
4	34104	2997	3234	2099	1145	37804	23113	1558	436	40	136
5	2348	2479	3045	2858	2435	1991	4654	4310	1221	1469	497
6	5104	1829	2530	1 ¢ 11	1556	3010	25ら1	4310 5404	2526 4317	1344 2411	835 1554
7	3452	3496	2154	1036	1275	1560	2419	5404 1504	4301	2411	1554
\checkmark	5364	2994	2507	1060	901	718	1012	1470	4301	4366	2573
9	1313	1434	1 130	1523	537	292	4 42	1470 589	1315	2407	3404
17）	324	710	11704	458	575	609	425	589 792	1119 343	460	993
11	351	32.5	295	538	476	584	4 132	192 67	343 65	346	322
12	141	170	191	160	279	489	102	67 175	65 37	71 36	252
13	43	100	94	71	139	1ち0	59	130	38	36	229
14	13	30	08	12	41	72	29	130	38 37	11	139
$15+$	20	61	18	49	55	0	23	130 72	37 75	24	174
TOTAL	19827	17179	16448	12240	10072	14390	14720	15416	16500	13027	11277

Table 4.3 Virtual Population Analysis
Icelandic SAITHE

Mean weight at age of the stock
Unit: kilogramme

	1974	1975	1970	1977	1978	1979	1900	1931	$19 \leq 2$	$19 \bigcirc 3$	1984
2	- 100	. $0 \cap 0$.1100	. CO 0	.000	- 000	000				
3	1.12n	1.1211	1.120	1.120	1.120	1.120	- 01	477	. 1100	- 0100	- $0 \cap 0$
4	1.76n	1.760	1.760	1.760	1.760	1.760			1.477 2.7114	1.665	1. 340
5	2.730	2.730	2.750	2.730	2.7s	2.731	2.06%	2.0174 2.574	2.7114 2.514	2.229	2. 367
6	4.290	4.290	4.290	4.290	4.290	4.740	3.87	-. 3.457		4.151	3.319
7	5.540	5.540	5.540	5.240	b. 540	5.540	3.324	3.457 4.431	3.457 4.451	4.199	4.450
3	7.210	7.270	7.210	7.270	$7.27 n$	7.270	6.143	4.431 6.156		4.115 5.430	5.4011
7	8.420	8.420	0.420	5.420	0.427	8.420	0.143	6.156 6.827	0.156 6.027	5.430	5.194
in	9.417	9.410	4.4in	9.410	4.417	9.410	8.227	R. 0.047		- 319	7.520
11	17.717	10.070	10.90%	17.000	10.1100	10. ता:	4.1102	9.409	8.1447 9.4119	.815 .357	. 580
12	17.267	17.560	10.500	10.360	11. 360	10.560	4.299	9.273	9.2015	9.557	9.315 10.123
13	11.87 n	11.870	11. 37 (.	11.070	11. 37 \%	11.870	10.202	9.2 .359	9.205 9.439	9.557 10.235	10.123 10.875
14	13.120	13.120	13.120	15.120	13.12n	13.120	11.373	10.146	10.146	10.3.35	1. 1.375
$13+$	14.007	$14 . \pi ก 0$	14.1010	$14.001)$	14.)n!	15.120	11.072	10.750	10.756	11.250	13.265

Table 4．4 Virtual Population Analysis
Icelandic SAITHE

Proportions of Maturity

	1974	1975	1476	1977	1978	1978	$19 \% 13$	1981	1982	1983	1984
2	.000	－ $0 ก 10$	－000	.000	．000	.000	.000	．000	． 000	． 000	． 000
3	． 000	． 000	.1000	． 070	.000	． 000	.000	－10ก	.000	．030	． 080
4	－ก1）	－ 700	－ 090	$.0 \cap 7$	－1） 00	－ 0 On	.000	.060	．$\because \bigcirc 0$.270	.150
5	.700	． 000	． 000	－ 100	．1］	． 0 ¢0	.1000	.270	.300	． 000	． 520
6	1． 1 กก	1．$ก$ \％	1．0กก	1．0no	1.000	1．700	1.000	$.03 n$.567	.550	.830
7	1．9ijo	1．กก1）	1.000	1． 400	1．010n	1．0n0	1．1500	.810	． 9 \％ 0	． 850	． 950
8	1．ワワก	1.770	1． 1100	1.000	1．1907	1.700	1.000	.970	．980	.980	.650
7	1．nion	1．กา\％	1．131）	1.1900	1．130n	1． 1000	1．1700	1.070	1.000	． 987	1.000
17	1．nin	1.070	1．700	1.1001	1.00%	1．000	1．0ח\％	$1.0 ก \square$	1.000	.970	1.000
11	1． 1.00%	1．กワก	1．017）	1． 1.00	1.0000	1．0n）	1.0110	1．0กก	1．1300	1.070	1．000
12.	1． 1.017	1．nnก	$1.0 ก 0$	1． 1100	1．010n	1． T （10）	1．100	1．100	1．non	1.000	1.000
13	1．nom	1．000	1．0109	1． 1780	1． 1100		1．1700	1．11013	1．110n	1．01）	1．0no
14	1．00ก	$1.0 ワ 1$	1.770	1．0ก0	1． 1 \％n	1．ก¢im	1．0100	1.000	1.000	$1.0 ก \square$	1.000
1 ）＋	1．90\％	1．000	1.7070	1.1000	1．1）10n	1．700）	1.001	1.1170	1．111）	1.000	$1.0 ก 0$

Table 5.1 Nominal catch (tonnes) of SAITHE in Sub-area VI from 1974-84 (Data for 1974-84 from Bulletin Statistique.)

Country	1974	1975	1976	1977	1978	1979
Belgium	209	21	95	-	-	1
Denmark	-	-	3	-	-	-
Faroe Is.	6	6	7	11	-	14
France	22,802	19,946	29,216	19,686	21,519	15,662
German Dem. Rep.		8	3	19,686	21,519	15,662
Germany Fed. Rep.	16	481	511	254	604	131
Ireland	-	-	375	240	266	246
Iceland	-	$+$	-		-	.
Netherlands	124	702	547	531	623	256
Norway	22	10	17	91	122	20
Poland	125	164	91	-	-	2
Spain	1,862	1,882	1,012	346	-	-
UK (England \&						
Wales)	1,333	1,571	1,560	2,758	3,193	1,765
N. Ireland	3	12	13	9	27	11
UK (Scotland)	9,527	6,131	5,807	4,628	5,181	3,602
USSR	269	15	2,550	, 628	-	3,602
TOTAL	36,298	30,949	41,807	28,554	31,535	21,708

Country	1980	1981	1982	1983	1984*
Belgium	2	2			
Denmark	-	-	4		
Faroe Is.	4	3	5	2	
France	15,427	16,654	16,833	22,027	15,172
German Dem. Rep.	-	,			15,172
Germany Fed. Rep.	49	581	441	190	713
Ireland	295	250	329	698	551
Iceland	-	-	-		
Netherlands	91	-	-		
Norway	62	25	19	215	61
Poland	-	-	-		
Spain	-	120	243	330	
UK (England \&					
Wales)	1,594	1,364	1,966	798	516
N. Ireland	9	10	7	12	48
UK (Scotland)	2,902	3,117	2,141	2,642	3,248
USSR	-	-	--		3,
TOTAL	20,435	22,126	21,988	26,914	20,309

[^4]Table 5．2 Virtual Population Analysis
SAITHE in Fishing Area VIa（NW Coast of Scotland，N．Ireland）
Catch in numbers
Unit：thousands

	1975	1970	1977	1ソ78	1779	1980	ナ9゙い	198%	1435	1984
1	23	30	134	30	9	44	145	39	29	137
2	$236 ?$	2641	1210	3421	ソ64		2Sy	1511	2129	126．
3	3944	8004	4407	41350	104n	$\begin{array}{r} 944 \\ 53.53 \end{array}$	$\begin{aligned} & \text { zsyu } \\ & \text { joui } \end{aligned}$	1511 4004	2127 3915	$\begin{aligned} & 2267 \\ & 4443 \end{aligned}$
4	2390	2031	2660	2340	120n	35：	14 ¢c	1555	2253	24174
3	1．5s 1	1502	1070	1301	1146	970	$3 y^{1}$	1250	147	2414 053
6	307	112.4	147	103	フロ7	630	413	203	180	653 648
7	1031	005	203	291	s／0	408	344	57%	444	648 278
3	123	57.4	53.4	245	150	144	344 223	276 235	444 153	278 124
9	$2 \cdot 17$	b30	$\therefore 93$	162	19%	41	154	127	153	124 49
17	37	3）	295	$3 \cap 4$	$1>4$	113	122	38	if 5	42
11	03	472	275	38%	105	175	$12 i$	40	35 34	42
12	：37	$1 \geqslant 1$	1111	$\therefore 60$	159	140	110	40	04	10
13	40	1311	35	210	$15 ?$	189	120	00	）	$1{ }^{2}$
14	14	199	103	84	111	84	91	64	43	119
$13+$	$\therefore 5$	102	1111	¢ 5	\bigcirc	119	41	64 119	93 126	19 42
TOTA！	12311	19397	13108	14472	7343	8186	10807	17476	11056	11348

Table 5.3 Virtual Population Analysis
SAITHE in Fishing Area VIa (NW Coast of Scotland, N. Ireland)
Mean weight at age of the stock Unit: kilogramms

	1975	1970	1977	1473	1979	198:	1981	1932	1983	1934
1	.458	. 444	. 407	. 412						
$?$. 739	. 691	- 080	- 50	. .049	.417	.400 .679	. 432	.432 .749	. 472
3	. 957	1.030	. 870	1.135	.049 1.324	1.100	.079 .100	. 9704	. 749	. 756
4	1.52\%	1.470	1.423	1.073	1.46 ?	1.955	. 703		6	1.143
5	2. 585	2.34 .5	2.234	2.406	2.417	2.054	2.465	603	1.977	1.009
6	3.523	$3.3 n 7$	5.295	5.031	5.513	5. 5.575	2.809 4.090	2.587 3.764	3.187	2.724
7	4.73?	4.271	4.577	4.691	4.015	4.560				3. 540
-	5.543	$5.041)$	2.17is	5.279	3.853	4.5.54	6.120	5.077 5.901	5.1143	4.770
'3	6.523	5.913	5.938	5.482	0.971	6.528	0.235 7.235	5.971 7.334	6.402	5.432 7.407
$1)$	7.13\%	0.554	0.754	0.055	1.301	7.712	6.304		7.10n	7.907
11	is.11]?	7.1 \%;	7.132	7.092	8.341	3. $6: 4$	8.304 4.454	8.734 8.899	8.507 8.307	9.280
12.	9.1031	5.798	-. 528	9.080	9.193	3.604 9.406	8.489 9.327	8.1399 9.790	8.1377 9.353	9.347 10.845
13	9.1771	9.770	9.025	10.037	11.160	9.757	10.170	9.790 10.047	9.833 11.4110	10.845 11.777
14	17. 1155	9.7n!	9.951	19.472	11.1944	10.750	10.170 11.050	10.047 10.191	11.4110 12.097	11.777
1 +	11. 2\%	10.532	10.363	9.554	11.759	$11.90 ?$	12. 300	11.459	12.199 13.268	12.375 13.129

Table 5.4 Virtual Population Analysis
SAITHE in Fishing Area VIa (NW Coast of Scotland, N. Ireland)
Fishing Mortality Coefficient Unit: Year-1 Natural Mortality Coefficient $=.20$

	1974	1975	1470	1977	1978	1979	1780	1981	1962	1483	1934	1980-82
1	.02	. 00	.00	. 01	.00	.00	. 00	. 00	. 00	.00	.00	- 00
2	.14	.10	.12	. 00	.20	. 04	. 05	. 70	.03	.74	.04	.05
3	.40	.47	- 58	.32	. 38	.14	. 11	.17	. 22	.17	.10	.19
4	. 21	.29	. 38	. 34	. 28	.14	.09	. 14	.10	.15	.08	.11
5	. 11	.17	.37	.45	.33	.21	.15	- 00	.13	. 07	. $0 \bigcirc$.12
6	. 05	.07	. 21	. 2.6	. 35	.311	.17	.13	. 199	.17	.07	.13
7	.1)9	.12	.117	.10	.15	. 31	.53	.13	.17	.12	. 05	.21
3	.14	.111	. 178	.05	.119	.11	.27	. 20	.13	.10	. 04	. 22
9	.119	. 174	.11	. 00	. 13	.10	. 04	. 35	.22	.07	.04	. 22
17	.16	. 02	. 19	. 07	.08	. 113	. 08	. 17	.31	. 24	.04	.19
11	.1)8	. 7 \%	.12	. 111	.12	-1:6	-13	.12	. 17	. 36	.04	- 09
12	.74	-	.12	.04	.14	.010	. 170	. 04	. 105	.17	.174	. 05
13	.18	. 12	.13	.05	.11	. 09	.11	- 08	.03	. 09	. 134	. 07
14	.10	.10	.10	.10	.17	. 1.8	-08	. 07	. 105	.05	.04	.07
$15+$.10	.1 D	.11	.10	.117	- Cも	- 10	.97	.115	.175	.04	.07
$(3-0) 4$.19	. 25	.39	.35	.34	.$\ddot{1}$. 15	.13	.13	.17	.08	

Virtual Population Analysis
SAITHE in Fishing Area VIa (NW Coast of Scotland. N. Ireland)

Stock size in numbers
Biomass Totals

Unit: thousands
Unit: tonnes
All values are given for 1 January

	1974	1975	1976	1977	1918	1979	1980	1981	1932	1983	1984	1985
1	35721	30269	22474	29250	36883							
2	24657	26931	24701	18367	23809	41518	42040	71118	84070	77462	167787	0
3	13862	17603	19401	17592	13441	31703 15954	33954	34 と70	28098	72889	63004	137235
4	14033	19388	91141	9132	10035	15954 770	23825	26926	26593	46383	51215	50190
3	20239	9391	6348	b 041	5072	7713 6590	11401	10504	18544	17411	34453	42380
6	13012	14843	0490	3 ¢ ¢	+2025	- 290	4234	8493	11726	13780	12225	20039
\bigcirc	11651	110092	$113 \% 1$	4301	2025 2065	19.5	4301	5117	0420	8408	10563	9239
3	7306	3603	7535	¢709	2005 3014	1518 1542	1801	3008	2071	4803	0284	8064
9	0367	5245	0442	勺¢3\%	6780	1524	914	1059	2133	1851	3487	4894
17	51.7	4761	4112	4744	4204	2248 5405	1105	571	067	1551	1378	2743
11	2302	7.194	31322	3071	4204 3620	34115 3217	1007 4280	, 1270	329 603	437	1181	10×4
12	5408	2117	1\%21	2767		2619	4280	1203	603	197	281	929
13	2.58	2723	1654	9240	2174	1619	2405	3353	919 2040	448	112	221
14	428	15%	2100	1192	1972	1541	2020	190%	2040	716	309	88
$15+$	667	28.9	1181	1234	484	1589	1204	1483	1447	21 ก2	534	243
					384	889	1705	1485	2690	2848	1181	1349
TOTAL NO	160711	145085	123656	110063	119305	1256						
SPS NO	64302	67492	52661	41421	54057	125604 30273	130759 20891	170032 77203	224508	251846	SoU795	
TOT.BIO4	3711496	374597	356921	289273	210025	273231	26891 207328	27208	32264	$3 \% 202$	37530	
SPS BIO.7	305479	308111	275990	253421	209913	194355	201328	281224	325159	361422	420253	
					209913	194335	177504	171656	184257	195257	173506	

Table 5. 6 West of Scotland SAITHE. Calculation of international fishing effort.

	Effective CPUE (France)	Total landings	Effective inter- national effort	Effective CPUE Met Quarter
1974	.16	36,298	227	.25
1975	.14	30,949	221	.10
1976	.17	41,809	246	.35
1977	.12	28,554	238	.21
1978	.12	31,535	263	.17
1979	.12	21,708	181	.28
1980	.11	20,435	186	.31
1981	.12	22,003	183	.31
1982	.17	21,988	129	.32
1983	.17	26,914	158	.28
1984	.16	20,309	127	.22

```
NATURAL MORTALITY = . 2חO
    TERMINAL F=.11]O
    TEFMINALS=.40'O
    REFFRENGCF AGE (FOR UHIT SELECTION) IS 3
    NO. OF ITFRATIONS C.HUSEN IS OO
    1IP.IMUA DIFFERENCE BLTWEEN ITENATIUNS IS 1 It+*-5
```

 ITERATION SSH
 \(1 \quad 179.1740\)
 ©.) 21.4058
 APHROX．COEFF＝VAKIATION UF CATCH DATA＝3b．\％\％

YFAK	1970	1977	197%	1979	1487	1481	1987	1983	1984					
F（I）	.3481	． 2591	． 2859	． 1487	． 2231	． 2480	． 1839	． 2050	． 1000					
$A G E$	1	\％	3	4	5	6	7	¢	9	1 ก	11	12	13	14
$S(J)$.9749	.2970	1．0009	． 8134	.1328	． 7143	.6952	． 3380	． 4559	.5121	.5157	.3016	． 3904	．4000

L（G CATCH RATIO ：ESIDUALS

$1 / 2$	． 02.4	． 68.9	.257	$-.744$	－． 047	1.333	－． 291	1.216	111）4
213	．040	－． 230	1．30\％	－． 2.24	－．371	－． 1151	－． 1112	－．356	गリ\％
$3 / 4$.097	． 972	.211	． 183	－． 1702	－． 0.075	． 244	－． .797	010
$4 / 5$	$-.375$	． 312	－． 124	． 235	－1140	－．5na	.355	－． 162	ก1\％
$5 / 6$.147	． 533	－． 150	． 339	． 205	－． .324	－ 307	－． 8489	noj
617	－． 0.4%	． $0 \cdot 1$	－． 115	.153	． 327	－． 378	－． 237	－． 1173	.1100
71	－． 406	.301	－． 344	.177	． 244	－． 514	.423	． 109	－． 1705
$\because / 3$	－． 230	.403	－． 503	． 134	－． 14 b	－． 161	． 32 n	－． 0.76	－． 1100
0117	.171	－． 100	－．500	． 461	－． 383	．1ヶ3	． 384	－． 02.8	－． 111%
1r／11	－． 409	－． 500	－． 0.764	－． 3171	－． $3 \dot{4} 2$	． 280	． 222	1.159	－．006
$11 / 17$.392	－．5149	－．חก5	－． 567	－． 157	－ 290	－． 173	i． 257	－．ח07
12／13	． 095	－． 8180	.1311	－． 471	－． 014	－i） 50	－． 4 －${ }^{\text {g }}$	－ 562	．1003
$13 / 14$	－． 03.3	－． 65 ？	．nก9	． 509	． 577	.130	－． 48.6	.161	－\square－
	－．กn？	－． 001	．กワ\％	． 0134	． 7115	－ 10 n	.1704	.5002	.1120

Table 6.1 Fishing Fleets in Faroe Waters Data on the different fleet categories

Category Number		GRT	Horse	Days at	Crew C	Catch	Number	Number Number	
		Power	Sea		1984 (ton)) 1984	1985	1983	1982
Trawlers deeper w.	590	2,245	285	13	13,730	6	6	4	2
$\begin{aligned} & \text { Trawlers } \\ & >1000 \mathrm{HP} \\ & \text { type I } \end{aligned}$	360	1,570	300	13	11,676	5	5	4	4
$\begin{aligned} & \text { Trawlers } \\ & >1000 \mathrm{HP} \\ & \text { type II } \end{aligned}$	310	1,070	260	7	22,727	21	26	20	17
$\begin{aligned} & \text { Trawlers } \\ & 700-999 \mathrm{HP} \end{aligned}$	175	845	260	7	12,276	14	16	13	11
$\begin{aligned} & \text { Trawlers } \\ & 400-699 \mathrm{HP} \end{aligned}$	120	540	225	6	15,666	19	20	19	10
$\begin{aligned} & \text { Trawlers } \\ & <400 \mathrm{HP} \end{aligned}$	50	250	---	3	6,021	6	6	6	4
$\begin{aligned} & \text { Longliners } \\ & >110 \text { GRT } \end{aligned}$	225	540	245	15	19,521	19	20	20	16
Longliners 60-110 GRT	90	315	---	5	5,581	14	14	14	14
$\begin{aligned} & \text { Longliners } \\ & <60 \text { GRT } \end{aligned}$	25	160	-..-	5	17,344	125	125	125	125

Table 6.2 Catch and Catch per unit effort for four Vessel Categories in the Faroese Fishing Fleet. Sub-division Vbl. Main species only.
CATCH AND CPUE * LONGLINE VESSELS
CATCH
YEAR CUD HADDOCK SUM

YEAK	CATCH	CATCHH	SUIC	CPUE	CPUEH	SUMCP
1973	2810	3037	$585 S$	207	110	317
1974	2409	3205	5074	253	194	447
1475	4716	5907	10623	290	278	568
1970	8509	8279	10788	313	534	049
1477	8567	13447	22014	327	349	676
1478	6018	10220	10238	329	327	056
1979	5258	6932	12190	324	234	008
1980	6437	3210	9047	319	230	553
1481	7430	4619	12049	310	194	504
1482	6520	3191	9717	308	164	472
1983	4878	3278	8150	314	146	459
1984	6202	3224	9420	331	142	473

CATCH AND CHUE * I.ONGLINE STEEL SHIPS 1973.1983
CATCH CHUE
YEAR CUD HADDOCK SUM CUD HADDUCK SUK

YEAK	CATCH	CATCHH	su,ic	CPUE	CPUEH	SUITCP
1975	120	39	159	12 is	10	13s
1974	211	154	563	138	53	173
1475	$12 \mathrm{s2}$	816	2098	138	79	217
1970	2120	1409	3529	124	127	2.56
197%	1929	2133	4062	117	157	274
1473	1602	1617	3299	105	161	204
1974	1057	1128	2163	91	147	23.3
19811	1841	1735	2920	$\checkmark 2$	120	210
1981	2713	1146	3919	10	114	191
1482	1603	938	2591	70	113	189
1983	1765	1120	2391	81	135	214

（Table 6．2，continued）

YEAK	CATCH	CATCHH	CATCHU	SURIC	CPUE	CPUEH	CPUEU	SUMCH
1973	155	43	0	198	13	9	1490	1518
1974	557	111	0	668	69	19	157	244
1975	1819	326	0	2205	177	32	43	252
1976	2732	408	0	3140	258	43	26	327
1977	3322	754	456	4332	249	43	28	320
1473	6366	1537	3866	11769	188	49	43	280
1974	4965	1237	7204	13421	129	47	80	250
1980	2318	2299	3780	8403	95	45	145	286
1981	2723	1654	6044	11021	88	46	213	347
1982	3430	1775	4432	9587	121	52	206	379
1983	7909	1272	6017	13858	288	71	106	400

CATCH AND CHUE＊TRAWL＞ITOU AT
YEATCH COD HADDOCK SAITHE SUR：
IYIS＇1Y83
CHUE HADDUCK SAITHE SUM
COU

Yeak	CATCH	Catcher	catciu	sumit	crue	CPUEH	C PuE゙U	SUIAC
1975	$1!$	Γ	$!$	0	15	9	1440	1518
1974	－	0	0	44	oy	19	131	244
1415	701	15	11	8SO	111	32	45	252
1470	$6>0$	218	$1)$	800	c3o	43	20	327
1971	1127	34.1	413	2433	244	48	28	320
1478	135 ？	790	－545	S15\％	100	49	43	280
1974	1947	876	102110	13014	124	47	80	250
1981	2016	172と	10U6s	13819	$y{ }^{2}$	45	145	2.30
1481	2120	1142	10 b 10	15888	ysis	46	213	341
14×2	1929	11022	6）${ }^{1}$	11052	121	52	200	579
1483	4191	74%	$113 / 5$	$1 / 112$	2 צと	71	10：3	400

Table 6.3
USING EFFORT DATA FROM FAROESE LONGLINE VESSELS FOR CALIBRATING A VPA COD VB1. EFFORT DATA CORRECTED FOR SEASONALITY.

Year	Effort Longl	$\begin{array}{r} \text { Age } \\ 1 \end{array}$	2	3	4	5	6	7	8	9	10
		Nos. at age in longline fishery, * 10-3									
1973	14	3	38	251	239	84	58	53	43	30	23
1974	10	0	57	109	196	152	63	48	25	24	1
1975	16	0	12	630	295	213	105	49	28	19	25
1976	27	0	279	893	750	286	434	181	79	38	63
1977	26	0	140	513	1802	883	211	424	150	65	4
1978	18	32	137	313	593	817	280	67	62	20	21
1979	16	14	418	587	432	431	419	102	23	18	4
1980	20	39	822	819	479	324	279	254	69	7	6
1981	24	16	489	1844	608	238	142	162	140	31	8
1982	21	4	368	875	1049	282	126	61	51	69	15
1983	16	60	483	757	317	305	122	56	17	9	11
1984	19	32	1725	859	506	190	166	53	17	8	13

Nos. at age all geaxs, * 10-3
$\begin{array}{llllllllllll}1973 & 213 & 723 & 3124 & 1590 & 707 & 384 & 312 & 227 & 120 & 97\end{array}$
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984

213	723	3124	1590	707	384	312	227	120	97
271	2161	1266	1811	934	563	452	149	141	91
97	2584	5689	2157	2211	813	295	190	118	150
18	1497	4158	3799	1380	1427	617	273	120	186
31	425	3282	6844	3718	788	1160	239	134	9
160	555	1219	2643	3216	1041	268	201	66	56
19	575	1732	1673	1601	1906	493	134	87	38
41	1129	2263	1461	895	807	832	339	42	18
16	646	4137	1981	947	582	487	527	123	55
5	1139	1965	3073	1286	471	314	169	254	122
80	2149	5772	2760	2746	1204	510	157	104	102
37	4437	5279	3476	1467	908	346	113	38	67

CATCH IN NUMBERS BY UNIT EFFORT BY AGE GROUP, LONGLINE, COD VB1

1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1
0.21
0.00
0.00
0.00
0.00
1.78
0.88
1.95
0.67
0.19
3.75
1.68
1.68

2	3
2.71	17.93
5.70	10.90
0.75	39.38
10.33	33.07
5.38	19.73
7.61	17.39
26.13	36.69
41.10	40.95
20.38	76.83
17.52	41.67
30.19	47.31
90.79	45.21

90.79

4
17.07
19.60
18.44
27.78
69.31
32.94
27.00
23.95
25.33
49.95
19.81
26.63
26.63

5	6
6.00	4.14
15.20	6.30
13.31	6.56
10.59	16.07
33.96	8.12
45.39	15.56
26.94	26.19
16.20	13.95
9.92	5.92
13.43	6.00
19.06	7.63
10.00	8.74

(Table 6.3, continued)

PARTIAL FS FROM LONGLINE FISHERY (C(II)/C(tot)*F(tot), COD VB1.

Table 6.4.
USING EFFORT DATA FROM FAROESE LONGLINE VESSELS FOR CALIBRATING A VPA HADDOCK VB. EFFORT DATA CORRECTED FOR SEASONALITY.

Year	Effort Longl.	Ag	2	3	4	5	6	7	8	9	10
		Nos. at age in longline fishery, * 10-3									
1973	28	48	656	1258	218	452	119	238	36	6	6
1974	17	12	581	441	852	90	207	191	174	11	60
1975	21	32	1286	1881	683	406	101	121	73	179	76
1976	25	0	19	1540	2345	492	502	83	375	97	117
1977	38	0	22	1438	2487	2361	1338	418	183	456	553
1978	31	0	9	594	2124	2090	1020	407	342	149	188
1979	24	1	1	877	1190	1902	907	338	65	54	22
1980	14	0	96	39	1528	880	1021	636	219	36	31
1981	24	0	65	337	119	1177	489	553	226	51	14
1982	20	0	326	297	333	98	570	182	186	71	22
1983	22	0	239	523	85	88	20	337	167	244	215
1984	23	18	779	392	896	26	50	22	176	71	213

NOS. AT AGE ALL GEARS, * 10-3

1973	709	3300	8388	1236	2786	916	1051	150	68	11
1974	221	5633	2899	3970	451	976	486	535	68	147
1975	110	7337	7952	2097	1371	247	352	237	419	187
1976	38	4396	7858	6798	1251	1189	298	720	258	318
1977	0	255	4039	5168	4918	2128	946	443	731	855
1978	0	32	1022	4248	4054	1841	717	635	243	312
1979	1	1	1161	1754	3341	1850	772	212	155	74
1980	0	143	58	3724	2383	2496	1568	660	99	86
1981	0	74	455	202	2586	1354	1559	608	177	36
1982	0	539	934	784	298	2182	973	1166	1283	214
1983	0	441	1968	383	422	93	1444	740	947	795
1984	25	1194	1557	2455	147	233	42	858	386	628

CATCH IN NUMBERS BY UNIT EFFORT BY AGE GROUP, LONGLINE. HADDOCK VB.

1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984

1	2	3	4	5	6
1.71	23.43	44.93	7.79	16.14	4.25
0.71	34.18	25.94	50.12	5.29	12.18
1.52	61.24	89.57	32.52	19.33	4.81
0.00	0.76	61.60	93.80	19.68	20.08
0.00	0.58	37.84	65.45	62.13	35.21
0.00	0.29	19.16	68.52	67.42	32.90
0.04	0.04	36.54	49.58	79.25	37.79
0.00	6.86	2.79	109.14	62.86	72.93
0.00	2.71	14.04	4.96	49.04	20.38
0.00	16.30	14.85	16.65	4.90	28.50
0.00	10.86	23.77	3.86	4.00	0.91
0.78	33.87	17.04	38.96	1.13	2.17

(Table 6.4, continued).

PARTIAL FS FROM LONGLINE FISHERY (C(Il)/C(tot)*F(tot). HADDOCK VB.

1973	0.01	0.17	0.46	0.25	0.33	0.29	0.29	0.38	0.40	0.40	
1974	0.00	0.13	0.22	0.41	0.14	0.18	0.23	0.24	0.30	0.30	0.34
1975	0.00	0.13	0.28	0.25	0.24	0.11	0.09	0.18	0.30	0.30	0.19
1976	0.00	0.09	0.19	0.41	0.23	0.34	0.19	0.28	0.30	0.30	0.27
1977	0.00	0.01	0.11	0.19	0.59	0.75	0.50	0.40	0.50	0.50	0.42
1978	0.00	0.00	0.06	0.17	0.22	0.46	0.62	0.74	0.40	0.40	0.38
1979	0.00	0.00	0.05	0.14	0.19	0.15	0.35	0.37	0.40	0.40	0.21
1980	0.00	0.04	0.05	0.22	0.32	0.22	0.18	0.58	0.30	0.40	0.26
1981	0.00	0.03	0.14	0.24	0.23	0.26	0.20	0.10	0.30	0.30	0.20
1982	0.30	0.04	0.58	0.38	0.65	0.31	0.30	0.23	0.30	0.30	0.41
1983	0.30	0.03	0.15	0.50	0.37	0.44	0.35	0.39	0.30	0.30	0.37
1984	0.00	0.04	0.12	0.29	0.36	0.36	0.36	0.36	0.36	0.36	0.31

-68-

Table 7.1 Nominal catch (tonnes) of SAITHE in Division Vb, 1974-1984 (Data for 1974-83 from Bulletin Statistique).

Country	1975	1976	1977	1978	1979
Belgium	-	6		-	
Faroe Islands	2,517	2,560	5,153	15,892	22,003
France	23,980	15,367	17,038	8,128	2,974
German Dem. Rep.	26	-	17,038	,	2,971
Germany Fed. Rep.	5,229	2,605	3,806	1,088	58
Netherlands	491	232	58	-	-
Norway	486	2,232	1,279	1,124	1,137
Poland	815	1,007	-	-	,
Spain	654	117	-	--	-
U.K. (England \& Wales)	2,428	3,063	2,613	557	190
U.K. (Scotland)	4,950	5,860	5,608	1,349	361
USSR	.-	16	-	-	-
Total	41,576	33,065	34,835	28,138	27,246

Country	1980	1981	1982	1983	1984*
Belgium	-	-	-	-	-
Faroe Islands	23,810	29,682	30,808	38,963	54,344
France	1,110	258	130	180	,
German Dem. Rep.	--	-	-	-	-
Germany Fed. Rep.	197	20	19	28	73
Netherlands	-	-	-	-	-
Norway	62.	134	15	7	-
Poland	-	-	-	-	-
Spain	-	-	-	-	_
U.K. (England \& Wales)	13	-	-	-	-
J.K. (Scotland)	38	9	1	+	-
USSR	-	-	-	-	-
Total	25,230	30,103	30,973	39,178	54,41

[^5]Faroe SAITHE

Catch in numbers

Unit: thousands

	1975	1976	1977	1978	1979	1980	1981	1982	1983	1484
1	0	1	0	0	0	0	0	0	0	0
$?$	189	14\%	124	20	1	42.4	0	22.1	0	\%
3	20.52	3178	1009	011	2:7	946	411	387	2.484	307
4	3361	3217	2.937	1743	433	877	18184	4076	1104	11001
5	3801	1720	2054	1730	1341	720	704	494	5057	2346
6	1939	1250	1288	448	1033	673	932	1114	1345	4072
7 8 8	1045 714 3	877 641	707 708	373 479	534 414 247	726 284	903 734	380 417	516. 339	870 271
7	302	408	498	460	247	212	343	290	213	161
10	142	27.3	533	473	413	171	142	105	48	52
11	143	141	272	40%	Sor	190	92	¢ 8	98	65
12	126	96	129	-11	206	156	128	56	49	59
13	64	60	31)	140	156	201	170	49	25	1 ヶ
14	41	54	5%	95	98	133	310	110	127	25
1 b+	07	77	04	83	251	230	407	$\bigcirc 87$	290	150
TOTAL	14096	12151	110405	7391	6372	6005	7200	8980	11915	19457

	1975	1970	1977	1478	1979	1980	1981	1982	1983	1984
1	.000	. 200	.000	.1100	.000	.000	. 000	.900	. 000	.000
2	.749	. 653	.817	. 448	.007	. 000	.450	.850	-000	. 000
3	1.114	1.080	1.223	1.493	1.220	1.230	1.310	1. .337	1.208	1.431
4	1.658	1.676	1. 641	2.324	1.883	2.210	2.130	1.851	2.029	1.953
5	2.200	2.876	2.000	3.1;00	2.020	3.320	3.1010	2.951	2.905	2.470
6	3.120	3.081	3.740	3.746	3.407	4.230	3.810	3.577	4.143	3.850
7	3.557	4.287	4.239	4.415	4.100	5.100	4.750	4.927	4.724	5.177
\because	4. 1146	4.352	5.547	4.563	4.450	6.420	5.250	6.243	5.901	6.347
9	5.128	4.790	b. 550	5.270	5.090	6.870	5.450	7.232	0.811	7.025
111	6.044	5.912	5.912	5.832	6.330	$7.0 บ ก$	6.430	7.239	7.151	6.746
11	7.176	6.619	0.837	0.1353	7.020	7.930	7.1000	8.340	7.248	8.036
$1 ?$	7.73?	6.619	6.727	0.700	7.620	8.070	7.470	8.345	¢. 292	8.467
13	8.0172	7.311	0.940	7.080	8.150	४. 590	8.140	8.950	9.478	8.356
14	8.8!	7.806	3.424	7.214	8.640	9.790	8.550	9.584	10.393	11.127
$15+$	10.1701	17.0017	10.11010	11.600	10.000	10.340	10.100	10.330	10.34%	10.148

Virtual Population Analysis

Faroe SAITHE
Fishing Mortality Coefficient Unit: Year-1 Natural Mortality Coefficient $=.20$

	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1980-82
1	. 01	. 017	.90	000	.0n	-00	. 00	. 00	. 00	- 00	. 00
2	.01	.01	. 01	- 0	. 01	. 01	. 00	- 00	. 00	- 70	. 00
3	. 14	. 210	. 15	. 03	. 04	. 130	. 01	. 03	. 07	. 03	- 04
4	. 35	. 34	. 24	.23	. 17	. 15	. 20	. 15	. 17	. 45	. 17
5	- 30	.30	. 38	- 28	. 28	- 20	. 211	-10	. 29	- 31	-19
6	.23	. 31	. 39	.17	. 26	. 23	. 42	. 48	. 35	. 40	- 37
7	. 10	. 15	. 31	. 10	. 27	. 30	. 54	- 37	. 49	-40	. 30
8	.17	. 14	. 18	. 33	. 3 ?	. 20	. 50	. 51	. 49	. 45	. 42
9	. 11	- 179	.10	.17	.28	- 29	. 401	. 47	.74	. 45	. 38
17	-1?	.10	- 08	. 22	. 26	. 32	. 41	- 21	- 28	-30	- 31
11	.19	. 12	. 16	. 14	. 26	.10	. 26	. 33	.37	-30	. 20
12	.27	. 14	. 16	.20	. 09	. 17	-15	. 28	. 77	. 30	- 20
1.5	. 22	. 20	.10	. 2.7	. 20	. 10	. 29	- 0	. 19	-30	-18
14	. 30	. 30	. 30	. 30	.37	. $3 n$. 30	. 30	. 30	. 30	. 30
$15+$. 30	. 30	.30	.30	.30	.30	. 30	. 30	.30	.30	.30
i3) U	. 27	. 25	. 31	. 24	.26	.22	. 33	. 32	. 34	. 40	

Table 7.5 Virtual Population Analysis
Faroe SAITHE

Stock size in numbers

Biomass Totals

Unit：thousands
Unit：tonnes
All values are given for 1 January

	1975	1976	1977	1978	1979	1980	1931	1982	1983	1984	1985	$1975-81$
1	19313	12880	12809	21301	20゙っ13	2490 亿	04901	20429	0	0	0	30733
2	2.5651	16725	11545	10336	1744%	47960	20442	53186	16726	0	0	20940
3	17043	19170	12987	くら21	$\bigcirc 008$	14277	35003	16737	43545	13094	0	1\％071
4	12517	12095	12359	9183	0425	6789	10791	31464	13354	33247	10380	10100
5	10524	7279	7113	\％¢ 71	5450	4420	4700	7211	22038	9937	17356	o832
6	10500	5211	4413	3410	48334	3606	2971	3211	5008	13538	0027	5080
7	7674	6852	3143	2457	2713	3009	2395	1595	1031	2892	7430	4043
；	\＄3434	5342	4820	12084	1676	1640	1300	114	405	819	1587	3673
9	5306	6261	3790	3300	1112	1000	1133	800	507	$4 \bigcirc 7$	428	2054
17	1829	2434	4704	2054	2239	684	028	020	444	220	254	2183
11	1200	1324	1852	5340	1751	1445	410	342	413	275	134	1645
12	519	814	457	1255	2． 557	1103	11109	253	201	250	167	1179
13	350	361	300	061	653	1841	702	711	1 勺7	76	752	778
14	174	229	241	402	415	503	1313	466	538	106	40	477
$13+$	234	320	271	352	1903	1000	1／24	2910	1228	035	450	717
TOTAL NO	117744	96659	81010	77200	116278	114534	154052	141150	100064	70176		
St＇s NO	44919	36462	51771	26314	25227	20545	15974	19534	33239	29236		
TCT．RIOA	？24892	207733	1971 п2	172301	14301ח	153839	185925	2511234	21.0789	199810		
StS BIOM	167353	156133	151535	135518	123428	121324	102803	104410	131334	115283		

Table 7.6 List of Input Variables for Equiliblrium Yield Calculation
Faroe SAITHE
The reference F is the mean F for the age group range from 4 to 8

Data are printed in the following units:

| Number of fish: | thousands |
| :--- | :--- | :--- |
| weight by age group in the catch: kilogram mean values for years $1942-1984$ | |
| Weight hy age group in the stnck: kilogram mean values for years $1982-1484$ | |
| stock biomass: | tomes |
| catch weight: | tonnes |

age	fishina* pattern:	natural: mortality:	maturity: ogive:	weight in: the catcn:	weight in: the stock:
11	.0n:	. 201	.00:	.000:	. $000:$
- 21	. 001	. 2101	.no:	. 6501	. 8501
$3:$. 031	. 271	.no:	1.323:	$1.323:$
41	. 171	. 2171	. 001	1.9441	1.944 !
$5:$.191	. 201	1.00:	2.7931	2.7951
61	. 371	. 201	1.no:	3.357	3.057
71	. 331	. 20	1.noi	4.9431	4.9431
81	.421	-201	1.001	0.1641	6.1041
91	. 531	. 201	1.00i	7.2391	7.289:
- 171	. 311	. 201	1.001	7.0121	7.0121
111	. 261	. 201	$1.70:$	8.077	8.0771
-121	. 271	. 201	1.nut	$8.360:$	8.3001
- 131	.18i	. 201	1.nu:	8.4971	3.997:
-14i	. 511	. 201	1.001	10.3331	10.5351
$1\rangle+$. $3 \Pi 1$. 201	1.001	$10.413:$	10.473:

*Average exploitation pattern

List of Input Variables for the ICES Prediction Program
Faroe SAITHE
The reference F is the mean F for the age group range from 4 to 8
The number of recruits is as follows:

Year	Recruitment
1985	37000.0
1986	$370 n 0.0$
1987	37000.0

Data are printed in the following units:

Number of fisti: thousands
weight by age group in the catch: kilogram weight by age group in the stock: kilogram stock biomass: tonnes
catch weic̣ht:

stock size		fishing: pattern:	maturity: ogive:		ght in: catch:	ight in stock
1 1i	37000.01	. 001	. 201	. 001	. 000 :	000
2:	30293.01	. 001	. 201	. 001	. 8b0:	. 8501
1 3i	24302.0:	. 031	.201	. 001	1.325:	1.325:
1 4 !	10830.01	. 211	. 201	. 001	1.944;	1.944
1 5i	17350.0:	. 361	. 20 ;	1.001	2.7951	2.795 :
1 61	6U27.0:	. 451	. 201	1.001	3.8571	3.857
- 71	7430.01	. 461	. $20:$	$1.00:$	4.9431	4.943 :
) 8:	1587.01	. 51 '	.201	1.00	6.104	0.1641
- 91	423.01	. 461	. 201	1.001	7.2891	7.284 :
- 10 :	254.01	. 381	.201	1.001	7.0121	7.0121
1 111	134.01	. 321	. 201	1.001	8.0771	8.0771
- 12i	167.01	. 24 !	.201	1.001	8.3081	8.3681
; 13i	152.17:	. 22 :	. 201	1.00 :	8.9971	8.9971
- 14i	40.01	. 361	. 201	1.001	10.5351	10.5351
- $15+$ i	450.01	. 361	. 20 :	1.001	10.4731	10.473 :

Table 7.8 Effects of different levels of fishing mortality on catch, stock biomass and spawning stock biomass

Faroe SAITHE

		Year 1985					Year 1980		1	Year	1987
$\begin{gathered} \text { fac- } \\ \text { tor } \end{gathered}$	r_{F}	stock:	sp.stock hiomass	catch:	fac- tor:	ref.: Fi	stock: bionass:	sp.stock: biomass:	catch:	stock: biomass:	sp.stock: biomass:
1.01	.40:	212!	1321	451	. 01	. 001	204:	112:	0 :	2ち71	1ヶ9:
'	;	!	i	i	.11	- 04 i	;	i	3 ;	251i	153:
;	;	!	,	!	-21	. 0 ¢:	:	;	$10:$	245 :	147 :
;	;	:	;	;	. 41	. 101	!	:	$20:$	2341	137:
1	;	1	;	1	.61	.241	1	;	281	224:	127:
1	;	!	1	;	. 81	. 32 i	!	i	301	215 i	118:
1	!	;	!	;	1.01	. 401	!	;	44:	207:	$110:$
;	;	1	!	;	1.21	. 48 i	1	;	511	199:	102:
!	1	!	;	!	1.41	.501	:	;	571	1921	951
;	;	;	;	;	1.61	. $64 i$	1	'	63 :	185 :	891
!	1	I	1	;	1.81	. 72 !	1	,	60:	1791	831
;	;	;	;	;	2.10	. 801	!	;	73:	1731	77:

The data unit of the biomass and tne catcn is 1000 tonnes.
The spawning stock hiomass is given for 1 january.
The reference F is the mean F for the age group range from 4 to 8

Table 8.1 Faroe Plateau COD. Nominal catches by countries 1974-1984 (tonnes) (Data for 1974-1983 from Bulletin Statistique).

	Faroe		Germany			UK	UK		
Year	Islands	France	Fed. Rep.	Norway	Poland	England	Scotland	Others	Total
1974	12,541	$567{ }^{\text {A }}$	292	446	320	2,879	7,516	20	24,5,
1975	22,608	1,531	408	1,353	432	2,538	7,815	90	36,775
1976	28,502	1,535	247	1,282	496	2,179	5,491	67	39,799
1977	28,177	1,450	332	864	-	811	3,291	2	34,927
1978	24,076	$213^{\text {A }}$	$71^{\text {c }}$	245	-	518	1,460	2	26,585
1979	21,774	$117^{\text {A }}$	$23{ }^{\text {c }}$	274	-	263	661	-	23,112
1980	19,966	40^{4}	-	127	-	13	367	-	20,513
1981	22,616	47	_ ${ }^{\text {c }}$	240	-	-	60	-	22,963
1982	21,387	10	-	90	-	-	2	-	21,489
1983	37,916	13	128	83^{8}	-	-	d	-	38,140
$1984{ }^{\text {8 }}$	37,265	-	8	$43^{\text {A }}$	-	$2^{\text {A }}$	${ }^{\text {c }}$		37,318

A Division Vb2 included

- Preliminary
c Working Group Data
d Included in Division Vb2

Table 8.2 Faroe Bank COD. Nominal catches by countries, 1974-84 (tonnes).
(Data for 1974-1983 from Bulletin Statistique)

* Catches included in Vb_{1}
** Preliminary
*** Catches including Vb_{1}

Table 8．3 Virtual Population Analysis
COD in the Faroe Plateau
Catch in numbers Unit：thousands

	1975	1970	1977	147\％	1979	1980	1431	19：2	19 y 3	1984
1	47	1 i	31	100	19	41	10	3	ט？	37
$?$	2564	1497	42゙5	לsi	575	11．4	640	1139	2149	4437
3	30.59	4150	36iz	1×19	1152	2？ 3	4151	1965	517 ？	3282
4	2157	3794	61344	2043	10／3	1461	19.51	3075	2700	5517
5	く211	13811	318	3：10	1001	उ45	44%	1280	2146	1474
6	313	1427	78	1 1く， 1	1906	8.197	54.2	471	12114	92%
$!$	295	01%	1106	Bic	493	332	40%	314	310	517
\because	$1 \pm \%$	273	239	$\therefore \mathrm{Cl}$	134	330	527	169	157	83
9	11 \％	120	134	万i	67	42	123	254	1114	34
11）＋	130	186	9	50	38	1 s	b	122	13 ？	Sc
101	143014	13473	10031	9423	0238	732！	9319	\％＇93	15504	10137

Table 8.4 Virtual Population Analysis
$C O D$ in the Faore Plateau
Mean weight at age of the stock Unit: kilogrammes

	1975	1970	1476	157\%	1479	1900	1981	1982	1983	1984
1	. 300	. $3: 30$. 330	. 394	. 493	.4311	. 750	. 715	.097	.743
2	1.007	1.060	1.1]60	1.112	.097	. 927	1.1.10	1.280	1.358	1.195
3	1.897	1.890	1.840	1.345	1.683	1.432	1.470	1.413	1.4.	1. 898
4	2.927	2.920	2.420	2.14,	L. 211	2. 221]	2.180	2.130	2.4113	2.480
5	4.977	4.0711	4.070	3.12 .5	3.05 ?	3.105	3.210	3.107	3.107	3.079
0	$5.5 i 3 n$	5.300	5. 5 (11:	4.305	5.042	3.534	3.7100	4.1112	4.110	4.470
$?$	6.5 is7	6. 580	0.58 ll	5.977	4.719	4.392.	4.240	5.442	5.1920	5.432
is	7 - is	7.8511	7. おう	0.345	7.212	0.100	4.430	5.503	5.001	6.466
4	4. 01517	9.0 .9	9.173n	י. 115	3.564	7.603	0.690	5.210	8.1313	6.028
$10+$	10.270	17.270	11. 27 !!	12.294	13.042.	9.008	10.700	6.707	6.051	10.981

Table 8.5 Virtual Population Analysis
COD in the Faroe Plateau
Fishing Mortality Coefficient Unit: Year-1 Natural Mortality Coefficient =. 20

	1975	1976	1477	147	1977	1980	1981	1982	1983	1984
1	. 07	. 00	.0n	- 7	.0n	-10	-100	- 71	. 17	. 002
?	. 08	.n9	ל)	.ne	.75	. 06	-	. 3	. 09	. 27
3	. 31	. 17	. 31	.19	. 27	. 25	. 32	. 21	.41	. 35
4	. 43	. 35	. 43	. 42	. 44	. 35	.37	. 41	- 52	. 48
5	. 40	. 54	. 70	. 44	. 48	. 44	- 40	. 43	. 30	. 50
6	. 43	. 50	. 64	. 43	- 51	. 48	- 58	. 44	. 44	. 710
7	. 31	. 08	1.in	. 52	. 57	.43	. 01	.73	1.2 .0	. 70
:	. 56	. 53	. 63	. 40	. 54	. 47	. 54	. 45	1.06	.70
7	. 47	. 40	. 54	-35	. 57	. 52	. 51	. 55	. 35	. 70
$111+$. 47	. 411	. 34	. 35	. 37	- 3 ?	. 31	. 55	. 55	.70
(3-6)!	. 37	. 40	. 63	. 41	. 4.3	. 41	. 40	. 44	. 3	. 53

Table 8．6 Virtual Population Analysis
COD in the Faroe PIateau

Stock size in numbers
Biomass Totals

Unit：thousands
Unit：tonnes
All values are given for 1 January

	1975	19.70	1977	1973	1979	198ก	1481	$14: 32$	1433	1934	19らう
1	22922	12034	12．811\％	1 1390	20524	17765	2430%	32167	32×05	211431	0
2	31723	13674	90.30	11145	1465%	21054	14224	241140	20351	$20 y 17$	10094
5	23355	28554	13943	fo6y	¢．00\％	11154	$10 \% 40$	11378	180 ¢？	19620	180143
4	03157	140 ก1y	19035	0400	31d？	bnc． 3	71190	9993	74×7	$10 \mathrm{n98}$	11520
b	7247	303%	N为 3	$79^{9} 40$	4560	$274{ }^{\circ}$	2317	4195	5425	3660	5116
0	2540	3997	1745	3276	223\％	2．299	14242	1450	2147	1403	1075
7	1212	135\％	11336	123	1750	2．5けら	115\％	060	771	6．7．7	310
3	$0 \% 0$	72%	56 C	おり7	Sb？	940：	13\％	315	200	180	279
1）	347	309	351	245	50？	10%	507	050	269	74	73
$11]+$	449	618	24	\cdots	155	7%	226	31.	204	7%	6%
TOTAL in	1754 ？	8.4770	ט1：943	$54: 75$	50384	44.540	152：34	85149	94581	83139	
SPS i：0	19451	24741	3035	2．345\％	17541	13910	14020	17027	10.025	10770	
TOT．リIU．＂	17：1143	17981：	101927	105433	99791	9.9904	103500	121433	147053	143134	
Stsmat	？ 3294	171479	1＊7275	762511	59056	47755	$4 t, 52 \%$	51726	53276	5×745	

Table 8.7 List of input variables for the ICES prediction program
COD, Faroe Plateau (VB_{1})
The reference F is the mean F for the age group range from 3 to 8
The number of recruits per year is as follows :

Year	Recruitment
-1985	22722.0
1986	22722.0
1987	22722.0
1988	22722.0
1989	22722.0
1990	22722.7

Data are printed in the following units:

Number of fish:	thousands
weight by age group in the catch: kilogram mean values for years $1981-1484$	
weight hy age group in the stock: kilngram mean values for years $1981-1484$	
Stock biomass:	tonnes
Catch weight:	tonnes

Table 8.8 Effects of different levels of fishing mortality on catch, stock biomass and spawning stock biomass

COD, Faroe Plateau (VB_{1}), Prediction


```
-84-
```

Table 9. 1 Faroe Plateau HADDOCK. Nominal catches by countries, 1974-84 (tonnes).
(Data for 1974-1983 from Bulletin Statistique)

Year	Faroe		Germany			UK UK		Others	Total
	Islands	France	Fed.Rep.	Norway	Poland	England	Scotland		
1974	4,538	1,461*	70	5	685	1,044	5,572	30	13,405
1975	8,625	2,173	120	56	544	1,505	4,896	383	18,302
1976	12,670	2,472	22	20	448	1,551	6,671	181	24,035
1977	19,806	623	49	46	5	707	3,278	26	24,540
1978	15,539	71*	8	91	-	48	367	-	16,124
1979	11,259	50*	2	39	-	35	212	-	11,597
1980	13,633	31*	4	9	-	6	434	6	14,123
1981	10,891	113	+	20	-	-	85	-	11,109
1982	10,319	2	1	12	-	-	1	-	10,335
1983	11,898	2	+	12**	-	-	.***	-	11,912
1984**	11,541		+*	15*		-	...***	-	11,556

* Catches including Vb_{2}
** Preliminary
*** Catches included in Vb_{2}

Table 9.2 Faroe Bank HADDOCK. Nominal catches by countries, 1974-84 (tonnes).
(Data for 1974-1983 from Bulletin Statistique)

Year	Faroe		Germany			UK	UK		
	Islands	France	Fed.Rep.	Norway	Poland	England	Scotland	Others	Total
1974	273	*	-	-	-	573	500	22	1,368
1975	132	125	53	-	-	921	1,182	-	2,413
1976	44	70	+	-	-	733	1,329	-	2,176
1977	273	77	-	11	-	4	650	-	1,015
1978	2,643	*	-	39	-	-	394	-	3,076
1979	716	*	-	-	-	-	105	-	821
1980	690	*	-	8	-	152	43	-	893
1981	1,103		-	7	-	-	14	-	1,124
1982	1,553	-	-	1	-	-	48	-	1,602
1983	967	-	-	2**		-	13***		982
1984**	802		*	*		-	42***		844

* Catches included in Vb_{1}
** Preliminary
*** Catches including Vb_{1}

Table 9.3 Virtual Population analysis
HADDOCK in the Faroe Region
Catch in numbers Unit: thousands

	1715	1970	1977	1976	1979	1960	1981	1982	1083	1984
1	117	$3: 3$	0	0	1	0	0	0	\bigcirc	25
2	7357	4390	255	32	1	143	74	539	441	1198
3	193?	7858	4039	1072	1161	58	455	934	1969	156\%
4	21197	6798	5100	4240	1734	3724	202	784	503	2463
5	1371	1251	4918	4054	3341	2583	25 B6	298	422	147
ó	247	1184	2128	1841	1650	2440	1324	2182	93	234
7	352	293	946	711	772	1568	1559	973	1444	42
3	257	72.1	445	035	212	600	0170	1100	140	062
9	419	258	731	243	155	99	177	12.83	947	389
$10+$	$1 ธ 7$	318	¢	312	14	とо	50	214	795	970
TOTAL	210309	2312.4	19483	13104	4321	11417	7010	8375	7234	7890

Table 9.4 Virtual Population analysis

HADDOCK in the Faroe Region

Mean weight at age of the stock
Unit: kilogrammes

	1975	1976	1977	1973	1979	1980	1981	19×2	1983	1984
1	. 3 an	.300	. 01017	-1)90	-10n	ก10)				
2	.470	.470	. 311	. .357	. 357	. 643	- 4 -	- 1100	- 1000	. 559
3	.730	.730	. 035	. 79	. 072	.643 .713	.452 .725	- 770	- 100	-031
4	1.137	1.130	1.1)44	1.035	. 844	.913 .941	. 427	. 8.890	.846	1.011
5	1. 1.0 ח	1.550	1.420	1.398	1.156	1.941	.95\%	1.157	1.150	1.255
6	1.970	1.970	1.852	1.870	1. 1.5 ¢	1.493	.25\%	1.444 1.498	1.444	1.812
7	2.41 n	2.410	2.241	2.350	2.470	1.759	2.053	1.498	1.448	?. 1061
R	2.767	2.760	2. 2005	2.597	2.575	2. 0.05	2.406	1.028	$1.8<9$	2.059
9	3.010	3.070	2.570	S.1114	2.090	2.405	2.725	1.961	1.9807	2. 137 2.368
$111+$	3.530	3.550	2.591	2.970	5.519	3.371	3.250	2. 3.356	2.856	2. 2.686

Table 9.5 Virtual Population Analysis

HADDOCK in the Faroe Region

Fishing Mortality Coefficient Unit: Year-l

	1975	1976	1977	1973	1979	1980	1931	1982	1983	1984
1	. 07	. 010	. 00	.00	. 07	. 00	. 00	.00	. 00	-0n
2	. 13	. 179	. 01	.00	. 00	. 03	. 03	- 03	. 03	-0\%
3	. 28	. 19	.11	. 06	. 05	.05	. 14	- 5	. 15	- 12
4 5	. 224	.41 .24	19 .59	-17	. 14	- 22	. 24	. 38	. 50	- 29
0	. 11	. 34	. 80	. 40	-19	- 32	. 23	. 65	. 37	. 36
7	. 79	. 19	. 50	.70	-35	- 28	- 20	- 31	. 44	. 36
3	.18	. 20	. 40	. 74	. 46	-18	- 20	- 30	. 35	. 36
9	.30	. 3 n	. 50	. 50	. 40	. 40	. 30	.23 .30	. 39 .30	-36
11^{+}	. 3 n	.30	. 50	. 510	. 40	. 40	. 311	. 30	- 30	. .36
3-3) ${ }^{3}$.19	. 2.7	. 44	. 39	. 22	-26	. 19	41		
3-8) w	. 25	. 20	. 25	. 19	. 13	. 2.3	. 20	. 33	. 25	. 31

Table 9.6 Virtual Population Analysis
HADDOCK in the Faroe Region

Stock size in numbers
Biomass Totals

Unit：thousands

Unit：tonnes

	1915	1970	1977	1978	1979	1980	1481	1982	1983	1ソ84	1985
1	67531	29765	41188	2018	5844	35\％	23534	23256	41146	21597	0
2	－3718	55232	2455	32914	1044	4784	242.5	19260	191340	33088	22572
3	$3>357$	4964%	41255	19094	20911	1345	3788	232\％	15289	15191	20500
4	1127%	22.201	53572	50135	15202	20925	11149	2091	1070	10743	11031
5	$705 ?$	6527	12012	32832	201346	11063	15329	077	1）${ }^{\text {a }}$	533	6582
5	20.67	454 J	4219	3492	15：145	14n）	0374	3995	ट उ	む49	305
7	43：36	1923	2.649	155%	2334%	10650	ycio4	4164	54074	$15 ?$	485
is	1596	32.74	1510	1322	054	1637	1308	0181	2535	3127	87
9	1775	1095	211.33	670	515	329	750	5435	41111	1411	1786
$11+$	74\％	1347	2375	ら大O	246	フ．dっ	$1>2{ }^{2}$	9190	3307	3519	2.010
a）	2ワ1）	175561	104022	1174：7	04733	64513	691%	73472．	93651	90810	
No	64.302	9756	99490	3abフ	02.244	－ก1 0	42713	31378	33404	3 勺らこむ	
$10 \cdot 1$	12．9772	137107	113986	112.35	90028	＊1ロ」1	72111	55047	0.3005	84195	
$0 \cdot 1$	77130	102．14	1064 1 \％	10059\％	39441	77974	70：4）	52759	49077	51346	

Table 9.7 List of input variables for the ICES prediction program
HADDOCK, Faroe Region (Vb)
The reference F is the mean F for the age group range from 3 to 8
The number of recruits per year is as follows :

Year	Recruitment
1983	37159.0
1980	37159.0
1937	37159.0
1980	31159.0
19844	37159.0
1990	31159.0

Deta are printed in the following units:

Wumber of fish:	thousands.
Weight hy age yroup in the catco: kilogram mean values for years $1981-1984$	
weight hy age group in the stock: kilogram mean values for years $1981-19 \times 4$	
stock biomass:	tonnes
catch weight:	tonnes

age ${ }^{\text {a }}$	ck sizei	fishing: pattern:	natural: rtality:	rity; give:	ht in: catch:	ght ini stock:
1:	37159.91	.001	. 201	. 001	.3201	. 3201
21	30423.0:	. 04 i	.20:	. 0 \%:	. 5761	. $576 i$
$3 i$	26500.n!	. 121	. 20:	1.001	.8431	. 8431
41	11731.71	. 291	. 201	1. ワก:	1.093:	1.093:
$5:$	6532.0:	. 361	. 211	1.00:	$1.423!$	1.455
$6:$	305.7%	. 361	.201	1.010:	1.7171	1.717:
71	485.11:	. 361	. 2171	1.0ワ1	1.943:	1.998:
$8:$	87.71	. 361	- $213 i$	1.00:	2. 1721	2.172:
91	1780.01:	. 301	. 2111	1.0ni	2.348:	2.398:
$10+i$	2.810 .71	. 361	.20i	1.00:	2.938:	2.95 $\mathrm{s}:$

Table 9.8 Effects of different levels of fishing mortality on catch, stock biomass and spawning stock biomass

HADDOCK, Faroe Region (Vb)

The data unit of the hiomass and the catch is inro tonnes.
The spawning stock hinmass is given for 1 January.
The reference F is the mean F for tne age group range from $\ddot{\text { fo }}$ to

Figure 2.1

FISH STOCK SUMMARY

STOCR: Saithe - Arctic

05-05-1985

FISH STOCK SUMMARY

STOCK: Saithe - Arctic

05-05-1985

Long term yield and spawning stock biomass

$$
\text { Average Fishing Mortality ages } 3 \text { to } 8, \cup
$$

Short-term yield and spawning stock biomass
__ Yield ...- SSB

Trends in yield and fishing mortality (F)

Trends in spawning stock biomass (SSB) and recruitment (R)

contd.

FISH STOCK SUMMARY

STOCK: Saithe - North Sea

05-05-1985


```
Figure 5.1 Separable VPA - Trends of annual
    F for a range of terminal F.
```


Fiqure 5.2 West of Scotland SAITHE. Trends of international fishing effort f and effective срие.

Figure 5.3 Catches versus fishing effort

FISH STOCK SUMMARY

Trends in yield and fishing mortality (F)

A

Trends in spawning stock biomass (SSB) and recruitment (R)

Figure 6. 3 Calibrating the UPA for HADDOCK Sub-division Vb, with longline effort data Partial Fs vs corrected effort data HADDOCK Sub-div.Vb, 1973-84

Average partiel fishing mortality age 3-8

Trends in yield and fishing mortality (F)
—— Yield .-=- F

A

Trends in spawning stock biomass (SSB)
and recruitment (R)

Figure 7.1 Contd.

FISH STOCK SUMMARY

STOCE: Saithe-Faree

05-05-1985

Long term yield and spawning stock biomass
_ Yield $:=\infty$ SSB
$F_{0.1}$
$F_{\text {MaX }}$

C

Short-term yield and spawning stock biomass

$$
\text { Yiold } \quad===\text { SSB }
$$

STOCK: Cod - Faroe PI.

05-05-1985

Trends in yield and fishing mortality (F)

Trends in spawning stock biomass (SSB)
and recruitment (R)

FISH STOCK SUMMARY

STOCK: Cod - Faroe P1.

05-05-1985

Long term yield and spawning stock biomass

Average Fishing Mortality ages 3 to $8, U$

Short-term yield and spawning stock biomass
_Yisld $\cdot==$ = SSB

FISH STOCK SUMMARY

STOCK: Heddock - Faroe Pl.
05-05-1985

A

Trends in spawning stock biomass (SSB)

APPENDIX

REVIEW OF FLEETS FISHING FOR SAITHE IN THE NORTHEAST ATLANTIC

In most countries demersal fisheries are aimed at mixed groundfish species and, depending on the seasons or grounds fished, the different components of each national fleet may have quite different fishing patterns.

In this review, an attempt is made to describe in broad terms the characteristics and behaviour of those fleets which, regularly or occasionally, direct their effort towards saithe in the North East Atlantic.

This information is intended to provide a concrete basis for discussions when effort data are used in assessments, and for estimating the likely trends in effort in predictions.
** ENGLAND and WALES:

In the years preceding the extension of national fisheries jurisdiction, annual landings of saithe in England and Wales were generally in the range $30000-40000$ tonnes. The greater part of the catch was taken by vessels fishing in distant-water areas (IIa, $V a, V b)$ with a lesser quantity coming from middle-water grounds (IVa, VIa). There was very little directed fishing for saithe, and saithe were generally taken as part of a multispecies trawl fishery with cod and haddock as the principal objectives.

The extension of national jurisdiction had the effect of reducing access to many of the distant-water fishing grounds and landings from these areas fell from 26000 tonnes in 1973 to less than 1,000 tonnes by 1980. To a limited extent up to 1978 the reduction in distant-water landings was offset by increasing landings from middle waters. However, since 1978 there has been a decline in the middle-water fleet resulting in a progressive decline in saithe
landings. By 1984 total saithe landings were 2700 tonnes of which 300 tonnes came from distant-water grounds.

During the last decade the vessels typically working grounds at Faroe, West of Scotland and northern Noxth Sea have been sidetrawlers of about 40 m in length and about 350 tons GRT. The vessels working the distant-water grounds were the larger side- of freezer stern-trawlers of up to 70 m in length and 1500 tons GRT.

** FAROES:

The Faroes fishery on demersal stocks at Faroes has increased from 21% of the total demersal landings in 1974 to 93% in 1984, with cod, saithe and haddock being the main species caught. In recent years however, redfish and blue ling have been of increased importance. All demersal fish caught at Faroes by local vessels are landed fresh. In 1984, 98.5% were landed at Faroes while the rest, mainly redfish, were landed in Federal Republic of Germany and United Kingdom.

The Faroese fleet fishing at Faroes is normally grouped into categories according to the engine power and gears used:

- Deep-waters trawlers: Vessels in this category (590 GRT, 2200 HP) have entered the fleet in the last $2-4$ years. They were two in 1982, 6 in 1984-85. They fish mainly for saithe, redfish and blue ling in deep waters with an annual effort of about 285 days at sea. They landed about 14,000 tonnes in 1984.
- Trawlers > 1000 HP, type I: These vessels (360 GRT, 1,600 HP) caught about 11,700 tonnes in 1984, with saithe accounting for 58% and redfish for 17%. They were 4 in 1982, 5 in 1984-85. Up to 1983 they were allowed to fish a quota in Icelandic waters but since 1984 they are fishing all year round in Faroese waters. Thus, they have contributed to the increase in the effort exerted on saithe and redfish at Faroes (300 days at sea).
- Trawlers > 1000 HP , type II: The number f vessels in this class (310 GRT, 1100 HP), which represent a great part of the Faroese home water fishing fleet, has increased from 17 in 1982 to 26 in 1985. They caught about 23,000 tonnes in 1984 (260 days at sea), with saithe accounting for 69% and cod for 17%. 12 of them operate as pair-trawlers with catch rates similar to single trawlers.
- Trawlers 700-999 HP and 400-699 HP: In the former group (11 in 1982, 16 in 1985) all vessels operated as single trawlers in 1984, and all of the latter group (10 in 1982, 20 in 1985) as pair-trawlers. Despite this, the catch compositions of both groups were almost identical with 48% of saithe, 35% of cod and $10-13 \%$ of haddock, and landings of about 13,000 tonnes and 16,000 tonnes respectively (260 and 225 days at sea).
- Trawlers < $400 \mathrm{HP}:$ These vessels (4 in 1982, 6 in 1984-85, 50 GRT, 250 HP) are fishing mainly for cod (50\%), saithe (19\%) and flatfish (15\%). Trawling within the 12 mile limit is generally banned. These vessels however are licensed to operate during summer in some limited areas in order to utilize such stocks as lemon sole, plaice and angler.
- Longliners > 110 GRT: Most vessels in this category of about 20 units (225 GRT, 540 HP , crew of 15 men) are licensed to fish a limited quota at Iceland during one part of the year. Cod (27%) and tusk (23%) are the main species caught and saithe accounted for about 12% in 1984 out of total landings of 19,500 tonnes (245 days at sea).
- Longliners 60-110 GRT: Some of the 14 vessels in this category also are licensed to fish at Iceland, mainly for saithe using automatic handline (crew of 5). They also practise this fishery at Faroes but also operate partly as longliners. In 1984 they landed about 5,600 tonnes with saithe accounting for 40% and cod for 36%.

[^6]The material presented in this section is based mainly on preliminary statistics for 1984, and includes catches from outside the Faroese waters. The grouping of vessels is according to that used by the Faroese Board of Fisheries, which monitors the economic results of the fishery. The catch compositions obviously can vary depending on the relative abundance of the species, as was the case for the good results on cod and saithe in 1983 and 1984. It is felt however that the figures given provide a fair description of the fleet components.

** FRANCE:

French fisheries for saithe are carried out in the North Sea and to the west of the British Isles by the deep-sea trawlers from the Boulogne area and from Brittany.

The vessels landing regularly in Boulogne belong to 3 categories:

- The largest trawlers (50-60 m, most of them $54 \mathrm{~m}, 550-750$ GRT, 1800-2000 HP, hold capacity of 400-550 cu.m or 180-200 tonnes of boxed fish) have been in rather steady number (1820) from 1971 to 1980, but their characteristics have changed in the meantime as side-trawlers were progressively replaced by stern-trawlers. Their number eventually decreased to 16 in 1983 and no new vessel in this category is expected.
- An intermediate class includes stern-trawlers of 45-50 m, 450-500 GRT, 1 500-1 800 HP , with hold capacity of about 500 cu.m. Like the larger ones, their crews are of 22 men (the
catch is sorted, graded and boxed at sea). There were 8-10 of these vessels from 1972 to 1976,7 from 1977 to 1979 and 5 by now. Two new vessels are expected, with equipment for freezing the fish at sea thus allowing longer trips.
- In the last 10 years, 4-5 vessels of about 43 m , 350-400 GRT, 1 200-1 500 HP , with hold capacity of $300 \mathrm{cu} . \mathrm{m}$ and crews of 18 men have at times participated in the saithe fishery, especially in summer, but their regular target is mixed gadoid species in the central and southern North sea.

By union's agreement, the normal trip duration is 12 days including sailing time which, to and from saithe fishing grounds, can amount to 4-5 days, each trip is followed by 3 days ashore. This results in potentially $22-24$ trips over 11 months (about 250 days at sea per year). In recent years, landing limitations have been fixed by Producers' Organisations further restricting the effort directed towards saithe.

For these vessels, fishing for saithe has not been a long tradition: landings in Boulogne suddenly increased in 1964 from less than 20000 tonnes to a steady production of $30,000-40,000$ tonnes a year, and were in the past predominantly in the first 4 months. At present, the typical pattern is to search for (pre-) spawning concentrations along the shelf edge to the west of northern Scotland (in Division VIa) during the first quarter. These concentrations are fished while they move to the northwest of Shetland (in Division IVa) till May, when the large fish disperse in deep waters. In summer the fleets return to 'inner' North Sea (Bressay Bank) for mixed gadoid fisheries and, at times, fisheries for young saithe in the ling Bank area when large concentrations can be found. In some years, due to restricted access to Canadian waters and Barents Sea, some long distance freezers joined the wet fish vessels in this summer fishery.

Vessels registered in Brittany (Lorient, Concarneau and Douarnenez) make a major part of the catches of West of Scotland saithe; they can be grouped into 2 classes:

- The large stern trawlers (40-60 m, 250-600 GRT, 1,800-2,000 HP) are very similar to those from Boulogne and have the same fishing pattern for saithe: they fish mainly from January to May on grounds to the west-northwest of Hebrides and Shetlands, on adult saithe concentrations. They make about 18 trips a year (240 days at sea on average, sailing time included). In Lorient, a specific scheme by which vessels (8 in 1981-1982, 6 in 1983) exchange their crews (16 men) in rotation allows longer time at sea (310 days on average). Fishing effort by these vessels has decreased as many have been laid up. In Lorient, their number decreased from 39 in 1974 to 31 in 1978, 26 in 1981 and 21 in 1983; they were 10 in Concarneau in 1978 but in 1983 all the vessels over 40 m had been decommissioned.
- The fleet of medium trawlers fishing to the west and southwest of the British Isles showed different evolutions in each of the 3 harbours. In Lorient, a fleet of old side trawlers has virtually disappeared and only 4 vessels (33-36 m, 450-800 HP) remained in 1983 as compared to 14 in 1974. In the other two harbours, a similar change happened but there, new types of modern stern-trawlers were built to maintain the fishing potential: 9 vessels (36-38m, 200-300 GRT, 1 100-1 400 HP) in Douarnenez and 16 vessels (30-39 m, most of them 34 m long and 800 HP) in Concarneau.

In fact, this class of vessels never had saithe as a main target and used to fish for mixed groundfish species on the shelf area to the south of Division VIa and in the Irish Sea. Although large saithe apparently can still be found in these areas in late spring, the fleet has totally redirected its effort towards closer grounds and more valuable species than traditional gadoids, and has been redesigned accordingly.

In summary, fishing effort on saithe by French trawlers has decreased significantly during the last decade, especially to the west of Scotland. This trend is likely to continue as the fleet is faced with 2 main constraints: - a larger distance to the fishing grounds as compared to other European fleets, - market problems and loss of profitability by the deep-sea fleet which is heavily dependent on gadoid species, hampering the purchase of new vessels fitted to the type of fishery considered here.
** FEDERAL REPUBLIC OF GERMANY:

The German fleet is fishing for saithe mainly in the North Sea. Additional catches are made off the Norwegian coasts (IIa) and to the West of Scotland (VIa). Small amounts are caught in faroese waters where saithe is a by-catch in the fishery for redfish and blue ling.

The German fishery for saithe and other demersal species started as far back as the beginning of the German deep-sea fishery, at the end of the 19 th century. At that time the main fishing grounds were off Norway and Iceland, in the central and northern North Sea and, occasionally, off the Hebrides.

Until the introduction of quotas and the closing of the Icelandic waters for foreign trawlers, the major part of saithe catches came from waters off Norway and Iceland. Afterwards, they came predominantly from the North Sea.

As of January 1st, 1985, the German fleet fishing for saithe consisted of the following categories, all using bottom trawls:

[^7]- 4 of the 7 wetfish-trawlers (800-999 GRT) are older than 20 years, and the other 3 were built in 1977-1978. These vessels also fish mainly for cod and redfish in Greenland waters. In winter and spring they fish for saithe and other demersal species in Norwegian waters (mainly NW Norway), starting in January, up to the exhaustion of their catch quotas (generally by May- June). Occasionally they fish in the North Sea, to the west of Scotland and off the Faroes. In the North sea, they fish for spawning or pre-spawning saithe in the waters around Shetland in the first quarter, then for younger saithe in summer and autumn, in the eastern part of northern and central North Sea. In 1983, their catches in Division IVa amounted to 2800 tonnes of saithe.
- In 1983, 2 large cutters (about 300 GRT) were built especially for the saithe fishery. During the spawning season they fish for adult saithe concentrated around the Shetland and off the Scottish north coast. During the rest of the year they work in the central and northern North Sea for saithe and other demersal species.

All the vessels described above are stern-trawlers. They land their catches in Bremerhaven and Cuxhaven, occasionally in Hamburg.

- More than 100 deep-sea cutters are working in the North Sea and in the Baltic. 17 of these are longer than 30 m . These large cutters and 1 lugger catch saithe and other demersal species in the central and northern North sea and in the Skagerrak, the lugger aiming more specifically at saithe than the cutters. In 1983 these vessels landed 10,600 tonnes of saithe from the North Sea.

** THE NETHERLANDS:

Up to the late seventies saithe was taken by a small part of the Dutch fleet in a specific saithe fishery in the northern North Sea, especially in the first quarter of the year. Since then there were only minor landings of saithe in the Netherlands and it is very unlikely that landings will increase substantially in the next future.

** NORWAY:

The Norwegian saithe fisheries are restricted to the North East Arctic and the North Sea. Purse seine, trawl, and gill-net account for more than 90 per cent of the landings. In the North East Arctic, landings since 1970 have been fluctuating between 120,000 and 170,000 tonnes. In the North sea there was a sudden increase from a level of about 17000 tonnes in 1976-79 to 48000 tonnes in 1980. The landings have continued to increase and were in 1984 (preliminary) 88000 tonnes.

Purse seine fishing is carried out along most of the Norwegian coast, usually not far from the coast. The purse seiners are mostly small and about 70% of the catches are taken by $17-25 \mathrm{~m}$ long vessels. There are currently about 150 vessels of this size group, but most of them are fishing for saithe only part of the year. In northern Norway, the main season is July to October. South of the Lofoten Islands, purse seining is carried out all year.

Before 1979, a large part of the Norwegian trawl catches of saithe were by small trawlers (< 250 GRT) fishing in the area between 62° and $64^{\circ} \mathrm{N}$. In the North Sea, there was very little directed trawling for saithe. From 1979, quotas for cod and haddock were reduced and the larger trawlers (>250 GRT) turned more of their effort towards saithe. The fleet of larger trawlers are now fishing for saithe on coastal banks along most of the Norwegian coast north of $62^{\circ} \mathrm{N}$. In the North Sea, they are fishing along the northern and eastern part of the plateau, from Shetland to the
entrance of Skagerrak.

Gill net fishing for saithe is a seasonal fishery based on the spawning migration. In the North East Arctic, most of the catches are taken at the end of the year in northern Norway and in February-March on the spawning grounds further south. In the North Sea, the season which formerly was February-March has been extended and now starts in late autumn. The fishing area is largely the same as for the trawlers, but extends to the west of Shetland and there is little fishery south of the Viking Bank.

There are no quota restrictions on the Norwegian saithe fishery in the North East Arctic. Separate quotas for purse seine and trawl have been suggested and may be introduced. There are currently 3 different minimum landing sizes: 35 cm between $62^{\circ} \mathrm{N}$ and $64^{\circ} \mathrm{N}, 37$ cm from $64^{\circ} \mathrm{N}$ to Lofoten Islands, and 40 cm further north. The basis for these regional differences is the size of the fish available for purse seine in the different areas. The minimum landing size to some extent restricts catches of 2 year old saithe. The mesh size in trawls is 135 mm and 100 mm respectively north and south of $64^{\circ} \mathrm{N}$.

In the North sea, a total quota for saithe is normally agreed by EEC and Norway. A permanent quota of 15000 tonnes on purse seine is being introduced in Norway. If necessary to avoid overfishing the Norwegian quota, trawl fishing may be stopped towards the end of the year. Minimum landing size is 32 cm (30 cm in Skagerrak). Minimum legal mesh size in the Norwegian economical zone is 90 mm (80 mm in Skagerrak).

** SCOTLAND :

Scotland has no directed saithe fishery at present and saithe landings represent a by-catch from a fishery directed primarily at cod, haddock and whiting. Since little fishing is carried out in the deeper water of the continental shelf edge and there is a preponderance of small inshore vessels in the Scottish fleet, most of the saithe which are caught are young and immature.

There are 4 main sub-fleets which account for the majority of Scottish demersal fish landings including saithe. These are:

- Motor trawl: Involves vessels of $80-120 \mathrm{ft}$ using heavy ground gear. The number of these vessels has declined rapidly since the 1960 s from over 100 to less than 20 at the present time. The remaining vessels are a mixture of sideand stern-trawlers. Most of them are based in Aberdeen and fish both the North Sea and the West of Scotland. The future of the fleet is uncertain but older vessels are unlikely to be replaced. Trip length is about 10 days and a crew of 10 is typical.
-- Light trawl: Involves vessels of @ $40-80 \mathrm{ft}$ using light ground gear. The number of vessels engaged in light trawling has increased over the last 10 years to approximately 350 . Vessels are distributed in most Scottish fishing ports. Trip lengths vary from 1 day for smaller vessels to 10 days for larger ones. Similarly crews vary from 3 to 10 men. This sector of the fleet is liable to increase in size.
- Seine net: The characteristics of this fleet are essentially the same as those for light trawl with the exception of the gear type. There has been a small decline in this fleet to just under 300 vessels. This decline is mainly due to the replacement of smaller vessels by fewer larger ones so that the catching capacity of the fleet has not changed. This trend seems to be continuing.
- Nephrops trawl: This fleet is similar to light trawl but generally involves smaller vessels fishing principally for Nephrops. The fleet is stable at present with approximately 300 vessels. These rarely fish for more than 2 days per trip. Crews are of 3 to 5 men.

[^0]: *General Secretary
 ICES
 Palægade 2-4
 DK-1261 Copenhagen K
 Denmark

[^1]: * Provisional

[^2]: * Preliminary

[^3]: * Preliminary

[^4]: * Preliminary

[^5]: * Preliminary

[^6]: - Longliners <60 GRT: The vessels in this category represent the traditional fishery at Faroes and amount to about 125 units. They operate on daily trips to fish for $\operatorname{cod}(49 \%)$, haddock (17\%) and saithe (18\%). They landed about 17,000 tonnes in 1984.

[^7]: - 10 freezer-trawlers (3,000-3,500 GRT) built in the years 1972-1975 have their main activities in fisheries for cod and redfish off Canada and east- and west-Greenland. They only occasionally fish for saithe in Eastern Atlantic waters.

