Intemational Council for the
Exploration of the See

C.M.1972/E:13
Pelagic Figh (Northern) Committeo

REPORT ON THE NORTH SEA HERRING ASSESSNENYI WORKTHG GROUP Charlottenlund Slot, 13-22 June 1972

[^0]CONTHNTS
Page
I. Terms of Reference and Participation 2
II. Material and Agenda 3
III. The Fisheries
a) Landings 4
b) Catch Composition 4
IV. The Fish Stock
a) Natural mortality 8
b) Fishing mortality 9
c) Stock size 9
d) Larval abundance 10
e) Recruitment 10
f) Weight data 12
V. Prognoses for Different Levels of Fishing Mortality
a) Parameters and assumptions 12
b) Prognosis for different levels of fishing mortality 14
c) Comparison with former data 15
VI. Conservation Measures
a) Overall catch quota 15
b) Differential measures 15
VII. Northwestern Boundary of the Quota Area
a) Catch statistics 17
b) Age composition 17
c) Meristic characters 18
VIII.Discussions 18
IX. Conclusions
a) Overall quota 20
b) Differential conservation measures 20
c) Western boundary of North Sea herring stocks 20
X. References 21
XI. Tables I-26 22-55
XII. Figures 1-10 56-61XIII.Appendix I - Notes on the VPA and the Cohort Analysis.XIV. Appendix II - Nominal catches in 1971.

I. Terms of Reference and Participation

The Intemational Council for the Exploration of the Sea, acting on a general concem expressec at the NeAFC Meeting in May 1968 about the North Sea herring fisheriea, appointed a Working Group to review the atato of the North Sea hexring stocks and to discusa measures for the improvement of the fisheries exploiting them.

The Working Group held two Meetings in 1969, the results of which are publiahed in Coop. Res. Rep.s Ser. A, No. 26 (1971). The Working Group concluded that in order to increase the size of the adult stock it was advisable to stabilise the effort at a lower level than exerted then.

At its Minth Meeting in May 1971, VEAFC passed the foilowing resolution:

> "Tm View of the Commssionis intorest in the possibility of regulating the North Sea herring Inshery by means of catch quotas, the IGBS North Sea Herring Assessment Working Group is askod to review the present status of the North Sea herring stocks and to advice on the following questions:

1) What altemative schemes of total catch limits Ghould be set in order to ailow recovery of the steck to a aatisfactory level. within a reasonable period of time?
2) Are differential quotas by season, region and category necessary to achieve effoctive conservations if so, what form might they take?
3) Is the $4^{\circ} \mathrm{W}$ Meridian the appropriate northwestern boundary for the quota aroa?

It is noted that all the catch, fishing effort and blological data for the period onding 31 December 1970 must be made available before the Group can carry out the above study, and that it ta desirable thet as many datn for the year 1971 as possible, should also be made available".

Acting on the request of NRAPC, the Working Group net in June and September 1971 and in Jonuary and June 1972 with Mr K. Popp Madsen (Denmark) acting as Chairmen.

All meetings were hold at TCHS Eeadquarters, Charlottenlund Slot, Charlottenlund, Denmerk, and member countries were represented by the following scientists:

		1972		2972	
		$14.19 \mathrm{Jun}$.	I-5 Sepo	24-28 Jen.	13-22 5x\%
De [. Ackeroze	Sweden	z	$\boldsymbol{\pi}$	2	
DY Yex Senino	$\mathrm{U}_{0} S_{8} S_{8} \mathrm{R}_{8}$				3
3ire A, O. Burd	$\mathbb{U}_{0} \mathbb{K}_{0}$	x	\pm	2	Σ
Mr A. Corten	Netherlands				2
Dr m. Dornineim	Germany				3
Tify Femasen	Denmank		z	\pm	Σ
Mar A. Moveorps	France		s		
Me K. Popp Medsen	Denmaxt	π	I	2	a
Mr K.E. Postuma	Tetherlande	x	z	8	
Trimes. Erosvirov	$U_{0} S_{0} S_{0} \mathrm{R}_{0}$				3
Mr A. Sevilio	$\mathrm{U}_{0} \mathrm{~K}_{6}$	8	z	x	z
Dr A. Sohummoher	Germeny	\%	Σ		
Mr 0. Jiltang	Torevay			\pm	Σ
Mr O.J. Getwedt	Nomew	\%	\%	2	Σ

Abstract

All meatings vere athended by Mr J. Maller Corintensen, in hic to ICMS. It wen noted with regret thet repreaentatives from nationm with important fisheries in the Horth Sea were not atterding the meetinga.

IT. Materid and Agende

The North Sea Eerring Asceszment Working Gxoup at ita 1969 seseloue meiniy considered the development in the stock end fiaherien it the period 1960 1968. Cetch etatiatlos and data on the blological compositien were compiled for that period and a caloulation of the muber of bexring oaught per year by ege and area was undertaisen.

At the preseat meetings the Working Group has erpanded thi work to comprise the ontite poct-rar poriod and to make addrional essessmant wethods: auch as the virtual Population Analysis. appliowbig.

The maln objective of the Working Group hes been to estebilsh prognoses on the future development in catch and blomags over 4 . 4 year period at different levols of fishing moxtalitzea. Tor thia prypow the following date have been vital:
a) are compostitons by axeas and inchorleag together with data on mumers per 18 gh $^{\text {a }}$
b) abundance estimates from Young Herning Suryeyn mat Young Eexring Fisheries:
c) data on arerage weight by age and month
d) deta on catch and effort by gear and area.

Hs on earifer occasions, the Working Group had to spond a dism proportionate awount of time on compiling the deta in a mitoble formo Mojor fisheries are shill not coverod by dotailed cetoh atatsatios and are in some casea not oven referable to the groae gtetigtical arean ueed by ICES. Equa:Iy serious def oiencies charactarise the biological data where such basic information as age distribution and aumbers oaght per unit of welght are lacking for entire areas or fiaherien
representing thousands of tons. The problem of inadequate data is most apparent in the case of Skagerrak, which for that reason had to be excluded from the analyses carried out.

The deficiences in the data available introduce an uncertainty in the conclusions drawn, which must necessarily affect the quota levels.
III. The Fisheries
a) Landings

The general decline in total catch from the North Sea and Skagerrak since the peak year of 1965 continued in 1969 and 1970 (Table 2). The total catch in 1971 of 574000 tons was 32% below the average catch level in the period 1955-1964 prior to the heavy expansion of the fisheries, and 8% lower than the catch in 1970. The catch in 1971 is only slightly greater than the average catch in the period 1948-1950 when the main fisheries in the North Sea were the adult herring fisheries for human consumption and the effort was at least half the recent level.

In 1969 the herring fisheries showed a general decrease in catch in most sub-areas while the developments in 1970 and 1971 show a somewhat different pattern. In the latter years a continued decline took place in Skagerrak and the northeastern North Sea while a marked increase took place in the northwestern part (section VII). As shown in Table 2 the recorded catches in the northeastern North Sea went down by about 87% from 1969. It must be noted, however, that the allocations to North Sea subareas of Danish, Froese, Icelandic and Swedish catches are based on a limited sampling of statistics in one Danish harbour. Though the actual figures are bound to be uncertain, the independent picture from the Norwegian catch distribution supports the general development as described above.

In the central North Sea after the increase in adult catch in 1970 over the previous two years, this fell in 1971 to the lowest level recorded. However, the closure of the herring fisheries in August/ September 1971 will have contributed to this decline.

The catch levels in the south have remained constant, but at a somewhat higher level than in the 1966-1968 period. Nevertheless, the current levels are reduced by ten times from the fisheries in 1952-1954.

The highest catches on record were made in 1971 in the young herring fisheries in the central North Sea. This represents an increase of 2.2 times over the low 1970 catch and 1.4 times over the 1969 catch. The increase is associated with the entry of the strong 1969 year class into the fishery.
b) Catch composition
(i) ITunbers caugit_per_age group

Data are presented in Table 9 giving the total catches by area in number per age group for the period 1947-1971. The methods described in Coop. Res. Rep., No. 26, for obtaining the annual age compositions by which separate age compositions were used for fish taken by different gears, each being raised to the total catch by the respective gear, has been followed for the period 1955-1958 and 1969-1971. Any country's catches which could not be specified to gear were used to raise the total specified catch to the total area catch.

The age data used by areas and gear are summarised below:

Year	Area									
	IVa.W		IVa.E			IVb			IVc	
Gear	Drift	Trawl Purse	Drift	Traw	Purse	Drift	Mrawl	Purse	Drift	Trawl
1955	s	G -	S,G	G	-	E	G	-	F	H
1956	S	G -	S	-	-	E	H	-	E	H
1957	5	G -	S	B	-	E, S	E, G	-	E	H
1958	S	G	5	-	-	E	H, G	-	[H, G
1959	s	G -	S	G	-	IT	H, G	-	E	H,G
1969	5	G, H IN, S	-	H, D	TT	-	H, G	-	-	H, C
1970	S	G, D N, S	-	H, D	N	S	G, H	-		H, P,G, F
1971	S	$\mathrm{D}, \mathrm{H} \mathrm{N}, \mathrm{S}, \mathrm{I}$	-	D	$\mathrm{NT}, \mathrm{D} / \mathrm{F}$	E, S	G G H	-	-	H

Key: B-Beleium
D - Dennark
D/F - Danish Faroese Landings
E - Eng? and
F - France
G - Germany
H - Totherlands
I - Iceland
iv - Mormay
P - Poland
S - Scotland
For the period 1947-1954 the age data for areas IVb and IVc are Belgian (Gilis, 1958). For travi catches in IVa the same source has been used and Scottish drift net data heve been applied to drift net catches (Parrish \& Craig, 1963). Numbers per kg were derived from Gilis except for IVa drift net catches which were derived from Scottish data in Statistical Irers Letters.

The age data for the young herring fishery in IVb are all derived from the Danish trawl fishery.

The estimates of the total catches in numbers for each age group for the years 1960-1968, given in Table 9, differ from those given in Table 17 of Cooperative Research Report, No. 26. These differences have arisen from the application of better estimates of the number of fish per kg in the catches of the young herring fisheries in area IVb in these years, and thus affect predominantly the estimated numbers of 0 and l-group herming caught.

During the June 1972 Mceting of the Working Group the catches in numbers per age group in the adult fisheries in 1965 were also recalculated. This estimate differed very markedly from the total catch in numbers per age group for the whole of the North Sea for 1965, given in Cooperative Research Report No. 26, largely because of big differences between the two estirntes for areas IVa.W and IVa. E. This is hardly surprising, in view of the comments made in the previous Report of the Torking Group on the inadequacies of the catch sampling of some of the major fisheries in these areas.

Because of the deficiencies in sampling, any estimate of catch in numbers per age group for these areas will contain a large measure of uncertainty. In view of this, it was decided that the labour involved in recalculating all of the data for the years $1960-1968$ was unjustified. The data given in Table 9, originating from the adult fisheries, is therefore unchanged from those given in the previous Report.

(ii) Pexcentage_of spring_spawners in_the_Morth_Sea_catches

The percentages of spring spawning herring in the catches from the northwestern, northeastern, and Skagerrak areas are given in Table 10 according to the available national data. In the northwestern area the Horwegian and Scottish data are in close agreement for the period I9651968, but thereafter differ widely, This difference may be due to a methodological error in that axter 1968 the Norwegian otoliths were read by a different operator then in the earlier period. It is also possible that this difference in the later years reflects a real difference in the proportion of spring spamers in the catches of the two countries. In these years an increasing proportion of the Norwegian catches was taken on the western boundary of the area, whilst an appreciable proportion of the Scottish catches came from the East of Shetland and within national fishing limits.

In the northeastern area, in all years, there are lange differences between the percentages estimated by the different countries. This again may result from differences in the timing and location of the fisheries of the different countries.

In all areas there is some indication of a higher proportion of spring spawners in the catches after 1965. This might suggest that the spring spawning stock has not decreased to the same extent as the autumn spaming one did as a result of the major increase in fishing effort in 1964 and subsequent Jears.

(iii) Data_on Stragerrak fisheries

In the previous Report, (Anona 1971), an estimate of catch per age groups in number was given for the Skagerrak for the period 1963-1968 (loc. cit., Table 20, p.47) Only limited data on age and weight composition of the catches were, however, available and most of these data came from the fisheries for human consumption. It also appears that the estimate of catch in number per ase groups for 1968 was based on Norwegian research vessel samples which showed a predominance of 0-group fish while the Norwegian commercial fishery was mainly based on l-and 2-ringers. Due to the inadequate sampling oi the commeral catches any estimates of catch in numbers per age groups would be misleading.

Table 11 gives the Danish and Swedish herring catches landed in Denmark separated into catches for human consumption (c) and for industrial purposes (I), together with estimated mean number per kg for some years. For Norway, total catches only are given, but during the years 1964-1968 at least 90% of the catches were for industrial purposes. The catches for other countries are almost exclusively for human consumption.

The figures available on mean number per $k g$ indicate that the Danish industrial landings mainly consisted of fish with 0 and 1 winter rings, while the Norwegian industrial landings in the years 1965-1968 exploited fish with I and 2 winter rings. It seems, therefore, that the total catch from Skaserrak during i..e years $1960-1971$ consisted mainly of fish with less than 3 winter rings.
(iv) Catch pex Unit Fffort

For the period 1947-I971 catches per unit effort are given in Table 12 for trawl and drift net fisheries in the North Sea.

Apart from the extension in time some of these data differ slightly from those in Coop. Res. Rep., No. 26. In particular the Metherlands trawl data refer to herring in fresh weight while previously these were in landed weight.

In the central area the U.K. unit used is catch per landing. Since 1965, as some landings represent more then one night's fishing, these numbers should be reduced by a factor of about 0.8 , to be comparable with the earlier data, but this correction has not been applied to Table 12. These data are derived from the sumer fishery off the English northeast coast. In the early part of the season this fishery is directed at recruiting fishes, while later an increasing proportion of older fish are teken, when the drifters exploit the spawning grounds off the Yorkshire coast. The more stable nature of the drifter catches per effort compared with the trawler series, may be related to this greater dependence on recruit herring.

Both trawler and dwifter wits show declining catches per effort in the south and northeastern areas.

In the northwestern Morin Sea again the drifter data are more stable and do not show the manked docine seen in the Dutch trawl data. This difference in abundance indices between drifters and trawlers has been commented on before. Powe and Parrish (1964) considered that the differences between drifter and Germen trawl catches per effort from July 1947-1959 reflected reai changes in abundance. They suggested that net selectivity could account for the difference Zijlstra (1967) showed a consistent difference between the age compositions or trawl and drift net catches over the poriod 1950-1960. He concluded that the differences could be explained from the drifters selecting a younger component of the stock. Differences in anea listribution of the two fleets might also have an effect.
(v) Erfort

Estimates of effort for the period 1947-1971 are given in Table 13 for the northwestern, northeastern, central and southern North Sea and the Bloden area. Theseata ane mived at by dividing the total catch in an area by the catch per unit effort in that area. As discussed in Coop. Res. Repo, No. 26, the method is only reliable when the catch per unit effort of an area \dot{Z} s estinated from fisheries taking the major part of the total catch in that arca. Difficulties in this respect were experienced in the areas of the northern North Sea, and the effort estimates of the northwestem and northeastern North Sea are, therefore, to be considered with reservations.

Using the U.K. drift net series and the Dutch trawl series, estimates of total effort in the adult insheries in the North Sea have been computed. In the case of the drifter cata for the central and northwest areas it has been assumed that each londins was a drifter shot. The effort for these areas, and area south, have beon summed and raised by the difference between the total catches from these three areas and that for the total Morth Sea adult fishemies. Goh a summation of the effort estimates for the individual areas is only valid on the assumption that they are measured in the same units and in is case they are derived from almost the same fleet of vessels.

In the case of the Dutch trawl data it has been assumed that the catches per unit effort for the northwest, northeast and central areas are all estimates of the total stock of herring in the North Sea. This is certainly not the casc in the northeastem area where the major decline in catch per unit effort in the lator years was partly due to a change in fishing area as the objective or this fishery changed, as the herring stock declined from predominantly herring to a greater emphasis on demersal
fish．It is most unlikely that all of the stock is fully represented in any of these areas．This is particularly pertinent to the centrel area where few fish from the northwestern spawning stock are represented．

However，unless a reliable estimate of the proportion of the total stock fished in each area is available，the simplest assumption which oon be made is that these estimates are equally valid measures of the total stock within that area．Because of availability differences between the areas，catches per unit efforts are not measured in the same units．To correct this，mean catches per unit effort were calculated per area using data from the period 1955－1967 for which catch per effort data are available for each area．The ratio of the mean catches per unit effort in the north．． western and northeastern areas to that of the central area were calculated， and the catches per unit effort for the first two areas were adjusted by this factor．Yearly means were then calculated for the three areas and this figure was raised to the total Morth Sea effort．Table 14 gives the estimated total Morth Sea efforts calculated by both methods．

The effort recorded in drifter landings is underestimated in 1969 and 1971，as there was no fishery in the southern area from which the catch per efforts were derived．The data suggest that after reaching a peak in 1961－1968，the total effort on adult herring has since declined somentit．

The trawler effort also shows the increase in effort from 1961－1968， with，subsequently，an apparently slight decline．

Table l4 also gives catch per effort estimates in drifter and trawler units for the total North Sea catch．The drifter data originating from fisheries mainly on recruiting herring show little trend with time。 However，those for the travler index，being based mainly on the spaming stocks，show a large decrease with time．

Using the weighted mean fishing mortality for fish of 2 rings and older from the VPA analysis，appazent changes in fishing efficiency with time can be examined．The ratio $W /$ Cpe for each year describes the relative changes in \bar{F} generated by one unit of catch per effort．The plots for drifter and travier efficiencies appear in Figures I and 2。 As the mean \vec{F} values for 1968－1970 are not reliable from the VPA anolysis because of the short periods involrod， \bar{F} has been set at 1.0 ，as has been used in other analyses，and which is of the order of the observed values of \mathbb{F} from catch per effort data．

The drifter data indicate an increase in apparent efficiency（fishing intensity）of about two times by 1961 from the level of the earlier period． Accepting the values of F for 1968－1970，the increase was then three times．

The trawler data indicate a rather steady level of intensity from 1954－1964，subsequently jumping by a：factor of about three．

In Figure 1 the relative change in fishing intensity for the Danish young herring trawlers is indicated．This has been calculated by using the catch per effort data of Table 12 and the index of fishing mortality for l－ringed fish from the VFA analysis．The data suggest an increase in efficiency of the order of two times between 1958－1963 and 1964－1970．

IV．The Fish stools

a）Natural mortality
Some impression can be gained from the use of the catch per effort data given in Table 14 of the relative size of M in relation to Z ．For the Dutch trawler data the regression of annual l／Cpe on total effont for the North Sea has been calculated（Higure 3）。 whe statistic 1／Cpe is an approximation to the total fishing mortality．The intercept of 0.13 is not significantly different from the value $M=0.1$ ．The intercept itsele must be an overestimate，as the catches per effort in later years are not corrected for the fishing efficiency increase．This correction would tend to increase the slope and reduce the intercept．This would imply that for
the adult part of the stock, the value of $\mathbb{M}=0 . I$ is realistic.
Other estimates from catch per effort data of the natural mortality coefficient are available and summarised below:
Source
Postuma (1963)
Burd \& Bracken (1965)
Malloy (1969)

Stock	M
Downs	0.08
Dunmore, 1952-1959	0.13
Dunmore, 1961-1968	0.15

In earlier assessments a value of natural mortality of 0.2 has been used when considering the effect of fishing on North Sea adult herring stocks. In the present Report the Virtual Population Analysis and the prognosis have been carried out using the value of $\bar{M}=0.1$. The same value of M was also applied to juvenile immature herring as 0 - and 1 ringers included in the analyses as it was considered less objectionable to use the same value of M throughout the life span than trying to make changes in this value on hypothetical grounds.
b) Fishing mortality

Table 15 gives the values of F obtained from the Virtual Population Analysis on the total North Sea stock for M $=0.1$. The effect of higher value of $M=0.2$ is to decrease the fishing mortality. The correlation between $\mathbb{M}=0.1$ and $\mathbb{M}=0.2$ can be represented by the following equation:

$$
F_{0 . I}=0.96 F_{0.2}-0.067
$$

For the adult stock (2-ringers and older) the data show a relatively steady level in \mathbb{F} up to 1964 followed by an increase in $1965-1967$ to about $0.7-0.8$ when the fishery in the northern North Sea expanded. Subsequent to 1967 the mortalities have remained at a high level of about $F=1.0$, as indicated from catch per effort data.

The fishing mortalities for the l-ringers show an increase in F from the early 50^{\prime} s up to about 0.5 in 1964 and have since stayed at about the same level. The increase in \mathcal{F} corresponds in time with the commencement of the Bløden young herring fishery.
c) Stock size
(i) Estimates from virtuai population analysis

Table 16 gives the estimated stock size in numbers by age and year for the total North Sea from the VPA using $\mathbb{M}=0.1$.

The stock sizes were also calculated for the total North Sea using $M=0.2$. Using an \mathbb{M} of 0.2 the stock sizes calculated are about 30% higher.

Over the years 1949-1965 the total stock sizes were remarkably stable, fluctuating around an arerage level of about 29.0×10^{-9}. After 1965 the stock sizes decreased to an average level of about 20.0×10^{-9}.

Considering the stock sizes for the different age groups, it appears that most of the reduction in stock sizes have taken place in the adult stock (2-ringers and older) which since 1966 has been reduced to about one third of the level in the early fifties. This decrease compares very well to the decrease in average trawl catch per effort (Table 14).

A reduction in the number of older fish greatly affects the spaning potential of the stock, and as is shown in Table 19, the estimated spawning potential has been reduced by about 3 times in the later years, as compared with the period 1947-1952.

(ii) Estimates from_tagging experiments

From Howwegian tagging experiments in 1966 in the northeastern Morth Sea (June) and east of Shetland (July), the stack in the northeastern Morth Sea was estimated to be 0.54 million tons and in the Shetland area 0.57 million tons, totalling l. 11 million tons (Anon. 1971). These estimates were, however, based on returns during the first three months after tagging and nost of the returns came from the areas of release (Haraldsvik, 1969). It seems evident, therefore, that the tagged fish were not randomly dispersed,

According to later reports from these experiments the returns during 1967 and 1968 show that $30-35 \%$ of the tagged fish from the experiment in the northeastern North Sea had migrated to Shetland, while 21-41\% of the Shetland tagged fish were in the eastern area.

The autumn spawners in both experiments consisted of 2 -ringers and older fish. About 10% of the tagged fish in the northeastern area and about 30% in the Shetland area were spring spawners.

Considering returns during 1967 and 1968, the estimates of the totel stock of adult autumn spawners in numbers in 1966 in the northern North Sea range between 10 - I5 thousand million, or in weight (using an average number per kg of 5.2) from $1.9-2.9$ million tons.

d) Larvai abundance

Indices of larval abundance for the period 1946-1969 were presented in Coop. Res. Rep., No.26. In Table 17 of the present Report the results of the 1970 ICES Ierring Larval Surveys have been added and some alterations made to the data for the southern North Sea.

The changes in the Downs estimates have resulted from restricting the larval abundances used to those obtained from sampling in comparable areas within the months December and January. The abundances are of all larval sizes, and as in earlier years (1946-1962) and in 1969 no separation by size was made. A simple mean has been taken of the abundance indices obtained from each survey within each spawning period for use as the annual index. In 1968 the Downs surveys were far apart in time (early December and late January) and the larval sizes were small in each case. As an exception, therefore, in this year the abundance taken is the sum of the two survey indices. In 1966 only two surveys were made up to 20 December when few Iarvae would have hatched out. No abundance index can be given for this year.

The abundance indices of larvae from the southern North Sea (Dorns) show increases in number since the very low levels of the period 1963-1965. In the central North Sea Iarval abundances are still dependent on the spawning off the English northeast coast between the Longstone and Flamborough. In the northern region the major production originates from the Orkney/ Shetland region, though in 1969 some production was recorded on the spawning grounds near the Aberdeen Bank.

Comparable data for 1971 were not available to the Working Group. Preliminary estimates suggest that in the south, larval abundance was low (1963-1965 level). In the central region abundances of the same order as 1970 were recorded, as was the case in the Orkney/Shetland area. In the northwestern area, however, increased production was evident on the Aberdeen-Turbent-Montrose Banks aree.
e) Recruitment
(i) Recruitment estinates

Recruitment estimates are available as the number of O, I or II group fish from the VPA, and as catch per unit effort of 3 year old herring in drift net and trawl fisheries. For the most recent year classes (1969, 1970) the only estimates available so far are from the International Young Herring Survey, the English 0-group survey, and the Danish industrial fishery,

Both the 1969 and 1970 year classes seem to be above average (Table 23). Over the whole period 1947-1970, there is no clear trend in the overall recruitment to the North Sea stock.

Recruitment estimates for Buchan, Bank and Downs stocks were available for the years 1951-1957 as the catch per unit effort of 3 year olds in the drift net and trawl fisheries in the areas (Table 18). In order to get an overall estimate for the recruitment to North Sea stocks, catches per unit effort for individual areas were expressed as standard measure $\left(\frac{x-\bar{x}}{\sigma}\right)$ and then added by years.

A comparison was made between these recruitment estimates and the figures for stock size at three years of age, calculated by VPA. For this purpose, VPA values were also expressed as standard measure (Figure 5).

A significant correlation $(r=0.86)$ was found between the two sets of recruitment estimates, indicating that recruitment levels calculated by VPA are of the same order as those estimated from the combined catch per unit effort of 3 year olds in the different areas.
(ii) Stock-recruitment relationship_for_total_Horth_Sea

Using estimates of each age group of the adult stock for the total North Sea (from VPA) the spawning potential of the stock was calculated from fecundity data on northern North Sea herring. The spawning potential is obtained by multiplying half the numbers of stock at each age by the mean fecundityfor that age group. This gives the potential annual egg production or spawning potential.

Fecundity per age group (from Baxter, 1959)

Ringers	2	3	4	5	>5
No. of eggs $\mathrm{x} 10^{-3}$	45	67	87	96	101

Spawning potential of the total North Sea stock is compared with recruitment estimates as 0-ringers from VPA in Table 19. There is no correlation between the two values for the period of observation. Instead, recruitment fluctuated around a rather constant level of about 8×109 (Figure 6).

The North Sea herring are regarded as consisting of three major stock units, Bank, Downs and Buchon. Stock recruitment relationships have been domonstrated for some of the individual stocks. By adding all stocks together in the present analyses, any underlying stock/recruitment relationships might well be masked.
(iii) Stock-recruitment relationship_for_Downsherring

Figure 7 shows a plot of Downs larval abundance (Table 17) against both the abundance of 0-group herring along the East Anglian coast and Thames estuary (Wood, 1970) and the abundance of low mean length herring ($<15-16 \mathrm{~cm}$) as measured during the International Young Herring Surveys. The 1968 year class has been excluded because larval production of the Downs stock was not properly measured in 1968/1969. For the remaining years (1964-1970) the relationship between number of larvae and abundance of young herring is quite apparent.

The plot of 0-group fish against low mean length I group in Figure 8 also includes the 1968 year class. This year class in the nowns stock was of about the same strength as the 1969 and 1970 year classes, while for the total North Sea the 1968 year class was only half as strong as the 1969 year class (Table 23).

f) Weight data

The monthly mean weights per age group are given in Table 20 for each area separately. These mean weights are based on data collected in the period 1966-1971 in area IVa. V_{V} on combined Netherlands and Scottish data, in area IVa.E on Netherlands data and in areas IVb and IVc on English and Netherlands data. Norwegian weight for age data for area: IVa: as a whole are tabulated separately. The rather few observations available for area IVa.E suggest that the weight per age in this area is very similar to that in IVa.V and the Scottish and Netherlands data for these two areas are very similar to those of Horway for the combined areas. Danish data of monthly weights for age in the juvenile fisheries are given in Table 21.

In all areas the data show a maximum weight per age in the adult fisheries in August-September and a fairly rapid decline thereafter to about $60-70 \%$ of this sumner maximum in the early months of the following year. This would suggest that quite apart from any gain due to growth or reduction in fishing mortality, an appreciable increase in yield could be obtained by restricting fishing during the period November-April.

The mean number of herring per kg by month and area is shown in Table 22. In the northern North Sea the data refer to Scottish and Dutch catches, while those for the central and southern North Sea mainly derive from the latter. Additional figures for juvenile herring in the central area are obtained from the Danish young herring fishery. For the adult fisheries the number per kg is lowest in the period between the feeding and the spawning seasons.

Table ll presents some information on numbers per leg in certain Skagerrak fisheries. These data, however, are hardly representative of the total catches.

V. Prognoses for Different Ievels of Fishing Mortality

Essentially any fishery regulation is directed towards a control of the fishing mortality either in an entire fish stock or in components thereof (e.g. juveniles).

The main task of the Working Group was therefore to estimate the parameters of fishing mortality, natural mortality and stock size from earlier data and to establish a basis for prognoses of the future development of the herring stocks.
a) Parameters and assumptions
(i) Natural moxtality

Natural mortality has been assumed to be 0.1 for all ages. The usc of an alternative value of $M=0.2$ was tested, but the effect on the prognosis was found to be negligible at current levels of fishing mortality.
(ii) Fishing mortainty

From data of the 1968-1971 fisheries the following estimates of total mortality have been derived from catch per effort data:

Year	Total Mortality Z			
	IVa	IVb		IVc
	Englar.	Netherlands	Netherlands	
$1968 / 69$	0.55	1.27	1.30	2.0
$1969 / 70$	1.34	1.30	0.79	1.0
$1970 / 71$	0.73	1.30	1.30	0.8

It would appear from these data that the total mortality in recent years has been high and a fishing mortality for adult herring (i.e. 2-ringers and older) of $E=1.0$ was thought realistic.

Using the total North Sea catches, F values for the juvenile herring (i.e. I-ringed herring) were calculated by Virtual Population Analysis using $\mathbb{M}=0.1$. From this an average value of $E=0.5$ appears reasonable for 1 ringed herring.

Table 15 suggests that the fishing mortality of the 0-ringed herring is about 10% of the fishing mortality of the l-group.
(iii) Initial ase composition and recruitment

The stock composition as at I Jonuary 1972 was used as a starting point for the prognosis. This was derived from catch in number per age group in 1971, corrected to stock as at I January 1971 by applying an $M=0.1$ for all age groups, an $F=1.0$ to fish older than l-ringers and $\vec{F}=0.5$ to l-ringers. The catch figures given in Table 9 were used.

In order to simulate the likely changes in the stock under different levels of fishing mortality in the next five years, some estimates of the relative strengths of incoming year classes are required.

The strengths of the 1968, 1969 and 1970 year classes have been monitored in the English coastal surveys for 0-group herring, the ICES Young Herring Survey and the Danish Young Herring Fishery. Taking the 1969 year class as standard, the comparitive strengths of the others are shown for comparison in Table 23. All estimates for the 1968 year class are in close agreement.

The strength of the 1970 year class is believed to be underestimated in the northern part of the English coastal survey. The means used for the young herring survey differ from those quoted by Postuma and Euiter (1972) in that abundance indices have been separately calculated for fish of low mean length and high mean lengths. The mean numbers of l-ringed fish per rectangle for the two groups have been summed to give the overall abundance index. It seems that the relative year class strengths so obtained are ciose to the estimates derived from the Danish young herring fishery taking place at the time the survey was made. Using these data it was assumed that the 1970 year class is 50% greater than the 1962-1969 mean ($7.9 \times 10-9$) and that all subsequent year classes are of average strength.

The estimated age composition as at 1 January 1972 is shown below:
Age composition as at I January 1972

W.r.	0	1	2	3	4	5	6	7	8
Hos. 10^{-9}	7.9	10.7	5.4	1.16	.38	.13	.022	.017	.16

This gives a total biomass of 1.0×10^{6}
(iv) Mean_weights_per age group

In order to assess the effects of changes in juvenile and adult fishing mortalities on the stock and catch in weight, estimates of the mean weights of eaci age group, as caught, have been made. The mean weights of fish older than 2-ringers were calculated from the von Bertalanffy growth equation:

$$
\begin{aligned}
& W_{\infty}=271.09 \pm 2.0 \\
& \mathbb{K}=0.377 \\
& T_{0}=-1.526
\end{aligned}
$$

For the younger age groups estimates were obtained of their mean weight both in the annual catch and at I January.

The mean weights used in the computations appear below:

	Mean weights (g)	
Winter Rings	At I January	Annual catch
0	-	17
1	25	50
2	75	125
3	282	
4	207	
5	226	
6	240	
7	249	
8	256	
9	260	
10	264	
11	266	
12	268	

b) Prognosis foz different levels of fishing mortality

Using the parameters indicated in the previous sections, computations were made of the expocted catches in 1972 under different levels of juvenile and adult fisling mortalities. These are presented in Table 24 and in Figure 9 for $a l l$ combinations of juvenile fishing mortality from $F 0.0-0.3$ and adult fishing mortalities from F 0.0-1.5. In addition is shown the expected percentage changes in the 1975 catch and biomass over that in 1972.

In Table 24 the first column indicates the expected changes, if there were no fishing on I-ringed fish ($F=0.0$). Thus at an adult $F=0.1$, the expected catch in 1972 would be 92000 tons, and if this pattern were continued to 1976, then the 1975 catch would be 298% greater and the biomass a 31 December 1975 would be 306% greater. At an adult $F=1.0$, the expected catch for 1972 would be 613000 tons and the catch in 1975 would be increased by 47% and the biomass by 26%.

The first row indicates the effects of stopping all adult fishing and exploiting l-ringed fish only.

It has been assumed that the recruitment would be of average strength up to 1976. The anual 1972-1975 catches would then simply be a proportion of thess recruits depending on the fishing rate. There would be no change in catch with time, as the I-ringed fish after passing through the fishory would join the adult unfished stock. However, the biomass would increase $\bar{D} y 365 \%$ over the 1972 level at $F=0.1$ or 188% at $\mathrm{F}=0.7$ 。

The accuracy of the prognosis has been studied, assuming recruitment to be a pure random process. The forecast of both catch and biomass up to the end of 1975 has a mean error of 25%. This point must be kept in mind when using the table.

c) Comparison with former data

The prognosis technique was applied to the 1970 eatch for forecasting the 1971 catch. With an adult $F=1.0$ (2-ringers and older) and a juvenile $F=0.5$ (I-ringers) for 1970, the predicted and observed values for the 1971 catch were as follows:

	Catch in	$000 t$
	Predicted	Observed
Immature catch $=1$	238	212
Mature catch	321	298
Total	559	510

It is assumed that 25% of the catch of 2 -ringers are immature.

It will be seen that the predicted catch is about 10% higher thon that observed.

The value of $P=1.0$ for adults is a mean fishing mortality for all ages older than l-ringers. Estimating F for each age group, using the catch of 1970 and 1971, and assuming a juvenile $F=0.5$ and an adult $F=1.0$ for 1970 , the following gives fishing mortalities for 1971 ($\mathrm{M}=0.1$):

W. S.	E
1	0.44
2	1.47
3	1.02
4	0.60
5	0.50

This shows that the assumption of an equal F for all adult age groups is disputable. The Working Group, however, had no model available for calculating the expected changes in distribution of F on age groups and had to adopt the assumption used. Inspection of the prognosis showed that the effect on the adult catch was not very serious, so that from an operational point of view the assumption of an adult F equal for all age groups can be applied.

VI. Conservation Measures

a) Overall catch quota

From Table 24 and Figure 9 the overall catch quotas can be derived once the decision has been made regarding the level of biomass and catch required in 1975. If a doubling of the biomass is considered desirable, the sets of fishing mortalities ($0.0,0.5$) , ($0.2,0.4$) etc. can be read from the table giving the overall quota for 1972.
b) Differential measures

Differential quotas will in principle allow higher catches to be taken in a fishery then with an overall quota. The more detailed a catch quota system, the greater the possibility of directing the fishing effort towards those levels of fishing mortality which in different periods, life stages, or areas will allow the maximum catch to be taken.

Different conservation measures were discussed in the former Report by the Working Group (Anon., 1971). All these measures were aimed at increasing recruitment or reducing mortality in the adult stocks
or a combination of both。 Differentiation of catch quota by region, season and category will be discussed.

(i) By_resion

An overall quota in the North Sea could be divided between certain areas of the North Sea. The purpose of this measure would be the protection of specific components of the North Sea herring.

For the purposes of the assessment the North Sea catches have been reported in four major regions of the North Sea and separately the catches of juvenile fish in the central North Sea. However, no estimate could be made of the effects of changes in fishing mortality within these areas following the appication of catch restrictions.
(ii) Closed_seasons

To estimate the expected gain in yield by closed seasons, monthly mean weights for each age group were calculated (Table 2l) by using weight data from the different areas (Table 20) and taking a weighted mean for each month according to catch distribution in 1969 and 1970 . Yields per recruit were onlculoted (Jlltang, 1972) using monthly weights and coefficients expeessing the distribution of the fishing intensity on the different monthe eor the following alternatives:
a) No closed season
b) Closed zeascns In Tay and September
c) Closed season from 1 April to 15 June
d) Closed season fron I March to 15 June

The yield curves are shom in Rigure 10. The monthly fishing mortality for l-ringers was set to 50% of adult fishing mortality and at 10% of adult fishine mortalitof for O-ringers in July-September. The yield curve for altenntive 0) is very close to alternative a). The expected gains in yiele by closcl seasons are shown in the table below:

	$\mathrm{N}=0.1$	
	$\begin{aligned} & Y / R \\ & (\delta) \end{aligned}$	\% Increase compared with alternative a)
a) Mo closed season	81.7	-
b) Closed seasons in May and Sep.	82.8	1.3
c) Closed semson finom I Apr. to 15 Jwn 。	85.2	4.3
a) Closed season from I Mar. to 15 Jun.	90.0	10.2

Using $M=0.2$, the rield por recruit will be reduced by about 20 g (Figure 10). The relative inerease in yield per recruit for the alternatives b, c and d vill bo almost unchanged.

(iii) Quota by_categories

The only practicable differentiation of quotas by categories is that between juvenile (0 -and l-ringers) and adults (2 -ringers and older) In Table 24 and Figuxe 9 predictions of catch and of stock are given for various levels of fishing mortalities on juvenile and adults, respectively.

The present effect of the juvenile fishery is best illustrated by following say the 700000 t total catch curve on Figure 9 from the present level of the fishing mortality of l-ringers F juv $=0.5$ to a total ban on the juvenile fishery F juv $=0.0$. In the case of $F_{j u v}=0.5$ the catch in 1975 will decrease by 7% of the 1972 catch and the total biomass will decrease by 2%. Taking the 700000 t in 1972 as being exclusively adults (2-ringers and older), one would expect an increase in catch in 1975 of 25% and an increase in biomass of 6%. The optimal fishing mortality is about $F=0.4$ on the yieId per recruit criterion with a total ban on the juvenile fisheries. This indicates a catch quota for 1972 of $318000 t$ with an increase in catch of 160% in 1975 (i.e. to 826000 t) and an increase in biomass of 139%. 1 higher value of M than 0.1 will decrease the expected gain as illustrated by Figure 10.

VII. Northwestern Boundary of the Quota Area

The area to the west of Shetland has been fished by the Scottish fleet in the early part of the Shetland herring season for many years, but the proportion of the total Scottish catch taken in that area was, until 1965, comparatively saall, averaging less than 10%. Since 1965 this proportion has increased considerably and in the 1968, 1969 and 1970 seasons other countries fishing in the northwestern North Sea: have also taken an increasing proportion of their catches from west of Shetland. In 1970 and 1971 the fishery to the west of Shetland extended further west than in previous years and appreciable catches were taken west of $4^{\circ} \mathrm{W}$ - the western boundary of the ICES Morth Sea statistical area IVa. Table 25 gives the catches taken in area VIa and in area IVa. W annually in the period 1965-1971. The catches taken in area VIa have increased steadily during this period with particularly large increases in 1970 and 1971. The increased catches from this area in these years were largely due to the entry of Norwegian, Faroese and Icelandic purse-seine vessels fishing just west of the $4^{\circ} \mathrm{V}$ boundary in the vicinity of Rona.

a) Catch statistics

The catches taken by the Scottish and Nowegian fleets from the northwestern North Sea and that part of the Faroese, Icelandic and Swedish catches landed in Denaark from this area in 1970, are given in Table 26a by months. Thesc have been sub-divided into three areas: west of $4^{\circ} \mathrm{W}$, from $4^{\circ} \mathrm{W}$ to the west coasts of Shetland and Orkney, and to the east of Shetland and Orkney. In 1970 91\% of the Norwegian catch from the Shetland area was taken from the grounds to the west of Shetland and 60% of the Scottish catch from this area. Of the Icelandic, Faroese and Swedish catches landed in Denmark, only about 20% of the northwestern North Sea catch cane fron these western grounds, but it is possible that this is an underestimate of the true proportion, in that catches from these western grounds were more likely to be landed in Faroese or Scottish ports then in Denmark.

The distribution of these landings by months in the three areas are of interest in showing that the fishery, and so presumably the fish, moved eastwards from these more westerly grounds as the season progressed. This was also the pattern of the Scottish fishery in the Shetland area in earlier years.
b) Age composition

The age composition of the catches of the Scottish and Norwegian purse-seine fleets in 1970 and 1971 in the three areas used for the catch statistics are given in Table 26b. In 1970 the age compositions for the three areas are in substantial agreement in showing that the catches were predominantly composed of 3 and 4 year old fish. The higher proportion of 3 year old fish in the East Shetland area in that year could be a reflection of the fact that most of the age sampling in that area was done in August when the proportion of younger fish in the Shetland catches is generally higher.

In 1971, however, although the age compositions of the catches from the two areas west of Shetland are in very close agreement, the east Shetland catches again showed much higher proportions of young fish and in that year sampling in the three areas was distributed over the same time period.

The scarcity of fish older than 5 years in the catches from all three areas nakes it appear unlikely that an appreciable component of the population in any of them is derived from the Minch stock which still contains a higher proportion of older fish.
c) Meristic characters

The data available on the peristic characters of the herring populations in this area are given in Table 26c. The fish caught to the east and to the west of Shetland have very similar vertebral and keeled scale counts. However, Minch and east Shetland fish show identical values for these characters so that they are of no value in clarifying whether the fish caught west of Shetland belong to one or other of these stocks, or are a mixture of the two. The mean Inl data given in Table 26c show that in this character there is no significant difference between the east and west Shetland herring, but that both have significantly higher values than fish frou the Minch.

VIII. Discussions

In the previous Report, (Coop. Res. Rep., Ser. A, No.26), particular attention was drawn to the sequential nature of the changes of catch, catch per effort, larval production and mortality by fishing area in the North Sea. The reduction of the adult stock in the southern area was followed somewhat later in the central North Sea and finally in more recent years in the northern North Sea. It was noted that the decline in total catch since 1965 had not been as rapid as might have been expected from the reduction in catches of adult herring, and it was concluded that the real state of the North Sea stock was masked by the increased exploitation of herring before their first spawning and by the shift of the fishory to more northern areas.

These conclusions have been further strengthened by the evidence of the fisheries in 1969-1971. The Morth Sea catch was reduced to about 550000 tons in 1969 and 1970, while a further reduction to about 510000 tons took place in 1971. In these years there was a further expansion of the juvenile fisheries and an important part of the adult catches were taken in the northern liorth Sea: west of Orkney and Shetland. This area was never exploited to that degree in previous years and the expansion of the fishery in this area has made the task of assessing the present state of the stock even more difficult than before.

The present assessment of the North Sea herring stock is based on data on catch in numbers per year and per age group The quality of this material is very uneven from area to area and from one fishery to another.

The nost comprehensive set of data, available back to 1947, derives from the fisheries in the central and southern North Sea (area IVb and IVc). The reliability of age and catch data from the northern North Sea is rapidy deteriorating from west towards east. For the large fisheries in later years in Slagerrak, data are so poor that they had to be excluded from the analysis altogether.

It is not clear to what extent the exclusion of the Skagerrak area affects the analysis carried out. On the assumption that the herring in Skagerrak is partly or wholly also exploited in the fisheries in the Horth Sea proper, and that the age distributions in the two areas are similar, then the effect of the Skagerrak fisheries will be measured within the values of adult fishing nortalities obtained from the total North Sea data. The effect of excluding the Skagerrak catches of juvenile herring would be to underestimate the stock size of younger age groups, especially in the mid-sixties.

The reliability of the stock sizes and fishing portality estimates derived from the VPA analysis are to some extent dependent on the initial values of F and M chosen. In the past the natural mortality M for North Sea herring has often been quoted at a value of about $\mathrm{M}=0.2$. There is, however, other evidence from mortality on effort studies which suggests a: much lower value, less than 0.10 for adult herring. From the total North Sea adult catch per effort data presented here, a rather similar figure could also be derived. The effect of applying $\mathbb{H}=0.2$ instead of 0.1 will be to decrease fishing mortality estimates and to increase those of stock size.

It could be argued that it would be more realistic to use a higher \mathbb{M} in the juvenile herring than the value of 0.1 in this analysis. This refinement has not been attempted, but its effect would be to increase recruitaent levels and consequently subsequent stock levels.

The initial inputs of \mathbb{F} for the oldest age group in each year class have been made by reference to estimates of total mortality from the catch per effort data. Attempts have been nade to check the conclusions from the VPA with estimates derived fron the more conventional types of analyses using catch per effort data. According to the VPA, fishing mortality on the adult stock has increased by about three times between 1949 and 1967. If the more recent catch per effort mortalities of the order of $F=1.0$ are considered, the increase is greater than three times. This relative change in fishing mortality is also reflected in the reduction in catch per effort of the same order for the total Morth Sea using the Dutch trawl fishery data based on adult herring. The index based on drifter effort shows less reduction in catch per effort.

In the young herring fishery, mortalities increased as the fishery developed during the 1950° s and early $1960^{\circ} \mathrm{s}$, but since 1964 they appear to have stabilised at about $F=0.5$.

For all three indices of abundance from drifters/trawlers and Danish young herring trawlers there has been an apparent increase in fishing mortality generated per unit catch per effort of the order of 2-3 times over the periods for which data are available. In the case of the Danish vessels this may in part be interpreted as an increase in efficiency.

The apparent increase in efficiency for drifters and trawlers should not be interpreted as being solely due to improvements in their own technique. It reflects an increase in efficiency in any gear units within the total Morth Sea fleet.

The VPA analysis for the total North Sea shows a decline in adult stock (>1-ringers) of about three times since 1947. This is similar to the estimate fron catch per effort. The total stock has remained fairly stable, being supported by a number of good year classes entering in recent years.

The level of recruitnent in this analysis is determined largely by the young herring catches in area IVb. It has been shown that the estimates of North Sea recruitment as l-ringed fish are closely correlated with estimates from catch per effort data from the adult fisheries.

The changes recorded in adulu stock, fishing mortality and recruitment obtained from the VPA, have some support from other abundance indices. The techniques used, as for example in the estimate of total North Sea fishing effort, are crude and open to objection; the catches in numbers of fish per age group, used in the TPA, are in some cases derived fron very poor naterial. However, independent evidence from adult herring tagging has supported the stock levels obtained in the VPA.

The predictions of catches and stocks under a range of fishing nortalities are dependent on the future level of recruitment. Attempts have been made to assess the strengths of these incoming year classes from a number of sources. These show that recent recruitment levels are higher than the long-term means.

As shown in Table 24, if the current estimated levels of fishing mortality are maintained in 1972, the total catch will be about 820000 tons, this increase above the 1971 catch level reflecting the high recruitment levels from the 1969 and 1970 year classes. In practice it is difficult to predict what the total catch will be in 1972 because it is impossible to forecast the effect of the closure in force in that year on the mortality levels. The effect of this may be saall as it has not so far been possible to show any significant effect of the 1971 closures on the nortality levels in that year. If nortality is maintained at the current level in 1972 and in subsequent years, the prognosis shows that by 1975 the catch and the stock will have declined by 18% and 15% respectively.

For the Downs herring, evidence has been presented that both 0 and l-ringed herring abundances are correlated with larval abundances, these in turn reflecting the spawning stock size. The 1971/1972 Dows larval production was extremely low and comparable with the lowest periods of stock size in 1964-1965. Thus, the forecast of average recruitment for the total Morth Sea of the 1971 year class may not be valid and as a consequence the stock levels in 1975 may be overestimated.

From the yield per secruit curves it is clear that the maximum sustainable yield is obtained with F of about $0.3-0.4$. This was the level of fishing mortality in the period 1949-1953 when the total adult catches were of the order of 600000 tons. it the present catch levels of about 550000 tons of both juvenile and adults, the fishing mortality was of the order of 1.0 .
IX. Conclusions
a) overall quota

The Working Group found that the maximum sustainable catch of North Sea autum spawhers is obtained at a level of fishing portality of $0.3-0.4$. Fron the data available the present level of F is about 0.8 - l.0. Prognosis of future catch and biomass indicates that at this level of fishing mortality the point of balance between increase and decrease is reached. Considering the error on the estimates, it is likely that a further decine both in stock size and in catch could be the effect of a high sustained F. A reduction of F to that corresponding to the level of maximu sustainable yield would thus require a decrease in F of about 50% or a catch level in 1972 of about 400000 tons. With no reduction in 1972, the required catch level in 1973 would be about 425000 tons.

b) Differential conservation measures

The Working Group concluded that quotas by season and by category were practicable. The largest gains would be obtained from restricting fishing to the second half of the year combined with a quota for the fishing period. More severe restrictions on the fisheries for juveniles would lead to relatively higher gains for all coubinations of these凹easures.

c) Western boundary of Morth Sea herring stocks

On the basis of the available data it is not possible to state categorically where the western boundary of the North Sea herring stocks should be drawn.

X. References

Anon. 1971. Coop. Res. Rep., Ser. A, No. 26. Baxter, 1959. J. du Cons., XXV, Ho. I.

Burd \& Bracken, 1965. J. du Cons.g XXIX, No. 3. Gilis, 1958. Rapp. et Proc-Verb. 143, II. Haraldsvik, 1969. ICES, C.M.1969/H:35 (mimeo). Molloy, 1969. ICES, C.M.1969/H:14 (mimeo). Parrish \& Craig, 1963. Rapp. et Proc-Verb. 154. Pope 品Parrish, 1964. Rapp. et Proc-Verb. 155. Postuna, 1963. Rapp. et Proc-Verb. I54. Postuma \& Kuiter, 1972. ICES, C.M.1972/H:5 (mimeo). Ulltang, 1972. ICES, G.M. 1972/H:8 (mimeo). Wood, 1970. ICES, C.M.1970/H:15 (mimeo). Zijlstra, 1967. J. du Cons. Vol. 31. No. 2.
Table la．Herring．Catch in＇000 tons 1947－1959．

406	806	798	908	TL8	828	$\downarrow 56$	$8 \downarrow$ L	切し	¢9S	TSS	702	TS9	
502	9 L 2	85T．	£टT	¢TL	66	LET	$6 ¢ \tau$	ヤOT	T6	6 L	L8	¢S	70．8077ey pur
202	269	90L	¢89	85L	$62 L$	LT8	609	079	$2 L\rangle$	$2 L\rangle$	£29	865	Bes yfuoll tefou
$0 \downarrow$	62	L\＆	82	2	－	－	－	－	－	\cdots	＂	＂＇	${ }^{0} \mathrm{E} \cdot \mathrm{S} \cdot \mathrm{S}^{\circ} \mathrm{n}$
LS	06	$6\rangle$	8ε	$L\rangle$	68	L． 2	L\＆	L¢	$L 2$	52	92	52	uәpens
86	08	TV	$\varepsilon\rangle$	69	65	28	L．L	2t	LE	¢G	06	T8	purt700s
TL	95	$6 t$	97	68	－	－	－	\cdots	－	－	－	－	puetod
LT	8	8	\checkmark	ς	ε	2	2	τ	ゅ	ε	9	\downarrow	Rbmiont
8tt	Lटt	62t	9\＆T	$8 \checkmark \tau$	ヤLT	98T．	8ST	67 t	$\varepsilon ¢ T$	T\＆T	\＆9 9	SST	spuetxeq̧ə⿺𠃊
－	－	－	－	－	－	－	－	\cdots	－	－	－	－	puetoos
$L \downarrow \tau$	002	$L \varepsilon 2$	LTट	892	¢92	L62	8GT．	LLT	LTE	LOT	LTT	OTT	
$5 ¢$	切	切	St	65	$\downarrow s$	92	59	S己T	T9	09	LL	LL	20ヶtex
－	－	－	－	－	\cdots	－	－	－	\cdots	－	\cdots	\cdots	spurtsi poub
$\tau 2$	己己	2ε	9ε	68	$\tau 9$	T．L	99	εL	$S L$	TL	vti	tot．	ривт．8ut
$\varsigma\rangle \tau$	$\downarrow ¢ \tau$	88	¢8	99	85	OG	cc	カ¢	8	5	L	6	
ε	Z	2	9	9τ	8 L	9τ	¢T	8	OT．	$L \tau$	¿己	9ε	
$656 T$	8．66T．	LS6T	956T	SS6T	$\nabla \zeta 6 \tau$	ES6T	256T	TG6T	056T	6762	876 T	$L \bullet 6 T$	$\text { xeax } \quad \text { Ruquno }$

Table Ib ilesriag. Catch in tons 1960-1971.

\square	1960	1961	1962	1963	1964	1965	1966	1967	1968	1.969	1970	1971
Belgiun	3642	3146	1117	1843	1607	776	391	410	134	468	1:200	681
Denmark	119400	138800	126000	117600	141600	158700	105900	135000	163100	180260	133331	185393
England	16354	17849	11994	22821	16533	11494	10716	8215	5128	6666	9702	4.113
Paroe Isl.	-		-	-	973	3111	1491	35993	49995	40640	58405	25635
France	11137	23042	12271	18062	23295	16480	10711	11478	12852	15307	11482	10882
Germany, Fed.R.	148388	100944	89056	9381.5	86586	77032	54157	32312	21216	12798	7150	381.0
Toeland	-	-	-	-	-	1757	1. 047	5684	44489	19997	22951	42338
Netherlands	125713	129841	87521	126487	11.6226	80320	56668	37270	22306	29769	46218	32479
Worway	13893	10440	7461	21448	103752	520890	424462	240032	211904	114.938	177341	122570
Poland.	76304	78082	59331	72462	89691	98130	74071	37816	11954	9221	5057	203.1
Scotland	29006	23038	22416	34571	21. 125	20569	17557	18138	16477	22053	21885	25073
Sveden	89289	103744	110353	140012	130132	132182	121970	121591	88061	33109	34670	36880
U.S.S.R.	63105	67722	100265	75965	139637	47322	16442	11660	70029	61549	18078	18000
Total	696231	696648	627785	725086	871.57	1168763	895583	695599	727645	546775	547470	509885
Non-Nember Countries	36000	?	$?$?	?	67700	30600	27700	$?$?	250	?
Straçerrals	75820	85291	104246	163228	309804	256742	144655	279744	280036	113279	70527	64179
Kattegat	31000	41100	51600	64200	79300	81400	75300	72000	108900	59300	74300	90200
Grand Total	839051	823039	783631	952514	1260261	1574605	1146138	1075043	1106581	719354	692547	664264

Teble 2. Herring.

$$		
	$\begin{aligned} & \text { 品 } \\ & \stackrel{\rightharpoonup}{3} \\ & 0 \end{aligned}$	
	H 4 4 0 0	

[^1]Table 3. Herring. Total catch in tons. Tattecat)

Year	Denmark	$\begin{array}{\|c\|} \hline \text { Faroe } \\ \text { Islands } \end{array}$	German Fed.R.	Iceland	Netherlands	Norway	Poland	Sweden	U.S.S.R.	Total
1960	4.3200	-	42	-	-	2578	-	30000	-	75820
1961	56700	-	7	-	-	4584	-	24000	-	85291
1962	70600	\sim	3	-	-	5049	594	28000	-	104246
1.963	105100	-	828	-	-	10971	329	46000	-	163228
1964	129500	-	6064	-	-	85916	4324	84000	-	309804
1965	95300	-	4248	-	-	83864	5330	68000	-	256742
1966	75200	-	432	-	74	30438	511	38000	-	144655
1967	100400	-	466	2151	-	95039	127	66000	15561	279744
1968	14.3600	-	2	695	36	71865	42	45000	18796	280036
1969	57965	-	-	--	-	13957	-	41357	-	113279
1970	30107	--	-	6453	-	7037	-	26930	-	70527
2971	26985	5636	\cdots	5834	-	5961	-	19763	-	64179

Table 4. Herring. Totci catch in tons,

Year	Belgium	Denmark	England	Faroe Islands	France	German Fed.R.	Iceland	Netherlands	Norway	Poland	Scotland	Sweden	U.S.S.R.	Total
1960	\sim	41800	-	-	-	294.55	-	15442	9005	15749	1598	87825	63105	263979
1961	-	61500	-	-	-	14043	\cdots	6318	7630	11020	3877	102676	67722	274786
1962	\cdots	49600	3	-	-	8913	-	6990	5793	5036	4899	110287	100265	291786
1963	-	58900	4	-	-	10069	\cdots	8448	18255	3335	-	135350	75965	301326
1964	-	53100	-	\cdots	\cdots	9972	-	9313	91006	12949	627	127425	139637	444029
1965	-	49700	-	-	-	23428	1757	6912	323361	16200	\cdots	132182	27227	580767
1966	-	51400	6	\cdots	-	12329	1047	4555	205239	11690	186	121141	16442	424035
1967	-	51.600	-	-	\cdots	2. 558	5684	1709	176628	2986	-	120838	11660	373663
1968	-	57100	-	-	-	2487	9355	1022	66046	1880	$-$	88061	30799	256750
1969	32	55550	-	12805	278	16	6300	2084	15618	166	9785	26035	19392	148061
1970	50	1800	-	5898	48	10	1220	281	3331	123	1929	5560	1012	21. 262
1971	\cdots	6219	\cdots	239	-	389	-	167	10442	-	-	-	-	17456

Tab1e 5. Herring. Total cavch in tons.

Year	Belgium	Denmark	England	Froroe Islands	France	German Fed.R.	Iceland	Netherm lands	Norway	Poland	Scotland	Sweden	U.S.S.R.	Total
1960	122	-	163	-	1151	45746	-	19863	3343	7000	22292	14.64	-	101144
1961	120	-	8	-	5796	19146	-.	8414	2. 173	7271	16954	1068	-	60950
1.962	125	-	11	-	3757	7125	-	4659	837	3807	17191	66	-	37578
1963	343	-	13	-	5121	11377	-	9495	2641	12511	2694.5	4662	-	73108
1964	155	-	8	973	6405	7319	-	11420	4350	15962	16753	2707	-	66052
2965	227	-	-	3111	7303	4489	-	11.515	196488	35878	19239	-	20095	298345
1966	178	-	34	1491	2. 628	7069	-	3414	219223	27199	16548	829	-	278613
1967	200	-	15	35993	1515	7941	-	3418	41664	8454	17359	753	-	117312
1968	23	\cdots	-	49995	1349	7150	35134	3072	131598	2806	16324	-	39230	286681
1969	68	11360	\cdots	27835	605	448	13697	474	99316	362	10051	6765	42157	213138
1970	750	61423	-	40884	818	177	20587	177	146397	2069	17767	4470	17066	312585
1971	-	44500	-	25142	514	-	42164	5755	112114	1288	24711	4954	18000	279142

Table 6. Hoswing Tothl achcia in tom, Howth Soa, Centrad

Year	Belgitum	Denmark	$\begin{aligned} & \text { Faroe } \\ & \text { Islands } \end{aligned}$	England	Iceland	France	$\begin{aligned} & \text { German } \\ & \text { Fed. } \end{aligned}$	Netherlands.	Noxway	Poland	Sootlend	Sweden	Total
1.960	115	-	"	9816	\cdots	369	39326	61540	1545	48479	511.6	-	266306
1961	121	-	\cdots	- 579	-	2535	35402	70336	637	49064	2. 207	-	168881
1962	124	-	-	6076	\cdots	2886	40772	47255	837.	45030	326	-	143300
1963	558	\cdots	-	14. 465	-	8296	60818	81. 524.	552	54370	7626	-	228209
1.964	351	-	\cdots	9235	\cdots	7750	36361	63314	8396	58726	3745	-	187878
1965	47	\cdots	\cdots	8524	-	7037	22520	47551	1041	44815	1. 330	-	132865
1966	69	-	\sim	964.6	\cdots	6261	21.183	42008	\cdots	34085	823	\cdots	11.4075
2.967	5	--	-	6809	-	6540	1891.7	26769	21780	26370	779	\cdots	107929
1.968	13	-	-	4.72	-	8196	10439	13285	14260	724.1	153	\square	57757
1969	-	-	-	5964	\cdots	3362	3528	16542	4	8077	2217	309	40003
1970	-	-	11623	8731	1144	2433	6005	28815	27613	2836	2189	24.640	116029
1971	8	2488	254	4113	179	5918	423.	10172	1.4	743	362	1. 926	26598

Table 7. Herring. Total catch in tons. North Sea, Central (Division IVb).

Year	Young Herring Fisheries				
	Denmarls	German Fed.R.	Sweden	Total	Total young and adult fisheries (Tables 6 and 7)
1960	77600	22322	-	99922	266228
1961	77300	16549	-	93849	262730
1962	76400	23975	-	100375	243675
1963	58700	9017	-	67717	295926
1964	88500	28126	-	116626	304504
1965	109000	26009	\cdots	135009	267874
1966	54500	12737	-	67237	181. 312
1967	83400	1849	-	85249	193178
1968	106000	84.7	-	106847	164604
1969	113350	7900	-	121250	161253
1970	70108	4.00	-	70508	186537
1971	132161	3000	30000	1651.61	191. 759

Wable 8. Ferring Total catch in tons.

Year	Bel.gium	Denmark	England	Prance	Germen red.R.	Netherlands	Poland	Total
1960	3405	-	6375	9617	11539	28868	5076	64880
196.1	2905	-	9262	14711	15804	44773	10727	98182
1962	868	-	5904	5628	8271	28617	5458	54746
1963	942	-	8339	4. 645	2534	27020	2246	45726
1964	1101	-	7290	9140	4808	32179	2054	56572
1965	502	-	2970	2140	586	14342	1237	21777
1966	144	\cdots	1030	1822	839	6691	1097	11. 623
1967	205	-	1391.	3423	1047	5374	6	11446
1968	98	-	958	3307	293	4927	27	9610
1969	367	\cdots	702	11062	906	10669	616	24322
1970	400	-	971	8183	558	16945	29	27086
1971	673	25	-	4450	-	16385	-	21583

Explanatory Notes to Tables 1 - 8

Table la.

Data from Belgium, Denmark, France, Poland and Sweden according to Coop. Res. Repo, Series B, 1965, Annex II, Table 9. Data from England, Netherlands, Norway and Scotland submitted by Working Group Members. Data from Germany according to Statistical News Letters, No. 11B, 1961.

Table Ib
Data derived as listed below under each country. The Kattegat catches are according to Danish national statistics and information from the Swedish laboratory at Iysekil.

Table 2.

1947-1954. Catches for northwest and northeast are derived from Statistical News Ietters IlA and IIB. The national distributions of catch by area in some cases refer to all catches and in others to a large sub-sample of the catches.

Catches for central and south are taken from Cushing and Bridges 1966, Appendix 4. The catches for the south refer to the seasonal winter fishery and not the calendar year.

Catches for the industrial fishery are derived from Coop. Res. Rep. Ser. $\mathrm{B}_{\text {, 1965, Annex II, Table } 12 .}$

The catches for the Skagerrak for some countries also include Kattegat catches, (Bull. Stat.). Taking the catches ascribed to areas for the North Sea, their total covers an average of 98% of the annual catches given in Table 1 for the period 1947-1954.

1955-1959. Catches for the northwest, northeast and central are based on data in Cushing and Bridges (1966). The Swedish catch from region IVa (BuII. Stat.) was regarded as taken in the northeastern area.

Catches for the south and the industrial fisheries are derived from Coop. Res. Rep. Ser. B, 1965, Annex II, Tables 11 and 12.

1960-1968. Data from Coop. Res. Rep. Sex. A, 26.
Skagerrak: 1955-1971 data from Danish national statistics and from the Fisheries Laboratory at Iysekil.

Industrial Pishing: These data refer only to the juvenile herring catches in area IVb by Denmark and Germany.

Belgium

All data derived from "Bulletin Statistique". Catches from division IVa for 1960-1968 are ascribed to IVa west of 2° E.

Denmark

All data used in the tables are based upon Danish national statistics (Popp Madsen). Catches from division IVa are ascribed to IVa east of 2° E for 1960-1968. Catches from division IVb (Young Herring Fishery) have been reduced for content of other species (1960 to spring 1965 by 5%, autumn 1965-1971 by estimates from individual years; Popp Madsen).

England

All data derived from "Bulletin Statistique". Separation of catches in division IVa east and west of $2^{\circ} \mathrm{E}$ according to national statistics.

Paroe Islands

Catches only from division IVa according to "Bulletin Statistique". ascribed to IVa west for 1960-1963. Thom 1969-I971 the distribution of catches to fishing areas are based on landings in Danish ports.

France

The data given have been supplied by the "Institut des Pêches", Boulogne s/Mer.

German Fed.R.

All data are according to German national statistics (Schumacher). They are compiled by "Bundesforschungsanstalt fufr Fischerei", Hamburg, according to log books.

Iceland
All data derived from "Bulletin Statistique". Separation of catches in division IVa east and west of 2° Eare according to Icelandic statistics for 1960-1969 and according to landings in Danish ports for 1970-1971.

Netherlands

All data derived from "Bulletin Statistique". Separation of catches in division IVa east and west of 2° Eare according to Dutch national statistics.

Norway

The data are according to Norwegian official statistics. The separation of catches is based upon the statistics of the fishermen's organisations. Catches in inshore waters are not included.

Poland

All data according to "Bulletin Statistique". Separation of catches in division IVa east and west of $2^{\circ} \mathrm{H}$ is according to Polish national statistics.

Scotland

All data are according to "Bulletin Statistique". Separation of catches in division IVa east and west of $2^{\circ} \mathrm{E}$ is according to Scottish national statistics. Catches from the Moray Firth are not included.

Sweden

Data according to Swedish national statistics (Ackefors). Division IIIa: Data obtained from proportion of Skagerrak catches in Swedish landings in Danish ports applied to total Swedish landings. Separation of catches in division IVa east and west of $2^{\circ} \mathrm{E}$. According to Swedish national statistics, but is supposed to be rather unreliable. A greater part of the landings presumably comes from division IVa, west OI $2^{\circ} \mathrm{E}$ 。

U.S.S.R.

All data according to "Bulletin Statistique". Separation of catches in division IIIa Skagerrak, IVa east and IVa west of 2° E are according to Soviet national statistics.
Table 9. North Sea Catch in Millions of Fhish by Age

	Area	AGE IN WINTER RINGS										
Year		0	1	2	3	4	5	6	7	8	≥ 8	Totel
1947	IVaw of $2^{\circ} \mathrm{E}$ IVaF of $2^{\circ} \mathrm{H}$ IVb IV" YH IVo + VIId,e	- - -		$\begin{array}{r} 233.9 \\ 0.1 \\ 80.1 \\ -179.9 \\ \hline \end{array}$	$\begin{array}{r} 182.7 \\ 0.1 \\ 94.4 \\ -48.3 \\ 13 \end{array}$	$\begin{array}{r} 216.7 \\ 0.1 \\ 190.9 \\ -29.9 \\ \hline 29.9 \\ \hline \end{array}$	$\begin{array}{r} 175.1 \\ 0.2 \\ 234.4 \\ 116.4 \\ \hline \end{array}$	$\begin{array}{r} 217.8 \\ 0.3 \\ 431.0 \\ 106.7 \end{array}$	$\begin{array}{r} 121.2 \\ 0.2 \\ 259.3 \\ \hline-\quad \\ 50.4 \end{array}$	$\begin{array}{r} 112.8 \\ 0.2 \\ 273.3 \\ 0.3 \\ 240.3 \end{array}$	$\begin{array}{r} 107.3 \\ 0.2 \\ 244.9 \\ 0 \times 1.7 \\ 331.7 \end{array}$	$\begin{array}{r} 1367.5 \\ 1.4 \\ 1808.3 \\ 1393.6 \\ \hline \end{array}$
	Total Nis	*	\sim	494.0	415.5	637.6	526.1	755.8	432.2	626.6	684.1	4570.8
1948	DVaW of $2^{\circ} \mathrm{E}$ IVat of 2° E IVb IVBYH TVo + VIId.e	- - -	3.4	$\begin{array}{r} 93.2 \\ 0.0 \\ 27.0 \\ 126.5 \end{array}$	$\begin{array}{r} 256.4 \\ 1.7 \\ 229.1 \\ 184.9 \end{array}$	$\begin{array}{r} 126.1 \\ 1.1 \\ 104.4 \\ 96.3 \end{array}$	$\begin{array}{r} 202.6 \\ 1.8 \\ 155.7 \\ 0.7 \\ 240.9 \end{array}$	$\begin{array}{r} 131.2 \\ 182.4 \\ 172.4 \\ 172.0 \end{array}$	$\begin{array}{r} 104.6 \\ 1.3 \\ 148.7 \\ .7 \\ 245.8 \\ \hline \end{array}$	$\begin{array}{r} 72.5 \\ 1.0 \\ 87.4 \\ 90.7 \\ 90.7 \end{array}$	$\begin{array}{r} 93.6 \\ 1.3 \\ 186.3 \\ \hline 38.7 \\ \hline \end{array}$	$\begin{array}{r} 1080.2 \\ 9.5 \\ 1121.0 \\ 244.0 \end{array}$
	Total NS	\cdots	3.4	246.7	672.1	327.9	601.0	486.9	400.4	251.6	664.9	3654.9
1949	IVew of 2° T IVEm of $2^{\circ} \mathrm{E}$ IVb IVbTH IVc + VITd,e	\square \square		$\begin{array}{r} 120.5 \\ 0.1 \\ 77.8 \\ 280.0 \end{array}$	$\begin{array}{r} 97.6 \\ 0.3 \\ 149.0 \\ 397.0 \end{array}$	$\begin{array}{r} 98.1 \\ 1.1 \\ 165.5 \\ 131.3 \\ \hline \end{array}$	$\begin{array}{r} 89.2 \\ 1.2 \\ 106.1 \\ 90.2 \end{array}$	$\begin{array}{r} 121.3 \\ 1.8 \\ 256.7 \\ 272.0 \end{array}$	$\begin{array}{r} 123.8 \\ 2.0 \\ 112.7 \\ 223.1 \end{array}$	$\begin{array}{r} 111.9 \\ 1.9 \\ 169.0 \\ 131.2 \end{array}$	$\begin{array}{r} 74.8 \\ 1.3 \\ 162.9 \\ 384.3 \end{array}$	$\begin{array}{r} 837.2 \\ 9.7 \\ 1199.7 \\ -7.7 \\ 1909.2 \end{array}$
	Total MS	\cdots	\square	478.4	643.9	396.0	286.7	651.8	461.6	414.0	623.3	3955.7
1950	TVaW of $2^{\circ} \mathrm{E}$ TVak of 2° T IVb IVZXH IVC + VIId, e	- - -		$\begin{array}{r} 121.8 \\ 1.4 \\ 138.2 \\ 273.6 \\ \hline \end{array}$	$\begin{array}{r} 301.4 \\ 2.9 \\ 370.7 \\ 363.5 \\ \hline \end{array}$	$\begin{array}{r} 96.8 \\ 0.7 \\ 222.0 \\ -7 . \\ 297.1 \\ \hline \end{array}$	$\begin{array}{r} 63.3 \\ 0.6 \\ 90.7 \\ 135.4 \\ \hline \end{array}$	$\begin{array}{r} 60.9 \\ 0.7 \\ 82.5 \\ 109.5 \\ \hline \end{array}$	$\begin{array}{r} 100.1 \\ 1.3 \\ 63.9 \\ \hline \\ 165.3 \\ \hline \end{array}$	$\begin{array}{r} 51.8 \\ 0.6 \\ 51.4 \\ 91.2 \end{array}$	$\begin{array}{r} 49.9 \\ 0.6 \\ 166.3 \\ 284.9 \end{array}$	$\begin{array}{r} 846.0 \\ 8.8 \\ 1185.7 \\ 1620.5 \\ \hline \end{array}$
	Total INS	-	\cdots	535.0	1038.5	616.6	290.0	253.6	330.6	195.0	401.7	3661.0
1951	```IVaw of 20% IVag of 20E IVb TYbYH IVo + WIId,e```	\square - -	$\begin{array}{r} " \\ 452.8 \\ 8.8 \\ \hline \end{array}$	$\begin{array}{r} 43.8 \\ 0.2 \\ 73.3 \\ 240.6 \\ 302.4 \end{array}$	$\begin{array}{r} 131.6 \\ 0.7 \\ 362.9 \\ 49.5 \\ 413.8 \end{array}$	$\begin{array}{r} 217.7 \\ 1.4 \\ 685.7 \\ 350.2 \end{array}$	$\begin{array}{r} 124.6 \\ 1.0 \\ 280.6 \\ 223.8 \end{array}$	$\begin{array}{r} 78.7 \\ 0.6 \\ 79.5 \\ 103.3 \end{array}$	$\begin{array}{r} 50.0 \\ 0.4 \\ 49.2 \\ 42.5 \end{array}$	$\begin{array}{r} 42.7 \\ 0.3 \\ 108.2 \\ 74.4 \\ 54 \end{array}$	$\begin{array}{r} 79.6 \\ 0.7 \\ 232.3 \\ 26.8 \\ \hline \end{array}$	$\begin{array}{r} 768.7 \\ 5.3 \\ 1771.7 \\ 742.9 \\ 1526.0 \\ \hline \end{array}$
	Towal WS	\cdots	461.6	660.3	958.5	1255.0	630.0	262.1	342.1	205.6	239.4	4814.6

Pebie9（Continued）

Year	Area	AGE IN WTNTER RINGS										
		0	1	2	3	4	5	6	7	8	>8	Total
1952	TWaW of $2^{\circ} \mathrm{H}$ TVa管 O 20 每 IVb IVbTH IVC＋VITd，	$\begin{aligned} & \infty \pi \\ & \infty \pi \\ & \infty \pi \\ & \Leftrightarrow 0 \pi \end{aligned}$	$\begin{gathered} = \\ 699.3 \\ 22.5 \end{gathered}$	$\begin{array}{r} 189.3 \\ 0.6 \\ 212.8 \\ 189.7 \\ 753.3 \end{array}$	$\begin{array}{r} 125.1 \\ 1.7 \\ 188.2 \\ 12.5 \\ 248.8 \end{array}$	$\begin{array}{r} 118.0 \\ 1.5 \\ 191.5 \\ 299.1 \end{array}$	$\begin{array}{r} 157.5 \\ 4.4 \\ 248.3 \\ 241.7 \end{array}$	$\begin{array}{r} 90.4 \\ 3.2 \\ 178.7 \\ 191.8 \end{array}$	$\begin{array}{r} 78.2 \\ 3.6 \\ 61.2 \\ -2 \\ 93.2 \end{array}$	$\begin{array}{r} 55.5 \\ 2.7 \\ 58.5 \\ 48.8 \end{array}$	$\begin{array}{r} 149.3 \\ 7.8 \\ 122.9 \\ 108.3 \end{array}$	$\begin{array}{r} 963.3 \\ 25.5 \\ 1262.2 \\ 901.5 \\ 2007.5 \end{array}$
	To：al NS	－	721.8	1345.7	576.3	61.0 .1	651.9	464.1	236.2	165.5	388.3	5159.9
1953	IVeW of $2^{\circ} \mathrm{E}$ IVATH Of 20 B IVb TVBVI $I V O+V I T D_{0}$	$\begin{gathered} \approx \\ - \\ 150.0 \\ - \end{gathered}$	$\begin{array}{r} 9.4 \\ 1005.7 \\ 5.2 \end{array}$	$\begin{array}{r} 262.3 \\ 5.3 \\ 307.2 \\ 236.2 \\ 511.4 \end{array}$	$\begin{array}{r} 255.6 \\ 7.1 \\ 317.3 \\ 33.3 \\ 391.0 \end{array}$	$\begin{array}{r} 109.4 \\ 3.6 \\ 160.5 \\ 200.2 \end{array}$	$\begin{array}{r} 95.1 \\ 3.3 \\ 109.0 \\ 170.6 \end{array}$	$\begin{array}{r} 100.8 \\ 3.7 \\ 183.6 \\ 184.6 \\ \hline \end{array}$	$\begin{array}{r} 44.7 \\ 1.6 \\ 97.1 \\ 134.5 \end{array}$	$\begin{array}{r} 50.3 \\ 2.2 \\ 30.0 \\ .6 \\ 35.3 \end{array}$	$\begin{array}{r} 88.5 \\ 4.0 \\ 127.2 \\ 54.9 \end{array}$	$\begin{array}{r} 1006.7 \\ 30.8 \\ 1335.3 \\ 1433.2 \\ 1695.6 \end{array}$
	Total NS	150.0	1023．2	1322.4	1003.3	473.7	336.0	472.7	277.9	117.8	274.6	5501．6
1954	IVEW of $2^{\circ} \mathrm{E}$ TVET on 2° 日 1.10 TVb\％ TVo t VJJd，e	218.5	$\begin{array}{r} 26.5 \\ 0.9 \\ 20.2 \\ 1387.8 \\ 15.3 \\ \hline \end{array}$	$\begin{array}{r} 415.5 \\ 4.7 \\ 185.9 \\ 180.9 \\ 706.3 \end{array}$	$\begin{array}{r} 230.2 \\ 5.3 \\ 344.7 \\ 23.9 \\ 499.1 \end{array}$	$\begin{array}{r} 111.6 ; \\ 2.6 \\ 223.2 \\ 253.7 \\ \hline \end{array}$	$\begin{array}{r} 52.8 \\ 1.3 \\ 119.5 \\ 187.5 \\ \hline \end{array}$	$\begin{array}{r} 62.2 \\ 1.7 \\ 91.9 \\ 173.7 \\ \hline \end{array}$	$\begin{array}{r} 52.7 \\ 1.5 \\ 130.2 \\ 194.1 \end{array}$	$\begin{array}{r} 33.6 \\ 1.0 \\ 51.8 \\ 108.0 \end{array}$	$\begin{array}{r} 37.6 \\ 1.0 \\ 172.9 \\ 105.4 \end{array}$	$\begin{array}{r} 1030.7 \\ 20.0 \\ 1340.3 \\ 1811.1 \\ 2243.1 \end{array}$
	Total Mcs	218.5	1450.7	1493.3	1111.2	591.1	361．2	329．5	378.5	194.4	316.9	6445.2
1955	IVN OT $2^{\circ} \mathrm{E}$ IVer of 2° 出 IVb IVDYH IVo	$\begin{array}{r} 0.1 \\ 164.2 \end{array}$	$\begin{array}{r} 4.2 \\ 20.2 \\ 87.1 \\ 1960.6 \\ \hline \end{array}$	$\begin{aligned} & 697.6 \\ & 125.3 \\ & 610.8 \\ & 162.2 \\ & 335.3 \\ & \hline \end{aligned}$	$\begin{array}{r} 385.8 \\ 82.4 \\ 216.5 \\ 25.5 \\ 321.5 \\ \hline \end{array}$	$\begin{array}{r} 144.9 \\ 54.6 \\ 108.8 \\ \ldots \\ 170.8 \\ \hline \end{array}$	$\begin{array}{r} 149.0 \\ 20.1 \\ 84.7 \\ 82.8 \\ \hline \end{array}$	$\begin{array}{r} 138.6 \\ 16.0 \\ 39.9 \\ 0 \\ 37.1 \\ \hline \end{array}$	$\begin{gathered} 28.1 \\ 23.2 \\ 30.2 \\ 38.2 \end{gathered}$	$\begin{array}{r} 42.4 \\ 12.6 \\ 16.9 \\ 37.1 \end{array}$	$\begin{aligned} & 41.1 \\ & 14.2 \\ & 10.9 \\ & 39.3 \end{aligned}$	$\begin{array}{r} 1631.7 \\ 368.7 \\ 1205.8 \\ 2312.5 \\ 1062.1 \end{array}$
	Total Ms	164.3	2072．1	1931．2	2031．7	479.1	336.6	231．6	119.7	109.0	105.5	6580.9
9.956	IVaV of 2° E TVaE of $2{ }^{\circ}$ Ti IVb IVBYA TVo	95．9	$\begin{array}{r} 0.6 \\ 22.5 \\ 1667.7 \\ 6.0 \\ \hline \end{array}$	$\begin{array}{r} 248.7 \\ 25.0 \\ 607.9 \\ 432.5 \\ 555.3 \\ \hline \end{array}$	$\begin{array}{r} 543.5 \\ 148.9 \\ 341.7 \\ 33.4 \\ 153.7 \\ \hline \end{array}$	$\begin{array}{r} 214.2 \\ 90.7 \\ 92.7 \\ 110.1 \end{array}$	$\begin{array}{r} 89.9 \\ 45.2 \\ 33.3 \\ 80.3 \\ \hline \end{array}$	$\begin{aligned} & 62.8 \\ & 55.1 \\ & 39.7 \\ & 36.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 42.3 \\ & 11.9 \\ & 29.1 \\ & 20.8 \end{aligned}$	$\begin{array}{r} 30.6 \\ 9.6 \\ 49.0 \\ 2 . \\ 25.9 \end{array}$	$\begin{array}{r} 41.0 \\ 27.6 \\ 106.0 \\ 12.9 \\ \hline \end{array}$	$\begin{array}{r} 1273.6 \\ 411.6 \\ 1321.7 \\ 2229.5 \\ 991.7 \\ \hline \end{array}$
	Totad MS	95.9	1696.8	1860，0	1221.2	515.7	248.5	194.3	204．1	104．1	187.5	6228.1

mable 9 (Continued)

Yeas	Axea	AGX IT WINTHE RENGS										
		0	1	2	3	4	5	6	7	8	>8	Total
1957	TYaW of $2^{\circ} \mathrm{m}$	-	\cdots	216.5	287.5	261.4	195.7	84.4	43.8	39.0	69.6	1197.9
	IVaE of $2^{\circ} \mathrm{E}$	-	-	19.6	37.4	124.8	51.0	70.8	63.8	37.5	24.8	429.7
	IVb	\cdots	14.1	421.9	243.3	219.0	70.7	37.3	30.3	20.2	53.5	921.3
	TVb\%E	278.7	2461. 1	400.6	37.0							2177.4
	TVo + VIId,	-	7.4	585.3	231.0	38.7	26.7	14.7	9.2	2.8	5.5	1010.3
	rotes NS	278.7	1482.6	1643.9	736.2	643.9	34.4 .2	207.2	147.2	99.5	353.4	5736.6
1958	IVaW of $2^{\circ} \mathrm{C}$	\square	29.9	49.8	326.8	339.7	233.3	82. 4	41.9	27.1	19.3	941.2
		c	-	43.5	24.7 .8	64.3	85.5	28.5	17.1	9.3	22.9	518.9
	IVb	\cdots	218.3	413.0	207.6	59.0	185.6	25.1	7.6	7.6	28.4	1092.4
	IVb\%\%	97.1	4020.7	265.0	26.5		-m			\cdots		447.3
	IVO + VITE, 0	-	3.7	265.1	120.6	56.9	26.7	11.7	6.7	1.7	1.7	555.8
	Tota? 3	97.1	4278.3	3029.4	929.3	323.9	462.2	146.7	73.3	45.7	72.3	7525.6
1959	IVaV of $2^{\circ} \mathrm{m}$	\cdots	13.5	1489.9	120. 2	173.6	74.8	99.8	46.5	23.0	26.0	2074.2
	IVam of $2^{\circ} \mathrm{H}$	\cdots	-	182.5	78.7	210.0	115.9	111.2	60.5	52.2	163.1	974.0
	IVb	\triangle	95.1	929.5	140.2	60.2	24.9	34.0	9.2	5.2	24.9	1313.1
	TVbYE	\bigcirc	1500.2	1847.9	61.4	-	-	-	-	-	-	3409.5
	IVc + VIId, 0	-	10.6	485.1	79.2	53.5	17.8	4.0	3.3	2.0	4.6	660.1
	Total NS	\cdots	1609.4	4933.9	487.5	497.3	233.4	249.0	119.5	82.3	218.6	8430.9
1960	TVow of 209	$=$	-	174.3	339.3	17.6	35.4	22.5	18.0	8.5	6.8	622.4
	TVat of $2^{\circ} \mathrm{E}$	\cdots	78.8	179.9	854.1	84.9	91.5	77.4	76.7	110.1	131.9	1684.5
	IVb	-	25.1	238.8	604.2	47.2	35.2	12.1	31.1	10.0	4.3	1007.6
	TVb\%E	194.6	2275.3	260.2	27.0	-	\cdots	\cdots	\cdots	-	-	2757.9
	ITc + VIIC,0	-	13.5	239.1	342.4	36.3	5.6	0.9	\cdots	-	-	466.8
	Lotal Ns	194.6	2392.7	1142.3	2966.7	265.9	167.7	312.9	125.8	128.6	142.0	6539.2
2961	TVaW of 20 g	\cdots	2.0	21. ${ }^{\text {a }}$	86.0	188.0	12.4	10.8	5.9	11.5	5.7	332.1
	IVate of ${ }^{\circ} \mathrm{E}$	1.2	68.6	96.3	227.6	342.2	97.0	139.2	55.5	44.5	81.8	1754.6
	3 VB	\cdots	29.4	560.0	93.1	887.8	8.3	,	\cdots	.	\cdots	981.7
	TH7T	2260.0	235.3	623.6	10.0	.		-	\cdots	-	co	2139.7
	TVO + VId, e	-	0.7	585.7	79.4	38.3	5.0	*	\cdots	\ldots	\cdots	709.1
	Toted 13	1269.2	335.0	1832.4	479.9	1455.9	12.4.0	257.9	61.4	95.0	89.5	5917.2

Table 9 (Continued)

Yeax	Area	AGE IN WINTER RTNGS										
		0	1	2	3	4	5	6	7	8	>8	Total
1962	IVaW of $2^{\circ} \mathrm{F}$	\cdots	0.6	22.3	14.9	29.5	114.2	6.8	15.6	7.2	10.1	221.2
	TVeE of $2^{\circ} \mathrm{T}$	\cdots	127.9	136.8	1.71.8	208.3	802.8	105.7	224.2	74.9	74.6	1827.0
	IVb		48.9	66.6	358.4	68.8	1.51 .9	13.7	5.0	4.2	2.1	719.6
	IVbVE	14.8	1958.2	2.8	15.1	-	,				\pm	2117.9
	IVo + TITd.e	\sim	11.3	41.1	237.2	28.5	12.9	0.7	0.3	\cdots	-	332.0
	Total MS	141.8	2146.9	269.6	797.4	335.1	1081.8	126.9	145.1	86.3	86.8	5217.7
1963	TVaK of $2^{\circ} \mathrm{G}$							27.1	0.9 0.5	4.2 37.8	2.2	
	IVam of $2^{\circ} \mathrm{E}$	\cdots	69.0	1414.6	101.1	75.9	74.4	212.3	21.5	37.8	48.8	2055.4
	IVB	\cdots	36.3	1080.5	62.5	55.0	-	-	\cdots	-8	\cdots	1234.3
	TVOXH	412.8	1.154.1	55.4	\cdots	-	\cdots	\cdots	-	-	\sim	1652.3
	ITo + VITd, e	∞	2.2	275.0	10.6	22.9	2.5	0.3	-	\cdots	m	313.5
	Total is	442.8	1262.2	2961.2	177.2	158.3	80.6	229.7	22.4	42,0	51.0	5427.4
1964	TVEW of 20 \%		0.8	107.7	182.2	6.7	6.9	7.2	40.1	2.5	6.6	360.7
	IVaE of $2^{\circ} \mathrm{E}$	4.6	28.6	830.3	1581. 5	128.4	109.0	79.6	190.0	23.8	51.1	3026.9
	IVb		42.6	395.0	395.0	12.6	27.2	8.2	26.2	,	*	906.8
	IVbYH	492.3	2878.4	192.2	5.9	0.7	\bigcirc	-	\cdots	\sim	\pm	3568.8
	TVo + VIId, e		21.3	22.3	78.5	0.7	5.9	\cdots	-	\ldots	-	128.7
	Total NS	496.9	2971.7	1547.5	2243.1	148.4	149.0	95.0	256.3	26.3	57.7	7991.9
1965	IVEW of $2^{\circ} \mathrm{E}$	\cdots	52.9	613.2	367.2	571.7	21.9	23.2	28.6	108.2	24.9	1811.8
	TVaE of $2^{\circ} \mathrm{F}$	2.6	456.4	542.9	771.9	1336.8	112.5	118.4	84.9	277.5	34.1	3738.0
	IVb	${ }^{\circ}$	55.3	432.2	84.9	98.3	8.6	7.9	3.6	27.3	18.1	736.2
	IVbYE.	1.54 .5	2644.3	603.8	40.1	-	\cdots	\cdots	\cdots	\cdots	\cdots	3442.7
	IVo + VITd, e	-	0.4	25.5	60.5	32.6	2.1	2.4	0.5	-	1.3	125.3
	Total NS	15\%.1	3209.3	2217.6	1324.6	2039.4	145.1	151.9	117.6	413.0	78.4	9854.0
1966	IVaW of $2^{\circ} \mathrm{E}$	-	12.2	693.5	249.8	156.8	328.5	8.7	9.1	32.2	93.2	1583.4.
	IVa星 of $2^{\circ} \mathrm{T}$	2.7	357.1	1102.9	383.7	276.2	534.7	36.6	54.4	60.6	141.8	2950.7
	IVb	\cdots	1.3	539.4	91.6	15.9	23.5	-	1.3	2.7	1.3	677.0
	IVbTH	37.88	1008.9	179.1	6.8	\cdots		\cdots	\pm	\cdots	-	1566.6
	$\mathrm{TVe}+\mathrm{VITa,0}$	\cdots	3.6	54.8	9.9	1.2	3.1	\cdots	\cdots	-	+	72.6
	Total NS	374.5	1383.1	2569.7	741.2	450.1	889.8	45.3	64.8	95.5	236.3	6850.3

Table 9. (continued)

Year	Area	AGT IN WINTTR RTNGS										
		0	1	2	3	4	5	6	7	8	>8	Total
1967	JYaW of 20 B IVak of 20 B TVb TVBYH IVc + VIId, e	$\begin{gathered} 0.7 \\ 644.7 \end{gathered}$	$\begin{array}{r} 12.2 \\ 402.6 \\ 24.3 \\ 1231.6 \\ 3.6 \\ \hline \end{array}$	$\begin{array}{r} 119.1 \\ 444.6 \\ 209.4 \\ 356.0 \\ 42.4 \end{array}$	$\begin{array}{r} 315.6 \\ 742.0 \\ 257.4 \\ 35.3 \\ 15.4 \\ \hline \end{array}$	$\begin{array}{r} 67.7 \\ 245.8 \\ 53.1 \\ 4.9 \\ \hline \end{array}$	$\begin{array}{r} 51.5 \\ 237.3 \\ 6.8 \\ -\quad 2.8 \\ \hline 2.2 \end{array}$	$\begin{array}{r} 71.4 \\ 307.5 \\ 14.1 \\ 0.1 \end{array}$	$\begin{array}{r} 4.7 \\ 63.2 \end{array}$	$\begin{array}{r} 4.1 \\ 77.5 \\ \end{array}$	$\begin{array}{r} 33.8 \\ 139.0 \\ \end{array}$	$\begin{array}{r} 680.2 \\ 2659.2 \\ 565.1 \\ 2267.6 \\ 68.6 \\ \hline \end{array}$
	Total NS	645.4	1674.3	1171.5	1364.7	372.5	297.8	393.1	67.9	81.6	172.8	6240.6
1960	$\begin{aligned} & \text { IVaw oi }{ }^{20} \mathrm{E} \\ & \text { IVaw of }{ }^{\circ} \mathrm{E} \\ & \text { IVb } \\ & \text { ITbY } \\ & \text { IVO + VITC, } \end{aligned}$	$\begin{gathered} \\ 839.3 \end{gathered}$	$\begin{array}{r} 83.1 \\ 579.7 \\ 9.0 \\ 1747.2 \\ 6.0 \\ \hline \end{array}$	577.7 781.7 166.8 240.1 22.9	$\begin{array}{r} 231.5 \\ 1201.0 \\ 40.6 \\ 1.3 \\ 19.9 \\ \hline \end{array}$	$\begin{array}{r} 372.7 \\ 179.7 \\ 59.9 \\ \hline 9.7 \\ \hline \end{array}$	$\begin{aligned} & 83.5 \\ & 59.5 \\ & 22.6 \\ & 2.5 \\ & 1.5 \end{aligned}$	$\begin{array}{r} 86.8 \\ 51.6 \\ 3.6 \\ -\quad 3.0 \\ \hline \end{array}$	$\begin{array}{r} 89.8 \\ 67.6 \\ 5.4 \\ 0.6 \\ \hline 0 . \end{array}$	$\begin{aligned} & 10.6 \\ & 3.1 \\ & = \\ & = \end{aligned}$	$\begin{aligned} & 63.5 \\ & 28.3 \end{aligned}$	$\begin{array}{r} 1598.6 \\ 2952.2 \\ 297.9 \\ 2833.9 \\ 63.6 \end{array}$
	Dota 1 WS	839.3	2425.0	1795.2	1494.3	621.4	157.1	145.0	163.4	13.7	91.8	7746.2
1969	IVE, $0^{\circ} 2^{\circ} \mathrm{E}$ IVaH of 20 E IVb IVBYE TVo + VITdge	$\begin{gathered} = \\ 112.0 \end{gathered}$	$\begin{array}{r} 101.1 \\ 128.2 \\ 44.8 \\ 2223.7 \\ 5.5 \end{array}$	$\begin{aligned} & 736.2 \\ & 559.3 \\ & 154.6 \\ & 271.1 \\ & 161.8 \end{aligned}$	$\begin{array}{r} 109.4 \\ 136.0 \\ 29.1 \\ 13.0 \\ 8.8 \end{array}$	$\begin{array}{r} 52.4 \\ 61.9 \\ 13.5 \\ 5.3 \end{array}$	$\begin{array}{r} 103.9 \\ 66.9 \\ 18.1 \\ 1.9 \end{array}$	$\begin{array}{r} 17.2 \\ 29.3 \\ 3.0 \\ 0.4 \end{array}$	$\begin{array}{r} 14.7 \\ 27.4 \\ 0.2 \\ 0.4 \end{array}$	$\begin{gathered} 10.3 \\ 16.9 \\ 0.2 \\ \end{gathered}$	$\begin{array}{r} 4.5 \\ 20.4 \\ \infty \\ 0.2 \end{array}$	$\begin{array}{r} 1149.7 \\ 1046.3 \\ 263.5 \\ 2619.8 \\ 184.3 \end{array}$
	Total NS	112.0	2503.3	1883.0	296.3	133.1	190.8	49.9	42.7	27.4	25.1	5263.6
1970	IVaW of 20 T TVa of 208 IVb TVBYE TVo $+\mathrm{VIId}_{9} \mathrm{e}$	$\begin{gathered} \infty \\ 898.1 \end{gathered}$	$\begin{array}{r} 13.0 \\ 32.6 \\ 27.7 \\ 1118.7 \\ 4.2 \\ \hline \end{array}$	$\begin{array}{r} 930.9 \\ 68.7 \\ 203.5 \\ 718.2 \\ 91.6 \end{array}$	$\begin{array}{r} 695.3 \\ 23.5 \\ 63.4 \\ 17.6 \\ 83.8 \end{array}$	$\begin{array}{r} 98.7 \\ 9.6 \\ 9.3 \\ 2.2 \\ 5.4 \end{array}$	$\begin{array}{r} 39.4 \\ 5.4 \\ 3.3 \\ 0.6 \\ 1.6 \end{array}$	$\begin{array}{r} 49.3 \\ 4.1 \\ 6.6 \\ 1.0 \end{array}$	$\begin{array}{r} 5.7 \\ 1.2 \\ 0.9 \\ = \\ 0.1 \end{array}$	$\begin{array}{r} 10.0 \\ 1.2 \\ 0.4 \\ -\quad \\ 0.4 \end{array}$	$\begin{array}{r} 4.0 \\ 8.1 \\ \infty \\ 0.1 \end{array}$	$\begin{array}{r} 1846.3 \\ 154.4 \\ 315.1 \\ 2755.3 \\ 178.2 \end{array}$
	Total IS	898.1	1196.2	2002.8	883.6	125.2	50.3	61.0	7.9	12.0	12.2	5249.3
1971	TVaW of 20^{2} IVaE of $2^{\circ} \mathrm{E}$ IVb IVbYE TVo + VIIa, e	$\begin{array}{r} 136.7 \\ 14.0 \\ 340.5 \\ 0.3 \end{array}$	$\begin{array}{r} 818.3 \\ 95.4 \\ 2.1 \\ 2748.5 \\ 21.8 \end{array}$	$\begin{array}{r} 516.9 \\ 54.5 \\ 140.3 \\ 1174.7 \\ 130.8 \end{array}$	$\begin{array}{r} 488.3 \\ 38.5 \\ 54.4 \\ 53.0 \\ 41.7 \end{array}$	$\begin{array}{r} 154.2 \\ 10.4 \\ 12.6 \\ 31.1 \end{array}$	$\begin{aligned} & 24.1 \\ & 2.1 \\ & = \\ & 0.7 \end{aligned}$	$\begin{array}{r} 28.8 \\ 1.4 \\ 0.3 \end{array}$	$\begin{array}{r} 25.1 \\ 1.1 \\ \infty \\ 0.6 \end{array}$	-	$\begin{array}{r} 9.8 \\ 0.2 \\ 2.1 \\ -\quad 0.3 \\ \hline \end{array}$	$\begin{array}{r} 2202.3 \\ 217.5 \\ 211.5 \\ 4316.7 \\ 227.4 \\ \hline \end{array}$
	Total MS	491.5	3686.1	2017.2	675.9	208.3	26.9	30.5	26.8	\cdots	12.4	77.75 .4

Table 10. Percentage of Spring-Spawned Eerring in the Worthwestern
North Sea, Northeastern North Sea and the Skagerrak

Year	Morthwestern North Sea	Northeastern North Sea		Skagerrak		
	Norwegian Scottish	Norwegian Danish	Scot6ish	Mormesian		
	-	4.9	-	-	6.9	-
1961	-	4.0	-	22.1	3.0	-
1962	-	26.6	-	8.5	34.2	-
1963	-	25.8	-	-	23.6	-
1964	-	10.5	14.8	14.4	33.6	5.6
1965	16.5	12.3	8.4	15.6	35.6	5.8
1966	26.4	21.7	9.1	28.4	3.0	7.4
1967	20.1	23.5	21.3	21.7	13.0	10.4
1968	24.2	28.1	18.4	-	19.0	6.1
1969	10.7	43.9	13.3	-	.-	6.9
1970	30.7	9.0	32.5	-	-	16.6
1971	12.9	23.4	-	-	-	-

Mable II. Skagerrak. Catel in 1000 tons

Year	Totel Catch	$\%$ of Totel Catch Morth Sea + Skagerrak	Denmaxik		Sweäish Catch Ianded in Denmark		Norway	Other Countries
			0	I	0	I	$C+I$	0
-0	75.8	9.8	15.4	$27.8(49)$	7.4	0.8	2.6	21.8
2. 1	85.2	10.9	11.8	$44.9(53)$	7.2	3.2	4.6	15.6
1062	104.2	14.2	$7.8{ }^{\circ}$	$62.8(54)$	13.0	3.3	5.0	12.3
7363	163.2	18.4	15.9(6.3)	89.2(43)	21.1	6.3	11.0	19.7(6.5)
64	309.8	26.4	$17.2(6.1)$	122.3(59)	24.4	32.6	85.9	$37.4(6.6)$
5	256,7	18.0	15.0(8.4)	80.3	24.9	21.5	$83.9(7.6)$	$31.1(8.0)$
.85	144.?	13.9	6.5	68.7	35.6	10.6	$30.4(9.5)$	12.9(6.9)
¢	279.7	28.7	16.1	84.7	28.4	15.9	95.0(10.2)	$39.6(9.0)$
968	280.0	28.1	8.5	-35.1	18.0	22.0	$71.9(10.5)$	24.5(8.9)
$\bigcirc 69$	113.3	17.2	10.2	47.7(39)	19.0	6.6	14.0	15.8
970	70.5	11.4	2.6	$28.5(38)$	-	-	7.0	-
-973	64.2	11.1	2.5	24.9	-	-	6.0	-

Finures in brackets: mean mumer per ig
C: Ferring for human consumption
I: Industrial catches
Table 12. Catch Per Onit Effort in DriftoNet and Trawl Fisheries in the Southern, Central, Northeastern

Years	Noxthweet		Northeast			Central			South		Bloden
	Drift ${ }^{\text {I }}$	Trawl ${ }^{2}$)	Drift ${ }^{3}$)	Trawl ${ }^{4}$)	Trawi ${ }^{5}$	Drift ${ }^{6)}$	Drift ${ }^{\text {7) }}$	Traw1 ${ }^{8}$	Drift ${ }^{9}$	Txaw1 ${ }^{10}$	Traw1 ${ }^{11 \text {) }}$
1947	2.8	130.4	-	-	-	4.7	2.3	153.3	7.0	-	-
1948	3.1	68.8	-	-	-	3.7	1.9	110.0	6.9	-	\cdots
1949	2.3	65.8	\cdots	\cdots	-	2.5	1.5	70.2	6.9	-	-
1950	2.6	43.1	-	-	\cdots	2.8	2.2	92.4	6.7	\cdots	-
1951	2.3	53.9	-	-	\cdots	2.8	2.3	95.9	6.4	197.7	-
1952	4.1	70.4	-	-	-	3.3	2.9	111.2	6.3	167.3	-
1953	3.9	47.2	\cdots	-	5.9	3.2	2.6	104.1	5.9	203.6	-
1954	3.9	43.9	-	--	1.6	2.9	3.3	76.1	7.2	156.8	-
1955	5.2	51.4	\cdots	11.5	1.5	2.8	3.8	65.5	3.4	121.7	$=$
1956	3.9	27.7	-	16.3	3.6	3.5	4.1	53.8	4.3	103.0	-
1957	3.6	55.7	4.8	8.2	3.3	3.5	3.3	93.6	3.6	91.3	\cdots
195	4.1	31.7	3.1	15.6	4.3	3.0	3.0	31.6	2.7	94.8	1.94
1959	4.0	61.9	2.8	7.5	2.9	3.1	4.3	78.0	2.2	175.5	1.74
1960	3.2	34.6	3.4	15.2	2.7	2.4	3.1	29.4	3.4	132.2	1.22
1961	4.2	28.0	3.3	7.8	1.8	2.1	1.8	49.1	3.2	197.7	1.22
1962	3.7	22.0	1.8	4.8	2.0	2.0	1.5	29.0	2.7	65.5	1.94
1963	3.9	25.4	1.2	8.4	3.6	5.6	3.4	49.5	2.2	58.5	1.16
1964	3.4	29.7	2.5	11.1	3.4	2.6	3.1	44.8	3.8	67.9	1.78
1965	3.4	23.3	3.0	6.0	2.5	2.7	3.2	35.9	1.8	69.8	2.46
$196{ }^{\prime}$	4.3	17.2	2.8	3.4	1.6	2.8	4.8	43.9	1.4	-	0.98
1967	4.7		1.3	1.1	1.0	2.9	4.0	30.2	1.4	- ${ }^{-}$	1.35
1968	3.8 4.8	$(1.2)^{3}$	1.6	1.7	1.0	-	2.4	21.9	0.3	50.2	1.64
1969 1970	4.8 3.4	$(3.7){ }^{\text {a }}$	\cdots	2.9 (0.2)	-	$\stackrel{-}{-}$	4.4 5.1	24.7 26.6	0.9	100.9 57.2	1.22 1.07
1971	5.2	19.1	\cdots	(0.2)	\cdots	\cdots	4.1	20.7	0.9	44.2	1.34

Footnotes to Table 12.

Catch Per Unit Fifort in Drift-Net ond Trawl Fisheries in the Southern, Central, Northeastern and Northwestern North Sea
I. United Kingdom catch per armival in May-September (tons).
2. Metherlands catch per 100 hours' Pishing by a standard (500 BHP) trawler in July-September (tons fresh weight).
3. Polish catch per shot in Aprin-July (tons).
4. Netherlands catch per 100 hours: fishing by a standard trawler in January-April (tons fresh weight).
5. German lugger trawl, catch per day (oniv catches with over 60% herring) (tons).
6. Netherlands catch per shot (tons) (Maymseptember).
7. United Kingdom tons per landing for central Morth sea dift-net Pisheries (May-September).
8. Netherlands catch per 100 hows fishirs by a stendard trawler (tons fresh weight) (August-00tober).
9. United Kingdom eatch per shot (tons) (october-December).
10. Netherlands catch per 100 houms fishing by a standard trawler (tons fresh weight) (Movember-December).
11. Danish catch per hour (tons) in the immature herring fishery in the Bladen area.
Table 13. Effort Estimates for each Area from Catch per Effort Data of Table 12

Table 14. Estimates of Total North Sea Fffort on Adult Eerring and Relative Chenges in Exficiency

Year	$\bar{F}_{\text {VPA }}$	Drinter			Trewl		
		$\begin{aligned} & \text { Landings } \\ & \times 10-3 \end{aligned}$	Cpe	Diniciency B/Cpe	$\begin{aligned} & \text { Hours } \\ & \text { Fishing } \\ & \text { r } 10.5 \end{aligned}$	Cpe	Bficiency
1947	-	191.6	3.06		3.39	175.8	
1946	-	166.6	3.00		4.68	107.3	
1949	. 08	205.5	2.46	. 0325	5.97	85.1	.0009
1950	.19	157.2	3.09	. 0615	6.16	79.0	. 0024
1951	.34	195.1	2.84	. 1197	6.25	88.9	.0038
1952	. 33	150.1	4.09	.0807	5.63	109.2	. 0030
1953	. 38	169.4	3.65	. 1041	7.05	87.9	. 0043
1954	. 45	149.3	4.49	. 1002	9.35	73.4	. 0063
1955	. 42	166. 1	4.39	.1002	10.10	68.7	. 0061
1956	. 48	140.5	4.07	. 1179	9.29	61.5	. 0078
1957	. 46	165.5	3.50	. 1324	7.80	74.3	. 0062
1958	. 48	\$56.9	3.27	-1468	9.34	54.8	.0088
1959	. 50	174.5	3.61	. 2385	8.86	70.9	. 0077
1960	. 38	286.7	3.29	. 1291	20.88	54.8	. 0069
1961	. 48	254.1	2.38	. 2017	13.49	44.7	.0107
1962	. 50	282.2	I. 87	. 2674	17.88	29.5	. 0169
1963	. 31	199.3	3.25	. 0951	14.54	44.6	. 0019
1964	. 40	231.6	3.25	. 1227	25.06	50.1	.0079
1965	.77	322.2	3.21	. 2399	29.88	34.6	. 0222
1966	.67	198.6	4.37	. 3607	28.08	29.5	. 0227
1967	. 70	155.1	3.94	. 2777	35.90	17.0	. 0412
1968	1.0	227.5	2.69	.3717	39.16	25.6	.0641
1969	1.0	(>81.9)	50.19		21.06	20.2	.0495
1970	1.0	151.1	3.14	. 3204	17.77	26.6	. 0375
2971	1.0	(263.2)	(5.50)		13.99	24.9	. 0401

Calculated Fishing Mortalities by Age and Year. ($\mathrm{M}=0.1$)
mable 15.

Winter Rings	1947	1948	1949	1.950	1951	1952	1953	1954	2955	1956	1957	1.958	2.959	1960	1961	1962	1963	1.964	1965	1966	1.967	1968	1.969	1.970
0	0	0	0	0	0	0	0.02	0.03	0.02	0.02	0.01	0.02	0	0.11	0.08	0.02	0.06	0.05	0.03	0.08	0.09	0.12	0.02	0.08
1	0	0	0	0	0.08	0.14	0.18	0.21.	0.39	0.31	0.45	0.27	0.39	0.45	0.24	0.18	0.24	0.54	0.44	0.34	0.50	0.52	0.54	0.29
2	0.13	0:06	0.08	0.14	0.23	. 34.	0.36	0.39	0.43	0.63	0.48	0.57	0.51	0.46	0.68	0.28	0.35	0.45	0.88	0.67	0.47	12.46	0.86	0.99
3	0.17	0.24	0.119	23	0.35	0.29	0.40	0.51	0.46	0.46	0.49	0.54	0.51	0.34	0.32	0.60	0.27	0.43	0.76	0.74	0.83	1.86	0.94	1.23
4	0.1 .9	. 1	0.20	0.25	0.43	0.35	0.36	0.38	0.38	0.39	0.42	0.37	0.50	0.29	0.41	0.35	0. 20	0.34	0.77	0.56	0.92	1.03	0.77	1.30
5	0.25	0.25	0.21	0.20	0.39	0.36	0.35	0.45	0.35	0.31	0.44	0.54	0.44	0.28	0.32	0.54	0.12	0.26	0.57	0.83	0.79	1.21	0.96	0.67
6	0.38	0.35	0.41	0.27	0.24	0.49	0.43	0.50	0.52	0.31	0.41	0.30	0.55	0.35	0.4 .1	0.56	0.18	0.18	0.43	0.30	0.99	1.04	1.74	0.83
7	0.30	0.32	0.58	0.34	0.21	0.32	0.55	0.65	0.30	0.4 .1	0.36	0.22	0.37	0.53	0.29	0.72	0.16	0.29	0.30	0.27	0.89	1.51	0.90	1.70
8	-	0.25	0.55	0.46	0.32	0.36	0.23	0.84	0.35	0.41	0.76	0.16	0.36	0.77	0.42	0.73	0.42	0.25	0.8	0.38	0.57	0.39	1.07	0.61
9	-	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.40	0.70	0.70	0.40	0.50	0.60	0.20	0.30	. 80	0.70	0.85	1.00	1.00	1.00
Mean F2wor. and older.	-	-	0.22	0.23	0.33	0.33	0.38	0.45	0.42	0.48	0.46	0.48	0.50	0.38	0.48	0.50	0.30	0.40	0.77	0.67	0.70	1.47	0.89	1.05
Mean F3wor. and older	-	-	0.30	0.25	36	33	0.39	0.48	0.41	. 40	0.45	0.45	0.49	0.35	0.38	0.54	D. 20	0.38	0.73	0.67	0.85	1. 48	0.95	1.17

Table 16. Calculated, stock Size in Numbers (x 10-9) by Age and Year ($\mathrm{M}=0.1$)

Winter Rings	1947	1.948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959
0	7.74	5.26	4.12	6.58	6.46	7.04	8.95	7.68	7.61	4.86	21.08	5.89	7.66
1	5.02	7.00	4.76	3.73	5.96	5.84	6.37	7.96	6.74	6.73	4.31	18.81	5.24
2	4.11	4.54	6.33	4.30	3.37	4.95	4.60	4.80	5.83	4.14	4.48	2.49	12.96
3	2.72	3.25	3.88	5.28	3.39	2.43	3.20	2.91	2.92	3.44	1.98	2.50	1.28
4	3.84	2.06	2.30	2.90	3.79	2.16	1.65	1.95	1.58	1.67	1.96	1.10	1.31
5	2.46	2.87	1.56	1.71	2.04	2.24	1.13	1.04	1.20	0.98	1.02	1.16	0.69
6	2.51	1.72	2.03	1.14	1.27	1.24	1.41	0.86	0.60	0.77	0.65	0.60	0.61
7	1.76	1.55	1.10	1.22	0.79	0.90	0.69	0.83	0.48	0.32	0.51	0.39	0.40
8	-	1.18	1.03	0.56	0.79	0.58	0.59	0.36	0.39	0.32	0.20	0.32	0.28
9	-	-	0.83	0.54	0.32	0.52	0.37	0.42	0.14	0.25	0.19	0.08	0.25
Tota1	-	-	27.94	27.96	28.18	27.90	28.96	28.81	27.49	23.48	36.38	33.34	30.68

Winter Rings	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971
0	2.00	16.67	7.10	8.73	10.94	5.74	5.29	7.63	7.83	5.57	11.77	11.8032
1	6.94	1.63	13.88	6.29	7.48	9.42	5.04	4.43	6.30	6.28	4.93	9.80
2	3.22	4.02	1.25	10.52	4.49	3.96	5.49	3.25	2.42	3.40	3.32	3.33
3	7.06	1.83	1.85	0.79	6.72	2.60	1.49	2.53	1.83	0.51	1.30	1.11
4	0.70	4.52	1.20	0.92	0.54	3.95	1.10	0.64	1.00	0.26	0.18	0.34
5	0.72	0.47	2.71	0.77	0.68	0.35	1.65	0.57	0.23	0.32	0.11	0.04
6	0.40	0.49	0.31	1.43	0.62	0.47	0.18	0.65	0.23	0.06	0.11	0.05
7	0.32	0.26	0.29	0.16	1.07	0.47	0.29	0.12	0.22	0.07	0.01	0.04
8	0.25	0.17	0.17	0.13	0.13	0.73	0.31	0.20	0.04	0.04	0.03	+
9	0.18	0.10	0.10	0.08	0.08	0.09	0.27	0.19	0.10	0.03	0.01	0.01
Total	21.79	30.16	28.76	29.82	32.74	27.78	21.11	20.21	20.20	16.54	21.77	26.52

[^2]Table 17. Larval abundance in the North Sea ($-=$ no observations)
(Numbers x 10-9).

Year	Southernl)North Sea	Central Horth Sea		Northwestern North Sea 4)		
		Dogeer ${ }^{2}$	Total3)	Buchan	Oriensy-Shetiand	Total
1946	537	-	-	-		
1947	596	-	-	-		
1948	-	-	-	-		
1949	-	-	-	-		
1950	288	-	-	-		
1951	255	-	-	900	420	I 320
1952	-	-	-	890	100	990
1953	-	-	-	2110	940	3050
1954	-	-	-	870	700	1570
1955	99	-	-	20x)	700	720
1956	56	-	-	-	-	-
1957	16	232	-	300	-	-
1958	58	252	-	220	2800	3020
1959	11	97	-	300	860	1160
1960	33	138	-	440	640	1080
1961	44	86	-	380	4940	5320
1962	>30	66	-	400	720	1120
1963	22	-	-	440	580	1020
1964	9	52	63x)	920	880	1800
1965	13	275	490x)	70	2220	2290
1966	+	3	142x)	10	680	690
1967	26	0	275	+	440	440
1968	15-18	0	28	0	162	162
1969	108	0	11	3	212	215
1970	126	0	273	0	273	273

1) Iarval abundence in Downs area in December-January.
2) Abundance of Iarvae <11 mmin October on the Western and Southern slopes of Dogger Bank (Zijlstra).
3) Abundance of larvae <10 mm in September-0ctober in the central part of the Noxth Sea.
4) Abundance of Iarvae <10 min the Northwestern Horth Sea, apart from the Southern area (Buchan), the Northern area (Oxkey-Shetland) and the total Northwestern North Sea (Savilie).
x) Incompiete data.
+) Small numbers.

Table 18. Recruitment Indices to North Sea Stocks

Years Class	Euchen (1/10 thi cran per arrival)	Bank (hundreds per day fishery)	Downs (hundreds per shot)
1951	42	77	218
1952	71	235	109
1953	50	43	321
1954	73	63	243
1955	17	148	95
1956	194	373	180
1957	42	20	80
1958	22	126	366
1959	14	7	30
1960	170	256	180
1961	70	74	168
1962	52	87	30
1963	180	259	100
1964	51	27	68
1965	61	38	10
1966	97	65	330
1967	114	70	55
1968	-	-	-
1969	-	-	-

Table 19. Fear Olass Size Compared with Spawning Potential Parent Stock

Fear Class	VPA Number of $0-g r o u p$ $\times 10-9$	Spawning Potential Parent Stock Bggs $x 10^{-12}$
1947	5.26	633
1948	4.12	738
1949	6.58	703
1950	6.46	670
1951	7.04	590
1952	8.95	528
1953	7.68	475
1954	7.61	452
1955	4.86	437
1956	21.08	412
1957	5.89	380
1958	7.66	314
1959	2.00	502
1960	16.67	432
1961	7.10	422
1962	8.73	314
1963	10.94	431
1964	5.74	478
1965	5.29	454
1966	7.63	354
1967	7.83	272
1968	5.57	200
1969	11.77	130

Table 20. Average Weight by Age and Month

Month	W ¢ H	AGE IN WTNTHR RINGS						
		2	3	4	5	6	7	$8+$
Jan.		\cdots	-	-	\pm	\cdots	\ldots	-
Feb。		\pm		-	\cdots	\cdots	-	-
Max.		97.3(21)	122.5(7)	175:4(7)	157.5(4)	190.0(4)	210.4(4)	-
Apr.		-	\cdots	-	-	-	\square	ma
May		$\stackrel{\square}{*}$	-	-	-	-	\bigcirc	\cdots
Jun.		152.4	175.9	171.8	m	251.2	287.0	269.0
Jul.	\%	165.0	248,0	259.0	287.0	303.0	-	321.5
Aug.	F	180.8	222.0	247.0	324.5	273.5	-	349.5
Sep.		150.0	206.5	237.0	317.0	262.0	303.0	-
Oet.		150.4(64)	$183.2(44)$	210.3(9)	225.9 (9)	262.5 (6)	268.8(4)	265.0
Nov.		$139.5(146)$	$168.4(86)$	$179.6(12)$	$212.5(2)$	$222.5(1)$	202.5(2)	-
Deo.		139.7(85)	$165.9(34)$	$192.5(3)$	$222.5(1)$	$262.5(1)$	-	-
Jan.						\pm	\cdots	***
Feb.		$97.6(52)$	120.8(6)	175.8(3)	$187.5(4)$	- \times	- ${ }^{-\infty}$	227.5(2)
Max.		$117.0(06)$			-	209 2 (3)	222-5(2)	
Apr.		11\%.0(26)	149.6(7)	170.8(6)	-	209.2(3)	222.5(2)	242.5(2)
May		-	-	-	\sim		-	-
Jun.	回	\cdots	-	\cdots	\cdots	\cdots	\cdots	-
JuI.	$\stackrel{8}{8}$	1863 (45)	213. $2(16)$	258 \quad (25)	2906 ${ }^{10}$	- 5 -	$\cdots{ }^{-5}$	-
Aug.	$\stackrel{\square}{\text { E }}$	186.3(45)	243.2(16)	258.5(25)	291.6(11)	292.5(1)	$312.5(2)$	$322.5(4)$
Sep.		- -	-	\cdots	=	-	\cdots	\cdots
Oct.				-		-	-	-
Nov.		$137.5(2)$	$175.8(3)$	\cdots	$242.5(1)$	-	\cdots	0
Dec.		153.9(7)	$192.5(1)$	\cdots	222.5(1)	\cdots	\pm	"

Continued/
Trable 20. (Continued)

Month	¢	age in winter ritgs								
		2	3	4	5	6	7	8	9	10
Jan.		92(784)	1211(159)	161 (50)	191(50)	212(57)	195(3)	24.2(7)	226(7)	230(12)
Feb.		82(470)	123(154)	1.41(65)	161(22)	$177(41)$	162(17)	250(4)	$257(4)$	250(9)
Mas.		92(4.56)	1336(132)	167(170)	184(129)	191(90)	214(89)	225 (14)	222(28)	212 (19)
Apr.	¢	99(270)	134(48)	$165(26)$	1205 (29)	214(6)	216(10)	215(3)	298(6)	-
Way		108(293)	143(190)	180 (99)	189(29)	209(31)	207(13)	238(9)	-	225(2)
Jun.	${ }^{5}$	148(522)	183(353)	221(139)	213(127)	224(151)	261(32)	254(28)	250(21)	$243(38)$
Jul.		177(757)	238(328)	265(171)	273(293)	292(50)	325 (43)	291(50)	312(90)	470(1)
Aug.		184(672)	222(348)	257(146)	277 (39)	283(35)	328(20)	325 (33)	292(3)	372(2)
Sep.		152(52)	192(47)	214.(65)	224(26)	243(8)	236(5)	225(12)	245 (11)	240(1)
Oct.		158(81)	199(23)	219 (33)	220(43)	243(5)	239(7)	248(6)	238(14)	-
Nov.		149(232)	177(83)	207(67)	228(56)	249(19)	242(16)	239(18)	245(9)	255(1)
Dec.		133(29)	203(2)	. -	210(1)	220(1)	-	-	-	-

/Continued
Table 20. (Continued)

Month	¢	AGE IN WINTER RINGS						
		2	3	4	5	6	7	$8+$
Jan.		\cdots	\cdots	\cdots	\cdots	\cdots	-	-
Feb.		-	\cdots	\cdots	\%	c	\cdots	-
Max.		-	-	-	-			
Apx.		93.5(29)	107.5(14)	-	-	147.5 (1)		
May		118.3 (271)	138.6 114)	168.9(44)	172.0(10)	187.0 3)	208.0 (1)	- ${ }^{-1}$
Jun.		$136.2(1510)$	168.7 (470)	189.8 (154)	200.0 52	226.3 14)	229.1. 9)	282.5 (1)
Jul.	E	144.8(2464)	177.0 (1154)	193.2(456)	200.3(85)	229.7 38)	248.3 (6)	200.7(3)
Aug.	+1	156.1.3530)	186.4 (2132)	200.4(1332)	225.4.320)	245.4(136)	278.5 (34)	326.7 9)
Sep.		$160.2(3638)$	192.7(144.9)	218.8(882)	231.4(381)	280.1 (193)	309.8 74)	321.4.(13)
00 \%		159.1 (1281)	191.2(592)	216.0(282)	229.6(99)	$263.8(46)$	274.6 (9)	$280.6(5)$
Nov.		129.3 (3)	-	216.0(282)	-	-	-	-
Dec.			-	-	-	\cdots	-	-
Jen。		102.7(11)	116.3(226)	149.2(9)	204.7(9)	\cdots	1.72.5(1)	\cdots
Feb:		$52.5(2)$	87.5 (2)			\cdots		-
Mar.		87.8 (148)	113.3(42)	137.0(2)	172.5 (1)	\ldots	-	-
Apx.		(113.3(1)	137.0(2)	17.5(1)	-	-	-
May		\cdots	\cdots	-	\cdots	\ldots	\cdots	\cdots
Jun.		-	-	-	-	\cdots	-	\cdots
Jul.	0	-	-	-	-	-	\ldots	\%
Aug.	㫨		1931 76)	-	"	-	-	\cdots
Sep.		153.7(180)	193.1 766)	195.0 (2)	236- ${ }^{-}$	***	- ${ }^{-1}$	-
Oct.		151.3 ${ }^{1000}$)	$191.5(860)$	214.1. 250$)$	$236.2(73)$	246.9 25)	$267.5(10)$	252.5(1)
Nov.		143.661000)	171.5 ${ }^{1500}$)	192.7 (170)	215.7447	$237.4(57)$	239.9 15	302.5 3 .
Dec.		$128.7(1000)$	158.9(470)	191.0(47)	208.4(12)	241.4(9)	$225.8(3)$	254.8(9)

Table 21. Mean Weights (g) by Month and Age for Total North Sea

	AGE IN WINTRI RINGS								
Month	0	I	2	3	4	5	6	7	$8+$
Jan.	-	29	84	131	159	195	207	222	232
Feb.	-	29	82	112	142	161	177	181	202
Far.	-	30	94	121	144	174	195	210	222
Aps.	-	34	106	134	157	177	192	207	219
May	-	40	112	146	169	190	205	219	231
Jun.	-	47	147	175	197	218	233	247	258
Jul.	5	56	184	216	242	264	284	300	314
Aug.	7	64	170	205	230	252	273	291	304
Sep.	15	70	157	191	216	242	264	284	303
Oct.	22	75	157	185	212	234	255	272.	289
Nov.	27	77	144	166	194	215	232	248	260
Dec.	28	78	133	160	187	207	224	239	253

Table 22．Mean numbex per kg by month and area

Pexiod	Axen	Month											
		Jm．	Beb．	珄路。	Aps．	Masy	3un．	JuI．	Aug．	Sep．	Oot．	Now．	Dec．
1961．65	ITo．${ }^{\text {a }}$	\square	－	－	6.9	6.2	5.7	5.2	5.1	7.8	5.9	9.0	$=$
	ITP。易	4.4	$=$	5.9	6.7	7.0	6.5	5.6	5.1	6.0	5.9	－	－
	TV	$=$	－	－	6.4	－	7.2	6.1	5.3	6.5	6.0	7.7	－
	270	－	28.7	20.0	－	\cdots	\cdots	－	∞	5.7	5.3	6.3	－6．4
1956－70	200．4	\cdots	\cdots	7.2	6.4	6.1	5.9	5.4	5.4	6.2	5.6	8.1	8.4
	TTa，${ }^{\text {a }}$	－	9.1.	4.1	5.9	5.6	6.2	4.7	4.5	4.7	\cdots	8.4	9.6
	IVb	－	\cdots	－	0.6	8.4	6.8	6.5	6.0	5.7	6.4	11.5	\cdots
	IVd ${ }^{\text {² }}$	23.2	28.0	31.7	27.4	26.3	24.7	35.0	23.2	16．2	18.3	25.4	21．4
	ITe	9.7	37.7	\cdots	10.8	－	$=$	－	－	＊	5.9	6.8	7.3

筑）Danish data for juvenile herring 1967－1971

Table 23. Estimates of Relative Strenghs of Latest Fear Classes

Source	1968	1969	1970
English 0/grp Suryers	0.44	1.00	$0.54{ }^{32}$
ICES Young Ferring Survey Feb/Mar:	0.38	1.00	1.31
Danish Foung $0 /$ grp. Autumn Herring $1 / \mathrm{grp}$. Spring Fishery $1 / \mathrm{grp}$. Autum $2 /$ Erp. Spring	$\begin{aligned} & 0.38 \\ & 0.45 \\ & 0.48 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 0.96 \\ & 1.37 \end{aligned}$ -

[^3]Table 24．Initial catch levels（1972）and percentage increase in catoh and biomass 1972－75．

F	.0	.1	． 2	． 3	． 4	.5	． 6	.7	． 8
.0	$\begin{array}{r} 0 \\ -403 \\ \hline \end{array}$	$\begin{array}{r} 50 \\ -33 \\ 365 \\ \hline \end{array}$	$\begin{array}{r} 95 \\ -34 \\ 331 \\ \hline \end{array}$	$\begin{aligned} & 136 \\ & -34 \\ & 300 \end{aligned}$	$\begin{aligned} & 173 \\ & -35 \\ & 272 \end{aligned}$	$\begin{aligned} & 207 \\ & -35 \\ & 248 \end{aligned}$	$\begin{array}{r} 238 \\ -36 \\ 226 \\ \hline \end{array}$	$\begin{array}{r} 266 \\ -36 \\ 206 \\ \hline \end{array}$	$\begin{array}{r} 292 \\ -37 \\ 188 \\ \hline \end{array}$
． 1	$\begin{array}{r} 92 \\ 298 \\ 306 \\ \hline \end{array}$	$\begin{aligned} & 141 \\ & 161 \\ & 275 \end{aligned}$	$\begin{aligned} & 187 \\ & 100 \\ & 246 \end{aligned}$	$\begin{array}{r} 228 \\ 66 \\ 221 \end{array}$	$\begin{array}{r} 265 \\ 43 \\ 198 \end{array}$	$\begin{array}{r} 299 \\ 28 \\ 177 \end{array}$	$\begin{array}{r} 330 \\ 16 \\ 158 \\ \hline \end{array}$	$\begin{array}{r} 358 \\ 8 \\ 142 \end{array}$	$\begin{array}{r} 384 \\ 1 \\ 127 \\ \hline \end{array}$
． 2	$\begin{aligned} & 175 \\ & 241 \\ & 234 \\ & \hline \end{aligned}$	$\begin{aligned} & 224 \\ & 159 \\ & 207 \end{aligned}$	$\begin{aligned} & 270 \\ & 110 \\ & 183 \\ & \hline \end{aligned}$	$\begin{array}{r} 311 \\ 79 \\ 162 \end{array}$	$\begin{array}{r} 348 \\ 56 \\ 143 \end{array}$	$\begin{array}{r} 382 \\ 39 \\ 125 \end{array}$	$\begin{array}{r} 413 \\ 27 \\ 110 \end{array}$	$\begin{array}{r} 441 \\ 16 \\ 95 \\ \hline \end{array}$	$\begin{array}{r} 467 \\ 8 \\ 83 \\ \hline \end{array}$
． 3	$\begin{aligned} & 250 \\ & 196 \\ & 180 \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & 137 \\ & 157 \end{aligned}$	$\begin{array}{r} 345 \\ 99 \\ 137 \\ \hline \end{array}$	$\begin{array}{r} 386 \\ 72 \\ 118 \\ \hline \end{array}$	$\begin{array}{r} 423 \\ 51 \\ 102 \\ \hline \end{array}$	$\begin{array}{r} 457 \\ 35 \\ 87 \\ \hline \end{array}$	$\begin{array}{r} 488 \\ 23 \\ 74 \\ \hline \end{array}$	$\begin{array}{r} 516 \\ 13 \\ 62 \\ \hline \end{array}$	542 5 51
－ 4	$\begin{aligned} & 318 \\ & 160 \\ & 139 \\ & \hline \end{aligned}$	$\begin{aligned} & 368 \\ & 114 \\ & 119 \\ & \hline \end{aligned}$	$\begin{array}{r} 413 \\ 82 \\ 301 \\ \hline \end{array}$	$\begin{array}{r} 454 \\ 59 \\ 86 \\ \hline \end{array}$	$\begin{array}{r} 491 \\ 41 \\ 71 \end{array}$	$\begin{array}{r} 525 \\ 27 \\ 58 \\ \hline \end{array}$	$\begin{array}{r} 556 \\ 16 \\ 47 \\ \hline \end{array}$	$\begin{array}{r} 584 \\ 6 \\ 37 \\ \hline \end{array}$	$\begin{array}{r} 610 \\ -\frac{1}{2} \\ 27 \\ \hline \end{array}$
.5	$\begin{aligned} & 380 \\ & 133 \\ & 107 \\ & \hline \end{aligned}$	$\begin{array}{r} 430 \\ 93 \\ 90 \\ \hline \end{array}$	$\begin{array}{r} 475 \\ 66 \\ 75 \\ \hline \end{array}$	$\begin{array}{r} 516 \\ 46 \\ 61 \\ \hline \end{array}$	$\begin{array}{r} 553 \\ 30 \\ 48 \\ \hline \end{array}$	$\begin{array}{r} 587 \\ 17 \\ 37 \\ \hline \end{array}$	$\begin{array}{r} 618 \\ 7 \\ 27 \\ \hline \end{array}$	$\begin{array}{r} 646 \\ -18 \\ 18 \\ \hline \end{array}$	671 -8 10
感 6	$\begin{array}{r} 436 \\ 107 \\ 83 \\ \hline \end{array}$	$\begin{array}{r} 486 \\ 75 \\ 67 \\ \hline \end{array}$	$\begin{array}{r} 531 \\ 52 \\ 54 \\ \hline \end{array}$	$\begin{array}{r} 572 \\ 34 \\ 42 \\ \hline \end{array}$	$\begin{array}{r} 609 \\ 20 \\ 31 \\ \hline \end{array}$	$\begin{array}{r} 643 \\ 8 \\ 21 \\ \hline \end{array}$	$\begin{array}{r} 674 \\ -1 \\ 12 \\ \hline \end{array}$	$\begin{array}{r} 702 \\ -9 \\ 4 \\ \hline \end{array}$	$\begin{array}{r} 728 \\ -15 \\ -3 \\ \hline \end{array}$
	$\begin{array}{r} 487 \\ 87 \\ 63 \\ \hline \end{array}$	$\begin{array}{r} 537 \\ 60 \\ 50 \\ \hline \end{array}$	$\begin{array}{r} 582 \\ 40 \\ 38 \\ \hline \end{array}$	$\begin{array}{r} 623 \\ 23 \\ 27 \\ \hline \end{array}$	$\begin{array}{r} 660 \\ 21 \\ 17 \end{array}$	$\begin{array}{r} 694 \\ 0 \\ 8 \end{array}$	$\begin{array}{r} 725 \\ -8 \\ 0 \end{array}$	$\begin{array}{r} 753 \\ -16 \\ -7 \end{array}$	$\begin{aligned} & 779 \\ & -22 \\ & -13 \end{aligned}$
	$\begin{array}{r} 533 \\ 73 \\ 48 \\ \hline \end{array}$	$\begin{array}{r} 583 \\ 47 \\ 36 \\ \hline \end{array}$	$\begin{array}{r} 628 \\ 29 \\ 25 \\ \hline \end{array}$	$\begin{array}{r} 669 \\ 14 \\ 15 \\ \hline \end{array}$	$\begin{array}{r} 706 \\ 3 \\ \hline \end{array}$	$\begin{array}{r} 740 \\ -7 \\ -2 \\ \hline \end{array}$	$\begin{array}{r} 773 \\ -15 \\ -9 \\ \hline \end{array}$	$\begin{array}{r} 799 \\ -21 \\ -15 \\ \hline \end{array}$	$\begin{array}{r} 825 \\ -27 \\ -21 \\ \hline \end{array}$
咢	$\begin{array}{r} 575 \\ 58 \\ 36 \\ \hline \end{array}$	$\begin{array}{r} 625 \\ 36 \\ 25 \\ \hline \end{array}$	$\begin{array}{r} 670 \\ 20 \\ 15 \\ \hline \end{array}$	$\begin{array}{r} 710 \\ 7 \\ 6 \\ \hline \end{array}$	$\begin{array}{r} 748 \\ -4 \\ -2 \\ \hline \end{array}$	$\begin{array}{r} 782 \\ -13 \\ --9 \\ \hline \end{array}$	$\begin{array}{r} 813 \\ -20 \\ -16 \\ \hline \end{array}$	$\begin{array}{r} 841 \\ -26 \\ -22 \\ \hline \end{array}$	$\begin{array}{r} 867 \\ -32 \\ -27 \end{array}$
沯 1.0	$\begin{array}{r} 613 \\ 47 \\ 26 \\ \hline \end{array}$	$\begin{array}{r} 662 \\ 27 \\ 16 \\ \hline \end{array}$	$\begin{array}{r} 708 \\ 12 \\ -7 \\ \hline \end{array}$	$\begin{array}{r} 749 \\ 0 \\ -1 \\ \hline \end{array}$	$\begin{array}{r} 786 \\ -10 \\ -9 \end{array}$	$\begin{aligned} & 820 \\ & -18 \\ & -15 \\ & \hline \end{aligned}$	$\begin{array}{r} 851 \\ -25 \\ -21 \\ \hline \end{array}$	$\begin{array}{r} 879 \\ -31 \\ -27 \\ \hline \end{array}$	$\begin{array}{r} 905 \\ -36 \\ -32 \\ \hline \end{array}$
$\frac{7}{8} 1.1$	$\begin{array}{r} 647 \\ 38 \\ 18 \\ \hline \end{array}$	$\begin{array}{r} 697 \\ 20 \\ \hline \end{array}$	$\begin{array}{r} 742 \\ 6 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 783 \\ -5 \\ -7 \\ \hline \end{array}$	$\begin{array}{r} 821 \\ -15 \\ -14 \\ \hline \end{array}$	$\begin{array}{r} 855 \\ -22 \\ -20 \\ \hline \end{array}$	$\begin{array}{r} 885 \\ -29 \\ -26 \\ \hline \end{array}$	$\begin{aligned} & 914 \\ & -34 \\ & -31 \end{aligned}$	$\begin{aligned} & 939 \\ & -39 \\ & -55 \end{aligned}$
1.2	$\begin{array}{r} 678 \\ 30 \\ 12 \\ \hline \end{array}$	$\begin{array}{r} 728 \\ 13 \\ \hline \end{array}$	$\begin{array}{r} 773 \\ 0 \\ -5 \\ \hline \end{array}$	$\begin{array}{r} 314 \\ -10 \\ -22 \\ \hline \end{array}$	$\begin{array}{r} 852 \\ -19 \\ -19 \\ \hline \end{array}$	$\begin{array}{r} 886 \\ -26 \\ -24 \\ \hline \end{array}$	$\begin{aligned} & 917 \\ & -32 \\ & -30 \end{aligned}$	$\begin{aligned} & 945 \\ & -37 \\ & -34 \end{aligned}$	$\begin{aligned} & 970 \\ & -42 \\ & -38 \end{aligned}$
1.3	$\begin{array}{r} 707 \\ 23 \\ 6 \\ \hline \end{array}$	$\begin{array}{r} 757 \\ 8 \\ -2 \end{array}$	$\begin{array}{r} 802 \\ -4 \\ -10 \\ \hline \end{array}$	$\begin{aligned} & 843 \\ & -14 \\ & -16 \end{aligned}$	$\begin{aligned} & 880 \\ & -22 \\ & -22 \\ & \hline \end{aligned}$	$\begin{aligned} & 914 \\ & -29 \\ & -28 \\ & \hline \end{aligned}$	$\begin{aligned} & 945 \\ & -35 \\ & -33 \\ & \hline \end{aligned}$	$\begin{array}{r} 973 \\ -39 \\ -37 \\ \hline \end{array}$	$\begin{aligned} & 989 \\ & -44 \\ & -42 \\ & \hline \end{aligned}$
1.4	$\begin{array}{r} 732 \\ 18 \\ \hline \end{array}$	$\begin{array}{r} 782 \\ 3 \\ -7 \\ \hline \end{array}$	$\begin{array}{r} 828 \\ -8 \\ -14 \\ \hline \end{array}$	$\begin{array}{r} 869 \\ -18 \\ -20 \\ \hline \end{array}$	$\begin{aligned} & 906 \\ & -25 \\ & -25 \\ & \hline \end{aligned}$	$\begin{array}{r} 940 \\ -32 \\ -31 \\ \hline \end{array}$	$\begin{aligned} & 971 \\ & -37 \\ & -35 \\ & \hline \end{aligned}$	$\begin{aligned} & 999 \\ & -42 \\ & -39 \\ & \hline \end{aligned}$	$\begin{array}{r} 1024 \\ -46 \\ -43 \\ \hline \end{array}$
1.5	$\begin{array}{r} 756 \\ 13 \\ -3 \end{array}$	$\begin{array}{r} 806 \\ -1 \\ -10 \\ \hline \end{array}$	$\begin{array}{r} 851 \\ -12 \\ -17 \\ \hline \end{array}$	$\begin{aligned} & 892 \\ & -21 \\ & -23 \end{aligned}$	$\begin{array}{r} 929 \\ -28 \\ -28 \\ \hline \end{array}$	$\begin{array}{r} 963 \\ -34 \\ -33 \end{array}$	994 -40 -37	$\begin{array}{r} 1022 \\ -44 \\ -41 \end{array}$	1045 -48 -44

Upper figuse ：Catch in 10－（ 1000 tons）
Middle figure：Increase in catch in 1975 （\％）
Iower figure ：Tmorease in biomass as at the begiming of 1976 （\％in weicht）
Pable 25. Annual Gatches from IVa.W and VIa, 1965-1971

	1965		1966		1967		1968		1969		1970		1971	
	IVa.W	VIS	IVa.w	VIa	IVa.W	VIa	IVa, W	VI.	IVa.W	VI.a	IVa.W	VIa	IVa.W	VIa
Faxoese	31.21		1. 491	-	35993	-	49995	-	27835	-	40884	18400	25142	34000
France	7303	610	2628	1	15.5	379	1349	1124	605	966	81.8	1553	1396	2296
Gexmany	4489	5066	7069	3.4634	7941	17318	71.50	3.4874	418	15805	177	16543	--	7538
Iceland	-	-	-	-	-	-	35134	-	23697	-	20587	5595	42164	54.16
Trobend	-	6440	-"	7759.	-	12290	-	13390	-	11895	-	12716	-	121.61
Ne thexlands	11515	330	3414	251.	3418	4576	3072	2957	474	1514	177	21.02	5755	1. 850
Norway	196488	-	21.9223	-	41. 664	-	131598	-	99316	-	146397	27462	11.2114	76720
Folas:	35878	-	27199	\cdots	8454	727	2806	2791	362	3188	2069	3709	1288	1955
Scotland,	19239	53909	16548	6933	17359	67404	16324	65180	10051	90222	17767	103530	24711	104922
Total	298345	66383	278613	92032	21.7312	102694	286681	100323	213138	123593	312585	189610	280024	246858
$\left\lvert\, \begin{aligned} & \mathrm{VIa} \text { in } \% \\ & \text { Total. } \end{aligned}\right.$		1.8.2		24.8		46.7		25.9		36.7		37.8		46.9

Catches by countries are speoified only for those countries which fish in both areas. The totals given arethose for all countries fishing in these cases and so exceed the summetion of the catches listed.

Mable 26a. Distribation of Catehes in the Shetlame Area in 1970 by Scotland, Howney, Icelamd, Faroese and Sweden

Montig	$\begin{gathered} \text { West of } \\ 4^{\circ} \mathrm{W} \end{gathered}$	Between $4^{\circ} \mathrm{Wm}$ West of Orkey and Shetland	ㄹest of Orley and Shotiand
Aprs	-	340	911
H2y	-	4211	3872
Jon.	8017	72712	650
Jul.	14565	59915	9177
A0g.	5523	8957	4370
Sep.	-	801	7073
Oct.	-	331	7138
Nov.	-	-	6431
Dec.	-	-	332
Total	28105	147067	3954

Table 26b. Percentage Age Compositions (Horwegian am Seotish Data) in Three Areas of Shetland \mathbb{H} shers in April-augast 1970-1971

Year	Area	WIMTER RTIES									
		1	2	3	4	5	6	7	8	>8	7
1970	West of $4^{\circ} \mathrm{Fl}$	-	41.2	43.3	4.3	3.5	6.0	0.6	1.0	0.2	840
	4-W-Nest of Orimey and Shetiane	-	54.5	31.2	5.0	1.1	3.4	0.7	0.8	0.7	564
	Fast of Orimey and Shetland	-	79.9	15.5	2.0	0.4	2.0	0.5	0.4	0.5	2017
1971	West of $4^{\circ} \mathrm{W}$	0.2	14.6	52.5	21.8	3.0	4.9	I. 1	0.9	1.1	4.67
	40Wmest of 0 inney and Shetland	\cdots	12.1	52.7	19.4	4.2	6.1	3.6	1.8	-	199
	सost of Orkney and Shetland	10.4	36.1	41.0	10.2	0.7	0.2	0.8	0.3	0.3	1709

Tabie 26c. Fean $V S, K_{2}$ and $I-I$, Characters of Eezring Samples from West Shetland, Rast Shetland ane Minch Grounds

West Shetlane			Fsst Shetland			Minch		
VS	E_{2}	Im 1	VS	E_{2}	In 1	TS	\mathbb{E}_{2}	$I=1$
56.53	14.14	15.11	56.51	14. 19	14.93	56.51	14.19	13.86

Drifter
$3-\frac{F_{y p a}}{c p e}$
\longrightarrow Voung herring trawl

Figure 1. The development in efficiency as measured by F /ope for drifters and young herring trawls (F derived from VPA).

Figure 2. The development in efficiency as measured by $F / c p e$ for Dutch trawiers (F derived from VPA).

Figure 3. Total mortality, approximated by I/cpe, on total effort (Dutch trawl).

Figure 4: Spawning potential of North Sea herring stocks 1947-1969 in per cent of spawning potential in 1948.

Figure 5. Regression of recruitment at 3 years of age estimated from VPA on estimates from catch-effort data.

Figure 6. 0-group recruitment (derived from VPA) on spawning potential.

Figure 7. Abundance of 0-group herring along the East Anglian coast and the abundance of low mean length I-group herring from the International Young Herring Surveys plotted on Downs larval abundance.

Figure 8. Abundance of low mean length I-group herring plotted against abundance of East Anglian 0-group herring.

Figure 2. Total catch levels in 1972 in thousands of tons
(full drawn lines) and percentage increase in total
catch from 1972 - 1975 (broken lines) at various
combinations of adult and juvenile fishing mortalities.

```
Notes on the Virtual Population Analysis and the Cohort
                    Analysis
                    by
Hans Lassen
```

The Virtual Population Analysis (VPA) (Gulland, 1965) and the Cohort Analysis (CA) (Pope, 1971) estimate for an exploited year class the fishing mortality F_{i} and the stock \mathbb{N}_{i} at age $i_{\text {, }}$ provided that the natural mortality M and that the fishing mortality F_{n} for the oldest age group is known.

A brief review of the methods are given in this appendix together with some recent evaluations of the errors inherent in the methods.

Let the catch in numbers of a year class at age i be $C_{i} ;$ then according to Beverton and Holt (1957):

$$
C_{i}=\mathbb{N}_{i} \frac{F_{i}}{F_{i}+M}\left(1-\exp \left(-F_{i}-M\right)\right) \quad[1]
$$

Defining

$$
\begin{equation*}
\nabla_{i} \stackrel{D}{=} \sum_{j=i}^{\infty} C_{j} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{i}=\frac{\nabla_{i}}{\mathbb{N}_{i}} \tag{3}
\end{equation*}
$$

it follows that:

$$
\begin{equation*}
\frac{\nabla_{i}+1}{E_{i}+1 C_{i}}=\frac{\left(F_{i}+M\right) \exp \left(\infty F_{i}-M\right)}{F_{i}\left(I-\exp \left(-F_{i}-M\right)\right)} \tag{4}
\end{equation*}
$$

If $C_{j,} j=i, i+1, n, E_{i+1}$ and M are known, F_{i} can be found from equation $[47$ 。 The Newtonmaphson iteration is a sufficient and effective solution method for this problem Continuation of the analysis requires E_{i} as defined by [1]. It can be found using [2] and [3]

$$
V_{i}=\mathbb{N}_{i} E_{i}=C_{i}+\nabla_{i+1}=C_{i}+N_{i} e^{-Z_{i}} E_{i+1}
$$

and by [1] one finally gets

$$
E_{i}=\frac{F_{i}}{F_{i}+\mathbb{M}}\left(I-\exp \left(-F_{i}-M\right)\right)+E_{i+1} \exp \left(-F_{i}-\mathbb{M}\right)
$$

The stock in number \mathbb{N}_{i} is then found by [3]

Pope (1971) has developed a modification (the Cohort Analysis) of the VPA based on the approximation

$$
\frac{\sinh F / 2}{\sinh (F+M) / 2} \simeq \frac{F}{F+M}
$$

which，according to Pope，is usable up to values of $M=03$ and $F=1.2$ 。 He derived simple expressions for calculating the fishing mortality coefficient F_{i} and stock sise N_{i} ：

$$
F_{i}=\ln \left(\mathbb{N}_{i} / N_{i+1}\right)-\mathbb{N}
$$

and

$$
\mathbb{N}_{i}=C_{i} e^{M / 2}+\mathbb{N}_{i+1} e^{M}
$$

The advantage of using the VPA is that F in a fishery where F_{i} is changing with time may be estimated for a given age group in a given year without the use of effort data．

The main diaadvantage is that unknown and often considerable errors may be introduced due to uncertainties of M and F_{n} o

Pope（1971）has discussed errors in F_{i} and W_{i} arising from incorrect choice of F_{n} and from sampling errors of C_{i} ．Agger，Boe̊tius and Lassen （1972）have discussed errors in F_{i} due to inaccurate guesses of $M_{\text {o }}$

The results can be summarised as follows：
a The relative error from incorrect choice of F_{n} ：

$$
\frac{\sigma\left(F_{i}\right)}{F_{i}}=\frac{\sigma\left(N_{i}\right)}{N_{i}} \frac{1-\exp \left(\infty \hat{F}_{i}\right)}{\hat{F}_{i}}
$$

where F_{i} is the estimated value from $C A$ and \hat{F}_{i} is the true value both of fishing mortality．
b the relative error from sampling errors in C_{i} ：

$$
\frac{\sigma\left(C_{i}\right)}{C_{i}} \simeq \frac{\sigma\left(F_{i}\right)}{F_{i}}
$$

© the relative error from inaccuracy in M is found to bias the Fi^{8} swith 25% provided M is known ± 0.1 and $F^{9} s \approx 0.7$ 。 The effect is increasing for smaller $\mathrm{F}^{3} \mathrm{~S}$ 。

References

Beverton， $\mathrm{R}_{\mathrm{o}} \mathrm{H}_{\circ} \mathrm{J}_{0}$ and Holt， S ．${ }^{\text {＂On }}$ On the Dynamics of Exploited Fish Populations＂．Fish。Res．Ser．II，XIX．Her Majestic Stationery Office， 1957.
Gulland，JoA．＂Estimation of Mortality Rates＂．Annex to Arctic Fisheries Working Group Report．ICES C．M． 1965 No． 3 Gadoid Fish．
Pope，JoGo＂An Investigation of the Accuracy of the Virtual Population Analysis＂．ICNAF，Res．Doc． $\mathrm{A}^{\prime} 1971$.

	(Pootom notes)	Skagerrak ITTa	$\begin{gathered} \text { Mortik Sea } \\ \text { Moxth Beat } \\ \text { IVa。E } \end{gathered}$	$\begin{aligned} & \text { North Sea } \\ & \text { North West } \\ & \text { IVa.W } \end{aligned}$	```North Sea Nentral IVb```	South + Foglish Channal $\mathrm{IVc}+\mathrm{VIId}_{0} \mathrm{e}$	Total
Belgium	2	-	"	\cdots	8	673	681
Denmaxk	1	26985	6219	44500	134649	25	212376
Faroe Islaxda	3	5636	239	25142	254.	-	31.271
Frenoe	1.4	\cdots	\cdots	1514	5918	4450	10882
Germaxy \%9,	2	-	389	-	3421	-	3810
Toeland	1. 5	5834	-	42164	179	-	48172
Netherlands	1	-	267	5755	10172	16385	32479
Noxway	1	5961	10442	112114	14	∞	128531
Poland	2	\bigcirc	\cdots	1288	743	-	2031
Swedea	1,6	19763	\cdots	4954	31. 926	$=$	56643
U.K. (England)	1.7	-	\cdots	\%	4113	-	4113
W.K. (Scotland)	1,8	\cdots	-	24711	362	\cdots	25073
USSR	1	\cdots	\cdots	18000	-	-	18000
Total		64179	17456	279142	191.759	21. 533	574069

Nominal eatoh of Eexing for industrial purposes in metrio tons fox 1971.
Skagerralk IIta
Noxth Sea Noxth West TVa,W North Een Nort' East TVa。E North Sea Contral TVb
Noxth Sea South + Finglush Channel IVo + VITd.e.

	Denmerk	Sweden	Nowwey	Gexmany Tor.	Total
Skagerrals IITa	24490	8500	5257		38247
North Sea Noxth West IVa.W	42224		100290		141514
North Sea North East IVa.E	5704		8160		13864
North Sea Contral IVb	132161	30000	7	3000	165168
Noxth Sea South + Englush Channel IVo + VITd.e.	25				25
motal	203604	38500	113714	3000	358818

Footnotes to Apendix II

I. Submitted by Members of the Working Group.
2. From data submitted on STATLANT form 27A.
3. Faroese catches reported to be 30800 tons. Landings in Danish ports 31271 tons used in the table.
4. French landings at Boulogne-sur-Mer data submitted by A. Maucorps were raised by 1.25 to include the total French catches.
5. Icelandic total catches, excluding Skagerrak, were 47938 tons. Of this, 5600 tons were caught West of 4 W. The remaining 42338 tons were distributed according to landings in Danish ports from Division IVa.W and IVb. The Skagerrak catch was taken as the landings in Danish ports.
6. Swedish North Sea landings of herring for consumption, 6880 tons, distributed according to Swedish landings in Danish ports:

IVa.W	$72 \%=4954$ tons
IVb	$28 \%=I 926$ tons

Swedish landings for consumption from the Skagerrak: 11263 tons
Total Swedish landings for industrial purposes: 38500 tons according to Ackefors, were distributed as follows:

North Sea IVb	30000 tons
Skagerrak	8500 tons

7. English catches do not include coastal stocks.
8. Scottish data do not include catches from the Moray Firth.

[^0]: x) General Secretary

 Tinternational Council for the Exploration of the Sea
 Charlottenlund Slot
 2920 Charlottenlund Denmerk

[^1]: Data include some Kattegat catches.

[^2]: \%) Year olass 1970 put equal to year olass 1969.

[^3]: 画 Finglish coastal abundance underestimated compared with 1968 and 1969.

