ICES PGHERS Report 2007

ICES Living Resources Committee ICES CM 2007/LRC:01 REF. RMC, HAWG, ACFM

Report of the Planning Group for Herring Surveys (PGHERS)

22–26 January, 2007

Charlottenlund, Denmark

International Council for the Exploration of the Sea Conseil International pour l'Exploration de la Mer

International Council for the Exploration of the Sea Conseil International pour l'Exploration de la Mer

H.C. Andersens Boulevard 44-46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk info@ices.dk

Recommended format for purposes of citation:

ICES. 2007. Report of the Planning Group for Herring Surveys (PGHERS), 22–26 January, 2007, Charlottenlund, Denmark. ICES CM 2007/LRC:01. 187 pp. For permission to reproduce material from this publication, please apply to the General Secretary.

The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.

© 2007 International Council for the Exploration of the Sea.

Contents

Exe	ecutive	e summary	1				
1	Teri	ns of Reference	4				
2	Participants 4						
3	Herring larvae surveys						
	3.1	Review of Herring Larvae Surveys in 2006/2007	5				
		3.1.1 Review of the western Baltic larvae survey	5				
		3.1.2 North Sea	6				
	3.2	Co-ordination of Larvae Surveys for 2007/2008	8				
	3.3	Investigation of bias introduced by change of gear	8				
	3.3.1 Introduction						
		3.3.2 Method	9 0				
		3.3.4 Discussion	. 11				
	3.4	Possible shift in spawning time of North Sea Herring	. 12				
		3.4.1 Larvae abundance	. 12				
		3.4.2 Data from other surveys and market sampling	. 13				
		3.4.3 Future	. 13				
4	Aco	ustic surveys	. 14				
	4.1	Combined estimates of the acoustic survey	. 14				
		4.1.1 North Sea and West of Scotland acoustic survey	. 14				
		4.1.2 Western Baltic	. 16				
	4.2	Sprat	. 16				
	4.3	Coordination of acoustic surveys in 2007	. 19				
		4.3.1 North Sea and West of Scotland	. 19				
	4.4	Hydrographic data	. 22				
5	Revi	iew and update of PGHERS manuals	. 22				
	5.1	Acoustic manual	. 22				
	5.2	IHLS manual	. 22				
6	Biol	ogical Parameters	. 23				
_	D , 1		~ ~				
7	Fish	Frame	. 24				
	7.1	History and objectives	. 24				
	1.2	7.2.1 Development	. 24				
		7.2.1 Development	. 25				
		7.2.2 Inter-session meeting	. 25				
	7.3	FishFrame Test	. 26				
		7.3.1 Test results of calculation, aggregation and reporting procedures	. 26				
		7.3.2 Test results of remaining tests	. 26				
	7.4	Conclusion and planning	. 26				
		7.4.1 Funding	. 27				
		7.4.2 Steering and ownership	. 27				
8	Rece	ent studies on herring fat content and the accuracy of maturity staging	. 27				

9	Reco	mmendations	. 29
	9.1	Terms of Reference	29
	9.2	Further Recommendations	30
10	Refe	rences	32
Ann	ex 1:	List of participants	33
Ann	ex 2:	2006 Acoustic Survey Reports	35
	Anne	x 2A: West of Scotland	35
	Anne	x 2B: Denmark	53
	Anne	x 2C: Norway	74
	Anne	x 2D: Scotland (East)	93
	Anne	x 2E: Netherlands	111
	Anne	x 2F: Germany	126
Ann	ex 3:	Survey Report for RV "Solea" 1	140
Ann	ex 4: IVc a	ICES Coordinated Acoustic Survey of ICES Divisions IIIa, IVa, IVb, and VIa (North) 2006 Results	155
Ann	ex 5:	Working Documents to PGHERS	170

Executive summary

Highlights from PGHERS

- During the Planning Group for Herring Surveys (PGHERS) meeting in 2007 the stock estimates were done for the first time by the means of FishFrame, a software tool to calculate estimates derived from acoustic surveys. FishFrame performed satisfactorily and was used to combine the national data into the integrated survey result.
- The total combined estimate of North Sea spawning stock biomass (SSB) is 2.1 million t. This estimate is comparable to the 1.9 million t SSB in 2005 and the 2004 estimate of 2.6 million t. The stock is dominated by the 2000 year class. Growth of the 2000 year class still seems to be lower than average, individuals of this year class having almost the same size and weights than the one year younger fish of the 2001 year class. The West of Scotland estimate of SSB is 472,000 tonnes (190,000 in 2005). This is a substantial increase compared to last years estimate, and the SSB has more than doubled. The SSB is in the same order of magnitude that it had during the last ten years. The surveys are reported individually in Annex 2A-2F.
- The total sprat biomass was estimated as 452,000 t in the North Sea (down from 563,000 t in 2005). The biomass is dominated by mature sprat (98%). The total sprat in the Kattegat was estimated as 33,600 t, including 63% immature sprat (down from 59,800 t in 2005). There is no clear indication that the southern distribution has been reached. However, the highest concentration of sprat was observed off the coast of Scarborough, on the east coast of England.

Review of larvae surveys in 2006/2007: In total seven units and time periods out of ten were covered in the North Sea. The herring larvae sampling period was finished just prior to the PGHERS meeting, thus sample examination and larvae measurements have not yet been completed. The information necessary for the larvae abundance index calculation will be ready for and presented at the Herring Assessment Working Group (HAWG) meeting in March 2007.

Coordination of larvae surveys for 2007/2008: In the 2007/2008 period, the Netherlands and Germany will undertake seven larvae surveys in the North Sea. Outside the larval sampling programme some additional stations shall be sampled in the area of the Doggerbank to test anecdotal information of a recolonisation of the area and to obtain information about ongoing spawning activity. The Baltic Sea Fisheries Institute will continue with the larvae survey in the Greifswalder Bodden area in 2007, but the survey design will be altered and the N30 time series has to be recalculated to be assessable for the next benchmark assessment of the WBSS.

North Sea acoustic surveys in 2006: Six acoustic surveys were carried out during late June and July 2006 covering the North Sea and west of Scotland. The total combined estimate of North Sea spawning stock biomass (SSB) is 2.1 million t. This estimate is comparable to the 1.9 million t SSB in 2005 and the 2004 estimate of 2.6 million t. The stock is dominated by the 2000 year class. Growth of the 2000 year class seems still to be slower than average, individuals of this year class having almost the same size and weights than the one year younger fish of the 2001 year class. The West of Scotland estimate of SSB is 472,000 tonnes (190,000 in 2005). This is a substantial increase compared to last years estimate, and the SSB has more than doubled. The SSB is in the same order of magnitude that it had during the last ten years. The surveys are reported individually in Annex 2A-2F.

Western Baltic acoustic surveys in 2006: A joint German-Danish acoustic survey was carried out with RV "Solea" from 5 - 24 October in the Western Baltic. The estimate of

Western Baltic spring spawning herring is 214,000 t (compared to 198,000 in 2005). The sprat year class 2006 was overall exceptionally strong. In the Kattegat and the northern part of Subdivision 22 anchovy was observed in larger quantities. A full survey report is given in Annex 3.

Manuals for acoustic and herring larvae surveys: Several updates and improvements of the *manual for herring acoustic surveys in ICES Divisions III, IV, and VIA* have been suggested. The bibliography has been updated accordingly and the list of gears used by the different nations has been updated. The suggested changes are both very relevant and highly needed. However, the suggested text will need some reviewing which will be done by correspondence in cooperation between Germany, Denmark and Scotland. The revised text will be sent to all members of PGHERS before the next meeting by the Chair. No modifications were made in the *Manual for the International Herring Larvae Surveys south of 62° north*.

Status and future of the FishFrame database: All countries have uploaded survey data from 2006 for herring and sprat. The stage 3 dataset for 2003, 2004 and 2005 is completed as well. Testing of the data browser, reports, upload, data checking and interpolation for both in stage 1 and 3 was done during the meeting. Two bugs were found, corrected and testing was redone. FishFrame performed satisfactory and was therefore used to combine the national data into the integrated survey result. FishFrame will be used again for the 2007 survey period.

Sprat: Sprat data were available from RV "Walther Herwig III", RV "Tridens" and RV "Dana". The total sprat biomass was estimated as 452,000 t in the North Sea (down from 563,000 t in 2005). The biomass is dominated by mature sprat (98%). The total sprat in the Kattegat was estimated as 33,600 t, including 63% immature sprat (down from 59,800 t in 2005). There is no clear indication that the southern distribution has been reached. However, the highest concentration of sprat was observed off the coast of Scarborough, on the east coast of England.

Coordination of acoustic surveys in 2007: Six acoustic surveys will be carried out in the North Sea and west of Scotland in 2007 between 21 June and 25 July. Participants are referred to Figure 4.3.1.1 for indications of survey boundaries. "Tridens" and "Walther Herwig" will cover the area between 52° and 57° together with interlaced transects. A survey of the western Baltic and southern part of Kattegat will be carried out by a German research vessel in October.

Investigation of bias introduced by change in gear in the larvae surveys: In 2004, the Netherlands changed from a Gulf III plankton torpedo to a Gulf VII. However, nothing was known about differences in catchability between these two devices. To investigate the possible bias introduced by the change of gear, real-time fishing comparison trials were conducted in 2006, deploying both samplers in a single frame. Volume filtered by the Gulf VII was found to be significantly higher than in the Gulf III, but catchability was less. However, due to technical problems, no accurate calibration of flow meters could be performed and therefore numbers of larvae caught can not be converted by the volume filtered. During the 2007 mackerel and horse mackerel egg survey, ichthyoplankton hauls with both samplers are planned to compare the catchability of mackerel eggs.

Recent studies on herring fat content and the accuracy of maturity staging: Deborah Davidson from the Aberdeen University gave a presentation of her ongoing PhD study dealing with modern methods of measurements on herring fat content. Data obtained from the 2006 herring acoustic surveys indicate that, as herring length and weight increases, so too does fat content. When comparing fat and weight, fish of a heavier weight did not tend to have very low fat contents. A FATMAP (a visual representation of spatial variation in fat content of North Sea herring) was constructed for the immature herring in the "Scotia", "Solea" and "Tridens" data. Initial analysis showed that there was a strong linear relationship between

length and fat content of immature fish. Plotting the raw fat data showed a clear southeast to northwest trend in fat content.

In a second talk Lindsay McPherson from Aberdeen University presented her findings concerning the accuracy of macroscopic staging of North Sea herring. As the macroscopic maturity scale is based on a histological scale, histology is the most accurate means of assessing maturity stage in fish. New, unambiguous histology keys were formed in order to calculate the accuracy of macroscopic staging. Macroscopic staging on FRV "Scotia" in 2006 was 78.6% accurate for females and 83% accurate for males. Much of the error in female staging was due to maturing repeat spawners (stage 3) being assessed as recovering (stage 8). There were also difficulties in the sexing of virgin gonads, with examples of both sexes wrongly classified. While marked inaccuracies were found they are unlikely to impact upon the SSB as the number of fish assessed as immature (1-2) or mature (stages 3-8) were correct.

1 Terms of Reference

The **Planning Group for Herring Surveys** [PGHERS] (Chair: Norbert Rohlf, Germany) met at the Danish Institute for Fisheries Research, Charlottenlund, Denmark, from 22–26 January 2007 to:

- a) combine the 2006 survey data to provide indices of abundance for the population within the area, by means of the FishFrameAcoustics database;
- b) coordinate the timing, area and effort allocation and methodologies for acoustic and larvae surveys for herring and sprat in the North Sea, around Ireland, Division VIa and IIIa and the Western Baltic in 2007;
- c) intensively test the in-year developments of the FishFrameAcoustics database, specifically verify the ability of the new system to calculate global survey estimates from raw acoustic and trawl data using 2005 and if possible 2006 survey data;
- d) further harmonise the maturity readings of North Sea and Western Baltic herring conducted by different labs, specifically the definition of mature and immature fish;
- e) report on the possible bias introduced by a change in gear in the Dutch herring larvae survey.

PGHERS will report by 5 February 2007 for the attention of the Living Resources, and the Resource Management Committees as well as to HAWG and ACFM.

2 Participants

Norbert Rohlf (Chair)	Germany
Teunis Jansen (Host)	Denmark
Bram Couperus	Netherlands
Bjarne Stage	Denmark
Eberhard Götze	Germany
Jörn Schmidt	Germany
Paul Fernandes	UK
Bo Lundgren	Denmark
Else Torstensen	Norway
Karl-Johan Staehr	Denmark
Deborah Davidson	UK (part time)
Lindsay McPhersson	UK (part time)
Åge Fotland	Norway (part time)

3 Herring larvae surveys

3.1 Review of Herring Larvae Surveys in 2006/2007

3.1.1 Review of the western Baltic larvae survey

The Rügen herring larvae survey (RHLS) is at present the only herring larvae survey in the Western Baltic. The survey is conducted by the German Institute for Baltic Sea Fisheries, Rostock, and its predecessor since 1977 in the Greifswalder Bodden and Strelasund. These waters, between Rügen Island and the mainland, are known to be the major spawning site of the Western Baltic spring spawning herring stock (WBSS). Sampling takes place with a Bongo-net on 35 fixed stations and is repeated weekly during most of the spawning season. Additional hydrographic parameters are recorded.

During the last decade, the RHLS was aimed at delivering a fishery independent recruitment estimate for the WBSS assessment conducted by the ICES Herring Assessment working group (HAWG). While the index calculated (the N30 index providing the extrapolated abundance of larvae at 30 mm length) has shown to predict very strong year classes reliably, it has failed to predict year classes of intermediate strength. The reasons for this disagreement are still under investigation.

The RHLS project was peer reviewed by two external reviewers in November 2006. The reviewers examined the existing data set thoroughly and discussed possibilities for amendments and future perspectives with all staff involved in the survey. They stated that the scientific value of the time series would be extremely valuable, but recommended to shift the main focus from the delivery of a recruitment index for the assessment towards basic ecology and early life history of commercially exploited fish stocks to utilise the results more effectively (Dickey-Collas and Nash 2006). A number of detailed recommendations were given, and some of them will already affect the survey work plan in 2007:

- The weekly sampling will be continued, but sampling will start earlier in the year to cover more of the spawning season (will be extended by 4 weeks and start end of March), and the sampling of all 35 standard stations will take place in 2-3 days compared to 4-5 days in the previous setup. This should allow for a less "artificial" definition of cohorts.
- 2) The stratification of the survey area will be adjusted to allow for a complete coverage of a representative half of the stations during one day (aiming at a greater independence from unfavourable weather conditions), and to reduce the variability of the index. The time series will have to be recalculated following the re-stratification (see PGHERS WD Oeberst 2007).
- 3) The procedure for counting and measuring larvae will be amended: The total number of larvae counted will be reduced, and large larvae needed for the continued calculation of the N30 index will be targeted with a larger mesh in the outer bongo.
- 4) A number of basic assumptions will be tested during the next season, specifically the retention of larvae in the Greifswalder Bodden area (by regular sampling of additional stations outside the area), a possible net avoidance by the larvae (by a comparative sampling at night), the correlation between length and age (by otolith microincrement analysis) or the assumed high share of this specific area on the total spawning of WBSS (by a 3-vessel cooperative quasi-synoptic coverage of the whole spawning area to identify actual spawning sites.
- 5) An in-depth literature study has been started and will retrieve specifically the valuable grey literature (e.g. master's theses in German) not utilized in the context of the RHLS so far.

In the medium term, ecosystem parameters will also be recorded, like the availability and extension of spawning substrate (macrophytes), food (nauplia) and predators or food

competitors (namely the invasive ctenophore *Mnemiopsis*) in the area. National and international cooperation with different institutions and universities are in the phase of establishment. The N30 time series will be continued and available (after recalculation of the whole time series) for the next benchmark assessment of the WBSS, and results of the altered survey and the testing of basic assumptions will be presented to PGHERS in 2008. A second review of the RHLS is planned for 2009.

3.1.2 North Sea

In the reporting period, the Netherlands and Germany participated in the larvae surveys. In total seven units and time periods out of ten were covered in the North Sea (Table 3.1.2.1.).

Table 3.1.2.1: Areas and time periods covered during the 2006/2007 herring larvae surveys:

Area / Period	1–15 September	16-30 September	1-15 October
Orkney / Shetland	Germany	Germany	
Buchan		Netherlands	
Central North Sea		Netherlands	
	16-31 December	1-15 January	16-31 January
Southern North Sea	Netherlands	Germany	Netherlands

The herring larvae sampling period was finished just prior to the PGHERS meeting. For most of the larvae surveys in the North Sea, sample examination and larvae measurements have not yet been completed; therefore, it is not yet possible to give an overview on the final larvae survey results. Distribution maps of larval abundance from individual surveys analysed so far are shown in Figures 3.1.2.1 - 3.1.2.4.

However, as in previous years, the information necessary for the larvae abundance index calculation will be ready for and presented at the Herring Assessment Working Group (HAWG) meeting in March 2007.

Figure 3.1.2.1: Orkney/Shetlands 1 – 15 September 2006 (FRG), Larvae Abundance, all length classes (n/m^2) .

Figure 3.1.2.2: Orkney/Shetlands 16 – 30 September 2006 (FRG), Larvae Abundance, all length classes (n/m^2) .

Figure 3.1.2.3: Buchan 16 - 30 September 2006 (NL). Abundance of larvae < 10 mm (n/m²).

Figure 3.1.2.4: Central North Sea 16 - 30 September 2006 (NL). Abundance of larvae < 10 mm (n/m^2) .

3.2 Co-ordination of Larvae Surveys for 2007/2008

At present only the participation of the Netherlands and Germany is confirmed in the 2007/2008 period. Due to the ships time schedule, coverage of the first time window 1-15 September and the last time window 1-15 October will not be possible in any of the areas. In the second time window, ships from Germany and the Netherlands will share the area of the Central North Sea. Outside the larval sampling programme some additional stations shall be sampled in the area of the Doggerbank to test anecdotal information of a recolonisation of the area and to obtain information about ongoing spawning activity. No particular station grid has been designed by PGHERS because of the investigative nature of this sampling. The positioning of transect location should be the responsibility of the cruise leaders.

A preliminary timetable for the next sampling period is presented as follows:

Area / Period	1–15 September	16–30 September	1–15 October
Orkney / Shetland		Germany	
Buchan		Netherlands	
Central North Sea		Germany/Netherlands	
	16–31 December	1–15 January	16–31 January
Southern North Sea	Netherlands	Germany	Netherlands

Table 3.2.1: Areas and time periods for the 2007/2008 herring larvae surveys:

Survey results should be sent to Norbert Rohlf (Institut für Seefischerei, ISH, Hamburg), for inclusion into the IHLS database. ISH reports the summarised results and the updated series of MLAI-values to the HAWG.

3.3 Investigation of bias introduced by change of gear

3.3.1 Introduction

In 2004, the Netherlands changed from the use of a Gulf III plankton torpedo in the herring larvae surveys to the Gulf VII torpedo. However, nothing is known about differences in catchability of herring larvae between these two devices. The Gulf III is a heavy encased high-speed plankton torpedo with a blunt nose cone and one mechanical flow meter placed in the middle of the nose cone (Figure 3.3.1.1).

Figure 3.3.1.1: The Gulf III plankton torpedo.

The main differences between the Gulf VII and Gulf III is that the Gulf VII is an un-encased torpedo with a sharp nose cone and two electronic flow meters, one in the nose cone and one mounted externally (Figure 3.3.1.2).

Figure 3.3.1.2: The Gulf VII plankton torpedo.

To investigate the possible bias introduced by the change of gear, real-time fishing comparison trials were conducted during the September herring larvae survey in 2006.

3.3.2 Method

A frame was built on which both torpedo's could be mounted (Figure 3.3.2.1). In the frame, the torpedoes are placed approximately one metre apart. This frame was tested during a survey in May in the English Channel and Southern North Sea. The stability of the frame was tested with a heal-and-pitch sensor mounted on the frame. If the performance of the frame was good it would be used to conduct the whole larvae survey in September. The towing of the frame with both torpedoes was conducted as described in the manual for herring larvae surveys. The seabird CTD was not mounted on top of one of the torpedoes, but for stability it was mounted on the frame itself, in between the samplers. The frame was switched from the port to starboard winch and the torpedoes on the frame were switched from side to side.

Figure 3.3.2.1: The frame, with both torpedoes mounted on top, as used for the comparing fishing trial.

3.3.3 Results

May survey

The performance of the frame with both torpedoes in May was good. The frame was stable and showed less pitching and rolling compared to the torpedoes on their own (Table 3.3.3.1). It was therefore decided to use this setup for the September larvae survey.

POSITION BEHIND	POSITION 0	ON FRAME		
SHIP	GULF III	GULF VII	Рітсн	ROLL
Starboard	Starboard	Portside	-0.16	-0.14
Starboard	Portside	Starboard	0.00	-0.57
Portside	Portside	Starboard	-0.04	-0.56
Portside	Starboard	Portside	-0.19	0.54
Portside	Separate		0.83	-0.63
Portside		Separate	1.05	1.03

Table 3.3.3.1: Stability of the frame and separate torpedoes.

September survey

During the September herring larvae survey 100 stations were sampled with both torpedoes. Three stations before the end of the survey, the mechanical flow meter of the Gulf III broke down and it was not possible to repair this on board the ship. It was, therefore, not possible to perform calibration tows with the frame. For the calculation of the flows it was decided to use the highest (1.85) and lowest (1.65) calibration value of the Gulf III flow meter that was found in the 2000 till 2003 herring larvae surveys which were conducted with this flow meter. Figure 3.3.3.1 shows the volume filtered by both torpedo's mounted on the frame.

Figure 3.3.3.1: Volume filtered by Gulf III and Gulf VII both mounted on the frame.

Sea water volume filtered by the Gulf VII is significantly higher then the Gulf III. When comparing the flows from previous herring larvae surveys, where the torpedoes were towed separately, the volume filtered by the torpedoes is similar (Figure 3.3.3.2).

Figure 3.3.3.2: Volume filtered by Gulf III and Gulf VII towed separately.

Total numbers of larvae caught, corrected for the area of the nose cone, by the Gulf III were higher compared to the catches of the Gulf VII. For the length classes 7 to 10 mm the numbers of larvae caught by the Gulf III were significantly higher (Figure 3.3.3.3).

3.3.4 Discussion

With both torpedoes mounted on the frame the volume of sea water filtered by the Gulf VII is significantly higher. However no calibration of the flow meters was performed during the September survey. The calculated water volume filtered by the Gulf VII on the frame is the same compared to this torpedo being towed separately, while the volume filtered by the Gulf III is lower on the frame than towed separately. A new calibration will be performed with the three flow meters towed together over a known distance to check the calibration values.

The total number of larvae caught by the Gulf III is higher compared to the Gulf VII, but must be converted by the volume filtered to be comparable. Since the corrected flows can not be calculated this comparison cannot be made. If the number of larvae per filtered volume is still significantly higher in the catches of the Gulf III, correction factors will be calculated to estimate reliable Gulf VII catches. During the 2007 mackerel and horse mackerel egg survey, ichthyoplankton hauls with both torpedoes are planned to compare the catchability of mackerel eggs.

3.4 Possible shift in spawning time of North Sea Herring

3.4.1 Larvae abundance

In 2006, herring larvae abundances in the Buchan area, the Central North Sea and Channel spawning grounds seem to have changed compared to the previous years. In 2005, the mean larvae abundance was higher in the Buchan and Central North Sea area compared to 2006 (Table 3.4.1.1) and the numbers of stations without any herring larvae was higher in 2006. The mean length of the herring larvae in 2006 was lower, and the number of yolk sac larvae found in the 2006 samples was 18% compared to 1% in 2005.

Table 3.4.1.1: Larvae abundance in the Bu	chan area and the	Central North Sea	spawning grounds
in 2005 and 2006.			

	2005	2006
Mean N Larvae/m3	3.31	0.81
StDev	9.66	5.25
Maximum N Larvae/m3	68.22	57.45
Total stations	160	143
% stations without larvae	32.5	44.8
Mean length (mm)	8.7	7.0
% yolk sac larvae	0.8	17.8

At the spawning grounds in the English Channel, larvae abundances in December 2004 were much higher compared to 2005, whereas the abundances in January 2005 were lower compared to 2006 (Table 3.4.1.2). This is interpreted as an indication that the peak in spawning was later in the period 2005/2006 compared to the previous year. Mean length of the herring was the same for both periods, but larvae minimum lengths (5 mm) were lower in 2005/2006, compared to 7 mm in 2004/2005. There is also a huge difference in the number of yolk-sac larvae: none were found in the samples in 2004/2005, while almost half the larvae in December 2005 and 8% in January 2006 still had a yolk sac.

Table 3.4.1.2: Larvae abundance at the English Channel spawning grounds in December 2004 and2005 and January 2005 and 2006.

	DECEMBER		JANU	ARY
	2004	2005	2005	2006
Mean N Larvae/m3	5.31	0.41	3.27	8.16
StDev	21.10	2.56	15.01	20.36
Maximum N Larvae/m3	307.10	22.17	137.97	121.09
Total stations	76	76	91	96
% stations without larvae	52.0	45.00	17.6	34.4
Mean length (mm)	9.1	9.4	10.3	10.3
% yolk sac larvae	0.0	47.0	0.0	8.0

Preliminary results of the sampling in the English Channel show that in December 2006 only 25% of the samples contained larvae of which only 1 sample contained over a hundred larvae. A lot of the larvae caught are reported to still have yolk sacs.

However, data collected in the Orkney/Shetland area during two coverages in the first and the second half of September show no indications of changes in the timing of peak spawning.

3.4.2 Data from other surveys and market sampling

In 2006 the 'maatjes' herring season was delayed by two weeks because of the low lipid content of the herring. The Dutch vessel "Tridens" sampled the Buchan and Central North Sea during the 2006 herring acoustic survey. Results from this survey show that, even though the herring were mature, low numbers of herring with developing gonads were found compared to previous years. The lipid content of caught herring showed also a high variance.

During the time of the larvae surveys in the Buchan area, the Central North Sea and the English Channel samples taken for the 'market sampling' at IMARES still had a high percentage of spawning herring. Also during the larvae surveys fishing vessels were seen in the area fishing for herring. Furthermore, fishermen have reported fishing on the 'Doggerbank' herring again, indicating a re-colonization of the Dogger Bank as spawning ground.

3.4.3 Future

The data presented may indicate a shift in the peak of spawning of North Sea herring in the Buchan area and the Central North Sea and English Channel spawning grounds. Whether this is yearly variation or a temporal shift can not be deduced from these data.

In order to prove that a shift is occurring, and to sample the peak of the spawning to detect the re-colonization of the Dogger Bank as spawning ground, some members of the group felt it necessary to extend the larvae survey in the Buchan into the first half of October and the survey in the English Channel into the first half of February.

However, other members of PGHERS are not convinced that the evidence presented to date indicates a shift in the timing of peak spawning. Unless strong indications for such a shift do occur, PGHERS found it more important to allow for the calculation of a robust estimate for the larvae index and therefore it is preferable for a more complete coverage of all survey areas contributing to the larvae index before any extension of the sampling period should be taken into account.

4 Acoustic surveys

4.1 Combined estimates of the acoustic survey

4.1.1 North Sea and West of Scotland acoustic survey

The surveys are reported individually in the Appendices of this report. A combined report has been prepared from the data from all surveys, attached as Annex 4. The combined survey results provide spatial distributions of herring abundance by number and biomass at age by statistical rectangle; and distributions of mean weight and fraction mature at age.

The estimates of North Sea autumn spawning herring SSB are reasonably consistent with previous years, at 2.1 million tonnes and 11,830 millions herring (Table 2). The survey again shows two well-above year classes of herring (1998 and 2000). Growth of the 2000 year class seems still to be slower than average, individuals of this year class have almost the same size and weights than the one year younger fish of the 2001 year class.

The estimates of Western Baltic spring spawning herring SSB are 336,500 tonnes and 4,026 million herring (Table 3), which is a strong increase following last years small decrease, but the Western Baltic survey is known to produce a rather noisy signal. The indications are that the stock might has recovered and is dominated by 1 and 2 ring fish.

Both the stock estimate as well as the SSB estimate for the herring in VIa(N) (West of Scotland) have significantly increased when compared to last years estimate. Given the known difficulties of quantifying young fish on this survey, the SSB estimate is likely to give the better index of change. The West of Scotland estimates of SSB are 472,000 tonnes and 2.6 billion herring. This is a substantial increase compared to last years estimate, and the SSB has more than doubled. The SSB is in the same order of magnitude that it had during the last ten years. The abundance by year class is consistent with previous years and also with results from the adjacent North Sea area. The 1998 year class is now depleted, but there were a significant number of 2 and 5 ring fish seen on the survey.

Table 4.1.1.1. Total numbers (millions of fish) and biomass (thousands of tonnes) of North Sea autumn spawning herring in the area surveyed in the acoustic surveys July 2006, with mean weights and mean lengths by age ring.

AGE (RING)	NUMBERS	BIOMASS	MATURITY	WEIGHT(G)	LENGTH (CM)
0	4621.8	42.1	0.00	9.1	10.65
1	6822.8	305.2	0.00	44.7	17.92
2	3772.3	477.8	0.66	126.7	24.22
3	1997.2	315.2	0.88	157.9	25.96
4	2097.5	394.3	0.98	188.0	27.19
5	4175.1	784.4	1.00	187.9	27.23
6	618.2	139.2	1.00	225.2	28.68
7	562.1	136.5	1.00	242.8	29.33
8	84.3	20.5	1.00	243.9	29.50
9+	70.4	18.6	1.00	265.0	30.19
Immature	12994.4	503.9		38.8	15.92
Mature	11827.3	2129.9		180.1	26.83
Total	24821.7	2633.8		106.1	21.12

Table 4.1.1.2. Total numbers (millions of fish) and biomass (thousands of tonnes) of Western Baltic spring spawning herring in the area surveyed in the acoustic surveys July 2006, with mean weights, mean length and fraction mature by age ring.

AGE (RING)	NUMBERS	BIOMASS	MATURITY	WEIGHT(G)	LENGTH (CM)
0	5.4			5.9	10.19
1	2081.1	112.6	0.19	54.1	19.18
2	2217.0	160.4	0.67	72.4	21.23
3	1780.4	158.7	0.91	89.1	23.22
4	490.0	56.2	0.96	114.8	24.96
5	180.4	23.7	1	131.6	26.21
6	27.0	4.1	1	153.2	27.61
7	9.5	1.6	1	169.2	28.89
8	0.0	0.0			
9+	0.1	0.0	1	178.0	29.80
Immature	2764.2	180.9		65.5	20.36
Mature	4026.7	336.5		83.6	22.37
Total	6790.9	517.4		76.2	21.55

Table 4.1.1.3. Total numbers (millions of fish) and biomass (thousands of tonnes) of autumn spawning of West of Scotland herring in the area surveyed in the acoustic surveys July 2006, with mean weights, mean lengths and fraction mature by age ring.

AGE (RING)	NUMBERS	BIOMASS	MATURITY	WEIGHT(G)	LENGTH (CM)
0					
1	112.3	8.4	0	74.99	20.57
2	835.2	112.5	0.808	134.52	24.66
3	387.9	64.3	0.965	165.72	26.33
4	284.5	52.8	1	185.42	27.29
5	582.2	112.2	1	192.48	27.60
6	414.7	84.8	1	204.13	28.11
7	227.0	48.0	1	211.22	28.39
8	21.7	4.8	1	224.04	29.92
9+	59.3	13.7	1	231.01	29.17
Immature	284.5	29.9			
Mature	2640.1	471.7			
Total	2924.6	501.5			

Figure 4.1.1.1. Abundance of autumn spawning herring 1-9+ from combined acoustic survey July 2006. Numbers (millions) (upper figure) and biomass (thousands of tonnes) (lower figure).

4.1.2 Western Baltic

A joint German-Danish acoustic survey was carried out with RV "Solea" from 5 - 24 October 2006 in the Western Baltic. This survey is conducted every year to supply ICES "Herring Assessment Working Group for the Area South of 62° N" (HAWG) and "Baltic Fisheries Assessment Working Group" (WGBFAS) with an index value for the stock size of herring and sprat in the Western Baltic area.

As in previous years, acoustic recordings were done only during the night. An EK60 echosounder with a hull mounted ES38B transducer and EchoView3 integrator software were used to collect and process acoustic data. The cruise track was 1,330 nautical miles long (area 13,788 n. mi.²) and covered the ICES Subdivisions 21, 22, 23 and 24. To identify the target species and to determine the length and weight of fish, 54 trawl hauls were carried out. Samples of herring and sprat were frozen for subsequent analysis in the lab. After each haul hydrographic measurements were taken with a CTD-O2 probe.

The stock of Western Baltic spring spawning herring was estimated to be 5.7×10^9 individual fishes or about 214x 10^3 tonnes in Subdivisions 22–24. This is comparable to last year's results. The estimated total sprat stock was found to 26.2 x 10^9 fish or 158 x 10^3 tonnes. This is the highest value ever observed. The abundance estimate of sprat is dominated by the most recent year-class. A survey report is provided in Annex 3

4.2 Sprat

Sprat data were available from RV "Walther Herwig III", RV "Tridens" and RV "Dana". RV "Scotia" and RV "Johan Hjort" reported no sprat in the northern areas. The distribution of sprat by numbers in millions and biomass in the North Sea is shown in Figure 4.2.1. The

southern border of the survey area in 2006 was limited to 52° N. There was no clear indication that the southern distribution has been reached. The same situation is indicated in the north-eastern corner of the surveyed area. However, the highest concentration of sprat was observed off the coast of Scarborough, east coast of England.

In the North Sea no 0-group sprat was observed during the 2006 survey (Table 4.2.1). Here, the abundance was estimated to 44 179 mill individuals and the biomass 452 kt, which is a reduction compared to last year (ICES, 2006). The biomass was dominated by mature sprat (98%). The good year class of 2004, also shown to be very strong as 1 - group in 2005, was in 2006 the strongest 2 - group seen in the data (Table 4.2.2). The sprat is dominated by 1-and 2-group representing a total of 94 - 98% of the biomass.

In Division IIIa, sprat was observed in the ICES squares 41G1-G2, 42G1-G2 and 44G0-G1, all located in the Kattegat. The abundance and total biomass estimated to 2 242 million individuals (Table 4.2.3), a decrease from 4 570 million individuals in 2005. The biomass was estimated to 34 kt, of which immature fish made 63%. No sprat was measured in the IIIa-Skagerrak.

Table 4.2.1. Sprat in the North Sea. Abundance, Biomass, mean weight and mean length by age and maturity, for the North Sea East and West of 3° E and for the total North Sea.

	11	1м	21	2м	31	3м	4м	TOTAL	
	ABUNDANCE (MILL.)								
W of 3° E	1044.803	8022.540	12.030	17097.600	0.297	763.976	10.009	26951.3	
E of 3° E	382.494	13439.539	0.343	3370.138	0.008	34.657	0.285	17227.5	
Total North Sea	1427.297	21462.079	12.373	20467.738	0.305	798.633	10.294	44178.7	
Immature total								1439.7	
Mature total								42728.4	
			Bio	omass (kt)					
W of 3° E	5.67	60.76	0.12	228.03	0.00	11.96	0.17	306.7	
E of 3° E	1.54	98.44	0.00	44.81	0.00	0.54	0.00	145.3	
Total North Sea	7.21	159.19	0.12	272.84	0.00	12.50	0.17	452.0	
Immature total								7.3	
Mature total								444.7	
	mean weight (g)								
W of 3° E	5.4	7.6	10.1	13.3	11.6	15.7	16.6		
E of 3° E	4.0	7.3	10.1	13.3	11.6	15.6	16.6		
Total North Sea	5.0	7.4	10.1	13.3	11.6	15.7	16.		
	mean length (cm)								
W of 3° E	8.8	9.9	10.9	12.1	11.5	13.0	13.0		
E of 3° E	8.0	9.7	10.9	12.0	11.5	13.0	13.0		
Total North Sea	8.6	9.8	10.9	12.1	11.5	13.0	13.0		

BIOMASS							1	NUMBERS		
	0	1	2	3+	SUM	0	1	2	3+	SUM
2006	0.0	166.4	273.0	12.7	452.0	0	22889	20480	809	44179
2005	0.0	479.6	67.4	16.8	563.8	0	70175	5533	1106	76814
2004	19.4	266.6	71.5	2.1	359.6	17400	28940	5180	99	51620
2003	0.0	198.8	61.3	6.0	266.1	0	25292	3984	339	29616
2002	0.0	166.8	55.1	3.7	225.6	0	15769	3687	207	19664
2001	0.0	96.5	23.5	1.8	121.8	0	12639	1812	110	14561
2000	0.0	100.4	92.4	2.8	195.6	0	11569	6407	180	18156
1999	0.0	3.3	0.0	0.0	3.3	0	353	5	0	358
1998	0.1	48.2	14.1	0.8	63.2	17	5365	960	37	6379

Table 4.2.2. Comparison of biomass and abundance of sprat as obtained by the summer North Sea acoustic survey. The survey area was increased over the years. Only figures for the last 4 years are roughly comparable.

Table 4.2.3. Sprat in Division IIIa / Kattegat. Abundance, Biomass, mean weight and mean length by age and maturity.

	0	11	1м	21	2м	31	3м	4 I	4м	5	TOTAL
	Abundance (mill.)										
IIIa- Kattegat	86.006	43.261	18.025	1079.634	372.287	257.375	357.457	10.701	17.857	9.600	2242.2
IIIa- Skagerrak											0.0
Total IIIa	86.006	43.261	18.025	1079.634	372.287	257.375	357.457	10.701	17.857	9.600	2242.2
Immature total											1219.6
Mature total											765.2
					Biomas	ss (kt)					
IIIa- Kattegat	0.32	0.40	0.17	15.73	5.42	4.54	6.13	0.24	0.39	0.22	33.6
IIIa- Skagerrak											0.0
Total IIIa	0.32	0.40	0.17	15.73	5.42	4.54	6.13	0.24	0.39	0.22	33.6
Immature total											21.2
Mature total											12.3
					Mean len	gth (g)*					
IIIa- Kattegat	3.7	9.3	9.3	14.6	14.6	17.6	17.6	22.0	22.0	22.5	
IIIa- Skagerrak											
Total IIIa	3.7	9.3	9.3	14.6	14.6	17.6	17.6	22.0	22.0	22.5	
					Mean leng	gth (cm)*					
IIIa- Kattegat	8.3	11.0	11.0	12.5	12.5	13.6	14.9	14.9	15.3		
IIIa- Skagerrak											
Total IIIa	8.6	9.8	10.9	12.1	11.5	13.0	14.9	14.9	15.3		

Figure 4.2.1. North Sea sprat. Abundance (upper figure in italics, in million individuals) and biomass (lower figure in bold, in kt) per statistical rectangle as obtained by the herring acoustic survey 2006.

4.3 Coordination of acoustic surveys in 2007

4.3.1 North Sea and West of Scotland

In 2004, the group re-allocated the survey effort applied to the International North Sea herring survey (see Section 5 of 2003 PGHERS report). In 2005, survey transects were interlaced for those vessels for which a good agreement of scrutiny procedures was demonstrated, and where fishing and interpretation of trawl haul information were comparable. The present layout is considered to be intermediate; it should facilitate further harmonisation of the methods without increasing the risk of losing continuity in the time series. In addition, the North Sea sprat stock should continue to be surveyed for reasons given in section 4 of 2005 report (ICES, 2005b). This requires that the southern boundary of the survey area be kept at 52°N.

In 2006, the group considered that interlacing survey transects would benefit the overall quality of the 2007 survey, but a higher level of coordination would be needed than in the past. To facilitate this, it was decided that tentative cruise tracks should be exchanged prior to the survey for further harmonisation. **Plans should be sent to Bram Couperus, IJmuiden, not later than 30 May 2007**; he will then contact individual cruise leaders if amendments are required.

Additionally, vessels should be in daily radio contact during the cruise at 1900 hrs UTC to exchange position and cruise track information as well as survey results (catch depth, species composition, mean length). Deviations from the original submitted cruise track should be communicated immediately, to enable the coordinator to adapt other nations cruise tracks and to avoid gaps. **Paul Fernandes and Bram Couperus have agreed to act as coordinators during the 2007 survey. They can be reached by email or phone between 25 June 25 and 1 July, and will initiate the radio communication from 1 July onwards.**

Acoustic surveys in the North Sea and west of Scotland in 2007 will be carried out in the periods and areas given in Table 4.3.1.1 and Figure 4.3.1.1.

Table 4.3.1.1. Areas and Rectangles to be covered by the participants in the 2007 herring acoustic survey.

VESSEL	PERIOD	AREA	RECTANGLES
Charter west Sco (SCO)	03 July – XX July (2 $\frac{1}{2}$ weeks)	56°- 60°30'N, 3° - 10° W	41E0-E3, 42E0-E3, 43E0-E3, 44E0-E3, 45E0- E4, 46E1-E5, 47E2-E7, 48E3-E7, 49E4-E8, 50E5-E6
Johan Hjort (NOR)	21 June – 19 July	56°30'- 62° N, 2° - 6° E	42F2-F7, 43F2-F5, 44F2-F5, 45F2-F5, 46F2- F4, 47F2-F4, 48F2-F4, 49F2-F4, 50F2-F4, 51F2-F4, 52F2-F4, plus overlap area A, Overlap with Scotia Shetland between 60 – 61° N (49E8 - 50E9)
Scotia (SCO)	29 June – 19 July	57° - 62° N, 2/4° W - 2° E	43E8-F1, 44E6-F1, 46E6-F1, 47E6-F1, 48E6- F1, 49E6-F1, 50E6-F1, 51E7-F1, 52E8-F1, 52E9-F1 Overlap with Johan Hjort North of 60 to 61 °N
Tridens (NED) PBVO	25 June – 20 July	53°30' – 58°30' N, Eng/ Sco to Den/Ger coasts	36F0-F3, 38F2-F7, 40E8-F5, 41E7-F5, 42E7- F1, 45E6-F1
Solea (GER) DBFH	28 June – 17 July	52° - 56° N, Eng to Den/Ger coasts	33F1-F4, 34F2-F4, 35F2-F4, 36F4-F7, 37E9- F8, 38E9-F1, 39E8-F7, 40F6-F7
Dana (DEN) OXBH	01 July –12 July	Kattegat and North of 56° N, east of 6° E	41 F6-F7, 41G1-G3, 42F6-F7, 42G0-G3, 43F6-G2, 44F6-G1, 45F8-G1, 46F9-G0

Borders of survey areas between the west of Scotland charter vessel and RV "Scotia" can be moved if required. Overlapping areas will be surveyed by (A) RV "Scotia" and RV "Johan Hjort" (mid of July, Rectangles 49E8-F0, 50E9-F0), (B) the charter vessel and RV "Scotia" (at dates to be defined, in Rectangles 47E6-E7, 48E6-E7. 49E6-E8), (C) RV "Johan Hjort" and RV "Dana" (around 10 July, Rectangles 42F6-7).

No intercalibration is planned for 2007.

The results from the national acoustic surveys in June-July 2007 will be collated and the results of the entire survey will be combined during the next PGHERS. It might be necessary to conduct a joint evaluation of those surveys where vessels are due to interlace during the cruise (NED, GER, SCO), preferably intersessionally. Individual or combined survey results for sprat and herring should be uploaded to FishFrame NorthSea module (FFN) no later than **30 November 2007**. The group agreed that if one or more parties deliver their *validated* data later than 15 December 2007, the latest institute will be given the responsibility for producing the combined survey data and report in 2007. Participants should also be prepared to additionally deliver their raw data to the stage 1 module of the database for the survey periods 2005 and 2006 no later than 30 October 2007.

Figure 4.3.1.1a. Survey area layouts for all participating vessel in the 2007 acoustic survey of the North Sea and adjacent areas. (WSC = West of Scotland charter; SCO = Scotia; NOR = Johan Hjort; DK = Dana; NL = Tridens; GER = Solea).

Figure 4.3.1.1b. Survey effort in the 2007 acoustic survey of the North Sea and adjacent areas. (Red = 7.5 n. mi. spacing; Magenta = 15 n.mi.; Cyan = 30 n. mi.).

4.4 Hydrographic data

According to one of last year's recommendation of PGHERS the hydrographic data from all participants of the acoustic survey in June / July were collated and stored in a common format. This collection contains now the period 2000–2005 in the Ocean Data View format completely. For the year 2006 only data from Scotland, the Netherlands and Germany are available. The missing datasets from the other participants will be delivered as soon as possible to update the database.

It is recommended also for future surveys, that hydrographic data should be collected and stored into the FishFrame database as an additional table to allow fast and easy access for all users. It is of special advantage that the hydrographic data are synchronous with the acoustic measurements.

The main aim of the database is to enable studies searching for possible linkages between the hydrographic environment and the distribution of fish. An appropriate analysis is only practicable if a sufficient amount of data records is present.

5 Review and update of PGHERS manuals

5.1 Acoustic manual

According to the recommendations of the 2006 PGHERS, several updates and improvements of the manual have been suggested by participants from Germany. These include: some reorganisation of the sequence of the sections in the manual; adding a section with special instructions for the calibration of EK60 complementing the ER60 manual; adding a section stressing the importance of measuring and compensating for the possible changes of environmental conditions between the calibration site and the survey areas and outlining the possible magnitudes of errors. The suggestions also include addition of guidelines for selecting a suitable mesh size for the sampling trawl and an extension of the section outlining the possibility of using multi-frequency algorithms to improve species recognition for the judging procedure. The bibliography has been updated accordingly and the list of gears used by the different nations has been updated. The suggested changes are both very relevant and highly needed.

However, the suggested text will need some reviewing which will be done by correspondence in cooperation between Germany, Denmark and Scotland. Also references to the now obsolete HERSUR database should be replaced with instructions on using the FishFrame database. The revised text will be sent to all members of PGHERS before the next meeting by the Chair.

In the EK60 calibration section it is suggested that the procedure in the ER60-manual is followed. PGHERS recommends that this must be complemented by the integration procedure on a centred calibration target as outlined in the second part of the Transducer and calibration section in order to determine a precise calibrated Sv-transducer gain.

PGHERS also recommends that the calibration procedure as outlined in the manual be evaluated by ICES WGFAST.

5.2 IHLS manual

This year no modifications were made with regard to the IHLS manual. Results obtained from the intercalibration exercise between Gulf III and Gulf VII sampler will be implemented in the manual as soon as they become available.

6 Biological Parameters

Doubts and difficulties in assessing the maturity of herring have been discussed in PGHERS since the end of the 1990s. The participants in the acoustic survey use either a four or an eightpoint scale (which are compatible) for maturity classification. Last year in PGHERS, concerns were raised once again with regard to maturity staging of herring; especially about the classification of older herring (4+) in stage 2 and 8 (both on the eight-point scale). While herring in stage 2 are juveniles, fish in stage 8 are adults and could skip spawning for the recent period. Both stages can easily be mixed up and therefore a misclassification could result in an over- or underestimation of SSB.

With the aim to further harmonise the maturity staging of herring, PGHERS has investigated the impact of such a misclassification on SSB estimates.

One of the questions is: should herring in stage 8 be treated as being part of a spawning stock? The majority of North Sea herring are autumn spawners, but there are still spring-spawning herring in the North Sea. Most of these inhabit the Norwegian area and might be examined as being in stage 8 (after having spawned in spring) during the time of the acoustic surveys. On the other hand, PGHERS do not believe that stage 8 herring will contribute to the SSB of the autumn spawning stock in the given year, and thus they could be regarded as being outside the SSB of NSAS herring. However, whenever identified, herring in this stage are treated as mature fish by PGHERS and included in calculations of the SSB by the HAWG. It is also clear that once a fish has contributed to the spawning stock, it will always be an adult, because whenever herring passes through stage 8, they develop into stage 3 and can not go back to stage 2 (juveniles).

To evaluate the significance of this problem, PGHERS calculated the percentage of herring in each stage and for each of the acoustic survey in 2006, respectively (Table 6.1).

It is evident that the problem of misclassification of stages is not of equal importance in all of the areas surveyed. While both stages do occur in the Norwegian and Scottish area, they are seldom found in the southern parts of the North Sea, which is dominated by juvenile herring (survey area of Germany and the Netherlands). Herring in stage 8 do also occur in the Skagerrak / Kattegat area, but Denmark counts all 5-ringers as being 100% mature.

However, none of the surveyed areas in the North Sea contain a percentage of herring at stage 8 in excess of 11%. In most cases, it is the other stages are much better represented and not all fish in stage 8 can be regarded as misclassified. However, during the acoustic survey in the area West of Scotland almost 30% of herring were found to be in stage 8.

PGHERS concluded that misclassification of stages does occur, but should have only a minor effect for the calculation of SSB (see Section 8).

	STAGE 1	STAGE 2	STAGE 3	STAGE 4	STAGE 5	STAGE 6	STAGE 7	STAGE 8
Scotia (UK)	1	8	57	22	0	0	0	11
Johan Hjort (NOR)	9	22	44	16	3			6
Tridens (NL)	77		19			0		4
West of Scotland (UK)	3	4	40	22	-	-	-	30
Dana (DK) (only NS)	78	21	1	<1				
Solea (FRG)	> 99		<1		0		0	

Table 6.1. Percentage of the different maturity stages on the total numbers for each cruise in the different areas in 2006.

7 FishFrame

7.1 History and objectives

At PGHERS 2004 and 2005 it was decided to initiate the development of a full system to store and process the data from the acoustic survey. The input data level should be scrutinized NASC values and complete information from trawl hauls. The output level should be global stock estimates. The system was regarded as consisting of three stages (Figure 7.1.1):

Stage I: Basic, disaggregated fisheries and acoustics data.

Stage II: Data manipulation and aggregation tools.

Stage III: Aggregated database and tools to derive global estimates from national, aggregated data.

A stepwise development and implementation approach was chosen. The first step was to:

- Evaluate current HerSur software and complete the dataset on that level.
- Develop and test stage III.
- Second step was to:
- Upgrade stage I (HerSur) to FishFrame technology.
- Develop and test stage II.

The first step was partly finished before PGHERS 2006. It was then decided to complete these tasks and begin on the second step.

Figure 7.1. Stages in handling of acoustic data in FishFrame.

7.2 Status of FishFrame

Three new versions (4.1, 4.2 and 4.3) have been released since PGHERS 2006.

7.2.1 Development

The following tasks have been completed in 2006:

- General
 - FishFrameAcoustics 1.1 migration into FishFrame 4.3
 - Update documentation (user manual (Jansen and Degel, 2006a), test document (Jansen and Degel, 2006) and exchange format description (Degel and Jansen, 2006))
- Stage 3
 - Release step (data status tracking)
 - Interpolation of missing rectangles
 - Minor tasks: -Fraction with 9 decimal places. -Mileage with 1 decimal. overwrite AB and SD per year, ship and species. –Position fields on pivot reports
- Stage 2
 - Planning/specification done during workshop in June
- Stage 1
 - Tree based data browser
 - Upload and validation
 - Release step (data status tracking)
 - Revise exchange format
 - Code reports

7.2.1 Data

Stage 3 data

All countries have uploaded survey data from 2006 for herring and sprat. Teunis Jansen completed the dataset for 2003, 2004 and 2005 by extracting the national input data from John Simmonds' combined excel sheets.

Stage 1 data

The upload for stage 1 data has only been open for 1 month, so there has not been much time to upload. Germany has uploaded the fisheries data (AF file) for 2006. The stage 1 data from 1995-2005 present in HerSur was migrated into FishFrame. The data quality was not satisfactory, especially in fields like date and position. This was handled whenever possible, but some data could not be migrated. Furthermore there was no stock identifier (like the spawning type field on the CA record). It is therefore recommended to check the data thoroughly or to re-upload them country by country.

7.2.2 Inter-session meeting

A FishFrameAcoustics workshop was held at DIFRES in Copenhagen on the 13-14 of June. The main purpose of the workshop was to analyze the differences between the various national raising and data handling procedures. Participants from the Netherlands, Germany, Scotland and Denmark represented the HERAS (North Sea) survey, while one participant from the Faroe Is. represented the two NAPES (North East Atlantic) surveys, and one representative from Germany represented the BIAS (Baltic Sea) survey.

Following topics were discussed: Combination of catches, Selection of homogeneous regions, Calculation of mean cross section σ , Estimation of unsampled strata, Stratification, Planning and prioritization of development tasks, Evaluation of Stage 1 exchange format, other software solutions (Beam, BEI2, Faroese Access base). Differences between the surveys (HERAS, BIAS and NAPES) were discussed as well.

The results can be seen in Degel and Jansen (2006a).

7.3 FishFrame Test

The structured acceptance test (Jansen and Degel, 2006b) was performed by several subgroups during the meeting.

7.3.1 Test results of calculation, aggregation and reporting procedures

Testing of the calculation, aggregation and reporting procedures in stage 3 was done on 2004 and 2005 data during the meeting by Paul Fernandes and Teunis Jansen. The outputs from FishFrame were compared with an updated version of John Simmonds' combined excelsheets.

The test (Table 7.3.1.1) showed that the global estimate of herring was similar. The small difference (0.00-0.25%) is expected to be due to differences in precision during calculation. The complete testing in age maturity-rectangle details and on the mean weight and length showed similar satisfactory results. The complete test and results can be downloaded from FishFrame.

	BALTIC SEA SPRING SPAWNERS	NORTH SEA AUTUMN SPAWNERS	TOTAL
2004	0.00%	0.25%	0.23%
2005	0.00%	0.16%	0.13%

Table 7.3.1.1. Results from comparison between John Simmonds' combined excel sheet and FishFrameAcoustics stage 3 after removing the interpolations and error regarding age 4 immature cells.

7.3.2 Test results of remaining tests

Testing of the data browser, reports, upload, data checking and interpolation for both in stage 1 and 3 was done during the meeting by Bram Couperus and Jörn Schmidt. Two bugs (one in upload and one in interpolation) were found, corrected and the test was done again.

The final test only detected two known bugs that are not critical and will be dealt with in a later release. These two bugs are:

- Nonsense and corrupt xml upload-files are rejected with a general error message, not stating exactly what is wrong.
- Missing fields "Sounder" and "PostProcessor" is not detected even though they are mandatory.

7.4 Conclusion and planning

FishFrame performed satisfactory and was therefore used to combine the national data into the integrated survey result. FishFrame will be the used again for the 2007 survey period.

A list of prioritized tasks can be seen on FishFrame. Main items from this list are given below:

- Stage 1
 - Upload 2005 and 2006
 - Quality assure all historic data
- Stage 2
 - Develop and implement
- Stage 3
 - Possibility to upload data in CSV-files
- All stages:
 - Download data module
 - Standard reports for copy-paste into PGHERS report

7.4.1 Funding

So far DIFRES has paid nearly 100% of the development costs. An international group around FishFrame has applied EU for 200,000 Euro for the work in 2007. The outcome of this application is expected in March. Three man-months of work are dedicated to the acoustics component in this project proposal.

Later in 2008 and 2009 FishFrame needs either EU funding or funding by shared costs by the user countries. The latter option is to be explored during 2007.

7.4.2 Steering and ownership

FishFrame is *not* a DIFRES system. It is open source with shared ownership by the fisheries science community. It is the intention that many countries participate in development.

Development of this tool has, so far, been done by Teunis Jansen and Henrik Degel in collaboration with the users (primarily in WGBFAS and PGHERS); this is to be changed in 2007. A formal international group will be established which can take care of the future development, design and management. Some kind of collective management reflecting the bottom-up approach is the goal. The group should include representatives from as many institutes and user groups as possible, without compromising the ability to operate. At least one member of the group should represent the user group working with fisheries acoustics. Degel and Jansen (2006b) contains more information about steering, ownership etc.

8 Recent studies on herring fat content and the accuracy of maturity staging

Deborah Davidson from the Aberdeen University gave a presentation of her ongoing PhD study dealing with modern methods of measurements on herring fat content:

Organisms use stored lipids for a number of processes, such as growth, survival, and maturation. In the past morphometric condition indices such as Fulton's K condition index (calculated by: $K = (W/L^3) \cdot 100$) were used to estimate stored lipids. The Distell Fish Fatmeter is an example of a rapid, highly portable, and non-destructive means of measuring stored lipids in oily fish species. A previous study showed that the fat meter generates precise measures of fat content in North Sea herring, when compared with Soxhlet extraction analysis. During the 2006 herring acoustic survey, five members of the research team were onboard five of the ships involved: the MFV Enterprise, RV "Johan Hjort", FRV "Scotia," FFS "Solea", and FRV "Tridens". Preliminary investigations into the data indicate that, in general, as length and weight increases, so too does fat content. It was evident when comparing all of the data together, that fish of a larger length (from 200 mm) could have a fat content spanning from very low to very high (from 1% to 35% respectively), whereas smaller fish (from 90 mm) did not tend to have fat contents beyond a certain level (15%). When comparing fat and weight, fish of a heavier weight (around 120 g) did not tend to have very low fat contents (below 15%), although exceptions did occur. A preliminary FATMAP (a visual representation of spatial variation in fat content of North Sea herring) was constructed for the immature herring in the "Scotia", "Solea" and "Tridens" data, by Christoph Konrad (Aberdeen University). Initial analysis showed that there was a strong linear relationship between length and fat content of immature fish. Plotting the raw fat data showed a clear southeast to northwest trend in fat content. To remove the effects of the relationship between length and fat, the residuals were plotted, and the southeast to northwest gradient in fat content was still evident. Finally, Fulton's K was calculated for all herring obtain from the different cruises, which was then compared with the corresponding fat contents. The relationship between the two was weak and positive for the "Enterprise" and "Solea" data ($r^2 = 0.119$, n = 635, P < 0.0001; and $r^2 =$ 0.265, n = 1964, P < 0.0001, respectively), yet the correlation was non-significant in the Scotia data ($r^2 = 0.0008$, n = 1873, P = 0.114). However, in the "Tridens" data this relationship

was stronger ($r^2 = 0.522$, n = 903, P < 0.0001). There was also a larger range of lengths present in the "Tridens" data (from 100 mm to 306 mm), compared to the other ships; with the "Solea" having sampled smaller fish (from 93 to 263 mm), and the "Enterprise", "Johan Hjort" and "Scotia" having sampled larger (from 175 mm to 355 mm). This, perhaps, indicates that Fulton's K is only a good indicator of stored lipids in herring when there is a wider spectrum of lengths present, as was the case in the "Tridens" data.

Further work in this area includes: running the muscle tissue samples collected during the 2006 herring acoustic survey through Soxhlet extraction analyses for calibration of the fatmeters; continuing analysis of the 2006 data- including comparing fat content between sexes, maturity stages, and length classes; developing the FATMAP, in particular, including data from the "Enterprise" and "Johan Hjort", looking at the spatial variation in fat content of mature herring, comparing spatial variation in fat content of male and female fish, and comparing that between maturity stages. It is also the intention to conduct the same study in the summer of 2007, if places were available on each of the ships involved. Also, it is hoped that the study will be continued at different times of the year, and perhaps for different stocks.

In a second talk Lindsay McPherson from Aberdeen University presented her findings concerning the accuracy of macroscopic staging of North Sea herring:

Accurate maturity staging is essential for the calculation of spawning stock biomass (SSB). There is concern that the macroscopic maturity staging of Atlantic herring (*Clupea harengus* L.) on research vessels taking part in HERAS is not accurate. As the macroscopic maturity scale is based on a histological scale, histology is the most accurate means of assessing maturity stage in fish. New, unambiguous histology keys were formed in order to calculate the accuracy of macroscopic staging. Macroscopic staging on FRV "Scotia" in 2006 was 78.6% accurate for females and 83% accurate for males. Much of the error in female staging was due to maturing repeat spawners (stage 3) being assessed as recovering (stage 8). There were also difficulties in the sexing of virgin gonads, with examples of both sexes wrongly classified. While marked inaccuracies were found they are unlikely to impact upon the SSB as the number of fish assessed as immature (1-2) or mature (stages 3-8) were correct. Due to its ease and inexpensive nature, macroscopic staging is unlikely to be replaced by a more accurate method; however, proxies could be introduced to increase the accuracy of macroscopic assessments. Gonadosomatic index (GSI) and oocyte diameter appear to be the best candidates as they are both simple to use at sea and are positively related to gonad maturation. It is hoped that in 2007 larger sample sizes from more than one vessel taking part in the herring acoustic surveys will allow comparison of accuracy between vessels and investigation into the accuracy of maturity staging in all maturity stages. The effect of fish length on macroscopic staging accuracy will also be considered.

9 Recommendations

9.1 Terms of Reference

The **Planning Group for Herring Surveys** [PGHERS] (Chair: Norbert Rohlf, Germany) will meet at the Netherlands Institute for Marine Research and Ecosystem Studies (IMARES), IJmuiden, The Netherlands, from 22 – 25 January 2008 to:

- a) combine the 2007 survey data to provide indices of abundance for the population of herring and sprat within the area, using the FishFrameAcoustics database;
- b) coordinate the timing, area and effort allocation and methodologies for acoustic and larvae surveys for herring and sprat in the North Sea, around Ireland, Division VIa and IIIa and the Western Baltic in 2008;
- c) examine the interpretation of echograms between the participants of the 2007 acoustic surveys to ensure quality control and proper exchange of experience;
- d) review histological studies to determine the accuracy of herring maturity reading;
- e) report on the possible bias introduced by a change in gear in the Dutch herring larvae survey.

PGHERS will report by 12 February 2008 for the attention of the Living Resources, and the Resource Management Committees as well as to HAWG.

Priority	The International Acoustic and Larvae surveys provide essential data for the assessment of pelagic stocks in and around the North Sea (Divisions IV, VIa, IIIa, and Western Baltic).
Scientific Justification and relation to Action Plan:	The work of this Expert Group refers to items 1.2.1, 1.2.2, 1.13 (Strategy plan ICES)
	Surveys for herring are currently carried out by five different countries, covering the whole of the North Sea, Western Baltic and the west coast of Scotland. Effective co-ordination and quality control for these surveys is essential and while data combination can be managed by mail, a meeting is required to ensure that the larvae database is being used correctly and that the acoustic surveys are being carried out and analysed on a consistent basis. Term of Reference c)
	Interpretation of echograms is subject to different national institutes. Exchange of experience is one of the vital interests of the PG to enable all involved participants a comparable background information and to reduces the risk of loss in information due to changing personnel.
	Term of Reference d) Modern approaches to determine the accuracy of herring maturity reading may be one source of information to be implemented in further developments of the sampling design in the herring surveys. A meeting is required to inform the participants about recent results with respect to maturity and fat content of herring and to discuss possible implications for the next survey period. Term of Reference e)
	The Dutch larvae survey has changed the sampling gear and the first results of comparison studies presented to PGHERS in 2007 shows a dramatic effect on larvae abundance and length frequencies. However, due to technical problems with flowmeters in this first approach, a further study shall be conducted.
Relation to Strategic Plan:	Directly relevant – it allows ICES to respond to requested advice on herring and sprat fisheries.
Resource Requirements:	No specific resource requirements beyond the need for members to prepare for and participate in the meeting
Participants	At least one scientist (preferably the cruise leader) from each survey; hence a minimum of 6 members.
Secretariat Facilities	None
Financial:	None

Supporting Information

Linkages to Advisory Committees:	The survey data are prime inputs to the assessments which provide ACFM with information required for responding to requests for advice/information from NEAFC and EC DGXIV.
Linkages to other Committees or Groups:	Survey results are conveyed directly to the Herring Assessment Working Group for the Area South of 62°N (HAWG). HAWG to see this report
Linkages to other Organisations:	None
Cost Share:	ICES 100%

9.2 Further Recommendations

Note that the recommendations below are sorted so that recommendation 1 to 8 is addressed to parties outside the PGHERS group and recommendation 9 to 19 is addressed to the expert group members. Bold text refers to specific action required by PGHERS members.

Recommendation	Action
1. PGHERS recommends that the North Sea herring larvae survey should be considered for priority 1 EC funding, as it is international, it is used in the assessment of herring and could be used for additional species if required (e.g. plaice and cod eggs, sandeel larvae).	Appropriate expert group members to make a case to national DCR representatives.
2. When using the 8 stage herring maturity scale, PGHERS recommends that particular attention be paid to the identification of stage 2 in older (4+) fish. Once a fish is (adult) mature and spawned it passes from stage 8 to stage 3 and so it is not possible to have a stage 2 "virgin" adult fish. The issue of "skipped spawners" and the proportion of "adults" which are immature needs to be clarified. HAWG should comment on their needs to calculate a proportion of skipped spawners (Stage 8) for the assessment.	HAWG and Expert Group Members
3. PGHERS recommends that HAWG comment on what proportion of the total survey effort should be directed to the different survey indices contributed by PGHERS (adult herring / sprat / young herring).	HAWG
4. PGHERS recommends that in the 2007 North Sea acoustic surveys, all participants take a student from Aberdeen University to make measurements of the fat content of herring.	Expert group members to note and Aberdeen university members to consult.
5. PGHERS recommends a further study on the impact of bias introduced by the Dutch change in gear to the herring larvae survey.	IMARES
6. PGHERS recommends that national institutes consider the long term funding of FishFrame after the EU FishFrame project. The latter is unlikely to have a complete acoustic survey analysis system completed, so in order for such a system to be available to participants, further funding will have to be sought. The FishFrame steering group should estimate how much funding will be required once the EU project is finished to complete the acoustic survey component and inform PGHERS members in 2008. PGHERS participants should prepare for funds to be made available in good time if possible.	FishFrame steering group and expert group members
7. PGHERS recommends that Norway should return to give priority to the area assigned to the herring acoustic survey to ensure an adequate survey effort.	IMR Bergen
8. PGHERS has recognised differences in the calibration results between Simrad EK500 and EK60 echosounders. PGHERS recommends ICES WGFAST to advise PGHERS and other acoustic survey planning groups (e.g. PGNAPES) on the implications of following the procedure in the EK60 manual for calibration of this new echosounder.	ICES WGFAST to consider reviewing EK60 calibration procedures.
9. PGHERS recommends that all participants should upload stage 1 data from 2005 and 2006 into the FishFrame database up to 30 October 2007.	Expert group members
10. PGHERS recommends that all participants in the International North Sea Herring Acoustic Survey should exchange trawl data soon after the surveys have been completed (age-readings when available). In cases where trawl data are lacking in one particular area, trawl information from an adjacent area collected by a different participant, may be used.	Expert group members

11. For the 2008 meeting, PGHERS recommends that all participants should show echograms from at least 10 Equivalent Distance Sampling Units corresponding to the 10 largest NASC's attributed to herring.	Expert group members
12. All participants in the 2007 North Sea herring acoustic survey should upload their survey estimates to the FishFrame database by 30 November 2007 for stage 3.	Expert group members to note.
13. Participants in the 2007 North Sea herring acoustic survey should send their hydrographic data to Eberhard Goetze by 30 September 2007.	Expert group members to note.
14. PGHERS recommends that cruise leaders participating in the International North Sea Herring Acoustic Survey should radio contact each other every day at 1900 UTC. Communication should be through medium frequency radio at 3333 kHz, allowing all participants to listen to each other's conversation. Participants should observe radio operating protocols.	Expert group members to note.
15. PGHERS recommends that survey cruise leaders should take all necessary steps to ensure that all ICES rectangles are surveyed as planned in the coordinated survey. Individual participants who, for whatever reason, are unable to survey any rectangle allocated to them, should make this known to other participants as soon as possible, this may allow for ad hoc adjustments to other surveys to fill any gaps (see recommendation 13 above).	Expert group members to note.
16. PGHERS recommends that the four vessels covering the North Sea start their survey in the center of the combined survey area (NOR and SCO in the south, NED and GER in the north), to keep the quasi-synoptic character of the survey. This is considered specifically important for a survey targeting highly mobile fish like herring and sprat.	Expert group members to note.
17. Germany should conduct a study on the implications of reduced survey effort (30 n.mi.versus 15 n.mi. density) on the abundance of herring and sprat in the southern part of the North Sea.	Expert group members to note.
18. To determine possible shifts in spawning PGHERS recommends that all areas in the herring larvae surveys should be covered.	Expert group members to note.
19. PGHERS recommends that in addition to the planned larvae surveys some sampling should take place in the area of the Dogger Bank at the end of the sampling period.	Expert group members to note.

10 References

- ICES. 2003. Report of the Planning Group for Herring Surveys. ICES CM 2003/G: 03, Appendix 4.
- ICES. 2004. Report of the Planning Group for Herring Surveys. ICES CM 2004/G: 05, Ref. G, p. 5–7.
- ICES. 2005a. Report of the Herring Assessment Working Group for the Area South of 62° N. (HAWG). 8-17 March 2005, ICES, Copenhagen, Part 1. ICES CM 2005/ACFM: 16, p. 227-228, 233.
- ICES. 2005b. Report of the Planning Group for Herring Surveys. ICES CM 2005/G: 04, Ref. D, p. 1-16.
- ICES. 2006. Report of the Planning Group for Herring Surveys. ICES CM 2006/LRC: 04. 235 pp.
- Dickey-Collas, M., Nash, R.D.M. 2006. Review of Rügen herring larvae survey project. IMARES report C079/06 (Project No. 439.11000.02), 17 pp.
- Oeberst, R. 2007. A new stratification of the Rügen herring larvae survey in the Greifswalder Bodden. WD to PGHERS Charlottenlund/DK, 22.-26.Jan. 2007, 8 pp.
- Degel, H., Jansen, T. 2006a. FishFrame 4.3 Exchange Format Description. www.FishFrame.org, 22 December 2006.
- Degel, H., Jansen, T. 2006b. FishFrame Fisheries and stock assessment data framework. ICES CM 2006/M:02.
- Jansen, T., Degel, H. 2006a. FishFrame 4.3 User Manual. www.FishFrame.org, 28 January 2006.
- Jansen, T., and Degel, H., 2006b. FishFrame 4.3 Test Documentation. www.FishFrame.org, 26 January 2006.
- Simmonds, J., MacLennan, S. 2005. Fisheries Acoustics Theory and Practice. 2nd edition, Blackwell publishing. 437 p.
| 33

Annex 1: List of participants

Name	Address	Phone/Fax	Email
Bram Couperus	Institute for Marine Resources and Ecosystem Studies (IMARES) P.O. Box 68 1970 AB Ijmuiden The Netherlands	Tel: +31 255 564763 Fax: +31 255 564644	bram.couperus@wur.nl
Norbert Rohlf (Chair)	Institut für Seefischerei Palmaille 9 D- 22767 Hamburg Germany	Tel: +49 40 38905 166 Fax: +49 40 38905 263	norbert.rohlf@ish.bfa-fisch.de
Eberhard Götze	Institut für Fischereitechnik (IFF) Bundesforschungsanstalt für Fischerei Palmaille 9 D-22767 Hamburg Germany	Tel: +49 40 38905 202 Fax: +49 40 38905 264	eberhard.goetze@ifh.bfa-fisch.de
Jörn Schmidt	Leibniz Institut für Meereswissenschaften (IfM-Geomar) Düsternbrooker Weg 20 24105 Kiel Germany	Tel: +49 431 600 4557 Fax: +49 431 6004553	jschmidt@ifm-geomar.de
Bjarne Stage	Danish Institute for Fisheries Research (DIFRES) Department of Marine Fisheries Section of Gear Technology Charlottenlund Slot DK-2920 Charlottenlund Denmark	Tel: +45 33963323	<u>bst@difres.dk</u>
Lindsay McPherson	School of Biological Sciences University of Aberdeen AB24 2TZ Aberdeen Scotland	Tel: +44(0)1224 272395	<u>U011rm3@abdn.ac.uk</u>
Eric Armstrong	Fisheries Research Services Marine Laboratory Aberdeen P.O. Box 101 Victoria Road Abberdeen AB11 9DB United Kingdom	Tel: +44 1224 295362 Fax: +44 1224 295511	e.armstrong@marlab.ac.uk
Deborah Davidson	School of Biological Sciences University of Aberdeen AB24 2TZ Aberdeen Scotland	Tel: +44(0)1224 272395	Deborah.Davidson@abdn.ac.uk

Name	Address	Phone/Fax	Email
Paul Fernandes	Fisheries Research Services Marine Laboratory Aberdeen P.O. Box 101 Victoria Road Aberdeen AB11 9DB United Kingdom	Tel: +44 1224 295403 Fax: +44 1224 295511	<u>fernandespg@marlab.ac.uk</u>
Teunis Jansen	Danish Institute for Fishery Research (DIFRES) Charlottenlund Slot DK-2920 Charlottenlund Denmark	Tel: +45 30667840	t <u>ej@difres.dk</u>
Bo Lundgren	Danish Institute for Fisheries Research (DIFRES) Department of Marine Fisheries Section of Gear Technology North Sea Centre, P.O.Box 101 DK-9850 Hirtshals Denmark	Tel: +45 33963200 Fax: +45 33963260	<u>bl@difres.dk</u>
Åge Fotland	Institute of Marine Research P.O. Box 1870 Nordnes N-5817 Bergen Norway	TEL: +47 55 238500 FAX: +47 55 238531	Aage.Fotland@imr.no
Karl-Johan Stæhr	Danish Institute for Fisheries Research (DIFRES) Department of Marine Fisheries Section of Gear Technology North Sea Centre, P. O. Box 101 DK-9850 Hirtshals Denmark	Tel: +45 33963271 Fax: +45 33963260	<u>kjs@difres.dk</u>

Г

Annex 2: 2006 Acoustic Survey Reports

Annex 2A: West of Scotland

Survey report for MFV Enterprise

3 July - 20 July 2006

Eric Armstrong, FRS Marine Laboratory, Aberdeen

1. Introduction

An acoustic survey for herring was carried out by the Marine Laboratory on the west coast of Scotland (ICES Division VIa(N)) from the 3–20 July 2006. The survey was conducted on the chartered fishing vessel MFV "Enterprise". The main objective of the survey was to provide an abundance estimate for herring in this area and to map the distribution of this species.

The survey was carried out as a part of the ICES coordinated herring acoustic survey of the North Sea and adjacent waters. The data from this survey were combined with other surveys in the North Sea to provide an age disaggregated abundance index for use in the assessment process. The assessment will be carried out by the ICES Herring Assessment Working Group (HAWG) to be held in March 2007.

This survey has been carried out every year, at this time, by the Marine Laboratory since 1992. With the exception of 1997 the survey has always been conducted using chartered commercial fishing vessels.

2. Personnel

Eric Armstrong	Cruise Leader
Craig Davis	
Micheal Stewart	
Melanie Harding	
Colin Millar	(Part 1 3-11 July)
Morag Campbell	(Part 2 12-20 July)
Heather Pollock	Aberdeen University

2.1 Narrative

Loading of the vessel and installation of a wet lab container and equipment was carried out on the 30th June. The vessel left Fraserburgh at 0300 on 3 July and proceeded to Loch Eriboll for a calibration. Survey work began at Cape Wrath at 1030hrs on the morning of the 4th. The survey continued in generally good weather until 10th July when the vessel steamed to Loch Broom where a second calibration was carried out on the morning of the 11th prior to landing in Ullapool for a crew change. The survey continued from the 12th in poor weather for the first 12hrs covering the full survey area up to 60°N 3°W. This was successfully completed by mid afternoon on the 19th. The vessel then steamed to Fraserburgh for off loading of personnel and equipment on the morning of the 20th. No time was lost due to weather or mechanical breakdown and no damage occurred to net gear or acoustic equipment.

2.2 Survey design

The survey design (Figure IIA.1) was selected to cover the area in two levels of sampling intensity based on herring densities found in previous years. Areas with highest intensity sampling had a transect spacing of 7.5 nautical miles and lower intensity areas a transect spacing of 15 nautical miles. The track layout was systematic, with a random start point. Between track, data were discarded at the end of all transects. The survey area was within an

area defined by 56 and 60° N, and the shelf break in the west to approx. 200m depth and the Scottish coast or the 4° W line in the east.

2.3 Calibration

Two good calibrations were carried out, at the beginning (3 July) in Loch Erribol and in the middle (11 July) in Loch Broom. All calibrations were carried out in ideal conditions, and the constants for the 38 kHz integrating frequency agreed well (Table IIA.1). All procedures were according to those defined in the survey manual.

2.4 Acoustic data collection

The survey was carried out using a Simrad EK60 38 kHz sounder echo-integrator, the system settings are given in Table IIA.1. Further data analysis was carried out using SonarData Echoview and Marine Laboratory Analysis systems. Data from the echo integrator were summed over quarter hour periods (2.5 n.mi. at 10 knots). The survey was generally restricted to hours of daylight between 0300h and 2300h UTC. A total of 2020 nautical miles of track were recorded. Echo integrator data were collected from 10 metres below the surface (transducer at 5.5 m depth) to 0.5 m above the seabed. Data were processed on a daily basis, then archived as Echoview files (*.ek5,*.evi) and stored on DVD and external hard drive.

2.5 Biological data - fishing trawls

33 trawl hauls (Figure IIA.1 and Tables IIA.2 and IIA.3) were carried out opportunistically during the survey on the denser echo traces. All trawls were carried out using a PT160 pelagic trawl with a 20 mm cod end liner. A scanning netsonde was mounted on the headline. Each haul was sampled for length, age, maturity and weight of individual herring. Up to 686 fish were measured at 0.5 cm intervals from each haul. Otoliths were collected with 1 per 0.5 cm class below 23 cm, 3 per 0.5 cm class from 23 to 27 cm and 10 per 0.5 cm class for 27.5 cm and above. Fish weights were collected at sea for all fish aged. An eight stage maturity scale was used. Immature fish were defined as stages 1 and 2.

2.6 Hydrographic data

A Minilogger temperature sensor was attached to the headline of the trawl for all hauls.

2.7 Data analysis

EDSUs were defined by 15 minute intervals which represented 2.5 n.mi. per EDSU, assuming a survey speed of 10 knots. The data were divided into three categories: "definitely herring traces"; "probably herring traces" and "possibly herring traces" (which were identified with enough uncertainty as to not be included in the estimate). Data were analysed using rectangles of 15' by 15'.

Target strength to length relationships used were those recommended by the acoustic survey planning group (ICES, 1994).

For herring	$TS = 20\log_{10}L$ -71.2 dB per individual
For mackerel:	$TS = 20\log_{10}L$ -84.9 dB per individual
For gadoids:	$TS = 20log_{10}L-67.5 dB$ per individual
For sprat:	$TS = 20\log_{10}L-71.2 \text{ dB per individual}$

The herring data from the trawl hauls were used to divide the area into three strata based on length distributions and geographic criteria. The three regions (Figure 2A.4) were:

- Inner Minch
- Outer Minch
- Area west of islands and north Scotland

Trawling in the Inner Minch area was again very difficult except in the most northerly and southerly parts. The length frequencies are presented in Table 2A.4. The overall age length key is presented in Table 2A.5.

3. RESULTS

3.1 Acoustic data

The geographical distribution of the NASC values assigned to herring are presented in Figure IIA.2. Large quantities of herring were detected to the south and north of the area in the middle of the shelf. The main areas of concentration were North of 58° 45', and around 57° 00'N. There were also some good marks recorded at the Butt of Lewis. There were no major concentrations NW of Lewis at Gallan Head; little herring in the main part of the Minch; and no evidence of large quantities sometimes found at Barra Head.

3.2 Biological data

A total of 33 trawl hauls were carried out. Table 2A.2 gives the positions and characteristics of these trawl hauls and Table 2A.3 gives their species composition. 29 hauls contained sufficient herring to define the 3 survey sub areas (Figure 2A.4). Herring were present in 29 hauls and there was a good coverage of herring trawl hauls across the area with the exception of the Minch. All major concentrations were adequately characterised from these trawls. Other hauls were dominated by boarfish (haul 6), pipefish (haul 26), and two hauls catching nothing (hauls 14 and 31).

The weight of herring at length was determined from length stratified samples of each trawl haul. Length frequencies were recorded from a random sample and were measured in 0.5 cm intervals to the nearest 0.5 cm below. The resulting weight-length relationship for herring was:

 $W = 0.003414.^{3.28}$ L measured in cm

Samples of fish were aged in the laboratory by counting winter rings. These were then used to compile an age length key (Table IIA.5) to determine the proportion at age for each length class.

3.3 Biomass estimates

The total biomass estimates for the survey were:

	Total herring biomass	510,190 tonnes	
	Total herring numbers	2,980 million	
The results for I	CES Subdivision VIa(N) alone	were:	
	Definitely herring	234,764 tonnes	47%
	Probably herring	263,708 tonnes	53%
	Total herring	498,472 tonnes	
	Spawning stock biomass	433,671 tonnes	87%
	Immature	64,801 tonnes	13%
Total abundance	(numbers of fish) were:		
	Total herring	2,935 million	
	Spawning stock numbers	2,664 million	91%
	Immature numbers	271 million	9%

A breakdown of the estimates by age class is given in Table IIA.6. The survey included all of ICES Subdivision VIa(N) plus some of the area between 3° 30 and 4°W in Subdivision IV.

4 DISCUSSION

The stock estimate for VIa(N) is up substantially by approximately 95% from 2005 (from 254,906 to 498,472 tonnes). Given the known difficulties of quantifying young fish on this survey, the SSB estimate is likely to give a better index of change. This is up slightly less significantly, by 78% (243,588 to 433,671 tonnes) from 2005 to 2006. The abundance by year class is consistent with previous years and also with results from the adjacent North Sea area. The 1998 year class was no longer strong though there were a significant number of 2 and 5 ring fish seen on the survey (28% by number and 22% by weight for 2 ring, 20% by number and 22% by weight for 5 ring).

The distributions were broadly similar to previous years, with the bulk of the fish being found to the north of the survey area. The regular hot spot of smaller fish at Barra Head was not seen this year.

Figure 2A.1: Map of the west of Scotland showing cruise track and positions of fishing trawls undertaken during the July 2006 west coast acoustic survey on MFV *Enterprise*. Filled triangles indicate trawls in which significant numbers of herring were caught, whilst open triangles indicate trawls with few or no herring. Haul 26, which is hidden by Haul 27, was fishing on a mid water layer that produced a clean haul of pipefish.

Figure 2A.2: Map of the west of Scotland with a post plot showing the distribution of herring NASC values (on a proportional square root scale relative to a value of 8000) obtained during the July 2006 west coast acoustic survey on MFV "Enterprise".

Figure 2A.3: Map of the west of Scotland with a post plot showing the mean length of herring caught in the trawl hauls carried out during the July 2006 west coast acoustic survey on MFV "Enterprise".

Figure 2A.4: Map of the west of Scotland showing the area strata (indicated by shaded areas with roman numerals I-III used for combining data from the trawl hauls.

60.50° (
											0.00	3.32				Q
60.00°											0.00	17.18				
										0.47	4.05	10.66	2.99			
										2.42	20.92	55.08	15.48			
								0.00	48.89	7.47	11.68	1.70	2.01			
59.50°								0.00	252.74	38.64	60.37	8.77	10.39			
							0.39	11.67	9.90	6.57	16.21	1.27	3.18		- R	EC.
							2.03	60.34	51.17	33.95	83.78	6.55	16.45	7		A.
						0.36	0.70	12.84	3.88	2.95	9.35	0.44	1.21	<u>م</u> حر	NY	
59 00°						1.85	3.59	66.38	20.08	15.25	48.35	2.25	6.24	4	13 m	
00.00					7.87	4.11	3.08	1.58	22.49	0.98	0.00	0.08		L'élan		
					40.68	21.23	15.92	8.18	116.25	5.04	0.00	0.43		L'étés		
				0.00	0.72	3.68	4.94	1.56	0.62	2.78	0.53	0.00		any		
58 50°				0.00	3.72	19.04	25.55	16.23	6.44	29.01	548	0.00	man me	~ 2		
30.30			0.00	0.00	0.19	2.79	0.80	2.79	6.09	<u>کر</u>	P	7		7		
			0.00	0.00	0.99	14.42	4.14	29.16	63.54		-					
		6.56	11.38	1.54	0.01	2.76	and the	0.00	0.32		0		/	{		
50 00°		33.93	58.84	7.98	0.05	14.25	يتر `	0.00	3.29	S.						
50.00		5.24	11.64	14.84	6.18	9.09	20.00	0.96	n N	J. J.	~	A 4				
		27.10	60.15	76.73	31.92	47,01	0:00	7.03	1	101		A CAR	hj			
		2.13	22.62	1.10	0.00	6 0	0.00	, ri	5			s de	65	\sim	<	
E7 E0°		11.01	116.93	5.71	0.00	\.	0.00		1 mgs			8 25				
57.50		0.02	0.44	2.49	0.10	8,19	0.00			n		Accel				
		0.11	2.26	12.89	0.52	65.02	0.00	队为	C. And	, ,						1
		4.16	1.76	2.04	6.60	13	5.52	1:27)	Pre C	8						4
57.00°		21.48	9.08	10.54	34.12	10	40.38	9,31	15	~						- 7
57.00*		1.01	0.25	4.04	11.03	1.13	7.29	69.77	7~							Л
		5.21	1.31	20.91	80.68	8.26	53.27	510.06	5	7						
		0.00	1.08	1.17	7.57	0.07	0.00/	6.53		Bo	-				~	\$
		0.00	5.57	6.04	55.38	0.52	0,00	47.72	N I	no I					مر	,
56.50°		0.00	15.59	4.66	0.00	0.00	0.33			hand				1		
		0.00	80.57	24.11	0.00	0.00	3.40	. The second	17.7	w.	_			"		
		5.65	0.17	0.04	0.38	0.94	0.00		367	, J				/	\sim	
		29.19	0.89	0.19	3.97	9.81	0.00	ß	$\Lambda^{\prime\prime}$		X		and a	ک میں	بسنر	
56.00° I								57 -	<u> </u>	<u>. ک</u>	. 4 %				_ <u>+ }</u> _	
10.0	0° W	9.0	° W	8.0	° W	7.0	° W	6.0	° W	5.0	° W	4.0	° W	3.0°	, M	2.0° W

Figure 2A.5: Map of the west of Scotland with a post plot showing the herring numbers in millions (bottom) and biomass in thousands of tonnes (top) by quarter ICES rectangle obtained during the July 2006 west coast acoustic survey on MFV "Enterprise".

Table 2A.1: Simrad EK60 and analysis settings used on the July 2006 west coast of Scotland herring acoustic survey on MFV "Enterprise". Calibrations a) Loch Erribol 3 July; and b) Loch Broom 11 July. *Milap factor based on a Simrad factor of 1 because calibration settings were incorporated into the Echoview post processing package. Data from the calibration was lost due to computer problems. Fortunately the EK60 was being used for the first time and the settings had been left in their calibration settings, giving a calibration factor for NASCs of 1. Other relevant settings were taken from a screen dump of the transducer parameters taken immediately prior to use.

TRANSCEP	VER MENU
Frequency	38 kHz
Sound speed	Not available, see above.
Max. Power	2000 W
Equivalent two-way beam angle	-20.6 dB
Default Transducer Sv gain	26.66 dB
3 dB Beam width	7.1°
CALIBRATI	ON DETAILS
TS of sphere	-42.4 dB
Range to sphere in calibration	Not available, see above.
Measured NASC value for calibration	Not available, see above.
Calibration factor for NASCs	1
Calibration constant for MILAP (optional)*	1.1005 at -35 dB
Log M	MENU
Integration performed in Echoview post processing base	ed on 15 minute EDSUs
Operation	ON MENU
Ping interval	1 s at 100 m range
	1.5 s at 250 m range
	2.5 at 500 m range
Analysis	SETTINGS
Bottom margin (backstep)	0.5 m
Integration start (absolute) depth	11 m
Sv gain threshold	-70 dB

Table 2A.2: Details of the fishing trawls taken during the West Coast acoustic survey, July 2006; Trawl depth = depth (m) of headrope; Gear type P=pelagic; Duration of trawl (minutes); Total catch (number of baskets); Use H=used to qualify herring acoustic data, s= used to qualify sprat acoustic data (blank if neither).

HAUL	DATE	LATITUDE	LONGITUDE	TIME	WATER DEPTH	TRAWL DEPTH	GEAR Type	DURATION	USE	BASKETS
					Durin	20010				
1	5/7	58° 28.48 ' N	7° 06.09 ' W	03:43	65	57	Р	16	Н	12
2	5/7	56° 10.90 ' N	7° 13.76 ' W	17:47	85	77	Р	37	Н	1.5
3	6/7	56° 26.03 ' N	8° 38.45 ' W	08 : 52	130	122	Р	30	Н	6
4	6/7	56° 35.44 ' N	7° 46.67 ' W	17:43	105	97	Р	22	Н	10
5	7/7	56° 44.36 ' N	7° 32.78 ' W	09:02	85	77	Р	25	Н	40
6	7/7	56° 50.78 ' N	9° 00.31 ' W	19:25	115	107	Р	20		19
7	9/7	57° 40.58 ' N	8° 25.89 ' W	04 : 28	135	127	Р	24	Н	3
8	9/7	57° 55.76 ' N	9° 02.90 ' W	11:37	150	142	Р	24	Н	24
9	9/7	57° 55.87 ' N	8° 12.02 ' W	15:47	121	113	Р	24	Н	20
10	9/7	58° 10.60 ' N	7° 19.39 ' W	22:06	95	87	Р	13	Н	3
11	10/7	58° 10.52 ' N	8° 48.94 ' W	07:12	172	164	Р	13	Н	3
12	10/7	58° 35.50 ' N	6° 16.95 ' W	19:05	95	87	Р	35	Н	16
13	12/7	58° 35.64 ' N	7° 20.28 ' W	15:32	105	97	Р	18	Н	30
14	12/7	58° 43.04 ' N	7° 32.26 ' W	21:24	114	106	Р	43		0
15	13/7	58° 42.87 ' N	6° 36.52 ' W	05:26	125	117	Р	46	Н	8
16	13/7	58° 50.56 ' N	5° 21.14 ' W	20:30	98	90	Р	20	Н	1.25
17	14/7	58° 50.18 ' N	6° 03.54 ' W	04:03	108	100	Р	32	Н	16
18	14/7	58° 56.48 ' N	7° 16.81 ' W	09:37	110	102	Р	27	Н	60
19	14/7	58° 57.97 ' N	5° 41.86 ' W	18:32	100	92	Р	20	Н	18
20	15/7	59° 05.46 ' N	5° 17.93 ' W	09 : 54	115	107	Р	30	Н	12
21	15/7	59° 04.16 ' N	6° 08.09 ' W	14:04	60	52	Р	18	Н	18
22	15/7	59° 05.20 ' N	6° 52.79 ' W	17:43	180	172	Р	20	Н	2.75
23	16/7	59° 13.23 ' N	6° 03.98 ' W	04:34	108	100	Р	18	Н	4
24	16/7	59° 13.07 ' N	4° 35.18 ' W	10:07	80	72	Р	78		3
25	16/7	59° 20.62 ' N	3° 47.02 ' W	17:27	135	127	Р	26	Н	15
26	17/7	59° 20.41 ' N	5° 56.69 ' W	05:48	113	105	Р	20		< 1
27	17/7	59° 20.43 ' N	5° 55.76 ' W	06 : 51	115	107	Р	30	Н	12
28	17/7	59° 27.98 ' N	6° 03.59 ' W	12:40	130	122	Р	24	Н	18
29	17/7	59° 28.08 ' N	4° 58.65 ' W	17:19	140	132	Р	10	Н	20
30	18/7	59° 35.66 ' N	4° 31.99 ' W	05:38	95	87	Р	12	Н	14
31	18/7	59° 35.33 ' N	5° 50.12 ' W	10:41	125	117	Р	25		0
32	18/7	59° 43.07 ' N	4° 29.96 ' W	19:16	105	97	Р	8	Н	11.75
33	19/7	59° 57.93 ' N	4° 03.04 ' W	11:42	140	132	Р	26	Н	2

	HAUL	1	2	3	4	5	6	7	8	9	10	11
Herring	Clupea harengus	2944	544	1299	1760	1042	20 11	51	9 396	0 4239	586	432
Mackerel	Scomber scombrus	38			30		22	1	48	10		
Haddock	Melanogrammus aeglefinus											
Whiting	Merlangius merlangus		2		5							
Cod	Gadus morhua											
Saithe	Pollachius virens				5							
Norway Pout	Trisopterus esmarki		303									
Poor Cod	Trisopterus minutus								12			
Blue Whiting	Micromesistius poutassou								24			
Lesser Argentine	Argentina sphyraena											
Lemon Sole	Microstomus kitt											
Grey Gurnard	Eutrigla gurnardus		2					3	12		6	
Hake	Merluccius merluccius											
Boar Fish	Capros aper						58	80	672			
Horse Mackerel (Scad)	Trachurus trachurus						68	4 2	24			
Monk fish (Angler)	Lophius piscatorius											
Pearlsides	Maurolicus muelleri			18								
Blue-mouth	Helicolenus dactylopterus											
Snake Pipefish	Entelurus aequoreus								60			38
Long Finned Squid	Loligo		307	18	10		65	54 5	804		6	38
								,	-			·
	HAUL	12	13	14	15	16	17	18	19	20	21	22
Herring	Clupea harengus	5920	5085	i	1496	202	3130	7699	3590	2266	3268	333
Mackerel	Scomber scombrus	152					32	4561		30		45
Haddock	Melanogrammus aeglefinus				24	7						1
Whiting	Merlangius merlangus				24	1						1
Cod	Gadus morhua					2						
Saithe	Pollachius virens					1						1
Norway Pout	Trisopterus esmarki				384							93
Poor Cod	Trisopterus minutus				12							4
Blue Whiting	Micromesistius poutassou											245
Lesser Argentine	Argentina sphyraena				20							3
Lemon Sole	Microstomus kitt											1
Grey Gurnard	Eutrigla gurnardus		15		12	22				6		6
Hake	Merluccius merluccius											4
Boar Fish	Capros aper											
Horse Mackerel (Scad)	Trachurus trachurus				4							28
Monk fish (Angler)	Lophius piscatorius				8							
Pearlsides	Maurolicus muelleri											
Blue-mouth	Helicolenus dactylopterus											2
Snake Pipefish	Entelurus aequoreus		360		72					114		169
									1	100		550

Table 2A.3: Catch composition by trawl haul on the west coast herring acoustic survey. MFV "Enterprise" (3 - 19 July 2006).

	HAUL	23	24	25	26	27	28	29	30	31	32	33
Herring	Clupea harengus	612	40	2299		1908	2322	3571	2368		1903	279
Mackerel	Scomber scombrus		1046		1	36	346		84		222	11
Haddock	Melanogrammus aeglefinus											
Whiting	Merlangius merlangus			15								4
Cod	Gadus morhua											
Saithe	Pollachius virens											1
Norway Pout	Trisopterus esmarki			62								
Poor Cod	Trisopterus minutus											
Blue Whiting	Micromesistius poutassou											
Lesser Argentine	Argentina sphyraena											
Lemon Sole	Microstomus kitt											
Grey Gurnard	Eutrigla gurnardus		13	15	1							7
Hake	Merluccius merluccius											
Boar Fish	Capros aper											
Horse Mackerel (Scad)	Trachurus trachurus											
Monk fish (Angler)	Lophius piscatorius											
Pearlsides	Maurolicus muelleri											
Blue-mouth	Helicolenus dactylopterus											
Snake Pipefish	Entelurus aequoreus				(n/a)							
Long Finned Squid	Loligo		13	92	1							12

Table 2A.3 (cont.): Catch composition by trawl haul on the west coast herring acoustic survey. MFV "Enterprise" (3 - 19 July 2006).

L(CM)		Ι			п				ш		
	1	5	MEAN	2	12	MEAN	3	4	7	8	9
18.5					0.3	0.3					
19.0				2.8	1.1	1.3					
19.5	0.6		0.1	4.8	6.3	6.2					
20.0	2.0		0.4	8.5	18.3	17.5					
20.5	3.0		0.7	11.5	17.7	17.2					
21.0	6.4		1.4	21.0	18.0	18.2					
21.5	4.0		0.9	18.2	7.1	8.1					
22.0	1.8		0.4	16.3	0.6	1.9					
22.5	0.6		0.1	6.3	0.9	1.3					
23.0	4.4	0.3	1.2	4.5	0.9	1.2					
23.5	6.2	6.1	6.1	1.7	2.4	2.3	0.5				
24.0	12.6	24.9	22.2	2.2	4.5	4.3	3.5	2.6	0.4	0.3	
24.5	12.6	24.9	22.2	1.3	4.1	3.9	7.9	4.0	1.5		
25.0	11.4	22.3	19.9	0.6	4.7	4.3	13.9	5.4	2.1		0.4
25.5	6.8	7.7	7.5	0.4	2.8	2.6	10.2	2.8	4.4	0.9	2.6
26.0	7.8	4.5	5.2		2.2	2.0	12.5	4.5	11.6	4.2	8.8
26.5	4.6	1.9	2.5		0.9	0.9	10.4	5.4	18.5	10.3	16.5
27.0	6.4	1.9	2.9		2.4	2.2	12.5	12.2	23.7	27.9	30.9
27.5	4.2	1.9	2.4		1.8	1.7	12.2	15.9	18.5	22.4	22.1
28.0	3.6	2.9	3.0		1.6	1.4	10.9	21.9	14.5	21.5	13.6
28.5	0.8	0.6	0.6		0.9	0.9	3.5	11.6	4.4	9.7	5.1
29.0		0.2	0.1		0.5	0.4	1.2	8.2	0.4	2.4	
29.5							0.9	4.3		0.3	
30.0					0.1	0.1		1.1			
30.5							0.2				
31.0											
31.5											
32.0											
32.5											
33.0											
33.5											
34.0											
Number	2994.0	10420.0		539.0	5920.0		1299.0	1760.0	519.0	3960.0	4239.0
mean length	24.9	25.3	25.3	21.9	22.5	22.4	26.9	27.9	27.4	27.9	27.6
mean weight	133.4	137.8	136.8	85.2	96.8	95.8	167.0	188.9	178.5	188.4	181.7
TS/individual	-43.2	-43.1	-43.1	-44.4	-44.1	-44.1	-42.6	-42.3	-42.4	-42.3	-42.4
TS/kilogramme	-34.5	-34.5	-34.5	-33.7	-34.0	-34.0	-34.8	-35.0	-34.9	-35.0	-35.0

 Table 2A.4: Herring length frequency proportion by trawl haul by sub-area for west coast acoustic survey MFV "Enterprise" (3 - 19 July 2006). Length in cm, weight in g, TS=target strength in dB.

L(CM)					III 5 16 17 18 19 20									
	10	11	13	15	16	17	18	19	20	21				
18.5														
19.0														
19.5														
20.0														
20.5						0.3								
21.0						0.3								
21.5														
22.0														
22.5						0.3								
23.0														
23.5									0.4					
24.0	0.3				1.5	0.9			1.1					
24.5				0.5	5.0	1.7		1.2	0.7					
25.0	2.4		0.3		16.3	1.7		0.8	3.3					
25.5	5.6	0.7	0.6	2.2	9.9	3.5	0.4	2.4	6.2					
26.0	16.2	1.4	5.9	2.7	15.8	9.1	2.6	6.8	6.9					
26.5	20.5	6.0	13.9	16.4	11.9	16.5	7.7	20.0	17.8	6.0				
27.0	27.8	10.9	26.8	22.3	16.8	28.2	12.5	23.6	17.8	21.2				
27.5	16.9	22.0	22.4	24.5	11.9	20.4	24.9	22.8	22.9	39.1				
28.0	8.0	31.7	19.8	21.2	8.9	9.5	21.2	14.0	13.5	24.5				
28.5	1.0	16.4	6.5	8.1	1.0	6.9	16.1	4.4	5.8	7.1				
29.0	0.3	7.6	3.2	1.1	0.5	0.9	8.1	0.8	1.8	1.1				
29.5		1.9		0.8	0.5		4.0	0.8	0.7	0.6				
30.0	0.5	1.4		0.3			0.6	0.5	0.5	0.6				
30.5			0.3				1.3	0.6						
31.0	0.3		0.3				0.1	0.3						
31.5								0.3	0.3					
32.0							0.3	0.3	0.3					
32.5							0.1	0.3						
33.0							0.1	0.1						
33.5														
34.0														
Number	586.0	432.0	5085.0	1488.0	202.0	3185.0	7699.0	3590.0	2266.0	3250.0				
mean length	27.3	28.4	27.9	27.9	26.8	27.4	28.4	27.7	27.6	28.1				
mean weight	175.6	198.6	187.1	187.1	166.0	178.8	199.1	184.2	181.1	191.7				
TS/individual	-42.5	-42.1	-42.3	-42.3	-42.6	-42.4	-42.1	-42.3	-42.4	-42.2				
TS/kilogramme	-34.9	-35.1	-35.0	-35.0	-34.8	-34.9	-35.1	-35.0	-35.0	-35.1				

 Table 2A.4 (cont.): Length frequency proportion by trawl haul by sub- area for west coast acoustic survey MFV "Enterprise" (3 - 19 July 2006). Length in cm, weight in g, TS=target strength in dB.

L(CM)										
	22	23	25	27	28	29	30	32	33	MEAN
18.5										
19.0										
19.5										
20.0										
20.5										0.0
21.0										0.0
21.5										
22.0										
22.5										0.0
23.0										
23.5										0.0
24.0										0.3
24.5										0.6
25.0			1.0			0.8				1.0
25.5					0.3	0.4	0.4	0.5		1.6
26.0			2.0			1.2	1.9	1.5	1.1	4.3
26.5	0.3	5.6	6.2	1.8	0.3	3.1	6.8	3.9		10.1
27.0	2.1	18.0	16.3	9.4	1.6	12.0	18.8	8.4	1.4	18.9
27.5	14.7	31.4	16.0	35.9	6.2	23.6	21.5	17.7	7.9	22.5
28.0	17.7	27.5	18.9	21.2	11.4	25.6	27.1	30.0	23.3	19.2
28.5	17.4	12.4	13.0	15.9	6.7	21.3	13.6	17.2	24.4	10.4
29.0	15.3	4.2	8.8	7.0	11.4	5.4	7.9	10.8	19.4	4.6
29.5	12.6	1.0	6.5	4.7	9.0	2.3	1.5	4.4	9.7	2.2
30.0	7.8		4.9	0.6	17.3	1.5	0.3	2.0	3.2	1.4
30.5	4.8		2.3	1.3	12.9	1.5		0.8	3.2	1.1
31.0	3.0		2.3	0.6	8.5	0.4		1.2	2.2	0.6
31.5	2.4		1.7	0.9	7.0	0.4	0.3	0.6	1.8	0.5
32.0	0.6			0.3	4.7	0.4			1.8	0.3
32.5					1.6			0.3	0.4	0.1
33.0					0.5			0.3	0.4	0.1
33.5	0.0			0.3	0.5			0.6		0.1
34.0	0.0				0.3					0.0
Number	333.0	612.0	2299.0	1908.0	2322.0	3571.0	2368.0	1903.0	279.0	
mean length	29.4	28.2	28.6	28.5	30.2	28.5	28.2	28.7	29.3	28.1
mean weight	223.6	194.7	205.7	203.1	245.9	201.2	195.9	206.2	220.6	193.4
TS/individual	-41.8	-42.2	-42.1	-42.1	-41.6	-42.1	-42.2	-42.0	-41.9	-42.2
TS/kilogramme	-35.3	-35.1	-35.2	-35.2	-35.5	-35.1	-35.1	-35.2	-35.3	-35.1

 Table 2A.4 (cont.): Length frequency proportion by trawl haul by sub- area for west coast acoustic survey MFV "Enterprise" (3 - 19 July 2006). Length in cm, weight in g, TS=target strength in dB.

						N	UMBER	AT AGE	/ MATU	RITY			
LENGTH (CM)	0	1	2I	2M	3I	3M	4	5	6	7	8	9+	GRAND TOTAL
18.5		1											1
19		2											2
19.5		3											3
20		3											3
20.5		4	1										5
21		3											3
21.5		3	1										4
22		2	1										3
22.5		4	5	2									11
23			8	8									16
23.5			10	13									23
24			5	37		1							43
24.5			4	43		2							49
25				51		10	1	1					63
25.5			3	57		18	4						82
26				42		41	8	9	1	1			102
26.5				17		44	22	35	3	2			123
27				11		26	32	55	10	4			138
27.5				5		25	48	97	72	26	1	3	277
28				2		13	27	78	99	47	3	7	276
28.5						4	15	53	86	60	5	19	242
29						1	5	34	56	42	15	18	171
29.5							3	26	37	20	5	17	108
30						1	6	15	21	18	4	10	75
30.5							4	11	20	15	2	11	63
31							1	6	7	27	1	3	45
31.5								7	8	12	3	8	38
32							1	1	5	6		6	19
32.5								3	1	3	1	7	15
33									1	2		4	7
33.5								1	1	4	1	4	11
34										1		1	2
Grand Total		25	38	288		186	177	432	428	290	41	118	2023

Table 2A.5: Age/maturity-length key for herring (numbers of fish sampled MFV "Enterprise"(3-19 July 2006).

TOTAL AREA													
Age (ring)	Mean Length (cm)	Mean Weight (g)	Numbers (x 10^6)	%	Biomass (x 10 ³ T)	%							
1	20.57	74.99	122	4	9.12	2							
2i	23.73	119.26	162	5	19.28	4							
2m	24.88	138.14	682	23	94.23	18							
3i	27.04	179.85	14	0	2.57	1							
3m	26.30	165.19	380	13	62.69	12							
4	27.29	185.42	290	10	53.81	11							
5	27.60	192.48	594	20	114.36	22							
6	28.11	204.13	423	14	86.35	17							
7	28.39	211.22	231	8	48.86	10							
8	28.92	224.04	22	1	4.95	1							
9+	29.17	231.01	61	2	13.99	3							
Mean	56.46	171.18											
Total			2980	100	510.19	100							
Immature			297	10	30.96	6							
Mature			2683	90	479.23	94							

Table 2A.6: Mean length, mean weight, biomass (thousands of tonnes) and numbers (millions) breakdown by age and maturity obtained during the MFV "Enterprise" 2006 herring acoustic survey.

Annex 2B: Denmark

Acoustic Herring Survey report for RV "DANA"

23 June2006 - 6 July 2006

Bo Lundgren¹, Karl Johan Stæhr¹, Torben Filt Jensen², Lotte Worsøe Clausen³

Danish Institute for Fisheries Research,

¹Dept for Marine Fisheries (HFI), Hirtshals, Denmark

²Dept. of IT and Technical Support (ITT), Hirtshals, Denmark

³Dept. for Marine Fisheries (HFI), Charlottenlund, Denmark

1. Introduction

Since 1991 the Danish Institute for Fisheries Research (DIFRES) has participated in the ICES co-ordinated herring acoustic survey of the North Sea and adjacent waters with the responsibility for the surveying the Skagerrak and Kattegat area.

The actual 2006-survey with RV "DANA", covering the Skagerrak and Kattegat, was conducted in the period 25 June to 6 July 2006, while calibration was done during 23-25 June.

2. Survey

2.1 Personnel

During calibration 23/6 – 25/6-2006	
Bo Lundgren (cruise leader)	HFI
Torben Filt Jensen(assisting cruise leader)	ITT
Tommy Nielsen	ITT
Bo Tegen Nielsen	ITT
Martin Nielsen, technician trainee	
Jan Skriver, journalist	

During acoustic monitoring 25/6 - 6/7-2006

Bo Lundgren (cruise leader)	HFI
Karl-Johan Stæhr (assisting cruise leader)	HFI
Lotte Worsøe Clausen	HFI
Lise Sindahl	HFI
Helle Rasmussen	HFI
Sanne B. Ryle	HFI
Nina Fuglsang	HFI
Thyge Dyrnesli	ITT

HFI = Dept for Marine Fisheries, DIFRES, Denmark

ITT = Dept. of IT and Technical Support, DIFRES, Denmark

ADM = Administration Dept, DIFRES, Denmark

2.2 Narrative

RV "Dana" left Hirtshals on 23 June 2006 at 12.00 to perform transducer calibration in the Danish part of Kattegat and not as normally at Bornø in the Gullmar Fjord in Sweden. This because a mail with the application to get a permission to enter Swedish waters due to unknown technical reasons did not reach the contact person responsible for sending the applications to the authorities.

RV "Dana" stopped outside Frederikshavn harbour on 25 July 2006 at 14.00 for exchange of scientific personnel and left again at 16.00 Danish local time (14.00 UTC) steaming towards the north-westerly corner of the survey area in the Skagerrak. The survey work (acoustic integration) started at the position 58° 08.15′ N 06° 14.99′ E in the north-western part of the Skagerrak. The western Skagerrak area was covered 26–30 June, eastern Skagerrak during 30 June – 3 July and Kattegat during 4–6 July. Short stops were made just outside Hirtshals on July 1 and just outside Skagen on July 3 to change a crew member. Totally the survey covered about 1800 nautical miles mainly using data from the 38 kHz paravane transducer running at depths of 4 – 6 m depending on the sea state and sailing direction relative to the waves. Simultaneously data from the 120 kHz and 18 kHz echosounders using the hull-mounted transducers were also recorded. The quality of the latter data is strongly dependent on the weather conditions, but this year the weather was calm so only about a days time of data were unusable. During trawling hull-mounted transducers were used for all three frequencies. The acoustic integration ended north of Skagen at 6 July, 06.30 UTC on the position 57° 35.66′ N 09° 57.59′ E. "Dana" went to harbour in Hirtshals on 11 July 2005 at 09.30 hour local time.

2.3 Survey design

The survey was carried out in the Kattegat and in the Skagerrak, east of 6° E and north of 56° N (Figure IIB.1). The area is split into 7 sub-areas surveyed by "Dana" and one overlap area to be surveyed also by the Norwegian and German survey partners. This year the survey was started in the eastern Kattegat and ended in the western Skagerrak in order to reach the overlap area on June 10^{th} at the same time as the other partners. In principal the survey is designed with parallel survey tracks at right angles to the depth lines with a spacing of 10-15 nm in the area west of 10° E. Due to limited time periods and places for fishing (late morning, early afternoon and immediately before and after midnight; limited amount of fishable positions for bottom trawl hauls) this structure cannot not be kept strictly. Along the Swedish coast, the transects are planned as east-west transects with a spacing of 10 nm approximately at right angles to the coastline. In Kattegat the survey track was made in a zigzag way adapted to the depth curves and the relatively heavy ship traffic.

2.4 Calibration

The echo sounders were calibrated at two different locations in Kattegat during 24 - 25 June 2006. The calibration was performed according to the procedures established for EK60 with three frequencies (18, 38 and 120 kHz). This was the second calibration of the year, the previous one during a cruise to the Norwegian Sea in May. The calibration of the paravane split-beam transducer at 38 kHz was done against a 60 mm copper sphere at a position in Aalbæk Bugt (57° 36.77'N 10° 34.18'E). Calibration of the three hull-mounted split-beam transducers at 18, 38 and 120 kHz were carried out against 63mm, 60 mm and 23 mm copper spheres, respectively at a position just north of Læsø (57° 28.48'N 11° 03.72'E). The results were similar to the previous calibration earlier in the year, and for 38 kHz close to results from previous years. The calibration and setup data of the EK60 38 kHz used during the survey are shown in Table IIB.1.

2.5 Acoustic data collection

Acoustic data were collected using mainly the Simrad EK60 38kHz echosounder with the transducer (Type ES 38 7x7 degrees main lobe) in a towed body. The towed body runs at approx. 3 m depth in good weather and down to about 6–7 m as needed depending on the weather conditions, this year mostly at 4 - 5 m. The speed of the vessel during acoustic sampling was 9 - 11 knots. Also EK60 18 kHz and 120 kHz data were collected, but has not been directly used for the survey estimate but as an aid when distinguishing between fish and plankton. Acoustic data were recorded as raw data on hard disk all 24 hours also during fishing operations, but data taken during fishing periods (usually two daytime hauls and two night-time hauls (the latter immediately before and after local midnight)) are not used for the biomass estimate. The sampling unit (ESDU) was one nautical mile (nm). For the purpose of the later judging process raw data is also pre-integrated into 1 m meter samples for each ping. These samples stored in separate files one for each ESDU. Integration is conducted from 3 m below the transducer to 1 m above the bottom or to max 300 m depth. During trawl hauls the towed body is taken aboard and the EK60 38 kHz echosounder run on the hull transducer.

2.6 Biological data - fishing trawls

Trawl hauls were carried out during the survey for species identification. Pelagic hauls were carried out using a FOTÖ trawl (16 mm in the codend) while demersal hauls (Figure IIB.2) were carried out using an EXPO trawl (16 mm in the codend). Trawling was carried out in the time intervals 1000 to 1600 and 2200 to 0300 UTC (Table IIB.2), usually two day hauls (mostly demersal and two night hauls (mostly surface or midwater). The strategy was to cover most depth zones within each geographical stratum (see Figure IIB.2). In the deeper areas midwater hauls were made to help identify the largest depth at which herring would be expected. 1 hour hauls were used as a standard during the survey, but sometimes shortened if the catch indicators indicated very large catches.

The fish caught were sorted into species groups and length groups within each species. Number of individuals and weight for each length group for each species was recorded with emphasis on pelagic species. The clupeid fish were measured to the nearest 0.5 cm total length below, other fish to 1 cm, and the weight to the nearest 0.1g wet weight. In each trawl haul 10 (if available) herring per 0.5 cm length class were sampled for determination of age, race (North Sea autumn spawners or Baltic Sea spring spawners) and maturity. Micro-structure formed during the larval period was used for the discrimination of herring race. Maturity was determined according to an 8-stage scale as also used by Scotland (see Survey Manual App IV).

2.7 Hydrographic data

CTD profiles with a Seabird 911 were made immediately before or after each trawl haul. Salinity and temperature were measured continuously during the cruise at an intake at about 5 m depth. Data is stored together with position and weather data in the vessel's general information system. The distribution of CTD stations is shown in Figure IIB.2.

2.8 Data analysis

The raw data is preintegrated into 1m samples for each ping and divided into 1 mile datasets and stored on harddisk as files. Scrutiny of the acoustic data is done for a fixed set of layers (3–6 m, 6–10, 10–20 and so on) for each mile, using special judging software. It allows deleting layers and/or intervals with interference from wave- or ship wake-bubbles or rarely with bottom-integration. In areas with heavy abundance of jellyfish or zooplankton, usually krill, manually adjustable thresholds is applied separately to each layer to suppress background echoes

For each sub area the mean back scattering cross section was estimated for herring, sprat, gadoids and mackerel based on the TS-relationships given in the Manual for Herring Acoustic Surveys in ICES Division III, IV, and IVa (ICES 2000):

where L is the total length in cm. The number of fish per species is assumed to be in proportion to the contribution of the given species in the trawl hauls. Therefore, the relative density of a given species is estimated by subarea using the species composition in the trawl hauls. The nearest trawl hauls are allocated to subareas with uniform depth strata. The length-race and length-age distributions for herring are assumed to be in accordance with the length-race and length-age distributions in the allocated trawl hauls.

Length-weight relationships by race for the herring were made based on the single fish sampled in each haul and frozen for later for micro-structure analysis of the otolith after the cruise.

3. Results & Discussion

3.1 Acoustic data

The total number of acoustic sample units of 1 nm (ESDU's) used in the stock size calculation is about 1300. Herring and sprat was not observed in mid-water trawl hauls at depths below 150 meters. Therefore, layers below 150 meter were excluded from the estimation.

3.2 Biological data

35 hauls were conducted (24 surface hauls, 2 mid water hauls, one of which was unsuccessful, and 10 bottom hauls (Figure IIB.2 and Tables IIB2 and IIB.3.). The total catch was 18 tons of which about 2.2 tons were jellyfish. Herring was present in 30 of the hauls and a total catch of about 2800 kg was taken during the survey. In only one haul herring was present below 150 m depths. Noticeable amounts of sprat were caught in two hauls in the southwestern Skagerrak and relatively large amounts in 8 hauls in Kattegat a total of 4100 kg for the whole survey. Mackerel was also present in many (24) of the hauls distributed over the survey area. Otherwise jellyfish and other invertebrates (krill, shrimp, and Norway lobster) were the most common among the remaining species.

Based on maturity analysis of frozen single fish samples from each haul, where microstructure analysis of the otoliths was used to differentiate between North Sea herring and Western Baltic herring, the maturity by age key was made for both races is given in the text table below. North Sea autumn spawners at maturity stage 3 and up and spring-spawners at maturity state 2 and up have been considered as mature. The following constants have been used to split the catch.

North Sea autumn spawners:

WR	0	1i	1m	2i	2m	3i	3m	4i	4m	5	6	7	8
%	100	100	0	93	7	100	0	-	-	100	100	100	100

Spring spawners:

WR	0	1i	1m	2i	2m	3i	3m	4i	4m	5	6i	7	8	9+
%	100	99	1	97	3	86	14	80	20	100	100	100	100	100

Figure IIB.4.a shows the length-weight relations for various age groups and the average for the two races based on the single fish data. The trendline estimates are based on the points of the average relations. Figure IIB.4.b shows the length-weight relations for sprat.

Table IIB.4.a shows the size distribution and total number of herring in each trawl haul based on the total catch for small catches or on subsamples raised to total catch for large samples. Table IIB.4.b shows the corresponding total catches.

3.3 Biomass estimates

The total herring biomass estimate for the survey is 567,000 tonnes of which 27.0% or 153,000 tonnes is North Sea autumn spawning herring and 73.0% or 414,000 tonnes is spring spawning herring.

The estimated total number of herring, mean weight and mean length per age and maturity group in each of the surveyed strata for the two herring stock components in the are given in Table IIB.5.a, b, and c. Stratum 560E06 is the overlap area and the others together is the standard Danish survey area.

Figures IIB.5.a and b show plots of the estimated number of either autumn spawning or spring spawning herring per stratum and and the total.

STRATUM	STRATUM	AREA	NUMBER	HAULS IN	HAULS FROM	TOTAL HAULS	MEAN	MEAN
NR	ID	NM^2	OF LOGS	STRATUM	NEIGHBOUR STRATA	USED	SA	TS
3	580E06	209	5	0	4	4	31.29948	-47.3408
4	570E06	3600	303	7	3	10	192.0751	-47.40157
5	580E08	1822	95	4	1	5	62.3704	-43.64462
6	570E08	3406	320	3	5	8	115.337	-44.97896
7	С	988	82	4	2	6	132.4637	-41.16075
8	D	1837	184	4	6	10	186.8298	-41.36337
9	Е	5228	349	8	0	8	229.1694	-48.22463
10	42F6	995	47	1	0	0	103.1449	-47.65321

STRATUM OVERVIEW ACOUSTIC HERRING SURVEY RV "DANA" CRUISE 042005 JULY 2005

Figure IIB.1. Map of the eastern North Sea, Skagerrak and Kattegat showing the sub areas used in the estimation during the June-July 2006 Danish acoustic survey of RV "Dana".

ICES PGHERS Report 2007 [59 Cruise track and stations during the Acoustic Herring Survey RV "Dana" Cruise 052006 July 2006

Figure IIB.2. Map of the eastern North Sea, Skagerrak and Kattegat showing cruise track, the location of stations (trawl hauls and CTD stations) during the June - July Danish acoustic survey (Fotö hauls ▲ are pelagic and Expo hauls $\frac{11}{11}$ are generally demersal, Red numbers are haul IDs indicating cumulative sailed distance along the track in nm).

Bathymetry from: The MAST project DYNOCS MAST II contract No MAS2-CT94-0088 ICES PGHERS REPORT 2007

Figure IIB.3.b. **Relative herring** density (in numbers per nm²) along the track of the June-July 2006 Danish acoustic survey in the eastern North Sea, Skagerrak and Kattegat. circles Red indicate relative density of herring per ESDU (1 nm).

60 |

Figure IIB.4.a. Length weight relationship by winter ring numbers for herring from the June - July 2006 Danish acoustic survey.

| 61

Figure IIB.4.b. Length weight relationship by winter ring numbers for sprat from the June - July 2006 Danish acoustic survey.

Figure IIB.5.a. Estimated number of herring per length group in various strata from the July 2006 Danish acoustic survey.

Figure IIB.5.b. Estimated number of herring per length group in various strata from the June - July 2006 Danish acoustic survey.

64 |

Table IIB.1. Simrad EK60 and analysis settings used during the Acoustic Herring Survey RV "Dana" Cruise July 2006.

Transceiver Menu											
Frequency	38 kHz										
Sound speed	1495 m.s ⁻¹										
Max. Power	2000 W										
Equivalent two-way beam angle	-20.5 dB										
Default Transducer Sv gain	24.65 dB										
3 dB Beamwidth	6.8°										
Calibration details											
TS of sphere	-33.6 dB										
Range to sphere in calibration	9.20 m										
Measured NASC value for calibration	24941 m ² /nmi ²										
Calibration factor for NASCs	1.00										
Absorption coeff	9.872 dB/km										
Log I	Menu										
Distance	1,0 n.mi. using GPS-speed										
Operation Menu											
Ping interval	1 s external trig										
Analysis	settings										
Bottom margin (backstep) 1.0 m											
Integration start (absolute) depth	7 - 9 m										
Range of thresholds used	-70 dB										

66 | ICES PGHERS REPORT 2007 Table IIB.2. Trawl hauls during the Acoustic Herring Survey RV "Dana" Cruise June-July 2006.

HAUL NR	HAUL ID	DATE TIME UTC	Sun Time	ICES Square	LAT N	LONG E	TRAWL TYPE	BOTTOM DEPTH M	Wire Length M	DOOR DISTAN- CE M	HAUL DURA- TION M	CATCH WEIGHT KG	HERRING WEIGHT KG	RAISING RATIO	RAISED HERRING KG	MAIN SPECIES	TRAWL SPEED KN	TRAWL DIR DEG	WIND SPEED M/S	Wind Dir deg	SEA State Bf
1	202	01-02-06 10:54	11:19	43F6	57.07.179	006.19.057	Expo	67			60	75				Dab, Whiting	3.2	127	6		3
2	225	26-06-06 14:43	15:08	42F6	56.46.838	006.17.111	Expo	49			30	34				Cod, Large Medusa	3	213	7		3
3	283	26-06-06 21:39	22:06	43F6	57.19.936	006.47.205	Fotö	98			60	835				Herring, Mackerel	4	14	5		2
4	297	27-06-06 00:22	00:50	44F6	57.34.472	006.48.526	Fotö	268			60	882				Mackerel, Herring, Blue whiting	4.1	26	6		3
5	374	27-06-06 10:49	11:18	44F7	57.36.576	007.18.498	Fotö	296			60	12				Large Medusa, Saithe	3.6	101	9		3
6	394	27-06-06 13:51	14:21	43F7	57.21.965	007.21.468	Expo	80			73	20				Haddock, Saithe	3.4	88	11		4
7	444	27-06-06 21:05	21:36	43F7	57.28.848	007.48.015	Fotö	157			60	1930				Mackerel, Herring	3.8	98	13		5
8	525	28-06-06 14:24	14:57	44F8	57.58.403	008.13.650	Fotö	522			59	150				Herring, Mackerel, Large Medusa	2.7	89	5		4
9	571	28-06-06 21:12	21:40	44F7	57.51.729	007.01.001	Fotö	429			60	1776				Mackerel, Herring	3	105	13		6
10	586	29-06-06 00:19	00:49	44F7	57.49.302	007.29.353	Fotö	471			60	380				Mackerel, Herring, Large Medusa	3.2	104	11		5
11	663	29-06-06 10:24	10:59	43F8	57.27.455	008.41.240	Expo	38			54	92				Large Medusa	3.4	57	7		3
12	679	29-06-06 13:24	13:58	44F8	57.33.571	008.28.947	Expo	101			61	1565				Norway Pout, Saithe	3.3	65	7		3
13	734	29-06-06 21:11	21:47	45F9	58.18.560	008.57.445	Fotö	425			60	400				Mackerel, Herring, Large Medusa	3.1	41	7		3
14	751	30-06-06 00:17	00:54	45F9	58.17.172	009.16.681	Fotö	570			60	1219				Mackerel, Herring, Whiting	3.5	52	5		3
15	831	30-06-06 10:32	11:09	44F9	57.40.829	009.03.716	Fotö	66			60	60				Herring, Large Medusa	3.6	213	4		1
16	846	30-06-06 13:12	13:48	44F9	57.46.290	009.03.781	Fotö	110			59	0				0	3.7	76	5		1
17	906	30-06-06 21:09	21:44	44F8	57.41.159	008.42.181	Fotö	158			59	1135				Mackerel, Herring	3.7	255	7		2
18	924	01-07-06 00:13	00:48	44F8	57.49.407	008.44.287	Fotö	438			60	502				Mackerel, Herring, Large Medusa	4	277	7		2
19	1004	01-07-06 10:44	11:23	44F9	57.40.822	009.38.876	Expo	41			60	285				Herring	2.9	48	4		1
20	1026	01-07-06 14:08	14:47	44F9	57.59.137	009.56.254	Fotö	97			60	172				Herring, Large Medusa	3.9	247	4		1
21	1077	01-07-06 21:09	21:49	46F9	58.37.988	009.56.990	Fotö	449			59	445				Mackerel, Herring, Large Medusa	3.7	77	3		0
22	1088	02-07-06 00:15	00:55	46G0	58.42.865	010.11.533	Fotö	253			60	505				Mackerel, Herring, Large Medusa	4.1	331	3		1
23	1167	02-07-06 10:41	11:24	46G0	58.32.963	010.50.314	Expo	84			40	148				Invertebrates, Herring	3	13	2		0
24	1189	02-07-06 14:08	14:52	45G0	58.17.270	010.54.201	Fotö	146			60	236				Herring, Large Medusa, Mackerel	3.7	269	2		0
25	1240	02-07-06 21:15	21:57	45G0	58.06.753	010.35.690	Fotö	216			59	355				Mackerel, Large Medusa, Herring	4	97	4		0
26	1258	03-07-06 00:17	01:01	45G1	58.06.103	011.06.406	Fotö	126			59	666				Herring, Mackerel, Large Medusa	3.6	216	5		0
27	1340	03-07-06 10:34	11:17	44G0	57.54.525	010.46.863	Fotö	152			60	108				Large Medusa, Herring	3.4	273	5		1
28	1359	03-07-06 13:41	14:25	44G1	57.53.136	011.09.863	Expo	59			59	128				Herring, Whiting, Invertebrates	2.6	134	3		1
29	1404	03-07-06 21:10	21:53	43G0	57.26.577	010.50.663	Fotö	40			60	550				Large Medusa, Herring	3.9	51	3		0
30	1425	04-07-06 00:37	01:22	44G1	57.35.399	011.25.267	Fotö	68			60	924				Mackerel, Large Medusa, Herring	4	102	4		1
31	1505	04-07-06 10:31	11:20	42G2	56.31.739	012.23.709	Fotö	30			59	385				Large Medusa, Herring	4	196	2		1
32	1524	04-07-06 13:49	14:37	42G2	56.41.714	012.10.061	Expo	42			59	66				Invertebrates, Cod	2.6	292	2		1
33	1581	04-07-06 20:58	21:45	42G1	56.38.201	011.41.234	Fotö	32			60	306				Large Medusa, Sprat, Herring, Mackerel	4	182	4		0
34	1600	05-07-06 00:20	01:07	41G1	56.18.172	011.38.159	Fotö	27			60	225				Large Medusa, Mackerel	4.5	208	7		2

ICES PGHERS	Report 2007
-------------	-------------

ICES PGHERS Report 2007							67										
35 1	686	05-07-06 10:32	11:19 42G1	56.49.938	011.43.959	Expo	49	60	1698		Sprat		2.8	19		4	2

ICES PGHERS Report 2007

Table IIB.3. Trawl hauls species composition in kg during the Acoustic Herring Survey RV "Dana" Cruise June-July 2006.

Station	202	225	283	297	374	394	444	525	571	586	663	679	734	751	831	846	906
ICES sq.	43F6		43F6	44F6	44F7	43F7	43F7	44F8	44F6	44F7	43f8	44F8	45F8	45F9	44F9	44F9	44F8
Gear	Expo	Expo	Fotö	Fotö	Fotö	EXPO	Fotö	Fotö	Fotô	Fotô	EXPO	EXPO	Fotö	Fotô	Fotö	Fotö	Fotö
					150-												
Fishing depth	Bottom	Bottom	Surface	Surface	165	Bottom	Surface	Surface	Surface	Surface	Bottom	Bottom	Surface	Surface	Surface	60-70	Surface
Total depth	67	49	63	268	296	80	157	522	431	471	38	101	425	570	66	110	158
Day/Night	D	D	Ν	Ν	D	D	Ν	D	Ν	Ν	D	D	Ν	Ν	D	D	Ν
Total catch	75	34	835	882	12	20	1,930	150	1,776	380	92	1,565	400	1,219	60	0	1,135
Scomber scombrus			357.9	353	0.7		1240.6	41.6	1267.8	225.3			261.9	812.7	4.3		658.1
Clupea harengus			468.9	344.9		0.2	633.4	82.6	465.2	85.5	0.1	0.9	96.6	363.2	30.2		423.7
Medusa, spp.	0.5	4.8		52.6	8.4		28.9	22.9	36.9	54.6	91.1		38.1	33.4	24.5		46.5
Sprattus sprattus															0.1		
Trisopterus esmarki	6.7	0.1										1414.4					
Inv	0.3	0.3				2.6						17.7					
Micromesistius poutassou				118.8						14.7							
Merlangius merlangus	11.8	0.2							0.1		0.2	16.5	0.1		0.1		
Pollachius virens	2.3				3	2.8						80.4					3.5
Limanda limanda	33	9.2										9.9					
Belone belone			1.5	1.1		3.8	15.5	2.5	5				1.3	0.6	0.2		2.4
Cyclopterus lumpus			1.3	11.5		1.3	9.7	0.1	0.9			0.8	1.7	8.1			
Gadus Morhua	5.1	13.1				0.7						10.2					
Melanogrammus aeglefinus	3.5	0.4				6.9					0.1	10.6		0.1			
Trachinus draco																	
Merluccius merluccius	3.4											0.2					
Hippoglosides plattessoides	1.6	0.5															
Entelurus aequoreus	0.7		2.9	0.1	0.1		1.9	0.3	0.2				0.2	0.1	0.5		0.8
Pleuronectes platessa	1.3	1.5				0.6						0.9					
Loligo spp.	2.6		0.9			0.4					0.3			0.7			
Trigala spp.	1.3	1.5	1.5			0.2					0.3				0.2		
Trachurus trachurus																	
Microstomus kitt	0.1	1.5				0.5						1					
Glyptocephalus cynoglossus												1.6					
Hyperoplus lanceolatus		0.7															
Pollachius pollachius																	
Engraulis encrasicolus															0.1		
Ammodytes xx		0.2															
Oncorhynchus mykiss, Salmo gairdneri																	
Table IIB.3. Trawl haul species composition in kg during the Acoustic Herring Survey RV "Dana" Cruise June-July 2006 (continued).

Station	924	1004	1026	1077	1088	1167	1189	1240	1258	1340	1359	1404	1425	1505	1524	1581	1600	1686	Total
ICES sq.	44F8	44F9	44F9	46F9	46G0	46G0	45G0	45G0	45G1	44G0	44G1	43G0	44G1	41G2	42G2	42G1	41G1	42G1	
Gear	Fotö	EXPO	Fotö	Fotö	Fotö	EXPO	Fotö	Fotö	Fotö	Fotö	EXPO	Fotö	Fotö	Fotö	Expo	Fotö	Fotö	Expo	
Fishing douth	Sur-	Dattam	Sumfaga	Surface	Surface	Dattam	Surface	Sumfaga	Sumfaga	Sumfaga	Dattam	Surface	Surface	Surface	Dattam	Surface	Surface	Dattam	
Fishing deput	120	41	5011ace	3011ace	252		146	216	126	152	50	40		20	42	22	27	40	
Dow/Night	430 N	41 D	97 D	449 N	235 N	04 D	140 D	210 N	120 N	152 D	59 D	40 N	N	50 D	42 D	32 N	27 N	49 D	
Total catch	502	285	172	145	505	148	236	355	686	108	128	550	024	385	66	306	225	1.608	18284.6
Scomber scombrus	258 5	205	7.8	226.7	223	140	12.6	151.6	138.4	1.8	120	84	772 1	565	00	32	58	1	7115.8
Clunea harengus	127.9	176 5	90.3	143.5	150.9	31.4	171.1	64 5	415.3	11.4	52.1	98	64.6	11		46.6	56	28.1	4674 3
Medusa snn	84.9	170.5	71.8	67.6	128.5	51.1	48	124.1	126.9	93.1	52.1	426.1	68.5	383.4		146.9	146.4	191.4	2550.8
Sprattus sprattus	0.1.2		/110	0710	120.0	0.1	10	121.1	120.9	<i>,,,,</i>		0.3	00.0	505.1	0.3	64.2	1.8	1429.1	1495.9
Trisopterus esmarki						5.3					1.5								1428
Inv		21.6				90.8					15.3				40.5				189.1
Micromesistius poutassou	20																		153.5
Merlangius merlangus	0.1	30.8		0.6		5.7				0.2	40.3	0.1			2.8			29.7	139.3
Pollachius virens						0.2		3.5			0.5								96.2
Limanda limanda		14.4				0.5												12.9	79.9
Belone belone	6.6			0.5	0.1			4.1	5	0.2		9	17.1			0.2	0.3		77
Cyclopterus lumpus	2.9		1.8	5.8	2.6		4	7.2	0.3	1	1.5		0.2		3.7	0.9	2.1	1.6	71
Gadus Morhua		4.6				2					7.3				14.7			0.9	58.6
Melanogrammus aeglefinus		18.3		0.1		1.5					1.4				0.9				43.8
Trachinus draco												5		0.5		15.3	10.7	2.2	33.7
Merluccius merluccius		14.8									2.2				0.2				20.8
Hippoglosides plattessoides						5.1					4.3				0.7				12.2
Entelurus aequoreus	0.3		0.3	0.3			0.3	0.1		0.3									9.4
Pleuronectes platessa		0.5				0.2					0.9				2.2			0.9	9
Loligo spp.	0.9	1				0.5													7.3
Trigala spp.		1.6													0.1	0.1			6.8
Trachurus trachurus												3	1.4						4.4
Microstomus kitt		0.9				0.1					0.2								4.3
Glyptocephalus cynoglossus																			1.6
Hyperoplus lanceolatus												0.2							0.9
Pollachius pollachius											0.5								0.5
Engraulis encrasicolus														0.1					0.2
Ammodytes xx																			0.2
Oncorhynchus mykiss, Salmo gairdneri																	0.1		0.1

ICES PGHERS Report 2007

Table IIB.4.a. Raised length frequency composition by stratum and trawl station for the Acoustic Herring Survey RV "Dana" Cruise July 2006.

Stratum	570E06	5					570E0	8							580E0	8	С			D					Е						
Station	283	297	394	444	571	586	525	663	679	831	906	924	1004	1026	734	751	1077	1088	1167	1189	1240	1258	1340	1359	1404	1425	1505	1581	1600	1686	
ICES Sq	43F6	44F6	43F7	43F7	44F7	44F7	44F8	43F8	44F8	44F9	44F8	44F8	44F9	44F9	45F8	45F9	46G0	46G0	46G0	45G0	45G0	45G1	44G0	44G1	43G0	44G1	41G2	42G1	41G1	42G1	
length\Gear	Fotø	Fotø	Expo	Fotø	Fotø	Fotø	Fotø	Expo	Expo	Fotø	Fotø	Fotø	Expo	Fotø	Fotø	Fotø	Fotø	Fotø	Expo	Fotø	Fotø	Fotø	Fotø	Expo	Fotø	Fotø	Fotø	Fotø	Fotø	Expo	Total
/5										10																					10
85										17																					17
90										18															17						35
95										10															7						17
100										7															15						22
105																									20						20
110										1			5																		1
145													26																		5 26
150										3			20															2		10	35
160										3			98															2		30	133
165										44			124												7			2		10	187
170										26			192												23			6	4	111	362
175				22			6			62	15		393				20	6	17	6		20			149	2		6	6	274	941
180				240	58		12	1	10	102	29	11	243		6		28	64	1/	6		20		25	453	12		2	4	152	1164
185	110			960	73	12	35	1	19	135	102	5	362		12		39	121	66	90		99		48	410	39		28	12	20	2779
195	219	16		1636	175	3	58			55	146	22	331		18		101	153	110	102	4	138	4	133	189	60	1	61	18	10	3763
200	904	33		1353	570	59	75			16	394	103	207	7	55	56	180	223	99	152	2	335		103	83	74	2	73	18		5174
205	1096	33		1134	906	108	69			13	277	103	124	3	42	160	315	338	66	254	7	730	9	180	46	97	2	171	16	10	6310
210	1287	99		938	1111	86	118			5	262	124	5	34	52	272	247	344	39	412	4	1381	13	145	33	111	2	134	11	10	7281
215	876	280		982	731	89	72			3	364	108		51	52	240	186	217	22	321	10	1026	13	76	10	100	5	86	8	10	5939
220	210	108		262	322	56	83				248	65	5	51	100	252	155	127	11	107	51	474	22	10	15	100	1	33	1		4289
223	82	132		196	278	96	72			3	248	119	5	82	70	184	146	108	6	164	75	335	12	7	10	51	1	15	2		2506
235	82	346		65	161	62	89			-	175	81		85	115	272	107	51		85	79	118	12	5		30	1	15	1		2038
240	55	429		87	161	52	46			3	219	92		92	118	136	56	19		79	97	99	6	2		32		2			1881
245	55	313		65	146	46	58				335	70		71	73	160	62	25		23	99	79	5	2	3	14		6			1711
250	55	313		44	102	40	26			3	204	76	-	129	67	96	51	6		23	60	20	3	4	3	16		2			1341
255	27	214		44	58	34	32				1/5	59	5	51	33	112	22	6		17	46		5			9		2			924
260	27	148		87	00	20	12			3	140	34 49		54 41	30	48	54 11			0	11		3			5		2			654
203	27	82		22	15	9	14			5	102	27		20	12	32					11	20	2	4		2					402
275		49		44	15	9	6			3	117	22		10	21	8				6	7	-									315
280	27	33		22		3	3				44	11		20	9		11	6			2		1			1	1				193
285		66	l .			3	6			3	44	5		3	3	16					2				1	7	1				158
290	27		1			3					15	16		-	6	8									1	2	1				51
295	27		1								29	5		3				6							1	5	1				05
305		16										5			3			0								3					20
310		.0									29				5																29
Total	5807	3198	1	8726	5627	932	976	1	19	686	4329	1320	2505	841	986	2464	1827	2089	457	2234	620	5366	128	774	2009	854	16	733	109	699	56333

Table IIB.4.b. Raised catch weights of herring by trawl station for the Acoustic Herring Survey RV "Dana" Cruise July 2006.

Stratum	570E0)6					570E0)8							580E0)8	С			D					Е						
Station	283	297	394	444	571	586	525	663	679	831	906	924	1004	1026	734	751	1077	1088	1167	1189	1240	1258	1340	1359	1404	1425	1505	1581	1600	1686	
ICES Sq	43F6	44F6	43F7	43F7	44F7	44F7	44F8	43F8	44F8	44F9	44F8	44F8	44F9	44F9	45F8	45F9	46G0	46G0	46G0	45G0	45G0	45G1	44G0	44G1	43G0	44G1	41G2	42G1	41G1	42G1	
length\Gea	Fotø	Fotø	Expo	Fotø	Fotø	Fotø	Fotø	Expo	Expo	Fotø	Fotø	Fotø	Expo	Fotø	Fotø	Fotø	Fotø	Fotø	Expo	Fotø	Fotø	Fotø	Fotø	Expo	Fotø	Fotø	Fotø	Fotø	Fotø	Expo	Total
Total kg	468.9	344.9	0.2	633.5	465.2	85.5	82.6	0.0	0.9	30.2	423.7	127.9	176.5	90.3	96.6	363.2	143.5	150.9	31.4	171.1	64.5	415.3	11.4	52.1	98.0	64.6	1.0	46.6	5.6	28.1	181.9

NORTH SEA AUTUMN SPAWNERS.		North Se.	A AUTUMN SI	PAWNERS.					_	-	-	-	-	_
ABUNDANCE (MILLIONS) OR PROPORTIONS		A	BUNDANCE	(MILLIONS)				_					_	-
0	0	11	1м	21	2м	31	3м	41	4м	5	6	7	8	9+
580E06	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
570E06	0.000	313.225	0.000	72.161	5.660	1.311	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
580E08	0.000	72.471	0.000	5.200	0.408	0.000	0.000	0.000	0.000	0.281	0.000	0.000	0.000	0.000
570E08	30.989	425.099	0.000	37.470	2.939	2.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
С	0.000	125.248	0.000	19.682	1.544	0.000	0.000	0.000	0.000	0.317	0.000	0.000	0.000	0.000
D	0.000	265.606	0.000	12.089	0.948	1.529	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
E	6.566	107.840	0.000	17.390	0.000	1.233	0.000	0.000	0.000	0.000	1.086	0.000	0.000	0.000
560E06	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

	WEST	ERN BALTIC SPRIM	NG SPAWNERS											
		ABUNDAN	CE (MILLIONS)											
STRATUM	0.000	11	1м	21	2м	31	3м	41	4м	5	6	7	8	9+
580E06	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
570E06	0.000	113.511	29.151	86.723	188.002	14.881	191.226	2.099	71.022	27.547	11.874	7.075	0.000	1.919
580E08	0.000	44.570	11.446	34.222	74.188	9.718	124.882	1.277	43.218	9.647	6.134	2.206	0.881	0.775
570E08	0.000	299.951	77.030	119.150	258.298	22.292	286.455	3.714	125.654	43.740	21.711	7.284	1.773	4.749
С	0.000	48.478	12.450	35.472	76.897	5.112	65.691	0.401	13.552	0.654	0.436	0.508	0.311	0.439
D	0.000	199.938	51.346	119.725	259.543	24.221	311.244	2.747	92.928	20.297	9.042	1.653	0.696	0.802
Е	5.385	904.479	206.535	302.416	591.085	53.684	522.202	2.244	56.100	13.492	10.324	4.140	0.000	0.000
560E06	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Table IIB 5h Mean weight of h	orring by aga maturity c	stock and subaroa for the	Acoustic Horring Survey	" DV "Dono" Cruico July 2006
Table IID.50. Mean weight of h	sering by age, maturity, s	SIOCK and Subarea for the	Acoustic merring burvey	KV Dalla Cluise July 2000

	NOF	RTH SEA AUTUM	N SPAWNERS.						_	_			-	_
	MEA	N WEIGHT (G)						-	_	_	_	-	-	_
STRATUM	0	11	1м	21	2м	31	3м	41	4м	5	6	7	8	9+
580E06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
570E06	0.00	72.84	72.84	83.91	83.91	84.00	84.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
580E08	0.00	71.19	71.19	75.44	75.44	0.00	0.00	0.00	0.00	151.00	0.00	0.00	0.00	0.00
570E08	3.62	54.88	54.88	77.41	77.41	84.00	84.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
С	0.00	66.14	66.14	72.15	72.15	0.00	0.00	0.00	0.00	151.00	0.00	0.00	0.00	0.00
D	0.00	68.42	68.42	73.66	73.66	84.00	84.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Е	5.12	58.42	58.42	69.36	69.36	84.00	84.00	0.00	0.00	0.00	184.00	0.00	0.00	0.00
560E06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

		SPRING SPA	WNERS											
	MEAN	WEIGHT (G)												
STRATUM	0	11	1м	21	2м	31	3м	41	4м	5	6	7	8	9+
580E06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
570E06	0.00	67.08	67.08	80.57	80.57	99.33	99.33	112.48	112.48	121.59	145.94	156.28	0.00	152.69
580E08	0.00	66.29	66.29	81.51	81.51	94.76	94.76	108.79	108.79	132.27	129.70	143.25	173.99	142.25
570E08	0.00	55.53	55.53	81.30	81.30	101.35	101.35	114.55	114.55	132.64	151.53	164.45	173.57	176.44
С	0.00	57.73	57.73	69.64	69.64	81.70	81.70	97.29	97.29	104.44	116.00	112.00	158.00	147.00
D	0.00	61.62	61.62	78.05	78.05	91.15	91.15	111.45	111.45	127.29	132.98	134.30	180.00	147.00
Е	5.85	47.89	47.89	60.34	60.34	66.19	66.19	87.84	87.84	90.96	145.56	126.34	0.00	0.00
560E06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table IIB.5c. Mean length of herring by age, maturity, stock and subarea for the Acoustic Herring Survey RV "Dana" Cruise July 2006.

	I	NORTH SEA AUTUMN	SPAWNERS.					_	_	-	-	_	_	_
	ME	AN LENGTH (CM)						-	_	-	-	-	1	-
STRATUM	0	11	1м	21	2м	31	3м	4 I	4м	5	6	7	8	9+
580E06	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
570E06	0.0	20.8	20.8	21.5	21.5	22.5	22.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
580E08	0.0	20.7	20.7	21.3	21.3	0.0	0.0	0.0	0.0	28.0	0.0	0.0	0.0	0.0
570E08	8.6	19.2	19.2	21.2	21.2	22.5	22.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
С	0.0	20.4	20.4	21.0	21.0	0.0	0.0	0.0	0.0	28.0	0.0	0.0	0.0	0.0
D	0.0	20.6	20.6	21.2	21.2	25.0	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Е	9.5	19.8	19.8	20.6	20.6	25.0	25.0	0.0	0.0	0.0	29.0	0.0	0.0	0.0
560E06	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

		SPRING SPAW	NERS											
	MEAN LE	NGTH (CM)												
STRATUM	0	11	1м	21	2м	31	3м	41	4м	5	6	7	8	9+
580E06	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
570E06	0.0	20.3	20.3	21.6	21.6	23.9	23.9	25.0	25.0	25.7	27.0	27.5	0.0	28.4
580E08	0.0	20.3	20.3	21.9	21.9	23.6	23.6	24.8	24.8	26.3	26.4	27.0	29.2	28.0
570E08	0.0	19.1	19.1	21.7	21.7	24.1	24.1	25.0	25.0	26.3	27.7	28.1	29.6	29.4
С	0.0	19.6	19.6	20.9	20.9	22.8	22.8	24.1	24.1	25.3	26.0	26.0	30.0	28.0
D	0.0	20.0	20.0	21.7	21.7	23.5	23.5	24.9	24.9	26.1	26.7	27.0	29.5	28.0
Е	10.2	18.6	18.6	20.5	20.5	21.7	21.7	23.3	23.3	23.3	26.6	25.9	0.0	0.0
560E06	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Annex 2C: Norway

ICES coordinated acoustic survey of Herring and Sprat in the North Sea RV "Johan Hjort", 29 June – 27 July 2006

Else Torstensen, Institute of Marine Research, Flødevigen

N-4817 His, Norway

else.torstensen@imr.no

1. INTRODUCTION

In 2006, the Norwegian Institute of Marine Research carried out an Ecosystem survey in the North Sea from 29 June to 4 August. The survey was a joint survey combining the ICES coordinated herring acoustic survey for the North Sea and adjacent areas (ICES, 2006), the third quarter IBTS, the saithe acoustic survey and the acoustic survey for sandeel.

The herring acoustic survey is planned and coordinated by the Planning Group for Herring Surveys (ICES, 2006). Five countries cooperate in surveying the North Sea and Division IIIa for an acoustic abundance estimation of herring and sprat. The Norwegian herring acoustic area is between 57° and 65°N, 2° and 6°E. Data from the present survey will be combined with the other surveys to provide a combined age disaggregated abundance index for use in the assessment carried out by the ICES Herring Assessment Working Group (HAWG) to be held in March 2006.

Objectives for the survey with RV "Johan Hjort" were:

- a) To conduct an acoustic survey to estimate the abundance and distribution of herring and sprat in the eastern part of the North Sea, between 56° and 62° N, and between 2° and 6° E
- b) To conduct an acoustic survey to estimate the abundance and distribution of saithe in the northern North Sea, between 56° and 62° N
- c) To conduct an acoustic survey to estimate the abundance and distribution of sandeel in the northern North Sea, between 56° and 62° N
- d) To obtain biological samples(length, weight) of defined fish species; for target species length, weight, age, sex, maturity data were sampled and infection by Ichthyophonus in herring recorded
- e) To map the general hydrographical regime and monitor the standard profiles: Oksøy – Hanstholm, Hanstholm – Aberdeen, Utsira - Start Point
- f) To sample data on zooplankton and phytoplankton along the transects Utsira-Start Point and Hanstholm – Aberdeen

2. SURVEY DESCRIPTION AND METHODS

2.1 Personnel

Else Torstensen	(Cruise leader, 29 June - 20 July)
Odd Smedstad	(Cruise leader, 20 - 27 July)
Tore Johannessen	(Cruise leader, 27 July - 4 August)
Jan Erik Nygård	(Acoustic expert, 29 June – 13 July)
Øyvind Torgersen	(Acoustic expert, 13 July – 4 August)
Ole Oskar Arnøy	(Technician, 13 – 27 July)
Knut Hansen	(Technician, 13 July – 4 August)
Inger Henriksen	(Technician, 13 – 27 July)
Anne-Liv Johnsen	(Technician, 29 June – 13 July)
Bjarte Kvinge	(Acoustic operator, 29 June – 13 July)

Jan de Lange	(Technician, 29 June – 13 July)
Harald Larsen	(Technician, 29 June – 13 July)
Svend Lemvig	(Technician, 13 – 27 July)
Elna Sælen Meland	(Technician, 27 July – 4 August)
Helén Løvdal Nilsen	(Technician, 13 – 27 July)
Are Salthaug	(Scientist, 29 June - 2 July)
Bente Skjold	(Technician, 29 June – 13 July)
Lisbeth Solbakken	(Technician, 29 June – 13 July)
Arne Storakre	(Technician, 29 June – 13 July
Bjørn Vidar Svendsen	(Technician, 13 – 27 July)

2.3 Narrative

The RV "Johan Hjort" left Bergen at 1100 UTC on 29 June 2006 and set the course north-west to start with crossing south along the western part of the Norwegian trench for acoustic registration of saithe. A call was made in Kristiansand in the morning 2 July and the survey continued with the Oksøy-Hanstholm transect (58° 3'N and 8°5' E) at 1355 UTC. We had a call in Hanstholm in the morning 3 July for service on the 3mm radar and started the Hanstholm-Aberdeen hydrographic transects in early afternoon. The survey continued with east-west transects from south to north. The vessel broke off the survey at N58° 26' and E4°45' and called Stavanger on the 12th at 1330 UTC for change of crews. "Johan Hjort" sailed again on 13 July at 1800 UTC. The survey recommenced at 2040 UTC. The Utsira-Start Point hydrographical transect started in the east (59° 17' N 4° 50'E) on the 14th. The transect was finalized on the 17 July (1900 UTC) and we continued north to cover the east coast of Shetland. A call was made in Lerwick, Shetland on 20 July for change of cruise leader and a brake. "Johan Hjort" left the next day and continued the survey in the northern area. The 1st part of the survey finished 27 July at 0130 UTC in position 61°02'N and 04°15'E and the vessel proceeded to Bergen where "Johan Hjort" docked at 1500 UTC (see Figure 1). Figure 1 gives the cruise track and locations of trawl hauls and Figure 2 the locations of CTD-stations and plankton-stations, 29 June-27 July 2006. The weather conditions were extremely good during this year's summer survey.

The present report gives the results from the Norwegian herring target area.

2.3 Survey design

The first part of the survey was carried out in systematically parallel east-west transects progressing northwards from N 56° 30' to N 62° 00'. In principle, 15 nm and 30 nm were used as distance between the tracks according to the coordinated plan (ICES, 2006).

2.4 Calibration

Calibration was not performed as there was too much organic matter in the sea. The sounders were calibrated in April 2006, with only minor changes. The main settings for the 38 kHz transceiver are given in Table 1.

2.5 Acoustic data collection

The acoustic survey on RV "Johan Hjort" was carried out using a SIMRAD ER60 38 kHz sounder and transducer ES38B SK mounted on the drop keel. Acoustic data were collected 24 hours per day. Additional data were collected at 18, 120 and 200 kHz (ES120–7 transducer) but was not used in the present analysis. The mean volume back scattering values (Sv) were integrated over 1 nm intervals from 9–13 m (depending on weather conditions and the use of keel) below the surface to 0,5m above the seabed. The speed of the vessel during the acoustic sampling was 10–11 knots. The acoustic data were archived on tape. The acoustic recordings

were scrutinized twice per day using the IMR BEI/SIMRAD BI500 Scientific Post Processing System (The Bergen Echo Integrator) (Foote *et al.*, 1991). No paper records were available.

2.6 Biological data - fishing trawls

Trawling was carried out for supporting the species identifications of acoustic scatters and for biological sampling. For pelagic trawling Åkra and Harstad trawls were used. A GOV trawl, as standard for the IBTS-surveys and equipped with Balmoral Kite floats, was used for bottom trawling. The bottom trawl hauls were monitored using Scanmar TE40 (wide beam) and distance/depth sensor (A 4693) and Scanmar TE40-2 (PL) (narrow beam) and depth sensor D1200 were used to monitor pelagic trawl hauls.

The catches were sampled for species composition by weights. Biological samples (length, weight) of the most important species were taken according to the IMR fish-sampling manual (Fotland *et. al.*, 2002). Herring were examined for sex, maturity (8 point scale), fat, stomach contents, vertebrae counts (east of 2°00'E) and macroscopic evidence of *Ichthyophonus* infection.

Otoliths were taken for age determinations (wr). If the catch of a target species contained less than 100 specimens, the total catch was sampled. If the catch contained more than 100 specimens, representative samples of about 100 specimens were randomly chosen.

2.7 Hydrographic data

CTD-stations were taken at each trawl station in addition to the four standard hydrographical profiles: Oksøy-Hanstholm, Hanstholm-Aberdeen, Utsira - Start Point and Fedje-Shetland.

2.8 Data analysis

Data from the echo integrator (sA) were averaged per 5 n.mi. The acoustic data were allocated to the following categories: herring, sprat, saithe, sandeel, pelagic fish, demersal fish and plankton. To calculate integrator conversion factors the target strengths of target species were estimated using the following TS/length relationship:

Herring and sprat: $TS = 20\log_{10}L - 71.2 \text{ dB}$

Herring were separated from other recordings by using catch information and characteristics of the recordings. The abundance estimation (Toresen et al 1998) was made by ICES rectangles and summed up for the whole area. North Sea autumn spawners and Western Baltic spring spawners (WBSS) are mixed during summer in the area covered by RV "Johan Hjort" (east of 2°E). No system for workable stock discrimination on individual herring during the survey is available. The proportion of Baltic spring spawners and North Sea autumn spawners by age was calculated by applying the formula WBSS= ((56.5-VS (sample))/(56.5–55.8)) (ICES, 1999). All samples were worked up on board. The length-at age and weight-at age were assumed to be the same in the two stocks. The measured proportions of mature fish were applied equally to calculate the maturing part of each age group in both stocks.

3 RESULTS and DISCUSSION

The survey track showing the trawl hauls and the CTD stations are presented in Figure 1 and 2, respectively.

3.1 Acoustic data

3.1. 1 Herring

The distribution of NASC-values (sA) assigned to herring, are presented as mean values per 5 n.mi intervals in Figure 3. Herring were distributed in the whole surveyed area, with the

highest mean densities (181 - 120) recorded in the ICES rectangles 46F2, 47F3 and 45F4. The overall highest values were measured outside the Norwegian PGHERS-area, in 46E9 and 46F1 with NASC- values of 496 and 316, respectively. Trawling was mainly based on random positions regularly chosen for trawling at the surface, i.e. not based on echo registration. In the "Norwegian" area herring tend to keep close to the surface and may thus be underestimated. More herring schools were observed than in the last years. Most of them were small and occurred scattered throughout the area, either close to the surface or near bottom.

3.2.2 Sprat

No sprat was observed by RV "Johan Hjort". This is the same situation as has been seen the last years.

3.3 Biological data

A total of 104 valid trawl hauls were carried out, of which 62 (31 PT and 31 BT) were taken in the "herring" area (Figure 1, Table 2). In general 30 min hauls were made. Catch composition per haul is given in Table 3. Herring were present in 27 hauls of sample size >20 herring. The length distributions of herring are presented in Table 4. A total of 2 188 herring were length measured and 1 124 were aged (winter rings in otoliths). A low number of herring infected by Ichthyophonus was observed (<10 herring).

3.4 Abundance and Biomass estimates

3.4.1 Herring

The abundance and biomass estimates presented, are confined to the Norwegian target area between 57° and 65°N, 2° and 6°E. The geographical distribution of the sA-values assigned to herring, are presented in Figure 3. The highest values were encountered in the central area, between 58°00'N and 59°30'N. Total number of herring was 1,744 million of which 78% was North Sea Autumn Spawners (NSAS). Total biomass of NSAS was estimated to 170,000 tonnes and the spawning stock biomass as 126,000 tonnes. These estimates are lower than the respective biomasses from the Norwegian area last year, 162,000t and 154,000t. The proportions of mature 2- and 3-ringers by numbers were estimated at 44% and 78%, respectively, comparable to the proportions estimated in 2005, 43 and 84% in 2005, respectively. Of the estimated numbers of 1-ringers 1% was classified as maturing. The number of the strong 2000-year class of the North Sea autumn spawners, 5-w-ringers in 2006, was still strong making 20% (numbers) and 25% (SSB).

Herring of the 2003-year-class made 33% of total number and 36% of the spawning stock biomass, with about 50% maturing fish. The 3 –and 4-ringers (2002 and 2001 year class) were represented by about 10% each of the total number and the biomass.

The total biomass of WBSS was 46,000 tonnes, a decline since last year.

Few good acoustic marks of herring schools were observed and the majority of the trawling positions were, however, regularly chosen for trawling at surface, i.e. not based on echo registration. Due to the tendency of staying near the surface during daytime, herring may have been underestimated.

Table 6 gives the mean length, mean weight, total numbers (millions) and biomass (thousands of tonnes) by age and maturity stage for the North Sea autumn spawners and the Western Baltic spring spawners in the Norwegian target area in June-July 2006.

3.5 Hydrography

A total of 121 CTD-stations were sampled (Figure 2). The horizontal distributions of temperature and salinity at 5m, 50m and at seabed, are shown in Figures 4a-c and 5a-c,

respectively. The temperature at surface (5m depth) ranged from $13-15^{\circ}$ C in the west to $13-17^{\circ}$ C in the east, with the general highest temperature in the south eastern area. At 50 m depth, the highest temperatures were in the west, $10-12^{\circ}$ in the Shetland area.

The hydrographical data are part of a monitoring program of a general monitoring program of IMR/ICES, and will be analysed and published separately.

4. References

- Fotland, A. A., Borge, A., Gjøsæter, H. and Mjanger, H. 2002. Manual for sampling of fish and crustaceans. Ver. 3.14. Institute of Marine Research.
- Foote, K. G., Knudsen, H. P., Korneliussen, R. J., Nordbø, P. E. and Røang, K. 1991. Post processing system for echo integrator data. J.Acoust. Soc. Am., 90, 37–47.
- ICES. 1999. Report of the Herring Assessment Working Group for the Area South of 62°N. ICES CM 1999/ACFM: 12.
- ICES. 2006. Report of the Planning Group on Herring Surveys. ICES CM 2006/LRC:04, Ref RMC, HAWG
- Toresen, R., Gjøsæter, H., and de Barros, P. 1998. The acoustic method as used in the abundance estimation of capelin (*Mallotus villosus* Müller) and herring (*Clupea harengus* Linné) in the Barents Sea. Fisheries Research, 34: 27–37.

Tranceiver Menu	38 kHz
Absorption coefficient	10.0 dB/km
Pulse length	1.024 ms
Bandwidth	2.43 kHz
Max power	2000 W
Two-way beam angle	-21.0 dB
3 dB Beam width	7.05/6.87
Calibration details	
TS of sphere	-33.7
Range to sphere in calibration	16.00 m
Transducer gain	26.94
SaCorrection	-0,63
Log/Navigation Menu	
Speed	Serial from ship's GPS
Operation Menu	
Ping interval	0.0 - 08 sec
Display/Printer Menu	
Integration line	n/a
TS colour min.	-60 dB
Sv colour min.	-60 dB

Table 1. RV "Johan Hjort", survey 2006210. International acoustic survey on herring in the North Sea, 29 June – 27 July 2006. Simrad ER60 and analysis settings used.

Trawl haul	Date	Lat	Lon	Time	Water	Trawl	Dura	ation	Total
no				UTC	depth (m)	depth (m)	(min)		catch (kg)
BT281	29.jun	60°35'	3°04'E	2358	154	155	35		115,04
BT282	30.jun	60°14'	3°07'E	0402	127	130	31		133,75
BT283	30.jun	59°48'	3°07'E	0755	131	132	28		370,26
BT284	30.jun	59°17'	3°09'E	1208	138	139	30		258,66
BT285	30.jun	58°51'	3°07'E	1640	109	110	30	Н	105,24
BT286	30.jun	58°09'	3°41'E	2312	93	90	31		119.53
BT287	01.jul	58°12'	4°21'E	0237	128	136	30		265.83
BT288	01.jul	57°50'	4°37'E	0647	96	96	30		78.58
BT289	01.jul	57°46'	5°49'E	1135	152	155	30		304.29
BT290	01.iul	57°35'	6°01'E	1359	140	140	29		12.16
BT291	01.jul	57°13'	6°13*E	1735	70	70	35		69.64
PT292	01.jul	57°23'	7°28' E	2303	84	0	17	Н	600.00
BT293	02 jul	57°25'	7°39' E	0057	111	113	30		368.60
PT294	02.jul	57°28'	8°27' E	2134	62	0	28	Н	89 90
PT295	03 jul	57°00'	5°53' E	2309	55	0	30	h	38 84
BT296	03.jui 04 jul	56°40'	5°42' E	0231	56	55	30	Н	143.82
BT297	04 jul	56°36'	2°09' E	1419	81	81	30		62.85
PT298	04 iul	56°48'	2°06' E	1937	66	0	30		28.28
BT299	04 in1	56°49'	3°33' E	2220	61	60	31		260,26
PT300	05 jul	56°48'	3°58' E	0047	54	0	31	h	34 68
BT301	05.jul 05.jul	56°45'	4°37' E	0352	57	57	30	н	358.18
PT302	05.jul 05.jul	56°48'	5°04' E	0613	61	0	29		14 93
PT303	05.jui 05.jui	57°00'	2°27' E	2257	75	0	30		10.85
PT304	06 jul	57°00'	1°41' E	0251	90	0	30		6 10
BT305	06.jul	57°00'	0°21'W	1138	80	80	30		329 71
BT306	06.jul	57°08'	0°36' W	2011	82	82	30	h	779.86
BT307	00.jui 07 iul	57°13'	0°29' E	0039	85	85	31	Н	183.01
BT308	07 jul	57°13'	1°29' E	0514	94	94	28	Н	212.03
BT309	07 jul	57°16'	2°37' E	1230	80	80	30		116.14
PT310	07.jul	57°23'	2°34' E	1710	75	0	31		3.38
BT311	07.jul	57°24'	3°27' E	2036	63	63	29	h	479.53
PT312	07.iul	57°22'	4°07' E	2329	75	0	30	Н	51.98
BT313	08.jul	57°20'	4°13' E	0054	65	65	30		282,27
PT314	08.jul	57°23'	5°04' E	0438	70	0	29	Н	19.26
BT315	08.jul	57°25'	5°28' E	0657	83	83	31		144.70
PT316	08.jul	57°37'	5°52' E	1129	75	75	39		0,00
PT317	08.jul	57°36'	4°23' E	1711	72	0	65	Н	1500,00
PT318	08.jul	57°35'	3°36' E	2239	62	0	30	h	137,79
BT319	09.jul	57°36'	3°31' E	0014	75	75	31		1181,48
BT320	09.jul	57°35'	2°50' E	0314	65	65	30		316,35
PT321	09.jul	57°37'	1°19' E	0905	102	5	30	Н	193,08
BT322	09.jul	57°54'	0°20' E	1521	139	132	33	Н	181,66
BT323	09.jul	58°13'	0°43' E	2109	150	150	31	Н	2017,54
PT324	10.jul	58°24'	1°12' E	0148	110	0	32	Н	70,27
BT325	10.jul	58°19'	1°32' E	0455	109	109	31	Н	121,63
BT326	10.jul	57°52'	1°29' Е	0822	93	93	35	Н	239,05
PT327	10.jul	57°55'	3°11' E	1511	68	10	36		8,16
PT328	10.jul	57°53'	4°06' E	2012	92	0	31	Н	759,97
PT329	11.jul	57°52'	5°00' E	0020	110	0	31	Н	244,67
PT330	11.jul	58°06'	5°45' Е	0441	306	0	30	Н	170,75
BT331	11.jul	58°10'	2°47'E	1700	71	71	31		210,12

Table 2. RV "Johan Hjort" 4–27 July 2005. Details of total trawl stations in the North Sea. PT = Pelagic Trawl, BT = Bottom Trawl.

Table 2. Continued.

	-	-	-				-		
Trawl haul	Date	Lat	Lon	Time	Water	Trawl	Dura	ation	Total
no				UTC	depth (m)	depth (m)	(min)		catch (kg)
PT332	12.jul	58°11'	2°04'E	2114	95	0	27	Н	302,13
PT333	12.jul	58°25'	2°58'E	0201	100	0	35	Н	175,02
PT334	12.jul	58°24'	5°29' E	2310	331	0	30	h	213,06
PT335	14.jul	58°26'	4°26' E	0358	270	0	31	Н	230,19
PT336	14.jul	58°38'	3°58' E	0820	275	0	29		4,88
PT337	14.jul	58°38'	3°46' E	1010	235	5	30	Н	401.00
BT338	14.jul	58°38'	2°52' E	1442	113	113	30	h	133.65
PT339	14 in1	58°38'	1°09' E	2127	129	0	30	н	309.87
BT340	15 jul	58°45'	0°35'E	0049	133	133	26	н	684 35
PT341	15.jul	58°37'	0°20'E	0331	139	0	31	h	21 32
PT2/2	15.jul	580381	0 20 E	0656	130	130	25	и	21,32
DT242	15.jul	50°52'	0 20 E	1549	150	150	23	11 11	76.09
D1343 DT244	15.jui 15.jui	500521	0 20 E	1022	130	130	20	п	172 45
B1344	15.jui	58-55	1°21 E	1933	121	120	30	П	1/3,45
P1345	15.jul	58°53'	1°43'E	2228	111	0	30	H	93,41
PT346	16.jul	58°53'	2°04'E	0028	109	15	30	H	1001,21
PT347	16.jul	59°04'	3°35' E	0845	247	0	30	Н	54,45
BT348	16.jul	59°16'	2°10' E	1553	122	125	30	Н	285,66
PT349	16.jul	59°17'	3°05' E	2139	133	20	31	Н	54,69
PT350	17.jul	59°17'	4°01' E	0445	285	0	30	h	72,27
PT351	17.jul	59°33'	3°16' E	1734	162	0	30	h	29,05
BT352	17.jul	59°34'	2°50' E	2020	116	116	30		199,31
PT353	17.jul	59°32'	2°09' E	2333	123	0	31	Н	238,99
PT354	18.jul	59°17'	1°55' E	0250	119	0	30	h	41,97
PT355	18.jul	59°18'	1°06' E	0740	99	100	30	h	103,86
PT356	18.jul	59°18'	0°30' E	1203	131	129	30	Н	134.20
BT357	18.jul	59°18'	0°23' E	1723	137	135	30	Н	221.64
BT358	19 iul	59°45'	0°27' E	0756	141	137	31	Н	281.86
PT350	19.jul	60°29'	0°41' E	1844	100	100	29		4 88
PT360	19.jul	60°38'	0°39'E	2111	100	100	30	h	394.89
PT361	19.jul	60°48'	0°36'E	2111	107	80	30	н	36.38
DT262	20 jul	60°40'	0 30 E	0142	00	0	20	и 11	6.40
FT302 DT262	20.jui 20.jui	60°20'	0 44 E	0142	00	100	20	п	202.54
B1303	20.jui	60°30°	0°51'E	1010	101	100	29	П	302,54
B1304	21.jui	60°14 (001.4)	0°30 E	1810	103	103	30	П	250,01
B1365	21.jul	60°14'	0°12'E	2140	122	120	30	H	181,32
PT366	22.jul	60°00'	0°60' E	0055	122	0	30	H	80,78
B1367	22.jul	59°51'	0°29' E	0343	135	135	30	Н	117,53
BT368	22.jul	59°46'	1°28' E	0807	118	118	30	Н	177,07
PT369	22.jul	60°04'	4°09' E	2336	290	0	30	Н	157,41
PT370	23.jul	60°04'	3°19' Е	0302	249	0	30	Н	40,96
BT371	23.jul	60°16'	2°36' E	1022	105	105	27	Н	75,19
PT372	24.jul	60°45'	3°35' E	0008	318	0	30	Н	322,01
BT373	24.jul	60°44'	2°36' E	0531	125	125	30	Н	178,39
BT374	24.jul	60°43'	1°20' E	1046	147	147	31	Н	246,14
BT375	24.jul	60°46'	0°34' E	1440	145	145	30	Н	125,46
BT376	24.jul	60°43'	0°17' E	1845	119	119	32		0.00
PT377	24.jul	60°59'	0°27' E	2255	148	0	29	Н	219.11
BT378	25 iul	61°13'	0°16' F	0113	165	165	30	н	160 19
BT379	25.jul	61°52'	0°22' E	0633	293	293	30		367.28
BT380	25.jui 25.jui	61°43'	0°32'E	1205	275	275	25	н	100 /2
DT201	25.jui 25.jui	61°1 <i>4</i> 5	0 32 E	1203	213	167	20	и Ц	227.62
DT201	23.jui 25 iui	61015	1017 E	2000	10/	10/	20	п	122,03
F 1 3 6 2 DT 2 9 2	∠3.jui 25 :1	01 13 6101 <i>5</i> 1	1017 E	2009	100	155	21	TT	122,20
B1383	25.jui	01115	1°1/ E	2134	100	154	31		455,49
P1384	26.jul	61°28'	1°20' E	0025	177	0	30	H ·	/5,65
BT385	26.jul	61°41'	1°27' E	0237	188	188	30	h	143,65

Trawl station		BT281	BT282	BT283	BT284	BT285	BT286	BT287	BT288	BT289	BT290	BT291	PT292	BT293	PT294	PT295	BT296	BT297	PT298	BT299
ICES rect		50F3	49F3	48F3	47F3	46F3	45F3	45F3	44F4	44F5	44F6	43F6	43F7	43F7	42F5	42F5	43F3	43F5	43F5	44F4
Total catch (kg)		115,09	133,75	370,26	258,66	105,24	119,53	265,83	75,85	304,29	12,16	68,47	600,00	337,48	89,37	38,84	143,30	67,53	28,28	260,56
Herring	Clupea harengus					7,89							276,00		37,13	1,90	5,37			
Sprat	Sprattus sprattus																			
Mackerel	Scombrus scombrus			1,08						0,41		10,38	324,00		49,47	30,36			14,76	
Horse mackerel	Tracurus tracurus			0,64	1,21										2,24					
																				1
Norway pout	Trisopterus esmarkii	24,04	20,83	45,50	164,33	5,68		70,19	0,26	125,88	4,27	0,38		224,38			0,14	0,58		1.00
Haddock	Melanogrammus aeglefinus		0,14	8,95	0,03	34,25	72,03	11,97	31,04	0,07	0,02	1,20		3,08	0,03	0,10		13,27	0,00	4,08
Whiting	Merlangius merlangus	1,05	5,11	4,68	4,72	23,06	12,48		1,96	0,29				16,68	0,06	1,52	1,14	20,47	0,02	51,85
Blue-whiting	Micromesistius poutassou	0,66	0,69					5,35												1
Saithe	Pollachius virens	78,08	36,01	266,13	35,63	4,46		90,25		121,88	1,26			20,74						1
Hake	Merluccius merluccius		0,16	3,19	36,15	0,35	1,95	2,65	4,49	36,41	5,43	2,23		2,05			0,61			1
Pollack	Pollachius pollachius		4,39	3,48				20,32												1
Torsk	Brosme brosme					4,10	1,80	4,68	0.00			6.0.5		50 50						1
Cod	Gadus morhua	2,69	11,14	14,36	5,44		0.05	25,46	8,00	13,33	0,00	6,05		50,79			13,85	1,38		1
Poor cod	Trisopterus minutus						0,05	3,40		3,70				1,67						1
Silvery pout	Gadiculus argenteus			6.00				7.02		0,09										1
Ling	Molva molva			6,29	1,15			7,83												
Blue ling	Molva diperygia																			1
Argentine	Argentina sphyraena	0,42	0,16	0,48	0,27		0,20	0,67	0,22		0,07									
Greater Argentines	Argentina silus																			
Common dragonet	Callionymus lyra	0,43	0,06		0,02				0,01											
Spotted dragonet	Callionymus maculatus								0,01											
Sandeels	Ammodytidae spp																0,25			
Gurnard	Trigla spp		2,78			5,76		0,58				1,25				3,17			9,15	
Tub gunard	Trigla lucerna			6,45	2,21		3,13		1,22								4,50	3,78		2,13
Hook-nouse	Agonus cataphractus						0,02													106.00
Dab	Limanda limanda		0,14			5,76	19,97	0,38	8,86			36,59		5,12			59,00	16,83		186,00
Sole	Solea solea					0.41	0.27		2 00	0.40		2.04		0.00			2.00	1.01		2.01
Plaice	Pleuronectes platessa					0,41	0,37		2,00	0,48		3,06		0,29			2,86	1,01		3,81
Witch	Glyptocephalus cynoglossus				0,27		0,14													1
l urbot	Scophthalmus maximus		7.47	1.10	0.40	12,21			1,50	0.42				0.42			1.00	1.02		2.51
Lemon sole	Microstomus kitt	5.00	20,51	1,10	0,49	1.22	1.00	2.42	1,01	0,43	0.00	0.01		0,42			1,00	1,82		2,51
Long rough dab	Hippoglossoides platessoides	5,98	39,51	0,04	0,23	1,32	1,98	3,43	0,96	0,29	0,00	0,91		5,29			52,62	3,71		8,29
Atlantia halibut	Lipidomonous kinnagom				0,91		2 20													
Atlantic natiout	A participas lupus						5,28	4.71	11.04			1 75		6.07						1
Lumnauakar	Cycloptorus lumpus							4,71	0.14			4,75		0,97						1
Monkfish	Lophius piscatorius		4.16		4.18				0,14											
Storry skoto	Poio radiata		4,10	1.24	4,10		2.14	0.17	0.42								1.09			1.80
Starty skate	Raja Laugaraja pagyas		0,89	1,24			2,14	0,17	0,42								1,90			1,09
Common skate	Raja Leucoraja nacvus																			
Sandy ray	Raja circularis																			1
Garfish	Belona belona															0.33				
Snake ninefish	Entelurus acquerius								0.02			0.04			0.44	1 46			1.63	
Norway haddock	Sebastes marinus								0,02			0,04			0,44	1,40			1,05	
Norwegian redfish	Sebastes viviparus							11.76	0.75	0.26										
Black-mouthed doof	Galeus melanostomus							,/0	0,75	0,20										
Deefich	Souliarhinus aoniaula																			
Doglish	ci in cuincuia																			
Kabbit fish	Chimaera monstrosa							0.07		o =-										
Cephalopoda		0,19	0,13		1,42			0,07	0,61	0,77	0,42	0,97							2.72	
Jellyfish								1.00	1.25		0.02	0.65							2,72	
Other	1	1,55					1	1,92	1,35		0,03	0,66	1					4,69		

Table 3: RV "Johan Hjort" 29 June - 27 July 2006. Catch compositions in the trawl hauls (kg) taken in the Norwegian herring acoustic area.

Trawl station		PT300	BT301	PT302	PT303	BT306	BT309	PT310	BT311	PT312	BT313	PT314	BT315	PT316	PT317	PT318	BT319	BT320	PT327	PT328
ICES rect		44F2	44F3	42F5	43F2	43F3	46F4	43F2	43F3	43F4	43F4	43F5	43F5	44F5	44F4	44F4	44F3	44F2	44F3	44F4
Total catch (kg)		34.68	358.15	12.74	10.82	779.86	116.14	3.38	479.53	51.83	282.27	19.26	144.70	0.00	1500.00	137.79	1181.48	316.35	8.16	759.97
Herring	Clupea harengus	0.66	5.00		10,02	0.13	110,11	0,00	1.26	2.19	-0-,-:	2.97	11,70	0,00	1200.00	0.11	1101,10	010,00	0,10	749.38
Sprat	Sprattus sprattus	.,	- ,			-, -			, -	, .		y			,	- ,				,
Mackerel	Scombrus scombrus	31,80		1,61	8,95	14,29		1,23		36,52					225,00	108,48			4,76	7,47
Horse mackerel	Tracurus tracurus	- ,		,-	- ,	· · ·		, -		,-	1.49				- ,	,.			,	., .
											-,									
Norway pout	Trisopterus esmarkii					7 43							26.40			8 50				
Haddock	Melanogrammus aeglefinus			0.00	0.01	360.19	36.98			0.01			52.90			0.19	403 20	4 16		
Whiting	Merlangius merlangus	0.01		0.32	0.05	280.26	5 35		3 73	0,01		0.01	10.31			2.16	126.00	18.00	0.00	
Blue-whiting	Micromesistius poutassou	0,01		0,52	0,00	200,20	0,00		5,75			0,01	10,51			2,10	120,00	10,00	0,00	
Saithe	Pollachius virens						1 36													
Hake	Merluccius merluccius						1,50						5.17							
Pollack	Pollachius pollachius												5,17							
Torsk	Brosme brosme																			
Cod	Gadus morbua		1 32			0.59	7.11						22.04				6.26	1 30		
Poor cod	Trisopterus minutus		1,52			0,57	7,11						22,04				0,20	1,50		
Silvery pout	Gadiculus argenteus												2,50							
Ling	Molya molya												1.45							
Dhua lina	Malaa dinamaia												1,45							
Blue ling	Molva diperygia					0.01														
Argentine	Argentina sphyraena					0,01														
Greater Argentines	Argentina silus					0.04														
Common dragonet	Callionymus lyra					0,04														
Spotted dragonet	Callionymus maculatus																			
Sandeels	Ammodytidae spp		0,03																	
Gurnard	Trigla spp		4,00	0,45		30,06	1,99	0,30	2,84	8,19	5,13	4,51	1,83		65,00	18,36	10,55	8,83	1,36	0,60
Tub gunard	I rigla lucerna																	0.02		
Hook-nouse	Agonus cataphractus		212.20			(5.50	10.10		41.5.00		2 (7 00		10.41				(20.0)	0,02		
Dab	Limanda limanda		312,20			65,70	48,40		415,00		267,00		10,41				620,96	261,79		
Sole	Solea solea					0,31														
Plaice	Pleuronectes platessa					3,69	3,90		3,50				3,46				1,43	3,85		
Witch	Glyptocephalus cynoglossus																			
Turbot	Scophthalmus maximus																			
Lemon sole	Microstomus kitt		13,49			12,00	4,52		27,60				2,29				1,45	6,38		
Long rough dab	Hippoglossoides platessoides		9,94			3,85	4,92		25,60		8,65		0,75				9,14	12,03		
Megrim	Lepidorhombus whiffiagoni																			
Atlantic halibut	Hippoglossus hippoglossus																			
Atlantic Catfish	Anarhichas lupus																			
Lumpsucker	Cyclopterus lumpus																		0,80	2,42
Monkfish	Lophius piscatorius												1,65							
Starry skate	Raja radiata		11,80				0,59						3,08				2,50			
Cuckoo ray	Raja Leucoraja naevus																			
Common skate	Raja batis																			
Sandy ray	Raja circularis																			
Garfish	Belona belona									0,30										
Snake pipefish	Entelurus aequerius	2,21			1,72			1,50		4,00		5,07			10,00				1,24	0,11
Norway haddock	Sebastes marinus																			
Norwegian redfish	Sebastes viviparus																			
Black-mouthed dogfi	Galeus melanostomus																			
Dogfish	Scyliorhinus canicula																			
Rabbit fish	Chimaera monstrosa																			
Cephalopoda					0.05															
Jellyfish				10 36	0,00			0 35				6 70								
Other			0.37		0.03	1.32	1.02	-,		0.62		2,.0	0.59							

Trawl station		PT329	PT330	BT331	PT332	PT333	PT334	PT335	PT336	PT337	BT338	BT343	BT348	PT349	PT350	PT351	BT352	PT353	PT355	BT364
ICES rect		44F5	45F5	45F2	45F2	45F2	45F5	45F4	46F3	46F3	46F2	46F2	46F2	47F3	46F4	48F3	48F2	48F2	45F5	46F2
Total catch (kg)		244,67	170,75	200,52	302,13	175,02	213,06	230,19	4,88	401,91	132,42	76,99	285,66	54,69	72,27	29,05	199,31	238,99	103,86	256,61
Herring	Clupea harengus	193,40	49,87	0,26	225,00	56,40	0,10	79,80		316,72	0,94	16,40	18,30	2,69	3,24	2,85		26,03	2,51	25,98
Sprat	Sprattus sprattus																			
Mackerel	Scombrus scombrus	51,00	25,16		75,00	118,62	1,18	58,62	2,04	36,32				34,10	8,45	2,36		202,94		54,67
Horse mackerel	Tracurus tracurus	-	-		-	-		-	0,12				0,16		-	-		-		
									-											
Norway pout	Trisopterus esmarkii										14,35	11,65	160,80				14,80		0,72	98,50
Haddock	Melanogrammus aeglefinus			51,28				0,01			34,40	6,47	45,75		0,03		22,03		52,56	15,45
Whiting	Merlangius merlangus		0,07	44,40			0,12	0,01	0,02	0,01	8,57	4,76	10,82	0,02			2,01		9,95	8,30
Blue-whiting	Micromesistius poutassou		-				0,10	-	-		-	0,06		-						2,55
Saithe	Pollachius virens			3,60			4,52				40,43	26,20	11,62				4,21		2,49	15,40
Hake	Merluccius merluccius										7,06	0,46	6,15				96,28			5,12
Pollack	Pollachius pollachius										-						2,72			
Torsk	Brosme brosme																3,99			
Cod	Gadus morhua			2,31							4,10	1,35	3,34				17,75		5,27	1,50
Poor cod	Trisopterus minutus																0,06			
Silvery pout	Gadiculus argenteus											0,15					,			3,90
Ling	Molva molva																0,69			
Blue ling	Molya diperygia																· · · ·			
Argentine	Argentina sphyraena																			
Greater Argentines	Argentina silus										0.59	0.07					2.66		1 49	0.99
Common dragonet	Callionymus lyra										0.02	0,07					0.03		1,47	0,77
Spotted dragonet	Callionymus maculatus										0,02						0,05			0.01
Sandeels	Ammodytidae spp																			0,01
Gurnard	Trigla spp			3 20	1 74								4 47				2.02		5 32	0.07
Tub gunard	Trigla lucerna			5,20	1,74						1.88		-1,-17				2,02		5,52	0,07
Hook-nouse	Agonus catanbractus										1,00									
Dab	Limanda limanda			86.40							6.90		0.88						8 80	0.46
Sole	Solea solea			00,40							0,70		0,00						0,00	0,40
Plaice	Pleuronectes platessa												0.48						0.22	
Witch	Glyptocephalus cynoglossus										0.13		0,40				0.20		0,22	
Turbot	Scontthalmus maximus										0,15		0,20				0,27			
Lemon sole	Microstomus kitt			5 36							3 /0		0.59				1 70		8 38	
Long rough dab	Hippoglossoides platessoides			3,50							8.07	3 5 8	9,60				7,20		2 78	17.60
Mearim	Lepidorhombus whiffiagoni			5,50							0.20	5,50	1 13				3 /3		2,70	1 98
Atlantic halibut	Hippoglossus hippoglossus										0,27		1,15				5,45			1,70
Atlantic Catfish	Anarhichas lunus												7 55							
Lumpsucker	Cyclonterus lumnus		0.93							2 40			1,55							
Monkfish	Lophius piscatorius		0,75							2,40							4 68	0.35	1.06	1.81
Starry skate	Raja radiata																4,00	0,55	0.43	1,01
Cuckoo ray	Raja Leucoraja naevus																		0,45	0.89
Common skate	Raja Leucolaja naevus																			0,07
Sandy ray	Raja circularis																			
Garfish	Raja circularis Belona belona	0.27			0.38		0.33			1.82					0.40					
Snake ninefish	Entelurus acquerius	0,27	0.23	0.06	0,50		0.05	0.35	2 70	1,02	0.01	0.04		2.48	3 53	3.00		4.06		0.03
Norway haddock	Sebastes marinus		0,25	0,00			0,05	0,55	2,70	1,44	0,01	0,04		2,40	5,55	5,00		4,00		0,05
Norwagian radfish	Sebastes vivinarus																8.61		0.28	
Blook monthed 1	Colous malanostomus																0,01		0,58	
Black-mouthed dogfis																				
Dogfish	Seynorhinus canicula																			
Rabbit fish	Chimaera monstrosa																			
Cephalopoda											0,11	1,37	0,48		0,22		1,06	0,01	0,22	0,11
Jellyfish			94,49				68,80	91,40		43,20			2,51	15,40	56,40	20,84		5,60		
Other				0,16			137,86				1,09	4,43	0,77						1,29	1,30

Trawl st	285	292	294	295	296	301	311	312	314	317	328	329	330	332
serie number	24305	24312	24314	24315	24316	24321	24331	24332	24334	24337	24348	24349	24350	24352
ICES sq	46F3	43F7	43F5	43F5	43F3	42F4	43F3	43F4	43F5	44F4	44F4	44F5	45F5	45F2
Length (cm) Length (cm) 16 165 17 17,5 18 18,5 19 19,5 20,5 21 21,5 22,5 23 23,5 24,4 24,5 25,5 26,5 26,5 27 27,5 28 28,5 29 29,5 30 30,5 31 31,5 32 33,5 34 34,5 35	40F3 1 2 1 1 2 2 8 1 3 6 9 7 7 1 3 3 1	43-7 1 3 2 222 7 7 200 13 12 9 4 1 1 3 1 2 9 4 1 1 3 1	43553 1 1 3 7 6 10 20 10 20 10 20 14 9 14 8 5 1	43F3 1 9 6 11 8 2	43F3 1 7 20 49 15 6 2	1 5 19 38 14 10 1 3	43F3 2 1 4 5 3 5 3 3	1 7 11 18 3 1	43F3 2 2 5 16 11 14 5 1 1	3 18 11 22 18 10 3 12 3	1 2 4 7 17 18 17 12 9 4 2 6 1 1	99 5 14 17 19 18 7 2 2 2 1	45F3 2 1 1 2 1 1 7 5 5 2 9 5 18 19 5 4 6 4 4 1	1 1 1 2 3 9 8 14 17 14 13 12 4 1 1
35,5 Total N	57	100	100	27	100	01	23	/1	57	100	101	101	100	101
mean W/ (a)	25.4	20.6	100	10.0	100	10.2	23	20.0	0/ 10 7	20.5	21.2	21.2	24.5	23.0
mean L (cm)	20,4 138.4	∠∪,0 71 9	19,7	19,0 51.4	19,2	54.0	20,0	20,0	52 1	∠0,5 72.1	Z1,Z 79.1	21,2	∠ 4 ,5 110 9	23,8 107.4
	130,4	7 1,0	50.00	51,4	50,1	55.00	04,9	50,5	50,00	12,1	70,1	19,1	119,0	107,4
mean verteb	56,44	56,24	56,36		56,21	55,98		56,46	56,22	56,3	56,54	56,31	56,27	56,4

Table 4. RV "Johan Hjort" 29 June - 27 July 2006. Norwegian Acoustic area, F2-F6. Herring length (cm) distribution in trawl hauls where sample size>20 herring.

Table 4. Continued.

Travist 333 335 337 343 346 347 348 360 333 336 370 372 373 ICSE so 44572 44574 46673 44672 44674 44672 4473 24302 24303 24304 24303 24304 24303 24304 24303 24304 24303 24304 24303 24304 24303 24304 24303 24304 243														
serie number 24353 24355 24357 24363 24366 24367 24370 24370 24373 24388 24390 24392 24393 24392 24393 24392 24393 24392 24393 24392 24393 24392 24393 24392 24393 24392 24393 24392 24393 24392 24393 24392 24393 24392 24393 2592 2592 259 250 250 250 250 250 250 250 250 250 250	Trawl st	333	335	337	343	346	347	348	350	353	369	370	372	373
ICCES or Length (cm) 45F2 45F4 46F3 46F2 47F3 46F2 46F4 48F2 49F4 49F3 50F3 50F3<	serie number	24353	24355	24357	24363	24366	24367	24368	24370	24373	24389	24390	24392	24393
Length (cm) Image: Constraint of the second se	ICES sq	45F2	45F4	46F3	46F2	46F2	47F3	46F2	46F4	48F2	49F4	49F3	50F3	50F2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Length (cm)													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	16													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	16,5													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17,5													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	18		1											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18,5		4											
19.5 3 4 2 1	19		1	0										
200 3 16 18 1 <td>19,5</td> <td>2</td> <td>4</td> <td>2</td> <td></td>	19,5	2	4	2										
243,5 4 10 10 1 </td <td>20</td> <td>3</td> <td>10</td> <td>3</td> <td></td>	20	3	10	3										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20,5	4	10	18			1		1					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	0 17	10	12			1	2	1					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21,5	1/	4	11				2						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22 5	10	0	11		1		2	1	1				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22,0	12	0	4		1	2	2	1	1	2			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23 5	10	7	2		6	2	13	1	6	2	1		
245 13 8 2 15 3 23 2 10 12 9 2 2 25 3 8 4 9 8 17 5 8 12 4 1 1 255 1 8 4 5 17 22 14 2 10 15 7 1 265 1 8 4 5 17 22 14 2 10 15 7 7 265 1 3 4 6 21 12 4 2 11 11 9 6 8 27 1 3 16 7 2 2 8 10 5 5 7 27.5 1 3 11 9 1 5 2 7 1 14 4 6 1 33 28 1 1 9 3 1 3 1 3 4 29 1 1 9 2 </td <td>20,0</td> <td>12</td> <td>6</td> <td>2</td> <td></td> <td>2</td> <td>7</td> <td>6</td> <td></td> <td>7</td> <td>5</td> <td>1</td> <td>1</td> <td></td>	20,0	12	6	2		2	7	6		7	5	1	1	
24.6 .0 0 0 0 0 10 10 10 10 10 10 10 11 12 13 15 13 11 12 13 11 12 13 11 12 13 11 16 7 12 2 18 10 5 5 7 27.5 1 3 11 9 1 5 2 5 6 9 2 10 28 1 1 6 15 2 7 1 1 4 4 6 1 3 4 29.5 1 1 1 3 1 3 1 3 1 3 3 4 29.5 1 1 1 3 3 1 3 </td <td>24 5</td> <td>13</td> <td>8</td> <td>2</td> <td></td> <td>15</td> <td>3</td> <td>23</td> <td>2</td> <td>10</td> <td>12</td> <td>q</td> <td>2</td> <td>2</td>	24 5	13	8	2		15	3	23	2	10	12	q	2	2
255 1 8 4 5 17 22 14 2 10 15 7 1 1 26 1 2 1 2 9 13 3 1 12 13 5 3 6 26,5 2 3 4 6 21 12 4 2 11 12 9 6 8 27 1 3 1 6 7 2 2 8 10 5 5 7 27,5 1 3 11 9 1 5 2 7 1 11 4 4 6 1 3 4 28,5 1 7 2 7 1 14 4 4 6 1 3 4 4 9 5 3 4 4 6 1 3 4 4 6 1 3 4 4 6 1 3 4 4 2 1 1 1 3 1 <td>24,0</td> <td>10</td> <td>8</td> <td>4</td> <td></td> <td>15 Q</td> <td>8</td> <td>17</td> <td>5</td> <td>8</td> <td>12</td> <td>4</td> <td>1</td> <td>1</td>	24,0	10	8	4		15 Q	8	17	5	8	12	4	1	1
203 1 2 1 2 1 2 1	25.5	1	8	4	5	17	22	14	2	10	15	-	7	1
265 2 3 4 6 21 12 4 2 11 12 9 6 8 27 1 3 1 6 7 2 2 8 10 5 5 7 27,5 1 3 11 9 1 5 2 5 6 9 2 10 28 1 1 6 15 2 7 1 14 4 6 1 3 4 29 1 1 9 3 1 3 1 3 4 4 6 1 3 4 29,5 4 7 2 1 4 4 6 3 3 4 9 5 3 4 4 9 5 3 3 4 3 4 4 7 2 1 1 1 1 3 4 3 4 3 4 3 4 3 4 4 1 1	26	1	2	1	2	9	13	3	1	10	13	5	3	6
27 1 3 1 6 7 2 2 8 10 5 5 7 27,5 1 3 11 9 1 5 2 5 6 9 2 10 28 1 1 6 15 2 7 1 11 4 7 4 7 28,5 1 1 6 15 2 7 1 14 4 6 1 3 29 1 1 9 3 1 3 1 3 4 29,5 4 7 2 1 4 6 3 3 4 9 5 30 2 2 1 1 1 1 3 3 4 3 3 1 3 1 3 3 4 1 1 1 1 1 2 3 3 1 1 1 1 1 1 1 1 3 3 3	26.5	2	3	4	- 6	21	12	4	2	11	12	9	6	8
27,5 1 3 11 9 1 5 2 5 6 9 2 10 28 1 1 6 15 2 7 1 11 4 7 4 7 28,5 1 1 9 3 1 3 1 3 4 29 1 1 9 3 1 3 1 3 4 29,5 4 7 2 1 9 5 3 4 6 3 1 3 1 3 4 6 6 3 3 1 3 4 6 6 3 3 1 3 1 3 3 4 3 4 6 6 3 1 1 1 1 1 3 3 3 1 1 3 3 1 1 3 3 1 1 3 3 3 1 1 1 1 1 1 1 1 1 </td <td>27</td> <td>_</td> <td>1</td> <td>3</td> <td>1</td> <td>6</td> <td>7</td> <td>2</td> <td>2</td> <td></td> <td>10</td> <td>5</td> <td>5</td> <td>7</td>	27	_	1	3	1	6	7	2	2		10	5	5	7
28 1 1 6 15 2 7 1 11 4 7 4 7 28,5 1 1 9 3 1 3 1 3 4 29 1 1 9 3 1 3 1 3 4 29,5 4 4 7 2 1 4 7 3 4 29,5 4 4 7 2 1 5 9 5 30 4 6 3 2 1 1 1 3 4 30,5 2 1 1 1 1 3 1 3 3 1 3 3 1 1 1 1 3 3 1 1 3 1 1 3 1 1 1 3 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1 1 <	27.5		1	3	11	9	1	5	2	5	6	9	2	10
28,5 <td< td=""><td>28</td><td>1</td><td>1</td><td>6</td><td>15</td><td>2</td><td>7</td><td>-</td><td>1</td><td>11</td><td>4</td><td>7</td><td>4</td><td>7</td></td<>	28	1	1	6	15	2	7	-	1	11	4	7	4	7
29 1 1 9 3 1 3 1 3 4 29,5 4 7 2 1 9 5 30 6 3 2 1 9 5 30 2 1 1 9 5 30,5 2 1 1 1 3 31 2 1 1 1 3 31,5 2 1 1 1 1 32,5 2 1 1 1 2 33,5 1 1 1 1 2 33,5 1 1 1 1 2 33,5 1 1 1 1 1 1 34,5 1 1 1 1 1 1 35,5 1 1 1 1 1 1 35,5 1 1 1 1 1 1 36,5 1 1 1 1 1 1	28,5				7	2	7		1	4	4	6	1	3
29,5 4 7 2 1 9 5 30 4 6 3 1 2 1 6 6 3 30,5 2 1 1 1 3 3 1 1 3 31 2 1 1 1 1 3 3 1 1 1 3 31,5 2 2 4 1 1 1 2 1 1 3 3 32 2 4 1 4 1 1 2 1 1 1 2 1 1 1 2 1 1 2 2 1 1 1 2 1 1 1 2 1 1 1 1 1 2 1 <td>29</td> <td></td> <td>1</td> <td>1</td> <td>9</td> <td></td> <td>3</td> <td></td> <td>1</td> <td>3</td> <td>1</td> <td></td> <td>3</td> <td>4</td>	29		1	1	9		3		1	3	1		3	4
30	29,5			4	7		2		1			9		5
30,5 2 1 1 3 31 2 1 1 1 3 31,5 2 2 1 1 1 1 32,5 2 2 1 1 1 2 32,5 33 1 1 1 1 2 33,5 1 1 1 1 1 1 1 33,5 1	30				6		3			2	1	6	6	3
31 2 1 1 1 2 31,5 2 2 1 1 1 2 32,5 3 4 4 4 1 1 2 33,5 34 4 4 4 4 4 1 1 1 1 1 1 1 2 1	30,5				2			1				1		3
31,5 2 2 1 2 32,5 3 1 2 33,5 34 1 1 1 34,3 4 1 1 1 35,3 5 1 1 1 7041 N 100 100 100 75 100 98 100 24 100 100 72 47 62 mean W (g) 23,0 23,2 23,5 28,5 26,0 26,5 25,0 26,0 26,4 26,2 27,5 28,0 28,6 28,0 213,6 mean L (cm) 102,2 107,3 109,9 218,6 153,3 144,8 130,7 135,0 150,3 175,0 189,3 213,6 mean verteb 56,56 56,04 56,18 56,618 56,613 56,46 55,88 56,19 56,51	31				2					1			1	2
32 32 2 2 2 32,5 33 3 1 1 33,5 34 4 4 4 1 34,5 35 4 4 4 1 35,5 4 4 4 4 1 Total N 100 100 75 100 98 100 24 100 100 72 47 62 mean W (g) 23,0 23,2 23,5 26,0 26,5 25,0 26,0 26,4 26,2 27,5 28,0 28,0 mean L (cm) 102,2 107,3 109,9 218,6 153,3 144,8 130,7 135,0 150,3 175,0 189,3 213,6 mean verteb 56,56 56,04 56,18 56,51 56,51 56,51 56,51 56,51 56,51 56,51 56,51 56,51 56,51 56,51 56,51 56,51 56,51 56,51 56,51	31,5				2						1			
32,5 33 1 1 33,5 34 1 1 34,5 35,5 1 1 Total N 100 100 100 75 100 98 100 24 100 100 72 47 62 mean W (g) 23,0 23,2 23,5 26,0 26,5 25,0 26,0 26,4 26,2 27,5 28,0 28,0 mean L (cm) 102,2 107,3 109,9 218,6 153,3 144,8 130,7 135,0 150,3 175,0 189,3 213,6 mean verteb 56,56 56,04 56,18 56,54 56,51	32												2	
33 33,5 34 34,5 35 35 35,5 1 1 1 Total N 100 100 75 100 98 100 24 100 100 72 47 62 mean W (g) 23,0 23,2 23,5 28,5 26,0 26,5 25,0 26,0 26,4 26,2 27,5 28,0 28,0 mean L (cm) 102,2 107,3 109,9 218,6 153,3 144,8 130,7 135,0 150,3 175,0 189,3 213,6 mean verteb 56,56 56,04 56,18 56,34 56,26 56,13 56,46 55,88 56,19 56,51	32,5												1	
33,5 34,5 35,35 34 1 1 34,5 35,35 35 100	33												1	
34 34,5 35 35,5 34 35,5 1 1 1 Total N 100 100 75 100 98 100 24 100 100 72 47 62 mean W (g) 23,0 23,2 23,5 28,5 26,0 26,5 25,0 26,0 26,4 26,2 27,5 28,0 28,0 mean L (cm) 102,2 107,3 109,9 218,6 153,3 144,8 130,7 135,0 150,3 175,0 189,3 213,6 mean verteb 56,56 56,04 56,18 56,34 56,26 56,13 56,46 55,88 56,19 56,51	33,5													
34,5 35,5 35 100 100 100 75 100 98 100 24 100 100 72 47 62 Total N 100 100 100 75 100 98 100 24 100 100 72 47 62 mean W (g) 23,0 23,2 23,5 28,5 26,0 26,5 25,0 26,0 26,4 26,2 27,5 28,0 28,0 mean L (cm) 102,2 107,3 109,9 218,6 153,3 144,8 130,7 135,0 150,3 175,0 189,3 213,6 mean verteb 56,56 56,04 56,18 56,34 56,26 56,13 56,46 55,88 56,19 56,51	34												1	
35 35,5 100 100 100 75 100 98 100 24 100 100 72 47 62 Total N 100 100 100 75 100 98 100 24 100 100 72 47 62 mean W (g) 23,0 23,2 23,5 28,5 26,0 26,5 25,0 26,0 26,4 26,2 27,5 28,0 28,0 mean L (cm) 102,2 107,3 109,9 218,6 153,3 144,8 130,7 135,0 150,3 175,0 189,3 213,6 mean verteb 56,56 56,04 56,18 56,34 56,26 56,13 56,46 55,88 56,19 56,51	34,5													
35,5 0 0 0 0 0 0 0 Total N 100 100 100 75 100 98 100 24 100 100 72 47 62 mean W (g) 23,0 23,2 23,5 28,5 26,0 26,5 25,0 26,0 26,4 26,2 27,5 28,0 28,0 mean L (cm) 102,2 107,3 109,9 218,6 153,3 144,8 130,7 135,0 150,3 175,0 189,3 213,6 mean verteb 56,56 56,04 56,18 56,24 56,26 56,13 56,46 55,88 56,19 56,51	35													
Iotal N Ioty Ioty <thioty< th=""> Ioty Ioty <</thioty<>	35,5 Tatal N	100	400	400	7-	400		400		400	400	70		00
Internative (g) 23,0 23,2 23,3 20,3 20,0 20,0 20,4 20,2 27,5 28,0 28,0 mean L (cm) 102,2 107,3 109,9 218,6 153,3 144,8 130,7 135,0 150,3 175,0 189,3 213,6 mean verteb 56,56 56,04 56,18 56,34 56,26 56,13 56,46 55,88 56,19 56,51		100	100	100	/5 20 E	100	98	100	24	100	100	/2 27 5	28.0	20 0
mean verteb 56,56 56,04 56,18 56,34 56,26 56,13 56,46 55,88 56,19 56,51	mean L (cm)	∠3,0 102.2	23,2 107 3	∠3,5 100.0	20,5 218.6	<u>∠0,0</u> 153.3	20,5 144 פ	∠5,0 130.7	20,0 135.0	∠0,4 153.0	∠0,2 150 3	∠1,5 175.0	20,0 180,3	20,0 213.6
	mean verteb	56.56	56.04	56.18	210,0	56.34	56.26	56.13	100,0	56.46	55.88	170,0	56.19	56.51

	1		2		3		4		5		6	7	8	9+	Totalt
L (cm)	im	m	im	m	im	m	im	m	im	m	m	m	m	m	
16,0															0
16,5															0
17,0															0
17,5	3														3
18,0	4		_												4
18,5	24		5												29
19,0	61		19												80
19,5	53	~	15	4											68 70
20,0	42	2	33	1											78 76
20,5	39	2	31	4											/0 50
21,0	20 10	1	29	4	2										0C ≬≬
21,0	12	1	29	4	2 1		1								40
22,0	10	1	21	7 5	1	1									26
22,0	12	1	15	7	5	2									20
23,5	- - 2		16	15	4	4		1							42
24.0	-		6	14	2	3		2		1					28
24.5			10	25	7	21		4		3					70
25,0			2	13	5	20	1	5		15					61
25,5			1	6	6	16	1	12	1	20	1				64
26,0				6	4	15	2	5	1	15	2				50
26,5				3	2	16		12		28	7	2			70
27,0				1		5	1	8	2	12	4	2			35
27,5				2		4		10		21	4	2			43
28,0						4		9		16	5	4	2	1	41
28,5								2		2	3	2	1	1	11
29,0								5		9	2	5	2		23
29,5								2		4	2	1	1		10
30,0						1				6	3	2		5	17
30,5											2	2		1	5
31,0												3		2	5
31,5												_			0
32,0								1				1			2
32,5													1		1
33,0													1		1
33,5											4				4
34,0 Totalt	20/	7	230	117	28	112	6	78	Δ	152	36	26	Q	7	112/
TUIAIL	294	1	209	117	50	112		10	4	152	50	20	0	1	1124

 Table 5. RV "Johan Hjort" 29 June - 27 July 2006. Norwegian Herring Acoustic Area. Number of otolith pairs read by wr-group, length and maturity.

WR	L _{mean}	W _{mean}	North	SEA AUI	UMN SPAW	NERS	WESTERN BALTIC SPRING SPAWNERS					
			NO (MILL)	%	Віом (10 ³)	%	NO (MILL)	%	Вюм (10 ³)	%		
1i	20.2	74.7	139	10.2	10	6.1	81	21.0	6	13.4		
1m	21.3	81.1	2	0.1	0	0.1	1	0.3	0	0.2		
2i	22.0	90.2	328	24.1	30	17.4	38	10.0	3	7.2		
2m	24.6	121.7	258	19.0	31	18.4	33	8.6	4	9.0		
3i	24.6	116.8	35	2.6	4	2.3	35	9.2	4	9.4		
3m	26.0	134.7	125	9.2	17	9.8	113	29.5	15	33.8		
4i	25.2	126.7	5	0.3	1	0.4	6	1.6	1	1.6		
4m	27.6	156.9	76	5.6	12	7.2	69	18.0	11	23.0		
5	27.5	157.8	268	19.7	42	24.9	6	1.4	1	1.9		
6	29.3	178.1	52	3.8	9	5.4	0	0.1	0	0.2		
7	30.5	187.2	44	3.2	8	4.8	1	0.2	0	0.4		
8	30.3	196.7	18	1.3	4	2.1	0	0.0	0	0.0		
9+	31.2	187.2	10	0.8	2	1.1	0	0.0	0	0.0		
Total	25.5	123.8	1361	100	170	100	384	100	46	100		
Immature	21.5	88.5	507	37	45	26	160	42	14	32		
Mature	27.3	145.7	853	63	126	74	223	58	31	68		

Table 6. RV "Johan Hjort" 29 June - 27 July 2006. Herring mean length, mean weight, numbers (millions) and biomass (thousands of tonnes) by age and maturity stages in the herring stocks in the Norwegian survey area.

Figure 1: RV "Johan Hjort" 29 June - 27 July 2006. Cruise track and fishing trawls undertaken during the acoustic survey. APelagic trawl haul Bottom trawl haul.

Figure 2: RV "Johan Hjort" 29 June - 27 July 2006. Cruise track, CTD-stations ad planktonstations taken during the acoustic survey.

Figure 3: RV "Johan Hjort" 29 June - 27 July 2006. Distribution of NASC -values attributed to herring per 5 n.mi. along the cruise track.

Figure 4a: RV "Johan Hjort" 29 June - 27 July 2006. The horizontal distribution of temperature at 5 m.

Figure 4b: RV "Johan Hjort" 29 June- 27 July 2006. The horizontal distribution of temperature at 50m depth.

Figure 5a: RV "Johan Hjort" 29 June - 27 July 2006. The horizontal distribution of salinity at 5 m.

Figure 5b: RV "Johan Hjort" 29 June - 27 July 2006. The horizontal distribution of salinity at 50 m depth.

Figure 5c: RV "Johan Hjort" 29 June - 27 July 2006. The horizontal distribution of salinity at bottom.

Annex 2D: Scotland (East)

Survey report for RV "Scotia"

1 - 21 July 2006

P. G. Fernandes, FRS Marine Lab Aberdeen.

1. INTRODUCTION

Background

An acoustic survey for herring was carried out by FRS Marine Laboratory around the Orkney Shetland peninsula in the northern North Sea (ICES Div IV) from the 1st to the 21st July 2006 on the FRV *Scotia*. The main objective of the survey was to provide an abundance estimate for herring in this area and to map the distribution of this species.

The survey was carried out as a part of the ICES coordinated herring acoustic survey of the North Sea and adjacent waters. The data from this survey were combined with other surveys in the North Sea to provide an age disaggregated abundance index for use in the assessment process. The assessment will be carried out by the ICES Herring Assessment Working Group (HAWG) to be held in March 2007. This survey has been carried out by the Marine Laboratory at this time every year since 1984.

Objectives

- 1) To conduct an acoustic survey to estimate the abundance and distribution of herring in the north western North Sea and north of Scotland between $58^{\circ}15-61.45^{\circ}N$ and $4^{\circ}W$ to $2^{\circ}E$, excluding Faroese waters.
- 2) To obtain biological samples for echosounder trace identification using a pelagic trawl.
- 3) To obtain samples of herring for biological analysis, including age, length, weight, sex, maturity, ichthyophonus infection and fat content.
- 4) To obtain hydrographic data for comparison with the horizontal and vertical distribution of herring.
- 5) To obtain plankton samples map the distribution and abundance of zooplankton.
- 6) To test the multisampling pelagic cod-end.
- 7) To test FRS' new Methot Isaacs Kidd nets.
- 8) To obtain holographic images of the low frequency scattering layer.

2. SURVEY DESCRIPTION AND METHODS

2.1 Personnel

(In Charge)
Fisheries Biologist
Fisheries Biologist
Acoustic Technician
Fisheries Biologist
Oceanographic Technician
Oceanographic Technician
Student, Aberdeen University
MSc Student Aberdeen, 1st pt
MSc Student Aberdeen, 1st pt
Aberdeen University, 2nd pt
Aberdeen University, 2nd pt

2.2 Narrative

All gear was loaded in Aberdeen on 28 June. Scientific staff joined the vessel at 08:00 UTC on 01 July and it departed at 09:30 on the same day. A small meeting was held with all scientists to explain the objectives of the survey and to describe general operating procedures. The survey commenced just outside Aberdeen at 10:00 on 1 July. Transects progressed northwards along lines of latitude, at spacings of 15 or 7.5 nautical miles (n.mi.). Transect spacing was based on the results of previous surveys and transects were placed relative to ICES rectangles. Transects extended as far east as 1° 45E, and as far as safely possible to the west on approaching the coast. Calibration of all four transducers took place in Scapa Flow in the early hours of the morning of Tuesday 4 July and the survey resumed afterwards at 09:35 of the same day. A half landing took place on 11 July in Lerwick in accordance with rest provision for the working time directive and for the exchange of personnel (Alex Brown and Palap Tiptus for Nick Burns and Hongyue Sun). The vessel resumed surveying at 11:00 on 12 July. West of the Shetland Isles, transects extended from the coast to the shelf edge or longitude 4° west. The survey was completed on 20 July at 12:45. All four transducers were calibrated successfully once again in Scapa Flow on 20 July. The vessel returned to Aberdeen on the morning of 21 July.

2.3 Survey design

The survey track (Fig IID.1) was selected to cover the area with three levels of sampling intensity based on agreed boundaries to the east, west and south, and the limits of herring densities found in previous years to the north and Northwest. A transect spacing of 15 nautical miles was used in most parts of the area with the exception of areas to the east of Shetland where short additional transects were carried out at 7.5 n.mi. spacing and the area south of 58° 30'N where 30 nmi transect spacing was used. On the administrative boundaries of 2°E the ends of the tracks were positioned at twice the track spacing from the area boundary, giving equal track length in any rectangle within the area. The between-track data was then included in the data analysis. Transects at shelf break were continued to the limits of the stock and the transect ends omitted from the analysis. Transects at the coast were continued as close inshore as practical, those on average less than half a transect spacing from the coast were excluded from the analysis, those at greater distance were included in the analysis. The origin of the survey grid was selected randomly within a 15 n.mi. interval the track was then laid out with systematic spacing from the random origin. Where the 7.5 and 30 n.mi. transect spacing was used the same random origin was used (as a proportion of the intertansect space). Finally, at the request of the Dutch, an additional two ICES rectangles were sampled (45F0 and 45F1): these were sampled using a zigzag design to minimise the passage time back to the Scotia's survey track (see Figure IID.1).

2.4 Calibration

Two calibrations were carried out of the EK60 echosounder system used during the survey: one near the beginning of the survey on 4 July in Scapa Flow and one at the end of the survey on 20 July in Scapa Flow. Standard sphere calibrations were carried using 38.1mm diameter tungsten carbide sphere for 18, 38, 120 and 200 kHz. Agreement between the calibrations for 38 kHz was approximately 0.1dB. The calibration settings and results for 38kHz are given in Table IID.1.

2.5 Acoustic data collection

The acoustic survey on FRV *Scotia* was carried out using a Simrad EK60 multifrequency echosounder with all four transducers (18, 38, 120 and 200 kHz) mounted on the drop keel. For most of the survey the keel was kept at 3m extension placing the transducer at 8.5m depth. Data was archived for further data analysis which was carried out using Sonardata Echoview

software and Marine Lab Analysis systems. Data were collected from 0200 to 2200 GMT. A total of 2255 n.mi. were surveyed and included in the analysis.

2.6 Biological data - fishing trawls

A total of 40 trawl hauls (positions shown in Figure IID.1) were carried out during the survey on the denser echo traces. The fishing gear used throughout the survey was the PT160 pelagic trawl; in the latter half of the survey this was augmented by the addition of a three cod-end multisampling trawl. Each haul was monitored using a Simrad FS903 scanning netsonde. The catch from each haul was sampled for length, age, maturity and weight of individual herring. In addition weights of gonads and livers were also collected. Between 250 and 500 fish were measured at 0.5 cm intervals from each haul. Otoliths were collected with one per 0.5 cm class below 20.5 cm, three per 0.5cm class from 21–25.5cm and ten per 0.5 cm class for 26.0 cm and above. The same fish were sampled for whole weight, gonad weight, liver weight, sex, maturity, stomach contents and macroscopic evidence of Ichthyophonus infection. The maturity scale used in data collection was the Scottish 8 point scale.

2.7 Hydrographic data

Surface temperature and salinity was collected throughout the survey at each trawl station and at additional plankton stations. Only salinity and temperature were collected. A total of 49 deployments of the ARIES vehicle were made which, in addition to the above, collected integrated whole water column plankton data in two PUP nets and, on occasion, depth specific plankton samples. In addition some holographic images were collected from areas associated with a strong 38 kHz scattering layer.

2.8 Data analysis

Data from the echo integrator were averaged over quarter hour periods (2.5 n.mi. at 10 knots). Echo integrator data was collected from 12 m below the surface (transducer at 8.5 m depth) to 0.5 m above the seabed, for most of the survey. The data were divided into seven categories, by visual inspection of the echo-sounder paper record and the integrator cumulative output;

- 1) Definitely herring traces,
- 2) Probably herring traces"
- 3) Possible herring traces"
- 4) Norway pout
- 5) shallow herring schools above 50 m,

To calculate integrator conversion factors the target strength of herring and for gadoid species were estimated using the TS/length relationship recommended by the acoustic survey planning group (Anon, 1992):

herring $TS = 20\log_{10}L$ -71.2 dB per individual

gadoid TS = $20\log_{10}L$ -67.5 dB per individual

The weight of herring at length was determined by weighing individual fish from each trawl haul. Lengths were recorded by 0.5 cm intervals to the nearest 0.5 cm below.

To process the data for extraction of herring schools the variable computation method available in Echoview was used. The multifrequency thresholding method described in earlier reports was used to isolate fish schools from other targets. The schools were then detected and finally identified according to the categories defined above by examination of school shape, echo intensity and the dB difference at 18, 38, 120 and 200 kHz.

North of 58° 30'N data were allocated to quarter statistical rectangles by their midpoint location, south of this latitude data were allocated to whole statistical rectangles in accordance

with the design criteria of the 30 nautical mile spacing. This required two analyses to be carried out in the national calculation programme (MILAP) – one at quarter rectangle resolution and one at whole rectangle resolution. The estimate is composed of the quarter rectangle analysis north of 58°30'N and the whole rectangle analysis south of this latitude. Estimates of density were obtained as the arithmetic mean of all values weighted by duration of the run to accommodate the small number of short EDSUs. Biological information was used in the post stratified method based on Kolmogorov Smirnov test (see MacLennan and Simmonds 2005).

3. RESULTS

3.1 Acoustic data

The distribution of NASC values along the cruise track is shown in Figure IID.2. The distribution of fish was similar to 2005, with most of the fish being detected towards the southern end of the area and very little (none in fact) detected at the northern extremes. A number of large herring schools were detected towards the southern edge, around 58 just east of the meridian. Strong marks were also detected close inshore all around Shetland and on Papa Bank (northwest of Orkney). Most of the herring schools were of the short pillar shape, but many were detected as large block like schools not dissimilar from wrecks. On one notable occasion, a wreck was passed over and a strange echotrace was encountered on top of the wreck – this turned out to be a ghost fishing net.

3.2 Biological data

Fishing was generally successful; 40 trawl hauls were carried out, of which 25 contained more than 30 herring (Figure IID.1). The positions, dates and time of these are given in Table IID.2. In addition to length frequency data, a total of 2563 herring were sampled for weight, sex, maturity and otoliths. A subset of these were sampled for fat content. The 25 hauls with significant numbers of herring were used to define five survey sub areas (Figure IID.3):

- I. BIG: Large (big) fish with a mean size of 28.5 cm.
- II. VBI: Larger (very big) with a mean size of 31.7 cm.
- III. MED: Medium size fish with a mean size of 27.1 cm.
- IV. SMA: Small fish with a mean size of 25.3 cm.
- V. MSD: Medium sized fish in the south of the area (south of 58°30 N) with a mean size of 26.8 cm.

Note that for the export of data to FishFrame the single rectangle sampled to the west of 4°W (ref 49E5) was assigned to a dummy in number VI with the same properties as the adjacent area in number I.

Table IID.3 shows the total catch by species. The length frequency distributions, mean lengths, weights and target strengths for each haul and for each sub area are shown in Table IID.4. The spatial distribution of mean length is shown in Figure IID.3. Five age length keys, one per area, were constructed. There is again evidence of no icthyophonus in the population. Not a single herring from the 2563 herring sampled were found to show macroscopic evidence of infection. The stratified weight at length data was used to define the weight-length relationship for herring, which was:

 $W = 0.0015 L^{3.53} g$ (L measured in cm to greater 0.5 cm)

The proportions of 2, 3 and 4 ring herring that were mature were estimated at 81.5, 88.9 and 97.7% respectively.

3.3 Biomass and Abundance estimates

The total biomass estimates for the survey were:

Total herring	2,048,271 tonnes	
Spawning stock biomass	1,950,115 tonnes	95.2%
Immature	98,157 tonnes	4.8%

The numbers and biomass of fish by quarter ICES statistical rectangle are shown in Figure IID.4. A total estimate of 11,184 million herring or 2,048 thousand tonnes was calculated for the survey area. 1,950 thousand tonnes of these were mature. Herring were generally found in similar water depths and location to 2005 however, the distributions were concentrated closer to the coast than in previous years. The proportion of the 2000 year class was once again quite high. Table IID.6 shows the estimated herring numbers mean lengths, weights, biomass, and proportion mature at age and year class.

In addition to herring, a variety of other fish species were caught although examination of the catch by species (Table IID.3) shows that aside from herring the numbers caught were very small. The dominant species other than herring were mackerel, followed by Norway pout, haddock and whiting. No cod were caught as by-catch in any of the hauls.

3.4 Ichthyophonus Infection

None of the 2563 fish examined for macroscopic evidence of ichthyophonus were found to be infected.

TRANSCEIVER PARAMETERS											
Frequency	38 kHz										
Sound speed	1500 m.s ⁻¹										
Max. Power	2000 W										
Equivalent two-way beam angle	-20.9 dB										
Default Transducer Sv gain	23.22 dB										
3 dB Beamwidth	7.1°										
CALIBRATION DETAILS											
	4 July 2006	20 July 2006									
TS of sphere	-42.33 dB	-42.33									
Range to sphere in calibration	12.10 m	12.63									
Measured NASC value for calibration	2129	2208									
Calibrated Sv gain	23.35	23.22									
Calibration constant for MILAP (optional)	1.1005 at -35 dB										
ED	SU										
Echoview integration cell size	15 minutes (approx 2.5 n.mi. at 10 knots)										
Opera	ATION										
Ping interval	1 s at 250 m range										
	2.5 at 500 m range										
Analysis	SETTINGS										
Bottom margin (backstep)	0.5 m										
Integration start (absolute) depth	12 m										
Range of thresholds used	-70 dB on 38 -170 on combined blurred 38,120,200										

Table 2D.1: Simrad EK60 and analysis settings and calibration results from the Scotia herring acoustic survey 1-21 July 2006.

Table 2D.2: Details of the fishing trawls taken during the Scotia herring acoustic survey, 1-21 July 2006: No. = trawl number; Trawl depth = depth (m) of headrope; Gear type PT160 = pelagic trawl + MS = multisampler; Duration of trawl (minutes); Use h=used to qualify herring acoustic data (blank if not); Total catch in kg.

No.	DATE	POSITION	TIME (UTC)	WATER DEPTH	TRAWL DEPTH	TRAWLGEARDEPTHTYPE		USE	TOTAL (KG)
273	01/07/2006	57°18.46N 1° 9.73W	13:09	82	62	PT 160	30		0
274	02/07/2006	57°59.8N 0° 58.48E	20:31	137	117	PT 160	38	Н	1215
275	03/07/2006	57°48.36N 2° 13.63W	13:12	106	86	PT 160	62		2
276	04/07/2006	58°39.09N 2° 22.46W	12:06	71	51	51 PT 160		Н	0
277	04/07/2006	58°39.17N 0° 47.57W	15:53	130	110 PT 160		19	Н	8817
278	05/07/2006	58°39.27N 0° 15.30E	03:06	139	119	PT 160	43	Н	582
279	05/07/2006	58°45.92N 1° 45.01E	09:46	108	88	PT 160	52	Н	1473
280	05/07/2006	58°54.51N 0° 46.68E	15:42	139	119	PT 160	39	Н	3548
281	06/07/2006	58°54.03N 1° 30.07W	04:14	121	101	PT 160	41	Н	1166
282 C1	06/07/2006	59°9.12N 1° 16.81W	15:45	107	87	PT 160+ MS	47	Н	626
282 C2	06/07/2006	59°9.12N 1° 16.81W	15:45	107	87	PT 160+ MS	47	Н	238
283 C1	07/07/2006	59°24.17N 0° 37.25E	11:29	138	118	PT 160+ MS	87		0
283 C2	07/07/2006	59°24.17N 0° 37.25E	11:29	138	118	PT 160+ MS	87	Н	1098
284	07/07/2006	59°24.05N 0° 34.06W	17:59	138	118	PT 160	27	Н	5948
285	07/07/2006	59°24.12N 1° 16.14W	21:29	108	88	PT 160	41	Н	754
286	08/07/2006	59°24.08N 2° 8.34W	04:57	77	57	PT 160	63	Н	867
287 C1	08/07/2006	59°39.37N 1° 41.48W	11:39	90	70	PT 160+ MS	73	Н	418
287 C2	08/07/2006	59°39.37N 1° 41.48W	11:39	90	70	PT 160+ MS	73	Н	276
288 C1	08/07/2006	59°39.095N 0° 54.38E	21:55	120	100	PT 160+ MS	27		4
288 C2	08/07/2006	59°39.095N 0° 54.38E	21:55	120	100	PT 160+ MS	27		0
289 C1	09/07/2006	59°54.11N 1° 15.93E	08:20	123	103	PT 160+ MS	98	Н	1284
289 C2	09/07/2006	59°54.11N 1° 15.93E	08:20	123	103	PT 160+ MS	98		0
290 C1	09/07/2006	59°54.21N 0° 59.26W	18:46	109	89	PT 160+ MS	50	Н	1387
290 C2	09/07/2006	59°54.21N 0° 59.26W	18:46	109	89	PT 160+ MS	50	Н	1140
290 C3	09/07/2006	59°54.21N 0° 59.26W	18:46	109	89	PT 160+ MS	50	Н	19
291 C1	10/07/2006	60°9.18N 0° 6.7E	06:25	168	148	PT 160+ MS	89	Н	11
291 C2	10/07/2006	60°9.18N 0° 6.7E	06:25	168	148	PT 160+ MS	89	Н	0
292 C1	10/07/2006	60°9.255N 0° 43.415E	11:57	155	135	PT 160+ MS	76	Н	2305
293	12/07/2006	60°19.53N 0° 15.775W	13:14	124	104	PT 160+ MS	35		0
294 C1	12/07/2006	60°26.91N 0° 30.535W	18:40	124	104	PT 160+ MS	26	Н	1049
295 C1	12/07/2006	60°30.92N 0° 45.57W	21:20	88	68	PT 160+ MS	55	Н	263
295 C2	12/07/2006	60°30.92N 0° 45.57W	21:20	88	68	PT 160+ MS	55		2
296 C1	13/07/2006	60°41.62N 0° 32.45W	07:24	130	110	PT 160+ MS	69	Н	665
296 C2	13/07/2006	60°41.62N 0° 32.45W	07:24	130	110	PT 160+ MS	69	Н	505
297 C1	13/07/2006	60°49.29N 0° 39.085W	11:55	107	87	PT 160+ MS	48		2
297 C2	13/07/2006	60°49.425N 0° 39.085W	11:55	107	87	PT 160+ MS	48	Н	2729
298	14/07/2006	61°9.185N 0° 5.805W	00:00	155	135	PT 160+ MS	46		0
299	15/07/2006	61°23.72N 1° 45.685E	05:38	155	135	PT 160+ MS	77		0
300	15/07/2006	61°24.18N 0° 49.545E	12:46	178	158	PT 160	40		0
301 C1	16/07/2006	61°26.665N 0° 45.135W	05:47	180	160	PT 160+ MS	76		4
302 C1	16/07/2006	61°2.02N 1° 36.265W	14:35	122	102	PT 160+ MS	51		6
303 C1	17/07/2006	60°39.255N 1° 51.315W	05:52	128	108	PT 160+ MS	57	Н	530
303 C2	17/07/2006	60°39.255N 1° 51.315W	05:52	128	108	PT 160+ MS	57	Н	3030
304 C1	17/07/2006	60°23.785N 1° 33.42W	12:35	150	130	PT 160+ MS	64	Н	314
304 C2	17/07/2006	60°23.785N 1° 33.42W	12:35	150	130	PT 160+ MS	64	Н	66
305 C2	18/07/2006	60°9.075N 2° 40.045W	07:32	100	80	PT 160+ MS	54	Н	23
306 C1	18/07/2006	60°9.215N 2° 33.035W	09:52	100	80	PT 160+ MS	39	Н	383

307 C2	18/07/2006	60°9.075N 1° 51.94W	13:29	50	30	PT 160+ MS	34		0
308 C1	18/07/2006	60°5.08N 1° 32.045W	17:05	90	70	PT 160+ MS	64	Н	7860
309 C1	19/07/2006	59°54.125N 2° 42.86W	04:03	86	66	PT 160+ MS	49	Н	524
310 C1	19/07/2006	59°54.105N 3° 53.91W	09:15	156	136	PT 160+ MS	60	Н	2225
310 C2	19/07/2006	59°54.105N 3° 53.91W	09:15	156	136	PT 160+ MS	60	Н	5425
311 C1	19/07/2006	59°27.185N 3° 3.07W	17:43	74	54	PT 160+ MS	50	Н	734
312 C1	20/07/2006	59°13.24N 3° 43.5W	07:01	140	120	PT 160+ MS	69	Н	686

Table 2D.3a: Total catch by species for trawl hauls from the Scotia acoustic survey 1-21/07/2006. Estimated total catch is given in kg and numbers by individual species

HAUL NO.	EST CATCH		MAGYERE	HORSE	0	BLUE	Hannon		GREY			SNAKE
	(KG)	HERRING	MACKEREL		SAITHE	WHITING	HADDOCK	WHITING	GURNARD	HAKE	N.POUT	PIPEFISH
		Clupea harengus	Scomber scombrus	Trachurus trachurus	Pollachius virens	M. Poutassou	Melanogrammus aeglefinus	Merlangius merlangus	Eutrigia gurnardus	<i>Merluccius</i> <i>merluccius</i>	1 risopterus esmarki	Entelurus aequoreus
273	1								4			
274	210	1215									29	
275	0.25	2				9	2	1			72	1
276	25		57									3
277	1500	8817										
278	120	582	2									
279	300	1471										1
280	750	3548			7	,					21	
281	150	1173										
282 C1	90	626						2	32			
282 C2	45	238						1				
283 C1	10	0	15									
283 C2	210	1098									37	
284	1200	5948										
285	180	754						4	6			
286	120	867							5			
287 C1	60	418										
287 C2	45	276										
288 C1	1	4										
289 C1	270	1284					3					
290 C1	300	1387										
290 C2	300	1140										
290 C3	6	19										
291 C1	2.6	11										
291 C2	5	0	23									3
292 C1	600	2305										
293	25	0					1				703	2
294 C1	240	1049									88	
295 C1	60	263										
295 C2	0.5	2									380	
296 C1	150	665	8									
296 C2	150	505					3	2		3		
297 C1	25	2	205									
297 C2	900	2729	1080				2					
298	0	0										
299 C3	0	0										16
300	10	0			6							

HATT NO	For											
HAUL NO	EST CATCH			HORSE		BLUE			GREY			SNAKE
	(KG)	HERRING	MACKEREL	MACKEREL	SAITHE	WHITING	HADDOCK	WHITING	GURNARD	HAKE	N.POUT	PIPEFISH
		Clupea harengus	Scomber scombrus	Trachurus trachurus	Pollachius virens	M. Poutassou	Melanogrammus aeglefinus	Merlangius merlangus	Eutrigla gurnardus	Merluccius merluccius	Trisopterus esmarki	Entelurus aequoreus
301 C1	5	4										
302 C1	5	6	3	12								
303 C1	120	530	72									
303 C2	750	3030	36									
304 C1	75	314	3				1	4			1	
304 C2	20	66	1					26			45	
305 C1	22	23	134									
306 C1	70	383	199						6			2
307 C2	1.2	0	6									10
308 C1	1500	7860	360						20			
309 C1	90	524	50									3
310 C1	750	5425										
310 C2	1500	2225	6									
311 C1	90	734	2									
312 C1	120	686	6									2

Table 2D.3b: Total catch by species for trawl hauls from the Scotia acoustic survey 1-21/07/2006. Estimated total catch is given in kg and numbers by individual species

SUBAREA]	[
HAUL / LENGTH	278	279	280	283	284	289	290	291	292	294	295	296	297	303	304	305
18.5																
19																
19.5																
20																
20.5																
21		0.2														
21.5	0.2															
22																
22.5																
23			0.2										0.3			
23.5	0.2	0.2														
24	0.5	0.5	0.4	0.6	0.2								0.5			
24.5	0.5	0.7	1.2	3.8		1.4	0.9		0.4		0.4		0.3			
25	0.5	0.7	1.6	5.3	0.2	2.6	2.6		0.4	0.3	0.8		4.4	0.2	0.3	
25.5	2.6	3.4	3.4	6.6	2.7	4.9	5.4		1.5	1.2	4.9	3.0	8.2	0.2	1.1	4.3
26	5.5	10.2	5.4	10.4	5.8	7.7	8.6		2.2	4.9	9.1	5.1	7.0	0.5	3.9	13.0
26.5	9.5	11.1	9.5	8.5	7.8	7.9	10.1		3.7	7.6	12.8	9.2	11.2	2.8	7.9	13.0
27	14.4	19.5	11.7	10.7	14.5	13.1	17.0		4.8	7.9	19.2	10.1	11.0	4.7	10.8	8.7
27.5	15.8	16.5	13.1	9.4	17.2	12.9	16.3		7.2	11.9	20.4	11.8	11.0	9.1	12.9	17.4
28	20.1	14.3	17.1	11.9	22.1	13.8	16.6	18.2	10.6	16.5	18.9	12.6	10.5	13.8	15.5	17.4
28.5	11.9	9.7	13.3	9.7	12.5	10.7	11.2	18.2	12.6	13.7	5.7	11.0	15.1	14.0	13.4	8.7
29	10.3	8.8	10.7	9.6	9.8	10.3	6.3	18.2	15.4	14.0	3.0	12.9	8.5	15.6	13.2	
29.5	3.6	1.8	4.4	5.9	3.8	6.3	2.0	27.3	10.0	4.9	3.0	6.0	3.3	9.7	5.8	8.7
30	1.9	1.4	4.2	3.2	2.0	4.2	0.5		10.4	5.8	1.5	6.5	2.6	9.8	5.8	
30.5	1.9	1.2	2.8	2.4	0.2	2.1	0.9	9.1	8.9	3.3		4.5	2.3	5.6	5.0	8.7
31	0.7		0.4	1.5	0.2	0.9	0.7	9.1	6.3	4.1	0.4	2.8	1.8	5.5	0.8	
31.5			0.6	0.2	0.2	0.7	0.8		3.3	1.2		2.4	1.0	3.3	2.4	
32				0.5	0.5	0.5			1.3	1.2		0.7	0.5	2.3	1.1	
32.5							0.2		0.9	0.3		0.3	0.3	1.3		
33										0.3				0.6	0.3	
33.5									0.2	0.3		0.3		0.3		
34												0.7	0.3	0.4		
34.5													0.0	0.1		
35										0.5						
35.5												0.3		0.1		
Number	582	1473	3548	1098	5961	1284	2546	11	2305	1049	265	1175	2934	3563	380	23
L (cm)	28.2	27.9	28.3	28.0	28.3	28.2	27.9	29.7	29.5	28.9	27.8	28.8	28.1	29.6	28.8	28.2
W (g)	202.0	194.3	204.5	197.0	202.7	203.6	194.9	240.8	236.2	220.6	191.9	219.4	200.8	239.5	217.4	201.0
TS/id	-42.2	-42.3	-42.2	-42.3	-42.2	-42.2	-42.3	-41.7	-41.8	-42.0	-42.3	-42.0	-42.2	-41.8	-42.0	-42.2
TS/kg	-35.2	-35.2	-35.3	-35.2	-35.2	-35.3	-35.2	-35.6	-35.5	-35.4	-35.1	-35.4	-35.2	-35.6	-35.4	-35.2

Table 2D.4a: Herring length frequency proportion for individual trawl hauls by subarea (Figure IID.3) for the *Scotia* acoustic survey (1-21/07/2006) length in cm, weight in g, calculated target strength in dB per individual using TS=-71.2+20log(L).

SUBAREA	1	ſ	п				III						IV			V
HAUL																
/LEN	306	MEAN	310	277	285	287	308	309	312	MEAN	281	282	286	311	MEAN	274
18.5											0.4				0.1	
19							0.3			0.0						
19.5											2.1				0.5	
20											1.5				0.4	
20.5											2.8				0.7	
21		0.0					0.5			0.1	4.9				1.2	
21.5		0.0					0.3			0.0	5.4				1.3	0.6
22											3.2	0.2			0.9	0.9
22.5							0.5			0.1	5.4	0.5			1.5	1.1
23		0.0		0.2						0.0	11.8	5.3	2.2	0.3	4.9	1.5
23.5		0.0		1.7		0.7	0.3			0.4	10.7	10.0	8.0	0.3	7.2	2.9
24	0.3	0.2		5.3	3.4	2.9	0.5	0.4		2.1	13.6	18.1	12.0	9.5	13.3	4.6
24.5		0.6		6.0	3.7	6.5	0.5	5.5		3.7	11.3	17.1	17.0	18.3	15.9	5.5
25	1.3	1.2		11.5	8.0	12.0	5.9	13.5	2.3	8.9	10.7	18.3	24.0	19.3	18.1	7.2
25.5	4.4	3.4		11.7	8.8	8.6	10.9	18.8	8.5	11.2	6.0	10.5	13.5	16.6	11.7	7.5
26	7.6	6.3		13.8	13.3	12.7	13.5	21.4	15.2	15.0	5.5	8.2	14.8	15.0	10.9	10.7
26.5	11.7	8.5		13.0	11.1	10.5	13.5	17.6	15.2	13.5	2.6	4.4	4.0	9.0	5.0	15.8
27	13.6	11.3		14.6	16.4	14.9	18.6	12.5	19.8	16.1	0.9	4.4	1.3	5.7	3.1	10.7
27.5	11.7	12.6	0.2	9.4	14.1	9.9	9.2	4.0	14.0	10.1	0.4	1.5	1.3	1.6	1.2	13.2
28	15.4	15.6	0.1	8.1	11.1	8.6	11.2	3.8	12.5	9.2	0.3	0.5	0.6	2.2	0.9	6.6
28.5	13.6	12.1	1.5	3.4	6.1	4.1	6.6	1.5	6.1	4.6	0.3	0.8	0.9	0.8	0.7	6.9
29	11.5	10.5	3.3	0.6	1.1	2.7	4.3	0.6	3.5	2.1			0.6	0.8	0.3	2.0
29.5	4.7	6.5	9.9	0.4	0.5	5.9	1.8	0.4	2.3	1.9		0.2		0.5	0.2	1.7
30	1.8	3.6	8.9		1.1		1.3		0.3	0.4						
30.5	0.3	3.5	11.0		1.1					0.2						0.3
31	0.3	2.1	17.3		0.3	0.1			0.3	0.1	0.3				0.1	0.3
31.5	0.8	1.0	16.2				0.3			0.0						
32		0.5	13.6				0.3			0.0						
32.5	0.8	0.2	8.0													
33	0.3	0.1	6.8													
33.5		0.1	1.7													
34		0.1	0.8	0.2						0.0						
34.5		0.0	0.4													
35		0.0	0.3													
35.5		0.0														
Number	383		7652	8817	754	734	7860	527	686		1173	864	867	734		1220
L (cm)	28.2	28.5	31.7	26.7	27.2	27.1	27.3	26.6	27.5	27.1	24.1	25.3	25.5	26.0	25.3	26.8
W (g)	202.1	209.9	303.4	167.3	178.3	175.7	181.6	163.7	185.2	175.3	118.2	138.4	142.0	150.9	137.4	170.8
TS/id	-42.2	-42.1	-41.2	-42.7	-42.5	-42.5	-42.5	-42.7	-42.4	-42.5	-43.5	-43.1	-43.0	-42.9	-43.1	-42.6
TS/kg	-35.2	-35.3	-36.0	-34.9	-35.0	-35.0	-35.0	-34.8	-35.1	-35.0	-34.3	-34.5	-34.6	-34.7	-34.5	-34.9

Table 2D.4 continued: Herring length frequency proportion for individual trawl hauls by subarea (Figure IID.3) for the *Scotia* acoustic survey (1-21/07/2006) length in cm, weight in g, calculated target strength in dB per individual using TS=-71.2+20log(L).
I

LEN/AGE WR	1	21	214	21	2M	41	AM	5	6	7	0	0.	GRAND
18.5	1	21	2111	51	3111	41	4111	3	0	/	o	9+	101AL
10.5	1												1
19 5	1												1
20	1												1
20 5	1	1											1
20.5	2	1		1									3
21.5	3	1		1									4
22	5	2	1										3
22.5	3	6	4										13
23	1	13	7	1	1								23
23.5	2	16	8	6	2	1							35
24		17	21	6	11								55
24.5	1	20	29	13	7	2	2	2					76
25		13	40	10	11	1	7	13				1	96
25.5		6	51	5	20	1	12	28	1	1		1	126
26			47		24		11	49	1				132
26.5			28	1	22		20	62	4	1			138
27			28		20	1	20	63		2			134
27.5			23		39		71	96	11	8	2	1	251
28			15		35		72	86	14	14	6	2	244
28.5			4		17		60	114	32	12			239
29			5		14		40	84	34	25		2	204
29.5			1		4		30	80	33	35	5	4	192
30			1		2		17	61	25	33	5	6	150
30.5					2		7	49	25	37	4	5	129
31							3	25	27	32	2	4	93
31.5							1	20	18	29	4	3	75
32							3	6	9	22	2	10	52
32.5							2	1	5	16	1	5	30
33									1	6	3	9	19
33.5								1	3	6		6	16
34									3	4	6	2	15
34.5								1	1	1	2		5
35									2		1		3
35.5										1	1	1	3
Grand Total	16	95	313	43	231	6	378	841	249	285	44	62	2563

Table 2D.5: FRV Scotia 1–21/07/2006. Numbers of herring otolithed at length and at age, lengths in cm measured to the nearest 0.5 cm below, ages in winter rings (wr).

AGE/MATURITY MEAN LENGTH(CM) MEAN WEIGHT (G) NUMBER (MILLIONS) BIOMASS (KT) YR CLASS 2004 19.6 75.1 113 9 1A 2003 2I 23.8 119.7 495 59 2003 2M 25.3 148.6 2,179 324 2002 3I 24.6 132.2 173 23 2002 3M 26.6 174.6 1,382 241 2001 4I25.4 148.6 44 7 1,889 2001 4M 27.4 193.4 365 2000 5A 27.4 194.4 3,672 714 1999 6A 29.0 237.4 552 131 1998 7A 29.5 251.6 550 138 1997 8A 29.7 259.9 70 18 1996 9+ 29.2 274.3 64 18 26.8 183.1 Average Total 11,184 2,048

Spawning stock

Immature

10,359

826

1,950

98

Table 2D.6: Mean length, mean weight, biomass (thousands of tonnes) and numbers (millions) breakdown by age (winter rings) and maturity obtained during the Scotia 1 to 21 July 2006 herring acoustic survey. I= immature; M=mature; A=All.

Figure 2D.1: Map of the North Sea showing the cruise track (solid lines) of FRV Scotia for the acoustic survey 1 - 21 July 2006 indicating the location of trawl and CTD stations (symbols defined in legend).

Figure 2D.2: Map of the North Sea showing the distribution of NASC values attributed to herring from the herring acoustic survey on FRV SCOTIA for 1-21 July 2006. NASC values proportional to circle area (max = 11990).

Figure 2D.3: Map of the North Sea showing the mean length of herring from pelagic trawl catches from FRV SCOTIA for 1-21 July 2006 trawl station numbers are given in Figure IID.1 and details in Tables IID.1 and IID.2. The five analysis areas are shaded and numbered with roman numerals (I-V) and the length distributions, mean lengths, weights and target strengths are given by area in Table IID.4.

Figure 2D.4: Map of the North Sea showing the estimated numbers (millions) and biomass (thousands of tonnes) by quarter statistical rectangle from the herring acoustic survey on FRV SCOTIA for 1-21 July 2006.

Annex 2E: Netherlands

North Sea hydro acoustic herring survey

Survey report for RV "TRIDENS"

26 June – 21 July 2006

Sytse Ybema

1. Introduction

The Netherlands Institute for Fisheries Research (RIVO) participates in the international North Sea hydro acoustic survey for herring since 1991. Participants in this survey are Scotland, Norway, Germany, Denmark and Netherlands. The survey is part of the EU data collection framework and is coordinated by the Planning Group fro Herring Surveys (PGHERS). The aim of this survey is to provide an abundance estimate of the whole North Sea herring population. This estimate is used as a tuning index by the ICES Herring Assessment Working Group (HAWG) in its assessment of the population size. In this report the results are presented of the survey in the central North Sea, carried out by the Dutch vessel RV "Tridens".

Cruise plan

The survey is currently changing from a separate National survey approach with traditional area's for each participant towards a more robust international survey with interlaced transects. The survey was split into two periods of 2 weeks. The planned cruise track and hydrographical positions are presented in Figure 2.3.1. In order to avoid large time gaps between neighbouring transects covered by different participants, radio and email contact between vessels was frequent. The actual surveyed transects therefore differ from the planned transects.

2. Methods

2.1 Scientific Staff

RIVO STAFF	WK 26	WK 27	WK 28	WK 29
Bram Couperus (cruise leader)	Х	х		
Kees Bakker	Х	х	х	х
Mario Stoker	Х	Х		
Dirk Burggraaf	Х	х		
Cindy van Damme		х		
Sytse Ybema (cruise leader)			х	х
Marcel de Vries			х	х
Pablo Tjoe-Awie			х	х
Lisa Borges			х	х
Mark Dickey-Collas			х	х

Guest researchers: Deborah Davidson from the University of Aberdeen.

2.2 Narrative

Week 26

On Monday 26 June at 11:00h Tridens left the port of Scheveningen and headed towards Scapa Flow. On its way the equipment for the calibration was prepared and 1 test haul was conducted. Arrival at Scapa Flow was Wednesday at 06.00 GMT. Both 38 kHz and 200 kHz transducers were calibrated (for more detailed information see paragraph "Calibration"). At 15:00h Tridens steamed towards the beginning of the first transect. Right at the beginning of the first transect, heavy acoustic noise was observed. Using the hull mounted transducer, in a

near bottom haul a mix of haddock, Norway pout and a little bit of herring was found. A second calibration was performed in Scape Flow. Arrival in Aberdeen at Saturday, 1 July 10:15h.

Week 27

Departure from Aberdeen was on Monday 3 July at 00:15h heading for the 56.55N transect. Sailing towards the Devil's Hole small surface schools were found but in order to save lost time no haul was made on these schools. Catches in the afternoon and evening show gadoids and some herring. In the evening radio contact is made with RV "Scotia" and "Enterprise". Most strong acoustic detections were found east of 0 degrees throughout the area whereas most gadoids found in the catches were observed west of 0 degrees.

Week 28

Tridens left Scheveningen port on Monday, 10 July at 13:30h local time. Only at the beginning of this transect small schools were seen near the bottom. Juvenile herring was observed in a nearby catch. In agreement with the coordinator of this survey it was decided to hand over of our transects to the RV "Solea". It wasn't till the end of the next day that we observed small schools of fish. Absence of fish made us decide to lower survey intensity around 55.40 degrees north. In order to arrive on time in Thyburon (Denmark) it was decided to change the east/west direction of the 55.40 transect. In the night from Thursday to Friday we sailed towards the beginning of the eastern part the survey area, near the German Bight. No fish was observed offshore. Reaching the shallow coastal areas fish was seen disaggregated and in high densities. Arrival in Thyburon on Saturday 16 July at 09.00h local time.

Week 29

Departure on Sunday 17 July at midnight, arriving at the first transect (56.10) near shore at 05.00h local time. No fish was observed in contradiction to the coastal part of the transect covered on Friday. It wasn't till Thursday that some small schools were observed on the 54.25 transect. Arrival in Scheveningen port around 10.00h local time.

2.3 Survey design

The survey was carried out from 26 June to 21 July 2005, covering an area east of Scotland from latitude 54°40 to 58°25 North and from longitude 3° West (off the Scottish/English coast) to 8° East. Following the survey design in 2005, an adapted survey design was applied, partly based on the herring distribution from previous years and the aim of a more international integrated survey. As a result, parallel transects along latitudinal lines were used with spacing between the lines set at 7.5, 15, 30 or even 55 nautical mile, depending on the expected distributions. Acoustic data from transects running north-south close to the shore (that is parallel to the depth isolines) were excluded from the dataset.

In 2005, PGHERS (Planning Group for Herring Surveys) had decided to experiment with interlaced transects in the whole survey area. Time coordination is therefore important. Every other day, individual vessels send their cruise progress to a scientific coordinator. This year, it was agreed by "Tridens" and RV "Solea" that the most southern planned transect of "Tridens" was to be covered by "Solea". Because hardly any fish was observed around 55°50N and 55°35N tranects by both RV "Tridens" and RV "Solea", it was decided to merge them into one transect on 55°40.

The actual cruise track from which data was used for stock estimate and trawl positions is presented in Figure 1.

2.4 Calibration of acoustic equipment

The transducers in the towed body were checked before the survey. Three calibrations were executed in Scapa Flow, Orkney Islands. Both the towed body's 200kHz transducer and the 38kHz transducers from both towed body and hull mounted had low values for which the software had to correct for relatively strong. Values are accepted but during the beginning of the cruise heavy noise make these transducers not usable. A second calibration was performed in Scapa Flow using new cables but once surveying the noise was still present. The Heel and pitch sensor cable proved to cause problems and was therefore not used during the rest of the survey. Calibration results of the second calibration were used and are given in **the national cruise report.**

- a) 38 kHz in the towed body: moderate results
 - 200 kHz in the towed body: bad results
- c) 38 kHz hull mounted: moderate results

Two out of three calibrations were performed successful. The target strength values (TS) of all the reference targets were found lower than expected. The cause of this low acoustic reflection is to be looked at. Although the relatively low acoustic performance, the 200KHz transducer was used for dual frequency species extraction.

2.5 Acoustic data collection

Data collection

b)

A Simrad 38 kHz split beam transducer was operated in a towed body (type "Shark") 6-7 m under the water surface. The settings of the EK60 are listed in **Table 1**. Acoustic data were collected with a Simrad EK60 scientific echo sounder and logged with Sonardata Echoview software in 1 nautical mile intervals. The EK60 received the vessel speed from the ship's GPS. A vessel speed of 10.5 knots was used on one engine without disturbing the acoustic image.

All echoes were recorded with a threshold of -80dB up to a depth of 150 meters below the transducer. A ping rate of 0.6 sec was used during the entire survey. This ping rate has proven most suitable at depths of 50 - 150 m at which depth herring occur in most of the area.

During a few days, the weather conditions allowed to use the hull mounted transducer in stead of the towed body. Using the hull mounted transducer, the vessel speed was increased (up to 14 knots, compared to 10 knots when using the towed body) and the saved time was used to catch up time loss by the second calibration.

A 200 kHz transducer was used for species separation by acoustic means. The algorithms used for this extraction were developed within the EU project "SIMFAMI" and made it easier to distinguish non-swimbladdered fish like sandel and mackerel from swimbladdered fish like herring and sprat. The algorithm itself is explained in the cruise report of 2005.

2.6 Biological data collection

Fishing

The acoustic recordings were verified by fishing with a 2000 mesh pelagic trawl with 20 mm meshes in the cod-end. Fishing was carried out when there was doubt about the species composition of recordings observed on the echo sounder and to obtain biological samples of herring and sprat. In general, after it was decided to make a tow with a pelagic trawl, the vessel turned and fished back on its track line. If the recordings showed schools, a Simrad SD570 60kHz sonar was used to be able to track schools that were swimming away from the track line. In all hauls the footrope was very close to the ground with vertical net openings varying from 10 to 20 m (specifications are listed in the PGHERS manual).

A Furuno FS20/25 trawl sonar (vertical and horizontal scan direction) was used to control the catch.

Trawl station data was recorded by a tool which allowed to record data from the ship's own data acquisition system.

Biological samples

For all fish:

- Total species weight of the catch
- 150 to 250 specimens for individual length measurement depending on the catch weight, a subsample technique are used, based on weights.

Stratified samples of 5 fish per length class are taken from the 150-250 herring and sprat. The following parameters are sampled from these fish:

- Age of herring and sprat, by means of otolith reading
- Gender
- Maturity stage
- Fecundity of female herring (see below)
- Ovary weight of mature female herring (see below)
- Fat content (see below)

Fecundity of female herring

The relationship between lipid content and fecundity in fish with different spawning strategies is investigated, including North Sea herring. Therefore fecundity and lipid samples of 100 female herring were collected. In order to get a good view of the North Sea herring, the 100 females were collected throughout the survey, across time and space. Since it is very important for the fecundity to know the spawning type of the herring also 1 otolith of all 100 females was collected for spawning type reading. Difference between ripe and non-ripe fish proved difficult to observe this year. Total ovaries were therefore preserved for further analysis at the lab.

Fat content

Supplementary this year was the use of the Torry Fish Fatmeter (TFFM), made by Distell Inc. This is a portable, handheld meter that uses microwave emissions to measure the fat content of fish species that store their fat reserves in the muscles and mesenteries. The TFFM actually measures the water content of the fillet, and converts this into the fat content using the strong inverse relationship between water and fat, in fish. 903 herring were sampled.

Loss of weight by freezing herring

To quantify the effect of freezing on the length and weight of herring the following two experiments were already done during the IBTS in February and was done again during this survey to measure a seasonal effect. The most ideal way was to sample a least three trawls for every experiment resulting in a total of 900 individuals. The trawls have to be separated in time and area and fish of different length have to be sampled.

- ± 150 herring per trawl were measured (mm) and weighted (grams) direct after the trawl. All fish were stored in the freezer after being put on ice for 3 to 5 days. Total weight was then compared with the total weight before put on ice.
- \pm 150 herring per trawl were measured (mm) and weighted (grams) direct after the trawl. All fish were stored in a froster after being put on ice water for half a day to 1 day.

2.7 Hydrographical data

Hydrographical data have been collected in 36 stations, all at fixed locations (Figure 2). A Seabird CTD device, type SBE 9plus in combination with a corresponding water sampler 9plus in combination with a corresponding Seabird SBE 32C carousel water sampler was used in this survey. It had been successfully calibrated in advance by the manufacturer. Conductivity, temperature and depth were measured.

Data were analysed using SAS software and stored in an international OceanDataView format. Ocean dataView version 2.1 was used for gridded data presentation. The used "VG Gridding" analyzes the distribution of the data points and constructs a variable resolution, rectangular grid, where grid-spacing along X and Y direction varies according to data density.

In addition, some environmental variables were continuously measured by the ships own "Data acquisition system" (DAS). These continuous measuring sensors had not been calibrated and were used to compare results with Seabird CTD results.

2.8 Data handling, analysis and presentation

Data analysis

The target species herring and sprat are often observed in mixed catches and since the schools of these species are often found to be similarly shaped the distribution in these areas was based on trawl catch distributions.

For each ICES rectangle, species composition and length distribution were determined as the un-weighted mean of all trawl results for this rectangle. From these distributions the mean acoustic cross section "sigma" was calculated according to the target strength-length relationships (TS) recommended by the ICES Planning Group for Herring Surveys (ICES, 2000).

The following target strength equations have been used: TS=(20logL+b20). The value of b20 is predefined.

HERRING	Sprat	MACKEREL	NORWAY POUT	GADOIS	SANDEEL
71.2	71.2	86.9	67.1	67.4	93.7

The breakdown of sprat and herring in "definitely", "probably" and "possibly" serves merely as a relative indication of certainty within the subjective process of integral partitioning ("scrutinising"). For the analysis "definitely" and "possibly herring/sprat" integrator counts were summed to obtain a "best herring/sprat" estimate.

Then the numbers of herring and sprat per ICES rectangle were calculated by dividing the S_A value in a rectangle by the overall sigma in the corresponding rectangle.

The biological samples, used for stock structure and biomass calculations were grouped in 5 strata for herring and 1 stratum for sprat, based on similar length frequency distribution in the area (Figure 3). The numbers per year/maturity class were calculated, based on the age/length key for each stratum. For each separate stratum the mean weight per year/maturity class was then calculated.

All calculations were performed by SAS (SAS Institute) routines. Hydro acoustic – biological and hydrographical data are being stored in the HERSUR format.

3. Results

3.1 Acoustic data results

Horizontal and vertical distribution patterns

The north-western part of this year's survey area held most of the herring observed (Figure 4). Interlaced transects in this area were covered by RV 'Scotia', making a good description of the distribution pattern observed by "Tridens" difficult. Fish aggregations near the Danish coast were much more disperse than in other areas.

3.2 Trawl data results

In all, 23 trawl hauls have been conducted. Herring was found in 18 hauls of which 16 samples were taken. Sprat was found in 7 hauls of which 6 samples were taken (see also 2.8 *Data analysis*). In 11 hauls herring was the most abundant species in weight. In 2 hauls sprat was the most abundant species. This year, only one haul contained a few sandeels. The trawl list is presented in Table 2a, the catch weights per haul and species are presented in Table 2b and the length frequency proportions are presented in Table 2c.

In total 903 biological fish samples of herring and 239 of sprat were collected and used for length, age and maturity keys (Table 3a for herring and Table 3b for sprat) from which most herring were 1 year old.

By the age of 3 (having 3 winter rings) almost all herring is mature where in 2005 this age was 4 and in 2004 this age was also 4

3.3 Biomass estimates

The stock biomass estimate of herring found in the Tridens survey area:

Total sub stock	404 thousand tonnes
Spawning sub stock	131 thousand tonnes
The stock biomass estimate o	f sprat found in the Tridens survey area:
Total sub stock	31 thousand tonnes

I otal sub stock31 thousand tonnes

Spawning sub stock	28 thousand tonnes
--------------------	--------------------

Figure 5 shows the estimated numbers and biomass of herring by ICES rectangle in the area surveyed by RV "Tridens". Table 4 summarizes stock estimates per stratum as defined in Figure 2.8.1. Table 5a summarizes the sub stock estimates for all strata for herring and Table 5b summarizes it for sprat.

3.4 Hydrographical measurements

Although survey intensity of most ICES rectangles covered by "Tridens" was relatively low, due to a more integrated survey approach this year, CTD measurements at surface showed comparable patterns with other data sources, such as the ship's data acquisition system and infrared satellite images of the area surveyed.

Temperature

Water temperature samples were collected by conducting vertical CTD samples and using a continuous temperature measurement using the ships temperature sensor placed in the water intake system.

During summer, temperature distribution at sea surface usually differs highly from near bottom or even mid water distribution due to stratification. Relative warm surface water does hardly mix with deeper water layers. Similar distribution patterns at these depths were therefore not expected to be found. Continuous surface temperature recordings were used for a general real-time overview. A daily and weekly by satellite constructed mean surface temperature from the North Sea was used as a reference during the survey. Satellite images of phytoplankton at the surface were collected weekly to compare fish distribution with in a later stag.

Surface temperatures maps shown below indicate warmer areas in the eastern part of the North Sea where water depth is down to 20-30 meters. Further to the north-west, where the North Sea is deeper, the water is cooler.

Table 1: Simrad EK60 settings used in the June 2006 North Sea hydroacoustic survey for herring, RV "Tridens".

	HULL MOUNTED	TOWED BODY
Absorption coefficient	9.5 dB/km	9.5 dB/km
SA correction	-0.50	-0.54 dB
Pulse duration	1.024 ms	1.024 ms
Bandwidth	2.43 kHz	2.43 kHz
Max Power	2000 W	2000 W
Two-way beam angle	-20.6 dB	-20.6 dB
3 dB Beam width	6.85 dg	7.16 dg
TS of sphere	-33.6 dB	-33.6 dB
Range to sphere in calibration	20	14.00 m
Transducer gain	26.16	23.30 dB
Log/Navigation Menu		
Speed, position, vessel log	Serial from ship's GPS	
Operation Menu		
Ping interval (s)	0.6	0.6
Display/Printer Menu		
TVG	20 log R	20 log R
Integration line	N/A	N/A
TS colour min.	-50 dB	-50 dB
Sv colour min.	-70 dB	-70 dB

Table 2a: Details of the trawl hauls taken. "Tridens", North Sea acoustic survey 2006.

r	-		1	1	1		-				
sample	haul	ICES	date	time (GMT)	position	haul duration (min)	depth (m)	geardepth (m)	wind direction ()	wind force (m/s)	comment (Dutch)
5400336	1	42F0	27/06/2006	14:48	56.52N-00.12E	48	88	73	359	4	1 ton schelvis en wijting
5400337	2	45E8	29/06/2006	12:30	58.24N-01.31W	100	108	90	203	7	3 ton makreel, schelvis, kevers en haring
5400338	3	45E9	29/06/2006	16:30	58.16N-00.44W	45	108	95	203	4	8 ton mooie haring, paaltje gerooid
5400339	4	42E9	03/07/2006	08:45	56.54N-00.49W	45	63	10	158	4	makreel, zeenaald, 0j schelvis, totaal 13.3 kg
5400340	5	42E9	03/07/2006	09:40	56.55N-00.31W	60	74	59	158	2	halve mand schelvis, poon, haring
5400341	6	42F1	03/07/2006	17:00	56.55N-01.27E	100	93	76	158	2	900 kg haring
5400342	7	42F1	04/07/2006	05:48	56.48N-01.07E	42	93	76	158	2	1250 kg haring (kever, schelvis)
5400343	8	42F0	04/07/2006	15:35	56.41N-00.59E	60	96	78	359	2	800 kg schone haring
5400346	9	41F0	05/07/2006	04:45	56.24N-00.40E	60	67	50	359	2	1/2 zakje grovere schelvis
5400344	10	42F0	05/07/2006	04:55	56.33N-00.34E	115	76	58	359	2	geen vangst
5400345	11	42E9	05/07/2006	10:38	56.33N-00.38W	42	69	52	158	2	1/2 zakje kleine schelvis en haring
5400347	12	41E8	11/07/2006	11:10	56.05N-01.36W	26	64	43	248	9	2 ton jonge haring
5400348	13	40F1	12/07/2006	15:55	55.40N-01.47E	50	61	42	203	7	halve mand schelvis, mand poon, 23 haringen
5400349	14	40E9	13/07/2006	07:50	55.40N-00.19W	95	59	42	203	7	helemaal niks in
5400350	15	41F7	14/07/2006	14:45	56.24N-07.19E	55	30	14	338	6	1/2 zakje jonge kleine haring (toters)
5400351	16	41F7	14/07/2006	17:45	56.24N-07.43E	75	22	4	0	5	Kleine makreel, horse makreel en poon
5400352	17	41F6	17/07/2006	08:55	56.24N-06.41E	45	41	23	359	2	3 ton jonge haring
5400353	18	41F4	17/07/2006	19:30	56.09N-04.13E	45	62	42	225	1	klein spul (cod)
5400354	19	40F6	18/07/2006	12:36	55.44N-06.13E	72	45	45	315	2	1 ton jonge haring
5400355	20	38F6	19/07/2006	07:33	54.44N-06.21E	21	25	40	359	1	kleine sprot
5400356	21	38F4	19/07/2006	16:01	54.44N-04.15E	50	45	31	90	3	1 ton jonge haring
5400357	22	37F3	20/07/2006	09:05	54.24N-03.23E	10	45	30	90	2	1.5 ton (90% sprot 10 % haring)

Table 2b: Trawl catches. "Tridens", North Sea acoustic survey 2006 (in kg).

-								_							_							
	5400336	5400337	5400338	5400339	5400340	5400341	5400342	5400343	5400344	5400345	5400346	5400347	5400348	5400349	5400350	5400351	5400352	5400353	5400354	5400355	5400356	5400357
	889.1	1.8																				
Ammodytes																0.7						
Cod											0.8							0.0				
Dab											1.3				0.1							
Greater argentine		1.5																				
Grey gurnard	6.0				2.0	0.8	2.1	0.9	0.4	7.2	4.6		21.9	0.4	18.4	17.1	12.7	0.4	3.8	1.1	7.1	2.7
Haddock	889.1			0.2	6.6		2.3		0.9	209.0	542.0	0.1	30.4	3.3								
Hake		3.0													0.3							
Herring	120.3	53.4	7000.0		2.7	2000.0	1500.0	80.0	3.4		0.3	1958.9	1.5		940.2		2854.3		814.0	0.4	557.9	26.5
Horse mackerel															58.7	60.7	1.5			0.3		
Lemon sole											0.5											
Long rough dab											0.0											
Lumpsucker																		6.9	0.8		2.5	
Mackerel	60.1	21.7		12.9	17.0	1.3	1.3		0.5	6.1	1.4	10.3		0.4	20.2	609.5			0.2	0.5		
Norway pout	6.0									6.8												
Plaice																				0.2		
Poor cod		0.3																				
Red gurnard		2.5																				
Saithe																						
Snake pipefish		0.2		0.2									0.3		0.1	0.0		0.1	0.0	0.0	0.0	0.0
Sprat												136.6			0.3		312.2		0.0	28.0	238.4	800.4
Todaropsis eblanae	1																					
Whiting	28.1	18.0		0.0		0.3	0.3			13.0			1.6	0.3	0.3	0.1	0.1	0.0		0.1		0.0

Table 2c: Length frequency proportions of herring by haul. "Tridens", North Sea acoustic survey2006.

Haul	1	2	3	5	6	7	8	9	11	12	13	15	17	19	20	21	22
Length (cm)																	
7.5																	
8																	
8.5																	
9																	
9.5																	
10												2.2	0.3				
10.5												1.6	1.3				
11												3.5	2.4				
11.5												6.7	1.3				
12												4.4	1.7				
12.5												2.2	0.7				
13																	
13.5												0.6					2.4
14												0.6				0.3	2.4
14.5												2.2	0.3			0.7	2.4
15												3.8	2.7	2.6		1.0	6.0
15.5										0.9		7.3	8.4	6.6	8.3	9.3	12.0
16										2.9		15.9	9.8	18.9	8.3	13.2	12.0
16.5		1.0								9.7		22.9	15.8	18.4	16.7	15.9	18.1
17		1.6								13.5		11.7	18.2	22.4	25.0	20.2	16.9
17.5		4.1								12.4		7.0	13.8	16.8	33.3	18.5	15.7
18	1.1	9.8								16.5		5.1	11.1	11.7		11.6	9.6
18.5	1.1	6.2			0.4					15.9	4.3	1.6	5.7	2.0	8.3	7.3	
19	8.1	4.1		2.6	0.4				25.0	8.8		0.6	4.7	0.5		1.3	1.2
19.5	16.8	4.1		7.9		1.4	0.8	20.0	25.0	8.8	13.0		0.3			0.7	1.2
20	29.2	5.2		10.5	4.6	0.5	1.7	8.6		4.1	21.7		1.0				
20.5	22.2	5.2		26.3	7.1	2.4	4.6	17.1	25.0	4.4	30.4						
21	8.6	2.6	0.7	34.2	5.4	3.3	5.9	8.6		0.9	17.4						
21.5	5.4	3.6		2.6	4.1	1.9	9.7	2.9		0.6	13.0						
22	1.6	4.7	1.5	2.6	6.2	3.8	4.2	2.9		0.6							
22.5	2.2	5.2	5.8		4.1	3.3	3.8	8.6	25.0								
23	0.5	7.3	5.8	5.3	5.0	5.2	5.9	2.9									
23.5	1.6	8.3		2.6	6.6	9.0	17.7	2.9									
24	1.1	4.7	11.7	2.6	7.1	10.4	13.1	2.9									
24.5	0.5	6.2	10.2	2.6	7.9	9.9	9.3	5.7					0.3				
25	L	5.2	16.8		7.1	12.7	5.1	5.7									
25.5		6.2	19.7		11.2	11.3	5.9	2.9									
26		2.1	16.1		7.5	12.7	4.2										
26.5		2.1	8.0		6.6	6.6	3.8	5.7									
27		0.5	1.5		3.3	2.8	3.8	2.9									
27.5			1.5		2.5	0.9	0.4										
28			0.7		1.2	0.9											
28.5					0.4	0.5											
29					0.4	0.5											
29.5					0.4												
30																	
30.5			I		0.4												

Stratum A	-	1	1	1										
vearclass	2005	2004	2003	2002	2001	2000	1990	1998	1997	1996				
lengthclass	2003	1	2003	2002	2001	2000	1009 A	7	1537	1990	numbers	hiomass	mean weight (g)	proportion mature
75-85	J		2	3	-4	5	0	1	0	9	0.0	5.011033		proportion mature
95 95											0.0			
95-105											0.0			
10.0 - 11.0	26.3										26.3	0.2	6.6	0.0
10.5 - 11.5	30.2										30.2	0.2	7.7	0.0
11.0 - 12.0	60.1										60.1	0.5	9.0	0.0
11.5 - 12.5	82.4										82.4	0.8	10.3	0.0
12.0 - 13.0	63.0										63.0	0.7	11.8	0.0
12.5 - 13.5	29.8										29.8	0.4	13.4	0.0
13.5 - 14.5		31.3									31.3	0.5	17.0	0.0
14.0 - 15.0		34.7									34.7	0.7	19.1	0.0
14.5 - 15.5		57.9									57.9	1.2	21.3	0.0
15.0 - 16.0		165.2									165.2	3.9	23.7	0.0
15.5 - 16.5		448.9									448.9	11.8	26.3	0.0
16.0 - 17.0		717.6									717.6	20.8	29.0	0.0
16.5 - 17.5		935.6									935.6	29.9	32.0	0.0
17.0 - 18.0		919.4									919.4	32.3	35.1	0.0
17.5 - 18.5		738.4									738.4	28.4	38.5	0.0
18.0 - 19.0		505.3									505.3	21.2	42.0	0.0
18.5 - 19.5		171.0									171.0	7.8	45.8	0.0
19.0 - 20.0		86.2									86.2	4.3	49.8	0.0
19.5 - 20.5		22.7									22.7	1.2	54.1	0.0
20.0 - 21.0		6.9	3.5								10.4	0.6	58.5	0.0
20.5 - 21.5											0.0			0.0
21.5 - 22.5											0.0			
22.5 - 23.5											0.0			
23.5 - 24.5		1		1							0.0			
24.5 - 25.5				3.5							3.5	0.4	110.7	1.0
25.5 - 26.5											0.0			
26.5 - 27.5											0.0			
27.5 - 28.5											0.0			
28.5 - 29.5											0.0			
29.5 - 30.5											0.0			
30.5 - 31.5											0.0			
a_tsn	291.7	4841.0	3.5	3.5	0.0	0.0	0.0	0.0	0.0	0.0	5139.7			
b_tsb	2.9	164.7	0.2	0.4							168.2			
b_tssb	0.0	0.0	0.0	0.4							0.4			
c_mean_length	11.4	16.8	20.0	24.5							16.5			
d_mean_weight	10.1	34.0	58.5	110.7							32.7			
e_mean_condition	6.8	7.1	7.3	7.5										
t_percentage_ssb	0.0						0.01	0.01						
		0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0				
		0.0	0.0	100.0	0.0	0.0	0.01	0.0	0.0	0.0				
Stratum B		0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0				
Stratum B vearclass	2005	2004	2003	2002	2001	2000	1999	1998	1997	1996				
Stratum B yearclass lengthclass	2005	2004	2003	2002	2001	2000	1999	1998	1997	1996	numbers	biomass	mean weight (g)	proportion mature
Stratum B yearclass lengthclass 7.5 - 8.5	2005	2004	2003	2002	2001 4	2000	1999	1998	1997	1996	numbers 0.0	biomass	mean weight (g)	proportion mature
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5	2005	2004	2003	2002	2001 4	2000	1999	1998 7	1997	1996	numbers 0.0 0.0	biomass	mean weight (g)	proportion mature
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5	2005	2004	2003	2002	2001	2000	1999	1998	1997	1996	numbers 0.0 0.0 0.0	biomass	mean weight (g)	proportion mature
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5	2005	2004	2003	2002	2001	2000	1999	1998	1997	1996	numbers 0.0 0.0 0.0 0.0	biomass	mean weight (g)	proportion mature
Stratum B yearclass lengthclass 7,5 - 8,5 8,5 - 9,5 9,5 - 10,5 10,5 - 11,5 11,5 - 11,5 11,5 - 12,5	2005	2004	2003	2002	2001	2000	1999 6	1998	1997	1996	numbers 0.0 0.0 0.0 0.0 0.0 0.0	biomass	mean weight (g)	proportion mature
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5	2005	2004	2003	2002	2001	2000	1999 6	1998	1997	1996	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0	biomass	mean weight (g)	proportion mature
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 13.5 - 14.5	2005	2004	2003	2002	2001 4	2000	1999	1998	1997	1996	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0	biomass	mean weight (g)	proportion mature
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.6 - 13.5 13.5 - 14.5 14.5 - 15.5	2005	2004	2003	2002	2001 4	2000	1999	1998	1997	1996	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	biomass	mean weight (g)	proportion mature
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 13.5 - 14.5 14.5 - 15.5 15.5 - 16.5	2005	2004	2003 2	2002	2001 4	2000	1999	1998	1997 8	1996 9	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	biomass	mean weight (g)	proportion mature
Stratum B yearclass lengthclass 7.5 - 8.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 13.5 - 14.5 14.5 - 15.5 15.5 - 16.5 16.0 - 17.0	2005	2004	2003 2	2002	2001	2000	1999	1998	1997 8	1996 9	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass	mean weight (g) 29.0	proportion mature
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 13.5 - 14.5 15.5 - 16.5 15.6 - 17.5		2004 1 15.3 50.5	2003 2	2002	2001 4	2000	1999 6	1998 7	1997	1996	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.4 1.6	mean weight (g) 29.0 32.1	proportion mature
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 13.5 - 14.5 14.5 - 15.5 15.5 - 16.5 16.6 - 17.0 16.8 - 17.5 17.0 - 18.0		2004 1 15.3 50.5 70.4	2003	2002	2001	2000	1999 6	1998	1997 8	1996 9	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5	mean weight (g) 29.0 32.1 35.4	0.0 0.0 0.0
Stratum B yearclass lengthclass 7.5 - 8.5 9.5 - 10.5 10.5 - 11.5 11.5 - 11.5 11.5 - 12.5 12.5 - 13.5 13.5 - 14.5 14.5 - 15.5 15.5 - 16.5 16.0 - 17.0 17.5 - 18.0 17.5 - 18.5		2004 1 15.3 50.5 70.4 64.3	2003 2	2002	2001	2000	1999 6	1998 7	1997 8	1996 9	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 2.5	mean weight (g) 29.0 32.1 35.4 39.0	proportion mature 0.0 0.0 0.0 0.0 0.0
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 13.5 - 16.5 16.5 - 17.0 16.5 - 17.5 17.5 - 18.5 18.0 - 17.0 16.5 - 17.5 17.6 - 18.5 18.0 - 19.0		2004 1 15.3 50.5 70.4 64.3 85.8	2003	2002	2001 4	2000	1999 6	1998	1997 8	1996 9	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 3.7	mean weight (g) 29.0 32.1 35.4 39.0 42.8	proportion mature
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 13.5 - 14.5 15.5 - 16.5 16.5 - 17.5 17.0 - 18.0 17.5 - 18.5 18.0 - 19.0 18.5 - 19.0		2004 1 15.3 50.5 70.4 64.3 85.8 82.7	2003 2	2002	2001	2000 5		1998 7	1997 8	9	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 2.7 3.7 3.9	mean weight (g) 29.0 32.1 35.4 39.0 42.8 46.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 15.5 - 16.5 15.5 - 16.5 15.5 - 16.5 16.6 - 17.5 17.0 - 18.0 17.5 - 18.5 18.5 - 19.5 18.5 - 19.5 19.0 - 20.0		2004 1 1 50.5 50.5 70.4 64.3 85.8 82.7 45.9	2003 2	2002 3	2001 4	2000 5	1999 6	1998 7	1997 8	0.0	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 2.5 3.7 3.9 2.3 2.3	mean weight (g) 29.0 32.1 35.4 39.0 42.8 46.8 51.2	proportion mature 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 15.5 - 16.5 16.5 - 17.5 16.5 - 17.5 17.5 - 18.5 18.5 - 18.5 18.0 - 19.0 18.0 - 19.0 18.0 - 20.0 18.2 - 20.5		2004 1 15.3 50.5 70.4 64.3 85.8 82.7 45.9	2003 2	2002 3	2001 4	2000 5	1999 6	1998 7	1997 8	1996 9	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 2.5 3.7 3.9 2.3 2.6 2.6	mean weight (g) 29.0 32.1 35.4 39.0 42.8 46.8 51.2 55.7	proportion mature 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 13.5 - 14.5 14.5 - 15.5 15.5 - 16.5 16.5 - 17.5 17.0 - 18.0 17.5 - 18.5 18.5 - 19.5 19.0 - 18.0 18.5 - 19.5 19.0 - 20.0 18.5 - 20.5 20.0 - 21.0		2004 1 1 50.5 70.4 64.3 85.8 82.7 45.9 21.4 21.4	2003 2	2002 3	2001 4	2000 5	1999 6	1998 7	1997 8	9	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 3.7 3.9 2.3 2.6 1.3 1.5	mean weight (g) 29.0 32.1 35.4 39.0 42.8 46.8 51.2 55.7 60.6 6 6 0 6 0 6 0 0	proportion mature 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 13.5 - 14.5 15.5 - 16.5 16.6 - 17.0 16.5 - 17.5 17.5 - 18.5 18.0 - 19.0 18.5 - 19.5 18.0 - 20.0 19.2 - 20.5 20.0 - 21.0 20.5 - 21.5		2004 1 1 5.3 50.5 70.4 64.3 85.8 82.7 45.9 45.9 21.4 23.0	2003 2	2002 3		2000 5	1999 6	1998 7	1997 8	1996 9	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 3.7 3.9 2.3 2.6 1.3 3 1.5 0 0	mean weight (g) 29.0 32.1 35.4 39.0 42.8 46.8 51.2 55.7 60.6 65.8 67.0	proportion mature
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 13.5 - 14.5 16.5 - 17.5 17.5 - 18.5 18.5 - 19.5 17.0 - 18.0 17.5 - 18.5 18.0 - 19.0 18.5 - 19.5 19.0 - 20.0 19.5 - 20.5 20.0 - 21.0 20.5 - 21.5 21.6 - 22.0		2004 1 1 50.5 70.4 64.3 85.8 82.7 45.9 21.4 23.0 4.6 4.6		2002 3		2000 5	1999 6	1998 7	1997 8	1996 9	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 2.5 3.7 3.9 2.3 2.6 1.3 1.5 0.3 3 0.5	mean weight (g) 29.0 32.1 35.4 39.0 42.8 46.8 61.2 55.7 60.6 65.8 71.2 7 7	proportion mature 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 15.5 - 15.5 15.5 - 16.5 15.5 - 16.5 15.5 - 16.5 16.0 - 17.0 16.5 - 17.5 17.0 - 18.0 17.5 - 18.5 18.0 - 19.0 18.5 - 19.5 19.0 - 20.0 19.0 - 20.1 20.0 - 21.0 20.5 - 21.5 21.0 - 22.0 21.6 - 22.0 21.5 - 22.5		2004 1 15.3 50.5 70.4 64.3 85.8 82.7 45.9 45.9 21.4 23.0 4.6 1.5	2003 2 1.5			2000 5	1999 6	1998 7	1997 8	1996 9	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 3.7 3.9 2.3 2.6 1.3 1.5 0.3 3 0.2	mean weight (g) 29.0 32.1 35.4 39.0 42.8 61.2 55.7 60.6 65.8 71.2 77.0	proportion mature proportion mature 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 15.5 - 16.5 16.5 - 17.5 17.5 - 18.5 18.5 - 18.5 18.6 - 19.5 18.0 - 19.0 18.5 - 20.5 20.0 - 21.0 20.5 - 21.5 21.5 - 22.5 22.0 - 23.0		2004 1 1 50.5 70.4 64.3 85.8 82.7 45.9 45.9 21.4 23.0 4.6 1.5	2003 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			2000 5		1998 7	1997 8	1996 9 	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 2.5 3.7 3.9 2.3 2.6 1.3 1.5 0.3 0.2 0.3 0.2 0.3	mean weight (g) 29.0 32.1 35.4 39.0 42.8 46.8 51.2 55.7 60.6 6 65.8 71.2 77.0 83.1	proportion mature 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 13.5 - 14.5 14.5 - 15.5 15.5 - 16.5 16.6 - 17.0 18.6 - 17.5 17.0 - 18.0 17.5 - 18.5 18.0 - 19.0 18.5 - 19.5 19.0 - 20.0 18.5 - 20.5 20.0 - 21.0 20.5 - 21.5 21.0 - 22.0 22.0 - 23.0 22.6 - 23.5 22.0 - 23.0		2004 1 1 50.5 50.5 50.4 64.3 85.8 82.7 45.9 21.4 23.0 4.6 1.5	2003 2 1.5 3.1			2000	1999 6	1998 7	1997 8	1996 9	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 2.7 3.9 2.3 2.6 1.3 1.5 5 1.5 0.3 0.2 0.3 0.2 0.3	mean weight (g) 29.0 32.1 35.4 39.0 42.8 46.8 51.2 55.7 60.6 65.8 71.2 77.0 83.1	proportion mature 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 12.5 - 13.5 15.5 - 16.5 15.5 - 16.5 16.6 - 17.0 16.5 - 17.5 17.0 - 18.0 17.5 - 18.5 18.0 - 19.0 18.5 - 19.5 18.0 - 19.0 18.5 - 20.5 20.0 - 21.0 20.5 - 21.0 21.6 - 22.0 21.5 - 22.5 22.0 - 22.1 22.5 - 23.5 23.5 - 24.5		2004 1 1 5.3 50.5 70.4 64.3 85.8 82.7 45.9 45.9 21.4 23.0 4.6 1.5	2003 2 2 1.5 3.1		2001 4	2000		1998 7	1997 8	1996 9	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 3.7 3.9 2.3 2.6 1.3 3 1.5 0.3 0.2 0.3	mean weight (g) 29.0 32.1 35.4 39.0 42.8 46.8 51.2 55.7 60.6 65.8 71.2 77.0 83.1	proportion mature
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 13.5 - 15.5 15.5 - 16.5 16.5 - 17.5 17.5 - 18.5 18.5 - 18.5 18.5 - 19.5 19.0 - 20.0 19.5 - 20.5 20.0 - 21.0 20.5 - 21.5 21.0 - 22.0 21.5 - 22.5 22.6 - 23.5 22.6 - 23.5 22.6 - 23.5 23.5 - 24.5 24.5 - 25.5 25.5 - 25.5		2004 1 1 50.5 70.4 64.3 85.8 82.7 45.9 45.9 21.4 23.0 4.6 1.5	2003 2 2 1.5 3.1			2000		1998 7	1997 8		numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 3.7 3.9 2.3 2.6 1.3 1.5 0.3 0.2 0.3 0.2 0.3	mean weight (g) 29.0 32.1 35.4 39.0 42.8 46.8 51.2 55.7 60.6 65.8 71.2 77.0 83.1	proportion mature 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 13.5 - 14.5 14.5 - 15.5 15.5 - 16.5 16.0 - 17.0 16.5 - 17.5 17.0 - 18.0 17.5 - 18.5 18.0 - 19.0 18.5 - 19.5 19.0 - 20.0 21.0 - 22.0 21.0 - 22.0 21.0 - 22.0 21.5 - 22.5 22.6 - 23.5 22.8 - 23.5 22.8 - 23.5 22.8 - 23.5 22.8 - 23.5 22.8 - 23.5 23.8 - 24.5 24.5 - 25.5 25.5 - 25.5 25.8 - 26.5 26.6 - 75		2004 1 1 5.3 50.5 70.4 64.3 85.8 82.7 45.9 45.9 21.4 23.0 4.6 6 1.5	2003 2 1.5 3.1			2000		1998 7	1997 8	1996 9	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 2.7 3.9 2.3 2.6 6 1.3 1.5 0.3 0.2 0.3	mean weight (g) 290 32:1 35:4 390 42:8 46:8 51:2 55:7 60:6 65:8 71:2 77:0 83:1	proportion mature 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 15.5 - 16.5 16.5 - 17.0 16.5 - 17.5 17.0 - 18.0 17.5 - 18.5 18.0 - 19.0 18.5 - 10.5 19.0 - 20.0 19.0 - 20.0 20.5 - 21.5 21.0 - 22.0 21.5 - 22.5 22.5 - 23.5 22.5 - 24.5 22.5 - 22.5		2004 1 1 50.5 70.4 64.3 85.8 82.7 45.9 45.9 21.4 23.0 2.10 4.6 1.5	2003 2 2 1.5 3.1			2000		1998 7	1997 8		numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 2.5 3.7 3.9 2.3 2.6 1.3 1.5 0.3 0.2 0.3 0.2 0.3	mean weight (g) 29 0 29 0 32.1 35.4 39 0 42.8 46.8 51.2 55.7 60.6 65.8 71.2 77.0 83.1	proportion mature proportion mature 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Stratum B yearclass lengthclass 7.5 8.5 9.5 10.5 10.5 11.5 11.5 12.5 12.5 13.5 13.5 14.5 15.5 15.5 16.0 17.0 16.5 17.0 16.5 17.0 16.5 17.5 18.0 17.5 18.5 19.5 19.0 20.0 21.6 22.0 22.0 22.0 21.0 22.0 22.5 22.5 22.6 23.5 22.5 23.5 22.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5		2004 1 1 50.5 50.5 70.4 64.3 85.8 82.7 45.9 21.4 23.0 4.6 1.5	2003 2 2 1.5 3.1			2000		1998 7	1997 8		numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 2.5 3.7 3.9 2.3 2.6 1.3 3.7 5 0.3 0.2 0.3 0.2 0.3	mean weight (g) 29.0 32.1 35.4 39.0 42.8 46.8 51.2 55.7 60.6 658.8 71.2 77.0 83.1	proportion mature 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Stratum B yearclass lengthclass 7.5 8.5 9.5 10.5 10.5 11.5 11.5 12.5 12.5 13.5 14.5 15.5 15.5 16.5 16.5 17.0 16.5 17.5 18.5 19.5 18.0 19.0 18.5 19.5 18.5 19.5 18.5 19.5 18.5 19.5 18.5 19.5 18.5 12.0 20.0 21.0 20.5 21.0 21.5 22.5 22.5 22.5 23.5 22.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5		2004 1 1 5.3 50.5 70.4 64.3 85.8 82.7 45.9 21.4 23.0 4.6 1.5	2003 2 2 1.5 3.1			2000		1998 7	1997 8	1996 9	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 3.7 3.9 2.3 2.6 1.3 1.5 0.3 0.2 0.3	mean weight (g) 29.0 32.1 35.4 39.0 42.8 46.8 51.2 55.7 60.6 66.8 71.2 77.0 83.1	proportion mature
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 15.5 - 16.5 16.5 - 17.5 16.5 - 17.5 17.5 - 18.5 18.5 - 18.5 18.5 - 19.5 18.5 - 19.5 18.5 - 10.5 17.5 - 11.0 18.5 - 11.5 18.5 - 10.5 18.5 - 11.5 18.5 - 10.5 18.5 - 11.5 18.5 - 11.5 18.5 - 11.5 18.5 - 12.5 20.0 - 21.0 20.5 - 21.5 21.0 - 22.0 21.6 - 22.5 22.6 - 23.5 22.5 - 24.5 22.5 - 25.5 25.5 - 26.5 26.5 - 27.5 27.5 - 28.5 28.5 - 29.5 28.5 - 29.5 28.5 - 29.5 28.5 - 29.5 28.5 - 29.5 28.5 - 29.5 28.5 - 29.5		2004 1 1 50.5 70.4 64.3 85.8 82.7 45.9 21.4 23.0 45.9 21.4 23.0 4.6 1.5	2003 2 2 1.5 3.1			2000		1998 7			numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 2.5 3.7 3.9 2.3 2.6 1.3 1.5 5 0.3 0.2 0.3 0.2 0.3	mean weight (g) 29.0 32.1 35.4 39.0 42.8 46.8 51.2 55.7 60.6 65.8 71.2 77.0 83.1	proportion mature 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Stratum B yearclass lengthclass 7.5 8.5 9.5 10.5 10.5 11.5 11.5 12.5 12.5 13.5 14.5 15.5 15.5 15.5 16.5 17.5 17.0 16.5 18.0 17.0 16.5 17.5 18.0 17.0 18.5 19.0 18.5 19.5 19.0 20.0 21.5 21.5 21.0 22.0 21.5 22.5 22.5 23.5 22.5 23.5 22.5 23.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5		2004 1 1 5.3 50.5 70.4 64.3 85.8 82.7 45.9 21.4 23.0 45.9 21.4 23.0 4.6 6 .1.5	2003 2 2003 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2000		1998 7	1997 8	1996 9	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 3.7 3.9 2.3 2.6 1.3 0.3 0.2 0.3	mean weight (g) 29.0 32.1 35.4 39.0 42.8 46.8 55.7 60.6 65.8 71.2 77.0 83.1	proportion mature
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 13.5 - 14.5 15.5 - 16.5 16.6 - 17.0 16.5 - 17.5 17.5 - 18.5 18.0 - 19.0 18.5 - 20.5 20.0 - 21.0 20.5 - 21.5 21.0 - 22.0 21.5 - 22.5 22.6 - 23.0 22.5 - 26.5 28.5 - 27.5 - 22.5 22.6 - 23.0 22.5 - 26.5 28.5 - 27.5 - 22.5 28.5 - 28.5 28.5 - 28.5 28.5 - 28.5 28.5 - 28.5 28.5 - 29.5 28.5 - 29.5 28.5 - 28.5 28.5 - 28.5 28.5 - 28.5 28.5 - 28.5 28.5 - 28.5 28.5 - 28.5 28.5 - 28.5 28.5 - 28.5 28.5 - 28.5 28.5 - 28.5 28		2004 1 1 2004 1 1 5 3 5 0.5 7 0.4 6 4.3 8 5 8 8 2.7 4 5.9 4 5.9 4 5.9 4 5.9 4 5.9 4 5.9 5 2.14 2.30 4 6 5 5 5 5 5 5 5 7 0.4 1 5 7 5 7 5 7 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				2000		1998 7	0.0	0.0	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 2.6 3.7 3.9 2.3 2.6 1.3 1.5 0.3 0.2 0.3 0.2 0.3	mean weight (g) 29 0 29 0 32 1 35 4 39 0 42.8 46.8 51.2 55.7 60.6 65.8 71.2 77.0 83.1	proportion mature
Stratum B yearclass lengthclass 7.5 8.5 9.5 10.5 10.5 11.5 11.5 12.5 12.5 13.5 13.5 14.5 15.5 15.5 16.0 17.0 16.5 17.0 16.5 17.0 16.5 17.5 18.0 17.5 18.5 19.5 19.0 20.0 21.6 22.0 22.0 22.0 21.0 22.0 22.5 22.5 22.5 23.5 22.5 23.5 22.5 25.5 22.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5		2004 1 1 50.5 70.4 64.3 85.8 82.7 45.9 21.4 23.0 4.6 1.5 2.1 4.6 1.5 511.4 23.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	2003 2 2 1.5 3.1 4.6 0.4			2000		0.0	0.0		numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass	mean weight (g) 29.0 32.1 35.4 39.0 42.8 46.8 51.2 55.7 60.6 65.8 71.2 77.0 83.1	proportion mature proportion mature 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Stratum B yearclass lengthclass 7.5 8.5 9.5 10.5 10.5 11.5 11.5 12.5 12.5 13.5 12.5 13.5 12.5 13.5 12.5 13.5 12.5 13.5 12.5 13.5 13.5 14.5 15.5 15.5 15.5 15.5 16.5 17.0 16.5 17.5 18.5 19.5 19.0 20.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5		2004 1 1 5.3 50.5 70.4 64.3 85.8 82.7 45.9 21.4 23.0 4.6 1.5 1.5 511.4 23.0 511.4 23.0 6.0 0 0.0	2003 2003 2 2 1.5 3.1 4.6 0.4 0.4 0.3 0.3		0.0	2000		0.0	0.0	0.0	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 3.7 3.9 2.3 2.6 1.3 1.5 0.3 0.2 0.3	mean weight (g) 29.0 32.1 35.4 39.0 42.8 46.8 51.2 55.7 60.6 66.8 71.2 77.0 83.1	proportion mature
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 15.5 - 16.5 16.5 - 17.5 15.5 - 18.5 16.5 - 17.5 17.0 - 18.0 17.5 - 18.5 18.5 - 19.5 18.5 - 19.5 18.5 - 10.5 18.5 - 11.5 18.5 - 12.5 20.0 - 21.0 20.5 - 21.5 21.0 - 22.0 21.5 - 22.5 22.5 - 22.5 22.5 - 22.5 22.5 - 22.5 22.5 - 22.5 22.5 - 22.5 22.5 - 22.5 22.5 - 22.5 22.5 - 22.5 22.5 - 22.5 22.5 - 22.5 22.5 - 22.5 22.5 - 22.5 22.5 - 22.5 22.5 - 22.5 23.5 - 24.5 23.5 - 25.5 23.5 - 25.5 23.5 - 25.5 23.5 - 25.5		2004 1 1 5.3 50.5 70.4 64.3 85.8 82.7 45.9 45.9 21.4 23.0 4.6 1.5 2.14 23.0 4.6 1.5 5.11.4 23.0 5.11.4 23.0 5.11.4 23.0 5.11.4 23.0 5.11.4 23.1 5.11.4 23.1 5.11.4 25.	2003 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			2000		1998 7	0.0		numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 2.5 3.7 3.9 2.3 2.6 1.3 1.5 5 0.3 0.2 0.2 0.3 0.3	mean weight (g) 29.0 29.0 32.1 35.4 39.0 42.8 46.8 51.2 55.7 60.6 65.8 71.2 77.0 83.1	proportion mature proportion mature 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 13.5 - 14.5 15.5 - 16.5 15.5 - 16.5 15.5 - 16.5 15.5 - 17.5 17.0 - 18.0 17.5 - 18.5 18.0 - 17.0 16.5 - 17.5 17.0 - 18.0 17.5 - 18.5 18.0 - 19.0 18.5 - 19.5 19.0 - 20.0 21.5 - 22.0 21.5 - 22.0 21.5 - 22.0 21.5 - 22.0 21.5 - 22.5 22.5 - 23.5 22.5 - 23.5 22.5 - 23.5 22.5 - 23.5 22.5 - 23.5 25.5 - 25.5 25.5 - 25.5 25.5 - 25.5 25.5 - 25.5 25.5 - 25.5 25.5 - 25.5 25.5 - 25.5 25.5 - 25.5 25.5 - 25.5 25.5 - 25.5		2004 1 1 5 15.3 50.5 70.4 64.3 85.8 82.7 70.4 64.3 85.8 82.7 70.4 64.3 1.5 1.5 1.5 511.4 22.8 0.0 0 18.1 1 44.5	2003 2003 2 2 1.5 3.1 4.6 0.4 0.3 21.8 81.1			2000		1998 7	0.0	0.0	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 1.6 2.5 3.7 3.9 2.3 2.6 1.3 0.3 0.2 0.3 0.3 0.2 0.3	mean weight (g) 29.0 32.1 35.4 39.0 42.8 46.8 55.7 60.6 65.8 71.2 77.0 83.1	proportion mature
Stratum B yearclass lengthclass 7.5 - 8.5 8.5 - 9.5 9.5 - 10.5 10.5 - 11.5 11.5 - 12.5 12.5 - 13.5 13.5 - 14.5 15.5 - 16.5 16.6 - 17.0 16.5 - 17.5 17.5 - 18.5 18.0 - 19.0 18.5 - 19.5 19.0 - 20.0 20.5 - 21.5 21.0 - 22.0 21.5 - 22.5 22.6 - 23.0 22.5 - 22.5 22.5 - 22.5 22.5 - 22.5 22.5 - 22.5 22.5 - 22.5 23.5 - 23.5 23.5 - 23.5 23.5 - 23.5 23.5 - 23.5 23.5 - 23.5 23.5 - 23.5 23.5 - 30.5 30.5 - 31.5 a tsn b tsb b tsb b tsb c mean_ength d mean_weight e mean_condition		2004 1 1 50.5 70.4 64.3 85.8 82.7 45.9 21.4 23.0 4.6 1.5 1.5 511.4 23.0 4.6 1.5 511.4 23.0 4.6 1.5 7.3 7.3 7.3	2003 2003 2 2 1.5 3.1 4.6 0.4 0.3 21.8 81.1 7.8					0.0	0.0	0.0	numbers 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	biomass 0.4 0.4 1.6 2.5 3.7 3.9 2.3 2.6 1.3 0.2 0.3 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.3 0.2 0.3 0.3 0.2 0.3 0.2 0.3 0.3 0.2 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	mean weight (g) 29.0 29.0 32.1 35.4 39.0 42.8 46.8 51.2 55.7 60.6 66.58 71.2 77.0 83.1	proportion mature

Table 3a: Age/maturity-length keys for herring (Stratum A, B, C, D and E). "Tridens", North Sea acoustic survey 2006.

yearclass 2005 2004 2003 2001 2000 1990 1997 1996 mean weight (g) propriori malue 7.5 - 8.5 1 1 2 3 4 5 6 7 8 9 numbers ionas mean weight (g) propriori malue 7.5 - 8.5 5 5 6 7 8 9 10.0 0.0<	Stratum C														
longth 15 a.60123456789undersmean weight (a)proportion matureR5 - 8.5510.510.4	yearclass	2005	2004	2003	2002	2001	2000	1999	1998	1997	1996				
T.5 - 8.6 Image: Control of the second s	lengthclass	0	1	2	3	4	5	6	7	8	9	numbers	biomass	mean weight (g)	proportion mature
8.5 - 9.5 0 0 0.0 0.0 0.0 105 - 11.5 0 0 0.0 0.0 0.0 115 - 12.5 0 0 0.0 0.0 0.0 115 - 12.5 0 0 0.0 0.0 0.0 0.0 12.5 - 13.5 0 0 0.0 0.0 0.0 0.0 0.0 13.5 - 14.5 0 0 0.0 0	7.5 - 8.5											0.0			
9.5 · 10.5	8.5 - 9.5											0.0			
10.5 - 11.5 0 0 00 00 11.5 - 12.5 0 0 00 00 12.5 - 13.5 0 0 0.0 0.0 13.5 - 14.5 0 0.0 0.0 0.0 13.5 - 14.5 0.0 0.0 0.0 0.0 13.5 - 14.5 0.0 0.0 0.0 0.0 15.5 - 15.5 0.0 0.0 0.0 0.0 0.0 15.5 - 16.5 0.0 0.0 0.0 0.0 0.0 15.5 - 16.5 15.7 0.8 49.6 0.0 0.0 15.5 - 16.5 15.7 0.8 49.6 0.0 0.0 15.5 - 15.5 15.7 0.8 49.6 0.0 0.0 15.5 - 15.5 164.3 41.1 0 0.0 116.8 7.1 0.0 21.5 - 22.5 44.6 8.1 0 166.7 4.2 7.3 0.0 21.5 - 22.5 44.6 8.1 0 166.7 4.2 7.3 0.0 23.0 - 24.0 19.5 0	9.5 - 10.5											0.0			
11.5 - 12.5 0 0 0.0 0.0 12.5 - 13.5 0 0 0.0 0.0 13.5 - 14.5 0 0 0.0 0.0 13.5 - 14.5 0 0.0 0.0 0.0 14.5 - 15.8 0 0.0 0.0 0.0 0.0 15.5 - 16.5 0 0.0 0.0 0.0 0.0 0.0 15.5 - 16.5 0 0 0.0 0.0 0.0 0.0 0.0 15.5 - 16.5 157 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.5 - 16.5 157 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.5 - 15.5 157 0.8 3.56.9 0.0 0	10.5 - 11.5											0.0			
12.5 · 13.5 Image: Control of the second	11.5 - 12.5											0.0			
13.5 · 14.5 0 0 0 0 0 0 0 0 0 0 15.5 15.7 <t< th=""><th>12.5 - 13.5</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>0.0</th><th></th><th></th><th></th></t<>	12.5 - 13.5											0.0			
14.5 · 15.5 0 0.0 15.5 · 16.5 0 0.0 15.5 · 16.5 0 0.0 17.5 · 16.5 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	13.5 - 14.5											0.0			
15.5-16.5 Image: Control of the second s	14.5 - 15.5											0.0			
16.5-17.5 Image: Constraint of the set of	15.5 - 16.5											0.0			
17.5-18.5 Image: style sty	16.5 - 17.5											0.0			
18.5-19.5 15.7 15.7 0.8 49.6 0.0 19.5-20.5 75.8 75.8 4.3 56.9 0.0 20.0-21.0 102.2 14.6 118.8 7.1 60.7 0.0 20.5-21.5 164.3 41.1 20.6 20.4 13.3 64.8 0.0 21.5-22.5 48.6 8.1 186.8 12.9 69.0 0.0 21.5-22.5 48.6 8.1 65.7 4.2 73.3 0.0 21.5-22.5 48.6 8.1 9.0 0.0	17.5 - 18.5											0.0			
19.5 - 20.5 75.8 75.8 4.3 56.9 0.0 20.0 - 21.0 102.2 14.6 102.2 14.6 118.8 7.1 60.7 0.0 20.5 - 21.5 164.3 41.1 1 1 188.8 12.9 60.0 0.0 21.0 - 22.0 109.0 77.8 1 1 186.8 12.9 69.0 0.0 21.5 - 22.5 48.6 8.1 1 1 186.8 12.9 69.0 0.0 22.5 - 23.5 48.6 8.1 1 1 1 19.1 17.8 87.3 0.0 23.0 - 24.0 19.1 9.5 1 19.1 1.7 87.3 0.0 24.0 - 25.0 9.5 9.5 1 19.1 1.7 87.3 0.0 24.5 - 25.5 9.5 9.5 10 9.5 10 9.5 10 102.9 0.0 25.5 - 26.5 1 9.5 1 1 1 1 1 1 1 1 1 1 1 1 1	18.5 - 19.5		15.7									15.7	0.8	49.6	0.0
200 - 21.0 1022 14.6 Image: solution of the solution	19.5 - 20.5		75.8									75.8	4.3	56.9	0.0
20.5-21.5 104.3 41.1 20.6 13.3 64.8 0.0 21.0-22.0 109.0 77.8 186.8 12.9 69.0 0.0 21.5-22.5 48.6 8.1 186.8 12.9 69.0 0.0 22.5-23.5 48.6 8.1 65.7 4.2 77.3 0.0 23.0-24.0 19.1 10.1 87.3 0.0 23.5-24.5 9.5 9.5 0 9.24 0.0 24.5-25.5 9.5 9.5 0 9.5 0.0 9.76 11.0 25.5-25.5 9.5 0.0 0.0 0.0 25.5-25.5 0.0 0.0 0.0 0.0 <th>20.0 - 21.0</th> <th></th> <th>102.2</th> <th>14.6</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>116.8</th> <th>7.1</th> <th>60.7</th> <th>0.0</th>	20.0 - 21.0		102.2	14.6								116.8	7.1	60.7	0.0
21.0 - 22.0 109.0 77.8 Image: constraint of the second seco	20.5 - 21.5		164.3	41.1								205.4	13.3	64.8	0.0
215 - 22.5 48.6 8.1 56.7 4.2 73.3 0.0 225 - 23.5 0 0 0.0 0 0.0 0.0 23.0 - 24.0 19.1 9.5 0.0 19.1 1.7 87.3 0.0 23.0 - 24.0 9.5 9.5 0.9 92.4 0.0 24.0 - 25.0 9.5 9.5 0.9 97.6 1.1 24.5 - 25.5 9.5 9.5 1.0 102.9 0.0 25.5 - 26.5 0.0 </th <th>21.0 - 22.0</th> <th></th> <th>109.0</th> <th>77.8</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>186.8</th> <th>12.9</th> <th>69.0</th> <th>0.0</th>	21.0 - 22.0		109.0	77.8								186.8	12.9	69.0	0.0
22.5 - 23.5 Image: system of the system	21.5 - 22.5		48.6	8.1								56.7	4.2	73.3	0.0
23.0 - 24.0 19.1 19.1 17 87.3 0.0 23.5 - 24.5 9.5 9.5 0 9.5 0.0 9.5 0.0 9.5 0.0 9.5 0.0 9.5 0.0 9.5 0.0 9.5 0.0 9.5 0.0 9.5 0.0 9.5 0.0 9.5 0.0 9.5 0.0 9.5 0.0 0.0 0.0 102.9 0.0 0.	22.5 - 23.5											0.0			0.0
23.5 - 24.5 () () 9.5 () () 9.5 () <	23.0 - 24.0			19.1								19.1	1.7	87.3	0.0
24.0 - 25.0 9.5 9.5 9.5 9.5 9.5 9.6 9.76 1.0 24.5 - 25.5 9 9.5 9.5 9.5 9.5 9.5 1.0 102.9 0.0 25.5 - 25.5 9 9.5 9.5 9.5 9.5 1.0 102.9 0.0 25.5 - 25.5 9 9.5 9.5 9.5 9.5 1.0 102.9 0.0 27.5 - 28.5 9 9.5 9.5 9.5 9.5 1.0 102.9 0.0 28.5 - 29.5 9 9.5 9.5 9.5 0.0	23.5 - 24.5				9.5							9.5	0.9	92.4	0.0
245-255 Image: symbol index inde	24.0 - 25.0				9.5							9.5	0.9	97.6	1.0
25.5 - 26.5 0 0 0.0 0.0 26.5 - 27.5 0 0 0.0 0.0 27.5 - 28.5 0 0 0.0 0.0 0.0 28.5 - 29.5 0 0 0.0 0.0 0.0 28.5 - 29.5 0 0 0.0 0.0 0.0 29.5 - 30.5 0 0 0.0 0.0 0.0 30.5 - 31.5 0 0 0.0 0.0 0.0 0.0 a_tsn 0.0 515.6 170.2 19.1 0.0 0.0 0.0 0.0 704.9 b_tsb 33.0 12.2 1.8 0 0 0.0 0.0 0.0 c_man length 20.4 21.2 23.8 0 0 0.9 0 0.0 0.0 d_mean weight 64.0 71.4 95.0 0 0 0.0 0.0 0.0 0.0 f percentage ssb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	24.5 - 25.5			9.5								9.5	1.0	102.9	0.0
26.5 - 27.5 Image: constraint of the second sec	25.5 - 26.5											0.0			
27.5 - 28.5 Image: style s	26.5 - 27.5											0.0			
28.5 - 29.5 Image: Constraint of the symbol of	27.5 - 28.5											0.0			
29.5 - 30.5 Image: Constraint of the symbol of	28.5 - 29.5											0.0			
30.5 - 31.5 0 1 1 0 <th< th=""><th>29.5 - 30.5</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>0.0</th><th></th><th></th><th></th></th<>	29.5 - 30.5											0.0			
atsn 0.0 515.6 170.2 19.1 0.0 0.0 0.0 0.0 704.9 btsb 3.0 12.2 1.8 47.0 47.0 btsb 0.0 0.0 0.0 0.0 0.0 0.0 704.9 47.0 c mean length 20.4 21.2 23.8 66.6 d mean weight 64.0 71.4 95.0 66.6 f percentage ssb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	30.5 - 31.5											0.0			
b tsb 33.0 12.2 1.8	a_tsn	0.0	515.6	170.2	19.1	0.0	0.0	0.0	0.0	0.0	0.0	704.9			
b_tssb 0.0 0.0 0.9 0.9 0.0	b_tsb		33.0	12.2	1.8							47.0			
c mean length 20.4 21.2 23.8 20.7 20.7 d mean weight 64.0 71.4 95.0 66.6 66.6 67.9 67.9 67.9 67.9 67.9 67.9	b_tssb		0.0	0.0	0.9							0.9			
d_mean_weight 64.0 71.4 95.0 66.6 e_mean_condition 7.5 7.4 7.1 66.6 66.6 f_percentage_ssb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	c_mean_length		20.4	21.2	23.8							20.7			
e_mean_condition 7.5 7.4 7.1 <th<< th=""><th>d_mean_weight</th><th></th><th>64.0</th><th>71.4</th><th>95.0</th><th></th><th></th><th></th><th></th><th></th><th></th><th>66.6</th><th></th><th></th><th></th></th<<>	d_mean_weight		64.0	71.4	95.0							66.6			
f percentage_ssb 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0	e_mean_condition		7.5	7.4	7.1										
	f_percentage_ssb	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0				

Stratum D														
yearclass	2005	2004	2003	2002	2001	2000	1999	1998	1997	1996				
lengthclass	0	1	2	3	4	5	6	7	8	9	numbers	biomass	mean weight (g)	proportion mature
7.5 - 8.5											0.0			
8.5 - 9.5											0.0			
9.5 - 10.5											0.0			
10.5 - 11.5											0.0	1		
11.5 - 12.5											0.0			
12.5 - 13.5											0.0			
13.5 - 14.5											0.0			
14.5 - 15.5											0.0			
15.5 - 16.5											0.0			
16.5 - 17.5		0.5									0.5	0.0	42.2	0.0
17.0 - 18.0		0.8									0.8	0.0	45.7	0.0
17.5 - 18.5		2.1									2.1	0.1	49.3	0.0
18.0 - 19.0		5.6									5.6	0.3	53.1	0.0
18.5 - 19.5		3.8									3.8	0.2	57.1	0.0
19.0 - 20.0		5.5	0.8								6.3	0.4	61.2	0.0
19.5 - 20.5		18.2	3.3								21.5	1.4	65.6	0.0
20.0 - 21.0		17.2	5.7								22.9	1.6	70.1	0.0
20.5 - 21.5		18.2	5.6		1.4						25.2	1.9	74.8	0.1
21.0 - 22.0		7.2	6.1								13.2	1.1	79.7	0.0
21.5 - 22.5		6.9	4.2								11.1	0.9	84.8	0.0
22.0 - 23.0			6.9								6.9	0.6	90.1	0.0
22.5 - 23.5		0.6	8.9	0.6							10.1	1.0	95.6	0.0
23.0 - 24.0			7.8	0.7							8.5	0.9	101.3	0.1
23.5 - 24.5			13.8	1.8							15.7	1.7	107.2	0.2
24.0 - 25.0			6.1	5.1							11.1	1.3	113.3	0.4
24.5 - 25.5			7.9	2.6			0.7				11.2	1.3	119.6	0.5
25.0 - 26.0			4.1	2.7	1.4						8.2	1.0	126.1	0.8
25.5 - 26.5			1.6	2.7	1.6	1.6					7.7	1.0	132.9	1.0
26.0 - 27.0			0.2	1.0		1.7	0.2				3.2	0.5	139.9	1.0
26.5 - 27.5		1.0	1.0		3.0	1.0					6.0	0.9	147.0	1.0
27.0 - 28.0					0.3	3.0	0.3				3.7	0.6	154.5	1.0
27.5 - 28.5				0.1	0.2						0.2	0.0	162.1	1.0
28.5 - 29.5											0.0	<u> </u>		
29.5 - 30.5											0.0	<u> </u>		
30.5 - 31.5											0.0	l		
a_tsn	0.0	87.6	84.0	17.4	7.9	7.4	1.2	0.0	0.0	0.0	205.6	i		
b_tsb		6.1	8.2	2.1	1.0	1.1	0.2	0.0			18.7	·		
b_tssb		0.2	1.9	1.2	0.9	1.1	0.1	0.0			5.4			
c_mean_length		19.9	22.6	24.4	25.0	26.4	25.5				21.9			
d_mean_weight		70.0	97.8	119.2	128.2	145.2	133.1				90.8			
e_mean_condition		8.8	8.4	8.1	8.1	7.9	8.0							
f_percentage_ssb	0.0	4.1	34.9	22.3	16.4	20.0	2.3	0.0	0.0	0.0				

Stratum E														
yearclass	2005	2004	2003	2002	2001	2000	1999	1998	1997	1996				
lengthclass	0	1	2	3	4	5	6	7	8	9	numbers	biomass	mean weight (g)	proportion mature
7.5 - 8.5											0.0			
8.5 - 9.5											0.0			
9.5 - 10.5											0.0			
10.5 - 11.5											0.0			
11.5 - 12.5											0.0			
12.5 - 13.5											0.0			
13.5 - 14.5											0.0			
14.5 - 15.5											0.0			
15.5 - 16.5											0.0			
16.5 - 17.5											0.0			
17.5 - 18.5											0.0			
18.5 - 19.5											0.0			
19.5 - 20.5		4.7	1.2								5.9	0.3	54.5	0.0
20.0 - 21.0		20.9									20.9	1.2	59.3	0.0
20.5 - 21.5		31.2	7.8								39.0	2.5	64.4	0.0
21.0 - 22.0		21.3	17.8								39.1	2.7	69.8	0.0
21.5 - 22.5		7.1	17.9								25.0	1.9	75.5	0.3
22.0 - 23.0		3.7	40.2	3.7							47.5	3.9	81.5	0.2
22.5 - 23.5			48.2	6.9							55.1	4.8	87.9	0.2
23.0 - 24.0			52.1	14.2							66.4	6.3	94.6	0.4
23.5 - 24.5			44.8	19.9							64.7	6.6	101.6	0.8
24.0 - 25.0	_		40.2	72.4		8.0					120 7	13.2	109.0	0.0
245-255			38.7	77.4							116 1	13.6	116.7	10
25.0 - 26.0			40.4	70.8		40.4					151.6	18.9	124.9	1.0
25.5 - 26.5			10.1	13.8	21.0	08.5					175.1	23.4	133 /	1.0
26.0 - 27.0	_		10.5	10.7	32.2	75.2	32.2				170.1	20.4	1/2 3	1.0
26.5 - 27.5	_		6.8	10.1	20.3	61.0	02.2				88.2	13.4	151 7	1.0
27.0 29.0			0.0	2.1	6.2	22.1					21.5	5.1	161.7	1.0
27.5 29.5	_			2.1	0.3	23.1	2.2	2.2			31.5	3.1	101.4	1.0
28.0 - 29.0				1.3	2.5	6.7	2.5	2.5			12 1	2.0	182.2	1.0
20.0 - 25.0	_			1.0	4.0	1.2	1.2				2.7	0.7	102.2	1.0
20.0 20.0	_			1.2	1.2	1.2	1.2	12			3.7	0.7	204.0	1.0
29.0 - 30.0	_				1.2	1.2	17	1.2			3.7	0.0	204.9	1.0
29.5 - 30.5	_						1.7			47	1.7	0.4	210.9	1.0
30.5 - 31.5	0.0	00.0	007.0	000 7	00.0	000 7	07.4	0.5	0.0	1.7	1.7	0.4	242.4	1.0
a_tsn	0.0	88.9	307.0	320.7	88.3	320.7	31.4	3.5	0.0	1.7	1240.2			
D_TSD	_	5.8	36.6	38.6	13.0	46.4	5.6	0.6		0.4	147.0			
D_tSSD		0.2	23.1	35.5	13.0	46.3	5.6	0.6		0.4	124.7			
c_mean_length		20.6	23.3	24.6	26.2	26.0	26.3	28.0		30.5	24.5			
d_mean_weight		65.6	99.7	118.2	147.1	142.0	149.2	183.3		242.4	118.6			
e_mean_condition		7.5	7.8	7.9	8.1	8.1	8.1	8.3		8.5				
f_percentage_ssb	0.0	0.2	18.5	28.5	10.4	37.1	4.5	0.5	0.0	0.3			1	

Table 4a: Herring. Mean length, mean weight, biomass (thousands of tonnes) and numbers (millions) breakdown by age and maturity obtained during the July 2006 North Sea hydro acoustic survey for herring, FRV "Tridens".

yearclass	age	mean weight (g)	mean length (cm)	numbers (millions)	biomass (1000 tonnes)	numbers %)	biomass (%)
2005	0imm	10.06	11.37	291.72	2.93	3.74	0.73
2005	0mat			0.00	0.00	0.00	0.00
2004	1imm	42.82	17.82	6039.78	231.98	77.37	57.42
2004	1mat	104.15	23.12	4.89	0.44	0.06	0.11
2003	2imm	77.14	21.52	402.32	32.34	5.15	8.00
2003	2mat	110.92	24.00	226.91	25.18	2.91	6.23
2002	3imm	99.43	23.55	49.19	4.86	0.63	1.20
2002	3mat	117.03	24.61	317.40	38.01	4.07	9.41
2001	4imm	82.33	21.16	1.55	0.13	0.02	0.03
2001	4mat	144.77	26.15	94.61	13.87	1.21	3.43
2000	5imm	108.98	24.00	1.07	0.12	0.01	0.03
2000	5mat	142.49	26.01	333.07	47.36	4.27	11.72
1999	6imm	119.59	24.50	0.35	0.04	0.00	0.01
1999	6mat	147.81	26.27	38.31	5.70	0.49	1.41
1998	7imm			0.00	0.00	0.00	0.00
1998	7mat	183.31	28.03	3.48	0.64	0.04	0.16
1997	8imm						
1997	8mat						
1996	9imm			0.00	0.00	0.00	0.00
1996	9mat	242.38	30.50	1.72	0.42	0.02	0.10
imm				6785.98	272.40	86.93	67.42
mat				1020.38	131.62	13.07	32.58
totals				7806.36	404.03	100.00	100.00

yearclass	age	mean weight (g)	mean length (cm)	numbers (millions)	biomass (1000 tonnes)	numbers %)	biomass (%)
	0imm						
	0mat						
	1imm	6.54	9.42	604.46	3.95	20.86	12.51
	1mat	9.27	10.61	1070.60	9.93	36.94	31.43
	2imm	10.06	10.94	12.37	0.12	0.43	0.39
	2mat	14.11	12.27	997.99	14.09	34.43	44.59
	3imm	11.56	11.50	0.30	0.00	0.01	0.01
	3mat	16.43	12.93	202.29	3.32	6.98	10.52
	4imm			0.00	0.00	0.00	0.00
	4mat	16.56	13.00	10.29	0.17	0.36	0.54
	5imm						
	5mat						
	6imm						
	6mat						
	7imm						
	7mat						
	8imm						
	8mat						
	9imm						
	9mat						
imm				617.14	4.08	21.29	12.91
mat				2281.17	27.51	78.71	87.09
totals				2898.31	31.59	100.00	100.00

Table 4b: Sprat. Mean length, mean weight, biomass (thousand tonnes) and numbers (millions) breakdown by age and maturity obtained during the July 2006 North Sea hydro acoustic survey for herring, FRV "Tridens".

Figure 1: Cruise track and positions of trawl stations and hydrographical stations during the June-July 2006 North Sea herring hydro acoustic survey on RV "Tridens".

Figure 2: Positions of CTD stations during the July 2006 North Sea herring hydroacoustic survey by RV "Tridens".

Legend 23 (5) = mean fish length (cm) with standard deviation

Figure 3: Post plot of herring mean length from RV "Tridens", observed during the July 2006 North Sea hydro acoustic survey for herring. Strata-areas A to E are indicated.

Figure 4: Post plot showing the distribution of total herring S_A values (on a proportional square root scale relative to the largest value of 5303) obtained during the June-July 2006 North Sea herring hydro acoustic survey on RV "Tridens".

Figure 5: Estimated numbers of herring in millions (upper half square) and biomass in thousands of tonnes (lower half of square) by ICES rectangle. Results from the July 2006 North Sea hydro acoustic survey, RV "Tridens".

Annex 2F: Germany

Survey report for FRV "Solea", cruise 559

International Herring Acoustic Survey in the North Sea

29 June 2006 - 18 July 2006

Norbert Rohlf, Jens Ulleweit, Inst Sea Fisheries (ISH)

Eckhard Bethke, Inst Fishing Technology and Fishery Economics (IFF), Hamburg

1. Introduction

Background: FRV "Solea" cruise 559 was conducted in the framework of the international hydroacoustic survey on pelagic fish in the North Sea, which is coordinated by the ICES Planning Group for Herring Surveys (PGHERS). Further contributors to the quasi-synoptic survey are the national fisheries research institutes of Scotland, Norway, Denmark and The Netherlands. The results are delivered to the ICES Herring Assessment Working Group. Since 1984 they represent an important fishery independent dataset (i.e. biomass estimate) for the assessment of herring stocks in the area.

The working area for "Solea" was confined to the southern and south-Eastern North Sea. This area is regarded to be one of the main distribution areas for juvenile herring. Since 2001, PGHERS calculates a juvenile biomass index for the North Sea herring assessment, mainly based on the survey results from the SE North Sea and the Kattegat/Skagerrak area. During the last years, the survey area was significantly extended to the south (to about 52°N) in an attempt to reach the southern distribution limit of sprat, and this area was again covered this year. Interlaced transects between the German and the Dutch vessel are included in the design, and the survey intensity is comparable to last year.

Objectives: Hydroacoustic recording of pelagic fish stocks for abundance and biomass estimation, biological sampling for the verification of echoes, calibration of the hydroacoustic equipment, hydrographic investigations, sampling of data and specimens for a number of national and international projects (BFA Fi: Univ. Aberdeen/ISH; Univ. Hamburg/GLOBEC; FTZ Büsum, IfM Kiel).

2. Survey description and methods

2.1 Personnel

NAME	FUNCTION	INSTITUTION
E. Bethke	scientist in charge, hydroacoustics	IFF
M. Drenckow	Hydroacoustics	IFF
J. Ulleweit	Fishery biology	ISH
G. Gentschow	Fishery biology	ISH
N. Rohlf	Fishery biology	ISH
D. Risch	Fishery biology/cetacean observation	FTZ / Uni Kiel
C. Konrad	Fishery biology	Uni Aberdeen

2.2 Narrative

FRV "Solea" left the port of Cuxhaven on 29 June, and tried to calibrate the hydroacoustic equipment south of the isle of Helgoland. But due to currents stronger than expected this calibration exercise failed. Calibration was successfully done the following night at 55°21'N, 006°01'E.

Recording of hydroacoustic measurements started the same day north of the "White Bank" at 55°22' N, 006°0' E, but had to be stopped on 9 July because of the rough sea surface, resulting in air bubbles below the ships keel. But on the other hand, this was the only disturbance of the hydroacoustic recordings. The weather conditions were very favourable for the rest of the cruise, but fishing activity was limited by the relatively low number of fish schools detected in the acoustics, especially north of 54°30'. So Solea was also able to survey four ICES rectangles from the area of the Tridens, which could not cover these rectangles due to technical problems.

The recordings were terminated in the afternoon of 17 July. FRV "Solea" reached her home port on the same evening, having sailed 3046 nautical miles.

2.3 Survey design

The working area for the German vessel contributing to the survey was interlaced with the area covered by the Dutch vessel "Tridens". The survey effort was comparable to last year. The southern survey limit was chosen in order to reach a southern distribution limit of sprat in July. This would be a prerequisite for the development of a sprat biomass index in the near future using this acoustic survey. The survey area was confined to the southern and central North Sea between 52°N and the 20 m depth contour off Frisia to the south, the 20 m depth line off the English coast to the west and off the German and Danish coast to the east, and 55°30' N to the north, respectively.

Hydroacoustic measurements were conducted on east-west or north-south transects with 7.5, 15 or 30 nautical miles distance (as done by other research vessels participating in the survey) on fixed latitudes. In general, each ICES statistical rectangle was surveyed with at least one transect, and with higher intensity where historically a high abundance or variability in abundance of juvenile herring or sprat had been detected.

2.4 Calibration

The hull mounted transducers (one in the keel, one in the starboard blister) were calibrated just prior to the start of the survey on 30 June at open sea on 55°21'N and 006°01'E. Water depth was below 20 m. The conditions were reasonable; the vessel was anchored and tidal or wind induced currents were low. The calibration procedure required six hours for both transducers. The calibration methods are described in the 'Manual for Herring Acoustic Surveys in ICES Divisions III, IV and VI' (ver. 3.1, ICES CM 2003/G:03, Appendix 4). Important parameters and settings are listed in Table 1.

2.5 Acoustic data collection

The acoustic investigations were performed during daylight (04:00 to 18:00 UTC), using a Simrad EK60 echosounder with standard frequencies of 38 and 120 kHz. The echograms were continuously recorded and evaluated using the EchoView 3 software package. The specific settings of the hydroacoustic equipment were used as described in the 'Manual for Herring Acoustic Surveys in ICES Divisions III, IV and VI' (ver. 3.1, ICES CM 2003/G:03, Appendix 4). Basic settings are documented in Table 1. The operational speed of the vessel was 10 -11 knots during the acoustic measurements and it sailed 3046 n.mi. on cruise 559. Almost 2000 nautical miles were used for the acoustic data collection, while the remaining ones belong to the cetacean observation programme and ship's steaming transects.

2.6 Biological data - fishing trawls

For the identification of echo traces and further biological sampling, 31 trawl hauls were conducted either on specific large schools (after turning the ship) or, if small schools occurred frequently, continuing the survey track. On "Solea", a small pelagic trawl (PSN388, approx. 8

m vertical opening, and mesh size in the codend 10 mm) was used both in the midwater and close to the bottom. The net was equipped with a Simrad trawl sonar FS20. Standard tow periods were 30 mins; however, they varied between 7 and 61 mins depending on the indication of net filling. 21 statistical rectangles have been sampled.

From each trawl, the mass of the total catch and species composition (on subsamples, if needed) was determined. Length frequency distributions were produced for each species. Length-stratified samples (10 samples per half cm class per ICES stat rectangle) of herring and sprat were taken for the determination of maturity (using a 4 point scale), sex and individual body mass, and otoliths were removed for age reading. One station showed a high concentration of juvenile clupeids just below the surface down to 5 m. A subsample of the catch was frozen for further processing and species identification at the institute in Hamburg.

2.7 Hydrographic data

Hydrographic data were sampled just prior or after fishing activity and in distances of 30 n.mi. At each of these stations, vertical profiles of temperature, salinity and depth were recorded using a "Seabird SBE 19 plus- multiprobe" CTD (Figure 1). Water samples for calibration purposes were taken on every second or third station.

2.8 Acoustic and visual recording of cetaceans

The abundance of harbour porpoise (*Phocoena phocoena*) in the North Sea was to be determined by means of visual and acoustic methods (recording of harbour porpoise "clicks" in the range 110-140 kHz with a towed hydrophone chain). Due to interferences between the vessel's transducers and the hydrophone, recording was only conducted during night when the vessel sailed at about 3 knot speed and the EK60 was switched off. Samples of fish were taken to correlate harbour porpoise detections with prey abundance and prey energy content (fatty acids) as well as the porpoise position in the food chain (stable isotopes).

2.9 Data analysis

The echo integration, i.e. the allocation of the nautical area backscattering cross section (NASC) to the species herring and sprat was done using the EchoView 3 software package, using information from trawl hauls usually targeting specific schools. Herring and sprat were exclusively found in characteristic "pillars". The NASC attributed to clupeoids was estimated for each ESDU of 1 nautical mile. Contributions from air bubbles, bottom structures and scattering layers were manually removed from the echogram using the EchoView software. It is not possible to distinguish between herring and sprat within clupeid schools. To allocate the integrator readings to a single species, species composition was based on the trawl results (see above).

For each rectangle the species composition and length distribution of herring and sprat were determined as the weighted mean of all trawl results in this rectangle. For rectangles without valid hauls a mean of the catch results of the neighbouring rectangles was used. From these distributions the mean cross section σ was calculated according to the following target strength-length (TS) relationship:

$TS = 20 \log L (cm) - 71.2 (ICES 1983/H:12)$

The total number of fish (total N) in one rectangle was estimated to be the product of the mean area scattering cross section NASC and the rectangle area (or more precisely the area with a water depth of more than 20 m), divided by the corresponding mean cross section. This total number was divided into species and age/maturity classes according to the trawl catch results.

3. Results and discussion

3.1 Acoustic data

As in previous years, clupeids were exclusively found in characteristic schools, appearing in single clusters of some n.mi. extension. Echoes attributed to plankton were not considered to be problematic for the identification of fish schools.

The highest nautical area scattering coefficients (NASCs) have been found in the inner German Bight. The maximum mean value (as a sum over 5 n.mi.) is of 6.149 m2n.mi.-2. Figure 2 gives the NASC distribution on a basis of 5 n.mi. EDSUs for clupeids (herring and sprat combined).

3.2 Biological data

The pelagic trawl PSN388 has been deployed at 31 stations. 42 rectangles were covered during the acoustic survey, of which 21 have been sampled with trawl hauls (Figure 1 and Table 2). Valid results (at least one haul with more than 200 clupeids h-1 trawling) were obtained for 14 rectangles. Those were used for raising unsampled rectangles. The majority of the unsampled rectangles had no or only minimal NASCs. Total catch varied between 0.1 and 2310 kg.

Herring was mainly found in the north-eastern part of the area, but also on some spots in the western part of the investigation area, while sprat was concentrated in the south. It is not likely that the summer southern distribution limit for sprat in the Channel was reached during the survey.

Trawling resulted in 15 species and was dominated by sprat, which was present in 21 of the total 31 catches. Species diversity is listed in Table 3. Sprat were also most abundant in term of biomass (7543 kg, equal to 86%), followed by herring (11%). All other species occurred only on occasion. Remarkable were the catches of snake-pipefish (*Entelurus aequorius*). This species occurred in 12 hauls of the pelagic net.

3.3 Biomass and abundance estimates

The total estimates for the survey:

٠	Herring total biomass: 83'200 t	(2005: 77'600 t)
•	Herring spawning stock biomass: 5'330 t / 6.4%	(2005: 168 t / 0.2%)
٠	Herring total abundance: 5'454 mill.	(2005: 6'600 mill.)
•	Herring spawning stock abundance: 0.04 mill. / 0.1%	(2005: 7.5 mill. / 0. 1%)
•	Sprat total biomass: 420'300 t	(2005: 513'200 t tonnes)
•	Sprat spawning stock biomass: 417'000 t / 99%	(2005: 360'700 t / 70%)
•	Sprat total abundance: 41'300 mill.	(2005: 72'500 mill.)
•	Sprat spawning stock abundance: 40'500 mill. / 98%	(2005: 42'600 mill.

Sprat spawning stock abundance: 40'500 mill. / 98% (2005: 42'600 mill. 59%)

Compared to last year, herring abundance has decreased by almost 20%, while the biomass has slightly increased. The vast majority (> 99 %) of herring in this area still consists of 0- and 1-wr (Age 1 and 2).

Sprat biomass and abundance have been significantly decreased as compared to last year. Most sprats are mature fish. Detailed information on abundance and biomass by statistical rectangle can be found in Figure 3 and 4.

/

3.4 Acoustic and visual recording of cetaceans

Visual observations between fishing activity were possible almost all day round due to low wind speeds and calm sea surface. In total, three different whale species and two species of pinnipedians could be detected during the cruise. Minke whales and harbour porpoises were found to be relatively abundant around the western part of the Doggerbank. In addition, three grey seals were observed in the same area. On 7 July, three dolphins were recorded visually and by acoustic detection via the hydrophone in parallel.

3.5 Hydrographic data

Again a dense net of hydrography stations have been sampled: 64 vertical profiles have been recorded, with a maximum distance of 30 n.mi. between the two stations. The water column was clearly stratified on the offshore stations in the north; surface temperatures ranged between 12° in the north-western parts and 19°C around Helgoland. Bottom temperatures were significantly lower (below 10 °C) when a thermocline was observed. Going further south, the water column becomes more mixed and no stratification was present in the entrance to the English Channel.

Figure 1: FRV "Solea", cruise 559. Cruise track, fishing stations (black dots) and hydrographic stations (grey crosses).

Figure 2: FRV "Solea", cruise 559. Distribution of total NASC values attributed to clupeoids (sum per 5 n. mi., on a proportional square root scale relative to the largest value of 6150 m²n.mi.²). Smallest dots indicate zero values.

Figure 3: FRV "Solea", cruise 559. Abundance (Mill. Individuals, upper value in italics) and biomass (thousand t, lower value in bold) of herring per statistical rectangle.

Figure 4: FRV "Solea", cruise 559. Sprat abundance (in Mill. Individuals, upper value in italics) and biomass (thousand t, lower value in bold) per statistical rectangle.

133 |

 Table 1: FRV "Solea", cruise 559. Herring international hydroacoustic survey in the North Sea,

 29.06.–18.07.06. Simrad EK60 calibration report.

Calibration Version 2.1.0.11

Date: 2006-06-30

Comments:

Position: 55°21 N, 006.01 E, Wind 3 Beaufort. Good conditions

Reference Target:

TS -33.60 dB Min. Distance 12.00 m# TS Deviation 5.0 dB Max. Distance 16.00 m

# Transducer: # Frequency # Gain	ES38B 38000 H 26.50 dE	Z }	Serial No. 3054 Beamtype Two Way Beam	15 n Angle	Split -20.6 dB				
# Athw. Angle Sens.	21.90	Along. A	Angle Sens.	21.90					
# Athw. Beam Angle	7.10 deg	U	Along. Beam A	ngle	7.10 deg				
# Athw. Offset Angle	0.00 deg	Along. (Offset Angle	0.00 deg					
# SaCorrection	0.00 dB		Depth		0.00 m				
# Transceiver: GPT 38 kHz	009072056b06	1 ES38E	3						
# Pulse Duration	1.024 ms	Sample	Interval 0.192 m	1					
# Power	2000 W	-	Receiver Bandy	width 2.43 l	kHz				
# Sounder Type: # EK60 Version 2.1.1									
# TS Detection ·									
# Min Value	-45.0 dB	Min S	Snacing	100%					
# Max Beam Comp	6.0 dB	Min I	Echolength	80%					
# Max. Phase Dev.	3.0	Max.	Echolength	180%					
# Environment:									
# Absorption Coeff.	8.4 dB/km	Sound V	elocity 1502.0 r	n/s					
# Beam Model results:									
# Transducer Gain	= 26.28 dB	SaCor	rection	= -0.57 c	lΒ				
# Athw. Beam Angle	= 6.91 deg	Along	. Beam Angle	= 6.95 d	eg				
# Athw. Offset Angle	=-0.07 deg	Along	g. Offset Angle	$= 0.01 \mathrm{d}$	eg				
# Data deviation from bear	n model:								
# RMS = 0.15 dB									
# Max = 0.41 dB	No. $= 294$ Athy	$v_{.} = -3.0$	deg	Along =	2.8 deg				
# Min = -0.38 dB	No. $= 82$ Athw.	= -4.8 d	eg	Along =	-1.7 deg				
# Data deviation from poly	nomial model:			2	•				
# RMS = 0.12 dB									
# Max = 0.44 dB	No. $= 378$ Ath	$w_{.} = -4.2$	deg	Along =	3.0 deg				
# Min = -0.43 dB	No. $= 251$ Ath	$w_{.} = -4.0$	deg	Along = $0.7 \deg$					

STAT	HAUL	RECT	DATE	TIME OF DAY (HHMM UTC)	TRAWL	SHOTPOSLAT (°°MM.MM)	SHOTPOSLON (°°MM.MM)	WATER DEPTH (M)	CATCH DEPTH (M)	CATCH TIME (MIN)
495	1	39F6	20060701	1308	PSN388	550695N	0062595E	45	35	30
496	2	39F5	20060701	1522	PSN388	550788N	0055902E	40	30	30
500	3	39F2	20060702	1310	PSN388	551504N	0025621E	30	16	30
504	4	39F0	20060703	1022	PSN388	552201N	0000469E	76	64	30
508	5	39E9	20060704	920	PSN388	551429N	0000476W	73	63	30
512	6	39F0	20060705	1105	PSN388	550695N	0004215E	77	65	30
518	7	38E9	20060706	1301	PSN388	545190N	0005456W	67	58	30
521	8	38F0	20060707	756	PSN388	543718N	0004118E	65	56	35
524	9	37F0	20060707	1631	PSN388	541499N	0002469E	59	43	30
528	10	37F2	20060708	1145	PSN388	541508N	0024060E	41	29	30
531	11	37F4	20060709	514	PSN388	540535N	0041559E	45	35	30
533	12	36F4	20060709	933	PSN388	533553N	0041591E	30	20	30
538	13	34F2	20060710	1311	PSN388	524058N	0024482E	41	29	30
543	14	34F2	20060711	843	PSN388	525968N	0021520E	43	3	15
544	15	34F2	20060711	1011	PSN388	525879N	0021569E	40	28	30
546	16	33F2	20060711	1435	PSN388	522690N	0021522E	40	28	30
548	17	33F2	20060712	619	PSN388	521012N	0020209E	36	1	20
549	18	33F2	20060712	712	PSN388	520997N	0020329E	39	28	30
556	19	36F2	20060713	707	PSN388	534498N	0025999E	42	28	30
559	20	36F1	20060713	1421	PSN388	534518N	0011184E	28	1	15
562	21	37F4	20060714	655	PSN388	542111N	0041928E	48	38	20
565	22	37F5	20060714	1422	PSN388	541452N	0052899E	37	29	40
568	23	36F5	20060715	615	PSN388	533530N	0054086E	20	10	8
569	24	36F5	20060715	712	PSN388	533562N	0054290E	20	5	15
570	25	36F6	20060715	917	PSN388	533974N	0060528E	22	9	10
572	26	36F6	20060715	1438	PSN388	535613N	0062994E	26	6	30
575	27	37F6	20060716	526	PSN388	542502N	0065309E	33	13	61
577	28	37F7	20060716	839	PSN388	542538N	0071486E	30	20	60
579	29	37F7	20060716	1418	PSN388	540309N	0071523E	31	14	20
582	30	37F7	20060717	510	PSN388	540750N	0074793E	38	23	14
584	31	37F8	20060717	1013	PSN388	541084N	0080207E	23	13	14

Table 2: FRV "Solea", cruise 559. International hydroacoustic survey on herring in the North Sea,29.06.2006- 18.07.2006. Trawl station data.

Station	Haul	Alosa fallax	Ammodytes marinus	Belone belone	Clupea harengus	Echiichthys vipera	Entelurus aequoreus	Eutrigla gurnadus	Glyptocephalus cynoglossus	Hyperoplus lancoleatus	Hyperoplus tobianus	Melanogrammus aeglefinus	Merlangius merlangus	Sardina pilchardus	Scomber scombrus	Sprattus sprattus	Trachurus trachurus	Trisopterus luscus	No of Species	Herring (n in 60min haul)	Herring (% of clupeid catch)	Sprat (n in 60min haul)	Sprat (% of clupeid catch)	Number of clupeids / 60min
495	1				21.57		0.01	0.946					0.002			3.83			5	1,060	85	1,038	15	2,098
496	2				3.702			0.71					0.012						3	178	100	0	0	178
500	3						0.04	0.606											2	0	0	0	0	0
504	4						0.044	0.222											2	0	0	0	0	0
508	5						0.088	0.472											2	0	0	0	0	0
512	6						0.016	0.244											2	0	0	0	0	0
518	7				0.69		0.77					1.78	7.745			1.456		0.104	6	10	32	264	68	274
521	8						0.04	4.126					0.198			0.041			4	0	0	5	100	5
524	9				24.3	0.024	0.024	0.878								303.7			5	1,346	7	45,200	93	46,546
528	10				0.16		0.028	0.92					0.002			22.12			5	10	1	3,072	99	3,082
531	11				8.27			0.056								115.7			3	520	7	37,932	93	38,452
533	12							0.042							0.2	51.2			3	0	0	7,646	100	7,646
538	13				0.886	0.028									0.44	2307			4	62	0	433,640	100	433,702
543	14				27.37											27.37			2	113,536	50	68,932	50	182,468
544	15	1.36			0.046	0.402					0.034					1099			5	4	0	367,798	100	367,802
546	16				5.346	0.072							0.18		0.194	71.87			5	564	7	14,282	93	14,846
548	17				0.062	2.136					0.052		0.004		0.974				5	3	100	0	0	3
549	18				0.48	2.776							0.248			54.6			4	22	1	18,010	99	18,032
556	19														0.256	120.8			2	0	0	31,842	100	31,842
559	20								0.001	0.076			0.002						3	0	0	0	0	0
562	21	0.7			6.915		0.02	0.364								154.9			5	564	4	79,194	96	79,758
565	22					0.206	0.004	0.19							1.848	7.9	42.7		6	0	0	804	100	804
568	23				307.2					0.028					0.314	827.5	1.858		5	288,330	27	888,638	73	1,176,968
569	24						0.004			0.236				0.148	6.325		1.63		5	0	0	0	0	4
570	25				260.5					0.14					0.704	364.9			4	184,968	42	274,458	58	459,426
572	26				33.5					0.892					0.406	452.8			4	6,700	7	79,070	93	85,770
575	27				2.716			1.068						0.136	42.2	0.79	5.83		6	71	75	52	22	124
577	28		0.014					0.59		0.462			0.006		70.2	2011	6.195		6	0	0	0	0	0
579	29			0.296	4.91			0.366							0.524	306.1			5	1,743	2	119,775	98	121,518
582	30				107			0.372							6.985	105			4	71,901	50	64,067	50	135,969
584	31				5.87			0.064		0.076					1.47	97.03			5	4,393	6	48,776	94	53,169
Total		2.06	0.014	0.296	821.4	5.644	1.088	12.24	0.001	1.91	0.086	1.78	8.399	0.284	133	6496	58.21	0.104	17	8,509	11	55,631	89	64,141

Table 3: FRV "Solea", cruise 559. International acoustic survey on herring in the North Sea, 29.06.-18.07.06. Species distribution per haul (catch in kg).

Ł

	Stat: Haul: Rect:	495 1 39F6	496 2 39F5	518 7 38E9	524 9 37F0	528 10 37F2	531 11 37F4	538 13 34F2	543 14 34F2	544 15 34F2	546 16 33F2	548 17 33F2	549 18 33F2	562 21 37F4	568 23 36F5	570 25 36F6	572 26 36F6	575 27 37F6	579 29 37F7	582 30 37F7	584 31 37F8
Length 4.75	Total																				
5.25	3.3								14												
5.75	9.2								39												
6.25	7.5								32												
6.75	3.3								14												
7.25																					
7.75																					
8.25																					
8.75	1.2																			8	3
9.25	14.5														18	1			4	59	48
9.75	23.4										1				37	30			40	27	31
10.25	19.6														26	40	3		37	6	14
10.75	8.8										1				9	20	27		12		3
11.25	5.,3					20					7		_		7	7	46		6		
11.75	1.7										20		9		2	2	19		1		
12.25	0.5										21				I	1	5		1		
12.75	0.0							3			12										
13.25	0.0							3			3										
13.75	0.0					20	1	16		50	5			,							
14.25	0.0				1	20	4	3		50	5		19	1							
14.75	0.1				9		4	20			5		10	5				4			
15.25	0.1				0 10		22	10		50	3		16	12				4			
16.25	0.1	2	1		6		23	6		30	4			12				15			
16.75	0.1	8	7		6		13	13			1		0	18				20			
17.25	0.2	27	26		4		8	3			1		9	12				19			
17.75	0.2	26	26		7	40	3	5						12				15			
18.25	0.2	23	34		7	20	1						9	11				3			
18 75	0.1	11	6		13	20							<i>,</i>	3				5			
19.25	0.1	2			14									2							
19.75	0.0	-	1		7							100	9	-							
20.25	0.0				4								9								
20.75	0.0				2								9								
21.25	0.0				1																
21.75																					
22.25																					
22.75	0.0			20																	
23.25	0.0			20																	
23.75	0.0			20																	
24.25																					
24.75																					
25.25	0.0			20																	
25.75																					
26.25	0.0			20																	
Total n	121.5	0.5	0.1	0.0	0.7	0.0	0.3	0.0	28.4	0.0	0.3	0.0	0.0	0.2	38.4	30.8	3.4	0.1	0.6	16.8	1.0
mean	14.5	17.8	17.8	24.3	17.6	15.9	16.0	15.1	6.0	15.0	13.1	19.8	16.8	16.9	10.1	10.3	11.2	16.8	10.2	9.4	9.6

Table 4a: FRV "Solea", cruise 559. Herring length-frequency proportion (%) by trawl haul (Length in cm).

	STAT: HAUL: RECT:	495 1 39F6	518 7 38E9	521 8 38F0	524 9 37F0	528 10 37F2	531 11 37F4	533 12 36F4	538 13 34F2	543 14 34F2	544 15 34F2	546 16 33F2	549 18 33F2	556 19 36F2	562 21 37F4	565 22 37F5	568 23 36F5	570 25 36F6	572 26 36F6	575 27 37F6	579 29 37F7	582 30 37F7	584 31 37F8
Length	Total																						
4 25																							
4 75																							
5 25	0.3									12													
5.25	0.3									12													
6.25	1.0									47													
6.75	0.3									12					0								
7.25	0.2									6			4		1								
7.75	0.9						2				2		9	0	8								
8.25	4.6						11				15		18	4	17								
8.75	11.1	3	3				23	0	1	6	29		21	10	20	1	14	2			1	11	
9.25	20.5	27	5				32	0	5	6	24		18	19	28		55	30			8	41	8
9.75	17.5	50	8			1	16	1	8		15	2	14	24	14		21	47	3		61	37	45
10.25	9.9	8	6		1		8	2	12		7	7	8	13	5	1	6	13	8		27	9	33
10.75	8.2	6	13		7	2	6	9	15		4	20	5	7	2	3	3	5	26		3	2	12
11.25	9.8	5	20	33	26	9	1	20	20		2	25	2	8	2	20	2	3	39	4			3
11.75	7.0		15	33	33	18	1	26	17		0	21		5	1	22		1	16	11			
12.25	5.1		14		18	31		18	13		2	15		4	1	27		1	5	58			
12.75	2.0		10	33	8	25		13	5			5		3		22			3	19		1	
13.25	0.9	1	5		4	11		7	2		0	3		2		3				4			
13.75	0.3		2		2	3		3	1			1				1				4			
14.25	0.0							1				0											
14.75	0.1							0	0														
Total	794.6	0.5	0.1	0.0	22.6	1.5	19.0	3.8	216.8	17.2	183.9	7.1	9.0	15.9	26.4	0.5	118.5	45.7	39.5	0.1	39.9	14.9	11.4
n ('000)																							
mean length	10.4	9.8	11.3	11.9	11.8	12.3	9.3	11.9	11.2	6.5	9.2	11.5	9.0	10.1	9.1	12.0	9.4	9.8	11.2	12.3	9.9	9.5	10.0

Table 4b: FRV "Solea", cruise 559. Sprat length-frequency proportion (%) by trawl haul (Length in cm).

Ł

WR:	0	1	1	2	2	3	4	5	6	
MATURITY:	1	1	2	1	2	2	2	2	2	
Length (cm)										Sum
4.75										0
5.25										0
5.75										0
6.25										0
6.75										0
7.25										0
7.75										0
8.25										0
8.75	10									10
9.25	32									32
9.75	40									40
10.25	34									34
10.75	32									32
12.75	35	2								37
13.25	29	2								31
13.75	17	10								27
14.25	8	15								23
14.75	2	40								42
15.25	1	40								41
15.75		37								37
16.25		42								42
16.75		51								51
17.25		53								53
17.75		48								48
18.25		33		3						36
18.75		27		2						29
19.25		17		1						18
19.75		12		2						14
20.25		4		7						11
20.75		1		5		1				7
21.25				3						3
22.25										0
22.75							1			1
23.75							1			1
24.25							1			1
24.75										0
25.25							1			1
25.75										0
26.25								1		1
Sum	240	434	0	23	0	1	4	1	0	703

Table 5: FRV "Solea", cruise 559. Herring age/maturity-length key (sampled numbers not raised to the abundance in the survey area).

	STATIONS EAST OF 3°E (RECTANGLES F3 - F8)									STATIONS WEST OF 3°E (RECTANGLES E9 - F2)											
AGE	1	1	1	1	2	2	2	SUM	1	1	1	1	2	2	2	3	3	3	4	SUM	SUM
MATURITY	1	2	3	4	2	3	4		1	2	3	4	2	3	4	2	3	4	2		TOTAL
LENGTH (CM]																					
6.25								0												0	0
6.75								0												0	0
7.25	1							1	1											1	2
7.75	11							11	9											9	20
8.25	6	4						10	13	10		2								25	35
8.75		16		23				39	1	23	1	12								37	76
9.25		8	10	40		1		59		26	2	5	2	1						36	95
9.75		13	7	40		1		61		18	6	8	5	2	3					42	103
10.25		5	11	44		1	3	64		14	9	1	13	3	2					42	106
10.75		12	5	21	1	11	13	63		4	5	3	15	16	12		1			56	119
11 25		4	7	6	5	18	11	51		1	5	1	15	29	9		1			61	112
11.25		1	2	1	3	18	16	40		1	2	1	12	29	13	3	2			61	101
12.25			2	1	2	22	16	40			2		12	29	13	5	2	1		50	101
12.23			1	1	5	23	10	44 27					10	27	14	1	5	1		59	105
12.75					5	14	10	20					10	27	12	1	1			59	90 70
13.25					1	14	5	20					12	26	9	3	•			50	70
13.75					4	6	2	12					7	16	5	4	2			34	46
14.25					1	3		4					3	1	3	2				9	13
14.75																1		1		2	2
15.25																2			1	3	3
Sum	18	62	43	176	23	118	76	516	24	96	30	32	109	184	82	16	10	2	1	586	1102

Table 6: FRV Solea, cruise 559. SPRAT age/maturity-length key (sampled numbers not raised to the abundance in the survey area) separately for the area east and west of 3°E.

5-24 October 2006

Federal Research Centre for Fisheries, Germany

Eberhard Götze¹ and Tomas Gröhsler²

Institute for Fishing Technology and Fishery Economics, Hamburg¹

² Institute for Baltic Sea Fisheries, Rostock

1 Introduction

The joint German/Danish survey is part of the **Baltic International Acoustic Survey**, which is coordinated within the scope of ICES and has the main objective to assess the clupeoid resources of herring and sprat in the Baltic Sea in autumn. The reported acoustic survey is conducted every year to supply the ICES "Herring Assessment Working Group" (HAWG) and "Baltic Fisheries Assessment Working Group" (WGBFAS) with an index value for the stock size of herring and sprat, respectively, in the Western Baltic area (Subdivisions 22, 23 and 24).

2 Methods

2.1 Personnel

PARTICIPANTS/CALIBRATION OF ACOUSTIC EQUIPMENT/ 5 – 7 OCTOBER 2006:					
Dr. E. Bethke	Institute for Fishing Technology and Fishery Economics, Hamburg				
M. Drenckow	Institute for Fishing Technology and Fishery Economics, Hamburg				
E. Götze	Institute for Fishing Technology and Fishery Economics, Hamburg, Cr. Leader				
M. Sasse	Institute for Fishing Technology and Fishery Economics, Hamburg				
PARTICIPANTS/ACOUSTIC SURVEY/7 – 24 OCTOBER 2006:					
K. Dittmann	Institute for Baltic Sea Fisheries, Rostock				
M. Drenckow	Institute for Fishing Technology and Fishery Economics, Hamburg				
D. Gloe	Institute for Baltic Sea Fisheries, Rostock				
E. Götze	Institute for Fishing Technology and Fishery Economics, Hamburg, Cr. Leader				
J. Hansen Rye	FTZ, Büsum				
M. Koth	Institute for Baltic Sea Fisheries, Rostock				
SE. Levinsky	DIFRES, Charlottenlund, Denmark				

2.2 Narrative

The 564th cruise of RV 'Solea' represents the 19th subsequent survey. RV 'Solea' left the port of Rostock/Marienehe on 5th October 2006. The joint German-Danish acoustic survey covered the area of Subdivisions 21, 22, 23 and 24. The survey ended on 24th October 2006 in Rostock/Marienehe.

2.3 Survey design

The ICES statistical rectangles were used as strata for all Subdivisions (ICES, 2003). The area was limited by the 10 m depth line. The survey area in the Western Baltic Sea is characterised by a number of islands and sounds. Parallel transects would lead in consequence to an unsuitable coverage of the survey area. Therefore a zigzag track was used to cover all depth strata regularly. The survey area was 13,788 n.mi.². The cruise track (Figure 1) totally reached a length of 1,330 nautical miles.
2.4 Calibration

The hull mounted transducer ES38B was calibrated on 6 October 2006 north of the Isle of Rügen at a water depth of 21 m. The calibration procedure was carried out as described in the 'Manual for the Baltic International Acoustic Surveys (BIAS)' (ICES, 2003). Because of strong wind conditions the measurements were difficult. The quality of the results was nevertheless good. The difference to the last calibration of the sounder was only 0.07 dB.

ł

2.5 Acoustic data collection

The acoustic investigations were performed during night time. The main pelagic species of interest were herring and sprat. The acoustic equipment was an echosounder EK60 on 38 kHz (120 kHz). The specific settings of the hydroacoustic equipment were used as described in the 'Manual for the Baltic International Acoustic Surveys (BIAS)' (ICES, 2003). The post-processing of the stored echosignals was done by EchoView 3.10. The mean volume back scattering values (s_v) were integrated over 1 n.mi. intervals from 8 m below the surface to the bottom. Contributions from air bubbles, bottom structures and scattering layers were removed from the echogram.

2.6 Biological data – fishing stations

Trawling was done with the pelagic gear 'PSN388' in the midwater as well as near the bottom. The mesh size in the codend was 10 mm. The intention was to carry out at least two hauls per ICES statistical rectangle. The trawling depth and the net opening were controlled by a netsonde. The trawl depth was chosen in accordance to the 'characteristic indications' by the echogram. Normally a net opening of about 8-10 m was achieved. The trawling time lasted usually 30 minutes, but in dense concentrations the duration was reduced. From each haul subsamples were taken to determine length and weight of fish. Samples of herring and sprat were frosted for additional investigations (e.g. determining sex, maturity, age). The hydrographic condition was investigated after each trawl haul by a CTP-O₂ probe.

2.7 Data analysis

The pelagic target species sprat and herring are usually distributed in mixed layers in combination with other species so that the integrator readings cannot be allocated to a single species. Therefore the species composition was based on the trawl catch results. For each rectangle the species composition and length distribution were determined as the unweighted mean of all trawl results in this rectangle. From these distributions the mean acoustic cross section σ was calculated according to the following target strength-length (TS) relation:

	TS	References
Clupeoids	$= 20 \log L (cm) - 71.2$	ICES 1983
Gadoids	$= 20 \log L (cm) - 67.5$	Foote et al. 1986

The total number of fish (total N) in one rectangle was estimated as the product of the mean area scattering cross section (s_A) and the rectangle area, divided by the corresponding mean cross section. The total number was separated into herring and sprat according to the mean catch composition.

In accordance with the guidelines in the 'Manual for the Baltic International Acoustic Surveys (BIAS)' (ICES, 2003) the further calculation was performed in the following way:

FISH SPECIES CONSIDERED:
Aphia minuta
Clupea harengus
Engraulis encrasicolus
Gadus morhua
Gasterosteus aculeatus
Merlangius merlangius
Sprattus sprattus
Trachurus trachurus
EXCLUSION OF TRAWL HAULS WITH LOW CATCH LEVEL:
Haul No. 45 (41G2/SD 21)
Haul No. 52 (44G1/SD 21)
Haul No. 53 (43G1/SD 21)
USAGE OF NEIGHBORING TRAWL INFORMATION FOR RECTANGLES, WHICH ARE ONLY CONTAINING ACOUSTIC INVESTIGATIONS:
40F9 (SD 22) filled with Haul No. 33 (40G0/SD 22)
40G1 (SD 22) filled with Haul No. 36 (40G0/SD 22)
37G4 (SD 24) filled with Haul No. 5 (37G3/SD 24) Haul No. 6 and 7 (38G4/SD 24)

3 Results

3.1 Biological data

In total 54 trawl hauls were carried out. 14 hauls were done in SD 21, 17 hauls in SD 22, 5 haul in SD 23 and 18 hauls in SD 24. 2,090 herring and 1,158 sprat were frozen for further investigations (e.g. determining sex, maturity, age).

The results of the catch composition by Subdivision are presented in Tables 1-4. The mean catch by Subdivision was higher in all areas than in the previous year. High concentrations of adult herring were found as in the years before in the Sound (Subdivision 23). Large quantities of young sprat were caught predominantly in the Arkona basin (Subdivision 24). The sprat year-class 2006 was overall exceptional strong. In the Kattegat and the northern part of Subdivision 22 anchovy was observed in larger quantities.

The length distributions of herring and sprat of the years 2005 and 2006 are presented by Subdivision in Figures 2 and 3. The comparison of the herring length distributions in the last two years are characterised by the following changes:

- Decreasing importance of younger herring in Subdivision 21
- Increasing contribution of the already existing dominant part of younger herring in Subdivision 22
- Higher contribution of older herring (> 26 cm) in Subdivision 23
- Lost dominance of new incoming year class in Subdivision 24

The length distributions of sprat in 2005 and 2006 show a somewhat different picture in all areas (Figure 2). The amount of young sprat now increased in Subdivisions 22-24 but in contrast to last years results are not dominating any more in Subdivision 21. The new incoming year-class, which already dominated in both years in Subdivision 24, is now even making the highest contribution in Subdivision 22.

3.2 Acoustic data

The survey statistics concerning the survey area, the mean s_A , the mean scattering cross section σ , the estimated total number of fish, the percentages of herring and sprat per Subdivision/rectangle are shown in Table 5.

- The highest values were observed in the Sound (SD 23). These values were twice as high as the long term average. The high concentrations were caused by high densities of adult herring in the southern part of the Sound. The density values increased year by year in this area since 2002.
- Extremely high s_A values were measured in the Arkona Basin around Isle of Rügen (SD 24). They were caused by high densities of young sprat.
- Small but dense herring concentrations were also detected in the Southern part of the Kattegat (SD 21).
- The northern part of the Kattegat (SD 21) and the Beltsea (SD 22) were characterised by low fish densities.

3.3 Abundance estimates

The total abundance of herring and sprat are presented in Table 5. The estimated number of herring and sprat by age group and Subdivision/rectangle are given in Table 6 and Table 9. The corresponding mean weights by age group and Subdivision/rectangle are shown in Table 7 and Table 10. The estimates of herring and sprat biomass by age group and Subdivision/rectangle are summarised in Table 8 and Table 11.

The herring stock in Subdivisions 21-24 was estimated to be 7.2×10^9 fish or about 256.5 x 10^3 tonnes. For the included area of Subdivisions 22-24 the number of herring was calculated to be 5.7×10^9 fish or about 213.9 x 10^3 tonnes. The abundance estimates were dominated by young herring as in former years (Figure 2 and Table 6). Adult herring, which was concentrated in former years mostly in the Sound, could during the last four years also be found in deeper areas of the Arkona Sea.

The estimated sprat stock in Subdivisions 21-24 was 26.6×10^9 fish or 164.4×10^3 tonnes. For the included area of Subdivisions 22-24 the number of sprat was calculated to be 26.2×10^9 fish or 157.6×10^3 tonnes. The abundance estimates of sprat were dominated as in former years (except for 2004) by young sprat (Figure 3 and Table 9).

4 Discussion

The total number of herring in Subdivisions 22-24 slightly increased by 6% compared to 2005. This overall small increase is characterised by higher numbers in Subdivisions 22 and 23 (+111% and +8%) and lower numbers in Subdivision 24 (-17%). This small increase in numbers is also leading to a small increase of total biomass in Subdivisions 22-24 (+ 8%; 2006: 213.9 x 10^3 , 2005: 197.7 x 10^3 t).

As in 2005 the number of age-groups 0-1 is the main contributor in Subdivisions 22-24 (2006: 77% and 2005: 74%).

The number of age groups 2-4 constitutes 15% in 2006 (2005: 21%). The actual contribution of the age-group 0 in Subdivisions 22-24 is 64% in numbers and 17% in biomass (2005: 62% in numbers and 17% in biomass).

The overall abundance of sprat in the Western Baltic (Subdivisions 22-24) increased significantly compared to the very low level during the former last two years (2006/2005: +144%). This year higher abundance estimates resulted from extraordinary high estimates in Subdivision 24 (Subdivision 22: +58%, Subdivision 23: -59% and Subdivision 24: +322%). Last years already existing dominant contribution of 0-group abundance even increased in 2006 (2006: 83%; 2005: 57%). Again this overall increase of the 0-group abundance occurred mainly in Subdivision 24 (Subdivision 22: 2.3 times higher, Subdivision 23: 1.2 times higher

and Subdivision 24: 5.9 times higher). The present contribution of the age-group 0 in Subdivisions 22-24 is 58% in biomass (2005: 30%).

5 References

- ICES. 1983. Report of the Planning Group on ICES co-ordinated herring and sprat acoustic surveys. ICES CM 1983/H:12.
- ICES. 2003. Report of the Baltic International Fish Survey Working Group. ICES CM 2003/G:05 Ref.: D, H.: Annex 3.
- Foote, K. G., Aglen, A., and Nakken, O. 1986. Measurement of fish target strength with a split-beam echosounder. J.Acoust.Soc.Am. 80(2): 612-621.

Figure 1: Cruise track and trawl positions for the 2006 October acoustic survey on RV "Solea".

Figure 2: Length distributions of herring in Subdivisions 21, 22, 23 and 24 obtained during the 2005 (=line) and 2006 (=bar) October acoustic survey on RV "Solea".

Figure 3: Length distributions of sprat in Subdivisions 21, 22, 23 and 24 obtained during the 2005 (=line) and 2006 (=bar) October acoustic survey on RV "Solea".

Figure 4: Distribution of s_A -values obtained during the October 2006 acoustic survey on RV "Solea".

Table 1: Catch composition (kg/0.5 h) by trawl haul in Subdivision 21.

Haul No.	41	42	43	44	45	46	47	48	49
Species/ICES Rectangle	41G2	41G1	41G0	41G1	41G2	41G2	42G1	42G1	43G1
APHIA MINUTA			0.02	+			+	+	0.06
CARCINUS									
CLUPEA HARENGUS	38.32	47.29	7.83	18.97	0.03	388.31	5.46	2.11	3.05
CTENOLABRUS RUPESTRIS							+		
CYCLOPTERUS LUMPUS									
ELEDONE							0.01		
ENGRAULIS ENCRASICOLUS	2.24	53.09	1.55	19.64	70.05	29.33	6.05	4.47	1.04
EUTRIGLA GURNARDUS				0.01		0.08			
GADUS MORHUA						2.29			
GASTEROSTEUS ACULEATUS	0.03	0.02							
LIMANDA LIMANDA			0.05				0.11	0.03	
LOLIGO FORBESI	0.03	+	0.22	0.18			0.38	0.44	0.17
MERLANGIUS MERLANGUS		0.01	0.18	0.58		0.17	1.15	0.18	0.03
MERLUCCIUS MERLUCCIUS							+	+	
MULLUS SURMULETUS			0.02			0.02			
POMATOSCHISTUS MINUTUS							0.02	+	
SCOMBER SCOMBRUS				0.52	0.49	5.21	3.32	0.61	0.70
SPRATTUS SPRATTUS	0.10	0.03	1.03	3 71		347.26	1 34	0.02	
TRACHINUS DRACO	0.08	0.26	0.07	1 12	0.06	0.98	2.37	1 36	
TRACHURUS TRACHURUS	0.61	9.14	0.38	0.71	0.27	0.55	1.82	0.14	0.10
Total	41.41	109.84	11.35	45.44	70.90	774.20	22.03	9.36	5.15
Medusae	2.2	3.0	7.0	3.2	19	2.7	0.8	4 3	11
						_			
Haul No.	50	51	52	53	54	Total			
Haul No. Species/ICES Rectangle	50 44G1	51 44G0	52 44G1	53 43G1	54 42G2	Total			
Haul No. Species/ICES Rectangle APHIA MINUTA	50 44G1	51 44G0 +	52 44G1	53 43G1 +	54 42G2	Total			
Haul No. Species/ICES Rectangle APHIA MINUTA CARCINUS	50 44G1	51 44G0 + 0.01	52 44G1 0.07	53 43G1 +	54 42G2	Total 0.08 0.08			
Haul No. Species/ICES Rectangle APHIA MINUTA CARCINUS CLUPEA HARENGUS	50 44G1 28.33	51 44G0 + 0.01 6.93	52 44G1 0.07 0.15	53 43G1 +	54 42G2 0.33	Total 0.08 0.08 547.11			
Haul No. Species/ICES Rectangle APHIA MINUTA CARCINUS CLUPEA HARENGUS CTEVOLABRUS RUPESTRIS	50 44G1 28.33	51 44G0 + 0.01 6.93	52 44G1 0.07 0.15	53 43G1 +	54 42G2 0.33	Total 0.08 0.08 547.11 0.00			
Haul No. Species/ICES Rectangle APHIA MINUTA CARCINUS CLUPEA HARENGUS CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS	50 44G1 28.33 2.66	51 44G0 + 0.01 6.93	52 44G1 0.07 0.15	53 43G1 +	54 42G2 0.33	Total 0.08 0.08 547.11 0.00 2.66			
Haul No. Species/ICES Rectangle APHIA MINUTA CARCINUS CLUPEA HARENGUS CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE	50 44G1 28.33 2.66	51 44G0 + 0.01 6.93 0.02	52 44G1 0.07 0.15 0.04	53 43G1 +	54 42G2 0.33	Total 0.08 0.08 547.11 0.00 2.66 0.07			
Haul No. Species/ICES Rectangle APHIA MINUTA CARCINUS CLUPEA HARENGUS CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS	50 44G1 28.33 2.66 47.70	51 44G0 + 0.01 6.93 0.02 2.98	52 44G1 0.07 0.15 0.04 1.60	53 43G1 +	54 42G2 0.33 0.25	Total 0.08 0.08 547.11 0.00 2.66 0.07 240.37			
Haul No. Species/ICES Rectangle APHIA MINUTA CARCINUS CLUPEA HARENGUS CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS	50 44G1 28.33 2.66 47.70	51 44G0 + 0.01 6.93 0.02 2.98	52 44G1 0.07 0.15 0.04 1.60	53 43G1 + 0.38	54 42G2 0.33 0.25	Total 0.08 0.08 547.11 0.00 2.66 0.07 240.37 0.09			
Haul No. Species/ICES Rectangle APHIA MINUTA CARCINUS CLUPEA HARENGUS CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA	50 44G1 28.33 2.66 47.70	51 44G0 + 0.01 6.93 0.02 2.98	52 44G1 0.07 0.15 0.04 1.60	53 43G1 + 0.38	54 42G2 0.33 0.25	Total 0.08 0.08 547.11 0.00 2.66 0.07 240.37 0.09 2.29			
Haul No. Species/ICES Rectangle APHIA MINUTA CARCINUS CLUPEA HARENGUS CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS	50 44G1 28.33 2.66 47.70	51 44G0 + 0.01 6.93 0.02 2.98	52 44G1 0.07 0.15 0.04 1.60	53 43G1 + 0.38	54 42G2 0.33 0.25	Total 0.08 0.08 547.11 0.00 2.66 0.07 240.37 0.09 2.29 0.05			
Haul No. Species/ICES Rectangle APHIA MINUTA CARCINUS CLUPEA HARENGUS CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA	50 44G1 28.33 2.66 47.70	51 44G0 + 0.01 6.93 0.02 2.98	52 44G1 0.07 0.15 0.04 1.60	53 43G1 + 0.38	54 42G2 0.33 0.25	Total 0.08 0.08 547.11 0.00 2.66 0.07 240.37 0.09 2.29 0.05 0.19			
Haul No. Species/ICES Rectangle APHIA MINUTA CARCINUS CLUPEA HARENGUS CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA LOLIGO FORBESI	50 44G1 28.33 2.66 47.70 2.11	51 44G0 + 0.01 6.93 0.02 2.98	52 44G1 0.07 0.15 0.04 1.60	53 43G1 + 0.38	54 42G2 0.33 0.25 0.01	Total 0.08 0.08 547.11 0.00 2.66 0.07 240.37 0.09 2.29 0.05 0.19 5.28			
Haul No. Species/ICES Rectangle APHIA MINUTA CARCINUS CLUPEA HARENGUS CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA LOLIGO FORBESI MERLANGIUS MERLANGUS	50 44G1 28.33 2.66 47.70 2.11 0.29	51 44G0 + 0.01 6.93 0.02 2.98 1.08 0.66	52 44G1 0.07 0.15 0.04 1.60 0.52 0.30	53 43G1 + 0.38 0.14 0.51	54 42G2 0.33 0.25 0.01 0.25	Total 0.08 0.08 547.11 0.00 2.66 0.07 240.37 0.09 2.29 0.05 0.19 5.28 4.31			
Haul No. Species/ICES Rectangle APHIA MINUTA CARCINUS CLUPEA HARENGUS CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA LOLIGO FORBESI MERLANGIUS MERLANGUS MERLUCCIUS MERLUCCIUS	50 44G1 28.33 2.66 47.70 2.11 0.29	51 44G0 + 0.01 6.93 0.02 2.98 1.08 0.66	52 44G1 0.07 0.15 0.04 1.60 0.52 0.30	53 43G1 + 0.38 0.14 0.51	54 42G2 0.33 0.25 0.01 0.25 +	Total 0.08 0.08 547.11 0.00 2.66 0.07 240.37 0.09 2.29 0.05 0.19 5.28 4.31 0.00			
Haul No. Species/ICES Rectangle APHIA MINUTA CARCINUS CLUPEA HARENGUS CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA LOLIGO FORBESI MERLANGIUS MERLANGUS MERLUCCIUS MERLUCCIUS MULLUS SURMULETUS	50 44G1 28.33 2.66 47.70 2.11 0.29	51 44G0 + 0.01 6.93 0.02 2.98 1.08 0.66	52 44G1 0.07 0.15 0.04 1.60 0.52 0.30	53 43G1 + 0.38 0.14 0.51	54 42G2 0.33 0.25 0.01 0.25 +	Total 0.08 0.08 547.11 0.00 2.66 0.07 240.37 0.09 2.29 0.05 0.19 5.28 4.31 0.00 0.04			
Haul No. Species/ICES Rectangle APHIA MINUTA CARCINUS CLUPEA HARENGUS CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA LOLIGO FORBESI MERLANGIUS MERLANGUS MERLUCCIUS MERLUCCIUS MULLUS SURMULETUS POMATOSCHISTUS MINUTUS	50 44G1 28.33 2.66 47.70 2.11 0.29	51 44G0 + 0.01 6.93 0.02 2.98 1.08 0.66	52 44G1 0.07 0.15 0.04 1.60 0.52 0.30	53 43G1 + 0.38 0.14 0.51	54 42G2 0.33 0.25 0.01 0.25 +	Total 0.08 0.08 547.11 0.00 2.66 0.07 240.37 0.09 2.29 0.05 0.19 5.28 4.31 0.00 0.04			
Haul No. Species/ICES Rectangle APHIA MINUTA CARCINUS CLUPEA HARENGUS CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA LOLIGO FORBESI MERLANGIUS MERLANGUS MERLUCCIUS MERLUCCIUS MULLUS SURMULETUS POMATOSCHISTUS MINUTUS SCOMBER SCOMBRUS	50 44G1 28.33 2.66 47.70 2.11 0.29 0.08	51 44G0 + 0.01 6.93 0.02 2.98 1.08 0.66	52 44G1 0.07 0.15 0.04 1.60 0.52 0.30	53 43G1 + 0.38 0.14 0.51 0.11	54 42G2 0.33 0.25 0.01 0.25 +	Total 0.08 0.08 547.11 0.00 2.66 0.07 240.37 0.09 2.29 0.05 0.19 5.28 4.31 0.00 0.04 0.02 11.51			
Haul No. Species/ICES Rectangle APHIA MINUTA CARCINUS CLUPEA HARENG US CTENOLABRUS RUPESTRIS CYCLOP TERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA LOLIGO FORBESI MERLANG IUS MERLANG US MERLUCCIUS MERLUCCIUS MULLUS SURMULETUS POMATOSCHISTUS MINUTUS SCOMBER SCOMBRUS SPRATTUS SPRATTUS	50 44G1 28.33 2.66 47.70 2.11 0.29 0.08	51 44G0 + 0.01 6.93 0.02 2.98 1.08 0.66 0.47 2.96	52 44G1 0.07 0.15 0.04 1.60 0.52 0.30	53 43G1 + 0.38 0.14 0.51 0.11	54 42G2 0.33 0.25 0.01 0.25 + 0.67	Total 0.08 0.08 547.11 0.00 2.66 0.07 240.37 0.09 2.29 0.05 0.19 5.28 4.31 0.00 0.04 0.02 11.51 357.47			
Haul No. Species/ICES Rectangle APHIA MINUTA CARCINUS CLUPEA HARENGUS CTENOLABRUS RUPESTRIS CYCLOP TERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA LOLIGO FORBESI MERLANGIUS MERLANGUS MERLUCCIUS MERLUCCIUS MULLUS SURMULETUS POMATOSCHISTUS MINUTUS SCOMBER SCOMBRUS SPRATTUS SPRATTUS TRACHINUS DRACO	50 44G1 28.33 2.66 47.70 2.11 0.29 0.08 +	51 44G0 + 0.01 6.93 0.02 2.98 1.08 0.66 0.47 2.96	52 44G1 0.07 0.15 0.04 1.60 0.52 0.30 0.35	53 43G1 + 0.38 0.14 0.51 0.11 0.58	54 42G2 0.33 0.25 0.01 0.25 + 0.67 +	Total 0.08 0.08 547.11 0.00 2.66 0.07 240.37 0.09 2.29 0.05 0.19 5.28 4.31 0.00 0.04 0.02 11.51 357.47 6.88			
Haul No. Species/ICES Rectangle APHIA MINUTA CARCINUS CLUPEA HARENGUS CTENOLABRUS RUPESTRIS CYCLOP TERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA LOLIGO FORBESI MERLANGIUS MERLANGUS MERLUCCIUS MERLUCCIUS MULLUS SURMULETUS POMATOSCHISTUS MINUTUS SCOMBER SCOMBRUS SPRATTUS SPRATTUS TRACHINUS DRACO TRACHURUS TRACHURUS	50 44G1 28.33 2.66 47.70 2.11 0.29 0.08 + 0.47	51 44G0 + 0.01 6.93 0.02 2.98 1.08 0.66 0.47 2.96 0.13	52 44G1 0.07 0.15 0.04 1.60 0.52 0.30 0.35 0.11	53 43G1 + 0.38 0.14 0.51 0.11 0.58 0.10	54 42G2 0.33 0.25 0.01 0.25 + 0.67 + 0.18	Total 0.08 0.08 547.11 0.00 2.66 0.07 240.37 0.09 2.29 0.05 0.19 5.28 4.31 0.00 0.04 0.02 11.51 357.47 6.88 14.71			
Haul No. Species/ICES Rectangle APHIA MINUTA CARCINUS CLUPEA HARENG US CTENOLABRUS RUPESTRIS CYCLOP TERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA LOLIGO FORBESI MERLANGIUS MERLANGUS MERLUCCIUS MERLUCCIUS MULLUS SURMULETUS POMATOSCHISTUS MINUTUS SCOMBER SCOMBRUS SPRATTUS SPRATTUS TRACHINUS DRACO TRACHURUS TRACHURUS Total	50 44G1 28.33 2.66 47.70 2.11 0.29 0.08 + 0.47 81.64	51 44G0 + 0.01 6.93 0.02 2.98 1.08 0.66 0.47 2.96 0.13 15.24	52 44G1 0.07 0.15 0.04 1.60 0.52 0.30 0.35 0.11 3.14	53 43G1 + 0.38 0.14 0.51 0.11 0.58 0.10 1.82	54 42G2 0.33 0.25 0.01 0.25 + 0.67 + 0.18 1.69	Total 0.08 0.08 547.11 0.00 2.66 0.07 240.37 0.09 2.29 0.05 0.19 5.28 4.31 0.00 0.04 0.02 11.51 357.47 6.88 14.71 1193.21			

+ = < 0.01 kg

Table 2: Catch composition (kg/0.5 h) by trawl haul in Subdivision 22.

Haul No.	24	25	26	27	28	29	30	31	32
Species/ICES Rectangle	37G1	37G1	37G1	38G1	38G0	37G0	38G0	38G0	39F9
AGONUS CATAPHRACTUS									
APHIA MINUTA			+	0.01		+			
BELONE BELONE							0.02		
CHELON LABROSUS						8.04			
CLUPEA HARENGUS	2.49	9.80	20.31	4.42	2.14	3.78	45.74	10.45	0.15
CRANGON CRANGON							+		
CTENOLABRUS RUPESTRIS									
CYCLOPTERUS LUMPUS									
ELEDONE		0.01							
ENGRAULIS ENCRASICOLUS	0.52	0.13		92.03	1.88	1.21	1.04	6.49	0.50
EUTRIGLA GURNARDUS			0.01						
GADUS MORHUA			3.95						
GASTEROSTEUS ACULEATUS	+	1.49	0.01	0.13	+	+	+		0.10
GOBIUS NIGER				0.01		0.01			
HIPEROPLUS LANCEOLAIUS						0.01			
LEANDER I MANDA I MANDA			+	0.51		0.27			
LIMANDA LIMANDA			+	0.51		0.27			
MEDI ANCHIS MEDI ANCHS	0.00	0.32	3 37	267	0.02	1 20	0.33	0.20	0.06
POMATOSCHISTUS MINUTUS	0.09	0.52	10.07	0.01	0.02	+	+	0.29	0.00
PSETTA MAXIMA	0.02		0.05	0.01				0.03	
SCOMBER SCOMBRUS	0.02		0.05		0.20			0.05	
SPRATTUS SPRATTUS	0.13	212.47	390.77	10.94	7.49	12.47	3.20	0.01	1.58
SYNGNATHUS ROSTELLATUS					,,	+	+		
SYNGNATHUS TYPHLE									
TRACHINUS DRACO									
TRACHURUS TRACHURUS	0.09	0.02	3.72	0.61	7.71	0.67	0.72	143.33	0.57
TRISOPTERUS ESMARKI									
Total	3.34	224.24	422.58	111.34	19.44	27.65	51.05	160.80	2.96
Medusae	3.3	231.7	422.6	111.3	20.1	27.7	51.1	160.8	2.8
Haul No.	33	34	35	36	37	38	39	40	Total
Haul No. Species/ICES Rectangle	33 40G0	34 40G0	35 41G0	36 40G0	37 39G0	38 39G0	39 39G1	40 38G0	Total
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS	33 40G0 0.03	34 40G0 +	35 41G0	36 40G0	37 39G0	38 39G0	39 39G1 +	40 38G0	Total 0.03
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA	33 40G0 0.03 0.01	34 40G0 + 0.02	35 41G0 0.14	36 40G0 0.01	37 39G0 +	38 39G0 0.05	39 39G1 + 0.03	40 38G0 +	Total 0.03 0.27
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE	33 40G0 0.03 0.01	34 40G0 + 0.02	35 41G0 0.14	36 40G0 0.01	37 39G0 +	38 39G0 0.05	39 39G1 + 0.03	40 38G0 +	Total 0.03 0.27 0.02
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS	33 40G0 0.03 0.01	34 40G0 + 0.02	35 41G0 0.14	36 40G0 0.01	37 39G0 +	38 39G0 0.05	39 39G1 + 0.03	40 38G0 +	Total 0.03 0.27 0.02 8.04
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS	33 40G0 0.03 0.01 0.37	34 40G0 + 0.02 33.96	35 41G0 0.14 1.87	36 40G0 0.01 4.41	37 39G0 + 2.55	38 39G0 0.05 0.60	39 39G1 + 0.03 0.12	40 38G0 + 1.07	Total 0.03 0.27 0.02 8.04 144.23
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CRANGON CRANGON	33 40G0 0.03 0.01 0.37	34 40G0 + 0.02 33.96 +	35 41G0 0.14 1.87	36 40G0 0.01 4.41	37 39G0 + 2.55	38 39G0 0.05 0.60	39 39G1 + 0.03 0.12 +	40 38G0 + 1.07 +	Total 0.03 0.27 0.02 8.04 144.23 +
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CRANGON CRANGON CTENOLABRUS RUPESTRIS	33 40G0 0.03 0.01 0.37	34 40G0 + 0.02 33.96 + +	35 41G0 0.14 1.87	36 40G0 0.01 4.41	37 39G0 + 2.55	38 39G0 0.05 0.60	39 39G1 + 0.03 0.12 +	40 38G0 + 1.07 +	Total 0.03 0.27 0.02 8.04 144.23 + +
Haul No.Species/ICES RectangleAGONUS CATAPHRACTUSAPHIA MINUTABELONE BELONECHELON LABROSUSCLUPEA HARENGUSCRANGON CRANGONCTENOLABRUS RUPESTRISCYCLOPTERUS LUMPUSEVEDONT	33 40G0 0.03 0.01 0.37	34 40G0 + 0.02 33.96 + +	35 41G0 0.14 1.87	36 40G0 0.01 4.41	37 39G0 + 2.55 0.43	38 39G0 0.05 0.60	39 39G1 + 0.03 0.12 +	40 38G0 + 1.07 +	Total 0.03 0.27 0.02 8.04 144.23 + + + 0.43 0.01
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CRANGON CRANGON CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE	33 40G0 0.03 0.01 0.37	34 40G0 + 0.02 33.96 + +	35 41G0 0.14 1.87	36 40G0 0.01 4.41	37 39G0 + 2.55 0.43	38 39G0 0.05 0.60	39 39G1 + 0.03 0.12 +	40 38G0 + 1.07 +	Total 0.03 0.27 0.02 8.04 144.23 + + 0.43 0.01
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CRANGON CRANGON CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS	33 40G0 0.03 0.01 0.37	34 40G0 + 0.02 33.96 + + +	35 41G0 0.14 1.87 9.08	36 40G0 0.01 4.41 2.33	37 39G0 + 2.55 0.43 4.62	38 39G0 0.05 0.60 0.21	39 39G1 + 0.03 0.12 + 0.09	40 38G0 + 1.07 + 2.82	Total 0.03 0.27 0.02 8.04 144.23 + + 0.43 0.01 123.41 0.01
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CRANGON CRANGON CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS CADUS MODELUA	33 40G0 0.03 0.01 0.37 0.10 +	34 40G0 + 0.02 33.96 + + 0.36	35 41G0 0.14 1.87 9.08	36 40G0 0.01 4.41 2.33	37 39G0 + 2.55 0.43 4.62	38 39G0 0.05 0.60 0.21	39 39G1 + 0.03 0.12 + 0.09	40 38G0 + 1.07 + 2.82	Total 0.03 0.27 0.02 8.04 144.23 + + 0.43 0.01 123.41 0.01 2.05
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CRANGON CRANGON CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA CASTERDOSTEUS ACUL FATUS	33 40G0 0.03 0.01 0.37 0.10 +	34 40G0 + 0.02 33.96 + + 0.36	35 41G0 0.14 1.87 9.08	36 40G0 0.01 4.41 2.33	37 39G0 + 2.55 0.43 4.62 +	38 39G0 0.05 0.60 0.21	39 39G1 + 0.03 0.12 + 0.09	40 38G0 + 1.07 + 2.82	Total 0.03 0.27 0.02 8.04 144.23 + 0.43 0.01 123.41 0.01 3.95
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CRANGON CRANGON CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS	33 40G0 0.03 0.01 0.37 0.10 + 0.01	34 40G0 + 0.02 33.96 + + 0.36 0.01	35 41G0 0.14 1.87 9.08	36 40G0 0.01 4.41 2.33	37 39G0 + 2.55 0.43 4.62 +	38 39G0 0.05 0.60 0.21 +	39 39G1 + 0.03 0.12 + 0.09 3.21	40 38G0 + 1.07 + 2.82	Total 0.03 0.27 0.02 8.04 144.23 + + 0.43 0.01 123.41 0.01 3.95 4.96 0.01
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CRANGON CRANGON CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS GOBIUS NIGER HYPEROPLUS LANCFOLATUS	33 40G0 0.03 0.01 0.37 0.10 + 0.01	34 40G0 + 0.02 33.96 + + 0.36 0.01	35 41G0 0.14 1.87 9.08	36 40G0 0.01 4.41 2.33	37 39G0 + 2.55 0.43 4.62 +	38 39G0 0.05 0.60 0.21 +	39 39G1 + 0.03 0.12 + 0.09 3.21 +	40 38G0 + 1.07 + 2.82	Total 0.03 0.27 0.02 8.04 144.23 + 0.43 0.01 123.41 0.01 3.95 4.96 0.01 0.02
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CRANGON CRANGON CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS GOBIUS NIGER HYPEROPLUS LANCEOLATUS LEANDER	33 40G0 0.03 0.01 0.37 0.10 + 0.01 0.01 +	34 40G0 + 0.02 33.96 + + 0.36 0.01	35 41G0 0.14 1.87 9.08	36 40G0 0.01 4.41 2.33	37 39G0 + 2.55 0.43 4.62 +	38 39G0 0.05 0.60 0.21 +	39 39G1 + 0.03 0.12 + 0.09 3.21 +	40 38G0 + 1.07 + 2.82	Total 0.03 0.27 0.02 8.04 144.23 + 0.43 0.01 123.41 0.01 3.95 4.96 0.01 0.02 +
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CRANGON CRANGON CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS GOBIUS NIGER HYPEROPLUS LANCEOLATUS LEANDER LIMANDA LIMANDA	33 40G0 0.03 0.01 0.37 0.10 + 0.01 0.01 + 0.10	34 40G0 + 0.02 33.96 + + 0.36 0.01 0.47	35 41G0 0.14 1.87 9.08	36 40G0 0.01 4.41 2.33	37 39G0 + 2.55 0.43 4.62 +	38 39G0 0.05 0.60 0.21 +	39 39G1 + 0.03 0.12 + 0.09 3.21 + 0.18	40 38G0 + 1.07 + 2.82	Total 0.03 0.27 0.02 8.04 144.23 + 0.43 0.01 123.41 0.01 3.95 4.96 0.01 0.02 + +
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CRANGON CRANGON CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS GOBIUS NIGER HYPEROPLUS LANCEOLATUS LEANDER LIMANDA LIMANDA LOLIGO FORBESI	33 40G0 0.03 0.01 0.37 0.10 + 0.01 0.01 + 0.10 +	34 40G0 + 0.02 33.96 + + 0.36 0.01 0.47 0.03	35 41G0 0.14 1.87 9.08	36 40G0 0.01 4.41 2.33 + +	37 39G0 + 2.55 0.43 4.62 +	38 39G0 0.05 0.60 0.21 +	39 39G1 + 0.03 0.12 + 0.09 3.21 + 0.18 +	40 38G0 + 1.07 + 2.82 0.02	Total 0.03 0.27 0.02 8.04 144.23 + 0.43 0.01 123.41 0.01 3.95 4.96 0.01 0.02 + 1.55 0.12
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CRANGON CRANGON CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS GOBIUS NIGER HYPEROPLUS LANCEOLATUS LEANDER LIMANDA LIMANDA LOLIGO FORBESI MERLANGIUS MERLANGUS	33 40G0 0.03 0.01 0.37 0.10 + 0.01 0.01 + 0.10 + 0.26	34 40G0 + 0.02 33.96 + + 0.36 0.01 0.47 0.03 0.46	35 41G0 0.14 1.87 9.08	36 40G0 0.01 4.41 2.33 + + + 0.34	37 39G0 + 2.55 0.43 4.62 + + 0.14	38 39G0 0.05 0.60 0.21 + + 0.02	39 39G1 + 0.03 0.12 + 0.09 3.21 + 0.18 + 0.06	40 38G0 + 1.07 + 2.82 0.02 0.32	Total 0.03 0.27 0.02 8.04 144.23 + 0.43 0.01 123.41 0.01 3.95 4.96 0.01 3.95 4.96 0.01 5.5 0.12 9.95
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CRANGON CRANGON CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS GOBIUS NIGER HYPEROPLUS LANCEOLATUS LEANDER LIMANDA LIMANDA LOLIGO FORBESI MERLANGIUS MERLANGUS POMATOSCHISTUS MINUTUS	33 40G0 0.03 0.01 0.37 0.10 + 0.01 0.01 + 0.10 + 0.26 0.01	34 40G0 + 0.02 33.96 + + 0.36 0.01 0.47 0.03 0.46 0.01	35 41G0 0.14 1.87 9.08 0.09	36 40G0 0.01 4.41 2.33 + + + 0.34	37 39G0 + 2.55 0.43 4.62 + + 0.14 +	38 39G0 0.05 0.60 0.21 + + 0.02	39 39G1 + 0.03 0.12 + 0.09 3.21 + 0.18 + 0.06 0.02	40 38G0 + 1.07 + 2.82 0.02 0.32 0.01	Total 0.03 0.27 0.02 8.04 144.23 + 0.43 0.01 123.41 0.01 3.95 4.96 0.012 + 1.55 0.12 9.95 0.06
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CRANGON CRANGON CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS GOBIUS NIGER HYPEROPLUS LANCEOLATUS LEANDER LIMANDA LIMANDA LOLIGO FORBESI MERLANGIUS MERLANGUS POMATOSCHISTUS MINUTUS PSETTA MAXIMA	33 40G0 0.03 0.01 0.37 0.10 + 0.01 0.01 + 0.10 + 0.26 0.01	34 40G0 + 0.02 33.96 + + 0.36 0.01 0.47 0.03 0.46 0.01	35 41G0 0.14 1.87 9.08 0.09	36 40G0 0.01 4.41 2.33 + + + 0.34	37 39G0 + 2.55 0.43 4.62 + + 0.14 +	38 39G0 0.05 0.60 0.21 + + 0.02	39 39G1 + 0.03 0.12 + 0.09 3.21 + 0.18 + 0.06 0.02	40 38G0 + 1.07 + 2.82 0.02 0.02 0.01	Total 0.03 0.27 0.02 8.04 144.23 + 0.43 0.01 123.41 0.01 3.95 4.96 0.01 0.02 + 1.55 0.12 9.95 0.06 0.10
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CRANGON CRANGON CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS GOBIUS NIGER HYPEROPLUS LANCEOLATUS LEANDER LIMANDA LIMANDA LOLIGO FORBESI MERLANGIUS MERLANGUS POMATOSCHISTUS MINUTUS PSETTA MAXIMA SCOMBER SCOMBRUS	33 40G0 0.03 0.01 0.37 0.10 + 0.01 + 0.01 + 0.10 + 0.26 0.01	34 40G0 + 0.02 33.96 + + 0.36 0.01 0.47 0.03 0.46 0.01	35 41G0 0.14 1.87 9.08 0.09	36 40G0 0.01 4.41 2.33 + + + 0.34	37 39G0 + 2.55 0.43 4.62 + + 0.14 +	38 39G0 0.05 0.60 0.21 + + 0.02	39 39G1 + 0.03 0.12 + 0.09 3.21 + 0.18 + 0.06 0.02	40 38G0 + 1.07 + 2.82 0.02 0.02 0.01	Total 0.03 0.27 0.02 8.04 144.23 + 0.3 123.41 0.01 123.41 0.01 3.95 4.96 0.01 0.02 + 1.55 0.12 9.95 0.06 0.10 0.79
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CRANGON CRANGON CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS GOBIUS NIGER HYPEROPLUS LANCEOLATUS LEANDER LIMANDA LIMANDA LOLIGO FORBESI MERLANGIUS MERLANGUS POMATOSCHISTUS MINUTUS PSETTA MAXIMA SCOMBER SCOMBRUS SPRATTUS SPRATTUS	33 40G0 0.03 0.01 0.37 0.10 + 0.01 + 0.01 + 0.10 + 0.26 0.01 9.43	34 40G0 + 0.02 33.96 + + + 0.36 0.01 0.47 0.03 0.46 0.01 4.78	35 41G0 0.14 1.87 9.08 0.09 0.09	36 40G0 0.01 4.41 2.33 + + + 0.34	37 39G0 + 2.55 0.43 4.62 + + 0.14 + 2.74	38 39G0 0.05 0.60 0.21 + + 0.02 0.31	39 39G1 + 0.03 0.12 + 0.09 3.21 + 0.18 + 0.06 0.02 2.05	40 38G0 + 1.07 + 2.82 0.02 0.02 0.01	Total 0.03 0.27 0.02 8.04 144.23 + 0.4 123.41 0.01 3.95 4.96 0.01 3.95 4.96 0.01 0.22 9.95 0.06 0.10 0.79 659.04
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CRANGON CRANGON CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS GOBIUS NIGER HYPEROPLUS LANCEOLATUS LEANDER LIMANDA LIMANDA LOLIGO FORBESI MERLANGIUS MERLANGUS POMATOSCHISTUS MINUTUS PSETTA MAXIMA SCOMBER SCOMBRUS SPRATTUS SPRATTUS SYNGNATHUS ROSTELLATUS	33 40G0 0.03 0.01 0.37 0.10 + 0.01 0.01 + 0.10 + 0.26 0.01 9.43	34 40G0 + 0.02 33.96 + + + 0.36 0.01 0.47 0.03 0.46 0.01 4.78 +	35 41G0 0.14 1.87 9.08 0.09 0.09	36 40G0 0.01 4.41 2.33 + + + 0.34	37 39G0 + 2.55 0.43 4.62 + + 0.14 + 2.74	38 39G0 0.05 0.60 0.21 + + 0.02 0.31	39 39G1 + 0.03 0.12 + 0.09 3.21 + 0.18 + 0.06 0.02 2.05 +	40 38G0 + 1.07 + 2.82 0.02 0.02 0.01	Total 0.03 0.27 0.02 8.04 144.23 + 0.3 123.41 0.01 3.95 4.96 0.01 0.23.41 0.01 3.95 4.96 0.01 0.02 + 1.55 0.12 9.95 0.06 0.10 0.79 659.04 +
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CRANGON CRANGON CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS GOBIUS NIGER HYPEROPLUS LANCEOLATUS LEANDER LIMANDA LIMANDA LOLIGO FORBESI MERLANGIUS MERLANGUS POMATOSCHISTUS MINUTUS PSETTA MAXIMA SCOMBER SCOMBRUS SPRATTUS SPRATTUS SYNGNATHUS ROSTELLATUS SYNGNATHUS TYPHLE	33 40G0 0.03 0.01 0.37 0.10 + 0.01 0.01 + 0.10 + 0.26 0.01 9.43	34 40G0 + 0.02 33.96 + + + 0.36 0.01 0.47 0.03 0.46 0.01 4.78 +	35 41G0 0.14 1.87 9.08 0.09 0.09	36 40G0 0.01 4.41 2.33 + + + 0.34	37 39G0 + 2.55 0.43 4.62 + + 0.14 + 2.74	38 39G0 0.05 0.60 0.21 + + 0.02 0.31	39 39G1 + 0.03 0.12 + 0.09 3.21 + 0.18 + 0.06 0.02 2.05 + +	40 38G0 + 1.07 + 2.82 0.02 0.02 0.01	Total 0.03 0.27 0.02 8.04 144.23 + 0.43 0.01 123.41 0.01 3.95 4.96 0.01 0.02 + 1.55 0.12 9.95 0.06 0.10 0.79 659.04 +
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CLUPEA HARENGUS CRANGON CRANGON CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS GOBIUS NIGER HYPEROPLUS LANCEOLATUS LEANDER LIMANDA LIMANDA LOLIGO FORBESI MERLANGIUS MERLANGUS POMATOSCHISTUS MINUTUS PSETTA MAXIMA SCOMBER SCOMBRUS SPRATTUS SPRATTUS SYNGNATHUS ROSTELLATUS SYNGNATHUS TYPHLE TRACHINUS DRACO	33 40G0 0.03 0.01 0.37 0.10 + 0.01 0.01 + 0.01 + 0.26 0.01 9.43	34 40G0 + 0.02 33.96 + + + 0.36 0.01 0.47 0.03 0.46 0.01 4.78 + 0.01	35 41G0 0.14 1.87 9.08 0.09 0.09	36 40G0 0.01 4.41 2.33 + + + 0.34 0.60 0.46	37 39G0 + 2.55 0.43 4.62 + + 0.14 + 2.74	38 39G0 0.05 0.60 0.21 + + 0.02 0.31	39 39G1 + 0.03 0.12 + 0.09 3.21 + 0.09 3.21 + 0.18 + 0.06 0.02 2.05 + + +	40 38G0 + 1.07 + 2.82 0.02 0.02 0.01	Total 0.03 0.27 0.02 8.04 144.23 + 0.43 0.01 123.41 0.01 3.95 4.96 0.01 0.02 + 1.55 0.12 9.95 0.06 0.10 0.79 659.04 + 0.47
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CRANGON CRANGON CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS GOBIUS NIGER HYPEROPLUS LANCEOLATUS LEANDER LIMANDA LIMANDA LOLIGO FORBESI MERLANGIUS MERLANGUS POMATOSCHISTUS MINUTUS PSETTA MAXIMA SCOMBER SCOMBRUS SPRATTUS SPRATTUS SYNGNATHUS ROSTELLATUS SYNGNATHUS TYPHLE TRACHINUS DRACO TRACHURUS TRACHURUS	33 40G0 0.03 0.01 0.37 0.10 + 0.01 + 0.01 + 0.01 + 0.26 0.01 9.43 0.10	34 40G0 + 0.02 33.96 + + + 0.36 0.01 0.47 0.03 0.46 0.01 4.78 + 0.01 1.04	35 41G0 0.14 1.87 9.08 0.09 0.09 0.07 1.64	36 40G0 0.01 4.41 2.33 + + + 0.34 0.60 0.46 1.11	37 39G0 + 2.55 0.43 4.62 + + 0.14 + 2.74 0.32	38 39G0 0.05 0.60 0.21 + + 0.02 0.31	39 39G1 + 0.03 0.12 + 0.09 3.21 + 0.09 3.21 + 0.18 + 0.06 0.02 2.05 + + + 0.10	40 38G0 + 1.07 + 2.82 0.02 0.02 0.01 0.51	Total 0.03 0.27 0.02 8.04 144.23 + 0.1 123.41 0.01 123.41 0.01 3.95 4.96 0.01 0.02 + 1.55 0.12 9.95 0.06 0.10 0.79 659.04 + 0.47 162.64
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CRANGON CRANGON CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS GOBIUS NIGER HYPEROPLUS LANCEOLATUS LEANDER LIMANDA LIMANDA LOLIGO FORBESI MERLANGIUS MERLANGUS POMATOSCHISTUS MINUTUS PSETTA MAXIMA SCOMBER SCOMBRUS SPRATTUS SPRATTUS SYNGNATHUS ROSTELLATUS SYNGNATHUS TYPHLE TRACHINUS DRACO TRACHURUS TRACHURUS TRISOPTERUS ESMARKI	33 40G0 0.03 0.01 0.37 0.10 + 0.01 0.01 + 0.01 + 0.26 0.01 9.43 0.10	34 40G0 + 0.02 33.96 + + + 0.36 0.01 0.47 0.03 0.46 0.01 4.78 + 0.01 1.04 +	35 41G0 0.14 1.87 9.08 0.09 0.09 0.07 1.64 +	36 40G0 0.01 4.41 2.33 + + + 0.34 0.60 0.46 1.11	37 39G0 + 2.55 0.43 4.62 + + 0.14 + 2.74 0.32 +	38 39G0 0.05 0.60 0.21 + + 0.02 0.31 0.38	39 39G1 + 0.03 0.12 + 0.09 3.21 + 0.18 + 0.06 0.02 2.05 + + + 0.10	40 38G0 + 1.07 + 2.82 0.02 0.32 0.01 0.51 +	Total 0.03 0.27 0.02 8.04 144.23 + 0.43 0.01 123.41 0.01 3.95 4.96 0.01 0.02 + 1.55 0.12 9.95 0.06 0.10 0.79 659.04 + 0.47 162.64 +
Haul No. Species/ICES Rectangle AGONUS CATAPHRACTUS APHIA MINUTA BELONE BELONE CHELON LABROSUS CLUPEA HARENGUS CRANGON CRANGON CTENOLABRUS RUPESTRIS CYCLOPTERUS LUMPUS ELEDONE ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS GOBIUS NIGER HYPEROPLUS LANCEOLATUS LEANDER LIMANDA LIMANDA LOLIGO FORBESI MERLANGIUS MERLANGUS POMATOSCHISTUS MINUTUS PSETTA MAXIMA SCOMBER SCOMBRUS SPRATTUS SPRATTUS SYNGNATHUS ROSTELLATUS SYNGNATHUS TYPHLE TRACHINUS DRACO TRACHURUS TRACHURUS TRISOPTERUS ESMARKI Total	33 40G0 0.03 0.01 0.37 0.10 + 0.01 0.01 + 0.01 0.01 + 0.26 0.01 9.43 0.10 10.43	34 40G0 + 0.02 33.96 + + + 0.36 0.01 0.47 0.03 0.46 0.01 4.78 + 0.01 1.04 + 41.15	35 41G0 0.14 1.87 9.08 0.09 0.09 0.07 1.64 + 12.89	36 40G0 0.01 4.41 2.33 + + + 0.34 0.60 0.46 1.11 9.26	37 39G0 + 2.55 0.43 4.62 + + 0.14 + 2.74 0.32 + 10.80	38 39G0 0.05 0.60 0.21 + + 0.02 0.31 0.38 1.57	39 39G1 + 0.03 0.12 + 0.09 3.21 + 0.18 + 0.06 0.02 2.05 + + 0.10 5.86	40 38G0 + 1.07 + 2.82 0.02 0.32 0.01 0.51 + 4.75	Total 0.03 0.27 0.02 8.04 144.23 + 0.43 0.01 123.41 0.01 3.95 4.96 0.01 0.02 + 1.55 0.12 9.95 0.06 0.10 0.79 659.04 + 162.64 + 1120.11

ł

+ = < 0.01 kg

Table 3: Catch composition (kg/0.5 h) by trawl haul in Subdivision 23

Haul No.	19	20	21	22	23	Total
Species/ICES Rectangle	40G2	40G2	40G2	41G2	41G2	
APHIA MINUTA				0.01	0.01	0.02
CLUPEA HARENGUS	449.26	1564.18	1367.16	3.54	6.05	3390.19
CRANGON CRANGON				+		+
ELEDONE					+	+
ENGRAULIS ENCRASICOLUS					0.01	0.01
EUTRIGLA GURNARDUS			0.11			0.11
GADUS MORHUA	61.60	132.76	24.14		2.34	220.84
GASTEROSTEUS ACULEATUS				0.01	0.01	0.02
LOLIGO FORBESI				0.01	0.01	0.02
MELANOGRAMMUS AEGLEFINUS			3.79			3.79
MERLANGIUS MERLANGUS	4.09	1.08	2.38	0.03	0.13	7.71
MERLUCCIUS MERLUCCIUS				+		+
SPRATTUS SPRATTUS	4.51	9.14	15.33	0.11	0.17	29.26
TRACHINUS DRACO				0.30	0.25	0.55
TRACHURUS TRACHURUS	1.19	0.12	0.09	0.01	+	1.41
Total	520.65	1707.28	1413.00	4.02	8.98	3653.93
Medusae	2.3	0.4	1.6	0.8	1.4	6.5

+ = < 0.01 kg

Table 4: Catch composition (kg/0.5 h) by trawl haul in Subdivision 24.

					-		_	-		
Haul No.	1	2	3	4	5	6	7	8	9	
Species/ICES Rectangle	37G2	38G2	38G3	38G3	37G3	38G4	38G4	38G3	38G2	
ALOSA FALLAX					0.04					
APHIA MINUTA									+	
BELONE BELONE	0.11	0.04								
CLUPEA HARENGUS	2.43	3.58	3.35	2.30	5.95	19.64	1.45	17.84	25.64	
CRANGON CRANGON										
ENGRAULIS ENCRASICOLUS	0.15	0.14	0.04					0.02	0.01	
EUTRIGLA GURNARDUS										
GADUS MORHUA				1.00	68.94	+				
GASTEROSTEUS ACULEATUS	+	0.01	0.01						0.06	
LIMANDA LIMANDA		0.22								
MERLANGIUS MERLANGUS	0.43	0.34	0.02	0.12	0.94	0.14		1.07	0.04	
OSMERUS EPERLANUS					0.24					
PLEURONECTES PLATESSA										
POMATOSCHISTUS MINUTUS	+		+		+				0.02	
POMATOSCHISTUS PICTUS			+							
SCOMBER SCOMBRUS		1.06		1.26						
SPRATTUS SPRATTUS	21.50	201.25	2.55	582.85	420.07	10.28	49.48	150.98	7.07	
TRACHURUS TRACHURUS	0.27	0.29	0.09	0.02	0.03			0.02	+	
Total	24.89	206.93	6.06	587.55	496.21	30.06	50.93	169.93	32.84	
Medusae	80.6	131.5	81.1	5.0	24.8	3.3	8.9	32.5	56.4	
Haul No	10	11	12	13	14	15	16	17	18	Total
Haul No. Species/ICES Rectangle	10 38G2	11 39G2	12 39G2	13 39G3	14 39G3	15 39G4	16 39G4	17 39G3	18 39G3	Total
Haul No. Species/ICES Rectangle ALOSA FALLAX	10 38G2	11 39G2	12 39G2	13 39G3	14 39G3	15 39G4	16 39G4	17 39G3	18 39G3	Total
Haul No. Species/ICES Rectangle ALOSA FALLAX APHIA MINUTA	10 38G2	11 39G2	12 39G2	13 39G3	14 39G3	15 39G4	16 39G4	17 39G3	18 39G3	Total 0.04 0.00
Haul No. Species/ICES Rectangle ALOSA FALLAX APHIA MINUTA BELONE BELONE	10 38G2	11 39G2	12 39G2 +	13 39G3	14 39G3	15 39G4	16 39G4	17 39G3	18 39G3	Total 0.04 0.00 0.15
Haul No. Species/ICES Rectangle ALOSA FALLAX APHIA MINUTA BELONE BELONE CLUPEA HARENGUS	10 38G2	11 39G2	12 39G2 + 4 78	13 39G3	14 39G3	15 39G4	16 39G4	17 39G3	18 39G3	Total 0.04 0.00 0.15 616 37
Haul No. Species/ICES Rectangle ALOSA FALLAX APHIA MINUTA BELONE BELONE CLUPEA HARENGUS CRANGON CRANGON	10 38G2 2.53	11 39G2 4.43	12 39G2 + 4.78	13 39G3 15.94	14 39G3	15 39G4	16 39G4 169.39	17 39G3 159.67	18 39G3 150.54	Total 0.04 0.00 0.15 616.37 0.00
Haul No. Species/ICES Rectangle ALOSA FALLAX APHIA MINUTA BELONE BELONE CLUPEA HARENGUS CRANGON CRANGON ENC PAUL US ENCPASICOLUS	10 38G2 2.53	11 39G2 4.43 +	12 39G2 + 4.78	13 39G3 15.94	14 39G3	15 39G4 15.06	16 39G4 169.39	17 39G3 159.67	18 39G3 150.54	Total 0.04 0.15 616.37 0.00 0.37
Haul No. Species/ICES Rectangle ALOSA FALLAX APHIA MINUTA BELONE BELONE CLUPEA HARENGUS CRANGON CRANGON ENGRAULIS ENCRASICOLUS ELITRICLA CURNADDUS	10 38G2 2.53	11 39G2 4.43 +	12 39G2 + 4.78 0.01	13 39G3	14 39G3	15 39G4 15.06	16 39G4 169.39	17 39G3 159.67	18 39G3 150.54	Total 0.04 0.00 0.15 616.37 0.00 0.37 0.02
Haul No. Species/ICES Rectangle ALOSA FALLAX APHIA MINUTA BELONE BELONE CLUPEA HARENGUS CRANGON CRANGON ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS C ADUS MORHUA	10 38G2 2.53	11 39G2 4.43 + 0.01 2.92	12 39G2 + 4.78 0.01	13 39G3 15.94 0.01 2.50	14 39G3	15 39G4 15.06	16 39G4	17 39G3 159.67	18 39G3 150.54	Total 0.04 0.00 0.15 616.37 0.00 0.37 0.02
Haul No. Species/ICES Rectangle ALOSA FALLAX APHIA MINUTA BELONE BELONE CLUPEA HARENGUS CRANGON CRANGON ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA C ASTEROSTEUS ACULEATUS	10 38G2 2.53	11 39G2 4.43 + 0.01 2.92 +	12 39G2 + 4.78 0.01 0.90	13 39G3 15.94 0.01 2.50	14 39G3 11.85 9.03	15 39G4 15.06 4.14	16 39G4 169.39 7.25	17 39G3 159.67 4.39	18 39G3 150.54 9.08	Total 0.04 0.00 0.15 616.37 0.00 0.37 0.02 110.15 0.10
Haul No. Species/ICES Rectangle ALOSA FALLAX APHIA MINUTA BELONE BELONE CLUPEA HARENGUS CRANGON CRANGON ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA	10 38G2 2.53 0.02	11 39G2 4.43 + 0.01 2.92 +	12 39G2 + 4.78 0.01 0.90 +	13 39G3 15.94 0.01 2.50 +	14 39G3 11.85 9.03	15 39G4 15.06 4.14	16 39G4 169.39 7.25	17 39G3 159.67 4.39	18 39G3 150.54 9.08	Total 0.04 0.00 0.15 616.37 0.00 0.37 0.02 110.15 0.10 0.22
Haul No. Species/ICES Rectangle ALOSA FALLAX APHIA MINUTA BELONE BELONE CLUPEA HARENGUS CRANGON CRANGON ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA MEPL ANCULS	10 38G2 2.53 0.02	11 39G2 4.43 + 0.01 2.92 + 0.06	12 39G2 + 4.78 0.01 0.90 + 0.47	13 39G3 15.94 0.01 2.50 +	14 39G3 11.85 9.03	15 39G4 15.06 4.14	16 39G4 169.39 7.25	17 39G3 159.67 4.39	18 39G3 150.54 9.08	Total 0.04 0.00 0.15 616.37 0.00 0.37 0.02 110.15 0.10 0.22 6.23
Haul No. Species/ICES Rectangle ALOSA FALLAX APHIA MINUTA BELONE BELONE CLUPEA HARENGUS CRANGON CRANGON ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA MERLANGIUS MERLANGUS OSMEDIA SEDEDI ANUS	10 38G2 2.53 0.02 1.13	11 39G2 4.43 + 0.01 2.92 + 0.06	12 39G2 + 4.78 0.01 0.90 + 0.47	13 39G3 15.94 0.01 2.50 +	14 39G3 11.85 9.03 1.46	15 39G4 15.06 4.14	16 39G4 169.39 7.25	17 39G3 159.67 4.39	18 39G3 150.54 9.08 +	Total 0.04 0.00 0.15 616.37 0.00 0.37 0.02 110.15 0.10 0.22 6.22 0.21
Haul No. Species/ICES Rectangle ALOSA FALLAX APHIA MINUTA BELONE BELONE CLUPEA HARENGUS CRANGON CRANGON ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA MERLANGUS MERLANGUS OSMERUS EPERLANGUS DI EURONECTES DI ATESS A	10 38G2 2.53 0.02 1.13	11 39G2 4.43 + 0.01 2.92 + 0.06	12 39G2 + 4.78 0.01 0.90 + 0.47	13 39G3 15.94 0.01 2.50 +	14 39G3 11.85 9.03 1.46	15 39G4 15.06 4.14	16 39G4 169.39 7.25	17 39G3 159.67 4.39	18 39G3 150.54 9.08 +	Total 0.04 0.00 0.15 616.37 0.00 0.37 0.02 110.15 0.10 0.22 6.22 0.24 0.74
Haul No. Species/ICES Rectangle ALOSA FALLAX APHIA MINUTA BELONE BELONE CLUPEA HARENGUS CRANGON CRANGON ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA MERLANGIUS MERLANGUS OSMERUS EPERLANUS PLEURONECTES PLATESSA POMATOSCHISTUS MINUTUS	10 38G2 2.53 0.02 1.13	11 39G2 4.43 + 0.01 2.92 + 0.06	12 39G2 + 4.78 0.01 0.90 + 0.47 0.46	13 39G3 15.94 0.01 2.50 +	14 39G3 11.85 9.03 1.46	15 39G4 15.06 4.14	16 39G4 169.39 7.25	17 39G3 159.67 4.39	18 39G3 150.54 9.08 + 0.28	Total 0.04 0.00 0.15 616.37 0.00 0.37 0.02 110.15 0.10 0.22 0.24 0.74
Haul No. Species/ICES Rectangle ALOSA FALLAX APHIA MINUTA BELONE BELONE CLUPEA HARENGUS CRANGON CRANGON ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA MERLANGIUS MERLANGUS OSMERUS EPERLANUS PLEURONECTES PLATESSA POMATOSCHISTUS BICTUS	10 38G2 2.53 0.02 1.13	11 39G2 4.43 + 0.01 2.92 + 0.06 0.02	12 39G2 + 4.78 0.01 0.90 + 0.47 0.46 0.45	13 39G3 15.94 0.01 2.50 +	14 39G3 11.85 9.03 1.46	15 39G4 15.06 4.14	16 39G4 169.39 7.25	17 39G3 159.67 4.39 0.01	18 39G3 150.54 9.08 + 0.28 0.02	Total 0.04 0.00 0.15 616.37 0.00 0.37 0.02 110.15 0.10 0.22 6.22 0.24 0.74 0.53 0.05
Haul No. Species/ICES Rectangle ALOSA FALLAX APHIA MINUTA BELONE BELONE CLUPEA HARENGUS CRANGON CRANGON ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA MERLANGIUS MERLANGUS OSMERUS EPERLANUS PLEURONECTES PLATESSA POMATOSCHISTUS PICTUS SCOMPED SCOMPEUS	10 38G2 2.53 0.02 1.13	11 39G2 4.43 + 0.01 2.92 + 0.06 0.02	12 39G2 + 4.78 0.01 0.90 + 0.47 0.46 0.45	13 39G3 15.94 0.01 2.50 +	14 39G3 11.85 9.03 1.46	15 39G4 15.06 4.14	16 39G4 169.39 7.25	17 39G3 159.67 4.39 0.01	18 39G3 150.54 9.08 + 0.28 0.02	Total 0.04 0.00 0.15 616.37 0.00 0.37 0.02 110.15 0.10 0.22 6.22 0.24 0.74 0.53 0.00 2.4%
Haul No. Species/ICES Rectangle ALOSA FALLAX APHIA MINUTA BELONE BELONE CLUPEA HARENGUS CRANGON CRANGON ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA MERLANGIUS MERLANGUS OSMERUS EPERLANUS PLEURONECTES PLATESSA POMATOSCHISTUS MINUTUS POMATOSCHISTUS MINUTUS SCOMBER SCOMBRUS SCOMBER SCOMBRUS	10 38G2 2.53 0.02 1.13 0.09	11 39G2 4.43 + 0.01 2.92 + 0.06 0.02	12 39G2 + 4.78 0.01 0.90 + 0.47 0.46 0.45 0.07	13 39G3 15.94 0.01 2.50 +	14 39G3 11.85 9.03 1.46	15 39G4 15.06 4.14	16 39G4 169.39 7.25 0.01	17 39G3 159.67 4.39 0.01	18 39G3 150.54 9.08 + 0.28 0.02	Total 0.04 0.00 0.15 616.37 0.00 0.37 0.02 110.15 0.10 0.22 6.22 0.24 0.74 0.53 0.00 2.28 0.00 2.48
Haul No. Species/ICES Rectangle ALOSA FALLAX APHIA MINUTA BELONE BELONE CLUPEA HARENGUS CRANGON CRANGON ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA MERLANGIUS MERLANGUS OSMERUS EPERLANUS PLEURONECTES PLATESSA POMATOSCHISTUS MINUTUS POMATOSCHISTUS PICTUS SCOMBER SCOMBRUS SPRATIUS SPRATTUS TH ACHUBUE THA CHUBUC	10 38G2 2.53 0.02 1.13 0.09 52.34	11 39G2 4.43 + 0.01 2.92 + 0.06 0.02 0.97	12 39G2 + 4.78 0.01 0.90 + 0.47 0.46 0.45 0.07 29.64	13 39G3 15.94 0.01 2.50 +	14 39G3 11.85 9.03 1.46 41.98	15 39G4 15.06 4.14 58.98	16 39G4 169.39 7.25 0.01 24.33	17 39G3 159.67 4.39 0.01 37.43	18 39G3 150.54 9.08 + 0.28 0.02 234.70	Total 0.04 0.00 0.15 616.37 0.00 0.37 0.02 110.15 0.10 0.22 6.22 0.24 0.74 0.53 0.00 2.48 1985.80 0.02
Haul No. Species/ICES Rectangle ALOSA FALLAX APHIA MINUTA BELONE BELONE CLUPEA HARENGUS CRANGON CRANGON ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA MERLANGIUS MERLANGUS OSMERUS EPERLANUS PLEURONECTES PLATESSA POMATOSCHISTUS MINUTUS POMATOSCHISTUS PICTUS SCOMBER SCOMBRUS SPRATIUS SPRATIUS TRACHURUS TRACHURUS	10 38G2 2.53 0.02 1.13 0.09 52.34 +	11 39G2 4.43 + 0.01 2.92 + 0.06 0.02 0.97 0.09 0.09 2.55	12 39G2 + 4.78 0.01 0.90 + 0.47 0.46 0.45 0.07 29.64 0.12	13 39G3 15.94 0.01 2.50 + 59.40 +	14 39G3 11.85 9.03 1.46 41.98	15 39G4 15.06 4.14 58.98	16 39G4 169.39 7.25 0.01 24.33	17 39G3 159.67 4.39 0.01 37.43	18 39G3 150.54 9.08 + 0.02 234.70	Total 0.04 0.00 0.15 616.37 0.00 0.37 0.02 110.15 0.10 0.22 0.22 0.24 0.74 0.53 0.00 2.48 1985.80 0.93
Haul No. Species/ICES Rectangle ALOSA FALLAX APHIA MINUTA BELONE BELONE CLUPEA HARENGUS CRANGON CRANGON ENGRAULIS ENCRASICOLUS EUTRIGLA GURNARDUS GADUS MORHUA GASTEROSTEUS ACULEATUS LIMANDA LIMANDA MERLANGIUS MERLANGUS OSMERUS EPERLANUS PLEURONECTES PLATESSA POMATOSCHISTUS MINUTUS POMATOSCHISTUS PICTUS SCOMBER SCOMBRUS SPRATTUS SPRATTUS TRACHURUS TRACHURUS Total	10 38G2 2.53 0.02 1.13 0.09 52.34 + 56.11	11 39G2 4.43 + 0.01 2.92 + 0.06 0.02 0.97 0.09 8.50	12 39G2 + 4.78 0.01 0.90 + 0.47 0.46 0.45 0.07 29.64 0.12 36.90	13 39G3 15.94 0.01 2.50 + 59.40 <u>+</u> 77.85	14 39G3 11.85 9.03 1.46 41.98 64.32	15 39G4 15.06 4.14 58.98 78.18	16 39G4 169.39 7.25 0.01 24.33 200.98	17 39G3 159.67 4.39 0.01 37.43 201.50	18 39G3 150.54 9.08 + 0.02 234.70 394.62	Total 0.04 0.00 0.15 616.37 0.00 0.37 0.02 110.15 0.10 0.22 0.24 0.74 0.53 0.00 2.48 1985.80 0.93 2724.36

+ = < 0.01 kg

Table 5: Survey statistics by area (RV "Solea" October 2006).

Sub-	ICES	Area	Sa	Sigma	N total	Herring	Sprat	NHerring	NSprat
division	Rectangle	(nm²)	(m²/NM²)	(cm²)	(million)	(%)	(%)	(million)	(million)
21	41G0	108.1	70.9	1.447	52.97	61.35	6.33	32.50	3.35
21	41G1	946.8	276.1	1.469	1,779.95	27.58	4.00	490.83	71.21
21	41G2	432.3	373.0	2.606	618.82	38.30	34.18	236.98	211.49
21	42G1	884.2	55.7	1.854	265.70	13.71	4.71	36.42	12.50
21	42G2	606.8	59.7	1.228	294.99	7.94	20.11	23.41	59.31
21	43G1	699.0	176.6	1.107	1,114.81	34.38	0.00	383.30	0.00
21	44G0	239.9	129.1	1.379	224.58	41.60	20.17	93.42	45.29
21	44G1	580.5	193.0	1.757	637.76	28.18	0.00	179.71	0.00
	Total	4,497.6			4,989.58			1,476.57	403.15
22	37G0	209.9	281.4	0.956	617.60	12.42	75.64	76.70	467.17
22	37G1	723.3	450.7	1.345	2,424.15	26.90	63.14	652.10	1,530.50
22	38G0	735.3	242.0	1.234	1,441.89	29.03	16.01	418.61	230.80
22	38G1	173.2	475.1	1.593	516.63	4.94	26.48	25.50	136.83
22	39F9	159.3	72.7	0.794	145.90	2.39	68.11	3.48	99.38
22	39G0	201.7	132.2	0.964	276.74	20.11	22.66	55.64	62.71
22	39G1	250.0	199.7	0.339	1,471.16	0.29	14.09	4.29	207.34
22	40F9	51.3	57.1	0.728	40.21	1.93	93.58	0.78	37.63
22	40G0	538.1	123.6	0.911	730.12	35.94	42.72	262.37	311.91
22	40G1	174.5	125.3	0.859	254.42	40.36	9.77	102.69	24.85
22	41G0	173.1	115.2	0.867	230.05	7.22	0.27	16.62	0.62
_	Total	3,389.7			8,148.87			1,618.78	3,109.74
23	40G2	164.0	3,206.6	7.250	725.32	89.05	9.20	645.94	66.72
23	41G2	72.3	898.4	1.561	416.17	79.56	3.03	331.10	12.61
	Total	236.3			1,141.49			977.04	79.33
24	37G2	192.4	551.0	0.821	1,291.07	4.65	92.72	59.99	1,197.11
24	37G3	167.7	2,627.5	0.639	6,899.93	0.16	99.77	11.12	6,884.15
24	37G4	875.1	37.9	0.987	336.19	10.04	89.90	33.76	302.23
24	38G2	832.9	297.9	0.993	2,499.53	21.21	77.62	530.15	1,940.23
24	38G3	865.7	1,005.8	1.056	8,245.16	10.46	87.79	862.60	7,238.34
24	38G4	1,034.8	202.0	1.168	1,788.89	14.98	84.96	268.03	1,519.91
24	39G2	406.1	289.6	1.254	938.04	28.15	68.17	264.08	639.48
24	39G3	765.0	621.3	1.634	2,908.02	24.74	75.10	719.56	2,184.04
24	39G4	524.8	476.5	1.791	1,396.21	24.62	75.26	343.68	1,050.75
	Total	5,664.5			26,303.04			3,092.97	22,956.24
22-24	Total	9,290.5			35,593.40			5,688.79	26,145.31
21-24	Total	13,788.1			40,582.98			7,165.36	26,548.46

	Sub-	Rectangle/										
	division	W-rings	0	1	2	3	4	5	6	7	8+	Total
	21	41G0	32.18	0.32								32.50
	21	41G1	391.26	89.19	5.69	2.35	1.43	0.14	0.78			490.84
	21	41G2	11.24	108.25	63.01	43.68	8.73	2.07				236.98
	21	42G1	9.97	23.13	2.44	0.73	0.05		0.11			36.43
	21	42G2	20.08	3.24					0.09			23.41
	21	43G1	365.18	17.97					0.15			383.30
	21	44G0	92.01	1.41								93.42
	21	44G1	170.47	9.24								179.71
		Total	1,092.39	252.75	71.14	46.76	10.21	2.21	1.13	0.00	0.00	1,476.59
	22	37G0	75.80	0.89			0.01					76.70
	22	37G1	579.24	69.45	1.38	0.99	1.04					652.10
	22	38G0	397.35	19.88	0.36	0.71	0.32					418.62
	22	38G1	24.12	1.38								25.50
	22	39F9	3.39	0.09								3.48
	22	39G0	51.78	3.82			0.04					55.64
	22	39G1	4.29									4.29
	22	40F9	0.78									0.78
	22	40G0	261.84	0.53								262.37
	22	40G1	102.07	0.62								102.69
	22	41G0	16.30	0.31			0.01					16.62
_		Total	1,516.96	96.97	1.74	1.70	1.42	0.00	0.00	0.00	0.00	1,618.79
	23	40G2		6.43	45.83	151.98	158.87	117.73	79.29	59.97	25.85	645.95
	23	41G2	269.95	60.49	0.66							331.10
		Total	269.95	66.92	46.49	151.98	158.87	117.73	79.29	59.97	25.85	977.05
	24	37G2	54.06	3.98	0.50	0.60	0.69	0.09	0.06	0.01		59.99
	24	37G3	8.92	0.37	0.34	0.46	0.48	0.24	0.16	0.11	0.04	11.12
	24	37G4	20.72	6.38	1.52	1.72	2.02	0.62	0.48	0.25	0.06	33.77
	24	38G2	422.51	71.27	7.24	12.71	12.44	2.14	1.21	0.55	0.08	530.15
	24	38G3	512.15	158.32	46.68	52.82	50.93	19.17	14.37	6.53	1.64	862.61
	24	38G4	139.21	71.50	13.93	15.02	18.28	4.45	3.85	1.56	0.23	268.03
	24	39G2	209.15	27.19	7.14	6.91	8.10	2.51	1.82	1.15	0.09	264.06
	24	39G3	407.54	143.81	41.95	42.85	46.33	16.23	12.93	7.13	0.78	719.55
	24	39G4	101.09	78.19	35.38	42.94	42.86	17.51	16.09	7.92	1.70	343.68
_		Total	1,875.35	561.01	154.68	176.03	182.13	62.96	50.97	25.21	4.62	3,092.96
_	22-24	Total	3,662.26	724.90	202.91	329.71	342.42	180.69	130.26	85.18	30.47	5,688.80
	21-24	Total	4,754.65	977.65	274.05	376.47	352.63	182.90	131.39	85.18	30.47	7,165.39

Table 6: Numbers (millions) of herring by age and area (RV "Solea" October 2006).

Table 7: Mean weight (g) of herring by age and area (RV "Solea" October 2006).

Sub-	Rectangle/										
division	W-rings	0	1	2	3	4	5	6	7	8+	Total
21	41G0	13.95	37.30								14.19
21	41G1	14.15	44.25	68.91	92.45	111.51	112.53	36.10			20.97
21	41G2	15.63	62.14	75.32	87.21	109.54	112.27				70.24
21	42G1	21.98	48.87	63.79	77.83	84.32		36.10			43.10
21	42G2	20.93	32.41					36.10			22.58
21	43G1	20.54	25.79					36.10			20.79
21	44G0	13.39	26.76								13.59
21	44G1	20.94	26.30								21.21
	Total	17.49	50.11	74.41	87.33	109.69	112.29	36.10			28.82
22	37G0	9.51	32.72			31.48					9.78
22	37G1	10.89	36.02	67.93	91.80	31.48					13.84
22	38G0	11.02	30.92	78.00	95.25	31.48					12.18
22	38G1	10.66	34.71								11.96
22	39F9	11.99	18.19								12.16
22	39G0	9.24	34.26			31.48					10.97
22	39G1	11.23									11.23
22	40F9	8.21									8.21
22	40G0	9.18	36.63								9.23
22	40G1	6.93	36.63								7.10
22	41G0	12.90	31.64			31.48					13.25
	Total	10.26	34.83	70.01	93.24	31.48					11.90
23	40G2		82.16	120.72	134.30	160.25	187.02	195.11	207.12	231.81	166.93
23	41G2	10.68	35.40	31.17							15.24
	Total	10.68	39.89	119.45	134.30	160.25	187.02	195.11	207.12	231.81	115.53
24	37G2	8.57	32.98	44.17	41.60	37.50	34.61	56.56	51.91		11.24
24	37G3	6.61	40.56	73.74	81.20	84.50	99.22	94.50	104.22	182.20	21.08
24	37G4	8.41	37.82	54.20	58.17	55.14	69.96	68.88	79.07	140.84	24.10
24	38G2	8.84	33.74	43.85	36.73	37.59	44.10	53.86	52.45	58.12	14.31
24	38G3	8.45	37.23	58.01	64.82	60.79	76.51	87.82	73.05	91.70	26.44
24	38G4	9.80	37.65	48.43	49.73	45.91	50.93	56.41	56.99	58.12	25.61
24	39G2	9.21	36.68	55.48	50.06	46.82	69.98	55.05	97.61	58.12	16.81
24	39G3	11.84	37.35	56.13	63.92	57.20	/7.37	83.62	88.52	111.15	29.18
24	3964	11.67	39.23	60.89	/8.05	/5./6	95.77	101.50	102.61	146.05	50.54
	Total	9.63	37.10	56.47	63.83	59.61	78.88	86.53	86.58	113.50	26.44
22-24	Total	9.97	37.06	71.02	96.47	106.19	149.34	152.62	171.44	213.87	37.60
21-24	Total	11.69	40.43	71.90	95.33	106.29	148.89	151.62	171.44	213.87	35.79

division W-rings 0 1 2 3 4 5 6 7 8+ Total 21 4160 448.9 11.9 392.1 217.3 159.5 15.8 28.2 10.285.9 21 4162 175.7 6,726.7 4,745.9 3,809.3 996.3 232.4 . 16,646.3 21 4262 420.3 105.0 56.8 4.2 4.0 .1576.1 21 4262 420.3 105.0 56.8 4.22 4.0 .1767.1 21 4360 1,220.0 37.7 . 21 4460 1,220.0 37.7 22 3760 720.9 29.1 22 3860 4,378.8 614.7 28.1 67.6 10.1	Sub-	Rectangle/										
21 41G0 448.9 11.9	division	W-rings	0	1	2	3	4	5	6	7	8+	Total
21 41G1 5,536,3 3,946,7 392.1 217.3 159.5 15.8 28.2 10,026.9 21 41G2 175.7 6,726.7 4,745.9 3,809.3 956.3 232.4 16,646.3 21 42G2 420.3 105.0 56.8 4.2 4.0 1,870.1 21 44G0 1,230.4 155.6 56.8 4.2 4.0 1,870.1 21 44G1 3,569.6 243.0 3.812.6 3.2 528.5 21 44G1 3,569.6 243.0 1.120.0 248.2 4.080 0.00 0.0 4.2555.5 22 37G0 72.9 2.501.6 93.7 90.9 32.7 90.263 22 38G0 4.378.8 614.7 28.1 67.6 10.1 2 4.22 23 39G0 478.4 130.9 1.3 2 4.22 23 940.6 16 0.3 22.04 2.23 2.201 <th>21</th> <th>41G0</th> <th>448.9</th> <th>11.9</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>460.8</th>	21	41G0	448.9	11.9								460.8
21 41G2 175 7 67.26 7 4745.9 3,809.3 956.3 232.4 16,646.3 21 42G1 219.1 1,130.4 155.6 56.8 4.2 4.0 1,570.1 21 42G2 420.3 105.0 55.8 52.4 3.2 525.5 21 43G1 7,500.8 463.4 5.4 5.4 7,968.6 21 44G0 1,220.0 37.7 1,120.0 248.2 4.080 0.00 0.0 42,553.5 22 37G0 720.9 29.1 0.3 7 9,028 22 38G0 4,379.9 2,501.6 93.7 90.9 32.7 9,028 22 38G1 257.1 47.9 28.1 67.6 10.1 7 9,028 22 39G9 40.6 1.6 7 42.2 40.6 42.2 23 9406 6.1.6 7 7.7 12.8 15.55.6 2.0.3 12.421	21	41G1	5,536.3	3,946.7	392.1	217.3	159.5	15.8	28.2			10,295.9
21 42G1 219.1 1,130.4 155.6 56.8 4.2 4.0 1,570.1 21 43G1 7,500.8 463.4 3.2 528.5 21 44G0 1,232.0 37.7 1,269.7 3,812.6 21 44G1 3,569.6 243.0 0.3 248.2 40.80 0.00 0.0 42,553.5 22 37G1 6,307.9 2,501.6 93.7 90.9 32.7 9,026.8 22 38G0 4,378.8 614.7 28.1 67.6 10.1 5.099.3 22 38G0 4,378.8 614.7 28.1 67.6 10.1 42.2 23 39G0 478.4 130.9 1.3 5.099.3 30.6 610.6 22 39G0 478.4 130.9 1.3 5.27 7.300.0 22 40G1 707.3 22.7 7.300.0 7.300.0 7.300.0 7.300.0 7.300.0 23 40G2 2	21	41G2	175.7	6,726.7	4,745.9	3,809.3	956.3	232.4				16,646.3
21 42G2 420.3 105.0 3.2 528.5 21 43G1 7,500.8 463.4 5.4 7,969.6 21 44G0 1,222.0 37.7 3.12.6 3.12.6 21 44G3 3,569.6 243.0 3.612.6 3.812.6 22 37G0 720.9 29.1 0.3 750.3 9.028.8 22 38G0 4.378.8 614.7 28.1 67.6 10.1 9.028.8 22 38G1 257.1 47.9 3.2 90.9 32.7 9.028.8 22 38G1 257.1 47.9 3.6 0.1 1.4 42.2 22 39G0 478.4 130.9 1.3 5.010 48.2 22 40G9 2403.7 19.4 2.423.1 1.421.0 5.903.3 22 40G1 707.3 22.7 730.0 2.00.0 0.00 0.00 0.00 1.9.2.913 23 40G2	21	42G1	219.1	1,130.4	155.6	56.8	4.2		4.0			1,570.1
21 43G1 7,500.8 463.4 5.4 7,666.6 21 44G0 1,232.0 37.7 12.664.8 5,293.6 4,083.40 1,120.0 248.2 40.80 0.00 0.0 42,553.5 22 37G0 720.9 29.1 0.3 7503.3 2 7503.3 22 37G1 6,307.9 2,501.6 93.7 90.9 32.7 9,026.8 22 38G1 257.1 47.9 0.3 90.9 32.7 9,026.8 22 38G1 257.1 47.9 90.9 32.7 9,026.8 22 39G0 478.4 130.9 1.3 67.6 10.1 42.2 22 39G0 478.4 130.9 1.3 610.8 22 39G0 478.4 130.9 0.3 22.442.1 59.9 22 40G1 707.3 22.7 730.0 0.00 0.00 0.0 0.0 19.262.3 23	21	42G2	420.3	105.0					3.2			528.5
21 44G0 1,232.0 37.7 1,269.7 21 44G1 3,569.6 243.0 3,812.6 Total 19,102.7 12,668.8 5,293.6 4,083.00 1,120.0 248.2 40.80 0.00 0.0 4,2553.5 22 37G0 720.9 2,501.6 93.7 90.9 32.7 9,026.8 22 38G0 4,378.8 614.7 28.1 67.6 10.1 5,099.3 22 38G1 257.1 47.9 302.7 302.8 302.7 302.8 22 39G0 478.4 130.9 1.3 5.099.3 32.7 302.7 22 39G0 478.4 130.9 1.3 5.011.1 5.099.3 32.7 22 40G0 240.37 19.4 5.7 2.422.1 30.0 2.001.9 15.470.3 12.421.0 5.992.3 10.783.2 23 40G2 5.593.6 3.77.7 121.8 158.50 44.7 0.0	21	43G1	7,500.8	463.4					5.4			7,969.6
21 44G1 3,669.6 243.0 3,812.6 Total 19,102.7 12,664.8 5,293.6 4,083.40 1,120.0 248.2 40.80 0.00 0.0 42,553.5 22 37G0 720.9 29.1 0.3 750.3 22 38G0 4,378.8 614.7 28.1 67.6 10.1 5,099.3 22 38G1 257.1 47.9 3305.0 3305.0 22 239G1 48.2 - - 442.2 305.0 442.2 239G1 48.2 - - 442.2 442.2 440.9 - 64.4 22 400F9 6.4 - 22.423.1 - - - 48.2 24 40G1 707.3 22.7 - 730.0 - - - - - - - - - - - - - - - - - - -	21	44G0	1,232.0	37.7								1,269.7
Total 19,102.7 12,664.8 5,293.6 4,083.40 1,120.0 248.2 40.80 0.00 0.0 42,553.5 22 37G0 720.9 29.1 0.3 90.9 32.7 90.9 32.7 90.9 32.7 90.9 32.7 90.9 32.7 90.9 32.7 90.9 32.7 90.9 32.7 90.9 32.7 90.9 32.7 90.9 32.7 90.9 32.7 90.9 32.7 90.9 32.7 90.9 30.50 3050 22 38G1 257.1 47.9 11.3 67.6 10.1 42.2 3051 442.2 42.2 3051 442.2 442.2 442.2 442.2 442.2 442.2 442.2 442.2 443.2 442.2 443.2 442.2 442.3 442.3 442.3 442.2 443.2 442.2 443.2 442.3 442.3 443.2 443.2 446.2 440.6 24.42.3 473.0 12.421.0 50.92.3	21	44G1	3,569.6	243.0								3,812.6
22 37G0 720.9 29.1 0.3 750.3 22 37G1 6,307.9 2,501.6 93.7 90.9 32.7 \$9,026.8 22 38G0 4,378.8 614.7 28.1 67.6 10.1 \$5,099.3 22 38G1 257.1 47.9 \$305.0 \$305.0 \$22.3 23 39G9 40.6 1.6 \$42.2 \$396.0 478.4 130.9 \$1.3 \$610.6 22 39G0 478.4 130.9 \$1.3 \$610.6 \$42.2 22 40G6 2,403.7 19.4 \$2.423.1 \$2.423.1 22 40G61 707.3 22.7 \$730.0 \$70.0 \$0.00 \$0.0 \$0.0 \$0.0 \$2.423.1 24 40G2 2,883.1 2,141.3 20.6 \$5.532.6 \$2.017.9 15.470.3 12.421.0 \$5.992.3 107.892.2 23 41G2 2,883.1 2,141.3 \$20.6 \$5.532.6 \$2.017.9		Total	19,102.7	12,664.8	5,293.6	4,083.40	1,120.0	248.2	40.80	0.00	0.0	42,553.5
22 37G1 6,307.9 2,501.6 93.7 90.9 32.7 9,026.8 22 38G0 4,378.8 614.7 28.1 67.6 10.1 5,099.3 22 38G1 257.1 47.9 305.0 24.2 395.9 40.6 1.6 42.2 22 39G0 478.4 130.9 1.3 610.6 48.2 22 39G1 48.2 48.2 48.2 48.2 24 40G9 6.4 5.37.7 19.4 2,423.1 24 40G1 707.3 22.7 730.0 0.00 0.00 0.0 19,262.3 23 41G2 2,883.1 2,141.3 20.6 55.52 2,0410.9 25,458.9 2,017.9 15,470.3 12,421.0 5,992.3 107,822.2 24 37G2 463.3 131.3 22.1 25.0 25.9 3.1 3.4 0.5 674.6 24 37G2 463.3 131.3 22.	22	37G0	720.9	29.1			0.3					750.3
22 38G0 4,378.8 614.7 28.1 67.6 10.1 5,099.3 22 38G1 257.1 47.9 305.0 305.0 22 39G0 478.4 130.9 1.3 42.2 23 39G1 48.2 42.2 40F9 6.4 64.4 22 40G0 2,403.7 19.4 2.2,7 730.0 2.423.1 24 40G1 707.3 22.7 730.0 2.00.9 5.09.3 12.421.0 5.992.3 107.832.2 241G0 210.3 9.8 0.3 220.4 5.026.3 5.044.7 0.0 0.00 0.00 19.262.3 23 40G2 528.3 5.532.2 20.410.9 25.458.9 22.017.9 15.470.3 12.421.0 5.992.3 107.832.2 24 37G2 463.3 131.3 22.1 25.0 25.9 3.1 3.4 0.5 647.6 24 37G2 463.3 131.3 22.1 <th>22</th> <th>37G1</th> <th>6,307.9</th> <th>2,501.6</th> <th>93.7</th> <th>90.9</th> <th>32.7</th> <th></th> <th></th> <th></th> <th></th> <th>9,026.8</th>	22	37G1	6,307.9	2,501.6	93.7	90.9	32.7					9,026.8
22 38G1 257.1 47.9 305.0 22 39F9 40.6 1.6	22	38G0	4,378.8	614.7	28.1	67.6	10.1					5,099.3
22 39F9 40.6 1.6 42.2 22 39G0 478.4 130.9 1.3 610.6 22 39G1 48.2 48.2 48.2 48.2 22 40F9 6.4 5.4 2.43.1 2.40.60 2.403.7 19.4 2.42.31 22 40G1 707.3 22.7 5.53.2 0.3 730.0 23 41G0 210.3 9.8 0.3 12.421.0 5.992.3 107.832.2 23 40G2 5.53.2 20.410.9 25.458.9 22.017.9 15.470.3 12.421.0 5.992.3 107.832.2 24 37G2 463.3 131.3 22.1 25.0 25.9 3.1 3.4 0.5 674.6 24 37G3 59.0 15.0 25.1 37.4 40.6 23.8 15.1 11.5 7.3 24.8 24 37G3 59.0 15.0 25.1 37.4 40.6 23.8 15.1	22	38G1	257.1	47.9								305.0
22 39G0 478.4 130.9 1.3 610.6 22 39G1 48.2 64.3 707.3 22.7 730.0 730.0 700.0 0.00 0.00 0.00 0.00 0.00 10.8 85.2 20.17.9 15.470.3 12.421.0 5.992.3 107.822.3 10	22	39F9	40.6	1.6								42.2
22 39G1 48.2 48.2 22 40F9 6.4 6.4 22 40G0 2,403.7 19.4 2,423.1 22 40G1 707.3 22.7 730.0 22 41G0 210.3 9.8 0.3 220.4 Total 15,559.6 3,377.7 121.8 158.50 44.7 0.0 0.00 0.00 9.92.3 107.832.2 23 40G2 2883.1 2,141.3 20.6 5.045.9 22,017.9 15,470.3 12,421.0 5.992.3 107.832.2 24 37G2 463.3 131.3 22.1 25.0 25.9 3.1 3.4 0.5 5.992.3 112.877.2 24 37G2 463.3 131.3 22.1 25.0 25.9 3.1 3.4 0.5 5.992.3 112.877.2 24 37G2 463.3 131.3 22.1 25.0 25.9 3.1 3.4 0.5 5.992.3 112.877.2 <	22	39G0	478.4	130.9			1.3					610.6
22 40F9 6.4 6.4 22 40G0 2,403.7 19.4 2,423.1 22 40G1 707.3 22.7 730.0 22 41G0 210.3 9.8 0.3 220.4 Total 15,559.6 3,77.7 121.8 158.50 44.7 0.0 0.00 0.00 10,92.62.3 23 40G2 528.3 5,532.6 20,410.9 25,458.9 22,017.9 15,470.3 12,421.0 5,992.3 107,832.2 23 41G2 2,883.1 2,141.3 20.6 5553.2 20,410.9 25,458.9 22,017.9 15,470.3 12,421.0 5,992.3 112,877.2 24 37G2 463.3 131.3 22.1 25.0 25.9 3.1 3.4 0.5 6474.6 24 37G2 463.3 131.3 22.1 25.0 25.9 3.1 3.4 0.5 6474.6 24 37G2 474.3 241.3 82.4	22	39G1	48.2									48.2
22 40G0 2,403.7 19,4 2,423.1 22 40G1 707.3 22.7 730.0 21 41G0 210.3 9.8 0.3 220.1 23 41G0 210.3 9.8 0.3 220.1 23 41G2 28.3 5,532.6 20,410.9 25,458.9 22,017.9 15,470.3 12,421.0 5,992.3 107,832.2 23 41G2 2,883.1 2,141.3 20.6 5,553.2 20,410.9 25,458.9 22,017.9 15,470.3 12,421.0 5,992.3 117,872.2 24 37G2 463.3 131.3 22.1 25.0 25.9 3.1 3.4 0.5 647.6 24 37G3 59.0 15.0 25.1 37.4 40.6 23.8 15.1 11.5 7.3 23.48.8 24 37G2 37.50 2,404.6 317.5 468.8 467.6 94.4 65.2 28.8 4.6 7.584.5 24.438.63	22	40F9	6.4									6.4
22 41G0 40G1 210.3 707.3 9.8 22.7 730.0 23 41G0 210.3 9.8 0.3 220.4 70tal 15,559.6 3,377.7 121.8 158.50 44.7 0.0 0.00 0.00 0.01 19,262.3 23 41G2 2,883.1 2,141.3 20.6 22,017.9 15,470.3 12,421.0 5,992.3 10,832.2 24 37G2 463.3 131.3 22.1 25.0 25.9 3.1 3.4 0.5 674.6 24 37G3 59.0 15.0 25.1 37.4 40.6 23.8 15.1 11.5 7.3 244.8 24 37G3 59.0 15.0 25.1 37.4 40.6 23.8 15.1 11.5 7.3 244.8 24 37G4 174.3 241.3 82.4 100.1 111.4 43.4 33.1 19.8 8.5 814.3 24 38G2 3,735.0 2,404.6 317.5 466.8<	22	40G0	2,403.7	19.4								2,423.1
22 4160 210.3 9.8 0.3 220.4 Total 15,559.6 3,377.7 121.8 155.50 44.7 0.0 0.00 0.00 0.0 19,262.3 23 40G2 528.3 5,532.6 20,410.9 25,458.9 22,017.9 15,470.3 12,421.0 5,992.3 107,832.2 23 4162 2,883.1 2,141.3 20.6 5,045.0 22,017.9 15,470.3 12,421.0 5,992.3 112,877.2 24 37G2 463.3 131.3 22.1 25.0 25.9 3.1 3.4 0.5 674.6 24 37G3 59.0 15.0 25.1 37.4 40.6 23.8 15.1 11.5 7.3 234.8 24 37G4 174.3 241.3 82.4 100.1 111.4 43.4 33.1 19.8 8.5 814.3 24 38G3 4,327.7 5.894.3 2,707.9 3,423.8 3,906.0 1,466.7 1,26	22	40G1	707.3	22.7								730.0
Total 15,559.6 3,377.7 121.8 158.50 44.7 0.0 0.00 0.00 0.0 19,262.3 23 40G2 528.3 5,53.2 2,0410.9 25,458.9 22,017.9 15,470.3 12,421.0 5,992.3 107,832.2 23 41G2 2,883.1 2,141.3 20.6 5553.2 20,410.9 25,458.9 22,017.9 15,470.3 12,421.0 5,992.3 107,832.2 5,045.0 70tal 2,883.1 2,141.3 20.6 5553.2 20,410.9 25,458.9 22,017.9 15,470.3 12,421.0 5,992.3 112,877.2 24 37G2 463.3 131.3 22.1 25.0 25.9 3.1 3.4 0.5 674.6 24 37G3 59.0 15.0 25.1 37.4 40.6 22.8 15.1 11.5 7.3 2248.8 24 38G2 3,735.0 2,404.6 317.5 466.8 467.6 94.4 65.2 28.8 4.6 <th>22</th> <th>41G0</th> <th>210.3</th> <th>9.8</th> <th></th> <th></th> <th>0.3</th> <th></th> <th></th> <th></th> <th></th> <th>220.4</th>	22	41G0	210.3	9.8			0.3					220.4
23 40G2 528.3 5,53.6 20,410.9 25,458.9 22,017.9 15,470.3 12,421.0 5,992.3 107,832.2 5,045.0 24 37G2 26,683.1 2,141.3 20.6 5 5 20,410.9 25,458.9 22,017.9 15,470.3 12,421.0 5,992.3 107,832.2 5,045.0 24 37G2 463.3 131.3 22.1 25.0 25.9 3.1 3.4 0.5 674.6 24 37G3 590.0 15.0 25.1 37.4 40.6 23.8 15.1 11.5 7.3 234.8 24 37G4 174.3 241.3 82.4 100.1 111.4 43.4 33.1 19.8 8.5 814.3 24 38G2 3,735.0 2,404.6 317.5 466.8 467.6 94.4 65.2 28.8 4.6 7,584.5 24 38G3 4,327.7 5,894.3 2,707.9 3,423.8 3,096.0 1,466.7 1,262.0		Total	15,559.6	3,377.7	121.8	158.50	44.7	0.0	0.00	0.00	0.0	19,262.3
23 4162 2,883.1 2,141.3 20.6 5,045.0 Total 2,883.1 2,141.3 20.6 5,045.0 12,217.0 15,470.3 12,421.0 5,992.3 112,877.2 24 37G2 463.3 131.3 22.1 25.0 25.9 3.1 3.4 0.5 674.6 24 37G3 59.0 15.0 25.1 37.4 40.6 23.8 15.1 11.5 7.3 234.8 24 37G3 59.0 24.13 82.4 100.1 111.4 43.4 33.1 19.8 8.5 814.3 24 38G2 3,735.0 2,404.6 317.5 466.8 467.6 94.4 65.2 28.8 4.6 7,584.5 24 38G3 4,327.7 5,894.3 2,077.9 3,423.8 3,096.0 1,466.7 1,262.0 477.0 150.4 22,095.8 24 38G4 1,364.3 2,692.0 674.6 746.9 339.2 226.6	23	40G2		528.3	5,532.6	20,410.9	25,458.9	22,017.9	15,470.3	12,421.0	5,992.3	107,832.2
Total 2,883.1 2,669.6 5,553.2 20,410.9 25,458.9 22,017.9 15,470.3 12,421.0 5,992.3 112,877.2 24 37G2 463.3 131.3 22.1 25.0 25.9 3.1 3.4 0.5 674.6 24 37G3 59.0 15.0 25.1 37.4 40.6 23.8 15.1 11.5 7.3 2348 24 37G4 174.3 241.3 82.4 100.1 111.4 43.4 33.1 19.8 8.5 814.3 24 38G2 3,73.50 2,404.6 317.5 466.8 467.6 94.4 65.2 28.8 4.6 7,584.5 24 38G3 4,327.7 5,894.3 2,077.9 3,423.8 3,096.0 1,466.7 1,262.0 477.0 150.4 22,055.8 24 38G4 1,364.3 2,692.0 674.6 746.9 839.2 226.6 217.2 88.9 13.4 6,863.1 24 <th>23</th> <th>41G2</th> <th>2,883.1</th> <th>2,141.3</th> <th>20.6</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>5,045.0</th>	23	41G2	2,883.1	2,141.3	20.6							5,045.0
24 37G2 463.3 131.3 22.1 25.0 25.9 3.1 3.4 0.5 674.6 24 37G3 59.0 15.0 25.1 37.4 40.6 23.8 15.1 11.5 7.3 234.8 24 37G3 417.3 241.3 82.4 100.1 111.4 43.4 33.1 19.8 8.5 814.3 24 38G2 3.735.0 2404.6 317.5 466.8 467.6 94.4 65.2 28.8 4.6 7.584.5 24 38G3 4.327.7 5.894.3 2.707.9 3.423.8 3.096.0 1.466.7 1.262.0 477.0 150.4 22.805.8 24 38G4 1.364.3 2.692.0 674.6 746.9 839.2 226.6 217.2 88.9 13.4 6.863.1 24 39G2 1.926.3 397.3 396.1 345.9 379.2 175.6 100.2 112.3 52.2 4.488.1 24		Total	2,883.1	2,669.6	5,553.2	20,410.9	25,458.9	22,017.9	15,470.3	12,421.0	5,992.3	112,877.2
24 37G3 59.0 15.0 25.1 37.4 40.6 23.8 15.1 11.5 7.3 234.8 24 37G4 174.3 241.3 82.4 100.1 111.4 43.4 33.1 19.8 8.5 814.3 24 38G2 3,735.0 2,404.6 317.5 466.8 467.6 94.4 65.2 28.8 4.6 7,584.5 24 38G3 4,327.7 5,894.3 2,707.9 3,423.8 3,096.0 1,466.7 1,262.0 477.0 150.4 22,805.8 24 38G4 1,364.3 2,692.0 674.6 746.9 399.2 226.6 217.2 88.9 13.4 6,863.1 24 39G2 1,926.3 997.3 396.1 345.9 379.2 175.6 100.2 112.3 5.2 4,438.1 24 39G3 4,825.3 5,371.3 2,354.7 2,790.0 2,650.1 1,255.7 1,081.2 631.1 86.7 2,995.1	24	37G2	463.3	131.3	22.1	25.0	25.9	3.1	3.4	0.5		674.6
24 37G4 174.3 241.3 82.4 100.1 111.4 43.4 33.1 19.8 8.5 814.3 24 38G2 3,75.0 2,404.6 317.5 466.8 467.6 94.4 65.2 28.8 4.6 7,584.5 24 38G3 4,327.7 5,894.3 2,707.9 3,423.8 3,096.0 1,466.7 1,262.0 477.0 150.4 22,805.8 24 38G4 1,364.3 2,692.0 674.6 746.9 839.2 262.6 100.2 112.3 5.2 4,438.1 24 39G2 1,926.3 997.3 396.1 345.9 379.2 175.6 100.2 112.3 5.2 4,438.1 24 39G2 4,826.3 5,371.3 2,354.7 2,739.0 2,660.1 1,256.7 1,081.2 631.1 86.7 20,995.1 24 39G3 4,825.3 5,371.3 2,354.7 2,739.0 2,660.1 1,633.1 812.7 248.3 17,371	24	37G3	59.0	15.0	25.1	37.4	40.6	23.8	15.1	11.5	7.3	234.8
24 38G2 3,735.0 2,404.6 317.5 466.8 467.6 94.4 65.2 28.8 4.6 7,584.5 24 38G3 4,327.7 5,894.3 2,707.9 3,423.8 3,096.0 1,466.7 1,262.0 477.0 150.4 22,858.8 24 38G4 1,364.3 2,692.0 674.6 746.9 839.2 226.6 217.2 88.9 13.4 6,863.1 24 39G2 1,926.3 997.3 396.1 345.9 379.2 275.6 100.2 112.3 5.2 4,438.1 24 39G3 4,825.3 5,371.3 2,354.7 2,739.0 2,650.1 1,255.7 1,081.2 631.1 86.7 20,995.1 24 39G4 1,179.7 3,067.4 2,154.3 3,351.5 3,247.1 1,675.9 1,633.1 812.7 248.3 17,371.0 39G4 1,179.7 20,814.5 8,734.7 11,236.4 10,857.1 4,966.2 4,410.5 2,182.6	24	37G4	174.3	241.3	82.4	100.1	111.4	43.4	33.1	19.8	8.5	814.3
24 38G3 4.327.7 5.894.3 2,707.9 3.423.8 3,096.0 1.466.7 1.262.0 477.0 150.4 22,805.8 24 38G4 1,364.3 2,692.0 674.6 746.9 839.2 226.6 217.2 88.9 13.4 6,863.1 24 39G2 1,926.3 997.3 396.1 345.9 379.2 275.6 100.2 112.3 5.2 4,438.1 24 39G3 4,825.3 5,371.3 2,354.7 2,739.0 2,650.1 1,255.7 1,081.2 631.1 86.7 20,995.1 24 39G4 1,179.7 3,067.4 2,154.3 3,351.5 3,247.1 1,676.9 1,633.1 812.7 248.3 17,371.0 39G4 1,179.7 3,067.4 2,154.3 3,361.5 3,247.1 1,676.9 1,633.1 812.7 248.3 17,371.0 70tal 18,054.9 20,814.5 8,734.7 11,236.4 10,857.1 4,966.2 4,410.5 2,182.6 <	24	38G2	3,735.0	2,404.6	317.5	466.8	467.6	94.4	65.2	28.8	4.6	7,584.5
24 38G4 1,364.3 2,692.0 674.6 746.9 839.2 226.6 217.2 88.9 13.4 6,863.1 24 39G2 1,926.3 997.3 396.1 345.9 379.2 175.6 100.2 112.3 5.2 4,438.1 24 39G3 4,825.3 5,371.3 2,354.7 2,739.0 2,650.1 1,255.7 1,081.2 631.1 86.7 20,995.1 24 39G3 1,179.7 3,067.4 2,154.3 3,351.5 3,247.1 1,676.9 1,633.1 812.7 248.3 17,371.0 70tal 18,054.9 20,814.5 8,734.7 11,236.4 10,857.1 4,966.2 4,410.5 2,182.6 524.4 81,781.3 22-24 Total 36,497.6 26,861.8 14,409.7 31,805.8 36,60.7 26,84.1 19,808.8 14,603.6 6,516.7 21,3920.8 21-24 Total 55,600.3 39,526.6 19,703.3 35,889.2 37,480.7 27,232.3	24	38G3	4,327.7	5,894.3	2,707.9	3,423.8	3,096.0	1,466.7	1,262.0	477.0	150.4	22,805.8
24 39G2 1,926.3 997.3 396.1 345.9 379.2 175.6 100.2 112.3 5.2 4,488.1 24 39G3 4,825.3 5,371.3 2,354.7 2,739.0 2,650.1 1,255.7 1,081.2 631.1 86.7 20,995.1 24 39G4 1,179.7 3,067.4 2,154.3 3,351.5 3,247.1 1,676.9 1,633.1 812.7 248.3 17,371.0 200 Total 18,054.9 20,814.5 8,734.7 11,236.4 10,857.1 4,666.2 2,412.6 52,44.4 81,781.3 22-24 Total 36,497.6 26,861.8 14,409.7 31,805.8 36,360.7 26,984.1 19,808.8 14,603.6 6,516.7 21,920.8 21-24 Total 55,600.3 39,526.6 19,703.3 35,889.2 37,480.7 27,232.3 19,921.6 14,603.6 6,516.7 25,674.3	24	38G4	1,364.3	2,692.0	674.6	746.9	839.2	226.6	217.2	88.9	13.4	6,863.1
24 39G3 4,825.3 5,371.3 2,354.7 2,739.0 2,650.1 1,255.7 1,081.2 631.1 86.7 20,995.1 24 39G4 1,179.7 3,067.4 2,154.3 3,351.5 3,247.1 1,676.9 1,633.1 812.7 24.83 17,371.0 Total 18,054.9 20,814.5 8,734.7 11,236.4 10,857.1 4,966.2 4,410.5 2,182.6 524.4 81,781.3 22-24 Total 36,497.6 26,861.8 14,409.7 31,805.8 63,636.7 26,984.1 19,880.8 14,603.6 6,516.7 21,392.08 21-24 Total 55,600.3 39,526.6 19,703.3 35,889.2 37,480.7 27,232.3 19,921.6 14,603.6 6,516.7 25,667.43	24	39G2	1,926.3	997.3	396.1	345.9	379.2	175.6	100.2	112.3	5.2	4,438.1
24 39G4 1,179.7 3,067.4 2,154.3 3,351.5 3,247.1 1,676.9 1,633.1 812.7 248.3 17,371.0 Total 18,054.9 20,814.5 8,734.7 11,236.4 10,857.1 4,966.2 4,410.5 2,182.6 524.4 81,781.3 22-24 Total 36,497.6 26,861.8 14,409.7 31,805.8 36,360.7 26,984.1 19,808.8 14,603.6 6,516.7 213,920.8 21-24 Total 55,600.3 39,526.6 19,703.3 35,889.2 37,480.7 27,232.3 19,921.6 14,603.6 6,516.7 256,674.3	24	39G3	4,825.3	5,371.3	2,354.7	2,739.0	2,650.1	1,255.7	1,081.2	631.1	86.7	20,995.1
Total 18,054.9 20,814.5 8,734.7 11,236.4 10,857.1 4,966.2 4,410.5 2,182.6 524.4 81,781.3 22-24 Total 36,497.6 26,861.8 14,409.7 31,805.8 36,360.7 26,984.1 19,880.8 14,603.6 6,516.7 213,920.8 21-24 Total 55,600.3 39,526.6 19,703.3 35,889.2 37,480.7 27,232.3 19,921.6 14,603.6 6,516.7 26,647.43	24	39G4	1,179.7	3,067.4	2,154.3	3,351.5	3,247.1	1,676.9	1,633.1	812.7	248.3	17,371.0
22-24 Total 36,497.6 26,861.8 14,409.7 31,805.8 36,360.7 26,984.1 19,880.8 14,603.6 6,516.7 213,920.8 21-24 Total 55,600.3 39,526.6 19,703.3 35,889.2 37,480.7 27,232.3 19,921.6 14,603.6 6,516.7 256,474.3		Total	18,054.9	20,814.5	8,734.7	11,236.4	10,857.1	4,966.2	4,410.5	2,182.6	524.4	81,781.3
21-24 Total 55,600.3 39,526.6 19,703.3 35,889.2 37,480.7 27,232.3 19,921.6 14,603.6 6,516.7 256,474.3	22-24	Total	36,497.6	26,861.8	14,409.7	31,805.8	36,360.7	26,984.1	19,880.8	14,603.6	6,516.7	213,920.8
	21-24	Total	55,600.3	39,526.6	19,703.3	35,889.2	37,480.7	27,232.3	19,921.6	14,603.6	6,516.7	256,474.3

Table 8: Total biomass (t) of herring by age and area (RV "Solea" October 2006).

Table 9: Numbers (millions) of sprat by age and area (RV "Solea"	October 2006)
Table 5. Numbers (minons) of sprat by age and area (KV) Solea	OCLUDEI 2000)

division Age group 0 1 2 3 4 5 6 7 8+ Total 21 4160 0.05 0.49 2.23 0.59 3.33 21 4162 10.07 33.24 110.40 49.11 8.24 0.44 211.52 21 4262 0.31 13.34 35.43 9.70 0.53 53.3 21 4262 0.31 13.34 35.43 9.70 0.53 9.72 21 4361	S	ub-	Rectangle/										
21 41G0 0.05 0.49 2.23 0.59 3.33 21 41G2 10.07 33.24 11.43 0.23 771.22 21 42G1 0.07 33.24 10.40 49.11 8.24 0.44 2115.52 21 42G2 0.31 13.34 35.43 9.70 0.53	div	rision	Age group	0	1	2	3	4	5	6	7	8+	Total
21 41G1 0.56 16.89 42.09 11.43 0.23 71.22 21 41G2 10.07 33.24 110.40 49.11 8.24 0.44 211.55 21 42G2 0.31 13.34 35.43 9.70 0.53 59.31 21 44G0 11.05 10.98 18.78 4.18 0.31 453.33 21 44G1	:	21	41G0	0.05	0.49	2.23	0.59						3.36
21 41G2 10.07 33.24 110.40 49.11 8.24 0.44 211.50 21 42G1 0.19 1.06 8.68 2.43 0.14 12.50 21 43G1	:	21	41G1	0.56	16.89	42.09	11.43	0.23					71.20
21 42G1 0.19 1.06 8.68 2.43 0.14 1.25 21 43G1	:	21	41G2	10.07	33.24	110.40	49.11	8.24		0.44			211.50
21 42G2 0.31 13.34 35.43 9.70 0.53 59.33 21 44G0 11.05 10.98 18.78 4.18 0.31	:	21	42G1	0.19	1.06	8.68	2.43	0.14					12.50
21 43G1 44G0 11.05 10.98 18.78 4.18 0.31 0.00 21 44G0 11.05 10.98 18.78 4.18 0.31 4453 21 44G0 11.05 10.98 18.78 4.18 0.31 0.00 0.00 0.00 4453 22 37G0 460.76 2.13 1.14 2.90 0.22	:	21	42G2	0.31	13.34	35.43	9.70	0.53					59.31
21 44G0 11.05 10.98 18.78 4.18 0.31 45.33 21 44G1	:	21	43G1										0.00
21 44G1 0.00 Total 22.23 76.00 217.61 77.44 9.45 0.00 0.44 0.00 0.00 403.17 22 37G0 460.78 2.13 1.14 2.90 0.22 467.17 22 37G0 440.78 2.13 1.14 2.90 0.22 467.17 22 38G0 228.51 0.94 0.16 0.73 0.36 0.08 0.03 230.81 22 38G1 132.97 1.73 0.34 1.56 0.21 0.02 136.82 22 39G1 206.37 0.19 0.71 0.61 207.33 27.63 22 40G3 307.30 2.20 0.69 1.44 0.27 0.01 311.91 22 40G3 2.20 0.69 1.44 0.27 0.01 311.91 22 40G2 17.03 19.54 12.53 13.36 3.54 0.73 0.66.73	:	21	44G0	11.05	10.98	18.78	4.18	0.31					45.30
Total 22.23 76.00 217.61 77.44 9.45 0.00 0.44 0.00 0.00 403.17 22 37G0 460.78 2.13 1.14 2.90 0.22 467.17 22 38G0 228.51 0.94 0.16 0.73 0.36 0.08 0.03 220.61 22 38G1 132.97 1.73 0.34 1.56 0.21 0.02 136.83 22 39G0 46.36 7.42 2.30 5.74 0.81 0.09 62.72 21 39G1 206.37 0.19 0.71 0.06 207.33 22 40G1 2.4.19 0.25 0.69 1.44 0.27 0.01 311.91 22 40G2 307.30 2.20 0.69 1.44 0.27 0.01 311.91 22 40G2 17.03 19.54 12.53 13.36 3.54 0.73 666.73 23 40G2 17.0	:	21	44G1										0.00
22 37G0 460.78 2.13 1.14 2.90 0.22 467.17 22 37G1 643.84 79.91 72.97 478.42 50.60 3.28 1.48 1.530.60 22 38G0 228.51 0.94 0.16 0.73 0.36 0.08 0.03 2230.81 22 38G1 132.97 1.73 0.34 1.56 0.21 0.02 136.82 22 39G0 46.36 7.42 2.30 5.74 0.81 0.09 227.33 22 40G9 307.30 2.20 0.69 1.44 0.27 0.01 311.91 22 40G1 2.4.19 0.25 0.10 0.27 0.04 24.86 22 40G1 2.4.19 0.25 0.18 0.06 0.10 0.03 0.00 1.63 0.00 3.109.76 24 40G2 17.03 19.54 12.53 13.36 3.54 0.73 0.66 <			Total	22.23	76.00	217.61	77.44	9.45	0.00	0.44	0.00	0.00	403.17
22 37G1 843.84 79.91 72.97 478.42 50.60 3.28 1.48 1,530.50 22 38G0 228.51 0.94 0.16 0.73 0.36 0.08 0.03 220.81 22 38G1 132.97 1.73 0.34 1.56 0.21 0.02 138.83 22 39F9 98.64 0.74 2.30 5.74 0.81 0.09 62.72 22 39G1 206.37 0.19 0.71 0.06 207.33 207.33 22 40G0 307.30 2.20 0.69 1.44 0.27 0.01 311.91 22 40G1 24.19 0.25 0.10 0.27 0.04 24.86 23 41G2 2.38.84 95.50 77.95 491.87 52.60 3.36 0.00 1.63 0.00 3.19.76 23 41G2 2.63 5.02 2.54 2.04 0.33 0.05 1.261 <th>:</th> <th>22</th> <th>37G0</th> <th>460.78</th> <th>2.13</th> <th>1.14</th> <th>2.90</th> <th>0.22</th> <th></th> <th></th> <th></th> <th></th> <th>467.17</th>	:	22	37G0	460.78	2.13	1.14	2.90	0.22					467.17
22 38G0 228.51 0.94 0.16 0.73 0.36 0.08 0.03 230.81 22 38G1 132.97 1.73 0.04 1.56 0.21 0.02 136.83 22 39G0 46.36 7.42 2.30 5.74 0.81 0.09 227.33 22 39G0 46.36 7.42 2.30 5.74 0.81 0.09 207.33 22 40G9 37.63	:	22	37G1	843.84	79.91	72.97	478.42	50.60	3.28		1.48		1,530.50
22 38G1 132.97 1.73 0.34 1.56 0.21 0.02 186.83 22 39F9 98.64 0.74 93.8 93.8 93.8 22 39G0 46.36 7.42 2.30 5.74 0.81 0.09 62.72 22 39G1 206.37 0.19 0.71 0.61 0.00 207.33 22 40G0 307.30 2.20 0.69 1.44 0.27 0.01 311.91 22 40G1 2.41.9 0.25 0.10 0.27 0.04 24.85 22 40G2 17.03 19.54 12.53 13.36 3.54 0.73 0.00 1.63 0.00 3.00 23 40G2 17.03 19.54 12.53 13.36 3.54 0.73 0.00 1.00 0.00 0.00 0.00 7.93 23 40G2 17.03 19.54 12.53 13.36 3.54 0.73 0.00	:	22	38G0	228.51	0.94	0.16	0.73	0.36	0.08		0.03		230.81
22 39F9 98.64 0.74 99.36 22 39G0 46.36 7.42 2.30 5.74 0.81 0.09 62.72 22 39G1 206.37 0.19 0.71 0.06 207.33 22 40F9 37.63	:	22	38G1	132.97	1.73	0.34	1.56	0.21			0.02		136.83
22 39G0 46.36 7.42 2.30 5.74 0.81 0.09 62.72 22 39G1 203.37 0.19 0.71 0.06 2007.33 22 40G9 37.63 37.63 37.63 37.63 22 40G0 307.30 2.20 0.69 1.44 0.27 0.01 311.91 22 40G1 2.4.19 0.25 0.10 0.27 0.04 24.88 22 40G2 17.03 19.54 12.53 13.36 3.54 0.73 66.73 23 40G2 17.03 19.54 12.53 13.36 3.54 0.73 66.73 24 37G2 1,103.90 42.35 11.04 8.20 4.05 0.57 1.197.11 24 37G3 6.884.15 5.02 2.74 2.04 0.33 0.05 1.971.11 24 37G3 6.884.15 5.02 2.79 1.27 1.940.24	:	22	39F9	98.64	0.74								99.38
22 39G1 206.37 0.19 0.71 0.06 207.33 22 40F9 37.63	:	22	39G0	46.36	7.42	2.30	5.74	0.81			0.09		62.72
22 40F9 37.63	:	22	39G1	206.37		0.19	0.71	0.06					207.33
22 40G0 307.30 2.20 0.69 1.44 0.27 0.01 311.91 22 40G1 24.19 0.25 0.10 0.27 0.04 311.91 22 41G0 0.25 0.18 0.06 0.10 0.03 0.66 Total 2,386.84 95.50 77.95 491.87 52.60 3.36 0.00 1.63 0.00 3,109.75 23 40G2 17.03 19.54 12.53 13.36 3.54 0.73 0.00 1.63 0.00 3,009 79.34 23 40G2 17.03 19.54 12.53 13.36 3.54 0.73 0.00 0.00 0.00 79.34 24 37G2 1,130.90 42.35 11.04 8.20 4.05 0.57 1.197.11 24 37G3 6.884.15 1.04 8.20 4.05 0.57 1.994 2.27 24 38G2 1.791.35 67.91 22.70 <th>:</th> <th>22</th> <th>40F9</th> <th>37.63</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>37.63</th>	:	22	40F9	37.63									37.63
22 40G1 24.19 0.25 0.10 0.27 0.04 24.86 22 41G0 0.25 0.18 0.06 0.10 0.03 0.06 0.10 0.03 70tal 2,386.84 95.50 77.95 491.87 52.60 3.36 0.00 1.63 0.00 3,109.75 23 40G2 17.03 19.54 12.53 13.36 3.54 0.73 0.00 1.63 0.00 3,109.75 23 41G2 2.63 5.02 2.54 2.04 0.33 0.05 12.66 70tal 19.66 24.56 15.07 15.40 3.87 0.78 0.00 0.00 0.00 79.34 24 37G2 1,130.90 42.35 11.04 8.20 4.05 0.57 1,197.11 24 37G3 6.884.15 5 12.65 2.79 1.27 1,90.42 24 38G3 6.132.31 442.24 186.79 352.2	:	22	40G0	307.30	2.20	0.69	1.44	0.27			0.01		311.91
22 4160 0.25 0.18 0.06 0.10 0.03 0.66 Total 2,386.84 95.50 77.95 491.87 52.60 3.36 0.00 1.63 0.00 3,109.75 23 40G2 17.03 19.54 12.53 13.36 3.54 0.73 66.73 23 41G2 2.63 5.02 2.54 2.04 0.33 0.05 12.61 Total 19.66 24.56 15.07 15.40 3.87 0.78 0.00 0.00 0.00 79.34 24 37G2 1,130.90 42.35 11.04 8.20 4.05 0.57 1,197.11 24 37G3 6,884.15 6,884.15 6,884.15 24 38G2 1,791.35 67.91 22.70 41.57 12.65 2.79 1.27 1,940.24 24 38G3 6.132.31 442.24 186.79 352.24 94.57 22.39 7.80	:	22	40G1	24.19	0.25	0.10	0.27	0.04					24.85
Total 2,388.84 95.50 77.95 491.87 52.60 3.36 0.00 1.63 0.00 3,109.75 23 40G2 17.03 19.54 12.53 13.36 3.54 0.73 66.73 23 41G2 2.63 5.02 2.54 2.04 0.33 0.05 12.61 Total 19.96 24.56 15.07 15.40 3.87 0.78 0.00 0.00 0.00 79.34 24 37G2 1,130.90 42.35 11.04 8.20 4.05 0.57 1,197.11 24 37G3 6,884.15 5 5.12 1.24 0.39 302.22 24 38G2 1,791.35 67.91 22.70 41.57 12.65 2.79 1.27 1,940.24 24 38G3 6,132.31 442.24 186.79 352.24 94.57 22.39 7.80 7.283.34 24 39G3 876.48 1474.55 232.73 435.85<	:	22	41G0	0.25	0.18	0.06	0.10	0.03					0.62
23 40G2 17.03 19.54 12.53 13.36 3.54 0.73 66.73 23 41G2 2.63 5.02 2.54 2.04 0.33 0.05 12.61 Total 19.66 24.56 15.07 15.40 3.87 0.78 0.00 0.00 0.00 79.34 24 37G3 6,884.15 10.03 11.04 8.20 4.05 0.57 1.197.11 6,884.16 24 37G3 6,884.15 5.10 17.42 5.12 1.24 0.39 302.22 24 38G2 17.91.35 67.91 22.70 41.57 12.65 27.9 1.27 1.940.24 24 38G3 6,132.31 44.24 186.79 352.24 94.57 22.39 7.80 7.238.34 24 38G4 10.89.41 166.67 78.24 131.44 38.59 9.36 2.97 1.519.91 24 39G3 876.48 474.55 232.7			Total	2,386.84	95.50	77.95	491.87	52.60	3.36	0.00	1.63	0.00	3,109.75
23 41G2 2.63 5.02 2.54 2.04 0.33 0.05 12.61 Total 19.66 24.56 15.07 15.40 3.87 0.78 0.00 0.00 0.00 79.34 24 37G2 1,130.90 42.35 11.04 8.20 4.05 0.57 1,197.11 24 37G3 6,884.15 6.884.15 6.884.15 6.884.15 6.884.15 6.884.15 24 37G4 245.19 22.49 10.37 17.42 5.12 1.24 0.39 9.362 24 38G2 1,791.35 67.91 22.70 41.57 12.65 2.79 1.27 1.940.24 24 38G2 6,312.31 442.24 186.79 352.24 94.57 22.39 7.80 7.238.34 24 38G4 1,099.64 169.67 7.824 131.44 38.59 9.36 2.97 1,519.91 24 39G3 876.48 474.55 232.73	:	23	40G2	17.03	19.54	12.53	13.36	3.54	0.73				66.73
Total 19.66 24.56 15.07 15.40 3.87 0.78 0.00 0.00 0.00 79.34 24 37G2 1,130.90 42.35 11.04 8.20 4.05 0.57 1.197.11 24 37G3 6,884.15 6.884.15 6.884.15 6.884.15 6.884.15 24 37G4 245.19 22.49 10.37 17.42 5.12 1.24 0.39 302.22 24 38G2 1,791.35 67.91 22.70 41.57 12.65 2.79 1.27 1.940.42 24 38G3 6,132.31 442.24 186.79 352.24 94.57 22.39 7.80 7.238.34 24 38G4 1,089.64 169.67 78.24 131.44 38.59 9.36 2.97 1,519.91 24 39G2 631.12 3.63 1.40 2.43 0.74 0.08 0.08 639.44 24 39G3 876.48 474.55 232.73	:	23	41G2	2.63	5.02	2.54	2.04	0.33	0.05				12.61
24 37G2 1,130.90 42.35 11.04 8.20 4.05 0.57 1,197.11 24 37G3 6,884.15 2,279 1,27 1,90.02 24 38G2 1,791.35 67.91 22.70 41.57 12.65 2.79 1,27 1,90.02 24 24 38G3 6,132.31 442.24 186.79 352.24 94.57 22.39 7.80 7,238.34 24 38G3 6,132.31 442.24 186.79 352.24 94.57 22.39 7.80 7,238.34 24 39G2 631.12 3.63 1.40 2.43 0.74 0.08 0.08 6639.44 24 39G3 <			Total	19.66	24.56	15.07	15.40	3.87	0.78	0.00	0.00	0.00	79.34
24 37G3 6,884.15 6,884.15 24 37G4 245.19 22.49 10.37 17.42 5.12 1.24 0.39 302.22 24 38G2 1,791.35 67.91 22.70 41.57 12.65 2.79 1.27 1.940.24 24 38G3 6.132.31 442.24 186.79 352.24 94.57 22.39 7.80 7.238.34 24 38G3 6.132.31 442.24 186.79 352.24 94.57 22.39 7.80 7.238.34 24 38G4 1,009.64 169.67 7.824 131.44 38.59 9.36 2.97 1.519.91 24 39G2 631.12 3.63 1.40 2.43 0.74 0.08 0.08 639.48 24 39G3 876.48 474.55 282.73 435.85 128.04 27.21 9.17 2.184.00 24 39G3 570.21 20.068 80.30 143.50 42.03 10.83 </th <th>:</th> <th>24</th> <th>37G2</th> <th>1,130.90</th> <th>42.35</th> <th>11.04</th> <th>8.20</th> <th>4.05</th> <th>0.57</th> <th></th> <th></th> <th></th> <th>1,197.11</th>	:	24	37G2	1,130.90	42.35	11.04	8.20	4.05	0.57				1,197.11
24 37G4 24619 22.49 10.37 17.42 5.12 1.24 0.39 302 22 24 38G2 1,791.35 67.91 22.70 41.57 12.65 27.9 1.27 1.940.24 24 38G3 6,132.31 442.24 186.79 352.24 94.57 22.39 7.80 7.238.34 24 38G4 1,089.64 160.67 78.24 131.44 38.59 9.36 2.97 1.71 2.184.00 24 39G2 631.12 3.63 1.40 2.43 0.74 0.08 0.08 639.46 24 39G3 876.48 474.55 232.73 43.85 128.04 2.72.1 9.17 2.184.00 24 39G3 570.21 20.068 80.30 143.50 42.03 10.83 3.19 1.050.74 24 39G4 570.21 20.068 80.30 143.50 42.03 10.83 3.19 1.050.74 24.27	:	24	37G3	6,884.15									6,884.15
24 38G2 1,791.35 67.91 22.70 41.57 12.65 2.79 1.27 1,940.24 24 38G3 6,132.31 442.24 186.79 352.24 94.57 22.39 7.80 7.238.34 24 38G4 1,089.64 169.67 78.24 131.44 38.59 9.36 2.97 1.519.91 24 39G2 631.12 3.63 1.40 2.43 0.74 0.08 0.08 639.46 24 39G3 876.48 474.55 232.73 435.85 128.04 27.21 9.17 2,184.05 24 39G3 876.48 474.55 232.73 435.85 128.04 27.21 9.17 2,184.05 24 39G4 570.21 200.68 80.30 143.50 42.03 10.83 3.19 1,050.74 70tal 19.351.35 1,423.52 623.57 1,132.65 325.79 74.47 24.87 0.00 0.00 26,345.23	:	24	37G4	245.19	22.49	10.37	17.42	5.12	1.24	0.39			302.22
24 38G3 6,132.31 442.24 186.79 352.24 94.57 22.39 7.80 7.238.34 24 38G4 1,089.64 169.67 78.24 131.44 38.59 9.36 2.97 1,519.91 24 39G2 631.12 3.63 1.40 2.43 0.74 0.08 0.08 639.42 24 39G3 876.48 474.55 232.73 435.85 128.04 27.21 9.17 2,184.03 24 39G4 570.21 20.068 80.30 143.50 42.03 10.83 3.19 1.050.74 70tal 19.351.35 1,423.52 623.57 1,132.65 325.79 74.47 24.87 0.00 0.00 20.96 22.966.22 22-24 Total 21.757.85 1,543.58 716.59 1,639.92 382.26 78.61 24.87 1.63 0.00 26,145.31 21-24 Total 21.780.08 1,619.58 934.20 1,717.36 391.71 <th>:</th> <th>24</th> <th>38G2</th> <th>1,791.35</th> <th>67.91</th> <th>22.70</th> <th>41.57</th> <th>12.65</th> <th>2.79</th> <th>1.27</th> <th></th> <th></th> <th>1,940.24</th>	:	24	38G2	1,791.35	67.91	22.70	41.57	12.65	2.79	1.27			1,940.24
24 38G4 1,089.64 169.67 78.24 131.44 38.59 9.36 2.97 1,519.91 24 39G2 631.12 3.63 1.40 2.43 0.74 0.08 0.08 6.93.46 24 39G3 876.48 474.55 232.73 435.85 128.04 27.11 9.17 2,184.03 24 39G4 570.21 20.68 80.30 143.50 42.03 10.83 3.19 1.050.74 70tal 19.351.35 1.423.52 623.57 1.132.65 325.79 74.47 24.87 0.00 0.00 2.956.22 22-24 Total 21.757.85 1.543.58 716.59 1.639.92 382.26 78.61 24.87 1.63 0.00 26.945.31 21-24 Total 21.780.08 1.619.58 934.20 1.717.36 391.71 78.61 25.31 1.63 0.00 26.945.84	:	24	38G3	6,132.31	442.24	186.79	352.24	94.57	22.39	7.80			7,238.34
24 39G2 631.12 3.63 1.40 2.43 0.74 0.08 0.08 639.45 24 39G3 876.48 474.55 232.73 435.85 128.04 27.1 9.17 2,184.03 24 39G4 570.21 200.68 80.30 143.50 42.03 10.83 3.19 1,050.74 70tal 19.351.35 1.423.52 623.57 1,132.65 325.79 74.47 24.87 0.00 0.00 2,956.72 22-24 Total 21,757.85 1,543.58 716.59 1,639.92 382.26 78.61 24.87 1.63 0.00 26,164.53 21-24 Total 21,750.08 1,619.58 934.20 1,717.36 391.71 78.61 25.31 1.63 0.00 26,548.45	:	24	38G4	1,089.64	169.67	78.24	131.44	38.59	9.36	2.97			1,519.91
24 39G3 876.48 474.55 232.73 433.85 128.04 27.21 9.17 2,184.02 24 39G4 570.21 200.68 80.30 143.50 42.03 10.83 3.19 1,050.74 Total 19,351.35 1,423.52 623.57 1,132.65 325.79 74.47 24.87 0.00 0.00 22,956.22 22-24 Total 21,767.85 1,543.58 716.59 1,639.92 326.26 78.61 24.87 1.63 0.00 26,345.48 21-24 Total 21,780.08 1,619.58 934.20 1,717.36 391.71 78.61 25.31 1.63 0.00 26,548.48	:	24	39G2	631.12	3.63	1.40	2.43	0.74	0.08	0.08			639.48
24 39G4 570.21 200.68 80.30 143.50 42.03 10.83 3.19 1,050.74 Total 19,351.35 1,423.52 623.57 1,132.65 325.79 74.47 24.87 0.00 0.00 22,966.22 22-24 Total 21,757.85 1,543.58 716.59 1,639.92 382.26 78.61 24.87 1.63 0.00 26,145.31 21-24 Total 21,767.85 1,619.58 934.20 1,717.36 391.71 78.61 25.31 1.63 0.00 26,548.48	:	24	39G3	876.48	474.55	232.73	435.85	128.04	27.21	9.17			2,184.03
Total 19,351.35 1,423.52 623.57 1,132.65 325.79 74.47 24.87 0.00 0.00 22,968.22 22-24 Total 21,757.85 1,543.58 716.59 1,639.92 382.26 78.61 24.87 1.63 0.00 26,145.31 21-24 Total 21,767.08 1,619.58 934.20 1,717.36 391.71 78.61 25.31 1.63 0.00 26,548.48	:	24	39G4	570.21	200.68	80.30	143.50	42.03	10.83	3.19			1,050.74
22-24 Total 21,757.85 1,543.58 716.59 1,639.92 382.26 78.61 24.87 1.63 0.00 26,145.31 21-24 Total 21,760.08 1,619.58 934.20 1,717.36 391.71 78.61 25.31 1.63 0.00 26,548.48			Total	19,351.35	1,423.52	623.57	1,132.65	325.79	74.47	24.87	0.00	0.00	22,956.22
21-24 Total 21,780.08 1,619.58 934.20 1,717.36 391.71 78.61 25.31 1.63 0.00 26,548.48	22	2-24	Total	21,757.85	1,543.58	716.59	1,639.92	382.26	78.61	24.87	1.63	0.00	26,145.31
	21	1-24	Total	21,780.08	1,619.58	934.20	1,717.36	391.71	78.61	25.31	1.63	0.00	26,548.48

Sub-	Rectangle/										
division	Age group	0	1	2	3	4	5	6	7	8+	Total
21	41G0	5.32	15.74	18.99	19.18	12.74					18.35
21	41G1	3.01	12.93	14.36	14.84	19.70					14.03
21	41G2	5.00	14.27	18.63	20.77	24.95		28.00			18.06
21	42G1	4.88	13.85	19.25	20.21	23.32					18.80
21	42G2	6.40	14.75	18.23	19.58	21.51					17.64
21	43G1										0.00
21	44G0	2.36	14.06	15.86	17.11	15.43					12.24
21	44G1										0.00
	Total	3.66	14.03	17.53	19.52	24.29		28.00			16.66
22	37G0	5.26	10.07	15.05	16.60	17.59					5.38
22	37G1	5.33	14.52	16.70	18.19	18.32	22.46		15.92		10.85
22	38G0	5.39	10.95	15.92	15.92	20.05	21.75		15.92		5.48
22	38G1	5.28	13.19	14.43	17.49	16.24			15.92		5.56
22	39F9	4.31	9.67								4.35
22	39G0	4.88	14.32	14.57	15.61	15.10			15.92		7.48
22	39G1	4.19		17.59	17.59	17.59					4.25
22	40F9	4.45									4.45
22	40G0	4.08	14.05	14.74	15.77	14.58			15.92		4.24
22	40G1	3.48	14.34	15.50	16.27	15.43			15.92		3.79
22	41G0	4.62	13.80	13.97	15.07	14.12			15.92		10.37
	Total	4.98	14.30	16.58	18.14	18.25	22.44		15.92		7.88
23	40G2	4.79	14.29	17.27	20.13	21.35	22.66				14.06
23	41G2	1.13	13.61	16.95	19.07	19.18	20.85				12.74
	Total	4.30	14.15	17.22	19.99	21.16	22.54				13.85
24	37G2	4.41	12.16	12.98	14.72	13.84	15.21				4.87
24	37G3	3.27									3.27
24	37G4	3.78	12.64	14.68	16.29	15.82	16.74	19.29			5.81
24	38G2	4.67	11.60	14.85	15.97	15.95	17.07	19.29			5.37
24	38G3	4.57	12.27	14.68	16.93	15.89	17.04	19.29			6.10
24	38G4	4.13	12.64	14.68	16.29	15.82	16.74	19.29			7.08
24	39G2	4.55	12.55	14.57	16.56	16.35	19.29	19.29			4.68
24	39G3	4.95	12.64	15.06	16.51	15.93	16.94	19.29			10.86
24	39G4	5.15	12.19	14.83	16.38	15.74	16.82	19.29			9.35
	Total	4.11	12.40	14.82	16.56	15.85	16.92	19.29			5.75
22-24	Total	4.20	12.54	15.06	17.07	16.24	17.21	19.29	15.92		6.03
21-24	Total	4.20	12.61	15.63	17.18	16.43	17.21	19.44	15.92		6.19

Table 10: Mean weight (g) of sprat by age and area (RV "Solea" October 2006).

Table 11: Total biomass (t) of sprat by age and area (RV "Solea" October 2006).

	Sub-	Rectangle/										
	division	Age group	0	1	2	3	4	5	6	7	8+	Total
	21	41G0	0.3	7.7	42.3	11.3						61.6
	21	41G1	1.7	218.4	604.4	169.6	4.5					998.6
	21	41G2	50.4	474.3	2,056.8	1,020.0	205.6		12.3			3,819.4
	21	42G1	0.9	14.7	167.1	49.1	3.3					235.1
	21	42G2	2.0	196.8	645.9	189.9	11.4					1,046.0
	21	43G1										0.0
	21	44G0	26.1	154.4	297.9	71.5	4.8					554.7
	21	44G1										0.0
		Total	81.4	1,066.3	3,814.4	1,511.4	229.6	0.0	12.3	0.0	0.0	6,715.4
	22	37G0	2,423.7	21.4	17.2	48.1	3.9					2,514.3
	22	37G1	4,497.7	1,160.3	1,218.6	8,702.5	927.0	73.7		23.6		16,603.4
	22	38G0	1,231.7	10.3	2.5	11.6	7.2	1.7		0.5		1,265.5
	22	38G1	702.1	22.8	4.9	27.3	3.4			0.3		760.8
	22	39F9	425.1	7.2								432.3
	22	39G0	226.2	106.3	33.5	89.6	12.2			1.4		469.2
	22	39G1	864.7		3.3	12.5	1.1					881.6
	22	40F9	167.5									167.5
	22	40G0	1,253.8	30.9	10.2	22.7	3.9			0.2		1,321.7
	22	40G1	84.2	3.6	1.6	4.4	0.6					94.4
	22	41G0	1.2	2.5	0.8	1.5	0.4					6.4
		Total	11,877.9	1,365.3	1,292.6	8,920.2	959.7	75.4	0.0	26.0	0.0	24,517.1
	23	40G2	81.6	279.2	216.4	268.9	75.6	16.5				938.2
	23	41G2	3.0	68.3	43.1	38.9	6.3	1.0				160.6
_		Total	84.6	347.5	259.5	307.8	81.9	17.5	0.0	0.0	0.0	1,098.8
	24	37G2	4,987.3	515.0	143.3	120.7	56.1	8.7				5,831.1
	24	37G3	22,511.2									22,511.2
	24	37G4	926.8	284.3	152.2	283.8	81.0	20.8	7.5			1,756.4
	24	38G2	8,365.6	787.8	337.1	663.9	201.8	47.6	24.5			10,428.3
	24	38G3	28,024.7	5,426.3	2,742.1	5,963.4	1,502.7	381.5	150.5			44,191.2
	24	38G4	4,500.2	2,144.6	1,148.6	2,141.2	610.5	156.7	57.3			10,759.1
	24	39G2	2,871.6	45.6	20.4	40.2	12.1	1.5	1.5			2,992.9
	24	39G3	4,338.6	5,998.3	3,504.9	7,195.9	2,039.7	460.9	176.9			23,715.2
	24	39G4	2,936.6	2,446.3	1,190.8	2,350.5	661.6	182.2	61.5			9,829.5
		Total	79,462.6	17,648.2	9,239.4	18,759.6	5,165.5	1,259.9	479.7	0.0	0.0	132,014.9
	22-24	Total	91,425.1	19,361.0	10,791.5	27,987.6	6,207.1	1,352.8	479.7	26.0	0.0	157,630.8
	21-24	Total	91,506.5	20,427.3	14,605.9	29,499.0	6,436.7	1,352.8	492.0	26.0	0.0	164,346.2

Annex 4: ICES Coordinated Acoustic Survey of ICES Divisions IIIa, IVa, IVb, IVc and VIa (North) 2006 Results

Paul Fernandes¹, Eric Armstrong¹, Else Torstensen², Bo Lundgren³, Teunis Jansen³,

ł

Norbert Rohlf⁴, Eberhard Götze⁴, Bram Couperus⁵ and Sytse Ybema⁵.

¹FRS Marine Laboratory, Aberdeen, AB11 9DB, Scotland, UK

²Institute of Marine Research, Bergen, Norway

³Danish Institute for Fisheries Research, DIFRES, Charlottenlund, Denmark

⁴Inst Seefischerei, Hamburg, Germany

⁵IMARES, Ijmuiden, The Netherlands

Abstract

Six surveys were carried out during late June and July covering most of the continental shelf north of 52°N in the North Sea and to the west of Scotland to a northern limit of 62°N. The eastern edge of the survey area was bounded by the Norwegian and Danish, Swedish and German coastline and to the west by the shelf edge between 200 and 400 m depth. The surveys are reported individually in the report of the planning group for herring surveys, and this combined report has been prepared from the data from all surveys. The combined survey results provide spatial distributions of herring abundance by number and biomass at age by statistical rectangle; and distributions of mean weight and fraction mature at age.

The estimates of North Sea autumn spawning herring SSB are reasonably consistent with previous years, at 2.1 million tonnes and 11,830 millions herring (Table 2). The survey again shows two well-above year classes of herring (1998 and 2000). Growth of the 2000 year class seems still to be slower than average, individuals of this year class having almost the same size and weights than the one year younger fish of the 2001 year class.

The estimates of Western Baltic spring spawning herring SSB are 336,500 tonnes and 4,026 million herring (Table 3), which is a strong increase following last years small decrease, but the Western Baltic survey is known to produces a rather noisy signal. The indications are that the stock might has recovered and is dominated by 1 and 2 ring fish.

The West of Scotland estimates of SSB are 472,000 tonnes and 2.6 billion herring. This is a substantial increase compared to last years estimate, and the SSB has more than doubled. The SSB is in the same order of magnitude that it had during the last ten years. The abundance by year class is consistent with previous years and also with results from the adjacent North Sea area. The 1998 year class is now depleted, but there were a significant number of 2 and 5 ring fish seen on the survey.

Introduction

Six surveys were carried out during late June and July covering most of the continental shelf north of 52°N in the North Sea and to the west of Scotland to a northern limit of 62°N. The eastern edge of the survey area was bounded by the Norwegian and Danish, Swedish and German coastline and to the west by the shelf edge between 200 and 400 m depth. The surveys are reported individually in appendices 2A-F of the report of the planning group for herring surveys (ICES, 2004). The vessels, areas and dates of cruises are given below and in Figure 1:

156	
-----	--

VESSEL	PERIOD	AREA	RECTANGLES
FV Enterprise (SCO)	1 July – 21 July	56°- 60°30' N, 3° - 10° W	41E0-E3, 42E0-E3, 43E0-E3, 44E0-E3, 45E0- E4, 46E2-E5, 47E2-E6, 48E3-E6, 49E5
Johan Hjort (NOR)	19 June – 16 July	56°30' N - 62° N, 2°- 6°E	42F2-F5, 43F2-F5, 44F2-F5, 45F2-F5, 46F2- F4, 47F2-F4, 48F2-F4, 49F2-F4, 50F2-F4, 51F2-F4, 52F2-F4, plus overlap area A
Scotia (SCO)	1 July – 21 July	57° - 62° N, 2/4°W - 2°E	43E8-F1, 44E6-F1, 45F0-F1, 46E6-F1, 47E6-F1, 48E6-F1, 49E6-F1, 50E7-F1, 51E8-F1, 52E9-F1
Tridens (NED)	26 June – 21 July	53°30' – 58°30' N, Eng/Sco to Den/Ger coasts	38F2-F7, 40E8-F7, 41E7-F7, 42E7- F1, 45E6-E9
Solea (GER)	29 June – 18 July	52° - 56°30' N, Eng to Den/Ger coasts	33F1-F4, 34F2-F4, 35F2-F4, 36F0-F7, 37E9-F8, 38E9-F1, 39E8-F7
Dana (DEN)	25 June – 6 July	Kattegat north of 56° + Skagerrak and North Sea north of 56°30' N, east of 6° E	41G1-G2, 42F6-F7, 42G0-G3, 43F6-G2, 44F6- G1, 45F6, 45F8-G1, 46F9-G0

Table 1: Vessels, areas and cruise dates during the 2007 herring acoustic surveys.

The data have been combined to provide an overall estimate. Estimates of numbers at age, maturity stage and mean weights at age are calculated as weighted means of individual survey estimates by ICES statistical rectangle. The weighting applied is proportional to the length of survey track for each vessel that has covered each statistical rectangle. The data have been combined and estimates of North Sea autumn spawning herring, Western Baltic spring spawning herring, and West of Scotland (VIa north) herring are provided.

Methods

The acoustic surveys were carried out using Simrad EK60, 38 kHz sounder echo-integrator with transducers mounted on the hull, drop keel and towed bodies. Further data analysis was carried out using either BI500, Echoview or Echoann software. The survey track was selected to cover the area giving a basic sampling intensity over the whole area based on the limits of herring densities found in previous years. A transect spacing of 15 nautical miles was used in most parts of the area with the exception of some relatively high density sections, east and west of Shetland, in the Skagerrak where short additional transects were carried out at 7.5 n. mi spacing, and in most of the southern North Sea, where transect spacing was reduced to 30 n. mi.

The following target strength to fish length relationships have been used to analyse the data:

herring	$TS = 20 \log L - 71.2 dB$
sprat	$TS = 20 \log L - 71.2 dB$
gadoids	$TS = 20 \log L - 67.5 dB$
mackerel	$TS = 21.7 \log L - 84.9 dB$

Combined Acoustic Survey Results for 2006

The estimates of North Sea autumn spawning herring SSB are reasonably consistent with previous years, at 2.1 million tonnes and 11,830 millions herring (Table 2). The survey again shows two well-above year classes of herring (1998 and 2000).

The abundance of the 2005 year class is well in the range of the most recent years, but is estimated to be two times higher when comparable to 2004. Growth and individual weights are found to be higher in the 2005 year class, compared to 2004.

Growth of the 2000 year class seems still to be slower than average, individuals of this year class having almost the same size and weights than the one year younger fish of the 2001 year class.

The estimates of Western Baltic spring spawning herring SSB are 336,500 tonnes and 4,026 million herring (Table 3), which is a strong increase following last years small decrease, but the Western Baltic survey is known to produces a rather noisy signal. The indications are that the stock might has recovered and is dominated by 1 and 2 ring fish.

Both the stock estimate as well as the SSB estimate for the herring in VIa(N) (West of Scotland) have significantly increased when compared to last years estimate. Given the known difficulties of quantifying young fish on this survey, the SSB estimate is likely to give the better index of change. The estimates of SSB are 472,000 tonnes and 2.6 billion herring (Table 4), which means the SSB has more than doubled. It is in the same order of magnitude than it had during the last ten years. The abundance by year class is consistent with previous years and also with results from the adjacent North Sea area. The 1998 year class is now depleted, but there were a significant number of 2 and 5 ring fish seen on the survey.

The area covered during the individual acoustic surveys is given in Figure 1. The spatial distributions of the abundance (numbers and biomass) of autumn spawning herring are shown in Figure 2. The distribution of numbers by age is shown in Figure 3 for 1 ring, 2 ring and 3+ ring autumn spawning herring. The survey provides estimates of maturity and weight at age: the mean weight at age for 1 and 2 ring herring along with the proportion mature for 2 and 3 ring herring are shown in Figure 4. The spatial distribution of mature and immature autumn spawning herring is shown in Figures 5 and 6 respectively. The spatial distributions of the abundance (numbers and biomass) of Western Baltic spring spawning herring are shown in Figure 7. The distribution of numbers by age is shown in Figure 8 for 1 ring, 2 ring and 3+ ring. The mean weight at age for 1 and 2 ring herring along with the proportion mature for 2 and 3 ring herring are shown in Figure 9. The spatial distribution of mature and immature Western Baltic spring spawning herring is shown in Figure 9. The spatial distribution of mature and immature Western Baltic spring spawning herring is shown in Figure 9. The spatial distribution of mature and immature Western Baltic spring spawning herring is shown in Figure 10 and 11 respectively.

The time series of abundance for all three stocks, North Sea autumn spawners, Western Baltic spring spawners and West of Scotland herring are given in Tables 5, 6 and 7, illustrated in Figures 12, 13 and 14 respectively. In each of them, a 3 year running mean is included to show the general trend more clearly.

References

ICES. 2004. Report of the Herring Assessment Working Group for the Area South of 62[°]N. ICES CM 2005/ACFM:10.

ICES. 2003. Report of the Planning Group for Herring Surveys. ICES CM 2003/G:05.

AGE (RING)	NUMBERS	BIOMASS	MATURITY	WEIGHT(G)	LENGTH (CM)
0	4621.8	42.1	0.00	9.1	10.65
1	6822.8	305.2	0.00	44.7	17.92
2	3772.3	477.8	0.66	126.7	24.22
3	1997.2	315.2	0.88	157.9	25.96
4	2097.5	394.3	0.98	188.0	27.19
5	4175.1	784.4	1.00	187.9	27.23
6	618.2	139.2	1.00	225.2	28.68
7	562.1	136.5	1.00	242.8	29.33
8	84.3	20.5	1.00	243.9	29.50
9+	70.4	18.6	1.00	265.0	30.19
Immature	12994.4	503.9		38.8	15.92
Mature	11827.3	2129.9		180.1	26.83
Total	24821.7	2633.8		106.1	21.12

Table 2: Total numbers (millions of fish) and biomass (thousands of tonnes) of North Sea autumn spawning herring in the area surveyed in the acoustic surveys July 2006, with mean weights and mean lengths by age ring.

Table 3: Total numbers (millions of fish) and biomass (thousands of tonnes) of Western Baltic spring spawning herring in the area surveyed in the acoustic surveys July 2006, with mean weights, mean length and fraction mature by age ring.

AGE (RING)	NUMBERS	BIOMASS	MATURITY	WEIGHT(G)	LENGTH (CM)
0	5.4			5.9	10.19
1	2081.1	112.6	0.19	54.1	19.18
2	2217.0	160.4	0.67	72.4	21.23
3	1780.4	158.7	0.91	89.1	23.22
4	490.0	56.2	0.96	114.8	24.96
5	180.4	23.7	1	131.6	26.21
6	27.0	4.1	1	153.2	27.61
7	9.5	1.6	1	169.2	28.89
8	0.0	0.0			
9+	0.1	0.0	1	178.0	29.80
Immature	2764.2	180.9		65.5	20.36
Mature	4026.7	336.5		83.6	22.37
Total	6790.9	517.4		76.2	21.55

Table 4: Total numbers (millions of fish) and biomass (thousands of tonnes) of autumn spawning of West of Scotland herring in the area surveyed in the acoustic surveys July 2006, with mean weights, mean lengths and fraction mature by age ring.

AGE (RING)	NUMBERS	BIOMASS	MATURITY	WEIGHT(G)	LENGTH (CM)
0					
1	112.3	8.4	0	74.99	20.57
2	835.2	112.5	0.808	134.52	24.66
3	387.9	64.3	0.965	165.72	26.33
4	284.5	52.8	1	185.42	27.29
5	582.2	112.2	1	192.48	27.60
6	414.7	84.8	1	204.13	28.11
7	227.0	48.0	1	211.22	28.39
8	21.7	4.8	1	224.04	29.92
9+	59.3	13.7	1	231.01	29.17
Immature	284.5	29.9			
Mature	2640.1	471.7			
Total	2924.6	501.5			

Table 5: Estimates of North Sea autumn spawners (millions) at age from acoustic surveys, 1984-2006. For 1984-1986 the estimates are the sum of those from the Division IVa summer survey, the Division IVb autumn survey, and the Divisions IVc, VIId winter survey. The 1987 to 2006 estimates are from the summer survey in Divisions IVa,b and IIIa excluding estimates of Division IIIa/Baltic spring spawners. For 1999 and 2000 the Kattegat was excluded from the results because it was not surveyed.

AGE (RINGS)	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
1	551	726	1,639	13,736	6,431	6,333	6,249	3,182	6,351	10,399	3,646	4,202
2	3,194	2,789	3,206	4,303	4,202	3,726	2,971	2,834	4,179	3,710	3,280	3,799
3	1,005	1,433	1,637	955	1,732	3,751	3,530	1,501	1,633	1,855	957	2,056
4	394	323	833	657	528	1,612	3,370	2,102	1,397	909	429	656
5	158	113	135	368	349	488	1,349	1,984	1,510	795	363	272
6	44	41	36	77	174	281	395	748	1,311	788	321	175
7	52	17	24	38	43	120	211	262	474	546	238	135
8	39	23	6	11	23	44	134	112	155	178	220	110
9+	41	19	8	20	14	22	43	56	163	116	132	84
Total	5,478	5,484	7,542	20,165	13,496	16,377	18,262	12,781	17,173	19,326	13,003	11,220
SSB ('000t)	807	697	942	817	897	1,637	2,174	1,874	1,545	1,216	1,035	1,082

AGE (RINGS)	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
1	6,198	9,416	4,449	5,087	24,735	6,837	23,055	9,829	5,183	3,113	6,823
2	4,557	6,363	5,747	3,078	2,922	12,290	4,875	18,949	3,415	1,890	3,772
3	2,824	3,287	2,520	4,725	2,156	3,083	8,220	3,081	9,191	3,436	1,997
4	1,087	1,696	1,625	1,116	3,139	1,462	1,390	4,189	2,167	5,609	2,098
5	311	692	982	506	1,006	1,676	795	675	2,590	1,211	4,175
6	99	259	445	314	483	450	1,031	495	317	1,172	618
7	83	79	170	139	266	170	244	568	328	140	562
8	133	78	45	54	120	98	121	146	342	127	84
9+	206	158	121	87	97	59	150	178	186	107	70
Total	18,786	22,028	16,104	15,107	34,928	26,124	39,881	38,110	23,722	16,805	20,199
SSB('000t)	1,446	1,780	1,792	1,534	1,833	2,622	2,948	2,999	2,584	1,868	2,130

Table 6: Numbers (millions) of Western Baltic Spring Spawning herring at age (rings) from acoustic surveys 1989 to 2006. The 1999 survey was incomplete due to the lack of participation by RV "DANA".

YEAR	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
0		31		3,853	372	964						
1		135		277	103	5	2,199	1,091	128	138	1367	1509
2	1,105	1,497	1,864	2,092	2,768	413	1,887	1,005	715	1,682	1143	1891
3	714	549	1,927	1,799	1,274	935	1,022	247	787	901	523	674
4	317	319	866	1,593	598	501	1,270	141	166	282	135	364
5	81	110	350	556	434	239	255	119	67	111	28	186
6	51	24	88	197	154	186	174	37	69	51	3	56
7	16	10	72	122	63	62	39	20	80	31	2	7
8+	4	5	10	20	13	34	21	13	77	53	1	10
Total	2,288	2,680	5,177	10,509	5,779	3,339	6,867	2,673	2,088	3,248	3,201	4,696
3+ group	1,183	1,017	3,313	4,287	2,536	1,957	2,781	577	1,245	1,428	691	1,295

Table 6: continued.

YEAR	2001	2002	2003	2004	2005	2006
0				0		5
1	66	3,346	1,833	1,668	2,687	2,081
2	641	1,576	1,110	930	1,342	2,217
3	452	1,392	395	726	464	1,780
4	153	524	323	307	201	490
5	96	88	103	184	103	180
6	38	40	25	72	84	27
7	23	18	12	22	37	10
8+	12	19	5	18	21	0.1
Total	1,481	7,002	3,807	3,926	4,939	6,791
3+ group	774	2,081	864	1,328	910	2,487

Table 7: Numbers at age (millions) and SSB of West of Scotland Autumn Spawning herring at age (rings) from acoustic surveys 1987, 1991 to 2006. In 1997 the survey was carried out one month early in June as opposed to July when all the other surveys were carried out.

AGE	1987	1991	1992	1993	1994	1995	1996	1997 [#]	1998	1999	2000	2001	2002	2003	2004	2005	2006
1	249	338	74	3	494	441	41	792	1,221	534	448	313	425	439	564	50	112
2	578	295	503	750	542	1,103	577	642	795	322	316	1,062	436	1039	275	243	835
3	551	328	211	681	608	473	803	286	667	1,389	337	218	1,437	933	760	230	388
4	353	368	258	653	286	450	329	167	471	432	900	173	200	1472	442	423	285
5	753	488	415	544	307	153	95	66	179	308	393	438	162	181	577	245	582
6	112	176	240	865	268	187	61	50	79	139	248	133	424	129	56	153	415
7	48	99	106	284	407	169	77	16	28	87	200	103	152	347	62	13	227
8	16	90	57	152	174	237	78	29	14	28	95	52	68	114	82	39	22
9+	7	58	64	156	132	202	115	24	37	35	65	35	60	75	76	27	59
SSB:	273	452	352	866	534	452	370	141	376	460	500	359	549	739	396	168	472

Figure 1: Survey area coverage in the herring acoustic surveys in 2006, by rectangle and nation (WSC = West of Scotland charter vessel; SCO = Scotia; NOR = Johan Hjort; DK = Dana; NL = Tridens; GER = Solea).

Figure 2: Abundance of Autumn spawning herring 1-9+ from combined acoustic survey July 2006. Numbers (millions) (upper figure) and biomass (thousands of tonnes) (lower figure).

D8 D9 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 G0 G1 G2 G3

Figure 3: Numbers (millions) of Autumn spawning herring from combined acoustic survey June -July 2006. 1 ring (upper figure), 2 ring (centre figure), 3+ (lower figure).

Figure 4: Mean weight and maturity of autumn spawning herring from combined acoustic survey June – July 2006. Four values per ICES rectangle, percentage mature of 2 ring (lower left) and 3 ring fish (lower right), mean weights gram of 1 ring (upper left) and 2 ring fish (upper right), 0 indicates measured percentage mature, + indicates surveyed with zero abundance, blank indicates an unsurveyed rectangle.

Figure 5: Biomass of mature autumn spawning herring from combined acoustic survey in June – July 2006.

Figure 6: Biomass of immature autumn spawning herring from combined acoustic survey in June – July 2006.

Figure 7: Abundance of western spring spawning herring 1-9+ from combined acoustic survey July 2006. Numbers (millions) (upper figure) and biomass (thousands of tonnes) (lower figure).

Figure 8: Numbers (millions) of western Baltic spring spawning herring from combined acoustic survey June – July 2006. 1 ring (upper figure), 2 ring (centre figure), 3+ (lower figure).

Figure 9: Mean weight and maturity of western Baltic spring spawning herring from combined acoustic survey June – July 2006. Four values per ICES rectangle, percentage mature of 2 ring (lower left) and 3 ring fish (lower right), mean weights gram of 1 ring (upper left) and 2 ring fish (upper right), 0 indicates measured percentage mature, + indicates surveyed with zero abundance, blank indicates an unsurveyed rectangle.

Figure 10: Numbers of mature western Baltic spring spawning herring from combined acoustic survey in June – July 2006.

Figure 11: Numbers of immature western Baltic spring spawning herring from combined acoustic survey in June – July 2006.

Figure 12: Time series of SSB of North Sea autumn spawning herring with three year running mean.

Figure 13: Time series of 3+ abundance of Western Baltic spring spawning herring with three year running mean.

Figure 14: Time series of SSB of West of Scotland herring with three year running mean.

Annex 5: Working Documents to PGHERS

Annex 5A: Correction to the 2005 survey report for RV "Scotia"

P. G. Fernandes and E. J. Simmonds, FRS Marine Lab Aberdeen.

INTRODUCTION

An acoustic survey for herring was carried out by FRS Marine Laboratory around the Orkney Shetland peninsula in the northern North Sea (ICES Division IV) from the 28th June to the 18th July 2005 on the FRV *Scotia*. The main objective of the survey was to provide an abundance estimate for herring in this area and to map the distribution of this species.

The survey was carried out as a part of the ICES coordinated herring acoustic survey of the North Sea and adjacent waters (ICES, 2006a). The data from this survey were combined with other surveys in the North Sea to provide an age disaggregated abundance index for use in the assessment of North Sea herring which was carried out by the ICES Herring Assessment Working Group (HAWG) in March 2006 (ICES, 2006b).

This paper provides revised results of the 2005 Scotia survey data after correction due to a mistake in the 2005 analysis brought about by changes in working practices.

METHODS

The 2005 acoustic survey track (Figure 1) consisted of three levels of sampling intensity: transect spacings of 30 nautical miles (southern area east of Aberdeen), 15 (most of the survey area), and 7.5 nautical miles (east of Shetland and west of Orkney). The data were originally allocated to quarter statistical rectangles by their midpoint location and the estimate of density was obtained as the arithmetic mean of all values weighted by duration of the run to accommodate the small number of short EDSUs. However, this method only produces an estimate for each quarter ICES rectangle and any unsampled quarter ICES rectangle is not estimated. In 2005, 30 nautical mile transects were incorporated in the southern area to allow for the new survey design where other nations survey part of the original Scottish area. A 30 nautical mile transect will leave quarter rectangles unsampled but implicit in the design is the acknowledgement that the samples are raised to the whole rectangle, not just the quarter rectangles. The estimation software used to generate the results for this survey does not allow for a mixture of resolutions (i.e. quarter and whole rectangles). When the analysis was carried out at the higher resolution there were, therefore, several quarter rectangles which were not estimated in the individual survey report in the southern area. It was thought the combination software used by PGHERS may have been able to account for this but this was not the case, and so the global estimates are also in error. This occurred partly due to a misunderstanding with the way that the combination software works, but mostly due to a focus on developing the new combination software at the 2006 meeting.

A correction was made by analysing the two areas separately; using quarter rectangle resolution for the main part of the survey, north of 58°30'N; and whole rectangle resolution in the area south of this latitude. The numbers and biomass at age in the southern area were taken from the latter analysis and added to the results from the area to the north in the former. As the differences were so small no attempt was made to adjust the mean lengths and weights.

RESULTS

The original 2005 numbers estimates for the area south of 58° by quarter rectangle are given in Table 1. The revised numbers estimates for the area south of 58° by *whole* rectangle are

given in Table 2. The difference between the original and revised estimates for the area south of 58° by whole ICES rectangle are given in Table 3. Table 4 compares the original and corrected estimates of herring numbers, biomass, and proportion mature at age and year class for the whole survey area for the Scotia survey. The new estimate of abundance for the 2005 Scotia survey is just over 5% higher; estimates of biomass are 3% higher. The revised numbers and biomass of fish by quarter and whole ICES statistical rectangle are shown in Figure 2. Revised estimates of 11,743 million herring or 2,261 thousand tonnes were calculated for the survey area (c.f. 11,180 and 2,183 thousand tonnes). The overall picture has not changed with the proportion of 4 ring herring was once again quite high, reflecting the dominance of the 2000 year class. The increase in numbers has mainly affected the 2 and 3 ring fish.

The revised estimates for the Scotia survey have been combined into the combined survey estimates. Table 5 shows the original total estimates for the entire international survey. These are the data that were submitted to HAWG in 2006. The revised estimates for the whole survey area are given in Table 6. Table 7 gives the change in numbers at age between the original and revised estimates. The effect on the combined survey estimate is even smaller, as would be expected. The revised estimate of abundance is 2.5% higher and the biomass only 2.8% higher. The revised estimates in Table 6 are those that should be supplied to HAWG for its meeting in March 2007.

DISCUSSION

The new philosophy in the International North Sea Herring Acoustic Survey is to integrate survey designs such that the situation described above will occur again (i.e. 30 nautical mile transects). Provision should be made for in the new combination system (FishFrame acoustics) to account for this.

REFERENCES

- ICES. 2006a. Report of the planning group on herring surveys (PGHERS). ICES CM 2006/LRC:04, 239 pp.
- ICES. 2006b. Report of the Herring Assessment Working Group South of 62° N (HAWG). ICES CM 2006/ACFM:20, 642 pp.

LAT	LONG	AREA	ICES RECTANGLE	NUMBER (MILLIONS)	MILEAGE (N.MI.)
57.125	-1.75	А	43E8	0.00	15.00
57.125	-1.25	А	43E8	180.41	15.00
57.125	-0.75	А	43E9	0.00	17.50
57.125	-0.25	А	43E9	0.00	15.00
57.125	0.25	А	43F0	0.12	17.50
57.125	0.75	А	43F0	0.41	17.50
57.125	1.25	А	43F1	66.37	15.00
57.125	1.75	А	43F1	8.37	15.00
57.375	1.75	А	43F1	79.99	15.00
57.625	-1.25	А	44E8	0.00	15.00
57.625	-1.75	А	44E8	0.00	10.00
57.625	-0.75	А	44E9	0.00	17.50
57.625	-0.25	А	44E9	0.00	17.50
57.625	0.25	А	44F0	0.00	15.00
57.625	0.75	А	44F0	26.93	15.00
57.625	1.25	А	44F1	258.08	17.50
57.625	1.75	А	44F1	12.09	12.50

Table 1: Previous (ICES, PGHERS 2006) estimates of herring numbers and survey mileage for the 2005 Scotia North Sea herring acoustic survey by quarter rectangle for the area south of 58° N.

Table 2: Revised (ICES, PGHERS 2007) estimates of herring numbers and survey mileage for the 2005 Scotia North Sea herring acoustic survey by whole rectangle for the area south of 58° N.

LAT	LONG	AREA	ICES RECTANGLE	NUMBER (MILLIONS)	MILEAGE (N.MI.)
57.375	-1.75	А	43E8	326	28.8
57.375	-0.75	А	43E9	0	32.5
57.375	0.25	А	43F0	1	35.0
57.375	1.25	А	43F1	206	45.0
57.875	-1.25	А	44E8	0	24.5
57.875	-0.75	А	44E9	0	33.0
57.875	0.25	А	44F0	54	30.0
57.875	1.25	А	44F1	609	29.2

Table 3: The original and revised estimates of herring numbers and survey mileage for the 2005 Scotia North Sea herring acoustic survey for the area south of 58° by whole ICES rectangle

ICES RECTANGLE	Revised Numbers (Millions)	Original Numbers (millions)	REVISED MILEAGE (N.MI.)	Original Mileage (n.mi.)
43E8	326	180.4	28.8	30
43E9	0	0.0	32.5	32.5
43F0	1	0.5	35.0	35
43F1	206	154.7	45.0	45
44E8	0	0.0	24.5	25
44E9	0	0.0	33.0	35
44F0	54	26.9	30.0	30
44F1	609	270.1	29.2	30
Grand Total	1195	632.768496	258.0	262.5

10970.9

209.9

Spawning stock Immature 11459.1

284.0

488.2

74.1

3.17

40.62

		ORIGINAL	REVISED	DIFFERE	NCE	ORIGINAL	REVISED	DIFFERENC	E
YR	RING/	NUMBER	NUMBER	NUMBER		BIOMASS			
CLASS	MATURITY	(MILLIONS)	(MILLIONS)	(MILLIONS)	%	(*000 T)	BIOMASS ('000 T)	BIOMASS ('000 T)	%
2003	1	94.94	96.53	1.59	1.67	6.9	7.00	0.10	1.49
2002	2I	60.61	97.15	36.54	60.29	7.09	11.03	3.94	55.54
2002	2M	1036.84	1164.98	128.14	12.36	162.63	179.26	16.63	10.22
2001	3I	46.37	82.37	36.00	77.64	5.9	10.48	4.58	77.61
2001	3M	3027.9	3203.71	175.81	5.81	532.14	557.54	25.40	4.77
2000	4I	8	8.00	0.00	0.00	1.33	1.33	0.00	0.00
2000	4M	4397.14	4577.18	180.04	4.09	844.79	870.55	25.76	3.05
1999	5	1113.82	1115.41	1.59	0.14	261.8	262.10	0.30	0.11
1998	6	1105.73	1108.38	2.65	0.24	277.89	278.36	0.47	0.17
1997	7	89.68	89.68	0.00	0.00	24.64	24.64	0.00	0.00
1996	8	103.49	103.49	0.00	0.00	29.61	29.61	0.00	0.00
1995	9+	96.29	96.29	0.00	0.00	28.96	28.96	0.00	0.00
Total		11180.8	11743 16	562.36	5.03	2183.45	2260.85	77 40	3 55

4.45

35.31

Table 4: Original (grey) and updated (black) numbers (millions) and biomass (thousands of tonnes) breakdown by age (winter rings) and maturity obtained during the Scotia 28 June to 18 July 2005 herring acoustic survey. I= immature; M=mature; A=All.

ł

Table 5: Original numbers (millions) and biomass (thousands of tonnes) breakdown by age (winter rings) and maturity obtained for the 2005 International North Sea Herring Acoustic Survey.

2162.5

21.2

2231.0

29.8

68.6

8.6

NORTH SEA	NUMBERS	BIOMASS	MATURITY	WEIGHT	LENGTH (CM)
	(MILLIONS)	(*000 т)		(G)	
0	5015.9	16.0	0.00	3.2	7.9
1	3112.5	134.7	0.01	43.3	17.5
2	1890.2	255.4	0.76	135.1	24.5
3	3436.4	587.8	0.97	171.0	26.2
4	5609.3	1014.4	0.96	180.8	26.6
5	1211.3	276.8	1.00	228.5	28.5
6	1172.3	290.3	1.00	247.6	29.2
7	139.9	35.3	1.00	252.6	29.5
8	126.5	34.7	1.00	274.4	30.2
9+	106.7	31.5	1.00	295.1	30.7
Immature	8920.4	234.8			
Mature	9577.8	1867.9			
Total	21821.0	2676.9			
1+ group	16805.1				

NORTH SEA	NUMBERS (MILLIONS)	BIOMASS ('000 t)	MATURITY	WEIGHT (G)	LENGTH (CM)
0	5015.9	16.0	0.00	3.2	7.9
1	3114.1	134.8	0.01	43.3	17.5
2	2055.1	276.0	0.76	134.3	24.4
3	3648.5	617.8	0.96	169.3	26.1
4	5789.6	1040.2	0.96	179.7	26.5
5	1212.9	277.1	1.00	228.5	28.5
6	1174.9	290.7	1.00	247.5	29.2
7	139.9	35.3	1.00	252.6	29.5
8	126.5	34.7	1.00	274.4	30.2
9+	106.7	31.5	1.00	295.1	30.7
Immature	8994.7	243.5			
Mature	9890.7	1911.1			
Total	22384.3	2754.2			
1+ group	17368.4				

Table 6: Revised numbers (millions) and biomass (thousands of tonnes) breakdown by age (winter
rings) and maturity obtained for the 2005 International North Sea Herring Acoustic Survey.

 Table 7: Difference in number at age between original and revised estimates for the 2005

 International North Sea Herring Acoustic Survey.

AGE	% CHANGE	NUMBER CHANGE
0	0.00%	0.0
1	0.05%	1.6
2	8.73%	164.9
3	6.17%	212.1
4	3.21%	180.3
5	0.13%	1.6
6	0.23%	2.7
7	0.00%	0.0
8	0.00%	0.0
9+	0.00%	0.0
Immature	0.83%	74.2
Mature	3.27%	312.9
Total	2.58%	563.2
1+ group	3.35%	563.2

Figure 1: Map of the North Sea showing the Cruise track (solid lines) of FRV SCOTIA for the acoustic survey 28 June-18 July 2005 indicating the location of trawl, CTD and OPC stations (symbols defined in legend).

Figure 2: Map of the North Sea showing the estimated numbers (millions) and biomass (thousands of tonnes) from the herring acoustic survey on FRV SCOTIA for 28 June-18 July 2005, by quarter ICES statistical rectangle north of 58°30'N and at whole statistical rectangle south of this latitude.
Annex 5B: A new stratification of the Rügen herring larvae Survey (RHLS) in the Greifwalder Bodden

Rainer Oeberst,

ł

IOR Rostock, rainer.oeberst@ior.bfa-fisch.de

Introduction

During a peer review of the Rügen herring larvae survey (RHLS) in November 2006, the current design of the herring larvae survey was discussed. Especially the current stratification was questioned: The high total number of strata, the high number of strata with only one station and the variable number of days needed to sample the 35 stations of the weekly surveys. Survey results of the last decade were again checked and summarized to develop a new survey stratification and design which will already be used during the 2007 season.

The following requirements were defined as basis of the new design:

- The number of stations should not be reduced and the same fixed stations should be used as in the past.
- All stations of a survey should be sampled within two days (under normal weather conditions).
- The sequence of the stations should be the same every week.
- The stations of the weekly survey should be chosen in such a way that the data of the first day can be used to estimate the unbiased mean density of larvae and unbiased mean length frequency of larvae in the Greifswalder Bodden.
- The stratification of the Greifswalder Bodden should be optimised to reduce the variability of the recruitment index.

Stratification of the Greifswalder Bodden

The area under investigation, the Greifswalder Bodden, was previously stratified into 15 strata. In some strata only one station was sampled during every survey so that variance estimates could not be calculated. Figure 1 shows the Greifswalder Bodden and the defined strata. Apart from the Greifswalder Bodden also the north westerly located Strelasund is covered each week by five stations. The currently used stratification is based on the known spawning places of the spring spawning herring (Figure 2, Scabel 1988)

The areas of the 15 strata together with the assigned station numbers are given in Table 1 and the positions of the fixed stations are presented in Table 2. The strategy of fixed stations is used because gillnets are frequently used in the Greifswalder Bodden which are located in the same area every year during the spawning season of herring.

STRATUM	AREA	STATIONS ASSIGNED
	*100 000 m ²	
1	48.50	205, 206, 207, 208, 209
2	29.30	301
3	27.20	302, 309
4	50.65	310, 311, 312, 314
5	43.30	315
6	13.72	324
7	11.26	325
8	20.58	323
9	24.18	326, 329
10	18.86	322, 327
11	34.04	328, 330
12	13.72	321
13	24.98	320
14	33.40	303, 304, 305
15	108.40	306, 307, 308, 313, 316, 317, 318, 319

Table 1: Currently used strata with area in m^2 and assigned stations.

Table 2: Positions of the fixed stations of the Rügen herring larvae survey in the Greifswalder Bodden.

STATION	LATITUDE N			LONGITUDE E		
	0	'	"	0	'	"
205	54	19	0	13	8	20
206	54	16	80	13	8	30
207	54	16	85	13	11	10
208	54	15	30	13	14	30
209	54	14	15	13	19	30
301	54	12	80	13	22	60
302	54	12	60	13	25	20
303	54	8	50	13	29	35
304	54	9	50	13	28	60
305	54	9	0	13	31	70
306	54	11	10	13	28	80
307	54	13	0	13	29	40
308	54	15	30	13	29	40
309	54	14	10	13	26	30
310	54	16	25	13	25	50
311	54	18	30	13	28	35
312	54	19	70	13	29	60
313	54	17	20	13	29	60

STATION	LATITUDE N			LONGITUDE E			
	0	'	"	0	'	"	
314	54	18	40	13	31	90	
315	54	19	5	13	34	70	
316	54	17	40	13	33	50	
317	54	15	50	13	33	50	
318	54	12	75	13	33	50	
319	54	11	50	13	33	50	
320	54	8	75	13	35	35	
321	54	10	30	13	37	60	
322	54	12	70	13	37	90	
323	54	15	80	13	36	50	
324	54	18	5	13	36	80	
325	54	17	45	13	38	80	
326	54	16	20	13	40	50	
327	54	13	55	13	39	90	
328	54	12	0	13	40	0	
329	54	14	40	13	41	50	
330	54	11	35	13	44	0	

Results of the weekly surveys from 1992 to 2002 were used to evaluate possibilities to optimise the stratification of the Greifswalder Bodden. The following criteria were defined to select the optimum stratification:

• The number of strata should be reduced (to a maximum of six stations, Cochran 1972)

- Each stratum should contain more than two stations to allow an estimation of the variance of the mean density and length frequency
- The variance of the density and of the length frequency should be minimised.

Two methods were used to analyse the spatial distribution of newly hatched and larger larvae. Graphical presentations of the density distribution of larvae [numbers / m^2] at the stations (by GIS) were used to detect areas which can be characterised by homogeneous or heterogeneous distribution of larvae, and to identify areas of intensive larvae hatching. The spatial and temporal distribution of the areas of intensive larvae hatching are important because the number of hatched larvae induces the highest variability of larvae density. It was further evaluated whether some areas have significantly different distribution patterns of larvae (more homogenous or more heterogeneous) because it can be expected that the density distribution of the newly hatched and larger larvae are highly variable between the subsequent weekly surveys and between different years. The data were also used to analyse whether newly hatched larvae are spatially stationary for one or two weeks.

Cluster analyses which used the Euclidian distance between the length frequencies from different stations of the same survey were also used to define areas which have comparable distribution patterns. The analyses have shown that one stratification does not exist which is optimal for all surveys and all years. The variability of the hatching intensity is very high in space and time. Therefore, different versions of stratification of the Greifswalder Bodden were defined which present strata with relative homogeneous larvae distributions during many surveys based on the Cluster analyses and the graphical presentations. Investigations of Rostock University on the distribution of the macrophytes used as substrate for eggs (Scabell 1988) and the development of spawned eggs (Klinkhardt, 1986) were used as additional information.

For all proposed stratifications the areas of the strata were estimated. Then, stratified means and the variances of the stratified means of total larvae density and of the density by length intervals were estimated.

Figures 3 to 5 show the proposed stratifications. The different versions subdivide the Greifswalder Bodden in different numbers of strata. Version 1 (Figure 3) uses 4 strata which subdivide the Greifswalder Bodden in four parts with similar sizes. Version 2 (Figure 4) subdivides the Greifswalder Bodden in south western and north eastern parts. Version 3 (Figure 5) combines the northern area in one stratum.

The mean stratified length frequencies and their stratified standard deviations of the three proposed stratifications were estimated for all surveys from 1992 to 2002. The data demonstrated that no stratification could be found which minimises the standard deviation for all surveys in the investigated period. The standard deviations based on version 1 were the smallest in the most cases. The standard deviations of version 3 were similar to the estimates of version 1 in most cases, but were slightly larger in the most cases. The standard deviations of version 1 and 3.

Proposed design and stratification of the Rügen herring larvae survey from 2007 onwards

Version 1 of the studied stratification will be used in the future (Figure 6). The positions of the corners of the different strata are given in Table 3 and the areas of the strata as well as the numbers of planned stations by strata are given in Table 4.

Figure 6: Proposed stratification of the area under investigation.

NUMBER	LATITUDE N	LONGITUDE E
1	54° 13.8	13° 22.5
2	54° 10.5	13° 22.5
3	54° 13.5	13° 24.0
4	54° 13.5	13° 33.0
5	54° 20.5	13° 33.0
6	54° 13.0	13° 44.7
7	54° 07.5	13° 33.0
8	54° 09.7	13° 41.3
9	54° 10.2	13° 46.2
10	54° 16.2	13° 43.2

Table 3: Positions of the corners of the proposed strata.

ł

Table 4: Areas o	f the strata in k	m ² and number	of stations	by area
------------------	-------------------	---------------------------	-------------	---------

STRATA	AREA IN M ²	NUMBER OF STATIONS
Ι	69	5
II	100	7
III	95	7
IV	138	7
V	105	9

Sequence of stations

Two requirements for the amendment of the survey design were given above: All stations should be realised within two days, and it should be possible that the results of the first day already provide unbiased estimates of the larvae density and length frequency. Therefore, the sequence of stations is chosen in such a way that the number of stations in each stratum and their depth distributions are similar for both days. Three different proposed sequences were discussed with the captain of the research platform used, the vessel "Clupea", to incorporate the crew's experience especially on the distribution patterns of gillnets during the survey period. The following sequence of stations was agreed based on these discussions: The survey starts with station 205, the northernmost station in the Strelasund, on Monday. After covering the stations in the Strelasund (205 - 209) three or four stations are realised in each stratum (Figure 7) in a counte-relockwise movement. The chosen track provides that unbiased mean estimates of total larvae density and of the length frequency are possible because data of all strata are available at the end of day 1. During the second day the remaining stations will be realized in clockwise sequence to finalise the total survey close to the Strelasund with a short distance back to the harbour of Stralsund where the cruises of the following investigations of the same week usually start. Table 5 presents the sequence of stations of the first day together with the positions of the stations, the minimum distance between the subsequent stations, the water depth of the stations and the stratum number. Table 6 provides the same information for the second day. A consequence of the proposed sequence of stations is that the time between the realisations of stations in the same stratum is different for the first and second day. The shortest period between the stations is in stratum II and the largest period in stratum III. This problem could only be solved when the sequence of stations were altered during the second day, which would have significant consequences for the use of the research vessel for programs conducted during the rest of the week.

STATION		LATITUDE		Longitude		DISTANCE IN NM	WATER DEPTH [M]	STRATUM	
205	54	19	0	13	8	20	2.2	9	1
206	54	16	80	13	8	30	1.6	11	1
207	54	16	85	13	11	10	2.4	9	1
208	54	15	30	13	14	30	3.1	5	1
209	54	14	15	13	19	30	2.4	7	1
301	54	12	80	13	22	60	2.5	4	3
309	54	14	10	13	26	30	2.1	5	2
307	54	13	0	13	29	40	4.2	5	3
305	54	9	0	13	31	70	2.7	6	3
319	54	11	50	13	33	50	2.7	7	4
321	54	10	30	13	37	60	2.2	4	4
328	54	12	0	13	40	0	2.6	4	4
329	54	14	40	13	41	50	3.4	6	5
325	54	17	45	13	38	80	2.1	8	5
323	54	15	80	13	36	50	2.4	3	5
316	54	17	40	13	33	50	2.3	7	5
313	54	17	20	13	29	60	1.3	6	2
311	54	18	30	13	28	35	1.6	6	2
312	54	19	70	13	29	60		5	2

Table 5: Sequence of stations of the first day with position, distance between the subsequent stations, water depth of the stations and stratum number.

Table 6: Sequence of stations of the second day with position, distance between the subsequent stations, water depth of the stations and stratum number.

STATION		LATITUDE N	N	LONGITUDE E			DISTANCE IN NM	WATER DEPTH [M]	STRATUM
314	54	18	40	13	31	90	1.8	6	2
315	54	19	5	13	34	70	3.6	7	5
317	54	15	50	13	33	50	3.2	6	5
324	54	18	5	13	36	80	2.8	6	5
326	54	16	20	13	40	50	2.7	6	5
327	54	13	55	13	39	90	3.3	7	5
330	54	11	35	13	44	0	3.8	6	4
322	54	12	70	13	37	90	2.6	4	4
318	54	12	75	13	33	50	4.1	7	4
320	54	8	75	13	35	35	3.5	7	4
303	54	8	50	13	29	35	1.1	5	3
304	54	9	50	13	28	60	1.6	4	3
306	54	11	10	13	28	80	2.6	5	3
302	54	12	60	13	25	20	3.6	4	3
308	54	15	30	13	29	40	2.5	6	2
310	54	16	25	13	25	50		5	2

ł

Figure 7: Sequence of the stations of the first (red) and second (blue) day during the herring larvae surveys in the Greifswalder Bodden. Starting point is in Stralsund at the left edge of the map, the night can be spent in Lauterbach (north of position 12). Survey tracks might have to be altered to account for set nets in the area.

Consequences of the new stratification of the Rügen herring larvae survey in the Greifswalder Bodden and the Strelasund

The analyses concerning the optimum stratification of the Greifswalder Bodden have shown that the proposed new stratification reduces the variance. Therefore, it is useful to recalculate the estimates of the past based on the proposed stratification. The new estimated mean length frequencies and densities will be available for the next benchmark assessment of the Western Baltic spring spawning herring.

References

Cochran, W. G. 1972. Stichprobenverfahren. Walter de Gruyter, Berlin, New York. 474 pp.

- Klinkhardt, M. 1986. Ergebnisse von Untersuchungen zur Schlupf- und Dottersackphase der Larven von Rügenschen Frühjahrsheringen (*Clupea harengus* L.). Fischerei-Forschung 24 (1986) 2: 28-30
- Scabell, J. 1988. Der Rügensche Frühjahrshering Das Laichgeschehen. Dissertation Universität Rostock.