International Council for the Exploration of the Sea

Pelagic Fish (Northern) Committee

Yield curves of North Sea Herring

By<br>Øyvind U11tang<br>Institute of Marine Research, Bergen, Norway

## INTRODUCTION

The catches of North Sea Herring have shown a steady decrease since 1965, while the fishing nortalities have increased to a level of about 1.0 for adults and 0.5 for juveniles (floor 1972). A regulation of the fishery seems required, and the ain of this paper is to investigate the effect of different conservative measures on yield per recruit $(Y / R)$ and spawning stocks per rem crust ( $S / R$ ).

## MATERIAL AND METHODS

A computer model originally applied on the North Sea mackerel stock (HAPRE and ULLTAVG 1972) was adjusted to the fisheries for North Sea herring (autumn spawners). As a first approach constant recruitment has been assumed, and the program calculates yield per recruit and spawning stock per recruit. A11 calculations are done on a monthly basis. Input data are monthly mean weights by age, fishing and natural mortality coefficients and coefficients expressing the distribution of the yearly fishing mortality on the different months. The fishing mortality coefficients and the coefficients giving their distribution on the different months are split on Omingers ( 1 year old), 1mringers ( 2 years old) and adults (2-ringers and older). The seasonal distribution of the
estimated
fishery on adult herring was from data on monthly catches of North Sea herring by Norway, Iceland, Faroe Islands and Scotland, and the distribution of the fishery for juveniles was estinated fron data fron the Danish young herring Pishery. The distributions applied are shown in Table 1 together with the distrim butions used to study the effects of different alternatives of closed seasons. Monthly mean weights by age in the catches (Table 2) are talcen from Report of the North Gea Herring Assessm ment Working Group (ANON. 1972).

RESULTS
In Fig, 1 the yield per recruit $(Y / R)$ is plotted against fishing rortality for adults (2mingers and older) for three different values of the fishing nortality for 1 mingers, $F_{1}: 0.5,0.25$ and O. The fishing nortality for Omringers, is put equal to $20 \%$ of $F_{1}$. The ourves are given for two altemative velues of natural mortality, M: 0.1 and 0.2 .

In Fig 2 the corresponding curves are given for spawning gtock per reoruit $(S / R)$. The autumn spawning herring was assuned to spawn for the first tine as 2 ringers ( 3 years old).

From the figures it is seen that
(i) under constant fishing mortality for laringers, maxinum $Y / R$ ocours for $F_{\text {adult }}=0.5(M=0.1)$ or $F_{\text {adult }}=1.0(N=0.2)$. By decreasing the fishing moxtality for adults fror 1.0 to 0.5 , $Y / R$ would increase by $2-3 \%$ if $M=0.1$ and decrease by $4-5 \%$ if $M=0.2$ However, a decrease in adult fishing nortality fron 1.0 to 0.5 would more than double the spawning stoole per recruit. If an increase in spawning stock of this order would result in increased recruitment, the result could be a considerable gain in long term yield.
(ii) If $M=0.1$ and $F_{\text {adult }}=1.0$, a decrease in $F_{1 \sim}$ fron 0.5 to 0.25 would give about $20 \%$ higher yield per recruit. A total stop inthishery for juveniles would result in about $46 \%$ higher $Y / R$. The increase in spawning stock per recruit would be about $35 \%$ and $82 \%$ respectively. If $\mathbb{M}=0.2$, the corresponding figures for increase in $Y / R$ would be $18 \%$ and $41 \%$. The increase in $S / R$ would be the same as for $M=0.1$.

In Fig. 3 the effect of fishing on Ominger is iniustrated. It is seon that when $F_{1}=0.5$ and $F_{\text {adult }}=1.0$, no fishing on Onringers would give $7-8 \%$ higher yield per recruit than when $\mathrm{F}_{\mathrm{O}}=0.1$.

A11 figuros given above are caloulated assuning no closed season in tho fisheries. To study the dependence of the yield on the seasonal distribution of the fishery, yield per recruit and spawning stock per recruit was caloulated for three different alternatives of olosed season:
(i) Closed seasons in liay and September.
(ii) Closed season from 1 April to 15 June.
(iii) Closed season fron 1 February to 15 June.

This corresponds to the different alternatives of closed seasons which have been, or are, imposed on the fisheries for North Sea herring. The seasonal distribution of the fishing nortalities applied for the different altematives in the calculations are shown in Teble 1. The resulting values of yield per recruit and spawning stock per reoruit at the actual level of fishing morm talities are given in the table below.

Yield per recruit and spawning stock per recruit (G) for different altemativen of closed season. $F_{\text {adult }}=1.0, F_{I}=0.5, F_{O}=0.1$.

$$
M=0.2
$$




It is seen that closed season 1 February - 15 June will give about $9 \%$ greater yield per reoruit and $7 \%$ greater spawning stock per recruit than no closed season. The greatest relative increase in yield per recruit occurs in the fisheries for juveniles. For example, closed season 1 February - 15 June will give above $20 \%$ increase in yield per recruit. It should be pointed out that the calculated increase in $Y / R$ and $S / R$ are strongly dependent on the assuned seasonal distribution of the fishing mortalities. As an example, it is seen in Table 1 that $62 \%$ of the yearly fishing mortality for adults is assigned to the second half of the year when there is no closed season. If a snaller percontage had boen applied, the caloulated gain in yield per recruit and spawning stock per recruit by closed seasons in the first half of the year would have beon greater. If closed seasons have the offect of reducing the fishing nortality for juveniles, the increase in $X / R$ will be greater than shown in the table. For example, assuming that a closed season from 1 February to 15 June gives the sane total yield in woight of lmingers as no closed season, $F_{1}$ would be reduced fror 0.5 to below 0.4 . With $F_{\text {adult }}=1.0$, this would give an $Y / R$-value about $16 \%$ greater ( $M=0.1$ ) than when $F_{I}=0.5$ and there is no closed season.

## DISCUSSION

Considering the whole stock of Worth Sea herring (auturm spawners) as one unit, it has not been possible to show any correlation between stock size and recruitment (AITON, 1972). However, as pointed out by the North Sea Assessment Working group
it is possible that an existing stoon/reoruitment relationship might be nasked when several stocks (the Bank, Downs and Buchan stocks) are considered together. When evaluating the different fishing strategies one should therefore take into aocount that a considorable decrease (increase) in spawning stock nay give a decrease (increase) in recruitment. Consequently the curves of spawing stock per recruit (Fig. 2) are of great interest. If a positive correlation exists betweon stock and recruitment, a certain increase in spawning stock per recruit will give rize to an incroase in recruitment wich again will increase the spawning stock and so on until equilibriun state is reached. The sparning stock will thus inorease more than the value of $s / R$. For a given stocle/recruitment relationship, $R=f(s)$, the statem gy giving naximun long tera yield is easily fround fron the $Y / R-$ curves and $\mathrm{S} / \mathrm{R}$-curves (FAMRE and ULLTANG 1972). Without knowing anything about the relationship betweon stock and recruitment for North Sea herring, such considerations have not been attempted here.

## SUMIARY

(i) Fron the yield per reoruit criteriun, there is little to gain or lose by reducing the fishing mortality of adults by say ono half. Howevor, by reducing Fadult by one half, spawing stock per reoruit would be more than doubled. A considerable gain in yield could then be obtained if a positive correlation between stock and reoruitnent exists.
(ii) A total banning of the young herring fishery would give an increase in yield per recruit between $40 \%$ and $50 \%$, depending on the value of M. Spawning stock per recruit would inm crease by about $80 \%$.
(iii) Of the alternatives of closed season studied here, a closed season 1 February - 15 June is best fron the oriteriun of yield per recruit and spawning stock per recruit, giving an increase of about $9 \%$ in $Y / R$ and $7 \%$ in $S / R$.

RTHERETCIS

AIVON. 1972. Report of the North Sea herring assessment working group. Coun.Meet.int. Coun. Explor.Sea, 19y2 (H:5). [finnoo.]

EAMRJ, J. and ULITAIG, D. 1972. The effeots of regulations of the Mackerel fishery in the North Sea. Coun. Meet. int. Coun.Explor.Sea, 1972(H:30): 1-14. [Mineo.]

Table 1. The proportion of the yearly fishing nortality coefficient assigned to the different months.

|  |  | No | osed | sea | on |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Jan | Feb | Mar | Apr | May | Jun | Ju1 | Aug | Sep | Cc5 | Nov | Des |
| Orringers |  |  |  |  |  |  |  |  | 0.25 | 0.25 | 0.25 | 0.25 |
| 1-ringers | 0.10 | 0.12 | 0.12 | 0.08 | 0.08 | 0.01 | 0.08 | 0.16 | 0.10 | 0.08 | 0.04 | 0.03 |
| Adults | 0.04 | 0.01 | 0.01 | 0.01 | 0.05 | 0.26 | 0.26 | 0.17 | 0.09 | 0.04 | 0.04 | 0.02 |

(ii) Closed seasons in May and September

Jan Feb Mar Apr May Jun Jul Aug Sep Ccit Nov Dec
O-ringers
l-ringers Adults
(iii) Closed season 1 April - 15 June

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
O-ringers
1-ringers
Adults
$0.100 .120 .12-0.010 .120 .20 \quad 0.140 .100 .050 .04$
$0.040 .010 .01-0.20 \quad 0.310 .200 .110 .050 .050 .02$
(iv) Closed season 1 February - 15 June

Jan Feb Mar Apr May Jun Jul Aug Sep Gc' Nov Dec
O-ringers
l-ringers
Adults


Table 2. Mean Weights ( $\varepsilon$ ) by Month and Age (Total North Sea)

| Month | AGIE IN WINTER RINGS |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | $8+$ |
| Jan. | - | 29 | 84 | 131 | 159 | 195 | 207 | 222 | 232 |
| Feb. | - | 29 | 82 | 112 | 142 | 161 | 177 | 181 | 202 |
| Mar. | - | 30 | 94 | 121 | 144 | 174 | 195 | 210 | 222 |
| Apr. | - | 34 | 106 | 134 | 157 | 177 | 192 | 207 | 219 |
| lay | - | 40 | 112 | 146 | 169 | 190 | 205 | 219 | 231 |
| Jun. | - | 47 | 147 | 175 | 197 | 218 | 233 | 247 | 258 |
| Jul. | 5 | 56 | 184 | 216 | 242 | 264 | 284 | 300 | 314 |
| Aug. | 7 | 64 | 170 | 205 | 230 | 252 | 273 | 291 | 304 |
| Sep. | 15 | 70 | 157 | 191 | 216 | 242 | 264 | 284 | 303 |
| Oct. | 22 | 75 | 157 | 185 | 212 | 234 | 255 | 272 | 289 |
| Nov. | 27 | 77 | 144 | 166 | 194 | 215 | 232 | 248 | 260 |
| Dec. | 28 | 78 | 133 | 160 | 187 | 207 | 224 | 239 | 253 |

## 9



Fig. 1. Yield per recruit ( $Y / R$ ) plotted against fishing mortality for adults ( $F_{\text {adult }}$ ) for three different
? values of fishing mortality for l-ringers.
$\mathrm{F}_{\text {O-ringers }}=0.2 \cdot \mathrm{~F}_{1 \text {-ringers }}$.


Fig. 2. Spawning stock per recruit ( $S / R$ ) plotted against fishing mortality for adults ( $\mathrm{F}_{\text {adults }}$ ) for three different values of fishine mortality for l-ringers. $F_{\text {O-ringers }}=0.2 \cdot F_{1-r i n g e r s}{ }^{\circ}$


Fig. 3. Yield per recruit (Y/R) plotted against fishing nortality for adults ( $\mathrm{F}_{\text {adult }}$ ) for two different values of fishing nortality for O-ringers. $\mathrm{F}_{1 \text {-ringers }}=0.5$.

