$$
F d .41-0-6
$$

This paper not to bo cited without prior reference to the authors

International Council for the
Exploration of the Sea

With collaboration of FAO and ICITAT

Symposium
02
"Stock and Recruitment" ITO. 20

PELARTOTSHIE OE PARENT STOCK SIZE AIT YEAR-CLASS STREITGTE IT TGREDGIAT SPRING SPATTING HERRING
$B y$
Olav Dragesund and Odd Natron+)

[^0]
RBLARTONSEIP OF PAREITT STOCT SIGE AIDD YPAR-CLASS STRENGTH IT
 HOPUEGTAN SPPTHG GPAMHING MDRTITG

INTRODUOTION

The attempt to gain a better understanding of the recruitment problem of marize fishes has been approached in several ways. Theoretical contributions to the stucy of the inter-relationship between the sime of the parent stock and recruitment have been published (e.8. Ficker 1954, Beverton and Eolt 1957, Cushing 1968), and extensive larval studies have been carried out at several laboratories (e.8. Blamter 1965, Fempel and Blanter 1963, Anlstrom 1954, 1965) in order to elucidate the fluctuations in year-class strength. Factors controlling the recruitment mechanism in the adult stocks and the efrect of fisheries on inmature fish are problems frequently being investisatea (e.f. Cushias 1962, Zijlstra 1963, Anon. 1965).

The amual number of fertilized egss and the subsequent number of young fish (the recruits)are related in some way to the abundance of the spaning stock. The nature of this relation is not kown. A marked relationship between the anual number of eggs produced (the spawing potential of the parent stocls) and the number of subsequent recruits is demonstrated for some species of fish with low fecundity, e. 5. spurdog (Folden 1958). Sinilarly an indication of such a relationship is found in some relatively small stocks of Pacific herring (Olupea pallasii Valenciemes) in British Columia (Taylor 1963) and in the Downs stock of herring in the North Sea (Burd and Holford 1968), but no trend of decreasing recruitment with decreasing spawning stocir has as yet been demonstrated for the other major stocks of herring in the lforth Sea (the Buchan and Bank stoclis) and in the Horwegian Sea (the Horwegian spring spawing herring). However, within the range of population sizes for which data have been available for these stocles, a relationship between the spawaing potential of the parent stock and subsequent year-class strength is difficult to trace due to the variation in the nomally hinh natural mortality of the very young stages.

In the present paper year-class strength as adults and before the herring are subject to fishing (at about six months on age) is conpared with the parent stock size. The spawning potential of the parent stock is compared with subsequent larval abundance and figures of nortality for larvae collected in spring of 1968 and 1969 are presented. The predator effect during the esg stage and early larval development is discussed, and some concluding remarts are given on the probability of the spawnins stock to produce numerous year-classes when the stock size fluctuates at the present low level.

material hid meteods

The major part of the data are obtained from:

1) tassing experiments carried out in 1952-1965;
2) samples of herring collected during the Norwegian winter herring and young and adolescent herring fisheries in 1947-1970;
3) O-group fish surveys carried out in 1959-1969;
4) surveys conducted during and subsequent to spawing and hatching in 1953-1970;
5) orficial fishery statistics.

Adult horring

Results of the extensive taşins experiments conducted by the Fisheries Research Institute, Reylsjavir and Institute of Marine Research, Dergen are published by Fridrilssson and Aasen (1950,1952), Dragesund and Jakobsson (1963), Dragesund (1970a). The method used to estimate the adult stock size from tasging experiments has been described by Dragesund and Jalobsson (1963). Istimates available for the period 1952-1965 are given by Dragesund (1970a).

In order to analyse the year by year variations of the spamaing potential, the stock size in tons in difeerent years were converted to numbers of fish by length (Drageswad 1970a). With data on fecundity by length (Barter 1959, Parrisl and Saville 1965) the number of eggs deposited each year could be calculated. The samplins procedure for age, length and weight determination of adult herring during the Norwegian winter herring fis ory (tiee spawing season) is described by Drasesma (1970a).

Young and adolescent herring

The material of young and adolescent herring includes data from acoustic surveys and herring samples. The method used for estinating O-group abundance at about six months of age is described by Dragesund (1970b), where estinates of the year-classes 1959-1965 are also given. For those of 1965-1969 data are available from the intermational O-group fish surveys (Anon. 1966, 1967,1969a,1969b).

The age compositions of young and adolescent herring are from reports published by Dragesund (1963,19700) and from unpublished recorcs available at the Institute on Marine Research, Bergen.

Herring eggs anci larval herring

Herring egss and larvae were collected on surveys covering the coastal banks from Stad to Lofoten. Dggs were collected with dredge or obtained from stomach content of haddock and saithe fished with bottom
trawl. In 1968 four and in 1969 five successive larval surveys were carried out frow hatching and during the following five to six weeks. The material of herring larvae collected in $19 \% 0$ is not yet worked up and can not be included in this report.

Oblique hauls were taken with Clarle-Bumpus planiton samplers equipped with silw nets of mesin size 0.50 mat. The sampling depths were 25-5 m, 50-30 mand 75-55 m. The total towing time was 20 minutes, and the towing speed between 1.5 and 2.0 lmots. All samples were preserved. The larvae were counted and measured to the nearest rin below, and sorted into larvae with and without yolk sac, the results being expressed as the number of larvae below $1 \mathrm{~m}^{2}$ of surface (Dragesumd 1970a).

Who countime

Cownting of fish (mainly haddock and saithe) was carried out in 1970 within a limited area off More. The Simrad echo integrator (Qu) in conjunction with a 38 kHz Simrad Scientific sounder was applied. When possible the integrator was calibrated by paper counts. The method applied is described by Ifidttur and IVarien (1960). The integrator readings were converted to fish densities and the number of fish was found by area integration of the denisities.

Resuets

Stocis size

Estimates of the absolute size of the spaming stock of Horwegian spring spawing herring are svainable for a series of sixtevin yoars. In the preseat paper the series whe extended with another eight years. The estimates for the period 1953-1968 are based on tagging experiments (Dragesund and Joinobsson 1963, Dragesund 1970a) and combined acoustic surveys and underwater photormaphy experinents (Fedorov, Trusleanov and Yudanov 1963, Anon. 1969c). The absolute size of the spawing stock during the period 1947-1952 has been derived from catch per unit effort data(the drift net fishery) given by 0stredt (1963). The abundance indices showed that stock size remained at about the same level during this period and was somewhat lover than that which ocourred in the rid1950s. The average abundance figure for the stock size during the period 1947-1952 was about 35 per cent of the averase figure for the years 1954-1956. The spaming stocl sizes for 1969 and 1970 are derived from data in the report of the Atlantomeandian Herring Working Group (Anon. 1969c) applying a total mortality coefficient of $Z=0.44$. Pigures of tico absilut size of the spaming stocls for the period 1947-1970 are given in Table 1.

Table 1. Spaming stock size in millions of metric tons during the period 1947-1970.

Year	Tagsing experiments	Acoustic surveys, underwater photography	Deduced figures	Mean
1947			10.7	10.7
1948			10.7	10.7
1949			10.7	10.7
1950			10.7	10.7
1951			10.7	10.7
1952			10.7	10.7
1953	12.5			12.5
1954	12.2			12.2
1955	13.9			13.9
1956	12.0			12.0
1957	9.4			9.4
1958	6.6			6.6
1959	5.0	6.0		5.5
1950			4.5	4.5
1961			3.5	3.5
1962		2.5		2.5
1963		2.9		2.9
1964	5.0	3.3		4.3
1965	7.7	6.8		7.3
1966		6.5		6.5
1967		4.0		4.0
1968		2.0		2.0
1969			1.3	1.3
1970			0.9	0.9

The stock size was on a relatively high level in 1947-1956. From 1957 onvards a decrease in the stoclr took place and this continued until 1962 when it was about 2.5 million tons. In the following three years the stock increased frow 2.9 million tons in 1963 to 7.3 million tons in 1965. From 1966 to 1970 a rapid decrease in stock size took place. The estimates for 1963-1965 do not include the component spawing at Loroten, and the total spawning stock these years, therefore, is underestimated.

The spawing potential of the stock is a function of the size of the spawning stock. However, fecundity increases with length and weight of the fish (e.s. Parrish and Saville 1965, Jatrobsson et al. 1969) and thus the spawning potential of the stock is a function both of the
number and the length distribution of fish. Preliminary figures of the spawning potential for the spawning seasons 1947-1969 are given in Figs. 2 and 3.

Year-class strength

Dstimates of year-class strength for adults are complicated by the wide range of ages over which individuals of a given year-class attain sexual maturity. However, kowing the size of the spawing stock, an estinate of year-class strength can be obtained by calculating the abundance of the year-class at six years, when most of the year-class has entered the adult stock (Dstvedt 1953, Dragesund 1970a). The 19651969 year-classes had not reached the adult stage (six years of age) in 1970 and canot be compared with the previous year-classes in the adult stock.

By calcuiating year-class strength at an age of six years the effect of fishing on the immature herring is not measured in the year-class strength estimates. A fishery which is of considerable importance to the popuiation dynamics of the Horwegian spring spawning herring is carried out on young and adolescent herring in Norwegian coastal waters. This fishery is divided into two components, (1) that based on the small-herring,i.e. mainly 0 - and I-group with the former predominating and (2) that based on the fat-herring, i.e. I- to IV-group herring with the II- to III-group preconinating. The effect of these fisheries on recruitment to the adult stock has been discussed by several authors (e.g. Marti and Fedorov 1963, Devold 1963, Dragesund 1970b). Drasesund concluded that the fishery for 0 - and I-group herring (the small-herrinor fishery) carried out in the Norwegian fiords in 1959-1964 did not have a primary effect on the recruitment to the year-class strength as adults. This is mainly due to the fact that the fjord population is only a part or the total 0- and I-group population. Fowever, in the period 19651968 a considerable increase in the exploitation of both small- and : fat-herring took place as the fishery was extended into the open sea. This resulted in a narked reduction of the 1963 and 1964 year-classes berore they entered the adult stock. The effect is also expected to be significant for the 1965-1968 year-classes, though it should be stressed that these year-classes were extremely poor at the o-group stage.

Investigations carried out by Dragesund (1970b) showed that a close correlation existed between the abundance of O-group herring (at about six months of age) of the 1959-1962 year-classes and subsequent abundanco. O- अroup abuadance estimates are available for the 1959-1969 yearclasses, whereas direct estinates of year-classes prior to these are lacking. Assuming that a correlation exists between the abundance of O-group herring and subsequent year-class strength, a back calculation can be made for the 1950-1958 year-classes, provided the exploitation is know for the year-classes as small-herring.

The variation in exploitation of scall- and fat-herring can be measured by taking the ratio between catch at different stages during the young and adolescent phases and the total echo abundance of ongroup herrine (Dragesund 19706). In Fis. 1 is shown the variation of exploitation of small-herring for the 1959-1968 year-classes and of fat-herring for the 1959-1964 year-classes. It is clearly demonstrated that poor year-classes were nore heavily exploited than the rich ones as smallherring. The major reason for the higher exploitation of poor yearclasses (e.g. those of 1961 and 1962 compared with those of 1959 and 1960) is ascribed to the different distribution pattern. In 1959 and 1960 o-group nemring had an oceanic distribution and only a minor part of the 0-Group population entered the fjords of northerm Norway. In 1961 and 1962 the distribution was more restricted to the coastal areas, and a greater portion of the total o-group population was present in the fiords. It is assumed, therefore, that in most of the years during the 1950s, when poor yearmclasses occurred these had a coastal distribution comparable with those of 1951 and 1962, wiereas that of 1950 had a similar distribution to the year-class of 1959.

Then back calculating the abundance of o-group herring, therefore, the average ratio between the catch of small-herring and echo abundance for the 1961 and 1962 year-classes (ecual to 5.43) was applied to the 1951-1958 year-classes.

$$
\begin{equation*}
\frac{\text { Catch }}{\text { O-group abuadance }}=5.43 \tag{1}
\end{equation*}
$$

and the 1959 year-class (equal to 0.85) to that of the 1950 year-class

$$
\begin{equation*}
\frac{\text { Catch }}{\text { O-group abuncance }}=0.85 \tag{2}
\end{equation*}
$$

Khowing the catcin as small-herring the abundance is estinated from expressions (1) and (2). The results are given in Table 2. It is reasonable to assume that the abundance of the 1950 year-class is underestimated compared with that of 1959 by using this method. This is indicated by the higher abundance at six years of age and by the fact that the catches in tons subsequant to the smali-herring stage was about 1.5 times greater for the 1950 year-class.

Table 2. Catch of small-herring for the 1950-1968 year-classes and estimated abundance of 0 -group herring (explanation in tire tert)

	Catch in thousands of tons	O-group abundance
1950	270	318
1951	175	32
1952	215	40
1953	180	33
1954	135	25
1955	90	17
1956	127	23
1957	115	21
1958	117	22
1959	277	326
1960	267	147
1961	169	38
1962	94	15
1963	121	54
1964	102	75
1965	30	9
1966	136	23
1967	12	4
1968	9	2

Stock and recruitment

In Fis. 2 is plotted the spawaing potential of the parent stock for the period 1947-1964 against the resulting year-class strength at six years of age. Similarly the spaming potential for the period 1950~ 1969 is plotted against year-class strength at the O-group stage (Fiร, 3)

No firm conclusions can be draw from the diagrams about the relationship between parent stock size and the abundance of the resulting year-class. They may indicate that in some years within the period considered year-class strength was affected by the parent stock. However, in most of the years, year-class strength was determined by other factors which conpletely ruled out the effect of the parent stock. Thus, in at least twelve of twentythree years during the period 1947-1969 the size of the parent stock has apparently not been the prifary factor
controlling subsequent year-class strength. In years when abundant year-classes were produced as in 1950 and 1959 other factors may have given rise to favourable conditions of the progeny.

Different factors considered to be of importance in determining year-class strength of Norwegian sprins spawins herring have been discussed by Dragesund (1970a). Strong year-classes seened to occur when a combination of the following conditions existed:

1) widespread distribution of spamins;
2) long duration of the spawning period;
3) a rapid dispersion of larvae from the spawning grouncis.

The coincidence in tine betreen the occurrence of suitable food and hatching of herring larvae is assumed to be the most important exviromental factor controlling year-class strength during the early larval development. The gradual northward displacenent of the main spawning centre during the last decades probably has increased the importance of the tining factor, since only two definitely rich yearclasses ocourred during the period 1947-1965, namely those of 1950 and 1959.

At present the spaming stock size is at a very low level and sone further considerations conceming the stoclr size and the abundance of the resulting yrear-classes of 1967-1969 are given in the following chapters.

Stock size and larval abunamee

Although no exact estimates are available for the size of the spawning stocks in 1959 and 1970, it is obvious that the size continued to decrease fron 1968 onwards due to lack of recruits. It is reasonable to assume that the stock sizes in 1969 and 1970 were of the order of 1.3 and 0.9 million tons respectively (Table 1).

Larval abundance estinates of the 1959-1965 year-classes just after hatching sugeest that the variation in the size of the spawing stock was reflected in the larval abundance ingures (Dragesura 1970a). Fowever, the sampling procedure was not satisfactory for reliable abundance estinates during that period. In the years 1967-1970 much greater efioct was devotec to sampling of hermins larvae and the quantitative distributions according to length in the different periods for 1968 and 1969 are shown in Figs 4 and 5 . The results of the investigations carried out in 1967 are published in a pravious report (Dragesund and Takken 15\%). In contrast to the years of 1963-1966 no najor spawing was observed in the Lofoter region in 1967-1969. The spawning took place off Mare-Trondelag with the centres off Ona-Grip and Halten. The main spawing occurred $10-15$ Karch, corresponding to a peak of hatching in the first week of April (Figs. 4 and 5).

In Fig. 6 is show the abundance of larvae in the different periods of sampling by integrating the density of larvae within the isolines of larval abundance drawn in Figs. 4 and 5 . The diagrans show two striking features, namely an wnexpected low abundance of hatched larvae in 1969 compared with 1968 and a sigmificant lower larval mortality in 1969. The reduction in spaming potential from 1968 to 1969 was in the order of 30 per cent, wiereas the reduction in number of newly hatcheci larvae was 85-90 per cent. Tris might be explained by a mariredyy higher mortality during the incubation period in 1969 than in 1968, or the stock might have spawned in other areas. The fomer explanation is the rost reasonable.

Lea (1930) showed that thick egg layers on the Norwegian spawaing growncis resulted in high rortality. According to Dragesund and Nakken (mpublished) no such thick layering of egss could be found in 19671970 and the layering was probably of sigmificant inportance to the mortality. Also few unfertilized egss were found during the same period.

During the spawing seasons in 1967-1970 the relative inportance of the predator effect seened to have increased. Gadoid fishes (haddock and saithe) have been feeding heavily on herring roe. In Table 3 sone prelininary figures for the number of eggs observed in the stomachs of haddock and saithe are show.

Table 3. Number of herring eges in stomachs of haddocls and saithe in 1969 and 1970^{*}.

Year	Racdock			Saitine		
	Ho. of fish invest.	Length range $\left(\sigma_{L}\right)$	Average no. of escs	No. of fish invest.	$\begin{aligned} & \text { Lengtin } \\ & \text { range } \\ & \text { (cm) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Average } \\ & \text { no. of } \end{aligned}$ egss
1969	20	46-60	34200	2	50-80	49000
1970	13	40-70	24200	7	49-86	21100

* Tre figures are preliminary.

In the winter of 1970 the number of fish present within a linitod locality in the main spawning area ofr ona-Grip was counted. It is assumed that the survey grid covered about one third of the spawnina centre off Ona-Grip (Fis̃.7). Provided tiat a similar or somewhat smaller area was located off Falten (say two third of that off OnaGrip) and that the density of fish were the sane, a total number of $2.10^{7} \times 5$ was feeding on herring roe in 1970 . About 30 per cent of the haddock and 15 per cent of the saithe in the trawl catches had herring
roe in their stomachs. The nurber of fish counted was splitted in haddock and saithe according to the ratio of the two species in the trawl catches within and just outside the grid of counting, i.e. 83 per cent of the fish were haddock and 17 per cent saithe. Assuning that the fishes are filling their stomachs once per 24 hours during the incubation period (i.e. about 20 days) a total number of 3×10^{13} herring roe was eaten by haddocle and saithe. This corresponds to about 40 per cent of the spawning potential in 1970.

Investigations carried out in 1968-1970 showed that spawning took place almost in the same areas these years. Thus, provided that a simiIar quantity or eggs were consumed by haciock and saithe in 1968 and 1969 this corresponds to about 15 and 20 per cent of the spawning potential respectively. It is reasonable to assume that the reduction in number of egss spawned in 1969 was even greater than indicated in the present estimates. In addition to the larger fishes a sigmificamt number of I- and II-group haddock and saithe was feeding on Ferring roe both in 1969 and 1970. These are not included in the counted number of fish above.

Larval mortality

The size of a larval stock at a given time t can be expressed as

$$
N(t)=H_{1}(t)+I_{1}(t)+\mathbb{N}_{1}(t)+\ldots \ldots \text { (3) }
$$

where I_{0} is the length at hatching and I_{1}, I_{2}.. etc, are the subsequent length groups in millimeter.
When sampling is carried out at different time intervals t_{1}, t_{2}, t_{3}... etc., the following expressions according to length are established

$$
\begin{aligned}
& I\left(t_{1}\right)=N_{I}\left(t_{1}\right)+I_{I_{1}}\left(t_{1}\right)+I_{I_{2}}\left(t_{1}\right)+\ldots \\
& N\left(t_{2}\right)=N_{I_{0}}\left(t_{2}\right)+N_{I_{1}}\left(t_{2}\right)+H_{I_{2}}\left(t_{2}\right)+\ldots \ldots \\
& M\left(t_{3}\right)=I_{I_{0}}\left(t_{3}\right)+H_{I_{1}}\left(t_{3}\right)+H_{I_{2}}\left(t_{3}\right)+\ldots \ldots \\
& \vdots
\end{aligned}
$$

The time variation of the number of larvae within one length group is detemined by:

1) the rate of hatching;
2) the srowtis rate (k);
3) the mortality (m).

It is assumed that spawning is talring place in a linited area within a certain time interval. Axter an incubation time of, say, three weeks the larvae start to hatch. The duration of hatching and the growth rate will determine the time interval larvae of length $1_{0}, I_{1}, I_{2}$ etc. ocour.

When larval sampling starts at the time when the first larvae are hatched azd continues until hatohing is finished, expressions (4) will have the following form

$$
\begin{aligned}
& \begin{array}{l}
I\left(t_{1}\right)=I_{I_{0}}\left(t_{1}\right)+0+0+\ldots \ldots \ldots \\
I\left(t_{2}\right)=M_{1}\left(t_{2}\right)+H_{I_{1}}\left(t_{2}\right)+0 \quad+\ldots \ldots \ldots \ldots
\end{array} \\
& H\left(t_{3}\right)=I_{I_{0}}\left(t_{3}\right)+I_{1}\left(t_{3}\right)+I_{1}\left(t_{3}\right)+\ldots \ldots \ldots \text { (s) } \\
& N\left(t_{4}\right)=0+I_{I_{1}}\left(t_{4}\right)+I_{I_{2}}\left(t_{L_{4}}\right)+\ldots \ldots \ldots \ldots \\
& \text { : } \quad \text { : } \quad \text { : }
\end{aligned}
$$

At the tine t_{4} all the larvae are hatched. Fron expressions (5) it is possible to obtain figures of both growth rate and mortality. The growth rate can be estimated from the distance between the peaks of the longth distributions according to tine. The mortality can be found from the reduction in number fron one length group to the next

where the integration interval T is large enough to ensure that ${ }^{I f} I_{1}(0)=0$ and $I_{1}(T)=0$. Then expression (6) gives an average mortality between length groups. Usually the survey tine is limited and the observation series too short to get II $(T)=0$ at least for the larger length groups. However, when the growth rate is lnown the nortality can be estimated by using the growth rate to determine the integration limits.

where t_{2} and t_{4} are determined from

$$
\begin{equation*}
\left(t_{4}-t_{3}\right)=\left(t_{2}-t_{1}\right)=\frac{1}{E}\left(I_{2}-I_{1}\right) \tag{8}
\end{equation*}
$$

A sinilar method was used by Dragesund and Naicken (1970) for estimating larval mortality in 1967. It should be noted that a series of mortality estimates is obtainable by this method when successive and frequent synoptic larval abundance figures are available.

The number of larvae according to length and time in 1968 and 1969 is given in Table 4. The numbers are calculated from the density charts in Figs. 4 anc 5.

Table 4. IVurber of larvae $x 10^{-8}$ according to length and time

Year	Period	8	9	10	11	12	13	14.	15	16	17	Total
1968	3-8 Apr.	11	711	475								1279
	17-21"			1	2	61	85	31	8			188
	21-24					10	28	38	33	2		111
	24-29							6	14	7	1	28
1969	2-5 Apr.	4	32	15	1							52
	7-15 "	3	7	31	18	9	1	1				70
	15-19"		2	4	1	13	5	1				26
	20-26"		1	0	3	1	12	6	16	1	1	41
	28.Apr.-											
	7 L 1ay				. 29	0.42		0.29			0.32	2

Due to the gap in observations between 5 and 19 April in 1968 no mortality between length group can be estimated. An average growth rate (k) of 0.29 men day between 9 and 13 mm is found for this year applying expression (8), where I_{1} and I_{2} refer to 9 and 13 mm respectively and t_{1} and t_{2} to 5 and 19 April. The reduction of total nuaber of larvae from 5 to 19 of April is estinated from Fig. 6 and anounted to 86 per cent. This figure can be taken as a minimun figure of larval nortality (m) between 9 and 13 m , as hatching obviously occurred also later than 5 April.

Fis. 3 shows the numer of larvae accorcing to length and tine in 1969. An average growth rate of 0.29 mm is found between 9 and 14 mm. Hortality estimates were obtained fron equation (7) by area calculation in Pi天. 8. The results are siven in Table 5.

Table 5. Mortality estimates of herring larvae between different length groups in 1969.

	Relative figures or larval	Fortality between Length in man
10	10 mand successive	
11	100	groups in per cent
12	49	
13	38	51
14	32	62

DISCUSSION

The survival of eges spamed and of larvae hatched in 1967-1969 is illustrated in Fig. 9. A reduction or ≥ 95 and ≥ 99 per cent respectively took place in 1967 and 1969 from spawning to hatching. Figures on mortality of herring egss during the incubation period are given by Rumstrom (1941) , Baxter (1968), Hempel and Herpel (1968). The mortality was low and varied mainly between 4 and 12 per cent. Similarly Dragesund and Jamken (umpubished) observed few dead and unfertilized esgs on a spawhing site near Grip in 1968. Hone of these results inciude montality at the natching stafe and mortality caused by predation.

During the spawing seasons in 1967-1970 tre predator effect was most linely by far the most important factor and the relative inportance of this effect has increased during this period (Fig. 9 A). The echo counting in 1970 was carried out within a very limited area during one miglt and the results are probably inaccurate. In addition to the larger fish a significant number of swaller haddock and saithe was feeding on herring roe both in 1969 and 1970. These are not included in the number of fish counted, and the result of the echo counting is therefore most linely an underestimate. The counting indicates that the number of egss consumed by the fishes might be of the magnitude of half the spawing potential and suggests that the large mortality found during the incubation period was reasonable. A further reduction of the larval population of the order of $70-95$ per cent during the early larval development ($9-13 \mathrm{~mm}$) will add to this effect.

To discuss the possible obtainable magnitude of year-class stremgth fron the larval populations in 1967, 1960 and 1969 the mumber of larvae four to five weeks after hatcking is compared with the number of herring at different stages from six months onvards for the 1959 and 1963 yearclasses. Tentative estimates for the abundance (converted to number of herring) at different ages for the 1959 and 1963 year-classes are obtained from data given by Dragesum (19700). In these estimates the loss due to fishins during the young and adolescent phases is taken into account (Fig. 9 B). The following amual instantaneous natural mortality coefficients have beeri used: $V_{1}=2.76$ fron October in the 0-group to April in the I-group stage, ${ }^{1} 2=0.69$ frow lay in the I-group to April in the II-group stage and $\mathrm{I}_{3} \ldots \ldots \mathrm{I}_{6}=0.24$ from lay in the II-group to 1 January in VI-group stage.

It is obvious that the abundance of the larval populations present in the sea four to five weens after hatching in 1967-1969 were too low to produce a numerous year-class of the magnitude of that spawned in 1959. Iven a year-class life that of 1963 , which was in order of one tenth of that in 1959 (Table 2), is unlikely to occur.

The number of larvae hatched in 19% was negligible and the predator effect in 1970 was probably even greater than in 1969 (Dragesund and Nakken unpublished). It is therefore possible that with the present high predator effect and the low spawing stock size the larval population may be too low to produce mumerous year-classes.

The diagrans of Figs, 2 and 3 may be used to discuss the probability of obtaining numerous year-classes with the present parent stock size. During the period 1947-1969 it is likely that the best survival conditions for esfs, larval and postlarval herring existed in 1959. This can be seen by taking the ratio between year-class strength and spawaing potential. Grouping these ratios in four taking that of the 1959 equal to one, an illustration of the distribution of the survival ratios during the period 1947-1969 is cotained (Fio. 10).

In eishteen of twentythree occasions the ratios between year-class strength and spawing potential foll in the group $0-0.25$, and only in one of twentythree in the group 0.75-1.0. Tine probability, therefore, in the following years to obtain survival conditions as favourable as those in 1959 seens low. Iven in survival conditions like those in 1959 occur in all of the years 1971-1973 this would result in a spawing stock size (excluding fishing during the young and adolescent phases) of the magnitude of only $2-3$ million tons in late 1970s. With the present low spawning potential and the high predator effect the probability of rebuilding the spawing stock in near future, therefore, seems low. However, better survival conditions than those experienced in the period of observations may of course occur.

SUMIARY

1. Dstimates of the size of the spawaing stock of Norwegian spring spaming herring for the period 1947-1969 are presented. The spawning stock size varied between 13.9 and 2.0 million tons in the period 1947-1968. From 1966 to 1970 a rapid decrease has taken place from 6.5 million tons to about 0.9 million tons.
2. The parent stocl size is compared with subsequent abundance of the resulting year-class at six years of age for the 1947-1964 yearclasses and at six months of age for the 1950-1969 year-classes. The results incicated a relationship between the parent stock size and subsequent abunciance of the resulting year-class when favourable condition for spawing and hatching existed. Fowever, in most of the years, year-class strength was determined by other factors which completely ruled out the effect of the parent stocle size, when this was above a certain level.
3. The spawains potential of the parent stoci for the years 1967 m 1969 is compared with subsequent larval abundance at hatching. A reduction of ≥ 95 and of ≥ 99 per cent respectively toolr place in 1967 and 1969 fror spaming to hatching. Most of this reduction is ascribed to predation by haddock and saithe.
4. Estinates of larval mortality during tie early larval development (9-13 mi) are given. These varied between 70-95 per cent.
5. Tith the present low spaming potential and the high predator effect the probability of rebuilding the spaming stock in near future seems low.

AnLSTROL, T.I. 1954. Distribution and abuncance of egs and larval populations of the Pacific sardine. Tishery 3ull. Tish. Wildi. Serv. U.S., 56:33-140.

T U. : . 1965. Kinds and abundance or Pishes in the California Uurent region based on eรs and larval surveys. Rep. Calin. coop. oceanic Fist. Invest., 10:31-52.
ANON. 1965. Report of assessment group on herring and herring fisheries in the northeastern Atlantic. Coundieet.int. Cown Paplor. Sea, 1965(1): 1-40. [lineo.]

- 1966. Preliminary report of the joint international onsroup fish survey in the Barents Sea and adjacent waters August/ September 1966. Voun.lieet.int. Courh. Dxplor. Sea, 1965 (12:23): 1-9, 13 riss. [Fimeo.]
- 1967. Preliminary report or the intemational 0-group rish survey in the Barents Sea and adjacent waters August/ September 1967. Coun. leet.int. Soug. Sxplor. Sea, 1967 (I:31): 1-8, 14 figs. [limeo]
- 1969a. Freliminary report of the G-sroup fish survey in the Barents Sea and adjacent waters in kugust-September 7968.
 Lineo.
- 19690. Prelininary report of the O-group fish survey in the Barents sea and acjacent waters in fugust-September 1969. Com, Keet, int. Com, Mrplor. Sea, 1969 (F:34): 1-5. 15 fiss. [Vimeo.]
- 19690. Report of the worining group on Atlantomscandian herring. Coum. Leet.int. Coun.Explor.Sea, 1969. (Fi:5): 1-25, 5 figs. 3 charts. [Iimeo.]
BAETER, I, $\underset{F}{ }$. 1959. Fecundities of winter-spaing and sumer-autum

- 1968. Developnent rates and nortalities in Olyde nerring egss. The Biology of early Stages and Recruitment Nechanisms of
 4 tabs. [rimeo.]
BEVRROM,R.U.E. and EOLT,G.J. 1957. On the dymaics of exploited Sish populations. Fisiery Thvest., Lond., Ser. 2, 19: 1-533

BLAMridg, J. 5.1965 . The feeding of herring larvae and their ecology in relation to feeding. Rep. Calif. coop,oceanic Fist, Invest.: 10:79-83.
BURD,A.C. and EOLPORD,3. 1960. Decline ia the abundance of Downs herring larvae, The Biologion early Stages and Recruitment Lecianisms of Eerring. Int. Soun. Explor.Sea, Stmp., Copenh., 195G(1.1): 1-2, 2 figs. [finco.]

CUSEITG, D. 1962. Recruitwent to Montl Sea herring stocks. Fisieny Invest., Lond., Sex. 2, 23:43-71.

- 1968. The dependence of recruitment on parent stocls in different groups of Tishes. Coun. Feet. Fnt. Com, Explor. Sea, 1960 (Gen: 10): 1-6, 2 figs. [Himeo.]
DEVOLD, F. 1963. The Iife history on the Atlanto-Scandian herrins. Rapp.P.-v. Réun. Cons. pern, int. Ixplor. Fer, 154:98-108.
DRAGESUID,0. 1963. The Horvesian "smali" and "Fat" herring fishery size and afe composition of the catches. Rapp. P. -V. Réun. Cons.perm, int, Explor. Ler, 154:118-122.
- 1970a. Factors influencing year-class strength of ITorwegian spring spawning herring (Olupea harengus Limé). Iistbir. Gre. Ser. EavUnders., 15:381-4:50.
-: 1970\%, Distribution, abundance and mortality of youns and adolescent Morvegian spring spaming herring (olupea harangus Liné) in relation to subsequent year-class strength. Fismir. Sler.Ser.TavUnders. : 15:451-556.
 mortality of the IUorvegian sprins spamors as incicated by tagsing experiments in Icelandic wateas. Rapp. P. -V.
Réun. Cons.perm.int. mpior, Rer, 154:83-90.
DRAGESUTD, 0 and MAFICHI, 0 . 1970. Fortality of herring during the early Iarval stage in 1967. Rapp. P. -v.Réun. Cons. Derm.int. 3xplor. Fer (In press).
PEDOROT,S.S., MRUSIFAMOV, J.D. and YODANOV F.G. 1963. Cn the stoct size of the Atianto-ncandian Eerring. Sons. Fect.int. Soun. Buplor. Sea, 1863 (79): 1-5. [limeo.]
FRIDRIEGSOH,A. and AASEIT,C. 1950. The INorvegian-Icelandic herriag taging experinents. Report IIo.1. TiskDir.Sler.Ser. Eavinders., $2(11): 1-43$.
FRIDRIKGSOIT, A and AASEI, C. 1952, The ITorwegian-Icelandic herring tagging experinents. Reportilo.2. Rit. Fiskideild.: 1 (1): 1-54.

HENPDI,G, and BLAMPR,J.F.S. 1963. On the condition of herring lamve, Rapp. P.-v. Réuz. Cons. perm.int. Explor. Fier, 154:35-4:0.
TMMPE, I, and FIMPDL,G. 1968. An ostimate of mortality in herring esss. The Biology of early Stages and Recruitment Wechanisms of Eerring. Int. Coun, Explor. Sea, Symp., Copenn., 1960 (32): 1-5, 1 tab.,2 fiss. [Iimeo.]
HOLDEIT, $\mathrm{H} . J .1968$. The rational oxploitation of the Scottish-IJorwogiam stocks of spurcons (Squatus acantrias L.). Wishory Invest., Lond., Ser. $2,25(8): 1-28$.
 of the Icelandic herring stocks. Rit. Fiskideild., 4(4): 1-15.

LiA, 12. 1930. INortality in the tribe of IIorwegian herring. Rapp, P, -V. Péw. Cons.perm. int. Dxplor, Ier, 65: 100-117.

KARTI,Tu.Yu. and FDDOPOV, 5.5 1963. Features of the population dynamics of marine herring as seen from the ftlantoScandian stocl. Rapp. F,-v. Séun. Cons.Dern,iat. Pyolor. POI, 154:91-9\%.

 1-8. [Vimeo.]
FAROISH,B.B. and GAVILD, A. 1965. The biology of the ITorth-east. Atlantic herring popuiations. Cceanogr, mar. Biol., 3: 323-373.
RICRER, W. 1954. Stock and recruitment. J. Tish.Res.Bd Can. 11:559623.

RUITSTMGE, 0.1941 . quantitative investigations on herring spaming and its yearly fluctuations at the west coast of ITorvay. FiskDir.Sir. Ser. EavUnders., $6(3): 1-71$.
TAYEOR,T.T. ©. 1963. The stock-recruitment relationship in British Columia herring populations. Rapp. P. - . Réun. Cons. pora.int. Explor. Wer, 154: 279-292.
UIJLSTRA, J.J. 1963. On the recruitment mechanism of North Sea autum spawning herring. Rapp.P.-V, Rém, Cons.perm,int. Ezplor. Wer, 154: 198-202.
GSTVEDT, 0.J. 1958. Some considerations conceming the nomogeneity of the Atlanto-Scandian herring. Rapp. P. -v, Réun, Cons. perm.int. amplor.for, 143:53-57.

- 1963. Catch, effort and composition of the Vorvegian winter herring fishery, Rapp. P, -V. Réun, Cons.pern, int. Erplor. Iica, 154: 109-117.

Fig. 1. Measure of exploitation indicated by the ratio of catch in tons/o-group echo abundance (A) during the small-herring stage for the year-classes 1959-1968 and (B) during the fatherring stage for the 1959-1964 yearmclasses.

Fig. 2. Relationship between the spawning potential of the parent stock and the subsequent year-class strength at six years of age for the $1947-1964$ year-classes. The respective yearclasses are indicated inside each circle.

Fig. 3. Relationship between the spawing potential of the parent stock and the subsequent year-class strength at about six months of age for the $1950-1969$ year-classes. The respective year-classes are indicated inside each circle.

Fig. 4. Grid of stations (left) and quantitative distribution of larvae according to length during the different survey periods in 1968. Equal levels of larval abundance are indicated by isolines. The figures represent number of larvae below $1 \mathrm{~m}^{2}$ surface.

Fig. 4 (continued)

Fig. 5. Grid of stations (left) and quantitative distribution of larvae according to length during the different survey periods in 1969. Equal levels of larval abundance are indicated by isolines. The figures represent number of larvae below $1 \mathrm{~m}^{2}$ surface.

Fig. 6. Estimated total number of larvae during different periods of sampling in 1968 and 1969.

Fis. 7. Echo survey grid where counting of fish was carried out in 1970. Botton trawl stations are indicated.

Fig. 8. Number of larvae in each mom group as a function of time in the area surveyed in 1969. The 8 and 9 mm group are pooled.

Fig. 9. Survival of recruits (A) during the incubation period and early larval development in 1967-1969 and (B) of the 1959 and 1963 year-classes from six months to six years of age.

Fig. 10. Histogram showing the frequency of the ratio between year-class strength (measured at six years of age for the 1947-1950 year-classes and at six months of age for the 1951-1969 year-classes) and spawning potential.

[^0]: +) Institute of larine Nescarcin, Bergen, Torbay.

