International Council for the Exploration of the Sea

CaM. 1971/F: 3
Demersal Fish (Norther) Committee

Fivkerioicultoratat dithitheret

REPORT OF THE HORTIE-EAST ARCTIC FISHERIES WORKING GROUP
Copenhagen, 1-5 February 1971
x) The General Secretary, ICES,
Chariotteniund Slot, DK-2920 Charlottenlund, Denmark.

REPORT OF THE NORTH-TAST ARCTIC FISHERTES WORKTITG GROUP

Coperhagen, February I - 5, 1971

List of Contents

Pages
I. Participants 1
2. Status of the fisheries in 1969 and 1970 1
a) Cod 1
b) Haddock I
3. Estimates of mortality 2
4. Recruitment 2
5. Bstimates of future catches 2
a) Cod 2
b) Haddock 3
6. Changes in total stock size 4
7. The effects upon the cod fishery of the closure of fishing grounds 4
8. Recomendations 5
Tables I-13 6
Bigures 1 and 2 13

Report of the Meeting of the

Morth- Wast Arctic Fisheries Vorking Group
Copenhagen, February I-5, 1971

1. Participants

Nir. D. J. Garrod	UK Chairman
Dr.A. Schumacher	Gexmeny
Dr. A. I。 Treschev	JSSR
Dr. V. P. Ponomarenko	USSR
Mr. O. V. Bakurin	USSR
Mr.A. Fylen	Horway
Mr. B. W. Jones	UK
Mr. J. Netzel	Poland
PrroJ. Maller Christe	ICES - Secreta

The Group met to update previous assessments of the north-east Arctic cod and haddock fisheries in the light of the most recent data, and to prepare estimates of catches in 1971 and 1972 (C.Res.I970/2:4).

2. Staitus of the fisheries in 1969 and 1970

a. Cod

Total nominai catches of cod, fishing effort and catch per unit effort are given in Tables I-4. Provisional estimates of catch in 1970 indicate a fall from the high level of I 200000 tons in ig69 to 900000 tons in 1970. This Ievel of catch in 1970 is considerably greater than that estimated at the last meeting aithough the proportional decline (25%) between the two years corresponded to the expected change. Mhis is reflected in a decline in both the USSR and UK estimates of stock abundance, overall fishing effort having remained close to the IG69 level. The character of the fishery changed slightly during I970, however, being based primarily upon the 6 and 7 year old cod of the I964 and 1963 year ciasses which contributed 70% of the catch by numbers. A proportion of these year classes migrated to the Norway coast to spaw for the first time in I970 and the Norwegian catch per unit effort data for that area indicate that the availability of cod was relatively higher in I970 than in 1969. This, combined with the development of mid-water trawling for cod at times when mature cod were retoming to the Barents Sea and Bear Isiand has caused a relatively higher mortality on older fish than in former years.

It is evident that the major part of the discrepancy between the estimates of expected catch in 1970 (530000 tons) compared to the actual catches is accounted for by an underestimate of the abundance of the I963 and 1964 year ciasses. The Group beineves that previous estimates of the abundance of the 1965-68 year classes may also have been too low though the most recent data confirm that they are stili very poor.

b) Haddock

Basic fishery statistics are given in Tables 5-7. Total catches have fallen from 130000 tons in I969 to 71000 tons in 1970, with a corresponding deciine in stock abundance. The fishing effort directed towards haddock also appears to have fallen slightly with the declining abundance of the stock. Following from the fishing effort estimated. for 1970 the Group expected a catch of 81000 tons. This comesponds well with the actual catch, the majomity of the catch being made up of 6 year olds from the 1964 year class, and the 3 year olds from the 1967 year class.

3．Estimates of mortality

Revised estimates of fishing mortality（ F ）have been prepared by virtual population analysis．The initial values for F in 1970 necessary for this technique have been deduced from the examination of catch per unit effort data summarised in Table 8．The variation of F with age has been modified silightly from that given in the 1970 Report to take account of the change in the pattern of fishing，referred to in paragraph 2. These have been used in conjunction with an estimate of the age composition of the catches in 1970 also deduced from provisional data for one country（UKX）．The estimated age composition will not be exact but provide a firmer basis for the estimation of mortality than was available ait the previous meeting，when estimates of F in I 969 had to be extrapolated from the catch composition of I960 and the total catch in IG69．

The results of the analysis are summarised in Table 9 ．The analysis for cod shows the increase in F on 4－5 year oids of the 1964 and 1963 year classes in 1968 and the progression of increased F on the older age groups as these abundant year classes pass through the fishery．

The estimates for haddock also show the increase in fishing mortality in 1968 and 1969 with the slight decine expected in 1970 on the besis of the trend in fishing effort and catch per unit effort data for this fishery．

4．Rocruitment

Estimates of recruitment for cod and haddock are given in Table 10 as miliions of 3 year old fish in each year class since 1962，these being the year classes which will provide the catches in 1971 and 1972．These estimates are derived from virtual population analysis for the year classes 1962－65 and by estimates of relative year class strength in the intemational 0－group survey，and USSR young fish surveys for the year classes $1966-70$ ，the estimates for 1969 and 1970 remaining very provisional． The regression relating the pre－recruit inder of year class strength with subsequent actual numbers derived by the virtual population analysis has very wide confidence limits，as evidenced by the previous underestimate of the IG64 year class，so that the estimates of year classes not present in significant numbers in catches in i970（i。e。ig66 onwards）are very provisional and may do little more than indicate the order of magnitude of their abundance．However，these jear classes will contribute to the catches in 1971－72 and so the lack of precision will therefore contribute a source of error，in estimates of future catches．

Revised estimates of recruitment for haddock correspond closely with previous estimates for the year classes ig62－64，but have been roduced silightly for the year classes I965－67 on the basis of the virtual population anaiysis．

5．Estimates of future catches
a） Cod
Using the parameters described in the previous section，future catches have been estimated assuming four possible levels of fishing mortality in 1971：
（i）that F is reduced to a level close to that griving the maximum yield per recruit with the present pattern of the fishery，$F_{\text {max }}=0.53$ 。
（ii）that F is reduced in 1971 to its 1967 level $F_{\max }=0.80$
（iii）that F remains at its present level $F_{\text {mex }}=I_{0} 10$
（iv）that F is increased to the level where F in the oidest age groups $\left(F_{\text {max }}\right)=1.5$ ．

The same range of possibilities has also been applied to estimate catches in 1972, depending upon the level of fishing mortality in I97I. The estimates are summarised in Table 1I.

An independent estimate of catches in 1971 has been derived by appiying to the age composition of catches in 1970 a matrix of ratios defining the average percentage change in catches from a particular year class from one year to the next. This method assumes that the catch is determined primarily by fluctuations in recruitment; it does not take into account the effect on catches of changing levels of fishing mortality which have been particularly important in the north-east Arctic fisheries in the period 1965-70. This method confirms that if the 1970 level of fishing continues during 1971 a total landing of about 700000 tons may be expected.

The estimates of catches in 1972 depend on the level of fishing in I97I and in addition to the selected values given in Table II, Higure I permits the expected catch in 1972 to be read off for any particular level of catch that may be achieved in 1971.

The new estimates of catches in 1971 are higher than those made previcusiy, in 1970. This is aimost entirely due to the upward adjustment of the abundance of the 1964 year class. Present evidence continues to indicate that the $1965-68$ year classes are very poor so the overall prognosis of a decline in catches in 1971, and especially in 1972, remains valid. It is necessary to emphasize, however, that under the present circumstances where the yield is heavily dependent on one or two very large year classes, estimates of catch wili be very sensitive to errors in the estimation of their abundance and these errors may be high. They would become less importent in a fishery where the yield is distributed over a number of year classes of more uniform abundance because errors between year classes could be expected to compensate each other.

It should also be noted that the 1970 year olass was very abundant at the 0-group stage。 If this apparent abundance is correct, fish of that year class can be expected to be caught in sigmiricant quantities in I973, and especially in 1974. The remainder of the stock is expected to be relatively weak by that time, so that regulation of the fishery on that year class could becone more important than ever.
b) Eaddock

Estimates of catches in IS7I have been prepared for four assumed levels of fishing mortality:
(i) that \underline{T} is reduced to a level ciose to that giving the maximum yield per recruit, $F_{\text {max }}=0.3$
(ii) that F is reduced in 1971 to the 1967 level of $F_{\max }=0.6$
(iii) that F remains at its present level $F_{\max }=0.8$
(iv) that F is increased in $I G 7 I$ to a higher level, $F_{\max }=1.0$.

As for cod, this range of fishing mortality has also been applied to estimate catches in 1972, depending upon the level of fishing mortality in 1971. The estimates are summarised in Table 12 and Figure 2.

These are similar to the estimates prepared for 1971 in the last Report with modifications caused by smail adjustments to estimates of recruitment in the most recent year classes.

The estimates indicate that catches can be expected to decline to about 60000 tons in I971 at the present Ievel of fishing, with proportionate changes for any different level of fishing mortality. The level has aiso been confirmed by the aitemative method for estimation described for cod. By 1972 the recruitment from the 1967 and 1968 year classes is expected to offset removals so that catches will remain close to the IS7l catch level, given the same fishing mortality in both years. In the longer term there is a prospect of slightly improved catches when the stronger 1969 year ciass enters the fishery in significant numbers.

6. Changes in totai stock size

Table 13 summarises recent changes in the total stock of 3 yeara ans older cod, with comparative information from earifer years. Stock size in 1968 was close to that of the eariy I950:s but the biomass was concentrated mainiy in the two very strong year classes of 1963 and 1964: the strength of the stock was not widely distributed over a range of age groups as it was in former years. At the present time the total stock size is declining towards the lovel of the mid-IG60's, with the annual harvest representing an increased proportion of the stock. However, this percentage cannot be directly related to the estimates of fishing mortality because although the stock existed as showh, the age groups were not all equally available to the fisheries.

7. The effects upon the cod fishery of the closure of fishing ground.

At an earlier meeting the Group concluded that the reduction of spawning stock size to relatively low levels may reduce the probability of strong year classes. With regard to the anticipated poor recruitmont from the 1965-68 year classes, and in view of the high level of exploitation of recently strong year classes (1963, 1964) in 1968-70, the Group expects that the spawaing stock will become considerably reduced in coming years. The Group has therefore discussed alternative methods of reguiation (particularly the closure of fishing areas) that might be used in conjunction with a catch Iimitation in order to offset the anticipated dectine in spawning stock.

In principle, the effects of closure of either fishing grounds or seasons might be estimated from a detailed knowIedge of the distribution of catches, but in practice the Group concluded that this would not be meaningful because of uncertainty regarding the redeployment of fishing effort that would be displaced by a Iimited regulation. These uncertainties may be expressed in a number of aitemative arrangements as follows:-
(i) Closure of all areas of the fishory ciosed throughout the year.
(ii) Closure of ail areas of the fishery closed during the same scason or at different seasons.
(iii) Closure of limited parts of the fishery closed throughout the year.
(iv) CIosure of linited parts of the fisnexy ciosed during the same season or at different seasons.

In aIl cases except (i) it could be expected either that part of the displaced fishing effort would be diverted to other parts of the stock, or that a proportion of the fish surviving from a seasonal closure would be caught elsewhere at other times of the year. It is not possible to privide realistic estimetes of the effects of such aiternatives on either the catch or the stock size, but the interaction of fishing between different seasons or areas would tend to mulify the potential benefit.

In general, the effect of Iimited closures of either areas or seasons upon long-term total catches would be small at the present level of fishing mortality, with on without redeployment, though catches might be redistributed between areas and countries in a different way. However, the closure of Division IIa would reduce catches to a greater extent than the closure of Sub-area I or Division IIb because the fishery there exploits older fish and takes place at a time when the availability of cod is low in other areas.

The effect of closure upon the size of the spawning stock may be judged from its effect upon the number of fish surviving to spawn once or several times, regurdless of the age at which fishing mortality occurs. Previous assessments have shown that a reduction in fishing mortality in the fishery as a whole, either by regulation of catch or by regulation of mesh sizes, will increase the number of older fish, and hence increase the spaming stock size by, in effect, reducing the fishing mortality on younger fish. Although the Group sec no prospect of being able to determine precisely the effect of a particular closure regulation taken in isolation, calculations assuming no redeployment of fishing betweebrareas can give a maximum estimate of potential benefit. Taking the weight of $/ 7$ year oid cod and older as an index of spawning stock size these cilculations suggest that total closure of Sub-area I could give a fourfold increase in potential spawning stock for a given level of recruitment, and closure of either Divisions IIa or IIb could give a twofold increase. However, this calculation excludes the more uncertain benefits to recruitment that such an incrose in spawning stock might have and its consequent effect in further increasing spawning stock size over a. long period of years. Any increase in spowning stock size following a reduction in fishing mortailty would also increase the number of cod spawning more than once, which may have an additional beneficial effect on the chances of good recruitment.

The Group does not believe that it will be able to add materially to these conclusions from fucther consideration of the probiem without postulating a complex and hypothe tine redepioyment of foshing effort or the seasonal pattem of fishing mortality in different areas of the fishery.

8. Recommendations

At its present meeting the Group had available the estimates of the 1970 age composition of the catches of one country (UK) in addition to the provisional estimates of total intemational nominal catches in 1970. This has permitted estimates of catches in 1971 and 1972 to be based on more cioseiy up-to-date information. (The previous estimates of catches in 1970 had to be based upon IG68 data, with the detail of stock composition in IG69 being completely unknown). This information on the age composition in the catches in the most recent years should improve the precision of the catch estimates, especioliy with regard to the abundance of year classes just entering the fisheries, and the Group therefore recomends:-
I. that ail countries should make special efforts to provide data on the composition of landings for the year before the first for which catch estimates are required;
2. that, if data for the winole year are not complete, efforts be made to provide even incomplete data for ail fisheries and porticularly for important seasonal fisheries that take place in the first haif of the year;
3. that data for each year be circulated to all members of the Group as soon as they are finalized.

Table 1. COD. Total nominal catch by fishing areas (metric tons)。

Year	Sub-area I	Division IIb	Division IIa	TotaI
$I 960$	380962	94599	$I 55116$	630677
$I 961$	409694	222451	149122	781267
$I 962$	548621	222611	$I 38396$	909628
$I 963$	547469	113707	116924	778100
$I 964$	202566	126029	108803	437398
$I 965$	241489	103407	99855	444751
$I 966$	292244	56568	134664	483476
$I 967$	322781	121050	128729	572560
$I 968$	642449	268908	162472	$I 073829$
$I 969$	670158	266117	254985	$I I 9 I 260$
$\left.I 970^{X}\right)$	546488	$I 23980$	228438	898906

x) Provisional figures.

Table 2. COD. Hominal catch (in metric tons) by countries
(Sub-area I and Divisions IIa and IIo combined).

Year	Engiand	Germany	Nonvay	USSR	Others	Total	Coastal Cod Norway
1960	141175	9472	231997	213400	34633	630677	43092
I96I	1.57909	8129	268377	325780	21072	781267	32359
I962	174914	6503	225615	476760	25836	909628	29596
I963	129779	4223	205056	417964	21078	778100	40405
1964	94549	3202	149878	180550	9219	437398	46100
1965	89874	3670	197085	I52780	1342	444751	23786
1966	103012	4. 284	203792	169300	3088	483476	27800
I967	87008	3632	218910	262340	670	572560	33102
I968	140054	I 073	255611	676758	333	1073829	47212
1969	231066	54.34	305241	612215	37287	1191260	$524.16^{\text {x }}$
$1970{ }^{\text {2 }}$	177141	9385	358126	320000	34254	898906	49000

${ }^{x}$ Provisional figures.
Note: Landings for USSR exclude catches of coastal cod, provisionaliy estimated to be approximately 40000 tons per year. The USSR is preparing statistics for this fishery.

Table 1. COD. Total nominal catch by fishing areas (metric tons).

Year	Sub-area I	Division IIb	Division IIa	TotaI
$I 960$	380962	94599	$I 55 I I 6$	630677
$I 961$	409694	222451	$I 49122$	781267
$I 962$	548621	222611	$I 38396$	909628
$I 963$	547469	$1 I 3707$	$I I 6924$	778100
$I 964$	202566	126029	$I 08803$	437398
$I 965$	241489	$I 03407$	99855	444751
$I 966$	292244	56568	$I 34664$	483476
$I 967$	322781	121050	$I 28729$	572560
$I 968$	642449	268908	$I 62472$	$I 073829$
$I 969$	670158	266117	254985	$I I 9 I 260$
$I 970^{\text {x }}$	546488	$I 23980$	228438	898906

x)

Provisional figures.

Table 2. COD. Hominal catch (in metric tons) by countries
(Sub-area I and Divisions IIa and IIb combined).

Year	England	Germany	Morway	USSR	Others	Total	Coastai Cod NoIway
1960	141175	9472	231997	213400	34633	630677	43092
1961	157 909	8129	268377	325780	21072	781267	32359
1962	174914	6503	225615	476760	25836	909628	29596
1963	129779	4223	205056	417964	21078	778100	40405
1964	94549	3202	149878	180550	9219	437398	46100
1965	89874	3670	197085	152780	1342	444751	23786
1966	103012	4284	203792	169300	3088	483476	27800
1967	87008	3632	218910	262340	670	572560	33102
1968	140054	1073	255611	676758	333	1073829	47212
1969	231066	5434	305241	612215	37287	1191260	$524.6{ }^{x}$
1970 ${ }^{-2}$	177141	9385	358126	320000	34254	898906	49000

${ }^{\mathrm{x}}$ Provisional figures.
ITote: Landings for USSR exclude catches of coastai cod, provisionaily estimated to be approximately 40000 tons per year. The USSR is preparing statistios for this fishery.
Tabie 3. COD. Wstimates of total international fishing effort

	Sub-area I				Division IIb				Division Iİ,			
	National Eficort		Totel International Effort		Mationel Effort		Total Inter. nationel Effort		NationeI [iffort		Totai International $\mathbb{E f f o r t}$	
Year	$\mathrm{UK}^{\text {I }}$	USSKR ${ }^{2}$	$\begin{aligned} & \text { UK } \\ & \text { units } \end{aligned}$	USSR units	UK	USSR	$\begin{aligned} & \text { UK } \\ & \text { uniits } \end{aligned}$	USSR units	UK	Nowway ${ }^{3}$	UK units	Norwegian units
1960	95	43	512	91	42	11	97	34	39	10	232	26
1961	94	53	5.18	109	51	22	173	39	30	9	255	20
1962	93	61	590	94	51	16	168	29	34	10	210	21
1963	78	62	635	91	45	9	120	22	29	7	176	19
1964	42	30	351	55	49	17	1.36	32	36	6	157	17
1965	42	25	367	62	37	11	95	4	33	5	150	16
1966	63	33	387	69	23	16	71	29	46	5	Ig9	15
1967	51	30	395	61	10	12	110	13	50	5	26.1	22
1968	86	45	584.	67	9	24	151	26	52	6	288	15
1969	115	45	593	72	24	19	197	26	73	5	272	18
1970	122	35	573	77	24	15	122	27	55	5	346	14

[^0]Table 4. COD. Caich per unit effort (metric tons, round fresh).

Year	Sub-area I		Division IIb		Division IIa	
	UK	USSR ${ }^{2}$	UK	USSR	UK	Norway
1960	0.075	0.42	0.105	0.31	0.067	3.0
19661	0.079	0.38	0.129	0.44	0.058	3.7
1962	0.092	0.59	0.133	0.74	0.066	4.0
1963	0.085	0.60	0.098	0.55	0.066	3.1
1964	0.058	0.37	0.092	0.39	0.070	4.8
1965	0.066	0.39	0.109	0.49	0.066	2.9
1966	0.074	0.42	0.078	0.19	0.067	4.0
1967	0.081	0.53	0.106	0.87	0.052	3.5
1968	0.110	1.09	0.173	1.21	0.056	5.1
1969	0.113	1.00	0.135	1.17	0.094	5.9
1970	0.100	0.80	0.100	0.80	0.030	6.4

1) UK data - tons per 100 ton-hours fishing
2) USSR data - tons per hour fishing
3) Norwegian data - tons per gill net boat week at Lofoten.

Tlabie 5. HADDOCK. Total nominal catch by fishing areas (metric tons).

Year	Sub-area I	Division IIb	Division IIa	Total
$I 960$	125675	1854	27925	155454
1961	165165	2427	25642	193234
1962	160972	1727	25189	187888
1963	124774	1939	21031	146744
1964	79056	1109	18735	98900
1965	98505	1939	118079	
1966	124115	1614	34892	160621
1967	108066	440	27980	136486
1966	140970	725	40031	181726
1969	88960	1341	40208	130509
$\left.1970^{x}\right)$	41519	428	29613	71560

x) Provisional figures.

Table 6. HADDOCK. Nominal catch (in metric tons) by countries (Sub-area I and Divisions IIa and IIb combined).

Year	Bngland	Germany	Morwey	USSR	Others	Total	Coastal Haddoc: Hownay
1960	45469	5597	47263	57025	100	155454	5943
1961	39625	6304	60862	85345	1098	193234	4031
1962	37486	2895	54567	91940	I 000	187888	3293
1963	I9 809	2554	59955	63526	900	14.674 .4	4285
1964	14.653	1482	38695	43870	200	98900	64.60
I965	14.314	1568	60447	41750	-	118079	6217
I966	27723	2098	82090	48710	-	160621	5223
I967	24158	1705	51954	57346	1323	I36 4.86	3181
1968	40102	I 867	64076	75654	27	181726	2766
1969	37234	1490	67549	24211	27	130509	2120^{x})
$1970^{\text {x }}$)	20360	2000	39200	10000	-	71560	4000

x) Provisional figures.
-9-
Table 7. HADDOCK. Catch per unit effort and estimated total international effort.

Year	Catch per effort (UK) Kilos/I00 ton-hours			Estimated total international effort in UK Units$\frac{\text { Total catch in tons } \times 10^{-6}}{\text { tons/100 tonehours Sub-area I }}$
	$\begin{gathered} \text { Sub-area } \\ \text { I } \end{gathered}$	Divisions		
		IIa	IIb	
1960	33	34	2.8	4.7
1961	29	36	3.3	6.7
1962	23	42	2.5	8.2
1963	13	33	0.9	11.2
1964	18	18	1.6	5.5
1965	18	18	2.0	6.6
1966	17	34	2.8	9.4
1967	18	25	2.4	7.6
1968	19	50	1.0	9.6
I969	13	42	2.0	10.0
1970	10	30	1.0	7.2

Table 8. Estimate of fishing mortality used to commence virtual population analysis (VPA) needed to determine stock size in 1971.
A. $\operatorname{COD}(\mathbb{M}=0.3)$

Table 9a. Fishing mortality 1967-70 estimated
by virtual population anaiysis.

	$\operatorname{Cod}(\mathbb{M}=0.3)$				Haddock ($\mathrm{M}=0.2$)			
Years	1967	1968	1969	$1970^{\text {x }}$	1967	1968	1969	1970 ${ }^{\text {x }}$
2	. 02	. 02	. 01	. 06	<+	+	. 01	. 04
3	.14	.13	.13	. 17	. 07	. 06	. 09	. 16
4	. 18	. 41	. 29	. 28	. 35	. 43	. 26	. 40
5	. 21	. 53	. 63	. 56	. 52	. 71	. 56	. 50
6	. 39	. 47	1.15	. 73	- 57	. 64	. 86	. 60
7	. 51	. 50	1.40	. 90	. 53	. 85	. 72	. 70
8	. 46	. 54	1.21	1.12	. 69	. 71	. 73	. 80
9	. 77	. 29	. 55	1.12	. 50	. 67	. 50	. 80
10	. 88	. 59	. 27	1.12	. 55	1.07	-	-
11	. 87	. 42	-	-	. 57	. 72	-	-
12	. 71	1.23	-	-	-	-	-	-

x) Estimated.

Table Gb. Mean weight at age data for cod and haddock used in the assessments in this Report. (The cod data have been revised, and these data are given here and have been used for the assessment for the years I968 to 1972).

Age	Mean Weight in Kilos	
	Cod	Haddock
3	0.43	0.41
4	0.84	.62
5	1.36	.97
6	2.00	1.59
7	2.92	2.33
8	3.87	2.72
9	5.25	3.56
10	6.50	4.41
11	8.23	5.40
12	9.43	6.70
13	10.60	-
14	11.80	-
15	12.80	-

Table 10. Recruitment: million of 3 years of fish in each year class (hevised from 1970 Report).

Year	Cod	Haddock
1962	920	96
1963	2194	220
1964	2016	260
1965	217	12
1966	(250)	19
1967	(400)	95
1968	(500)	(40)
1969	Average	(150)
1970	Very rich	Average

Table 11. Estimates of nominal catch of cod (1000 tons) at selected levels of fishing mortality.

1970		1971		I972	
IF	Yield	F	Yield	F	Yield
$\begin{array}{r} \text { I.I0 } \\ \text { (present } \\ \text { Ievel) } \end{array}$	899	$0.53^{(i)}$	387	$\begin{aligned} & 0.53 \\ & 0.80 \\ & 1.12 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 354 \\ & 488 \\ & 621 \\ & 748 \end{aligned}$
		$0.80{ }^{\text {(ii) }}$	531	$\begin{aligned} & 0.53 \\ & 0.80 \\ & 1.12 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 302 \\ & 418 \\ & 534 \\ & 644 \end{aligned}$
		$1.10{ }^{\text {(iii) }}$	679	$\begin{aligned} & 0.53 \\ & 0.80 \\ & 1.12 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 251 \\ & 350 \\ & 449 \\ & 545 \end{aligned}$
		$1.50{ }^{\text {(iv) }}$	818	0.53 0.80 1.12 1.50	$\begin{aligned} & 204 \\ & 285 \\ & 366 \\ & 447 \end{aligned}$

(i) F reduced to a level close to that giving the maximum yield per recruit within the present pattern of the fishery.
(ii) Freduced in 1971 to its 1967 level.
(iii) Fremains at its present level。
(iv) F increased to the level where F in the oldest age groups is $1.5\left(F_{\max }\right)$.

Table 12. Estimates of nominal catch of haddock (1000 tons) at selected levels of fishing mortality.

1970		1971		1972	
T	Yield	F	Yield	F	Yield
$\begin{gathered} 0.8 \\ \text { (present } \\ \text { IeveI) } \end{gathered}$	71.6	$0.3{ }^{\text {(i) }}$	26.7	$\begin{aligned} & 0.3 \\ & 0.6 \\ & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 30.2 \\ & 54.5 \\ & 67.8 \\ & 79.8 \end{aligned}$
		$0.6{ }^{(i i)}$	48.3	$\begin{aligned} & 0.3 \\ & 0.6 \\ & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 45.2 \\ & 56.4 \\ & 66.5 \end{aligned}$
		$0.8^{\text {(iii) }}$	59.9	$\begin{aligned} & 0.3 \\ & 0.6 \\ & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 22.2 \\ & 40.3 \\ & 50.3 \\ & 62.7 \end{aligned}$
		$1.0{ }^{\text {(iv) }}$	70.2	0.3 0.6 0.8 .1 .0	$\begin{aligned} & 19.8 \\ & 36.0 \\ & 44.9 \\ & 53.2 \end{aligned}$

(i) F reduced to a level ciose to that giving the moximum yield per recruit.
(ii) F reduced in 1971 to the 1967 Ievel.
(iii) F remains at present level.
(iv) Fincreased in 1971 to a higher level.

Table 13. Summary of estimates of the size and yield of the cod stock

$\begin{aligned} & (\mathrm{A}) \\ & \text { Year } \end{aligned}$	(B) Stock Numbers $4+$ Years Oid (in millions)	(C) Recruits 3 years old (in millions)	(D) Total Stock ITumbers $\begin{aligned} & (\mathrm{B})+(\mathrm{C}) \\ & \text { (in millions }) \end{aligned}$	(E) Total Stock Weight (in 1000 tons)	(F) Yield (in 1000 tons)	(G) Yield as $\%^{\circ}$ of Stock $(F) \div(E)$
3950	1818	833	2651	4.473	732	16
1955	2810	420	3230	5164	1148	22
I960	I 387	1068	2455	2804	631	23
I965	1059	920	1979	2182	445	20
I966	I 295	2194	3489	2936	463	16
I967	2241	2016	4257	3820	573	15
1968	3044	217	3261	4042	1074	27
1969	I 886	$250{ }^{\text {x }}$	2136	3416	1 IgI	35
$1970{ }^{\text {a }}$	1086	400	1486	2422	899	37
1971 ${ }^{\text {x) }}$	769	500	1269	± 769	679	38

x) Estimated assuming $F=1.1$ (present level).

Figure 2. Morth-East Arctic Hadock. Yield in 1972 at different levels of F in 1971 and 1972.

This paper not to be cited without prior reference to the Council ${ }^{x}$)

International Council for the Exploration of the Sea
C.1H.1971/Supplement to $\mathrm{F}: 3$

Demersal Fish (Morthern) Comitree

 FISEIURIES WORKING GROUP

I. Supplement to replace paragraphs 7 on pages 4 and 5 of the Report.
2. Annex describing data and methods used to estimate the catch associared with perticular levels of fishing mortality in the following years.

[^1]
SUPPLTMMENT

to replace para. 7 on p. 4 and 5 of the Report.

7. The effects upon the cod fishery of the ciosure of fishing grounds

At an earlier meeting the Group concluded that the reduction of spaming stock size to relatively low levels may reduce the probability of strong year classes. With regard to the anticipated poor recruitment from the 1965-1968 year classes, and in view of the higin level of exploitation of recent strong year classes (I963, 1964) in I968 to 1970, the Group expects that the spawning stock will become considerably reduced in coming years. The Group has therefore discussed altemative methods of regulation (particularly the closure of fishing areas) that might be used in conjunction with a catch limitation in order to offset the anticipated decline in spawning stock.

Ieaving aside the complexity of closures within major areas of the total fisheries four basic combinations of closure might be considered.

1. Closure of all areas of the fishery, closed throughout the year.
2. Closure of all areas of the fishery, (a) closed during the same season or (b) closed at different seasons.
3. Closure of major area(s) of the fishery, closed throughout the year.
4. Closure of major area(s) of the fishery, (a) closed during the same season, or (b) closed at different seasons.

In principle the effects of any of these combinations might be estimated from a detailed knowledge of the distribution of catches, provided fishing effort directly affected by a regulation were not redeployed in other parts of the fishery. However, the Group considers, that in all cases except 1 and 2(a) it could be expected that part of the displaced effort would be diverted to other parts of the same stock. These adjustments of the fishery to such a regulation would tend to nullify the potential bonefits and prevent realistic estimation of its effect upon total catch or spawning stock size.

In general the effect of limited closures of either areas or seasons upon Iong-term total catches would be small at the present level of fishing mortainty, with or without redeployment, though catches might be redistributed between areas and countries in a different way. However, the ciosure of Division IIa would reduce catches to a greater extent than the closure of Sub-area 1 or Division IIb because the fishery in Division IIa exploits older fish and takes place at a time when availability of cod is low in other areas.

The effect of closure upon the size of the spawning stock may be judged from its effect upon the number of fish surviving to spawn once or several times, regardiess of the age at which fishing mortality occurs. Previous assessments have shown that a reduction in fishing mortality in the fishery as a whole either by regulation of catches, or by the regulation of mesh sizes will increase the number of older fish, and hence increase spaming stock size by increasing survival at restricted, or overail age groups. A closure might be selective to protect particular

Suppiement (ctd.)
age groups but it would contribute towards the same general effect. The Group sees no prospect of being able to determine precisely the effect of a particular closure regulation taken in isolation in this regpect, but, calculations assuming no redeployment of fishing between areas can give a maximum estimate of the potential benefit that might be obtained by very broad closures. Taking the weight of stock of 7 year old cod and oider as an index of spawning stock size these caiculations suggest that total closure of Sub-area I could give a fourfold increase in the potential spaming stock from a given level of recruitment, and closure of either Division IIa or IID could give a twofold increase. 1) However, these calculations exclude the uncertain benefits to recruitment that such an increase in spawning stock might have, and its consequent effect in further increasing spawning stock size over a long period of years. Any increase in spawning stock size following a reduction in fishing mortality would also increase the number of cod spaming more than once, which may have an additional beneficial effect on the chances of good recruitment.

The Group does not believe that it will be able to add materiaily to these conclusions from further consideration of the problem without postulating a komplex framework of alternative assumptions concerming the redeployment of fishing effort.
I) The effects of a closure of all areas of the fishery for the same limited period of time has not been calculated but it is unlikely to exceed the maximum benefits to be obtained by total closure of one of the areas of the fishery throughout the year.

Levels of Fishing Mortality in the following Year

Objective

1 A To estimate in absolute numbers the stock of fish per age-group at the end of the final year of fishing, i.e. the begiming of the first year for which catch estimates are required.

B
To estimate the catch itself by application to the stock of the appropriate levels of fishing mortality.

Estimation of absolute numbers
2 Data
A Wational fishery statistics of total catch, by species in round fresh weight in tons, and fishing effort, summarized by Subarea I and Divisions IIa and IIb separately on an annual basis. Comparable summaries by months are available within the national recording systems but they have not been used as a primary source of data in calculating catch estimates.

B Estimates of the composition of national catches as the number of fish landed per age-group within Subarea 1, and Divisions IIa and IIb separately. The length composition of catches is available within national statistics on a monthly basis but since the sampling system of some countries is designed only to provide a length to age conversion on an annual basis, the age composition of catches of the total international fishery is only available for the whole year. However, as with the catch statistics, monthly data are mainly used for reference and interpretation.

3
These data provide the basis for derivation of catch per unit effort, or per mille age and length distributions as required. Comparisons of mean weight and age of national catches in the some area of the fishery reveal any anomalous results which need to be checked back to the basic data.

4
N.B. Estimates of prospective catches for a given year t must necessarily be available garly in a year if they are to be incorporated in the choice of an ailowable catch in that year: the data are needed before national statisticalreturns of data for the previous year $t-1$ are currently being completed. This means that the most recent data available to the Group relate to year $t-2$ but not for the most recent completed year of fishing. This places a heavy constraint on accuracy when the fishery has show substantial chonges between years. Some guidance on fishing activity in year $t-1$ has been obtained from provisional estimates of catch, but fishing effort data have not so far been available. So serious is the potential error that in this report, 197i, an attempt has been made to judge catches in year $t-1$ from the age composition of catches of a single country most of whose data had been processed in time for the meeting. The estimate is mode by extrapolation based on a conversion factor for each agcgroup as International catch agemgroup $x /$ National catch of agegroup x averaged over 10 years. The conversion matrix is stable for age-groups contributing the greatest part of the catch but shows increasing variability (though not trend) towards the extrenes of the age distribution, where the variance of the basic sampling systems may be expected to be increased.

Method of estimating stock size
The basic technique used is virtual popuiation analysis (VPA) as described by Gulland (ICES, 1965). Briefly, the total population, $\mathrm{N}_{\text {s }}$ of any age-group of a year-class may be determined from the totai numbers of fish in that year class subsequentiy cougit from it (the virtual population, V) and the exploitation rate, E, to which it is exposed. Thus for a given age-group in year n the totai popuiation $\mathbb{N}_{n}=V_{n} / N_{n}$ 。
Similarly $N_{n+1}=V_{n+1} / E_{n+1}$ and

$$
\begin{equation*}
V_{n+1} / E_{n+1}=N_{n+1}=\mathbb{N}_{n} e^{-Z_{n}} \tag{I}
\end{equation*}
$$

The catch in numbers, C, during year n can be expressed in like terms:

$$
\begin{equation*}
c_{n}=N_{n} \frac{F_{n}}{Z_{n}}\left(1-e^{-Z_{n}}\right) \tag{2}
\end{equation*}
$$

and taking the ratio of (1) and (2)

$$
\frac{V_{n+1}}{F_{n}+1 C_{n}}=\frac{N_{n} e^{-Z_{n}} Z_{n}}{N_{n} F_{n}\left(1-e^{-Z_{n}}\right)}=\frac{e^{-\left(F_{n}+M\right)}\left(F_{n}+M\right)}{F_{n}\left(I-e^{-\left(F_{n}+M\right)}\right)}
$$

where $Z_{n}=I_{n}+M_{0}$

For each year ciass this expression can be soived for F_{n} and N_{n}, given estimates of $C_{n 2}, V_{n+1}\left(\mathrm{C}_{\mathrm{n}+1} \ldots . . \mathrm{C}_{\mathrm{r}}\right.$, where C_{r} is the catch of the oldest age-group of that year class), M and $]_{n+1}$. The first three are directly available from data or previouss research. However, an initial value E_{n+1} must be assumed for the oldest age-group of a year class, and the computation must be solved through successively younger age-groups with appropriate modification of $\mathrm{F}_{\mathrm{n}+1}$. Thus F_{n}, the exploitation rate applicable to fish alive at the beginnin氏 of the year n, will be the sum of the proportion cought during that year and those caught later:

$$
E_{n}=\frac{F_{n}}{Z_{n}}\left(1-e^{-Z_{n}}\right)+F_{n+1} e^{-Z_{n}}
$$

E_{n} is then entered as E_{n+1} in the computation for the next youngest age-group. This series gives estimates of F_{n} per agegroup which can be used in conjunction with C_{n} and M to estimate the number of fish dying during tine year.

$$
\frac{C_{n} Z_{n}}{F_{n}}=N_{n}\left(1-e^{-Z_{n}}\right)
$$

or the stock from which a catch was taken

$$
N_{n}=\frac{C_{n} Z_{n}}{F_{n}\left(1-e^{-Z_{n}}\right)}
$$

6 The data required for the application of VPA are:

(i) the total numbers caught by age-group, which are obtained and updated from the most recent data;
(ii) an estimate of natureal mortality, M;
(iii) an estimate of $\mathrm{E}_{\mathrm{n}+1}$ to which the stock has been fished in the last year of fishing (i.e. an appropriate level of F and hence Z).

7 Estimates of natural mortaility for Arcto-Norwegion cod indicate this to be $M=0.3$ as described elsewhere (ICES, 1965) and checked by Schumacher (per. cormo) by plotting F determined from VPA against estimated total fishing effort (see Figure I). This value is consistent with previous estimates derived by regressing total mortality, Z, on fishing effort and has the added advantage that the variables are statistically independent, Moreover, for this stock the regression technique has the particular difficulty created by the combination of catch per unit effort data from three separate fisheries.
8. The estimate of F and hence F / Z (i.e. E_{n}) to which the stock has been subject in the last year of fishing cannot be determined expicicitly by present methods, even from the ratios of catch per unit effort in the two most recent years. It has to be judged from that data in conjunction with the changes in total fishing effort evident from examination of the basic statistics. This is difficult, particulariy so because atmajor part of the yield in any year is taken from agegroups that are not fully recruited to the fishery and which may be subject to discarding at sea so that catch per init effort data offer no guidance at a.li.
The procedure adopted by this Group has been to inspect estimates of Z (from the natural logarithm of abundance $t-1 /$ abundance $t-2$) for the fully recruited age-groups to determine the direction and magnitude of change in Z, if any. This is examined for consistency with the available effort data. Having selected a trial value for F on these older age-groups, it has then been extrapolated to partially recruited age-groups on the basis of factors determined for past years for which the appropriate F can be determined with litile error from VPA (Pope, I971).
The vaiues described above provide an initial estimate of F, and hence stock, for each age-group at the begimning of year $t-1$. A best estimate is reached by a series of trial values of F and E to select that which is most closely consistent with the other evidence of changes in F in the most recent years.

In short, with the data and techniques currentiy available, the estimate of F and hence stock in year $t-1$ has to be a carefully judged guess. The potential emors involved may not be significant for older age-groups which contribute a small proportion of the total catch and for which errors in the basic assumption to initiate VPA have little effect on estimates of the relevant year class strengtin. However, this source of error is crucial to the estimation of stock size of partially recruited age-groups. For example, since the catch of the Arcto-Norwegian cod in year t is heavily dependent upon 5-year-olds, it is essential to achieve good estimates of the absolute abundance of 4 -year-olds in year $t-1$, or 3 -year-olds in $\dot{t}-2$. For these partiaily recruited age-groups the ratio F / M is relatively low, and, when the possibilities of discarding at sea are added, there is the real risk of significant error when estimates of F are used to derive stock size.

Annex (ctd).

The computations described provide estimates of stock size at the beginning of year $\dot{t}-1$. These are then further raised to the abundance of each year class at 3 years old through VPA on the historic record. These are then compared to the independent estimates of relative year class strength availabie from research surveys, thus checicing that the data series are so far as possible consistent.

Estimates of Iuture catch
At this point the Group has estimates of stock abundance per age-group at the beginning of year $t-1$ and F during that year. The stock size is then updated to the begiming of year t as

$$
\mathbb{N}_{t}=\mathbb{N}_{t-1} e^{-\left(\mathbb{F}_{t-1}+\mathbb{N}\right)}
$$

for each age-group. Further basic information required for the computation of catches is the number of young fish that will recruit to the fishery for the first time in years t, $t+1$, etc, and the current weight at age.

12 Recruitment is estimated from international 0-group and USSR young fish surveys. The former give a singie estimate for each year class prior to its first significant contribution to the fishery, and the latter gives four serial estimates so that the young fish surveys are potentially the more reliabie source. USSR research has show the mean abundance of a year class as 2- to 3 -year-oids to give the best correlation with its later perfomance in the commercial fishery, and variance may be reduced by adjustments for the nutritionai status of the young fish in particular years. Fven so the confidence limits of the regression of recruitment from survey data on recruitment from VPA are very wide ($\pm 100 \%$) over the period for which the data cover all nursery areas (i。e. Bear Island and Barents Sea) 1957-1965. No doubt the precision will improve as the time period is extended.

13 The two forms of pre-recruit survoys have so far given resurits which are sufficiently comparable to indicate the relative magnitude of year classes, but at present there is a wide margin of error in estimates of the absolute abundance of neviy recruiting year classes. The adequacy of this level of accuracy is to some extent conditional on the magnitude of the year class in question and of the stock it is entering. Frrors on a large year class entering a smail stock are more significant than the same proportional error on a small year class entering a large stock.

Weight at age is taken directly from recent observations rather than any theoretical fit based upon data colletid over a series of years. This becouse, as USSR research has shown, the conditions encountered by young fish in this area, particularly the abundance of young from preceding year classes, may have a significant effect on the subsequent growth of the new group.

The assembly of data described involves the direct use of the most recent observations, objective calculation to derive estimates to simulate recent events in the fishery, and some coreful judgement in areas where vital data are either indequate or not availeble. Having compiled the parameters the future yield of each year class is then computed using the estimated abundance at the beginning of year t, the mortalities it would be subjected to under various assumptions conceming fishing effort, and the mean weight at age.

Annex (ctd.)

Thus the yield in year t is given by

$$
Y_{W_{t}}=\frac{\varepsilon F_{t}}{\epsilon F_{t}+M} \mathbb{N}_{t}\left(I-e^{-\epsilon \mathbb{F}_{t}+\mathbb{M}}\right) \bar{W}_{t}
$$

where in addition to the usual notation ϵ is the partial recruitment factor varying $0 \rightarrow 1$.

These computations will give the weight yield in year t for any given mortality regime, and the survivors to year $t+1$ at age $x+1$. The procedure is then repeated with adjustment of fishing mortality, if appropriate, and the addition of new recruits.

I7 The paragraphs above outline the procedures followed for computing prospective catches. There are, however, many other aspects of the biology and dynamics of the species which are held under review throughout, e.g. the determination of maximum sustained yield, size and structure of the spawning stock in relation to stock and recruitment problems. The computation of the catch levels is anenable to a high degree of mechanizetion and in teking advantage of this it becomes the more important to ensure that no fundamental changes in the biology or the character of the stock and its fisheries are overlooked.

References

ICES, 1965. Report of the Meeting of the Arctic Fisheries Working Group in Hamburg, Jan. 18-23. Annex I.

POPE, Jo Go, I971. An investigation of the accuracy of virtual popuiation analysis. ICHAF Res. Doc. (mimeo).

$\overline{\mathrm{L} \text { - } \cos }$

[^0]: 1) Hours fishing x average tonnage $\times 10^{-6}=$ mililions oi ton-hours.
 2) Hours fishing (catch/catch per hour fishing) $\times 10^{-4}$
 3) Number of men fishing at Lofoten $\times 10^{-3}$.
[^1]: 2) The Generai Secretary, ICRS Cherlotieniund slot, 2920 Cheriotteniund Denmark.
