This paper not to be cited without prior reference to the authors

International Council for the Exploration of the Sea C.M. 1983 / K:17 Shellfish Committee

RESULTS OF A STRATIFIED BOTTOM TRAWL SURVEY FOR SHRIMPS (<u>PANDALUS</u> BOREALIS) IN THE SPITSBERGEN AREA IN JULY 1982

by

Gunnar Teigsmark Institute of Fishery Biology University of Bergen - Norway

and

Per Øynes Institute of Marine Research Bergen - Norway

ABSTRACT

A stratified random bottom trawl survey of the shrimp grounds in the Spitsbergen area between N74^o00' and N80^o30', and between E08^o00' and E18^o00' was made in July 1982. On the basis of the data from 41 trawl stations the biomass of shrimps, <u>Pandalus borealis</u>, in the area surveyed was estimated by the swept area method to be about 40 000 tonnes. The by-catches of fish in the hauls are also discussed.

INTRODUCTION

A stratified random sampling scheme was carried out during a bottom trawl survey with R/V "Michael Sars" from 12 July to 1 August 1982 in the Spitsbergen waters. (Division 2b).

The objectives of the cruise were to study the structure of the shrimp stock, the by-catches of fish and to estimate the abundance of shrimps.

MATERIAL AND METHODS

The cruise in July 1982 covered the area from the "Kveithola" and northwards along the western slope at West-Spitsbergen up to north of Spitsbergen (N80⁰30'). The stratified areas (Fig. 1) were at depths from 200 m to 400 m. The sampling localities are indicated in Fig. 2.

The distance trawled in the hauls was 3.0 nautical miles, but on station no. 17 trawling had to be made shorter due to rough bottom. In the area north and west of Bjørnøya (Kveithola) 8 trawl hauls were taken due to the great numbers of small cod in the area. The stations are listed in the bottom of Table 1 and 6. The distance trawled in these extra hauls was 1.5 nautical miles ($\frac{1}{2}$ hour).

The shrimp samples were treated as described in TEIGSMARK & ØYNES (1981). By-catches of fish were counted and length measurements were taken of all important species. The catch of shrimps (in kg) and by-catch of fish (in numbers) are listed in Table 1.

RESULTS AND DISCUSSION

Shrimps

Table 2 gives the estimated biomass of the shrimp stock in each stratum, giving 40 400±13 200 tonnes for the entire area investigated. This corresponds to $(7.3\pm2.4)\cdot10^9$ individuals (Table 3). The commercial stock was estimated to be 36 400±12 000 tonnes (Table 4) corresponding to $(6.1\pm2.0)\cdot10^9$ individuals (Table 5). The highest shrimp concentrations were found in the northernmost strata, where catches close to 1 ton/trawling hour were taken. The catches within the Spitsbergen area were much more variable than in the Barents Sea.

Table 6 gives the estimated densities of males, intersexes and females in the different strata. The average concentrations of large males (carapace length \geq 16 mm), intersexes and females

were close to the average for the Barents Sea. The concentrations of young males (carapace length < 16 mm) were, however, low, on the average only 50% of what was found in the Barents Sea. For the Spitsbergen area this indicates poor prospects for a good fishery beyond a period of a few years. However, due to the very variable distribution of the different sexes, it may perhaps be possible to locate minor areas of high concentrations that can be the basis for a profitable fishery.

A very high variability in both the biological characteristics of the shrimps and in the catches is the most characteristic feature of the shrimp stock in the Spitsbergen region. Areas are known where both growth and yearclass strength vary significantly within a distance of only a few nautical miles (TEIGSMARK, unpubl. data). Some of the samples from Spitsbergen area also contain only one or a few yearclasses, indicating a very variable and local settling of the shrimp-larvae within the region.

Samples taken in 1978 showed that the females were biennial spawners in most of the Spitsbergen area (TEIGSMARK, unpubl. data) corresponding to what was observed by RASMUSSEN (1953). In 1980 it was discovered that the females had changed to an annual spawning pattern in most of the area, and this annual female spawning was observed on this cruise too. Actual spawning had not yet started to any significant extent on this cruise. The intersexes in the Spitsbergen area were generally larger than observed in the Barents Sea, and their size seemed to increase northwards.

This is the first Norwegian cruise carried out to specifically estimate the biomass of the shrimp stock in the Spitsbergen area. Due to lack of time, only depths between 200 and 400 meters were investigated. It is quite clear that significant concentrations of shrimps exist outside this depth interval. It is therefore preferable that the investigated area is extended down to 500 m on future cruises.

- 3 --

By-catches

In Table 1 are listed by numbers the most important by-catches of the most economically important fish species for each trawl haul. Table 7 gives the by-catches (in numbers) in each stratum investigated. The numbers of fish are listed as mean number per hour trawled i.e. per 3 nautical miles. In TEIGSMARK and ØYNES (1982) are given the by-catches in shrimp trawling in the Barents Sea north to the Hopen- and Bjørnøya islands. The bycatch of cod in all the areas investigated was very low except for the area southeast of Bjørnøya. The present investigation showed that this relatively high density of cod continued further north from Bjørnøya area and up along the West-Spitsberg to N78030'. The highest numbers of cod was found northwest of Bjørnøya in the Kyeithola area (Strata 1 and 2). In these areas 8 extra trawl hauls were taken in depth from 116 to 250 m. The mean numbers of cod from these hauls were more than 800 individuals per hour trawled with the highest numbers at station no. 46 with 1649 cods per hour trawling (Table 1), The cod were small, 75% were less than the minimum length (42 cm) legalized for commercial fishing.

Haddock were found in some numbers in strata 4 and 6 i.e. the most shallow part of the fields south of Spitsbergen. Most of the specimens were 0-group haddock.

The redfish were numerous in strata 3 and 6 with numbers from 2000 to 3500 individuals per hour trawling.

The Greenland halibut were present in the deepest strata investigated, most numerous in strata 3 and 10 with 218 and 478 individuals per trawled hour, mostly to small to be accepted for consumption. Capelin were present in all the strata investigated. In strata 11 and 13 the capelin was the major catch with up to 2.5 tonnes per hour trawling. The polar cod was present i all the Spitsbergen area, most numerous i stratum 10 (north of Isfjord) with more than 10 000 individuals per hour trawling.

REFERENCES

- RASMUSSEN, B. 1953. On the geographical variation in growth and sexual development of the deep sea prawn (Pandalus borealis Kr.). FiskDir. Skr. Ser. Havunders., <u>10</u>: 1-160.
- TEIGSMARK, G. & ØYNES, P. 1981. Results of a stratified trawl survey for shrimps (<u>Pandalus borealis</u>) in the Barents Sea in May - June 1981. <u>Coun. Meet. int. Coun. Explor.</u> <u>Sea, 1981</u> (K:21): 1-9, 5 tabs, 4 figs. (Mimeo.)
- TEIGSMARK, G. & ØYNES, P. 1982. Norwegian investigations on the deep sea shrimp (<u>Pandalus borealis</u>) in the Barents Sea in 1982. <u>Coun. Meet. int. Coun. Explor. Sea</u>, <u>1982</u> (K:12): 1-8, 6 tabs, 6 figs. (Mimeo.)

St.	Date	Stra-	Square	Trawl.	Dist	Posi	10n	Trawl.	Depth	Shrimp]	By-catche	es (numbe	r)		
nr.	Patt	tum	549210		n.m.	N	E	dir.	(m)	catch (kg)	Cod	Had- dock	Red- fish	Gr.Hal.	Capelin	Polar cod	Other	
5	17/7	1	5	0845-0945	3.0	74 ⁰ 18'	16 ⁰ 00'	180 ⁰	367-300) 5	9		460	15	•		622	
3	16/7	1	15	1700-1800	3.0	74 ⁰ 15'		360 ⁰	335-330) 5	31		215		59	26	645	
4	17/7	2	8	0620-0720	3.0		16 ⁰ 10'	180 ⁰	280-230) 2	17		432		484		484	
9	17/7	2	15	1625-1725	3.0		17 ⁰ 49!	270 ⁰	300-234	91	57		´ 49	16	385	3	1212	
2	16/7	2	27	1440-1538	3.0		16 ⁰ 53'	350°	222-243	3 3	11		605	,			1268	
44	27/7	3	9	0745-0845	3.0		16 ⁰ 25'	160°	367-366				20		170	620	580	
15	19/7	3	15	0620-0720	3.0		15°28'	350°	390-390				36		184	756	340	
14	18/7	7 3		1725-1825	3.0		15°55'		383-370		7	. .	4630		1430	680	674	
.12	18/7	3	35	1200-1258	3.0		15°35'	050 ⁰	381-380		199		5303				336	
11	18/7	13	38	0900-1000	3.0		14°45'	010 ⁰	394-388		41		1680		62		667	
13	18/7	4	11	1455-1557	3.0		16°14'	050 ⁰	276-27				102		7721	501	110	
10	18/1		14	0620-0720	3.0		15°23'	010 ⁰	285-27		98	59	962		312		463	
19	20/7	15	4	0620-0720	3.0		13°43'	310 ⁰	335-334				1530			23	298	
16	19/7		20	0850-0950	3.0		15°13'		356-34		2		126		754	178	292	
17	19/7		23	1140-1225	2.5		15052		397-39				14		77	936	162	
20	20/1		1	0910-1010	3.0		13°12'	010 ⁰	240-21		10		36		1800	964	492	
18	19/3		8	1755-1855	3.0		14°14'	310°	236-22		135	149	6989		10	169	501	
27	22/		1	1015-1115	3.0		09 ⁰ 37		340-32				1656		48	48	398	
23	20/		6.	1730-1830	3.0		11°18'		356-35		96		342		1521	36	243	
26	22/		5	0620-0720	3.0		11°10'		290-29		1				1170	1095	1735	
22	20/		9	1535-1630	3.0		11°28		294-27		14		1384		200	184	118	
21	20/		24	1200-1258	3.0		12053		204-20				32		544	736	1784	
31	23/		2	0620-0720	3.0		08 ⁰ 45' 10 ⁰ 58'		360-33				. 663			119	542	
29	22/		11	1545-1645	3.0		10 ⁻ 58' 08 ⁰ 46'		334-30		96			792	94 kg	204 kg	-	
32			2	0900-1000					285-24		6		220		2190	40	197	
34	23/		8	1355-1455			10°12		270-25					217	1500 kg	233	917	
33	23/		13	1130-1228			09 ⁰ 20		214-20						2000 kg		-	
28	22/		28	1340-1438			11 ⁰ 03 11 ⁰ 50		265-23					1/0	2500 kg	001/	719	
24	21/		31	0620-0720			09 ⁰ 43		280-24		2		(1)	168	1239	2814	7090	
30			16	1840-1940			12 ⁰ 45		295-27		17	1	610		1065	465	440 224	
25			44	0850-0950			12 45 09 ⁰ 32		273-26				261	208	20	13	224 590	
38	24/		3	1720-1820			09 32 08 ⁰ 12		366-35				364	39	39	13		
36			8	1110-1210			08 12 09 ⁰ 10		355-34						26	72	Stone and 428	шu
37	24/		8	1525-1625					245-26				990)	36 500 ka		428	
35			8	0840-0940 1530-1628		79 ⁰ 06'			250-24 370-35		3	,	1.04	5 108	500 kg 54	108	810	
42		7 14											486					
40		7 14		1020-1120 1245-1343									615		328	41 • 56	822 1448	
41		7 15		1245-1343 0800-0900									952		30 1		1448 56	
39		7 15		0800-0900							140) 5	18		28 kg	12	56 186	
6				1135-1205													371	
7		7				74 43 74 ⁰ 46							22			24	687	
8		7 —		1507-125 0625-1700								J	18			333	100	
43		7 —		0625-1700									12		25	333 100	200	
45		7		1215-1245									227: 7(25 20	100	200 960	
46		7 —		1705-1735 2005-2035											20	10	960 90 kg	
47		7											t cou		1.74			
1	16/	/	··	1132-1202	1.5	/3 51	16 35	300-	360-35	4 5	38	C	1148	8 4	476		244	

S

Table 1. Trawl station data from cruise with R/V "Michael Sars" on Vest-Spitsbergen and Kveithola in July 1982.

- 6 -

Table 2. Estimated density (\overline{c}_k) and biomass in each stratum and estimated biomass in all strata summarized with the precision of the estimates.

Stratum	Area (nm ²)	Number of Hauls	c tons/(nm) ²	5 <mark>2</mark> 5 k	v(c _k)	Coeff. of var. (S.E./c _k)	Biomass (tons)	S.E. of biomass
1	284	2	0.264	0.000	0.000	0.000	75	0.000
2	842	3	1.688	7.269	2,423	0.922	1422	1311.279
3	1189	5	6.891	9.679	1.936	0.202	8193	1654.185
4	486	2	8.416	139.880	69.940	0.994	4088	4062.755
5	611	3	7.123	47.080	15.693	0.556	4351	2419.674
6	353	2	1.319	1.253	0.626	0.600	466	279.541
8	109	2	10.210	94.824	47.412	0.674	. 1111	749.158
9	539	3	6.226	12.481	4.160	0.328	3359	1100.396
10	201	2	20.736	339.697	169.848	0.628	4162	2615.641
11	815	7	7.794	24.238	3.463	0.239	6354	1516.926
12	155	, 2	13.982	391.011	195.506	1.000	2164	2164.466
13	89	2	9.313	173.455	86.723	1.000	833	832.561
14	58	2	40.179	260.984	130.492	0.284	2270	645.417
15	95	2	15.803	422.611	211.306	0.920	1506	1385.314
	•			9	All s	trata	40353	6747.089

Table 3. Estimated number of shrimps per square nautical mile in the different strata and for all strata summarized with the precision of the estimates.

Stratum	Area (nm ²)	No. of hauls	$\bar{c}_{k} \cdot 10^{-3}$	$s_k^2 \cdot 10^{-6}$	v(c _k)·10 ⁻⁶	Coeff. of var.	Stock·10 ⁻⁶	S.E. of stock 10-6
1	284	2	63.807	0.000	0.000	0.003	18.108	0.051
2 .	842	3	393.821	393.792	131.264	0.920	331,755	305.205
3	1189	5	1314.708	350.383	70.077	0.201	1563.056	314.725
4	486	2	1777.466	6254.570	3127.285	0.995	863.493	859.095
5	611	3	1235.515	1225.906	408.635	0.517	754.653	390.451
6	353	2	207.372	19.314	9.657	0.474	73.244	34.709
8	109	2	1966.787	4527.525	2263.763	0.765	213.986	163.698
9	539	3	1178.187	436.710	145.570	0.324	635.632	205.839
10	201	2	3869.430	3172.895	1586.448	0.326	776,595	252.790
11	815	7	1322.477	861.043	123.006	0,265	1078.083	283.909
12	155	2	2169.509	9413,541	4706.771	1,000	335.840	335.840
13	89	2	1102.697	2431.883	1215.941	1.000	98.581	98.581
14	56	2	6571.596	6213.176	3106.588	0,268	371.284	99.584
15	95	2	2419.943	9666.484	4833.242	0.908	230.621	209.514
					All str	ata	7344.931	1214.511

Table 4. Estimated commercial density (\overline{c}_k) and biomass in each stratum and estimated commercial biomass in all strata summarized with the precision of the estimates.

Stratum	Area (nm ²)	Number of Hauls	ck Tons∕(nm) ²	5 ²	√(ē _k)	Coeff. of var. (S.E./c _k)	Biomass (tons)	S.E. of biomass
1	284	2	0.216	0.000	0.000	0.002	61	0.135
2	842	3	1.409	5.063	1.688	0.922	1186	1094.317
3	1189	5	6.157	7.973	1.595	0.205	7320	1501.358
4	486	2	7.253	103.820	51.910	0.993	3524	3500.129
5	611	3	6.538	41.156	13.719	0.567	3993	2262.334
6	353	2	1.232	1.196	0.598	0.628	435	273.162
8	109	2	9.027	68.224	34.112	0.647	982	635.45
9	539	3	5.539	10.008	3.336	0.330	2988	985.360
10	201	2	18.896	325.250	162.625	0-675	3792	2559.41
11	815	• 7	7.116	20.559	2.937	0.241	5801	1397.058
12	155	2	13.072	341.751	170.876	1.000	2024	2023.53
13	89	2	0.102	165.675	82.837	1.000	814	813.67
14	56	2	37.325	230.101	115.051	0.287	2109	606.028
15	95	2	14.817	373.072	186.536	0.922	1412	1301.590
					A11 s	trata	36442	6131.115

Table 5. Estimated commercial number of shrimps per square nautical mile in the different strata and for all strata summarized with the precision of the estimates.

Stratum	Area (nm ²)	Number of hauls	ē _k .10 ⁻³	s _k ² ·10 ⁻⁶	v(ē _k)·10 ⁻⁶	Coeff. of var.	Stock·10 ⁻⁶	S.E. of stock 10-6
1	284	2	49.849	0.001	0.001	0.014	14.147	0.203
2	842	3	290.658	213.346	71.115	0.917	244.850	224.646
3	1189	5	1074.915	228.252	45.650	0.199	1277.967	254,020
4	486	2	1434.400	4070.406	2035.203	0.995	696.832	693.043
5	`611	3	1086.051	1033.247	344.416	0.540	668.360	358.460
6	353	2	186.291	18.702	9.351	0.519	65.798	34.154
8	109	·2	1616.334	2662.690	1481.345	0.753	175.857	132.421
9	539	3	973.278	287.933	95.978	0.318	525.084	167.138
10	201	2	2897.885	6175.729	3087.865	0.606	581.605	352.676
11	815	7	1097.909	513.767	73.395	0.247	895.015	220.851
12	155	2	1967.498	7742.098	3871.049	1.000	304.569	304.569
13	89	2	1063.296	2261.199	1130.599	1.000	95.059	95.059
14	56	2	5862.052	5074.771	2537.385	0.272	331.206	90.000
15	95	2 .	2199.403	8014.965	4007.482	0.910	209.603	190.778
•					All strata		6080.951	1043.975

Table 6. Density estimates (thousand individuals per sq. nautical mile) for small males (CL<16mm), large males (CL≥16mm), intersexes and females in the different strata.

Stratum	Males<16 mm	Males≥16 mm	Intersexes	Females
· 1	6.171	49.933	6.275	1.428
2	76.512	231.188	26.682	59.438
3	168.893	739.735	200.443	205.637
4	132.737	1255.753	211.239	177.737
5	49.384	804.286	280.549	101.296
6	4.858	107.481	58.184	36.848
8	82.554	1539.844	135.779	208.611
9	88.942	861.339	106.433	121.473
10	803.408	2280.677	257.684	527.661
11	143.647	725.860	180.301	272.668
12	25.982	1682.344	175.379	285.804
13	0.000	595.786	236.998	269.914
14	251.887	5231.725	682.983	404.802
15	1.853	1730.366	399.763	287.961

Table $\not F$. By-catch composition taken in different strata in the Spitsbergen area in July 1982.

Stratum number	Number of hauls	By-catch of fish in numbers pr 3 n.m. trawled								
	or naurs	Cod	Haddock	Redfish	Gr.Hal.	Capelin	Polar cod	Long rough dab	Others	
1	2	20		338	8	30	13	246	388	
2	3	28		362	5	290	1	805	183	
3	5	50		2334	218	369	411	354	166	
4	2	49	30	532		4017	251	245	42	
5	3	1		557	57	277	379	139	111	
6	2	73	76	3510		905	567	283	215	
8	2	48		999	66	785	42	122	199	
9	3	5	1	512	100	638	672	576	792	
10	2	48		331	478	4700	10260	833	594	
11	7	4		119	87	86356	507	224	1431	
12	2			182	20	20	7	98	198	
13	2	2		495		25018	36	167	28	
14	2			551	54	161	75	479	387	
15	2			485		1564	64	591	164	
6-8 and 45-47	6	410	2	804	42	15	45	954	80	

- 9 -

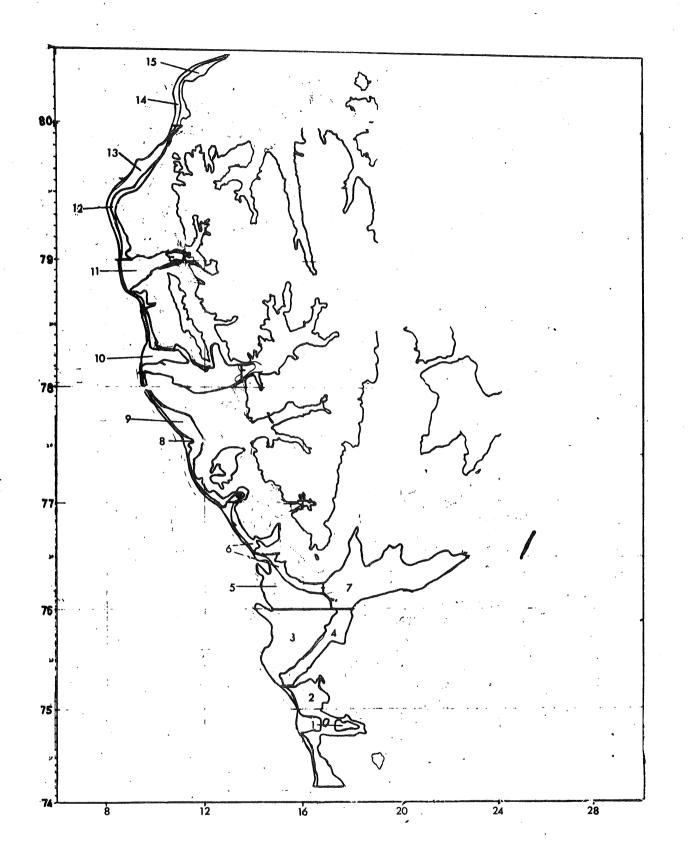
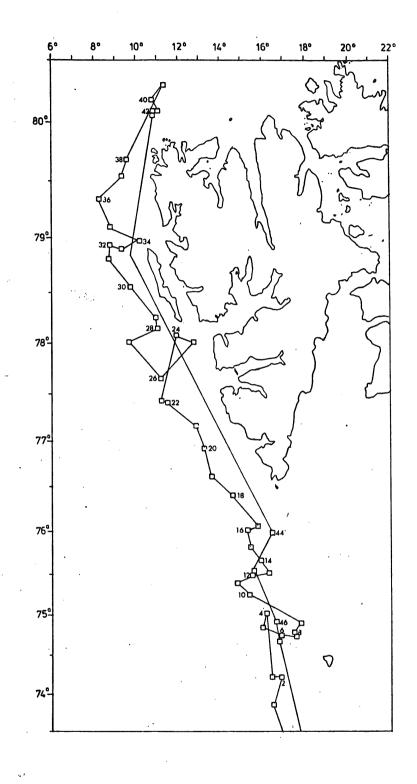
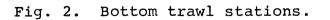




Fig. 1. Sampling strata used in July 1982 in the Spitsbergen area for the shrimp survey with R/V "Michael Sars".

- 10 -

