This paper not to be cited without prior reference to the Council x)

International Council for the Exploration of the Sea

ź

C.M.1972/H:13 Pelagic Fish (Northern) Committee

REPORT ON THE NORTH SEA HERRING ASSESSMENT WORKING GROUP Charlottenlund Slot, 13-22 June 1972

 x) General Secretary International Council for the Exploration of the Sea Charlottenlund Slot
 2920 Charlottenlund Denmark

CONTENTS

.

		Page
I.	Terms of Reference and Participation	2
II.	Material and Agenda	3
III.	The Fisheries	
	a) Landings	4
	b) Catch Composition	4
IV.	The Fish Stock	
	a) Natural mortality	8
	b) Fishing mortality	9
	c) Stock size	9
	d) Larval abundance	10
	e) Recruitment	10
	f) Weight data	12
٧.	Prognoses for Different Levels of Fishing Mortality	
	a) Parameters and assumptions	12
	b) Prognosis for different levels of fishing mortality	14
	c) Comparison with former data	15
VI.	Conservation Measures	
	a) Overall catch quota	15
	b) Differential measures	15
VII.	Northwestern Boundary of the Quota Area	
	a) Catch statistics	17
	b) Age composition	17
	c) Meristic characters	18
VIII	. <u>Discussions</u>	18
IX.	Conclusions	
	a) Overall quota	20
	b) Differential conservation measures	20
	c) Western boundary of North Sea herring stocks	20
X.	References	21
XI.	Tables 1 - 26	22 - 55
утт	Figures 1 - 10	
ی جلر طرح ک	TIGULED T - TO	<u> 50 - 61</u>
XIII	. <u>Appendix I</u> - Notes on the VPA and the Cohort Analysis.	
XIV.	<u>Appendix II</u> - Nominal catches in 1971.	

I. Terms of Reference and Participation

The International Council for the Exploration of the Sea, acting on a general concern expressed at the NEAFC Meeting in May 1968 about the North Sea herring fisheries, appointed a Working Group to review the state of the North Sea herring stocks and to discuss measures for the improvement of the fisheries exploiting them.

The Working Group held two Meetings in 1969, the results of which are published in Coop. Res. Rep., Ser. A, No. 26 (1971). The Working Group concluded that in order to increase the size of the adult stock it was advisable to stabilise the effort at a lower level than exerted then.

At its Ninth Meeting in May 1971, NEAFC passed the following resolution:

"In view of the Commission's interest in the possibility of regulating the North Sea herring fishery by means of catch quotas, the ICES North Sea Herring Assessment Working Group is asked to review the present status of the North Sea herring stocks and to advise on the following questions:

- 1) What alternative schemes of total catch limits should be set in order to allow recovery of the stock to a satisfactory level within a reasonable period of time?
- 2) Are differential quotas by season, region and category necessary to achieve effective conservation; if so, what form might they take?
- 3) Is the 4°W Meridian the appropriate northwestern boundary for the quota area?

It is noted that all the catch, fishing effort and biological data for the period ending 31 December 1970 must be made available before the Group can carry out the above study, and that it is desirable that as many data for the year 1971 as possible, should also be made available".

Acting on the request of NEAFC, the Working Group met in June and September 1971 and in January and June 1972 with Mr K. Popp Madsen (Denmark) acting as Chairman.

All meetings were held at ICES Headquarters, Charlottenlund Slot, Charlottenlund, Denmark, and member countries were represented by the following scientists:

		19	71	19	72
		14-19 Jun.	1-5 Sep.	24-28 Jan.	13-22 Jun.
Dr H, Ackefors	Sweden	X	x	z	
Dr Y.K. Benko	U.S.S.R.				X
Mr A.C. Burd	υ.κ.	X	x	X	X
Mr A. Corten	Netherlands				X
Dr H. Dornheim	Germany				X
Mr H. Lassen	Denmark		x	x	x
Mr A. Maucorpa	France		x		
Mr K. Popp Madsen	Donmark	x	x	X	x
Mr K.H. Postuma	Netherlands	x	x	x	
Mr E.S. Prosvirov	U.S.S.R.	Annual			X
Mr A. Saville	U.K.	20	x	x	21
Dr A. Sohumacher	Germany	x	X		
Mr Ø. Ulltang	Norway			x.	N.
Mr O.J. Østvedt	Norway	x	Z	X	æ

- 3 -

All meetings were attended by Mr J. Møller Christensen, in his capacities of Secretary to the Liaison Committee and of Statistician to ICES. It was noted with regret that representatives from nations with important fisheries in the North Sea were not attending the meetings.

II. Material and Agenda

The North Sea Herring Assessment Working Group at its 1969 sessions mainly considered the development in the stocks and fisheries in the period 1960-1968. Catch statistics and data on the biological composition were compiled for that period and a calculation of the number of herring caught per year by age and area was undertaken.

At the present meetings the Working Group has expanded this work to comprise the entire post-war period and to make additional assessment methods, such as the Virtual Population Analysis, applicable.

The main objective of the Working Group has been to establish prognoses on the future development in catch and biomass over a 4-5 year period at different levels of fishing mortalities. For this purpose the following data have been vital:

- a) age compositions by areas and fisheries, together with data on numbers per kg;
- b) abundance estimates from Young Herring Surveys and Young Herring Fisheries;
- c) data on average weight by age and month;
- d) data on catch and effort by gear and area.

As on earlier occasions, the Working Group had to spend a disproportionate amount of time on compiling the data in a suitable form. Major fisheries are still not covered by detailed catch statistics and are in some cases not even referable to the gross statistical areas used by ICES. Equally serious deficiencies characterise the biological data where such basic information as age distribution and numbers caught per unit of weight are lacking for entire areas or fisheries representing thousands of tons. The problem of inadequate data is most apparent in the case of Skagerrak, which for that reason had to be excluded from the analyses carried out.

The deficiences in the data available introduce an uncertainty in the conclusions drawn, which must necessarily affect the quota levels.

III. The Fisheries

a) Landings

The general decline in total catch from the North Sea and Skagerrak since the peak year of 1965 continued in 1969 and 1970 (Table 2). The total catch in 1971 of 574 000 tons was 32% below the average catch level in the period 1955-1964 prior to the heavy expansion of the fisheries, and 8% lower than the catch in 1970. The catch in 1971 is only slightly greater than the average catch in the period 1948-1950 when the main fisheries in the North Sea were the adult herring fisheries for human consumption and the effort was at least half the recent level.

In 1969 the herring fisheries showed a general decrease in catch in most sub-areas while the developments in 1970 and 1971 show a somewhat different pattern. In the latter years a continued decline took place in Skagerrak and the northeastern North Sea while a marked increase took place in the northwestern part (section VII). As shown in Table 2 the recorded catches in the northeastern North Sea went down by about 87% from 1969. It must be noted, however, that the allocations to North Sea sub-areas of Danish, Faroese, Icelandic and Swedish catches are based on a limited sampling of statistics in one Danish harbour. Though the actual figures are bound to be uncertain, the independent picture from the Norwegian catch distribution supports the general development as described above.

In the central North Sea after the increase in adult catch in 1970 over the previous two years, this fell in 1971 to the lowest level recorded. However, the closure of the herring fisheries in August/ September 1971 will have contributed to this decline.

The catch levels in the south have remained constant, but at a somewhat higher level than in the 1966-1968 period. Nevertheless, the current levels are reduced by ten times from the fisheries in 1952-1954.

The highest catches on record were made in 1971 in the young herring fisheries in the central North Sea. This represents an increase of 2.2 times over the low 1970 catch and 1.4 times over the 1969 catch. The increase is associated with the entry of the strong 1969 year class into the fishery.

- b) <u>Catch composition</u>
- (i) <u>Numbers caught per age group</u>

Data are presented in Table 9 giving the total catches by area in number per age group for the period 1947-1971. The methods described in Coop. Res. Rep., No. 26, for obtaining the annual age compositions by which separate age compositions were used for fish taken by different gears, each being raised to the total catch by the respective gear, has been followed for the period 1955-1958 and 1969-1971. Any country's catches which could not be specified to gear were used to raise the total specified catch to the total area catch.

	·	·····									
Veer						Area					
rear		IVa.W			IVa.E			IVb		IVc	
Gear	Drift	Trawl	Purse	Drift	Trawl	Purse	Drift	Trawl	Purse	Drift	Trawl
1955	S	G	-	S,G	G		E	G	-	E	H
1956	S	G		S		-	E	H	-	E	H
1957	S	G	-	S	B	-	E,S	H,G	-	E	H
1958	S	G	-	S			E	H,G	-	E	H,G
1959	S	G	5×*	S	G	· •	E	H,G	-	E	H,G
1969	S	G,H	N,S	-	H,D	14	_	H,G	-	-	H,G
1970	S	G,D	N,S	-	H,D	IA	S	G,H	-	-	H,P,G,F
1971	S	D,H]	N,S,I	-	D	N,D/F	E,S	G,H		-	H

The	age	data	used	by	areas	and	gear	are	summarised	below:
-----	-----	------	------	----	-------	-----	------	-----	------------	--------

Key: B - Belgium

D - Denmark

D/F - Danish Faroese Landings

- E England
- F France
- G Germany
- H Notherlands
- I Iceland
- N Norway
- P Poland S Scotland

For the period 1947-1954 the age data for areas IVb and IVc are Belgian (Gilis, 1958). For travl catches in IVa the same source has been used and Scottish drift net data have been applied to drift net catches (Parrish & Craig, 1963). Numbers per kg were derived from Gilis except for IVa drift net catches which were derived from Scottish data in Statistical News Letters.

The age data for the young herring fishery in IVb are all derived from the Danish trawl fishery.

The estimates of the total catches in numbers for each age group for the years 1960-1968, given in Table 9, differ from those given in Table 17 of Cooperative Research Report, No. 26. These differences have arisen from the application of better estimates of the number of fish per kg in the catches of the young herring fisheries in area IVb in these years, and thus affect predominantly the estimated numbers of 0- and 1-group herring caught.

During the June 1972 Meeting of the Working Group the catches in numbers per age group in the adult fisheries in 1965 were also recalculated. This estimate differed very markedly from the total catch in numbers per age group for the whole of the North Sea for 1965, given in Cooperative Research Report No. 26, largely because of big differences between the two estimates for areas IVa.W and IVa.E. This is hardly surprising, in view of the comments made in the previous Report of the Working Group on the inadequacies of the catch sampling of some of the major fisheries in these areas.

Because of the deficiencies in sampling, any estimate of catch in numbers per age group for these areas will contain a large measure of uncertainty. In view of this, it was decided that the labour involved in recalculating all of the data for the years 1960-1968 was unjustified. The data given in Table 9, originating from the adult fisheries, is therefore unchanged from those given in the previous Report.

(ii) Percentage of spring spawners in the North Sea catches

The percentages of spring spawning herring in the catches from the northwestern, northeastern, and Skagerrak areas are given in Table 10 according to the available national data. In the northwestern area the Norwegian and Scottish data are in close agreement for the period 1965-1968, but thereafter differ widely. This difference may be due to a methodological error in that after 1968 the Norwegian otoliths were read by a different operator than in the earlier period. It is also possible that this difference in the later years reflects a real difference in the proportion of spring spawners in the catches of the two countries. In these years an increasing proportion of the Norwegian catches was taken on the western boundary of the area, whilst an appreciable proportion of the Scottish catches came from the East of Shetland and within national fishing limits.

In the northeastern area, in all years, there are large differences between the percentages estimated by the different countries. This again may result from differences in the timing and location of the fisheries of the different countries.

In all areas there is some indication of a higher proportion of spring spawners in the catches after 1965. This might suggest that the spring spawning stock has not decreased to the same extent as the autumn spawning one did as a result of the major increase in fishing effort in 1964 and subsequent years.

(iii) Data on Skagerrak fisheries

In the previous Report, (Anon., 1971), an estimate of catch per age groups in number was given for the Skagerrak for the period 1963-1968 (loc. cit., Table 20, p. 47). Only limited data on age and weight composition of the catches were, however, available and most of these data came from the fisheries for human consumption. It also appears that the estimate of catch in number per age groups for 1968 was based on Norwegian research vessel samples which showed a predominance of 0-group fish while the Norwegian commercial fishery was mainly based on 1- and 2-ringers. Due to the inadequate sampling of the commercial catches any estimates of catch in numbers per age groups would be misleading.

Table 11 gives the Danish and Swedish herring catches landed in Denmark separated into catches for human consumption (C) and for industrial purposes (I), together with estimated mean number per kg for some years. For Norway, total catches only are given, but during the years 1964-1968 at least 90% of the catches were for industrial purposes. The catches for other countries are almost exclusively for human consumption.

The figures available on mean number per kg indicate that the Danish industrial landings mainly consisted of fish with 0 and 1 winter rings, while the Norwegian industrial landings in the years 1965-1968 exploited fish with 1 and 2 winter rings. It seems, therefore, that the total catch from Skagerrak during the years 1960-1971 consisted mainly of fish with less than 3 winter rings. (iv) Catch per Unit Effort

For the period 1947-1971 catches per unit effort are given in Table 12 for trawl and drift net fisheries in the North Sea.

Apart from the extension in time some of these data differ slightly from those in Coop. Res. Rep., No. 26. In particular the Netherlands trawl data refer to herring in fresh weight while previously these were in landed weight.

In the central area the U.K. unit used is catch per landing. Since 1965, as some landings represent more than one night's fishing, these numbers should be reduced by a factor of about 0.8, to be comparable with the earlier data, but this correction has not been applied to Table 12. These data are derived from the summer fishery off the English northeast coast. In the early part of the season this fishery is directed at recruiting fishes, while later an increasing proportion of older fish are taken, when the drifters exploit the spawning grounds off the Yorkshire coast. The more stable nature of the drifter catches per effort compared with the trawler series, may be related to this greater dependence on recruit herring.

Both trawler and drifter units show declining catches per effort in the south and northeastern areas.

In the northwestern North Sea again the drifter data are more stable and do not show the marked docline seen in the Dutch trawl data. This difference in abundance indices between drifters and trawlers has been commented on before. Pope and Parrish (1964) considered that the differences between drifter and German trawl catches per effort from July 1947-1959 reflected real changes in abundance. They suggested that net selectivity could account for the difference. Zijlstra (1967) showed a consistent difference between the age compositions of trawl and drift net catches over the period 1930-1960. He concluded that the differences could be explained from the drifters selecting a younger component of the stock. Differences in area distribution of the two fleets might also have an effect.

(v) Effort

Estimates of effort for the period 1947-1971 are given in Table 13 for the northwestern, northeastern, central and southern North Sea and the Bløden area. These data are arrived at by dividing the total catch in an area by the catch per unit effort in that area. As discussed in Coop. Res. Rep., No.26, the method is only reliable when the catch per unit effort of an area is estimated from fisheries taking the major part of the total catch in that area. Difficulties in this respect were experienced in the areas of the northern North Sea, and the effort estimates of the northwestern and northeastern North Sea are, therefore, to be considered with reservations.

Using the U.K. drift net series and the Dutch trawl series, estimates of total effort in the adult fisheries in the North Sea have been computed. In the case of the drifter data for the central and northwest areas it has been assumed that each landing was a drifter shot. The effort for these areas, and area south, have been summed and raised by the difference between the total catches from these three areas and that for the total North Sea adult fisheries. Such a summation of the effort estimates for the individual areas is only valid on the assumption that they are measured in the same units and in this case they are derived from almost the same fleet of vessels.

In the case of the Dutch trawl data it has been assumed that the catches per unit effort for the northwest, northeast and central areas are all estimates of the total stock of herring in the North Sea. This is certainly not the case in the northeastern area where the major decline in catch per unit effort in the later years was partly due to a change in fishing area as the objective of this fishery changed, as the herring stock declined from predominantly herring to a greater emphasis on demersal fish. It is most unlikely that all of the stock is fully represented in any of these areas. This is particularly pertinent to the central area where few fish from the northwestern spawning stock are represented.

However, unless a reliable estimate of the proportion of the total stock fished in each area is available, the simplest assumption which can be made is that these estimates are equally valid measures of the total stock within that area. Because of availability differences between the areas, catches per unit efforts are not measured in the same units. To correct this, mean catches per unit effort were calculated per area using data from the period 1955-1967 for which catch per effort data are available for each area. The ratio of the mean catches per unit effort in the northwestern and northeastern areas to that of the central area were calculated, and the catches per unit effort for the first two areas were adjusted by this factor. Yearly means were then calculated for the three areas and this figure was raised to the total North Sea effort. Table 14 gives the estimated total North Sea efforts calculated by both methods.

The effort recorded in drifter landings is underestimated in 1969 and 1971, as there was no fishery in the southern area from which the catch per efforts were derived. The data suggest that after reaching a peak in 1961-1968, the total effort on adult herring has since declined somewhat.

The trawler effort also shows the increase in effort from 1961-1968, with, subsequently, an apparently slight decline.

Table 14 also gives catch per effort estimates in drifter and trawler units for the total North Sea catch. The drifter data originating from fisheries mainly on recruiting herring show little trend with time. However, those for the trawler index, being based mainly on the spawning stocks, show a large decrease with time.

Using the weighted mean fishing mortality for fish of 2 rings and older from the VPA analysis, apparent changes in fishing efficiency with time can be examined. The ratio \overline{V}/Cpe for each year describes the relative changes in F generated by one unit of catch per effort. The plots for drifter and trawler efficiencies appear in Figures 1 and 2. As the mean F values for 1968-1970 are not reliable from the VPA analysis because of the short periods involved, F has been set at 1.0, as has been used in other analyses, and which is of the order of the observed values of F from catch per effort data.

The drifter data indicate an increase in apparent efficiency (fishing intensity) of about two times by 1961 from the level of the earlier period. Accepting the values of F for 1968-1970, the increase was then three times.

The trawler data indicate a rather steady level of intensity from 1954-1964, subsequently jumping by a factor of about three.

In Figure 1 the relative change in fishing intensity for the Danish young herring trawlers is indicated. This has been calculated by using the catch per effort data of Table 12 and the index of fishing mortality for 1-ringed fish from the VPA analysis. The data suggest an increase in efficiency of the order of two times between 1958-1963 and 1964-1970.

IV. The Fish Stock

a) <u>Natural mortality</u>

Some impression can be gained from the use of the catch per effort data given in Table 14 of the relative size of M in relation to Z. For the Dutch trawler data the regression of annual 1/Cpe on total effort for the North Sea has been calculated (Figure 3). The statistic 1/Cpe is an approximation to the total fishing mortality. The intercept of 0.13 is not significantly different from the value M = 0.1. The intercept itself must be an overestimate, as the catches per effort in later years are not corrected for the fishing efficiency increase. This correction would tend to increase the slope and reduce the intercept. This would imply that for the adult part of the stock, the value of M = 0.1 is realistic.

Other estimates from catch per effort data of the natural mortality coefficient are available and summarised below:

Source	Stock	M
Postuma (1963)	Downs	0.08
Burd & Bracken (1965)	Dunmore, 1952-1959	0.13
Malloy (1969)	Dunmore, 1961-1968	0.15

In earlier assessments a value of natural mortality of 0.2 has been used when considering the effect of fishing on North Sea adult herring stocks. In the present Report the Virtual Population Analysis and the prognosis have been carried out using the value of M = 0.1. The same value of M was also applied to juvenile immature herring as 0- and 1ringers included in the analyses as it was considered less objectionable to use the same value of M throughout the life span than trying to make changes in this value on hypothetical grounds.

b) Fishing mortality

Table 15 gives the values of F obtained from the Virtual Population Analysis on the total North Sea stock for M = 0.1. The effect of higher value of M = 0.2 is to decrease the fishing mortality. The correlation between M = 0.1 and M = 0.2 can be represented by the following equation:

$$F_{0,1} = 0.96 F_{0,2} - 0.067$$

For the adult stock (2-ringers and older) the data show a relatively steady level in F up to 1964 followed by an increase in 1965-1967 to about 0.7-0.8 when the fishery in the northern North Sea expanded. Subsequent to 1967 the mortalities have remained at a high level of about F = 1.0, as indicated from catch per effort data.

The fishing mortalities for the 1-ringers show an increase in F from the early 50's up to about 0.5 in 1964 and have since stayed at about the same level. The increase in F corresponds in time with the commencement of the Bløden young herring fishery.

c) Stock size

(i) Estimates from virtual population analysis

Table 16 gives the estimated stock size in numbers by age and year for the total North Sea from the VPA using M = 0.1.

The stock sizes were also calculated for the total North Sea using M = 0.2. Using an M of 0.2 the stock sizes calculated are about 30% higher.

Over the years 1949-1965 the total stock sizes were remarkably stable, fluctuating around an average level of about 29.0 x 10^{-9} . After 1965 the stock sizes decreased to an average level of about 20.0 x 10^{-9} .

Considering the stock sizes for the different age groups, it appears that most of the reduction in stock sizes have taken place in the adult stock (2-ringers and older) which since 1966 has been reduced to about one third of the level in the early fifties. This decrease compares very well to the decrease in average trawl catch per effort (Table 14).

A reduction in the number of older fish greatly affects the spawning potential of the stock, and as is shown in Table 19, the estimated spawning potential has been reduced by about 3 times in the later years, as compared with the period 1947-1952.

(ii) Estimates from tagging experiments

From Norwegian tagging experiments in 1966 in the northeastern North Sea (June) and east of Shetland (July), the stock in the northeastern North Sea was estimated to be 0.54 million tons and in the Shetland area 0.57 million tons, totalling 1.11 million tons (Anon., 1971). These estimates were, however, based on returns during the first three months after tagging and most of the returns came from the areas of release (Haraldsvik, 1969). It seems evident, therefore, that the tagged fish were not randomly dispersed.

According to later reports from these experiments the returns during 1967 and 1968 show that 30-35% of the tagged fish from the experiment in the northeastern North Sea had migrated to Shetland, while 21-41% of the Shetland tagged fish were in the eastern area.

The autumn spawners in both experiments consisted of 2-ringers and older fish. About 10% of the tagged fish in the northeastern area and about 30% in the Shetland area were spring spawners.

Considering returns during 1967 and 1968, the estimates of the total stock of adult autumn spawners in numbers in 1966 in the northern North Sea range between 10 - 15 thousand million, or in weight (using an average number per kg of 5.2) from 1.9 - 2.9 million tons.

d) Larval abundance

Indices of larval abundance for the period 1946-1969 were presented in Coop. Res. Rep., No.26. In Table 17 of the present Report the results of the 1970 ICES Herring Larval Surveys have been added and some alterations made to the data for the southern North Sea.

The changes in the Downs estimates have resulted from restricting the larval abundances used to those obtained from sampling in comparable areas within the months December and January. The abundances are of all larval sizes, and as in earlier years (1946-1962) and in 1969 no separation by size was made. A simple mean has been taken of the abundance indices obtained from each survey within each spawning period for use as the annual index. In 1968 the Downs surveys were far apart in time (early December and late January) and the larval sizes were small in each case. As an exception, therefore, in this year the abundance taken is the sum of the two survey indices. In 1966 only two surveys were made up to 20 December when few larvae would have hatched out. No abundance index can be given for this year.

The abundance indices of larvae from the southern North Sea (Downs) show increases in number since the very low levels of the period 1963-1965. In the central North Sea larval abundances are still dependent on the spawning off the English northeast coast between the Longstone and Flamborough. In the northern region the major production originates from the Orkney/ Shetland region, though in 1969 some production was recorded on the spawning grounds near the Aberdeen Bank.

Comparable data for 1971 were not available to the Working Group. Preliminary estimates suggest that in the south, larval abundance was low (1963-1965 level). In the central region abundances of the same order as 1970 were recorded, as was the case in the Orkney/Shetland area. In the northwestern area, however, increased production was evident on the Aberdeen-Turbent-Montrose Banks area.

e) <u>Recruitment</u>

(i) <u>Recruitment estimates</u>

Recruitment estimates are available as the number of 0, I or II group fish from the VPA, and as catch per unit effort of 3 year old herring in drift net and trawl fisheries. For the most recent year classes (1969, 1970) the only estimates available so far are from the International Young Herring Survey, the English 0-group survey, and the Danish industrial fishery. Both the 1969 and 1970 year classes seem to be above average (Table 23). Over the whole period 1947-1970, there is no clear trend in the overall recruitment to the North Sea stock.

Recruitment estimates for Buchan, Bank and Downs stocks were available for the years 1951-1967 as the catch per unit effort of 3 year olds in the drift net and trawl fisheries in the areas (Table 18). In order to get an overall estimate for the recruitment to North Sea stocks, catches per unit effort for individual areas were expressed as standard measure $(\underline{x} - \overline{x})$ and then added by years.

σ

A comparison was made between these recruitment estimates and the figures for stock size at three years of age, calculated by VPA. For this purpose, VPA values were also expressed as standard measure (Figure 5).

A significant correlation (r = 0.86) was found between the two sets of recruitment estimates, indicating that recruitment levels calculated by VPA are of the same order as those estimated from the combined catch per unit effort of 3 year olds in the different areas.

(ii) Stock-recruitment relationship for total North Sea

Using estimates of each age group of the adult stock for the total North Sea (from VPA) the spawning potential of the stock was calculated from fecundity data on northern North Sea herring. The spawning potential is obtained by multiplying half the numbers of stock at each age by the mean fecundity for that age group. This gives the potential annual egg production or spawning potential.

Fecundity per age group (from Baxter, 1959)

Ringers	2	3	4	5	>5
No. of eggs x 10-3	45	67	87	96	101

Spawning potential of the total North Sea stock is compared with recruitment estimates as O-ringers from VPA in Table 19. There is no correlation between the two values for the period of observation. Instead, recruitment fluctuated around a rather constant level of about 8×10^9 (Figure 6).

The North Sea herring are regarded as consisting of three major stock units, Bank, Downs and Buchan. Stock recruitment relationships have been domonstrated for some of the individual stocks. By adding all stocks together in the present analyses, any underlying stock/recruitment relationships might well be masked.

(iii) Stock-recruitment relationship for Downs herring

Figure 7 shows a plot of Downs larval abundance (Table 17) against both the abundance of 0-group herring along the East Anglian coast and Thames estuary (Wood, 1970) and the abundance of low mean length herring (<15-16 cm) as measured during the International Young Herring Surveys. The 1968 year class has been excluded because larval production of the Downs stock was not properly measured in 1968/1969. For the remaining years (1964-1970) the relationship between number of larvae and abundance of young herring is quite apparent.

The plot of 0-group fish against low mean length I group in Figure 8 also includes the 1968 year class. This year class in the Downs stock was of about the same strength as the 1969 and 1970 year classes, while for the total North Sea the 1968 year class was only half as strong as the 1969 year class (Table 23).

f) Weight data

The monthly mean weights per age group are given in Table 20 for each area separately. These mean weights are based on data collected in the period 1966-1971 in area IVa.W on combined Netherlands and Scottish data, in area IVa.E on Netherlands data and in areas IVb and IVc on English and Netherlands data. Norwegian weight for age data for area IVa as a whole are tabulated separately. The rather few observations available for area IVa.E suggest that the weight per age in this area is very similar to that in IVa.W and the Scottish and Netherlands data for these two areas are very similar to those of Norway for the combined areas. Danish data of monthly weights for age in the juvenile fisheries are given in Table 21.

In all areas the data show a maximum weight per age in the adult fisheries in August-September and a fairly rapid decline thereafter to about 60-70% of this summer maximum in the early months of the following year. This would suggest that quite apart from any gain due to growth or reduction in fishing mortality, an appreciable increase in yield could be obtained by restricting fishing during the period November-April.

The mean number of herring per kg by month and area is shown in Table 22. In the northern North Sea the data refer to Scottish and Dutch catches, while those for the central and southern North Sea mainly derive from the latter. Additional figures for juvenile herring in the central area are obtained from the Danish young herring fishery. For the adult fisheries the number per kg is lowest in the period between the feeding and the spawning seasons.

Table 11 presents some information on numbers per kg in certain Skagerrak fisheries. These data, however, are hardly representative of the total catches.

V. Prognoses for Different Levels of Fishing Mortality

Essentially any fishery regulation is directed towards a control of the fishing mortality either in an entire fish stock or in components thereof (e.g. juveniles).

The main task of the Working Group was therefore to estimate the parameters of fishing mortality, natural mortality and stock size from earlier data and to establish a basis for prognoses of the future development of the herring stocks.

- a) Parameters and assumptions
- (i) <u>Natural mortality</u>

Natural mortality has been assumed to be 0.1 for all ages. The use of an alternative value of M = 0.2 was tested, but the effect on the prognosis was found to be negligible at current levels of fishing mortality.

(ii) Fishing mortality

From data of the 1968-1971 fisheries the following estimates of total mortality have been derived from catch per effort data:

Year	IVa		ГVЪ	IVc
	Scotland	Englar.1	Netherlands	Netherlands
1968/69	0.55	1.27	1.30	2.0
1969/70	1.34	1.30	0.79	1.0
1970/71	0.73	1.30	1.30	0.8

It would appear from these data that the total mortality in recent years has been high and a fishing mortality for adult herring (i.e. 2-ringers and older) of F = 1.0 was thought realistic.

Using the total North Sea catches, F values for the juvenile herring (i.e. 1-ringed herring) were calculated by Virtual Population Analysis using M = 0.1. From this an average value of <u>F = 0.5</u> appears reasonable for 1 ringed herring.

Table 15 suggests that the fishing mortality of the 0-ringed herring is about 10% of the fishing mortality of the 1-group.

(iii) Initial age composition and recruitment

The stock composition as at 1 January 1972 was used as a starting point for the prognosis. This was derived from catch in number per age group in 1971, corrected to stock as at 1 January 1971 by applying an M = 0.1 for all age groups, an F = 1.0 to fish older than 1-ringers and F = 0.5 to 1-ringers. The catch figures given in Table 9 were used.

In order to simulate the likely changes in the stock under different levels of fishing mortality in the next five years, some estimates of the relative strengths of incoming year classes are required.

The strengths of the 1968, 1969 and 1970 year classes have been monitored in the English coastal surveys for O-group herring, the ICES Young Herring Survey and the Danish Young Herring Fishery. Taking the 1969 year class as standard, the comparitive strengths of the others are shown for comparison in Table 23. All estimates for the 1968 year class are in close agreement.

The strength of the 1970 year class is believed to be underestimated in the northern part of the English coastal survey. The means used for the young herring survey differ from those quoted by Postuma and Kuiter (1972) in that abundance indices have been separately calculated for fish of low mean length and high mean lengths. The mean numbers of l-ringed fish per rectangle for the two groups have been summed to give the overall abundance index. It seems that the relative year class strengths so obtained are close to the estimates derived from the Danish young herring fishery taking place at the time the survey was made. Using these data it was assumed that the 1970 year class is 50% greater than the 1962-1969 mean (7.9 x 10^{-9}) and that all subsequent year classes are of average strength.

The estimated age composition as at 1 January 1972 is shown below:

		[
wor.	0	l	2	3	4	5	6	7	8
Nos. 10 ⁻⁹	7.9	10.7	5.4	1.16	•38	.13	.022	.017	.16

Age composition as at 1 January 1972

This gives a total biomass of 1.0 x 10⁶

(iv) Mean weights per age group

In order to assess the effects of changes in juvenile and adult fishing mortalities on the stock and catch in weight, estimates of the mean weights of each age group, as caught, have been made. The mean weights of fish older than 2-ringers were calculated from the von Bertalanffy growth equation:

> $W_{\infty} = 271.09 \pm 2.0$ K = 0.377 $T_{\circ} = -1.526$

For the younger age groups estimates were obtained of their mean weight both in the annual catch and at 1 January.

	Mean weights (g)				
Winter Rings	At 1 January	Annual cato	h		
0		17			
l	25	50			
2	75	125			
3	18	2			
4	20	7			
5	22	6			
6	24	0			
7	24	9			
8	25	6			
9	26	0			
10	26	4			
11	26	6			
12	26	8			

The mean weights used in the computations appear below:

b) Prognosis for different levels of fishing mortality

Using the parameters indicated in the previous sections, computations were made of the expected catches in 1972 under different levels of juvenile and adult fishing mortalities. These are presented in Table 24 and in Figure 9 for all combinations of juvenile fishing mortality from F 0.0 - 0.8 and adult fishing mortalities from F 0.0 - 1.5. In addition is shown the expected percentage changes in the 1975 catch and biomass over that in 1972.

In Table 24 the first column indicates the expected changes, if there were no fishing on 1-ringed fish (F = 0.0). Thus at an adult F = 0.1, the expected catch in 1972 would be 92 000 tons, and if this pattern were continued to 1976, then the 1975 catch would be 298% greater and the biomass at 31 December 1975 would be 306% greater. At an adult F = 1.0, the expected catch for 1972 would be 613 000 tons and the catch in 1975 would be increased by 47% and the biomass by 26%.

The first row indicates the effects of stopping all adult fishing and exploiting l-ringed fish only.

It has been assumed that the recruitment would be of average strength up to 1976. The annual 1972-1975 catches would then simply be a proportion of these recruits depending on the fishing rate. There would be no change in catch with time, as the 1-ringed fish after passing through the fishery would join the adult unfished stock. However, the biomass would increase by 365% over the 1972 level at F = 0.1 or 188% at F = 0.7.

The accuracy of the prognosis has been studied, assuming recruitment to be a pure random process. The forecast of both catch and biomass up to the end of 1975 has a mean error of 25%. This point must be kept in mind when using the table.

c) Comparison with former data

The prognosis technique was applied to the 1970 catch for forecasting the 1971 catch. With an adult F = 1.0 (2-ringers and older) and a juvenile F = 0.5 (1-ringers) for 1970, the predicted and observed values for the 1971 catch were as follows:

	Catch in	'000 t
	Predicted	Observed
Immature catch ^{#)}	238	212
Mature catch	321	298
Total	559	510

★) It is assumed that 25% of the catch of 2-ringers are immature.

It will be seen that the predicted catch is about 10% higher than that observed.

The value of F = 1.0 for adults is a mean fishing mortality for all ages older than 1-ringers. Estimating F for each age group, using the catch of 1970 and 1971, and assuming a juvenile F = 0.5 and an adult F = 1.0 for 1970, the following gives fishing mortalities for 1971 (M = 0.1):

Woro	F
1	0.44
2	1.47
3	1.02
4	0.60
5	0.50

This shows that the assumption of an equal F for all adult age groups is disputable. The Working Group, however, had no model available for calculating the expected changes in distribution of F on age groups and had to adopt the assumption used. Inspection of the prognosis showed that the effect on the adult catch was not very serious, so that from an operational point of view the assumption of an adult F equal for all age groups can be applied.

VI. Conservation Measures

a) Overall catch quota

From Table 24 and Figure 9 the overall catch quotas can be derived once the decision has been made regarding the level of biomass and catch required in 1975. If a doubling of the biomass is considered desirable, the sets of fishing mortalities (0.0, 0.5), (0.2, 0.4) etc. can be read from the table giving the overall quota for 1972.

b) <u>Differential measures</u>

Differential quotas will in principle allow higher catches to be taken in a fishery than with an overall quota. The more detailed a catch quota system, the greater the possibility of directing the fishing effort towards those levels of fishing mortality which in different periods, life stages, or areas will allow the maximum catch to be taken.

Different conservation measures were discussed in the former Report by the Working Group (Anon., 1971). All these measures were aimed at increasing recruitment or reducing mortality in the adult stocks or a combination of both. Differentiation of catch quota by region, season and category will be discussed.

(i) <u>By region</u>

An overall quota in the North Sea could be divided between certain areas of the North Sea. The purpose of this measure would be the protection of specific components of the North Sea herring.

For the purposes of the assessment the North Sea catches have been reported in four major regions of the North Sea and separately the catches of juvenile fish in the central North Sea. However, no estimate could be made of the effects of changes in fishing mortality within these areas following the application of catch restrictions.

(ii) <u>Closed seasons</u>

To estimate the expected gain in yield by closed seasons, monthly mean weights for each age group were calculated (Table 21) by using weight data from the different areas (Table 20) and taking a weighted mean for each month according to catch distribution in 1969 and 1970. Yields per recruit were calculated (Ulltang, 1972) using monthly weights and coefficients expressing the distribution of the fishing intensity on the different months for the following alternatives:

- a) No closed season
- b) Closed seasons in May and September
- c) Closed season from 1 April to 15 June
- d) Closed season from 1 March to 15 June

The yield curves are shown in Figure 10. The monthly fishing mortality for 1-ringers was set to 50% of adult fishing mortality and at 10% of adult fishing mortality for 0-ringers in July-September. The yield curve for alternative b) is very close to alternative a). The expected gains in yield by closed seasons are shown in the table below:

	M = 0.1				
	Y/R (g)	% Increase compared with alternative a)			
a) No closed season	81.7	-			
b) Closed seasons in May and Sep.	82.8	1.3			
c) Closed season from 1 Apr. to 15 Jun.	85.2	4.3			
d) Closed season from 1 Mar. to 15 Jun.	90.0	10.2			

Yield per Recruit. Fadult = 1.0

Using M = 0.2, the yield per recruit will be reduced by about 20 g (Figure 10). The relative increase in yield per recruit for the alternatives b, c and d will be almost unchanged.

(iii) Quota by categories

The only practicable differentiation of quotas by categories is that between juvenile (0-and 1-ringers) and adults (2-ringers and older). In Table 24 and Figure 9 predictions of catch and of stock are given for various levels of fishing mortalities on juvenile and adults, respectively. The present effect of the juvenile fishery is best illustrated by following say the 700 000 t total catch curve on Figure 9 from the present level of the fishing mortality of 1-ringers $F_{juv} = 0.5$ to a total ban on the juvenile fishery $F_{juv} = 0.0$. In the case of $F_{juv} = 0.5$ the catch in 1975 will decrease by 7% of the 1972 catch and the total biomass will decrease by 2%. Taking the 700 000 t in 1972 as being exclusively adults (2-ringers and older), one would expect an increase in catch in 1975 of 25% and an increase in biomass of 6%. The optimal fishing mortality is about F = 0.4 on the yield per recruit criterion with a total ban on the juvenile fisheries. This indicates a catch quota for 1972 of 318 000 t with an increase in catch of 160% in 1975 (i.e. to 826 000 t) and an increase in biomass of 139%. A higher value of M than 0.1 will decrease the expected gain as illustrated by Figure 10.

VII. Northwestern Boundary of the Quota Area

The area to the west of Shetland has been fished by the Scottish fleet in the early part of the Shetland herring season for many years, but the proportion of the total Scottish catch taken in that area was, until 1965, comparatively small, averaging less than 10%. Since 1965 this proportion has increased considerably and in the 1968, 1969 and 1970 seasons other countries fishing in the northwestern North Sea have also taken an increasing proportion of their catches from west of Shetland. In 1970 and 1971 the fishery to the west of Shetland extended further west than in previous years and appreciable catches were taken west of 4°W - the western boundary of the ICES North Sea statistical area IVa. Table 25 gives the catches taken in area VIa and in area IVa.W annually in the period 1965-1971. The catches taken in area VIa have increased steadily during this period with particularly large increases in 1970 and 1971. The increased catches from this area in these years were largely due to the entry of Norwegian, Faroese and Icelandic purse-seine vessels fishing just west of the 4°W boundary in the vicinity of Rona.

a) Catch statistics

The catches taken by the Scottish and Norwegian fleets from the northwestern North Sea and that part of the Faroese, Icelandic and Swedish catches landed in Denmark from this area in 1970, are given in Table 26a by months. These have been sub-divided into three areas: west of 4°W, from 4°W to the west coasts of Shetland and Orkney, and to the east of Shetland and Orkney. In 1970 91% of the Norwegian catch from the Shetland area was taken from the grounds to the west of Shetland and 60% of the Scottish catch from this area. Of the Icelandic, Faroese and Swedish catches landed in Denmark, only about 20% of the northwestern North Sea catch came from these western grounds, but it is possible that this is an underestimate of the true proportion, in that catches from these western grounds were more likely to be landed in Faroese or Scottish ports than in Denmark.

The distribution of these landings by months in the three areas are of interest in showing that the fishery, and so presumably the fish, moved eastwards from these more westerly grounds as the season progressed. This was also the pattern of the Scottish fishery in the Shetland area in earlier years.

b) Age composition

The age composition of the catches of the Scottish and Norwegian purse-seine fleets in 1970 and 1971 in the three areas used for the catch statistics are given in Table 26b. In 1970 the age compositions for the three areas are in substantial agreement in showing that the catches were predominantly composed of 3 and 4 year old fish. The higher proportion of 3 year old fish in the East Shetland area in that year could be a reflection of the fact that most of the age sampling in that area was done in August when the proportion of younger fish in the Shetland catches is generally higher. In 1971, however, although the age compositions of the catches from the two areas west of Shetland are in very close agreement, the east Shetland catches again showed much higher proportions of young fish and in that year sampling in the three areas was distributed over the same time period.

The scarcity of fish older than 5 years in the catches from all three areas makes it appear unlikely that an appreciable component of the population in any of them is derived from the Minch stock which still contains a higher proportion of older fish.

c) <u>Meristic characters</u>

The data available on the meristic characters of the herring populations in this area are given in Table 26c. The fish caught to the east and to the west of Shetland have very similar vertebral and keeled scale counts. However, Minch and east Shetland fish show identical values for these characters so that they are of no value in clarifying whether the fish caught west of Shetland belong to one or other of these stocks, or are a mixture of the two. The mean L-1 data given in Table 26c show that in this character there is no significant difference between the east and west Shetland herring, but that both have significantly higher values than fish from the Minch.

VIII. Discussions

In the previous Report, (Coop. Res. Rep., Ser. A, No.26), particular attention was drawn to the sequential nature of the changes of catch, catch per effort, larval production and mortality by fishing area in the North Sea. The reduction of the adult stock in the southern area was followed somewhat later in the central North Sea and finally in more recent years in the northern North Sea. It was noted that the decline in total catch since 1965 had not been as rapid as might have been expected from the reduction in catches of adult herring, and it was concluded that the real state of the North Sea stock was masked by the increased exploitation of herring before their first spawning and by the shift of the fishery to more northern areas.

These conclusions have been further strengthened by the evidence of the fisheries in 1969-1971. The North Sea catch was reduced to about 550 000 tons in 1969 and 1970, while a further reduction to about 510 000 tons took place in 1971. In these years there was a further expansion of the juvenile fisheries and an important part of the adult catches were taken in the northern North Sea west of Orkney and Shetland. This area was never exploited to that degree in previous years and the expansion of the fishery in this area has made the task of assessing the present state of the stock even more difficult than before.

The present assessment of the North Sea herring stock is based on data on catch in numbers per year and per age group The quality of this material is very uneven from area to area and from one fishery to another.

The most comprehensive set of data, available back to 1947, derives from the fisheries in the central and southern North Sea (area IVb and IVc). The reliability of age and catch data from the northern North Sea is rapidly deteriorating from west towards east. For the large fisheries in later years in Skagerrak, data are so poor that they had to be excluded from the analysis altogether.

It is not clear to what extent the exclusion of the Skagerrak area affects the analysis carried out. On the assumption that the herring in Skagerrak is partly or wholly also exploited in the fisheries in the North Sea proper, and that the age distributions in the two areas are similar, then the effect of the Skagerrak fisheries will be measured within the values of adult fishing mortalities obtained from the total North Sea data. The effect of excluding the Skagerrak catches of juvenile herring would be to underestimate the stock size of younger age groups, especially in the mid-sixties. The reliability of the stock sizes and fishing mortality estimates derived from the VPA analysis are to some extent dependent on the initial values of F and M chosen. In the past the natural mortality M for North Sea herring has often been quoted at a value of about M = 0.2. There is, however, other evidence from mortality on effort studies which suggests a much lower value, less than 0.10 for adult herring. From the total North Sea adult catch per effort data presented here, a rather similar figure could also be derived. The effect of applying M = 0.2 instead of 0.1 will be to decrease fishing mortality estimates and to increase those of stock size.

It could be argued that it would be more realistic to use a higher M in the juvenile herring than the value of 0.1 in this analysis. This refinement has not been attempted, but its effect would be to increase recruitment levels and consequently subsequent stock levels.

The initial inputs of F for the oldest age group in each year class have been made by reference to estimates of total mortality from the catch per effort data. Attempts have been made to check the conclusions from the VPA with estimates derived from the more conventional types of analyses using catch per effort data. According to the VPA, fishing mortality on the adult stock has increased by about three times between 1949 and 1967. If the more recent catch per effort mortalities of the order of F = 1.0 are considered, the increase is greater than three times. This relative change in fishing mortality is also reflected in the reduction in catch per effort of the same order for the total North Sea using the Dutch trawl fishery data based on adult herring. The index based on drifter effort shows less reduction in catch per effort.

In the young herring fishery, mortalities increased as the fishery developed during the 1950's and early 1960's, but since 1964 they appear to have stabilised at about F = 0.5.

For all three indices of abundance from drifters/trawlers and Danish young herring trawlers there has been an apparent increase in fishing mortality generated per unit catch per effort of the order of 2-3 times over the periods for which data are available. In the case of the Danish vessels this may in part be interpreted as an increase in efficiency.

The apparent increase in efficiency for drifters and trawlers should not be interpreted as being solely due to improvements in their own technique. It reflects an increase in efficiency in any gear units within the total North Sea fleet.

The VPA analysis for the total North Sea shows a decline in adult stock (>1-ringers) of about three times since 1947. This is similar to the estimate from catch per effort. The total stock has remained fairly stable, being supported by a number of good year classes entering in recent years.

The level of recruitment in this analysis is determined largely by the young herring catches in area IVb. It has been shown that the estimates of North Sea recruitment as 1-ringed fish are closely correlated with estimates from catch per effort data from the adult fisheries.

The changes recorded in adult stock, fishing mortality and recruitment obtained from the VPA, have some support from other abundance indices. The techniques used, as for example in the estimate of total North Sea fishing effort, are crude and open to objection; the catches in numbers of fish per age group, used in the VPA, are in some cases derived from very poor material. However, independent evidence from adult herring tagging has supported the stock levels obtained in the VPA. The predictions of catches and stocks under a range of fishing mortalities are dependent on the future level of recruitment. Attempts have been made to assess the strengths of these incoming year classes from a number of sources. These show that recent recruitment levels are higher than the long-term means.

As shown in Table 24, if the current estimated levels of fishing mortality are maintained in 1972, the total catch will be about 820 000 tons, this increase above the 1971 catch level reflecting the high recruitment levels from the 1969 and 1970 year classes. In practice it is difficult to predict what the total catch will be in 1972 because it is impossible to forecast the effect of the closure in force in that year on the mortality levels. The effect of this may be small as it has not so far been possible to show any significant effect of the 1971 closures on the nortality levels in that year. If nortality is maintained at the current level in 1972 and in subsequent years, the prognosis shows that by 1975 the catch and the stock will have declined by 18% and 15% respectively.

For the Downs herring, evidence has been presented that both 0and 1-ringed herring abundances are correlated with larval abundances, these in turn reflecting the spawning stock size. The 1971/1972 Downs larval production was extremely low and comparable with the lowest periods of stock size in 1964-1965. Thus, the forecast of average recruitment for the total North Sea of the 1971 year class may not be valid and as a consequence the stock levels in 1975 may be overestimated.

From the yield per recruit curves it is clear that the maximum sustainable yield is obtained with F of about 0.3 - 0.4. This was the level of fishing mortality in the period 1949-1953 when the total adult catches were of the order of 600 000 tons. At the present catch levels of about 550 000 tons of both juvenile and adults, the fishing mortality was of the order of 1.0.

IX. Conclusions

a) Overall quota

The Working Group found that the maximum sustainable catch of North Sea autumn spawners is obtained at a level of fishing mortality of 0.3 - 0.4. From the data available the present level of F is about 0.8 - 1.0. Prognosis of future catch and biomass indicates that at this level of fishing mortality the point of balance between increase and decrease is reached. Considering the error on the estimates, it is likely that a further decline both in stock size and in catch could be the effect of a high sustained F. A reduction of F to that corresponding to the level of maximum sustainable yield would thus require a decrease in F of about 50% or a catch level in 1972 of about 400 000 tons. With no reduction in 1972, the required catch level in 1973 would be about 425 000 tons.

b) <u>Differential conservation measures</u>

The Working Group concluded that quotas by season and by category were practicable. The largest gains would be obtained from restricting fishing to the second half of the year combined with a quota for the fishing period. More severe restrictions on the fisheries for juveniles would lead to relatively higher gains for all combinations of these measures.

c) Western boundary of North Sea herring stocks

On the basis of the available data it is not possible to state categorically where the western boundary of the North Sea herring stocks should be drawn. Anon., 1971. Coop. Res. Rep., Ser. A, No. 26.
Baxter, 1959. J. du Cons., XXV, No. 1.
Burd & Bracken, 1965. J. du Cons., XXIX, No. 3.
Gilis, 1958. Rapp. et Proc-Verb. 143, II.
Haraldsvik, 1969. ICES, C.M.1969/H:35 (mimeo).
Molloy, 1969. ICES, C.M.1969/H:14 (mimeo).
Parrish & Craig, 1963. Rapp. et Proc-Verb. 154.
Pope & Parrish, 1964. Rapp. et Proc-Verb. 155.
Postuma, 1963. Rapp. et Proc-Verb. 154.
Postuma & Kuiter, 1972. ICES, C.M.1972/H:5 (mimeo).
Ulltang, 1972. ICES, C.M.1972/H:8 (mimeo).
Wood, 1970. ICES, C.M.1970/H:15 (mimeo).
Zijlstra, 1967. J. du Cons., Vol. 31, No. 2.

Table la. Herring. Catch in '000 tons 1947-1959. North Sea (Sub-area IV and Divisions VIId and e) by country. Skagerrak and Kattegat (Division IIIa) total catch

- 22 -

Table 1b. Herring. Catch in tons 1960-1971. North Sea (Sub-area IV and Divisions VIId and e) by country Skagerrak and Kattegut (Division IIIa) total catch

- 23 -

Herring. Total catch in thousands of tons in the North Sea and Skagerrak Teble 2.

г ч + с E	TOCAT	627.5 ³	557.0 ³⁸	560.9 ³⁸	543.0 [%]	647.1 ^ж	725 。 5 ³⁸	746.43	862 . 0 ¹¹	895.4	757.2	773.4	801.5	923.5	772.0	782.0	732.0	879.2	1181.0	1425.5	1040.2	975.2	997.8	660.0	618.0	574.0
	Skagerrak	40°∂ ^{3£}	54.9*	52.4 ¹⁸	51.3 ^{3E}	46 。 7 ³²	61.1 ¹²⁵	47 . 9 ^æ	99.1 ^ж	89.0	82.0	90.5	131.0	139 . 0	75.8	85.3	104.2	163.2	309.8	256.7	144.7	279.7	280,0	113.3	70.5	64.2
	Total North Sea	586.6	502 ª 1	508.5	491.7	600.4	664.4	698.5	762.9	806.4	675.2	682.9	670.5	784.5	696.2	696.7	627.8	716.0	871.2	1168.8	895.5	695.5	717.8	546.7	547.5	509.9
	Industrial Fishery	1	0.3	0.2	5.4	44.6	50.2	78.4	95.3	112.5	103.7	103.2	158.9	156.4	6.66	93.8	100.4	67.7	116.6	135.0	67.2	85.2	106.9	121.2	74.8	165.2
Area	South	160.6	162.5	193.3	178.3	165.6	236.1	209.2	276.9	168.4	134.0	122.7	92.6	77.2	64.9	98 . 2	54.7	45.7	56.6	21.8	11.6	11.4	9.6	24.3	27.1	21.5
	Central	214.4	168,0	178,8	181.3	266.0	203.1	224.6	218,4	170.3	1.63.9	150.7	156.1	147°1	166.3	168.9	143.3	228,2	187.9	132.9	114.1	107.9	57.8	40.0	111.7	26.6
	Northeast	0.3	1,9	2°0	1°6	C) *	6 6	7.5	4.3	67.4	19.1	97.3	98.2	144.2	264.0	274.8	291.8	301.3	444.0	580.8	424.0	373.7	256.8	148.1	21.3	17.5
	Northwest	211.3	169.4	134.2	125,1	123.0	168.4	178.8	168.0	287.8	194.5	209.0	164.7	259.6	101.1	61.0	37.6	73.1	66.1	298.3	278.6	117.3	286.7	213.1	312.6	279.0
	н Ф Э Т	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969 I	1970	1971

*) Data include some Kattegat catches.

- 24 -

Table 3. Herring. Total catch in tons. Skagerrak (Division IIIa excl. Kattegat)

*

Table 4. Herring. Total catch in tons, North Sea, Northeast (Division IVa east of

20国

- 26 -

Table 5. Herring. Total catch in tons. North Sea, Northwest (Division IVa west of 2°E)

- 27 -

Table 6. Herring. Total catch in tons. North Sea. Central (Division IVb)

Adult Herring Fisheries

Total	166 306	168 881	143 300	228 209	187 878	132 865	114 075	107 929	57 757	40 003	116 029	26 598
Sweden	ţ.	1	5	ţ	3	5	ţ	Fire	2	309	24 640	1 926
Scotland	5 116	2 207	326	7 626	3 745	1 330	823	677	153	2 217	2 189	362 .
Poland	48 479	49 064	45 030	54 370	58 726	44 815	34 085	26 370	7 241	8 077	2 836	743
Norway	1 545	637	831	552	8 396	1 041	ß	21 740	14 260	Ý	27 613	14
Nether- lands	075 19	70 336	47 255	81 524	63 314	47 551	42 008	26 769	13 285	16 542	28 815	10 172
German Fed.R.	39 326	35 402	40 772	60 818	36 361	22 520	21 183	18 917	10 439	3 528	6 005	421
France	. 369	2 535	2 886	8 296	7 750	7 037	6 261	6 540	8 I96	3 362	2 433	5 918
Iceland	Rogi	H	2	g	5	ß	3	604	Đ	E-4	1 144	5LT
England.	9 816	8 579	6 076	14 465	9 235	8 524	9 646	6 809	4 170	5 964	T27 8	4 113
Faroe Islands	put a	Re a	. 8	8	e Alfa	E	4 4 4	2	1	544	11 623	254
Denmark	ſ	i	Į	8	Ę	50	ŧ	cch	ej su	E C	8	2 488
Belgium	115	121	124	558	251	47	69	ŝ	13	f	I	œ
Tear	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	026T	T7971

- 28 -

Table Z. Herring. Total catch in tons. North Sea, Central (Division IVb).

YoungFisheriesYearYoungHerringFisheries19607760022322-99922 $3audt$ $7)$ 19617770016549-99922 266 228 790 19617770016549-93849 262 730 19637640023975-100 375 243 675 19648850028126-116 626 304 504 19648850028126-116 626 304 504 196510900026106 27 717 295 926 1966 54 50028126- 135 193 193 193 196783 400 1849- 85 249 193 178 19681060002609- 155 193 193 178 1968106000 847 - 106 847 164 604 1969113 550 7 900 - 121 250 164 604 1969 106 000 847 - 106 847 164 604 1969 113 550 700 165 161 257 191 760 1971 127 2000 2000 165 <th></th> <th><u></u></th> <th></th>		<u></u>												
YearYoung Herring FisheriesYearDenmarkGerman Fed.R.SwedenTotal196077<600		Total young and adult fisheries (Tables 6 and 7)	266 228	262 730	243 675	295 926	304 504	267 874	181 312	193 178	164 604	161 253	186 537	191 759
Year Toung Herring Year Denmark German 1960 77 600 22 1961 77 500 16 1961 77 500 16 1962 76 400 23 1963 58 700 9 1964 88 500 28 1965 58 76 007 1965 58 700 212 1965 109 000 26 1965 109 000 26 1966 54 500 12 1967 83 400 1849 1968 106 000 26 1968 106 12 737 1968 105 000 26 1969 12 737 1969 12 737 1969 105 16 1969 115 7900 1970 137 1600 1970 137 1400	Fisheries	Total	99 922	93 849	100 375	67 717	116 626	135 009	67 237	85 249	106 847	121 250	70 508	165 161
Year Toung Year Denmark German 1960 77 600 22 322 1961 77 500 16 549 1962 76 400 23 975 1963 76 400 23 975 1964 88 500 28 126 1965 109 000 26 009 1965 109 000 26 009 1966 54 500 12 737 1966 109 000 26 009 1966 109 000 26 009 1966 109 000 26 009 1966 109 000 26 009 1966 109 000 26 009 1967 83 400 1 847 1968 106 010 1 847 1969 113 350 7 900 1970 70 108 400 1 1970 70 108 400 1971 132 161 3 000	Herring	Sweden	1	g	IJ	I	3	1	2	E	I	g	I	30 000
Year Denmark 1960 77 600 1961 77 500 1962 76 400 1962 76 400 1963 58 700 1964 88 500 1965 109 000 1966 54 500 1966 54 500 1967 83 400 1968 106 000 1968 105 570 1969 113 350 1970 70 108 1970 70 108 1971 137 161	Young	German Fed.R.	22 322	16 549	23 975	6 017	28 126	26 009	12 737	1 849	847	7 900	400	3 000
Year Year 1960 1962 1962 1964 1965 1966 1968 1968 1970		Denmark	77 600	77 300	76 400	58 700	88 500	109 000	54 500	83 400	106 000	113 350	70 108	132 161
		Year	1960	1961	1962	1963	1964	1965	1.966	1967	1968	1969	1970	1971

Table 8. Herring, Potal catch in tons. Horth Sea, South and English Channel, East and West (Divisions IVc and VIId and e)

-

Explanatory Notes to Tables 1 - 8

Table la.

Data from Belgium, Denmark, France, Poland and Sweden according to Coop. Res. Rep., Series B, 1965, Annex II, Table 9. Data from England, Netherlands, Norway and Scotland submitted by Working Group Members. Data from Germany according to Statistical News Letters, No. 11B, 1961.

Table 1b.

Data derived as listed below under each country. The Kattegat catches are according to Danish national statistics and information from the Swedish laboratory at Lysekil.

Table 2.

<u>1947-1954</u>. Catches for northwest and northeast are derived from Statistical News Letters 11A and 11B. The national distributions of catch by area in some cases refer to all catches and in others to a large sub-sample of the catches.

Catches for central and south are taken from Cushing and Bridges 1966, Appendix 4. The catches for the south refer to the seasonal winter fishery and not the calendar year.

Catches for the industrial fishery are derived from Coop. Res. Rep. Ser. B, 1965, Annex II, Table 12.

The catches for the Skagerrak for some countries also include Kattegat catches, (Bull. Stat.). Taking the catches ascribed to areas for the North Sea, their total covers an average of 98% of the annual catches given in Table 1 for the period 1947-1954.

1955-1959. Catches for the northwest, northeast and central are based on data in Cushing and Bridges (1966). The Swedish catch from region IVa (Bull. Stat.) was regarded as taken in the northeastern area.

Catches for the south and the industrial fisheries are derived from Coop. Res. Rep. Ser. B, 1965, Annex II, Tables 11 and 12.

1960-1968. Data from Coop. Res. Rep. Ser. A, 26.

Skagerrak: 1955-1971 data from Danish national statistics and from the Fisheries Laboratory at Lysekil.

Industrial Fishing: These data refer only to the juvenile herring catches in area IVb by Denmark and Germany.

Belgium

All data derived from "Bulletin Statistique". Catches from division IVa for 1960-1968 are ascribed to IVa west of 2°E.

Denmark

All data used in the tables are based upon Danish national statistics (Popp Madsen). Catches from division IVa are ascribed to IVa east of 2°E for 1960-1968. Catches from division IVb (Young Herring Fishery) have been reduced for content of other species (1960 to spring 1965 by 5%, autumn 1965-1971 by estimates from individual years; Popp Madsen).

England

All data derived from "Bulletin Statistique". Separation of catches in division IVa east and west of 2°E according to national statistics.

Faroe Islands

Catches only from division IVa according to "Bulletin Statistique". Ascribed to IVa west for 1960-1968. From 1969-1971 the distribution of catches to fishing areas are based on landings in Danish ports.

France

The data given have been supplied by the "Institut des Pêches", Boulogne s/Mer.

German Fed.R.

All data are according to German national statistics (Schumacher). They are compiled by "Bundesforschungsanstalt für Fischerei", Hamburg, according to log books.

Iceland

All data derived from "Bulletin Statistique". Separation of catches in division IVa east and west of 2°E are according to Icelandic statistics for 1960-1969 and according to landings in Danish ports for 1970-1971.

Netherlands

All data derived from "Bulletin Statistique". Separation of catches in division IVa east and west of 2°E are according to Dutch national statistics.

Norway

The data are according to Norwegian official statistics. The separation of catches is based upon the statistics of the fishermen's organisations. Catches in inshore waters are not included.

Poland

All data according to "Bulletin Statistique". Separation of catches in division IVa east and west of $2^{\circ}E$ is according to Polish national statistics.

Scotland

All data are according to "Bulletin Statistique". Separation of catches in division IVa east and west of 2°E is according to Scottish national statistics. Catches from the Moray Firth are not included.

Sweden

Data according to Swedish national statistics (Ackefors). Division IIIa: Data obtained from proportion of Skagerrak catches in Swedish landings in Danish ports applied to total Swedish landings. Separation of catches in division IVa east and west of 2°E. According to Swedish national statistics, but is supposed to be rather unreliable. A greater part of the landings presumably comes from division IVa, west of 2°E.

U.S.S.R.

All data according to "Bulletin Statistique". Separation of catches in division IIIa Skagerrak, IVa east and IVa west of 2°E are according to Soviet national statistics.

									والمراجع للمراجع والمراجع	A CANADA STREAM ST	and the second se	And the sea is the sea of the sea
					AGE	IN WINTER	RINGS			والمحافظ		
Year	Area	0	1	2	ĸ	4	5	6	7	Β	. 8 <	Total
	IVaW of 2°E		100	233.9	182.7	216.7	1.275.1	217.8	121,2	112,8	107.3	1367.5
	IVER of 2°E	Rea.		L.0	T*0	0,1	0.2	0.3	0,2	0.2	0°5	1.4
1947	TVb	2	₽¥	80°J	7° *6	190.9	234.4	431.0	259.3	273.3	244.9	1808°3
	TVbYH	Rep R	9	PE	8	ę	1	3	47	622	1	1
	IVC + VIId,e	E		179.9	1.38.3	229.9	116.4	106.7	50.4	240.3	331.7	1393.6
	Total NS	4.037	1	494.0	415.5	637.6	526.1	755.0	431.1	626.6	684.1	4570.8
	IVaW of 2°E		figs.	93.2	256.4	126,1	202.6	131.2	104.6	72.5	93.6	1080.2
	IVAE of 2°E	1	leady	0°0	1.7		1,8	1.2	1.3	1.0	1,3	9.5
1948	IVb	1	0	27.0	229.1	104.4	155.7	182.4	148.7	87.4	186.3	1121.0
	HT'd'VI	Ş	3		3	P	9	ų	529	Å	1	3
	TVc + VIId,e	ŧ	3.4	126,5	184.9	96.3	240.9	172.0	145.8	90.7	383.7	1444°2
	Total NS		3.4	246.7	672.1	327.9	601.0	486.9	400.4	251.6	664.9	3654.9
	TVAW OF 2ºR	10		120.5	97.6	98.1	89.2	121.3	123.8	111,9	74.8	837.2
	IVal of 2°E	500	ş	10	0,3		2	1,8	2.0	1.9	1,3	9.7
1949	IVb	1	đ	77.8	149.0	165.5	106,1	256.7	112.7	169.0	162,9	1199.7
	ETUDIE	Wat	8	. 1	B	ŧ	P	8	1	162	1	1
	IVc + VIId,e	1	g	280.0	397.0	131.3	90.2	272.0	223.1	131,2	384.3	1909.1
	Total NS	(11)	1	478.4	643.9	396.0	286.7	651.8	461.6	414°0	623.3	3955 • 7
	IVaW of 2°E	ļ	a transmission of the second se	121.8	301.4	96.8	63.3	60.9	100.1	51.8	49.9	846.0
	IVAE of 2°E	9	1	1.	2,9	0.7	0.6	0.7	r, 1	0.6	0,6	8°8
1950	IVD	1	li su s	138.2	370.7	222.0	7.06	82,5	63.9	51.4	166.3	1185°7
	IVDYH	ee ee	1	tion	1	P	ĝ	11	g	500	3	Read
	TVc + VIId,e	ere	1	273.6	363.5	297.1	135.4	109.5	165°3	91.2	184.9	1620.5
	Total NS	la l	E	535°0	1038.5	616.6	290 ° 0	253.6	330°6	195.0	401.7	3661.0
	IVaW of 2°E	B	1	43.8	131.6	217.7	124.6	78°7	50.0	42.7	79.6	768.7
	IVAE of 2°E	l	Editor	0.2	0.7	1,4	1.0	0°0	0.4	0.3	0°1	5.3
1951	TVb	1	8	73.3	362.9	685.7	280.6	79.5	49.2	108.2	132°3	1771.7
	TVbYH	ta	452.8	240.6	49.5	80	ij	đ,	602	644	front .	742.9
	IVC + VIId,e	9	8°8	302.4	413.8	350.2	223,8	103.3	42.5	54.4	26,8	1526.0
	Total NS	Red.	461.6	660.3	958.5	1255.0	630.0	262.1	142.1	205.6	239.4	4814.6

.

Table 9. North Sea Catch in Millions of Fish by Age

- 33 -

Table 9 (Continued)

Statistical and drive a going	ومواليه والمرابع منافع فالمعامل والمرابع والمرابع المرابع المرابع المرابع والمرابع والمرابع والمرابع والمرابع		a na shi na shekarati shakiri yakiri yakiri shekarati shekarati shekarati shekarati shekarati shekarati shekar									
					ÀGF	I IN WINTER	RINGS					
Year	Area	0		2	5	4	5	Q	7	Ø	8<	Total
	IVAN OF 2°E			189.3	125.1	118,0	157.5	90.4	78.2	55.5	149.3	963.3 26 E
1952	TVar C. B	6 6		212.8	188.2	Cor Tot	248°3	178°7	61.2	58.5	122.9	1262.1
5 1	ПУРУН	8	699.3	189.7	12,5			e B	1	8		901.5
	IVC + VIId,e	1	22.5	753.3	248.8	299°1	241.7	191.8	93.2	48.8	108.3	2007.5
	Total NS	E	721.8	1345.7	576.3	610.1	6.129	464.1	236.2	165°5	388.3	5159.9
Yes has a share of party sector	IVaW of 2°E	North Control of the		262,3	255.6	109.4	95.1	1.00.8	44.7	50.3	88.5	1006.7
	IVaE of 2°E	1	B	м. С		3.6	3,3	3.7	3° 7	2,2	4.0	30,8
1953	TVD		9.4	307.2	311.3	160.5	1.09.0	183.6	1°16	30°0	127.2	1335°3
	IVDYH IVc + VIId.e	150.0	1000.7	236°2 511°4	38°3	200.2		 184.6	134.5	35°.3	54.9	1433°2 1695°6
	Total NS	150.0	1023.2	1322.4	1003.3	473.7	396 . 0	472.7	277.9	117.8	274.6	5501.6
Contractory with synam	TVaW of 2°E		26.5	415.5	230.2	111,6;	52,8	62.2	52.7	33,6	37.6	1030.7
	TVAE of 2°E	1072	6.0	4.7	5,3	2.6		7°1	, L	0,1	I.O	20.0
1954	T.V.D	9	20°2	185°9	344.7	223,2	119,5	91.9	130.2	51.8	172.9	1340.3
	ТУРУН	218.5	1387.8	180,9	23,9	B	ł	Û	Ę	fera	تر الات	1811.1
- 7	IVC + VIId,e	605	15,3	706.3	499°1	253°7	187.5	175.7	194.1	108,0	105.4	2243°1
	Total NS	218,5	1450.7	1493.3	1111.2	1°165	361.1	329.5	378.5	194.4	316.9	6445.2
	IVrW of 2°E	578	4.2	697°6	385,8	144.9	149.0	138.6	28,1	42.4	41.01	1631.7
1 1 1	IVAE of 2°E	0°1	20,2	125,3	82.4	54.6	20,1	16.0	23.2	12.6	14.2	368.7
1955	IVD	1 1 1	87.1	610.8	216.5	108,8	84.7	39.9	30.2	16,9	10.9	1205.8
	TTC	164.2	1960.6	162.2		1 4	0 1 C	r 1 1 1	5 1 1	i i t	1 1 1	2312.5
		ana dama dahara da kara damaya da sa angar	644	C * CC C	Coroc	0°0/T	0,20	T + IC	2006	T*16	54.6	TODE
	Total NS	164.3	2072.1	1931.2	1031.7	479.1	336.6	231,6	119.7	109.0	105.5	6580,8
	IVaW of 2°E	ward	0.6	248.7	543.5	214.2	89.9	62 ª 8	42.3	30.6	41.0	1273.6
\ 5 0	LVAE OT 2'E	t	ş	15.0	148.9	98°7	45.2	55.1	11.9	9°6	27.6	411.6
1950	T VD	11	22.5	607.9	341.7	92.7	33 ª 1	39.7	29,1	49*0	T06.0	1321.7
	L V D X M	95.9	1 1007°7	432,5	33.4	1	Ş :	đi đ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ing :		2229,5
	TAC	mat a	0°0	6.666	1.55°T	1,011	80.3	36°7	20,8	15,9	12.9	991.7
	Total NS	95.9	1696.8	1860,0	1221。2	515.7	248.5	194.3	104.1	104.1	187.5	6228.1

- 34 -

ala se de la seconda de la	والمحافظ		والمالية الموادية والمحاصر والمحاولة والمحاولة المحاولة المحاولة والمحاولة والمحاولة والمحاولة والمحاو	والمتعالية والمواجعة والمعاولة المحاد والمعالية والمحادثة والمعادية والمعادية والمعادية	والمواجعة والمعادية والمعادية والمعادية والمعادية والمعادية والمعادية والمعادية والمعادية		وليعيد المحمد	معواف والأناف الأمواد مرجعا بالرائي مأوموا ومعامر والامروان منامع ومعام	ta na statu sanakaran sa	بالا والإعداد الاعتقادين والأورحة ليعدون والمراجعة معدل والركاني والمراجع	فسيتم فالمتلقة فالمحد وتعديمه سرامه فراغ والمحفظ فالمرامد فالمراجع	A we- skyspectrologischersteine andersone bei
					A	TALANTA NI RO	R RINS					
Teer	Area	0		2	M	4	2	9	.~	Ø	~ 8	Total
	TVaW of 2°E			216.5	287.5	261.4	195.7	84.4	43.8	39.0	69.6	1197.9
	IVal of 2°E	Ę	404 4	19.6	37.4	124.8	51.0	70.8	63.8	37.5	24,8	429.7
1957	TVb	6029	14.1	421.9	143.3	219.0	70.7	37.3	30.3	20.2	53.5	921.3
	TVbYH	278.7	1461.1	400.6	37.0	ş	ł	1	ŧ	Ê	5	2177.4
	IVo + VIId,e	Ē	7.4	585.3	231 . 0	38°7	26°7	14.7	9.2	2,8	5,5	1.010.3
	Total NS	278.7	1482.6	1.643.9	736.2	643.9	744°1	207,2	147.1	99°5	153.4	5736.6
	IVaW of 2°E	64	29.9	41.8	326.8	1.99.7	233.3	81.4	41.9	27.1	19.3	941.2
	IVAL of 2°E	8 5	į	43.5	247.8	64.3	62.62	20.5	1.7.1	9.3	22°9	518.9
1958	avt	1997 1997	21 0 .5	0°2TV	207.6	59.0	125.0	23.1	7.6	7.6	28.4	1092.4
	EVENT	57.1	4028,7	265.0	26.3	9	66.83	ą.	Ę	- Frag	\$rd	4417°3
	IVC + VILA,0	0	Early C	265.1	190.6	58.9	10.7		6.7	<u> </u>		555.8
	Total NS	97.1	4278.8	1029.4	929.3	321.9	161.1	146.7	73.3	45.7	72.3	7525.6
	IVaW of 2°E	8	13.5	1489.9	129,1	173.6	74.8	99.8	46.5	23,0	26.0	2074.2
_	IVAE of 2°E	5		182.5	78.7	210.0	115.9	0 	60.5	52°.1	163.1	974.0
1959	IVb	1	95,1	929.5	140.1	60.2	24.9	34.0	9.2	5,2	24.9	1313.1
	ТУЪҮН	1	1500.2	1847.9	61.4	ß	1	ŋ	list	tos	ŋ	3409.5
	IVC + VIId,e	50	10.6	485°I	79°2	53.5	17.8	4.0	3.3	2°0	4.6	660.1
	Total NS	en j	1609.4	4933.9	487.5	497.3	233.4	249.0	119.5	82.3	218.6	8430.9
	IVaW of 2°E	I	ł	174.3	339.3	17.6	25.4	22.5	18.0	8°5	6.8	622.4
	IVAE of 2°E	1	78,8	179.9	954°1	84.9	61.6	77.4	76.7	110.1	131.1	1684.5
1960	TVb	ł	22	238,8	604.1	47.02	35.2	12.1	31,1	10.0	4.1	1007.6
	IVoYI	194.6	2275,3	260.2	27.0	5	ł	9	- -	1	202	2757.9
 	IVC + VIId,0	1	13.5	209.1	141.4	16.3	5.6	0.9	412	C .	120	466.8
and a second	Total NS	194°6	2392.7	1142.3	1966.7	165.9	167.7	112.9	125.8	128.6	142°0	6539.2
	IVaW of 2°E	į	2°0	21,8	66.0	188.0	12,4	10.0	5.9	11.5	5°7	332.1
	IVAR of 2°E	2°1	68,6	96,3	227.5	942.2	97,0	139.1	22.52	44.5	81.8	1754.6
1961	IVD	I	29.4	560.0	96 .1	207.A	0,9	1	. 2	1		981.7
	ELGAT	1260.0	235.3	623.5	10.01	ţ		ß	ê	ß	Ę	2139.7
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TVo + VIId,e	(c)a	0.7	565.7	79.4	30°3	5.0	N.	Est.	124	territoria de la constantia de la constanti	709.1
	Total HS	1269,2	336°0	1939.4	479.9	6°5671	124.0	157.9	61.4	36.0	87.5	5917.2

Table 9 (Continued)

- 35 -

Bar young to be a set of the set			n de legnale in synta sineminute dy c	a na an	WC	E IN WINTER	RINGS		e Gar Bra Charles - Anna Anna Anna Anna Anna Anna Anna An	rad an an a the first state of the state of	and a subscription of the second s	erer a van doardererger
Теат	Årea	, o	r	5	3	4	· 5	9	. [Ø	>8	
and the second se	IVaW of 2°E	End	0.6	22.3	14.9	29.5	114,2	6.8	15.6	7.2	10.1	3
	IVAE of 2°E	ίου αυ	127.9	1.36.8	171,8	208.3	802.8	105.7	124.2	74.9	74.6	
1962	IVD	ler de	48.9	66.6	358.4	68.8	151.9	13.7	5.0	4.2	2,1	
	IVDYH	141.8	1958.2	5,8	T2°T	ĩ	9	3	4	1		
	IVC + VIId,e	Z	11.3	41.1	237.2	28.5	12.9	0.7	0.3	ŀ	E	
	Total NS	141.8	2146.9	269.6	797.4	335.1	1081.8	126.9	145.1	86,3	86 å	
	IVaW of 2°E	E	0.6	135.7	3.0	4.5	3.7	17.1	6.0	4.2	2.2	
	IVaE of 2°E	9	69.0	1414.6	101.1	75.9	74.4	212.3	21.5	37.8	48°8	
1963	TVD	and a second	36.3	1080.5	62.5	55.0	þ	63	I	a de la de l	5	
	IVDYH	442.8	1.154.1	55.4	3	ſ	ę	1	Ę	1	3	
	IVC + VIId,e	1	2,2	275.0	10.6	22.9	2.5	0,3	1	l	1	
	Total .S	442.8	1262.2	2961.2	177.2	158.3	80.6	229.7	22.4	42.0	51°0	
	IVaW of 2°E	1	0.8	T07.7	182.2	6.7	6.9	7.2	40.1	2.5	6.6	
	IVAE of 2°E	4.6	28,6	830.3	1581.5	128.4	109.0	79.6	190.0	23,8	51.1	
1964	TVb	and a second	42:6	395.0	395.0	12.6	27.2	8,2	26.2	. 1	\$	
	TVbYH	492,3	2878.4	192°2	5,9	evasi	5	1	n	1	ą	
	IVC + VIId,e	•	21,3	22.3	78.5	0°7	5.9	ß	500	arta	Buar	1
	Total NS	496.9	2971.7	1547°5	2243.1	148.4	149.0	95.0	256.3	26.3	57.7	
	IVaW of 2°E	ł	52.9	613.2	367.2	571.7	21.9	23,2	28,6	108.2	24.9	
	IVAE of 2°E	2°0	456.4	542.9	6°TLL	1336,8	112.5	118.4	64.9	277.5	34.1	
1965	Tγb	3	55,3	432.2	84.9	98.3	8°6	7.9	3.6	27.3	18,1	
	HAQAT	154.5	2644.3	603.8	40°1	1	1	ece	çeşta	ctra	5-13 1	
	IVC + VIId,e	8	0,4	25.5	60°5	32 °6	2,1	2.4	0.5	B	1°3	
	Total NS	157,1	3209.3	2217.6	1324.6	2039.4	145,1	151.9	117.6	413.0	78.4	
	IVaW of 2°E	ï	12,2	693.5	249,2	156.8	328,5	8.7	1°6	32.2	93.2	
	IVaE of 2°E	2,7	357 ° 1	1102.9	383.7	276.2	534.7	36.6	54.4	60.6	141.8	
1966	TVb	3	1,3	539.4	91.6	15,9	23.5	3	1,3	2.7	E. S	
	HYDYH	371.8	1008.9	179.1	6,8	2	ð	1		E MA	teo i	
	IVC + VIId,e	1	3,6	54.8	9°6	1,2	3,1	80	3	1	tica to construction of an international sector of the sec	
	Total NS	374.5	1383,1	2569.7	741.2	450,1	889,8	45.3	64.8	95.5	236.3	

Table 9 (Continued)

Table 9. (continued)

	Total	680.1	2659.2	565.1	2267 .6	68 . 6	6240 • 6		0*06GT	2952 ° 2	297 °9	2833.9	63.6	7746.2		1149.7	1046.3	263,5	2619.8	184.3	5263.6	1846.3	154.4	315.1	2755.3	178.2	5249.3	2202 • 3	217.5	211.5	4316.7	227.4	7175.4
	>8	33.8	139.0	818	P	a	172.8	L P	6,60	20.3	6	8	Υ.	91.8		4,2	20,4	tena	1	0,2	25.1	4.0	8,1	1	ş	0,1	12,2	9,8	0.2		1	0.3	12.4
	8	4.,1	2.17.5	- 1	đ		81.6	ر د د	0,01	3.1	5	ţţ	B	13.7		10°3	16°9	0,2	5	2	27.4	10.0	1,2	0.4	5	0.4	12.0	ą	8	ţ	8	ą	492
	7	4.7	63,2	ş	3	0	67.9	000	24	0°70	5.4	ę	0.6	163.4		14.7	27.4	0,2	cita	0.4	42.7	5.7	1,2	0.9	and the second se	0,1	7.9	25,1	1,1	Q	8	0.6	26,8
	9	71.4	307.5	14,1	1	0.1	393.1	o Jo	00,00	51.6	3.6	ł	3,0	145.0		17.2	29 °3	3,0	9	0.4	49.9	49.3	4.1	6,6	ą	1 • 0	61.0	28,8	1.4	-	8	0.3	30.5
PER RINGS	5	51.5	237.3	6,8	ŝ	2,2	297 . 8	1 60	60°2	59.5	12,6	8	1,5	157.1		103°9	66°9	18,1	t	1,9	190.8	39.4	5.4	3,2	0.6	1,6 1	50.3	24,1	2,]	1	9	0.7	26.9
AGE IN VIN	4	67.7	245.8	53.1	ũ	4.9	371.5	6 (147	7.2/6	179.7	59.9	5	9.7	621.4		52.4	61.9	13.5	g	. 5.3	133.1	98.7	9.6	9.3	2,2	5.4	125.2	154.2	10.4	12.6		21.1	208.3
	3	315.6	741.0	257.4	35,3	15.4	1364.7	540	C. TC2	1201.0	40.6	1.3	19.9	1494.3	and a second	109.4	136.0	29 , 1	13.0	8°8	296.3	695.3	23.5	63.4	17.6	83 ° 8	883.6	489.3	38.5	54.4	53.0	41.7	615.9
	2	1.911	444.6	209.4	356.0	42.4	1171.5	595	1.120	L. TAL	166.8	246.1	22.9	1795,2		2°061	559.3	154.6	271.1	161.8	1883.0	930.9	69.7	203.5	718.1	81,6	2002.8	516.9	54.5	140.3	1174.7	130.8	2017.2
a a a a a a a a a a a a a a a a a a a	1	12,2	402.6	24.3	1231.6	3.6	1674.3	r %0		1.°61.4	0,0	1747°2	6,0	2425.0	5 85 F	TOT	128,2	44°8	2223.7	5,5	2503.3	13,0	32.6	27.7	1118.7	4.2	1196,2	818.3	95,4		2748.5	21.8	3686.1
	0	9	0.7	1	644.7	\$	645.4		5	R	1 8 1	839.3	6	839.3		ĩ	Đ	Ē	112.0	8.	112.0	¢	6	3	898.1	ł	898 a l	136.7	14.0	422	340.5	0,3	491.5
	Area	TVaW of 20E	IVAE of 20E	qAT	ТУРУН	IVc + VIId,e	Total NS	TTrell of DOW	a y to Makt	LVAE OI Z'E	Q AT	TVDYI	LVo + VIId,e	Total NS		TABN 0 ZAR	IVal of 20E	qAT	IVbYE	IVo + VIId,e	Total NS	IVaW of 201	IVaE of 2ºE	TVb	ТУРУН	IVC + VIId,e	Total NS	IVaW of 20E	IVAE of 2 ^E	TVb	IVbyE	TVC + VIId,e	Total NS
	Year			1967						() (r	nort						1	1969	~					1970						1971	-		1

- 37 -

•

Year	Northwe North	stern Sea	Nor No	theaster rth Sea	n	Skagerrak
	Norwegian	Scottish	Norwegian	Danish	Scottish	Norwegian
1960	-	4.9			6.9	-
1961	-	4.0		22.1	3.0	dae.
1962	-	26.6	atap.	8,5	34.2	int,
1963	-	25.8	-	a t	23.6	454 J
1964	-	10.5	14.8	14.4	33₀6	5,6
1965	16.5	12.3	8.4	15.6	35.6	5.8
1966	26.4	21.7	9.1	28.4	3.0	7.4
1967	20.1	23.5	21.3	21.7	13.0	10.4
1968	24.2	28.1	18.4		19.0	6.1
1969	10.7	43.9	13.3	-	6000 ·	6.9
1970	30.7	9.0	32.5	665	nity	16.6
1971	12.9	23.4	-		-	-

Table 10. Percentage of Spring-Spawned Herring in the Northwestern

	North	Sea,	Northeastern	North	Sea	and	the	Skagerrak	
--	-------	------	--------------	-------	-----	-----	-----	-----------	--

Table 11. Skagerrak. Catch in 1 000 tons

	Total Catch	% of Total	Denm	ark	Swedia Land Denn	sh Catch led in mark	Norway	Other Countries
Year		Catch North Sea + Skagerrak	C	I	C	I	C+I	C
2- 0	75.8	9.8	15.4	27.8(49)	7.4	0.8	2.6	21.8
1. 1	85,2	10.9	11.8	44.9(53)	7.2	1.2	4.6	15.6
1962	104.2	14.2	7.8	62.8(54)	13.0	3.3	5.0	12.3
1.9 63	163.2	18.4	15.9(6.3)	89.2(43)	21.1	6.3	11.0	19.7(6.5)
1964	309.8	26.4	17.2(6.1)	112.3(59)	24.4	32.6	85.9	37.4(6.6)
0.65	256,7	18.0	15.0(8.4)	80.3	24.9	21.5	83.9(7.6)	31.1(8.0)
<u>.956</u>	144.7	13.9	6.5	68.7	15.6	10.6	30.4(9.5)	12.9(6.9)
1.57	279.7	28.7	16.1	84.7	28.4	15.9	95.0(10.2)	39.6(9.0)
÷68	280.0	28.1	8.5	135.1	18.0	22.0	71.9(10.5)	24.5(8.9)
1969	113.3	17.2	10.2	47.7(39)	19.0	6.6	14.0	15.8
1970	70.5	11.4	1.6	28.5(38)	-	-	7.0	-
1971	54.2	11.1	2.5	24.9	_	-	6.0	-

Figures in brackets: mean number per kg

C: Herring for human consumption I: Industrial catches

Catch Per Unit Effort in Drift-Net and Trawl Fisheries in the Southern, Central, Northeastern Table 12.

and Northwestern North Sea

÷																										
Bløden	Trawl11)	ij	ţ	AGU	63	B	E .	ş	Į,	٥	ſ	9	1.94	1.74	1,22	1,22	1,94	1,16	1°78	1.46	0.98	1,35	1.64	1,22	1.07	1,34
uth	T_{Tawl} 10)	1	1	E	2	197.7	167.3	203.6	156.8	121.7	103.0	91.3	94.8	175.5	1,52.2	197.7	65.5	58.5	67.9	69.8	eiù	ß	50.2	1.00.9	57.2	44 • 2
No	Drift,9)	7.0	6,9	6,9	6.7	6.4	6°3	5,9	7.2	3.4	4.3	3.6	2.7	2,2	3.4	3.2	2.7	2,2	3.8	1,8	1.4	1.4	0.3	-	0.9	Ĩ
	Trawl ⁸)	153.3	110.0	70.2	92.4	95.9	111,2	104.1	76.1	65.5	53.8	93.6	31,6	78.0	29.4	49.1	29,0	49.5	44.8	35.9	43.9	30,2	21,9	24°7	26,6	20 . 7
Central	$Drift^7)$	2.3	1,9	1.5	2,2	2.3	2°9	2,6	3,3	3,8	4.1	3.3	3.0	4.3	5.1	1,8	1.5	3.4	3,1	3.2	4°8	4.0	2.4	4.4	5,1	4. I
	$_{\rm Drift}^{(6)}$	4.7	3.7	2,5	2,8	2,8	3.3	3.2	2.9	2,8	3.5	3.5	3,0	3.1	2,4	2.1	2°0	5.6	2.6	2.7	2 ° 8	2.9		1	esa	1
	Traw15)	B	ę	1	E	5	8	5.9	1.6	1,5	3.6	3.3	4°3	2,9	2.7	1,8	2°0	3.6	3.4	i S	1,6	0°1	1.0	1	8	3
ortheast	$\operatorname{Trawl}^4)$	8	R	8	1	1	1	1	0	11.5	16.3	8°2	15.6	7.5	15°2	7.8	4.8	8.4	11,1	6,0	3.4	r Å	1°7	2,9	$(0,2)^{\frac{m}{2}}$	$(0,2)^{*}$
N	Drift ³⁾	đ	1	Ş	1	1	1	ŝ	1	8	1	4.8	3°1	2,8	3.4	3.3	1,8	1°2	2.5	3.0	ວ ໍ ລ	1. 8	1,6	ß	t	844
west	Trawl ²)	130.4	68°8	65.8	43.1	53.9	70.4	47°2	43.9	51.4	27.7	55.7	31.7	61.9	34.6	28.0	22 ° 0	25,4	29.7	23,3	17,2	9,8	$(1,2)^{3}$	$(3,7)^{m}$	(2°6)*	19.1
North	Drift1)	2,8	3.1	2.3	2,6	2.3	4 ,1	3.9	3.9	5.2	3.9	3.6	4.1	4.0	3.2	4.2	3.7	3.9	3.4	3.4	4.3	4.7	3,8	4.8	3.4	5.2
	Years	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1950	1959	1960	1961	1962	1963	1964	1965	1967	1967	1968	1 696T	1970	1971

- 39 -

^xBased on catches less than 100 tons

[/]continued

Catch Per Unit Effort in Drift-Net and Trawl Fisheries in the Southern, Central, Northeastern and Northwestern North Sea

- 1. United Kingdom catch per arrival in May-September (tons).
- 2. Netherlands catch per 100 hours' fishing by a standard (500 BHP) trawler in July-September (tons fresh weight).
- 3. Polish catch per shot in April-July (tons).
- 4. Netherlands catch per 100 hours' fishing by a standard trawler in January-April (tons fresh weight).
- 5. German lugger trawl, catch per day (only catches with over 60% herring) (tons).
- 6. Netherlands catch per shot (tons) (May-September).
- 7. United Kingdom tons per landing for central North Sea dift-net fisheries (May-September).
- 8. Netherlands catch per 100 hours' fishing by a standard trawler (tons fresh weight) (August-October).
- 9. United Kingdom catch per shot (tons) (October-December).
- 10. Netherlands catch per 100 hours' fishing by a standard trawler (tons fresh weight) (November-December).
- 11. Danish catch per hour (tons) in the immature herring fishery in the Bløden area.

~																										
		Bløden	Danish Trawl Fishing Hours x 10-5	in the second	98 B	12	đ	ş	82		8	\$	100	g	81 . 9	76.9	<u></u> уг "8	58.4	65.5	92 .5	68.6	63.1	65.2	99°.3	69.9	123.3
able 12		uth	Dutch Trawl Fishing Hours x 10-5	Q. i	1 8	I	0.8	1.4	1,0	0°7	1.3	1.3	1.0	0.4	0.5	0.5	0°8	0 8	0.8	0,3	2	2	0,2	0,2	0.5	0,5
Data of 1		Sc	UK Drift Shots x 10-3	22.9 22.6	28.0	26.6	25.9	37.5	<u>5</u> 5°5°	70°5	31.2	34.1	34.3	35 ° 1	19.1	29.8	20.3	20°8	15.5	12.1	8.3	8,1	32 .0	I	30.1	8
h per Effort			Dutch Trawl Fishing Hours x 10-5	ט לד ה ה		2,0	2°8	1,8	້		3.0	1,6	4.9	1.9	5.7	3.4	4.9	4.6	4.2	3.7	2.6	3,6	2°6	J.6	4.2	1.3
from Catel		Central	UK Drift Landings x 10-3	93.2 88.4	119.2	82.4	7.51T	10.0	· 86.4	00° C	40.0	45.7	52.0	34.2	53.6	93.8	95.5	1°29	0°00	41.5	23.8	27.0	24.1	9.1	21.9	6.5
each Area	ea		Dutch Drift Shots x 10-3	45.6 45.6	71.5	64.8	95.0	61,5	76 2	60.8	46.8	43 . 1	52.0	47.5	69.3	80.4	7. T	40°8	5°2).	49.2	40.8	37.2	ĝ	ą	1	8
Estimates for	Λr		German Trawl Days Fishing x 10-3	8	1	lea	J	j j t		44.9	22.0	29.5	22,8	49.7	97.8	152.7	145.9	80°.	0°0¢T	232 . 3	265.0	373.7	256,8	IJ	ł	ŝ
13. Bffort		ortheast	Dutch Trawl Fishing Hours x 10-5	4	53	1	8	ũ	5	5,9	4.9	11,9	6.3	19 . 2	17.4	35°2	50.8 37 0	5° 5° 2° 5° 5°	0.04	96.8	124.7	339°7	151,1	51,1	I	ł
Table		N	Polish Drift Shots x 10-3		ea ea	1	ţ	ĩ	1 1	t 1	1	3	F733	8	78.0	45°0	Toz.O	0"767	0°0/T	774°0	151.0	205.0	161.0	nai	Į	J
		west	Dutch Trawl Fishing Hours x 10-5	1°6	2,0	2,9	5.7	2°4	2°0 8°0	20	7.0	3,8	2.0	4,2		N E V r		1 c 2 c				0°2T	entes	B	1	14.6
na produkti na sela posta n		Worth	UK Drift Landings x 10-3	75.5	58,3	48.1		41.1	47.0	55.3	49.9	59.1	40.2	04.0	040			- 01	+ C + C		04.0		+°C)	44.4		1.000
			Year	1947 1948	1949	1950	17951	105×	1954	1955	1956	1957	1 4 7 8	1 202	2007	1061	1061	1964			1000	2000		20201	2221	T/AT

- 41 -

			Drift	sr		Trawl	
Year	FVPA	Landings x 10-2	Сре	Efficiency F/Cpe	Hours Fishing x 1079	Сре	Efficiency F/Cpe
1947	-	191.6	3.06		3.39	175.8	
1948	-	166.6	3.00		4.68	107.3	
1949	.08	205.5	2.46	.0325	5.97	85.1	.0009
1950	.19	157.1	3.09	.0615	6.16	79.0	.0024
1951	• 34	195.1	2.84	.1197	6.25	88.9	.0038
1952	•33	150.1	4.09	.0807	5.63	109.1	.0030
1953	. 38	169.4	3.65	.1041	7.05	87.9	.0043
1954	•45	149.3	4.49	.1002	9.35	71.4	.0063
1955	.42	166.1	4.19	.1002	10.10	68.7	.0061
1956	.48	140.5	4.07	.1179	9.29	61.5	.0078
1957	.46	165.5	3.50	.1314	7.80	74.3	.0062
· 1958	-48	156.9	3.27	.1468	9.34	54.8	.0088
1959	.50	174.5	3.61	.1385	8.86	70.9	.0071
1960	• 38	186.7	3.19	.1191	10.88	54.8	.0069
1961	.48	254.1 ·	2.38	.2017-	13.49	44.7	.0107
1962	.50	282.2	1.87	.2674	17.88	29.5	.0169
1963	• 31	199.3	3.26	.0951	14.54	44.6	.0019
1964	.40	231.6	3.26	.1227	15.06	50.1	.0079
1965	•77	322.2	3.21	.2399	29.88	34.6	.0222
1966	.67	198.6	40.17	.1607	28.08	29.5	.0227
1967	.70	155.1	3,94	.1777	35.90	17.0	.0412
1968	1.0	227.5	2.69	.3717	39.16	15.6	.0541
1969	1.0	(>81.9)	\$5.19		21.06	20.2	•0495
1970	1.0	151.1	3.14	.3184	17.77	26.6	.0375
1971	1.0	(%3.2)	\$5.50)		13.99	24.9	.0401

Table 14. Estimates of Total North Sea Effort on Adult Herring and Relative Changes in Efficiency Table 15. Calculated Fishing Wortalities by Age and Year. (M = 0.1)

	 m	6	<u>ь</u>	~		~	ĸ	<u> </u>			,,,	~	
1970	0 ° 0	0,25	0,95	1,2;	J, 3(0.6	0 8:	J . 7(0,61	1,0(1.05		
1969	0.02	0.54	0,86	0。94	0.77	0°96	1.74	0.90	1.07	1,00	0.89	0,95	-
1968	0.12	0.52	1.46	1,86	1,03	1°51	1.04	1,51	0.39	1,00	1.47	1,48	
1967	0.09	0.50	0.47	0,83	0.92	0°79	0,99	0.89	16.0	0,85	0°70	0.85	
1966	0.08	0.34	0°67	0°74	0.56	0.83	0° 30	0.27	0,38	0°.70	0.67	0°67	
1965	0.03	0.44	0,88	0,76	0,77	0.57	0.41	0°30	0,89	0,80	0.77	0.73	
1964	0 05	0.54	0.45	0.43	0°34	0.26	0,18	0°29	0.25	0.30	0.40	0ª38	
1963	0.06	0.24	0,35	0.27	0,20	0.12	0,18	0.16	0.42	0,20	0° 30	0 _e 20	
1962	0,02	0,18	0.28	0.60	0,35	0.54	0.56	0.72	0.73	0° 60	0,50	0.54	
1961	0,08	0.24	0,68	0,32	0*41	0.32	0.41	0.29	0.42	0.50	0.48	0°38	
1960	TT 0	0.45	0.46	0.34	0.29	0,28	0.35	0.53	0,77	0.40	0.38	0.35	
1959	0	0.39	0.51	0.51	0.50	0.44	0.55	0.37	0.36	0.70	0.50	0.49	
1958	0.02	0.27	0.57	0.54	0.37	0.54	0° 30	0.22	0.16	0.70	0.48	0,45	
1957	0.01	0.45	0.48	0.49	0.42	0.44	0.41	0.36	0.76	0,40	0.46	0,45	
1956	0.02	0.31	0,63	0.46	0,39	0.31	0,31	0.41	0.41	0.30	0.48	0,40	
1955	0°02	0.39	0.43	0.46	0.38	0.35	0.52	0°.30	0.35	0.30	0.42	0.41	
1954	0.03	0,21	0.39	0.51	0.38	0.45	0.50	0,65	0,84	0,30	0.45	0.48	A for a for the second se
1953	0,02	0.18	0.36	0.40	0.36	0.35	0.43	0.55	0.23	0 * 30	0.38	0 39	-
1952	0	0.14	0.34	0,29	0 • 35	0,36	0.49	0.32	0.36	0.30	0.33 ()• 33 (an age a familie a f
1951	0	0.08	0.23	0.35	0.43	0.39	0.24	0,21	0,32	0,30	0.33	0,36	
1950	0	0	0.14	0.23	0.25	0.20	0,27	0.34	0.46	0.30	0.23	0.25	
1949	0	0	0.08	0.19	0,20	0.21	0.41	0,58	0.55	0.30	0,22	0.30	
1948	0	0	0;06	0,24	0,18	0.25	0.35	0.32	0.25	0.30	1	1	
1947	0	0	0.13	0.17	0.19	0 . 25	0,38	0°30		1	ß	I	
Winter Rings	0	p1	CJ	ĸ	4	Ŋ	9	E	æ	σ	Mean F2w.r. and older	Mean F3w.r. and older	

- 43 -

\square	
0	
11	
M)	
Year	
and	
Age	
by.	
6	
10-;	
X	
\sim	
Numbers	
j.n	
Size	
Stock	
Calculated	
16.	and the second se
Table	

,												
	1959	7.66	5.24	12.96	1,28	T * 31	0 69	0.61	0.40	0.28	0.25	30.68
	1958	5.89	18,81	2.49	2.50	1.10	1,16	0°0	0,39	0.32	0,08	33°34
	1957	21 ° 08	4.31	4.48	1.98	1°96	1°05	0.65	0,51	0.20	0.19	36 . 38
	1956	4.86	6.73	4.14	3.44	1°67	0,98	77.0	0 • 32	0.32	0.25	23.48
)	1955	7,61	6.74	5,83	2.92	1.58	1,20	0°0	0.48	0.39	0.14	27.49
	1954	7.68	7.96	4.80	2°91	1°95	1.04	0.86	0,83	0.36	0.42	28.81
	1.953	8.95	6.37	4.60	3.20	1,65	1,13	1.41	0.69	0.59	0.37	28.96
	1952	7.04	5.84	4.95	2.43	2,16	2,24	1.24	. 06°0	0,58	0,52	27°90
	1951	6.46	5.96	3.37	3.39	3.79	2.04	1.27	0.79	0.79	0,32	28 . 19
	1.950	6.58	3.73	4.30	5,28	2.90	1.71	7°77	1,22	0,56	0.54	27°96
	1949	4.12	4.76	6.33	3.88	2.30	1.56	2°03	1,10	1,03	0,83	27.94
-	1948	5,26	7°00	4.54	3.25	2.06	2,87	1.72	1 °55	1,18	649	1
s in a substantial information by the	1947	7.74	5.02	4.11	2.72	3.84	2.46	2,51	1.76	ł	ę.	E
	Winter Rings	0		2	8	4	n	9	7	ω	6	Total

1971	11,80 [%])	9.80	3°33	Ţ,]]	0.34	0.04	0.05	0.04	*	0,01	26,52
1970	11°77	4.93	3, 32	1°30	0.18	0.11	0,11	10.0	0°03	0°01	21.77
1969	5.57	6.28	3.40	0.51	0.26	0.32	0°06	70°0	0°04	0.03	16.54
1968	7.83	6.30	2.42	1,83	1°00	0.23	0.23	0,22	0°04	0,10	20.20
1967	7.63	4.43	3.25	2.53	0,64	0.57	0.65	0.12	0.20	0.19	20.21
1966	5.29	5.04	5.49	1.49	1,10	1°65	0.18	0.29	0.31	0.27	21,11
1965	5.74	9.42	3.96	2,60	3.95	0.35	0.47	0.47	0.73	0°09	27°78
1964	10.94	7.48	4.49	6.71	0.54	0,68	0.62	1.07	0,13	0.08	32°74
1963	8.73	6.29	10,52	0,79	0,92	0 • 77	1.43	0.16	0.13	0,08	29.82
1962	7°10	13.88	J.15	1,85	1,20	2.71	0,31	0 • 29	0.17	0,10	28,76
1961	16.67	1.63	4°02	1,83	4.52	0.47	0,49	0.26	0.17	0.1.0	30.16
1960	2,00	6.94	3°22	7°06	0.70	0 . 72	0.40	0.32	0.25	0.18	21.79
Winter Rings	0	,1	N	m	4	Ŋ	9	7	8	6	Total

x) Year class 1970 put equal to year class 1969.

- 44 -

	Southern1)	Central N	orth Sea	Nortl	hwestern North Se	_a 4)
lear	North Sea	Dogger ²)	Total3)	Buchan	Orkney-Shetland	Total
1946	537		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
1947	596	-		-		
1948	-	-	-	-		
1949			-	-		
1950	288	-	-	-		
1951	255	-	caret .	900	420	1 320
1952	-	-	-	890	100	990
1953	-	-	-	2 110	940	3 050
1954	-	-	~	870	700	1 570
1955	99	-	فتبينه	20x)	700	720
1956	56	-	***	-	-	-
1957	16	232		300	-	
1958	58	252		220	2 800	3 020
1959	11	97		300	860	1 160
1960	33	138		440	640	1 080
1961	44	. 86		380	4 940	5 320
1962	> 30	66	-	400	720	1 120
1963	22	-	-	440	580	1 020
1964	9	52	63x)	920	880	1 800
1965	13	275	490x)	70	2 220	2 290
1966	+	3	142x)	10	680	690
1967	26	0	275	+	440	440
1968	15-18	0	28	0	162	162
1969	108	0	11	3	212	215
1970	126	0	273	0	273	273

<u>Table 17</u>. Larval abundance in the North Sea (- = no observations) (Numbers x 10^{-9}).

1) Larval abundance in Downs area in December-January.

- 2) Abundance of larvae <11 mm in October on the Western and Southern slopes of Dogger Bank (Zijlstra).
- 3) Abundance of larvae <10 mm in September-October in the central part of the North Sea.
- 4) Abundance of larvae <10 mm in the Northwestern North Sea, apart from the Southern area (Buchan), the Northern area (Orkney-Shetland) and the total Northwestern North Sea (Saville).
- x) Incomplete data.
- +) Small numbers.

Year Class	Buchan (1/10 th cran per arrival)	Bank (hundreds per day fishery)	Downs (hundreds per shot)
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969	42 71 50 73 17 194 42 22 14 170 70 52 180 51 61 97 114 -	77 235 43 63 148 373 20 126 7 256 74 87 259 27 38 65 70 -	218 109 321 243 95 180 80 366 30 180 168 30 100 68 10 330 55 -

Table 18. Recruitment Indices to North Sea Stocks

- 46 -

Table 19. Year Class Size Compared with Spawning Potential Parent Stock

Year Class	VPA Number of O-group x 10-9	Spawning Potential Parent Stock Eggs x 10-12
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1963 1964 1965 1966 1967 1968 1969	5.26 4.12 6.58 6.46 7.04 8.95 7.61 4.86 21.08 5.89 7.66 2.00 16.67 7.10 8.73 10.94 5.74 5.29 7.63 7.83 5.57 11.77	$\begin{array}{c} 633\\ 738\\ 703\\ 670\\ 590\\ 528\\ 475\\ 452\\ 437\\ 412\\ 380\\ 314\\ 502\\ 432\\ 422\\ 314\\ 502\\ 432\\ 422\\ 314\\ 431\\ 478\\ 454\\ 354\\ 272\\ 200\\ 130\end{array}$

. .

.

	8+	269°0 321°5 349°5 265°0	227.5(2) 242.5(2)
an a tha man an a	L	210.4(4) 287.0 287.0 303.0 268.8(4) 202.5(2)	222.5(2)
n an	6	190.0(4) 251.2 203.0 273.5 262.0 262.5(1) 262.5(1)	209.2(3) 292.5(1)
TER RINGS	5	157.5(4) 157.5(4) 287.0 324.5 317.0 225.9(9) 222.5(1)	187.5(4)
AGE IN WINT	4	$\begin{array}{c} 175 & .4(7) \\ 175 & .4(7) \\ .259 & .0 \\ 259 & .0 \\ 247 & .0 \\ 237 & .0 \\ 270 & .3(9) \\ 179 & .6(12) \\ 192 & .5(3) \\ 192 & .5(3) \end{array}$	175.8(3) 170.8(6) 258.5(15)
والمحافظة والمحافظ	3	122.5(7) 122.5(7) 175.9 248.0 228.0 228.0 226.5 183.2(44) 168.4(86) 165.9(34)	120.8(6) 149.6(7) - 243.2(16) 175.8(3) 192.5(1)
والمراجع	ଷ	97.3(21) 97.3(21) 	97.6(52) 111.0(26) 186.3(45) 137.5(2) 153.9(7)
	3əav	WeVI	IASE
	Month	Jan. Feb. Mar. Jun. Jun. Sep. Nov. Dec.	Jan. Feb. Mar, Mar, Jun. Jun. Sep. Nov. Dec.

Table 20. Average Weight by Age and Month

Continued/

	1													
		10	230(12)	250(9)	212(19)	ĩ	225(2)	243(38)	470(1)	372(2)	240(1)	8	255(1)	
•		6	226(7)	257(4)	222(28)	198(6)	1	250(21)	312(90)	292(3)	245(11)	238(14)	245(9)	an ang partite a design and an an and grant design are provided in the second se
		8	242(7)	250(4)	225(14)	215(3)	238(9)	254(28)	291(50)	325(33)	225(12)	248(6)	239(18)	5
		7	195(3)	162(17)	214(89)	216(10)	207(13)	261(32)	325(43)	328(20)	236(5)	239(7)	242(16)	9
	NTER RINGS	6	212(57)	177(41)	191(90)	214(6)	209(31)	224(151)	292(50)	283(35)	243(8)	243(5)	249(19)	220(1)
	AGE IN WI	5	191(50)	161(22)	184(129)	165(29)	189(29)	213(127)	273(293)	277(39)	224(26)	220(43)	228(56)	210(1)
		4	161(50)	141(65)	167(170)	166(26)	180(99)	221(139)	265(171)	257(146)	214(65)	219(33)	207(67)	5
(3	141(159)	123(154)	1.36(132)	134(48)	143(150)	183(353)	238(328)	222(348)	192(47)	199(23)	177(83)	203(2)
(Continued		2	92(784)	82(470)	92(456)	99(270)	106(293)	148(522)	177(757)	184(672)	152(52)	158(81)	149(232)	133(19)
20.	8	θIV				ខ្មា	.e(SVI	es eg	IV MIC	N			
Table		Month	Jan.	Peb.	• TEM	Apre	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nova	Dec.

.

.

/Continued

Table	20.	(Continued)						
				AGE IN WINTER	RINGS			
Month	SOIA	~	3	4	ĩ	6	7	÷
Jan. Feb. May Jul. Jul. Sep. Sep. Jan. Feb.	IAP.	93.5(29) 118.3(271) 136.2(1510) 144.8(2464) 156.1 5538 156.1 5538 159.1(1281) 159.1(1281) 129.3(3) 129.3(11) 129.3(2)	107.5(14) 138.6(114) 158.6(114) 177.0(1154) 192.7(1449) 191.2(592) 191.2(592) 116.3(226)	168.9(44) 189.8(154) 193.2(456) 200.4(1332) 216.0(282) 216.0(282)	172.0(10) 200.0(52) 200.3(85) 200.3(85) 231.4(320) 231.4(381) 229.6(99) 229.6(99)	$\begin{array}{c} 147.5 \\ 187.0 \\ 226.3 \\ 226.3 \\ 226.3 \\ 245.4 \\ 136 \\ 263.8 \\ 46 \end{array}$	208.0(1) 229.1(9) 228.5(6) 248.5(6) 278.5(34) 309.8(74) 274.6(9)	282.5(1) 200.7(3) 326.7(9) 321.4(13) 280.6(5)
Apr. Jul. Jul. Sep. Oct. Dec.	PAI		193.1(76) 191.5(860) 171.5(900) 158.9(470)	195.0(2) 195.0(2) 214.1(250) 192.7(170) 191.0(47)	236.2(73) 215.7(47) 208.4(12)	246.9(25) 237.4(57) 241.4(9)	267.5(10) 225.8(3)	252.5(1) 252.5(1) 254.8(9)

.

- 49 -

75- 41-			······	AGE I	N WINT	ER RIN	<u>cs</u>		
Month	0	1	2	3	4	5	6	7	84
Jan.		29	84	131	159	195	207	222	232
Feb.	-	29	82	112	142	161	177	181	202
Mar.		30	94	121	144	174	195	210	222
Apr.	-	34	106	134	157	177	192	207	219
May	-	40	112	146	169	190	205	219	231
Jun.	-	47	147	175	197	218	233	247	258
Jul.	5	56	184	216	242	264	284	300	314
Aug.	7	64	170	205	230	252	273	291	304
Sep.	15	70	157	191	216	242	264	284	303
Oct.	22	75	157	185	212	234	255	272 -	289
Nov.	27	77	144	166	194	215	232	248	260
Dec.	28	78	133	160	187	207	224	239	253

.

·

.

<u>Table 21</u> .	Mean Weights	(g)	by Month	and	Age	for	Total	North	Sea

Table 22. Mean number per kg by month and area

8.4 **7**°9. 9°6 Dec. 21.4 7.03 8 2 ß 8.1 8.4 11.5 25.4 Nov. 9°0 -7.7 6.3 6,9 6.4 18.3 5.9 5.9 6.0 5°3 5.6 5°9 00000 16.2 7.8 6.0 5.7 5.7 6,2 4.7 5.7 Sep. ī 23.2 5.4 4.5 6.0 5,1 Aug. 8 ĝ 5.4 4.7 6.5 35.0 Jul, 5°2 5°6 6,1 5 9 Jun, 5.7 6.5 7.2 6.2 6.8 24.7 5.9 Month ą ŝ 6.2 7.0 26.3 5.6 8.4 6.1 1 3 May 1 5.9 8.6 27.4 Apr. 6.4 10,8 6.9 6.7 6.4 1 5.9 7.2 31.7 Mar. 20.0 1.1 6 1 5 28,0 Feb. 10,7 ° 9.1 37.7 5 B B 23°2 4.4 9°7 Jen. 9 5 0 1 ġ IVA.E IVA, I ITa.W TVo.W LVD LVd^E) Area IVb IV3 IVC 1966-70 1961-65 Period

a) Danish data for juvenile herring 1967-1971

Source	1968	1969	1970
English 0/grp. Surveys	0.44	l.00	0.54 **
ICES Young Herring Survey Feb/Mar.	0,38	1.00	1.31
Danish YoungO/grp. AutumnHerring1/grp. SpringFishery1/grp. Autumn2/grp. Spring	 0.38 0.45 0.48	1.00 1.00 1.00 1.00	0.96 1.37 -

Table 23. Estimates of Relative Strengths of Latest Year Classes

English coastal abundance underestimated compared with 1968 and 1969. Table 24.

Initial catch levels (1972) and percentage increase in catch and biomass 1972-75.

	······································			Juv	venile mo	rtalitie	es (1- ri	ngers)		
]	<u>,</u>	•0	e]	۰2	₄ 3	•4	₅5	.6	•7	.8
-	۰.	0 403	50 -33 365	95 -34 331	136 -34 300	173 -35 272	207 -35 248	238 -36 226	266 -36 206	292 -37 188
-19 	.1	92 298 306	141 161 275	187 100 246	228 66 221	265 43 198	299 28 177	330 16 158	358 8 142	384 1 127
	.2	175 241 234	224 159 207	270 110 183	311 79 162	348 56 143	382 39 125	413 27 110	441 16 95	467 8 83
	۰3	250 196 180	300 137 157	345 99 137	386 71 118	423 51 102	457 35 87	488 23 74	516 13 62	542 5 51
	-4	318 160 139	368 114 119	413 82 101	454 59 86	491 41 71	525 27 58	556 16 47	584 6 37	610 -1 27
	₀5	380 131 107	430 93 90	475 66 75	516 46 61	553 30 48	587 17 37	618 7 27	646 -1 18	671 -8 10
d older	۰6	436 107 83	486 75 67	531 52 54	572 34 42	609 20 31	643 8 21	674 -1 12	702 -9 4	728 -15 -3
gers an	•7	487 87 63	537 60 50	582 40 38	623 23 27	660 11 17	694 0 8	725 -8 0	753 -16 -7	779 -22 -13
(2- rin	.8	533 71 48	583 47 36	628 29 25	669 14 15	706 3 6	740 -7 -2	771 -15 -9	799 -21 -15	825 -27 -21
lities	۰9	575 58 36	625 36 25	670 20 15	710 7 6	748 -4 -2	782 -13 -9	813 -20 -16	84 <u>1</u> -26 -22	867 -32 -27
t morta	1.0	613 47 26	662 27 16	708 12 7	749 0 _1	786 -10 -9	820 -18 -15	851 -25 -21	879 -31 -27	905 -36 -32
CubA	1.1	647 38 18	697 20 9	742 6 0	783 -5 -7	821 -15 -14	855 -22 -20	885 -29 -26	914 -34 -31	939 -39 -35
	1.2	678 30 11	728 13 3	773 0 -5	814 -10 -12	852 -19 -19	886 -26 -24	917 -32 -30	945 -37 -34	970 -42 -38
	1.3	707 23 6	757 8 -2	802 -4 -10	843 -14 -16	880 -22 -22	914 -29 -28	945 -35 -33	973 -39 -37	999 -44 -41
	1.4	732 18 1	782 3 -7	828 -8 -14	869 -18 -20	906 -25 -25	940 -32 -31	971 -37 -35	999 -42 -39	1024 -46 -43
	1.5	756 13 -3	806 -1 -10	851 -12 -17	892 -21 -23	929 -28 -28	963 -34 -33	994 -40 -37	1022 -44 -41	1045 -48 -44

Upper figure : Catch in 197 (1000 tons)

Middle figure: Increase in catch in 1975 (%)

Lower figure : Increase in biomass as at the beginning of 1976 (% in weight)

1965-1971
VIa,
and.
IVa.W
from
Catches
Annual
Table 25.

	19(65		1966	15	967	15	968	Т	969	T	020	197	r.
	IVa.W	ΔI&	TVa.•W	VIa	IVa.W	VIa	TVa.W	AIV	IVa.W	МΙа	IVa.W	VIa	IVa.W	VIa
Faroese	3 111		164.1	ł	35 993	i	49 995	ą	27 835	ţ	40 884	18 400	25 142	34 000
Prance	7 303	610	2 628	~-1	1 515	379	1 349	1 124	609	996	818	1 553	1 396	2 296
Germany	4 489	5 066	2 069	14 634	1 941	17 318	7 150	14 874	418	15 805	177	16 543	1	7 538
Iceland	1	. 1	1	į	Ŗ	0	35 134	1	13 697	P	20 587	5 595	42 164	5 416
Ireland	1	6 440	Acces	7 759.	ſ	12 290	ĝ	13 390	ł	11 895	1	11 716	ł	12 161
Netherlands	11 515 IT	330	3 414	251	3 418	4 576	3 072	2 957	474	1 514	177	1 1.02	5 755	1 850
Norway	196 488	2	219 223	â	41 664	ę	131 598	6	915 66	P	146 397	27 462	112 114	76 720
Polan	35 878	ę	27 199	1	8 454	727	2 80.6	2 791	362	3 188	2 069	. 3 TO9	1 288	1 955
Scotland.	19 239	53 909	16 548	69 3 3	17 359	67 404	16 324	65 180	10 051	90 222	17 767	103 530	24 711	104 922
Total	298 345	66 383	278 613	92 032	117 312	102 694	286 681	100 323	213 138	123 593	312 585	189 610	280 024	246 858
VIa in % of Total		18.2		24.ª8		46.7		25.9		36.7		37.8		46.9

Catches by countries are specified only for those countries which fish in both areas. The totals given are those for all countries fishing in these cases and so exceed the summation of the catches listed.

Month	West of 4°W	Between 4°W- West of Orkney and Shetland	East of Orkney and Shetland
Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.	8 017 14 565 5 523 - -	340 4 211 72 712 59 915 8 957 801 131	911 3 872 650 9 177 4 370 7 073 7 138 6 431 332
Total	28 105	147 067	59 954

Table 26a. Distribution of Catches in the Shetland Area in 1970 by Scotland, Norway, Iceland, Farcese and Sweden

Table 26b. Percentage Age Compositions (Norwegian and Scottish Data) in Three Areas of Shetland Fishery in April-August 1970 - 1971

Vesa	âmen				VINT	ER RI	TGS			•	
Tear	Area	1	2	3	4	5	6	7	8	≥8	n
	West of 4°W	-	41.2	43.3	4.3	3.5	6.0	0.6	1.0	0.2	840
1970	4°M-West of Orkney and Shetland	ena	54.5	31.2	5.0	1.1	3.4	07	0.8	0.7	564
	East of Orkney and Shetland	800a	79.9	15.5	2.0	0.4	1.0	0.5	0.4	0.5	2 017
	West of 4°W	0.2	14.6	52.5	21,8	3.0	4.9	1.1	0.9	1.1	467
1971	4°W-West of Orkney and Shetland		12.1	52.7	19.4	4.2	6.1	3.6	1.8	_	199
	East of Orkney and Shetland	10.4	36.1	41.0	10.2	0.7	0.2	0.8	0.3	0.3	1 709

Table 26c. Mean VS, K2 and L-1, Characters of Herring Samples from West Shetland, East Shetland and Minch Grounds

Wes	t Shetl	and	Eas	t Shetl	and		Minch	
VS	K2	I-1	VS	K2	I-1	VS	K 2	L-l
56.53	14.14	15,11	56.51	14.19	14.93	56.51	14.19	13.86

- 55 -

Figure 1. The development in efficiency as measured by F/cpe for drifters and young herring trawls (F derived from VPA).

ure 2. The development in efficiency as measured by F/cpe for Dutch trawlers (F derived from VPA).

- 56 -

Figure 4. Spawning potential of North Sea herring stocks 1947 - 1969 in per cent of spawning potential in 1948.

Abundance of low mean length I-group herring plotted against abundance of East Anglian 0-group herring.

Figure 9. Total catch levels in 1972 in thousands of tons (full drawn lines) and percentage increase in total catch from 1972 - 1975 (broken lines) at various combinations of adult and juvenile fishing mortalities.

Notes on the Virtual Population Analysis and the Cohort Analysis

by

Hans Lassen

The Virtual Population Analysis (VPA) (Gulland, 1965) and the Cohort Analysis (CA) (Pope, 1971) estimate for an exploited year class the fishing mortality F_i and the stock N_i at age i, provided that the natural mortality M and that the fishing mortality F_n for the oldest age group is known.

A brief review of the methods are given in this appendix together with some recent evaluations of the errors inherrent in the methods.

Let the catch in numbers of a year class at age i be C_i ; then according to Beverton and Holt (1957):

 $C_{i} = N_{i} \frac{F_{i}}{F_{i} + M} (l - exp(-F_{i} - M))$

Defining

$$\nabla_{i} \stackrel{D}{=} \stackrel{\infty}{\Sigma} C_{i} \qquad \qquad \boxed{27}$$

and

$$E_{i} \stackrel{D}{=} \frac{\nabla_{i}}{N_{i}} \qquad \qquad \boxed{37}$$

it follows that:

If C_j , j=i, i+1, n, E_{j+1} and M are known, F_j can be found from equation $\int 4_j$. The Newton-Raphson iteration is a sufficient and effective solution- method for this problem. Continuation of the analysis requires E_j as defined by $\int 1_j$. It can be found using $\int 2_j$ and $\int 3_j$

$$V_{i} = N_{i} E_{i} = C_{i} + V_{i+1} = C_{i} + N_{i} e^{Z_{i}} E_{i+1}$$

and by /l_ one finally gets

$$E_{i} = \frac{E_{i}}{F_{i} + M} \quad (l - exp (-F_{i} - M)) + E_{i+1} exp (-F_{i} - M)$$

The stock in number N_i is then found by $\int 3_i$

Pope (1971) has developed a modification (the Cohort Analysis) of the VPA based on the approximation

$$\frac{\sinh F/2}{\sinh (F_{+}M)/2} \simeq \frac{F}{F_{+}M}$$

which, according to Pope, is usable up to values of M = .3 and F = 1.2. He derived simple expressions for calculating the fishing mortality coefficient F_i and stock size N_i :

$$F_i = ln (N_i/N_{i+1}) -M$$

and

$$N_{i} = C_{i}e^{M/2} + N_{i+1}e^{M}$$

The advantage of using the VPA is that F in a fishery where $F_{\rm i}$ is changing with time may be estimated for a given age group in a given year without the use of effort data.

The main disadvantage is that unknown and often considerable errors may be introduced due to uncertainties of M and Fn.

Pope (1971) has discussed errors in F_i and N_i arising from incorrect choice of F_n and from sampling errors of \overline{C}_i . Agger, Boëtius and Lassen (1972) have discussed errors in F_i due to inaccurate guesses of M.

The results can be summarised as follows:

.

a The relative error from incorrect choice of Fn:

$$\frac{\sigma(\mathbf{F}_{1})}{\mathbf{F}_{i}} = \frac{\sigma(\mathbf{N}_{1})}{\mathbf{N}_{1}} \quad \frac{1 - \exp(-\mathbf{F}_{1})}{\hat{\mathbf{F}}_{i}}$$

where F_{i} is the estimated value from CA and \hat{F}_{i} is the true value both of fishing mortality.

<u>b</u> the relative error from sampling errors in C_{i} :

$$\frac{\sigma(C_{i})}{C_{i}} \approx \frac{\sigma(F_{i})}{F_{i}}$$

<u>c</u> the relative error from inaccuracy in M is found to bias the Fi's with 25% provided M is known $\stackrel{-}{\rightarrow}$ 0.1 and F's \approx 0.7. The effect is increasing for smaller F's.

References

Agger, P., Boëtius, I. and Lassen, H. J. du Cons. (In press). Beverton, R.H.J. and Holt, S. "On the Dynamics of Exploited Fish Populations". Fish. Res. Ser. II, XIX. Her Majestic Stationery Office, 1957.

Gulland, J.A. "Estimation of Mortality Rates". Annex to Arctic Fisheries Working Group Report. ICES C.M.1965 No.3 Gadoid Fish. Pope, J.G. "An Investigation of the Accuracy of the Virtual Population

Analysis". ICNAF, Res. Doc., 1971.

Wewlmal calches of Herring in metric tons for 1971. North Sea and Skagerrak

Total	681	212 378	31 271	10 882	3 810	48 172	32 479	128 531	2 031	56 643	4 113	25 073	18 000	574 069
South + English Chennel IVc + VIId.e	673	25	Ē.	4 450	00		16 385	8	ß	δαφ	8	400 M	3	21 533
North Sea Central IVb	8	134 649	254	5 918	3 421	179	10 172	14	743	31 926	4 113	362	ŝ	191 759
North Sea North West IVa.W	final for a series of the seri	44 500	25 142	1 514		42 164	5 755	112 114	1 286	4 954	2	24 711	13 000	279 142
North Sea North Bast IVa.E	High	6 219	239	\$ \$	389	tag .	167	10 442	Qi Qi Qi	ug y	2	I	9	17 456
Skagerrak IIIa	er fer som en	26 985	5 636	and the second se	ł	5 834		5 961	ŧ	19 763	8	g	1	64 179
(Foot- notes)	2	,;	N	L,A	દુવ્વનું	1,5	1-7		Q	1,6	1,7 L	1,8	r-1	
	Belgium	Dennark	Paroe Islands	France	Gernany F.R.	Loeland	Netherlands	Norway	Poland	Sweden	U.K. (England)	U.K. (Scotland)	USSR	Total

- 3 -

APPENDIX II

Total 38 247 165 168 141 514 13 864 358 818 25 Nominal catch of Herring for industrial purposes in metric tons for 1971. North Sea and Skagerrak Gernany F.R. 3 000 3 000 8 160 113 714 Norwey 5 257 100 290 38 500 Sweden 8 500 30 000 Denmark 24 490 41 224 5 704 203 604 25 132 161 North Sea South + English Channel IVo + VIId.e. North Sea North West IVa.W North See North East IVa.E North Sea Central IVb Skagerrak IIIa Total

i

Footnotes to Apendix II

- 1. Submitted by Members of the Working Group.
- 2. From data submitted on STATLANT form 27A.
- 3. Faroese catches reported to be 30 800 tons. Landings in Danish ports 31 271 tons used in the table.
- 4. French landings at Boulogne-sur-Mer data submitted by A. Maucorps were raised by 1.25 to include the total French catches.
- 5. Icelandic total catches, excluding Skagerrak, were 47 938 tons. Of this, 5 600 tons were caught West of 4°W. The remaining 42 338 tons were distributed according to landings in Danish ports from Division IVa.W and IVb. The Skagerrak catch was taken as the landings in Danish ports.
- 6. Swedish North Sea landings of herring for consumption, 6 880 tons, distributed according to Swedish landings in Danish ports:

IVa.W 72% = 4 954 tons IVb 28% = 1 926 tons

Swedish landings for consumption from the Skagerrak: 11 263 tons

Total Swedish landings for industrial purposes: 38 500 tons according to Ackefors , were distributed as follows:

North Sea IVb 30 000 tons Skagerrak 8 500 tons

- 7. English catches do not include coastal stocks.
- 8. Scottish data do not include catches from the Moray Firth.