International Council for the Exploration of the Sea
C.M. 1977/F:4

Demersal Fish (Northern) Committee

REPORT OF THE WORKING GROUP ON GREENLAND HALIBUT

IN REGION I

Charlottenlund, 7 - 11 March 1977

Abstract

This Report has not yet been approved by the International Council for the Exploration of the Sea; it has therefore at present the status of an internal document and does not represent advice given on behalf of the Council. The proviso that it shall not be cited without the consent of the Council should be strictly observed.

x) General Secretary, ICES, Charlottenlund Slot, 2920 Charlottenlund, Denmark.

1. Participants

J Møller Jensen	Denmark
M Liwoch	Poland
C J Rørvik	Norway
A Sigurdsson	Iceland
E Smidt	Denmark
G Speiser (Federal Republic of)	
B Vaske (Chairman)	Germany (Fedic

ICES Statistician, Dr V M Nikolaev, also attended the meeting.
Messrs. Liwoch and Speiser could only attend a part of the meeting as the Working Group partly overlapped with the meeting of the Working Group on Herring.

No representative was present from U.S.S.R., but the Convenor had got extensive data about the U.SoSoR. trawl fishery in Sub-areas I and II in the period 1965-76 from $D r V$ Ponomarenko.
2. Terms of Reference

The meeting was convened in accordance with the resolution (C.Res.1976/2:11) adopted by the Council at the 1976 Statutory Meeting:
"It was decided, that:
a Working Group to be referred to as 'The Working Group on Greenland Halibut in Region l' should meet at Charlottenlund from 7-ll March 1977 to assess TACs for Greenland halibut. The Group should be convened by Mr B Vaske".

In addition to that, following the decision of the November 1976 Mid-Term Meeting of NEAFC, the Chairman of ICES Liaison Committee requested the Working Group to prepare a review of general biology, exploitation and relation of the following stocks to the 200 -mile zones under national fisheries jurisdiction:

Fishing Area

SAI and II, SAV, SAXIV
SAV, SAXIV

SAV
3. The Stocks of Greenland Halibut in Region 1

Regarding the data available on the biology of Greenland halibut in Sub-areas I and II, there seems to be only one stock in these two areas. Therefore, the Working Group decided to combine the data from them.

The data from Sub-area V and Sub-area XIV were combined, as it has been assumed that there is only one stock of Greenland halibut in the two areas. This assumption is based on a strong probability that the spawning grounds are the same for both areas.

4.1 Nominal catches

The total nominal catches for the main fishing areas are given in Table 1 for the period 1966-76. Tables 2, 3, and 4 present the nominal catches by country for each fishing area.
For assessment purposes, the catches in Sub-areas I and II are summarised in Table 5 .
In the period under consideration the total catch of Greenland halibut in Sub-areas I and II increased from a minimum catch of 24267 tons in 1967 to a maximum catch of 89484 tons in 1970. Since 1970 the catches have decreased to a level of 29938 tons in 1973. In 1974 the total nominal catch has increased slightly to 37763 tons. Since then, the total catches have been relatively constant. The provisional catch in 1976 is 33775 tons.
Table 5 also shows the total catches taken in the Norwegian long-line fishery in Sub-areas I and II. These catches have declined since 1968 for reasons described in the Appendix.
4.2 Catch per unit effort and effort data

Catch figures per hour trawling were available from the U.S.S.R. fishery for the period 1965 to 1976 (Table 10). Figure 1 shows the trends in the catch per unit effort for this period together with the catches from 1950 to 1976. Using the catches and the catch per unit effort, the effort in the U.S.S.R. trawl fishery and the effort on the total trawl fishery was estimated (Table 10).

4.3 Virtual Population Analysis

4.3.1 Age_composition of landings

Age compositions of national landings in the trawl fishery were available as number landed in each age group for the U.S.S.R. for the period 1965-76, and the German Democratic Republic for the year 1971 and the period 1972-76. To obtain the age composition for the total trawl fishery in each year, these available age compositions were raised to the total trawl landings.
For Norwegian long-line fishery, age compositions were presented for the period 1970-74. For the years 1975 and 1976 the same age composition as for 1974 was assumed, because the Norwegian long-line landings were small compared with the total landings in these years.
For the period 1966-69 from 34% to 86% of the totall annual catches were taken in the Norwegian long-line fishery. Because of this and a different a.ge composition in trawl catches and long-line catches (see Figure 2), the Working Group considered it not proper to apply the U.S.S.R. age compositions to the total catch for these years.
The age compositions of the total landings were, therefore, prepared for only the years 1970-76 (Table ll).
Time did not allow the Group to do a VPA for males and females separately.

4.3.2 Natural mortality

A trial was made to estimate the natural mortality by plotting Z versus the total trawl effort. Z was estimated from the catch per unit effort ratio of the fully recruited year classes and successive years in the U.S.S.R. trawl fishery. The trawling effort corresponding to the Z value
between two successive years was estimated as the average total trawling effort for the same two years. This analysis was done for both sexes combined and for males only for the years 1970 to 1976 during which trawl catches dominated (Table 5). However, the results were regarded as inconclusive as the intercepts which, according to theory, should be an estimate of M, were negative. Further refinements of this analysis were not carried out because of the ; limited time available.
We would expect M to be low for a species with a longevity like Greenland halibut, especially for the females (Figure 3) 。
For this year's analysis, the Working Group chose an M value of 0.15 for the combined sexes. However, the value of \mathbb{M} should be a matter for further investigation.
4.3.3 Estimation of the input fishing mortalities in the VPA

In a preliminary run of the VPA we set F_{16} equal to 0.50 for 1970 and 1971, and equal to 0.30 for the years 1972 to 1976. The initial guess of the F values for 1976 was $0.01,0.02,0.02,0.06,0.25$ and age groups 3 to 7 , and 0.30 for 8 years and older.
From the results of this preliminary run the unweighted mean F values
 1974. A linear regression between the total trawl effort (in 1000 hours $)$ and F_{8-13} for these years is shown in Figure 4. A functional regression would not change this line very much because of the high correlation.
This linear regression predicted that a better F_{8-13} for 1976 would be 0.26 on the hours of the total trawl effort exerted that year. We chose $F=0.25$ for age groups $8-16$ and decreased the F value for age group 6 proportionally from 0.06 to 0.05 and for age group 7 from 0.25 to 0.21 . All the other F input values were left unchanged. The results of this final VPA run are shown in Tables 12 and" 13.
4.4 The state of the stock

On the basis of the VPA the biomass of the recruited stock, that is 4 years and older fish, and the spawning stock, that is 9 years and older, was estimated using the mean weights given in Table 14. The results are shown in Table 15.
There is a strong correlation ($r=0.98$) between the U.S.S.R. catch per unit effort and the recruited stock estimates for the years 1970-74 as shown in Figure 50
Assuming that the same close relation also holds for the years 1965 to 1969, which is outside the range in which the relations were established, the recruited stocks for these years have been estimated by extrapolation (Table 15).
The estimated decrease on the stock size from 1965 to 1970 is $(446-311) \times 103$ tons $=135000$, while the total catches in the same period was about 155000 tons, i.e. only 20000 tons difference. If 1971 instead of 1970 is used in the comparison, the difference is increased to 110000 tons.
This difference between the catches and the estimated decrease in the stock size is an estimate of the surplus production of the stock in this period. The average surplus production per year then becomes $110000 / 6$ or nearly 20000 tons. For comparison, the average catch was nearly 37000 tons in the period 1972 to 1976 when the stock seems to have been fairly stable as judged from the VPA (Table 15) and the catch per unit effort (Table l0).

Figure 1 shows the total catches from 1950 onwards. Although this is more speculative, it seems likely from this figure that the low catches in the 1950s and the somewhat larger catches in 1959 to 1964 reduced the stock, but not very much below its maximum level. The 1965 stock is estimated to have been nearly 450000 tons; may be the maximum stock as it was in the 1950s was around 500000 tons. If this is the case, the present stock is roughly half the maximum size. Thus, it seems not unreasonable that together with the reduction in the stock size the surplus production increased from 20000 tons on the average in the years 1965 to 1971 to nearly 40000 tons in the period 1972 to 1976 as indicated above.
The yield per recruit curve with the present exploitation pattern (Figure 6) described in Section 4.5 indicates that the present exploitation rate which is around 0.25 on the fully recruited age groups (Table l2)is close to the one giving maximum yield per recruit. This, as well as the above consideration, indicate that the stock might be near the optimum level under the present exploitation pattern.

4.5 Calculation of total allowable catch (TAC)

Catch predictions have been made for the period 1977-78. In addition, the stock size at the beginning of 1979 was calculated. The stock size in 1977 was calculated from the stock size in 1976, as estimated from the VPA and corresponding fishing mortality rates.
A yield per recruit curve (Figure 6) was calculated for the present exploitation pattern, and the average weights per age group as shown in Table 14 . For Greenland halibut in Sub-areas I and II the present level of fishing mortality on the fully exploited age groups is about $F=0.25$. This fishing mortality corresponds with the F on the fully recruited age groups which gives maximum yield per recruit (Figure 6). In accordance with this, the fishing mortality values for catch predictions have been assumed on the same level as for 1976.
The year class strength for the three year old recruits in 1976-78 was set equal to $68 x 106$ fish, which is the average for the years 1970-74 as estimated from the VPA。

Mean weights per age group used in catch prediction were derived from the average mean weights per age in the UoS.S.R. fishery in the period 1970-76. These weights were reduced by 5% to give relatively correct catch figures for the period $1970-76$ (e.g. the sum of the mean weights x estimated number per age group corresponds with the observed catch figures)。

The natural mortality in catch predictions was set equal to 0.15 as assumed in the VPA. The results of these calculations are summarised in the text table below:

	1976	1977	1978	1979
Catch (tons) Fishing mortality on fully exploited age groups	33775	38385	39475	
Total stock biomass (4+) (thousand tons)	248	260	264	266
Spawning stock biomass (9+) (thousand tons)	99	107	110	127

In the above strategy the total stock biomass and spawning stock biomass increase slightly. In the prognoses years the stock biomass
will be at nearly the same level which the Working Group felt is close to the optimum level.
Therefore, the Working Group recommends that the TAC for Greenland Halibut for1978. in Sub-areas I and II should be set at 40000 tons.
5. Greenland Halibut in Sub-areas V and XIV
5.1 Nominal catches

The total nominal catches for Divisions $V a$ and $V b$ and Sub-area XIV are given in Table l for the period 1966 to 1976. Tables 6, 7 and 8 present the nominal catches by each area and by country. Table 9 gives the combined catches from all three areas by year and by country.
5.2 Catch per unit effort data

Only few c.p.u.e. data were available from the Icelandic long-line fishery for the years 1969 to 1972. The..catch per unit effort, given in tons per 1000 hooks were as follows:

1969	.721 tons
1970	.470 tons
1971	.572 tons
1972	.390 tons

These figures may indicate a declining stock during the years 1969 to 1972 .
5.3 Age and length distributions available

From the Icelandic long-line fishery the catch in number per age group was available for the following years: 1972, 1973, 1974 and 1976, separated for each sex. Furthermore, some effort data for the years 1969-72 were available.

From the trawler fishery, only few data, from the German Democratic Republic,were available, i。e. length composition with an age/length key for 1971, and a length composition for 1975. These samples originated from the area where the major part of the trawl fishery took place, i.e. north and west of Iceland.

A third length composition for 1974 was also available. Unfortunately the length composition originated from the fishing grounds east of Iceland and here the immature fish are dominating in the catches, whereas on the fishing grounds north and west of Iceland, the mature fish dominate in the catches. It was, therefore, not possible to use the East Icelandic sample to split the trawl catches which mostly are taken west of Iceland。

A combination of the Icelandic samples from the long-line fishery and the samples from the trawl fishery is not possible, due to the fact that these two types of fishery, even if they are carried out in the same area, have a completely different size composition.
Furthermore, no catch figures from the United Kingdom and the U.SoS.R. were available for the year 1976, and the Group found it impossible to set the catch figures for 1976 , because the pattern of the fishery has changed very much.
5.4 Conclusions

The Working Group concluded that better data on the age composition must be available of the annual trawl catches from this stock before a VPA can be done. From the Group's experience with the analysis of
the Greenland halibut stock in Sub-areas I and II, it was felt that catch per unit effort data from the trawl fishery would also be very useful to have, if possible.

The Group found it impossible to estimate a TAC on the basis of the available data.
6. Reference

RICKER, W E, 1975. Computation and interpretation of biological statistics of fish populations. Bull.Fish.Res.Bd. Can.(191).
Greenland Halibut
Total nominal catch by main fishing areas (metric tons)

Year	Sub-area I	Division IIb	Division IIa	Division Va	Division Vb	Su.b-area XIV	Total catch
1966	1200	8726	16319	7515	478	40	34278
1967	2198	6712	15357	8955	442	200	33864
1968	2488	8935	14745	7501	647	189	34505
1969	8393	25010	10386	23135	906	280	68110
1970	4011	70523	14950	30001		3822	123307
1971	5413	62764	10857	15049	11	13913	108.007
1972	8549	18873	15633	10666	417	15389	-69 527
1973	5667	16081	8190	7386	358	12719	50401
1974	5251	24660	7852	7866	325	28089	74043
1975	6495	28511	3166	3308	560	19627	61667
$1976{ }^{\text {3 }}$	2241	28602	2201	2959	285	194	36482

Table 1

(Freliminary

Nominal catch (metric tons) in Sub-area I

Table 2 Greenland Halibut

Country	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976 ${ }^{\text {²) }}$
Faroe Islands		(1)	1)		-1)	-1)	I)	-	-		-
German Dem.Rep.		21	23)	$256{ }^{1}$	-	14^{1}		-	-	5	-
Germany, Fed. Rep.	-	13	-		-	-	-	25	22	6	1
Norway	209	1312	1488	689	1675	1951	3116	2947	2167	2160	1:703
Poland	-	-	-	5314	-	7	117	-	1	-	2)
UoKo (Engl。 \& Wales)			-1.)	-	-	1	949	995	732	550	- ${ }^{-1}$
U.S.SoR。	991)	852^{1}	977 ${ }^{\text {² }}$	2134	2336	3441	4366	1700	2329	3774	528
Total	1200	2198	2488	8393	4011	5413	8549	5667	5251	6495	2241

[^0]Table 3 Greenland Halibut

Country	1956	1967	1968	1969	1970	1971	1972	1.73:	1974	1975	1976 ${ }^{\text {² }}$
Faroe Islands									-	-	-
German Dem。Rep.	88^{1}	928 ${ }^{1}$	11)	5011)	2 131)	$353^{1)}$	$10691)$. 52	656	172	354
Germany, Fed. Rep.	7	25	$+$	$+$	-	3	3	$+\cdots$	49	41	14
Norway	16224	14404	14744	9885	6408	4974	11715	7861	6593	2265	1785
Poland	-	-	-		6291	5036	2643	137	499	66	31_{2}
U.K. (Engla \& Wales)	-	-	-	-	-	-	182	118	55	107	-2)
U.S.S.R.	-	-	-	-	76	491	21	22	-	515	17
Total	16319	15357	14745	10386	14950	10857	15633	8190	7852	3166	2201

Tabie 4 Greenland Halibut
Nominal catch (metric tons) Division IIb

Country	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	$1976{ }^{\text {² }}$)
Faroe Islands								3902			8601
German Dem. Rep. Germany, Fed. Rep.	24^{-1}	15 ${ }^{1}$	233^{1}	3031 41	$16598{ }^{1}$	2582^{1}	$563{ }^{1}$	3902	5258	8295	8601
Norway	1	I 812	6282	4282	$77 \overline{88}$	2541	$15 \overline{52}$	34 3181	17 31	47 433	$\begin{array}{r} 5 \\ 341 \end{array}$
Poland	-	-	-		12971	7234	5221	2003	4646	3579	3526
U.K. (Engl.\&Wales)				-	-	- -	131	122	79	74	2)
U.S.S.R.	87011	4885^{1}	$2420{ }^{1}$	17626	33166	50407	11806	6839	14629	16083	16129
Total	8726	6712	8935	25010	70523	62764	18873	16081	24660	28511	28602

[^1]Table 5 Greenland Halibut

Country	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	$1976^{\text {² }}$
Faroe Islands German Dem. Rep. Germany, Fed. Rep.	1121) 7	$9641)$ 38	2571	$37881)$ 71	$\left.18729^{1}\right)$	$2 \overline{949}^{-1}$ 3	(1633^{1} (${ }^{1}$	3954 59	5914 88	8472 94	8955 20
Norway Trawl catch	-	-	-	-	1638	2309	9656	10217	4656	1686	$\left.2000^{3}\right)$
Long-line catch	16434	17528	22514	14856	14233	7157	6327	3772	4135	3172	18293)
Poland	-	-	-	5314	19262	12277	7981	2140	5146	3645	
$\begin{aligned} & \text { U.K. (Engl.\& Wales) } \\ & \text { U.S.S.R. } \end{aligned}$	$96 \overline{92} 1)$	$57371)$	33971)		- 357	54 - 3 -	1262	$\begin{array}{ll}1 & 235 \\ 8 & 561\end{array}$	866	731 20	731 ${ }^{4}$
		57		19.76			16193	8561	16958	20372	6674
Total	26245	24267	26168	43789	89484	79034	43055	29938	37763	38172	33775

Nominal catch (metric tons) in Sub-areas I and II, 1966 - 1976
(Data for 1966 - 1975 from Bulletin Statistique)
Table 6 Greenland Halibut

[^2]1) from national statistics
2) no information available
3) assumed split between gears
4) no data. Estimated landings set equal to the 1975 landings in the assessments.
Table 7 Greenland Halibut

Country	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	$1976^{\text {¹ }}$
Faroe Islands German Dem. Rep.	$\left.{ }^{-1}\right)$	2181)	681)	$855^{-1)}$	-		-	-	7 147	6 91	-
German Dem, Rep. Germany, Fed. Rep.	476	218 224	68 579	855^{\prime} 51	-	11	405	287	147 163	91 437	285
Norway	-	-	-	-	-	-	-	-	-	7	-
Poland	-	-	-	-	-	-	-	9	-	18	-2)
U.K. (Engl.\& Waless	\square	-	-	-	-	-	12	61	8	$+$	$-2)$
U.S.S.R.	-	-	-	-	-	-	-	1	-	-	- 2
Total	478	442	647	906	-	11	417	358	325	560	285

[^3]Table 9. Greenland Halibut

Country	1966	1967	1968	1969	1970	1973:	$197 ?$	1973	1974	1975	1976 ${ }^{\text {² }}$
Faroe Islands				- 6651	4 7122 129	$13161)$	$1 \mathrm{I}_{180} 7$)	$\begin{array}{r}188 \\ \hline 126\end{array}$	488	8 16963	360
German Dem. Rep.	$2060{ }^{\text {(}}$	5282^{1}	$6315^{1)}$	86651	17939^{1}	68081	7487^{1}	9126	25801	16963	-
Germany, Fed.Rep.	5967	4314	2019	I 686	-	1163	1529	1120	1949	1388	1392
Greenland	-	-	2	+	-	2	3	4	2	1	-
Iceland	6	1	1	5880	7345	5020	4640	2118	2843	1212	1686
Norway	-	-	-	-	338	369	186	-	-	7	-
Poland	-	-	-	-	1859	8809	7878	3131	1542	1072	-2
UK (Eng. \& Wales)	-	-	-	-	-	-	2236	3710	2323	1209	-2)
U.S.S.R.	-	-	-	8000	2220	5486	1333	1066	1772	1634	-
Total	8033	9597	8337	24231	33823	28973	26473	20463	36280	23494	3438

Table 10. Greenland Halibut in Sub-Areas I and II
Effort and catch per unit effort in the trawl fishery

Year	USSR catch/hour trawling (tons)	Hours trawling (USSR effort)	Total effort in trawl fishery (raised to the total trawl catch)
1966	.64	15144	15330
1967	.58	9891	11619
1968	.54	6291	6767
1969	.44	44909	65757
1970	.44	80859	171025
1971	.38	142997	189150
1972	.31	5235	118977
1973	.30	28537	87220
1974	.32	52994	105087
1975	.31	65716	112903
1976)	.34	49041	93959

Table 11. Greenland Halibut in Sub-Areas I and II
Age composition of catches 1970-76 used as input data for Virtual Population Analysis (thousands of fish)

$\begin{aligned} & \text { Age } \\ & \text { Group } \end{aligned}$	1970	1971	1972	1973	1974	1975	1976
3						22	
4	34		461	19	276	334	93
5	526	80	1109	212	917	840	778
6	2792	4.486	3521	1117	2519	2337	2786
7	10464	12712	9605	3923	6204	6520	5417
8	18562	12283	6438	3515	3838	4118	4616
9	10034	6130	2775	2551	1834	2265	2667
10	6671	4339	1734	1919	1942	1654	1254
11	2517	2703	1368	1536	1622	1857	881
12	I 250	1660	1234	1127	1338	1536	1144
13	616	1044	675	716	734	1122	645
14	1104	300	200	251	531	600	552
15	266	123	40	70	137	270	238
16	15	20	40	56	79	98	97

Table 12. Greenland Halibut in Sub-Areas I and II
Fishing mortalities (F) calculated by VPA, 1970-76

Age Year	1970	1971	1972	1973	1974	1975	1976
3	.00	.00	.00	.00	.00	.00	.01
4	.00	.00	.01	.00	.00	.01	.02
5	.01	.00	.03	.00	.02	.01	.02
6	.06	.14	.14	.03	.07	.07	.05
7	.27	.37	.46	.21	.26	.24	.21
8	.59	.53	.31	.29	.32	.26	.25
9	.54	.37	.21	.18	.22	.30	.25
10	.58	.45	.16	.20	.19	.31	.25
11	.46	.46	.23	.20	.25	.27	.25
12	.46	.60	.37	.29	.25	.37	.25
13	.60	.83	.49	.36	.29	.33	.25
14	1.41	.63	.34	.32	.46	.39	.25
15	1.69	.52	.15	.18	.27	.42	.25
16	.50	.50	.30	.30	.30	.30	.25
\bar{F}_{8-13}	.54	.54	.30	.25	.25	.31	.25

Table 13. Greenland Halibut in Sub-Areas I and II
Estimates of stock size 1970-76 calculated by VPA (thousands of fish)

Year	1970	1971	1972	1973	1974	1975	1976		
3	56	827	65	318	61	270	97	972	57

Table 14. Greenland Halibut in Sub-Areas I and II
Parameters used in the catch prediction

Age group	Stock size 1978 $\left({ }^{\prime} 000\right)$	Present exploitation pattern	Average weight (kg)
3	$\left.68000^{1}\right)$.004	.190
4	$584801)$.008	.419
5	$\left.50234^{1}\right)$.08	.539
6	36339	.20	.700
7	29239	.84	1.025
8	35144	1.00	1.350
9	14365	1.00	2.167
10	10056	1.00	2.743
11	5810	1.00	3.085
12	2732	1.00	4.087
13	1920	1.00	4.684
14	2492	1.00	5.477
15	1.405	1.00	5.993
16	1203		

I) Based on average recruitment \bar{R}_{3} for yearclasses 1967-71

Table 15. Greenland Halibut in Sub-Areas I and II
The biomass of the recruited stock $B\left(\mathbb{N}_{4+}\right)$ and the biomass of the spawning stock $B\left(N g_{+}\right)$, estimated from the stock composition estimates of TPA. $B_{G M}\left(\mathbb{N}_{4+}\right)$ is the biomass of the recruited stock as estimated from the relation between the USSR catch per hour trawling and $B(4+)$ (see Figure 5)

Year	$\mathrm{B}\left(\mathrm{N}^{\prime}\right)$ $\mathrm{M+})$ $\times 10^{-3}$ tons	$\mathrm{B}\left(\mathrm{N}_{\left.\mathcal{G}_{+}\right)}\right.$ $\times 10^{-3}$ tons	$\mathrm{B}_{\mathrm{GM}}\left(\mathrm{N}_{4+}\right)$ $\times 10^{-3}$ tons
1965			446
1966			429
1967			393
1968			370
1969	314	127	311
1970	265	112	311
1971	232	112	276
1972	228	110	234
1973	249	(105)	229
1974	(251)	(99)	240
1975	(245)		234
1976			252

Catch (in tons)
ภuțMexł xnoч xəd (КxəपsTJ प्रSSn)
\qquad - 6
0.6
Greenland Halibut in Sub-areas I and II.
Total catch

- 15

$\frac{1}{1975}$
Figure 2. Greenland Halibut in Sub-areas I and II.

The age distribution in per mille in the USSR catches and the
Norwegian long-line catches in 1970 and 1971.
per cent
Figure 3. Greenland Halibut in Sub-areas I and II.
The age distribution in the USSR trawl catches of
Greenland Halibut in 1966.

Figure 4. Greenland Halibut in Sub-areas I and II. The relation between the mean fishing mortalities on 8 to 13 year old Greenland Halibut in Sub-areas I and II and the total trawl effort in thousand hours trawling. The $\widehat{\mathrm{F}}_{8}$ values are estimated from a preliminary run of VPA.for 8 - 13 the years 1970 to 1976 , and the relation is used to estimate the fishing mortalities in 1976 in the final VPA run on the basis of the total trawl effort on that year.
\bar{F}_{8-13}

Figure 5. Greenland Halibut in Sub-areas I and II. The relation between the biomass of the recruited stock (4+) estimated from the VPA and the catch per hour trawling in the USSR trawl fishery. The line is the geometric mean regression line (Ricker, 1975, p.351).

Figure 6. Greenland Halibut in Sub-areas I and II. Yield per recruit under the present exploitation pattern.

[^0]: F) preliminary

 1) from national statistics
 2) no information available
[^1]: ㅍ) preliminary

 1) from national statistics
 2) no information available
[^2]: \#) preliminary

[^3]: 7) preliminary
 l)from national statistics
 8) no information available
