CoM. 1973/E:3
Demersal Fish (Northern) Cttee.

REPORT OF TEE NORTH - EAST ARCTIC FISHERIES WORKING GROUP
Charlottenlund Slot, 12-17 February 1973
Contents Page

1. Participation 1
2. Terms of Reference 1
3. Preamble 1
4. Status of the Fisheries 2
(i) Cod 2
(ii) Haddock 3
5. Fishing Mortality 3
6. Growth 4
7. Recruitment 4
8. Estimates of Future Catches 5
9. Mesh Change Assessments 6
(i) Arcto-Nowwegian Cod and Haddock 6
(ii) Redfish Selection 8
(iii) Iceland Cod 8
10. The Optimum Size of the Arete Norwegian Cod Spawning Stock 9
11. Polar Cod 11
References 12
Tables 1 - 20 13
Figure 1 25
APPENDIX "Stock and recruitment relationship in the Noxth-Fast Arctic cod stock and the implications for management of the stock ${ }^{n 9}$, by D J Garrod and B W Jones 26
[^0]
1. Participation

Mre A Hien, Chairman	Norway
Mre B W Jones	U.K.
Dr A Meyer	Germany ($\mathrm{F}_{0} \mathrm{H}_{0}$) and $\mathrm{I}_{0} \mathrm{Con}_{0} \mathrm{~N}_{0} A_{0} \mathrm{~F}_{0}$
Dr A I Treschev	U.SoS.Re

2. Terms of Reference

At the Statutory Meeting of ICES in 1972 the following Resolution (CoResol972/2:15) was adopted:
"It was decided, that:
the North-East Arctic Fisheries Working Group will meet $12-17$ February 1973 at Charlottenlund with Nre A Frlea as Chairman to:
(a) continue assessments of the Arctomorwegian cod and haddock stocks.
(b) consider particularly the effects of increase in mesh size on those speries fox which sufficient data exist.
(c) consider the possibility of an estimation of the optimum size of the spawhing stock of Arctownowegiax cod, and
(d) include in its study the polar cod, owing to its increasing importance for the Ifsheries in the Barentio Sea.
(e) Icelandic scientists will be invited to participate in the consideration of Item (b) above。
Icelandic scientists had been invited to participate in the consideration of Item b) abore, but no one was able to attend the Meeting.

3. Freamble

In order that the Working Group can do worthwile work, it needs reliable data, especially when predictions and recommendations for future fisheries have to be given. Finml data for 1971 catches showed considerable differences from the provisional data on which the 1972 Report was based. The corrections concerned mainly the U.S.S.f. data as well as the data for rother Countries (France, DDR. Poland and Facroes). Due to the fact that these consntries fish mainly in the nonsparing areas (I and IIb), an exror in the weight of the landings can lead to an ever larger errox in the numbers of fish in each age group. This is particum larly so in the case of the recmiting year classes, and any error is carried all through subsequent calculations.

Fren less basit naterol for 1972 wess prosented to this Meeting, and it was also more wneliable. The Jobos. R. was able to present only yexy preliminamy data concemang catones an ood and haddock and ase composition data of the Soviet cod and hadock handings were not avaliable Fumber, no catch figures from "Other Countries" could be obtaned.

Bor the meetings of this Working Grove it is especially important to have avail. able precise information concemning the year classes entering the fishery as a basis for the assessments for mecommendetions for future management of the fisherfe

On the bats of recent experience the Vorking crous is obliged to make the following strong recommendation: in future, this Working Group should meet only When sufixaient data ge available.

4. Status of the Fisheries

(i) Cod (Tables I 4)

Provisional ingures ror the landings in 1972 were given by Nowway, UoKo and the Federal Repubise of Germeny Uos.S.R was able to give only some indications of the wise of their landings for 1972 . No data ios other comntries were available. but estimates of thedr landings have beex prepared on the assumption that they hare changed in the same propoction as U. K. Jaxdinga. The total landings in Subwarea I and Division IIb are, thereiome, all vexy preliminamy but Lavidnge in Division Ita are reliable.

The premiminary ingures for the landinge in 1971 gimen in the last Report had to be insweased bu about 88000 tons Thas wes dre meinis to the poor initial
 whioh 48% wes teven in Diviston Hia bccorommg to the pery preliminery figures total landimsa in 1972 decreased to 643000 toms. The Nomay coast fishery remained on much the weme Ievel ws im 197 l , being 350000 tore compared with 336000 toms in 1971 The Tery strowg 2963 and 1964 yeac elasses provided high catches again in the Nowwy coast fishery. The pinhexy at Bear Island and in the Barents Sea was relatively poorg owins to the series or weak year classes 1965-68, Howerex. the recmuting feam elaas 1969 appaxatig made upa biggex pert of the carches in these areas then expected.

Fishimg efrort in the Berents Sea/Bear Iriand fiahery pppeaxs to have been relatively stable during reaent pears, but the fishiug exfort in the Nomay coast inshomp hes increased to some extent in 1972.

The catch per unit effort in the Barents Sea/Bear Island and Norway coast trawl fishery has decreased year by year since 1970. However, an increase in catch per unit effort has been observed in the Norway coast nonotrawling fishery during the period 1968-71.
(ii) Haddock (Tables 5-7)

Provisional figures for total landings in 1971, given in the 1972 Report. were too high. This was caused by an overestimate of the preliminary figures for the Barents Sea. According to the preliminary figures for 1972 the total landings may have been as much as 166000 tons, which is more than double the 1971 landings. Overall fishing effort deployed on haddock is thought not to have changed much since 1969. Catch per unit effort in 1972 in the Barents Sea was, therefore, about double that in 1971, while it decreased by 28% in Division IlIa.

5. Fishing Mortality (Tables 8-9)

Provisional data for the age composition of the catches in 1972 were available only for Norway, U.K. and Federal Republic of Germany No information of the age composition of the $U_{0} S_{s} S_{3} R$. catches could be made available at this time of the year. In an attempt to construct an age composition of the total 1972 landings the To K . age composition for Subarea I and Division II was applied to landings of the U.S.S.R. and "Other Countries ${ }^{\text {PB }}$ Since the Soviet landings from these areas normally make up a great proportion of the total catch, it is important for the assessments that reliable U.S.S.R. data should be available It mast be appreciated that the age composition of the total landings used in the assessments could be unreliable, and particularly so for the estimates of catches of the 1969 year classes of both cod and haddock, which are critically important to the assessment. As a result estimates of the fishing mortality and the stock wise in the recent years are very uncertain o

A number of approximate methods have been used to estimate fishing mortality in the most recent gear. Estimates based on the trend in total mortality between years determined from catch per unit effort data were not valid this yean because the pattern of fishing appeared to have changed in 1972, compared With the pwetions year. It appeased that T.K. trawlers may have concentrated to some extent on the recruiting 1969 gear class of cod, and catch rates on older age groups appear artificially low.

It was considered that the values of fishing momelity ior fully exploited age groups assumed at the last Meethag for 1971 were too Iow but the Group thought there had probably been inttle change from 2971 to 1972. Accordingly the initial ralues chosen to inithate the Virtual Population Analysis for 1972 were increased somewhat compared with those used last year.

Updated estimates of fishing moxtalities for the Jears $1968-1971$ are lower than given in the 1972 Report. This is to some extent caused by correction introduced in the Viptual Population Analysis to compensate for the fact that the recent year clesses in the stock have not completely passed through the fishery mhis bias in the inshing mortalities gave estimates of stock size Which were too small, with a consequent underestimate of predicted catches. At least some of the earlier discrepancies between the predicted catoh, and that subsequently recorded, can be explained on this basis.
6. Growth (Table 10)

Estimates of mean weight at age of cod have been pevised. The nevi data have been calculated from weight at age data determined separately for landings of UoSosore Federal Republic or Gemmay, Norway and the Uoro In some cases Iength data were conrerted to age using the relationship W = $1^{3} \times 9 \times 10^{-6}$ 。 An overall average was then calculated weighted by each nation s catch of each age group.
7. Recruitment (Tables 11 and 12)

For cod the abundance ostimetes of the $1965-1968$ year olasses derived from comercial lendings heve confrmed eaxilem estimates based upon prearecruit surveys. They mre 91 pery weak The 1969 yeor elass was eatimated in 1972 to be belom aperage. The most striking point coming ont of the VoPoAo is the Tery high estimate oif the size of the 2969 year class preseat at the beginning of 1972. The present estimate or the size of the 1969 year class is four times that obtained at the last Meeting and is of the same magnitude as tbe 1964 Jear class at the saue age Hososoroyounc insh survegs assessed the 1969 year class as very poor. However, the Ongroup suryey repoxt indicated that this year class was only slightly less abundant than the 1963 and 1964 year olasses. It is posmible that previons estrmatea of the size of this year class adopted
by the Working Group may hate been too low Howevar. the current estimates are critically dependent on the number of the 1969 year class taken in the U. S. S.R. fishery in 1972, and this is still unknown The 1970 year class is still expected to be rich. Based on the $\mathrm{J}_{0} \mathrm{Sa}_{\mathrm{S}} \mathrm{F}$. young fish survey the 1971 and 1972 Jear classes are estimated to be below average and poor, respectively, while they appeared from the 0 -group surveys to be above average.

For haddock the 1969 year class appears in the present study to be stronger than expected and almost double the estimates given in 1972. This depends, as for cod. very mrich on the reliability of the age composition of the landings in 1972. Howerer, the 0-group survey and the U.SoSoRo young finsh surveys both indicated it to be very abundant. The abuadance of the 1970 year class is probably a little less than the 1969 year class. The 1971 year class is less abundant than the two preceding ones, although still above average, but the 1972 year class appears to be of lower abundance than the 1969-1971 Jear classes.

8. Estimates of future catches (Table 13)

Estimates of catches have been prepared on the basis of the material availe able at the Meeting and on the assumption thet the fishing mortality continues at the same level as estimated for 1972 (for fully recurted age groups). The expected catches lave been divided between the Suboriea I/ Division IIb and the Division IIa fisheries on the basis of the matios of catches of the difiereat age groups in the megions in the period 1967 m 1971. These estimates for catches im Division ITa are not precise, but they are thought to give a realistic trend.

Estimates of future catches of haddock have been prepared on the assumption that fishing moxtality remains at its $19721 e r e l$ in 1973 and 19740 Since the stock of older age groups is so small, the future yield of haddock will be highly dependent on the abundance of newly recruiting age groups and especially the 1969 year class.

9. Mesh Change Assessments

Mesh assessuents were made for Northmest Arotis cod and hadook, but it was not considered possible to do this for redinsh or saithe because of Iack of data at the Meetings It is hoped that an assessment for aaithe will be made by the Saithe Worinins Group. Reafish assessments will be prepared by Dr A I Treschev. For the cod fishery dt Iceland an assessment was prepared for the Meeting by the Chairman of the Northowestern Working Group.
(i) Arcto-Nompegian Cod and Haddock (Tables 14-15)

The method of assessment adopted was the same as that previously used at the 1969 Working Group Meeting. The previous assessments bad been done using a selection factor of 3.7 for cod (nanila, without chafer) although there were some data to indicate that a lower value might have been more appropriate, The present Working Group had the benefit of advice from Dr H J Bohl, who suggested that the appropriate selection factors would be 3.2 for manila and 3.5 for polyamide for both cod and haddock. These values differ from the average values given in ICHS Coop.Res.Report (No.25. 1971) so a range of selection factors is given in Table 140 Yield per rearuit was eqloulated for ases at first eapture ranging from 2.5 to 5 years. Growth data for cod in terms of length at age data correspond to the weight gt age date given in Table 10. Faddock mean length at gae data were based on $U_{8} S_{s} S_{s} R_{\text {B }}$ observathons. The relationship of fishing mortality with age used was that which was thought to represent the likely levels in the next two or three years. These data are summarised in Table 14o Yield per pecruit for the total fishery was estimated and this was then subdivided to give estimates of yield per recroit in the Division Ila fishery and in the Sub-area I and Diviston IIb fisheries. This division was made on the basis of the average proportion (1967-1971) of the catch of each age group taken in the IIa fishery. Mature stock biomass was also calculated.

The results of the assessments are given in Table 15 and Figure le For haddock the estimated yields per recruit ower the range of ages at first capture agree closely with the results of the 1969 assessment which shows increasing gains with increasing age at first captrwe over the whole range. Catches in IIa would benefit more than catches in I and IIb if the size at first capture was to be increased.

Substantial increases to the mature stook size would be expected to xesult if size at inst capture was mereased to the upper limit used in the calculation.

For cod the calculated yielas per recruit are slightly higher than in the previous assessment and there is no sienificant change in yield over the range of age at first eapture. Mature stoci biomass per

The results of this method of assessment will depend to a large extent ou the values that are adopted for the fishing mortality coefficients. If the fishing mortality on the young age groups is small in relation to that on the older age groups, the gains likely to result from an increase in mesh size will be less than if the mortality on the younger age groups was relatively high. This is illustrated to some extent in the present examples where the fishing mortality on the younger age groups of hadack is relatively higher than in the case for cod, and the gains for increased mesh sizes are correspondingly larger. From the present assessments it must be concluded that, provided the values of fishing mortality used correctly represent the future fishery, an increase in mesh size could not be expected to give significant increases in yield per recruit except in the oase of hadock where, if the mesh was incressed to the upper limit used in the present study ($156-174 \mathrm{~mm}$ polyamide) an increase in yield of about 16% could result. With the present assessment the main gain from a mesh wise zmrrewse would be an increase in the size of the mature stock. DLfseremes betreen this assessment and the one made at the 1969 Meeting reswlt from the different values of fishing mortality adopted. Also in the present assessment the mesh siwe comesponding to the Termous agea at first outure differ from the eariler report because of the differing selection factors used.

The computer simulation in the Appendix paper also gives some indications of the benefits which might result from mesh increases to 145 mm and 160 mm . In this case the expected gains are greater than in the above assesment, but the simulation used a different pelationship of fishing momelity on age. The relatively higher mortality on the younger age gwaps in the simulation would be expected to give greater benefits from increases in mesh gixa.

(ii) Redfish Selection

Treschev's method gives a value for the selection factor for redfish of 2.9 for double manila. However, Bohl (1964) has shown that the selection factor decreases with increasing size of catch, and that in big catches there is nearly no selection.

The meshing of redfish is a further problem. Bohl found in mesh selection experiments on East Greenland rediish (Sebastes marinus) that:
a) the number of meshed redifish increases with the size of the catch, and
b) the number of meshed redfish depends on the mesh size and the length composition in the catches.

There is no meshing of redfish in the codends with very small mesh sizes. However, the number of meshed redfish increases with increasing mesh size up to the size which corresponds to the most frequent length. If the mesh size is further increased the number of meshed fish decreases. Soviet investigations (Treschev, 1964) have shown, however, that meshing of redfish takes place mainly during the hauling of the trawl.

If the findings off East Greenland bold true for all other regions where there is fishing for Sebastes marinus it can be deduced from Tables 16 and 17 that the meshing in Division IIa is at its greatest with the mesh size now in force and a modal length of Sebastes marinus of 40.6 cm 。 Further increases in mesh sizes in Division IIa would therefore decrease the rate of meshing. In all other areas an increase in mesh size will tend to increase somewhat the rate of meshings Nothing can be said about the alteration of the rate of meshing of Sebastes mentella when the mesh size is increased.

(iii) Iceland Cod (Table 18)

Dr A Schumacher (cermany), the Chairman of the North-Western Working Group, presented to the Meeting a mesh assessment on Iceland cod for an increase in mesh size from 130 mm to 140 mm (Table 18) 。 These assessments (Gulland, 1961) based on the length composition of the 1971 and the length weight relation calculated from Icelandic data show that the English fishery, which mostly is engaged in the nonospawning fishery, would have the highest immediate losses (7.2%) and would also suffer a longmterm loss (2% or less). All other fisheries, especially the Icelandic spawning
fishery, would have a long-term gain of 5.5 to 7.1%. It is known that mature Fast Greenland cod join the Icelandic spowning stock from year to year in vaxying proportionse These immigrants could not be eliminated from the lengit composition of the total spawning stock off Iceland. Therefore, the longoterm ginin in the catches of cod of Icelandic orisin is greater than estimated (Table 18)。 In 1971 the proportion of Eastafreenland immigrants in the total spawning stock at Ieeland was relatively high and thus tended to underestimate the longeterm gain.

An increase in mesh size from 130 to 140 mm in the Ieelandic area would, in the loag term, result in an increase in the total interm national output of the Icelandic stock of cod, but the allocation of the total catch between the various fisheries would be changed.
10. The Optimum Size of the Areto-Norwesian Cod Spawning Stock

In its 1972 Report the Working Group pointed out that the present size of the spaming stock is vexy low, and is expected to decine still further into the mid=1970's. It was considered that when the spawning stock is at a low level there are increased risks of poor recruitmet. The Group recomended that steps should be taken to reduce these risks. So fra no progress has been made in this direction.

At the present meeting the Group was asked to estimate the optimum size of the Arcto-Nowegian cod spawing stock a paper on this aublect was prepared in advance of the meeting by D J Gaxpod and BW Jones of the Fisheries I basis ior discussion. This paper entitled "Stock and recruitment relationship in the Northomast Arctic cod stock and the implications for management of the stock is included as an Appendix to this Report. Fisure 1 of the Appendix shows clearly how low the mature stock size has become compared with earlier years, and by 1976 it is expected to be only $1 / 40$ of the matrase stock size observed in the mid-1940. The stock/recruitment relationship which was fitted to the observed data indicates that the optiman stock size would be equiralent to that which prevailed in the stock in the early 1950\% wher, qucording to the fitted stock/recruytment relationship, an awerage of about 1200 milion 3 -yearoold recruits might be
expected，although the normel fluctuations in year class strength about this mean value must be expected．If the spawning stock was allowed to build up to the optimum size an average annual yield from the fishery in excess of 800000 tons could be expected while maintaining the stock in equilibrium． The fishing mortality required to harvest the equilibrium catch while maintaining the stock size at the optimum level has been determined in terms of the total fishing mortality（ ΣF ）on each cohort of fish through out its life up to the mean age of the mature stock．For the optimum stock size this has been estimated as $\Sigma F=1$ 。 8 。 If the selection pattern in the fishery is known，ΣF can be expressed in terms of annual fishing mortality on the fully recruited age groups．The selection pattern used at the 1972 Working Group meeting was as follows：

Age	Proportion of F on fully recruited age groups
3	030
4	060
5	.90
6	1.00

For this selection pattern $\Sigma F=1.8$ corresponds to an annual fishing mortality rate on the fully exploited age groups of $F=0.26$ ．The average annual yield in these circumstances would be expected to be just over 800000 tons．It is probable that this selection pattern is not the optimum one for the fishery，and it is likely that even greater yields could be obtained if the selection pattern was changed，for example by reducing the fishing mortality on the younger age groups．If ΣF is maintained for a long period at a value greater than $\Sigma F=2.5$（equivalent to an annual $F=0.43$ with the selection pattern given），the stock would be expected to decline towards extinction．

The Appendix paper includes a computer simulation which provides some indication of the yields which might be expected from the stock from 1971 onwards if fished at a range of values of F which were held constant for 25 years．The selection pattern used in the simulation is that given above。 The recuritment data used were the year class strength estimates given in the 1972 Working Group Keport up to the 1971 year class．Subsequently recruitment for the model is determined from the mature stock size using the stock／ recruitment relationship．Again the results indicate that for annual fishing mortality rates in excess of $F=0.4$ the longeterm trend is one of declining

- 21 -
yields. At lower Talues of \bar{F} the Field tends to increase. No attempt was made to estimate the size of the matume stock in each gear of the simulation. It is possible that for some values of this might increase above the optimum. It is Iikely that a constant lov Ievel of fishing mortality mould not give the greatest possible jield or the most rapid rate or recovery of the fishery. Better yields and a more rapid recovery rate might be obtained with a different selection pattem and/or variation of fishing mortality according to year class strengith.

With the present very low stock size and the prospect of further decline before some recovery can be expected, the Working Group once agrain wishes to stress the increased risks of poor recruitment. The Group emphasiges the need for immediate measumes designed to permit the spawning stock to increase. At the present time thexe is the prospect or a series of above average Jear classes recruiting to the iisheryo The 1969 year class may be better than earlier estimetes indicated, and the 1970 and 1971 year classes are both expected to be good. A small sacripice at the present time, by reducing the amount of jishing on these recruiting year classes at the youngest ages, could make a significant contribution to the future size of the spawning stock and wonld also be expected to increase the overall jield from these year classes.

11. Polar Cod (Tables 19 and 20)

The Poler cod, Boreosadus sadde is a circumpolar specieso Besides ita commeroinl importance, the species fomm an important link in the food web in Arctic waters. It is distributed in the eastern and northern parts of the Barents Sea and around Spitsbergen. The distrobution of the O-Group Polar cod suggests thet there are two separated spawning areas in the Barents Sea (Benio et i. 1970). One area is situated in the southo eastern part of the Sea. The exact locality of the other one is not knom, but it may be to the east of Spitsbergen.

The following observations relate to the southeastern Barents Sea. The Polar cod spaw for the first time at $3=4$ yeara old. whey are first exploited at an age of 2 years, but the main pert of the eatch is taken as 4 and 5 Fear olds (Table 19). On the basis of date from a Norvegian echo surpey in the easterm Barents Sea in August 1972, the stock was estimated to be about 4 million tons. However. Polar cod were also preaent outside the area investigated and the stock was definitely greater than 5 militon tons (Gjoswter, 1973).

The Polar cod have been subject to increasing exploitation during the last years by $U_{9} S_{s} S_{0} R_{0}$ end Nompay The nain part of the catches is taken by bottom traml and only small quantities by purse seine and pelagic trawl．The fishery takes place from April to December，but the main season is in November and December．The catch per bour trawling for all categories of Soviet trawlers was 3.4 tons in 1972.

References

 NIZOVTSEV，$G_{0} P_{s}$ ，OLSEN，S_{0} and SEIIVERSTOV，AOS．1970。 Distribution and Abundsnce of OGroup Fish in the Barents Sea in Augqstoseptember $1965=1968^{57}$ ICES COOpoRes．Repos．Ser．A， No．18：35－47．

BOHL，H．J．1962．Untersuchungen Miber die Selektivitait von Grundschleppo netzen in der Rotbarschfischerei unter ostgronlando Protokolle zur Fischereitechnik， $35(8): 34-47$ 。

GJDSMTER，1973．Freliminamy results of Norwegian Polar cod investigations 1970－1972．（Manusciopt）。

ICES．1971．Report of the ICES／ICNAF Working Groups on Selectivity Analysis．ICES CoopoResoRepo，SeroA，No．25：1－144．

GULLAND．J．A．1961．The estimation of the effect on catches of changes in gear selectivity Joume du Conseil intornploroMer，24（2）：204－140

TRESCHEV：A．Lo，1964．Some date on the effect of meshing and chafer on trawl selectivity in relation to redinsho MeetointocommoNW Atlant。 Fishe 1964, Doc． 88 （mimeo）．

Table 1. COD. Total nominal catch by fishing areas (metric tons).

Year	Sub-area I	Division IIb	Division IIa	Total
1960	380962	94599	155116	630677
1961	409694	222451	149122	781267
1962	548621	222611	138396	909628
1963	547469	113707	116924	778100
1964	202566	126029	108803	437398
1965	241489	103407	99855	444751
1966	292244	56568	134664	483476
1967	322781	121050	128729	572560
1968	642449	268908	162472	1073829
1969	670158	266117	254985	1191260
1970	551015	85423	240150	876588
$I 971$	311788	56907	336269	704964
1972^{x}	244287	47856	350497	642640

Table 2. COD. Nominal catch (in metric tons) by countries
(Sub-area I and Divisions IIa and IIb combined).

Year	England	Germany	Norway	U.S.S.R.	Others	Total	Coastal Cod Norway
1960	141175	9472	231997	213400	34633	630677	43092
1961	157909	8129	268377	325780	21072	781267	32359
1962	174914	6503	225615	476760	25836	909628	29596
1963	129779	4223	205056	417964	21078	778100	40405
1964	94549	3202	149878	180550	9219	437398	46100
1965	89874	3670	197085	152780	1342	444751	23786
1966	103012	4284	203792	169300	3088	483476	27800
1967	87008	3632	218910	262340	670	572560	33102
1968	140054	1073	255611	676758	333	1073829	47212
1969	231066	5434	305241	612215	37287	1191260	52416
1970	179562	9451	377606	276632	33337	876588	49000
1971	78160	9726	407044	144.802	65 232	704964	
$1972^{\text {x. }}$	55633	3382	392525	142000	49100	642640	

x) Provisional figures.

Note: Estimates of coastal cod landed by Norway
in 1971 and 1972 are not complete.
Table 3. COD. Estimates of total international fishing effort in

Year	Submarea I				Division IIb				Division ILa			
	National Effort UK ${ }^{1}$ USSR ${ }^{2}$		Total International Fffort		National Effort		Total International Effort		National Effort		Total International Effort	
			UK Units	USSR Units	UK	USSR	पK Units	USSR	UK	Norway ${ }^{3}$)	$\begin{aligned} & \text { UK } \\ & \text { Units } \end{aligned}$	Norwegian Units
1960	95	43	512	91	42	11	97	34	39	10	252	26
1961	94	53	518	109	51	22	173	39	30	9	255	20
1962	93	61	590	94	51	16	168	29	34.	10	210	21
2963	78	62	635	91	45	9	120	22	29	7	176	19
1964	42	30	352	55	49	17	136	32	36	6	157	17
1965	42	25	367	62	37	11	95	4	33	5	150	: 16
1966	63	33	387	69	23.	16	71	29	46	5	199	; 15
1967	51	30	395	61	10	12	110	13	50	5	261	22
1968	86	45	584	67	9	24	151	26	52	6	288	15
1969	115	45	593	72	24	19	197	26	73	5	272	18
1970	122	35	573	77	24	15	122	27	55	5	346	16
1971	82	23	576	74	4	27	79	34	48	5	523	1.4
$1972{ }^{(2 x)}$	73	20	546	49	8	25	116	30	35	6	623	21

> 1) Hours fishing x everage tonnage $x 10^{-6}=$ millions of ton-hours.
> 2) Hours fishing (catch/catch per hour fishing) $\times 10^{-4}$
> 3) Number of men fishing at Lofoten $\times 10^{-3}$
> x) Provisional figures.

Table 4. COD. Catch per unit effort (metric tons, round fresh).

Year	Sub-area I		Division ITb		Division ITa	
	UK1)	USSEr ${ }^{2}$	UK	USSR	UK	Norway3)
1960	0.075	0.42	0.105	0.31	0.067	3.0
1961	0.079	0.38	0.129	0.44	0.058	3.7
1962	0.092	0.59	0.133	0.74	0.066	4.0
1963	0.085	0.60	0.098	0.55	0.066	3.1
1964	0.058	0.37	0.092	0.39	0.070	4.8
1965	0.066	0.39	0.109	0.49	0.066	2.9
1966	0.074	0.42	0.078	0.19	0.067	4.0
1967	0.081	0.53	0.106	0.87	0.052	3.5
1968	0.110	1.09	0.173	1.21	0.056	5.1
1969	0.113	1.00	0.135	1.17	0.094	5.9
1970	0.100	0.80	0.100	0.80	0.056	6.4
1971	0.056	0.43	0.071	0.16	0.062	10.6
1972	0.044	0.50	0.043	0.16	0.056	

1) UK data - tons per 100 ton-hours fishing
2) USSR data - tons per hour fishing
3) Norwegian data - tons per gill net boat week at Lofoten.

Table 5. FADDOCKTotal nominal catch by fishing areas (metric tons).

Year	Sub-area I	Division IIb	Division IIa	Total
1960	125675	$I 854$	27925	155454
$I 961$	165165	2427	25642	193234
$I 962$	160972	1727	25189	187888
$I 963$	124774	939	21031	146744
$I 964$	79056	$I 109$	18735	98900
$I 965$	98505	939	18640	118079
$I 966$	124115	1614	34892	160621
$I 967$	108066	440	27980	136486
$I 968$	140970	725	40031	181726
$I 969$	88960	1341	40208	130509
$I 970$	59493	497	26611	86601
$I 971$	56300	435	21567	78302
$I 972^{\text {x }}$	145620	3165	17432	166217.

x) Provisional figure.

Table 6. EADDOCK. Hominal catch (in metric tons) by countries (Sub-area I and Divisions IIa and IIb combined).

Year	England	Germeny	Noxway	U.S.S.R.	Others	Total	Coastal Haddock Moxway
1960	45469	5597	47263	57025	100	155454	5943
1961	39625	6304	60862	85345	1098	193234	4031
1962	37486	2895	54567	91940	1000	187888	3293
1963	19809	2554	59.955	63526	900	146744	4285
1964	14653	1482	38695	43870	200	98900	6460
1965	14314	1568	60447	41750	-	118079	6217
1966	27723	2098	82090	48710	-	160621	5223
1967	24158	1705	51954	57346	1323	136486	3181
1968	. 40102	1867	64076	75654	27	181726	2766
1969	37234	1490	67549	24211	27	130509	2120
1970	20344	2119	36716	26802	620	86601	
1971	15605	896	45715	15778	308	78302	
1972x)	16792	1656	46169	101000	600	166217	

x) Provisional figures.

Table 7. HADDOCK. Gatch per unit effort and estimated total international effort.

Year	Catch per Effort. (UK) Kitos/100 ton-hours			Estimatea Total International Effort in UK Units $\frac{\text { Total eatch in tons } x 10^{-6}}{\text { tons/100 ton-hours Sub-area I }}$
	$\underset{I}{\text { Sub-area }}$	Divisions		
		IIa	IIb	
1960	33	34	2.8	4.7
1961	29	36	3.3	6.7
1962	23	42	2.5	8.2
1963	13	33	0.9	11.2
1964	18	18.	1.6	5.5
1965	18	18	2.0	6.6
1966	17	34	2.8	9.4
1967	18	25	2.4	7.6
1968	19	50	1.0	9.6
1969	13	42	2.0	10.0
1970	7	31	1.0	12.4
1971	8	25	3.0	9.8
1972	15	18	22.0	11.1

Table 8. Fishing mortality 1968-1972. Estimated by Virtual Population Analysis.

	COD ($\mathrm{M}=0.30$)					HADDOCK ($\mathrm{M}=0.20$)				
	1968	1969	1970	1971	1972	1968	1969	1970	1971	1972
3	0.02	0.02	0.04	0.00	0.06	0.06	0.18	0.16	0.04	0.20
4	0.17	0.22	0.12	0.14	0.22	0.43	0.23	0.48	0.26	0.39
5	0.33	0.41	0.38	0.25	0.32	0.62	0.57	0.36	0.50	0.62
6	0.41	0.45	0.45	0.29	0.38	0.50	0.66	0.62	0.30	0.65
7	0.35	0.69	0.48	0.45	0.50	0.80	0.46	0.65	0.60	0.65
8	0.48	0.83	0.73	0.66	0.63	0.73	0.64	0.49	0.56	0.65
9	0.70	1.10	0.83	0.93	0.63	0.47	0.51	0.57	0.40	0.65
10	0.68	0.89	1.03	0.74	0.63	0.58	0.43	0.45	0.69	0.65
11	0.50	1.12	0.62	0.92	0.63	0.41	0.26	0.42	0.44	0.65
12	0.26	0.76	0.48	0.54	0.63	1.05	0.30	0.25	0.70	0.65
13	0.57	0.48	0.50	0.81	0.63	0.20	0.35	0.73	0.44	0.65
14	0.42	0.22	0.32	. 0.61	0.63	0.72	0.03	1.05	0.11	0.65
15	0.63	0.63	0.63	0.63	0.63	0.65	0.65	0.65	0.65	0.65

Table 9. Stock size 1968-1972 (Millions of fish).

Age Year	COD ($M=0.30)$					FADDOCK ($\mathrm{M}=0.20$)				
	1968	1969	1970	1971	1972	1968	1969	1970	1971	1972
3	198	135	180	376	1691	13	10	1.67	59	602
4	1305	1.43	98	128	278	210	10	7	116	46
5	1087	818	85	64	82	97	111	7	4	73
6	363	577	402	43	37	22	43	51	4	2
7	103	178	274	190	24	31	11	18	23	2
8	49	53	66	126	90	11	11	6	8	10
9	26	23	17	2.4	48	2	4	5	3	4
10	8	10	6	6	7	0	1	2	2	2
11	2	3	3	1	2		0	1.	1	1
12	1	1	1	1	0			\bigcirc	0	1
13	0	0	0	0	1					0
14	0				0					
15										

Table 10. Mean weight at age data for $C O D$ and HADDOCK used in the assessments in this Report.

	Mean Weight in Kilos	
Age	Cod	Haddock
2	0.45	0.25
3	0.65	0.41
4	1.00	0.62
5	1.55	0.97
6	2.35	1.59
7	3.45	2.33
8	4.70	2.72
9	6.17	3.56
10	7.70	4.41
11	9.25	5.40
12	10.85	7.70
13	12.50	8.40
14	13.90	-
15	15.00	

Table 11. COD. Arctic Cod. Year class strength. The number per hour fishing for U.S.S.R. young fish survey is the mean of 2 - and 3-year old fish.

Year class	USSR Survey, No/hour of fishing			USSR Assessment	0-Group Survey	Virtual Population No. of 3 year olds 10^{-6}
	Subarea I	Div. IIb	Mean			
1956	12	24	15	-average		914
1957	10	15	11	-average		I 028
1958	10	20	14	taverage		1233
1959	12	13	12	taverage		1034
1960	6	13	10	poor		693
1961	2	2	2	poor		513
1962	6	5	5	poor		1117
1963	14	84	46	rich		2111
1964	51	39	45	rich		1458
1965	<1	<1	<1	very poor	very low	198
1956	<1	<1	<1	very poor	abundance	135
1967	1	<1	<1	very poor	below average	180
1968	4	<1		very poor	V. Iow abundan	
$1969(1+2)$) 3	1	2	very	x)	(19691
	23	64	44	rich	$(x) \text {. }$	(1700)
$1 \begin{aligned} & 1971 \\ & 1972 \end{aligned}$			8 4	-average	x \times (${ }^{(1)}$	(1 200)
-972			4	poor	x $x \times x$)	(1 000)

x) Abundance may not be so abundant as the 1963 and 1964 year classes.
XX) More abundant than the 1964-69 year classes.
xxx) Above average abundance.
xxxx) Above average abundance.

Table 12. HADDCCK. Arctic Haddock. Year class strength. The nuaber per hour fishing for U.S.S.R. Young fish survey is the mean of 2- and 3-year old fish.

Year class	USSR Survey ```#o. of fish/hour fish- ing Sub-area I```		$\begin{aligned} & 1 \text { Popu } \\ & 3 \text {-yea } \end{aligned}$
1956	23		326
1957	12		241
1958	4		109
1959	25		239
1960	56		270
1961	42		307
1962	3		93
1963	10		223
1964	14		255
1965	<1	Very low abundance	13
1966	<1	Fery low abundance	10
1967	10	Average abundance	167
1968	8	Vexy low abundance	59
$1969(1+2)$	50	Most abundant recorded in the pexiod 1965-69	
1970(1)	(10)	$\left\{\begin{array}{l} \text { Probably lower abundance } \\ \text { than } 1969 \text { but second in } \\ \text { strength in the period } \\ 1965-70 \end{array}\right.$	(602) (275)
1971	3	$\left\{\begin{array}{l} \text { (Less abundant than } 1969- \\ \text { 70, but more abundant } \\ \text { than } 1965-68 \end{array}\right.$	(200)
1972	3	$\left\{\begin{array}{l} \text { Less abundant compared } \\ \text { with the } 1969-71 \text { year } \\ \text { classes } \end{array}\right.$	(100)

Table 13: Estimates of nominal catches of COD and HADDOCK at selected levels of fishing mortality.

	1972			1973			1974		
	F	Yield		${ }^{*}$	Yield		F	Yield	
		Total	IIa		Total	IIa		Total	IIa
COD	0.63	643	350	0.63	500	(140)	0.63	650	(115)
HADDOCK	0.65	166	17	0.65	125		0.65	150	

Table 14. Data used for the mesh assessments for $G O D$ and EADDOCK.

Age at First Capture (Years)	F	Age at Mean Selection (Years)	Mean Length at Mean Selection (mm)	Mesh Size (mm)	
				Manila $\text { S.F: }=3.2-3.4$	Polyamide $\text { S.F. }=3.5-3.9$
COD					
2.0	0	3.5	452	141-132	129-116
2.5	0.01	4.0	481	150-141	137-123
3.0	0.02	4.5	515	161-151	147-132
3.5	0.03	5.0	556	174-164	159-143
4.0	0.08	5.5	639	200-188	183-164
4.5	0.12	6.0	680	213-200	194-174
5.0	0.45	6.5	726	227-214	207-186
6.0	0.60				
7.0	0.65				
8.0	0.70				
				.E. $=3.2-3.3$	S.E. $=3.5-3.8$
HADDOCK					
2.0	0	3.5	420	131-127	120-108
2.5	0.01	4.0	462	144-140	132-118
3.0	0.04	4.5	500	156-152	143-128
3.5	0.06	5.0	529	165-160	151-136
4.0	0.17	5.5	569	175-172	160-146
4.5	0.23	6.0	590	184-179	169-151
5.0	0.55	6.5	610	191-185	174-156
6.0	0.65				

Table 15. Results of mesh assessments for COD and HADDOCK.

Age at First Capture (Years)	Yield per Recruit (kg)			Mature Stpok Biomass ${ }^{1}$ (kg per Recruit)
	$I+I I b$	IIa	Total	
COD				
2.5	. 492	. 096	. 588	. 310
3.0	. 492	. 096	. 588	. 314
3.5	. 494	. 097	. 591	. 319
4.0	. 496	. 099	. 595	. 330
4.5	- 499	. 103	. 602	. 356
5.0	. 489	. 110	. 599	. 402
HADDOCK				
2.5	. 397	. 138	. 535	. 444
3.0	. 398	. 139	. 537	. 448
3.5	. 403	. 144	. 547	. 466
4.0	. 407	. 151	. 558	. 496
4.5	. 421	. 167	. 588	. 587
5.0	. 421	. 200	. 621	. 741

1) Assuming for cod 50% of 7 year-olds and all older fish are mature, and for heddock 50% of 6 yeax-olds and all older fish.

Table I6. Relation between mesh size and modal length of East Greenland PEDEISE.

Mesh Size of Perlon Codend (mm)	Length of Most Frequent : Meshed Redfish (cm)
121.3 ± 0.1	40.8 ± 0.2
131.0 ± 0.2	42.0 ± 0.1
138.8 ± 0.2	45.3 ± 0.2
145.7 ± 0.2	46.0 ± 0.3

Table 17. Modal length of R\#DFISH in German research and comnercial catches in 1971 and 1972 in different regions.

Region	Species	Number of Samples	Mean Modal Length (cin)	Range
IIa	s. marinus	22	40.6	$37.5-43.5$
Va, SW	S. marinus	19	42.8	$37.5-46.5$
Va, SW	S. mentella	28	42.8	$38.5-46.5$
Va,Rosengarten	S. mentella	25	44.1	$40.5-47.5$
XIY	S. marinus	10	46.7	$45.5-49.5$
West Greenland	S. marinus	4	45.3	$40.5-49.5$

Table 18. ICELAND COD. Percentage change in yield per recruit for increase in mesh size from 130 to $140 \mathrm{~mm} . \mathrm{M}=0.20$. A selection factor of 3.2 and a range of 140 mm .

Fishery	E	Immediate Loss	Long-Term Gain
England	.7	7.2	-2.0
	.8		-1.3
Germany	.9	0.56	5.01
	.7		5.7
Ioeland	.8		6.5
non-spawing	.9	2.5	2.9
	.7		3.7
Iceland	.8		4.5
spaming	.9		5.5
	.7		7.3

x) Calculated from the total spawning fishery (including inmigrants).

Table 19. Percentage age compositions of landings of POIAR COD from Sub-area I.

Year	Country									
		2	3	4	5	6	7	8		
1971	U.S.S.B	1.3	11.3	44.2	35.0	6.0	1.5	0.7		
1970	Norway	1	23	62	12	2				
1971		4	21	42	29	4				
1972		3	13	41	34	9	1			

Table 20. Total lendings (tons) of POLAR COD from Sub-area I.

Year	Honway	U.S.S.F.	Total
1969	18182		
1970	8948	116550	125498
1971	16483	330680	347163
1972	3878	139130	143008

Figure 1. Mesh assessments for COD and HADDOCK.

Stock and recrostment relationship in the North Fast Arctic cod stock and the implications for manasement of the stock

by
D J Garrod and B Wiones
Fisheries Laboratory, Lowestoft

Introduction

Since 1969 the annual reports of the ICES North East Arctic Fisheries Working Group have expressed concem at the dechining size of the spawning stock of the Arcto-Norwegian cod. In its 1972 Report the Group pointed out that the spawning stock would become very small indeed by the miz-1970's. The Working Group considered that at low levels of spawning stock the risk of poor recruitment was increased. The terms of reference for the 1973 Meeting of the Working Group include a request "to consider the possibility of an estimation of the optimum size of the spawing stock of ArctomNorwegian code. In this paper we have calculated a stockorecruitment relationship for the Arctownorwegian cod stock, and using this relationship we have showa what size of catch can be expected at any equilibrium level of stock size, and the level of fishing mortality to take this catch has been estimated. Using this stock-recruitment relationship the optimum stock size has been calculated together with the yield that can be expected from it. Using 2 computer simulation the trend in catches to be expected over the next 25 years has been calculated if the stock is exploited at a range of constant values of fishing mortality. Similar catch trends have been calculated at the same levels of fishing mortality assuming exploitation with minimum trawl codeend mesh sizes of 145 min and 160 mm .

The stock reoruitment relationshie

Estimates of parent stock in each yeax have been derived as follows:-

1. The age composition of the stock was derived for the beginning of each year from the Virtual Population Analysis
2. The mature stock was then calculated assuming 50% of seven year old fish were mature and all fish of eight years or older were mature. From this the anmal IIa catch was deducted on the assumption thet the majority of fish in the IIa catch are taken in the premspawaing fishery and are therefore effectively lost to the spaming stock.
3. Mature stock biomass wes estimated by multiplying the number of mature fish of each age group by the autrage welght at each age and summing for ail age groups. The wefght/age data used was the average weight at age in the English catches from Division IIa.
4. The mature biomass was then converted into eggs assuming a production of 400 eggs per gm of mature biomass (based on Botros, 1962).
The number of resultant 3 year old recruits was taken from the Virtual Population Anaiystis. Estimates of the number of recruits are independent of estimates of mature stock size.

A Ricker stock-recruitment curve was fitted to the resultant data for the years 1942-1968. The equation of the curve was:

$$
R=a S e^{-b S}
$$

where $\quad \mathrm{h}=$ number of recmuts
S＝parent stock size
$a=$ coefficient of density independent mortality
$b=$ coefficient of density dependent mortality．
The curve was fitted by the method of least squares to minimise $\Sigma\left(R=a S e^{\infty b S}\right)^{2}$ 。 The calculated curve is shown in Figure I of the Appendix with 95\％confidence limits of the curve．The parameters of the curve are：

$$
\begin{aligned}
& a=3.8981 \\
& b=0.1122
\end{aligned}
$$

where R is measured as numbers $x 10^{\infty 8}$ of 3 year $01 d$ recruits and s as eggs x 10^{-14} ．

Alternatively recruitment can be expressed in the same units as parent stock by calculating the potential egg production of the recruit（filial）generation assuming they are subject，throughout their life，to natural mortality only （ $10^{8} 3$ year old recruits $\equiv 3.12 \times 10^{14}$ eggs）。 The stockorecruitment curve tranformed in this way is defined by $R=12.1640 S e^{=0.1122 S}$ where R and S are both measured as eggs $\times 10^{-14}$ ．This curve is plotted in Figure 2。

If parent stock and recruits are measured in the same units the stock will reo place itself when $R=S$ ．If $R>S$ recruits are produced in excess of the number required to replace the stock and the surplus can be harrested．The degree of surplus can be expressed as the ratio $\frac{B}{S}$ or in the inverse form $\frac{\mathbb{S}}{\mathbb{R}}$ it represents the extent to which R can be depleted and still provide replacement of the parent stock．Thus if $R=100$ and $S=10, S / R=0.1$ and 90% of R can be removed leaving $R=S$ ．The logarithm of this ratio $\log _{e}(S / R)$ is plotted against stock（ 5 ）as the points in Figure 3．The fitted line is that given by the Ricker stock recruitment curve $R=12.1640 \mathrm{~S} e^{-0.1122 S}$ ．Also plotted in Figure 3 is the loge reduction in potential egg production per unit of fishing mortallty plotted against annual fishing mortality on fully exploited age groups．It can be shown that loge reduction in potential egg production per unit of F is equivalent to ET up to mean age of mature stock．Thus by relating the two lines plotted in Figure 3 it is a simple matter to determine the level of annual fishing mortality required to hervest the surplus production at any stock level。（For the purposes of this paper recruitment to the exploited stock is considered complete at 6 years of age．Proportional recruitment for younger age groups has been taken as 3 years $=0.3,4$ years $=0.6$ and 5 years $=0.9$ ，as adopted at the 1972 meeting of the North－East Arctic Fisheries Working（Group）。

Interpretation of the stock－recruitment curves

In Figures 1 and 2 the points for each year are identified．The curve has been fitted to the points for 194201968 for which estimates of 3 year old recruits are available from Virtual Population Analysis．Points are also plotted in Figure 1 for the years 1969－71 using recmutment data estimated from pre＝ recruit surveys．Also indicated in Figure I are the estimates of mature stock size for the years 1972－77．It will be seen that the present very low size of the mature stock is expected to decline still further，probably reaching a minimum level in 1975－76。

The stock－recruitment curve is more easily interpreted when stock and recruito ment are plotted in equivalent units as in Figure 2．In this figure the 45° replacement line is drawn．Recruitment above this line under the dome of the stock－recruitment curve is recruitment in excess of that required to provide
a replacement stociz and thit rearesents the amount whoh can be hanvegted if the stock is mefrtained whequithoinm. Where the lines fotexseot, at a stock size of 22.3×10^{24} egse, the gtock whi finst reploce itself in the absence of fishing. To the reght of this paint recmutment is less than the parent stock and there is no surplus producthon of reoruits. The maximum numer of recruits is produced from a stock stize of 8.9 ± 1044 eggs. Maximum surplus production is obtained with a stock size of 7.3×2014 eggs (indicated by the amrow in Figure 2) when the nomber of recrutss produced is equivalent to 39.2×10^{14} eggs of whoh 31.9×10^{14} are, sumplus to that required for replace ment. The optimum stock site of 7.3×10^{14} eggs is equipalent to the observed stock size in the early 1950° s.

In the altemative plot in Figure 3 the stockotecruitment ourve has been plotted as log (S / B) against S and in this Iocm ith is g streight line。 At the point at which the stock just replaces itself in the gbsence of fishing $\log (S / R)=0$ and $R=S=22.3 \times 1014$ eggs and this ja indicated by the broker line. In the ebsence ai fishras fiwe stock will texd to stabinse at this level moder the infurence of tavimel mortalfty oniy. At stock levels below the replevement level there is surpus production of recrutis. If for any size of stock, the whole surplus is rewowed by fishing the stook will remain in equilibrium. Using Eisure 3 the amount of fishing mortality which has to be applied to remove the surplus production oun be determined as follows:

For any given stook size read the value of $\log (S / R$) from the graph of $\log (S / R) / S$. This value is numerically equal to o $5 R$ (or the log reduction in potential egg production per F) and the mmual velue of F on the fully recmuited age groups is read irom the graph ofr/w Eg. For s stock size of 10×104 eggs the value of log $(S / R)=-1038$ can be read from the graph of $\log (S / K) / 50$ Then from the graph of $-2 H / E, ~=\sum F=1.38$ can be seen to be equivalent to an annal $F=0.205$. grais value of amuel Fis based on the pettem of recmutment to the exploited stock as defined on page 27.

The following conclusions can be mede from Figure 30
(i) At each stock size up to the replacement point there is an appropriate level of fishiag momelity which will memove sumplus production and majntain the stook in equilibriom. This ralue of 7 is greatest at low stock levels and decreases to zen at the replacement point.
 the stooz wll Imerifablw tend to eximotion because losses by fishing exceet the smaplus genemeted wian deashty deperdent

(ing) The meximm catwh ge obtained with a stock arze of 703×10^{14} egas exploited with en mane ifathos mortality os o. 26.
(iv) There is a clear increase in variance, foe. Dopriation instability, about the stock=recruitment curve at low levels (<6 x 10^{14} eggs).

In Frgure 4 the aman fithing morielity approprimte to maintaia the stock in equilibrium is plothed egainst stock suze. The resultant equilibrium catch is also plotted ix the figgre. Explotted at the optamum level the Arctomilomegian cod stock mould give an annual yield of over 800000 tons.

Computer simulation

A version of the computer simulation program described by 0latien (1972) was used to predict catch trends from the Arctomorwegian ond stockit.
starting from the stock situation as in I971, the stock was exploited over a period of 25 years at a range of values of fishing mortality which remained constant over the whole period. Three muns were made: the first with the selection pattern as at present and the other two with selection patterns equivalent to the use of 145 mm and 160 mm mesh sizes. Comparisons of the yields given by runs 1 and 2, and 1 and 3 provide estimates of the benefits to be derived from the introduction of larger minimum mesh sizes.

The computer model works as follows: The initial stock is subjected to natural and fishing mortality. The numbers at each age removed from the stock by fishing mortality are multiplied by the appropriate weight at age and the products summed to give the catch for the year. The survivors at the end of the year are carried forward as the stock for the next year and their ages are incremented by 1 . The estimates of $0 \times$ group recruits are added to this stock. Recruitment is calculated from the size of the mature stock in the previous year and the stock-recruitment relationship. This cycle is then repeated 25 times to simulate 25 years fishing. The data used in this model are summarised in Annex 1.

The results of the three muns are given in Figures 5-7. The initial fluce tuations result from the year class strengths as estimated from Virtual Population Analysis or 0-group surveys up to 197l. The initial decline in catches is due to the strong 1963 and 1964 year classes fading out of the fishery. The subsequent upsurge results from the recruitment of the good year classes of 1969-1971. After the 1971 year class recruitment is deter. mined by the stock recruitment relationship and the fluctuations are gradually damped out. Figure 8 provides a comparison of yields at selected values of fishing mortality for changes of mesh to 145 mm and 160 mm .

Conclusions from the computer simulation

With the present mesh size and selection pattem (Figure 5) it can be seen that a constant level of F greater than $F=0.3$ results in a trend of declining catches. If larger mesh sizes were to be used (Figures 6 and 7) fishing mortality could be increased to about $F=0.4$ (145 mm mesh) or $F=0.5$ (160 mm mesh) without causing a longoterm downard trend. Frigures 5-7 also provide some indication of the rate at which the fishery might be expected to recover if inshing mortality was to be stabilised at adequately low levels. From Figure 8 it is clear that mesh size increases up to at least 160 mm would give a longeterm improvement in yields for all levels of F above $F=0.2$ after an initial period of reduced yields. The longoterm gain is greater at higher levels of fishing mortality。

Summary

1. A Rickermpe stock-recruitment curve has been fitted to observed data of parent stock size and the size of the resultant recmutment. The data covered the period 1942-1968.
2. A relationship was derived between stock size and the level of annual fishing mortality required to harvest the production in excess of that required to maintain the stock in equilibrium, assuming the selection pattern would be the same as at present.
3. The optimum size of the mature stock. in the units used, would be 7.3×1014 eggs. This corresponds to the observed size of the mature stock in the early 1950's. At this stock size, and with the present selection patterm, the optimum level of fishing mortality would be $F=0.26$ when an average annual yield of over 800000 tons could be expected. It is possible that by changing the selection patterm an even greater yield might be obtainable.
4. The size of the mature stock is presently at a very low level and is expected to decline still further before showing some recovery after the midw 1970^{\prime} s. The present management strategy for the immediate future should be to reduce fishing to a level where the harvest is less than the surplus production allowing the difference to go towards building up the size of the mature stock to the optimum level.
5. The computer model gives an indication of how the fishery could be expected to recover if fishing mortality was to be stabilised, assuming a selection pattern as at present or for modified selection patterns as might result from the adoption of larger minimum mesh sizes. It is not intended to suggest that a constant low level of fishing mortality would give the most rapid rate of recovery or would give the greatest possible yield during the period required for the stock to build up to its optimum size. It would be more efficient to vary fishing mortality according to the size of the year classes in the fishery with the aim of producing each year a spawaing stock of optimum size but no larger or smaller. This would be very difficult or impossible to achieve in practice。
6. The conclusions in this paper are based on the assumption that the size of recruiting year classes would be determined from the spawing stock according to the calculated stockwecruitment relationship. The stocko recruitment curve would be expected to represent the average relation ship between stock and recruitment but individual annual values would be expected to show the same variance about the curve as has been the case for the observed data for past years.

References

BOTROS,A. Go, 1962. Die Fruchtbarkeit des Dorsches (Gadus morhue L_{0}) in der westlichen 0stsee und den westiorwegischen Gewåssem.

CLAYDENT, A. Do, I972. Simulation of the changes in abundance of the cod (Gadus morhua L_{0}) and the distribution of fishing in the North Atlantic. FishoInvesto, Lond., Ser. $2, \underline{27}, 58 \mathrm{pp}$.

Data used in computer model

1. Age composition of stock: 1971 stock as estimated at the 1972 NoE Arctic Fisheries Working Group meeting. This includes estimates of recruitment for the $1969_{m} 71$ year classes based on 0mgroup and pre-recruit surveys. The capacity of the model permits only age groups $0-11$ to be used in the calculations. When older age groups constitute a significant proportion of the stock the model will tend to give an underestimate of the catch and of the mature stock size.
2. Age/maturity relationship: 0% mature up to age 7, 7 year olds 50% mature, 8 and older 100\% mature. No allowance has been made for the deduction of each year's IIa catch from the mature biomass estimated as at the beginning of each year as was done in fitting the stock recruitment curve. \mathbb{A} correction was made for this in some later computer runs but the difference in the results was quite small.
3. Selection pattern: the values of F referred to are those relating to the fully exploited part of the stock. The proportion of the given value of F acting on partially selected age groups are as follows:

Age	Proportion of F Present mesh	145 mm mesh	160 mm mesh
3	0.30	0.14	0.04
4	0.60	0.43	0.24
5	0.90	0.76	0.56
6	1.00	0.94	0.82
7		0.96	0.89
8		1.00	0.96

The proportions for the 145 mm and 160 mm mesh sizes were calculated from selection ratios for each age for $130 / 145 \mathrm{mrn}$ and $130 / 160 \mathrm{~mm}$ mesh changes based on a selection factor of 3.6 .
4. Weight at age: as given in the 1971 Report of the North-East Arctic Fisheries Working Group.
5. Instantaneous coefficient of natural mortality: $\mathrm{M}=0.3$.
6. Stockorecruitment relationship: as developed in this paper.

Figure 2 Stock-recruitment curve for Arcto-Norwegian cod. Recruits and stock measured in the same units. $R=12.164 \mathrm{Se}^{-0.11225}$. The arrow indicates the point of maximum surplus production.

Figure 3 Plot of $\log _{c}$ (Stock/Recruit) against Stock. The observed points for years 1942-68 are shown and the line represents the fitted stock-recruitment curve. Plot of cumulative
 coefficient.

Figure 4 Equilibrium catch against stock size, and the annual fishing mortality required to achieve equilibrium catch.

Figure 5

Figure 6 Catch predictions as in Figure 5 but allowing for the use of a 145 mm mesh size throughout.

Figure 8 Comparison of yields for minimum mesh sizes of 130,145 and 160 mm , at selected constant values of fishing mortality.

[^0]: \bar{x} General Secretary International Council for the Exploration of the sea Cheriotteniund Slot 2920 Charlottenlund Denmarls

