C.M.1970/H:6

Pelagic Fish (Northern) Committee
x) General Secretary, ICES: Chariottenlund Slot, DK-2920 Chariottenlund, Denmark.

CORTIENTIS

Page
I. Terms of Reference and Participation 2
II. Material and Agenda 2
III. The Fisheries:
a) Development and Changes 3
b) Landings 4
c) Catch per Unit Effort 6
d) Bffort 7
IV. Herring stocks:
a) Age Compositions 8
b) Mortality Rates 11
c) Witimates of Stock Size from Tagging 12
d.) Laxval Abundance 12
e) Recruitment 14
f) Growth Rate 15
V. Discussion 15
VI. Conclusions I8
VII. Recomendations 21
References $2 I$
Tables I-6 22
Kxplanatory Notes to Tables 1 - 6 29
Tables 7-23 32
Figures I-4 45

Report of the North Sea Herring Assessment Working Group

I. Terms of Reference and Participation

The Liaison Committee of ICBS, acting on a general concern expressed at the NFAFC Meeting in May 1968 about the North Sea herring fisheries, invited the Pelagic Fish (Northern) Committee of ICES to set up a Working Group to review the present state of the Horth Sea herring stocks and to discuss measumes for the improvement of the fisheries exploiting them. At its meeting in Copenhagen in October 1968 the Pelagic Fish (Northern) Committee of ICES appointed such a Working Group with Mro Jo Jo Zijlstra (Netherlands) as Chaiman. At its next meeting in Dubin in September-October 1969, after having discussed a preliminary report of the Working Group (ICES, C.M.I969/H:4), the Pelagic Fish (Northem) Comnittee decided that a second meeting of the Working Group was necessary, to allow completion of its work.

Member States nominated the following scientists:-

Mrin. H. Ackefors	Sweden	6-11 January and 7-12 December 1959
Mri.A. C. Burd	U.K.	6-11 January and 7-12 December
Dr. S. S. Federov	U.S.S.R.	6-11 January and 7-12 December
Wirs. S. Haraldsvik	Norway	6-I1 January and 7-12 December
Prof. G。Hempel	Germany	6-11 January 1969
Mr. A. S. Naikov	U.S.S.R.	$6-11$ Jomuary and 7-12 Decomber
Mr.A. Haucorps	France	6-11 January and 7-12 Deceriber
Mri. J. Molloy	Ireland	part of 7-12 December 1969
Mr. K. Popp Madsen	Denmark	6-11 Jonuary and 7-12 December
Dr. J. Popiel	Poland	
NIT. K. H. Postuma	Netherlands	6-I1 Jenuary and 7-12 December
Mr. A. Saville	U.K.	6-11 Jamuary and 7-12 December
Dr. K. Schubert	Germeny	6-11 January
Dr. A. Schumacher	Germany	7-12 December
ITr. J. Jo Zijlstra	Wetherlands	6-11 Januaxy and 7-12 December

Both meetings were attended by Nr. J. MøIler Christensen, in his capacity of Secretary to the Liaison Coramittee.

The Group met between 6 and 11 January 1969 and between 7 and ip Deoeminer Ig69 at ICRS' Headquarters, Charlotteniund Slot, Charlottenlund. It was noted with regret that Dr. J. Popiel was unable to attend either meeting.

II. Materiai and Agenda

Postower changes up to 1960 in the herring stocks and in the fisheries for Morth Sea herring were reviewed by former Working Grouns of ICRS (Anon., 1965). Working Groups of the Liaison Committee presented reports covering the years up to 1963, which were submitted to NRAFC at its meetings in May 1964 and May 1965, respectively (Anon., 1966). Moreover, a Working Group met early in 1967 to consider plans for an experimental closure of the fisheries in the Southern Bight and the Blocen Area, the Report of which was sulomitted to NEAFC at its meeting in May I967 (Anono, 1967)。

The present Working Group mainly considered the developnent in the stocks and fisheries in the North Sea since 1960 and took note of the findings of the former Working Groups on North Sea herring.

The material available for consultation by the Working Group, covering mainly the period 1960-68, varied considerably in quantity and quality between areas and fisheries.

Catch statistics and data on the biological composition of the units from the southem and central ITorth Sea were sufficient to follow the develon ments in the stocks and fisheries. For the northerm North Sea and Skagerak, which in the I960's became the areas of major importance, the available material was generally less satisfactory. There were for instance serious doubts concerning the allocation of the landings for some countries to different areas and even about the actual quantity landed. With some exceptions the catch-effort statistics were found to be poor in the northern areas and, when available, generally did not refer to the major fisheries. Similar onjections applied to sampling, again with some exceptions. A high proportion of the samples were taken from the catch of fisheries of minor importance or from research vessel catches, and samping intensity bore no relation to the size of the landings from the areas. These inadequacies of the material sexiously hampered an assessment of the situation.

This Report diverges from the approach in the Liaison Committee Wowking Groups of 1964 and 1965. At that time the concem expressed in NEMFC centred mainly on the fisheries and stocks in the Southern Bight and eastern part of the Finglish Channel (Downs herring). In order to investigate the causes of this decline much attention had to be given to the compiicated stock structure of North Sea herring.

At the present time, the concern about the North Sea herring and its fisheries is much more general, involving the whole of the North Sea and the Skagerak area. The Working Group, therefore, decided to consider the Horth Sea and Skagerak, for this assessment, as a whoie, paying Iittle attention to the stock structure. Justification for this approach is to be found in the results of tagging experiments, which indicated connections between the herring groups, fished in all centrai and northern Horth Sea areas, including the Skagerak. (Anon., 1966). Moreover, the material available did not allow a detailed analysis of the situation on a stockseparation besis.

The Assessment Group considered the state of the fisheries, the yields, the catches per effort and effort development (Section III); the herring stocks, their age-composition, mortality rates, stock abundance from tagging experiments and larval data, recruitment and growth (Section IV). In Section V the results of Sections III and IV are discussed, while Section VI gives a conclusion on the state of the herring stocks and fisheries, including some remarks about possible conservation measures.

III. The Fishories

III. a) Development and Changes

The development of the herring fisheries in the North Sea up to Ig63
has been described in a previous report to the Liaison Committee (Anono, 1966), showing a gradual replacement of the old drift-net fisheries by trawi fisheries.

Since the early 60's there have been further major changes in the fisheries. The decline in the drift-net fisheries has continued, particulariy in the central and southern North Sea, where drift-net fishing is now on a very small scale.

The trawl fisheries have changed their nature; the large German trawlers, which in the 1950's formed a major part of the trawling effort have almost completely withdrawn from the North Sea, but the number of trawlers from other countries have probably increased. In the trawling flect there has been a general change from bottom trawling to pelagic or somipelagic pair- and single-boat trawling, which together with the introduction of new acoustic fish-finding equipment (sonar, head-Iine osciliator) led to new fishing tactics and to a greater efficiency of the fishing.

The most striking change in the fisheries, however, has been the introduction of the purse-seine in the North Sea herring fishing, This was started by the Norwegian fleet in the autumn of 1963 in the north-eastom North Sea and Skagerak. The Norwegion fleet extended the range of the purse-seine fishery to the Shetland area in the summer of 1965 and has since been joincd in these areas by purse-seiners of other countries, e.g. Faroes, Iceland, Scotlond and the U.S.S.R.

In addition to changes in fishing mothods there has aiso been a chonge in fishing arca. Figurgs $2 a$ and a show a very approximate picture of the distribution of the catches in the North Sea in the late 50's (I955-56) and the Iate 60's (I965-68), demonstrating a shift iu the main fishing grounds towards the northern edges of the North Sea, to the Shetland area and to the north-castern INorth Sea and Skagerak. The fishing grounds of the Iate 50^{\prime} s, where adult herring was caught in summer and autumn just prior to and during spawning in the central western and southem North Sea, are now of only minor importance. It is likely that the changes in fishing grounds are partly related to the changes in fishing methods, which allowed fishormen to exploit the deeper waters of the North Sea.

III. b) Landings

I. Tables l-8 (p. 22) show landings from the North Sea and Skagerak in the yoars 1947-69. The figures in these Tobles are not comperable with those published in the "Bulietin Statistique" for the same years and areas. The present data have been compiled from different sources (cf. Annex I: Explanatory Notes for Tables l-6 and foot-note on Table le).
2. The total catch of herring in the North Sea and Skagerak has fiuctuated between 0.7 and 0.9 million tons from the begiming of the 50^{1} s until 1963 (Tables la and 1c). It then increased to a peak of 1.4 million tons in 1965, but thereafter decreased to a level of about $1.0-1.1$ million tons in 1966-68. The catch figure for 1969 (Table 1b), 721000 tons, is provisional.

It should be noted that the figures in Table $1 a$ and Table Ic are not directly comparable。 Those in Table la constitute a summary of Tables 2-6, which have been thoroughly checked and corrected by the Working Group members, while those in Table ic are partly derived from the previous report and are known to be incorrect for some countries.
3. Catches from the Skagerak, Division IIIa (Table 2) have increased steadily in the period 1960-64, from less than 100000 tons to 274000 tons. They decreased in 1965 and 1966, but in 1967 and 1968 they again rose to the 1964 level. In these two years, the USSR and Iceland reported herring catches from the Skagerak.

The Swedish caiches in Tabie 2 exciude those catches from the Kattegat which were landed in Denmark (Table 8), but inciude unknown quantities of Kattegat herring landed in Sweden.
4. In the north-eastern North Sea, Division IVa, east of 2° E (Table 3) the catches increased slightly from 1960 to 1963 to about 300000 tons. In I964 and especially in 1965 there was a sharp rise in the catches to over 600000 tons, mainly due to the introduction of a large Norwegian purse-seine fishery in the area. From 1966 to 1968 the catches have declined again to about the 1963 Ievel.
5. In the north-western Horth Sea, Division IVe, west of $2^{\circ} \mathrm{S}$ (Table 4) the maximum catch of almost 300000 tons was also reached in I965. There was a sharp decline in the catches in I967 to about one-third of the 1965 catch, but in 1968 they again rose to a $300000 t$ Ievel. In this area the fluctuations in total catch are also greatly influenced. by ITorway. However, it should be noted that in recent yoars the Faroe Islands, Iceland and USSR have been fishing substantial quantities of herring in the north-western North Sea.
6. In Table 5, the catch data from the central North Sea, Division IVo, have been split into catches of aduit and young herring. The aduit fishery has declined steedily from 228000 tons in 1963 to 58000 tons in 1968. The young herring fishery has fluctuated between 68000 and 150000 tons. While the German young herring fishery decreased sharply from 26000 tons in 1965 to less thon a thousand tons in 1968, the Danish fishery, after a decrease from 109000 tons in 1965 to 54000 tons in 1966, rose to more than 106000 tons in 1968 and to 125000 tons in Ig69 (see Table 7), the highest yield ever recorded.
7. In the southern North Sea and the English Chamel (Divisions IVc and VIId and e, Table 6), the catches which were still almost 100000 tons in 1961 declined to Iess than 10000 tons in 1968.
8. In Tables 7 and 8 the Danish and Swedish landings in Denmark in the years 1960-1969 have been seperated into industrial landings and landings for human consumption. Most of the Danish landings came from industrial fisheries (Table 7). The Danish landings for human consumption have been at a rather steady level in the early 60's, but tended to decrease after 1965, while the industrial landings increased. The increase in industrial landings was rather steady from the northern North Sea fisheries (Division IVa), but was accompanied by large fluctuations in the Skagerak and the central North Sea fisheries (DivisionsIIIa and IVb).

The greater part of the Swedish landings was destined for human consumption (Table 8). There was, however, an increase in the industrial landings after 1963.

III. c) Catch per Unit Effort

In Table 9 (p.33) catches per unit effort are given for those fisherics, for which data are available for the period considered (1955-1968) and in which during this period no radical chonges in gear and fishing technique occurred. This condition Iimited the choice of fisheries from which the data could be derived and resulted in the indices being largely from fisheries, which in recent years have provided only a small proportion of the total catch. With one exception (Bloden fishery) all the fisheries selected are human consumption herring fisheries, which in the past were the rajor fisheries but which land at present only a smail proportion of the total catoh. Although no radical changes took place in the unit of effort in the fisheries used, the possibility cannot be excluded that the efficiency of the fleets changed and probebly increased.

In the southern North Sea both drift-net and trawl catch per effort showed a marked decline. After 1965 the Netherlands trawl fishery in this area virtually ceased.

In the central North Sea the drift-net fishery showed no clear trend in cotch per unit effort up to 1967, when this fishery disappeared. The catch per unit effort in the 1960's for the trawl fishery in this area was much lower than the average value for the late 1950's and shows a further decline in 1968 and 1969 to values below those ever previously recorded.

In the north-eastern North Sea the three sets of data given are not derived from fisheries which take major eatches in the area and are also not completely representative in that they chiefly operate in the northem port of the area. The data of all three fisheries indicate large fluctuations in the actches per effort, with a manked declining trend, particulariy after 1965.

In the north-western North Sea the drift-net and trawl estimates show different features. The drift-net catch per unit effort shows no trend, while the trawl estimates show a marked decline, particularly between I965 and 1967, when the fishery almost disappeared. It should be noted, however, that the drift-net fishery in this area has since 1964 been almost entirely concentrated in the area around Shetland, while in earlier years much of the catch came from grounds south of $59^{\circ} \mathrm{N}$. Finally, in the Bloden fishery for young herring oniy a slight decine in the catch per effort can be observed.

In so far as estimates of catch per unit effort in herring fisheries can be considered as indicative of stock abundance, the data suggest a marked deciine in the herring stock in the southern North Sea since about I961 and in the north-eastern North Sea since 1965. In the north-western and central North Sea the trawl catch per unit effort indicate a striking decline in herring abundance since I965, while the drift-net indices would suggest a more stable situation.

However, as explained, the drift-net indices for the north-westem area may have been distorted by a change in the area fished.

III. a) Effort

Direct estimates of effort, such as the numbers and types of vesseis operating and the amount of herring fishing carried out by them, were not available for several countries. The existing information indicates an increase in purse-seining in the period 1963-1966 and a decine in trawing activity in some countries after 1965.

Indirect estimates of effort have been obtained by dividing the total catches in each area by the catch per unit effort, given in Table 9 , for that area. This method should give fairly reliable results, where the catch per unit effort is derived from fisheries taking an appreciable part of the catch in that area and whose catch composition is similar to the composition of the total catch. These conditions, however, are met only in the southern and central North Sea. In the northern North Sea the catches per unit effort have been derived from the now relatively unimportant fisheries for human consumption herring, so that estimates of effort from that area should be considered with some care. Moreover, in the Skagerak, which yields about a quarter of the total North Sea herring catch, no artch per unit effort estimate was available, and so no estimate of effort can be made. Considering the increase in the total catch in that area between $1960-68$, and the general decline of the catches per unit effort in the neighbouring area, the north-eastern North Sea, a shorp increase in the effort in the Skageralk in the 60's seems highly likely.

Dstimates of effort are shown in Table 10 (0.34) by years and for the periods $1960-63$ and $1964-68$, for the north-westerm, north-eastern, central and southern North Sea - English Chomel and for the Bioden area.

In the southern North Sea effort has decined sharpiy since 1963; the increase indicated in 1968 is likely to be unrealistic. The decline in effort has probably been a continuation of a decline which started in 1955 and which was described in an earlier Working Group Report (Anono, I966).

In the central North Sea fisheries for adult herring the effort fiuctuated up to 1965 and thereafter tended to decine to about haif its former level in the last year (1968), for which estimates are available。 Drift-net and trawl estimates of effort indicate about the same deciine in effort (about 25\%), comparing the periods 1960-63 and 1964-68.

In the north-western North Sea both estimates show no clear trond up to 1964, but a sharp increase thereafter. Comparing the periods 1960-63 and 1964-68, the drift-net estimate wouid indicate an increase of about 3 times, the trawl estimate an increase of about $4 \frac{1}{2}$ times.

In the north-eastern North Sea the, not very reliable, estimates indicate an increase in effort between 1960-68, in particular after 1964. Comparing agoin the periods 1960-63 and 1964-68, the increase in the effort is indicated to be between 1.4 and 4.5 times.

Pinaliy, the effort estimate of the Bloden fishery shows large variations without a clear trend.

In the North Sea as a whole it seems reasonably certain that betweon I963 and I965 effort rose sharply in the northern areas, including the Skagerak. Aftor 1965, particularly in the light of the uncertainties regarding the north-eastern North Sea and Skagerak, it is impossible to define the development of the effort.
IV. Herring Stocks
IV. a) Age Compositions

Attempts have been made to assess the total catches in number of each age group of autum-spawning herring in the different areas of the North Sea and Skagerak. The quality of the age data varied greatly between the different areas of the Horth Sea. The age compositions of the catches in the southern, central and north-western Horth Sea have been based on a scries of samples from the conmercial fisheries supported by considerable quantities of length measurements of the herring in the comercicil catches. The percentage age compositions used for the different area catches are given in Tables II, 12 and 13 ($p .35-36$), together with the mean number of fish per kilo used for converting the totel catch in weight to number.

While the age data refer to the age distribution of autimn-spawning herring oniy, spring-spawing herring are also taken in the catches, in particular in the north-western, north-eastern IVorth Sea and Skagerak. Some estimates of the proportions of spring spawners are given in Table i4 (p .36) . The catch in number from the north-western area has
been reduced by the proportion of spring spawners in the Scottish catches. This procedure was not applied to the north-eastem North Sea and Skagerak, as the information on the proportion of spring spawners covered oniy part of the period considered.

In the case of the north-western area, some differences were seen in the age composition derived from the drift-net and purse-seine catcines compared witin those from trawi catches. Age data and mean number per kilo from the Dutch trawl catches were used to raise the trawl catches of Belgium, Frances Germany and the Netherlands. Scottish data were used for all catches by other countries in the area. The total catch per age group for the region is the sum of the two raised distributions.

The percentage age distribution for the adult herring fisheries of the central region $I V b$ is the mean distribution obtained by combining the Fhglish, Scottish and Dutch data (Table I2, p.35). The mean number per kilo was similarly derived. In 1968 Norwegian catches of juvenile herring were made in the area, and these have been separately converted to numbers using Norwegian data for the Skagerak catches. The age distributions of the juvenile herring fishery in the central area IVb are based on Danish material and appear in the summary (mable 16, p. 38).

Tabie 13 (p .36) is derived from the combined Mnglish and Dutch data from the East Anglian fishery.

Age data of autum-spawning herring in the north-eastern North Sea were availabie from Germany, Sweden, Norway and Denmark, As there appeared to be differences in age composition between the German trawl data and the Swedish, Norwegian and Danish data, the reported herming catches have been treated by groups of countries (Table 15, p.37). Most of the Norwegian catch and part of the Danish and Swedish catches (see Tables 7 and 8 and notes to Tables 1-6) were used for reduction to meal and oil, while the Gerrann, French, Dritch, USSR and Polish catches were for the human consumption market. Iittle sampling for age distribution has been made in the area, involving some few thousand fish examined per year. In addition, the material available tends to refer to the human consumption proportion of the catch rather then to the particuiariy in later years important industrial catches. Norwegian data on industrial catches Iandedin Norway in the years 1965, 1967 and 1968, which gave very complete information on the mean weight of the fish landed but included littie age data, showed a relatively high number of fish per kilo (Table 15, 1965 + 1967). Because of the inadequacy of the age data and in particular the lack of information concerning the industrial catch, Iittle confidence can be placed on the estimated age structure of the total catch in the north-eastem North Sea. It secms likely that the numbers of young herring have been underestimated, in particular in later years.

The estimates of total catch of each age group in millions of fish are summarised for the North Sea in Table 16 (p.38). In addition to the age compositions of the fisheries in the southem, central, northwestern and north-eastern Worth Sea the age composition of the young herring fisheries in the eastern part of the central North Sea (Bioden area) have been included. These were obtained by raising the total catch of Denmark and Germany by the age composition of the Danish catches. Adjustrents have been made in recent years for an admixture of sprats in the Danish catches, but not in those of Germany.

Examination of the annual area, catches shows that though the mean number caught per annum has varied about 1400 million fish the proportion taken in the central and southem Morth Sea has declined. No major changes occur in the age compositions in these areas (see aiso Tables Il-I3), with the exception of the central North Sea (Table I2) and the north-western North Sea trawl fisheries (Tabis II, A) where the proportion of older fish tended to decrease in later years.

Catches of imature herring in the Bloden fishery (IVb, young herring fishery) varied about 1300 million fish and tended to decline, although catches increased again in the course of the last three years (Table I7, p. 40 , see also Table 7). In the north-eastern North Sea, for which the material present was far from adequate, the data shov a considerable expansion of the fisheries, with an increased exploitation of juvenile herring ($0-I$ group) (Table 17)。 Though it is thought that the proportion of immature fish has been underestimated in this area, it should be noted that according to the material used the numbers of imnature herring caught in the north-eastern North Sea are weil below the numbers caught in the "Bleden" fishery, even in the most recent years.

Age compositions for the Skagerak catches have not been inciuded in Table I6, as no age data were present for this area prior to 1963. The material available for the years 1963-68 was even less satisfactory than that for the north-eastem North Sea. As in the latter area, the age data and number per kilo tend to be derived more from consumer herring then from industrial catches. Only in the years 1965 , 1967 and 1968 was good information available for the Norwegian landings on the number per kilo. German data were used for compiling the age distribution of the German and Polish herring trawl fisheries, while Norwegian, Swedish and German data were used for the catches of Denmerk, Norway and Sweden (Toble 18, p. 40). Though the Danish catch represented about half the totai, no sampling had been made on these landings. As in the northeastern North Sea it is thought possible that the age compositions underestimate the numbers of young herring in the catches.

Table 19 (p. 41) gives an estimate of the catch per age group in number from Skagerak. Taking three-year-period means the catch in the period 1966-68 has risen by about 1000 million fish while the proportion of juveniles ($0+$ I group) has risen from 36% in I963-65 to 77% in 1966-68 (Table 17)。

Combining the data of Tables 16 and 19 the total herring catch of the North Sea and Skagerak is given in Table 20 (1.41). The gross Iimitations of some data used in Table 20 should be recognized, the trouble being that the quality of the data available for the northeastern North Sea and Skagerak, which became of major importance in the fisheries in the 60^{\prime} s, must be considered as extremely poor. Taking the age data at their face value it is clear that in 1967 and Ig68 at least 50% of the total catch was taken as juvenile herring ($0+I$ group).

The effects of this juvenile catch in reducing the adult spawning stock is underestimated in this treatment of the data. In the main, the herring recruit to the adult spawning stocks as 3-year-old herring (2-ringers) in late summer and autumn. Apart from the truly juvenile 0 and I group fish a portion of the increased catches are taken as 3-year-old fish before they make their first spawning. Thus, in 1968 81% of the total catch consisted of fish with less than 3 winter rings. It is probable that even though this is likely to be an underestimate, the data for 1968 give the best estimate of the present distribution of the catch by age in the North Sea and Skagerak fisheries.

IV. i) Mortality Rates

Sstimates of mortality rates, calculated from annual age compositions weighted by catches per unit of effort as a measure of abundance, were available for some fisheries only.

The Scottish drift-net fishery in the north-western North Sea, for which the age compositions and abundance indices from the fishery, mainly on pre-spawning fish, in the months August-September were used, provided the only source of information from the northern North Sea. For the central North Sea two estimates were available, one derived from a British drift-net fishery on spawning herring along the Engiish north-eas't coast (Whitby) in the months August-September, the other from a Dutch trawl fishery on spawning herring in the Dogger area in Septernber-0ctober. For the southern Morth Sea again two estimates were available, one from combined British-Dutch data from drift-net fisheries carried out mainly on pre-spawning herring in the Southern Bight in October-December, the other from the Dutch trawl fishery on the spawning herring in the Sandettié-Channel area.

The instantaneous mortality rates, as two year ruming means and averages over four to five years periods, are given for the period 1952-69 in Table 21 ($\mathrm{p} \cdot 42$). Only in the case of the trawl fishery in the southem North Sea is the series incomplete, as this fishery virtually stopped after 1965.

Mortality rates in the north-western Morth Sea tended to increase in the period 1952-60, declined to a lower level in the years $1960-66$ and increased sharply thereafter. In the spaming fisheries in the central North Sea the mortality level would seem to have increased, in each four years period considered, with a sharp increase in the early 60's in the estimates from the drift-net fishery and around the mid-60's in those from the trawl fisheries. In the southern North Sea mortality has been high throughout, with an increase in the years 1952-57 and a high, more or less steady level thereafter.

The data indicate that in the last few years in all areas mortality had reached a level of at least $Z=1.00$ 。

IV. c) Estimates of Stock Size from Tagging

Estinates of stock size for North Sea herring are only available from some Morwegian tagging experiments in the Skagerak and the northern Horth Sea. Although the tagging experiments only partly fulfilled the requirements for making a quantitative assessment, they allow one to make rough estimates of the herring stock in this part of the Morth Sea in the late autumn of 1965 and in the summer of 1966 .

In tine autumn of 1965 the herring stock in the Skagerak and the north-eastern North Sea wes estimated to be about 2.55 million tons (Dragesund and Haraldsvik, 1968). During the sumner of 1966 the herring stock in the north-eastern North Sea was estimated to be 0.54 million tons, wille the stock in the Shetland waters was estimoted to be 0.57 million tons (Haraidsvik, 1969). Assuming the north-eastern North Sea and the Skagerak to be the main overwintering areas for the "Bank" and "Buchan" spawners, and the north-eastern North Sea and the Shetland waters to be the main feeding areas for the same stocks, the figures indicate a decline of the stock from 2.55 miliion tons to I.II million tons in a period of about \mathcal{G} months. This deciine of 56% in G montins would correspond roughly to an annual instantaneous mortality rate (Z) of I. 10, which is in good agreement with the estimates of z obtained from age compositions and catch/effort data.

Because of uncertainties about the composition of the catches in the northern North Sea and Skagerak in relation to the composition of the estinated stock in the area, no attempt has been made to assess the fishing mortality rate (F) from catch and stock size. It shouid be noted, however, that the catches in 1965-67 were Iarge in comparison with the estimated stock size, suggesting a high value of F.

IV. d) Larval Abundance

Dstimates of the abundance of small herring larvae were considered, as these can be taken under certain assumptions as relative measures of the size of the spawning stock.

The material reviewed, shown in Table 22 ($p .43$), includes data from the Iiterature, results of the Intemationel Larval Surveys (Saville, 1968; Boëtius, 1969) and unpublished material from various laboratories. Figures for the southern North Sea (Downs stock) refer to larval abundance in the eastern English Channel and the Southern Bight (Bridger, 1961). Data for the central North Sea were available for a longer sexies from the western and southern slopes of the Dogger Bank (Zijlistra, in press); data from other central North Sea spaming grounds (Inglish north-east coast, Morti-Mast Bank etc.) were only available as from 1967. The figures from the northern area cover most of the north-westem Horth Sea up to the Shetiands (Saville, 1968), Attempts made in recent years to Iocate larvae in other areas (north-eastern Morth Sea) failed, except in the eastern Kattegat (Postuma, 1966; Saville, 1968). The data for the eastem Kattegat were only available for the last five years; they showed low numbers of larvae and are not included in Table 22.

The following might be concluded from the figures:-
(I) Larval abundance in the southern North Sea - Channel area (Downs stock) decreased to very low figures in the period 1946-1965, but tended to recover somewhat in the last few years.
(II) The figures for the central North Sea indicate a very low production on the slopes of the Dogger Bank during the past four seasons. The short series, partly based on incomplete data, on the total central North Sea also suggests a decrease in larval abundance in the last few years.
(III) Taking the northern North Sea as a whole, Iarval production was more or less steady from 1951-65. Since I965, however, larval abundance has decreased in the northern North Sea too. The decline was greatest in the Buchan area, where no small larvee were found in the last three seasons. In the Shetland area, where during the last decade spawning was always more intense than on the Buchan grounds, larval abundance was also found to be relatively low since 1965 .

The larval abundance in the North Sea as a whole has obviously decreased during recent years, pointing to a decrease in the spawning potential of the stock.

Accepting the larval abundance figures as straight indices of the spaming potential of the North Sea stocks and comparing the figures from the late 50's - early 60's with those of the years 1966-68, a severe reduction in the spaming potential is indicated, of the order of about 80%. If the age- and length composition of the spamers was the seme in the two periods, the reduction in the size of the aduit stock would be of the same order.

IV. e) Recruitment

Estimates of recruitment to the North Sea herring stocks were available from three different sources:-
I. from the adult fisheries in the northern, central and southern Noxth Sea, calculated as abundance at 3 years of age;
2. from the Bloden fishery on immature herring at an age of 2 years;
3. from the International Young Herring Surveys in February-March at on age of $1 \frac{1}{2}$ years.

In Figure 3 (p .48), recruitment to the adult stocks is shown. In the north-western and central North Sea, a certain degree of similarity exists in the recruitment estimates by year-classes. Three relatively strong year-classes have been recruited in both areas in the past ten years, i.e. I956, I960 and 1963.

In the northern North Sea (Buchan stock) no obvious trend in the period 1951-65 is shown. In the central North Sea (Bank stock) the Ig64, 1965 and 1966 year-classes have all been extremely poor. In the period considered there is no previous record of three such poor successive year-classes, and so there is some evidence of a deciine in recruitment in this area. In the southern North Sea (Downs stock) there is clearly an overail trend of decline in year-class strengith from 1950-65, with only year-class 1958 as outstanding. There is, however, some evidence that the 1966 year-class in the Downs stock, which cannot yet be measured in a comparable way, is relatively strong.

In Figure 4 (p .49) comparison is made between the adult recruitment estimates averaged for the northem and central Morth Sea (B), with the estimates from the immature herring in the International Young Herring Surveys (A), and the Bloden fishery (C)。

The three independent estimates of recruitment tend to agree reasonably weil, in particular those of the adult herring (B) and the Foung Ferring Surveys (A). The Bloden estimates (C), which show less variation than the other two estimates, agree with the exception of the year-classes 1962, 1964 and particularly 1966 , which was a good year-class according to the Bloden estimate, but poor in the Young Ferring Surveys and in most aduli fisheries, according to the infomation available. It seems possible that a change, which occurred in later years in the Bloden fishery season from summerautumn to the spring period, and which was probably connected with increased growth of the herring (Section IV, f)) has affected the comparability of the estimates. Another possibility is that increased fishing on immature herring in recent years (Section IV, a))
removed a large part of some later year-classes, in particular of the 1966 year-class, thereby upsetting the comparison with estimates of recruitment in the adult fisheries. In that case, however, the low estimates for these year-classes in the Young Herring Surveys, obtained at about the same age as in the Bløden fisheries, have to be explained.

Taking into account the high natural variability of recruitment in Worth Sea herring, it is difficult to discover an obvious trend in any of the three estimates. It should be noted, however, that in the Young Herring Surveys, after the 1963 year-class, no good year-class was recorded in four consecutive years (year-classes 1964-67), and provisional information indicates that the 1968 year-class will be poor too.

IV.f) Growth Rate

In an earlier Working Group Report on Horth Sea Herring (Anon., 1966) it was shown that the growth rate had increased from the early 301 s to the eariy 60's. It was stated that this increase scemed to be a long-term development, with more sudden increases in the early 50's and the early 60's.

In Teble 23 (p .44) the lengths of 3 year old herring from the southerm, central and northern North sea are given for the years 1955-68. These demonstrate a further increase in growth in the late 60's (1967-68). As stated in the section on recruitment, a similar increase in growth rate was noted for the imature herring in the Bloden area. The exact cause or causes of the growth increase are unknown, but the possibility should be mentioned, that the phenomenon is in some way related to the suggested reduction in the size of the Morth Sea herring stocks.

An increase in growth rate, as recorded for North Sea herring, will tend to increase the sustainable yield of the fisheries, provided recruitment and natural mortality remain unchanged. Taking the length increase of the 3 year old herring from 1955-59 to 1965-68 as 4% and the length increase of $1 \frac{1}{2}$ year old herring from 1960-61 to $1967-69$ as 7% (Young Herring Surveys), a theoretical increase in the sustainable yield of between $10-20 \%$ could be calculated. When the growth increase is considered over a longer period of years, for instance since the eariy 30 :s, the theoretical increase in sustainable yield would be higher, possibly of the order of $30-40 \%$.

V. Discussion

The increase in the landings of North Sea herring in the years 1964-65 almost certainly resulted from a sharp increase in effort in the northem Nortin Sea, due, for a large part, to the introduction of the purse-seine fishery in that area. This can be deduced not only from indirect effort calculations, but also from the fact that the landings rose in a period of rather steady recruitment. The years of rapid increase in landings and effort were preceded by a period of relatively steady landings in the years 1951-63, during which according to a former Liaison Committee Report
(Anon., 1966) the effort probably rose gradually, first in the southem North Sea and later in the central and northern North Sea.

The Report of the former Working Group aiso mentions changes in the period I951-63, which could be related to the general increase in effort, such as a decrease in average age, an increase in mortality rates and a decline of the catch per unit effort in several herring fisheries. Although not Iimited to the southem part of the North Sea, these changes in the herring stocks were most pronounced in that area.

Since the steep rise in 1964-65 in effort in the northem Morth Sea, an area mainly inhabited by the adult fish of the spaming stocks of the central and north-western North Sea (Anon., I966), indications of a high rate of exploitation and a severe reduction of the adult stocks are evident in the whole Worth Sca. Thus mortality rates increased considerably in the centrai Morth Sea in the iast decade and in the north-western North Sea in the last few years, so that now mortality rates are high (of the order of $Z \geqq 1.00,68 \%$ per year) in the whole Korth Sea. A high rate of exploitation and a strong reduction of the adult stocks are also suggested by the fev tagging experiments cerried out in the northern North Sea in 1965-66.

The abundance of larvae decined strongly, first in the southern part of the Morth Sea and, after 1965, in the northern North Sea, Accepting larvai abundance as index of the size of the spawning stock, a reduction of as much as 80% over ten years in aduit Mortin Sea herring is indicated.

In most fisheries on adult herring, especially in those pperating with trawls, eatches per unit of effort declined, sometimes to such an extent that the fisheries stopped. This decine, which was first and in its most severe form experienced in the southern Morth Sea, again points to a serious reduction of the adult stocks. Finally, the proportion of aduit fish in the landings was found to decrease in the most recent years, indicating that some fisheries have tumed to immature herring.

It should be noted, that although the complicated stock structure of Morth Sea herring and the inadequacies of the data indicated earlier make a fuli assessment of the developments in North Sea herring very difficuit if not impossibie, there are strong indications that the chages described in the stocks follow the development of fishing effort in the different parts of the Horth Sea. Thus these changes all started in the south, where the effort was built up in the early 50:s and were experienced last in the north, after the rise in the effort there in 1954-65.

Since I965 the landings have decreased, in the years 1966-68 to a level of just over a million tons. In fact, the landings in 1967-68 were suxprisingly high, considering the decrease indicated in the adult stocks. A sustained high effort could be partly responsible. It is true that some countries diminished their effort by leaving the North Sea, or by turning to other species, but others, notebly some countries who
used to exploit the Atlanto-Scandian herring, turned to the North Sea, especially in 1967-68. The increased exploitation of immature herring in I967-68, too, could be partly responsible for the relatively high catches in the last years. It should be noted, that a shift of the fisheries to the immature part of the stock can only increase the landings for a short period. Finally, the increased growth rate and the shift of the fisheries to more northern areas, where herring belonging to stocks other than Horth Sea autumn spamers are known to be present, could have contributed to the high landings in 1967-68.

In the Report of the former Working Group (Anon., 1966) attention was drawn to the shape of the yield per recruit curve in herring, winich in some respects differ from the yield curve of demersal species such as plaice and cod. Heavy fishing on demersal stocks generaliy results in a decrease in the total catch, whereas in herring heavy exploitation will not lead to a decline in the total catch. This difference in the shape of the yield curves is mainly due to the fact, that those demersal species increase in weight by 20-30 times during their exploited adult stage, herring only by $2-3$ times.

The recent history of the IJorth Sea herring fisheries, showing relatively stable landings in the years 1951-63 at a time of probably increasing effort, seems to suggest that the sustainable yield of North Sea herring was reached in that period and does not exceed 700-800 thousand tons, accounting for the steady rise in the effort in that period. The subsequent increase in catch in the years after 1963, with a maximum of 1450000 tons in 1965 , could only have been attained by a sharp reduction in the size of the stock. Evidence that this has taken place is given in Section III.a) The fall in total catch since 1965 and in particular in 1969 would suggest that these high catches cannot be sustained. It should also be noted that the total catch of the herring fisheries will remain at the maximum sustainable yield with increasing effort only if recruitment is not affected by heavy exploitation and a consequently low abundance of the adult stock.

It is too early to say what affect the apparent decline in the adult stocks have had on rocmitment, considering the high naturai variability in recruitment to Worth Sea herring. It is clear that recruitment to the southern North Sea has declined, in particular since the late 50's. Estimates of overall recruitment to the Morth Sea berring are somewhat contradictory, in particular in the most cruciai years aiter 1964. The estimates derived from the Bløden fishery would suggest that recruitment was unaffected, in which case the low recruitment to the adult stocks must be caused by the increased fishing on immatures. The estimates of the Young Herring Surveys, on the other hand, suggest a succession of five ponr year-classes (1964-68), which would indicate poor recruitment to the aduit stocks at least up to 1971. It should be noted, that judging from past experience a series of five poor year-classes is unusual in Nortin Sea herring.
VI. Conclusions

In the former Report of the North Sea Working Group (Anon., 1966) it was shown that in the period 1950-62 the total North Sea herring catch was remarkably stable for a long period at a level flcutuating axound 850000 tons, including immature fisheries, in spite, probably, of a gradual increase in overall effort.

After 1963 a steep rise in effort took place and resulted initially in an increase in the total landings up to a level of 1,44 million tons of Morth Sea herring. During the lest three years (1966-68), for which complete data are available, the total catch has been at a level of just over a million tons. The catcin in Ig69 up to the Ist of IVovember was about 720000 tons.

The high effort since 1964 has resulted in a, probably serious, reduction of the aduit stock, as indicated by low larval abundances, high mortaility rates and low catches per unit of eifort in most aduIt hexming fisheries. With the increase in fishing intensity the proportion of immature herring (under three years of age) increased considerably, especially in the last two years (1967-68), suggesting a shift in the fishery to the juvenile part of the stock. The catches are composed of fish of lower age, length and weight than before.

From those events the Working Group concluded that under normal environmental conditions the steady yield of the populations of North Sea autum-spawning herring will be about 700 - 800 thousand tons of adult and juvenile herring. A maintenance of effort at the high level experienced in recent years wills the Wonking Group fears, only accentuate the unfavourable consequences already observed:-
a. a low catch per unit effort;
D. a young population, in which the fishery is based on very few year-clesses, with the langer of wide annual fiuctuations in the total catch;
c. a relativeiy low number of large-sized herring for human consumption markets.

A low abundance of mature herring as a consequence of heavy exploitation will result in a low egg production, as appears from the recent sharp decline in larval production in the North Sea。 Indications for most North Sea fisheries are that recruitment since the abundant 1963 year-class has been poor. Moreover, estinnates of the strength of year-classes of imature fish suggest that recruitment will continue to be poor in the next two years. Although the stock level at which recruitment becomes related to stocik size (larval abundance) is unimown, it cannot be excluded that a maintenance of the present high Ievel of effort will induce a stock-recruitment relationship.

In the light of all these considerations the Assessment Group advises that steps be taken to stabilise the effort at a lower level than exerted in recent years, in order to increase the size of the adult stock.

Regulatory Measures

A direct increase in the size of the adult stock independent of any stock-recruitment relationship, could be achieved in principle in two ways: a) by increasing recruitrent; b) by reducing mortality in the adult stock or preferably by a combination of both. The following measures to obtain one or both of these ends will be discussed beiow. It should be noted that to achieve the recovery of the stocks to a satisfactory level under average recruitment conditions the fishing intensity will have to be reduced to about 50% of the present Ievel.
(1) Minimum Mesh-Size

The introduction of a minimum mesh-size can only operate through an increase of recruitment. However, with larger meshes the industry will almost certainly be faced with a serious meshing problem, causing losses of time and possibly even losses of nets. Moreover, the effectiveness of mesh-size regulations in herring fisheries is very doubiful, as escaped fish may not be viable。
(2) Closing of Spawning Grounds

Such a measure is normally aimed at protecting the spawning products and consequently at increasing recruitment. There is no direct evidonce that fishing interferes with the spawning behaviour or is destructive of spawn. Therefore, such a measure could only have predictable effect through the reduction in adult fishing mortality. The proportion of the total catch, caught in spawning conditions, is now extremely low in the North Sea. Such a measure could therefore not achieve a substentiai reduction in total mortality. Apart from such doubts as have been stated above, an additional difficulty would be the exact definition of a spawning area.
(3) Minimum Size

The introduction of a size limit in herring fisheries would have its effect through an increase of recruitment to the adult stock.

Because of the difficulties in applying minimum mesh-sizes as discussed above, the direct effect would be to prohibit fishing on grounds, where small herring were dominant. The distribution of heming in the North Sea is such, that small and adult herring are largely separated in space. The length, dividing the immature from the adult herring, in the North Sea, lies roughiy between $20-23 \mathrm{~cm}$ 。

Because of inadequacies of the material availeble from some of the major fishing areas, notably the north-eastem North Sea and

Skagerak, it is difficult to quantify the effect of such a measure either in reducing the total catch in the short-term or in increasing recruitment in the long-term, but both must be considerable.
(4) Closed Area

A closed area could be effective either by reducing adult mortality or by increasing recruitment, depending on the area closed. In order to obtain a sufficiently large reduction in the mortality of either the adult or the immature fish, the area to be closed would be of considerable extent, of the order of $\frac{1}{4}-\frac{1}{2}$ of the North Sea. The North Sea areas to be closed to protect the immature fish would be the eastem part of the central North Sea, the southem part of the north-eastern North Sea and the Skagerak. A reduction of aduIt mortality by closed areas should be sought in the western and/or the north-eastern North Sea mainly. Assessing the effect of such a measure on mortality of adult or immature herring, apart from the difficulties mentioned under "Minimum size", is made virtually impossible because of diversions of effort to the "open" areas.

(5) Closed Seasons

Most of the corments made under (4) appiy to this measure. Moreover, the two are not necessarily mutuaily exclusive, as an area could be closed for part of the year. To obtain the required effect the closed season would have to be over a considerable part of the year, i.e. 4-6 months.
(6) Direct Restriction of Bffort

This measure, applied to all national fisheries, would decrease the mortality rate of the aduit stock and increase recruitment to it under average recruitment conditions. The effect on fishing mortaiity of adults will be proportional to the reduction in effort, but no accurate assessment can be made of the effective increase in recruitment by reducing effort on the inmature herring. As pointed out in the body of the report the measurement of the effective effort in herring fisheries raises major problems. Hffective reduction of effort by any specified level could only be achieved by a reduction in the activities of the herring fleets in each method of fishing by that amount. Subsequent changes in the type of effort would make assessment of the effect on overall effort practically impossible as the different fishing techniques cannot be equated in terms of effective effort. In the present situation a reduction of effective fishing effort of the order of 50% will be necessaxy.

(7) Catch Quota

The effects of the introduction of a catch quota are biologically comparable with a restriction in effort. If set on a realistic level it will effect a reduction in adult mortality and an unspecified
increase in recruitment to the adult stock. It has, however, the advantage that it is more easily quantified and has no inhibiting effect on development in fishing techniques. The long-term sustained yield of North Sea herring under average recruitment conditions would be about 750000 tons. However, to allow a recovery of the stock to a satisfactory level, the quota would need to be set, under the 1968 conditions, at about 500000 tons. If the present level of exploitation is continued it is probable that the quota will have to be set considerably lower.

VII. Recormendations

I. In the light of the problems with catch and effort statistics of North Sea herring encountered during the assessment, the Assessment Group strongly recommends, that adequate catch and effort statistics are collected by the countries exploiting the North Sea herring. These statistics shouid be broken down preferably to statistical rectangles and months, but at least in the larger areas used in the assessment. (Areas VII $d_{,}$e; IVc, IVb, IVa west of $2^{\circ} \mathrm{E}_{\mathrm{o}} \mathrm{I}_{0}$, IVa east of $2^{\circ} \mathrm{F}_{\mathrm{o}} \mathrm{I}_{0}$, Skagerak and Kattegat).
2. Biological sampling on North Sea herring including as a minimum length, age, weight and maturity of the fish, should be improved, in particular in the eastern part of the North Sea and Skagerak. Samples should be derived from comercial catches, as well for human consurntion as for industrial purposes, rather then from research vessel catches.
3. The Assessment Group recognizes the importance of abundance estimates of North Sea herring, independent of estimates obtained from the cormercial fisheries, as for instance estimates from larval and young herring surveys. It recommends that such surveys be continued and, where possible, improved.

References

Anon.	1965	"The North Sea Herring (being the Report of tine Worth Sea Working Group to the Herring Comittee)". ICES, Coop.Res.Rep., Ser.A, No.4.
Anon.	1966	ICES Cooperative Research Report, Series B (1965).
Anon.	1967	ICES Cooperative Research Report, Series B (1967).
Dragesund, 0 . \& Hareldsvik, S.	1968	"Horwegian tagging experiments in the northeastern North Sea and Skagerak in I964 and 1965" Fisk.Dir.Skr., Series Havunders., 14:98-120.
Haraldsvik, S.	1969	"The stock-size of the herring in the northern Morth Sea in 1966". ICES, C.M.I969/H:35. 35 pp. (mimeo.)

le Ib. Total co. October of tons. x) Estim	$\begin{aligned} & 1969, \\ & \text { d. in } \\ & 1968 \end{aligned}$
Country Year	1969
Belgium	- ${ }^{\text {x }}$
Denmark	237
England	5
Faroes	40^{x})
France	$15^{\text {x }}$)
Germen Fed. $\mathrm{R}_{\text {• }}$	20^{x})
Iceland	40^{x})
Netherlands	16
Norway	129
Polend	10
Scotland	16
Sweden	143
U.S.S.R.	50
Total	721

Country Year	1960	1961	1962	1963	1964	1965	1966	1967	1968
Belgium	3642	3146	1117	1843	1607	776	391	410	134
Dennark	162600	195500	196600	222700	271100	254000	181100	235400	306700
England	16354	17849	11994	22.821	16533	11494	10716	8215	5128
Faroes	-	-	-	-	973	3111	1491	35993	49995
France	11137	23042	12271	18062	23295	16480	10711	11478	12852
Germeny, Fed. 媔。	148430	100951	89059	94643	92650	81280	54589	32778	21218
Iceland	-	-	-	-	-	1757	1047	7835	45184
Netherlands	125 713	129841	87521	126487	116226	80320	56742	37270	22342
Norway	16471	15024	12510	32419	189668	604754	454900	335071	283769
Poland	76304	78082	59925	72791	94015	103460	74582	37943	11996
Scotland	29006	23038	22416	34571	21125	20569	17557	18138	16477
Sweden	126977	138580	151040	202000	240000	227000	186000	210000	170000
U.S.S.R.	63105	67722	100265	75965	139637	47322	16442	27221	88825
Total	779739	792775	744718	904302	1206829	1452323	1066268	997752	1034620
Non- Member Countries	360000	?	$?$?	?	67700	30600	27700	?

For MEXIanatory Notes to Tables I-6", see pages 29-31.
Table 1c. Herring. Catch in 1000 tons 1947-1959.

\qquad	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959
Belgium ${ }^{\text {I }}$	36	23	17	10	8	13	16	18	16	6	2	2	3
Denmark ${ }^{\text {1) }}$	9	7	5	8	34	33	50	58	66	83	88	134	145
England 2)	101	114	71	7.5	73	66	71	61	39	36	32	22	21
Faroes	-	-	-	-	-	-	-	-	-	-	-	-	-
France ${ }^{\text {l }}$	77	77	60	61	125	65	76	54	59	45	34	34	35
Germany, F.R.	110	117	107	117	177	158	297	263	268	217	237	200	147
Iceland	-	-	-	-	-	-	-	-	-	-	-	-	-
Netherlands ${ }^{2}$)	155	163	131	133	149	158	186	174	148	136	129	127	118
Norway ${ }^{2}$)	4	6	3	4	1	2	2	3	5	5	8	8	17
Poland ${ }^{\text {I) }}$	-	-	-	-	-	-	-	-	39	46	49	56	71
Scotland ${ }^{2}$)	81	90	53	37	42	77	82	59	69	43	41	30	48
Sweden ${ }^{\text {I) }}$	25	26	25	27	31	3.7	37	39	47	38	49	50	57
U.S.S.R. ${ }^{\text {1) }}$	-	-	-	-	-	-	-	-	2	28	37	29	40
Total North Sea	598	623	472	472	640	609	817	729	758	683	706	692	702
Total Skagerak and Kattegat	53	81	79	91	104	139	137	99	113	123	158	216	205
Grana Total	651	704	551	563	744	748	954	828	871	806	864	908	907

1) Data according to Coop.Res.Rep., Series B, 1965, Annex II, Table 9. 2) Data supplied by Working Group members.
 from 1947-56 raised by conversion factor 1.17. Scotland. Excluding imature herring fisheries in Moray Firth and Firth of Forth. Sweden: Bxcluding catches in Skageralk.
Table 2. Herring. Total catch in tons

Year	Denmark	Gemman Fed.R.	Iceland	Netherlands	Norway	Poland	Sweden	U.S.S.R.	Totat
1960	43200	42	-	-	2578	-	26218	-	72038
1961	56700	7	-	-	4584	-	28114	-	89405
1962	70600	3	-	-	5049	594	37862	-	114108
1963	105100	828	-	-	10971	329	52000	-	169228
1964	129500	6064	-	-	85916	4324	48000	-	273804
1965	95300	4. 248	-	-	83864	5330	42000	-	230742
1966	75200	432	-	74	30438	511	39000	-	145655
1967	100400	466	2151	-	95039	127	48000	15561	261744
1968	143600	2	695	36	71865	42	33000	18796	268036

Table 3. Herring. Total catch in tons.

Year	Belgium	Denmark	England	France	German Fed.R.	Iceland	Netherlands	Noxway	Poland	Scotland	Sweden	T.S.S.R.	Total
1960	-	41800	-	-	29455	-	15442	9005	15749	1598	99104	63105	275258
1961	-	61500	-	-	14043	-	6318	7630	11020	3877	109329	67722	281439
1962	-	49600	3	-	8913	-	6990	5793	5036	4899	113112	100265	294611
1963	-	58900	4	-	10069	-	8448	18255	3335	-	145000	75965	319 976
1964	-	53100	-	-	9972	-	9313	91006	12949	627	188000	139637	504604
1965	-	49700	-	-	23428	1757	6912	323361	16200	-	185000	27227	633585
1966	-	51400	6	-	12329	1. 047	4555	205239	11690	186	146000	16442	448894
1967	-	51600	-	-	2558	5684	1709	176628	2986	-	161000	11660	413825
1968	-	57100	-	-	2487	9355	1022	66046	1880	-	137000	30799	305689

						Takle 4	erring. North Division	al catch in a.o, North-We a west of 2°						
Year	Belgium	Denmark	Fagiand	Faroes	France	$\begin{aligned} & \text { German } \\ & \text { Fed. } \end{aligned}$	Ieelend.	Netherlends	Norway	Poland	Scotland	Sveden	U.S.S.R.	Total
1960	122	-	163	-	1151	45746	-	19863	3343	7000	22292	1 655	-	101335
1961	120	-	8	-	5796	19146	-	8414	2173	7271	16954	I 137	-	61019
1962	125	-	11	-	3757	7125	-	4659	837	3807	17191	66	-	37578
1963	343	-	13	-	5121	11377	-	9495	2641	12511	26945	5000	-	73446
I964	155	-	8	973	64.05	7319	-	11420	4350	15962	16753	4000	-	67345
1965	227	-	-	3111	7303	4489	-	11515	196488	35878	19239	-	20095	298345
1966	178	-	34	I 491	2628	7069	-	3414	219223	27199	16548	I 000	-	278784
1967	200	-	15	35993	1525	7941	-	3418	41664	84.54	17359	1000	-	217559
1968	23	-	-	49995	I 34.9	7150	35134	3072	131598	2806	16324	-	39230	286681

Table 5. Herring. Total catch in tons. $\frac{\text { North Sea, central }}{\text { (Division IVb) }}$

Year	AduIt Herring Fisheries									Young Herring Fisheries			$\underset{\text { FITSHERTIES }}{\text { TOTAL ALI }}$
	Belgium	Bngiand	France	German	Metheriands	Woxway	Poland	Scotland	Total	Denmark	Germann Fed.	Total	
1960	115	9816	369	39326	61540	1545	48479	5116	166306	77600	22.322	99922	266228
1961	121	8579	2535	35402	70336	637	49064	2207	168881	77300	16549	93849	262730
1962	124	6076	2886	40772	47255	83.1	45030	326	143300	76400	23975	100375	24.3675
1963	558	14465	8296	6081.8	8152.4	552	54370	7626	228209	58700	9017	67717	295926
1964	351	9335	7750	36361	63314	8 396	58726	3745	187878	88500	28126	116626	304504
1965	47	8524	7037	22520	47551	1041	44815	1330	132865	109000	26009	135009	267874
1966	69	9646	6261	21183	42008	0	34085	823	114075	54500	12737	${ }^{6} 7237$	181312
1967	5	6809	6540	18917	26769	21740	26370	779	107929	83400	I 849	8524.9	193178
1968	13	4170	8196	10439	13285	14260	7241	153	57757	106000	847	106847	164604

Mable 6. Herringe Total catch in tons.

Year	Belgium	England	France	German Fed.R.	Metherlands	Poland	Total
1960	3405	6375	9617	11539	28868	5076	64880
1961	2905	9262	14711	15804	44773	10727	98182
1962	868	5904	5628	8271	28617	5458	54746
1963	942	8339	4645	2534	27020	2246	45726
1964	1101	7290	9140	4808	32179	2054	56572
1965	502	2970	2140	586	14342	1237	21777
1966	144	1030	1822	839	6691	1097	11623
1967	205	1391	3423	1047	5374	6	11446
1968	98	958	3307	293	4927	27	9610

Belsium	1．All data derived from＂Builetin Statistique＂．
	2．Catches from Division IVa are ascribed to IVa west of 2° E（Table 4，p．26）．
Denmaric	I．All data used in the Tables are based upon Danish national statistics（Popp Madsen）（see Table 7，p．32）。
	2．Catches from Division IIIa（Skagerak and Kattegat）（Table 7）。 are in agreement with the data published in＂Bulietin Statistique＂for that Division．In Tables 1－3（p．22－25） catches from the Kattegat have been exciuded．
	3．Catches from Division IVa are ascribed to IVa east of 2° E（Table 3）．For 1967 and 1968 catches from IVa east and IVa west of $2^{\circ} \mathrm{E}$ are given separately（Tabie 7）．
	4．Catches from Division IVb（Young Herring Fishery）have been reduced for content of other species（1960－spring 1965 by 5% ，autumn $1965-1968$ by estimates from individual years； Popp Madsen）．（Tables 5 and 7）．
Fingland	1．All data derived from＂Bulletin Statistique＂．
	2．Separation of catches in Division IVa east and west of 2° E according to national statistics（Tables 3 and 4）．
Faroes	1．Catches only from Division IVa according to＂Burietin Statistique＂．Ascribed to IVa west（Table 4）．
	No information on the distribution of the fishery is available。
France	The data given have been supplied by the＂Institut des Pêches＂s Boulogne s／Mer．They are stated to be as near to the aciual catches as possible．They differ from the figures published in＂Bulletin Statistique＂．
$\frac{\text { German }}{\text { Fec. }}$	I．All data are according to German national statistics （Schumacher）．They are compiled by the＂Bundesforschungs－ anstalt für Fischerei＂，Hamburg；according to log books． They are of approximately the same order of magnitude as the corresponding figures compiled at the fish market and published in＂Builetin Statistique＂．
	However，for the North Sea Divifitions IVa，b and c ，the figures given in Tables 1－6 are／less than the corresponding figures in＂Bulletin Statistique＂．The largest dis－ crepancies are found in Division IVb，where the＂Bulletin Statistique＂figures exceed those shown in Table 5 （adult＋young herring）by approximately 20% for 1960－62． approximately 10% for $1963-65$ and approximately 30% for 1966－68。
Iceland	1．All data derived from＂Builetin Statistique＂．
	2．Separation of catches in Division IVa east and west of $2^{\circ} \mathrm{E}$ are according to Icelandic statistics．
Netheriands	I．All data derived from＂Bulletin Statistique＂．
	2．Separation of catches in Division IVa east and west of 2° Tr are according to Dutch national statistics．
	3．For 1967， 5190 tons published in＂Bulletin Statistique＂as ＂Not accounted for＂have been divided between Division IVb and Divisions IVc and VIId，$e_{\text {．}}$

- 31 -

Sweden (ctdo)	Year	$\frac{\text { For industrial Purposes }}{\text { (tons })}$	$\frac{\text { For Consumption }}{\text { (tons) }}$	TotaI (tons)
	1963	45000	157000	202000
	1964	97000	143000	240000
	1965	87000	14.0000	227000
	1966	58000	128000	186000
	1967	81000	129000	210000
	1968	67000	103000	170000

3. Separation of catches in Division IVa east and west of $2^{\circ} \mathrm{E}$ is according to Swedish national statistics, but is supposed to be rather unreliable. A greater part of the catches presumably comes from Division IVas west of $2^{\circ} E$ (Table 4).
4. Division IIIa (Table 2). The data-inciude Swedish catches from Kattegat landed in Sweden but exclude those landed in Denmark (see Table 7).

DoS.S.R. Io All data according to "Bulietin Statistique".
2. Separation of catches in Division IIIa Skagerak. IVa east and IVa west of $2^{\circ} \mathbb{E}$ are according to Soviet national statistics.

Table I c See footnotes to the Table, p. 23.

Table 7. Account of Danish herring catches (thousands of tons) in the years 1960-1969, separated into catches by areas and into landings for human consumption (c) and for industrial purposes (I). Catches in Division IVb have been corrected for bycatches of other species (1960 - spring $1965=$ reduced by 5%, autumn $1965-1968=$ reduced by estimates for individual years).
A separation in the landings in Division IVa as to east and west of $2^{\circ} \mathrm{E}$ (NE and NW) was only possible for the years 1967-68.

	Division IVa		Division IVb	Skagerak (IIIa)		Kattegat IIII	
Year	C	I	I	C	I	C	I
1960	24.5	17.3	77.6	15.4	27.8	5.8	13.6
1961	40.2	21.3	77.3	11.8	44.9	6.0	23.2
1962	26.6	23.0	76.4	7.8	62.8	4.1	29.5
1963	33.9	25.0	58.7	15.9	89.2	4.6	40.5
1964	28.9	24.2	88.5	17.2	112.3	4.4	44.5
I965	24.8	24.9	109.0	15.0	80.3	5.8	42.6
1966	23.0	28.4	54.5	6.5	68.7	6.3	38.1
1967	17.5	34.1	83.4	16.1	84.3	6.1	38.0
1968	19.4	37.7	106.0	8.5	135.1	9.0	58.4
1969**	14.4	45.1	125.0	9.2	43.3	6.6	26.0
* January-October inclusive.							
19671968	Diviaion IVa						
	NE	IW					
	35.3	21.8					
	49.6	9.9					

Table 8. Account of Swedish landings in Danish ports (thousands of tons), in 1960-1969, separated into catches by areas and into humen consumption herring (C) and industrial herring (I). Svedish landings are separated into area catches according to the distribution of the Danish fishery based upon a comparison in the years 1967-68. A separation of the Swedish catches for Divisions IVa, north-west, IVa north-east and IV was only possible in the years 1967-68.

Year	$\begin{gathered} (I) \\ I V a+b \end{gathered}$		$\begin{aligned} & \text { (2) } \\ & \text { Skagerak (IIIa) } \end{aligned}$		(3) Kattegat IIIa		Sub-totaI
	C	I	C	I	C	I	(1) + (2)
1960	24.1	0.5	7.4	0.8	2.8	0.4	32.8
1961	35.3	0.6	7.2	1.2	3.7	0.6	44.3
1962	64.0	1.2	13.0	3.3	6.9	1.6	81.5
1963	80.6	1.8	21.1	6.3	6.1	2.9	109.8
1964	81.8	7.0	24.4	32.6	6.3	13.0	145.8
1965	82.8	6.7	24.9	21.5	9.6	11.4	135.9
1966	78.9	4.4	15.6	10.6	15.3	5.9	109.5
1967	75.4	6.4	28.4	15.9	10.8	7.1	126.1
1968	71.5	6.1	18.0	22.0	19.1	9.5	117.6
1969*	39.8	3.5	19.0	6.6	12.2	1.5	68.9
* Jamuary-0ctober inclusive.							
	North Sea						
	IVa NE	IVa NW	IVb				
1967	40.1	10.0	31.8				
1968	67.5	3.5	6.6				

Table g. Catch per unit effort in drift-net and trawl fisheries in the southern, central, north-eastern and north-western INorth Sea.

Years	Horth-west		North-east			Central		South		BIのc̊en
	Drift ${ }^{1}$	Trawl ${ }^{2}$	Drift ${ }^{3}$	Trawi ${ }^{4}$	Trawi 5	Drift ${ }^{6}$	Trawl 7	Drift ${ }^{8}$	Trawl ${ }^{9}$	Trawi ${ }^{10}$
1955	5.2	4.4 .0	?	9.8	1.5	2.8	56.0	3.6	104	?
1956	3.9	23.7	?	13.9	3.6	3.5	46.0	4.5	88	$?$
1957	3.6	47.6	4.8	7.0	3.3	3.5	80.0	4.0	78	?
1958	4.1	27.1	3.1	13.3	4.3	3.0	27.0	3.2	81	1.94
1959	4.0	52.9	2.8	6.4	2.9	3.1	66.7	2.7	150	1.74
1960	3.2	29.6	3.4	13.0	2.7	2.4	25.1	3.4	113	1.22
I961	4.2	23.9	3.3	6.7	1.8	2.1	42.0	3.2	169	I. 22
1962	3.7	18.8	1.8	4.1	2.0	2.0	24.8	2.7	56	1.94
1963	3.9	21.7	1.2	7.2	3.6	5.6	42.3	2.2	50	1.16
1964	3.4	25.4	2.5	9.5	3.4	2.6	38.3	3.8	58	I. 78
1965	3.4	19.9	3.0	5.1	2.5	2.7	30.7	1.8	38	1.46
1966	4.3	14.7	2.8	2.9	1.6	2.8	37.5	1.4	?	0.98
1967	4.7	8.4	1.8	1.0	1.0	2.9	25.8	1.4	?	1.35
1968	3.8	?	1.6	1.5	1.0	-	18.7	0.3	?	1.64
1969	4.8	?		2.3	?	-	19.7**	-	?	I. 51

I. Scottish catch per arrival in May-September (tons).
2. Netherlands catch per 100 hours' fishing by a standard (500 BHP) trawler in JuIy-September (tons).
3. Polish catch per shot in April-July (tons).
4. Netherlands catch per 100 hours ${ }^{1}$ fishing by a standard trawler in January-April (tons).
5. Gernan logger trawl, catch per day (only catches with over 60% herring) (tons)
6. Netheriands catch per shot (tons) (May-September).
7. Metheriands catch per 100 hours' fishing by a standard trawler (tons) (August-October).
8. United Kingdom catch per shot (tons) (October-December).
9. Netheriands catch per 100 hours' fishing of a standard trawler (tons) (November-December).
10. Danish catch per hour (tons) in the immature herring fishery in the Bloden area.

+ Provisional.
Table 10. Effort estimates, obtained by dividing the total catch in an area by the catches per unit effort

	$\Lambda \mathrm{RE} \Lambda$									
	Morth-west		Morth-cast			Contral		South		Bloden
Year	$\begin{aligned} & \text { Drift } \\ & \text { Scottish } \end{aligned}$	$\begin{aligned} & \text { Araw12) } \\ & \text { Du.tch } \end{aligned}$	$\begin{aligned} & \text { Drift } 3 \text {) } \\ & \text { Polish } \end{aligned}$	Trawi4) Dutch	$\begin{aligned} & \text { Trawl 5) } \\ & \text { Gemaan } \end{aligned}$	$\begin{aligned} & \text { Drift }{ }^{6} \\ & \text { Dutch } \end{aligned}$	$\begin{aligned} & \text { Trawl 7) } \\ & \text { Dutch } \end{aligned}$	$\begin{aligned} & \text { Drift } \left.{ }^{8}\right) \\ & \text { Inglish } \end{aligned}$	$\operatorname{TrawI} \mathcal{G})$ Dutch	$\begin{aligned} & \text { Trawi } \\ & \text { Danisin } \end{aligned}$
1960	31.7	3.4	81.0	21.2	101.9	69.4	6.6	19.1	0.6	81.9
1961	14.5	2.5	85.3	42.0	156.4	80.1	4.0	30.7	0.6	77.0
1962	10.2	2.0	163.7	71.9	147.3	71.4	5.8	20.3	1.0	52.0
1963	18.8	3.9	266.6	44.4	88.9	40.6	5.4	20.8	0.9	57.2
1964	19.8	2.7	201.8	53.1	148.4	72.2	4.9	14.9	1.0	65.8
1965	86.3	15.0	211.2	124.2	253.4	49.3	4.3	12.1	0.5	92.2
1966	64.8	19.0	160.3	154.8	280.6	40.7	3.0	8.3	?	68.9
1967	25.0	14.0	229.9	413.8	413.8	37.1	4.2	8.1	?	63.2
1968	75.4	?	191.1	203.8	305.7	$?$	3.1	32.0	?	64.9
Period										
1960-63	18.8	3.0	149.2	44.9	123.6	65.4	5.5	22.7	0.8	67.0
1964-68	54.3	12.7	198.9	189.9	280.4	49.8	3.9	15.1	?	71.0

$$
\begin{aligned}
\text { 6) Shots (x } 1000 \text {) } \\
\text { 7) Fishing hours (x } 100000 \text {) } \\
\text { 8) Shots (x } 1000 \text {) } \\
\text { 9) Fishing hours (} x \text { I } 000 \text {) } \\
\text { 10) Fishing hours (} x ~ 1000 \text {) }
\end{aligned}
$$

Table 11. North-westem North Sea: Division IVa, west of $2^{\circ} \mathrm{E}$. Percentage age composition and mean number per kilo.

	Year	Age in winter rings									Mo./kilo
		1	2	3	4	5	6	7	8	>8	
A	I960	-	34.0	56.5	2.5	3.5	2.0	1.0	0.5	-	5.90
	1961	-	7.0	24.0	56.0	4.0	4.0	1.0	3.0	1.0	4.93
	1962	-	2.0	9.9	10.9	59.4	3.0	5.0	3.0	6.9	4.48
	1963	0.5	83.2	1.5	2.5	1.5	7.4	0.5	2.0	1.0	5.45
	1964	0.5	30.5	46.5	2.0	2.5	1.0	I5.0	0.5	1.5	4.75
	I965	16.0	25.0	26.0	28.0	-	I.O	-	3.0	1.0	5.12
	1966	-	31.7	19.8	12.9	19.8	2.0	-	3.0	10.9	4.32
	1967	1.0	35.6	51.5	10.9	-	1.0	-	-	-	6.75
	1968	51.5	16.2	16.2	4.0	6.1	6.1	-	-	-	7.48
B	1960	-	17.6	51.1	3.4	9.5	6.4	6.2	2.9	3.0	6.60
	1961	I. 2	6.1	15.8	57.3	3.5	7.3	2.5	3.9	2.4	6.06
	1962	0.4	13.8	5.3	14.5	47.9	3.1	8.0	3.4	3.5	6.90
	1963	-	57.2	2.9	3.3	5.4	22.9	I. 2	4.4	2.8	6.23
	1964	0.1	29.5	52.5	1.8	1.6	2.5	9.2	0.8	2.0	5.75
	1965	1.9	34.5	19.8	31.8	1.3	1.3	1.7	6.2	1.4	6.12
	1966	0.8	44.3	15.6	9.8	20.8	0.5	0.6	2.0	5.7	5.75
	1967	1.9	14.8	45.6	9.8	8.7	II. 9	0.8	0.7	5.7	5.71
	1968	5.5	35.3	14.4	23.7	5.3	5.4	5.6	0.7	4.2	5.49

A - Data used for trawled herring from Belgium, Germany, France and the Netineriands.

B - Data used for all other herring catches.

Table 12. Central North Sea, adult herring fisheries, Division IW: percentage age distribution and mean number per kilo.

Year	Age in winter rings										No./kilo
	0	1	2	3	4	5	5	7	8	>8	
1960	-	2.5	23.8	60.2	4.7	3.5	I. 2	3.1	0.6	0.4	6.03
1961	-	3.0	57.0	9.8	29.3	0.9	-	-	-	-	5.31
1962	-	6.8	9.3	50.0	9.6	21.2	1.9	0.7	0.3	0.3	5.01
1963	-	2.9	87.6	5.1	4.5	-	-	-	-	-	5.41
1964	-	4.7	43.6	43.6	1.4	3.0	0.9	2.9	-	-	4.83
1965	-	7.7	60.2	11.8	13.6	1.2	1.1	0.5	I. 3	2.5	5.40
1966	-	0.2	79.8	13.6	2.3	3.4	-	0.2	0.2	0.2	5.93
1967	-	4.3	37.1	45.6	9.4	1.2	2.5	-	-	-	5.24
I968	-	3.0	56.4	13.6	20.0	4.2	I. 2	1.8	-	-	5.16
	65.6	26.8	6.3	0.7	0.3	0.2	-	-	-	-	10.72

(a) Age used for Horwegian catch.

Table 13. Southern North Sea and eastern part of Einglish Channel. Divisions IVc and VIId,e: Percentage age composition and mean number per kilo.

Year	Age in winter rings									No./kilo
	1	2	3	4	5	6	7	8	>8	
I960	2.9	61.9	30.3	3.5	1.2	0.2	-	-	-	7.20
1961	0.1	82.6	II. 2	5.4	0.7	-	-	-	-	7.22
I962	3.4	12.4	71.5	8.6	3.9	0.2	0.1	-	-	6.06
1963	0.7	87.3	3.4	7.3	0.8	0.1	-	-	-	6.70
1964	6.5	67.7	23.9	0.2	1.8	-	-	-	-	5.80
1965	0.3	20.4	48.3	26.0	1.7	1.9	0.4	-	1.0	5.70
1966	5.0	75.5	13.6	1.6	4.3	-	-	-	-	6.25
I967	5.2	61.8	22.5	7.1	3.2	0.2	-	-	-	6.00
1958	9.5	36.0	31.3	15.2	2.3	4.7	1.0	-	-	6.62

TabIe 14. Proportion of spring-spawing herring in the northwestern North Sea, north-eastern North Sea and the Skagerak (Scottish and Norwegian material)。

Year	North-western North Sea	North-eastern North Sea	Skagerak
1960	4.9	-	-
1961	4.0	-	-
1962	26.6	-	-
1963	25.8	-	-
1964	10.5	16.0	5.6
1965	14.4	13.8	5.8
1966	24.1	12.2	7.8
1967	20.5	19.4	4.9
1968	26.2	18.0	3.4
1969			
1970			

Table 15. North-eastern North Sea. Division IVa, east of $2^{\circ} \mathrm{E}$: Percentage age composition and mean number per kilo.

Year	Age in winter rings										Mo./kilo
	0	1	2	3	4	5	6	7	8	>8	
1960	-	9.1	8.9	41.8	3.8	5.5	5.2	6.6	3.4	14.6	6.25
1961	-	0.5	4.8	14.3	53.6	5.3	8.0	4.0	4.0	5.5	5.18
1962	-	14.6	13.2	11.4	11.4	32.8	4.3	5.2	2.9	4.2	6.21
1963	-	1.6	51.5	6.4	7.0	7.0	18.0	1.4	3.6	3.5	6.85
A 1964	0.4	0.2	7.1	70.1	7.9	5.4	1.7	5.1	0.6	1.5	6.67
1965	0.1	II. 9	11.8	13.2	42.5	2.7	4.9	3.6	6.4	2.9	5.88
1966	-	6.9	36.7	8.8	8.4	24.7	2.6	4.2	1.7	6.0	6.21
1967	0.7	10.5	14.9	32.0	11.3	8.9	8.2	0.7	1.5	10.4	5.26
1968	-	50.7	32.0	4.9	6.4	2.0	2.0	1.0	0.5	0.5	8.13
1960	-	0.9	13.2	63.1	6.6	5.8	4.4	3.0	1.0	2.0	6.02
1961	0.1	5.4	5.8	12.4	53.8	5.7	7.9	2.8	1.9	4.3	7.10
1962	-	1.3	3.2	7.9	11.4	52.3	6.9	8.0	5.0	4.0	6.30
1963	-	4.1	76.1	4.3	2.3	2.2	7.1	0.9	1.1	1.9	6.81
B 1964	-	1.4	39.9	41.3	2.0	2.5	3.2	7.0	0.9	1.8	6.91
$\begin{array}{r} 1965 \\ (a) \end{array}$	-	0.5	15.2	25.7	37.1	4.2	2.4	2.3	10.8	1.8	5.84
(b)	0.1	17.9	14.7	14.2	39.3	2.5	3.2	2.0	6.0	0.1	6.90
1966	0.1	12.7	37.6	13.5	9.5	17.5	1.1	1.6	2.1	4.7	7.02
$\begin{array}{r} 1967 \\ (\mathrm{a}) \end{array}$	-	22.8	10.7	20.7	11.9	11.9	6.7	3.9	5.4	6.0	5.63
(b)	-	10.5	20.7	32.2	7.4	7.0	14.9	1.5	1.4	4.4	8.82
1968	-	27.3	43.6	6.7	10.2	3.4	2.9	4.1	0.1	1.7	7.15

A German age data used for herring catches of Germany, France, Netheriands, Poland and U.S.S.R.

B Danish, Swedish and Norwegian data used for catches of these countries.
(a) Danish and Swedish catches only.
(b) Norwegian catch only.
Table 16. Distribution of the North Sea herring catch in millions of fish per age.

Year	Division	Age in Winter Rings										Σ
		0	1	2	3	4	5	6	7	8	>8	
1960	IVa W of $2^{\circ} \mathrm{E}$	-		174.3	339.3	17.6	35.4	22.5	18.0	8.5	6.8	622.4
	IVa $\mathrm{E}_{\text {of }} 2^{\circ} \mathrm{E}$	-	8.3	121.3	579.9	60.7	53.3	40.4	27.6	9.2	18.4	919.1
	IVb	-	25.1	238.8	604.1	47.1	35.2	12.1	31.1	10.0	4.1	1007.6
	IVb Young herring fishery	171.0	2004.9	229.2	24.5	-	5.6	0.9	-	-	-	24.29 .6
		17.0	13.5	289.1	1.41 .4	16.3	5.6	0.9	-	-	-	
	TOTAL NORTH SEA	171.0	2051.8	1052.7	1689.2	1.41 .7	129.5	75.9	76.7	27.7	29.3	5445.5
1961	IVa W of $2^{\circ} \mathrm{E}$	\cdots	2.0	21.8	66.0	188.0	12.4	18.8	5.9	11.5	5.7	332.1
	IVa, Etof $2^{\circ} \mathrm{E}$	I. 2	66.6	71.6	153.0	663.9	70.3	97.5	34.6	23.4	53.1	1235.2
	IVb	-	29.4	560.0	96.1	287.4	8.8	-	-	-	-	981.7
	IVb Young herring fishery	1104.8	205.2 0.7	545.1 585.7	9.7 79.4	38.3	5.0	-	-	-	-	$\begin{array}{r} 1864.8 \\ 709.1 \end{array}$
	IVc	-				38.3	5.0		-		-	
	TOTAL TORITH SEA	1106.0	303.9	1784.2	404.2	1277.6	96.5	116.3	40.5	34.9	58.8	5122.9
1962	IVa W of $2^{\circ} \mathrm{E}$	-	0.6	22.3	14.9	29.5	114.2	6.8	15.6	7.2	10.1	221.2
	IVa E of $2^{\circ} \mathrm{E}$	-	12.9	31.7	78.2	112.9	517.8	68.3	79.2	49.5	39.6	990.1
	IVb	-	48.9	66.6	358.4	68.8	151.9	13.7	5.0	4.2	2.1	719.6
	IVb Young herring fishery	118.2	1635.7	2.6	13.1 2372	28.5	12.9	- 0.7	0.3	-	-	1769.6 332.0
	IVc	-	11.3	41.1	237.2	28.5	12.9	0.7	0.3			
	TOTAL NORTH SEA	118.2	1709.4	164.3	701.8	239.7	796.8	89.5	100.1	60.9	51.8	4032.5
1963	IVa W of $2^{\circ} \mathrm{E}$	-	0.6	135.7	3.0	4.5	3.7	17.1	0.9	4.2	2.2	171.9
	IVa [of $2^{\circ} \mathrm{E}$ E	-	54.6	1014.5	57.3	30.6	29.3	94.7	12.0	14.7	25.3	1333.0
	IVb	-	36.3	1080. 5	62.5	55.0		-	-	-	-	1234.3
	IVb Young herring fishery	-	312.6 2.2	815.6 275.0	39.2 10.6	$2 \overline{2} .9$	2.5	0.3	-	-	-	$\begin{array}{r} 1167.4 \\ 313.5 \end{array}$
	TOTAL NORTTH SEA	-	406.3	3321. 3	172.6	113.0	35.5	112.1	12.9	18.9	27.5	4220.1
1964	IVa W of $2^{\circ} \mathrm{T}$	-	0.8	107.7	182.2	6.7	6.9	7.2	40.1	2.5	6.6	360.7
	IVa, E of $2^{\circ} \mathrm{E}$	-	28.0	797.8	825.8	40.0	50.0	64.0	140.0	18.0	36.0	1999.6
	IVb	-	42.6	395.0	395.0	12.6	27.2	8.2	26.2	-		906.8
	IVb Young herxing fishery	345.3	2020.2	134.4.	-	-	,	-	-	-	-	2499.9 328.7
	IVc	-	21.3	22.3	78.5	0.7	5.9	-	-	-	-	328.7
	TOTAL NORTH SEA	345.3	2112.9	1657.2	1481.5	60.0	90.0	79.4	206.3	20.5	42.6	6095.7

Table 16 (continued)

Year	Division	Age in Winter Rings										Σ
		0	1	2	3	4	5	6	7	8	>8	
1965	IVa, W of $2^{\circ} \mathrm{E}$		52.9	613.2	367.2	571.7	21.9	23.2	28.6	108.2	24.9	$\begin{array}{r} 1811.8 \\ 3253.1 \\ 736.2 \\ 2343.5 \\ 125.3 \end{array}$
	IVa $\mathbb{\pm}$ of $2^{\circ} \mathrm{E}$	2.3	418.4	483.0	570.2	1257.8	97.3	96.6	67.8	240.4	19.3	
	IVb	-	55.3	432.2	84.9	98.3	8.6	7.9	3.6	27.3	18.1	
	IVb Young herring fishery	105.3	1799.7	411.2	27.3	-	-	-	-	-	-	
	IVc	-	0.4	25.5	60.5	32.6	2.1	2.4	0.5	-	1.3	
	TOTAL NORITH SEA	107.6	2326.7	1965.1	1110.1	1960.4	129.9	130.1	100.5	375.9	63.6	8269.9
1966	IVa W of $2^{\circ} \mathrm{E}$	-	12.2	693.5	249.2	156.8	328.5	8.7	9.1	32.2	93.2	$\begin{array}{r} 1583.4 \\ 2752.6 \\ 677.0 \\ 1060.3 \\ 72.6 \end{array}$
	IVa E of $2^{\circ} \mathrm{E}$	2.7	348.2	1030.9	370.1	260.4	479.8	30.2	43.9	57.6	128.8	
	IVb	-	1.3	539.4	91.6	15.9	23.5	-	1.3	2.7	1.3	
	IVb Young herring fishery	273.9	662.3	119.6	4.5	-		-	-	-	-	
	IVc	-	3.6	54.8	9.9	1.2	3.1	-	-	-	-	
	TOTAL MORTH SEA	276.6	1.027 .6	2439.2	725.3	434.3	834.9	38.9	54.3	91.5	223.3	6145.9
1967	IVa W of 2° T		12.2	119.1	315.6		51.5			4.1	33.8	680.1
	IVa P of $2^{\circ} \mathrm{E}$	-	374. 5	428.3	702.8	226.3	219.9	299.2	59.3	71.3	124.7	2506.3
	IVb	-	24.3	209.4	257.4	53.1	6.8	14.1	-	-	-	565.1
	IVb Young herring fishery	534.6	805.5	200.3	31.7	-	-	-	-	-	-	1572.1
	IVc	-	3.6	42.4	15.4	4.9	2.2	0.1	-	-	-	68.6
	TOTAL NORTH SEA	534.6	1220.1	999.5	1322.9	352.0	280.4	384.8	64.0	75.4	158.5	5392.2
1968	IVa W of $2^{\circ} \mathrm{E}$	-	83.1	577.7	231.5	372.1	83.5	86.8	89.8	10.6	63.5	1598.6
	IVa E of $2^{\circ} \mathrm{E}$	-	444.4	709.8	109.0	166.1	55.4	47.2	66.8	1.6	27.6	1627.9
	IVb	-	9.0	166.8	40.6	59.9	12.6	3.6	5.4	-	-	297.9
	IVb Young herring fishery	488.9	990.9	114.9	11.1	9.7	- 5	3.0	-6.	-	\square	1605.8
	IVc	-	6.0	22.9	19.9	9.7	1.5	3.0	0.6	-	-	63.6
	TOTAL NORTH SEA	488.9	1533.4	1592.1	412.1	607.8	153.0	140.6	162.6	12.2	91.1	5193.8

Table 17. Catch of immature herring ($0+1$ group) in the westerm North Sea (Divisions IVc, IVo and IVa, west of $2^{\circ} \mathrm{E}$), in the north-eastern North Sea, in the Eladen area (Young herring fisheries in Division IVb) and in the Skagerak. (Niilions of fish).

In brackets: $\%$ of total catch in the area.

Period	Western North Sea	North-eastern North Sea	Bloden Area	Skagerak	
I960-62	4.3 .8 (2\%)	29.6 (30\%)	I 746.6 (86\%)	$?$	(?)
I963-65	70.8 (4\%)	167.8 (8\%)	I 527.7 (76\%)	699.1	(36\%)
I966-68	51.8 (30\%)	389.9 (17%)	1252.0 (89\%)	2212.5	(77\%)

Table 18. Skagerak(Division IIIa): percentage age age composition and mean number per kilo.

Year	Age in winter rings										TYO./EIT0
	0	1	2	3	4	5	6	7	8	>8	
1963	-	11.2	71.8	1.9	2.4	1.5	5.6	0.9	2.9	I. 8	6.58
I964	17.6	25.9	16.0	26.4	1.9	2.2	2.3	4.8	1.4	1.5	7.09
A 1965	I9.3	24.0	16.3	11.9	19.5	1.0	2.6	1.3	3.2	1.9	7.63
1966	-	23.6	57.0	10.8	2.8	4.5	0.1	0.3	0.3	0.6	6.94
1967	4.9	71.5	I0.8	6.8	2.3	0.7	2.8	-	0.1	0.1	9.01
I968	-	79.2	12.8	2.1	3.7	-	I.I	I.I	-	-	8.93
I963	-	5.0	76.2	3.6	3.1	2.0	7.1	1.6	0.8	0.7	7.75
1964	-	I2.6	26.2	49.1	1.3	1.7	1. 8	5.8	0.9	0.5	7.09
B 1965	8.1	61.5	14.9	5.4	7.1	0.6	0.3	0.7	1.1	0.3	12.24
I966	0.1	45.4	33.6	6.5	3.1	5.4	3.1	-	1.0	1.8	9.17
I967	3.8	80.2	10.8	2.8	1.3	0.5	0.5	0.02	0.02	0.02	12.82
1968	48.7	33.4.	13.9	2.1	1.1	0.7	-	-	-	-	15.38

A German age data used for German and Polish catches.
B Age data used for herring catches of Denmarik, Horway and Sweden.
Table 19. Millions of fish per age group in Skagerak.

Year	Age in Winter Rings										Σ
	0	1	2	3	4	5	6	7	8	>8	
1963	-	66.2	1001.6	47.2	40.7	26.2	93.3	20.9	10.7	9.3	1316.1
1964	13.1	254.2	500.6	935.5	25.7	33.3	35.3	111.7	17.8	10.5	1937.7
1965	215.8	1547.9	382.7	143.1	191.0	15.7	8.7	18.3	29.7	8.9	2561.8
1966	1.3	603.9	449.6	86.9	41.3	71.9	41.1	-	13.3	23.9	1333.2
1967	126.7	2628.7	355.7	97.8	44.2	16.7	19.7	0.6	0.8	0.8	3291.7
1968	1866.5 .5	1. 410.3	553.8	84.0	48.3	26.8	1.9	1.9	-	-	3993.5

Table 20. Total North Sea and Skagerak Catch in millions of fish per age group.

Year	Age in Winter Rings										Σ
	0	1	2	3	4	5	6	7	8	>8	
1963	-	472.5	4322.9	219.8	153.7	61.7	205.4	33.8	29.6	36.8	5536.2
1964	358.4	2367.1	2157.8	2417.0	85.7	123.3	114.7	318.0	38.3	53.1	8033.4
1965	323.4	3874.6	2347.8	1253.2	2151.4	145.6	138.8	118.8	405.6	72.5	10831.7
1966	277.9	1631.5	2888.8	812.2	475.6	906.8	80.0	54.3	105.8	247.2	7480.1
1967	661.3	3848.8	1355.2	I. 420.7	396.2	297.1	404.5	64.6	76.2	159.3	8683.9
1968	2355.4	2982.9	2145.9	496.1	656.I	179.8	142.5	164.5	12.2	91.1	9226.5

Table 21. Mortality estimates, dorived from age-composition and catch/effort data, for some

Period	$\begin{aligned} & \text { NW North Sea I) } \\ & \text { Drift-net (Aug.-Sept.) } \\ & \text { maininly pre-spawning } \\ & \text { fish } \end{aligned}$	Central North SeaDrift-net, NEM-English coast, spawning fish 2)Trawi,Doggerbank, spawning fish 3),							
$\begin{aligned} & 1952 / 1954 \\ & 1953 / 1955 \\ & 1954 / 1956 \\ & 1955 / 1957 \end{aligned}$	$\begin{array}{cc} 0.22 & \\ 0.27 & 1952 / 1957 \\ 0.28 & \\ 0.64 & \underline{0.39} \end{array}$	$\begin{aligned} & 0.52 \\ & 0.95 \\ & 0.78 \\ & 0.74 \end{aligned}$	$\begin{gathered} 1952 / 1957 \\ \underline{0.73} \end{gathered}$	$\begin{aligned} & 0.46 \\ & 0.41 \\ & 0.51 \\ & 0.47 \end{aligned}$	$\begin{gathered} 1952 / 1.957 \\ 0.44 \end{gathered}$	$\begin{aligned} & 0.60 \\ & 0.79 \\ & 0.90 \\ & 0.94 \end{aligned}$	$\begin{gathered} 1.952 / 1957 \\ \underline{0.81} \end{gathered}$	1.09	
$\begin{aligned} & 1956 / 1958 \\ & 1957 / 1959 \\ & 1958 / 1960 \\ & 1959 / 1961 \end{aligned}$	$\begin{array}{lc} 0.62 & 1957 / 1.961 \\ 0.73 & \\ 0.88 & \\ 0.44 & 0.58 \end{array}$	$\begin{aligned} & 0.84 \\ & 0.90 \\ & 0.64 \\ & 0.70 \end{aligned}$	1957/1961 0.80	$\begin{aligned} & 0.27 \\ & 0.54 \\ & 0.73 \\ & 0.66 \end{aligned}$	1957/1961 0.60	$\begin{aligned} & 1.26 \\ & 1.11 \\ & 1.24 \\ & 1.20 \end{aligned}$	$\begin{gathered} 1957 / 1961 \\ 1.20 \end{gathered}$	$\begin{aligned} & 1.37 \\ & 1.09 \\ & 1.13 \\ & 1.17 \end{aligned}$	$\begin{gathered} \text { 1957/1961 } \\ \underline{1.13} \end{gathered}$
$\begin{aligned} & 1960 / 1962 \\ & 196 \mathrm{I} / 1963 \\ & 1962 / 1964 \\ & 1963 / 1965 \end{aligned}$	$\begin{array}{lc} 0.33 & 1961 / 1965 \\ 0.43 & \\ 0.48 & \underline{0.42} \\ 0.41 & \underline{1} \end{array}$	$\begin{aligned} & 1.60 \\ & 1.52 \\ & 1.11 \\ & 1.16 \end{aligned}$	1.961/1965 $1.34:$	$\begin{aligned} & 0.60 \\ & 0.73 \\ & 0.85 \\ & 0.93 \end{aligned}$	$\begin{aligned} & 1961 / 1965 \\ & \underline{0.83} \end{aligned}$	$\begin{aligned} & 0.65 \\ & 1.34 \\ & 1.54 \\ & 1.06 \end{aligned}$	$\begin{gathered} 196 \mathrm{I} / \mathrm{I} 965 \\ 1.15 \end{gathered}$	$\begin{aligned} & 1.25 \\ & 1.80 \\ & 1.67 \\ & 1.31 \end{aligned}$	$\begin{gathered} \text { 1961/1965 } \\ \underline{\underline{1.55}} \end{gathered}$
$\begin{array}{\|l} 1964 / 1966 \\ 1965 / 1967 \\ 1966 / 1968 \\ 1967 / 1969 \end{array}$	0.48 $1965 / 1969$ 0.40 0.88 $\underline{0.73}$ 1.06	$\begin{aligned} & 1.12 \\ & 1.25 \\ & 1.11 \end{aligned}$	$\begin{aligned} & 1965 / 1968 \\ & 1.07 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.98 \\ & 1.04^{6)} \end{aligned}$	$\begin{aligned} & 1965 / 1968 \\ & 1.01 \end{aligned}$	$\begin{aligned} & 1.12 \\ & 1.13 \\ & 2.06 \end{aligned}$	$\begin{gathered} 1965 / 1968 \\ \underline{1.44} \end{gathered}$		

[^0]Table 22. Larval abundance in the North Sea (- = no observations) (ITumbers $\times 10^{-9}$).

Year	I) Southern North Sea	$\begin{aligned} & \text { Central } \\ & \text { Dogger })^{\text {North Sea }} \\ & (\text { Total } 3 \end{aligned}$		North-Western North Sea 4)		
				Buchan	Shetland	Total
1946	537	-	-	-		
1947	596	-	-	-		
1948	-	-	-	-		
1949	-	-	-	-		
1950	288	-	-	-		
1951	255	-	-	900	420	1320
1952	-	-	-	890	100	990
1953	-	-	-	2110	940	3050
1954	-	-	-	870	700	I 570
1955	98	-	-	20^{x})	700	720
1956	56	-	-	-	-	-
1957	I5	232	-	300	-	-
1958	63	252	-	220	2800	3020
1959	8	97	-	300	860	1160
1960	16	138	-	440	640	1080
I961	56	86	-	380	4940	5320
1962	29	66	-	400	720	1120
1963	7	-	-	440	580	1020
I964	6	52	$63^{\text {x }}$)	920	880	1800
I965	5	275	490x)	70	2220	2290
1966	-	3	142^{x})	IO	680	690
1967	40	0	275	0	4.40	4.40
I968	6	0	28	0	162	162
1969	$108^{\text {xx }}$)	$0^{x x}$)	$11^{x x}$)	$0^{\text {x }}$)	$212^{x x}$)	$212^{\text {Ix }}$)

1) Larval abundance in Downs area in Decenber-Januaxy (Bridger).
2) Abundance of larvae $<11 \mathrm{~mm}$ in October on the western and southerm slopes of Dogger Bank (Zijlstra).
3) Abundance of laxvae $<10 \mathrm{~mm}$ in September-October in the central part of the North Sea.
4) Abundance of Iarvae < 10 mm in the north-western North Sea, apart for the southern area (Buchan), the northem area (Shetiand) and the total north-western North Sea (Savilile).
x) Incomplete date。
xx) Provisional data。

Table 23．Length of 3 year old herring in the southern， central and northem North Sea in the years 1955－1968。

Area		North Sea	
Year	$\begin{aligned} & \text { Southem } \left.{ }^{I}\right) \\ & (\mathrm{cm}) \end{aligned}$	$\begin{aligned} & \text { Centrai } \left.{ }^{2}\right) \\ & (\mathrm{cm}) \end{aligned}$	$\begin{aligned} & \text { Northern } 3 \text {) } \\ & (\mathrm{ca}) \end{aligned}$
1955	24.4	25.3	24.2
1956	23.6	25.1	24.8
1957	24.0	24.8	24.3
1958	24.3	25.3	24.5
1959	23.0	23.9	24.9
1960	23.7	25.0	24.6
1961	24.4	25.6	25.0
1962	25.1	25.9	25.7
1963	25.1	26．1	25.8
1964	25.9	26.2	25.8
1965	23.9	24.8	24.8
1966	24.3	25.0	24.9
1967	26.2	26.3	25.3
1968	25.2	26.3	26.8

1）iNetheriands data．
2）Netherilands data。
3）Scottish data。

Bigure 2a. Bstimates of summed catches in tons (4 year period) by statistical rectangles, obtained from infomation supplied by "Statistical Newsletters" and national statistics in the period 1555-1958).

Figure 2b. Estimates of sumned catches in tons (4 year perioa) Wy statistical rectangles, obtzined from infomation supplied ky "Statistical Hewsletters" and national statistios in the period 1965-1968.

Pigure 3. Recruitment, measured as at 3 years of age, in the north-western North Sea (Buchan stock), central Worth Sea (Bank stock) and southem North Sea (Downs
stock).

Figure 4. Estimates of recruitment by year-classes:-
A. Estimates from the International Young Herring Surveys (thousands per hour fishing).
B. Average recruitment of the Buchan and Benk stocks, derived from data in Figure 3 (thousends per day fishing).
C. Estimates from the Bladen fishery, as I-group fish (millions per 100 hours' fishing by pairtrawlers).

[^0]: 4) English data.

 Netherlands data。
 6) Provisional.
 3) Netherlands data, except 1952-1955 (Belgian data)

