This Report not to be quoted without prior reference to the Council ${ }^{\text {x }}$

International Council for the

WORKING GROUP FOR NORWAY POUT, SANDEEL AND SPRAT

FISHERIES IN THE NORTH SEA AND ADJACENT WATERS
ICES headquarters, 16-22 March 1982

Abstract

This document is a report of a Working Group of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. Therefore, it should not be quoted without consultation with the General Secretary.

[^0]

1. INTRODUCTION 1
1.1 Participants 1
1.2 Terms of Reference 1
1.3 Importance of Industrial Fisheries 1
1.4 Managemental Considerations 2
1.5 Answer to a Question from the EEC Parliament 3
2. DESCRIPTION OF THE FISHERIES - NORTH SEA 3
2.1 Introduction 3
2.2 The Fishery in 1977 4
2.3 The Fleets 5
2.4 Annual Variations in Distribution of the Catches 5
2.5 Total Number of Trawling Hours 5
2.6 Fisheries in Division VIa 6
2.7 The Skagerrak and the Kattegat (Div. IIIa) 6
3. BY-CATCHES IN INDUSTRIAL FISHERIES (NORTH SEA) 6
3.1 Total By-Catches by Year and Division, 1976-80 (Herring) 6
3.2 Herring By-Catches in Numbers per Age Group 1976-80 7
3.3 Herring By-Catches in 1981 and 1982 7
3.4 Seasonal and Geographical Distribution of Herring By-Catches 7
3.5 International By-Catches (excluding Herring) 8
3.6 Norwegian By-Catches 9
3.7 Faroese By-Catches 9
3.8 By-Catch Numbers at Age 9
4. NORWAY POUT 9
4.1 Landings 1979-81 9
4.2 Effort Data 10
4.3 Catch at Age and VPA Results 11
4.4 Research Vessel Surveys 12
4.5 Weight at Age 13
4.6 Percentage Landings in Weight by Age 13
4.7 Other Measures of Mortality 13
4.8 Yield per Recruit 13
4.9 Catch Prediction and Biomass 13
5. SANDEEL 14
5.1 Landings 1979-81 14
5.2 Fishing Effort and Catch at Age 15
5.3 VPA Results 16
5.4 Research Vessel Surveys 17
5.5 Weight at Age 17
5.6 Percentage Landings by Weight by Age 18
5.7 Other Measures of Mortality 18
5.8 Yield per Recruit 18
5.9 Catch Prediction 18

Page

6. SPRAT 19
6.1 Landings 1979-81 19
6.2 Effort Data 19
6.3 Catch at Age and VPA Results 20
6.4 Research Vessel Surveys 21
6.5 Weight at Age 22
6.6 Age Composition by Weight 23
6.7 Other Measures of Mortality 24
6.8 Yield per Recruit 24
6.9 Prognosis 24
7. EVALUATION OF SAMPLING AND REPORTING PROCEDURES 25
7.1 Statistical Requirements and Management Strategies 25
7.2 The Present Situation 26
7.3 Recommendations 26
REFERENCES 27
APPENDIX A 28
APPENDIX B 31
TABLES 2.4.1 - 6.5.1 35
FIGURES 1.3.1 - 6.9.2 100-151
8. INTRODUCTION

1.1 Participants

R S Bailey
E Bakken
A C Burd
A Corten
J Lahn-Johannessen
A Laurec
B Mesnil
N A Nielsen
J G Pope (Chairman)
K Popp Madsen
C J Rørvik
P Sparre
United Kingdom (Scotland)
Norway
United Kingdom (England)
Netherlands
Norway
France
France
Denmark
United Kingdom (England)
Denmark
Norway
Denmark

Kjartan Hoydal attended the meeting as the ICES Statistician.

1.2 Terms of Reference

At the last Statutory Meeting, the Council adopted C.Res.1981/2:27:1 as follows:

```
"It was decided that a new Working Group for Norway Pout, Sandeel and Sprat Fisheries in the North Sea and Adjacent Waters (ICES Sub-area IV, Divisions IIIa and VIa) should meet at ICES headquarters 16 to 22 March 1982 under the chairmanship of Mr J G Pope (Lowestoft) to:
(i) collect and review all available data from industrial fisheries on catch and effort, species composition of catch, and size (age) composition of the different species as far back as possible,
(ii) report the results for the by-catch species, e.g., herring, cod, haddock, whiting, mackerel and saithe to the relevant ICES Assessment Working Groups,
(iii) evaluate the sampling and reporting procedures,
(iv) assess the state of the stocks of the target species for industrial fishing, i.e., sprat, Norway pout and sandeels.
```


1.3 Importance of Industrial Fisheries

Figure 1.3.1 shows the catch by year of all reported landings and underlines the importance of the industrial fisheries, which form more than 50% of the landings since the mid-1960s. This indicates the need for continued biological monitoring of the biological state of these fisheries, and provision of information, which can be the basis for managemental discussions.

The Working Group therefore suggests that it meet annually in March each year.

1.4 Managemental Considerations

In previous years the industrial fisheries have been regulated by by-catch regulations and/or by closed area systems. For sprat a TAC has been recommended, but has not been taken the last 5 years.

The basic assumption, underlying the advice given by ACFM on fisheries management on behalf of ICES, might in very general terms be formulated as that there is a possibility to indicate fishing mortality levels for each stock, which will reduce the variations in the output from the stock. For most of the stocks considered by ICES, reduced total fishing pressure or improved exploitation patterns would stabilize the stocks and hence the yields.

Looking at the industrial fisheries this basic assumption might not be true, and generally the stocks exploited may not necessarily react in the same way to the fishery as others, due to a variety of reasons.

To be able to say anything useful about the management or nonmanagement of these fisheries, the following questions have to be answered:

- Can the variability in the yields from these fisheries be reduced by regulating the fishing pressure or changing the exploitation pattern?
- Is it possible with any accuracy to project yields in these fisheries or at least indicate levels, which could guide the industry and the managing bodies?
- To what degree are the industrial fisheries dependant on the by-catches of undersized fish of species which play a major role in the human consumption fisheries, and how will a certain effort in the industrial fisheries affect the yield in the human consumption fisheries?
- What biological description of these stocks and fisheries is necessary to be meaningful in an assessment of the economical consequences for the fishing fleets, the fishing industry, etc.?
- Will major fluctuations in these important prey species introduce fluctuations in the predator species' abundance exploited in the human consumption fisheries?

The answer to these questions - or the difficulty to answer them will be found in the different species sections in this report.

Discussing the base for management of these stocks it turns up that more detailed knowledge of the practical constraints and economic considerations plays an important part. Although it is not possible to rule out that management on purely biological considerations might be pertinent, it is obviously a greater understanding of the operations of the fleets and economic constraints that determines the need for management of these fisheries. The Working Group therefore feels the need for a Dialogue with fisheries economists, in order to be able to proceed and plan the sampling of useful data and, as a first step in this direction, the Group would therefore wish to have its terms of reference widened, to include the study of areas, which might be important in economic considerations. This calls for assessments of the fisheries as a whole, and not only the individual biological stocks.

This would also solve the problem: which Working Group is expected to assess the effects of by-catches of species, which play a major role in the human consumption fisheries, and place this assessment naturally within this Group.
Projection of stock levels in short life-span species can only be made shortly before exploitation begins or even after it has started, because of the dependence of catches on recruiting year classes. Any advice has therefore to be implemented on a short notice. Last but not least, it must be pointed out that even if the answer is that no direct management of these fisheries is feasible, the importance of the species and their role in the North Sea ecosystem are obvious, and monitoring of this large part of the productivity in the North Sea is of great importance.

An important aspect of managing the industrial fisheries is the regulation of by-catches of juvenile consumption fish. By-catch levels have to be chosen in accordance with the interests of both the consumption fisheries and the industrial fisheries. Although in some cases there may be a net overall economic benefit from further restrictive measures aimed at saving juvenile consumption fish, this may not necessarily be true in all instances. When large year classes of certain consumption species are entering the industrial fisheries, it could even be necsssary to temporarily increase the allowable by-catches. Otherwise, the industrial fisheries might be limited to part of their usual area only, and the losses in this sector of the industry might not be compensated for by the gains in the consumption fisheries, particularly if the market cannot completely absorb the surplus yield of consumption fish.
In order to enable fishery managers to balance the interests of the industrial fisheries against those of the consumption fisheries, they should be provided with data indicating the reduction in industrial catches to be expected from various restrictions of by-catches. To provide such information, the Working Group would need far better data on the geographical and seasonal distribution of by-catches, and on the possibilities for fishermen to fish selectively for industrial species.

1.5 Answer to a Question from the EEC Parliament

A specific question from the EEC parliament was discussed by the Group. The question was: Do high catch levels of sprat in the center of Division IVb during summer have a negative effect on the winter sprat fishery in the western half of this Division?
Having examined detailed catch distributions for sprat in Division IVb, the Working Group would like to draw the attention of EEC to the fact that in recent years there have been no significant sprat catches during summer in the center of Division IVb.
2. DESCRIPRION OF THE FISHERIES - North Sea
2.1 Introduction

Under its terms of reference the Working Group was called upon to report on the distribution in time and space of the industrial fisheries as a whole. As most countries endeavour to provide estimates of the catches of the principal species by area and time, adjustments are made to remove by-catches from these data and the figures derived from the reported species catch given in Bulletin Statistique or Working Group reports. The accumulation of the split data bases is itself a major data analysis for individual countries. To additionally accumulate the data at an international level was a task that the Working Group could not attempt.

The Working Group report on Norway Pout and Sandeel in the North Sea (Doc. C.M.1978/G:12) gave monthly charts of the international catch of Norway pout and sandeels for 1977. As a guide to the annual changes in area of fishing to these data have been added the sprat data for 1977. The three species have been summed per rectangle per month, and the charts are shown in the figure section. These can be taken as a general description of the way the industrial fishery changes within years.

2.2 The Fishery in 1977
 January_= March, Figures_2.1_-2. 3

During this period the fisheries are concentrated in two areas in the North Sea. The southern area is exploited mainly for sprat by Danish and United Kingdom trawlers and Norwegian purse seiners. The United Kingdom vessels work almost entirely in coastal waters, while the Danish trawlers and the Norwegian purse seiners work further offshore and move eastward as the season progresses.
The northern North Sea fisheries is based upon Norway pout though . sprat catches are taken in Scottish coastal areas by local vessels. The charts indicate that the fishery progresses along the western edge of the Norwegian Deep and towards the end of March includes some sandeel fishing. In this same area blue whiting becomes an important component of the industrial catch. This species is taken generally in deeper water than the Norway pout, and the proportion in the catch depends on fishing practice in relation to depth.

April_=_June, Figures_2.4_-_2.6
The main distributions of catch reflect the general distribution of abundance of sandeels. The commencement of the fishery in any area appears to be dependent on sea temperature. The early fisheries usually take place in the southwestern area and along the southern edge of the Norwegian Deep in the vicinity of the Viking Bank and Klondyke.
The sandeel fisheries in the northern North Sea and at Shetland are relatively new phenomena. It is unknown whether the sandeel stock in the northeastern part is an extension from the southern population or an increase of a small native population.
Sprat catches fall off during this period, which corresponds with the commencement of the spawning period.

July, Figure_2.7
This is typically a month of transition as sprat and Norway pout fisheries begin to increase and sandeels begin to decline. For the chart, the western catches are derived from a United Kingdom sprat fishery which occurred only in that year, while the Danish coastal fishery is also directed at sprat. In both cases, this is associated with the entry of a new year class moving into deeper water.

August - Decembex, Figures_2. $8=2.12$
The two main features are the insentification of the Norway pout fishery in the north and the movement of the sprat fisheries from the coast towards the centre of the North Sea. The development of the United Kingdom coastal winter sprat fisheries is also apparent.

2.3 The Fleets

The types of vessels exploiting these three major species differ widely both between and within countries. Purse seiners direct their effort in the North Sea at sprat. They tend to work only when sprat shoals are heavily aggregated and in deep water. As a consequence, the age composition of the sprat taken in this gear tends to be of older fish than that taken by trawl. Because of the limitations on operation and sprat availability, the possibilities for exploiting sprat by this method varies between years.
The trawl fleets of the different nations taking part in these fisheries vary from small boats of $8-10 \mathrm{GRT}$ to about 500 GRT . As a consequence, their area of operation differs markedly. In general, the smaller vessels ($<100 \mathrm{GRT}$) operate within a limited range of their harbours and concentrate on sandeel and sprat, while the larger vessels are more flexible and direct their effort on sandeel and Norway pout. On the Norwegian shelf edge, the small-meshed trawler fleet of Norwegian vessels has decreased from about 300 vessels in 1975 to almost 100 in 1981.

The minimum legal mesh sizes for trawls fishing for sprat and Norway pout is 16 mm . However, in many cases mesh sizes in excess of this may be used. Thus, in the sprat fisheries cod-end mesh sizes of up to 20 mm are not uncommon. In the case of Norway pout, similar size meshes are also used.

For sandeels, there is no mesh regulation from 1 March to 31 October, while the rest of the year 16 mm applies.

2.4 Annual Variations in the Distribution of the Catches

For 1979 and 1980, it has been possible to accumulate the annual international catches of Norway pout, sandeel and sprat by Danish statistical areas. These are shown in Tables 2.4 .1 to 2.4 .3 , in which are also given the monthly catch statistics.
Comparing the 1979 distribution of sandeel catohes with that for 1980, it can be seen that the fishery in the western North Sea was much more successful than in 1979. The newly expanding fishery off Shetland is also seen. The Norway pout catches show that in January and February the exploitation tends to concentrate in Areas 4 and 5A, while in the autumn Area 2 is dominant. The sprat areas and catches, Figure 2.15 and Table $2.4 \cdot 3$, show the concentration of the fishery in both years in Division IVb.

The data are summarized by months in Table 2.4.4. The total catches per month are remarkably stable except for those months dependent on sandeel. The impression is gained that monthly losses on one species tend to be recouped by increased catches on another.

2.5 Total Number of Trawling Hours

The total fishing time by month and international statistical square was calculated using Danish, Norwegian and United Kingdom data on the trawler fleet. The Danish is obtained from catch per hour and total catch from a sample of the vessels. The fishing time of the Norwegian and United Kingdom fleets was estimated using the number of journeys and an estimated fishing time per day.

It is apparent that the result of the calculations should be interpreted as the total time fishing in each square by month and not as a measure directly related to fishing mortality. This is because the
fleet consists of several types of vessels, each of different fishing power. However, the relation between fishing times and fishing mortality might well be different in the three fisheries.
However, Figures 2.16-2.27 show the activity of the fleet throughout the year and thus render a description of the activities of the fishery.
2.6 Fisheries in Division VIa

Industrial fisheries in Division VIa are very new and, in marked contrast to the North Sea, account for only a minor percentage of the total landings of fish from this area.

Although not strictly an industrial fishery, a small mesh pair trawl fishery for sprat takes place in inshore waters off the west coast of Scotland in winter. In general, by-catches of herring in this fishery are low. Most of the catch is of large, good quality sprat landed for canning although in most winters a proportion is landed for reduction.

In addition, a small local industrial trawl fishery primarily for Norway pout began in the early 1970s out of Stornoway. Only rarely did the vessels venture further than the North Minch. From 1978, larger Danish and Faroese industrial trawlers have caught Norway pout (together with immature blue whiting) in the areas to the south and west of the outer Hebrides, mainly in the autumn.

Sandeels have never been prominent in the catches from Division VIa, but in 1981 a small local fishery for this fish began in the North Minch by the same vessels that fish for Norway pout in some seasons.
2.7 The Skagerrak and the Kattegat (Division IIIa)

The industrial fleet in Division IIIa can also be divided into components with different characteristics.
In the more sheltered waters of this area a significantly larger part of the total landings is taken by small vessels, the so-called "home boats" than is the case in the North Sea. Typically, they leave harbour in the morning and return the same evening.
The bigger vessels are undertaking voyages of several days and explore all areas within Division IIIa with seasonal trips to more distant areas, e.g. the North Sea and the Baltic. Parts of the industrial landings are by-catches from the fisheries on Pandalus (mainly the Skagerrak) and on Nephrops (mainly in the Kattegat). A special fishery on whiting was allowed according to Article 6 in the NEAFC recommendations for vessels with engine power less than 150 HP 。

Unfortunately, no complete data set was available to the Working Group, which could give a reasonable picture of the distribution of the fisheries in time and space. This lack of data is especially acute in the case of the Kattegat area.
3. BY-CATCHES IN INDUSTRIAL FISHERIES (NORTH SEA)
3.1 Total By-Catches by Year and Division, 1976-80 (Herring)

By-catches of herring by Division have been reported by the Herring Assessment Working Group (C.M.1981/H:8), and the relevant data are given in their report in Tables 2.1.3-2.1.6. These tables include
by-catches of herring both in the industrial fisheries and in the human consumption fisheries. The best estimates for the by-catches of herring in the industrial fisheries are probably obtained by combining the national figures for Denmark, Norway and the United Kingdom:

Division	1976	1977	1978	1979	1980
IVa west	4105	502	27	443	705
IVa east	-	186	-	2	48
IVb	7847	8790	7545	14882	6008
IVc and VIId	-	-	223	1	494
Total	11952	9478	7795	15328	7255

It is seen that the by-catches of herring in the industrial fisheries (mainly sprat) are predominantly from Division IVb.

3.2 Herring By-Catches in Numbers per Age Group 1976-80
 By-catches in numbers per age group are reported by the Herring Assessment Working Group on an annual basis for the industrial fisheries in Division IVb. Data for the five most recent years have been extracted from the 1981 report of this Working Group (Table 3.2.1).

Age groups caught are mainly 0 - and 1 -ringers, and there is a significant increase in numbers of $0-r i n g e r s$ for the two most recent years. However, in the 1980 report of the Working Group, it is expressed that the reporting of by-catches in earlier years was less efficient, which makes a direct comparison between the years difficult.

3.3 Herring By-Catches in 1981 and 1982

Provisional data on herring by-catches in 1981 are given in Table 3.3.1 (tonnage by country and division) and 3.3 .2 (numbers at age). No data were yet available on the by-catches from Denmark in the second half of 1981.

Both Norway and England had very limited sprat catches in the North Sea in 1981, and they reported their herring by-catches to be negligible.

In the period 11 January - 2 February 1982, Norwegian purse seiners took some 15000 tonnes of sprat in the central and southern North Sea. Their rather crude estimate for the herring by-catch was 337 tonnes for Division IVb and 64 tonnes for Division IVc.
3.4 Seasonal and Geographical Distribution of Herring By-Catches Information on seasonal and geographical distribution of herring by-catches was available from various sources:
a) The 1980 report of the Herring Assessment Working Group, Addendum II, page 5, contains a chart with by-catches in 1979 split by statistical rectangles. This chart has been reproduced in this report as Figure 3.4.1. In the same Addendum (p.4), it is described that in 1979 the by-catch in the eastern part of Division IVb was mainly taken in July-September, whereas in the western part of IVb the main by-catches were taken in October-December, and to a lesser extent in January-March.
b) The 1981 report of the Herring Assessment Working Group ($p .98$) gives a chart with percentage of herring in samples of sprat catches in 1979-80. This chart has been reproduced here as Figure 3.4.2 with the additional Scottish data. It is seen that by-catches of herring were mainly concentrated in certain squares along the Danish and United Kingdom coasts.
c) Data were provided by Scotland on percentage herring in samples from the sprat fishery in 1981 (Figure 3.4.3). The highest by-catch percentages in the North Sea occurred in January in the inner Moray Firth and in the inner Firth of Forth, both of which are well known nursery areas for herring.
d) Norwegian data on their purse seiner fishery for sprat in January 1982 in the central and southern North Sea (mainly Silver Pit area) show that their catches contained an average of 2.6% herring (weight).

Reviewing the above data it is seen that during the years 1979-81. by-catches of herring were mainly concentrated in a few restricted areas and seasons. The largest by-catches of herring, both in weight and in numbers, were taken in the Danish coastal zone north of Esbjerg. The by-catches consist of very small O-group herring, which are taken mainly in the $3 x d$ quarter of the year. Because of the small size of the herring at this time of the year, even a relatively low by-catch in weight will represent a high number of individuals. No information was available on the by-catches of this area in the autumn of 1981.
The second area with high by-catohes of herring was the region off the English northeast coast. By-catches in 1979 and 1980 were taken here mainly in the winter period, when the size of the herring must at least have been slightly bigger than in the autumn fishery along the Danish coast. It should be noted that no sprat fishery in this region occurred in 1981, and that by-catches of herring in this year must therefore have been negligible.
Other coastal areas in the North Sea with major herring by-catches are the inner reaches of the Firth of Firth and the Moray Firth. By-catches in these waters occur only during the winter months, and they consist of relatively small herring.
In addition to the coastal areas mentioned above, by-catches of herring are also taken in the Silver Pit area (south of the Dogger Bank), and in the Bløden area (eastern central North Sea). The mean length of the herring in these offshore areas is generally higher than in the coastal waters, and the number per kg is therefore lower.

3.5 International By-Catches (excluding Herring)

Apart from herring, by-catches of haddock, whiting, saithe and blue whiting have been reported to the respective Working Groups (C.M.1981/G:8, G:9 and H:12). Furthermore, by-catches of haddock and whiting were reported by aub-areas to the ad hoc Working Group on the Norway pout box problems in 1979 (C.M.1979/G:2). Other important species like cod, mackerel, plaice and sole tend to occur in such negligible quantities in the industrial fisheries that they have not been accounted for by the respective Working Groups. Reproduced from recent Working Group reports, Table 3.5 .1 gives the total international by-catch figures of haddock, whiting, saithe and blue whiting from 1975 to 1980. The figures for the first three species reflect a declining trend in recent years, most significantly for saithe, whereas landings of blue whiting have increased.

In extension of the former Working Group report on the Norway pout box problems, the by-catch of haddock and whiting are presented by Sub-areas (see Figure 2.13) from 1975 up to and including the first half of 1981 (Table 3.5.2).
The overall figures for both species decreased radically from 1976 to 1977. Since then, the annual by-catch of haddock has varied from approximately 10000 to 20000 tonnes, and that of whiting between 40000 and 50000 tonnes. The introduction of the Norway pout box produced a shift of the Norway pout fishery towards adjacent fishing grounds which partially may have caused the significant drop in the by-catch rates, especially because of the increased inspection at sea.
Quota regulations and recent limitations on allowable by-catch may also have made their significant impact on the reduced by-catch landings as well.
3.6 Norwegian By-Catches

As requested by the Council (C.Res.1981/2:27:1 (i)) the species composition of the Norwegian Norway pout and sandeel fisheries are presented in Tables 3.6 .1 and 3.6 .2 , respectively. The figures represent landings for reduction purposes, exoluding fish sorted out for human consumption. Blue whiting form the major by-catch in the Norway pout fishery, whereas the proportions of herring and mackerel are negligible (Table 3.6.1). The protected species: cod, haddock, whiting and saithe occur in variable, though on an average comparatively small, quantities. The group "others" mainly consists of deep water species caught together with blue whiting, like argentines, redfish and silvery pout.
Recent sampling of sandeel landings clearly demonstrate that the rate of by-catch is very low, between 1% and 2% only (Table 3.6.2).

3.7 Faroese By-Catches

In Table 3.7 .1 the by-catches for Faroese industrial trawlers are given for the years 1975-81. These are only that part of the by-catch, which is sorted out and landed for human consumption.

3.8 By-Catch Numbers at Age

By-catch for herring, cod, haddock, whiting, mackerel and saithe numbers at age data were not available from Denmark for the second half of 1981. It was thought most appropriate that the relevant Working Groups should estimate these numbers as seemed most appropriate to them and, therefore, the Working Group made no attempt to supply these results.
4. NORWAY POUT
4.1 Landings 1979-81

North Sea

Landings of Norway pout from the North Sea for the years 1957-81 are given in Table 4.1.1, those for 1981 being incomplete.
In 1979 and 1980, total landings increased from the low level of 1978 but not up to the high levels of 1974 and 1975. The increases were due to increases in the catch of Denmark and the Faroes, whereas landings by Norway and the United Kingdom decreased. In 1981, Faroese, Norwegian and United Kingdom landings decreased. Danish landings were available for only the first half of the year.

The monthly landings by country are given in Table 4.1.2. In 1979 and 1980, peak landings were made in September with a lesser peak in February. Landings in the first half of 1981 were lower than in the same period of the two previous years, those of the predominant country - Denmark - decreasing from 65788 tonnes in 1979 and 63265 tonnes in 1980 to 51305 tonnes in 1981.

Following previous reports, landings of Norway pout by sub-divisions of the North Sea (see Figure 2.13) are given in Table 4.1.3, by quanters for 1979 and 1980. In both years, the catches were made entirely in the northern North Sea with peaks in the first quarter in the Norwegian zone (Division IVa) and mainly in the third quarter in other sub-areas.

Division VIa

A small fishery for Norway pout has existed in Division VIa for some years (Table 4.1.4). Scottish vessels fish for this species almost entirely in the North Minch, while vessels from other countries fish south and west of the Outer Hebrides. In 1978, a major increase in the more offshore fishery took place, 23000 tonnes being taken in Division VIa in that year. This fishery was maintained until 1980, but landings returned to their previous level in 1981.

Division_IIIa

Landings of Norway pout in Division IIIa, which have been made predominantly by Denmark, are given in Table 4.1.5. With the exception of 1974, when the catch was 11000 tonnes, and 1976, when it rose to 42000 tonnes, the catches have remained relatively constant, averaging 24000 tonnes in the eleven years 1971-81.

4.2 Effort Data

4.2.1 Norwegian effort data

From the Norwegian fishery for Norway pout, cpue data (tonnes per number of fishing days per GRT) are available by quarters from 1972-80 (Figure 4.2.l). Considerable seasonal fluctuations occur annually, but the curve also indicates long-term variations over the years. As the fishery has been partly directed towards blue whiting, the average annual cpue values were reduced accordingly to make them comparable with the IYFS abundance indices for 1- and 2-group Norway pout (Figure 4.2.2). The fairly good relationship between the two sets of data indicate that the IYFS indices may provide useful estimates for the development of the Norway pout fishery during the same year.

4.2.2 Faroese effort data

Table 4.2 .1 shows catches per unit effort ($\mathrm{kg} / \mathrm{hour}$) for Faroese industrial trawlers by month for the years 1978-81. The cpue's are plotted against the time on Figure 4.2.3. The figure shows a moderately increasing opue for the years 1978-80. This is in good agreement with the Norwegian cpue, shown in Figure 4.2.1. The Faroese data show a markedly lower cpue in 1981 compared to previous years, thus indicating a relatively low abundance in 1981.

4.3 Catch at Age and VPA Results North Sea_(Sub-area IV)

Data on catch in numbers by age by quarters for the years 1974-78 were given in Table 2.4.1 of the 1979 report of the Working Group on Norway Pout and Sandeels in the North Sea (C.M.1979/G:26). The data series was extended to include the years 1979,1980 and the two first quarters of 1981.
For 1979 and 1980, data on numbers caught were provided by Denmark, Norway and Scotland. Faroese landings, accounting for about 7% of the total of each year, were not covered by sampling, but were included by a proportional raising of the quarterly summed numbers caught by other nations.

For 1981, data were available from Norway. Scotland had no eatch, while Denmark could only present data from the first half of the year. The Faroes had no catch in number data, and their landings were treated as outlined above.

The catch in numbers at age data for 1974 to lst half of 1981 are given in Table 4.3.1.
Estimates of fishing mortalities for Norway pout were obtained from a quarterly VPA. Input data (catch at age per quarter) are shown in Table 4.3.1. Natural mortality is assumed constant for all age groups. Two assumptions on natural mortality were tested: $M=1.00$ year $^{-1}$ and $M=2.00$ year-1. Fishing mortalities for the two runs are shown in Tables 4.3 .2 and 4.3 .4 , respectively, and stock sizes in numbers are given in Tables 4.3 .3 and 4.3 .5 , respectively.

Fishing mortalities for the last quarter (second quarter of 1981) were estimated by averaging fishing mortalities for the second quarter of the years 1976-78.

Due to the lack of quantitative knowledge on natural mortality, the present VPA estimates of exploitation patterns should be treated with reservations. Ag'e group 5 and older Norway pout do not occur in the catch statistics, and it is thus tempting to believe that old age and spawning stress mortality deplete the older part of the stock. As Norway pout is known to be one of the major prey species for cod, whiting and saithe, the natural mortality on the younger age groups must be a function of the abundance of these predators. Thus, there are good reasons to believe that the natural mortality of Norway pout is high and varies from year to year, as far as the younger age groups are concerned. This could seriously affect the results obtained by VPA. Nevertheless, the reasonable correlations with recruitment indices must be somewhat encouraging.

The above-mentioned complications especially apply to small shortlived species as the three industrial target species. A more general problem also encountered here (and in most other assessments made by ICES Working Groups) is the problem of getting estimates of fishing mortalities for the last year. Such estimates of terminal fishing mortalities may be obtained from effort data. As effort data from the major industrial fleets are not available to the Working Group, no estimates for the terminal Fs can be given.

West of Scotland (Division_VIa)

Numbers caught at age by quarters for Scottish landings 1971-81 were available, but there were no data from other nations fishing in the area, mainly Denmark and the Faroes.

Skagerrak and Kattegat (Division IIIa)
Landings from this are are almost entirely by Denmark. There are no data on catch at age.

4.4 Research Vessel Surveys
 Recruitment indices

Series of research vessel data given in the previous report are extended in Table 4.4.1. Areas to which each series applies are shown in Figure 4.4.1.

The International 0-Group Gadoid Survey in June each year demonstrates a very low abundance of 0-group Norway pout in 1980, in fact the lowest since the surveys started in 1971. In 1981, the abundance was very close to the mean from 1971-80.

Bottom trawling surveys by Scottish research vessels in the late autumn were not carried out in 1979 or 1980. In 1981, the relative index of O-group Norway pout abundance was the second highest in the seventeen year series, whereas the l-group index value (the 1980 year class) was only 20% of the long-term mean.
The abundance index from the International Young Fish Survey given in the last report of the Norway Pout and Sandeel Working Group (C.M.1979/G:26) could not be updated in the same form. Since the International Gadoid Survey Working Group has adopted a different standard area for Norway pout, the series given in Table 4.4.1 is based on the area used by that Group, and the index values are as given in the report of their 1981 meeting (C.M.1981/H:10), updated to include the results of the 1981 survey and preliminary results of the 1982 survey. Among recent year classes the 1979 year class was close to the long-term average, the 1980 year class weak and the 1981 year class about average.
Results from two new series of research vessel cruises (English research vessels) are summarized in Table 4.4.2. On the groundfish survey, which takes place around August each year, covering the entire North Sea, the 1979 year class as 0-group was average, the 1980 year class 17% of the 5-year average, and the 1981 year class over twice the average. The three surveys of the main Norway pout distribution area in November also indicated a low abundance of the 1980 year class both as 0- and l-group. The abundance of 0-group in 1981 was higher than in the two previous years.
The research vessel survey indications of recruitment of Norway pout show some consistency. Of the most recent year classes, the 1979 year class appears to have been about average, while that of 1980 was rather poor. The 1981 year class was clearly stronger than that of 1980, but the surveys differ in indicating whether it was strong or average.
Regression analysis of recruitment indices on VPA estimates of stock numbers was carried out. TYFS indices of 1 -group and $2-g r o u p$ Norway pout on VPA estimates of numbers in the first quarter are shown in Table 4.4.3. The index from the pelagic O-Group Survey (carried out in June) on the third quarter of first year is shown in Table 4.4.4. The regressions were made for two sets of VPA results, namely, estimates of stock size under the assumption of $M=1.00$ year-1 and $M=2.00$ year-l (cf. Section 4.3). Only one of the six regressions demonstratesa clear relationship between VPA and recruitment indices. There was a correlation coefficient of 0.80 for the regression of the VPA results with $M=1.0$ year-l and IYFS l-group estimates. This is shown in Figure 4.4.2. Figure 4.4 .3 and Figure 4.4.4 give the equivalent relationships for the l-group and VPA
figures with $M=2.0$ year $^{-1}$ and $2-g r o u p$ and VPA figures with $M=1.0$ year ${ }^{-1}$, respectively. Figure 4.4 .5 shows the relationship between 0-group indices and VPA figures with $M=1.0$ year ${ }^{-1}$.

4.5 Weight at Age

Mean weights at age by quarter as observed in Norwegian catches are given in Table 4.5.1 for the years 1979-81. The figures for age groups 0 and 1 , and for age group 2 in the first half of these years are rather similar, while some discrepancies appear in the observed weights of 3 year olds as these fish become less available to the fishery with time. The results deviate very little from the results in previous years.

4.6 Percentage Landings in Weight by Age

Table 4.6.1 shows the percentage landings by weight in 1979 and 1980 by quarter. In both years landings are dominated by the 1 - and 2year olds, which together supplied 93% of the landings in 1979, and 98% in 1980. More than $2 / 3$ of these landings were made in the second half of the year at the same time as 0 -group fish are caught.

4.7 Other Measures of Mortality

No additional measures of fishing mortality on Norway pout were available to the Working Group.

4.8 Yield per Recruit

Yield per recruit curves for Norway pout are given in C.M.1977/F:7 for various values of M and t_{c}. In that report, it is tentatively concluded that no increase in yield could be obtained by either an increase or a decrease in F.

The yield per recruit for the present level of fishing mortality ($F \sim 1.0$) is considerably higher when the age at first capture is set at 1 year than at $\frac{1}{2}$ year, assuming at least that M is not higher than l.0. Theoretically, an increase in yield could, therefore, be expected from measures aimed at avoiding catches of 0-group Norway pout. However, neither restrictions of the fishing area nor an increase in mesh size are likely to result in a decreased catch of 0-group. The distribution area of 0-group fish coincides with that of older fish, which makes it impossible to olose specific nursery areas. An increase in mesh size is not likely to affect the selectivity of the gear to a large extent because of meshing problems and blocking of the meshes due to the large quantities of fish being caught simultaneously.

A change in the timing of the fishery is not likely to increase the yield per recruit. Monthly catch statistics (Table 4.1.2) show that catches occur throughout the year, with a maximum in AugustSeptember and October, and a minimum in the period March-June. The mean weight for age groups $1-3$ shows the biggest increase in the period May-August (C.M.1978/G:12, p.20). It can thus be concluded that the main fishery takes place when the fish have nearly reached their maximum weight for the season.
4.9 Catch Prediction and Biomass

Given the lack of fishing effort data for this species for the major fleet and the lack of catch at age data for the second half of 1981, it is not practical to make predictions of catch, biomass or spawning stock biomass for 1982 for Norway pout by the usual VPA-prediction route. It is possible to obtain some idea of what the coefficient of variation of such a catch prediction might be
using the method given in Appendix A. This suggests that a prediction of the 1979 landings made in early 1979 would have had a coefficient variation of approximately 20% and a similar result would also have occurred, had a prediction of the 1980 landings been made in early 1980.
The prediction of catches (or indeed of biomass) by the VPA prediction for Norway pout could not, therefore, be made very accurately, even where suitable data were available.
The total catch was related to the IYFS indices of the $1-$ and $2-$ year olds by multiple regression. Only the years 1975-80 were considered, which involves the 1973-79 year classes.
The catch and the l-graup index had a correlation of 0.74 , catch and $2-g r o u p$ were correlated by 0.51 , and the l- and $2-g r o u p s$ (within a year) had an insignificant correlation (-0.05), suggesting orthogonal X variables.
The multiple regression was

$$
\begin{aligned}
Y=91(\pm 84) & +6.92(\pm 2.05) \times 10^{-2} 1 \text {-group index } \\
& +6.90(\pm 2.85) \times 10^{-2} 2 \text {-group index }
\end{aligned}
$$

This regression accounted for 74% (corrected of $d f$) of the variation. The intercept was not significantly different from 0 , but both of the regression coefficients were significantly larger than $0(p=0.95, d f=3)$. Since the regression coefficients were so close, a new pooled index was arrived at by summing the 1 - and 2group indices.
In Figure 4.9 .1 the total catch has been plotted versus this pooled index for all the years 1970-80. Using all the years in a linear regression gives a slope that is significantly different from zero ($6.91(\pm 1.48) \times 10^{-2}$). However, due to the fact that the IYFS started in 1970, and that the North Sea was not properly covered in the first years, the Working Group considered it more appropriate only to include the years 1975-80 in the regression. This gives a significant slope and an intercept which is not significantly different from zero (Figure 4.9.1).

The coefficients of variation for individual years in the predictions vary from 25% to 15% for a 1 - and 2 -index that varies from 3000 to 1000.

The preliminary l-group index of Norway pout in the beginning of 1982 is 3 959. The 2-group (1980 year class) index is not avail-
 This would result in a total index of about 4000 , which leads to a total catch of 400000 tonnes. The actual catch, however, depends on whether the fishing effort increases or decreases.

5. SANDEEL

5.1 Landings 1979-81

North Sea

Total landings of sandeels (almost entirely the lesser sandeel Ammodytes marinus) from the North Sea in the period 1952-81 are given in Table 5.1.1. After the peak landings of 790000 tonnes in both 1977 and 1978, landings dropped in 1979 to 580000 tonnes and rose in 1980 to 730000 tonnes. The total landings in 1981 are not known owing to the non-availability of Danish landings in the second half of the year.

Landings by individual countries followed, to a large extent, the overall trend in showing a decrease in 1979 and an increase in 1980 (with the exception of the Faroes which were subject to quotas during this period). In 1981, the Norwegian catch decreased sharply, whereas the United Kingdom catch increased.
Monthly landings given in Table 5.1 .2 show the usual seasonality, starting in March, reaching a peak in May or June, and ending in October or early November. In all three years, landings by Norway increased to a small peak in October. Landings in the first half of the year by the major sandeel fishing country, Denmark, decreased in 1979 and increased in 1980. In 1981, they decreased sharply from 451000 tonnes (1980) to 281000 tonnes (1981).
Regional landings in the North Sea are shown by months in Table 5.1.3, and annual landings by sub-areas given in Figure 2.14 are given in Table 5.1.4. The largest increase in the period 1978-80 took place in the central part of the northern North Sea (Sub-area lc). Other increases took place in Sub-area 3 (approaches to the Skagerrak), Sub-area la (the west central North Sea), and Sub-area 6 (the Danish coast), while a significant decrease occurred in the east central North Sea (Sub-area 2a).
The seasonal pattern of landings given in Table 5.1.3 shows differences between areas. The landings from the more southern areas of the North Sea tended to finish in July, whereas those further north continued until the autumn.

Division VIa

Significant landings of sandeels in Division VIa (6 000 tonnes) were made for the first time in 1981, by local Scottish vessels in the North Minch (Table 5.1.5).

Division IIIa
Landings of sandeels in Division IIIa have fluctuated considerably since 1971 (Table 5.1.6), but have shown a progressive increase since 1977 to a maximum of 40000 tonnes in 1981. Landings are made almost entirely by Denmark.
5.2 Fishing Effort and Catch at Age

Fishing effort
The Working Group was not able to update the series of effort data given in the last report of the Norway Pout and Sandeel Working Group, which was based on Danish catch per unit effort data. The only new data were effort in numbers of hours fishing in the Shetland sandeel fishery since 1975. These are given in Table 5.2.1. In most years, the effort rises rather sharply in April and May, maintains a relatively constant level until July or August, and then decreases in September, ending during October. The total annual effort has varied by a factor of 2.7 , the highest being in 1981.

Catch at age

North_Sea

The numbers of sandeels caught at age were compiled for three areas of the North Sea:
a) "Shetland" - an area limited by latitudes $57^{\circ} 00^{\prime} N$ and $61^{\circ} 301 \mathrm{~N}$, longitudes $3^{\circ} 00^{\prime} \mathrm{W}$ and $0^{\circ} 00^{\prime}$. (Figure 2.14, area SH)
b) "Northern area" - northern North Sea limited to the south by latitude $56^{\circ} 30^{\prime} N$ west of $6^{\circ} 00^{\prime} \mathrm{E}$ and by latitude $56^{\circ} 00^{\prime}$ east of $6^{\circ} 00^{\prime} \mathrm{E}$, further limited to the east by the line separating ICES Sub-area IV and Div.IIIa. (Fig. 2.14, Areas $1 B+1 C+2 B+2 C$ and 3).
c) "Southern area" - southern North Sea south of limitations given above. (Figure 2.14, areas $1 \mathrm{~A}+2 \mathrm{~A}+4+5$ and 6).

1978 catch in number at age by month for "Shetland" and "Northern area" combined are given in the report of the Working Group on Norway Pout and Sandeels in the North Sea (C.M.1979/G:26). In the same report, annual catch at age is given for previous years for each of the three areas, back to 1974 for Shetland, to 1972 for Northern area and to 1971 for Southern area. Catch at age by month for these earlier years are found in the 1978 report of the same Working Group (C.M.I978/G:12).
At the present meeting, the series of catch at age by month was extended to include 1979, 1980 and the first six months of 1981. Data were provided by Denmark, Norway and Scotland. Danish and Norwegian age distributions were applied to the insignificant landings by the Faroes, for which there were no sampling data.
These results are shown in Tables 5.3.1 to 5.3.3.
As outlined in previous sections, the later half of 1981 could not be included, since data from Denmark were not available.

West of Scotland

Catch at age by month for 1981 were provided by Scotland.
Skagerrak and Kattegat
No data were available.

5.3 VPA Results

In the absence of a firm estimate of natural mortality and of fishing effort data to correct terminal fishing mortality and changes in the exploitation pattern, VPA results must necessarily be very tentative. They should, however, give an indication of patterns of annual recruitment and some idea of trends in fishing mortality.
The VPA for the southern and northern North Sea stocks were made using half-year data, while that for the Shetland was made using yearly data. A half-yearly analysis was chosen for the former two stocks to fully utilize available age data (data for the second half of 1981 not being available from Denmark). Tables 5.3.4, 5.3.7 and 5.3.10 give the input data for the VPA for the three areas, respectively. A natural mortality of 0.5 year $^{-1}$ was adopted in all cases. Table 5.3.5 shows the fishing mortality at age for southern North Sea sandeel. Table 5.3 .8 shows the half-yearly fishing mortality at age for northern North Sea sandeel, and Table 5.3.11 the annual fishing mortality for Shetland sandeel.
Figure 5.3.1 shows plots of the fishing mortality on $0,1,2,3$ and 4 year olds in the southern North Sea sandeels, and Figure 5.3.2 shows the plots of half-yearly fishing mortality for northern North Sea sandeel. These indicate the seasonal nature of these fisheries, most mortality being generated in the first half year (i.e. second quarter) of the year. The southern North Sea results indicate some upward trend in mortality, while that for the northern North Sea has varied widely, being highest during the mid-1970s.
Tables 5.3 .6 and 5.3 .9 show the numbers at age by half-yearly intervals for the southern North Sea sandeel and the northern North Sea sandeel, respectively. Table 5.3.12 shows the numbers at age of the Shetland sandeel. Table 5.3 .13 shows the VPA estimates of recruitment for the three sandeel stocks. Biomasses and spawning stock sizes are not shown due to uncertainties in the estimates of M and terminal fishing mortality. The recruitment series for the various stocks do not appear to be correlated.

A comparison of values of fishing mortality rate of Shetland sandeels derived from VPA with fishing effort is given in Table 5.3.14. Since this fishery started only in 1974, it is likely that the first two or three years involved an element of learning, in particular to locate the main concentrations of sandeel. Correlation has, therefore, been tested only for the years 1977 and onwards. The main exploitation on the Shetland sandeel stock is on the age groups $0-3$. The value of F used in the correlation was, therefore, the arithmetic mean F for these four age groups.
The results of fitting linear regression equations to the data show high values of the correlation coefficient with all values of input F in the VPA. The intercept on the Y-axis, giving an estimate of F at zero, is 0.07 to 0.10 , gives some credibility to the value of $M=0.5$ year $^{-1}$ used in the VPA.

5.4 Research Vessel Surveys
 5.4.1 Recruitment
 Sandeels are not adequately sampled by any of the routine bottom trawling surveys. They are, furthermore, not available to bottom trawls for most of the period November-February.

$0-g r o u p$ sandeels remain pelagic until about July in the southern North Sea and at Shetland and until slightly later in the offshore areas of the northern North Sea (see appearance of 0 -group in the landings given in Tables 5.3.1-5.3.3). In June they are caught in substantial numbers in the International 0-Group Gadoid Surveys and are reported each year in the reports of these surveys. The surveys, however, cover only the more northern parts of the North Sea and they are, therefore, unlikely to provide any index of recruitment for the North Sea as a whole. An analysis was carried out on the sandeel data from these surveys, but there was no evidence of any correlation with the results from VPA. It can therefore be concluded that there is no existing series of survey data than can be used to estimate sandeel recruitment.

5.5 Weight at Age

Mean weight at age of sandeels by months and area are given in Tables 5.5.1 to 5.5.3. The first two display figures for the northern and southern North Sea, respectively, as derived from Danish sampling in 1979 and 1980. It can be seen that mean weights in spring are much less than those of corresponding younger age in September-October, and this is true also for individuals of each year class between 1979 and 1980. The apparent loss of weight is considerable in some cases, and this may be due to delayed availability of larger fish or to age-reading difficulties in the early months, or area differences.
Table 5.5 .3 gives figures for sandeel in the Shetland area as observed in Scottish catches in the years 1979-81. The problem mentioned above is still observed in the data for 1979 and 1980, and mean weights at age are still observed to be highly variable from year to year.
The values of weight at age in the southern and northern areas, but not at Shetland, are consistently lower than those given in the 1978 report of the Norway Pout and Sandeel Working Group for earlier years.

Abstract

5.6 Percentage Landings by Weight by Age

Table 5.6.1 shows the percentage landings by age for each of the three sandeel stocks, for 1979-80 for the main stocks and 1979-81 for the Shetland stock. In these years, 1- and 2-year olds have dominated the southern North Sea stock, but in both the northern and Shetland stocks 0 -groups have made a large, but variable, contribution to the landings.

\subsection*{5.7 Other Measures of Mortality}

Using catch in number per hour's fishing in the Shetland sandeel fishery, values of Z were calculated (Table 5.7.1). As the fishery switches to the 0-group when they appear in June-July, values of Z were estimated using cpue of age groups 1-7 in April-May, and age groups 2-8 in April-May of the following year. The estimates are very variable from year to year, but the mean for the years 1975-81 is 1.14. This compares with values ranging from l.00-1.04 from VPA, assuming a value of $\mathrm{M}=0.5$.

5.8 Yield per Recruit

In an earlier report (C.M.1977/F:7, p.37), yield curves were presented for sandeel, using various values of M and different growth parameters. From these curves it can be seen that the yield/recruit remains fairly constant over the range $F=0.7-2.0$, assuming $M=0.5$ (as has been done for the VPA in the present report). Theoretically, a gain in yield/recruit could probably be achieved by increasing the age at first capture, but in practice such a measure does not appear to be feasible. Increasing the mesh size would result in enormous meshing problems and virtually no increase in the selectivity of the net. A minimum landing size or closed nursery area are not feasible because of the unpredictable distribution pattern of 0-group sandeel.
As a last method to increase the yield/recruit, one could consider a shift of the fishing season in order to allow the fish more time to grow during the feeding season.
Table 5.l.2 shows that the biggest catches of sandeel generally are taken in May and June. The monthly weight at age data for the years 1974-77, presented in C.M.1978/G:12, indicated a sharp increase in weight at age for all age groups from July-August. This increase, however, is much less apparent in weight at age data for 1979-80, presented in this report.
If the large increase in weight in late summer would be a yearly recurring pattern, an increase in yield/recruit could probably be obtained by shifting the fishing season by 2 months. In practice, however, the fish are no longer available to the fishermen in large quantities after May/June, probably because they bury themselves in the bottom again. The fishery has, therefore, no choice but to catch the sandeels during the months in which they are available.

5.9 Catch Prediction

The percentage landings by age for the separate stocks of sandeels (Table 5.6.1) suggest that northern North Sea landings may in some years be dominated by 0-group fish. For example, in 1979 the 0 -group constituted 61% of the landing.
Since a prediction could only assume an average recruitment for 0 -groups, considerable inaccuracy could clearly be the result in the forecasts of 0-groups.

These sources of variation would be less apparent in the southern North Sea, where 0-groups are not appreciably caught and perhaps at Shetland, where the recruitment series, at least so far, appear less variable than in the other two areas. The variability of the estimates of the other ages will largely depend upon whether or not the considerable variation in fishing mortality shown in Tables 5.3 .5 and 5.3 .8 can be explained by a measure of fishing effort.

A further important source of variation in predicted catches will certainly be the variation in weight at age data between different fishing grounds. Given these problems, the prediction of future catch for this species by the VPA-prediction method would seem unprofitable, particularly in the present situation where neither effort data for 1981 nor catch at age data for the second half of 1981 are available for the main areas. Hence, no catch projection has been made for 1982.

6. SPRAT

6.1 Landings 1979-81

North Sea.
As described in the 1981 Herring Assessment Working Group report (C.M.1981/H:8), total landings of sprat in the North Sea decreased to 320000 tonnes in 1980, mainly as a result of decreases in the central North Sea. A significant increase occurred in the southern North Sea.
Sprat landings for the years 1971-81 are given in Table 6.1.1 for the areas shown in Figure 2.15. Total landings for 1981 are not known since landings by Denmark were not available. Landings by other countries, however, decreased from 91000 tonnes in 1980 to
22000 tonnes in 1981. This decrease mainly resulted from a decrease in Norwegian landings (only 400 tonnes in 1981 compared with 69000 tonnes in 1980), and the only vessels showing an increase in landings were English vessels in coastal waters of the southern North Sea. The concentration of sprat fisheries in the southern part of the North Sea thus appeared to be maintained in 1981. Indeed, from the figures available, only 1000 tonnes of sprat were landed in 1981 from the northern North Sea (Division IVa).

Division VIa

A Scottish fishery in inshore areas to the west of Scotland has taken place for many years (annual reports in "Annales Biologiques"). After increasing to a peak of 11600 tonnes in 1978, the landings have returned to a rather low level (Table 6.1.2). Landings by other countries from this Division have been relatively small.

Division IIIa

Landings of sprat from this Division, previously given in the report of the Division IIIa Working Group, are given in Tables 6.1.3 and 6.1.4. Those of Denmark are divided into the Skagerrak and the Kattegat, but Swedish landings in 1980 and 1981 were not allocated in this way. Total landings increased progressively from 79000 tonnes in 1978 to 123000 tonnes in 1981, this increase being most marked in the Skagerrak (Table 6.1.4).

6.2 Effort Data

No effort data were available for the sprat fishery.
6.3 Catch at Age and VPA Results
6.3.1 Catch at age

North Sea (Sub-area_IV)
Numbers caught per age group in each three-month period for the years 1974-80 are given by the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ in its 1981 report (C.M.1981/H:8, Table 8.2).
Danish landings account for a major part of the total, and as data
from this country were only available for the first six months of 1981, the previous data series could only be extended by two additional threemonth periods.
Data on numbers caught in 1981 were otherwise given by England, Scotland and Norway. Data for landings of other nations were not available, but these amounted to a small proportion only of the total. Landings of the Federal Republic of Germany were assumed to come from Divisions IVb,e in the first quarters, and the age distribution of Danish catches was applied (Tables 6.3.1 and 6.3.2).

Following previous practice, landings from fjords of western Norway (Divisions IVa,e) were excluded from the North Sea and included in Division IIIa.

Skagerrak and Kattegat (Division IIIa)
In the report of the Working Group on Division IIIa Stocks (C.M.1981/G:12), the numbers at age are given for Danish landings by quarters 1975-80.
The sprat fishery in this area is carried out by Denmark, Sweden and Norway. No data on numbers caught at age in 1981 were available from either of these countries.

West_of Scotland_(Division VIa)
Numbers caught at age have not previously been reported. At the present meeting, data were presented by Scotland for the years 1974-81, on the basis of sampling covering about $80 \%-90 \%$ of the landings, except for 1980, when landings by Ireland accounted for a significant part of the total.
The data are available, but were not considered by the Working Group.

6.3.2 VPA Results

The catch by number by age on a quarterly basis were available from 1974 up to the second quarter of 1981 (incl.). In the absence of better knowledge, the North Sea catches are taken as coming from a single stock.
No effort data to calibrate the input Fs were available. Instead, the VPA was run on the assumption that the fishing mortalities in the second quarter of 1981 were equal to the average in the second quarter in the period 1976-78 on the 1-4 year olds. The input fishing mortality on the 0-group in 1982 was chosen so that this (recruiting) year class becomes equal to the average 1974-80 (130 x 109 at l July). The resulting Fs for $M=0.80$ year ${ }^{-1}$ on an annual basis are given in Table 6.3.3. The average fishing mortalities in $1974-80$ as a function of age are shown in Figure 6.3.1. This figure also shows the seasonal character of the fishery. The stock numbers at age estimated from this VPA are given in Table 6.3.4.
In Figure 6.3 .2 the annual F on the 1,2 and 3 year olds are plotted from 1974 to 1980. There are some uncertainties of the Fs in 1980 due to the input F in 1981. However, due to the high values of F and the
resulting convergence, the values for 1979 and, in particular, for the earlier years are not subject to large uncertainties.
In Figure 6.9.1 the total stock (1+) biomass in the beginning of the year is plotted for the period 1974-80. Uncertainties about M and mean weights may change the absolute level of the stock size. There is, however, little doubt of the general reduction of the stock from the 1974-75 level up to 1979-80.

6.4 Research Vessel Surveys

6.4.1 Trawling surveys

Sprat data collected in the International Young Fish Surveys have previously been reviewed by Johnson (C.M.1974/H:18, and C.M.1978/H:31). Charts of the distribution by rectangle of all age groups of sprat for the years 1977-82 are given in Figure 6.4.1 to 6.4.6.

Apart from the anomalous year 1979, the charts show a progressive decrease in the numbers of rectangles in which largenumbers of sprat were caught and, in particular, a rather sharp decrease was observed in the 1982 surveys, as shown in the text table below:

No. of rectangles units

Year of Survey	≥ 10000 sprats $/ \mathrm{hr}$	≥ 1000 sprats $/ \mathrm{hr}$
1977	9	37
1978	7	30
$1979^{3 n}$	0	18
1980	7	32
1981	5	31
$1982^{\text {FFF }}$	2	17

FF Survey carried out in bad weather, affecting catch rates of several species. (See report Herring Assessment Working Group, C.M.1981/H:8).
\#\# Provisional. Data based on results from England, Scotland, Norway, Netherlands and Sweden only.

At the meeting, it was not possible to partition the catches into their component age groups. Johnson (1974, 1978), however, demonstrated a clear difference in the age composition of bottom trawl and pelagic trawl samples of sprat. l-group sprat in February have a mean length of approximately $3-5 \mathrm{~cm}$ and are probably not fully available to bottom trawls.

Figures 6.4.1 to 6.4 .6 also demonstrate a change in the distribution of sprat in the North Sea. Catches in Division IVa W decreased to a very low level in 1982, this trend following the recent trend in landings from this Sub-division. In most years the largest survey catches have been made in the east central part of the North Sea (Divisions IVb and e). In 1981 and 1982 there was evidence of a progressive southwesterly shift of the centre of gravity of the population. This is again in agreement with the change in the distribution of commercial catches.
While the International Young Fish Survey may not provide a reliable index of the recruiting year class, it has nevertheless demonstrated a shift in the distribution and overall abundance.

In November 1980 and 1981, Scottish research vessel surveys were carried out in the western half of the North Sea using an international young gadoid pelagic trawl fished in the way advocated for the 0-group gadoid surveys, i.e., in a stepped haul from near bottom to near surface. The results of these surveys (Figure 6.4.7) show that 0-group sprat in this area are concentrated close to the coast. Furthermore, in all rectangles covered in both years, there was a marked decrease in the numbers of $0-g r o u p$ sprat caught.

6.4.2 Acoustic survey

The ICES coordinated acoustic survey for North Sea sprat continued in January-February 1982. Vessels from Norway and the United Kingdom participated, and the results of the different surveys were compiled into a report at the meeting of the Acoustic Survey Planning Group, held in Aberdeen in early March. The full results of the survey will be presented at the 1982 Statutory Meeting in a joint report by the Convenor of the survey, Dr P O Johnson.
The results of the survey are given in Figure 6.4.8. Standardized to a sprat target strength of $-29 \mathrm{~dB} / \mathrm{kg}$ as used in the 1981 survey, there were an estimated 230000 tonnes of sprat in the survey area. This compares with 195000 tonnes in the 1981 survey. In 1982, however, the main sprat concentrations were close inshore in the Wash and Thames estuary. As shown in the text table below, there was a southward shift in the centre of gravity of the population in 1982.

Estimated biomass of sprat (1000 tonnes) in each Sub-division

$$
1981 \quad 1982
$$

IVa W	3.6	4.8
IVb W	99.3	52.2
IVb E	26.8	23.2
IVc	65.4	149.8

At the time of the Working Group meeting, the biomass estimates had not been partitioned into the recruiting and older age groups of sprat.

The acoustic surveys in 1981 and 1982 provide no evidence for any significant change in stock size between the two years. The 1980 acoustic survey indicated a much higher stock size when converted to refer to the same target strength value. It was pointed out by the Herring Assessment Working Group (C.M.1981/H:8) that this reduction in stock size was consistent with a much higher value of F for 1980 than that estimated for 1978 and 1979. Based on a comparison of catches in number in 1980 with acoustic estimates in 1980 and 1981, however, Johnson (C.M.1981/H:14) deduced, either that natural mortality is considerably underestimated, or that the 1980 stock was overestimated by the acoustic survey.
6.5 Weight at Age

North Sea
Mean weights at age in landings 1976-77 and by quarters of the year were given in the report of the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ in 1978 (C.M.1978/H:3).

Mean weight by age and month for Danish catches in 1980 were reported by the Working Group in 1981 (C.M.1981/H:8). At the present meeting, similar Danish data for catches in 1981 were available, and they are given in Table 6.5.1, together with the 1980 data.

The monthly weights demonstrated marked seasonal changes. The l-group increases from about 2 grams in February-March to 11 grams in October-November, followed by a decline to about 6 grams in MarchApril as 2-group, and a new rapid increase to about 18 grams in October-November.
The mean weights of the 0 - and l-group in the catches were not representative of weights in the stock. The weight of l-group sprat in January was chosen to be 1 gram as also assumed by previous Working Groups.
A new set of weights were established for calculation of stock biomass by the VPA. The weights were calculated as unweighted means of the 1980 and 1981 data for each quarter, except for the l-group in the first quarter. The data in Table 6.5.1 were incomplete for the 4- and 5-group, and, for this reason, previously published data (C.M.1978/H:3) were used. On this basis, the following quarterly mean weights by age group were calculated and applied:

	Age groups					
Quarter	2	5				
	1.00	7.46	15.38	20.59	26.22	
1	5.70	11.97	19.88	22.75		
2	8.38	13.68	19.32	22.75		
3	10.59	17.02	22.27	26.64		

The weights given above for the first quarter of the year were used for the computation of stock biomass at the beginning of each year. The weights differ from those of the previous assessment and the stock biomasses of each age group as reported here are not directly comparable to those reported last year (C.M.1981/H:8). This mainly concerns the 2- and 3-groups, for which the previous weights were 8.86 and 13.56 grams, respectively.

Skagerrak and Kattegat

No new data were available for these areas.

6.6 Age Composition by Weight

Estimates of the mean contribution to the fishery from each age group of sprat have been made by the Herring Assessment Working Group (C.M.1978/H:3). By multiplying the catches in numbers by age for each of the years 1974-77 by the mean weights at age, the following percentages were derived:

0	1	2	3	4	5
1.0	32.7	51.2	13.6	1.4	0.2

This illustrates the dependence of the fishery on two age groups and also the problem of making any catch prognosis into next year on the basis of data from the fishery. The data series ends by July 1981 and provides no information on the abundance of the 1981 year class.
6.7 Other Measures of Mortality

No additional measures of mortality were available to the Working Group.
6.8 Yield per Recruit

In ICES Doc. C.M.1977/H:3 (pages 22 and 85), a yield/recruit curve is presented for sprat, calculated on the basis of the exploitation pattern in the period 1971-74.
For the most recent years (1977-80) the average exploitation pattern for the total North Sea has been calculated from data on fishing mortality given in Table 6.3.3. The two sets of data are compared in the text table below.

Ratios of F at each age compared with F of 1 year olds

Ringers	0	1	2	3	4
$1971-74$	0.14	1.00	1.85	1.41	0.37
$1977-80$	0.03	1.00	2.00	3.50	3.68

There has been an appreciable change in exploitation pattern, with an an increased fishing mortality on the older age groups. The reason for this could not be resolved at this meeting of the Working Group.

In Appendix B a calculation is presented of the effects of shifting the sprat fishery either more to the western part or to the eastern part of the central North Sea. Because most parameters used in this calculation were based on assumptions rather than on established data, no practical conclusions should be drawn from the results. However, the exercise indicates a possible approach to the management of the central North Sea sprat fisheries as one unit, and it indicates what data would be required for this purpose.
The effet of limited seasonal and area closures, suggested in the ACFM report from 1981, was not investigated. Such measures should be studied, since they might be beneficial to both the herring and sprat fisheries.

6.9 Prognosis

Due to the lack of calibrated input Fs, the lack of catch data from the last half of 1981, and the lack of independent recruitment data, the VPA can only form a basis for evaluating the historical development of the stock up to about 1980 (Figure 6.9.1).
The arbitrary input Fs used for 1981 imply that the stock decreased by 48% from the beginning of 1980 to the beginning of 1981. If the increasing trend of the Fs over the years 1974-80 continued on to 1981, the stock may have been reduced still further.

The acoustic estimates (described in Section 6.4.2) indicated that the stocks at the beginning of 1981 and 1982 were lower than in 1980. Taking these estimates at their face value, the reduction was about 58%.

Section 6.4.2 described the changes in abundance of sprat recorded in the IYFS (Figures 6.4.1 to 6.4.6). Since the winter of 1979, there has been a withdrawal of sprat from the northeast British coastal areas. Increasing abundances have been observed in the Wash and Thames estuary
and in this latter area a profitable fishery developed during the winters of 1980-81 and 1981-82 after a period of absence of over 25 years.

Both from IYFS and the sprat acoustic surveys, a considerable reduction in biomass between January 1980 and January 1982 is indicated. Figure 6.9 .2 shows the abundances in numbers per hours fishing of the recruiting sprat in the IYFS for 1980 and 1981. It is clearly seen that the 1981 mean abundance in the main nursery area east of 3° is reduced to between a $1 / 3$ and $1 / 4$ of the 1980 value.
While completed data are not yet available for the 1982 IYFS, some data on the length and age compositions of the catches in Division IVb east covering the main areas of abundance indicate that the juvenile fish ($<8 \mathrm{~cm}$) numbered about 18% of the total catches. From the preliminary data available, this would suggest that recruitment may be reduced by up to $1 / 3$ from that in 1981. In view of the evident further reduction in abundance in the IYFS of 1982, the Group felt that there are reasons for advocating caution in continuing to base advice for 1982 and 1983 on historic catch levels.

In no year in the recent period, i.e. 1977-80, has the catch reached the 400000 tonnes referred to as a precautionary TAC. Assuming that Denmark took the same proportion of its catch in the last six months of 1981 as it did in 1974-80 (mean 71%, range $61-84 \%$), then their expected catch in 1981 would be about 170000 tonnes, placing the 1981 catch at about 200000 tonnes. The trend in catch mirrors the trend in declining spawning stock biomass indicated by VPA and shown in Figure 6.9.1.

The Working Group considers that the trends indicated in the data series reflect a major reduction in the North Sea sprat stock, particularly as this has taken place without restriction of effort in the latest years. While it is possible that some of the decrease in catch may result from a reduced mortality brought about by the evident re-distribution of the stock into English coastal waters, nevertheless the Group considers it realistic to expect the catch for 1982 to be no higher than that in 1981.
7. EVALUATION OF SAMPLING AND REPORTING PROCEDURES
7.1 Statistical Requirements and Management Strategies

If an assessment of the historic status of a stock only is required, annual catches at age, an average weight at age table and some estimate of natural mortality may be sufficient, through the use of VPA and yield per recruit calculations. If one tries to go beyond a historic assessment and provide up-to-date management advice, such as annual TACs, or make prognoses, the same information is required. In addition, other information becomes necessary:
a) Firstly, a mean of calibrating the VPA is needed. The required information on changes in stock biomass and recruitment may be provided by trawling surveys or, in the case of sprat, echosurveys.
b) Secondly, an important source of information on abundance is catch per unit effort in the commercial fisheries, which requires data on fishing effort. This becomes particularly important, if some form of direct control of fishing effort is envisaged. In this case, information is also needed to relate fishing power to vessel and gear characteristics.
c) For prognosis, early estimates of recruitment are essential in the case of recruit fisheries.
d) Because of annual variation, annual weight at age tables may be necessary.

Even simple assessments of the state of each stock require disaggregated data for the correct interpretation of the changes that are found. Appropriate breakdown may be by quarter of the year and defined subareas, but in the absence of a real understanding of the problem involved, it may be more appropriate to provide data by months and statistical rectangles. Data in this form would also facilitate comparison with the results of research vessel surveys. In fast-growing species, monthly weight at age data may also be necssary.
If more sophisticated management strategies are to be used, for example temporary or permanent closures of certain areas, disaggregated data are even more necessary. Large catches of young fish of protected species in a particular time-area stratum may suggest the desirability of a closure in that area. Only if more comprehensive data in a disaggregated form are available, however, can the true costs and benefits of such strategies be estimated. To provide the sort of detailed advice that may be needed in the management of industrial and other competing fisheries, data are required sub-divided by fleet. This will involve the provision of data, not only on by-catches in the industrial fisheries but also on discards in the human consumption fisheries.

7.2 The Present Situation

At present, annual landings, weight and catches at age are available to the Working Group, both for the target species and the major by-catch species, although the non-availability of Danish data for the second half of 1981 ruled out any assessment of up-to-date stock levels. In most cases, data are also available by month or quarter and by sampling sub-areas.
The availability of effort data is much less satisfactory, and for this reason, estimation of abundance based on cpue (both to estimate mortality rates and recruitment) is not possible. No data are available on a fleet basis for a major part of the fishery.

7.3 Recommendations

If the Working Group is to fulfill its terms of reference, data of the type described above are required in a disaggregated form. To summarize, these are:

1) Catch and effort data by statistical rectangle and month, sub-divided by different fleet components.
2) Catch in number at age by Sub-area and month.
3) Original survey data, not only published mean values etc.
4) Weight at age data by month and Sub-area.
5) A computer data base of IYFS data should be oreated at ICES headquarters.
Since many of the data required already exist, priority should be given to making them available, perhaps by the provision of a computerized data base. Only when what already exists is available, will it be possible to assess the need for new types of data.
Furthermore, our poor knowledge of the value of natural mortality on these fish stocks makes it difficult to interpret data from the three target species. Investigations into what the natural mortality is, how it comes about, and whether it varies with time would be very beneficial.

Detailed investigation of the catch per effort data for these fisheries may also be very valuable.
Investigation of the changed areal distribution of sprat in the last two years would seem very worthwhile.

Investigations of stock structure in sprat would be very useful.

REFERENCES

ICES, 1977. Report of the Working Group on Norway Pout and Sandeels in the North Sea (with an Appendix). C.M.1977/F:7.

ICES, 1977. Report of the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ (with an Appendix). C.M.1977/H:3.

ICES, 1978. Report of the Working Group on Norway Pout and Sandeels in the North Sea. C.M.1978/G:12.

ICES, 1978. Report of the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ (with an Appendix). C.M.1978/H:3.

ICES, 1979. Report of the Working Group on Norway Pout and Sandeels in the North Sea. C.M.1979/G:26.

ICES, 1981. Report of the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$. C.M.I981/H:8.

ICES, 1981. Report of the Joint Neeting of the International Young Herring Survey Working Group and the International Gadoid Survey Working Group, IJmuiden, 12-14 May 1981. C.M.1981/H:IO.

Johnson, P.O. 1974. Report on the sprat sampling during the ICES Young Herring Surveys, 1972-74. Doc. C.M.1974/H:18.

Johnson, P.O. 1978. Report on the sprat sampling from ICES Young Herring Surveys undertaken in February 1976, 197 and February-March 1978. Doc. C.M.1978/H:31.

Johnson, P.O. I981. Report on echo-integrator surveys for sprat undertaken in the North Sea during the 1980-81 winter season. Doc. C.M.1981/H:14.

APPENDIX A

FORMULA FOR COEFFICIENT OF VARIATION OF CATCH PREDICRIONS

by
J G Pope

Estimate of coefficient of variation of predicted catches of industrial fish (Pope - in press) gives a formulae for the coefficient of variation of a predicted catch (designed to maintain a constant fishing mortality) for stocks like North Sea cod where predictions are made two years ahead using typical VPA/prediction methods (e.g. setting a TAC for 1983 on 1981 data). For the industrial fisheries, such a prediction would clearly be absurd since as Tables $4.6 .1,5.6 .1$ and 6.6 .1 indicate, most of the landings come from ages where year class strength would have to be guessed since no information would be available. The possibility of predicting the next year's catches, however, seem superficially more possible. For example, this Working Group providing predictions for 1982 based on 1981 and past years catch at age and effort data (were these available) interpreted by VPA and recruitment indices for the 1981 and 1980 year classes from the IYFS (for Norway pout and perhaps sprat, but not for sandeel). Pope's (ibid) formulae may be adapted and simplified for this circumstance as follows where $Y($.$) indicates the 1982$ landing and $Y(j)$ the landing of the jth age class.

$$
\begin{aligned}
\mathrm{CV}(\mathrm{Y}(.))^{2} & =(\theta(\mathrm{c})+\Phi(\mathrm{c})) \mathrm{CV}(\mathrm{c})^{2} \\
& +(\theta(\mathrm{f})+\Phi(\mathrm{f})) \mathrm{CV}(\mathrm{f})^{2} \\
& +(\theta(\mathrm{R})+\Phi(\mathrm{R})) \mathrm{CV}(\mathrm{R})^{2} \\
& +(\theta(\mathrm{w})+\Phi(\mathrm{w})) \mathrm{CV}(\mathrm{w})^{2}
\end{aligned}
$$

where CV () indicates coefficient of variation about the true annual value. $C=$ catch at age data (assumed for simplicity to have the same CV for all j) $f=$ fishing effort data
$R=$ recruitment indices (assumed for simplicity to have the same CV for all ages for which they are used)
$N=$ weight at age (assumed for simplicity to have the same CV for all j) θ (c) and $\bar{\Phi}(c)$ etc. represent components due respectively to the most recent years' data and past years' data used to calibrate effort and recruitment values. Approximate formulaes for these in the one-year situation are:

$$
\begin{aligned}
& \theta(c)=\sum_{j=2}^{g}(j)^{2} / Y(\cdot)^{2} \\
& \theta(f)=\left[Y(0)^{2}+Y(1)^{2}-0.8 \sum_{j=2}^{g} Y(j)\right]^{2} / Y(\cdot)^{2} \\
& \theta(R)=\left[Y(0)^{2}+Y(1)^{2}\right] / Y(\cdot)^{2} \\
& \theta(w)=\sum_{j=0}^{g} Y(j)^{2} / Y(\cdot)^{2} \\
& \phi(c) \quad \sum_{j=0}^{g} Y(j)^{2} /\left[Y(\cdot)^{2} x(y-I)\right] \\
& \phi(f)=\left[Y(0)^{2}+Y(1)^{2}+2.5 x \sum_{j=2}^{\text {g }} Y(j)^{2}\right] /\left[Y(\cdot)^{2} x(y-1)\right] \\
& \phi(\mathrm{R})=\left[\mathrm{Y}(0)^{2}+\mathrm{Y}(1)^{2}\right] /\left[\left(\mathrm{Y}(\cdot)^{2} \mathrm{x}(\mathrm{y}-1)\right]\right. \\
& \phi(R)=\left[Y(0)^{2}+Y(1)^{2}\right] /\left[Y(\cdot)^{2} x(y-1)\right] \\
& \emptyset(w)=0
\end{aligned}
$$

where g is the oldest age and y the number of years for which reliable catch at age data are available.

Using this on Norway pout would give the following results:

$$
\mathrm{CV}(\mathrm{~L}(79))^{2}=.15 \mathrm{CV}(\mathrm{c})+.44 \mathrm{CV}(\mathrm{f})+.62 \mathrm{CV}(\mathrm{R})+.57 \mathrm{CV}(\mathrm{w})
$$

while in 1980

$$
\mathrm{CV}(\mathrm{~L}(80))=.19 \mathrm{CV}(\mathrm{c})+.37 \mathrm{CV}(\mathrm{f})+.59 \mathrm{CV}(\mathrm{R})+.57 \mathrm{CV}(\mathrm{w})
$$

since the coefficient of catch at age data is possibly no better than 10%, say 15%.
$C V(f)$ is difficult to estimate due to having no effort data, but were these available might be expected typically to reduce the variability of fishing mortality estimates to about half their usual variation. A value of 25% therefore seems a sensible ranging shot. $C V(R)$ would be the raw variation of recruitment for $0-g r o u p$ fish, while preliminary regression of VPA recruitment on the IYFS index of lmyear old Norway pout explains 25% of the raw variation in recruitment. Raw recruitment seems to have a CV of about 50% for this stock, so a composite figure of about 40% seems indicated.

The coefficient of variation of weight at age data is difficult to estimate, but clearly the value for l-year old fish would dominate. Variations in weight between years and quarters suggest a figure of about 20%. These values of coefficient of variation in the input data streams indicate that

$$
\begin{aligned}
& C V(L(79)) \simeq 39 \% \\
& C V(L(80) \simeq 38 \%
\end{aligned}
$$

APPENDIX B

If the sprat resources in the North Sea are to be managed as a single stock, at Ieast two competing fisheries should be identified: the Division IVb east summer and autumn fishery, mainly directed towards age l, as shown by catch at age data, and the western fishery. In order to understand the interactions of these two fisheries, it would be important to know how yield per recruit would react to changes of the respective fishing efforts. Starting from VPA results, leading to a fishing mortality vector, F_{i} at age i, this can be based upon a splitting of F_{i} into two components, $F_{e, i}$ and $F_{W, i} F_{e, i}$ being the component related to the easterm fishery, $\mathrm{F}_{\mathrm{w}, \mathrm{i}}$ the western component. The relative importance of a component is just given by its contribution to catch at age i:

$$
\begin{equation*}
F_{e, i}=\frac{C_{e, i}}{C_{i}} \quad \text { and }(2) F_{w, i}=\frac{C_{w, i}}{C_{i}} \tag{I}
\end{equation*}
$$

if C_{i} is the total catch at age $i, C_{e, i}$ and $C_{w, i}$ being associated to the eastern and western catches.

If a reference situation is considered, associated to a particular fishing mortality vectors $F_{e, i}{ }^{\mp}$ and $F_{w, i}$, any exploitation pattern can be defined by two multipliers, $m_{f e}$ and $m_{f W}$, associated to the eastern and westem fisheries. So, if the fishing rate is to be multipled by $m_{f e}$ and $m_{f w}$, respectively, the new fishing mortality vector will be defined by

$$
F_{i}=m_{f e} F_{e, i}{ }^{\#}+m_{f w} F_{w, i}
$$

If the number of recruits surviving at the beginning of age is N_{i}, the catch in months will l_{F} be:
and

$$
C_{w, i}=C_{i} \frac{\mathbb{m}_{f e} F_{w, i}}{F_{i}}
$$

C_{1} being given the usual catch equation. Catches in weight, for either total or each fishery can be easily derived from these catch in numbers. Mean weight at age are given in App.B/Table l, p.33). These are means of values given in previous reports, smoothed, and thus differ from those quoted in Section 6.5. In the case of sprat, two problems appear at once: how should a reference situation be defined; how can the fishing mortality vector be split? This second problem should not have been a real one, if catch at age
per Sub-area could have been available. Unfortunately, if the VPA could have been conducted on a quarterly basis, catch at age by sub-areas were only available on a yearly basis. The splitting has so been performed only according to respective yearly catches at age. It appeared, however, reasonable to consider that fishing mortality in the eastern area should be limited to the third and fourth quarters, and not significantly going beyond age 1. An average value on year classes 1975 to 1978 has consequently been used, year class 1976 not being taken into account, because of abnormally low fishing mortality values (perhaps related to a poor sprat year class, and a more attractive than usual sandeel fishery). This defines a reference fishing mortality pattern for the eastern fishery, starting on the third quarter on 0-group, and defined on a quarterly basis (App.B,Table 1, p. 33).

Defining a reference mortality vector for the western fishery is slightly more complicated. With the eastern component being eliminated, an average value from the results of the VPA can be used. This has been carried out on year classes 1975 to 1978 for ages 0 and 1 . Because of convergence problems, only year classes 1975, 1976 and 1977 have been used for age 2, 1975 and 1976 for age 3, and 1975 for age 4 . Some roundings have been performed, in order to simplify the calculations. Such roundings are not likely to have affected significantly the results. Moxe important is the partial averaging procedure and that could be discussed, and the nonavailability of the geographically disaggregated catches at age per quarter. These reasons make it necessary to consider the calculations as a first exercise, and these should be refined later on. Other natural mortality values than .8 (on an annual basis) should at least be tried. The results for overall yield per recruit (in grammes) appear on Appendix B, Figure l (p. 34), the multiplier for the eastern fishery appearing on the x-axis, the western multiplier defining the y-axis. Both multipliers go from. 0 to 1.5 . Apart from the overall yield per recruit, the partial yields per recruit going to the eastern and western fisheries have also been calculated. They appear in Appendix B, Figure 1 :

Finally, it appeared useful to complete this yield per recruit study with a spawning biomass per recruit assessment. It has been considered that spawning takes place in spring, first maturity appearing at age 2 . At this level, spawning biomass is assumed to be proportional to the average individual weight. Although such numbers are always difficult to interpret, it must be pointed out that within what has been defined as the reference situation, the spawning biomass per recruit is reduced to 15% of what it would be without any fishing.

APPENDIX B, Table 1 Input data for analysis of North Sea SPRAT
Eastern and Western fisheries

Age Group (Year)	Quarter	Reference Fishing Mortality		Mean Weight at Age
		${ }^{\mathrm{F}}$ east	$\mathrm{F}_{\text {west }}$	
0	3	0	0.01	1.00
	4	0.005	0.05	1.81
1	1	0	0.05	2.34
	2	0	0.01	2.32
	3	. 36	0.08	7.64
	4	. 24	0.06	8.85
2	1	0	0.40	8.54
	2	0	0.04	9.70
	3	0	0.11	12.48
	4	0	0.53	17.18
3	1	0	0.53	15.93
	2	0	0.02	15.13
	3	0	0.01	21.55
	4	0	1.00	21.57
4	1	0	0.80	20.59
	2	0	0	22.75
	3	0	0	22.75
	4	0	1.00	26.64

Annual natural mortality $M=0.80$
First spawning starting at age 2

APpYgitiX Bi. Figure 1. Nbrth Sea SPRAT:
Yeld per recmut considerations. For explanation, see text in Appendix B.

Table 2.4.1 1979-1980 Norway POUT catches in thousand
tonnes (Denmark, Norway and Scotland) by Danish statistical areas (For areas given in Figure 2.13),

1979

Month	A R EAS							
	1	2	3	4	5 A	5 B	6	
1		0.4	0.1	58.1	13.9	+		
2				19.3	11.2	+		
3	0.2	+	0.1	8.9	9.2	0.1		
4		1.7	2.6	4.5	7.4	-		
5	0.1	0.2	0.2	4.8	5.5			
6	0.4	0.1	+	-	9.7			
7	0.5	0.8	5.7	10.1				
8	0.4	10.4	5.1	17.8	10.2	0.9		
9	1.2	47.8	6.4	0.3	4.0			
10		10.9	12.2	10.2	7.1			
11	0.6	12.1	5.4	1.9				
12	0.2	-	-	5.0	1.9			
Area	2.5	79.6	39.6	140.0	90.2	1.0		
total								

1980

Month	AREAS						
	1	2	3	4	5A	5B	6
1		0.2		7.6	12.2		
2		0.4	0.1	9.5	12.4		
3	0.1	0.3		5.2	7.9		
4				2.5	6.8		
5				4.3	10.7	1.5	
6			0.4	2.7	8.1	+	
7	0.6	3.3	0.8	17.5	31.6	10.2	
8		23.5	33.4	0.4	17.2	2.3	
9	0.8	43.6	26.1	2.2	10.9	1.0	
10	12.4	20.9	18.2	6.9	3.3		
11	4.9	14.5	4.0	2.8	8.7		
12	2.2	5.7	0.4	7.0	6.1		
Area total	21.0	112.4	83.4	68.6	135.9	15.0	

Table 2.4.2 1979-1980 SANDEEL catches in thousand tonnes (Denmark, Norway, United Kingdom) by Danish statistical areas. (For areas given in Figure 2.14.)

1979

	AREAS										
	IA	1 B	10^{\prime}	2 A	2 B	\cdots	3	4.	5	- 6	Shetl.
1											
3						1.0					
4	11.5	$+$	3.6	2.1	1.1	1.5	0.5	4.1			0.9
5	47.6		4.1	23.1	2.0	0.6	6.0	38.6	0.9	8.8	3.0
6	105.9	7.1		3.9	5.9		6.8	24.3	1.2	21.6	3.9
7	15.7	+	2.1	1.3	17.6	2.0	6.4	12.5	2.9	12.3	2.4
8		7.2	14.9		$+$	61.5	7.0				2.5
9		0.5	8.9	1.5	$+$	1.3	0.5			0.8	0.6
10		5.6	14.4		+	2.3	5.6			0.8	+
11		$+$					$+$				
12											
Area total	180.7	20.4	48.0	31.9	26.6	70.2	32.8	79.5	5.0	44.3	13.3

1980

Table 2.4.3 SPRAT catches in thousand tonnes (Denmark, Norway and United Kingdom) in Sub-divisions.

1979

Month	AREAS				
	1	2	3	4	5
1	0.6		37.7	19.8	2.9
2	1.1		10.3	2.3	1.1
3	$+$		10.9	8.4	
4		$+$		2.7	
5			0.1	$+$	
6				1.1	
7			+	19.4	+
8				105.4	
9			5.0	19.6	
10	0.9		6.7	26.6	
11	4.0		27.2	15.2	
12	0.2		13.1	25.6	2.0

1980

Month	A R E A S				
	1	2	3	4	5
1	3.0		28.1	52.4	17.5
2	0.7		27.7	1.9	3.5
3			2.8	4.6	1.1
4	1.2		0.6	+	
5			0.2	+	+
6			0.7	1.3	
7			0.3	29.7	
8			0.5	34.9	
9			0.1	15.1	
10			10.6	36.6	0.1
11			15.1	24.7	
12					

Table 2.4.4 Total industrial species. Catches by months for 1979 and 1980 (Danish, Norwegian and United Kingdom) thousand tonnes.

1979					1980				
Month	Pout	Sand eel	Sprat	Total	Month	Pout	Sand eel	Sprat	Total
1	72.5		61.0	133.5	1	20.0		81.0	101.0
2	30.5		14.7	45.2	2	22.4		33.8	56.2
3	18.5	1.0	19.3	38.8	3	13.5	18.5	8.5	40.5
4	16.2	25.3	2.7	44.2	4	9.3	43.6	0.8	53.7
5	10.8	134.7	0.1	145.6	5	16.5	250.9	0.2	267.6
6	9.8	180.6	1.1	191.5	6	11.2	287.5	2.0	300.7
7	24.5	75.2	19.4	119.1	7	64.0	89.4	30.0	183.4
8	44.8	93.1	105.4	243.3	8	76.8	17.4	35.4	129.6
9	59.7	14.1	24.6	98.4	9	84.6	13.8	15.2	113.6
10	40.4	28.7	34.2	103.3	10	61.7	5.6	47.3	114.6
11	18.1		46.4	64.5	11	34.9		39.8	74.7
12	7.1		40.9	48.0	12	21.4		19.2	40.6
Total	352.9	552.7	369.8	1275.4	Total	436.3	726.7	313.2	1476.7

Table 3.2.1 HERRING by-catch in numbers per age (millions). in Division IVb.

Year	Age in winterrings									
	0	1	2	3	4	5	6	7	8	>8
1976	237	50	18	1	2	-	-	-	-	-
1977	254	136	3	-	-	-	-	-	-	-
1978	138	168	1	-	-	-	-	-	-	-
1979	542	156	8	-	-	-	-	-	-	-
1980	625	137	6	1	1	-	-	-	-	-

Table 3.3.1 HERRING by-catch in 1981 (in tonnes).

Country	IVa W	IVa \mathbb{E}	IVb	IVc+VIId	Total
Denmark	431	-	3090	78	3599
Norway	-	-	-	-	-
UK (Scotland)	533	-	33	-	566
UK(England)	-	-	-	-	-

\# first half of 1981 only.
Table 3.3.2 HERRING by-catch in 1981 in numbers ($x 10^{6}$) at age

Division	Country	Age in winterrings				
		0	1	2	3	>3
IVa W	$\begin{aligned} & \text { Denmark }{ }^{\text {F }} \\ & \text { UK (Scotland) } \end{aligned}$	1.3	20.4	5.0	0.2	1.5
IVb	$\begin{aligned} & \text { Denmark } \\ & \text { UK }(\text { Scotland }) \end{aligned}$	$\begin{aligned} & 5.4 \\ & 0.9 \end{aligned}$	$\begin{array}{r} 98.8 \\ 2.2 \end{array}$	11.9	0.6	-
IVc	Denmark ${ }^{\text {3F }}$	-	2.0	0.5	-	-

щ first half of 1981 only.

Table 3.5.1 Total reported by-catch of HADDOCK, WHITING SAITHE AND BLUE WHITING, 1975-80.

Species	1975	1976	1977	1978	1979	1980
Haddock	41380	48	204	34993	9659	17414
Whiting	86376	149759	106104	55274	59	021
Saithe	37678	66766	6197	2566	1635	363
Blue Whiting	39408	28	251	37945	97145	62623

Table 3.5.2. North Sea. Total industrial landings in tonnes (sandeel excluded) and estimated by-catches of haddock and whiting by quarters for 1975 to the first half of 1981. Sprat is also excluded from Norwegian and United Kingdom totals.

	Quarter I			Quarter II			Quarter III			Quarter IV		
Area	Total ind.	Haddock	Whiting.	Total ind.	Haddock	Whiting	Total ind.	Haddock	Whiting	Total ind.	Haddock	Whiting
1	34006	3638	6375	9344	2550	1639	31140	1856	444	45711	980	8721
2	27665	3894	5773	16305	2186	2738	101738	2452	3001	91438	1902	13164
3	8092	760	1444	3978	620	962	17688	2368	107	10383	189	2197
4	16304	1143	2003	13188	1202	1945	17914	170	438	26212	571	3699
5A	44243	4083	7389	122173	2954	2367	78465	2951	341	44708	1496	465
5B	4676	18	28	5819	160	1346	57086	402	1471	10663	1092	1093
6	743043	182	1984	23458	183	2878	139555	887	6417	69797	525	3199

	Quarter I			Quarter II			Quarter III			Quarter IV		
Area	Total ind.	Haddock	Whiting									
1	26196	2617	3.603	10870	948	833	36721	1505	2627	1640	1	120
2	22205	1642	2378	671	1	0	39931	714	827	71537	1001	3942
3	14500	1392	1779	148	3	- 11	4597	64	95	2224	67	- 128
4	25616	1972	2557	5181	135	398	12542	318	183	35584	722	2768
5A	36655	1049	3016	35307	161	573	44983	222	1004	27166	205	246
5B	4507	277	519	4064	96	811	16244	170	2326	12458	25	2288
6	63370	196	3255	20179	131	4084	58961	140	6508	54978	88	3732

Table 3.5.2. (Continued)

Area	Quarter I			Quarter II			Quarter III			Quarter IV		
	Total ind.	Haddock	Whiting									
1	236	3	12	261	5	3	1270	38	14	218	14	3
2	51	1	2	2661	258	'213	69942	2695	869	12528	453	375
3	222	16	20	3687	416	308	14066	790	733	14615	918	-1 079
4	36735	680	968	13874	781	834	27 051	438	408	31478	3054	549
5A	59394	972	2071	47158	762	911	35722	1417	795	14580	357	187
5B	140	12	10	877	18	266	47073	288	1480	14531	37	3835
6	71187	119	30259	16037	391	4634	115492	94	987	71780	0	1649

\qquad

Table 3.5.2. (Continued).

Area	Quarter I			Quarter II			Quarter III			Quarter IV		
	Total ind.	Haddock	Whiting									
1	4071	412	414	619	86	- 192						
2	1205	185	289	56	0	0						
3	0	0	0	0	0	0						
4	32706	1489	3128	15429	494	549						
5A	24315	604	864	38611	492	518						
5B	0	0	0	1979	0	469						
6	74566	590	25872	19644	289	7494						

1												
2												
3										.		
4												
5A												
5B												
6												

Table 3.6.1 North Sea. Species composition in Norwegian Norway POUT landings (tonnes) ${ }^{\text {mi }}$ for reduction purposes, 1975-1981.

Year	Quarter	Landings	Norway pout	Blue whiting	Cod	Haddock	Whiting	Saithe	Herring	Mackerel	Others
$\begin{aligned} & 1975 \\ & 1976 \\ & 1977 \\ & 1978 \end{aligned}$	$\begin{aligned} & 1-4 \\ & 1-4 \\ & 1-4 \\ & 1-4 \end{aligned}$	$\begin{array}{ll} 297 & 222 \\ 200 & 777 \\ 143 & 001 \\ 136 & 455 \end{array}$	$\begin{array}{r} 218900 \\ 108937 \\ 98 \\ 291 \\ 80 \\ 755 \end{array}$	40210 34600 20737 39989	$\begin{array}{r} 188 \\ 783 \\ 661 \\ 659 \end{array}$	$\begin{array}{r} 9840 \\ 3 \\ 133 \\ 920 \\ 766 \end{array}$	$\begin{array}{r} 13243 \\ 6744 \\ 2707 \\ 1462 \end{array}$	$\begin{array}{r} 4330 \\ 12850 \\ 4390 \\ 2494 \end{array}$.		$\begin{array}{r} 9511 \\ 33730 \\ 15300 \\ 10351 \end{array}$
1979	$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 1-4 \end{array}$	$\begin{array}{r} 24504 \\ 40 \\ 310 \\ 33602 \\ 19 \\ 387 \\ 117 \\ 803 \end{array}$	$\begin{array}{ll} 17 & 087 \\ 18 & 963 \\ 23 & 856 \\ 15 & 158 \\ 75 & 046 \end{array}$	$\begin{array}{r} 4971 \\ 17504 \\ 6584 \\ 1881 \\ 30930 \end{array}$	$\begin{array}{r} 153 \\ 202 \\ 98 \\ 26 \\ 479 \end{array}$	$\begin{array}{r} 298 \\ 406 \\ 625 \\ 1254 \\ 2583 \end{array}$	$\begin{array}{r} 1032 \\ 315 \\ 132 \\ 189 \\ 1659 \end{array}$	$\begin{array}{r} 179 \\ 289 \\ 309 \\ 99 \\ 876 \end{array}$	2 1 3	$\begin{aligned} & 3 \\ & 2 \\ & 4 \\ & 9 \end{aligned}$	995 2808 2178 1 221 7 202
1980	$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 1-4 \end{array}$	$\begin{array}{r} 14469 \\ 36896 \\ 42900 \\ 13794 \\ 108059 \end{array}$	$\begin{array}{rr} 10 & 355 \\ 18 & 281 \\ 32 & 449 \\ 8 & 375 \\ 69 & 460 \end{array}$	810 13623 6400 1129 21962	$\begin{array}{r} 195 \\ 207 \\ 136 \\ 12 \\ 550 \end{array}$	$\begin{array}{r} 947 \\ 1414 \\ 655 \\ 902 \\ 3918 \end{array}$	759 312 42 86 1199	$\begin{array}{r} 107 \\ 130 \\ 87 \\ 18 \\ 342 \end{array}$			$\begin{array}{rr} 1 & 296 \\ 2 & 929 \\ 3 & 131 \\ 3 & 272 \\ 10 & 628 \end{array}$
1981	$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 1-4 \end{array}$	8572 36909 30 880 9 274	6995 19091 19712 7182 52980	$\begin{array}{r} 363 \\ 10743 \\ 6188 \\ 751 \\ 18045 \end{array}$	$\begin{array}{r} 58 \\ 132 \\ 65 \\ 26 \\ 281 \end{array}$	$\begin{array}{r} 102 \\ 403 \\ 846 \\ 457 \\ 1808 \end{array}$	$\begin{array}{r} 359 \\ 235 \\ 69 \\ 150 \\ 813 \end{array}$	$\begin{array}{r} 75 \\ 116 \\ 1033 \\ 50 \\ 1274 \end{array}$		$\begin{array}{r} 1 \\ 32 \\ 12 \\ 4 \\ 49 \end{array}$	$\begin{array}{r} 619 \\ 6157 \\ 1806 \\ 654 \\ 9236 \end{array}$

¥r Prior to 1975 the sampling is not regarded as adequate for a reliable break down of the landings into separate species.

Table 3.6.2 North Sea, species composition in Norwegian SANDEEL landings 1979-81 (tonnes).

Year	Landings	Sandeel	Cod	Haddock	Whiting	Saithe	Herring	Mackerel	Others
1979	103273	101420	231	520	208	250	-	-	442
1980	147748	144752	54	1118	382	-	-	-	1442
1981	53370	52641	29	504	68	6	4	6	112

Table 3.7.1 By-catch landed for human consumption by Faroese Industrial Trawlers from ICES Div.IVa Target species Norway POUI SANDEEI: 1975-1981, tonnes.

	1975	1976	1977	1978	1979	1980	1981*
Total landings Ind. Trawlers Lande	67832 for hu	68960 consumpter	57630 on	20548	26025	43212	26985
Cod	652	448	257	50	111	150	94
Haddock	82	85	45	12	7	27	29
Whiting	-	-	-	-	7	21	21
Ling	7	208	306	88	68	- 44	71
Monkfish	28	96	87	24	-	12	49
Saithe	287	425	318	213	407	1020	417
Others	269	132	159	8	201	247	56
Σ	1325	1394	1172	395	801	1521	737

[^1]Table 4.1.1. NORWAY POUT, Annual landings (in thousand tonnes) by countries. North Sea 1957-81.

Year	Denmark	Faroes	Norway	Sweden	$\begin{gathered} \text { UK } \\ \text { (Scotland) } \end{gathered}$	Others	Total
1957			0.2				0.2
1958							
1959	61.5		7.8				69.3
1960	17.2		13.5				30.7
1961	20.5		8.1				28.6
1962	121.8		27.9				149.7
1963	67.4		70.4				137.8
1964	10.4		51.0				61.4
1965	8.2		35.0				43.2
1966	35.2		17.8			+	53.0
1967	169.6		12.9			+	182.6
1968	410.8		40.9			+	451.8
1969	52.5	19.6	41.4			+	113.5
1970	142.1	32.0	63.5		0.2	0.2	238.0
1971	178.5	47.2	79.3		0.1	0.2	305.3
1972	259.6	56.8	120.5	6.8	0.9	0.2	444.8
1973	215.2	51.2	63.0	2.9	13.0	0.6	345.9
1974	464.5	85.0	154.2	2.1	26.7	3.3	735.8
1975	251.2	63.6	218.9	2.3	22.7	1.0	559.7
1976	244.9	64.6	108.9	+	17.3	1.7	435.4
1977	232.2	50.9	98.3	2.9	4.6	1.0	389.9
1978	163.4	19.7	80.8	0.7	5.5	-	270.1
1979	219.9	21.9	75.0		3.0		319.8
1980	366.2	34.1	69.5		0.6		470.4
$1981{ }^{\text {l }}$)	$51.3^{2)}$	19.1	53.0		+		127.33)

I) Preliminary.
2) Jan-June only.
3) Incomplete.

Table 4.1.2. NORWAY POUT. North Sea. National landings (tonnes) by months 1979-81 (Denmark, Norway, United Kingdom (Scotland)).

Month	Denmark	Norway	Faroes	$\begin{aligned} & \text { UK } \\ & \text { (Scot1and) } \end{aligned}$	Total
1979					
Jan	13790	7645	4040	1141	26616
Feb	19363	5957	2310	981	28611
Mar	14924	3485	1550	-	19959
Apr	12527	3584	1257	-	17368
May	4927	5913	973	-	11813
Jun	257	9466	1235	-	10958
Jul	14039	10425	1523	-	25987
Aug	35152	9485	1983	166	46786
Sep	55438	3946	3927	332	63643
0ot	32646	7703	1834	188	42371
Nov	12351	5658	1243	134	19386
Dec	4470	1797	53	74	6394
Total	219884	75064	21928	3016	319892
1980					
Jan	14792	4962	2299	193	22246
Feb	18620	3459	3534	315	25928
Mar	11653	1934	2010	-	15597
Apr	7233	2103	158	8	9502
May	7853	8004	2249	-	18106
Jun	3114	8174	2104	-	13392
JuI	55385	8673	3001	-	67059
Aug	66255	10492	2325	-	79072
Sep	71144	13284	7846	87	92361
Oct	60474	1340	3976	-	65790
Nov	28749	6248	3279	-	38276
Dec	20938	787	1282	-	23077
Total	366210	6946	34063	603	470336
1981					
Jan	11782	2821	1066	-	15669
Feb	20632	2891	2177	-	25700
Mar	10923	1283	2144	-	14350
Apr	6103	3838	2920	-	12861
May	1414	8145	3115	-	12674
Jun	451	7108	2347	-	9906
Jul		5503	3831	-	
Aug		10180	985	-	
Sep	n/a	4029	-	-	n/a
Oct		2501	1303	-	
Nov Dec		1346	1545 1102	-	
Dec		3335	1102	-	
Total	51 305 ${ }^{\text {²) }}$	52980	19057	0	-

\# Jan-Jun only

Table 4.1.3. NORWAY POUT. North Sea. Landings (tonnes) by quarters and areas in 1979-811).

Year	Quarter	Sub-division							Total
		1	2	3	4	5A	5B	6	
1979	I	209	45	166	31701	35064	101	0	67286
	II		051	2812	9292	22515	4	0	36674
	III	1208	65707	12251	24603	24317	897	0	128983
	IV	193	11535	$12 \cdot 243$	26648	14402	0	0	65021
	Total	80948		27472	92244	96298	1002	0	297964
1980	I	${ }_{0}^{137}$			23039 8923	32428 25468		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	55 36 3688
	III		661	$\begin{array}{r}0 \\ 59 \\ \hline 945 \\ \hline\end{array}$	(1) $\begin{array}{r}8 \\ 23 \\ \hline\end{array}$	25648 59658	1533 13524	0	36489 $225 \quad 320$
	IV	$\xrightarrow{19549}$	$40 \quad 405$	22481	18045	18056	0	0	118536
	Total	129	076	82811	73539	135790	15057	0	436273
1981	I								

1) Faroe data excluded

Table 4.1.4. NORWAY POUT. Annual landings (tonnes) in Division VIa (source: ICES Statistician).

Country	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981
Belgium	1	-	-	-	-	-	-	-	-	-	-
Denmark	363	186	42	-	193	-	-	4443	15609	13070	2862
Faroes	-	-	1743	1581	1524	6203	2177	18484	4772	3530	1)
Germany, Fed.Rep.	-	-	-	179	-	8	-	-	-	-	526
Netherlands	-	-	-	3)	322	147	230	21	98	68	
Norway	-	-	-	1443)	-	823)	-	-	-	-	-
Poland	-	-	-	75	-	-	-	-	-	-	-
UK (Scotland) ${ }^{2}$)	1622	3760	9282	4702	6614	6346	2799	302	23	1202	1157
USSR	-	-	-	40	2	7147	-	-	-	-	-
Total	1986	3946	11067	6721	8655	19933	5206	23250	20502	17870	4545

1) Included in the North Sea. 2) Amended using national data. 3) Including by-catch.

Table 4.1.5. NORWAY POUT. Annual landings (tonnes) in Division IIIa (source: ICES Statistician).

Country	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981
Denmark	25800	17259	23152	10669	15666	40144	20694	23922	23951	26235	28632
Faroes			643								
Norway	296			62^{*+}	925*)	$50^{* \prime}$	104	362	1282	141	45^{*}
Sweden		1)	1)	1)	3272	2255	318	$591{ }^{2)}$	32	39	58
Total	26096	17259	23795	10731	19863	42449	21116	24.875	25165	26415	28735

[^2]Table 4.2.1 Faroese cpue data, industrial trawlers Norway PoUT in ICES Division IVa (kg/hour)

Month	1978	1979	1980	1981
January	1389	1830	1543	2005
February	932	1207	1755	1104
March	896	1207	1478	1210
April	670	1061	1523	1204
May	1110	885	1978	1308
June	1052	1542	2508	1015
July	784	1178	1576	1294
August	1242	1331	2387	1051
September	3007	2495	2807	-
October	2215	2139	2648	1663
November	1915	2003	1993	1387
December	2168	2455	2222	1496
Weight average	1266	1557	2084	1250
Total effort reported in Log books	11300	6660	9918	11256
Total catch reported	14307	10375	20673	14072
Total landings	17699	21497	34064	19057

[^3]- 53 -

Table 4.3.1 Norway POUT. Input data for quarterly VPA. Catch at age (no x 10^{-6}).

		Age Groups				
Year	Quarter	0	1	2	3	4
1974	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & 846 \\ & 5720 \end{aligned}$	$\begin{array}{r} 13450 \\ 7873 \\ 9966 \\ 7809 \end{array}$	$\begin{aligned} & 414 \\ & 193 \\ & 489 \\ & 140 \end{aligned}$	$\begin{array}{r} 26 \\ 26 \\ 145 \\ 4 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & - \end{aligned}$
1975	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & 889 \\ & 9968 \end{aligned}$	$\begin{array}{ll} 3 & 742 \\ 7 & 206 \\ 7 & 117 \\ 2 & 027 \end{array}$	$\begin{array}{r} 1726 \\ 383 \\ 349 \\ 461 \end{array}$	$\begin{array}{r} 13 \\ 2 \\ - \\ 1 \end{array}$	-
1976	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { - } \\ & - \\ & 197 \\ & 5986 \end{aligned}$	$\begin{array}{ll} 4 & 950 \\ 7 & 580 \\ 5 & 349 \\ 3 & 157 \end{array}$	$\begin{aligned} & 589 \\ & 645 \\ & 590 \\ & 320 \end{aligned}$	$\begin{array}{r} 91 \\ 58 \\ 2 \\ 15 \end{array}$	-
1977	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} 61 \\ 1655 \end{array}$	$\begin{array}{ll} 9 & 171 \\ 3 & 577 \\ 3 & 580 \\ 3 & 540 \end{array}$	$\begin{aligned} & 950 \\ & 367 \\ & 861 \\ & 236 \end{aligned}$	$\begin{array}{r} 33 \\ 8 \\ 45 \\ 5 \end{array}$	3 - -
1978	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & 304 \\ & 1225 \end{aligned}$	$\begin{array}{ll} 2 & 931 \\ 1 & 181 \\ 2 & 385 \\ 1 & 400 \end{array}$	$\begin{array}{r} 1371 \\ 650 \\ 786 \\ 322 \end{array}$	$\begin{array}{r} 93 \\ 194 \\ 30 \\ 6 \end{array}$	4 - -
1979	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 968 \\ & 861 \end{aligned}$	$\begin{array}{ll} 5 & 079 \\ 3 & 270 \\ 4 & 243 \\ 2 & 147 \end{array}$	$\begin{aligned} & 940 \\ & 249 \\ & 763 \\ & 166 \end{aligned}$	$\begin{array}{r} 170 \\ 27 \\ 49 \\ 11 \end{array}$	3
1980	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	24 640	$\begin{array}{ll} 5 & 025 \\ 2 & 576 \\ 7 & 709 \\ 3 & 913 \end{array}$	$\begin{array}{r} 1072 \\ 686 \\ 1959 \\ 511 \end{array}$	$\begin{array}{r} 59 \\ 29 \\ 18 \\ 6 \end{array}$	$\begin{aligned} & 2 \\ & 5 \\ & - \end{aligned}$
1981	$\begin{aligned} & 1 \\ & 2 \end{aligned}$		$\begin{array}{r} 2183 \\ 995 \end{array}$	$\begin{array}{r} 1658 \\ 569 \end{array}$	$\begin{aligned} & 75 \\ & 74 \end{aligned}$	6

Table 4.3.2 Norway POUT. $M=1.00 \mathrm{Year}^{-1}$ Fishing mortality from quarterly VPA.

		Age Groups				
Year	Quarter	0	1	2	3	4
1974	1	-	0.22	0.26	0.09	0.20
	2	-	0.20	0.20	0.13	-
	3	0.01	0.46	1.19	2.71	-
	4	0.11	0.86	1.79	0.82	-
1975	1	-	0.10	0.50	0.90	0.20
	2	-	0.31	0.20	0.30	-
	3	0.01	0.61	0.31	0.09	-
	4	0.17	0.37	0.91	0.60	-
1976	1	-	0.12	0.18	0.48	0.20
	2	-	0.30	0.33	0.69	-
	3	0.0	0.38	0.61	0.05	-
	4	0.11	0.43	0.86	0.61	-
1977	1	-	0.25	0.23	0.20	0.20
	2	-	0.16	0.14	0.07	-
	3	0.0	0.25	0.60	0.77	-
	4	0.06	0.43	0.34	0.17	-
1978	1	-	0.13	0.31	0.23	0.20
	2	-	0.09	0.26	1.15	-
	3	0.0	0.28	0.60	0.56	\sim
	4	0.02	0.27	0.56	0.21	-
1979	1	\bigcirc	0.14	0.32	0.71	0.20
	2	-	0.13	0.14	0.24	-
	3	0.01	0.26	0.83	0.96	-
	4	0.02	0.22	0.43	0.60	-
1980	1	-	0.12	0.17	0.30	0.20
	2	-	0.09	0.16	0.25	-
	3	0.0	0.45	1.01	0.26	-
	4	0.05	0.47	0.89	0.14	-
1981	1	-	0.25	0.39	0.32	0.20
	2	-	0.18	0.24	0.64	-

Table 4.3 .3 Norway POUT. $M=1.00$ year ${ }^{-1}$. Stock size in numbers ($x 10^{-6}$) from quarterly VPA.

里able 4.3 .4 Norway POUT. $M=2.00$ year-1. Fishing mortality from quarterly VPA.

Year	Quarter	0	1	2	3	4
1974	1	-	0.10	0.16	0.06	0.20
	2	-	0.10	0.14	0.10	-
	3	0.0	0.25	0.93	2.34	-
	4	0.04	0.46	1.27	0.68	-
1975	1	-	0.04	0.24	0.53	0.20
	2	-	0.14	0.11	0.18	
	3	0.0	0.27	0.18	0.06	-
	4	0.05	0.16	0.57	0.49	-
1976	1	-	0.04	0.09	0.29	0.20
	2	-	0.12	0.18	0.43	-
	3	0.0	0.16	0.34	0.04	-
	4	0.03	0.18	0.45	0.51	-
1977	1	-	0.09	0.10	0.11	0.20
	2	-	0.06	0.07	0.05	-
	3	0.0	0.11	0.33	0.54	-
	4	0.01	0.21	0.20	0.14	-
1978	1	-	. 04	0.16	0.15	0.20
	2	-	. 03	0.14	0.82	-
	3	0.0	. 10	0.36	0.39	-
	4	0.01				-
1979	1	-	. 04	.14	0.45	0.20
	2	-	. 05	. 07	0.17	-
	3	0.0	. 11	.43	0.73	-
						-
1980	1	-	. 04	. 09	. 15	0.20
	2	-	. 04	. 10	0.14	-
	3	0.0	0.22	0.68	. 17	-
	4			. 55	0.11	-
1981	1	-	0.09	0.19	0.20	0.20
	2	-	0.07	0.13	0.43	-

Table 4.3.5 Norway POUP. $M=2.00$ year-1 . Stock size in numbers ($x 10^{-6}$) from quarterly VPA.

		Age Groups				
Year	Quarter	0	1	2	3	4
1974	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} c \\ - \\ 568 \quad 158 \\ 344605 \\ 208 \\ 362 \end{gathered}$	$\begin{array}{r} 185763 \\ 102345 \\ 56033 \\ 26385 \end{array}$	$\begin{array}{r} 3602 \\ 1868 \\ 985 \\ 235 \end{array}$	$\begin{array}{r} 594 \\ 340 \\ 187 \\ 11 \end{array}$	4
1975	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} - \\ 704815 \\ 427492 \\ 258 \quad 602 \end{gathered}$	$\begin{array}{r} 121975 \\ 71103 \\ 37603 \\ 17384 \end{array}$	$\begin{array}{r} 10097 \\ 4807 \\ 2622 \\ 1 \quad 323 \end{array}$	$\begin{array}{r} 40 \\ 14 \\ 7 \\ 4 \end{array}$	3
1976	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} - \\ 644504 \\ 390911 \\ 236948 \end{gathered}$	$\begin{array}{r} 149 \quad 183 \\ 86 \quad 676 \\ 46757 \\ 24 \quad 264 \end{array}$	$\begin{array}{ll} 8 & 991 \\ 5 & 001 \\ 2 & 540 \\ 1 & 093 \end{array}$	$\begin{array}{r} 456 \\ 207 \\ 82 \\ 48 \end{array}$	2
1977	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	407616 247232 149907	$\begin{array}{r} 139108 \\ 77330 \\ 44153 \\ 24033 \end{array}$	$\begin{array}{r} 12301 \\ 6732 \\ 3801 \\ 1651 \end{array}$	$\begin{array}{r} 421 \\ 230 \\ 133 \\ 47 \end{array}$	17
1978	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} c \\ 718163 \\ 435588 \\ 263963 \end{gathered}$	89648 52119 30703 16792	$\begin{array}{r} 11871 \\ 6156 \\ 3 \end{array} 2338 \text { 1 } 364$	$\begin{array}{r} 821 \\ 427 \\ 114 \\ 47 \end{array}$	25
1979	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{gathered} - \\ 666505 \\ 404256 \\ 244448 \end{gathered}$	$\begin{array}{r} 159157 \\ 92626 \\ 53665 \\ 29294 \end{array}$	$\begin{array}{ll} 9 & 110 \\ 4 & 805 \\ 2 & 723 \\ 1 & 074 \end{array}$	$\begin{array}{r} 582 \\ 225 \\ 116 \\ 34 \end{array}$	24
1980	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} 152439 \\ 92459 \\ 56061 \end{array}$	14706 85659 49972 24421	$\begin{array}{r} 16119 \\ 8954 \\ 4904 \\ 1506 \end{array}$	$\begin{array}{r} 525 \\ 273 \\ 144 \\ 74 \end{array}$	12
1981	$\begin{aligned} & 1 \\ & 2 \end{aligned}$		33510 18648	$\begin{array}{r} 11824 \\ 5904 \end{array}$	$\begin{aligned} & 528 \\ & 263 \end{aligned}$	40

Table 4.4.1 Recruitment indices of Norway POUT 1959-81, as shown by number per hour's fishing on research vessel surveys.

Year class	Abundance on pelagic 0group surveys	Abundance in northwestern North Sea in Scottish autumn surveys	Abunda tional survey	on intern ung fish
	Arithmetic mean 0-group	$\begin{array}{cc} \text { Geometric mean } \\ \text { O-group } & \text { l-group } \end{array}$	$\begin{array}{r} \text { Ari } \\ \text { I-grou } \end{array}$	tic mean 2-group
1959		- 106.8 (22)		
1960		10.9 (22) 28.1 (14)		
1961		59.6 (14) 181.7 (15)		
1962		25.0 (15) 141.8 (15)		
1963		8.5 (15) 6.6 (14)		
1964		14.0 (14) 18.6 (11)		
1965		1.2 (11) 6.1 (13)		
1966		16.4 (13) -		
1967		- 243.2 (17)		
1968		4.5 (7) -		6
1969		- . 33.1 (4)	35	22
1970		101.7 (4) 111.7 (12)	1556	653
1971	3347 (26)	16.7 (12) 328.8 (22)	3425	438
1972	545 (28)	36.3 (22) 16.6 (10)	4207	399
1973	2558 (28)	224.4 (10) 121.6 (22)	25626	2412
1974	3237 (28)	84.4 (22) 9.5 (11)	4242	385
1975	3623 (28)	41.2 (11) -	4599	334
1976	10884 (28)	- 131.5 (16)	4813	1215
1977	1521 (28)	77.7 (16) 83.9 (34)	1913	240
1978	2974 (27)	144.3 (34)	2690	611
1979	1868 (27)	- -	4081	557
1980	500 (27)	- 18.7 (22)	1375	
1981	2843 (27)	191.5 (22)	3959	
NB. Number of statistical rectangles sampled shown in brackets.				

1) Preliminary: based on allocation to age by length composition.
2) From report of International Gadoid Survey Working Group: standard area C.M. 1981/H:10, Standard area of 93 statistical rectangles.

Table 4.4.2 Recruitment indices of Norway POUT as shown by the number per hour's fishing on English research vessel surveys.

Year/class	Groundfish survey August-North Sea 0-group	Norway pout survey November			
1976	-				0.5
1977	61295			22.2	8.2
1978	57342		550.1	43.1	-
1979	69087	644.9	451.9	12.3	
1980	11576	210.6	214.6		
1981	145015	2394.6			

Table 4.4.3 Regression of Norway POUT VPA stock numbers on IYFS abundance indices,
under two assumptions of natural mortality

Year Class	$\begin{aligned} & \quad \text { X } \\ & \text { I-group } \\ & \text { IYFS } \end{aligned}$	```Y I-group from quarterly VPA lst Quarter. No. x 10-6```	
		$M=.1 .00 \mathrm{year}^{-1}$	$M=2.00 \mathrm{year}^{-1}$
1973	25626	76693	185763
1974	4242	43345	121975
1975	4599	47807	149183
1976	4813	46008	139108
1977	1913	23341	89648
1978	2690	44667	159157
1979	4081	48829	147601
1980	1375	11188	33510
1981	3959		
$y=a+b x:$. 80	0.59
1973-80	a	30711	106664
	b	1.94	3.50

Year Class	$\begin{gathered} \text { X } \\ \text { 2-group } \\ \text { IYFS } \end{gathered}$	```Y 2-group from quarterly VPA lst Quarter. No. x 10-6```	
		$M=1.00$	$M=2.00$
1973	399	2024	3602
1974	2412	4941	10097
1975	385	3982	8991
1976	334	5121	12301
1977	1215	5699	11871
1978	240	3891	9110
1979	611	7811	16119
1980	557		
$y=a+b x: r$. 22	. 12
1972-78	a	4380	98822
	b	0.50	0.60

Table 4.4.4 Regression of Norway POUT VPA Stock numbers on abundance indices of pelagic 0 -group surveys (June)

Table 4.5.1 Norway POUT. North Sea
Mean Weight at Age by Quarters in Norwegian Catches (in grams)

Table 4.6.1 Norway POUT. North Sea
Quarterly and Annual Landings by Age as a Percentage of the Overall Landing

Year and Quarter	A g e				
	0	1	2	3	4
1979					
I	0	11\%	6\%	2\%	0.1\%
II	0	10\%	2\%	0.3\%	0
III	1%	32\%	10\%	-	0
IV	2\%	19\%	3\%	-	0
1979 Total	3%	72\%	21\%	3\%	0.1\%
1980					
I	0	8\%	4\%	-	-
II	0	5\%	3\%	-	-
III	-	38\%	17\%	-	-
IV	1%	19\%	4\%	-	-
1980 Total	1%	70\%	28\%	1\%	-

- = less than 0.5\%

Table 5.1.1 Landings of SANDEEL from the North Sea 1952-81, in thousand tonnes.

Year	Denmark	Germany,Fed.Rep.	Faroes	Netherlands	Norway	Sweden	U.K.	Total
1952	1.6	0	0	0	-	0	0	1.6
1953	4.5	+	0	0	-	0	0	4.5
1954	10.8	$+$	0	0	-	0	0	10.8
1955	37.6	$+$	0	0	-	0	0	37.6
1956	81.9	5.3	0	$+$	1.5	0	0	88.7
1957	73.3	25.5	0	3.7	3.2	0	0	105.7
1958	74.4	20.2	0	1.5	4.8	0	0	100.9
1959	77.1	17.4	0	5.1	8.0	0	0	107.6
1960	100.8	7.7	0	$+$	12.1	0	0	120.6
1961	73.6	4.5	0	+	5.1	0	0	83.2
1962	97.4	1.4	0	0	10.5	0	0	109.3
1963	134.4	16.4	0	0	11.5	0	0	162.3
1964	104.7	12.9	0	0	10.4	0	0	128.0
1965	123.6	2.1	0	0	4.9	0	0	130.6
1966	138.5	4.4	0	0	0.2	0	0	143.1
1967	187.4	0.3	0	0	1.0	0	0	188.7
1968	193.6	+	0	0	0.1	0	0	193.7
1969	112.8	+	0	0	0	0	0.5	113.3
1970	187.8	+	0	0	$+$	0	3.6	191.4
1971	371.6	0.1	0	0	2.1	0	8.3	382.1
1972	329.0	+	0	0	18.6	8.8	2.1	358.5
1973	273.0	0	1.4	0	17.2	1.1	4.2	296.9
1974	424.1	0	6.4	0	78.6	0.2	15.5	524.8
1975	355.6	0	4.9	0	54.0	0.1	13.6	428.2
1976	424.7	0	-	0	44.2	-	18.7	487.6
1977	664.3	0	11.4	0	78.7	5.7	25.5	785.6
1978	647.5	0	12.1	0	93.5	1.2	32.5	786.8
1979	449.8	0	13.2	0	101.4	0	13.4	577.8
1980	542.2	0	7.2	0	144.8	0	34.3	728.5
1981	$\left.281.2^{1}\right)$	0	4.9	0	52.7	0	46.7	(380.6)

$+=$ less than half unit.

- = no information

1) Jan-Jun only.

Table 5.1.2 SANDEEL. North Sea. Monthly landings (tonnes) by country, 1979-81.

Year and Month	Denmark	Faroes	Norway	$\begin{gathered} \text { J.K. } \\ (\text { Scotland }) \end{gathered}$	Total
$1979 \begin{aligned} & \text { Mar } \\ & \text { Apr } \\ & \text { May } \\ & \text { Jun } \\ & \text { Jul } \\ & \text { Aug } \\ & \text { Sep } \\ & \text { Oot } \\ & \text { Nov } \end{aligned}$	682 19528 124062 166055 60710 68630 2908 7175 5	$\begin{array}{r} 57 \\ 695 \\ 3687 \\ 6395 \\ 2352 \end{array}$	$\begin{array}{r} 351 \\ 4956 \\ 7811 \\ 32447 \\ 12 \\ 12 \\ 17 \\ 17 \\ 10 \\ 10 \\ 170 \\ 16 \end{array} 109$	$\begin{array}{rr} & 906 \\ 2 & 985 \\ 3 & 907 \\ 2 & 413 \\ 2 & 518 \\ & 649 \\ & 26 \end{array}$	1 090 26 085 138 545 208804 77 937 88 258 13 731 23 310 5
Total	449755	13186	101420	13404	577765
$\begin{array}{rr} 1980 & \text { Feb } \\ & \text { Mar } \\ & \text { Apr } \\ & \text { May } \\ & \text { Jun } \\ & \text { Jul } \\ & \text { Aug } \\ & \text { Sep } \\ & \text { Oct } \\ & \text { Nov } \end{array}$	12 558 31 228 192 155 214 867 68 403 10 290 7 827 4 863	$\begin{array}{rr} & 68 \\ & 111 \\ & 735 \\ 1 & 679 \\ 3 & 566 \\ 1 & 048 \end{array}$	6 048 7 103 37 092 61 603 10 228 2 849 3 119 16 055 716	$\begin{array}{rr} 2 & 060 \\ 4 & 450 \\ 10 & 877 \\ 7 & 555 \\ 5 & 311 \\ 1 & 346 \end{array}$	$\begin{array}{rr} & 68 \\ 18 & 717 \\ 41 & 126 \\ 235 & 376 \\ 290 & 913 \\ 87 & 234 \\ 18 & 450 \\ 12 & 293 \\ 20 & 918 \\ & 716 \end{array}$
Total	542191	7207	144813	31599	725810
$1981 \text { Jan } \begin{aligned} & \text { Feb } \\ & \text { Mar } \\ & \text { Apr } \\ & \text { May } \\ & \text { Jun } \\ & \text { Jul } \\ & \text { Aug } \\ & \text { Sep } \\ & \text { Oct } \\ & \text { Nov } \end{aligned}$		268 415 439 96 1 300 1 162 1 181 74	$\begin{array}{rr} 3 & 950 \\ 5 & 978 \\ 24 & 095 \\ 9 & 076 \\ 5 & 411 \\ 2 & 155 \\ 1 & 625 \\ & 406 \end{array}$	$\begin{array}{r} 5018 \\ 7430 \\ 10032 \\ 10403 \\ 7107 \\ 5968 \\ 710 \end{array}$	
Total		4935	52696	46668	

Table 5.1. 2 SANDEEL. North Sea. Catch (tonnes) by month and area (Denmark, Norway, UK (Scotland)).

1) Danish data not included.

Table 5.1.4 Annual landings (1000 tonnes) of SANDEELS by Sub-areas of the North Sea shown in Figure 2.14.

Year	Sub-areas										
	12	1b	lc	2a	2b	2 c	3	4	5	6	Shetland
1972	98.8	28.1	3.9	24.5	85.1	0.0	13.5	58.3	6.7	28.0	0.0
1973	59.3	37.1	1.2	16.4	60.6	0.0	8.7	37.4	9.6	59.7	0.0
1974	50.4	178.0	1.7	2.2	177.9	0.0	29.0	27.4	11.7	25.4	7.4
1975	70.0	38.2	17.8	12.2	154.7	4.8	38.2	42.8	12.3	19.2	12.9
1976	154.0	3.5	39.7	71.8	38.5	3.1	50.2	59.2	8.9	36.7	20.2
1977	171.9	34.0	62.0	154.1	179.7	1.3	71.4	28.0	13.0	25.3	21.5
1978	159.7		2	346.5		. 3	42.5	37.4	6.4	27.2	28.1
1979	194.5	0.9	61.0	32.3	27.0	72.3	34.1	79.4	5.4	44.3	13.4
1980	215.1	3.3	119.3	89.5	52.4	27.0	90.0	30.8	8.7	57.1	25.4

Table 5.1.5 SANDEEL, Division VIa. Landings in tonnes.
(Source: ICES Statistician)

Country/Year	1974	1975	1976	1977	1978	1979	1980	1981
Denmark Norway UK(Scotland)								109

I) Amended from national data

Table 5.1.6 SANDEEL, Division IIIa. Landings in tonnes.
(Source: ICES Statistician)

I) Included in the North Sea.
2) Includes North Sea.

Table 5.2.1 Fishing effort (hours fishing) by month and year in the Shetland SANDEEL fishery, 1975-1981

Table 5.3.1 SANDEELS 1979. Number caught $\times 10^{-6}$
Southern Area of the North Sea

Month	AGE GROUPS									
	0	1	2	3	4	5	6	7	8	
January		-	-	-	-	-	-	-		
February		-	-	-	-	-	-	-		
March		-	-	-	-	-	-	-		
April		1646.9	2284.3	450.7	81.3	7.5	4.3	-		
May		5876.7	11441.2	1924.1	880.9	306.6	224.5	3.3		
June	180.7	8494.5	9011.8	2112.5	302.9	126.7	15.3	-		
July	1047.8	5159.9	2043.7	131.3	107.4	29.8	-	-		
August	-	0.6	-	-	-	-	-	-		
September	898.7	24.7	20.7	3.5	1.5	-	-	-		
October	-	24.7	20.7	3.5	1.5	-	-	-		
November	-	-	-	-	-	-	-	-		
December	-	-	-	-	-	-	-	-		
Σ	2127.2	21228.0	24822.4	4625.6	1375.5	470.6	244.1	3.3		54896.8

Table 5.3.1 SANDEELS 1980. Number caught $\times 10^{-6}$
(continued) Southern Area of the North Sea

Month	AGE GROUPS									
	0	1	2	3	4	5	6	7	8	
January	-	-	-	-	-	-	-	-		
February	-	-	-	-	-	-	-	-		
March	-	1984.1	-	0.1	-	-	-	-		
April	-	1398.5	1737.8	179.1	75.7	-	3.6	-		
May	-	9701.4	6994.0	3220.1	232.6	49.1	19.7	-		
June	61.6	23185.3	3740.1	394.7	67.1	13.5	27.0	0.1		
July	71.7	4265.5	823.0	575.3	9.2	-	-	-		
August	-	-	-	-	-	-	-	-		
September	-	302.7	11.1	-	-	-	-	-		
October	-	169.4	6.2	-	-	-	-	-		
November	-	-	-	-	-	-	-	-		
December	-	-	-	-	-	-	-	-		
Σ	133.3	41006.9	13312.2	4369.3	384.6	62.2	50.3	0.1		59319.3

Table 5.3.1 SANDEELS 1981. Number caught $\times 10^{-6}$

Table 5.3.2 SANDEELS 1979. Numbers caught $\times 10^{-6}$
Northern Area of the North Sea (Shetland excluded)

Month	AGE GROUPS									
	0	1	2	3	4	5	6	7	8	
January	-	-	-	-	-	-	-			
February	-	-	-	-	-	-	-			
March	-	25.9	121.5	-	-	-	-			
April	-	368.3	496.9	26.7	4.5	2.2	-			
May	-	1403.9	76.4	62.7	-	-	-			
June	-	537.1	632.8	152.8	-	-	5.3			
July	912.4	916.9	390.0	62.4	9.5	-	-			
August	32258.2	347.6	39.3	-	-	-	-			
September	3684.6	-	-	-	-	-	-			
October	7345.9	45.4	3.8	3.8	-	-	-			
November	1.7	+	-	-	-	-	-			
December	-	-	-	-	-	-	-			
Σ	44202.8	3645.1	1760.7	308.4	14.0	2.2	5.3			49938.5

Table 5.3.2 SANDEELS 1980. Numbers caught $\times 10^{-6}$
(continued) Northern Area of the North Sea (Shetland excluded)

Month	AGEGROUPS									
	0	1	2	3	4	5	6	7	8	
January	-	-	-	-	-	-	-	-	-	
February	-	-	-	-	-	-	-	-	-	
March	-	1102.0	1777.9	21.6	-	-	-	-	-	
April	-	1577.0	3530.3	41.0	3.1	0.5	0.3	-	-	
May	0.1	6807.5	2219.7	60.1	15.4	7.5	0.9	0.4	-	
June	17.1	3907.5	1337.0	926.9	626.8	136.2	36.6	0.8	-	
July	834.9	827.4	169.8	19.4	3.7	3.1	0.5	0.2	0.4	
August	3468.6	176.4	8.0	-	-	-	-	-	-	
September	2204.7	3.7	-	-	-	-	-	-	-	
October	1794.7	158.6	35.1	-	-	-	-	-	-	
November	45.9	6.8	1.0	-	-	-	-	-	-	
December	-	-	-	-	-	-	-	-	-	
Σ	8366.0	14566.9	9078.8	1069.0	649.0	147.3	38.3	1.4	0.4	33917.0

continued...

Table 5.3.2 SANDEELS 1981. Numbers caught $\times 10^{-6}$
(continued) Northern area of the North Sea (Shetland excluded).

Table 5.3.3 SANDEELS (Shetland)

Numbers caught

		Age Groups								
Month	t	0	1	2	3	4	5	6	7	8
1979										
April	906	-	335.8	129.9	3.4	2.5				
May	2985	-	498.8	111.8	27.9	4.2	3.4	0.9	0.5	
June	3907	-	653.4	146.3	36.5	5.5	4.4	1.2	0.7	
July	2413	42.1	263.7	89.0	14.7	13.1	7.2			
August	2518	943.6	205.3	47.7	6.4	0.4				
September	649	311.5	10.3		1.1					
October	26	12.5	0.4							
Total	13404	1309.7	1967.7	524.7	90.0	25.7	15.0	2.1	1.2	-
1980										
April	1803	-	112.6	124.5	63.1	21.9	3.7	2.4		
May	3219	0.6	401.9	126.5	52.6	14.7	7.6		0.6	
June	6845	76.4	54.3	117.4	157.0	59.8	68.8	34.9	13.1	
July	6920	5132.6	81.7	10.0						
August	5311	1776.1	125.0	68.1	19.0	10.3	4.2	0.9		
September	1346	225.4	35.5	26.4	10.2	2.3	1.4			
Total	25444	7211.1	811.1	472.9	301.9	109.0	85.7	38.2	13.7	-
1981										
April	5018	-	1076.9	445.3	66.3	12.1	5.4	5.6	0.6	0.2
May	7430	0.5	369.1	556.7	171.6	32.9	11.4	10.9	1.3	1.1
June	10016	104.3	470.9	421.6	161.3	68.1	36.5	9.7	1.1	1.7
July	10403	5618.5	427.8	57.9	16.8					
August	7107	4308.8	46.5	25.3	7.9	4.5	0.9			
September	5968	3287.0	84.0	7.8	2.7	1.7	1.9	0.4	0.4	
October	710	390.9	10.0	0.9	0.3	0.2	0.2			
Total	46652	13710.0	2485.2	1515.5	426.9	119.5	56.3	26.2	3.4	3.0

Table 5.3.4. SANDBEL in the southern North Sea. VAN, catch in numbers, half year, $\times 10^{-6}$.

		1972		1973		1974		1975		1976
Age		1	2	1	2	1	2	1	2	1
0	1	0	u	13	0	670	0	0	0	4
	2	0	0	U	0	0	70	0	0	0
1	1	2859	0	1449%	0	3989	0	11458	0	10308
	2	0	80	0	206	0	226	0	480	0
2	1	15645	U	2513	0	3930	0	1644	0	14505
	2	0	1148	0	53	0	10	0	1046	0
3	\pm	418	0	3832	0	491	0	2858	0	1522
	2	0	35	0	151	0	0	0	170	0
4	1	128	0	183	0	1968	0	529	0	1234
	2	0	24	0	5	0	3	0	253	0
5	1	94	0	89	0	205	0	666	0	171
	2	0	16	0	3	0	0	0	0	0
6	1	20	u	31	0	22	0	91	0	72
	2	0	0	0	2	0	0	0	0	0
7	1	3	0	1	0	11	0	2	0	1
	2	0	0	0	1	0	0	0	0	0
8	1	29	0	53	0	73	0	3	0	0
	2	0	0	0	3	0	0	0	0	0
Total		19225	1308	21221	423	13363	395	17280	1949	35817

	1976		1.977		1978		1979		1980	
Age		2	1	2	1	2	${ }^{1} 1$	2	1	2
0	1	0	0	0	922	0	181	0	62	0
	2	0	0	13263	0	41224	u	1947	0	72
1	1	0	19500	0	38839	0	16018	0	33269	0
	2	249	0	264	0	2774	0	5210	0	4738
2	1	0	5396	0	16948	0	22737	0	12472	0
	2	2358	0	21	. 0	385	0	2085	0	840
3	1	0	6300	0	1793	0	4487	0	3794	0
	2	392	0	8	0	125	0	138	0	575
4	1	0	963	0	1006	0	1265	0	375	0
	2	102	0	8	0	9%	0	110	0	9
5	1	0	445	0	114	0	441	0	63	0
	2	20	0	3	0	26	0	30	0	0
6	1	0	239	0	21	0	244	0	50	0
	2	58	0	3	. 0	26	0	0	0	0
7	1	0	124	0	14	0	3	0	0	0
	2	16	0	0	0	7	0	0	0	0
8	1	0	36	0	26	0	32	0	0	0
	2	0	0	0	0	2	0	0	0	0
Total		3195	33204	13581	79684	44665	45409	9320	50086	0234

		1981
Age		1
0	1	412
	2	0
1	1	13274
	2	0
2	1	11623
3	2	0
	1	2447
4	1	768
5	2	0
5	1	351
6	1	0
	2	84
7	1	0
8	2	17
	2	0
		0
Total		$284 / 8$

Table 5.3.5. SANDEEL in the southern North Sea. VPA, fishing mortalities. $M=0.5$ year $^{-1}$.

Year/Age	0	1	2	3	4	5	6	7	8
$\begin{array}{r} 19721 / 2 \\ 2 / 2 \end{array}$	0.00	0.15	0.57	0.15	0.39	0.50	0.04	0.01	0.50
	0.00	0.01	0.08	0.02	0.12	0.16	0.00	0.00	
$\begin{array}{r} 1973 \quad 1 / 2 \\ 2 / 2 \end{array}$	0.00	0.45	0.28	0.41	0.13	0.96	0.54	0.02	0.50
	0.00	0.01	0.01	0.03	0.00	0.06	0.05	0.00	
$\begin{array}{r} \left.1974 \begin{array}{r} 1 / 2 \\ 2 / 2 \end{array}\right) \end{array}$	0.01	0.27	0.30	0.11	0.57	0.29	1.17	0.56	0.50
	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	
1975 I/	0.00	0.19	0.16	0.54	0.23	0.57	0.28	0.50	0.50
	0.00	0.01	0.15	0.06	0.18	0.00	0.00	0.00	-
1976 1/	0.00	0.52	0.56	0.36	0.78	0.18	0.15	0.00	0.00
	0.00	0.01	0.17	0.15	0.14	0.03	0.18	0.13	
1977 1/	0.00	0.34	0.50	1.00	0.73	1.56	0.65	0.76	0.50
	0.08	0.01	0.00	0.00	0.01	0.03	0.01	0.00	
1978 1/	0.01	0.65	0.86	0.43	0.61	0.24	0.38	0.09	0.50
	0.44	0.06	0.04	0.05	0.11	0.08	1.22	0.06	
1979 1/2/	0.00	0.32	0.95	0.97	1.03	1.12	3.85	0.50	0.50
	0.02	0.17	0.21	0.07	0.23	0.20	0.00	0.00	
1980 1/	0.00	0.56	0.86	0.77	0.28	0.21	0.66	0.03	0.00
	0.00	0.15	0.13	0.26	0.01	0.00	0.00	0.00	
1981 1/2	0.10	0.40	0.70	0.70	0.70	0.70	0.70	0.70	0.70

Table 5.3.6. SANDEEL in the southern North Sea.
VPA, numbers at age by half-years. Number $\times 10^{6}$.

Year/Age	0	1	2	3	4	5	6	7	8
$\begin{array}{r} 1972 \frac{1}{2 / 2} \\ 2 / 2 \end{array}$	-	22390	40318	3372	441	264	603	254	82
	57140	14946	17747	2260	232	124	452	195	
$\begin{array}{r} 19731 / 2 \\ 2 / 2 \end{array}$	-	44501	11565	12812	1729	160	83	352	152
	36213	22016	6806	6634	1186	48	38	268	
$19741 / 2$$2 / 2$	${ }^{-}$	28203	16965	5254	5033	920	35	28	208
	97579	16723	9774	3655	2208	537	8	12	
$\begin{array}{r} 1975 \frac{1 / 2}{2 / 2} \end{array}$	-	75927	12825	7604	2847	1717	418	7	10
	57403	49086	8502	3452	1754	758	246	0	
$\begin{array}{r} 19761 / 2 \\ 2 / 2 \end{array}$	-	44706	37806	5703	2538	1144	591	192	0
	97562	20616	16823	3112	908	741	396	149	
$\begin{array}{r} 19771 / 2 \\ 2 / 2 \end{array}$	-	75981	15837	11033	2080	618	560	258	101
	191538	42131	7460	3159	783	101	228	94	
1978 1/22/2	-	137516	32575	5786	2453	603	76		73
	129729	55994	10712	2942	1036	369	41	125	
1979 1/2	-	65076	41170	8004	2181	722	264	9	91
	113179	36676	12432	2361	608	183	4	0	
1980 $\begin{array}{r}1 / 2 \\ 2 / 2\end{array}$	-	86431	23994	7855	1717	377	116	3	0
	58030	38366	7900	2830	1009	239	47	3	
1981 1/2	-	45130	25723	5415	1700	778	186	37	2

Table 5.3.7. SANDEEL in the northern North Sea.
VPA, catch in numbers, half year, $\times 10^{-6}$.

Table 5.3.8. SANDEEL in the northern North Sea. VPA, fishing mortalities. $M=0.5$ year $^{-1}$.

Year/Age	0	1	2	3	4	5	6
$19721 / 2$	0.00	0.31	0.54	0.26	0.56	3.37	0.50
$2 / 2$	0.27	0.12	0.00	0.00	0.00	0.00	-
$19731 / 2$	0.00	0.40	0.40	0.65	0.48	2.07	0.50
$2 / 2$	0.01	0.02	0.03	0.03	0.00	0.19	-
$19741 / 2$	0.01	0.90	0.33	1.21	0.73	1.68	0.50
$2 / 2$	0.48	0.04	0.02	0.02	0.04	0.50	-
$19751 / 2$	0.00	0.82	1.09	1.26	1.18	0.86	0.00
$2 / 2$	0.38	0.02	0.05	0.00	0.00	0.00	-
$19761 / 2$	0.00	0.45	0.42	0.35	0.34	0.88	0.50
$2 / 2$	0.12	0.09	0.05	0.58	0.10	0.65	-
$19771 / 2$	0.12	1.09	0.54	0.52	0.42	0.13	0.50
$2 / 2$	0.14	0.36	0.44	0.28	0.75	0.34	-
$19781 / 2$	0.00	0.50	0.61	0.58	0.26	1.06	0.50
$2 / 2$	0.24	0.15	0.15	0.07	0.00	0.07	-
$19791 / 2$	0.00	0.11	0.32	0.18	0.01	0.01	0.50
$2 / 2$	0.75	0.09	0.17	0.07	0.03	0.00	-
$19801 / 2$	0.00	0.57	1.52	0.84	2.41	0.93	0.50
$2 / 2$	0.35	0.09	0.12	0.03	0.08	0.04	-
$19811 / 2$	0.1	0.50	0.50	0.50	0.50	0.50	0.50

Table 5.3.9. SANDEEL in the northern North Sea. VPA, numbers at age by half-years. Number $\times 10^{6}$.

Year/Age	0	1	2	3	4	5	6
$19721 / 2$ $2 / 2$	23093	$\begin{array}{r} 14349 \\ 8203 \end{array}$	5485 2492	$\begin{aligned} & 560 \\ & 336 \end{aligned}$	$\begin{array}{r} 207 \\ 92 \end{array}$	68 2	172
$19731 / 2$ $2 / 2$	47908	$\begin{array}{r}13670 \\ 7 \\ \hline 104\end{array}$	5646 2951	1941 785	$\begin{aligned} & 262 \\ & 126 \end{aligned}$	72 7	1
$19741 / 2$ $2 / 2$	29438	$\begin{array}{ll}37 & 014 \\ 1.1 & 674\end{array}$	$\begin{array}{ll}5 & 407 \\ 3 & 034\end{array}$	2238 520	$\begin{aligned} & 594 \\ & 223 \end{aligned}$	98 14	5
$19751 / 2$ $2 / 2$	33193	14229 4862	8754 2298	2316 510	395 94	167 55	0
$19761 / 2$ $2 / 2$	58849	17744 8850	3722 1912	1697 933	396 220	74 24	43
$19771 / 2$ $2 / 2$	25754	40 40 10 578	6323 2878	1416 653	406	155 106	10
$\begin{array}{r} 1978 \mathrm{l} / 2 \\ 2 / 2 \end{array}$	40931	17 866 8	$\begin{aligned} & 5743 \\ & 2440 \end{aligned}$	$\begin{array}{r} 1445 \\ 628 \end{array}$	$\begin{aligned} & 384 \\ & 231 \end{aligned}$	76 21	59
$\begin{array}{rl} 1979 & 1 / 2 \\ 2 / 2 \end{array}$	93456	$\begin{array}{ll} 25 & 028 \\ 17 & 441 \end{array}$	$\begin{array}{ll} 5 & 498 \\ 3 & 121 \end{array}$	$\begin{array}{ll}1 & 631 \\ 1 & 058\end{array}$	$\begin{aligned} & 455 \\ & 350 \end{aligned}$	$\begin{aligned} & 179 \\ & 138 \end{aligned}$	15
$\begin{array}{r} 19801 / 2 \\ 2 / 2 \end{array}$	32055	34 15 15 1982	12432 2112	2050 689	766 53	264 81	107
1981 1/2	-	17668	10801	1457	519	38	61

Table 5.3.10. SANDEEL in the Shetland area. VPA, catch in numbers $x 10^{-6}$

	1914	1975	1916	1977	197%	1979	1980	1981
0	453	9	4600	6109	5328	1310	『<11	13710
1	840	3530	2240	335	5069	1968	811	2485
2	87	1391	45 U	810	1195	523	413	1510
3	25	282	15%	33	117	90	SU2	427
4	27	51	28	10	28	20	149	120
3	5	2.8	15	8	23	15	85	56
6	2	19	0	8	3	2	58	26
7	6	9	2	4	1	1	14	26 3
$8+$	0	t	U	1	1	U	4 0	3
TUTAL	1445	3136	75175	11343.4	17963	3930	91144	18346

Table 5.3.11. SANDEEL in the Shetland area.

	1474	1975	1470	1971	1978	1974	1780	1981	1914-1979
(1)	U. 11	U.1] ${ }^{\text {d }}$	U.34	1.38	U. 51	0.15	0.04	0.40	U. 25
1	0.21	1.13\%	U. 5	0.67	1.1)3	0.48	0.15	0.70	0.67
$?$	0.14	0.98	0.51	U. 58	U. 81	0.58	U. 50	0.70	U. 58
3	0. 14	1.37	0.37	1). 16	U. 21	0.17	1). 57	0.70	U.40
4	0.27	0.64	10.61	4.41	U. 11	0.109	0.47	0.70	U. 38
b	0.13	1. .74	0.63	1 J .03	U. 32	0.18	0.09	0.70	U. 44
6	0.07	1.63	1.52	1.59	1. .61	0.06	1.47	0.70	0.75
7	1.40	1.00	1.00	1.170	1.00	1.00	1.U0	0.71	1.00
$8+$	1.140	1.0)	1.Cu	1.110	1.00	1.150	1.00	0.70	1.00
$F(1-0) . h$	1).201	1.05	0.54). 63	0.92	$1) .42$	$1] .25$	1). 70	

Table 5.3.12. SANDEEL in the Shetland area.
VPA, stock size in numbers at 1 January.

	$14 / 4$	1915	1410	1916	1418	1914	1\%\%	1981	1982
${ }^{1}$	11407	1才74	14780	23434	1/220	15430	18yか0	21982**	******
1	5516	6181	0315	8505	4593	6710	$31>4$	6097	21 21134
$?$	¢o?	2740	1290	2294	2043	2111	2Scu	5118	1836
3	240	450	02.1	444	771	715	838	1047	1120
4	144	12.1	11	261	2? 4	382	304	293	315
5	52	67	39	22	113	111	2i?	138	88
6	29	28	14	12	1	40	00	04	42
7	17	17	s	7	2	2	26	8	19
$8+$	0	11	\checkmark	1	3	\cup	0	1	5
tutal.	1852?	211430	284178	Sbnat	311584	23057	$294 \% 3$	03355	
StAWN. ST.	1359	5443	21148	5041	3163	3332	3840	5?16	

19(4-1980

0	16450
1	1123
2	2051
3	588
4	225
5	88
0	29
7	10
$8+$	2

Table 5.3.13. Recruitment. Numbers at age 1 from VPA for SANDFEL for the three assessment areas.

Year class	Southern North Sea	Northern North Sea	Shetland
1971	22390	14349	
1972	44501	13670	
1973	28203	37014	5576
1974	75927	14229	6187
1975	44706	17744	6573
1976	75981	40453	8505
1977	137516	17366	9593
1978	65076	25028	6276
1979	86431	34468	7154

Table 5.3.14 Comparison of F derived from VPA with fishing effort in Shetland SANDEFL fishery.

Year	Total hours fishing	$\begin{aligned} & \text { Arithmetic mean } F \text { on } \\ & \text { age groups } 0-3 \\ & \text { input } F \text { on oldest age group } \end{aligned}$		
		0.6	0.7	1.0
1974	-	0.15	0.15	0.15
1975	7908	0.85	0.86	0.86
1976	10511	0.45	0.46	0.47
1977	8306	0.44	0.45	0.47
1978	10217	0.62	0.64	0.69
1979	4127	0.28	0.29	0.34
1980	6578	0.38	0.42	0.42
1981	11039	$0.55^{\text {F }}$	$0.63{ }^{\text {r }}$	$0.65^{\text {7 }}$
$\begin{aligned} & \text { 1977-1981 } \\ & \text { Correlationcoefficient } \end{aligned}$				
		0.95	0.97	0.95
Corrected F in 1981		0.59	0.64	0.67
Value of 2 at zero effort		0.58	0.57	0.60

* Input value

Table 5.5.1 SANDEEL - Southern North Sea.
Mean weight at age by month in Danish catches (in grammes).

$\text { Age }{ }_{\text {Grouth }}$	1	2	3	4	5	6	7	8	9	10	11	12
$\begin{array}{cc} & 0 \\ & 1 \\ 2 \\ & 3 \\ \sigma & 4 \\ \sim & 4 \\ \sigma & 5 \\ -1 & 6 \\ & 7 \\ & 8+ \end{array}$				$\begin{array}{r} 2.11 \\ 4.25 \\ 6.96 \\ 12.66 \\ 11.83 \\ 20.00 \end{array}$	$\begin{array}{r} 3.72 \\ 5.58 \\ 9.64 \\ 12.94 \\ 15.92 \\ 11.82 \\ 18.00 \end{array}$	$\begin{gathered} 0.63 \\ 5.49 \\ 9.52 \\ 16.30 \\ 21.46 \\ 20.78 \\ 26.17 \\ - \\ 16.49 \end{gathered}$	$\begin{array}{r} 1.07 \\ 5.03 \\ 7.79 \\ 10.87 \\ 13.87 \\ 13.33 \end{array}$	18.00	$\begin{array}{r} 1.66 \\ 13.49 \\ 16.16 \\ 18.73 \\ 21.33 \end{array}$			
0 1 2 0 3 ∞ 4 0 5 -1 5 6 7 $8+$			$\begin{gathered} 1.27 \\ - \\ 9.00 \end{gathered}$	$\begin{array}{r} 1.96 \\ 4.62 \\ 9.76 \\ 13.72 \\ - \\ 28.00 \end{array}$	$\begin{array}{r} 5.40 \\ 7.00 \\ 9.65 \\ 18.08 \\ 17.62 \\ 22.00 \end{array}$	$\begin{array}{r} 1.00 \\ 6.34 \\ 8.88 \\ 18.02 \\ 18.12 \\ 19.71 \\ 19.71 \end{array}$	$\begin{array}{r} 2.00 \\ 7.88 \\ 9.72 \\ 13.72 \\ 26.00 \end{array}$		$\begin{array}{r} 7.85 \\ 21.33 \end{array}$	$\begin{array}{r} 7.85 \\ 21.33 \end{array}$		

Table 5.5.2 SANDEFH - Northern North Sea (excluding Shetlands) Mean weight at age by month in Danish catches (in grammes)

$\begin{array}{\|c\|} \hline \text { Month } \\ \hline \text { Age group }^{2} \\ \hline \end{array}$	1	2	3	4	5	6	7	8	9	10	11	12
0							1.29	2.40	1.83	3.24	6.45	
1			2.17	2.65	5.48	7.25	10.79	12.93		16.30		
2			7.77	7.97	14.31	15.56	35.08	23.00		25.50		
3				19.15	25.52	33.54	44.66			35.00		
$\stackrel{\sim}{\sim}$				33.66		-	56.76					
				38.92		-						
ค 6						55.50						
7												
$8+$												
0						1.25	2.08	3.74	4.85	3.87		
1			1.64	1.93	5.12	10.53	14.40	16.96	22.10	-		
2			5.29	4.58	6.62	17.56	20.21	31.00		27.00		
$\bigcirc 3$			11.70	10.15	24.44	39.86	37.91					
$\infty 4$					34.00	56.33	45.88					
${ }^{\circ} 5$						62.06	55.00					
-1					34.00	62.06	55.00					
6						63.58	59.00					
7						-						
$8+$						80.00						

Table 5.5.3 SANDEHE - Shetland. Mean weight at age by month in Scottish catches (in grammes)

Age Month	1	2	3	4	5	6	7	8	9	10	11	12
$\begin{array}{ll} & 0 \\ & 1 \\ & 2 \\ & 3 \\ \sigma & \\ \sim & 4 \\ \sigma & 5 \\ -r & 6 \\ & 6 \\ & 7 \\ & 8+ \end{array}$				$\begin{aligned} & 1.91 \\ & 3.22 \\ & 6.15 \\ & 7.47 \end{aligned}$	$\begin{array}{r} 3.30 \\ 6.24 \\ 7.51 \\ 11.14 \\ 12.40 \\ 12.20 \\ 15.80 \end{array}$		2.44 4.26 6.71 9.27 14.18 13.55	$\begin{aligned} & 1.54 \\ & 4.13 \\ & 6.31 \\ & 7.91 \\ & 9.95 \end{aligned}$	$\begin{gathered} 1.76 \\ 4.92 \\ - \\ 8.20 \end{gathered}$			
$\begin{array}{cc} & 0 \\ & 1 \\ & 2 \\ & 3 \\ 0 & \\ \infty & 4 \\ \sigma & 5 \\ -1 & 6 \\ & 7 \\ & 7 \\ & 8+ \end{array}$				$\begin{array}{r} 4.14 \\ 4.84 \\ 6.53 \\ 7.10 \\ 10.02 \\ 10.02 \end{array}$	$\begin{gathered} 0.80 \\ 4.70 \\ 5.78 \\ 8.20 \\ 8.56 \\ 12.49 \\ - \\ 19.10 \end{gathered}$	$\begin{array}{r} 0.87 \\ 6.20 \\ 9.31 \\ 11.17 \\ 16.56 \\ 18.74 \\ 19.33 \\ 20.39 \end{array}$	$\begin{aligned} & 1.54 \\ & 6.14 \\ & 6.10 \end{aligned}$	$\begin{array}{r} 1.72 \\ 4.78 \\ 6.84 \\ 8.71 \\ 12.21 \\ 18.90 \\ 20.60 \end{array}$	$\begin{array}{r} 2.83 \\ 7.25 \\ 7.92 \\ 9.76 \\ 16.07 \\ 15.72 \end{array}$			
0 1 2 2 -1 3 ∞ 4 4 -1 5 6 7 $8+$				$\begin{array}{r} 9.65 \\ 12.19 \\ 14.79 \\ 15.49 \\ 16.82 \\ 16.79 \\ 17.75 \\ 19.25 \end{array}$	$\begin{array}{\|r\|} \hline 0.10 \\ 3.54 \\ 5.26 \\ 7.29 \\ 9.03 \\ 11.41 \\ 13.00 \\ 9.68 \\ 13.34 \end{array}$	$\begin{array}{r} 1.04 \\ 4.69 \\ 7.76 \\ 10.44 \\ 16.62 \\ 15.56 \\ 24.57 \\ 23.00 \\ 28.10 \end{array}$	$\begin{aligned} & 1.21 \\ & 5.60 \\ & 6.68 \\ & 5.70 \end{aligned}$	$\begin{array}{r} 1.37 \\ 6.75 \\ 10.38 \\ 12.80 \\ 12.38 \\ 11.35 \end{array}$	$\begin{array}{r} 1.66 \\ 5.36 \\ 10.18 \\ 13.59 \\ 14.36 \\ 18.89 \\ 17.80 \\ 13.00 \end{array}$			

Table 5.6.1 SANDHEH North Sea percentage annual landings
by weight by age.

Stock	Year	A G E								
		0	1	2	3	4	5	6	7	8
Northern North Sea	$\begin{aligned} & 1979 \\ & 1980 \end{aligned}$	$\begin{aligned} & 61 \% \\ & 12 \% \end{aligned}$	$\begin{aligned} & 16 \% \\ & 35 \% \end{aligned}$	$\begin{aligned} & 17 \% \\ & 21 \% \end{aligned}$	$\begin{array}{r} 6 \% \\ 15 \% \end{array}$	13%	3%	1%		-
Southern Nort Sea	$\begin{aligned} & 1979 \\ & 1980 \end{aligned}$	$I \%$	$\begin{aligned} & 28 \% \\ & 61 \% \end{aligned}$	$\begin{aligned} & 47 \% \\ & 25 \% \end{aligned}$	$\begin{aligned} & 16 \% \\ & 12 \% \end{aligned}$	$\begin{aligned} & 6 \% \\ & 2 \% \end{aligned}$	2%	1%	-	-
Shetland	$\begin{aligned} & 1979 \\ & 1980 \\ & 1981 \end{aligned}$	$\begin{aligned} & 11 \% \\ & 45 \% \\ & 34 \% \end{aligned}$	$\begin{aligned} & 37 \% \\ & 16 \% \\ & 31 \% \end{aligned}$	$\begin{aligned} & 45 \% \\ & 12 \% \\ & 22 \% \end{aligned}$	$\begin{array}{r} 4 \% \\ 11 \% \\ 7 \% \end{array}$	$\begin{aligned} & 2 \% \\ & 6 \% \\ & 3 \% \end{aligned}$	$\begin{aligned} & 1 \% \\ & 6 \% \\ & 2 \% \end{aligned}$	$\begin{aligned} & 3 \% \\ & 1 \% \end{aligned}$	- 1% -	-

Table 5.7.1 Values of 7 calculated from catches in winter per unit effort in Shetland SANDEFH fishery.

Table 6.1.1SPRAT catches in the North Sea ('000 tonnes), 1971-81 (data provided by Working Group members).

Country	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981年)
IVa West											
Denmark	-	-	-	5.3	0.5	0.6	0.1	-	-	-	-1)
Faroe Islends	-	-	-	0.2	12.9	2.5	0.4	-	-	-	-
France	-	-	-	-	-	-	+	-	-	-	-
German Dem.Rep.	-	-	-	-	-	-	$+$	-	-	-	-
Germany, Fed.Rep.	-	-	+	-	-	+	0.6	-	-	0.1	-
Netherlands	+	$+$	+	$+$	+	$+$	$+$	-	-	-	-
Norway	0.9	2.2	-	-	1.5	29.9	16.0	1.3	0	-	-
Poland	-	+	+	$\bar{\square}$	0.3	-	-	-	-	-	-
Sueden	-	-	1.0	2.2	11.0	+	0	-	-	-	-
U.K. (England)	+	-	0.2	-	-	-	0	-	-	-	-
U.K. (Scotland)	15.0	29.8	49.4	41.2	9.4	12.7	26.9	16.9	6.8	3.8	1.0
USSR	-	-	-	1.0	1.3	1.2	+	-	-	-	-
Total	15.9	32.0	50.6	49.9	36.9	46.9	44.0	18.2	6.8	3.9	1.0
IVa East (North Sea stock)											
Denmark			-	-	-	0.2	0.1	-	-		
Norway	-	-	-	-	-	1.9	0.7	0.1	+	0.4	-
U.K. (Scotland)	-	-	-	-	-	+	0	-	-	--	
Total	-	-	-	-	-	2.1	0.8	0.1	. \cdot	0.4	0
IVb Weat											
Belgium	9.9	14.4	47.0	55.	106.6	104					
Denmark	9.9	14.4	47.0	55.4	106.6	104.4	57.5	44.1	75.3	76.7	$28.1^{1)}$
Faroe Islands	-	-	-	4.0	30.0	42.9	1.8	-	$2.8{ }^{\text {b }}$	2.8b)	-
France ${ }^{\text {German }}$ Dem. Rep,	-	-	-	-7	- 4.5	$\overline{6} .4$	$+$	-			-
German Dem.Rep. Netherlands	+	+	-	1.7	4.5	6.4	0.7	-		-	-
Netherlands Norway	\pm	$\stackrel{+}{4.1}$	3.4	9.5	145.7	73.0	${ }_{0}^{0} 5$	56.2	$\overline{47.8}$	18.3	
Poland	-	4	3.4	9.5	9.1	10.5	0	56.2	47	10.3	
Sweden	-	-	-	-	-	7.9	0	-	-	-	-
U.K. (England)	25.5	21.8	34.6	25.5	32.5	49.7	51.9	53.9	12.9	2.4	
U.K. (Scotland)	7.2	3.6	2.9	8.6	4.9	18.1	10.9	14.8	5.0	2.5	0.7
USSR	1.2	0.8	17.9	32.9	47.8	50.4	1.6	-	-	-	-
Total	43.8	44.7	105.8	137.7	381.1	362.3	123.9	169.0	143.8	102.7	29.2

a) Preliminary figures as reported.
b) IVo East and West.

1) Jan-Jun only,
/Cont'd.
$t=1$ ess than 0.1 .
2) Assumed to be Diviaion IVb E.
\ldots... No data available.

- = Magnitude known to de nil.

Table 6.1.1 (atd)

Country	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	19818)
IVb East											
Denmark	19.9	28.8	93.9	104.0	215.2	201.1	126.8	161.0	191.5	149.0	16.4 ${ }^{1 \text {) }}$
German Dem.Rep.	5.1		11.0		0.4 0.5		0.7 4.3	-	1.8	6.1	$4 \cdot 8^{-2}$
Germany, Fed,Rep. Norway	5.1	1.7	11.0	17.5	0.5	1.7 5.1	4.3 0	29.8	1.8 27.4	6.1 33.7	
Norway Sweden	-	-	-	-	-	5	1.5		-	0.6	-
Total	25.0	30.5	104.9	121.5	216.1	207.9	133.3	190.8	222.7	189.4	21.2
IVc											
Belgium	0.1	0.1	0.2	${ }^{+}$.	.	0	-	15		
Denmark	-	-		0.9	3.9	0.3	1.4	-	1.5	6.5	4.30
France	+	-	+	0.3	0.1	-	+	-	-	-	-
German Dem,Rep.	-	-		-	-	0.1	$+$	-	-	-	-
Germany, Fed.Rep.	-	. 4	-	-	-	-	0.4	-	-	-	-
Netherlands	1.0	0.4	+	+	0.2	-	0	-	-	-	-
Norway	-	-	-	-	-	-	-	0.2	3.1	16.2	-
UK(England)	0.2	+	0.8	3.4	2.9	0.7	0.2	0.0	1.4	4.3	13.7
USSR	-	-	-	+	$+$	0.2	-	-	-	-	-
Total	1.3	0.5	1.0	4.6	7.1	1.3	2.0	0.2	6.0	27.0	18.0
Total North Sea											
Belgium	0.1	0.1	0.2				+		+	+	- 1)
Denmark	29.8	43.2	140.9	165.6	326.2	306.6	179.9	205.1	268.3	232.2	$48.8{ }^{1}$
Faroe Islands	-	-	-	4.2	42.9	45.4	2.2	-	2.8	2.8	-
France	+	-	+	0.3	0.1	-	+	-	-	-	-
German Dem,Rep.	-	7	-	1.7	4.9	6.5	1.4	-	- ${ }^{-8}$	6	\cdots
Germany, Fed.Rep.	5.1	1.7	11.0	17.5	0.5	1.7	5.3	-	3.8	6.2	4.8
Netherlands	1.0	0.4	+	\pm	0.2	+	+	-	$\stackrel{-}{6}$	-	-
Norway	0.9	6.3	3.4	9.5	147.2	109.9	22.2	87.6	78.6	68.6	0.4
Poland	-	+	${ }^{+}$	-	9.4	10.5	+	-	-	-	-
Sweden	-	-	1.0	2.2	11.0	7.9	1.5	-	-	0.6	-
UK (England)	25.7	21.8	35.6	28.9	35.4	50.4	52.1	53.9	14.3	6.7	13.7
UK(Scotland)	22.2	33.4 0.8	52.3 17.9	49.8 33.9	14.3 49.1	30.8	37.8	31.7	11.8	6.3	1.7
USSR	1.2	0.8	17.9	33.9	49.1	51.8	1.6	-	-	-	-
Total	86.0	$107 . \%$	262.3	313.6	641.?	621.5	104.0	378.3	379,6	323.4	69.4

a) Preliminary figures as reported.

1) Jan-Jun only.
2) Assumed to be Division IVb E.

Table 6.1.2 SPRAT in Division VIa. Landings in tonnes

Source: ICES Statistician.

1) Amended from national data

Table 6.1.3 Landings of SPRAT in Division IIIa and in Norwegian fjords in Division IVa (10 0^{-3} tonnes). (Data provided by Working Group members)

Year	SKAGERRAK				KATTEGAT			$\begin{array}{r} \text { IIIa } \\ \text { total } \end{array}$	Norwegian fjords south of $62^{\circ} \mathrm{N}$	Grand total
	Denmark	Sweden	Norway	Total	Denmark	Sweden	Total			
1969	0.8	1.9	1.7	4.4	0.8	1.6	2.4	6.8	11.8	18.6
1970	1.1	2.4	2.4	5.9	3.1	6.0	9.1	15.0	6.4	21.4
1971	0.7	2.4	2.9	6.0	1.5	9.6	11.1	17.1	4.4	21.5
1972	0.8	3.3	2.4	6.5	1.4	17.9	19.3	25.8	6.9	32.7
1973	19.4	2.5	3.2	25.1	19.3	16.2	35.5	60.6	8.8	69.4
1974	17.3	2.0	1.2	20.5	31.6	18.6	50.2	70.7	3.3	74.0
1975	14.9	2.1	1.9	18.9	69.7	20.9	90.6	109.5	2.9	112.4
1976	12.8	2.6	2.0	17.4	30.4	13.5	43.9	61.3	0.6	61.9
1977	7.2	2.2	1.2	10.6	53.3	9.8	63.1	73.7	5.4	79.1
1978	23.1	2.2	2.7	28.0	36.1	9.4	45.5	73.5	5.2	78.7
1979	17.3	8.1	1.8	27.2	45.8	6.4	52.2	79.4	5.0	84.4
1980	43.1	-	3.4	46.5	35.8	-	35.8	102.4	2.9	105.3
1981	52.8	13.4	4.1	70.3	41.8	15.8	57.6	127.9 ${ }^{1}$	3.0	130.9

1) Sweden: 20124 tonnes in 1980 in Division IIIa. Allocation to Skagerrak and Kattegat not possible.

Table 6.1.4 Landings of SPRAT in Division IIIa by quarters
(tonnes) (Norwegian fjords in Division IIIa not included).

Year	Months	Kattegat	Skagerrak	Total
1975	Jan-Mar	6569	2316	$\varepsilon 885$
	Apr-Jur	11610	450	12060
	dul-Sef	53347	7976	61323
	Oct-Dec	19541	824ε	$27 \quad 789$
	Total	91067	18990	110057
1976	Jan-Mar	9462	913	10375
	Apr-Jun	4867	997	5864
	Jul-Sep	18070	5493	23563
	Oct-Dec	10253	10001	20254
	Total	42652	17404	60056
1977	Jan-Mar	9340	1507	10847
	Apr-Jun	10499	189	10688
	jul-sep	24217	2808	27025
	Oct-Dec	18938	6067	25005
	Total	62994	10571	73565
1978	Jan-Mar	13139	2899	16038
	Apr-Jun	7949	6313	14262
	jul-Sep	18511	15175	33686
	Oct-Dec	6757	4398	
	Total	46356	28785	75141
1979	Jan-Mar	8848	2817	11665
	Apr-Jun	5 5	1042	6591
	Jul-Sep	25898	8 15	33951
	Oct-Dec		15218	
	Total	52217	27130	79347
$1980{ }^{\text {1) }}$	Jan-Mar	10312	2345	16992
	Apr-Jun	8078	7012	15385
	Jul-Sep	15010	31421	54072
	Oct-Dec	2351	5775	15979
	Total	35751	46553	102428
1981	Jan-Mar	16402	6453	22855
	Apr-Jun	3370	1961	5331
	Jul-Sep	20979 16862	55574 6262	76553 23124
	Total	57613	70250	127863

1) Swedish landings only included in total column.

Table 6.3.1 SPRAT, North Sea 1981
Number caught per age group $\times 10^{-6}$ by Divisions

Divisions	Months	Age Groups					
		0	1	2	3	4	5
IVa W	$\begin{aligned} & \text { Jan - Mar } \\ & \text { Apr - Jun } \end{aligned}$	-	-	7.8	1.6	-	-
				-	-	-	-
IVa E	$\begin{aligned} & \text { Jan - Mar } \\ & \text { Apr - Jun } \end{aligned}$	-	$\begin{array}{r} 1044.1 \\ 6.7 \end{array}$	$\begin{array}{r} 2064.3 \\ 106.9 \end{array}$	-	-	-
					-	-	-
IVb W	$\begin{aligned} & \text { Jan - Mar } \\ & \text { Apr - Jun } \end{aligned}$	-			352.1	7.2	0.3
					23.5	-	1.5
IVb E	$\begin{aligned} & \text { Jan - Mar } \\ & \text { Apr - Jun } \end{aligned}$	-	739.8	2216.5	223.9	4.2	-
		19.6	78.2	63.7	1.6	-	-
IVc	Jan - Mar Apr - Jun	-	465.4	930.0	477.9	10.7	1.2
		-	2.1	18.6	4.0	-	0.2
IV	Jan - Mar Apr - Jun	-	2249.3	5218.6	1055.5	22.1	1.5
		23.0	87.0	189.2	29.1	-	1.7

Table 6.3.2 North Sea SPRAT catch in 1974-81. Numbers caught per age group x 10^{-6} in each three-month period.

Year	Months	Age group						
		0	1	2	3	4	5	6
1974	Jan-Mar Apr--Jun Jul-Sep Oct-Dec	$\begin{array}{r} 46.7 \\ 1549.3 \end{array}$	$\begin{array}{r} 7620.0 \\ 361.8 \\ 4909.8 \\ 6172.9 \end{array}$	$\begin{array}{ll} 7 & 341.8 \\ 2 & 083.5 \\ 1 & 784.7 \\ & 865.1 \end{array}$	$\begin{array}{r} 1043.2 \\ 148.6 \\ 36.2 \\ 74.5 \end{array}$	$\begin{array}{r} 198.7 \\ 26.1 \\ 0.9 \\ 10.6 \end{array}$	$\begin{array}{r} 40.3 \\ 4.7 \\ 4.6 \\ 7.2 \end{array}$	
1975	Jan-Mar Apr-Jun Jul-Sep Oct-Dec	$\begin{array}{r} 15.0 \\ 675.2 \end{array}$	$\begin{array}{r} 4096.6 \\ \\ 10 \\ 1058.1 \\ 6 \\ 651.1 \end{array}$	$\begin{array}{r} 14973.2 \\ 1163.2 \\ 5760.0 \\ 6122.5 \end{array}$	$\begin{array}{r} 3929.0 \\ 68.9 \\ 75.1 \\ 660.2 \end{array}$	$\begin{array}{r} 233.7 \\ 6.5 \\ 3.1 \\ 57.3 \end{array}$	14.1 - - 4.4	
1976	Jan-Mar Apr-Jun Jul-Sep Oct-Dec	$\begin{array}{r} 79.6 \\ 2780.4 \end{array}$	$\begin{array}{rr} 9 & 360.9 \\ 2 & 017.2 \\ 16 & 536.4 \\ 8 & 443.7 \end{array}$	$\begin{array}{r} 9997.0 \\ 964.6 \\ 599.5 \\ 2659.4 \end{array}$	$\begin{array}{r} 6678.0 \\ 740.1 \\ 40.1 \\ 612.7 \end{array}$	$\begin{gathered} 373.0 \\ 40.9 \\ - \\ 37.1 \end{gathered}$	$\begin{aligned} & 6.2 \\ & 0.8 \\ & - \\ & - \end{aligned}$	1.4
1977	Jan-Mar Apr-Jun Jul-Sep Oct-Dec	$$	$\begin{array}{r} 4197.2 \\ 540.3 \\ 2803.1 \\ 4705.0 \end{array}$	$\begin{array}{r} 11962.6 \\ 670.9 \\ 3248.4 \\ 3049.5 \end{array}$	$\begin{array}{r} 962.9 \\ 52.7 \\ 165.9 \\ 311.2 \end{array}$	$\begin{array}{r} 104.7 \\ 1.5 \\ 11.1 \\ 1.5 \end{array}$	12.0	
1978	Jan-Mar Apr-Jun Jul-Sep Oct-Dec	$\begin{aligned} & - \\ & - \\ & 6.3 \\ & 636.8 \end{aligned}$	$\begin{array}{rr} 2 & 461.9 \\ 1 & 077.5 \\ 17 & 785.5 \\ 6 & 932.7 \end{array}$	$\begin{array}{r} 2839.3 \\ 123.8 \\ 216.5 \\ 3955.8 \end{array}$	$\begin{array}{r} 3770.1 \\ 3.2 \\ 14.7 \\ 1 \quad 159.0 \end{array}$	$\begin{gathered} 344.5 \\ 0 \\ 0.7 \\ 214.9 \end{gathered}$		
1979	Jan-Mar Apr-Jun Jul-Sep Oct-Dec	433.0	$\begin{array}{r} 2770.0 \\ 203.6 \\ 25379.1 \\ 8394.8 \end{array}$	$\begin{array}{r} 6422.2 \\ 452.0 \\ 388.3 \\ 1494.6 \end{array}$	$\begin{array}{r} 2670.6 \\ 14.0 \\ 2.1 \\ 122.4 \end{array}$	$\begin{gathered} 131.2 \\ 1.1 \\ 0 \\ 34.9 \end{gathered}$	0.7	
1980	Jan-Mar Apr-Jun Jul-Sep Oct-Dec	$\begin{aligned} & - \\ & - \\ & 15.1 \\ & 515.7 \end{aligned}$	$\begin{array}{r} 1448.0 \\ \\ 134.0 \\ 10 \quad 143.3 \\ 4518.5 \end{array}$	$\begin{array}{r} 12764.4 \\ 84.5 \\ 811.6 \\ 2767.4 \end{array}$	$\begin{array}{r} 1323.2 \\ 2.4 \\ 4.7 \\ 111.8 \end{array}$	$\begin{array}{r} 103.7 \\ 0.3 \\ - \\ 19.5 \end{array}$	$0,7$	
1981	$\begin{aligned} & \text { Jan-Mar } \\ & \text { Apr-Jun } \end{aligned}$	23.0	$\begin{array}{r} 2249.3 \\ 87.0 \end{array}$	$\begin{array}{r} 5218.6 \\ 189.2 \end{array}$	$\begin{array}{rr} 1055.5 \\ 29.1 \end{array}$	22.1	$\begin{gathered} 1.5 \\ 1.7 \end{gathered}$	-

Table 6.3.3 North Sea SPRAT. Fishing mortalities by quarters (VPA). Annual $M=0.80$ year $^{-1}$. Input fishing mortalities are in brackets.

Year	Quarter	Age Groups				
		0	1	2	3	4
1974	1	-	. 052	. 30	0.59	1.41
	2	0	. 003	. 13	0.15	0.69
	3	. 0003	. 053	. 15	. 05	0.44
	4	. 0141	. 087	. 10	. 14	(1.00)
1975	1	-	. 046	. 31	. 92	. 84
	2	0	.006	. 04	. 03	. 05
	3	. 0001	. 207	. 25	. 05	. 03
	4	. 0041	. 184	. 45	. 71	(1.00)
1976	1	-	. 072	. 49	1.34	1.21
	2	0	. 020	. 08	. 49	. 39
	3	. 0009	. 224	. 06	. 04	0.0
	4	. 0394	. 170	. 44	1.60	(1.00)
1977	1	-	. 077	. 39	. 28	1.72
	2	0	. 013	. 03	. 02	. 09
	3	. 0005	. 084	. 22	. 09	1.57
	4	. 0118	. 198	. 33	. 24	(1.00)
1978	1	-	. 034	. 18	. 89	. 44
	2	0	. 019	. 01	. 002	0
	3	+	. 478	. 02	. 01	. 002
	4	. 0050	.346	. 69	1.61	(1.00)
1979	1	-	. 027	. 63	1.68	. 83
	2	0	. 002	. 08	. 03	. 01
	3	0	. 465	. 09	. 01	0
	4	. 0065	. 275	. 57	. 49	(1.00)
1980	1	-	. 027	. 87	1.72	1.04
	2	0	. 003	. 01	. 01	. 01
	3	. 0011	. 338	. 14	. 03	0
	4	. 0484	. 247	1.02	1.33	(1.00)
1981	1	-	. 305	. 50	1.69	(1.13)
	2	(.0002)	(.017)	(.03)	(0.17)	0

Table 6.3.4 North Sea SPRAT. Number in stock at the beginning of each quarter (VPA)
Numbers $\times 10^{-9} \quad M=0.8$ year $^{-1}$

Year	Quarter	Age Groups				
		0	1	2	3	4
1974	1	0	166	31	2.5	. 3
	2	181	129	19	1.2	+
	3	148	105	14	. 8	+
	4	121	82	9.6	. 6	+
1975	1	0	98	61	7.1	. 4
	2	271	77	37	2.3	. 2
	3	222	62	29	1.8	. 1
	4	182	41	19	1.4	. 1
1976	1	0	148	28	9.8	.6
	2	118	113	14	2.1	. 1
	3	97	91	11	1.1	. 1
	4	79	59	8	. 8	. 1
1977	1	0	62	41	4.4	. 1
	2	149	47	23	2.7	+
	3	122	38	18	2.2	+
	4	100	29	12	1.6	+
1978	1	0	81	19	7.0	1.1
	2	210	64	13	2.3	. 6
	3	172	51	11	1.9	. 5
	4	141	26	8.6	1.6	. 4
1979	1	0	115	15	3.5	. 3
	2	110	91	6.6	. 5	. 1
	3	90	75	5.0	. 4	. 1
	4	73	38	3.7	. 3	. 1
1980	1	0	60	24	1.7	. 2
	2	18	48	8.2	. 3	. 4
	3	15	39	6.6	. 2	+
	4	12	23	4.7	. 2	+
1981	1	0	9.4	15	1.4	+
	2	25	5.7	7.2	. 2	$+$

Table 6.5.1 North Sea SPRAT
Mean weight at age per month in Danish catches (in grams)

Month Age Group	1	2	3	4	5	6	7	8	9	10	11	12
0							-	2.00	2.25	2.15	3.00	4.65
1	1.96	1.88	1.60			6.47	6.45	7.37	9.10	12.25	9.95	10.31
咢 2	8.86	6.23	5.80	9.50	14.27	14.27	11.35	13.95	14.32	19.44	19.43	14.34
3	13.56	16.04	13.33					19.00		21.87	27.88	20.00
4	21.60	19.27										
0						2.25	4.05		5.00		3.75	3.71
1	2.99	2.42	2.77	3.80	6.41	4.58	7.70	8.95	10.67	11.28	11.34	8.41
2	10.00	7.20	6.69	6.28	13.43	14.08	13.96	12.91	15.58	16.78	16.91	15.17
$\underset{\sim}{\infty}$	15.31	14.33	19.69		20.88	18.88	18.42	21.41	19.08	19.65	22.90	
4	23.85	17.32			-			18.17		19.50		
5					25.00					27.00		

Figure 2.1. Total catch of SPRAT, SANDEEL and NORWAY POUT ('000 tonnes) in January 1977 (75800 tonnes).

Figure 2.2. Total catch of SPRAT, SANDEEL and NORWAY POUT (1000 tonnes) in February 1977 (77700 tonnes).

Figure 2.3. Total catch of SPRAT, SANDEEL and NORWAY POUT ('000 tonnes) in March 1977 (71 000 tonnes).

Figure 2.4. Catches of SPRAT, SANDEEL and NORWAY POUT ('000 tonnes) in April 1977 (75 600 tonnes).

Figure 2.5. Catches of SPRAT, SANDEWL and NORWAY POUT ('000 tonnes) in May 1977 (253 100 tonnes).

Figure 2.6. Catches of SPRAT, SANDEEL and NORWAY POUT ('000 tonnes) in June 1977 (261 400 tonnes).

Figure 2.7. Catches of SPRAT, SANDEEL and NORWAY POUT ('000 tonnes) in July 1977 (829 000 tonnes).

Figure 2.8. Catches of SPRAT, SANDEEL and NORWAY POUT ('000 tonnes) in August 1977 (123 200 tonnes).

Figure 2.2. Catches of SPRAT, SANDEEL and NORWAY POUT ('000 tonnes) in September 1977 (134 600 tonnes).

Figure 2.10. Catches of SPRAT, SANDEEL and NORWAY POUT ('000 tonnes) in October 1977 (110 100 tonnes).

Figure 2.11. Catches of SPRAT, SANDEEL and NORWAY POUT ('000 tonnes) in November 1977 (71 000 tonnes).

Figure 2.12. Catches of SPRAT, SANDEEL and NORWAY POUT ('000 tonnes) in December 1977 (80 900 tonnes).

Figure 2.13. Danish NORWAY POUT areas.

Figure 2.14. Danish SANDEEL areas.

Figure 2.15. International SPRAT reporting areas.

Figure 3.4.1. Estimated HERRING by-catches in 1979.

Figure 3.4.2. Percentage of HERRING in samples of Danish and Scottish SPRAT catches in 1979-80.

Figure 3.4.3. Percentage HERRTNG in individual samples of Scottish SPRAT catches, 1981.

年

Figure 4.4.1. Sampling areas used for recmitment indices of NORWAY POUT shown in Table 4.5.1.

 2-group FA

CTA

Figure 6.4.1. Density distributions of sprat in the North Sea as shown by bottom herring trawl samples in February 1977.

Figure 6.4.3. Density distributions of SPRAT in the North Sea as shown by bottom herring trawl samples in February 1979.

Figure 6.4.4. Density distributions of SPRAT in the North Sea as shown by
bottom herring trawl samples in February 1980.

Figure 6.4.5. Density distributions of SPRAT in the North Sea as shown by bottom herring trawl samples in February 1981.

Figure 6.4.6. Density distributions of SPRAT in the North Sea as shown by bottom herring trawl samples in February 1982 (incomplete data).

Figure 6.4.7. Numbers of 0-group SPRAT per hour on Scottish 0-group sprat surveys in November. Upper figure: 1980, lower figure: 1981, dash: no sample.

Figure 6.4.8. Estimated biomass $\left(t \times 10^{-3}\right)$ of SPRAT in each half statistical rectangle January - February 1982. Standardized with reference to target strength of $-29 \mathrm{~dB} / \mathrm{kg}$.

Higure 69.1 . North Se SPMAP

Figure 6.9.2. North Sea SPRAT.
Number per hours fishing of sprat less than 8 cm in the 1980 and 1981 IYFS.

[^0]: x) General Secretary, ICES,
 Palægade 2-4, DK-1261 Copenhagen K, Denmark.

[^1]: ${ }^{\text {F }}$ Preliminary

[^2]: \#) Including by-catch.

 1) Included in the North Sea. 2) Includes North Sea.
[^3]: ${ }^{3}$ Preliminary

