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Abstract. Many Atlantic salmon, Salmo salar, populations are decreasing throughout its 

distributional range due to several factors acting in concert. A number of studies have 

documented the influence of freshwater and ocean conditions, climate variability and 

“man-made obstacles” including dams and aquaculture. However, most of the historical 

research has focused on single or few river analyses, and quantifying isolated effects 

rather than handling factors in conjunction. By using a multi-river mixed-effects model 

we estimated impacts of oceanic and riverine conditions, as well as human threats on 

both year-to-year and within river variability across 60 time series of recreational catch 

of one-sea-winter salmon (grilse) from Norwegian rivers over 29 years (1979−2007). 

Warm coastal temperatures at the time of smolt entrance into the sea and increased 

water discharge during upstream migration were associated with higher rod catches of 

grilse. When hydropower stations are present in the course of the river systems the 

strength of the relationship with runoff is reduced. Moreover, catches of grilse in the 

river increased significantly following the discontinuation of the harvesting of this life-

stage at sea. However, a general decreasing temporal trend was still detected being 

stronger with the presence of salmon farms in the migration route of smolts in 

coastal/fjord areas. These results suggest that both ocean and freshwater conditions in 

conjunction with diverse human impacts contribute to shape interannual fluctuations 

and within river variability of wild Atlantic salmon. 
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INTRODUCTION 

Wild Atlantic salmon (Salmo salar) populations have been decreasing throughout its 

geographic distribution raising a great concern due to its economic and conservation 

importance. A number of factors causing severe declines and even extirpations, 

primarily in the southern range, have been identified, though discerning individual 

mechanisms is complicated due to their likely action in concert (Parrish et al. 1998). 

Changes in stocks have been associated with a broad spectrum of environmental factors 

at most time scales (Jonsson and Jonsson 2004), and analyses of multiple populations 

reveal the importance of local-scale effects on catch (Vøllestad et al. 2009). Here, we 

focus on quantifying for the first time how one-sea-winter fish (grilse) varies in relation 

to oceanic and freshwater conditions, and human stressors at the population level using 

multiple time series of river catch (rod catches in most rivers, and additional fixed gear 

in few rivers.  

The life history of Atlantic salmon in Norwegian rivers is complex. Spawning 

occurs in freshwater around October-January. Subsequent life stages of the species (i.e., 

eggs, alevins and fry) live in freshwater, with the latter juvenile phase (i.e., parr) staying 

for 1-6 years in the rivers before they transform into smolts and pursue oceanic feeding 

migrations. After 1-4 years at sea they attain sexual maturity, and return to freshwater in 

May-October to spawn with a high precision to their home natal areas (Webb et al. 

2007). This diverse biology would potentially allow for the influence of numerous 

factors at different life stages including biotic effects, habitat characteristics, local 

riverine impacts, broad oceanic and weather influence so as several human impacts. As 

juveniles in freshwater, density-dependence and predator-prey interactions might play a 

fundamental role in shaping populations (e.g., Ward et al. 2008). Moreover, spatial 

habitat structure will affect population dynamics and carrying capacity (e.g., Finstad et 
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al. 2009), and environmental conditions experienced during the early development 

appear to influence growth rates of juveniles and age of seaward migration (Jonsson et 

al. 2005). Afterwards, when living in the marine environment it is believed that the 

largest component of natural mortality occurs during the first year at sea and climatic 

conditions will affect this phase in several ways (Jonsson and Jonsson 2004). Post-smolt 

survival has been often associated with sea surface temperature, which presumably 

modulates growth rates and control recruitment (Friedland et al. 2009). Marine 

predators might as well contribute to shape population variability when entrance to the 

sea as smolts (e.g., Hvidsten and Lund 1988) and/or to the returning run (e.g., 

Middlemas et al. 2006). Finally, upstream migration is affected by water flow and 

temperature, light conditions, pollution etc (see Thorstad et al. 2008a).  

Besides, salmonids must face several obstacles and stressful factors during their life 

cycles. Human encroachments like hydropower development and stocking may alter 

migration patterns and abundance (L’Abée-Lund et al. 2006). Damming of the rivers 

alters the entire ecosystem affecting, for instance, parr growth (Jensen 2003) and 

migration of ascending adults (Thorstad et al. 2008a). Dam operations might indeed 

contribute to reduce the survivorship threatening salmonid populations (Hoekstra et al. 

2007), though recent studies claim that mortality is not higher despite the presence of 

dams during a given period (Welch et al. 2008). Other human impacts include both 

coastal and oceanic fisheries with well-known structural changes on the spawning run 

of Norwegian populations after the ban of the drift net fishery in 1989 (Jensen et al. 

1999). Furthermore, the exponential increase of aquaculture may contribute to the 

declines of wild fish. Negative impacts associated to farmed salmon have been known 

for years, for instance, disease transmission (e.g., Krkošek et al. 2007) and reduction of 

fitness in wild salmon due to interactions with escaped individuals (e.g., McGinnity et 
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al. 2003). Globally, populations that have a seaward migration close to salmon farms as 

smolts present reduced survival compared to non-exposed populations from the same 

region (Ford and Myers 2008).  

The overall objective of this study is to quantify the oceanic, freshwater and human 

impacts on grilse rod catch throughout the Norwegian range of Atlantic salmon. By 

using a multi-river mixed-effects model we estimated the relative importance of the 

former factors on both year-to-year and within river variability across a unique dataset 

of 60 time series spanning from 1979 to 2007 of salmon caught in the rivers after a 

single sea winter.    

 

MATERIAL AND METHODS 

Catch data 

The present study is based on the Norwegian official statistics of nominal catch of adult 

Atlantic salmon from Norwegian rivers situated over a wide geographical range 

(58º28’–71º03’N and 5º07’–30º32’E; Fig. 1) and spanning from 1979 to 2007. This 

large spatial and temporal framework encompasses considerable variation in freshwater, 

and ocean conditions. The legal fishing season is restricted to summer and early 

autumn, but differs somewhat among rivers. In Norway, systematic collection of data 

on the different salmonids fisheries began in 1876 resulting into a database with annual 

catch data for 558 rivers. Starting in 1979, Atlantic salmon was identified at the species 

level and differentiated into two weight categories (<3 kg and ≥3 kg). The smallest 

group (<3 kg) mainly corresponds to one-sea-winter (1SW) fish (grilse), and the larger 

group correspond to multi-sea-winter (MSW) fish (2SW, 3SW fish etc) (Jensen et al. 

1999). We only used grilse catches in our analysis, and assumed that the reported values 

were based on a random sample of the total catch. The official catch statistics do not 
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distinguish between males and females, so sexes were treated together in the analyses. 

All analyses were based on the kilograms of grilse in the reported annual catch within 

each river. The rivers in the database varied considerably in size, as did the catches. In 

some rivers, catch was very low in some years, either because of small catches or 

because of problems with the reporting procedure. Therefore, we only considered rivers 

with complete reports for ≥15 seasons of data. A minimum catch of 20 individuals per 

year was required as well; otherwise the complete report for that river was not included 

in the analyses. This filtering prevented us from using very small rivers with few and 

incomplete data finally resulting in 60 rivers to be analyzed (Table 1). The quality of the 

data analyzed in this study has been discussed elsewhere (L’Abée-Lund et al. 2004; 

Vøllestad et al. 2009). Nevertheless, we are aware that recent studies show that the 

dynamics of fishermen are decisive in the referred “invisible collapse” of recreational 

freshwater fisheries (e.g., Post et al. 2008). However, even though the number of 

angling licenses in Norway seems to be declining (data not shown), no data were 

available on the behavior of anglers. We here assume that fishermen are equally prone 

to report fish independently of fish size. That is, the reported fish are a random sample 

of the fish captured in a river during a given year. Furthermore, we also assumed that 

recreational catches would reflect the true population abundance (Thorley et al. 2005), 

and that the age group studied (i.e., 1SW) would indicate the status and strength of the 

year class (Niemelä et al. 2005). 

 

Environmental data 

To test for ocean effects on interannual variability in grilse catch we computed temporal 

averages of sea surface temperature (SST) experienced by smolts during their time of 

entrance into the sea. We selected coastal grid cells (1º × 1º) from the Comprehensive 
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Ocean–Atmosphere Data Set (COADS, http://icoads.noaa.gov/) whose centers were 

located nearby the ocean entry point of a given river (Table 1). SST was monthly 

averaged according to population-specific timing of smolt descent depending on 

latitude. That is, May for rivers south 63ºN; May–June for rivers between 63º–69ºN; 

and June–July for rivers north 69º.  

To test for freshwater effects we estimated the daily variation in total runoff for 

each river catchment (Table 1). Water flow affects early life stages of this species (e.g., 

Jensen and Johnsen 1999), and is also important for the ascending adult salmon during 

the upstream migration (see review by Thorstad et al. 2008a). Disentangling the effect 

of water flow during specific periods in the life cycle is difficult due to strong 

collinearity in water flow among various seasons (runoff during upstream migration is 

related with runoff during spawning [October–January], r2 = 0.8; and with water flow 

during early life [May–August], r2 = 0.9). Moreover, the length of the parr period and 

thus smolt age varies between 1-6 years depending on the rivers. Thus identifying 

appropriate time lags is rather complex as information on smolt age is not available for 

each river considered in this study. Therefore, daily discharge (m3/s) for each river 

catchments was estimated for the summer upstream migration months (June–August) 

coincident with the Norwegian recreational fishery season. We used a spatially 

distributed version of the Hydrologiska Byråns Vattenbalansavdelning (HBV) model 

developed by the water balance section of the Swedish Meteorological and 

Hydrological Institute (Bergström 1995, 

http://www.smhi.se/foretag/m/hbv_demo/html/welcome.html). The model performs 

water balance calculations for 1-km2-grid cell elements that are characterized by their 

altitude and land use. Each grid cell may be divided into two land-use zones with 

differing vegetation: a lake zone and a glacier zone. The algorithms used in the model 
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are described in Sælthun (1996). The model was run with daily time steps, and data 

inputs were precipitation and air temperature. Daily runoff data for the individual grid 

cells were subsequently aggregated to monthly discharge for the respective catchments. 

The model was calibrated with available information about climate and hydrological 

processes from gauged catchments in different parts of Norway, and parameter values 

were transferred to other catchments based on a classification of landscape 

characteristics (Beldring et al. 2003). 

 

Human impacts 

Atlantic salmon has been exploited in the open sea since a long time with increasing 

intensity and using different kind of nets. In Norwegian home waters several restrictions 

and management measures have been introduced, though, seldom, the effects of the 

management changes have been evaluated by follow-up studies (but see Jensen et al. 

1999). To examine the relationship of the (coastal) sea fishery with the river catches we 

compiled the proportion of grilse caught at sea in each year and landed in each 

Norwegian county from the Norwegian official catch statistics (Table 1). 

To determine the potential impact of salmon farming on the smolts migrating past 

net pens on their way to the feeding areas in the open ocean, we compiled data on the 

presence of aquaculture operations (licences) in each Norwegian municipality from 

http://www.fiskeridir.no/fiskeridir/akvakultur/registre (Fig. 1). This resulted in 29 out of 

60 rivers draining in areas with at least the presence of one license established during 

the study period. The data is used as presence/absence data, and we took into account 

the fact that farming was established at different times across municipalities (Table 1). 

Finally, to estimate how the presence of hydroelectric dams might impact on the 

upstream migration and/or abundance (as reflected in catch) we gathered data from 
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http://www.nve.no/ on the presence of hydropower stations in each river. In total, 28 out 

of 60 rivers contained at least one hydroelectric scheme along the salmon-producing 

part of the river (Table 1).    

 

Statistical analyses 

Data were analyzed using a restricted maximum likelihood linear mixed-effects model 

(random grouping factor n = 60 rivers, n = 1707 observations) following methods 

described in Pinheiro and Bates (2000). A preliminary analysis consisted in fitting 

separate linear models per river to choose parameters to account for between-river 

variation. Displaying confidence intervals on intercept and slopes suggested that a 

random effect could be needed to account for river-to-river variability in the intercept, 

and time and runoff slopes. Model selection analysis did support including random 

effects on the intercept and time (Year) slope. Therefore, according to these preliminary 

results we fitted a model of the form:  
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where C is the ln-transformed catch of grilse for each river i at a time t. βs are the fixed 

effects with covariates as follows: F is farming (dichotomous variable) one-year lagged 

assuming that aquaculture effects are important during smolt migration, HP is 

hydropower (dichotomous variable), R is ln-transformed runoff (continuous variable), 

SST is sea surface temperature (continuous variable) one-year lagged to accommodate 

the oceanic effects over smolts during time of entrance into the sea, SF is the sea fishery 

(continuous variable), and Y is year (continuous variable). For meaningful interpretation 

of the interaction terms, subtracting the mean centered R and Y. a and b are the random 

river (i) effects assumed to be independent for different rivers and to follow a normal 

distribution with mean zero and variances 

! 

"
a

2 and 

! 

"
b

2, respectively. Different error 



 10 

structures were used to model serial correlation. Bayesian Information Criterion (BIC) 

indicated that an autoregressive and moving average process of order 1 provided the 

better fit of the data, i.e.: 
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finally, heteroscedasticity was handled by modeling the variance of εit as an exponential 

function of R:  

! 
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exp 2$R
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For some rivers, the data clearly indicated that the reporting of the various weight-

groups was biased in the years 1979–1982 due to the change in reporting procedure that 

probably was not effectively implemented in all rivers (L’Abée-Lund et al. 2004). To 

reduce any effects of biased weight categorization, and to err on the conservative side, 

we rerun our statistical model excluding years 1979–1982 from the doubtful rivers. 

Results did not change.   

Within the studied rivers, two suffered liming processes (i.e., acidification that 

reduces water quality criteria for the sensitive smolt stage) and other four were infested 

by the parasitic monogenean Gyrodactylus salaris. Moreover, during the studied years a 

stocking program has been implemented in one river and fish ladders were built in four 

more rivers. Although these facts could have some impacts, for instance, the parasitic 

infestation has led to rapid and dramatic declines in some Atlantic salmon populations 

(Johnsen and Jensen 1986); we considered them as negligible. Indeed, excluding these 

rivers from the analysis did not alter our conclusions. 

All analyses were performed on R 2.6.2 software (R Development Core Team 

2008) and using the “nlme” library (Pinheiro and Bates 2000). 
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RESULTS 

Table 2 shows the estimated parameters and hypothesis tests of the optimal model. 

Coastal temperature at the time of smolt entrance into the sea was positively related 

with the following year’s catches of grilse in the river. In addition, water discharge 

during upstream migration was positively associated with higher catches in the river. 

The strength of the latter relationship was weaker when hydropower stations were 

present in the river. Catches of grilse in the river increased significantly when 

harvesting of this life-stage at sea was discontinued. On top of these effects, a general 

decreasing temporal trend in catches was detected. This decreasing trend was stronger 

with the presence of salmon farms in the corresponding draining areas (Table 2 and Fig. 

2a). Furthermore, it is worth noting that, on the one hand, catch in rivers with presence 

of farms relative to rivers without aquaculture production is higher during most of the 

study period, but the difference diminishes with time (β1 in equation 2). The catch is 

even lower when dams are present (β1 + β10) (Fig. 2b). On the other hand, at low values 

of runoff catches are higher in those rivers with presence of dams relative to rivers 

without hydropower stations (β2). However, at high values of runoff the difference 

reverses and the decrease in catch strengthens with the presence of farming industry (β2 

+ β10) (Fig. 2c).  

We found strong support for modeling the within group serial correlation with an 

autoregressive and moving average process of order 1 (Table 2). The positive and 

negative coefficients of the AR and MA components indicate strong positive 

autocorrelation at lag 1. Figure 3 shows the observed versus the fitted values for the 

model depicted in Table 2. Within group residuals are normally distributed and do not 

show any apparent variability. Random effects are, as well, normally distributed and 

independent.  



 12 

DISCUSSION 

Our study demonstrates that oceanic and freshwater conditions at different time scales 

appear to be important for shaping the year-to-year variation among grilse populations 

caught in Norwegian rivers. Furthermore, the presence of aquaculture operations 

strengthens the decreasing trend of the populations compared to rivers non-exposed to 

farming. In addition, the presence of hydropower stations in the course of the rivers 

interacts with the water flow and weak the relationship of the catches with runoff. 

However, it must be bear in mind that these results only identify significant effects of 

environmental factors and human impacts from the smolt to the adult stage.  

It has been shown that the number of adults surviving in the ocean are related with 

the number of descending smolts from which these adults were produced suggesting 

that density-dependence appears to be important for freshwater juvenile survival, 

whereas density-independent factors seem to be important for the ocean survival of the 

fish (Jonsson et al. 1998). Several investigations have reported the effects of marine 

conditions on the survival of Atlantic salmon. Post-smolt survivorship appears to be 

related with sea surface temperature on both sides of the Atlantic in a way that warmer 

distribution of SST in spring defines a specific suitable thermal habitat linked to 

increased survival (Friedland et al. 1998). In turn, increased survival appears to be 

strongly growth mediated (Friedland et al. 2000, Peyronnet et al. 2007). These positive 

effects of temperature seem to be especially important during the earlier part of ocean 

living when energetic demands and physiological stress are higher. In fact post-smolt 

growth in summer may be responsible for survival at sea and subsequent determining 

the returning run (McCarthy et al. 2008). Besides, negative relationships with SST 

during the latter part of the ocean residence are also evident showing a decrease in 

growth related with warmer temperature (Todd et al. 2008) and suggesting a prey-
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mediated mechanism concurrent with the decline in recruitment (Friedland et al. 2009). 

Our results show a strong positive relationship between grilse caught in the rivers and 

the mean SST at the time of smolts descending to the sea (i.e., one year before). 

Furthermore, this correlation is consistent throughout the latitudinal range examined and 

agrees with recent results across several Norwegian rivers (e.g., Hvidsten et al. 2009, 

Niemelä et al. 2004). This finding agrees with the hypothesized benefit that descending 

salmon should experience from the precise encounter with the ‘optimal’ thermal habitat 

around 8º-10ºC (note that 75% of our SST values range from 7.46 to 8.53ºC), which 

would favor higher growth rates. In turn, it has been proposed an indirect link between 

SST and suitable food items during initial marine feeding enhancing survival of post-

smolts (Hvidsten et al. 2009). Associations between ocean temperature and survival 

rates of different salmonids have been described in other areas even showing opposite 

latitudinal effects with suggested underlying mechanisms related with the abundance of 

predator and prey likely associated with variations in coastal SST (e.g., Mueter et al. 

2002). Therefore, initial weeks at sea will be crucial for shaping survival. However, the 

contribution of (a) specific mechanism(s) during early sea migration and its 

connection(s) with the effects in the latter months of ocean living remains to be 

understood.  

Upstream migration patterns in Atlantic salmon are complex and likely controlled 

by several factors. River flow has been highly reported as an important variable that 

stimulates and governs the spawning migration though frequently constraint by several 

barriers (Thorstad et al. 2008a). Indeed, regulated rivers can induce even more complex 

responses on the migratory behavior of the adult fishes according to the outlet flow 

from a hydropower station (Thorstad et al. 2003). Our results show that increased water 

runoff during upstream migratory months is strongly related with the grilse caught in 
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the rivers. Although, the strength of this relationship weakens by ~74% when a 

hydropower station is present. Several studies have examined the effect of water 

discharge showing, for instance, positive associations between flow and swimming 

activity (Erkinaro et al. 1999), and a body-sized dependence on runoff according to the 

size of the stream (Jonsson et al. 2007). Upstream ascending is physiologically 

demanding, and, to some extent, river migrations success is related with water 

temperature. In this sense, there appears to be a narrow window with a critical upper 

temperature threshold that leads to increased mortality due to the collapse of the aerobic 

scope at least in certain species (Farrell et al. 2008). Indeed, warmer water temperatures 

are generally associated with lower water discharges. Upstream migration is vulnerable 

to the presence of several man-made obstacles on the fish’s way to the spawning 

grounds. In fact, damming has been claimed as one of the severe threats preventing 

recovery of endangered salmon populations, however, their impacts seem to be river-

specific for both Atlantic (L’Abée-Lund et al. 2006) and Pacific species (Levin and 

Tolimieri 2001, Welch et al. 2008). In this sense, we did not find an overall steeper time 

drop in catches for those dammed rivers (i.e., β8 in equation 2, Table 2) as has been 

shown for single river analyses (e.g., Ugedal et al. 2008). We have identified that there 

is a general effect of runoff favoring the abundance, but the flow regime loses 

importance in presence of a hydropower station in the course of the rivers. This 

interaction is complex and can be regime specific. When runoff is low, catches are 

higher in those rivers with presence of dams relative to rivers without hydropower 

stations, however, at high values of runoff the difference reverses. This could suggest 

that there exists more complexity not captured by our model, maybe related with habitat 

characteristics (L’Abée-Lund et al. 2004), and pointing to the importance of site-

specific responses to the same environmental variables as has been shown elsewhere 
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(Crozier and Zabel 2006, Hodgson et al. 2006). 

Salmon farming in Norway experienced an exponential expansion over the past 40 

years reaching ~750 000 tons and 863 licenses in 2008 (Fig. 1a). Our results show an 

overall decreasing trend (~1.4% yr–1) during the study period that is steeper if 

aquaculture operations are present in the draining area. In other words, half of the 

catches could be lost in ~15 years compared to ~50 years. We cannot distinguish any 

concrete negative agent regarding our data. However, numerous studies have reported 

direct and indirect effects of farmed salmon on wild populations (see review by 

Thorstad et al. 2008b), and global analyses have shown that migrating smolts that pass 

by net pens dramatically reduce their survival rates (Ford and Myers 2008) presumably 

associated with parasitic (lice) infestations (Bjørn et al. 2009, Costello 2009), which 

could be even enhanced due to wild fish movements connecting farming areas (Uglem 

et al. 2009). Furthermore, it is sufficiently documented the negative impacts on genetics 

due to inter-breeding (Thorstad et al. 2008b). Our results also show that catches in 

rivers with presence of farms relative to rivers without aquaculture production was 

higher during most of the study period, though the difference narrowed in time. This 

result could suggest, to some extent, that salmon numbers are higher in rivers draining 

in aquaculture zones due to the escapees. Indeed, the average proportion of escaped 

salmon in the catches has decreased since the final 80s and is overall low (<10%) (Fig. 

1b, Fiske et al. 2006). 

Our model shows that catches of grilse in the rivers increased significantly with the 

drop of harvesting this life-stage at sea. It has been reported that sea fishery can 

influence catches in the rivers, for instance, after the ban of the drift net fishery in 1989 

there has been described structural changes on the spawning run of Norwegian 

populations (Jensen et al. 1999). Consequently, coastal waters exploitation reduced its 
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intensity.  

First order autoregressive and moving average parameters were highly significant 

indicating strong positive autocorrelation at lag one. In mid- to late summer the growth 

trajectories in a sibling salmon population diverge conforming two groups of potential 

emigrants and resident individuals that will remain in freshwater for at least one more 

year before metamorphosing into the migratory smolt stage. This life-history flexibility 

seems to be genetically fixed but environmentally driven developing a bimodal 

distribution of the juvenile salmon population (Thorpe et al. 1992). Therefore, we 

suggest that finding a strong positive autocorrelation at lag one is consistent with the 

alternative smolting strategies adopted by individual salmons within the same 

population.  

We can conclude that year-to-year variability of grilse in Norwegian rivers is 

influenced by both oceanic and freshwater factors, and these overall relationships are 

within river consistent. A decreasing trend is apparent, though less pronounced in 

northern rivers, and the presence of salmon farms in the draining areas increases this 

reduction in catches. In addition, rivers with hydropower stations tend to affect the 

relationship with water flow. Therefore, management actions need to take into account 

the complexity described here and be focused on reducing the impact of human 

encroachments if wild salmon populations are to be conserved.  
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TABLE 1. Summary of the variables used in the large-scale analysis (n = 60 one-sea-

winter Atlantic salmon time series). 

Variable Mean Range Brief description 

Catch (C, in kg) 1776 25–45 020 Nominal catch (mainly rod) of one-

sea-winter fish (1SW).  

Temperature (SST, in ºC) 8.09 5.83–13.00 Coastal sea surface temperature 

expected to influence smolts. 

Runoff (R, in m3/s) 99.16 0.69–1618 Water flow expected to affect 

upstream migration. 

Coastal fishery (SF, in kg) 0.57 0.02–0.98 Proportion of 1SW catch in the 

open ocean potentially influencing 

river catch. 

Time (Y, in yr) 1993 1979–2007 Time trend of catches. 

Farming (F) 29* na Presence/absence of net pens 

potentially influencing smolts.  

Damming (HP) 28** na Presence/absence of hydroelectric 

stations potentially influencing 

upstream migration. 

na: not applicable.  
*Number of rivers out of 60 draining in areas with at least the presence of one farming 
license established during the study period. 
**Number of rivers out of 60 that contained at least one hydroelectric scheme along the 
salmon-producing part of the river. 
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TABLE 2. Parameter estimates and statistical significance from the optimal mixed-

effects model with River as random grouping factor (60 levels). Abbreviations are 

described in Table 1. Note that when categorical variables are involved the baseline 

case for comparison is the absence of farms and hydropower stations.  

Fixed effects Estimate 95% CI t-value P-value 

Intercept 6.763 6.270; 7.256 26.889  <0.0001 

F 0.493 0.105; 0.881 2.489  0.0129 

HP 0.076 –0.386; 0.538 0.323  0.7467 

R 0.411 0.288; 0.534 6.545  <0.0001 

SST 0.091 0.054; 0.128 4.844 <0.0001 

SF –1.713 –2.043; –1.384 –10.199  <0.0001 

Y –0.014 –0.031; 0.003 –1.643  <0.1006 

F × Y –0.033 –0.052; –0.015 –3.490  0.0005 

HP × Y 0.004 –0.015; 0.023 0.428  0.6687 

HP × R –0.305 –0.476; –0.134 –3.493  0.0005 

F × HP –0.451 –1.082; 0.179 –1.404  0.1606 

Random effects     

Intercept 0.882 0.712; 1.092 na na 

Y 0.023 0.013; 0.039 na na 

Corr. structure     

ϕ1 0.716 0.578; 0.814  na na 

θ1 –0.297 –0.412; –0.173 na na 

Var. func. –0.035 –0.057; –0.014 na na 

Residual SD 0.737 0.680; 0.800 na na 

na: not applicable.  
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FIGURE LEGENDS 

FIG. 1. Map of the study area showing the distribution of salmon farming along the 

Norwegian coast. The size of the dots indicates the number of licenses in each 

municipality. The insets show (a) the cumulative time trends in farming licenses 

(broken line) according to the year of starting activities and the total farmed salmon 

production (dotted line) in Norway; and (b) the time trends of the estimated catches in 

freshwater (broken line) and in the sea (dotted line) of Atlantic salmon of aquaculture 

origin. 

FIG. 2. (a) Estimated percent change per year in abundance of grilse associated with the 

presence of farms and hydropower stations based on the mixed-effects model. Black 

dots indicate rivers without farms and hydropower stations (β6 + bi); green dots show 

rivers with farms but no presence of hydropower stations (β6 + bi + β7); blue dots 

indicate rivers without farms but presence of hydropower stations (β6 + bi + β8); and red 

dots show rivers with presence of both encroachments (β6 + bi + β7 + β8). (b) Farming 

coefficients without (β1; dots) and with the presence of hydropower stations (β1 + β10; 

diamonds) obtained from models with different year centering (subtracting the min, 

mean and max). (c) Hydropower coefficients without (β2; dots) and with the presence of 

farms (β2 + β10; diamonds) obtained from models with different runoff centering 

(subtracting the mean and ± 1SD). The bars represent 95% confidence intervals.  

FIG. 3. Observed versus fitted values plot for model depicted in Table 1. 
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