Fol. 41 G

Fisheridizektoratet Biblioteket

This paper not to be cited without prior reference to the author

International Council for the Exploration of the Sea

C.M. 1981/G: 36

Demersal Fish Committee

ASSESSMENTS OF THE NORTH-EAST ARCTIC AND NORTH SEA STOCKS OF SAITHE TAKING INTO ACCOUNT MIGRATION

by

Tore Jakobsen
Institute of Marine Research
P.O. Box 1870, 5011 Nordnes-Bergen, Norway

ABSTRACT

Tagging experiments have shown that there is a substantial migration of young saithe from the Norwegian coast north of 62° N to the North Sea. Assessments of the North-East Arctic and North Sea Stocks of saithe were made assuming that all 1-4 year old saithe caught between 62° and 64° N would have recruited to the North Sea stock. The new assessments give a decrease in the level of recruitment to the North-East Arctic stock and an increase to the North Sea stock. The exploitation of the North-East Arctic stock is close to F_{max} , whereas the North Sea stock is subject to considerable growth overfishing. Reduction in the exploitation of young saithe between 62° and 64° N will benefit chiefly the North Sea stock.

INTRODUCTION

Migration of fish between areas assumed to represent different stocks is a problem both for stock assessments and fishery management. In the North Sea region, migration between the North Sea and adjacent areas is common, but in most cases the data do not give a sufficient basis for quantifying the migration. In stock assessments migration is therefore usually either ignored or the effect of it is eliminated by assuming

that the fish in the areas concerned belong to the same stock. Neither procedure is satisfactory if there in fact are two or more different stocks in the areas.

In the Saithe Working Group, assessments have been made assuming that there is one self-contained stock in Sub-areas I and II and another in Sub-area IV and Division IIIa (Anon. 1981). However, recent tagging experiments have shown that there is a very substantial migration of immature saithe from part of the coastal area north of 62°N to the North Sea (Jakobsen 1978, 1981). This is contrary to the results of tagging experiments in the same area in 1955-58 which showed a basically northward migration (Olsen 1959, Anon. 1965). The present migration pattern may therefore be temporary. However, this pattern appears to have been stable at least for 10 years and clearly introduces a bias in the assessments. Therefore, assessments of the North Sea and North-East Arctic stocks of saithe have been made using information obtained from the tagging experiments to revise the data bases and thus eliminating at least some of the bias caused by migration in the traditional assessments.

CHANGES IN THE DATA-BASES

The rate of migration of immature saithe from the Norwegian coast to the North Sea is very high just north of $62^{\circ}N$ and then gradually decreases northward along the coast (Jakobsen 1978, 1981). From north of the Lofoten Islands (about $68^{\circ}N$) it appears to be negligible. If the rate of migration had been the same from the whole coastal area north of $62^{\circ}N$, it might have been possible to estimate an emigration rate from the North-East Arctic. However, the fact that the rate of migration to the North Sea differs between different coastal areas precludes this possibility because the geographical distribution of immature saithe north of $62^{\circ}N$ is not sufficiently well known. Thus, it is not known how large proportion of each year class north of $62^{\circ}N$ is found in the area south of $68^{\circ}N$ from which there is a significant migration to the North Sea. If the

number of fish of each year class migrating to the North Sea had been known, the effect on the North Sea stock might have been calculated (Ulltang 1977) but this again requires an estimate of the emigration rate from the North-East Arctic.

An alternative approach to the problem is to assume that all or a given proportion of immature saithe caught in an area on the Norwegian coast north of 62° would eventually have migrated to the North Sea. The Norwegian statistics give landings separately for the area between 62° and 64° N and also for the area between 64° and 67° N. The rate of migration to the North Sea from the latter area is substantial, but difficult to estimate. It is clearly higher from the southern part of this area than from the northern part (Jakobsen 1978, 1981) and it is not certain that all the fish migrating southward will go as far as the North Sea. From the area between 62° and 64° N the rate of migration to the North Sea is very high and the low number of recoveries north of the tagging area also indicates that recruitment to the North-East Arctic spawning stock from this area is low.

Thus, from the assessments it was assumed that all saithe of ages 1-4 caught between 62° and $64^{\circ}N$ would eventually have migrated to the North Sea. This represents an overestimate of migration from that area. However, this was compensated for by not assuming any migration from areas further north. In view of the results of the most recent tagging experiments (Jakobsen 1981) this would seem to represent an underestimate of the migration. However, catches of young saithe between 64° and $67^{\circ}N$ have genreally been only about half the level of catches between 62° and $64^{\circ}N$ and the estimate of migration from the southernmost area is therefore most important to the assessments.

The tagging experiments between 62° and 64°N have been carried out on predominantly 2-4 year old fish. The migration of 5 year old fish from the area is virtually unknown and as some of the saithe mature at this age (Reinsch 1976), the 5 year old fish remaining in the area may join the spawning saithe coming from

the north, which also may contribute to the catch of 5 year olds in the area. The change in the data-bases was therefore restricted to catches of 1-4 year old saithe in the area between 62° and 64° N which was transferred from the North-East Arctic to the North Sea catch-at-age data base. This is equivalent to extending the area of the North Sea stock north to 64° N as far as 1-4 year old saithe is concerned, and reducing the area of the North-East Arctic stock correspondingly.

The data bases were changed only back to 1970 because of inadequate Norwegian catch statistics in earlier years. In addition to the Norwegian fisheries, there has also been other fleets in the area with Germany (Fed. Rep. of) taking the highest catches. These include catches taken at the Halten Bank, i.e. at about 65° N, which could not be separated from the others. However, the catches of 1-4 year old saithe are insignificant compared to the Norwegian ones.

For the assessments, also weight-at-age for ages 1-4 had to be adjusted because the young saithe caught in the area between 62° and 64° N on the average has a lower weight-at-age than the averages both for the North Sea and the North-East Arctic.

Input Fs in 1980 for age groups 5-14 were the same as used in the Saithe Working Group. For the age groups 1-4 the change in the catch-at-age data required a revision of input Fs. This was done by using the same principles as in the Working Group assessments.

RESULTS

The input catch—at—age and results of the VPA are given in Tables 1—6. The input F-values at 1—4 are lower for the North—East Arctic and higher for the North Sea stock than those used in the Working Group. The transfer of catches from one area to another do not necessarily produce a corresponding change in F-levels. However, considering that immature saithe is heavily fished by purse seiners and to some extent trawlers on the

Norwegian coast between 62° and 64°N, it seems reasonable to expect that the exploitation rate on the younger age groups is higher in this area higher in the rest of the North-East Arctic and also higher than in the North Sea. The change from the Working Group assessments in the level of Fs for ages 1-4 in the historical series, i.e. increase in the North Sea and decrease in the North-East Arctic, seems to support this. However, the traditional assessments ignore migration and therefore do not give "true" levels of F and the comparison is not totally relevant.

The most striking difference from the traditional assessments is in the level of recruitment. For the North-East Arctic there is a reduction of 24% and for the North Sea an increase of 29% in the average of the year-classes 1969-76. However, the sum of recruitment in the two stocks remains virtually the same. The spawning stocks are of course unchanged, all the input data to estimate them being the same as in the Working Group.

Yield calculations based on the 1980 exploitation patterns are shown in Fig. 1. For the North-East Arctic stock F_{80} =0.95· F_{max} , whereas in the Working Group assessment F_{80} =1.18· F_{max} . For the North Sea stock F_{80} =1.59· F_{max} compared to F_{80} =1.46· F_{max} in the Working Group. The implications of these assessments can be summed up as follows:

- 1. The present rate of exploitation in the North-East Arctic stock of saithe is close to $\boldsymbol{F}_{\text{max}}.$
- 2. Regulation measures aiming at a further reduction of the exploitation (e.g. to $F_{0.1}$) or an increase of the spawning stock will to a large extent have to be made effective north of $64^{\circ}N$.
- 3. The North Sea stock is subject to considerable growth overfishing.
- 4. Regulation measures aiming at a decrease in exploitation of young saithe between 62° and 64° N will benefit chiefly the North Sea stock.

REFERENCES

- Anon. 1965. Report of the Coalfish Working Group. Co-op. Res. Rep. int. Coun. Explor. Sea, A, 6: 1-23.
- Anon. 1981. Report of the Saithe (Coalfish) Working Group
 1981. Coun. Meet. int. Coun. Explor. Sea, 1981 (G 9):
 1-97.
- Jakobsen, T. 1978. Saithe tagging experiments on the Norwegian coast between 62°N and 67°N, 1971-74. Coun. Meet. int. Coun. Explor. Sea, 1978(G 33): 1-9.
- Jakobsen, T. 1981. Preliminary results of saithe tagging experiments on the Norwegian coast 1975-77. Coun. Meet. int. Coun. Explor. Sea, 1981(G 35): 1-25.
- Olsen, S. 1959. Preliminary results of the Norwegian coalfish taggings 1954-58. Coun. Meet. int. Coun. Explor. Sea, 1959(114): 1-7.
- Reinsch, H.H. 1976. Köhler und Steinköhler. <u>Pollachius virens</u> und <u>P. pollachius</u>. A. Ziemser Verlag, Wittenberg Lutherstadt. 1976.
- Ulltang, Ø. 1977. Sources of errors and limitations of Virtual Population Analysis (Cohort Analysis). <u>J. Cons. int.</u>
 Explor. Mer, 37(3): 249-260.

Table 1. North-East Arctic Saithe.

VIRTUAL POPULATION ANALYSIS

CAICH IN HUMBERS

UFII: THOUSANDS

	1970	1971	1972	1973	1974	1975.	1476	1977	1978	1979	1 480
1	. 0	. 0	υ	: D	υ	U	0	٥	48	8.0	υ
2	4815	2818	1172	1416	Y04 D	39381	24101	1731	15940	7/80	11/91
3	37018	38482	28504	6117115	21471	49241	88426	67217	35392	47045	12/2/
4	50406	52446	32421	14961	35743	9100	27174	28532	21161	10030	23782
5	13987	26961	24146	26911	15671	16305	7947	10140	12476	14122	1066
6	16189	9556	10186	16031	20419	4436	8712	2062	4534 .	4400	7595
7	5122	9592	5616	7114	12148	7308	. 3435	4332	1468	2901	30/1
8	7950	. 2901	354/	3935	4802	6789	3212	1456	1848	903	2043
9	2504	4352	1865	28/1	3258	2914	26/9	1606	938	1356	155
10	3697	2195	2140	2610	2505	2350	1724	963	976	438	878
11	1076	31 36	1229	1565	1436	1937	1091	463	655	305	429
12	. 157	1303	796	791	1444	1245	852	244	681	281	453
13	323	354	331	812	432	459	489	211	284	168	253
14	276	232	261	442	263	260	140	58	196	222	252
15+	347	465	552	314	246	234	3 U B	158	299	216	
			-							210	246
IUIAL	144547	155293	117740	145478	j28878	142525	170290	119173	90896	96807	70741

Table 2. North Sea Saithe.

VINIUAL POPULATION ANALYSIS

CATCH IN NUMBERS

UTIL: IHUUSARDS

: 1406241							*				
	1970	19/1	19/2	14/3	1474	1975	טיעו	1977	1978	1979	1 980
1	626	887	451	4425	36/0	1 1 ل	260	2707	2436	1/21	658
7	73784	2/1/1	3 U h 7 U	42778	20104	114700	55175	42924	40788	37513	1613U
3	43514	100034	10408	033116	15441	62878	260284	54399	43081		
4	87434	2408Z	82501	39025	4 0087	26170	54413	56986	34703	24985	4/653
5	12391	30131	23124	24/25	12431	902h	9852	12914		21554	21040
٤	10874	3/17	20x26	15345	20595	6717	5111	4684	1/251	12843	9421
1	3/14	3874	3035	8058	14504				3787	8 / 8 0	0007
×	1 4 9 0	2682	3113	1798		12660	3309	31/3	1162	2041	4224
y	000	1808	1701	1767	502 H	8656	4840	2902	1069	8/3	434
10	3/6	403	1110		1427	3299	5418	3466	707	470	103
11	86			1025	£ 114	11 00	1008	1895	736	287	349
		223	205	5/9	412	016	420	8.75	6 4 D	4 U 2	536
12	29	51	170	761	227	754	253	347	415	343	23 u
1.4	26	1 8	25	ង។	132	275	121	341	213	157	160
14	26	1.8	6 H	1. 3/	3 U	11	161	123	9.5	154	104
15+	21	31	4 4	21	2 /	25	66	129	108	101	84د
JAICE	18>618	23/335	245038	ፈ ሪዘገ	202234	246838	340/31	1871J	153191	110917	109133

Table 3. North-East Arctic Saithe.

VIRTUAL PUPULATION ANALYSIS

F	1	ун.	J	146	MOR	1	A	L	ı	ĭ	Y	
---	---	-----	---	-----	-----	---	---	---	---	---	---	--

	1970	19/1	19/2	19/3	1974	1975	1976	1977	1978	1979	1 480
1	0.00	0. 00	0.00	0.00	0.00	0.00	0.00	0.00	U. 00	0.00	0. 00
2	0.02	U.02	U.01	0.02	0.05	0.16	0.10	0.01	U.08	0.15	0. UR
3	0.16	0.20	0.29	D.40	0.47	0.41	0.02	0.41	0.45	0.37	0.38
4	0.40	0.36	0.26	0.34	0.43	0.37	0.42	0.41	0.22	0.39	0.32
5	0.23	0.38	0.35	0.37	0.48	0.36	0.65	0.27	0.32	0.22	0.29
6	0.33	0.24	0.24	0.33	U.53	0.24	0.33	0.35	U.19	J.18	0.18
7	0.22	U.33	0.21	0.27	0.45	0.39	0.30	0.27	0.45	0.18	U.18
8	0.38	U.19	0.19	0.23	0.29	0.49	0.28	0.20	0.18	0.01	U.18
9	0.24	0.37	0.18	0.23	0.30	0.29	0.36	U.22	U.19	U.19	U.18
10	0.35	0.35	0.31	0.41	0.35	0.37	0.28	0.21	0.20	0.13	U.16
11	. 0.19	0.57	0.34	0.40	0.42	0.45	D.29	0.11	0.22	0.09	U.18
12	0.53	0.37	0.28	0.38	0.79	0.79	0.37	0.10	0.24	U.74	J.18
13	0.26	0.25	0.15	0.50	0.37	0.63	0.85	0.15	U.16	0.09	U.18
14	0.30	0.30	0.30	0.30	0.30	0.40	0.40	0.22	D.20	0.18	U.18
15+	0.30	0.30	0.3u	0.30	υ.3υ	0.40	0.40	0.22	0.20	U.18	Ü.15
f(5-1U),U	0.29	0.31	0.25	0.31	0.40	0.36	0.37	0.25	U.25	0.25	U.2U
F(>-1U), W	0.28	U.32	85.0	0.32	0.45	0.30	0.38	U.26	U.26	0.21	u.21

Table 4. North Sea Saithe.

VIRTUAL POPULATION ANALYSIS

FISHING MORIALITY

	17/0	19/1	1472	1973	14/4	1475	14/6	1977	1978	1979	1986
1	0.00	J. JU	บ.เเบ	U . UZ	U.U1	0.00	. 0.00	0.01	11 113		
7	U.uo	J.12	U.10	0.27	U.17	0.21	0.75	0.26	0.01	0.01	0.00
ځ	0.18	0.31	0.54	U.54	U. 75	0.40	1.05		U.31	0.21	0.15
4	U.>6	U.41	0.55	0.54	0.81	0.63		0.44	U.46	0.27	U.45
5	U. 3K	U. 38	U.21	0.31 .	U.38		U. Y7	0.69	U.55	0.44	0.40
٥	1), 45	J.19	U.5U	0.24		0.42	0.52	0.64	U.46	J.42	0.35
,	0.28	0.25			0.47	0.37	0.45	D.51	U.39	0.33	U.35
ۼ	0.23	U.34	U.2 y	0.37	0.50	0.60	11.57	0.57	U.22	0.52	0.35
· v	0.23		0.39	0.22	0.47	0.05	U.48	0.49	u.38	0.26	0.35
16		u.33	0.42	0.28	U.28	0.53	0.46	U./8	U.21	U.28	0.35
11	0.34	0.74	0.35	0.42	u.28	0.30	0.33	0.60	U.37	0.12	U.35
12	0.25	0.41	0.25	U.31	U.3U	11.30	0.22	0.49	U.42	0.35	U.35
	0.17	0.23	0.43	0.41	U.19	0.31	0.25	0.28	U.46	0.42	0.35
13	0.27	0.07	U.17	0.55	U.38	0.38	11.24	0.62	D.29	0.31	0.35
14	0.30	u.36	U.4U	0.40	0.40	0.40	0.40	0.40	0.35	0.35	0.35
15+	1). 31)	0.30	U.4U	0.40	0.40	0.40	0.40	0.40	0.35	0.35	0.33
i(>-10),0	0.32	0.30	0.37	0. ()							
f(5-10), b	0.37	0.34	U.35	0.32	0.39	0.48	11.43	÷ ()	u.34	0.32	0.35
		0.54	((. 0	U.31	0.44	0.50	0.45	U-00	U.41	0.58	0.35

Table 5. North-East Arctic Saithe.

VIRTUAL POPULATION ANALYSIS

STUCK SIZE IN NUMBERS

1 TAHUNKY

	19/0	19/1	19/2	19/3	14/4	1975	1476	1977	1778	1979	1 48 0	1981	19/0-1977
1 2 3 4 	190030 285448 273248 108338 75842 64009 28063 27583 17688 13644 6906 2955 1555 1169 1470	505031 155584 224357 190312 92587 4500 37860 18366 15447 8135 7851 4667 1739 983	95342 249739 124836 153137 108274 51603 31934 22379 12475 8739 4689 3621 7651 7651	2011y1 - 7805y 203410 76581 ye21y e2470 35085 210y0 15128 8493 5735 2735 2749 1872	303098 203031 112059 44768 34614 36744 20690 13776 9803 4617 2879 1379 1114	357112 2 994 08 1607 19 32 03 2 59 68 7 226 09 264 29 19191 1262 3 831 0 577 5 24 8 7 10 7 0 86 4 79 5	101/02 2923/9 209052 86996 18056 541/1 14520 14650 9029 7/15 4694 2992 926 405	272UR2 132440 217643 92579 46849 7681 2015U 8800 9090 5478 4766 2862 1685 325 880	/ 0 3 5 9 22 2 / 62 1	21164 85 67474 168002 55764 77470 29888 19855 2316 8653 3981 4031 2373 2240 1482 1442	0 *** 16 8 9 8 3 44 1 3 8 9 > 3 0 9 30 8 2 1 50 7 1 8 20 > 0 8 13 > 0 4 3 10 3 5 28 6 3 28 6 5 30 2 5 10 5 9 10 8 3 16 4 3	12 //15 24 713 5 6 0 6 3 1 8 8 8 2 3 4 6 8 4 1 4 0 2 4 9 3 3 0 7 0 8 4 0 1 0 1 9 5 9 2 0 6 9 1 1 5 5 2 2 7 4	212339 185124 114004 07/85 43333 28598 19091 12594 8790 5560 3150 1676 987
TOTAL SPANN. 51.	1152448 235884	1114346 234112	8/2/28 249675	859147 249905	437568 191522	1uU8611 15984u .	859o12 108822	823306 108563	644469 12U595	646458 153733	441	2214	1345

Table 6: North Sea Saithe.

VIRTUAL POPULATION ANALYSIS

STUCK SIZE IN NUMBERS

THAUNAL (

	19/0	1971	1472	1973	15/4	1975	14/6	1977	1978	1779	1980	ואער :	14/0-19//
12 14 5 6 7 10 11 12 13 14 15*	336220 486937 286795 227015 42577 32725 16762 16731 3174 1245 428 428 420 127 110	2841/2 274/08 3//021 195500 103518 23/37 1/043 10376 6940 2054 /27 273 296 76 131	272483 232723 200414 212738 106557 57707 16087 10471 6045 4057 1373 595 178 276 163	318517 237052 105368 95179 1004 88 66449 28589 9903 5779 3244 2359 845 210 123	80 / 7 / 3 2 5 0 / 8 3 1 5 / 2 6 1 7 8 7 1 4 4 3 0 1 7 6 0 0 5 4 4 0 6 0 7 1 6 1 7 2 6 4 8 7 3 5 7 2 1 / 3 6 1 4 1 1 4 5 / 1 0 0	5200 97 657674 1860114 6094 9 28711 24061 50708 20253 8730 4030 2714 1051 955 256 83	24y1/4 207284 435111 y3y77 26501 13408 13818 8843 4193 2312 1239 037 037	237743 203754 166906 125087 29801 12874 8032 8217 6976 4570 2474 1515 803 409 429	268459 192703 128214 8/R69 51515 12856 6344 5737 4127 2670 2047 1241 933 353 401	157563 21/144 115315 66351 41326 26/11 7126 4148 2100 2/42 1484 1102 644 5/2	500590** 12/44/ 144014 71945 34 994 22513 10090 3469 2011 1290 1991 854 094 386 1426	249438 89811 75182 39483 20190 12674 9052 2002 1507 748 1149 493 343	30041U 32/13/ 240X01 130/40 00140 3002/ 2143/ 124X0 0628 33/9 1090 89/ 457 729 162
Julal Stanti. SI.	1440387 108415	1301636 165176	1145U41 2U3252	າບ 74 21ສບ59	14/37ou 1/3/2b	1346335	1129885 87389	10024 8035	702918 80173	6447u3 88331	734421 8>027	. 5 . 6	, 32

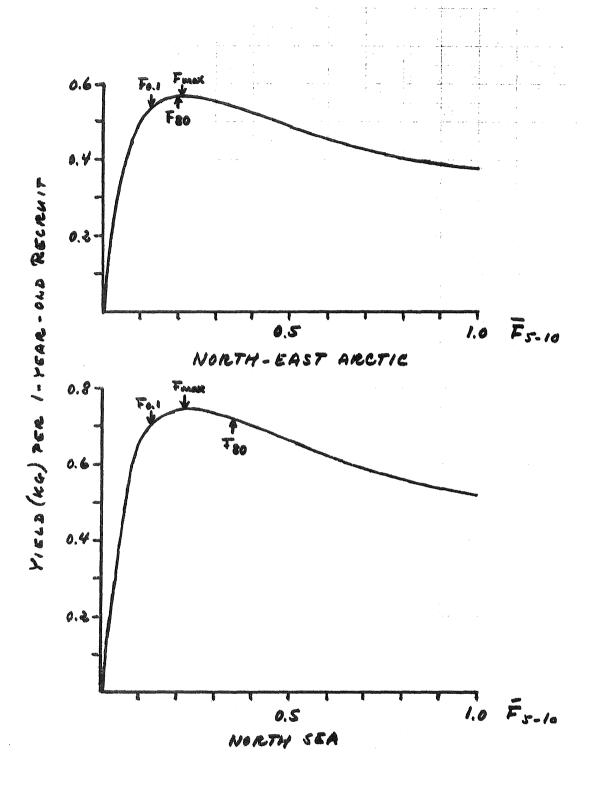


FIG. 1. YIELD PER RECRUIT