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Size structure, age-size dynamics and life history variation 

Mikko Heino, David S. Boukal, Tone Falkenhaug, Uwe Piatkowski, Filipe M. Porteiro and 

Tracey T. Sutton 

Here we present a new technique to study life history variation when only length distributions 

of populations are known. Shape of length distribution in a population is to a significant ex-

tent determined by the degree to which an average individual approaches its asymptotic 

maximum size. Statistically, the shape of a length can be characterised by its skewness, meas-

uring the degree of symmetry in the distribution. Positive skew (long right tail) in a length dis-

tribution suggests that relative few individuals survive long enough to approach asymptotic 

size in a population, whereas the opposite is true for negative skew (long left tail). With a 

simple model of age-size dynamics in a population showing indeterminate growth, we show 

that skewness is strongly correlated with the ratio between mortality rate and the growth pa-

rameter k in the von Bertalanffy growth model; this ratio is a dimensionless number that is 

one of Beverton’s ‘life history statics’. We demonstrate the new technique with data from 

deep-pelagic fishes collected during the 2004 Mar-Eco expedition along the northern Mid-

Atlantic Ridge.  
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Introduction 

Size is the most readily measured quantitative individual characteristic. For understanding 

population dynamics, or describing life history patterns, measurements on age, sex, maturity 

status etc. would obviously be very valuable but require more labour and expertise, and con-

sequently are often not available. What then can be achieved with size data alone? In fisheries 

science, there is a long tradition for using length-based methods to study population dynamics 

and parameters (e.g., Beverton and Holt 1956, Pauly and Morgan 1987, Gulland and 

Rosenberg 1992). We continue this venerable tradition by showing a new, complementary 

method to estimate growth and mortality parameters from length frequency data. 

Theory 

Size distribution of a population results from three processes (e.g., Ebert 1981): recruitment 

that determines the input (numbers at size at birth), growth that determines how fast a new-

born individual can reach a certain size, and survival that determines the probability of reach-

ing that size. Generally the latter two processes depend on size although often in opposite 
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ways: growth rate is usually decreasing with size whereas the opposite is typically true for 

survival. Furthermore, size distribution as an observable depends on size-dependent catchabil-

ity of individuals, or in more general terms, size-dependent observability. 

We assume that recruitment is continuous and constant and can thereby be ignored in this 

general treatment. Furthermore, we assume that individual growth curves are monotonically 

increasing, that is, there is some growth throughout life (growth models that asymptotically 

approach a maximum size are thus allowed). This assumption guarantees that there is one to 

one correspondence between age (a) and size (l) of individual fish, which makes the following 

analysis simpler.  

Let us first restrict ourselves to a hypothetical scenario when no mortality occurs. Age distri-

bution is then uniform, and a population’s size distribution is determined solely by the growth 

curve, denoted as )(al . Proportion of individuals within a certain size class is proportional to 

time spent in that size class, which is inversely proportional to growth rate (= the derivative of 

growth curve, daadl /)( ) for individuals in that size class. As we are interested in the length 

distribution, it is convenient to directly operate with the inverse function of the growth curve
1
, 

)()( 1 alla   – this gives age as a function of size. Density of individuals with a certain size is 

then proportional to the derivative of this function, dllda /)( . 

However, mortality is inevitable and must be accounted for. Because of mortality, density at 

certain length must be weighted by survival probability to that length. Focusing on survival 

from birth to length l , survival is 

( )

0

( ) exp( ( ( ')) ')

a l

P l m l a da   ,  

where )(lm is instantaneous mortality rate as function of size and the integration is done from 

birth to the age when the length in question is attained. Thus, length distribution is now pro-

portional to 

 dlldalPldreal /)()(~)( . 

In real life, individuals are not equally likely to be observed; sampling typically targets large 

or adult sizes, and the smallest individuals remain unobserved. Assuming a sigmoid shape for 

observability, the probability of observing an individual of size l  relative to the maximum 

observability at some large size is 

50( )/
( ) 1/ (1 )wl l l

o l e
 

  , 

where 50l  is the length at which the relative probability of observing is 50% and parameter wl  

describes how steeply the observability increases with length around 50l . Putting all these 

elements together, we find that the observed length distribution is proportional to 

( ) ~ ( ) ( ) ( ) /obsd l o l P l da l dl . 

Examples 

We now proceed by making some concrete choices for the functions describing growth, sur-

vival and observability. At a population level, growth in fish is often well described by the 

                                                 
1 For monotonically increasing growth curves assumed here, the inverse function always exists and is defined in 

the interval between the minimum and maximum size. 
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von Bertalanffy growth model, )1()( kaelal 

  , where l  is asymptotic maximum size and 

k  is a parameter related to how fast the asymptotic maximum size is approached, often 

somewhat misleadingly referred to as the growth constant. The inverse function of the von 

Bertalanffy function is kllla /)/1ln()(  . The derivative of this function is 
1))((/)( 

  llkdllda . For the simple case of constant mortality ( mlm )( ) and uniform 

observability we obtain ))(/(~)( )( llkeld lma

obs 

 . Rescaling such that we obtain probability 

density distribution yields 

kmkm

obs lllkmlp /1/ /)(/~)( 



  .  

This equation has been previously presented at least by Wetherall et al. (1987, p. 54). Yet, its 

full implications have been overlooked. 

The first thing to note is that parameters m  and k  always occur together as a dimensionless 

ratio /m k . Second, the only parameter that is measured in length units is l . Thus, the shape 

of the length distribution is determined by the ratio /m k  alone, whereas l  is only influenc-

ing its horizontal spread. Moreover, the length distribution is monotonically decreasing if 

km   and monotonically increasing in the opposite case. This is illustrated in Figure 1. 
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Figure 1. Growth curves and length distributions (not normalized here) for increasing k  (0.125 yr-1, 

0.333 yr-1, 0.5 yr-1 and 1.0 yr-1), 
10.5yrm   and 10l  . Length distributions change from mono-

tonically decreasing to monotonically increasing when the ratio /m k  exceeds the critical value at 

/ 1m k  .  

The length distributions in Fig. 1 do not appear very realistic, particularly because they are 

either monotonically increasing or decreasing. There are at least two reasons why observed 

length distributions are humped instead. First, smallest individuals are not observable. 

Smoothly increasing observability will make monotonically decreasing length distributions 

roughly bell-shaped. This is accounted for by including include the size-dependent ob-

servability function introduced above. This does not, however, influence monotonicity when 
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increasing length distributions are considered ( m k ). However, if asymptotic size is not 

constant but varies between individuals, then we expect the length distribution to portray a 

humped shape, with the hump reflecting variation in asymptotic size. We implemented this by 

assuming that l  is normally distributed with mean equal to l  and standard deviation . A 

sequence of length distributions generated for different values of  k  is illustrated in Fig. 2. 

For /m k  larger than 1, these distributions look ‘normal’ whereas for /m k  less than 1, the 

distributions looks somewhat unusual but not implausible.  

When /m k  is close to 1, the shape becomes sensitive to the actual value of the ratio. In par-

ticular, the skewness changes from negative to positive when the ratio /m k  passes value one 

from below. Fig. 3 illustrates this relationship for the same example that is used in Fig. 2. Us-

ing the moment-based definition of skewness, we see that the skewness indeed changes its 

sign very close to the critical value of the ratio /m k . When /m k  is close to unity the rela-

tionship between this ratio and skewness is approximately linear. . 

Second, we can allow for size-dependent mortality. For example, the following equation gives 

ample flexibility to depict size-dependent mortality: 

)/exp()( 0llmmlm di  , 

where im  is size-independent component of total mortality, dm  is maximum size-dependent 

component, and the parameter 0l  characterizes at which length the size-dependent component 

of mortality drops to %8.36/1 e  relative to its value at size 0l  (e.g., Taborsky et al. 2003).  

Varying strength of size-dependent mortality can change the observed length distributions in 

an opposite way to the observability effect; strong size-dependent mortality makes large indi-

viduals even more rare in comparison to small individuals (results not shown). 

Concluding remarks 

Ratio /m k  is one of the Beverton and Holt (1959) life history ‘invariants’ or ‘statics’ that are 

sometimes assumed to be relatively constant within taxonomic groups (Charnov 1993). For 

fish, /m k  of about 1.5 has been proposed as the canonical value (Charnov 1993), based on 

the data reported by Pauly (1980) and supported by a simple life history model (Jensen 1996). 

Our model-generated length distribution for / 1.5m k   indeed looks quite realistic, although 

a much higher ratio looks perhaps even more realistic. 

Our preliminary results suggest that the skewness coefficient can be used to estimate the ratio 

/m k . Skewness appears to be not very sensitive to the threshold in the observability function 

or to modest size dependence of mortality. However, more work is needed to confirm this pre-

liminary postulation. Another open question is whether using skewness coefficient has advan-

tages over other ways of estimating the ratio /m k  from length distributions (e.g., Beverton 

and Holt 1956). 

Fig. 4 illustrates length distributions for two deep pelagic fish species from northern Atlantic. 

The length distribution of Scopelogadus beanii is clearly left-skewed, whereas that of the gla-

cier lanternfish Benthosema glaciale is right-skewed. This suggests m k  for Scopelogadus, 

whereas Benthosema has m k  in the study area. This result is in accordance with the pub-

lished estimates of m  and k  for Benthosema glaciale, yielding / 4.9m k   and / 1.5m k   for 

two different populations (Gjøsæter 1973, as cited by Pauly 1980). No estimates of m  and k  

are available for Scopelogadus beanii. Nevertheless, its length distribution suggests that this 

species has low mortality relative to its growth, something which is unusual if we believe that 

fish typically have /m k  ratio larger than one. 
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Figure 2. Length distributions for 

different values of growth parame-

ter k when asymptotic size follows 

a normal distribution and observa-

tion probability increases sigmoi-

dally with size. Values for k: 0.005, 

0.02, 0.03, 0.04 and 0.08; the ratio 

/m k  takes values 6, 1.5, 1.0, 0.75 

and 0.375.  Mortality is size-

independent in these examples. 

Parameter values: m=0.03, l50=8, 

lw=1, l=25, =2. 
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Figure 3. The relationship between skewness of the length distribution and the ratio /m k . The skew-

ness changes its sign very close to the critical value of the ratio /m k . When /m k  is close to unity 

the relationship is approximately linear. 
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Figure 4. Empirical length distributions for two species of deep pelagic fish, bigscale fish 

Scopelogadus beanii (Melamphaidae) and the glacier lanternfish Benthosema glaciale (Myctophidae). 

Data from the northern Mid-Atlantic Ridge collected during the G. O. Sars expedition in June 2004 

(see Wenneck et al. 2008 for details). 
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