International Council for the
Exploration of the Sea
C. M_{o} 1974/Mı2
Anadromous and Catadromous Fish Committee

REPORT OF THE ICES/ICNAF JOIIPI WORKING PARTY
on
HORTH ATLANTIC SALMON
11-15 March 1974

[^0]
CONTEMTS

Page
A. INTRODUCTION 2
B. WEST GREFNLAND FISHERY 2

1. Statistics and Composition of the Fishery 2
2. Countries of Origin and Mixing of Stocks at West Greenland 4
a) Smolt tag recaptures 5
(i) North America 5
(ii) Europe 6
b) Adult tagging at West Greenland 7
c) Biochemical studies 9
d) Scale studies 10
e) Parasite studies 10
f) Summary 11
3. Assessments of Effects of West Greenland Fishery on Home Waters Stocks and Catches 11
C. NORWEGIAN SEA FISHERY 14
4. Statistics of Fishery and Composition of Catches in Long Line Fishery in Norwegian Sea 14
5. Origin and Destination of Salmon in Norwegian Sea Stock 15
6. Assessment of Effects of Norwegian Sea Fishery on Home Waters Stocks and Catches 16
7. Long Line Fishing at the Faroes 16
D. HOME WATERS FISHERIES 17
a) Canada 17
b) Scotland 18
c) England and Wales 18
d) Ireland 19
e) Northern Ireland 19
f) Norway 19
E. PREPARARATION OF SCIENTIFIC REPORT ON INTPERNATIONAL TAGGING EXPERIMENT 20
F. FUTURE RESEARCH 21
G. NEXT NIEETITIG 21
H. TABLES 1 - 11 22
I. APPENDIX - List of Working Papers 34
J. FIGURES 1, 2 and 3 37

A. MNTRODUCTION

1. The ICES/ICNAF Joint Working Party on North Atlantic Salran met at Charlotteniund, Dennark, from 11 March to 15 March 1974, after preliminary discussions on 8 and 9 March between the Chairman, and Messrs Horsted, May and Moller Jensen on assessments. The following were present at the Working Party meeting:-

Canadas	W H Lear \dot{f}_{1} W May C P Ruggles
Denmark:	0 Christensen Sv. Az. Horsted J Móller Jensen
Tngland \& Wales:	I B HAIAn (Rapporteur) A Swain
France:	2 Vibert
Federal Republic	
of Germany:	- F Thurow
Ireland:	Miss E Twomey A E J Went
N. Ireland:	K U Vickers
Norway:	I. Rosseland
Scotlend:	B B Parrish (Chairman) VR Munro
Sweden:	P C Larsson
U.S.A.:	V C inthony

Mr D Griffith (ICFS Statistician) also attended the meeting.
2. The Working Party reviewed the latest information on the West Greenland and Norwegian Sea fisheries and examined the analyses so far carried out on the data provided by the International Salmon Tagging Experiment at West Greenland in 1972. It also considered the latest information on home water catches and future research requirements in relation to its main assessment objectives.
3. Further consideration wes given to the preparation of a scientific publication embodying the results of the 1972 International Selmon Mageinc Experiment at West Greenland.

B. WEST GRBENLAND FISHETY

1. Statistics and composition of the fishery
2. The salmon catches at West Greenland in the years 1960-1972, and the provisional catch for 1973 are given in Table 1 E Es in recent years, it was not possible to separate the catch by Greenlandic vessels into its drift-net and set eill-net components, but it is likely that the former
was the greater. The provisional catch in 1973 at 2,335 metric tons was 14% higher than the catch in 1972.
3. The number of vessels (excluding Greenland registered vessels) which have taken part in the West Greenland drift-net fishery each year since 1965 are shown below:

Number of vessels					
Year	Denmark	Faroes	Norway	Sweden	Total
1965	0	1	1	0	2
1966	0	1	1	0	2
1967	4	4	3	0	11
1968	10	2	4	1	17
1969	15	6	11	2	34
1970	13	7	10	1	31
1971	11	3	8	0	22
1972	12	4	8	0	24
1973	11	4	7	0	22

6. These data show that the number of non-Greenlandic vessels taking part in the drift-net fishery in 1973 was nearly the same as for the two previous years. The catch of these vessels in 1973 was at the same level as in 1972 (761 and 720 metric tons respectively). There was, however, a difference between the non-Greenlandic fisheries in 1972 and 1973 in so far as the distribution of catch per unit effort with time differed: in 1972 this decreased markedly at the end of August, whereas in 1973 the decline was spread more uniformly over the fishing season. In 1972, the fishing effort in Cctober was small and fishing ended in mid-October due to low catch rates, whereas in 1973 fishing activity was high until the fishery ceased in mid October . Furthermore, whereas the fishery in 1972 started on 1 kugust (due to uncertainty about the regulations regarding restrictions on the start of the fishing season), in 1973 it started in mid-JuIy.
7. The fishery by Greeniandic vessels was stopped on 27 September to meet ICNAF regulations. Its catch at 1,574 metric tons was 254 metric tons greater than in 1972. The landings by these vessels showed that salmon were rather evenly distributed along the coast. Although fishing effort data are not available for them, their very high catch rates in September could indicate that salmon concentrated in coastal waters at that time. With the closure of the fishery, no information is available from commerciai catches on the distribution and abundance of salmon after that date, but fishing surveys by the research vessel "Tornaq" showed them to be present in the Godthab area (Fishing Area IV in Figure 1) until mid December when
the surveys ceased. This is an unusually late date compared with previous years.
8. The results of age analysis of 3,693 scales collected during the international tasging experiment in 1972 (1,756 from research vessels and 1,937 from commercial vessels) showed a sea-age composition of the exploited salmon stock very similar to that in previous years; 93% of the total research vessel sample and 91% of the commercial vessel sample had a sea age of one sea-winter, the remainder consisting mainly of maiden two-sea-winter fish. The proportion of one-sea-winter salmon decreased, and that of two-sea-winter salmon increased from south to north throughout the total fishing area. In the northern areas (areas I and II of Figure 1) one- and two-sea-winter salmon averaged 86% and 13% respectively, whereas in areas V and. VI they averaged 97% and 2% respectively. No two-sea-winter salmon were present in the samples taken from the Labrador Sea (to the south of Iatitude $60^{\circ} \mathrm{N}$). 84% of the fish sampled in the main fishing areas had migrated to sea as two or three year-old smolts, but the samples taken in the labrador Sea contained a much larger proportion of fish migrating as three, four and five year-old smolts. $h s$ in previous years, females predominated in the sampled catch; a sex ratio of 2.8 to 1 in favour of females was found for the one-sea-winter fish and 7.6 to 1 for the two-sea-winter fish.
9. Length measurements and scale samples for age analysis were also collected during the 1973 fishing season, but the latter have yet to be analysed. However, the length data suggest that the age composition of the exploited stock in 1973 was similar to that in 1972 and previous years; ie that one-sea-winter salmon constituted nearly the whole of the stock and catch.

2. Countries of Origin and Mixing of Stocks at West Greeniand

10. The results of further investigations and analyses to measure the countries of orign of the salmon stock at West Greenland, and their rates of mixing, were examined by the Working Party. Hrese comprised the analysis of smolt and adult salmon taf recaptures, and studies of blood serum, protein polymorphism, scale characteristics and the parasite fauna of salmon at West Greenland and in home waters.
a) Smolt tag recaptures
11. Recaptures at West Greenland in 1972 of salmon tagged as wild and hatchery reared will smolts in home waters are given in Tables 2 and 3 respectively, along with those in previous years (the figures in these tables for previous years, presented in earlier reports, have been revised in the light of the most recent recapture data).
12. The Working Party noted in previous reports large variations in recapture rates at West Greenland from different smolt tagging experiments and concluded that a more detailed evaluation of tag returns was needed. A critical review of North fmerican and European smolt tagging experiments has begun with a view to determining their relevance in determining stock origins and mixing at Greenland. Although not completed, preliminary results are reported below.
(i) North America
13. A total of 437 separate smolt tagging experiments has been conducted in North America since 1959. From these, 53 were selected on the basis of number of tagged salmon recaptures (at least 15 salmon recaptures) for detailed analysis. In order to compare these experiments, in which large variations in recapture rates occurred, the recaptures at West Greenland were expressed as a percentage of total tags recaptured from salmon (grilse recaptures were excluded) in all fisheries and from home river escapements. This enabled direct comparison of a wide variety of experiments using both wild and hatchery smolts and eliminated the need to account for the variable nature of tagging mortality and tag loss between different experiments.
14. In the North American salmon examined, the recaptures of smolt tags at Greenland since 1969 have varied from 11 to 75 per cent of the total salmon tag recaptures. Although variations in the Greenland proportion between stocks were noted, the differences are not extreme in any one year, and year to year fluctuations followed similan trends. The proportion of tags recaptured in Greenland varied directly with the size of the Greenland catch.
15. In order to examine the mixing of fish of different North Americen origins in West Greeniend, the expected tag recaptures based on random distribution in the 1972 total Greeniand catch in three separate Greenland areas was compared with the observed recaptures from three
separate North American area groups. The North American groups considered were USA, Miramichi and part-quebec (including Restigouche). Recaptures from the USA and Mramichi croups were taken in greater frequencies in Area VI (Figure 1) then would be expected on the basis of catch figures and random distribution (p. <.001). In addition, there was a sienificant difference ($\mathrm{p} .<\mathrm{O}$) . . between the Miramichi Eroup and the USA group in terms of the degree to which they departed from the ratios expected on the basis of catches. Whe Miramichi group contributed at about twice the rate in area VI as did the USN group. Each of the three Horth American groups differed significantly (p. $<0 . I>.001$). in their distribution from the others at West Greenland.
16. The expected frequency of occurrence in the Greenland fishery durine three time periods (nugust, September and Cctober) was also examined. for the three area eroups described above. The expected frequencies were calculated on the basis of the non-Gpeenlandic drift-net fishery in 1972 which represented about 33% of the total Greenland catch. A11 three croups were taken at lower than expected frequencies during August and hicher then expected frequencies during September ($p_{0}<.001$). The individual groups examined did not differ significantly amone themselves with respect to the expected time of recapture at West Greenlend. The October recaptures of US: and Miramichi groups were taken at higher then expected frequencies for that month (p. $<.001$). (ii) Europe
17. Smolt tageinc experiments relevant to the west Geenland salmon fishery have been carried out in Burope for a number ofyears. Since 1060, vild smolts have been taged annually in appreciable numbers in Scotland. Brigiand and Wales and Norway, and more recently smaller numbers in Ireland, France, Iccland and Sweden.
18. During these years, the largest European contributions of salmon to the West Greenland fishory, on the evidence of tac recaptures, have been from Scotland and England and Weles. In Scotiand, all the cmolt tageing experiments have been carried out on east coast rivers while in ingland and Wales most of the tageing wes done in rivers in the south sud southwest of the country. In recent years a hich tay recapture rate of West Greenland hes been reported from smolts taged in a river in suth-
west France, but the overall French contribution to the West Greeniand fishery cannot be very large.
19. In some of the rivers in the United Kingdom where tagging experiments have been carried out over a number of years, the proportion of tags recaptured at Greenland has, like some of the North American stocks examined, varied directly with the size of the Greenland catch. In one of the rivers in southwest England, however, this feature is not evident over the period since 1960. In the Greenland catch for 1971, for instance, the recapture rate of smolts tagged in 1970 was considerably lower than the corresponding figure for the previous year, although the commercial catch off Greeniand was appreciably higher in 1971.
20. By comparing the expected tag recaptures based on random distribution in the 1972 total Greenland catch with the observed datag. it was seen that the stock from the combined England and Wales rivers was taken in a Ereater frequency in Area VI than would be expected and in a lower frequency in the middle Areas III to V. A similar distribution was found for a number of Scottish rivers.
21. Although large numbers of hatchery-reared smolts have been tagged in some European countries during the same period the recapture rate of these fish off West Greenland has been extremely low. Except for Scandinavian countries (especialiy Norway and Sweden) the recapture rate in home waters has also been significantly lower than for wild smolts. The recapture rate of hatchery-reared smolts in home waters, particularly as grilse, in Norway and Sweden has been high.
b) Adult tagging at West Greenland
22. As reported last year, an International Salmon Tageine Experiment was conducted at West Greenland in the period 30 July to 16 October 1972. A detailed report on it is in preparation, but the results of analyses of the recaptures obtained so far, relating to the home waters origin and mixing of salmon at West Creenjend, are sumarised below.
23. A total of 2,364 salmon were taeged in the period 30 July to 16 october from five research vessels and eight commercial fishing vessels. Reported recaptures from this experiment up to 31 December 1973 are given in the following teble.

- 8 -

Recaptures from the 1972 tagging experiment by country, the recaptures outside Greenland being from the year 1973.

Number

Country	1972	1973	Percentage
West Greenland	153	4	76.5
Canada		11	5.4
England \& Wales		8	3.9
France		2	1.0
Treland		7	3.4
Scotland		19	9.3
Spain		1	0.5
Total	153	52	100.0

24. These data show that of the total number of reported recaptures at West Greenland, 153 were made during the 1972 fishing season and four during the 1973. season. This was in accordance with expectation from the observed age composition of the exploited stock at West Greenland (see section 2), which comprised mainly fish in their second sea-year, with a small proz portion in their third sea-year.
25. As show above, the total number of recaptures outside Greenland in 1973 was 48, 11 from Canada, and 37 from Europe. Although it is possible that asmall proportion of the fish receptured in European coastal waters may have been intercepted en route to other home waters. in view of the fact that earlier experiments have indicated a relatively Iow level of exchance of adult fish as between, for exmple, Great Britain and Ireland and Great Britain and Norway, one can assume that each of the recoveries in each European country represents a return to the rivers of that country.
26. The proportions of North American and European recaptures, 23% and $77 \times$ respectively, in the total home waters recaptures in 1973 are very close to those found from the results of biochemical studies on salmon at West Geenland in 1972 (see Section 2.0). It must be borne in mind, however, that since the numbers of recaptures in home waters will be a function of the exploitation rate in each country's fishery a direct comparison of the proportions recaptured in each country may well not provide a correct measure of the miving rates of their salmon at West Greenland except where exploitation rates are the same. Too few dara are availsble on these rates in different countries for reliable adjustments to be made to the recapture data.
27. In addition to the home whens recaptures in 1973, by 15 March four additional fish had been receptured as three-sea-winter salmon in 1974.
one in England and three in Scotland (further home waters recaptures may be taken in the home waters fisheries in 1974).
28. The home waters recaptures of salmon tagged at West Greenlend in experiments conducted in the years 1965-1971, prior to the 1972 experiment, are given in Table 5. The combined recaptures from these experiments show a higher proportion from North American than from the 1972 experiment. In these earlier experiments Canadian recaptures amounted to 44% of the total from home waters compared with 23% for the 1972 experiment. This suggests that the composition of the stock exploited at West Greeniand (as regards country of origin) may vary wìdely.
29. Tags were recaptured from the 1972 and earlier experiments at West Greenland in each of the main European salmon producing countries except Norway, Sweden, Iceland and the USSR. This is in conformity with the smolt tag recapture data at West Greenland, reported previously, and provides further evidence that salmon from these countries, especially Norway, constitute a very small part of the West Greenland stock. The recaptures again confirm that the stock is composed principally of salmon originating from and, if surviving, returning to Canada and the British Isles.
c) Biochemical Studies
30. In a previous report (ICES Coop. Res. Rep. No. 35) provisional results were presented of Canadian blood serum protein studies relating to the mixing rates at West Greenland of salmon of North American and European origin. They suggested that in 1970 , the West G eenland stock was composed of North Anerican and European salmon in about equal proportions. Since that time new investigations have been undertaken in Canada, on the polymorphism of serum transferrins. Results of these studies giving the proportions of North American and European salmon in the West Greenland stock were presented in document No. 14. The method utilises geographical discontinuities in the distribution of the alleles at the Tr locums in home river salmon populations.
31. The results of these investigations show marked annual variations in the proportions of salmon of North American origin in the West Greenland stock. They give estinates of $23 \%, 53 \%$ and 20% for the years 1970 , 1971 and 1972 respectively, indicating that the major contribution to the stock in recent years has been from European rivers, although other sources
suggest that the North American proportion was much higher in earlier years. The results also suggest that the contribution from different salmon-producing regions in Europe and North imerica also varies from year to year; in 1970 there was a higher then usual contribution from SW England, and in 1971 there was a larger than usual contribution from Labrador rivers.
32. Pre Iiminary results of Inglish investigations sugcest that it may also be possible to identify stocks of salmon on the basis of biochemical differences in serum enzymes. Malate and lactate dehydrogenase and. Dhosphohexose isomerase appear to be the most promisine in this regard.
d) Scale Stuaies
33. A discriminant function analysis based on two scale characters: viz:- width of the first sea zone and the number of circuli in the first sea zone, with a theoretical efficiency of 85.6% was applied to salmon scales collected at West Greenland and the Labrador Sea during autumn 1969-72 and Labrador Sca durine spring 1970-72. Estimetes of the proportions of North imerican salmon at West Greenland were as follows: 46\% (1969), $34 \%(1970), 32 \%(1971)$ and $35 \%(1972)$. The discrepancy between the estimates from biochemical and scale studies durine 1971 is possibly due to sampling error since no blood samples were collected from 80 fish taken in the northern area, for whin there were scale samples and of wich $8 x^{\prime}$ were estimated from the scales to be of European origin. Estimates of the North American proportions in the Labrador Sea samples durine autumwere $50 \%(1969), 32 \%(1970), 29 \%(1971)$ and $74 \%(1972)$. North American proportions in the Labrador Sea during spring were estimated at 83\% (1970) , 89\% (1971) and 72\% (1972).
e) Parasite Studies
34. Analysis of the series of observations on the parasite fauna of salmon in home waters in North fmerica and Europe show that none of the species of parasites which had discontinuous geographic distributions were abundant enough to serve as biological tags for estimating the proportions of Worth American and European salmon stocks off West Greenland. Two species which were abundant enough for detailed statistical analysis (Eubothrium crassum and Enisakis simmex) displayed too much geographic and annual variations to be of any value in the study. Therefore despite the discontinuities observed.

- 11 -
parasites must be considered to be of little value in estimating the proportions of major home waters salmon stocks in the West Greenland fishery.
f) Summary

35. The results of the different investigations presented above suggest that the proportions of North American and Europear saImon making up the West Greenland stock has varied widely during theperiodsince the commencement of the fishery in the early 1960\%. Although the estimates of their respective proportions in the stock are not the same from all sources of data, the overall results suggest that in the years 1970 and 1972 the proportions of North American fish present ranged possibly from as low as 20% to as high as 50%. Evidence from smolt ages and from home waters recaptures of salmon tagged at West Greenland suggest that prior to 1970 this proportion may have been higher than 50%. It must be emphasised that these estimates refer only to the changes in the relative amounts of North American and European salmon in the West Greenland stock, and therefore do not necessarily reflect changes in the absolute quantities from each region present in the stock.
36. Assessments of Effects of West Greenland Fishery on Home Waters Stocks and Catches
37. Previous assessments by the Working Party of the direct effects of the West Greenland fishery on home water stocks and catches have been based on estimating the changes in weight, through natural mortality and growth, which would have occurred to the number of salmon in the West Greenland catch had they not been caught there and, if surviving, had returned to home waters in North America or Europe as two or more seawinter salmon. The precision with which these effects could be estimated was limited by lack of knowledge of the natural mortality occucring between the time the salmon leave the West Greenland fishing area and their return to home waters, and it was, therefore, necessary to use lower and upper limiting values for this parameter, within which the true value was considered to lie. Instantaneous natural nortality rates of 0.01 and 0.1 per month respectively were used in the assessment which, for a West Greenland catch of 2,000 tons, gave lower and upper estimates of the Iosses in weight to the combined North American and Furopean home waters stocks supplying salmon to the exploited stock at West Greenland of 1,100 and 2,700 metric tons respectively, and to
their combined catches of 650 and 1,600 metric tons respectively (ICES Coop. Res. Rep., Nos. 8, 11 and 35).
38. These assessments were reviewed by the Working Party in the light of the latest data available at the present meeting, especially the recaptures at West Greenland and in home waters of salmon tagged in the International Tagging Experiment in 1972. An analysis of these recaptures was made using a simulation model of the population of tagged fish (details given in Doc. No. 18). This gave a best estimate of the exploitation rate by the West Greenland fishery (i.e. the proportion of the salmon population present at the beginning of the West Greenland fishing season caught by the fishery) in 1972 of 33%. Values of exploitation rate around this level and lower and upper values of other parameters (see Table 6) were then used in a further simulation study, giving estimates of home waters catches of two or more sea-winter salmon and of the natural losses between West Greenland and home waters (details of this simulation model, modified in the present report, are given in ICNAF Res. Doc. 71/72).
39. The results of these calculations, given in Table 6 , show at rance of estimated natural loss rates for the different combinations of parameters usec in the analysis. However, the above estimate of exploitation rate from the analysis of the tag recapture data, and the available information on the other perameters suggest that these estimates are not all equally likeiy. It suggests that the estimates corresponding to a West Greenland exploitation rate of between 30 and 35%, an increase in weight between West Greenland and home waters of 50%, a home waters exploitation rate of 60% and the proportion of the stock not visiting West Greenland of 10-20\% are in closest conformity with the availeble facts. This indicates that the natural mortality rate between West Greenland and home waters probably lies in the range of $15-40 \%$. Further support for these values was provided by the results of back calculations of the West Greenland catch from a total nome waters catch of 3,000 metric tons and a range of values of natural loss rate between West Greenland and home waters and of exploitation at West Greenland. They showed that a west Greenland exploitation rate of between 30 and 40% and natural loss rates between about 15 and 40% provide a reasonable fit to the observed catch data in recent years. In addition, the observed recaptures at West Greenland in 1973 and in home waters in

1974 of fish tagged in the international experiment in 1972 are in keeping with these values of parameters.
39. These values of natural loss rates between West Greenland and hone waters were therefore used to provide revised lower and upper limiting estimates of the direct effects on home water stocks and catches for different levels of catch taken by the West Greenland fishery, using the bame method of estimation as in the earlier assessments referred to in paragraph 36. The results are shown graphically in Figure 2 . othey indicate that the West Greenland fishery causes losses in home waters stocks and catches, which are directly proportional to the magnitude of the West Greenland catch and thet for a catch of 2,000 metric tons, the approximate level in recent years, the estimated loss to the total home waters stock of two or mone sea-winter salmon Iies between 1,800 and 2.550 metric tons, and to the catch of all countries combined between 1,080 and 1,530 metric tons. This range of losses is considerably narrower than that estimated previously.
40. It is emphasized that these estimatesof losses represent the differences between the home waters stocks and catches ofeach year class of two or more sea-winter salmon in the presence of the West Greenland fishery and what they wouldhave been in its absence. "They therefore consitute only the immediate direct effects of the West Greenland fishery and take no account of its possible longer-term effects on smolt production and year class strength through decreases in spawning stock size. As previously reported (ICES Coop. Reso Rep. Mo. 35) significant decreases in spawing stock size and smolt production have been observed in some river systems in recent years; especially in Canada, which might be due in part to exploitation at West Greentand, but too few data are available on these parameters in the home waters stocks as a whole for these longer-term effects to be assessed.
41. Though it is not possible to assign the above home waters losses among countries or river systems, the Working Party has in the post assigned these between North America (mainly Canada) and Europe (mainly the British Isles) on the besis of evidence indicating a roughly equal contribution to West Greenland from each of these areas. Fowever, evidence presented at this meoting indicates that the relative contribution to the West Geentend stock is variable from Fear to year
between North America and Europe. As indicated in Section B. 2 . in 1972 the estimated proportion present from North America ranged from a low of 20% (based on biochemical analysis of blood and on tag returns from the International Taceine Experiment) to a high of 35% (based on scale analysis). On this basis the estimated loss to the North American home waters catch of two or more sea-winter salmon in 1973 as a result of the catch at West Greenland of 2,040 tons in 1972 was between 220 and 546 metric tons and that for the European home waters catch was between 715 and 1,248 metric tons. Tt must be emphasized that the apportionment of the losses between North America and Europe will vary from year to year depending on the relative proportions of the salmon at West Greenland originating from the two continents, which does not appear to be constant.

C. WRWEGIN SEA FISTHERY

1. Statistics of Fishery and Composition of Catches in Long Line

 Fishery in Norwegian Sea42. In 1973 the Iong-Iine fishery in the Norwegian Sea (outside Norwegian fishery limits) was pursued principally by Norwecian and Danish vessels in the area between Iatitudes 68° and $73^{\circ} \mathrm{N}$ and between the Greenwich meridian and longitudes $20^{\circ} B_{\text {. }}$. The area fished by Danish vessels is shown in Figure 3. The fishing area similar to the two previous seasons, i.e. since the introduction of regulatory measures for the long-line fishery. The regulation also involved a restriction of the fishing season to the period 6 May-30 June.
43. Frovisional catch statistics and the number of vessels participating in the fishery in 1973 are given in Table 7 , together with the corresponding data for previous years. These data indicate that the catch in 1973 (561 metric tons), in spite of a decrease in number of vessels was somewhat larger than in 1971 and 1972 (488 and 515 metric tons respectively), but considerably smaller than in the years immediately before the introduction of closed season/area and other regulations in 1971.
44. Estimates of average catch-per-unit-effort, expressed as number of salmon per 1,000 hooks, are eiven below for Danish vessels fishins in the "open" fishing area between latitudes 68 and $7{ }^{\circ} \mathrm{N}$ and longitudes 0 and $22^{\circ} \mathrm{E}$ in May and first half of June in each of the years 1969-73 (in the years 1971-73 when owing to the closed season regulation the fishery did not open until 6 May, the catch-per-unit-effort in the period 1-5 May was

- 15 -
assumed to be the same as in the following week, 6-10 Mayd. Figures in brackets refer to the number of salmon caught by the sampled vessels.

Feriod

45. These data show that in 1973 the catch-per-unit-effort was approximately double that in the previous four yearsiduring which it showed little variation. This accounts for the larger catch in 1973 than in the two previous years despite the decrease in the number of vessels taking part in the fishery. Unusually favourable weather conditions for longlining in May-June 1973 contributed to the high catch rates but they probably also reflect a higher stock abundance in 1973.
46. The catch taken in the long-line fishery in 1973 consisted principally (about 85%) of two-sea-winter salmon; one sea winter fish constituted about 12% of the catch. These data are in conformity with those of previous years and indicate that the effects of the long-line fishery on the numbers and weight of salmon returning to home waters are mainly confined to the two-or-more-sea-winter component of the total stock.
2. Origin and Destination of Saimon in Norwegian See. Stock
47. Further recaptures in the long-line fishery in 1973 of salmon tagged as smolts in Norwegian rivers (given in Tubles 2 and 3), and in home waters of salmon tagged in the long-Ine fishery (Table 8), indicate that, as in previous years, the salmon stock expioited in the Nonwegian Sea was composed of fish originating and returning to rivers in Norway, and, to a smaller extent, the USSR. The component of USSR-salmon in the Norwegian Sea nad however be slightly larger than reflected by the proportion of recaptures in USSR home waters of salmon tagged in the sea, as the rate of exploitation in the home water fishery is probably higher in Norway than in the USSR. No smolts tagged in other major Buropean salmon producing countries heve been recaptured subsequentiy in the Nowegian Sea fishery (excluding that at the Faroes - see below), and no recaptures of salmon tacged in the long-line fishery have been reported from these ountrion. These data, wad the relation omain
numbers of recaptures at West Greenland of salmon tagged as smolt in Norwegian rivers (Tables 2 and 3) suggest that most of the salmon returning to Norwegian and USSR rivers as two-sea-winter fish have a different sea distribution in their second sea-year to those returning to other major European salmon producing countries and that therefore the effects of the Norwegian Sea Iong-Iine fishery will be confined mainly to the Norwegian, USSR, and possibly also to a limited extent, the Swedish west coast stocks.
3. Assessment of Effects of Norwegian Sea Fishery on Home Waters Stocks and Catches
48. In previous years the assessment of the direct effect of the long-ine fishery off Norway on home water catches was approached, using data on the increase in weight of the fish from the period of peak fishing offshore to the period of peak fishing in Norwegian coastal waters and on the proportion of the fish present in the fished area which, if not caught there, would subsequently be caught in the home waters fishery. On this basis it was concluded that the long-line fishery caused a loss to the total weight of fish returning to home waters wich was approximately equal to the magritude of the long-line catch. New information for 1973 on the growth between the fish being exploited in the long-line fishery and their return to home waters provide no grounds for modifying this conclusion. It therefore follows that the long-line fishery in 1973 resulted in a loss of about 550 metric tons in the quantity of salmon returning to home waters (mainly in Norwey), compared with wat it would have been in the absence of that fishery. The corresponaing Iosses to the home waters catches is estimated at between 275 and 410 metric tons (using lower and upper values of home-waters exploitation rates of 0.5 and 0.75 respectively.
4. Lonc-Line Fishing at the Faroes
49. In addition to the main Iong-Ine fishery in the Norwegian Sea, in MayJune 1973 a catch of 28 metric tons was taken by five Faroese longIine vessels fishing in the vicnity of the Faroe Islands (fishing area show in Figure 2). This was a larger catch from this area than in previous years. The average weight of the salmon in the catch indicates that it was comprised mainly of two-or-more-sea-winter salmone This is in contrast with a research catch made in Faroese weters in AprilMay which consisted mainly (85%) of losea winter fish, as was the case with
research catches made in previous years.
50. The recapture of a fish tagged as a smolt in Sweden was reported from the commercial catch and one tageed as a smolt in Norway was reported from the research v essel catch, bringing the total number of reported smolt recaptures from the Faroes in the years 1968-73 to 22 (10 Iiberated in Norway, 6 in S weden (west coast), 4 in Scotland, 1 in Ireland and 1 in Iceland.
51. As shown in Table 9, a further 280 salmon were tagged from a research vessel catch at the Faroes in April-May 1973. Of these, 11 were subsequently recaptured in home waters (5inNorway, 1 in Ingland, 3 in Scotland and 2 in Ireland. These data provide additional evidence to that reported previously that the salmon stock in the Faroes area is of mixed origin and subsequent destination.

D. HOME WATERS FISHERIES

52. Provisional catch statistics for the home waters salmon fisheries in 1973, and those for the years 1960-1972, are given in Table 10; data on catch-per-unit-effort are given in Table 11. Features of the fisheries and exploited stocks in each of the main salmon producing countries are summarised below.
a) Canada
53. In 1973 the total home water commercial (salmon plus grilse) catch increased to 2,165 metric tons from the 1972 level of 1.525 metric tons. This was due to the increased catch of both salmon and grilse at Newfoundland and Labrador. Catches in Quebee and the Maritimes were Low due to a commercial fishing ban in the most productive fishing areas of New Brunswick and Quebec, including the Miromichi. Restigouche and St. John rivers. In areas where the commercial fishing ban was in effect, spawning escapements of early-run large salmon decreased slightly below the 1972 level. However. the late-mun of laree salmon to the Miramichi increased over the 1972 Ievel but was still much below the 1954-60 average. Spaming escapements into the Miremichi, Restigouche and St John river systems are still well below those believed to be necessary for adequate seeding of the rivers.
b) Scotlana
54. The provisional statistics for 1973 indicate that the catches of both grilse and salmon were larger than in 1972. The grilse catch, at 824 metric tons, was the highest since the peak erilse year 1969, while the salmon catch, at 1,103 metric tons, was the highest since 1967 . The combined grilse and salmon catch, at 1,927 metric tons, was also the highest since 1969.
55. An analysis of Scottish grilse and salmon catch statistics in the period from 1952 (presented in Doc. No. 1) showed a significant upward trend in the annual catch of grilse during the period, which reached peaks in 1967 and 1969, while salmon catches fluctuated annually without trend, although they declined from 1967-71. As a result of the increase in grilse catch, there was a significant upward trend in the combined grilse and salmon catches and in the grilse/salmon ratio during this period.
56. Monthly catch data during this period show that there has been a significant decrease in the catches of salmon in the "spring" fishery (February-fpril) but an increase in the "summer" (July-September) fishery. Wile the average weight of salmon has not varied significantly during the period, that of grilse has increased.
c) Encland and Wies
57. The total salmon and grilse catch for the 1973 season in Inciand and Wales amounted to approximately 453 metric tons wich was 11 tons more than in 1972. As in previous years, a large proportion of the total catch was taken by nets in the northeast of England. With this northeast contribution excluded, the net catch for the remainder of Fingland and Wales changed very little in the years 1962 to 1973. The angling catch, however, was considerably reduced from 1968 onvards, wich may be due, at least in part, to the advent of UDN disease.
58. An estimate of the proportions of grilse and salmon in the catches has only been possible since 1969. Whe proportions for the years 1969 and 1971 to 1973 have been fairly constant with ratios (by weight) varying between 2.3 and 2.7 to 1 in favour of salmon. Iowever, in 1970 the grilse catch increased to an extent such that the proportion of selmon to grilse was reduced 1.4 to 1. It must be emphasized, hovever, that the estimates are very approximate for all years so that only wellmarked changes in the grilse-selmon proportion could be reported with any degree of reliability.
d) Ireiand
59. Catches in 1973 showed a further increase of 123 metric tons over those for 1972, and this was reflected in both the salmon and grilse catches. The increase was 22% for salmon and 4% for grilse. The peak of the run of grilse was in June almost three weeks earlier than in a number of previous years. The coastal drift-nets had the highest recorded catch to date and this was attributed to the fact that grilse were more abundant in coastal waters than hitherto. The estuarine nets, however, showed a reduction in catch and this could be attributed to a decrease in effort and to operational difficulties owing to high water which prevailed durine most of the fishing season. The escapement into fresh water in nost areas was also considered to be above averege, based on counts in a number of river systems. Accurate statistics of rod catches are difficult to obtain but on the best information availabie they appear to have been less in 1973 than in 1972.
e) Northern Ireland
60. The 1973 comercial catch of salmon and grilse which includes 50% of the Foyle catch, fell to 182 metric tons, compared with 232 metric tons for 1972 and with the 10 year average of 292 metric tons. The catch was almost entirely grilse, the salmon element not exceeding 10% of the total. The decreased catch in 1973 was due to the continuing reduction in the Foyle catch and poor catches in the Rivers Bann and Bush. Coastal fixed net catches were, however: good.
f) Norway
61. In the years 1967-1970 the Norwegian home waters catch dropped from 1,960 tons in 1967 to 1, 170 tons in 1970. In 1971 it increased slightly and in 1972 by as much as about 360 tons from 1,208 in 1971 to 1,568 tons in 1972. The provistonal statistics for 1973 indicate a further substantial increase to 1.735 tons. This increase of about 170 tons seems to be due mainly to a larger component of two-seawinter fish in the stocks and improved catches in the rivers. The grilse catches were at about the sane level in 1973 as in the previous year. The drift-net catches, hovever, decreased by some 30 tons from those taken in 1972. The catch per bag net deoreased slightly, from 158 kg per net ir 1072 So 151 tre i.. 1973.
62. In summary, the total (grilse + salmon) catches in the main home waters fisherjes on both sides of the North Atlantic were appreciably larger in 1973 than in 1972. Only in Northern Ireland, where the catches consist almost entirely of grilse, was the total catch appreciably Iower than in 1972 (although statistics of 1973 catches are not available for Iceland and USSR). In most countries for which the grilse and salmon catches are recorded separately, the catches of both the Erilse and salmon components increased in 1973, but the increase in salmon catch was particularly marked in Canada, Norway and Scotlend.
E. PREPARATION OF SCIENTIFIC REPORT ON TNPRMATIONAL TAGGING EXPRRTMENT
63. The Working Party considered further and endorsed the provisional plans drawn up at its last meeting for the preparation of a detailed scientific publication on the international West Greenland tagging experiment in 1972 and other associated investigations, including the assessment work. The Working Party noted that sufficient money remains in the tageing fund to meet the cost of 200-250 pages and it recommends that it be issued as a. special volume of the ICES Rapponts et Proces Verbaux.
64. The main topics to be incluced in the publications and the authors of the contributions on then were decided. It was agreed that these should include a survey by the ICES Hydrographic Office of the hydrographic situation in the West Greenland area in 1972 in comparison with previous years, a summary of which was presented at the Working Party meeting (Document No. 37). This showed that surface temperatures in 1972 were low, as in recent years, and that there was a marked change in the depth of the homogenous water layer (mixed layer depth) at the end of August, wich coincided with a sharp decrease in catcl-per-unit-effort in the offshore drift-net fishery
65. Mr Horsted, Dr Hay and Wr Parrish were appointed to form an editorial group ion the publication. It was ageed that the group, in consultation With members of the Workine perty, should also consider the preparation of a brief popularised account of the Working Party": work for publication in the Trade Press.

F. FUTURE RESEARCH

66. The Working Party endorsed the recommendations made in its 1973 Report (ICNAF Summ. Doc. 73/7) on research priorities relating to the assessment of the effects of the high seas fisheries on home waters stocks and catches. Of particular importance in this respect are the following:-
(a) the measurement of exploitation rates in home waters fisheries.
(b) the relationship between stock size and recruitment and the genetic and other factors governing the production of grilse and selmon.
(c) the identification of unit stocks and their rates of mixine in the sea fishing areas.
67. The Working Party recomends that results of researci on these problems be reported at the annual meetings of ICES and ICNAF.

G. NEXI MLETING

68. The Working Party agreed that unless some specific requests for further scientific information and advice relating to its main remit arise at the forthcoming meetings of ICNAF or ICES, it would be unnecessary for it to meet in the coming year.

Table 1. Catches at West Greenland, 1960-73, in metric tons, round fresh weight. (Based on data available at 15 March 1974).

Drift Net
Gill Net and Drift Net

Year	Norway	Feroes	Smeden	Denmark	Greenland ${ }^{\text {d }}$	Total
1960	0	0	0	0	60	60.
1961	0	0	0	0	127	127
1962	0	0	0	0	244	24.4
1963	0	0	0	0	466	466
1964	0	0	0	0	1539	1539
1965	-a	36	0	0	825	861
1966	32	87	0	0	1251	1370
1967	78	155	0	85	1283	1601
1968	138	134	4	272	579	1127
1969	250	215	30	355	+350(385) ${ }^{\text {d }}$	2210
1970	270	259	8	358	1244	2146°
1971	340	255	0	645	1449	2689
1972	175	144	0	401	1320	2040
$1973{ }^{\text {b }}$	212	164	0	385	1574	2335

a - Figures not available, but catch is known to be less than Faroes
b - Provisional
c - Including 7 metric tons caught on long-line by one of two Greenland vessels in the northern Labrador Sea early in 1970.
a - Up to 1968, gill net only, after 1968 gill net and drift net. The figures in brackets for the 1969 catch are an estirate of the minimum drift net catch.

Table 2. Number of natural (wild) smolts taged in the years 1963-1973 and recaptured in West Greenland and in other areas, including home raters, up to March 1974. Rigures in brackets are returns per thousand tagged. ($0=$ No smolts tagged, or no recaptures made; $-=$ no information available).

Country	$\frac{\text { Year of }}{\text { Tagsing }}$	$\begin{aligned} & \text { Number } \\ & \text { Tageed } \end{aligned}$	Mest Greenland	$\frac{\text { Recaptures }}{\frac{\text { Norwegian }}{\text { Sea and }}}$	All Other Areas			Grand
					Grilse	Saimon	Total	
Canada	1963	5,850	11(1.9)	0	70	$20(3.4)$	90	101
	1964	15,013	$9(0.6)$	0	204	$72(4.8)$	276	285
	1965	16,405	$73(4.4)$	0	175	$193(11.7)$	368	4.4
	1966	9,509	$25(2.6)$	0	120	$105(11.0)$	225	250
	1967	17,809	$17(1.0)$	0	121	$167(9.4)$	288	305
	1968	55,784	132(2.4)	0	1,216	425 (7.6)	1,641	1,773
	1969	42,879	85(2.0)	0	376	183(4.5)	559	64.4
	1970	37,124	168(4.5)	0	313	$151(4.1)$	464	632
	1971	45,564	$100(2.2)$	0	418	139(3.1)	557	657
	1972	23,752	$19(0.8)$	0	201	-	204	220
	1973	17,308	-	-	-	-	-	-
Scotland	1963	10,998	10(0.9)	0	172	$92(8.4)$	264	274
	1964	9,200	$5(0.7)$	0	110	$66(7.2)$	176	182
	1955	9,239	$10(1.1)$	0	73	$49(5.3)$	122	132
	1966	15,106	$30(1.9)$	0	280	$39(2.5)$	319	349
	1967	21,002	$23(1.1)$	$1^{\text {a }}$	169	$71(3.4)$	24.0	264
	1968	15.695	$16(1.0)$	0	127	$33(2.1)$	160	176
	1969	15,958	$51(3.2)$	0	217	55.3 .4	272	323
	1970	32,071	$152(4.7)$	2	560	$174(5.4)$	734	888
	1971	20,706	$137(6.6)$	$2^{\text {c }}$	615	216 (10.4)	$33 *$	970
	1972	19,883	13)(6.9)		757	-	757	894
	1973	26,949	-	-	-	-	-	

[^1]Table 2 (Continued)
Recantures

Country	$\frac{\text { Year of }}{\text { Tagging }}$	Number	West Greenland	$\frac{\text { Norwegian }}{\frac{\text { Sea and }}{\text { Faroes }}}$	$\begin{array}{r} \text { AII } \\ \text { Crilse } \end{array}$	$\begin{aligned} & \text { Other Areas } \\ & \text { Salmon } \end{aligned}$	Total	$\frac{\text { Crand }}{\text { TotaI }}$
England and	1963	9,485	8(0.8)	0	15	$38(4.0)$	53	61
Wales	1964	17,105	10(0.6)	0	30	$97(5.7)$	127.	137
	1965	5,873	$12(2.0)$	0	35	$57(9.7)$	92	104
	1966	3,219	$5(1.6)$	0	28	37(11.5)	65	70
	1967	4,117	10(2.4)	0	23	$56(13.6)$	79	89
	1968	5,789	24.4 .1)	0	44	51 (8.8)	95	119
	1969	8,515	$49(5.8)$	0	35	24(4.8)	76	125
	1970	7,304	$28(3.8)$	0	29	$29(4.0)$	58	86
	1971	5,680	$20(3.5)$	0	30	16(2.8)	46	66
	1972	2,473	7(2.8)	0	10	-	10	17
	1973	2,680	-	-	-	-	-	-
Norway	1963	97	0	0	0	4(41.2)	4	4
	1964	1,4,85	0	0	67	$26(17.5)$	93	93
	1965	2,178	0	0	40	18(8.3)	58	58
	1966	1,362	0	2	27	$16(11.7)$	43	${ }^{45} \mathrm{x}$
	1967	3,601	0	4	59	$26(7.2)$	85	93^{x}
	1968	3,562	0	3	106	$21(5.9)$	127	$134{ }^{\text {x }}$
	1969	4,273	$3(0.7)$	3	83	$30(7.0)$	113	124^{x}
	1970	7,603	$3(0.4)$	4	234	93(12.2)	327	$337 \times$
	1971	5,573	0	3	319	$62(11.1)$	381	386^{x}
	1972	4.445	-	8	323	-	323	331
	1973	5,500	-	-	-	-	-	-
Iceland	1963	63	0	0	2	0	2	2
	1964	63	0	0	0	(15.9)	i	1
	1965	8	0	0	0	0	0	0
	1966	83	0	0	0	2(24.0)	2	2
	1967	154	0	0	2	$1(6.5)$	$\cdots 3$	5
	1968	59	0	0	1	1(17.0)	2	2
	1969	15	0	0	0	0	0	${ }^{6}$
	1970	16	0	-	-	-	-	-
Ireland	1968	- 606	0	0	21	0	21	24
	1969		0	0	0	0	0	0
	1970	1.403	$5(3.6)$	0	1	1(0.7)	2	7
	1971	0	0	0	0	0	0	0
	1972	0	0	0	0	0 -	0	0
	1973	0	0	0	0	0	0	0
Sweden	969.	-885	0	0	69	16(18.0)	85	85
	1973	400	-	-	-	-	-	-
USSR.	1969	500	0	0	0	0	0	\checkmark
France	1969.			0	0		4	49
	1970	3,968	$27(6.8)$	0	3	$13(3.3)$	16	43
	1971	4,702	$10(2.1)$	0	0	$5(1.1)$	5	15
	1972	1,983	0	0	0	-		.
	1973	3,903	-	-	-	-	-	-
Greenland		- $155^{\text {b }}$	7(45.2)	0	0	0	7	
	1971	135	0	0	0	-	0	,
	1973	24°	-	-	-	-	-	-

Table 3. Number of hetchery-reared smolts tageed in the years 1963-1973 and recaptured in West Greenland and in other areas, including home waters, up to Narch 1974. Figures in brackets are returns per thousand tageed. ($0=$ No smolts tagked, or no recaptures mede; $-=$ no informetion availabie).

$X_{i n c l u d i n g ~ s o m o ~ f i s h ~ f r o m ~ u n k n o w n ~ l o c a l i t i e s ~}^{\text {int }}$
Norwegian coast
$\mathrm{b}_{\text {two }}$ recaptured at East Greeniand in 1971, not included

Table 3 (Continued)

Country		Recaptures					
	Year of Tagging	$\begin{aligned} & \text { Number } \\ & \text { Tagzed } \end{aligned}$	West Greeriand	$\frac{\text { Norwegian }}{\frac{\text { Sea and }}{\text { Earoes }}}$	All Other Areas Grilise Salmon	Total	$\frac{\text { Grand }}{\text { Potal }}$
Icelan ${ }^{\text {a }}$	1966	8,367	$1(0.1)$	1(0.1)	$66 \quad 14(1.7)$		
	1967	10,061	0	0%	24 ($6(0.6)$	30	$\begin{aligned} & 82 \\ & 30 \end{aligned}$
	1968	9,985	0	0	$45 \cdots 0$	45	45
	1969	7,586	0	0	245 . $10(1.3)$	256	256
	1970	10,014	0	0	1 -	25	1
	1971	11,087	0	0	0	-	-
N. Ireland	1973	275	-	-	- -	-	-
Ireland	1966	15,000	0	0	$0 \quad 0$	0	0
	1967	5,000	1(0.2)	0	40	\dagger	2
	1968	- 220	0	0	0	1	1
	1969	7,194	$2(0.3)$	0	22 2(0.3)	24.	26
	1970	4,788	0	\pm	1100	11	12
	1971	2,28	0	0	10	1	1
	1972	0	0	0	$0 \quad 0$	0	0
	1973	2,922	-	-	-	-	0
Sweden	1966	11,181	$7(0.6)$	1	690 193(17.2)	883	891
	1967	4,999	$1(0.2)$	4	$364.62(12.4)$	426	431
	1968	49798	$1(0.2)$	1	$586 . \quad 37(7.7)$	623	525
	1969	7.381	$4(0.5)$	3	465 43(5.8)	508	515
	1970	5,000	$7(1.4)$	1	$345 \quad 30(6.0)$	375	383
	1971 1972	4,9971) 4,000	$4(0.8)$	0	$341.7(1.4)$	348	352
	1973	4,000	0	1	138 -	138	139
U.S.A.	1966	82,250	39(0.4)	0	69 168(2.0)	237	276
	1967	80,717		0	12 10(0.1)	22	23
	1968	73,730	$7(0.1)$	0	9 12(0.2)	21	28
	1969	73,415	$65(0.9)$	0	32 79(1.1)	111	176
	1970	47,835	$404(8.4)$	0	$55 \quad 285(6.0)$	340	74.4
	1971	29,900	$87(2.9)$	0	12 181(6.1)	193	280
	1972	52,535	88(1.7)	0	29 -	29	117
	1973	38,045	-	-	- -	-	-
Denmark	1965	1,880	0	0	$12(1.1)$		
	1966	4,270	0	3	19 40(11.5)	66	69.
	1967	2,696	0	1	13 9(3.3)	23	24
	1968	4.984	1(0.2)	1	36 1(0.2)	36	38
\%	1969	3.837	0	0	6 0 0	5	5
	1970	1,376	0	0	$0 \quad 0$	0	0
	1973	2,976	-	-	- -	-	
U.S.S.R.	1969	600	-	-	- -	-	-
France	1970	549	0	0	0 0	0	0
	1974	326	0	0	$0 \quad 0$	0	0
	1972	4,469	0	0	0	-	-
	1973	18,457	-	-	-	-	-

Table 4. Number of kelts tageed in the winters 1962/63-1972/73
recaptured in Greenland and in other areas, including home waters, up to the end of 1973.
($0=$ No kelts taggec, or no recaptures made; - = no information available)

\cdots Country	Winter of Tagging	Number Tagged	Recaptures			In Year of Tagging
			Greenland.	Other Areas	Total	
Canada ${ }^{\text {a }}$	1962-63	653	2	65	67	219
	19,63-64	${ }^{1} 518$	0	91	91	588
	1964-65	1995	1	142	143	484
	1965-66	7169	0	654	654	1879
	1966-67	7510	1	589	690	958
	1967-68	3706	2	288	290	660
	1968-69	3848	5	86	91	526
	1969-70	4726	9	145	154	599
	1970-71	5392	22	308	330	780
	1971-72	5156	10	375	385	824
	1972-73	6932	16	166	182	1408
	1973-74	7758	-	-	-	1362
$\begin{aligned} & \text { England } \\ & \text { and Wales } \\ & \text { (River Axe } \\ & \text { Only) } \end{aligned}$	1962-63	159	1	12	13	
	1963-64	185	2	10	12	
	1964-65	184	1	11	12	
	1965-66	109	1	7	8	
	1966-67	$178{ }^{\circ}$		11	12	
	1967-58	188	2	6	8	
	1968-69	81	0	3	3	
	1969-70	113	0	12	12	
	1970-71	7	0	0	0	
	1971-72	23	0	1	1	
	1972-73	10	0	0	0	
	1973-74	12	-	-	-	
Faroes	1563-73	103	0	8	8	
	1973-74	41	-	-	-	
Iceland	1962-63	114	0	14.	14.	
	1963-64	167	0	9	9	
	1964-65	154	0	5	5	
	1965-66	357	0	15	15	
	1966-67	745	0	75	75	
	1967-68	44	0	17	17	
	1968-69	369	0	19	19	
	1969-70.	314	0	21	21	
	1970-71	785	0	105	105	
N. Irelend	1972-73	103	0	8	8	
Irelend	1962-63	2264	2	31	33	
	1963-64	2351	2	70	72	
	1964-65	2695	2	34	36	
	1965-66	2972	1	40	41	
	1966-67	3175	0	77	77	
	1967-68	1034	0	24.	24	
	1968-69	498	0	10	10	
	1969-70	+088	0	28	28	
	1970-71	477	0	39	39	
	1971-72	209	0	15	15	
	1972-73	540	1	58	59	

/ Cont? d

Table 4 (Continued)

a - Ascending adults and fish tagged from coastal fisheries are included in the totals tagged for the corresponding winter (i.e. those tagged in 1962 are included under 1962-63, those tagged in 1963 under 1963-64 etc.).
b-In addition, 180 kelts were tagged by the Dee and Clwyd River Authority in 1965-66 and 291 kelts in 1966-67. No recaptures were reported from the first experiment and two (from 'Other Sreas') from the second.
o - Includes 1 recapture at Paroes.
d - Recaptured at Inroes.
Table 5. Recaptures up to 31 December 1973 of Fish Tagged at West Greenland and in the Labrador Sea from 1965-1971.

$\begin{gathered} \text { Year } \\ \text { Tagged } \end{gathered}$	Number Tagged	Number of Local Recaptures	Numbers of Distant Recaptures						Total Number Distant Recaptures
			Canada	Scotiand	BngTand \& Wales	Ireland	Prance	Spain	
1965	223	3	1	0	0	0	0	0	1
1966	729	28	1	3	0	0	0	0	4
1967	375	6	1	1	0	2	0	0	4
1968	47	4	1	0	0	0	0	0	1
1969	44.	$17^{\text {b }}$	6^{-3}	1	3	2	0	1	13
1970	27°	0	3	0	0	0	0	0	3
	224	3	2	1	0	1	0	0	4
1971	59°	0	8	0	0	0	0	0	8
	226	5	$4^{\text {d }}$	0	2	$3^{\text {ef }}$	0	1	10

a - One recaptured in year of tagging.
b - Three recaptured in Greenland in 1970.
c. - Labrador Sea in spring.
d - Cne recaptured and released at Millbank reseach trap on R. Miramichi and subsequently recaptured upstrean at Blackville by ancling.
f - Cne recaptured in N. Ireland.
Table 6
Simulation of home water salmon catches and netural losses hetween freenland and home waters based home waters, exploitation rote in home waters and proportions of initial stock of almon (1 sea minter or more) not ocourring at :"est Greenland. Actual home water oatoh taken as 3000 tons.

Catch at \%est Gremand	Mxploitation at isst Greenland \%	Number in "iest Greenland stock escaping Rishery there	"ieight increase between Creenland and home waters $\%$	Home nater exploitation $\%$	simulated home water catch of. fish having been in Greenland tons	Losses between Greenland and home waters as \% of numbers escaping fishery at Vest Greenland		
						Proportion of initiel stock out- side creenland waters		
						10\%	20%	30\%
$\begin{aligned} & 2000 \mathrm{~m} \text { tons } \\ & \text { or } \\ & 625000 \mathrm{rish} \end{aligned}$	25	1875000	4.0	$\begin{array}{r} 60 \\ 80 \end{array}$	$\begin{aligned} & 5040 \\ & 6720 \end{aligned}$	$\begin{aligned} & 48 \\ & 61 \end{aligned}$	$\begin{aligned} & 55 \\ & 67 \end{aligned}$	$\begin{aligned} & 62 \\ & 72 \end{aligned}$
			50	$\begin{aligned} & 60 \\ & 80 \end{aligned}$	$\begin{aligned} & 5400 \\ & 7200 \end{aligned}$	$\begin{aligned} & 52 \\ & 63 \end{aligned}$	$\begin{aligned} & 58 \\ & 69 \end{aligned}$	$\begin{aligned} & 65 \\ & 72 \end{aligned}$
	30	14.58000	40	$\begin{aligned} & 60 \\ & 80 \end{aligned}$	$\begin{aligned} & 3919 \\ & 522.5 \end{aligned}$	$\begin{aligned} & 34 \\ & 50 \end{aligned}$	$\begin{aligned} & 44 \\ & 58 \end{aligned}$	$\begin{aligned} & 53 \\ & 64 \end{aligned}$
			50	$\begin{aligned} & 60 \\ & 80 \end{aligned}$	$\begin{aligned} & 4200 \\ & 5600 \end{aligned}$	$\begin{aligned} & 38 \\ & 54 \end{aligned}$	$\begin{aligned} & 47 \\ & 60 \end{aligned}$	$\begin{aligned} & 56 \\ & 67 \end{aligned}$
	35	1161000	40	$\begin{aligned} & 60 \\ & 80 \end{aligned}$	$\begin{array}{ll} 3 & 121 \\ 4 & 161 \end{array}$	$\begin{aligned} & 18 \\ & 38 \end{aligned}$	$\begin{aligned} & 30 \\ & 48 \end{aligned}$	$\begin{aligned} & 46 \\ & 57 \end{aligned}$
			50	$\begin{aligned} & 60 \\ & 80 \end{aligned}$	$\begin{array}{ll} 3 & 344 \\ 4 & 4.58 \end{array}$	$\begin{aligned} & 24 \\ & 43 \end{aligned}$	35 51	$\begin{aligned} & 46 \\ & 59 \end{aligned}$

Table 7 Catches in the Noxweqian Sea Iong-line fishery and in the dxift-net fishery within Noxwegian fishexy tons, round fresh welpht.
Driftenet Pishery

NMM M N NM. NiN

 8. not known
b rouphly 70% of atch taken in vicinity of Faxoes
c all taken in vicinity of Faroes
d estimated catch
e precise number unknow, but leage numbers of small and medium-sized
f. excluding catches discarded because undersized

Mable 8 Recaptures of salmon tagged in the long-line fishery in the Norwegian Sea (to ifarch 1974)

Year	$\begin{aligned} & \text { inumber } \\ & \text { Tagsed } \end{aligned}$	$\frac{\text { Year }}{\text { necapturyed }}$	Nornegian Sea	Recaptoures Eome water		Total
				Morwey	U.S.S.R.	
1968	238	$\begin{aligned} & 1968 \\ & 1969 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	5
		Total	0	5	1	6
1969	932	$\begin{aligned} & 1969 \\ & 1970 \\ & 1971 \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{r} 49 \\ 13 \\ 2 \end{array}$	$\begin{aligned} & 6 \\ & 2 \\ & 0 \end{aligned}$	$\begin{array}{r} 60 \\ 17 \\ 2 \end{array}$
		Total	7	64	8	79
1970	1,118	$\begin{aligned} & 1970 \\ & 1971 \\ & 1972 \\ & 1973 \end{aligned}$	$\begin{array}{r} 10 \\ 2 \\ 1 \\ 0 \end{array}$	$\begin{array}{r} 118 \\ 10 \\ 7 \\ 0 \end{array}$	$\begin{aligned} & 9 \\ & 3 \\ & 0 \\ & 1 \end{aligned}$	$\begin{array}{r} 137 \\ 15 \\ 8 \\ 1 \end{array}$
		Toter	13	135	13	161
1971	1.824	$\begin{aligned} & 1971 \\ & 1972 \\ & 1973 . \end{aligned}$	$\begin{array}{r} 4 \\ 3 \\ \hline 1 \end{array}$	$\begin{array}{r} 135 \\ 22 \\ 4 \end{array}$	$\begin{array}{r} 17 \\ 6 \\ 0 \end{array}$	$\begin{array}{r} 156 \\ 31 \\ 5 \end{array}$
		Totas	8	161	23	192
1972	795	$\begin{aligned} & 1972 \\ & 1973 \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	$\begin{array}{r} 45 \\ 9 \end{array}$	$\begin{gathered} 16 \\ 4 \end{gathered}$	$\begin{aligned} & 64 \\ & 13 \end{aligned}$
		Totas	3	54	20	77

Table 9 Recaptures of fish tagged in Faroes maters to March 1974

$\frac{\text { Year }}{\text { Tagged }}$	$\begin{aligned} & \text { Number } \\ & \text { Tastged } \end{aligned}$	Normay	Fngiand	Recaptures		$\underline{U} \underline{U S}^{S_{0} S_{0} E_{0}}$	$\frac{\text { Gest }}{\text { Greenland }}$
				Scotlind	Ireland		
1969	74	1	0	2	0	0	0
1970	233	2	1	5	3	1	1
1971	359	4	1	8	2	0	1
1972	307	1	2	4	5	0	1
1973	280	5	1	3	2	0	0

Table 10 Catches in home waters, 1960-73 (salmon plus grilse except, where shown separately) in metric tons, round fresh weight.

Table Il. Estimates of catches per unit effort for some home water fisheries. 1960-1973.

Year	Canada		IreIand			Foyle Area		Northern Ireland	
	$\begin{gathered} \text { (Drift Nets } \\ \text { and Traps) } \\ \text { lbs } \end{gathered}$	Trap Dri Netsin Net	t (Open Drift (Numb	$\begin{aligned} & \text { Sea } \\ & \text { Nets) } \\ & \text { ers) } \end{aligned}$	$\begin{gathered} \text { Hicences } \\ \text { Ibs } \end{gathered}$	(Sea Nets) (Num	$\begin{aligned} & \text { Drift } \\ & \text { bers) } \end{aligned}$	$\begin{aligned} & \mathrm{Bag} \mathrm{Nets}^{\mathrm{g}} \\ & (\mathrm{lbs}) \end{aligned}$	$\begin{aligned} & \text { Fixed Draft } \\ & \text { Netsb } \\ & \text { (Ibs) } \end{aligned}$
1960	169		32		950	104		-	-
1961	159		22		1030	-		-	-
1962	178		56		2210	297		-	-
1963	193		45		1940	334		-	-
1964	266		43		I 720	392		-	-
1965	262		52		1700	361		-	-
1966	249		51		1250	375		-	-
1967	300		73		1650	524		-	-
1968	183		55		1650	482		1462	2675
1969	159		49		2077	404		4.632	I 842
1970	153	13.3 8	.9 42		1899	565		4269	2460
1971	80	8.4	. 242		1683	353		3306	4529
1972	-	-	35		1662	344		3684	2229
1973	i		35		1815	308		4564	2320
	Norway ${ }^{\text {d }}$	England and Wailes Scotland							
Year	$\begin{gathered} \text { (Bag Nets) } \\ \text { Kg } \end{gathered}$	Drift Nets NE Areag (numbers)		(Fixed Engines) ${ }^{e}$ (numbers)		(Net and Coble) ${ }^{\text {f }}$ (Humbers)			
		Salmon	Grilse	Salmon	Grilse	Salmon	Grilse		
1960	172	84.8	79.8	12.8	20.3	84.1	77.4		
1961	158	54.3	46.1	12.3	17.2	60.9	61.4		
1962	175	92.8	75.5	14.8	29.6	83.6	134.9		
1963	177	49.4	42.7	19.9	21.8	109.3	62.3		
1964	195	52.6	58.0	23.2	35.6	98.6	113.8		
1965	172	83.6	47.9	17.8	26.6	84.0	99.0		
1966	154	66.6	58.9	19.4	30.4	95.0	104.0		
1967	154	110.5	90.9	21.6	49:9	130.2	170.4		
1968	129	110.5	-	17.3	29.8	97.9	92.4		
1969	137	134.5	166.5	15.9	49.7	123.4	194.5		
1970	117	170.3	245.3	12.3	35.2	98.9	137.5		
1971	116	84.1	83.4	11.6	39.9	69.5	118.4		
1972	158	138.3 162.0	152.1	17.0	38.6	129.7	138.0		
1973	$151{ }^{\text {j }}$	162.0	190.0	-	-	-	-		

a - Miramichi area, salmon only. Average of mean monthly catch/unit effort for both types of gear throughout open seasons for each type. Units of effort taken as 1 trap net or 200 fathoms of drift net, as defined in FRB Tech.Rep. No. 29.
b - Salmon and grilse per net.
c - Pounds salmon and grilse per licence (for drift nets, draft nets and other commercial methods).
d - Salmon and grilse per bag net.
e - Catch per net per month.
f - Catch per crew per montin.
g - Catch per net licence issued.
h - Miramichi area, salmon only, pounds/unit day.
i - Local fishery closed in 1972; see footnote a.
j - Provisional.

List of Working Papers

No.	Author	Title
1.	Chalmers \& Munro	Trends in Scottish salmon grilse catches, 1952-1971.
2.	(D.A.F.S., Pitlochry)	Data for updating tables in the 1973 Report.
3.	A Swain	Solmon catches for England and Wales.
4.	A Swain	Recaptures of tagged salmon off Greenland and in home waters, England and Wales.
5.	A Swain	The recaptures in England and Wales of salmon tagged off Greenland in 1972.
6.	A R Child	Biochemical differences in serum enzymes from North America and the British Isles.
7.	a Swain	A report on the smolt tagging carried out in European countries with particular reference to recaptures made off Greenland in 1972 and comparable home vater recaptures.
8.	A Swain	Further report on the analysis of age. length and weight data collected during the International Salmon Tagsine Experiment 1972.
9.	C P Rugsles, J Ritter and R Itarger	Some preliminary tables and graphs summarizing North American smolt tagging experiments.
10.	C P Ruggies	Abuncance of Atlantic salmon in New Brunswick rivers in 1973.
11.	Wif Lear and E J Sandeman	Use of scale characters and a discriminant function for identifying continental origin of Atiantic salmon.
12.	WH Lear and 0 Christensen	Selectivity and relative efficiency of salmon drift nets.
13.	J H O Pippy	The value of parasites as biological tags in Atlantic salmon at West Greenland.
14.	万. H Payne	The use of serum transferrin polymorphism to determine the stock composition of Atlantic salmon in the West Greenland fishery.
15.	(Canada)	Tables for updatine 1973 ?eport.

Ho.	Author	Tritle
16.	0 Christensen and wit Lear	Distribution and abundance of salmon at West Greenland (including tables showing (a) distribution by areas and time of effort, catch and catch-per-unit-effort in the 1973 West Greenland drift-net fishery, (b) Inst of recaptures reported to ICES or to the Greenland Fisheries Investigation, from 1 January to 11 Maxch 1974).
17.	0 Christensen and W H Lear	By-catches in salmon drift-nets at West Greenland in 1972.
18.	J Móller Jensen	Report on recatures from the International Salmon Tagging Experiment at West Greenland, 1972. Analysis of smolts tagged in home waters and recaptured at West Greeniand 1972.
19.	J Mbller Jensen	Salmon survey in the Irminger Sea 1973 (Anacat Cttee paper C.M.1973/M:27).
20.	A I J Went	Movement: of salmon to and from Irish waters (The Fish Biology Reprint).
21.	$A \geq J$ Went	Interesting recaptures of tagged salmon in 1973 (Fishery Leaflet No. 58, 1973, Dublin).
22.	C Christensen	The Danish salmon fishery in the Norwegian Sea in 1973.
23.	AE J Went	Survival rates from the natural smolt production in the Burrishoole River.
24.	D J Pigeins	The relationship between salmon and grilse。
25.	Miss E Twomey	Salmon catch by different methods, for Ireland in 1972 and 1973.
26.	P O Larsson	Migrations of the Swedish west coast salmon stocks.
27.	(D.A.F.S.)	Scale analysis of salmon caught off the Faroes 25 April - 20 May 1973.
28.	I. Rosseland	Average weights of samon caught in the Norwegian homer weter fisheries, 1969-1972.
29.	L Rosseland	Recaptures of saimon tagged in the long-Iine thery in the Norwegian Sea.
30.	I Rosseland	Recaptyres in 1973 of salmon tagged in the longIine fishery in the Norwegian Sea 1971-72.

No. Author
31. L Rosseland
32. L Rosseland
33. I Rosseland
34. I Rosseland
35. I Rosseland
36. L Rosseland
37. J Smed

Title

Salmon smolts tagged and released in Norwegian rivers, 1970-1973.

Average weights of salmon tagged as smolts in Norwegian rivers 1966-1969, and recaptured in the Norwegian Sea and in home waters. Weights of salmon caught in Norwegian coast bagnets. 1973 (with map and graph).

Length distribution of salmon - bagnets, 1973.
Weights and condition factors of salmon bagnets 1973.
Diagram of recaptures of Norwegian tagged smolts at West Greenland.

The temperature of the waters off West Greenland during the Salmon Tagging Experiment in 1972.

Fig. 1 CHART SHOWING ICNAF DIVISIONS AND FISHING AREAS (I-III) USED \mathbb{N} ANALYSIS OF SALMON FISHERY DATA

Fig. 2 ESTMMATED LOSSES (metric tons) TO HOME WATERS STOCKS AND CATCH OF 2 OR MORE SEAWINTER SALMON dUE TO CATCHES AT WEST GREENLAND

Fig. 3 CHART SHOWING AREA FISHED BY DANISH VESSELS \mathbb{N} NORWEGIAN SEA AND BY FAROESE VESSELS $\mathbb{I N}$ VICINITY OF FAROE ISLANDS

IN 1973

[^0]: x) General Secretary ICES
 Charlottenlund Slot 2920 Charlottenlund Denmark.

[^1]: azeroes

