C.M. 1961. Herring Symposium
No. 43.

the Exploration of the Sea.

Catch, Effort and Composition of the Norwegian
 Winter Herring Fishery

by

O.J.Dstvedt

Institute of Marine Research, Bergen.

The Norwegian winter herring fishery is based on pre-spawning and spawning concentrations of Atlanto-Scandian herring along the Norwegian west coast in January, February and March.

Throughout its history the fishery has been characterized by short and long term fluctuations. Devold (1961) has given a review of the long term fluctuations and has show how these may be explained by changes in the migratien patterm of the herring, a theory which perhaps may be verified in the preaent century.

The aim of the present papen is to describe the changes in catch and effort in the Norwegian winter herring fishery during the postwar peried and to discuss the causes of the declining catches after 1957.

When sampling to obtain age and length data from the winter herring fishery begam in 1907, Hjort (1914) was able to show that the size of the year-classes waried widely. According to Lea (1930) the difference in numerical strength of the yearmclasses could be as much as one to one hundred. One rich year-class (e.g. that of 1904) could increase the yield of the fishery and dominate the catches for several years. From these results it was concluded that fluctuations in the yield of the herring fisheries is caused by natural variations in size of the Year-classes.

In analysing age data from the winter herring fishery the prespawning ("Large Herring") and the spawning ("Spring Herring") have often beem treated as separate stocks (Runnstrøm, 1941). The results of the herring investigations (age, growth, vertabrae counts and tagging experiments) during the last decade and also the recent changes in the migration pattern, confirm that, the Norwegian winter herring fishery is exploiting one single stock.

Catch and effort

Figure 1. shows the total catch of Atlanto-Scandian herring in the Norwegian sea (including the east and north coasts of Iceland) since 1925. Because the catches of herring in these areas mainly consist of adult herring, the figures should be fairly representative for the total exploitation of the adult stock of Atlanto-Scandiam herring. In the post-war period the catches have increased rapidly: to approximately twice the pre-war level. Until 1958 the Norwegian catch dominated, but it has since decreased to less than 50% of the total catch. This reduction in the yield of the herring fishery in Norway is due to the failing winter herring fishery only. The landings from the Norwegian herring fishery off Iceland have even increased the last years, and in 1960 the catch was about 0.7 million hlo or the same as the output from the winter herring fishery in 1961. This year the catch of summer herring is expected to reach about 1.0 million $h l$.

The satch data from the winter herring fishery for the years 1925-61 are: givem in Table 1. The numbers have beem calculated from the age and weight composition. Since the composition of the catches changes during the season it was found necessary to split the data and calculate the number of herring landed in periods of two weeks. The older spawners appear early in the season ard leave the spawning grounds before the recruit-spawners. At the end of the season the catches may consist exclusively of recruit-spawners.

The peak catch before 1940 was reached in 1938 with 5.3 million hl. After 1947 the catches showed an increasing trend until 1956 with a top catch of
12.3 million hl. Since 1957 the catches have declined rapidly, amounting to only 0.7 million $h l$. in 1961.

The gears used in the winter herring fishery are gill-net, purse-seine and land-seine. Table 2. shows the catch statistics for the different gears since 1925. The catch for drift-nets in the Table also includes the catch by set-nets, in the pre-war period the total landings by drift-net were always larger than the landings by purse-seine. After 1946 the landings by purse-seine increased rapidly, and in 195670.8% of the heming oatch was landed by this gear. During the last years the land-seine have been of minor importance,

A crude effort statistic for the winter herring fishery is given in Table 3 . For the purse-seine fishery the number of vessels seems to be the best measure of fishing effort available. In the season of 1957, the year after the record catch, 599 purse-seiners participated in the fishery, but the number has dropped to only 254 in 1961. Figure 2. shows the catch by purse-seine plotted against the number of vessels. It appears that until 1956 the catch increased with increasing effort. After 1957 htwever, the available population has shifted to a much lower level.

The number of drifter has decreased since 1950, from 2032 to only 789 in 1961. During the 1950's several drifters changes to purse-seine, but the reduction during the last. years in due to the small catches. Figure 3. shows the catch by drift-net plotted against the number of vessels and indicates that the available population in the years 1954-5T have been larger than the average for the period 1946-60. In the drift-net fishery there is a large variation in fishing intensity and fishing power of the vessels. It has therefore been supposed that the number of landings would give a best measure of effort. The number of landings has been calculated from the mean catch per day per vessel from information given by approximately $20-25 \%$ of the fleet. It is stressed however, that the number of landings is not always identical with the number of shots. During the last seasons when the catches have been small, one landing may have included catches from two dr more shots.

Since 1946 there has also been a rapid growth in fishing efficiency, for purse-seiners as well as for drifters, due to technical advances in gear and in fish location methods. Thus, in 1946 less than 10% of the fleet was fitted with echo-sounders, while to-day almost every vessel has an echo-sounder and nearly all the purse-seiners have an ASDIC in addition. The fishing efficiency therefore must be higher in 1960 than it was in 1946. It is difficult, if not impossible however, to adjust for this increasing efficiency.

Catch per unit effort
Figures 4 and 5. show the catches in hl, number of herring and number of herring per unit effort by purse-seine and drift-net respectively. As previously mentioned, the catches by purse-seine increased rapidly after 1946 and in 1954-56 the catches were on an average, four times the pre-war level (1935-40). The catches per unit effort (number of vessels) show that the large increase in the total landings by purse-seine mainly was an effect of increased effort.

The drift-net landings also increased after 1947 compared with the pre-war level, but they do not show an increasing trend in the fifties. As figure 5 . indicates, the number per landings shows only small variations. However, both sets of data of catch per effort for purse-seine and for drift-net agree in showing a relatively high level in 1948 and 1950, a slight decrease in 1951-53, an increase in 1954-56 and after 1957 a definite declining trend.

If the estimated catch in numbers per unit effort is used as an abundance index, it seems that the stock available to the fishing fleet for the last four years has been considerably reduced. The purse-seine catch per effort shows a reductiom to about one fifth of the 1954-56 level, while the drift-net data show a reduction to only one-half. It is likely that the true value of the reduction in stock abundance from 1954-56 lies between the se two estimates.

Estimation of total mortality

The age-composition for the years 1946-60 are shown in Tables 4 and 5. as number per vessel for the purse-seine fishery and as number per landing for the drift-net fishery. These Tables list a few immature fish which occasionally occur in the catches, mainly as two, three or four years old. Since the samples for age have been collected mainly from the purse-seine catches all samples had to be lumped together irrespective of the gear used. This infers that the
estimated age-composition for the drift-net catches are slightly biased, giving larger numbers of the younger age groups, mainly immature herring which usually not is retained by the drift-net. The numbers grouped under " ? " in the Tables are herring with regenerated scales or scales which could not be used for age determination. This group have a higher mean length than the rest of the samples, showing that it is dominated by herring from the older age groups.

Individuals from one year-class may attain maturity at an age betweer three and nine years. Only older age groups which are fully recruited should therefore be used for estimation of mortality rates. However, this difficulty is avoided by using the spawning-group composition. In the spawning-group composition the variation in year-class strength is diminished because each spawning-group consists of several different year-classes. In Tables 6 and 7. are given the spawning-group composition as number per unit effort for purseseine and for drift-net.

Table 8. shows the estimated total instantaneous mortality coefficients from the data in Tables 4 to 7 . for each year-class and spawning-class in successive years of life between 1946 and 1960. For comparison the mortality coefficients for the age groups sevem to twelve years are also included in the Table.

There is a large variation in the values of the mortality coefficients. The value for the spawning-groups II/III are often negative or very small, while the values for the I/II group are unexpectedly large. It has always been noticed that the number of second time spawners in the samples are small compared with the number of I. and III. spawners. So far it has not been possible. to deduce whether the small numbers of II. spawners should be attributed to misinterpretation of the spawning rings on the scales or if the II. spawners are less available to the fishing fleet due to a migration pattern different from the other groups.

It appears from Table 8, that during the period 1946 to 1960 the estimated total instantaneous mortality coefficients have fluctuated widely. In some years there: is also a larg difference in the estimated values for purse-seine and drift-net. For the years $1949 / 50$ and $1953 / 54$ the mortality coefficients are negative or nought for both gears. It is known from fishery reports that the availability was high in 1950 and 1954. In 1950 the fishing was stopped for one week because of inswfficient capacity of the herring meal-and oil factories.

In 1957 and 1958 the availability was low, due to late arrival of the herring and shifting to more northern spawning grounds. In addition, the weather was very stormy and especially unfevorable for the purse-seine fishery, The estimated values of mortality coefficients also show a much larger value for the purse-seine than for the drift-net.

The mortality coefficients for the age groups shown in Table 8, are much smaller in value than the corresponding values for the spawning groups. This result may be expected if some of the age groups involved have not been fully recruitted.

The variations in the mortality coefficients from year to year may be diminished by grouping the data. The number per effort in Tables 6 and 7. have been grouped in three periods; 1946/50, 1951/55 and 1956/60. Figure 6 shows the logarithm of the numbers plotted against spawning-group number. The slope of the line fitted to the plots for the period $1956 / 60$ gives an estimate of 0.25 as the total mortality coefficient. The plots of the first period (1946/50) fall on about the same line, while the plots for the period 1951/55 show an increase of the older spawning groups. This may have been caused by the rapid increase in efficiency of the fishing effort which may give larger catches per unit effort than those obtained in the preceding years.

The estimated total mortality coefficients shown in Table 8 and Figure 6 do not suggest any change in totall mortality since 1946. The increase in total mortality caused by higher effort in the 1950^{\prime} s may have been to small to be calculated from the present data due to the large fluctuations in availability.

Recruitment

Since 1946 only four year-classes with above averege abundance have entered
the winter herring fishery. These are the year-classes 1943, 1944, 1947 and 1950.
The total number per unit effort in the life-span of a year-class should give an estimate of the numerical strength of the year-class, provided the unit of effort has not changed considerably during the period. Table 9. shows the total sum of the numbers per unit effort for the age groups 2-10 years of the year-classes 1943 to 1951. Because of the increasing efficiency the youngest yean-classes are probably overestimated. The data show that the ratio between the smallest and the largest year-class, 1949 and 1950 repectively, is one to fifteer. The year-classes 1943 and 1944 give a ratio of about one to ones but give a ratio of about one to two when compared with the 1950 year-class.

As mentioned above the year-class 1950 has dominated the fishery since: 1954 and even in 1961 accounted for nearly 60% of the catch.

I甘 appears from Tables 6 and 7 . that since 1957 the recruitment has been low. Im 1960 less than 3% of the: spawning stock were recruit-spawners compared with 34 \% recrait-spawners in 1955. Since 1946 there: have been two periods with high recruitment, 1948-49 and 1954-57. In the first period the year-classes 1943 and 1944 were recruited, while in the last period the 1950 year-class dominated.

A rich year-class usually has a wider range of age at first spawning than a poor year-class. The 1950 year-olass thus made up a substantial part of the recruit-spawners even in 1958 and 1959. The year-classes subsequent to 1945 have showed an increasing mean age at their first spawning, while the mean age had decreased for all the year-classes after 1934 (\varnothing tsvedt, 1958). The 1950 year-class had a mean age at first spawning of 7.7 years for herring of the northerm growth type compared with 5.1 for the 1945 year-class. This explains the large number of recruit-spawners in 1957.

As shown in Tables 6 and T. the reduction in numbers per effortin since 1957 has been much greater for the recruit-spawners than for ary of the other spawnings groups. Figure 7. shows the relationship of catch of recruits per effort on total catch per effort for purse-seine and drift-met. When we compare the figures for the two gears it can be seen that there is a significant difference, with the purse-seine fishery showing a high relationship between catch of recruits and total catch. Thus it seems that the recruit-spawners are more available to the purse-seiners than are the other spawning groups. A possible explanation might be due to difference in schooling behaviour and migration to more sheltered waters. For the drift-net fishery the gear selection may reduce the: catches of recruit-spawners. A consequence of this is that high catches for the purse-seine fishery can only be expected in years with high recruitment. If this holds true it explains the much greater decline in catch per effor $\#$ for the purse-seine fishery as compared with the drift-net fishery. (Figures 4 and 5). An index of stock abundance of the purse-seine fishery based on catch per effort will therefore tend to be greater in years with high recruitment and lower in years with low recruitment.

The year-classes 1951 to 1956 which until 1960 were recruited to the winter herring fishery are all very small. Echo-surveyrs along the Norwegian coast and in the Barents Sea have indicated that the 1957 and 1958 year-classes are below average in size, while the 1959 year-class may be above average (Dragesund, 1961). It is therefor expected that recruitment will also be low in the 1962 season.

Comelusion

The above data indicate that increasing catches per unit effort in the winter herring fishery usually coincïde with the recruitment of rich yearclasses to the spawning stock.

During the last four years the recruitment has beem very low due to a series of year-classes which are below average in size. It seems fair to conclude therefore that the declining catches of winter herring mainly resulted: from depletion of the spawning stock, because of low recruitment and not because: of higher mortality rates due to increased effort.

In the last years the pattern of migration has changed, causing late arrival of the herring and a shifting to more northerm spawning grounds. This changes have undoubtedly reduced the availability and have therefore accelerated the reduction in the catches of winter herring.

The recent long series of small year-classes may have been due to the shifting to ther spawning grounds which may have been less favorable to the broods.

References

Devold, F., 1961, The life history of the Atlanto-Scandian herring. Herring symposium, contrib. No. 40.

Dragesund, 0., 1961. Norwegian immature herring investigations in 1959. Ann.biol., Copenhague, 16 (1959): 170-171.
Hjort,J., 1914. Fluctuations in the great Fisheries of Northern Europe. Rapp. Corns. Exlor. Mer., 20.
Lea, E., 1930. Mortality in the tribe of the Norwegian herring. Rapp. Cons. Explor. Mer., 30: 100-117.
Runnstrøm, S.1941. Raciall analysis of the herring in Norwegian waters. Rep. Norw. Fish. Invest. 6(7): 1-110.

Dstvedt., O.J. 1958. Some consideration concerming the homogeneity of the Atlanto-Scandian herring. Rapp.Cens. Explor. Mer., 143(2): 53-57.

Table 1. Norwegian Winter Herring. Total catch, 1925-61.

Year	H1	Tons.	Numbers
	Thousands of hl.		Millions of herring.
1925	2503	250263	-
26	2550	254980	-
27	2817	281776	-
28	3006	300642	-
29	3435	343532	-
1930	4750	474973	-
31	3054	305446	-
32	3648	364799	-
33	3298	329835	-
34	1108	110771	-
35	4312	401012	-
36	5196	483227	-
37	3430	318981	-
38	5338	496428	-
39	4435	412426	-
1940	4400	409220	-
41	2306	214475	-
42	2725	253404	-
43	2456	228419	-
44	3227	300085	-
45	3759	349600	-
46	3846	357633	1302
47	5315	494270	1755
48	8813	819583	3130
49	6103	567467	2251
1950	8294	771306	2999
51	9548	888006	2880
52	8822	820471	2614
53	,7205	670084	2096
54	11744	1092230	3554
55	10381	965413	3559
56	12321	1145859	3960
57	8555	795582	2906
58	3713	345294	1144
59	4477	416360	1278
1960	3227	300111	921
61	742	69006	-

Table 2. Norwegian Winter Herring. Catch by gears, 1925-61.

Purse - seine Drift - net

Age/Year	1946	1947	1948	-1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960
2	-	-	-	z	3	-	4	4	7	1	-	5	-	-	-
3	20	64	37	138	330	9	44	113	65	61	31	11	5	4	-
4	80	4.66	634	249	220	444	65	54	1217	262	249	206	10	15	3
5	77	131	1260	929	220	198	663	115	159	1958	293	119	59	16	18
6	122	125	110	088	64.8	185	149	404	261	113	2528	156	46	84	14
7.	75	206	89	65	74%	583	223	88	533	178	114	1571	64	57	75
8	23.4	100	111	52	92	680	414	118	133	240	196	51	491	87	40
9	383	327	85	75	101	77	407	335	203	70	231	72	25	528	58
10	49	589	307	55	121	86	80	402	446	169	108	67	34	25	671
11	124	90	450	133	97	101	85	56	460	230	176	43	33	37	19
12	229	162	65	273	214	105	103	77	84	139	207	61	22	50	44
13	86	361	157	44	413	258	100	82	91	42	97	76	21	21	47
14	34	102	233	72	62	351	165	83	119	58	46	41	17	26	17
15	19	54	112	129	106	57	235	183	105	74	58	14	11	24	12
16	6	34	48	34	192	116	55	195	167	81	69	17	6	10	15
17.	-	21	20	19	43	152	72	60	207	92	84	21	7	6	10
18	2	1	8	4	21	16	114	82	79	55	79	28	7	8	6
19	1	3	-	5	-	6	27	81	67	62	31	19	5	4	4
20	-	-	-	11	5	-	4	19	49	31	30	8	3	3	6
21	-	1	-	-	-	-2	1	4	6	7	16	6	2	2	4
22	-	-	-	-	-	-	-	1	6	6	6	1	-	1	1
23	-	-	-	1	-	-	-	1	-	1	-	-	-	1	1
?	257	307	286	104	342	415	326	239	375	244	349	183	103	111	90
Total	1798	3144	4012	3351	3973	3841	3336	n796	4839	4174	4998	2779	972	1116	1155

Table 5. Norwegian Wirier Herrirg. Age-composition, number per drift-net landings.

Age / Year	1947	1948	1949	1550	1951	1952	1953	1954	1255	1956	1257	1958	1959	1960
2	4	-	22	32	-	38	46	66	7	-	77	-	-	
3	686	390	1672	3676	83	421	1479	643	599	245	182	123	9	5
4	4993	6745	3026	2447	4326	626	711	11946	2592	1942	3186	279	368	60
5	1402	13395	11266	2447	1933	6380	1510	1564	19371	2279	1842	1696	389	318
6	1336	1170	10786	7213	1792	1430	5289	2564	1124	19694	2407	1309	2081	244
7	2203	950	786	8277	5690	2149	1149	5228	1763	888	24270	1828	1406	1338
8	1070	1183	629	1020	6636	3991	1546	1303	2375	1524	789	13985	2145	711
9	3498	902	913	1123	748	3918	4387	1988	696	1799	1112	745	13068	1030
10	6303	3268	689	1348	840	766	5268	4369	1676	840	1035	975	628	12005
11	959	4788	1620	1075	984	813	732	4515	2274	1371	663	941	927	333
12	1734	695	3319	2383	1029	991	1005	822	1378	1612	944	627	1235	781
13	3867	1663	537	4601	2518	959	1072	888	418	755	1172	608	530	831
14	109?	2472	878	688	3419	1592	1088	1166	575	361	628	490	650	294
15	583	1191	1563	1182	556	2263	2392	1029	732	456	214	299	585	219
16	365	507	410	2134	1130	532	2552	1635	806	541	274	167	244	274
17.	221	218	227	474	1479	696	794	2033	910	656	319	196	141	174
18	7	88	48	229	153	1095	1077	776	545	619	432	191	188	100
19	37	-	57	-	58	259	1067	660	609	241	298	132	107	70
20	4	-	4	59	-	35	247	477	308	231	130	93	81	100
21	15	-	-	-	19	9	46	71	67	116	98	54	60	65
22	-	-	-	-	-	6	15	71	57	37	18	10	38	20
23	-	-	4	-	-	-	15	-	10	-	7	10	21	25
24	. -	-	-	-	-	-	15	-	-	-	3	-	-	-
?	3292	3042	2231	3806	4038	3136	3134	3680	2415	2728	2828	2931	2748	1617
Total	33671	42667	40687	4214	7438	32105	6636	7494	41307	8935	2928	689	54	614

Age/Year	1946	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960
I	205	384	1290	1083	317	425	346	277	890	1417	1366	821	179	126	25
II	116	148	380	556	621	90	234	114	204	677	583	212	94	119	105
III	317	275	164	181	599	757	78	168	223	192	1178	499	105.	120	150
IV	330	436	175	92	175	433	429	63	214	119	169	351	194	98	133
V	191	490	321	109	148	147	321	378	116	99	120	57	129	199	113
VI	119	288	420	168	179	137.	122	296	500	152	115	34	28	121	220
VII	70	172	188	226	279	172	101	136	353	238	177	46	22	27	124
VIII	60	104	126	125	317	289	127	102	170	127	201	68	23	30	28
IX	29	84	104	50	163	282	190	129	126	78	103	70	24	25	22
X	22	68	72	24	73	126	186	202	163	89	89	37	17	30	16
XI	8	34	47.	21	42	41	90	226	226	115	78	29	11	21	17
XII	2	23	18	9	24	18	48	85	185	103	103	28	10	12	12
XIII	2	8	12	8	14	10	22	40	77	95	86	26	6	7	7
XIV	-	5	4	4	4	9	17	13	22	21	31	18	4	4	5
XV	-	-	1	1	2	1	10	11	14	7	5	6	3	3	3
XVI	1	1	-	-	1	-	6	4	11	5	3	1	1	2	3
XVII	-	-	-	1	1	-	2	-	4	3	1	-	-	-	1
XVIII	-	1	-	1	-	-	-	-	3	1	1	-	-	-	1
XIX	. -	-	-	-	-	-	4	1	-	2	-	-	-	-	-
?	326	623	690	692	1014	904	1007	551	1338	633	589	476	122	172	170
Total	1798	3144	4012	3351	3973	3841	3336	2796	4839	4174	4998	2779	972	1116	1155

Table 7. Norwegian Winter Herring. Spawning-groups, number per drift-net landings.

Groups/Year	1947	1948	1949	1950	12:1	1952	1953	1954	1955	1956	1957	1958	1959	1960
I	4114	13721	13157	3522	4137	3329	3634	8730	14013	10642	12688	5098	3115	443
II	1579	4040	6755	6913	875	2247	1500	2004	6692	4544	3270	2681	2936	1886
III	2937	17.40	2201	6664	7380	750	2206	2187	1896	9177	7705	3000	2970	2687
IV	4668	. 1867	112 ?	1949	42\%0	4130	830	2104	1177	1316	5421	5520	2432	2373
V	5247	3416	1328	1548	1431	3092	4959	1137	983	932	874	3686	4932	2020
VI	3085	4464	2035	1988	1339	1174	3881	4909	1512	898	523	789	2987	3925
VII	1845	1997	2747	31.11	1677	972	1784	3469	2358	1378	716	618	679	2209
VIIII	1111	1334	1520	3530	2821	1225	1330	1672	1251	1565	1049	642	735	493
IX	900	1109	607	1810	2751	1823	1696	1237	773	803	1081	686	624	398
X	727	764	297	81.6	1227	1791	2649	1606	886	690	565	490	735	284
XI	369	507	258	470	399	861	2964	2224	1140	605	446	309	517	303
XII	240	191	105	273	176	459	1119	1817	1017	799	439	299	299	215
XIII	89	125	83	158	c9	209	526	759	943	673	396	181	179	119
XIV	55	37	48	43	c3	161	165	216	207	241	284	103	107	95
XV	4	13	17	20	10	95	144	141	70	37	99	78	60	55
XVI	15	-	-	8	-	57	52	108	54	24	11	15	47	5
XVII	-	-	4	8	-	16	5	41	30	10	-	10	9	20
XVIII	7	-	4	-	-	-	5	25	10	10	7	-	13	10
XIX	-	-	-	-	-	-	15	-	23	-	7	-	-	-
?	6679	7342	8399	11281	8803	9714	7172	13108	6272	4591	7347	3484	4273	3034

$\begin{array}{ll} 0 \\ \text { vi } \\ 00 \end{array}$	$\begin{aligned} & 9 \dot{1} \\ & =1 \\ & 00 \end{aligned}$	$\begin{aligned} & ⿱ 乛 龰 \\ & \underset{\sim}{n} \\ & 00 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { NO } \\ & 0 . \end{aligned}$	$\begin{aligned} & \infty 0 \\ & \div \cdot 0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 00 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { ao } \\ & 00 \\ & 00 \end{aligned}$	$\begin{gathered} 19 \infty \\ -0 \\ 00 \\ 0 \\ 1 \end{gathered}$	$\begin{aligned} & n 0 \\ & M O \\ & 0- \end{aligned}$	$\begin{aligned} & \infty \quad 0 \\ & \Gamma \\ & \stackrel{\infty}{\infty} \dot{0} \end{aligned}$	$\begin{array}{llll} \text { M} & 1 & 0 & - \\ 0 & 7 & - \\ 0 & 0 & 0 & 0 \\ 1 & 1 & \end{array}$
$\stackrel{N}{N}$	$\begin{aligned} & 60 \\ & 0 \\ & 00 \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{\infty} \\ & \stackrel{0}{=} \\ & 0 \\ & i \end{aligned}$	$\begin{aligned} & 10 \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{array}{ll} -N \\ 0 & \tilde{O} \\ 0 & 0 \\ 1 & 1 \end{array}$	$\begin{aligned} & -0 \\ & 0 . \\ & 0 . \end{aligned}$	$\begin{array}{cc} \mathbb{N} & 0 \\ \Gamma & + \\ 0 & 0 \\ 1 & 1 \end{array}$	$\begin{aligned} & 90 \\ & \sim N \\ & \sim \div \end{aligned}$	$\begin{aligned} & \vec{m} 0 \\ & 00 \\ & 00 \end{aligned}$	$\begin{aligned} & N 0 \\ & \sim 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \hat{0} \\ & 00 \\ & 00 \end{aligned}$	$\begin{array}{ll} N Q & N \\ N & = \\ 00 & 00 \\ 1 & 1 \end{array}$
$$	$\begin{aligned} & 0+ \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{array}{cc} 20 \\ \stackrel{n}{2} \\ 0 & 0 \\ 1 & 1 \end{array}$	\cdots	00	$\begin{aligned} & \text { 2no } \\ & 0.9 \\ & 00 \end{aligned}$	$\begin{aligned} & 0 \pm \\ & \div \dot{0} \\ & 0 \dot{0} \end{aligned}$	$\begin{aligned} & 290 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 9= \\ & \div 0 \\ & 00 \end{aligned}$	$\begin{aligned} & \vec{\sim} \\ & \sim \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & -1 \\ & 0 . \end{aligned}$	$\left.\begin{array}{ccc} n & \infty & \overrightarrow{0} \\ 0 & \infty \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 \\ 1 & \end{array} \right\rvert\,$
$\begin{aligned} & \mathrm{N} \\ & 0 \\ & 0 . \\ & 0 . \end{aligned}$	$\begin{aligned} & N= \\ & 0 \pm \\ & 0 . \end{aligned}$	$\begin{aligned} & 0 \\ & \\ & \dot{0} \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \hat{0} 0 \\ & N \\ & 0 . \end{aligned}$	$\begin{aligned} & v \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 00 \\ & 00 \end{aligned}$	$\begin{aligned} & 8 \underset{~}{2} \\ & 0 \dot{0} \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & N \infty \\ & \div \circ \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 9 \\ & -1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & n \\ & 12 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & n_{2 n}^{2 n} \\ & 0.0 \end{aligned}$	$\begin{array}{lll} 10 & 0 & -1 \\ -0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 \end{array}$
$\begin{aligned} & N \\ & \Gamma \\ & 0 . \\ & 0 . \end{aligned}$	$\begin{array}{ll} 0 & 0 \\ \Re & 9 \\ 0 & 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 00 \\ & 10 \end{aligned}$	$\begin{aligned} & \bar{M} \\ & 0 \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & N N_{n}^{2 n} \\ & 00^{\circ} \end{aligned}$	$\begin{aligned} & 9 N \\ & 0 N \\ & 00 \\ & 10 \end{aligned}$	$$	$\begin{aligned} & 100 \\ & 00 \\ & 00 \end{aligned}$	$\begin{array}{ll} \infty & \underset{ }{1} \\ \sim & 0 \\ 0 & 0 \end{array}$	$\begin{aligned} & -8 \\ & 0- \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \pi \\ & 0 \\ & 00 \end{aligned}$	$\begin{array}{ll} \hat{N} & \text { M} \\ 0 & = \\ 00 & 0 \\ 0 & 0 \\ 1 & 0 \end{array}$
$\begin{aligned} & V \\ & 0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & \mp-\vec{n} \\ & \stackrel{2}{2} \\ & 00 \end{aligned}$	$\begin{array}{ll} 0 & \pm \\ v & m \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{aligned} & N \\ & N \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \ddagger \\ & 00 \\ & 00 \end{aligned}$	$\begin{aligned} & \text { nit } \\ & 00 \\ & 00 \end{aligned}$	$\begin{aligned} & m \\ & \because= \\ & \dot{0} 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 90 \\ & 10 \\ & 00 \end{aligned}$	$\begin{aligned} & \text { in } \\ & -0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \because 0 \\ & \div \dot{O} \\ & \div \circ \end{aligned}$	$\begin{aligned} & \text { nn } 0 \\ & 0 \div \\ & 0 \end{aligned}$	$\begin{array}{ccc} 0 & 0 & 0 \\ - & 0 \\ -1 & 0 & n \\ 0 & \dot{0} & \dot{0} \\ 1 & 0 \end{array}$

$\therefore \infty$
$\div \div$
$0<$

\circ
0
0.
0.
$\begin{array}{ll}\infty & M \\ 0 & 0 \\ 0 & 0 \\ \sim & N \\ 0 & 0 \\ 0 & 0\end{array}$
$=2 n$
0.0
0.0
$-N$
00

nin
n
0

90
0.
00

00100	0
11	0
00	$-1+1$

 Aata
d
A 04 $1949 / 50 \mathrm{P}$

$$
1950 / 51
$$

0.22 o

$$
\mathrm{Q}
$$

Table 9. Total catch in million fish and number per effort of the year-classes 1943-1951, age-groups 2-10 years.

Figure 1. The catch of Atlanto-Scandian hefring by countries.

Pigure 2. Pur e-ceine firhery . Relotion between number of vessels
and catch .

[^0]

Figure 4. Pure-eine fi hery . Catch in hl, number and number per effort.

Figure 5. Drift-net fichery . Catch in $h 1$, number and number
per effort.

Prgure 6. $1951 / 55$ and $1956 / 60$.

Figure 7. Relation between total catch per effort and catch pen effort of I. spamers for pureemeine and drift-net.

[^0]: Figure z. Drift-net fichery . Relation between mung of vessels

