What controls the spatial distribution of spawning anchovy in the Bay of Biscay?

a multi-model approach

C. Loots¹, B. Planque², S. Vaz¹, P. Koubbi³, M. Huret¹, P. Petitgas¹

- ¹ IFREMER, Boulogne sur Mer, Nantes. France
- ² IMR, Tromsø, Norway.
- ³ Univ. Paris VI, France

A general view of the modelling method

candidate conceptual models

Anchovy in the Bay of Biscay

Observed distributions of spawning anchovy

Candidate models, hypotheses and variables

Controls	Hypotheses	Variables
Site attachment	Geographical position	Knot of the grid
Environment	Environment 1	Front, Upwelling, DiffSal
	Environment 2	Pycnocline, Eddies, PrimProd
	Environment 3	PotEnerDef, SurfTemp, DiffTemp
	Environment 4	Depth, SalSurf, SalFond, MLD
	Environment 5	Bottom temperature
	Environment 6	Sediments
Spatial dependency	Broad scale	
	Medium scale	PCNM
	Small scale	
Density dependence	Population size	Annual SSB
Age structure	Annual structure	Annual proportions@age
	Spatial structure	Spatial proportions@age
Population persistence	Past distribution	local abundance in previous year

Available data on controlling variables

In situ data: PELGAS surveys 2000-2007

Day: Accoustic

Night: CTD

- Total abundances, abundances by age class
- Temperature, salinity, depth
- Mixed-layer depth, potential energy deficit

External data

- Spawning biomass (ICES WG ANC)
- Map of seafloor sediments
- Outputs of hydrodynamical model (MARS-3D): upwelling, frontal and eddies index, pycnocline depth, primary production

parallel modeling of spatial occupancy and local densities

Observed

abundances

mutli-model selection

Spatial occupancy

Binomial models

13 hypothesis

8,191 models

local abundance

Gaussian models

14 hypothesis

16,383

predictive performance

reduced set of models

reduced set of hypotheses

Results (1): controls of spatial occupancy

Results (2): controls of local abundance

Conclusions (1)

- Spatial occupancy and local abundance can be predicted from several processes of different nature
- spatial occupancy can be predicted by
 - bottom temperature (i.e. below thermocline)
 - sediment types (reflecting average water column conditions)
 - spatial dependency
- local abundances can be predicted by
 - trophic environment: areas of food production and concentration (fronts) for adults' feeding
 - population demographic structure

Conclusions (2)

- The multi model approach presented here provides a workable framework for evaluating competing conceptual models of species distributions
- A number of limitations remain:
- predictive performance is not equivalent to process understanding
- Even if the conceptual models are correct, we found that conceptual uncertainty can be reduced but not fully resolved
- projections of spatial distribution under scenarios should account for the remaining conceptual uncertainty

