This Report not to be quoted without prior reference to the Council ${ }^{x}$ )
International Council for the Exploration of the Sea

C.M.1981/H:11<br>Pelagic Fish Committee

## Tiskeriaicokroratet Biblioteket

ATLANTO-SCANDIAN HERRING AND CAPELIN WORKING GROUP REPORT

## Part I

```
Copenhagen, 12 - 14 May 1981
```

This document is a report of a Working Group of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. Therefore, it should not be quoted without consultation with the General Secretary.

## TABLE OF CONTENTS

## Page

1. INTRODUCTION AND PARTICIPANTS ..... 1
1.1 Terms of Reference ..... 1
1.2 Participants ..... 1
2. NORWEGIAN SPRING SPAWNING HERRING ..... 1
2.1 Catch Statistics ..... 1
2.2 Regulation of the Autumn Fishery ..... 1
2.3 Review of the Autumn Fishery ..... 2
2.4 By-catches and Unreported Catches ..... 2
2.5 Recordings of Herring since Spring 1980 ..... 2
2.6 Larval Surveys in 1981 ..... 2
2.7 0-Group Investigations in 1980 ..... 3
2.8 Tagging Experiments ..... 3
2.9 Estimate of Mortality ..... 3
2.9.1 Northern component ..... 3
2.9.2 Southern component ..... 5
2.10 Abundance Estimates of the Spawning Stock ..... 6
2.10.1 Northern component ..... 6
2.10.2 Southern component ..... 7
2.11 Conclusions ..... 8
3. FAROESE SPRING SPAWNING HERRTING ..... 9
4. THE ICELANDIC SPRING AND SUMIER SPAWNING HERRING ..... 9
4.1 The Fishery ..... 9
4.2 Stock Abundance and Mortality Rates ..... 10
4.2.1 The catch in number, mean weights and age at first maturity ..... 10
4.2.2 The acoustic abundance surveys in 1980 ..... 11
4.2.3 The fishing mortality in 1980 ..... 11
4.2.4 The results of VPA ..... 12
4.3 State of the Stock and Advice of TAC ..... 13
REFERENCES ..... 13
Tables 1-4.6 ..... 14
Figures 1 - 5 ..... 22


## 1. INTRODUCTION AND PARTICIPANTS

1.1 Terms of Reference

At the Statutory Meeting of ICES in 1980 the Atlanto-Scandian Herring Working Group was transformed into the Atlanto-Scandian Herring and Capelin Working Group and consequently the terms of reference for 1981 were:
(i) to assess the state of the Atlanto-Scandian herring,
(ii) to assess the state of capelin stocks in Sub-areas I, II, V, and XIV, and advise on any necessary management measures for these stocks.

In order to carry out these tasks it was subsequently decided that the Working Group should meet twice in 1981, i.e. l2-14 May to assess the herring stocks, and 28-30 October to assess the capelin stocks. This report (i.e. Part I) only deals with the assessment of the herring stocks.

### 1.2 Participants

| J Hamre | Norway |
| :--- | :--- |
| J Jakobsson(Chairman) | Iceland |
| H i Jakupsstovu | Faroe Islands |
| P Kanneworff | Denmark |
| V Ryzhov | USSR |
| I Røttingen | Norway |
| V Shleinik | USSR |

## 2. NORWEGIAN SPRING SPAWNING HERRING

2.1 Catch Statistics

Table 1 gives the catch north of $62^{\circ} \mathrm{N}$ of the Norwegian spring spawners since 1972. Table 2 gives the catches of 3 year olds and older in number. In the latter table unreported catches are included.

### 2.2 Regulation of the Autumn Fishery

The total catch quota of the fishery in 1980 was set to 100 thousand hectolitres ( 9300 tonnes). Of this, $60 \%$ (or 5580 tonnes) was allocated to the seine fishery (land and purse seining), and $40 \%$ (or 3720 tonnes) to the gill net fishery.

The land seine fishery was opened 3 September, the purse seine fishery 25 September, and the gill net fishery 20 October. The closing date for all gear categories was set to 13 December.
A minimum landing size of 25 cm , with allowance of $15 \%$ undersized fish (in weight) has been in force. Three areas, Øyhellesund in Lofoten (approx. $68^{\circ} 30^{\prime} N$ ), Sølasund in Helgeland (approx. $66^{\circ} \mathrm{N}$ ) and AuresundetVinjefjord in Møre (approx. $63^{\circ} \mathrm{N}$ ) were closed for all herring fishery in 1980 (Figure 1). In these areas very dense concentrations of herring were recorded from September to February in previous years (Anon., 1980), and the areas were closed for fishing herring in order to avoid mortality due to release of excess catches.

The herring in Trondheimsfjord is assumed to belong to a separate stock (Anon., 1980). A catch quota of 8000 hectolitres or 744 tonnes was set for the herring fishery in the Trondheimsfjorden, but this catch is not included in Tables 1 and 2.

### 2.3 Review of the Autumn Fishery

As described elsewhere in the report, there is a difference in the age and length distributions of the northern and southern stock component. The northern stock component is dominated by large and old herring, and since the price is proportional to the size of the herring, most of the fishing effort was concentrated on the northern stock component. Approximately $75 \%$ of the catch was from this component.
In the southern part of Møre most of the herring were caught in Tresfjord, Romsdal (approx. $62^{\circ} 30^{\prime N}$ ), approx. 840 tonnes. Samples from these catches showed that the age distribution of the herring in this area is similar to that of the herring in the Trondheimsfjorden. The fishery in Tresfjord was not administered as a local fishery, but due to the particular age distribution, the catches have not been included in Tables 1 and 2.

### 2.4 By-Catches and Unreported Catches

Fishermen are allowed to fish herring for bait and own consumption with gill nets (maximum length 60 m ) throughout the year (except at the time of the fishery). These catches are not reported, but they are judged by the Working Group to be approximately 10000 tonnes and are included in Table 2. By-catches of herring can, moreover, be landed if the weight of herring does not exceed $15 \%$ of the weight of other fish in the catch. Control measurements of these by-catches may be difficult.

By-catches of 0 -group herring in the sprat fishery occur very frequently. Catches containing until $50 \%$ of 0 -group herring can be landed in the sprat fishery. These by-catches may also be underestimated although the price paid for sprat is usually higher than that paid for 0-group herring.

### 2.5 Recordings of Herring since Spring 1980

A survey of the feeding grounds along the Norwegian coast was carried out in August 1980. Herring schools with an age distribution similar to that of the southern stock component were recorded as far north as Bodø (approx. $67^{\circ} 15^{\prime N}$ ). Herring with age distribution similar to the northern stock were recorded in Vestfjorden. In February and March 1981, five specimens of herring were caught off the Murman coast by Soviet capelin scouting and research vessels. The herring were of the 1978 , 1977 and 1976 year classes. However, the length at age for these specimens were less than the corresponding length at age of the main stock of Norwegian spring spawners. Soviet drift net stations on the Norwegian shelf in March 1981 gave only three specimens of pre-spawning herring.

### 2.6 Larval Surveys in 1981

Figures $2 \& 3$ give larval distribution charts from April 1981. Larvae distribution for 1980 is included in Figure 4 for comparison. No increase in density of herring larvae is observed. The temperature of the waters on the coastal banks north of $64^{\circ} \mathrm{N}$ are well below average in spring 1981. The larvae found north of $64^{\circ} \mathrm{N}$ were newly hatched, and there may be some increase in larvae in these areas in May. From 11 April to 19 April a Soviet research vessel took 28 stations on the Norwegian shelf area, but no herring larvae were recorded.

### 2.7 0-Group Investigations in 1980

Figure 5 shows the distribution of the $0-g r o u p h e r r i n g$ in the Barents Sea during the international 0-group surveys in August-September 1980. The number of 0-group herring in the Barents Sea is less than in 1979. O-group herring were recorded in the coastal areas of Norway and an acoustic estimate was made on a survey during the period 6.11-11.12 1980. The acoustic abundance estimates are shown in Table 3. The acoustic abundance estimate of 0-group herring in 1980 is the lowest recorded since the investigations started in 1975. This was not expected since the number of herring larvae in spring 1980 was about the same as in spring 1979. Further, 0-group herring were recorded on several locations along the coast on a survey of the herring feeding grounds in August.

### 2.8 Tagging Fxperiments

The internal tagging project as described in previous Working Group reports has been continued. Experimental fishing for recoveries was done in the overwintering area of adult herring in the autumn 1980 and on the spawning grounds in the winter 1981. 792 tonnes of herring were caught and screened for tags and 94 tagged herring were recovered. In the winter 1980, 879 tonnes were fished and 96 tags recovered (Anon., 1980).

The age composition of the catches are given in the text tables on p.6-7. The recoveries by areas of release demonstrate the occurrence of two separate spawning components as observed in previous years. One southern component spawning on Møre south of $63^{\circ} \mathrm{N}$, and a northern one spawning north of that latitude. Due to this, the state of the stock is assessed as two independent stock units.

### 2.9 Estimate of Mortality

2.9.1 Northern component

In 1980 the Working Group meeting assessed the state of the northern stock component based on 60 recovered tags from the winter catches in that year. These recoveries were obtained from 92671 tagged herring released in the years 1975-78. Recoveries from the 1979 releases (l8 tags) were excluded in order to avoid error in the estimate due to incomplete mixing of the tagged fish. The average total mortality rate ( $Z$ ) was estimated to 0.26 .
In the text table on p. 4 are summarised the recoveries by releases of the winter fishery in 1980 and the recoveries obtained in the experimental catches inthe autumn 1980 and in the winter 1981. These same releases were used for the mortality estimate last year, with the exception of one batch released in 1978. This batch consists of 5999 tagged herring, mainly from the 1976 year class. The batch yielded 5 recoveries in 1980 in a catch of pre-spawners taken north of $63^{\circ} \mathrm{N}$ and therefore supposed to originate from the northern component. This year recoveries show, however, that the tagged fish belong to the southern stock.
At the bottom of the table are given the recoveries from the 1979 releases, supposed to belong to the northern stock.

| Year of <br> release | m | $\mathrm{r}_{80}$ | r | $\Sigma \mathrm{r}$ | $\mathrm{K} \cdot$ | $\mathrm{ln} \mathrm{K} \cdot$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1975 | 20991 | 9 | 6 | 15 | 14.0 | 2.64 |
| 1976 | 20744 | 10 | 6 | 16 | 13.0 | 2.56 |
| 1977 | 23993 | 18 | 6 | 24 | 10.0 | 2.30 |
| 1978 | 19998 | 18 | 10 | 28 | 7.1 | 1.97 |
| 1979 | 29986 | 11 | 7 | 18 | 16.7 | 2.81 |
| Catch |  | 1362 | 900 |  |  |  |

m $=$ number of releases
$r_{80}=$ recoveries winter 1980
r $=$ recoveries autumn 1980 - winter 1981
$K=m / \Sigma_{x} \times 10^{-2}$
Catch in thousand individuals effectively screened.

The plots of the natural logarithms of number (in units of hundred fish) released per tag recovered (index of stock size) against time of release of the tagged fish are shown in the text figure below:


It is seen from this text figure that the 1979 sample of tags fell outside the annual trend in the correlation between the stock index $\ln \mathrm{K}$ and the year of release. The 1979 releases have given an extraordinary low recovery rate in 1980 and in 1981 as well. All the tagged fish belong to year classes older than the 1977 year class and should thus have been recruited to the spawning stock, at least in 1981. It seems also unlikely that this is due to extraordinary high tagging mortality in 1979. The failure of obtaining recoveries from the 1979 releases may therefore be a matter of incomplete mixing of the tagged fish in the part of the population sampled this year. Future sampling programmes may, however, give an answer to this problem.
Omitting the 1979 releases for the time being, the regression line of the plots of $\ln \mathrm{K}$ • against time of release yields an average $Z$ for the years 1975-78 of 0.23. This is slightly lower than the estimate obtained last year $(Z=0.26)$ 。

### 2.9.2 Southern component

At last year's meeting the Working Group agreed to accept the mortality estimate of the northern stock component to be valid also for the southern one. This was done because the recoveries related to the southern component were too few to make a separate mortality estimate. The catch of herring on the spawning grounds south of $63^{\circ} \mathrm{N}$ were therefore increased in 1981, in order to improve the assessment data of the southern stock. Releases, recoveries and corresponding catch (in 1000 individuals) from the spawning grounds south of $63^{\circ} \mathrm{N}$ are summarised in the text table below.

| Year of <br> release | m | $\mathrm{r}_{80}$ | $\mathrm{r}_{81}$ | $\sum \mathrm{r}$ | $\mathrm{K} \cdot$ | $\ln \mathrm{K} \cdot$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1975 | 5000 | 2 | 9 | 11 | 4.55 | 1.51 |
| 1976 | 3200 | 0 | 1 | 1 | 32.0 | 3.47 |
| 1977 | 16044 | 12 | 9 | 21 | 7.64 | 2.03 |
| 1978 | 11998 | 9 | 8 | 17 | 7.06 | 1.95 |
| 1979 | 5995 | 7 | 14 | 21 | 2.85 | 1.05 |
| Catch |  | 695 | 1209 |  |  |  |


| m | $=$ number released |
| :--- | :--- |
| $r_{80}$ | $=$ recoveries in winter 1980 |
| $r_{81}$ | $=$ recoveries in winter 1981 |
| $K$ | $=\mathrm{m} / \Sigma \mathrm{r} \times 10^{-2}$ |

Catch in thousand individuals from year classes older than the 1977 year class effectively screened.

The plots of $\ln \mathrm{K}$ 。 against year of release yields no linear correlation acceptable for mortality estimates. This is mainly due to relatively few recoveries from the releases in 1977-78 compared to those from 1975 and 1979. No obvious explanation to this variance other than random, is available.

### 2.10 Abundance Estimates of the Spawning Stock <br> 2.10.1 Northern component

The percent age composition of the northern spawning stock component in 1980 and 1981 is given in the text table below:

| Year | Year classes |  |  |  |  |  |  |  |  | n |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1977 | 1976 | 1975 | 1974 | 1973 | 1972 | 1971 | 1970 | 1969 |  |
| 1980 |  | 8 | 3 | 27 | 47 | 3 | 0 | 0 | 12 | 287 |
| 1981 | 1 | 12 | 3 | 22 | 48 | 1 | 1 |  | 12 | 500 |

The age composition in 1980 is slightly different from the age composition given in last year's Working Group report. As mentioned previously, this is because one sample dominated by the 1976 year class has been transferred to the samples of the southern stock component.

The table shows that the age composition in 1981 is more or less the same as that observed in 1980. It is noted that this component has received very few recruits from the year classes younger than the 1974 year class.

Applying $Z=0.23$ as total mortality rate for the period 1975-80, the state of the tagged population is calculated and given in the text table below. The table includes the releases in 1975-78 and refers to the state of stock in early 1981, disregarding tagging mortality.

| Released | Number released | Survived in 1981 | $r$ |
| :---: | :---: | :---: | :---: |
| 1975 | 20991 | 5281 | 6 |
| 1976 | 20744 | 6568 | 6 |
| 1977 | 23993 | 9562 | 6 |
| 1978 | 19998 | 10031 | 10 |

Assuming $30 \%$ tagging mortality as in the previous report, the stock in number in early 1981 is:

$$
N_{81}=\frac{31442 \times 0.70 \times 900 \times 10^{3}}{28}=707 \times 10^{6}
$$

This is close to the abundance estimate obtained from the 1980 catch and recoveries data:

$$
N_{80}=\frac{31442 \times e^{0.23} \times 0.7 \times 1362 \times 10^{3}}{55}=686 \times 10^{6}
$$

Distributed on year classes according to the age distribution given above, the stock in number and weight in early 1980 and 1981 is calculated as follows (in million individuals):

| Year | Year classes |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: |
|  | 1977 | 1976 | 1975 | 1974 | 1973 | 1972 | 1971 | 1970 | 1969 | 51977+ | tonnes $\times 10^{3}$ |  |  |  |
| 1980 |  | 55 | 21 | 185 | 322 | 21 | 0 | 0 | 82 | 686 | 250 |  |  |  |
| 1981 | 7 | 86 | 21 | 157 | 343 | 7 | 7 |  | 86 | 714 | 270 |  |  |  |

Taking into account the variance which may be expected in such estimates it is fair to conclude that no substantial growth has occurred in the northern stock component in 1980. The recruitment in the year classes older than 1977 has more or less balanced the mortality rate and the 1977 year class is negligible.
2.10.2 Southern component

The recoveries obtained from the releases related to the southern stock component are not adequate for mortality estimate. It is therefore assumed that the estimated $Z=0.23$ of the northern component is also valid for the southern one. The state of the tagged population in 1981 disregarding tagging mortality may thus be calculated as follows:

| Released | Number released | Survived in 1981 | $r_{81}$ | $r_{80}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1975 | 5000 | 1258 | 9 | 2 |
| 1976 | 3200 | 1013 | 1 | 0 |
| 1977 | 16044 | 6394 | 9 | 12 |
| 1978 | 11998 | 6018 | 8 | 9 |
| 1979 | 5995 | 3785 | 14 | 7 |
|  |  | 18468 | 41 | 30 |

The abundance of the stock in number referring to the year classes older than 1977 is then calculated, assuming $30 \%$ tagging mortality:

$$
N_{81}=\frac{18468 \times 0.7 \times 1209}{41}=381 \times 10^{6}
$$

The catch and recoveries data obtained in 1980 gives:

$$
N_{80}=\frac{14683 \times e^{0.23} \times 0.7 \times 695 \times 10^{3}}{23}=391 \times 10^{6}
$$

The two estimates show that the recruitment to the stock older than the 1977 year class in 1980 has been of the same magnitude as the mortality rate. The abundance estimate of 1980 is somewhat higher than that given in the last year's Working Group report. This is because a sample from the schools of young herring (1976 year class) found north of $63^{\circ} \mathrm{N}$ has now been added to the southern stock component.
The age composition of the southern component in 1980 and in 1981, sampled on the spawning grounds, are given in the text table below (in percent).

| Year | Year classes |  |  |  |  | 1973 | $\Sigma 1976+$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1978 | 1977 | 1976 | 1975 | 1974 |  |  |
| 1980 |  | 14 | 37 | 13 | 20 | 16 | 86 |
| 1981 | 2 | 25 | 40 | 7 | 15 | 11 | 73 |

Distributing the respective stock estimates according to observed age composition, the stock in number and weight in early 1980 and 1981 is calculated as follows (in mill. individuals):

| Year classes |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | 1978 | 1977 | 1976 | 1975 | 1974 | 1973 | 21978+ | t $\times 10^{-3}$ |
| 1980 |  | 64 | 168 | 59 | 91 | 73 | 455 | 130 |
| 1981 | 10 | 131 | 209 | 37 | 78 | 57 | 522 | 170 |

The estimates indicate an increase in the southern stock component in 1980 of 40000 tonnes, i.e. about $30 \%$.

### 2.11 Conclusions

As described in the section on abundance estimates, the spawning stock consists of two components, which have developed differently in recent years. The age distribution and the abundance estimate obtained from tagging clearly shows that the recruitment to the northern component has been very poor and this stock component has been on the same size level in recent years. The abundance of this component in 1980-81 is estimated to about 250000 tonnes. The future prospects of the development in the southern stock component are, however, more promising. This component has developed from a very low level in 1977 of about 30000 tonnes (Anon., 1980) to a size level estimated to about 170000 tonnes in 1981. The present age composition shows that only $26 \%$ of this stock component consists of herring older than 6 years which means that the recruitment has been relatively good.
According to the present assessment the overall abundance of the Norwegian spring spawning herring stock is thus estimated to an order of magnitude of $400-450$ thousand tonnes. The catch in 1980 is estimated to about 20000 tonnes, in which an assumed unreported catch of 10000 tonnes has been included. This catch may have generated a fishing mortality in 1980 of about 0.05 .

Although the present assessment shows a slight increase in stock size, it should be stressed that overall abundance of the stock as well as recruitment is still at a very low level compared to earlier periods. The Working Group therefore recommends that the stock should be rebuilt to a much higher level. The rate of recovery will of course be maximised if no fishery is allowed. However, if a fishery is conducted, care should be taken that such a fishery only generates very low fishing mortality, and does not delay further rebuilding of the stock. The Working Group does stress that if the present level of exploitation rate is exceeded this may stop any further rebuilding of the stock.

## 3. FAROESE SPRING SPAWNING HERRING

In 1980 herring were as in 1978 and 1979 occasionally reported as by-catch in the trawl fishery indicating that a small amount of herring is staying in the plateau throughout the year. The few specimens investigated were all from the 1968 year class.

In the Faroese 0-group survey in 1980618 0-group herring were caught which is the highest amount recorded in the most recent years.

Number of 0-group herring caught in the Faroese 0-group surveys from 1977 to 1980

|  | 1977 | $\underline{1978}$ | $\underline{1979}$ | 1980 |
| :--- | ---: | ---: | ---: | ---: |
| Total catch in number | 7 | 262 | 98 | 618 |
| No. of stations | 93 | 94 | 93 | 96 |
| Negative stations | 90 | 79 | 84 | 84 |

As the surveys are aimed particularly at 0-group cod and haddock, the timing might not be adequate for 0-group herring and the indices should therefore be treated with great caution. The available data further indicate that there has been no recruitment to this spawning stock component neither in 1979 nor in 1980.
The results of the investigations in 1978 and 1979 which showed this component to be at a very low level are, therefore, still valid and the Working Group recommends that a directed fishery for this component should be prohibited.
4. THE ICELANDIC SPRING AND SUMMER SPAWNING HERRING
4.1 The Fishery

No signs of recovery of the Icelandic spring spawning herring have been observed and the fishery in 1980 was entirely based (99.7\%) on Icelandic summer spawners.
The landings of summer spawning herring for 1971-80 are given in Table 4.l. The 1980 landings were about 53300 tonnes. The catches were taken with purse seine and drift nets as shown in the text table. It should be noted that the drift net landings include 625 tonnes taken by set nets.

|  | Purse seine |  | Drift nets |  | Total |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Catch | TACs | Catch | TACs | Catch | TACs | Rec. TACs |
| 1977 | 15.6 | 15.0 | 13.1 | 10.0 | 28.7 | 25.0 | 25.0 |
| 1978 | 20.2 | 20.0 | 17.1 | 15.0 | 37.3 | 35.0 | 35.0 |
| 1979 | 25.5 | 20.0 | 19.6 | 15.0 | 45.1 | 35.0 | 35.0 |
| 1980 | 32.6 | 32.0 | 20.7 | 18.0 | 53.3 | 50.0 | 45.0 |

It is noted that the catches exceeded the recommended TAC by about $18 \%$.
4.2. Stock Abundance and Mortality Rates

The assessment of the stock and the exploitation for 1980 is as in previous years based on acoustic stock abundance estimated and catches by age using a VPA.

### 4.2.1 The catch in number, mean weights and age at first maturity

The catches in number by age for the Icelandic summer spawners are given in Table 4.2 for the period 1969-80. During 1975-77 the catches were predominated by the 1971 year class. In 1978 and 1979 this year class was still important but in 1980 it contributed $9 \%$ to the catch. As in 1979, the catches in 1980 were predominated by the 1974 and 1975 year classes (Table 4.2). The weight at age in grams is given for each year in Table 4.3 and is used for calculating biomass. During the period 1974-79 there was a clear trend in declining mean weights especially in the younger part of the population.
Thus, the mean weight of 3 -ringers were:

| Weight in g | $\frac{1974}{262}$ | $\frac{1975}{241}$ | $\frac{1976}{243}$ | $\frac{1977}{217}$ | $\frac{1978}{196}$ | $\frac{1979}{182}$ | $\frac{1980}{202}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

The mean weight of 3 -ringers in 1979 was in fact similar to that of 2 -ringers during 1972-76. However, in 1980 this declining trend in mean weights of 3 -ringers did not continue. As shown in the text table above the mean weight of 3 -ringers in 1980 increased by 20 g or about $10 \%$ as compared to 1979 . In a previous report it was pointed out that the declining mean weights until 1979 may indicate a density-dependent growth. The reversal of this trend in 1980 is of special interest in this context, because the 3 -ringers in 1980 belong to the poor 1976 year class. Thus, the increased mean weight of 3 -ringers in 1980 further supports the hypothesis that the changes in mean weights of 3 -ringers of the Icelandic summer spawning herring may be influenced by density-dependent growth. It is of interest to note in this context that the mean weights of 2 -ringers in 1980 were lower than in any of the previous ten years (Table 4.3). During the period of low abundance about $95-98 \%$ of the 3 -ringed herring were mature and spawned at that age. In 1979 about $33 \%$ of the 3 -ringed herring in the catches were immature. Therefore a considerable proportion of the 1975 year class did not spawn for the first time until 1980. In 1980, on the other hand, only $5 \%$ of the 3 -ringed herring in the catches were immature. Therefore practically all the 1976 year class spawned as 3 -ringers. During
the period of high abundance of the stock in the 1960s, about $50 \%$ of the 3 -ringers were immature.

### 4.2.2 The acoustic abundance surveys in 1980

During the period 1973-79 echo abundance surveys were carried out on the wintering grounds at southeast Iceland (Jakobsson, 1980). In December 1980 no wintering concentrations assembled in the traditional wintering areas at the southeast coast. Instead the herring were located in the east coast fjords. Therefore the main, survey effort was concentrated in that area. The research vessel "Arni Fridriksson" had priox to the 1980 survey been equipped with a new echo integrator system. As a result the integrator values per nautical mile could not be compared directly with those obtained in previous years. Considerable effort was therefore spent on obtaining new TS values for the various length categories, i.e. small, fat and large herring both during the November and December surveys in 1980 (Halldorsson, unpubl. data). As a result of these TS estimates it was found that for the new equipment:

$$
\mathrm{C}=12.5 \times 1^{-2.1} \times 10^{6} \mathrm{fish} / \mathrm{nm}^{2} / \mathrm{mm} \text { elevation }
$$

where $C$ is the density coefficient and $l$ is the length of the fish in cm.

Using this equation as well as the length and age distribution of the samples for each fjord, an estimate of the number of herring in each age group in each fjord was obtained (Table 4.4). Based on the mean weights at age from the sampling of the wintering concentrations these numbers correspond to a biomass of 235 thousand tonnes of herring. It is clear from the age distribution in Table 4.4 that the immature 1- and 2-ringers were much better represented on the new wintering grounds in 1980 than previously observed at the wintering grounds at southeast Iceland. This is especially true for two of the fjords where heavy concentrations of immature herring were observed. In addition to this development it should be mentioned that in November 1980 estimates of $0-g r o u p$ herring were obtained at north and west Iceland. Due to this new development it is hoped that better information on recruitment of the stock will be available in the coming years.

### 4.2.3 The fishing mortality in 1980

As in previous years the fishing mortality for 1980 was calculated from the survey results as given in the following text table and the catch data from the previous fishing season, using the equation with $\mathrm{M}=0.1$ :

$$
\frac{N_{\text {Dec }} 1980}{{ }^{C} 1980}=\frac{e^{-Z}}{\left(1-e^{-Z}\right) \frac{F}{Z}}
$$

| Rings | $\text { Age } \underset{(\%)}{\text { distribution }}$ | Echostock in millions <br> Dec. 1980 | Catch in no. 1980 in millions | $\mathrm{F}_{1980}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | $+$ | 6.0 | 0.0 | 0.00 |
| 1 | 20 | 669.4 | 3.2 | + |
| 2 | 31 | 832.1 | 14.8 | 0.02 |
| 3 | 7 | 71.8 | 21.4 | 0.25 |
| 4 | 18 | 179.3 | 62.5 | 0.29 |
| 5 | 15 | 154.2 | 67.2 | 0.34 |
| 6 | 1 | 11.0 | 11.9 | 0.71 |
| 7 | 3 | 21.8 | 9.6 | 0.36 |
| 8 | 4 | 42.5 | 20.0 | 0.36 |
| $8+$ | 1 | 11.5 | 4.0 | 0.30 |
| $\mathrm{n}=942 \quad \overline{\mathrm{w}}=117.6 \mathrm{~g}$ |  |  | d mean $\mathrm{F}_{4+}=0.3$ |  |

### 4.2.4 The results of the VPA

A VPA was run, however, using the mean $F$ for adult herring $=0.33$ obtained from the catch in number data in 1980 and the results of the echo abundance survey as described above, using $M=0.10$. The results are given in Tables 4.5 and 4.6 .
The present VPA gives somewhat lower stock estimates for the earlier years than that estimated in the VPA in the 1980 report. This is due to higher $F$ values for adult herring in 1980 which in turn result from a somewhat lower acoustic estimate of the adult stock in December 1980 than expected. It should be noted that the herring were confined to narrow fjords in 1980, where acoustic surveying was much more difficult than at the eastern south coast where the herring overwintered in previous years. The new TS values used in 1980 could not be directly compared with the previous ones, and this may also have contributed to the lower acoustic estimate in 1980.
The samples used for the age distribution were taken by a capelin trawl. It is possible that the large herring tend to avoid this gear to a larger extent than the small herring. This would also contribute to a possible underestimate of the adult population and a corresponding overestimate of the immature herring.
During the most recent years 1975-79 the adult $F$ has increased from 0.08 to 0.23. In 1980 there appears to have been a further increase to 0.33. The adult stock biomass increased sharply in 1975 to about 120000 tonnes. In 1978 there was a further increase to about 200000 tonnes; the adult stock biomass appears to have been on that level during the last three years (1978-80). However, it should be stressed that these most recent estimates are all highly dependent on the results of the echo abundance survey. As shown in Table 4.6 the 1971 year class is now estimated to have been about $430 \times 10^{6}$ herring as l-ringers. The 1972 and 1973 year classes are both weak (114 and 161 mill.), while the 1974 and 1975 year classes are estimated to have been 588 and 401 mill. as l-ringers respectively.

The 1976 year class appears to be poor or only 144 millj. as l-ringers. The estimates of the 1975 and 1976 year classes are considerably lower according to this new VPA than in that of last year. At that time it was noted with some concern that the l- and 2-ringers appeared in much lower proportions in the catches in 1979 than in previous years. It was then explained that this might be due to two poor year classes, but on the other hand a change in the recruitment pattern was also mentioned as a possible cause. The results of the 1980 echo abundance surveys suggest that the latter was the cause of the apparent scarcity of the 1977 and 1978 year classes in 1979. These appear to be extremely strong but slow growing year classes according to the most recent surveys.

### 1.3 State of the Stock and Advice of TAC

Based on the echo abundance estimates from December 1980, the adult stock ( 3 -ringers and older) will be about 240000 tonnes in 1981. Of this adult stock biomass about 90000 tonnes are due to the strong 1977 year class ( 3 -ringers). Taking into account that this year class has a reduced growth (Table 4.3) it is unlikely that more than $50 \%$ of it will contribute to the spawning stock in 1981. Therefore the spawning stock will probably be about 200000 tonnes in 1981. This level of stock abundance is within the range of stock biomass during the 1954-63 period of high and steady recruitment (Jakobsson, 1980).

In last year's report the Working Group recommended that the advice of a TAC should be based on the results of the echo abundance survey and keeping the fishing mortality rate as close as possible to $\mathrm{F}_{0.1}$, which for this stock at the present fishing pattern is $F=0.22$. The Working Group recommends that this should be continued.
However, the echo abundance estimates in December 1980 gave very high values of 1 - and 2-ringers. In calculating the TAC for 1981 the Working Group agreed to put a constraint on the abundance of these year classes so that as 3-ringers they would not exceed the highest level observed previously in this stock $\left(600 \times 10^{-6}\right)$. On this basis and using an $F=0.22\left(F_{0.1}\right)$, the Working Group recommends that the TAC for the Icelandic summer spawners for 1981 should be 40000 tonnes.

The estimated high level of recruitment in 1981 and 1982 may lead to a considerable increase in the stock if the above management will be adhered to.

GEFERENCES
Anon., 1980. Report of the Atlanto-Scandian Herring Working Group, Bergen, 12-14 May 1980". C.M.1980/H:8 (mimeo.).

Jakobsson, J. 1980. Monitoring the recovery of the Icelandic summer spawning herring. ICES, Doc. C.M.1980/H:34 (mimeo.).

Table 1. Catches north of $62^{\circ} \mathrm{N}$ of Norwegian spring spawning herring (tonnes) 1972-81.

| Year | Catches of adult <br> herring in winter | Mixed herring <br> fishery in autumn ${ }^{2)}$ | Bycatches of 0- and <br> I-group herring in <br> the sprat fishery |
| ---: | :---: | :---: | :---: |
| 1972 | 0 | 9895 | $3266^{3)}$ |
| 73 | 139 | 6602 | 276 |
| 74 | 906 | 6093 | 620 |
| 75 | 53 | 3372 | 288 |
| 76 | 0 | 247 | 189 |
| 77 | 374 | 1.1834 | 498 |
| 78 | 484 | 9151 | 189 |
| 79 | 691 | 1866 | 307 |
| 80 | 878 | 7634 | 65 |
| 1981 | 844 |  |  |

1) Mostly experimental fishing
2) Includes also bycatches of adult herring in other fisheries
3) In 1972 there was also a direcied herring 0-group fishery

Table 2. Catch in numbers, millions, Norwegian spring spawners, 3 years and older. Unreported catches are included.

| Age | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |
| 3 | 35.376 | 2.389 | 0.100 | 3.268 | 23.248 | 22.103 |
| 4 | 3.476 | 25.220 | 0.241 | 0.132 | 5.436 | 23.595 |
| 5 | 3.583 | 0.651 | 24.505 | 0.910 | 0.000 | 0.336 |
| 6 | 2.481 | 1.506 | 0.257 | 30.667 | 0.000 | 0.000 |
| 7 | 0.694 | 0.278 | 0.196 | 0.005 | 13.086 | 0.419 |
| 8 | 1.486 | 0.178 | 0.000 | 0.002 | 0.000 | 10.766 |
| 9 | 0.198 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 10 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 11 | 0.494 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 12 | 0.593 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 13 | 0.593 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 14 | 0.000 | 0.178 | 0.000 | 0.000 | 0.000 | 0.000 |


| Age | 1978 | 1979 | 1980 |
| ---: | ---: | ---: | ---: |
|  | 3.019 | 6.352 | 6.407 |
| 4 | 12.164 | 1.866 | 15.814 |
| 5 | 20.315 | 6.865 | 2.278 |
| 6 | 0.870 | 11.216 | 8.165 |
| 7 | 0.000 | 0.326 | 15.838 |
| 8 | 0.620 | 0.000 | 0.441 |
| 9 | 5.027 | 0.000 | 0.008 |
| 10 | 0.000 | 2.534 | 0.000 |
| 11 | 0.000 | 0.000 | 2.688 |

Table 3. Norwegian spring spawners. Abundance of 0-group herring 1975-80.

| Year | Area |  |  | Total |
| :--- | :---: | :---: | :---: | :---: |
|  | $62^{\circ} \mathrm{N}-65^{\circ} \mathrm{N}$ | $65^{\circ} \mathrm{N}-68^{\circ} \mathrm{N}$ | North of $68^{\mathrm{O}_{30}}$ |  |
| 1975 | 328 | 692 | 55 |  |
| 1976 | 415 | 2610 | 750 | 1075 |
| 1977 | 70 | 305 | 37 | 3775 |
| 1978 | 302 | 511 | 392 | 412 |
| 1979 | 909 | 2260 | 288 | 1205 |
| 980 | 12 | 4 | 218 | 3457 |

Table 4.1 Landings of Icelandic summer spawning herring 1971-80 in tonnes $x$ 10-3.

| 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11.5 | 0.3 | 0.2 | 1.2 | 12.8 | 17.8 | 28.7 | 37.3 | 45.1 | 53.3 |

Table 4.2 Catch in numbers, millions, Icelandic summer spawners, 1969-80.

| RINGS | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4.520 | 2.003 | 8.774 | 0.176 | 0.001 | 0.001 | 1.465 |
| 2 | 78.410 | 22.344 | 13.071 | 0.385 | 0.172 | 3.681 | 1.977 |
| 3 | 8.274 | 33.965 | 5.439 | 0.157 | 0.734 | 0.814 | 30.855 |
| 4 | 5.178 | 4.500 | 13.688 | 0.195 | 0.113 | 0.972 | 6.266 |
| 5 | 10.015 | 2.734 | 3.040 | 0.316 | 0.018 | 0.090 | 7.628 |
| 6 | 2.841 | 4.419 | 1.563 | 0.056 | 0.014 | 0.045 | 0.833 |
| 7 | 1.389 | 1.145 | 3.276 | 0.033 | 0.006 | 0.002 | 0.427 |
| 8 | 1.179 | 0.531 | 0.748 | 0.029 | 0.006 | 0.001 | 0.333 |
| 9 | 0.609 | 0.604 | 0.250 | 0.016 | 0.003 | 0.001 | 0.110 |
| 10 | 0.424 | 0.195 | 0.103 | 0.011 | 0.003 | 0.001 | 0.004 |
| 11 | 0.286 | 0.103 | 0.120 | 0.004 | 0.001 | 0.001 | 0.001 |
| 12 | 0.139 | 0.076 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
| 13 | 0.109 | 0.061 | 0.001 | 0.004 | 0.001 | 0.001 | 0.001 |
| 14 | 0.074 | 0.051 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
| SUM 1-2 | 82.930 | 24.347 | 21.845 | 0.561 | 0.173 | 3.682 | 3.442 |
| Sum 3-14 | 30.517 | 48.384 | 28.230 | 0.823 | 0.901 | 1.930 | 46.460 |
| total | 113.447 | 72.731 | 50.075 | 1.384 | 1.074 | 5.612 | 49.902 |
| RINGS | 1976 | 1977 | 1978 | 1979 | 1980 |  |  |
| 1 | 0.632 | 0.683 | 2.607 | 0.919 | 3.239 |  |  |
| 2 | 10.136 | 18.266 | 22.318 | 14.932 | 14.768 |  |  |
| 3 | 4.022 | 23.400 | 50.469 | 47.038 | 21.370 |  |  |
| 4 | 35.142 | 10.080 | 13.703 | 68.968 | 62.509 |  |  |
| 5 | 7.214 | 44.913 | 8.648 | 16.270 | 67.245 |  |  |
| 6 | 5.641 | 6.525 | 39.085 | 7.915 | 11.879 |  |  |
| 7 | 1.076 | 5.252 | 7.178 | 25.753 | 9.557 |  |  |
| 8 | 0.451 | 1.352 | 6.288 | 3.016 | 20.012 |  |  |
| 9 | 0.305 | 0.508 | 1.599 | 1.848 | 1.849 |  |  |
| 10 | 0.138 | 0.351 | 0.916 | 0.489 | 1.507 |  |  |
| 11 | 0.095 | 0.026 | 0.396 | 0.434 | 0.718 |  |  |
| 12 | 0.001 | 0.124 | 0.017 | 0.032 | 0.001 |  |  |
| 13 | 0.001 | 0.001 | 0.025 | 0.053 | 0.113 |  |  |
| 14 | 0.001 | 0.001 | 0.050 | 0.006 | 0.081 |  |  |
| M 1-2 | 10.768 | 18.949 | 24.925 | 15.851 | 18.007 |  |  |
| SUM 3-14 | 54.087 | 92.533 | 128.374 | 171.822 | 196.841 |  |  |
| total | 64.855 | 111.482 | 153.299 | 187.673 | 214.848 |  |  |

Table 4.3 Weight at age in grams, Icelandic summer spawners, 1969-80.

| RINGS | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 82.0 | 85.0 | 88.0 | 96.0 | 90.0 | 80.0 | 110.0 |
| 2 | 157.0 | 169.0 | 165.0 | 177.0 | 199.0 | 189.0 | 179.0 |
| 3 | 195.0 | 216.0 | 237.0 | 278.0 | 257.0 | 262.0 | 241.0 |
| 4 | 264.0 | 263.0 | 273.0 | 332.0 | 278.0 | 297.0 | 291.0 |
| 5 | 284.0 | 312.0 | 301.0 | 358.0 | 337.0 | 340.0 | 319.0 |
| 6 | 304.0 | 329.0 | 324.0 | 379.0 | 381.0 | 332.0 | 339.0 |
| 7 | 339.0 | 338.0 | 346.0 | 410.0 | 380.0 | 379.0 | 365.0 |
| 8 | 372.0 | 357.0 | 368.0 | 419.0 | 397.0 | 356.0 | 364.0 |
| 9 | 379.0 | 378.0 | 390.0 | 470.0 | 385.0 | 407.0 | 407.0 |
| 10 | 390.0 | 396.0 | 409.0 | 500.0 | 450.0 | 410.0 | 389.0 |
| 11 | 376.0 | 408.0 | 412.0 | 500.0 | 450.0 | 410.0 | 430.0 |
| 12 | 401.0 | 425.0 | 420.0 | 500.0 | 450.0 | 423.0 | 416.0 |
| 13 | 409.0 | 430.0 | 442.0 | 500.0 | 450.0 | 423.0 | 416.0 |
| 14 | 414.0 | 450.0 | 450.0 | 500.0 | 450.0 | 423.0 | 416.0 |
| RINGS | 1976 | 1977 | 1978 | 1979 | 1980 |  |  |
| 1 | 103.0 | 84.0 | 73.0 | 75.3 | 68.9 |  |  |
| 2 | 189.0 | 157.0 | 128.0 | 145.3 | 115.3 |  |  |
| 3 | 243.0 | 217.0 | 196.0 | 182.4 | 202.0 |  |  |
| 4 | 281.0 | 261.0 | 247.0 | 230.9 | 232.5 |  |  |
| 5 | 305.0 | 285.0 | 295.0 | 284.7 | 268.9 |  |  |
| 6 | 335.0 | 313.0 | 314.0 | 315.7 | 316.7 |  |  |
| 7 | 351.0 | 326.0 | 339.0 | 333.7 | 351.6 |  |  |
| 8 | 355.0 | 347.0 | 359.0 | 350.4 | 360.4 |  |  |
| 9 | 395.0 | 364.0 | 360.0 | 366.7 | 379.9 |  |  |
| 10 | 363.0 | 362.0 | 376.0 | 368.3 | 382.9 |  |  |
| 11 | 396.0 | 358.0 | 380.0 | 370.6 | 392.7 |  |  |
| 12 | 396.0 | 355.0 | 425.0 | 350.0 | 390.0 |  |  |
| 13 | 396.0 | 400.0 | 425.0 | 350.0 | 390.0 |  |  |
| 14 | 396.0 | 420.0 | 425.0 | 450.0 | 390.0 |  |  |

Table 4.4 Echo abundance estimates (millions of herring) in 5 fjords at East Iceland, December 1980.

| Winter <br> rings | Seyờis- <br> fjörơur | Mjói- <br> fjörour | Reyðar- <br> fjörour | Stöðvar- <br> fjörður | Berufjörður | Total | $\bar{W}$ | İ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | 6.0 |  |  |  | 6.0 |  |  |
| 1 | 16.3 | 341.1 | 5.9 |  | 306.1 | 669.4 | 52 | 18.7 |
| 2 | 38. | 379.0 | 28.6 | 0.7 | 385.0 | 832.1 | 91 | 22.3 |
| 3 | 5.3 | 4.5 | 11.0 | 1.6 | 49.4 | 71.8 | 186 | 28.5 |
| 4 | 13.7 | 11.5 | 38.8 | 6.7 | 108.6 | 179.3 | 224 | 30.2 |
| 5 | 9.7 | 10.7 | 37.4 | 8.3 | 88.9 | 154.2 | 262 | 31.7 |
| 6 | 0.9 | 0.8 | 2.9 | 0.5 | 5.9 | 11.0 | 305 | 33.6 |
| 7 | 0.4 | 1.8 | 6.6 | 1.1 | 11.8 | 21.8 | 328 | 34.2 |
| 8 | 3.1 | 2.8 | 13.2 | 1.8 | 21.7 | 42.5 | 354 | 35.3 |
| 9 |  | 0.2 | 0.7 | 0.2 | 3.0 | 4.2 | 365 | 36.0 |
| 10 |  | 0.3 | 1.5 | 0.2 | 4.9 | 6.9 | 370 | 36.0 |
| 11 |  | 0.1 |  | 0.2 |  | 0.4 | 370 | 37.0 |

Total
weight
in 000
tonnes
$12.5 \quad 60.6$
31.9
$6.2 \quad 124.0 \quad 235.2$

Pable 4.5 Calculated fishing mortality, Icelandic
summer spawners, 1969-80. $\mathrm{M}=0.10$, initial $F=0.33$.

| RINGS | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0.113 | 0.060 | 0.131 | 0.003 | 0.000 | 0.000 | 0.010 |
| 2 | 0.847 | 1.050 | 0.582 | 0.007 | 0.003 | 0.010 | 0.020 |
| 3 | 0.588 | 1.013 | 0.696 | 0.011 | 0.015 | 0.016 | 0.097 |
| 4 | 0.657 | 0.655 | 1.506 | 0.041 | 0.009 | 0.022 | 0.143 |
| 5 | 0.727 | 0.781 | 1.164 | 0.095 | 0.004 | 0.008 | 0.210 |
| 6 | 0.828 | 0.736 | 1.362 | 0.046 | 0.005 | 0.012 | 0.081 |
| 7 | 0.920 | 0.852 | 2.140 | 0.071 | 0.006 | 0.001 | 0.134 |
| 8 | 0.901 | 1.015 | 3.116 | 0.077 | 0.015 | 0.001 | 0.153 |
| 9 | 0.857 | 1.727 | 2.373 | 0.730 | 0.009 | 0.003 | 0.135 |
| 10 | 1.149 | 0.655 | 2.038 | 0.652 | 0.253 | 0.003 | 0.012 |
| 11 | 1.219 | 0.867 | 0.989 | 0.343 | 0.097 | 0.112 | 0.004 |
| 12 | 1.110 | 1.204 | 0.015 | 0.016 | 0.120 | 0.120 | 0.141 |
| 13 | 0.799 | 3.564 | 0.035 | 0.069 | 0.018 | 0.152 | 0.152 |
| 14 | 0.700 | 1.000 | 1.000 | 0.040 | 0.020 | 0.020 | 0.200 |

AVEFAGE WEIGHTED EY STOCK IN NUMEEFS

| AVE $3-13$ | 0.705 | 0.930 | 1.331 | 0.034 | 0.012 | 0.016 | 0.113 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AVE 4-14 | 0.756 | 0.769 | 1.568 | 0.066 | 0.008 | 0.017 | 0.161 |


| RINGS | 1976 | 1977 | 1978 | 1979 | 1980 |
| :---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 0.001 | 0.002 | 0.019 | 0.001 | 0.005 |
| 2 | 0.077 | 0.039 | 0.067 | 0.131 | 0.019 |
| 3 | 0.047 | 0.227 | 0.129 | 0.175 | 0.250 |
| 4 | 0.138 | 0.144 | 0.180 | 0.232 | 0.330 |
| 5 | 0.217 | 0.234 | 0.159 | 0.299 | 0.330 |
| 6 | 0.212 | 0.277 | 0.292 | 0.191 | 0.330 |
| 7 | 0.128 | 0.277 | 0.489 | 0.283 | 0.330 |
| 8 | 0.183 | 0.209 | 0.548 | 0.347 | 0.330 |
| 9 | 0.184 | 0.287 | 0.362 | 0.272 | 0.330 |
| 10 | 0.224 | 0.296 | 1.076 | 0.160 | 0.330 |
| 11 | 0.392 | 0.054 | 0.560 | 4.687 | 0.330 |
| 12 | 0.004 | 1.165 | 0.041 | 0.070 | 0.330 |
| 13 | 0.183 | 0.005 | 0.680 | 0.154 | 0.330 |
| 14 | 0.200 | 0.250 | 0.300 | 0.300 | 0.330 |

AVEFAGE WEIGHTEII BY STOCK IN NUMEERS

| AVE 3-13 | 0.132 | 0.222 | 0.191 | 0.225 | 0.319 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| AVE 4-14 | 0.153 | 0.221 | 0.268 | 0.251 | 0.330 |

Table 4.6 Stock in numbers, millions, Icelandic summer spawners 1969-80. $\mathrm{M}=0.10$, initial $\mathrm{F}=0.33$.

| RINGS | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 44.313 | 36.337 | 75.082 | 68.269 | 431.317 | 113.927 | 161.152 |
| 2 | 143.252 | 35.803 | 30.976 | 59.603 | 61.605 | 389.898 | 103.055 |
| 3 | 19.471 | 55.582 | 11.331 | 15.659 | 53.565 | 55.579 | 349.295 |
| 4 | 11.234 | 9.789 | 18.264 | 5.111 | 14.020 | 47.770 | 49.516 |
| 5 | 20.249 | 5.268 | 4.602 | 3.666 | 4.439 | 12.578 | 42.300 |
| 6 | 5.268 | 8.857 | 2.184 | 1.301 | 3.017 | 4.000 | 11.296 |
| 7 | 2.408 | 2.084 | 3.837 | 0.506 | 1.124 | 2.717 | 3.576 |
| 8 | 2.071 | 0.868 | 0.804 | 0.408 | 0.427 | 1.011 | 2.456 |
| 9 | 1.104 | 0.761 | 0.285 | 0.032 | 0.342 | 0.380 | 0.914 |
| 10 | 0.646 | 0.424 | 0.123 | 0.024 | 0.014 | 0.307 | 0.343 |
| 11 | 0.422 | 0.185 | 0.199 | 0.014 | 0.011 | 0.010 | 0.276 |
| 12 | 0.216 | 0.113 | 0.071 | 0.067 | 0.009 | 0.009 | 0.008 |
| 13 | 0.207 | 0.064 | 0.031 | 0.063 | 0.060 | 0.007 | 0.007 |
| 14 | 0.154 | 0.084 | 0.002 | 0.027 | 0.053 | 0.053 | 0.006 |
| SUM 1-2 | 187.565 | 72.140 | 106.057 | 127.872 | 492.923 | 503.825 | 264.207 |
| SUM 3-14 | 63.450 | 84.079 | 41.732 | 26.880 | 77.081 | 124.422 | 459.994 |
| TOTAL | 251.015 | 156.219 | 147.789 | 154.752 | 570.004 | 628.246 | 724.201 |
| Adult stock weight $3-14^{x}$ | x) 16.776 | 20.797 | 11.675 | 8.347 | 21.104 | 36.058 | 118.745 |
| RINGS | 1976 | 1977 | 1978 | 1979 | 1980 |  |  |
| 1 | 558.238 | 401.500 | 143.802 | 912.097 | 710.768 |  |  |
| 2 | 144.423 | 504.515 | 362.643 | 127.639 | 824.428 |  |  |
| 3 | 91.368 | 121.048 | 439.142 | 306.924 | 101.310 |  |  |
| 4 | 286.741 | 78.851 | 87.321 | 349.416 | 233.056 |  |  |
| 5 | 38.853 | 226.078 | 61.774 | 66.002 | 250.714 |  |  |
| 6 | 31.034 | 28.309 | 161.942 | 47.684 | 44.289 |  |  |
| 7 | 9.429 | 22.727 | 19.425 | 109.458 | 35.632 |  |  |
| 8 | 2.831 | 7.510 | 15.582 | 10.779 | 74.612 |  |  |
| 9 | 1.906 | 2.133 | 5.512 | 8.147 | 6.894 |  |  |
| 10 | 0.722 | 1.435 | 1.448 | 3.472 | 5.619 |  |  |
| 11 | 0.307 | 0.523 | 0.966 | 0.447 | 2.677 |  |  |
| 12 | 0.249 | 0.188 | 0.448 | 0.499 | 0.004 |  |  |
| 13 | 0.006 | 0.225 | 0.053 | 0.389 | 0.421 |  |  |
| 14 | 0.006 | 0.005 | 0.202 | 0.024 | 0.302 |  |  |
| SUM 1-2 | 702.662 | 906.015 | 506.445 | 1039.735 | 1535.196 |  |  |
| SUM 3-14 | 463.453 | 489.030 | 793.815 | 903.241 | 755.530 |  |  |
| TOTAL | 1166.115 | 1395.046 | 1300.260 | 1942.976 | 2290.727 |  |  |
| Adult stock weight 3-14 | $\text { x) } 130.578$ | 131.797 | 192.087 | 215.564 | 201.617 |  |  |

[^0]


Figure 3. Distribution of herring larvae, 22.4. - 30.4.1981. Density in number per $\mathrm{m}^{2}$ surface.


Figure 4. Distribution of herring larvae in April 1980. Density in number per $\mathrm{m}^{2}$ surface.


Figure 5. Distribution of 0-group herring.

$\qquad$


[^0]:    x ) Stock in weight in 1000 x tonnes.

