International Council for the Exploration of the Sea
C.M.1974/H:4 Pelagic Fish (Northern) Committee

REPORT OF THE HERRING ASSESSMENY WORKING GROUP FOR THE AREA SOUTH OF 62N

18-22 February 1974, Charlottenlund, Denmark.

CONTENTS

Page

I. Introduction and Participation 1
2. North Sea Herring 1
2.1. The Fishery in 1973 1
2.2. Fishing Mortality 2
2.3. Stock and Recruitment 3
2.4. Prognosjs and Total Allowable Catch 4
3. Celtic Sea Herring 5
3.1. Catches 5
3.2. Stock and Recruitment Estimates 5
3.3. Fishing Mortality 6
3.4. Conclusions 6
4. Herring in Division VIa 6
4.1. General Biology of Stocks in VIa 6
4.2. Stock Structure of Herring in Division VIa 7
4.3. Total Catches and the Fisheries in Division VIa 8
4.4. Catch in Numbers in Division VIa 9
4.5. Mortality in 1973 9
4.6. Recruitment of the 1971 Year Class in VIa 9
4.7. Mortalities and Stock Size 10
4.8. Catch Prognosis for 1974 10
4.9.T.A.C. 11
5. Discussion 11
6. References 13
Appendix A 14
Tables 2.1. - 4.11. 16
Figures 1-5 33

[^0]
1．Introduction and Participation

1．1．The International Council for the Exploration of the Sea，at its Statutory Meeting in September 1973，decided to disband the Celtic Sea Herring Assessment Working Group and the North Sea Herring Assessment Working Group．To replace these it established a new Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ ．This Group was asked to meet in Charlottenlund on 18 February 1974 for five days to report to the Liaison Committee＇s mid－term Meeting on herring stocks west of $4^{\circ} \mathrm{W}$ and， if necessary，on the North Sea and Celtic Sea stocks．The Group decided that although its major task should be to make an assessment of the herring stock in the area west of $4^{\circ} \mathrm{W}$ ，it was advisable to review the new data available on the North Sea and Celtic Sea stocks to examine whether these had introduced appreciable changes in the last assessments of these stocks．

1．2．Member countries were represented by the following scientists：

Mrr A．C．Burd	U．K．（England）
Mr A。Corten	Netherlands
Mr J．Jakobsson	Iceland
Mr H．Lassen	Denmark
Dr A．Lindquist	Sweden
Mr K．Popp Madsen	Denmarik
Mr A．Mancorps	France
Mr J．Molloy	Ireland
Mrs E．Nielsen	Denmark
Mr A．Saville（Chairman）	U．K．（Scotland）
Dr A．Schumacher	Germany（ F 。Ro）
Mr Bo．Sjostrand	Sweden
Mr D．Ulltang	Norwey
Mr O．J． $0^{\text {astvedt }}$	Norway

Mr Corten and Mre Jakobsson were not present on the last two days of the Meeting。

All Meetings were attended by Mr D．de Go Griffith in his capacity of Secretary to the Liaison Committee and of Statistician to ICES．

The absence of representatives from Poland and U．SoS．R．was noted with regret．

The Working Group during this Meeting also considered the output required， and the input data necessary to achieve this output，from the trial run of the ICES A．D．P．system using North Sea herring data。 The Working Group ${ }^{\circ}$ s conclusions on this topic are given in Appendix A．

2．North Sea Herring

2．1．The Fishery in 1973

2．1．I．In the Iast Report of the North Sea Herring Assessment Working Group （C．M．1973／H：27）a preliminary estimate of 264000 tons was given as the catch in the first seven months of 1973，despite the closure in force from 1 February to 15 June．This catch represents about half the expected annual catch if fishing mortalities had remained at the levels of 1972 。 The major part of this catch was taken after 15 June．

2．1．2．In Table 2．1。 preliminary catch data for the whole of 1973 are given。 No information was available for a number of countroes，and their catches have been estimated on the basis of those of previous years．The total North Sea catch，excluding Skagerak，was estimated to be about 450000 tons。

In previous years the preliminary estimates have been increased by about 10% when the final catch data became available。 It would seem，therefore， that the final annul catch will be rather similar to those of 1971 and 1972．The Skagerak catch increased in 1973，but this increase is in part due to the inclusion of Icelandic catches taken in the border area． Biological samples indicated that these fish were spring spawners（Table 2．2．）。

2．1．3．Tables 2．30 to 2．7．give the catch data for the subodivisions of the area used in previous reports．In Division IVb the adult catch increased in 1973，while the IVc catch remained at about the level of the three previous yearso In all other areas，including the IVb juvenile fin shery，the catches declined．

2．1．4．The numbers of herring at each age in the catches in each area are given in Table 2．8．and those for the total North Sea are summarised below：

Fear／hze	0	1	2	3	4	5 and older	Total
1908	839	2425	1795	1494	621	571	7746
1969	112	2503	1883	296	133	336	5246
1970	890	1196	2003	884	125	143	5249
1971	684	4378	1147	662	208	97	7177
1972	750	3341	1． 441	344	131	40	6047
$1973^{\text {x）}}$	289	2400	1221	552	132	84	4677

Millons of Herring Caught per Age Group（Winter Rings）
X）Prelimingry．
There has been an apparent decrease in the catches of jurenile herring，while the catch of older fish has remained on the same level．

2．2．Fishing Mortality

2．2．1．Using the 1973 preliminary catch in number，the fishing mortalities and stock sizes have been recalculated by virturl population analysis．As the 1972 and 1973 catch data are likely to affect the estimates of stock and mortality for only the most recent years，Tables 2．9．and 2．10．give the stock sizes and fisking mortality estimates only for the period 1965 － 1971.

2．2．2．In the previous Report some estimates of mortality from catch and effort data were presented（CoMo 1973／H：27，6．6．6．8．）．No further additions could be made to this sexies．From Table 2．9。 and the previous report mean fishing mortalities bssed on 2 minged fish and older for various periods are given as follows：

Fishing Moxtality forom:

Catch per effort		VPA	
Period	P	Period	F
$1952-57$	0.41	$1952-57$	0.38
$1957-61$	0.49	$1957-61$	0.44
1961.65	0.44	$1961 \approx 65$	0.49
$1965-69$	0.67	$1965-69$	0.89
$1969-72$	0.64	$1969-71$	1.04

2.2.3. A considerable number of herring tagged during the Bloden Tagging Experiment have been recovered from the adult fisheries. The total number of tags returned during 1971 to 1973 are given below:

\[

\]

These data can be used to calculate total mortalities. For the period 1971 - 1973 the annual total mortality was ${ }^{\prime}$ Assuming natural mortality
 the value chosen from other information for the calculation of the stock size in 1974。
2.2.4. The fishing mortalities of lwringed fish, as estimated by VoPoA. for recent years are: $1970=0.46,1971-0.91,1972-0.81$. The values for 1971 and 1972 are rather higher than those used in the prognosis for this age group: but their acouracy is not very high.

2.3. Stock and Recruitment

2.3.1. The annual stock siges given in Table 2.10。using the 1973 catch as the starting point in the V.P.A. analysis, give almost jdentical values to those in the previous Repoxt up to 1969 (C.M.I973/H:27. Table II). The main change in the stock size in 1969 is caused by a lower estrmated value fox the 1968 year class (Ompoup). Table 2.10. shows that this year class was about hali the longmerm gverage strength.
2.3.2. The estimated stock size for 1970 shows that the 1969 year olass was well above aterage strength, which is in conformity with the astimates from the Young Herring Surveys (text Table 2.3.4.). The calculated stock size in numbers for 1971 shows that the year class 1970 was of about average strength.
2.3.3. In Table 2.10. the estimated stock biomass iss also given for the years 1965 - 1971. Over this period, the biomass declined from about 2300000 tons to 600000 tons. The low blomass in 1971 is largely due to the poor 1968 year class. The apparent increase in the estimeted biomass of the stock in 1973 and 1974 (paragraph 2.4.1.) is partly due to the strong 1969 year class and partly to the assumption of average recruitment for subsequent year classes.
2.3.4. In the previous Report it was suggested that the 1971 year class might be of about average strength. Some additional confirmatory evidence is now available from preliminary estimates of this year class from the Danish industrial fishery These estimates are comparable to those for the 1967 year class, which proved to be of average strength.

Year Class	English$0-\text { Group }^{\text {I) }}$	ICES Young Herring Surveys 2)		Danish Incustrial Fishery	
		ImGroup	II-Group	I (Spring) ${ }^{3}$)	I (Autumn)
1967	1799	455	87	1082	318
1968	1259	442	73	305	173
1969	2793	1241	354	1006	455
1970	1245	844	57	12781	307
1971	907	411		$931{ }^{4}$	321
1972	654				

I) Numbers pex hour per station.
2) Numbers per hour per rectangle
3) Weighted average number per cpue (Feb - Mar).
4) Based only on January figures.
2.3.5. The VPA estimate of recruitment of the 1971 year class is 6.2×10^{9} which is about 20% lower than the long-term mean (7.9×10^{9}), but the 1971 year class estimate is rather suspect (see paragraph 2.2.4.) 。 Few data are yet available for the 1972 year class because the ICES Young Herring Survey was still underway at the time of the Meeting. The only information is the estimate from English 0-group surveys, which is well below average。

2.4. Prognosis and Total Allowable Catch

2.4.1. From the data of Table 2.8. the age composition of the stock as at 1 January 1974 has been calculated. This is given below with that calculated ror 1973 for comparison.

$\begin{aligned} & \text { Stock } \\ & \text { No. } \times 10^{-9-9} \end{aligned}$	Age									$\begin{gathered} \text { Biomass in } \\ \text { tons } \end{gathered}$
	0	1	2	3	4	5	6	7	8	
1973 estimate	7.9	6.2	3.1	1.34	0.32	0.12	. 031	. 005	0	$.77 \times 10^{6}$
1974 estimate	7.9	6.2	2.2	1.14	0.51	0.12	. 047	. 026	0	$.72 \times 10^{6}$

2.4.2. The assumptions used in calculating the age composition of the stock at 1 January 1974 are the same as those used in the previous Report with respect to 1973. The difference in the age compositions between the stocks in the two years is principally due to the lower estimate for 2 -ringers in 1974 which is derived from the lower catches of the 1971 year class in 1973. This value is also dependent on the assumption that the F on lmingers in 1973 remained at 0.7 . The estimates of F on this age group given in paragraph 2.2.4. show a higher value of $0.8-0.9$. These however, are rather inaccurate estimates and it has been considered safer to retain the same value used in the previous prognosis. The total estimated biomass of the stock in 1974 is some 50000 tons less than that previously estimated.
2.4.3. Catches, and changes in biomass by 1977, have been calculated. The options of fishing mortalities on juveniles and aduIts which allow a 100% increase in biomass by 1 January 1978 are presented in the table as follows:

	100\% Increase in Stock Biomass by 1978							
	Juvenile F Adult F	$\begin{aligned} & 0.0 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.2 \end{aligned}$
Allowable	Juveniles	\cdots	30	60	80	110	150	180
Catch in	Adults	340	310	270	240	200	160	110
1974	Total	340	340	330	320	310	310	290
Allowable	Juveniles	\cdots	30	60	80	110	150	180
Catch in	Adults	810	720	630	550	460	340	230
1977	Total	810	750	690	630	570	490	410

2.4.4. The allowable catches of adults in 1974 are 30×40000 tons less than in the previous prognosis. By 1977 the allowable catch of adults is about 10000 tons less for all values of fishing mortalities. No differences occur in the juvenile catches because recruitment is assumed to be constanto

The recruitment level of the 1972 year class cannot yet be fully assessed. If this, or subsequent year classes are below average, then these estimates of allowable catches will be too high.
3. Celtic Sea Herring

3.1. Catches

The total catches from the Celtic Sea for the last five years are given in Table 3.1. The catch figures for 1972 have been revised and preliminary figures are given for 1973. The highest catches were recorded in 1969 and since then there has been a major decine with the 1973 catch the lowest since 1965. The total eatch by season is given in Table 3.2.
3.2. Stock and Recruitment Estimates
3.2.1. The percentage age distributions of the Dutch and Irish catches are given in Table 3.3. The Dutch data refer to the fishery in May to December immediately preceeding the Irish fishery in November to February. The proportions of fish in each winterming group refer to the same year class. The two series show the same trend.
3.2.2. As mentioned in previous Reports, because of the changes in fishing gear, fishing area and timing of the fishery, over the long term, abundance indices from catches per unit effort may not be completely, reliable。 However, Irish pairomtrawl abundance indices for the past 6 seasons have been used to indicate the relative strength of annal recruitments, Table 3.4. These data provide indices of recruitment for the 1969/70 and 1970/71 year classes, the first of which is not estimated efficiently by cohort analysis, the second of which cannot yet be estimated in this way. The 1968/69 and 1970/71 year classes are seen to be very poor.
3.2.3. In the previous Report (C.M.1973/E.2) the levels of stock size and fishing mortalities were calculated by cohort analysis. This method can only give reliable estimates up to the 1970/71 season. In order to get some indication of stock size and fishing mortality in the most recent years, the following procedure was followed:

If the stock composition at the beginning of a year is known and also the catch in numbers during that year, an average F (for all age groups) can be calculated which comes most closely to producing the actually observed catch. By applying this calculated F to the initial stock, the stock composition at the beginning of the next year can be calculated, except for the recruiting age group. This recruitment can be found by repeating the above proceduce for the next year, and calculating the arerage for all age groups. By applying this average F to the number of recruits caught, the number of recruits at the beginning of the year can be back calculated. Starting from the stock composition as at 1 March 1969 (C.M. 1973/H:2), fishing mortalities and recruitment for subsequent years have been calculated in this way (Table 3.5.) . The dependence of catch on the size of the recruitment is seen.

A comparison of these recruit year class strengths with those from catch pex effort data is shown in Table 3.4.

3.3. Fishing Mortality

In Table 3.6 fishing mortalities estimated from catch per mit effort and from cohort analysis are given. There is a considerable degree of agreement between the two series. In the two most recent years the value of F has exceeded that at which the maximum sustainable yield is obtained ($F=0.45$)。

3.4. Conclusions

Total mortality rates for Celtio Sea herring have remained high in reeent years causing a depletion of older age groups and an increasing dependence of the fishery on the recruiting year classes. This was demonstrated both in 1971 and 1973 when catches dropped to 27500 and 26000 tons respectively: due to the poor recxuitment of year classes 1968/69 and 1970/71.

In order to stablise the stock, the total mortality rate should be reduced. This can only be achieved in the presert state of the stock by a temporary reduction of the catch below the 1973 Ievel.
4. Herring in Division VIa

4.1. General Biology of Stocks in VIa

4.1.1. The spawring areas, and times of spawning, as sbown by the distribution of small herring larvee in burveys carried out in 1965 , 1971 and 2972 are shown in Figuxe 1. There would appear to be two dintinct major spaming areas, one to the north and west of the Outer Hebrides in late August - September and another approximately one month latex to the northwest of Ireland. Within each of these major submadisions of the total spawing area there may also be two or more distinct spawning grounds.
4.1.2. The drift of the larvae from the spawing areas is not olearly established。 However, there is some evidence that, particrlarly from the areas to the west and north of the Hebrides, the larvae are drifted along the north coast of Sootland and into the northem North Sea. These larvae are Iikely to be the main source of the recruits to Division Tha from the juvenile herring populations in the Moray Finth and in the central Noxth Sea. Nothing is known of the drift of laxver from the spawning grounds of the nowhwest of Ireland, but these may be the main source of juvenile herming which are found in the coastal zone to the west of Scotland.

Juremile herring are onght by a herring fishery，and as a bywatch of a sprat fishery，by Scottish vessels in the Moray Firth．There is good evidence from the growth characteristics and jear class strength of these fish that they are predominantly recruits to the VIa stocks and not to any of the North Sea herring stocks（Saville 1971）．Returns from the fisheries in VIa of herring tagged in the Bloden Experiment provide conclusive evidence that recruits to the VIa stock are also spread over a wide area of the central North Sea during their jurenile stages．

4．1．3．The exact timing of the return migration of these recmits to Division VIa is not known，but it would appear that the majority of them have returned at least by their third birthday．when most of the VIa popriation spawn for the

The distribution of the adult component of the stook an be seen from Figure 2 which shows the dishribution in space and time of the fisheries in Division VIa of different countries．From this it cen be deduced that the adult stock during the spring and summer fishing season is distributed over a wide area extending from IT．Rona，and perhaps even further east to the west coasts of Orkney and Shetland，along the west coast of the Hebrides and south to Donegal． Within this broad area there are major centres of abundance at N．Rona．St Kilda， Stanton Bark and around Tory Island．Figure 2 also shows that there would appear to be two operowintering areas for this herring population，one in the Minch where the major Scottish fishery on the adult stook takes piace in the period November－February and another in the Donegal Bay area in the same months．

4．2．Stock Structure of Herring in Division VIa．
4．2．1．The age compositions of the catches from adjacert areas are compared with those in the varions fisking regions of Division VIa in Tables 4．1。 and 4．2．These data show that there is an Lnoreasing percentage of older fish from east of Shetland westwards to ths Minch and to the fishing area noxth of Ireland．In 1970 and 1971 the 1963 year class was particularly strong in the South Minch， west of the Hebrides，and northwest of Ireland．This could suggest that the main influx of older fish to the South Minch in the winter period comes from west of the Hebrides and northwest of Ireland．The age composition data given In Tables 4.1 ．and 4.2 ．also show that the Minch can be regarded as a nursery area for the western stocks．

The data given in Tade 4.30 ghow fairly consigtent dipferences in mean ly values Winhty year classes betwen the South Minch，the Morth Minch and the west of Shetland with a gexeral tendenoy for the lowest values in the South Minch， intexmediate ones in the North Minch and the highest values west of Shetland。

4．2．2．Nowegion and Soothsh recaptuxes from the Bloden Tagging Experiment show that some of the Joung harring tagged in the Bloden area migroted to the area west of $4^{\circ} \mathrm{W}$ and to the Mind（Tatie 4.40 ）．

4．2．3．To study the migrations and mixing of herving from east and west of $4^{\circ} \mathrm{W}$ tagging experiments have been oavied out in 2972 and 1973 by Scotland and Iceland．So far only a few xecoptrues have been reported for which definite areas of captrue are obtainable。

As，however，the recgptrres reported at Stornowy（Hebrides）and at Lerwick （Shetland）refer almost exciusively to catches taken in the Minch and Shetland areas respectively，these data give some indication of the mixing rate。 In Table 4.50 recaptures are given at Stomoway and Lerwick from fish tagged West of 4 W，west of Ockney，and at Foula（east of $4^{\circ} \mathrm{W}$ ）in 1972．The recapo tures are given as number per 1000 iish tagged per ton processed．

Although the number of recaptures are few, the data indicate that fish tagged west of $4^{\circ} \mathrm{W}$ (Rona) and immediately east of $4^{\circ} \mathrm{W}$ (west of Orkney) were, in 1973, recaptured at the same rates between experiments in the Minch and at Shetland, but at a lower rate in the Shetland area than in the Minch. Recaptures from the tagging experiment immediately west of Shetland (Foula) were at a higher rate in the Shetland area than in the Minch.
4.2.4. The data at present available do not permit any firm statement about the stock structure in VIa. Data from tagging experiments show some migration of fish between the area west of Shetland (east of $4^{\circ} \mathrm{W}$) and the North Minch. The stability of the age composition and I_{1} data within these areas would suggest that the mixing between these areas is at a fairly constant rate from jear to year.

Only age composition data are available to relate the population to the northwest of Ireland with those in the other areas. These might suggest some migration from the northwest of Ireland to the South Minch in the winter period.
4.3. Total Catches and the Irsheries in Division VIa
4.3.1. The total catch taken by each country in Division VIa for each of the years 1957×72 is given in Table 4060 together with the estimated quantity of herring taken in each year in the Moray Firth young herring and sprat fisheries. The annual total catch taken in Division VIa in the period 1957 - 65 fluctuated, without trend, in the range 46000 to 69000 tons, increased sharply in 1966 to 92000 tons, and showed a fairly regular increase each year thereafter to attain almost 240000 tons in 19710 In 1972 the total catch was appreciably lower than in 1971 at 174000 tons. but in 1973 moreased again to the 1971 level.

The large increase in total cetch in 1973 compared to 1972 was due to an increase in the Scottishs Nowegian and German catches by about 13000 tons, the Dutch catches by about 7000 tons, and the Faroese insheriea by about 8000 tons.
4.3.2. Detailed information on the catch per month and per area is given in Table 4.7. For many countries the information is less detailed but the main fishing areas could be identified.

The distribution of the catch acoording to areas was as follows:

	Tons	$\%$
W Shetland	47808	20.2
Hebrides	33755	14.2
N K MW Ireland	34684	14.6
M Minoh	65969	27.8
S Minch	54827	23.1

4.3.3. The Scottish and Irish figheries are carried out mainly dreing autrmin and winter. The fisheries by other countries, on the more offshore grourds, mainly take place during summer and autumn.

4.4. Catch in Numbers in Division VIa

4.4.1. Estimates of the numbers of autumn spawning herring per age group caught in Division VIa in each of the years 1957-73 are given in Table 4.8. The estimates for the period 1957-72 are taken from Saville and Morrison (1973).
4.4.2. Estimates of the numbers of herring per age group in 1973 were derived from German (F.R.), Netherlands, Scottish and Norwegian age composition data. The calculation was done on a monthly basis when possible, or for small groups of months when the catches were small.
4.4.3. The 1969 year class of 4 -year-old fish was dominent in all areas and accounted for about 60% of the numbers caught in VIa. In the absence of data on the age composition of the Moray Firth young herring fishery, the figure for the 0 , 1 and 2 -ringers given in Table 4.8. does not represent the total catch of these age groups in 1973. In 1972 the total catch of 1 . ringers amounted to 320×10^{6} herring.

?.5. Mortality in 1973

4.5.1. The total mortality for the year 1973 has been estimated on the basis of catch per landing data for the years 1972 - 73 from the Scottish pairtrawling fishery in the North Minch during November and December. There are no wide fluctuations in the resulting values (see below) over the age groups 3-6 which made the major contribution to the catches. The average mortality, weighted by year class abundance indices, for these age groups was 0.70 .

Age (years)	3	4	5	6	7	8
z	.78	.64	.68	1.07	.20	.62

4.6. Recruitment of the 1971 Year Class in Division VIa
4.6.1. During the winter season (November - February) a substantial part of the VIa herring population is aggregated in the Minch. Therefore, biological parameters obtained from Scottish pairmtrawl fisheries in that area can be considered as representative of the VIa herring stock.

As no catch figures for January and February 1974 were available, the estimate of the 1971 year class recruitment was calculated only from the number of l-ringers caught per landing in November and December by the North Minch pair-trawl fishery.
4.6.2. A regression has been made between the number of l-ringers caught in this fishery in each year for the period when age composition data are available and the number of l-ringers from the V.P.A. for the corresponding year class (i.e. 1964 - 70) , (Saville and Morrison, 1973).
4.6.3. The regression of the values obtained which is shown in Figure 3 is quite homogeneous and the regression is of the form:

$$
y=960.87+0.02 x
$$

The recruitment of the 1971 year class as 1 year olds to the VIa stock is, in this way, estimated as 1000×10^{6} fish which is about 30% below the 10 year average.

4.7. Mortalities and Stock Size

4.7.1. Mean fishing mortality rates derived from VPA for 3 year old and older fish show a faixly constant level up to and including 1969 (Table 4.9.). There was a small increase in 1970 and a sharp one in 1971. The fishing mortality rates can be summarised as follows:

	Mean
$1957-69$	0.25
1970	0.33
1971	0.59
1972	0.35
1973	$0.60 x$

x)
from catch per effort data.
4.7.2. The high mortality rates after 1969 in all fully exploited year classes is probably caused by an increase in fishing effort. The generally higher mortality rates in the age groups I and II after 1965 coincides with the general development of the fishery in Division VIa and particularly with that of the Scottish sprat fishery in the Moray Firth.
4.7.3. The stock size in numbers at age 3 years and older remajned on a fairly constant level of about 1.2 million in the period 1957 - 63 . In 1964 there was a minor increase and in 1966 the figure was more than doubled at 3.6 million. Thereafter the stock numbers remained at a rather high level of $2.6-3.0$ million, due to a sustained high level of recruitment (Table 4.10.) , The total stock biomass was at a fairly constant level of about $200-250000$ tons in the period 1957-64. It rose sharply in 1965, to close on 500000 tons, with the recruitment of the strong 1965 year class, and has since remained in the 5-600 000 ton level due to a sustained high level of recruitment.

4.8. Catch Prognosis for 1974

4.8.1. A prediction has been made of the catches which could be taken in 1974 at various levels of mortality on juveniles (l ringers) and adults, and is given in Table 4.11.

The basic age composition at 1 January 1974 and the average weight per age group used in making this prognosis is given below:

Age (Rings)	Numbers per age group x 10 9	Average weight per age group in grammes
1	$\left.(1.4)^{1}\right)$	112.7
2	0.705	148.1
3	0.312	186.2
4	1.119	226.7
5	0.176	234.2
6	0.075	243.4
7	0.077	257.7
8	0.029	261.7
9	0.009	264.6
>9	0.060	266.0

1) Average recruitment as I-ringers $1960-70$ year class from V.P.A.

Longer term prognosis for this stock would be liable to major errors because of the large variation in annal recruitment levels.

4.9. T. A_{0}.

4.9.1. The catch prediction (Table 4.11.) shows that if the fishing mortality rates estimated for 1973 ($F=0.25$ for 2 -yearmold herring and $F=0.60$ for adult herring) were maintained in 1974, the resulting catch would be 260000 metric tons, that is about 10% higher than in 1973. The corresponding position on the yield curve (Figure 4) is beyond the F giving the maximum sustainable yield per recruit. The yield curve shows that at an age of first capture of 2 years old, the maximum sustainable yield per recruit would be obtained at $F=0.4$ and would result in a catch in 1974 of about 210000 metric tons. The yield curve implies that the 2-year-old fish would also be exploited at an F of 0.4 . If, however, the present pattern of fishing were maintained, the number of 2 -yearmold fish removed from the sea would be less than anticipated in the catch prediction. If this difference in numbers was taken from the aduIt part of the stock, a higher catch in weight, up to about 230000 metric tons in 1974, might be allowed without departing from the maximum sustainable field level.
5. Discussion
5.1. The most recent data on North Sea herring indicate a continuation of the undesirable features shown in previous Reports of the North Sea Herring Assessment Working Group of high levels of mortality on juveniles and adults.

The 1973 data incorporated in the present assessment of the North Sea stock has largely confirmed the previous assessment and the prognosis derived from it. The previous recommendation of a reduction in the fishing mortality rates on both juveniles and adults to the levels giving at least an increase of 100% on the $1972-73$ biomass in the course of $3-4$ years, is still valid. Equally the warnings issued in that report of the serious effects of a single poor year class on the immediate catch, and the spawing potential of the stock, must be reiterated.
2. In the previous Report attention was drawn to the recapture of fish tagged on the Bladen ground at Shetland, west of $4^{\circ} \mathrm{W}$, and in the Minch. The presence of juvenile herring in the North Sea, which might have originated from spawning grounds outside the North Sea, was discussed in a previous Report by the North Sea Young Herring Working Group (Coop.Res.Rep.Ser.A., 14). Evidence of the drift of larvae from areas west of Shetland into the North Sea has been discussed by Wood (1971), Schnack (1973), Zijlstra (1972), and Saville and McKay (1973). Saville (1971) has suggested that juveniles of the Moray Firth originate from VIa spawning grounds. There is thus evidence of drift of larvae into the North Sea, their presence there as juveniles and evidence of subsequent emigration as adults.
5.3. From a cohort analysis on the herring catches in VIa, the average level of 0 group abundance in $1957-70$ was $1.09 \mathrm{x} 10^{9}$ compared with $8.59 \mathrm{x} 10^{9}$ in the North Sea stock over the same period. Because of the disparity in the relative sizes of the recruitments, the effects of incursion of VIa recruits into the North Sea would not be expected to have a major effect on the estimation of North Sea recruitment or juvenile fishing mortality, On the other hand, the high level of fishing mortality in the North Sea could considerably reduce recruitment to VIa. Any regulatory action taken to reduce the juvenile catch in the North Sea will also have a beneficial effect on the stock in VIa, provided action is also taken to control fishing effoxt in VIa to prevent a major diversion of tishing effort to that area.
5.4. The most recent data on Celtic Sea herring examined by the Working Group has reinforced the conclusions of the last Meeting of the Celtic Sea Herring Assessment Working Group (C.M.1973/H:2). It had pointed out that exceptional levels of recruitment had occurred for a number of years and that these had supported the greatly increased catches since 1966. As a consequence of the increased recruitment the total oatch corresponding to the fishing mortality rate giving the $\mathrm{M}_{\mathrm{S}} \mathrm{S}, \mathrm{Y}$ 。 $(F=0.45)$ had also increased from about 20000 tons to 30000 tons.
5.5. It had been recommended that fishing mortality should be reduced, partly because the fishery had become highly dependent on the recruit year class. The occurrence of a poor recruit brood could cause an escalation in fishing mortality on the older fish if the present levels of fishing effort were to continue. In the absence of any indication of recruitment failure, NFAFC agreed a catch limit of 32000 tons. At the changed level of recruitment shown by more recent data available to this Working Group, it is recommended that this catch limit should be reduced to 25000 tons for 1974.
5.6. Previous Reports of the North Sea Herring Assessment Working Group have drawn attention to the problems raised in assessment of this population by uncertainties regarding the stock affinities of the fish caught in certain areas of the North Sea. This applied in particular to the herring caught in the area to the west of Orkney and Shetland which in recent years has contributed a major part of the total adult catch from the North Sea (Anon. 1972). This problem has been further highlighted in the assessment of the VIa population where the major increase in catch in recent years has again been taken close to the $4^{\circ} \mathrm{W}$ boundary between Divisions VIa and IVa.

Recent work to help clarify this problem, chiefly by tagging on either side of the $4^{\circ} \mathrm{W}$ boundary, has suggested that no sharp boundary can be drawn between the stocks in this area. The data available would point to this area containing a mixture of the North Sea and VIa populations with a tendency for the proportion of VIa fish to increase from east to west. The Herring Assessment Working Group for the Area South of $62^{\circ} \mathbb{1}$ accepted the $4^{\circ} \mathrm{W}$ boundary as the catch statistics are available only on that basis. This problem must, however, be investigated further, particularly by more extensive and intensive tagging experiments. Future work of this Herring Assessment Working Group would be facilitated by more complete catch statism tics and biological data on a statistical rectangle basis for this area.
5.7. The stock in VIa is in a relatively better state than that of the North Sea. However, since 1970 the fishing mortality rate on it has been somewhat above that giving the M.S.I. and the current high levels of catch from VIa are dependent on the current high level of recruitment to this stock. The data suggest that in the past three jears there has been a rapid increase in fishing effort on this stock and this is likely to escalate further, in the light of restrictions on fishing projected in neighbouring areas. It is recommended, therefore, that action shovid be taken to control fishing on this herring population at the value giving the MoS.I. This would mean in 1974 a T.A.C. of 210000 tons. Longer term prognoses for this stock are not possible at this stage because of the major variations in year class strengths and the current lack of a technique for assessing year class strengths earlier.
5.8. Prognoses of the T.A.C. for any herring stock are dependent on a method of forecasting recruitment with an acceptable level of precision. In the case of the North Sea population the absence of precise recruitment forecasts is less serious because year class strengths have been relatively stable over the past decade. In the Celtic Sea and VIa populations recruitment has varied widely in recent years and prognoses of the ToA.C. even one year in advance are liable to considerable inaccuracies for this reason. More facilities to investigate methods of forecasting recruitment in these areas are a major priority.

SAVILLE, A., 1971. The biology of young herring in the Moray Firth and their recruitment to the adult stocks. Rapp. $P_{0}-\mathrm{V}$. Réun. Cons. int. Explor. Mer, 160: 184-193.

SAVILLE, A. and McKAY, D.W., 1973. Report on the international surveys of herring larvae in the North Sea in 1972/73. ICES Coop. Res.Rep., (in preparation).

SAVILLE, A. and MORRISON, JoA., 1973. A reassessment of the herring stocks to the west of Scotland. ICES C.M. 1973/H:24 (mimeo).

SCHNACK, D., 1973. Report on the international surveys of herring larvae in the North Sea and adjacent waters, 1971 - 1972. ICES Coop.Res.Rep., No. $34: 1-31$.

WOOD, R.J., 1971. Report on the international surveys of herring larvae in the North Sea and adjacent waters in 1969/70. ICES Coop.Res.Rep., Ser.A, No. $22: 3 \mathrm{~m} 36$.

ZIJLSTRA, JoJo, 1972. Report on the international surveys of herring larvae in the North Sea and adjacent waters in 1970/71. ICES Coop.Res.Rep., Ser. A, No. 28 : l-24.

Establishment of an ICES ADP System for Fisheries Statistics

Discussion of this matter at the 1973 Council Meeting concluded with the proposal of a trial run using North Sea herring data (C.Res.1973/2:16), the aim being to study the feasibility and cost of the full system. It is understood that the cost of the trial run - which will be carried out at the Danish Fisheries and Marine Research Institute in Charlottenlund - will not be more than D.Kr. 2500 (not including the cost of punching the 5000 cards involved which will be carried out by ICES).

The Herring Assessment Working Group for the Area South of $62^{\circ} \mathbb{N}$ considered the output which the trial run should be designed to achieve, and the nature of the input data required for this. On the basis of an output of monthly catch in numbers per age group by statistical rectangles, for each gear type, the following statistical and biological information is required; also shown are the dates which the Working Group feels are both feasible and necessary for the submission of the data to ICES by the countries involved in the North Sea herring fishery:
(i) Total catch of herring in metric tons, per month, per rectangle. 1 ApriI 1974 .
(ii) Length distribution of the samples, and numbers per kg stating the source (sample or catch). The statistical rectangles to which the data relate should also be stated. 13 May 1974.
(iii) Weight-length data. 13 May 1974. (iv) Age-Iength data. 13 May 1974.

Items (i) - (iv) should be provided for each of the five years 1969 - 1973 on ICES Biological Data Forms I-4 as appropriate。 When mumbering the statistical rectangles, the system indicated in the chart at the end of this Report (Figure 5) should be used. The northing co-ordinate ($93-99$, 01 onwards) should be stated first. Countries which are not able to give a breakdown by statistioal rectangle or by month should supply data with the finest possible area and time breakdown.

Examples of ICES Biological Data Forms l-4 may be seen in the following publion cations:

Data Form 1 Statistical News Letters No. 57 (Demersal Species. Stock Record Data), pages 25-152. Length distribution and age distribution of catch: catch per effort; sampling levels: by quarters.

Data Form 2 Statistical News Letters No. 60 (Ferring and Mackerel Stock Record Data), Parts I and II. Age distribution of samples (spring or autumn spawners): total catch (tons): no. per kilo; by months.

Data Form 3 Statistical News Letters No. 60 (Herring and Mackerel Stock Record Data), page 44. Length parameters $\left(\bar{x}, s^{2}\right)$ per age group, spring or autumn spawners; by months.

Data Form 4 As Data Form 3, but for weight parameters.
Data Forms 1 and 2 are available from ICES; Data Forms 3 and 4 are to be reproduced by member countries.

This proposed schedule - which has been condensed into the shortest possible space of time - obviously involves a postponement of the date of the ADP Working Group Meeting, which was to have taken place during the week commencing 22 April 1974. Consequently, the Herring Assessment Working Group for the Area South of $62^{\circ} \mathbb{N}$ suggests that the earliest date on which the ADP Working Group could meet would be 10 June, when the precise specifications for the trial run as well as the scope and cost-estimate of the full ADP system would be drawn up. The trial run itself would be made after the ADP Working Group meets: an evaluation would be made at the 1974 Council Meeting and presented to that Meeting of the Bureau (and not to the Bureau ${ }^{\text {s }}$ mid-term Meeting)

Finally, the Herring Assessment Working Group for the Area South of $62^{\circ} \mathrm{N}$ is of the opinion that the participation of two or three of its members in the Meeting of the ADP Working Group would be necessary to specify the precise content of both the input and output of the trial run.

Table 2．1．Herring．
Catch in tons 1970－1972 and Preliminary Figures for 1973．North Sea（SubmArea IV and Divisions VIId and e） by country．Skagerak and Kattegat（Division IIIa）Total Catch．Estimated Catches in Brackets．

Country Year	1970	1971	1972	1973
Belgium	1200	681	1337	$(933)^{2}$
Denmark	133331	185393	213738	$174254{ }^{\text {b }}$
Faroe Isl．	58365	$45524{ }^{\circ}$	48444	54935°
Finland	－	－	－	1050
France	11482	11408	12901	21052
F．R．Germany	7150	3570	3065	$10606^{\text {d }}$
Iceland	22951	37171	31998	$23742^{\text {e }}$
Netherlands	46218	32479	24829	$30713^{\text {f }}$
Norway	193102	12584.2	117501	96985
Poland	5057	2031	2235	5700
Sweden	34570	36880	7366	$4222^{\text {g }}$
U．K．（England）	9702	4113	650	2785
U．K．（Scotland）	21885	25073	17227	$15529^{\text {h }}$
U．S．S．R。	18078	9500	16386	30100
Total No．Sea	563191	519665	497677	472606
Skagerak	71071	61570	67021	84566
Kattegat	74300	90200	107519	
Grand Total	＇708 562	671435	672217	
ITonomember Countries	250	481	？	？

Footnotes：a．Sub－area IV catch taken as 1970－72 mean．
b。 Total includes 2107 tons for human consumption unspecified to area．
c．Figure supplied by Fiskirannsóknarstovan．
d．From Federal Republic of Germany national statistics compiled by Federal Research Board of Fisheries，Hamburg．
e．Includes 15938 tons caught on Skagerak border and allocated to that area on the basis of age analysis．
f．Catch Jan－0ct raised to 12 months on basis of 1972 catch ratio。
g．Swedish catches in Danish ports reported by area（North Sea，Skagerak）used for area allocation of Swedish landings reported as Skagerak and North Sea in Swedish statistics．
h。 Catches from Moray Firth not included．
a) Allocation based on landings in Denmark.

Total Catch in Tons．North Sea，Central（Division IVb）。 Adult Herring Fisheries．

Year	Bel giom	Denmark	Faroe Islands	France	Iceland	Germany $\left(F_{\circ} R_{\circ}\right)$	Nether－ lands	Nowway	Poland	$\begin{gathered} \text { U.K。 } \\ \text { (England) } \end{gathered}$	$\begin{aligned} & U_{\bullet} \mathrm{K} . \\ & \text { (Scotland) } \end{aligned}$	Sweden	Total
1970	－	－	11623	2433	1144	6005	28815	28817	2836	8731	2189	24640	117233
1971	8	2488	429	4734	179	－	10172	14	743	4113	362	1926	25168
1972	－	1589	10460	2014	334	21	11372	$17043^{\text {a）}}$	615	271	－	4068	47787
1973	－	－	－	8288	－	115	16917	38002	1600	2781	327	－	68030

$\left.{ }^{2}\right)_{\text {Re－allocated to Division IVb from IVb YH（Table 7，C．M．1973／H：27）．}}$
Nable 2．60 North Sea，Central（Division IVb）。

Year	Young Herring Fisheries					Total Young and Adult Fisheries （Tables 2．5．and 2．6．）
	Denmark	Germany $\left(F_{\circ} R_{\circ}\right)$	Sweden	Norway	Total	
1970	70108	400	0	\cdots	70508	187741
1971	132161	3055	30000	－	165216	190209
1972	162671	2823	3298	－	168792	216579
1973	129988	5638	－	－	135626	203656

Table 2.8. Morth Sea Catoh in Millions of Fish by Age.

x) Preliminary。

Table 2.9. Total North Sea. Calculated Fishing Mortality。

Winter Rings	1965	1966	1967	1968	1969	1970	1971
0	0.03	0.08	0.09	0.12	0.03	0.11	0.07
1	0.44	0.34	0.50	0.52	0.56	0.46	0.91
2	0.86	0.68	0.48	1.47	0.87	1.08	0.97
3	0.77	0.71	0.84	1.92	0.95	1.27	1.24
4	0.77	0.57	0.84	1.07	0.87	1.34	1.10
5	0.63	0.83	0.81	0.96	1.05	0.86	1.12
6	0.56	0.36	0.99	1.12	0.83	1.07	2.30
7	0.44	0.44	1.29	1.50	1.11	0.26	2.48
8	0.67	0.69	1.40	0.88	1.05	1.00	0.70
$\bar{F}_{w} \geq 2$	0.77	0.69	0.70	1.50	0.90	1.13	1.09

Table 2.10. Total North Sea. Calculated Stock in Number x 10^{-9}, and Stock Biomass.

Winter Rings	1965	1966	1967	1968	1969	1970	1971
	5.71	5.29	7.61	7.63	3.86	9.37	7.46
1	9.40	5.02	4.43	6.27	6.11	3.38	7.63
2	4.00	5.46	3.23	2.42	3.38	3.16	1.93
3	2.59	1.53	2.51	1.81	0.50	1.28	0.97
4	3.95	1.09	0.68	0.99	0.24	0.18	0.33
5	0.32	1.65	0.56	0.27	0.31	0.09	0.04
6	0.37	0.16	0.65	0.22	0.09	0.10	0.04
7	0.34	0.19	0.10	0.22	0.07	0.04	0.03
8	0.88	0.20	0.11	0.02	0.04	0.02	0.03
Juveniles 0	15.11	10.31	12.04	13.9	9.97	12.75	15.09
Adult 2	12.45	10.28	7.84	5.95	4.63	4.87	3.37
Biomass (1 000 tons)	2295	1549	1286	1046	666	651	614

Table 3．1．Hexring Catches in Celtic Sea（Metric Tons）。

Year	France	Germany $($ FoR。 $)$	Ireland	Netherlands	Poland	Fngland	USSR	Total
1969	7038	5906	18	712	16256	252	-	-
1970	3627	1481	24702	7015	1191	220	-	38
164								
1971	3	393	974	12602	9672	881	65	-
1972	7	327	393	20109	6758	751	-	618
1957	956							
$\left.1973^{x}\right)$	6173	294	13105	5834	1000	-	500	26906

x）Preliminary figures for 1973.

Table 3．2．Total Catch by Seasons in Celtic Sea（Metric Tons）

Season	Mar／May	Jun／Aug．	Sep／Nov．	Dec／Feb。	Total Metric Tons
$1969 / 70$	1136	9783	13818	16263	41000
$1970 / 71$	1703	3789	8879	18348	32719
$1971 / 72$	1755	4742	7240	19625	33362
$1972 / 73$	2039	2936	7668	17720	30363
$1973 / 74^{\text {x }}$	3123	3463	5942	12817	25345

x）Preliminary figures for 1973.

Table 3．3．Percentage Age Distributions of Celtic Sea Catches．

Year Class	1970	1969	1968	1967	1966	1965	1964	1963 and 01der
Dutch 1971	1.3	15.7	28.1	27.9	10.9	6.7	1.7	7.7
Irish 1971／72	9.8	18.0	21.3	26.2	10.7	6.6	3.3	4.1
Dutch 1972	4.0	62.3	7.9	8.6	10.7	2.9	1.9	2.0
Irish 1972／73	3.8	68.7	9.8	7.4	6.1	1.8	1.2	1.2
Dutch 1973	31.5	19.7	31.7	3.7	6.3	4.0	1.7	1.5

Dutch trawl fishery－May to December．
Irish pair trawl fishery November to February．

Table 3．4．Estimates of Recruit Strength as 2 Winter－Ring Fisho

Year Class	Irish c．p．e。 Tons／Pre Trawler Landing	VPA $\times 10^{-6}$
$1965-66$	7.1	234.30
$1966-67$	9.4	212.40
$1967-68$	7.4	149.22
$1968-69$	2.2	51.32
$1969-70$	11.2	210.65
$1970-71$	$2.6 \mathrm{~K})$	

x）Preliminary estimate。
Table 3.5. Calculated Stock Size in Millions. Celtic Sea.

Rings	1968-9		1969-70		1970-1		1971-2		1972-3		Stock
	Stock	Catch									
1	346.7	13.46	173.37	7.35		0.70		11.54		5.30	
2	234.3	61.02	212.40	86.87	149.22	34.55	51.32	25.25	210.65	94.16	
3	146.8	44.21	143.54	51.44	116.57	53.35	86.09	38.68	22.60	17.64	101.51
4	54.7	12.90	89.93	30.52	78.78	28.41	67.26	45.60	37.92	14.15	10.89
5	73.3	25.65	33.51	11.22	49.35	20.01	45.45	20.75	29.62	12.10	18.27
6	17.4	5.22	44.91	16.30	18.39	7.77	28.47	11.03	20.02	4.32	14.27
7	10.7	4.56	10.66	4.36	24.68	6.30	10.61	4.25	12.54	2.47	9.65
8	3.8	1.44	6.56	2.01	5.85	2.11	14.24	5.45	4.67	2.15	6.04
>8		5.30	2.33	3.23	4.88	3.50	6.20	2.41	9.00	0.96	2.25
$\underset{F}{\text { Calculated }}$		0.39		0.50		0.45		0.72		0.63	

Table 3.6. Total Mortality Rates of Celtic Sea Herring from VPA and CPE。
Table 4.1. Pexcentage Age Composition in Different Areas 1970/71.

		Year Classes									
		1968	1967	1966	1965	1964	1963	1962	1961	1960+	n
$\begin{gathered} 1970 \\ \text { Apr-Aug } \end{gathered}$	East of Orkney and Shetland	$=$	79.9	15.5	2.0	0.4	1.0	0.5	0.4	0.5	2017
	$4^{\circ} \mathrm{W}$ - West of Orkney - Shetland	\cdots	54.2	31.2	5.0	1.1	3.4	0.7	0.8	0.7	760
	West of $4^{\circ} \mathrm{W}$	-	41.2	43.3	4.3	3.5	6.0	0.6	1.0	0.2	840
$\begin{aligned} & 1970 / 71 \\ & \text { Oct-Max } \end{aligned}$	Noxth Minch	31.8	20.5	17.8	7.9	2.3	16.1	0.9	I. 5	1.0	755
	South Minch	25.0	12.5	23.6	9.6	3.5	19.4	I. 8	2.7	1.6	2927
$\begin{aligned} & 1970 \\ & \text { Nov } \end{aligned}$	Hebrides	∞	10.3	35.8	12.8	6.9	29.0	2.1	1.0	2.1	290
$\begin{gathered} 1970 \\ \mathrm{Arg}=\mathrm{NOV} \end{gathered}$	Nortbwest Ireland	\cdots	27.0	22.3	10.7	2.4	35.6	1.0	∞	0.9	∞

Tgble 4.2. Percentage Age Composition in Different Areas 1971/72.											
		Year Classes									
		1969	1968	1967	2966	1965	1964	1963	1962	1961\%	ก
$\begin{gathered} 3.971 \\ \text { Agro Avag } \end{gathered}$	East of Orkney and Shetland.	10.4	36.1	41.0	10.2	0.7	0.2	0.8	0.3	0.3	1709
	$\begin{aligned} & 4 W \text { - West of } \\ & \text { Orimey - Shetland } \end{aligned}$	\cdots	12.1	$45 \cdot 2$	29.0	6.1	2.7	2.8	1.1	1.0	1018
	West of $4^{\circ} \mathrm{W}$	0.3	15.6	49.9	22.7	4.4	3.2	2.2	0.7	1.0	956
$\begin{aligned} & 1971 / 72 \\ & \text { Oct-Miar } \end{aligned}$	Noxth Mrnob	42.2	32.8	9.4	7.4	2.5	0.8	3.3	0.3	1.0	2759
	Sorth Minoh	19.1	24.8	8.7	16.7	6.7	2.7	15.1	1.6	2.4	1664
1972 Nov	Hebrides	\sim	9.0	19.1	24.1	10.7	4.3	24.1	1.0	707	299
$\begin{aligned} & 1971 \\ & \text { Ausconov } \end{aligned}$	Noxthwest Treland	1.1	19.9	17.3	19.1	11.2	2.2	22.7	1.6	4.9	∞

Table 4.3. Mean 1_{1} for Different Year Classes in South Minch, North Minch and Shetiand East of $4^{\circ} \mathrm{W}$.

Year Class	Age (Winter Rings)		
	2	3	4
1961		12.8 13.9	$\begin{aligned} & 13.1 \\ & 13.6 \\ & 13.7 \end{aligned}\left(\begin{array}{c} 160 \\ 280 \\ 25 \end{array}\right)$
1962		$\begin{array}{r} 12.2 \\ 13.1 \\ 12.3 \end{array}\left(\begin{array}{r} 27 \\ 151 \\ 49 \end{array}\right)$	13.6 13.0 13.3 $\left(\begin{array}{l}15) \\ 82 \\ 19\end{array}\right)$
1963	$\begin{array}{r} 14.4 \\ 15.4 \\ 15.9 \end{array}\left(\begin{array}{r} 557 \\ 151 \\ 94 . \end{array}\right)$	$\begin{array}{r} 14.0 \\ 15.2 \\ 14.0 \end{array}\left(\begin{array}{r} 413 \\ 440 \\ 94 \end{array}\right)$	$\begin{array}{r} 14.5 \\ 14.9 \\ 14.5(124) \\ 14.5(62) \\ \hline \end{array}$
1964	$\left.\left.\begin{array}{l} 13.6 \\ 12.9 \\ 15.1 \end{array}\right\} \begin{array}{l} 15 \\ 57 \\ 47 \end{array}\right)$	13.5 13.9 15.9 $\left(\begin{array}{l}69) \\ 24) \\ 23)\end{array}\right.$	13.3 14.0 $\binom{50}{45}$
1965	$\begin{array}{r} 13.5 \\ 14.0 \\ 15.5 \end{array}\left(\begin{array}{r} 193 \\ 69 \\ 22 \end{array}\right)$	$\begin{aligned} & 13.3(174) \\ & 13.1(160) \end{aligned}$	$\begin{aligned} & 13.3 \\ & 13.7 \\ & 14.3 \end{aligned}\left(\begin{array}{c} 222 \\ 71 \\ 11 \end{array}\right)$
1966	$\begin{aligned} & 14.3(243) \\ & 14.5(356) \end{aligned}$	$\begin{aligned} & 14.9(491) \\ & 15.2(161) \\ & 15.9\binom{1}{84} \end{aligned}$	$\begin{array}{rr} 14.6 & (759) \\ 14.7(185) \\ 17.0\left(\begin{array}{r} 17 \end{array}\right) \\ \hline \end{array}$
1967	$\begin{aligned} & 14.3 \\ & 16.1 \\ & 17.6 \end{aligned}\left(\begin{array}{c} 169 \\ 70 \\ 151 \end{array}\right)$	$\left.\left.\begin{array}{l} 15.0 \\ 15.5 \\ 16.7 \end{array}\right\} \begin{array}{c} 435 \\ 202 \\ 58 \end{array}\right)$	

Upper figure: South Minch.
Middle figure: North Minch.
Lower figure: West of Scotland.
In brackets: Number of observations.

Table 4.4. Recaptures by Scotiand and Norway from the Bloden Tagging Experiment。

	Area of Recapture	1970	1971	1972	1973
Scotland	Shetiand East of Orkney West of Orkney West Coast (Minch)	$\begin{array}{r} 19 \\ 1 \\ 5 \\ 12 \end{array}$	$\begin{array}{r} 28 \\ 0 \\ 3 \\ 12 \end{array}$	$\begin{array}{r} 19 \\ 1 \\ 0 \\ 12 \end{array}$	9 1 0 1
Norway	Between Shetland and $4^{\circ} \mathrm{W}$ West of $4^{\circ} \mathrm{W}$	107 15	$\begin{aligned} & 162 \\ & 110 \end{aligned}$	56 13	19 5

Table 4.5. Returns by Factories from Scottish and Icelandic Tagging Experiments 1972 East and West of $4^{\circ} \mathrm{W}$ 。

			Recaptures at Factories				
			Stornoway			Lerwick	
Year os Tagging	Area	NO. Tagged	Year	NO. of Recaptures	No. per 1000 Fish Tagged per Ton Processed	No. of Recaptures	No. per 1000 Fish Tagged per Ton Processed
1972	$\begin{gathered} \text { West of } 4^{\circ} \mathrm{W} \\ \text { (Rona) } \end{gathered}$	3000	$\left\|\begin{array}{l} 1972 \\ 1973 \end{array}\right\|$	$\begin{array}{r} 7 \\ 23 \end{array}$	$\begin{aligned} & 0.21 \\ & 0.44 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 0.14 \\ & 0.16 \end{aligned}$
	West of Orkney	810	$\left.\begin{aligned} & 1972 \\ & 1973 \end{aligned} \right\rvert\,$	$\frac{1}{5}$	0.36	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.17 \\ & 0.20 \end{aligned}$
	Poula	600	$\begin{aligned} & 1972 \\ & 1973 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	0.10	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.46 \\ & 0.27 \end{aligned}$

Table 4.6e Total Catches of Herring (Metric Tons) in Area VIa, 1957 - 1973.

	1957	1958	1959	1960	1961	1962	1963	1964	1965
Belgium Fingland $\text { Faroes }{ }^{\text {a) }}$ France Germany ($\mathrm{F} . \mathrm{R}$ 。) Netherlands Iceland Ireland N. Ireland Norway Poland. Scotland USSR	∞ ∞ - - $-$ 5069 1 41636	$\begin{aligned} & 192 \\ & 201 \\ & - \\ & \infty \\ & 8592 \\ & - \\ & - \\ & 4049 \\ & 6 \\ & - \\ & - \\ & 52250 \end{aligned}$	$\begin{gathered} 24 \\ 16 \\ - \\ - \\ 2509 \\ - \\ - \\ 4449 \\ - \\ - \\ - \\ 60986 \end{gathered}$	40 - - 156 5311 - - 3768 - - - 58					-28 - 610 5066 330 - 6440 - - - $53-909$ -
Total	46805	65290	67984	68230	51941	63699	53949	69718	66383
Scottish Juvenile Herring and Sprat Fisheries in Moray Firth	1703	1164	2451	906	585	1842	118	660	10278

Table 4.6. (Continued).

	1966	1967	1968	1969	1970	1971	1972	$1973^{\text {x) }}$
Belgium	23	\cdots	-	-	-	-	-	-
England	1	-	3	-	-	-	-	340
Faroes ${ }^{\text {a }}$	-	-	-	-	15100	8100	8094	15800
France	1	379	1124	966	1293	2055	680	2417
Germany (F .R.)	14634	17318	14874	15805	16548	7700	4108	17754
Netherlands	251	4576	2957	1514	1102	9252	23370	30328
Iceland	-	-	-	-	5595	5416	2066	3545
Ireland	7759	12290	13390	11895	11716	12161	17308	13452
17. Ireland	-	-	4	3	1	-	-	-
Horway	-	-	-	-	20199	76720	17400	30557
Poland	-	727	2791	3188	3709	-	-	2500
Scotland	69363	67404	65180	90222	103530	99537	107638	120800
USSR	-	-	-	-	3	-	?	2500
Total	92032	102694	100323	123593	178796	220941	173938	239993
Scottish Juvenile Herring and Sprat Fisheries in Moray Firth	20734	6507	4985	3100	1385	5666	10242	7219

[^1]Table 4.7. Catches of Herring in Division VIa in 1973 by Countries, Fishing Grounds

Country	Area	Months												
		Jen	Feb	Mar	Apx	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Netheriands	05 NW Ireland 01 Hebrides 02 W. Shetland					110	1980	$\begin{array}{ll} 1 & 708 \\ 5 & 947 \\ 726 \end{array}$	$\begin{array}{ll} 2 & 195 \\ 3 & 528 \end{array}$	$\begin{array}{ll} 2 & 992 \\ 4 & 691 \end{array}$	$\begin{array}{ll} 1 & 662 \\ 4 & 789 \end{array}$			$\begin{array}{r} 10647 \\ 18955 \\ 726 \end{array}$
	Total					110	1980	8381	5723	7683	6451			30328
$\begin{gathered} \text { Germany } \left.{ }^{I}\right) \\ \left(F_{0} R_{0}\right) \end{gathered}$	VIar N. Ireland Va, Hebrides						$\begin{array}{r} 58 \\ 470 \end{array}$	$\begin{array}{r} 471 \\ 2874 \end{array}$	$\begin{aligned} & 117 \\ & 949 \end{aligned}$	$\begin{array}{r} 361 \\ 1788 \end{array}$	$\begin{array}{ll} 4 & 244 \\ 2 & 671 \end{array}$	$\begin{array}{ll} 2 & 577 \\ 1 & 048 \end{array}$		$\begin{aligned} & 7828 \\ & 9800 \end{aligned}$
	Total						528	3345	1066	2149	6915	3625		17628
Sootlend	N. Minch	12878	13488	8156	849		4	570	1136	1601	8825	12277	6185	65969
	S. Minch	12928	9982	5095	1923	704	756	981	1834	1221	2568	9297	7541	54827
England Faroes France Ioeland Ireland Nownay Poland USSR	NW Ireland W. Shetland NW Ireland W. Shetland NW Ireland W. Shetland Hebrides Hebrides						803 16763	$\begin{array}{ll} 1 & 852 \\ 13 & 076 \end{array}$	623	95	890			340 15 800 2 417 3 545 13 452 30 557 2 500 2 500
Grand Total														239863

1) Excluding 126 tons from the German Iugger fishery.

Catch in Number $\times 10^{-3}$, Diviezion VIa + Moray Firth.

Year	Age 1	2	3	4	5	6	7	8	9	10	11	$11+$
	Rings 0	1	2	3	4	5	6	7	8	9	10	10+
1957	-	6496	80817	66094	26882	38989	21541	9643	1658	2606	578	1633
1958	∞	15695	33616	152801	43895	28108	32025	19986	10795	3725	2592	2570
1959	∞	54063	74615	38547	124307	27898	18942	18833	8158	4629	2971	1764
1960	21	3940	115501	65703	25388	50558	12196	11096	6770	3029	1558	269
1961	∞	14473	50809	72914	38321	24455	14296	5791	5370	1741	767	379
1962	∞	55278	99167	27189	76706	49002	22707	27787	7614	5676	2097	662
1963	-	11890	82849	57688	13310	42796	28698	10171	14585	3915	3239	731
1964	2781	26609	87652	74.309	29583	8857	27075	21347	10109	11956	4028	1671
1965	46891	299701	23351	72085	67768	24525	7001	28806	21475	7500	11609	4406
1966	211639	211675	517616	45317	70793	38471	22691	12656	20790	17005	7418	8752
1967	186598	207947	28648	273723	49755	48320	36143	15226	10397	15068	10962	7937
1968	71425	220870	105348	26031	243304	19679	28436	17699	7275	4493	5326	4570
1969	192368	39160	107189	84565	27604	264558	25795	45908	27932	11003	5197	13058
1970	16299	238431	108872	272693	124498	42623	185380	24821	29920	14276	5156	6903
1971	209598	169780	286148	346206	261891	94206	25876	166165	16425	16286	8038	5578
1972	24941	321539	753355	210243	72885	83361	37428	13445	94577	8154	5855	5377
1973 ${ }^{\text {I }}$	-	17654	270715	971883	152713	65131	66469	25494	7882	$520812)$		

[^2]Table 4.9. Calculated Fishing Mortalities by Age and Year in VIa population

Age(years) Year	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.19	0.11	0.07	0.13	0.00	0.07	?
2	0.02	0.03	0.09	0.02	0.04	0.10	0.02	0.07	0.11	0.58	0.26	0.17	0.05	0.21	0.05	0.55
3	0.13	0.14	0.17	0.25	0.30	0.33	0.18	0.17	0.08	0.24	0.13	0.18	0.11	0.16	0.38	0.29
4	0.37	0.36	0.21	0.21	0.22	0.24	0.29	0.22	0.19	0.19	0.17	0.15	0.19	0.38	0.91	0.62
5	0.24	0.41	0.48	0.18	0.16	0.33	0.16	0.21	0.28	0.25	0.30	0.20	0.20	0.43	0.67	0.29
6	0.41	0.38	0.43	0.33	0.24	0.28	0.28	0.13	0.24	0.23	0.25	0.16	0.31	0.48	0.59	0.37
7	0.44	0.61	0.42	0.30	0.13	0.33	0.23	0.25	0.13	0.33	0.31	0.20	0.30	0.34	0.53	0.44
8	0.36	0.85	0.78	0.41	0.21	0.35	0.21	0.24	0.41	0.33	0.35	0.22	0.50	0.46	0.51	0.56
9	0.13	0.77	0.92	0.64	0.32	0.41	0.28	0.31	0.37	0.51	0.44	0.25	0.56	0.63	0.55	0.60
10	0.34	0.41	0.79	0.96	0.29	0.49	0.33	0.35	0.35	0.49	0.77	0.30	0.63	0.55	0.76	0.54
$\overline{\bar{F}}_{\mathrm{w}} \geq 3$	0.23	0.35	0.32	0.25	0.21	0.32	0.23	0.21	0.27	0.25	0.20	0.19	0.23	0.33	0.59	0.35

Table 4.11. Prognosis of catch in 1974 at various levels of juvenile and adult fishing mortalities (thousand ton units).

Adults	F juvenile (1 ringers)						
	0.0	0.1	0.2	0.3	0.4	0.5	0.6
0.1	47.4	61.8	74.7	86.4	97.1	106.7	115.5
0.2	90.2	104.6	117.5	129.2	139.9	149.5	158.3
0.3	129.3	143.7	156.6	168.3	179.0	188.6	197.4
0.4	163.8	178.2	191.1	202.8	213.5	223.1	231.9
0.5	196.1	210.5	223.4	235.1	245.8	255.4	264.2
0.6	224.8	239.2	252.1	263.8	274.5	284.1	292.9
0.7	251.3	265.7	278.6	290.3	301.0	310.6	319.4
0.8	274.8	289.2	302.1	313.8	324.5	334.1	342.9
0.9	297.7	312.1	325.0	336.7	347.4	357.0	365.8
1.0	316.0	330.4	343.3	355.0	365.7	375.3	384.1

59^{00}

Figure 3. Estimation of Number of l-Ringers of the 1971 Year Class.

Pigure 4. The Yield per Recruit Curve for the VIa Herring Population.

Pelagic Fish (Northern) Committee

[^0]: ${ }^{x}$) The General Secretary, ICES, Charlottenlund Slot, 2920 Charlottenlund, DENMARK

[^1]: x) Preliminary figures.
 a) Figures supplied by Fiskirannsóknarstovan.

[^2]: 1) Catches from Moray Firth not included.
 2) Age 10 and older.
